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ABSTRACT 

Tropical ecosystems play a key role in regulating the global climate and the carbon cycle 

thanks to the large amounts of water and carbon exchanged with the atmosphere. These 

biogeochemical fluxes are largely the result of high photosynthetic rates. Photosynthetic activity 

is highly dependent on climate and vegetation, and therefore can be easily modified along with 

changes in those two factors. A better understanding of what drives or alters photosynthetic activity 

in the tropics will lead to more accurate predictions of climate and subsequent effects on 

ecosystems. The seasonal pattern of photosynthetic activity is one of the main uncertainties that 

we still have about tropical ecosystems. However, this seasonality of tropical vegetation and its 

relationship to climate change and land cover is key to understanding how these ecosystems could 

be affected and have an effect on climate. 

In this dissertation, I present three projects to improve our understanding about tropical 

ecosystems and how their photosynthetic activity is affected by climate and land cover change. 

The lack of field-based data has been one of the main limiting factors in our study of tropical 

ecosystems. Therefore, in these projects I extensively use remote sensing-derived data to analyze 

large scale and long term patterns. In the first study, I looked at the seasonal relationship between 

photosynthetic activity and climate, and how model simulations represent it. Vegetation in most 

of the tropics is either positively correlated with both water and light, or positively correlated with 

one of them and negatively with the other. Ecosystem models largely underestimate positive 

correlations with light and overestimate positive correlations with water. In the second study, I 

focus on the effect of land cover change in photosynthetic activity and transpiration in a highly 

deforested region in the Amazon. I find that land cover change decreases tropical forests 

photosynthetic activity and transpiration during the dry season. Also, land cover change increases 

the range of photosynthetic activity and transpiration in forests and shrublands. These effects are 

intensified with increasing land cover change. In the last project, I quantify the amount of change 

in evapotranspiration due to land cover change in the entire Amazon basin. Our remote sensing-

derived estimates are well aligned with model predictions published in the past three decades. 

These results increase our confidence in climate models representation of evapotranspiration in 

the Amazon.  
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Findings from this dissertation highlight (1) the importance of the close relationship between 

climate and photosynthetic activity and (2) how land cover change is altering that relationship. We 

hope our results can build on our knowledge about tropical ecosystems and how they could change 

in the future. We also expect our analysis to be used for model benchmarking and tropical 

ecosystem monitoring. 
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 INTRODUCTION 

Tropical ecosystems provide various ecosystem services of global importance, mainly as 

habitat for the large proportion of biodiversity they harbor and for their influence on atmospheric 

carbon and global climate. Warm temperatures throughout the year result in fast rates of 

biogeochemical processes and an ideal habitat for numerous species. Tropical forests alone contain 

about 25% of the terrestrial carbon, account for almost 33% of global terrestrial photosynthesis 

(Bonan 2008), and host about a quarter of the world's terrestrial biodiversity (Malhi et al. 2008). 

The tropics are also home to a high number of endemic species and serve as seasonal habitat for 

migrating species from higher latitudes (Barlow et al. 2018). Tropical ecosystems also have a 

disproportionate influence on carbon and water exchange between the biosphere and the 

atmosphere, and subsequently on the regional and global climates (Davidson et al. 2012; Lovejoy 

and Nobre 2019). However, their role as carbon sinks and climate regulators is tightly linked to 

anthropogenic disturbances of the climate and land cover (Bonan 2008). 

Climate and land cover change represent ongoing major threats for tropical ecosystems. By 

2003, 15% of the original extent of the Amazon had been deforested; this remnant area is predicted 

to decrease to half by 2050 in a business-as-usual scenario (Soares-Filho et al. 2006). At the same 

time, climate models predict average warming that ranges between 3.3 and 8 °C by the end of this 

century, under different greenhouse emission scenarios (Malhi et al. 2008). Also, a significant 

Amazonian drying has been projected by some of the models, with a 30 - 80% probability of 

intensification of the dry season (Malhi et al. 2008). Of greater importance is the positive feedback 

that arises with the destruction of the forest and the changes in climate; 120 ± 30 Pg C stored in 

the biomass of these forests could be released to the atmosphere and trigger further changes in 

radiative forcing and global warming (Malhi et al., 2008; de Gonçalves et al., 2013).  

The high photosynthetic rates of vegetation in the tropics is one of the main pathways 

through which these ecosystems disproportionately influence climate. Photosynthetic activity, 

which is closely related to transpiration, largely determines the fluxes of carbon, water, and energy 

between the land surface and the atmosphere. In the Amazon, the largest and most studied 

ecosystem in the tropics, a large proportion of precipitation comes from water that has been 

recycled within the same region (Staal et al. 2018). The water recycled by the Amazon forests also 

affects precipitation in other parts of the world through teleconnections (Avissar and Werth 2005; 
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Lawrence and Vandecar 2015; Medvigy et al. 2013). Given the importance of, and threats faced 

by tropical ecosystems, there is considerable interest in understanding photosynthetic activity of 

these systems, how it could function under changing conditions, and how those changes could 

subsequently affect climate. 

The seasonality of photosynthetic activity is one of the least understood aspects of tropical 

ecosystems (Guan et al. 2015). In contrast to temperate and boreal forests, tropical ecosystems do 

not have a well-fixed seasonality controlled by temperature or day length (Restrepo-Coupe et al. 

2013). Photosynthetic rates in these ecosystems are closely related to variation in precipitation and 

radiation (Nemani et al. 2003; Seddon et al. 2016; Wagner et al. 2016). But the complex 

relationship between climate drivers and productivity in these ecosystems is not entirely 

understood (Restrepo-Coupe et al. 2013). For instance, Earth system models poorly represent 

seasonal trends of some tropical forests in the Amazon (Restrepo-Coupe et al. 2017; Saleska et al. 

2003). The misrepresentation of seasonal photosynthetic activity suggests that carbon and water 

cycling in tropical ecosystems do not have realistic relationships with environmental drivers in 

these models. 

Land cover change dramatically alters the feedbacks between the land surface and the 

atmosphere. Land surface properties such as albedo, surface roughness, photosynthetic activity, 

and transpiration are modified by changes in the land cover (Butt, Oliveira, and Costa 2011). All 

these mechanisms result in changes in evapotranspiration. Due to its role in water cycling and 

energy transfer from the land surface to the atmosphere, evapotranspiration affects precipitation 

and temperature (Xu et al. 2019). The impacts of land cover change on evapotranspiration and 

climate can range from short-term and local to long-term and global. 

In the Amazon specifically, the removal of native vegetation results in substantial differences 

in the amount of water recycled from the land surface to the atmosphere; but, how much? The 

impact that these ecosystems could have on climate has been a focus of research studies since the 

1970s (Spracklen and Garcia-Carreras 2015). Given the difficulty of measuring evapotranspiration 

and the scarcity of field-based data in the tropics, few studies have used this type of data to 

characterize the effects of deforestation. Most studies on the impact of land cover on climate rely 

on climate models (e.g., regional and global circulation models). These models also have the 

advantage of including complex atmospheric dynamics that allow us to understand the feedbacks 

between evapotranspiration, precipitation, and temperature at the local, regional, and global scales. 
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Modeling studies agree that continuing deforestation of the Amazon will reduce evapotranspiration 

and precipitation and increase temperatures (Davidson et al. 2012). However, there is uncertainty 

in the amount of change in evapotranspiration, precipitation, and temperature due to land cover 

change. The large number of studies conducted on this topic, employing a variety of different 

model frameworks, has resulted in a large number of estimates (Spracklen and Garcia-Carreras 

2015). Studies based on remote sensing data are scarce, despite the fast development of this type 

of data in the past few decades. These advancements provide us the opportunity to estimate the 

effects of land cover change based on large-scale, long-term, and high-quality observed data. 

In this dissertation, I present a broad set of studies about the feedbacks between tropical 

ecosystems and climate, and how they are disrupted by land cover change. In the first chapter, I 

analyze the relationships between climate and photosynthesis at the seasonal scale across the entire 

tropical region. I identify how different types of relationships are related to specific biomes and 

climate characteristics. I then evaluate whether land surface models accurately represent the 

various types of relationships. In the second chapter, I investigate the effects of changes in land 

cover on photosynthesis and transpiration in a highly deforested region in the Amazon. I identify 

how land cover change affects these variables at both annual and seasonal scales in two specific 

natural ecosystems, the rainforest and the Cerrado. In the last chapter, I use remote sensing-derived 

data to estimate how land cover change has altered evapotranspiration in the tropical forests of the 

Amazon basin. I compare these estimates with a full record of estimates from modeling-based 

studies. I also analyze spatial, seasonal, and interannual differences in deforestation-induced 

changes in evapotranspiration. 
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 SEASONALITY OF TROPICAL PHOTOSYNTHESIS: A 
GLOBAL MAP OF DRIVERS AND COMPARISON TO MODEL 

OUTPUTS 

2.1 Abstract 

Highly productive tropical ecosystems strongly influence Earth's climate and weather 

patterns.  Most tropical ecosystems remain warm year-round; nonetheless, their plants undergo 

seasonal cycles of carbon and water exchange. Previous research has shown the importance of 

water and light as drivers of the seasonality of vegetation activity in the tropics. Also, field-based 

studies have demonstrated that land surface models inaccurately simulate vegetation seasonal 

cycles in some specific tropical forest sites. However, field-based photosynthetic activity data are 

scarce in the tropics. A comprehensive understanding of the relationship of tropical photosynthetic 

activity and climate at the seasonal scale and how it is represented by models is lacking. In this 

study, we seek to identify the seasonal relationships between climate and photosynthetic activity 

from observations and models across the entire tropics. We characterize this seasonality using 

satellite-based photosynthetic activity data and link this activity to patterns of precipitation and 

light availability. Photosynthetic activity falls into three dominant and spatially distinct 

relationships with these two drivers: increases with both drivers (36% of tropical pixels), increases 

with rain but decreases with light (28%), and increases with light but decreases with rain (14%).  

These three dominant relationships track regional variation in long-term mean daily radiation, 

mean annual precipitation, dry season length, and the seasonal correlation between precipitation 

and radiation. In general, model simulations of gross primary productivity (GPP) overestimate the 

positive correlation of photosynthetic activity with water and underestimate the positive 

correlation with light. The largest discrepancies between simulations and observations are in the 

representation of the regions where photosynthetic activity increases with light and decreases with 

rain. Our clear scheme for representing the relationship between climate and photosynthetic 

activity can be used to benchmark tropical seasonality of GPP in land models. 
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2.2 Introduction 

Tropical ecosystems are sometimes called the "lungs of the planet," because their high 

photosynthetic rates drive large fluxes of carbon and water. Tropical forests alone account for 

about 60% of global terrestrial photosynthesis (Mitchard, 2018) and influence precipitation 

patterns, even at the continental scale (Lawrence & Vandecar, 2015). Collectively, tropical 

ecosystems disproportionately influence Earth's climate and weather patterns (Malhi et al., 2008).  

At the intra-annual or seasonal scale, climate patterns determine ecosystems' metabolism, 

phenological patterns, and vegetation distribution. Ecosystem metabolism, in turn, affects the 

climate system through photosynthesis and the associated carbon, water, and energy feedbacks to 

the atmosphere. But this ecosystem-atmosphere interaction is being altered by ongoing changes in 

the climate system. Forecasting the effects of these climatic changes on tropical ecosystems, and 

the subsequent consequences for biosphere-atmosphere interactions and climate at regional and 

global scales requires accurate estimates of current photosynthetic rates in tropical ecosystems and 

an understanding of their relationship with climate. While photosynthetic rates go through clear 

and well-understood seasonal cycles in temperate regions, seasonality of photosynthesis in the 

tropics is less well understood (Wu et al., 2016).  Across most ecosystems in these consistently 

warm regions, both the patterns of seasonality and the drivers of those patterns remain largely 

uncharacterized (Restrepo-Coupe et al., 2017; Saleska et al., 2003). 

Marked seasonal patterns in vegetation activity, although sometimes weaker or less defined 

in comparison to those of the temperate zones, have been observed in both field- and satellite-

based measurements in the tropics. Estimates from eddy covariance towers show strong seasonal 

patterns in net ecosystem exchange and gross primary productivity (GPP) in most sites where data 

are available (Restrepo-Coupe et al., 2013; Saigusa et al., 2008). Such sites include tropical rain 

forests and savannas from the Amazon and Asia. Satellite-based measurements of proxies of 

phenology and photosynthetic activity such as leaf area index (LAI), enhanced vegetation index 

(EVI) and solar-induced fluorescence (SIF), often show similar seasonal patterns to those observed 

in the field (Bertani et al., 2017; Bradley et al., 2011a; Guan et al., 2015; Myneni et al., 2007; Xu 

et al., 2015). These studies demonstrate that seasonality extends across the tropics, with only a 

small portion of the region not showing any type of seasonality. 

Land surface models, however, are unable to characterize the observed seasonal cycles, as 

shown for some specific sites in the Amazon (Restrepo-Coupe et al., 2017). At individual study 
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sites, models simulate either constant GPP or opposite seasonal patterns to the ones observed in 

the field (Restrepo-Coupe et al., 2017). Yet, these models are a major component of Earth System 

Models (ESMs) and constitute the main tool scientists currently rely on for future projections of 

climate, ecosystems and their interrelationship. Models that represent seasonal cycles in the tropics 

more accurately would be able to estimate how changes in climate seasonality (e.g., timing or 

length of wet and dry seasons) could affect intra-annual carbon fluxes and, subsequently, the 

annual carbon budgets of tropical ecosystems (Saleska et al., 2003). Accurate simulation of 

terrestrial water cycling, including the effects of tropical vegetation on regional to global 

precipitation patterns, also depends on realistic simulations of photosynthetic activity. 

In order to accurately represent the seasonality of tropical photosynthetic activity in land 

surface models, we need to understand the climatic drivers of this seasonality. This involves 

recognizing how they vary from one region in the tropics to another, and the potential mechanisms 

and delayed responses involved in the climate-vegetation relationship. Water and light availability 

are the main drivers of intra-annual variation in vegetation activity in the tropics, and within the 

region there is wide variation in the responses to these two drivers (Nemani et al., 2003; Seddon 

et al., 2016). Previous studies attribute the regional differences in vegetation seasonality to water 

stress (Guan et al., 2015; Wagner et al., 2017). In this sense, photosynthetic activity follows 

precipitation cycles in drier ecosystems, such as pastures, deciduous forests or degraded forests 

(Bradley et al., 2011a; Huete et al., 2006). In ecosystems with higher mean annual rainfall or a 

shorter dry season, like evergreen forests, photosynthetic activity is either less seasonal or more 

closely associated with light availability (Guan et al., 2015; Nemani et al., 2003). The mechanisms 

leading to these different vegetation-climate relationships are still being studied and, therefore, are 

more challenging to represent in land surface models. Moreover, it is common for the relationship 

of photosynthetic activity with climate to be lagged depending on the climatic factor and 

vegetation types (Bradley et al., 2011a; D. Wu et al., 2015). Understanding the importance of these 

lagged correlations in different parts of the tropics can also guide future research and inclusion of 

underlying mechanisms in models. 

Despite the large variation in seasonal patterns across the tropical region and the discrepancy 

found between GPP from field measurements and models, most satellite-based studies of tropical 

vegetation seasonality have focused on the Amazon basin. Moreover, model performance has only 

been tested at the site level, also within the Amazon. A global analysis of the drivers of 
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photosynthesis seasonality in the tropics and how they differ in models would unveil large-scale 

patterns. These discoveries could help experiments and models target weakly represented regions 

and ecosystems.  

Here, we investigated how the seasonality of photosynthetic activity in the entire tropical 

region relates to the two most important regional-level climate drivers; precipitation and radiation. 

These two variables also provide the main forcing data used by land surface models to simulate 

most vegetation processes. In contrast to previous studies, rather than identifying a single climate 

predictor of photosynthetic activity, we sought to characterize its relationship (including direction 

and magnitude) with both precipitation and radiation. This approach allowed us to identify where 

in the tropics photosynthesis is positively or negatively associated with each of the two climate 

drivers, including lagged responses to these drivers. We then identified the climatic variables most 

commonly associated with each of the various relationships between photosynthesis and the 

climatic drivers. For instance, we expected photosynthesis in extremely wet regions (high mean 

annual precipitation (MAP) and short dry season, e.g., rainforests) to be positively correlated with 

light and negatively correlated with rain.  In arid regions (low MAP and a long dry season, e.g., 

Caatinga in Brazil), we expected photosynthesis to be positively correlated with rain and 

negatively correlated with light. In regions that are not extremely wet or dry, and with more evenly 

distributed precipitation throughout the year (e.g., forests of Central America), we expected 

photosynthesis to be positively correlated with both water and light, but potentially with different 

time lags. 

2.3 Methods 

2.3.1 Climate data 

Monthly mean precipitation and net radiation were retrieved for the period 2000-2017. 

Precipitation was obtained from the TRMM (TMPA/3B43) Rainfall V7 product with a spatial 

resolution of 0.25-degree x 0.25-degree. This product is the best estimate of an algorithm that uses 

multi-satellite data from two instruments, the Precipitation Radar and the TRMM Microwave 

Imager (Huffman et al., 2007). Incoming shortwave radiation at the surface data were obtained 

from the Energy Balanced and Filled (EBAF) Surface data product Edition 2.8 from the NASA 

Clouds and the Earth's Radiant Energy System (CERES) experiment at a 1-degree x 1-degree 
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spatial resolution. This product is the output of radiative transfer models that use a series of 

satellite-based observations of top-of-atmosphere radiation and cloud physical and radiative 

properties to calculate the surface data (Kato et al., 2013). 

For the characterization of site-specific climate variables, we calculated mean annual 

precipitation, mean radiation, mean temperature, mean dry-season length, and precipitation 

seasonality index. All of the climate variables correspond to the average for the period 2000-2016 

for each pixel. Mean annual precipitation and mean radiation were estimated using the datasets 

above. Mean temperature was estimated for the period of study from the Climatic Research Unit 

(CRU) Time-Series (TS) Version 4.02 of High-Resolution Gridded Data of Month-by-month 

Variation in Climate (Harris et al., 2014). The data are in a 0.5 x 0.5-degree grid and are produced 

based on observational data from national and external meteorological agencies. Dry-season length 

was obtained from the Rainy and Dry Seasons (RADS) dataset (Bombardi et al., 2019). This 

dataset uses global gridded daily precipitation datasets to provide several characteristics of 

precipitation seasonality at 0.25- x 0.25-degree spatial resolution. In RADS, seasons are calculated 

at the local scale based on the accumulated precipitation anomalies of each grid point. 

Accumulated precipitation anomalies are calculated by comparing daily precipitation against the 

long-term mean daily precipitation. Calculations of the accumulated anomalies start every year in 

the dry season, which is estimated as the first minimum harmonic of the precipitation mean annual 

cycle. The start and end of the wet and dry seasons correspond to inflection points in the 

accumulated anomalies curve for each cycle. More details of the algorithm and assumptions for 

these calculations are provided in Bombardi et al. (2019). The precipitation seasonality index was 

calculated using the Walsh and Lawler equation (Walsh & Lawler, 1981). This index uses the total 

annual and monthly precipitation for each year within the period of study to characterize the 

distribution of precipitation throughout the year. Small values indicate less seasonality or equal 

distribution of the precipitation throughout the year, while higher values indicate higher 

concentration of precipitation in fewer months.  

While some areas of the tropics underwent extensive changes in land cover during the study 

period (Hansen et al., 2013), the models in this study used static land cover data. Because of the 

contrast between the coarse resolution of the data used here and the fine resolution at which land 

cover change occurs, we were unable to include this information in our analyses. The effects of 
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land cover change on seasonality of tropical GPP and its response to precipitation and radiation 

should be examined in future studies. 

2.3.2 Satellite-based vegetation data 

We used three independent datasets to estimate photosynthetic activity in this study.  Two 

of these were satellite-based proxies: Solar Induced Fluorescence (SIF) and the Multi-Angle 

Implementation of Atmospheric Correction Enhanced Vegetation Index (MAIAC EVI). The third 

is a remote sensing-derived product based on SIF, known as GOSIF.  SIF data came from the 

GOME2_F data products V27 (Level 3) 

(https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/) (Joiner et al., 2013). This SIF 

monthly dataset is available at 0.5 x 0.5-degree resolution since 2007.  The GOSIF dataset, which 

is based on SIF retrievals from OCO-2 in addition to a predictive model and other MODIS remote 

sensing and meteorological reanalysis datasets, was obtained from 

http://data.globalecology.unh.edu/data/GOSIF/ (Li & Xiao, 2019). GOSIF is available monthly at 

0.05 x 0.05-degree resolution since 2000. MAIAC EVI was obtained from calibrated and 

geometrically corrected MODIS Collection 6 Level 1B satellite images 

(https://portal.nccs.nasa.gov/datashare/maiac/DataRelease/Global-VI-8day-0.05degree/) (A. 

Lyapustin et al., 2018). The monthly MAIAC EVI product is at 0.05 x 0.05-degree resolution and 

since 2000.  

Each of the satellite-based vegetation datasets has advantages and disadvantages.  SIF data 

from the Global Ozone Monitoring Experiment–2 on MetOp-A and -B (GOME 2) should represent 

photosynthetic activity well, but the temporal period available, from 2007 to 2018 is not an ideal 

match with available model output, and sensor degradation for GOME-2 has been a concern 

(Zhang et al., 2018).  GOSIF data, developed from Orbiting Carbon Observatory-2 (OCO-2) 

measurements, should approximate the SIF data and covers a longer period, from 2000 to 2018.  

However, the derived data in the GOSIF product are more removed from the direct observations 

than SIF. MAIAC EVI has a similarly long time series as GOSIF and has been frequently used in 

tropical ecosystem studies; it has proved to be a better proxy of photosynthetic activity in tropical 

rainforests than other vegetation indices such as Normalized Difference Vegetation Index (NDVI) 

or MODIS EVI (Maeda et al., 2016). However, MAIAC EVI is still a vegetation index that 
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estimates vegetation greenness and not photosynthetic activity directly, which is more accurately 

estimated with SIF (Joiner et al., 2011). 

Both the SIF and MAIAC EVI datasets have undergone an advanced cloud screening and 

filtering process, which has made them advantageous to use in the tropics compared to other 

remote sensing products. In SIF, the main problem of clouds for SIF retrievals is a shielding effect, 

as, contrary to vegetation indices, the SIF spectral signature is not affected by clouds (Joiner et al., 

2014). Therefore, in the SIF dataset used here, cloud filtering is done by removing pixels with 

effective cloud fractions of >30%. This filter threshold has been proved to maintain spatial and 

temporal patterns of SIF without altering the sample size and the noise resulting from reduced 

coverage (Joiner et al., 2013). MAIAC EVI has a sophisticated cloud and aerosol screening 

correction algorithm. In this later product, pixels with atmospheric contamination are not excluded 

from the dataset and are not included in our study (A. I. Lyapustin et al., 2012). As part of our time 

series analysis, we filled data gaps of a maximum of three months using spline interpolation. Pixels 

with gaps longer than three months in the time series were excluded from the analysis. 

2.3.3 Modeled GPP 

To examine tropical seasonality exhibited in land surface models (LSMs), simulated GPP 

data were obtained from the TRENDY (Trends and drivers of the regional scale sources and sinks 

of carbon dioxide) project (Sitch et al., 2015). Most TRENDY models are LSMs commonly 

coupled with ESMs and used for climate projections. Here, we used TRENDY v5 S2 simulations 

from CLM4.5 (Oleson et al., 2013), JULES (Best et al., 2011), and LPJ-GUESS (Smith et al., 

2001). In TRENDY, each model is run globally with different spatial scales and land cover types, 

but with the same forcing data. Land cover data for the simulations is fixed and provided by each 

modeling group. In addition to the LSM-simulated GPP, two global GPP products, Fluxcom (Jung 

& Team, 2016; Tramontana et al., 2016) and VPM (Zhang et al., 2017), were also analyzed. These 

datasets are derived using field observations, satellite-based measurements, and reanalysis 

meteorological data, in combination with interpolation or machine learning techniques. The final 

products are global-scale gridded GPP estimates with long temporal coverage and high spatial 

resolution (see Table S1 for details).  
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2.3.4 Data analysis 

We used time series analysis to identify relationships between climate variables (i.e., 

precipitation and radiation) and various estimates of photosynthetic activity (i.e., SIF, GOSIF, 

MAIAC EVI, and simulated GPP) across the entire tropics. We used cross-correlation function 

(CCF) analysis (Box et al., 2015), to examine time series of monthly data for each pixel in the 

tropics (20°N - 20°S) from 2000 to 2015 (except SIF and GOSIF, which were analyzed for 2007-

2017 and 2000-2017, respectively). Although the SIF dataset covered different years than the other 

datasets, the 11 years of SIF data provide a robust basis for our seasonal analyses, and the SIF 

analyses can be broadly validated with the longer and independent GOSIF dataset. We excluded 

from all analyses all pixels with a mean EVI of less than 0.1. Those low EVI pixels, which 

correspond to barren lands or extremely low vegetation cover, were removed to avoid noise in the 

photosynthetic activity data and the subsequent calculations. Prior to the analysis, each pair of 

climate and photosynthetic activity variables was resampled to a common spatial resolution in 

order to enable time series analysis at the pixel level.  

We used CCF analysis to calculate direct (i.e., same month) and lagged correlations between 

each climate variable (i.e., independent variable) and each photosynthetic activity variable (i.e., 

response variable). We quantified lagged correlations between one and four months because a 

variety of physiological and ecological mechanisms can potentially delay responses of 

photosynthetic activity to climate (D. Wu et al., 2015). Our lagged correlations analysis allowed 

us to determine the strongest immediate or lagged correlation between precipitation or radiation 

and photosynthetic activity.  

In CCF analysis, temporal dependencies or high autocorrelation in the independent variable 

(in this case our climate variables) can hide true relationships or suggest false ones. "Prewhitening" 

can remove autocorrelations by extracting the "white noise" from the independent variable and 

applying the same transformation to the response variable, in this case, photosynthetic activity 

(Cryer & Chan, 2008). We used prewhitening to counteract autocorrelation, allowing us to analyze 

the actual linear relationship between the two time series. The data were pre-whitened by first 

finding an autoregressive integrated moving average (ARIMA) model for the climate variable time 

series, and then fitting the photosynthetic activity time series to the ARIMA model. ARIMA 

models are built using information contained in the time series and are commonly used in 

forecasting, but in the case of this study, and prewhitening in general, they are used to filter the 
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original series. The CCF was finally performed on the climate series model residuals and the 

filtered photosynthetic activity time series (Box et al., 2015; Probst et al., 2012). An example of 

the CCF analysis is available at https://github.com/rosariouribed/ccf_tropics. 

Given that precipitation and radiation are two highly correlated variables, we were interested 

in an analysis that considered the relationship of photosynthetic activity with the two variables 

individually and in combination. We determined the sign of the maximum direct or lagged 

correlation coefficient with each variable and then classified the type of relationship based on the 

signs and strengths of the two coefficients. For instance, photosynthetic activity could be correlated 

positively with precipitation and negatively with radiation or have a non-significant relationship 

with precipitation and positive with radiation, and so on (Fig. 2.1, upper-right reference panel). 

We created a map for each of the photosynthetic activity datasets showing the type of relationship 

with climate for each pixel. We assessed the agreement between the results from satellite and 

model data using the Kappa coefficient (κ) for map agreement (Cohen, 1960). The Kappa 

coefficient compares the agreement between two maps against a hypothetical scenario of randomly 

assigned values. Coefficients range from -1 to 1, where 0 indicates that the evaluated map is as 

good as if random values were selected, negative values suggest the map is worse than random 

values, and positive values suggest the evaluated map matches the reference map better than 

random values. Values closer to 1 indicate a better agreement between the maps. We also 

calculated the overall difference (D) as a second measurement of agreement of our results. Overall 

difference has been suggested to provide a more reliable comparison between maps than the Kappa 

coefficient (Pontius & Santacruz, 2014). Calculations of D take into account how well maps agree 

on (1) the number of pixels classified in each category (i.e., quantity difference) and (2) the 

location of the pixels in each category, given the number of pixels in each of the categories (i.e., 

allocation difference) (Pontius & Santacruz, 2014).  Larger D values indicate greater disagreement 

between the maps, either because of under- or overestimation of pixels in the different categories, 

or because of inaccurate spatial allocation of the pixels in each of the categories. Comparisons 

between maps were also performed at the biome level in order to identify models' biome-specific 

shortcomings. 

We then used the classification of type of relationship and additional climate properties of 

each pixel to identify climate properties most closely associated with a specific type of relationship. 
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Only the most common types of relationships (i.e., more than 10% of the pixels) were included in 

the comparison.  

The additional climate properties included mean annual precipitation, mean radiation, mean 

temperature, dry season length, precipitation seasonality index, and the correlation between 

monthly precipitation and radiation. We used Kruskal-Wallis nonparametric tests (Kruskal & 

Wallis, 1952) to identify significant differences in the climate properties among the type of 

relationships. If the Kruskal-Wallis result was significant (∝=0.05) for a particular variable, we 

followed up with a pairwise comparison among all types of relationships through the Dunn test 

with Bonferroni correction (Dunn, 1964). This nonparametric post hoc test can be used for 

independent groups with non-normal distributions and different sizes. All analyses were performed 

in R 3.4.0 (R Core Team, 2017), including the forecast v8.2 (Hyndman, 2017), TSA v1.01 (Chan 

& Ripley, 2012), FSA v0.8.22 (Ogle et al., 2018) and diffeR (Pontius Jr. & Santacruz, 2019) 

packages. 

2.4 Results 

2.4.1 Relationship of photosynthetic activity with precipitation and radiation in satellite 
data 

Based on the direction of the correlations between photosynthetic activity and the two 

climate drivers, most sites in the tropics can be classified into three categories: photosynthetic 

activity that is (1) positively correlated with both precipitation and radiation, (2) positively 

correlated with precipitation but negatively correlated with radiation, and (3) positively correlated 

with radiation but negatively with precipitation (i.e., regions 1, 2 and 3 in Fig. 2.1 upper-left 

reference panel). From this point, we will refer to these three types of relationships as 

cosynchronous, rain-following and light-following, respectively. For MAIAC EVI and SIF, these 

three type of relationships together account for 78-88% of the pixels in the tropics, where the 

cosynchronous pixels correspond to 36-38%, the rain-following are 28-40% and the light- 

following are 10-14% of the pixels for the two datasets, respectively (Fig. 2.1). Even though both 

datasets agree on the dominance of these three types of relationships, there are some differences 

between the two datasets in the proportion of pixels that show each of these three dominant types 

(Fig. 2.1). In the SIF dataset, more pixels are cosynchronous and light-following and fewer are 
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rain-following than in the MAIAC EVI product. The spatial distribution of the three types of 

relationships is moderately consistent between the two datasets, with a kappa coefficient of 

agreement of 0.5 and overall difference of 35.12% (Table 1, Fig. 2.2). The results from GOSIF 

agree closely with those from SIF and EVI (κ = 0.52 and 0.65, D= 33.42 and 22.58%, respectively), 

providing stronger confidence in our results (Appendix A, Fig. A1).  

Based on the SIF results, cosynchronous pixels (i.e., positive correlations with both 

precipitation and light) are located across all biomes, but make up the largest fraction (45-86%) of 

savannas and shrublands, dry broadleaf forests, flooded savannas, montane shrublands, and conifer 

forest (Appendix A, Fig. A2). The rain-following relationship (28% across all biomes) is most 

common in the savannas and shrublands, dry forests, flooded savannas, and xeric shrublands. 

Light-following seasonality is mostly clustered in the rainforests, specifically those of the Amazon 

basin and southeast Asia.  

Other type of relationships are not common (<22% in total), including negative correlations 

with both drivers (<3% of pixels) and weak correlations with one (<6% of pixels) or both (<3% of 

pixels) drivers. For the SIF dataset, these other types of correlations occur mostly in the rainforest 

in South America, central Africa and southeast Asia. A more detailed look at areas with the 

weakest relationships shows a prevalence of pixels with very low intra-annual variability in 

photosynthetic activity. These less distinct types of relationships could also be explained by a 

higher diversity of vegetation cover or land cover change during the study period. 

The seasonal peak of photosynthesis most commonly occurred within two months of the 

seasonal peak of precipitation, while lags with radiation had a much wider range of variation, from 

0 to 4 months (Fig. 2.3, Appendix A Fig. A3). These lags also varied among the types of 

relationships. For the cosynchronous relationship, lags of correlations with precipitation ranged 

between 0-2 months and with radiation between 3-4 months. For the rain-following relationship, 

lags with both precipitation and radiation occurred between 0-2 months. For the light-following 

relationship, the lags of correlations with precipitation were in a wide range of 0-4 months and 

correlations with radiation, although also quite variable, were most commonly lagged by 0 to 3 

months. Geographically, the small number of longer time lags with precipitation occur in the 

tropical rainforests of South America (Appendix A, Fig. A3), which is mostly a light-following 

region. The wide variation of time lags with radiation is also evident in its large spatial variation 

(Appendix A, Fig. A3). A large proportion of the longer time lags with radiation coincide with 
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cosynchronous regions in the higher tropical latitudes of Africa and Australia. Examples of the 

seasonal pattern of precipitation, radiation and photosynthetic activity from SIF in pixels from the 

three main types of relationships are displayed in the Supplementary Materials (Appendix A, Fig. 

A4). 

2.4.2 Climate properties of the different types of relationships of photosynthetic seasonality 
with precipitation and radiation 

Each of the three dominant climate-seasonality relationships was associated with distinct 

climatic properties (Fig. 2.4a-e). Areas with a cosynchronous relationship tended to have relatively 

low annual rainfall (Median = 1217 and Interquantile Range = 26 mm), high mean daily radiation 

(x̃ = 227.9 and IQR = 1.12 W m-2), a long dry season (x̃ = 221.9 and IQR = 1.4 days), relatively 

low mean temperature (x̃ = 25.7 and IQR = 0.1 °C), and high rainfall seasonality (x̃ = 0.8 and IQR 

= 0.01). Rain-following pixels had low mean annual precipitation (x̃ = 1214 and IQR = 24 mm), 

high mean daily radiation (x̃ = 227.9 and IQR = 0.9 W m-2), an intermediate-length dry season (x̃ 

= 203.1 and IQR = 1.6 days), higher mean temperature (x̃ = 26.1 and IQR = 0.1 °C), and 

intermediate rainfall seasonality (x̃ = 0.8 and IQR = 0.01). Light- following pixels had high mean 

annual precipitation (x̃ = 2466 and IQR = 40 mm), low mean daily radiation (x̃ = 201.5 and IQR 

= 0.7 W m-2), a short dry season (x̃ = 189.9 and IQR = 1.1 days), high mean temperature (x̃ = 26.4 

and IQR = 0.1 °C), and low precipitation seasonality (x̃ = 0.5 and IQR = 0.01). The climates of 

areas with the light- following relationship stood out as distinct from those in other areas across 

four of the five variables – only temperature, by not differing from regions with the rain-following 

relationship, bucked this trend. Cosynchronous and rain-following pixels had similar mean annual 

precipitation and mean daily radiation, but cosynchronous pixels had a longer dry season, lower 

mean temperature, and larger precipitation seasonality index. 

In areas with a cosynchronous relationship, light and precipitation typically were abundant 

during the same or similar times of year (Fig. 2.4f). Thus, in these areas, we hypothesize that 

photosynthesis would be greatest during the times of year that were both wet and bright. In contrast, 

in areas with the other two dominant types of relationships, the rainiest times of year were the 

darkest, and the driest seasons were brightest. In these areas, we expect that GPP responds most 

positively to the climate factor that is most limiting. Thus, areas that have lower mean annual 

precipitation and a longer dry season would be water-limited and show a positive correlation with 
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rainfall, and consequently a negative correlation with radiation. In areas with higher mean annual 

precipitation and a shorter dry season, GPP would be limited by light; photosynthesis would be 

greatest during the brightest times of year and slower during the wetter (and darker) times of year. 

2.4.3 Relationship of photosynthetic activity with water and light in ecosystem models 

In land surface models, GPP showed the same three dominant type of relationships with 

climate that we found in the satellite data. However, the proportion of vegetation with each type 

of relationship and their spatial distribution differed from those in observations (Figs. 2.1 and 2.2). 

In the simulated data, the rain- following relationship was more widespread than any other (51-

53%), and always more common than in the satellite-based datasets. In contrast, the proportion of 

cosynchronous pixels was typically lower than that shown by satellite data (20-39%), similar to 

the less-frequent light-following relationship (6-11%). Kappa coefficients and overall differences 

between the models' results and the MAIAC EVI and SIF datasets (Table 1) ranged from 0.28 to 

0.54 and 35.05 to 50.23%, respectively, with LPJ-GUESS showing the most similarity to both 

satellite-based datasets. Overall, the models produced more similar GPP predictions to one another 

than to the satellite-based observations (Table 1). 

Other vegetation products analyzed in this study also tended to show different patterns from 

those in models and observations (Figs. 2.1 and 2.2). Fluxcom GPP had a high percentage of pixels 

with cosynchronous and rain-following relationships (48% and 37%), while light- following 

relationships were less common than in the satellite data (8%). VPM GPP showed a lot more 

diversity in the types of relationships, with the greatest proportion of the tropics having  

cosynchronous and light- following relationships (39% and 31%), and slightly less area covered 

by rain-following pixels (25%). The Kappa coefficients and overall differences indicate that VPM 

output agreed more closely with both satellite-based datasets and with the models than Fluxcom 

(Table 1). Similar to the satellite observations, the model most similar to these two  GPP products 

was LPJ-GUESS. 

In our biome-level comparisons (Table S2), the best agreement between SIF and most 

models was found in montane grasslands and shrublands (κ = 0.46-0.57, D = 18-25%), flooded 

grasslands and savannas (κ = 0.38-0.44, D = 28.6-34.2%), and grasslands and savannas (κ = 0.33-

0.46, D = 30.7-41.8%), in that order. In contrast, low agreement was found in mangroves (κ = -

0.17-0.28, D = 52.2-72.7%), rainforest (κ = 0.19-0.34, D = 45.4-62.7%) and deserts and xeric 
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shrublands (κ = 0.12-0.33, D = 31.5-41.5%). In dry forests, Fluxcom and VPM showed closer 

agreement with SIF than the land surface models did. 

2.5 Discussion 

As our analyses show, the seasonality of photosynthetic activity in the tropics is tightly 

linked to water and light availability throughout the year. The implications for the tropics of 

ongoing changes in climate, especially in precipitation patterns, and in land cover, will depend on 

how these changes interact with and affect the seasonal cycles of the vegetation.  Accurate 

predictions of future carbon and water exchange will require models that realistically simulate 

these relationships. Here, we provide a novel classification that compiles information of the 

separate relationship with the precipitation and radiation across the entire tropics. Our 

classification is not only descriptive of the type of relationship of photosynthetic activity with 

climate across the tropics, but it also provides a clear scheme for model comparison. We also 

identify where and for which climate variables lagged correlations occur and need to be accounted 

for in ecosystem models. 

Our analysis distinguishes between three dominant types of relationships linking the 

seasonality of photosynthetic activity to precipitation and radiation (Fig. 2.5). Using our 

classification, we are able to identify regions where seasonality is positively or negatively 

correlated with the two climate drivers. The distribution of the three most common relationships 

is associated with the distributions of local climate properties such as mean annual precipitation, 

mean daily radiation, precipitation seasonality and the relationship between precipitation and 

radiation (Fig. 2.4). Cosynchronous relationships are found in regions with a low mean annual 

precipitation, high mean daily radiation, long dry season, and high precipitation seasonality. These 

regions correspond to water-limited biomes located in higher latitudes where precipitation and 

radiation are not negatively correlated, meaning water and light are abundant at approximately the 

same time. Rain-following relationships are found in regions with similar precipitation and 

radiation characteristics and are also common in similar biomes. However, this relationship is more 

common at lower latitudes where precipitation and radiation are negatively correlated. Vegetation 

from cosynchronous and rain-following regions is likely water-stressed, and therefore responds 

positively to water availability. What differentiates the regions with these two types of 

relationships is the timing of radiation with respect to precipitation. In the cosynchronous 



 

35 

 

relationship, vegetation is adapted to take advantage of seasonal availability (up to 4 months) of 

both water and light. In the rain-following relationship, vegetation is adapted to periods of 

increased rainfall that do not coincide with abundant light. The mechanisms by which plant species 

have adapted to the timing of the two drivers (or been selected by them) could determine vegetation 

responses to any future changes in the seasonal timing of precipitation and radiation. Recognizing 

the specific correlation of photosynthetic activity in these regions with the availability of water 

and light may lead to studies that identify relevant adaptive traits and selective processes, and to 

better-informed predictions.  

The third most common type of relationship, the light-following relationship, is found in 

regions with high mean annual precipitation, low mean daily radiation, short dry season, low 

precipitation seasonality, and a negative correlation between precipitation and radiation. This 

relationship and climate characteristics are very specific to the rainforests of South America where 

previous field (Restrepo-Coupe et al., 2013) and satellite (Bertani et al., 2017; Bradley et al., 2011b; 

Wagner et al., 2017) findings show light-driven seasonal photosynthetic activity. Similarly, the 

spatial distributions of the rain- and light- following relationships found here are comparable to 

the wet- and dry-season greening regions for tropical rainforests, with those forests in the central 

Amazon and southeast Asia greening in the dry season, when radiation peaks (Doughty et al., 2019; 

Guan et al., 2015). 

The common climate properties found within each of the different types of relationships 

show that biomes that share similar climate characteristics can have the same type of seasonality 

and relationship to climate, despite potential differences in microclimate or soil properties (Meir 

& Pennington, 2011). At the same time, a single biome can have different relationships with 

climate depending on location, even at large spatial scales. Our climate characterization highlights 

the importance of water limitation (i.e., mean annual precipitation, dry season length, and 

precipitation seasonality) and the precipitation-radiation intra-annual correlation. Together, these 

two variables define large-scale patterns of photosynthetic activity at the seasonal level. The strong 

relationship between site-specific climate and the climatic drivers of photosynthetic seasonality is 

especially important considering the uncertainty in projections of future climate, and particularly 

precipitation patterns, for different sub-regions in the tropics (Hilker et al., 2014). 

The predominance of lagged correlations with precipitation and radiation observed here is 

consistent with the analyses of Bradley et al. (2011) and Wu et al. (2015). These time lags suggest 
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that responses of vegetation to rain and light can be strongly influenced by intermediate or indirect 

processes. Important processes that can lead to delayed responses of photosynthetic activity to 

climate include vegetation growth in the case of savannas, and leaf phenology in the case of forests 

and shrublands. Vegetation growth and leaf development may continue after the seasonal peaks in 

delivery of water or light, such that the ecosystem reaches maximum biomass of leaves, or of the 

most photosynthetically-efficient leaves, later in the season.  This continued growth could cause 

delayed peaks in photosynthetic activity relative to resource delivery. We found the most common 

long lags to be with radiation in the cosynchronous relationship, and with precipitation in the light-

following relationships. In cosynchronous regions, correlations with precipitation were strongest 

for short time lags, while correlations with radiation tended to be strongest after longer lags. In 

these regions, radiation peaks typically occur 1-4 months before those of precipitation. The longer 

radiation lags mostly occur in the higher tropical latitudes. We speculate that this delayed 

correlation is the result of plant growth and leaf development continuing throughout the summer 

season (i.e., continuing after peak radiation), with increased precipitation later in the season 

leading to a spike in photosynthetic activity.  

In light-following regions, precipitation and photosynthetic activity are negatively correlated 

at relatively long lags. The light-following relationship is common in tropical forests, where trees 

have been shown to increase photosynthetic activity throughout the dry season due to the 

vegetation's capacity to obtain water from deep soil layers when shallow soils are dry (Nepstad et 

al., 1994; Restrepo-Coupe et al., 2013). Thus, soil water storage and adaptive leaf development 

and demography likely regulate the relationship between precipitation and photosynthetic activity 

in these regions. Both mechanisms have previously been demonstrated to mediate the relationship 

between climate and photosynthetic activity in tropical forests (Guan et al., 2015; Restrepo-Coupe 

et al., 2013; Wu et al., 2016, 2017), and likely play a strong role in our results. For instance, some 

of these forests' photosynthetic activity peaks happen in the late dry season, months after 

precipitation declined; similarly, they reach low photosynthetic activity levels in the late wet 

season months after precipitation has peaked. However, site-specific differences in variables such 

as soil texture and plant traits also likely contribute to the observed geographical variation in these 

time lags. Our results suggest that it is important for models to consider mechanisms such as these, 

which can affect the relationships of tropical ecosystems' photosynthetic activity with precipitation 



 

37 

 

and light. Our results show the extent of the area of different types of relationships and the 

associated time lags with each driver. 

In general, land surface models accurately represent most of the regional variation in the 

type of relationship of photosynthesis with precipitation and radiation, with some specific 

deficiencies. However, models tend to overestimate the extent of positive relationships with 

precipitation and underestimate the extent of positive relationships with radiation. These two issues 

result in models overestimating the number of rain-following pixels and underestimating the 

number of cosynchronous and light-following pixels. Cosynchronous relationships are missed by 

models in some scattered regions and biomes across the tropics, with the largest misrepresented 

area located in the dry forests of Southeast Asia. The seasonality of these forests and the underlying 

mechanisms driving their strong positive lagged correlation with light should be further explored. 

Leaf phenology potentially plays a role in this lagged correlation, but less research has focused on 

the seasonality of photosynthetic activity of forests of this region. 

The largest differences between SIF and models are in rainforest regions. Model 

misrepresentation of the seasonality of photosynthetic activity was previously demonstrated using 

GPP data from eddy flux towers in the Amazon (Restrepo-Coupe et al., 2017). Our results show 

the extent of this misrepresentation across the entire Amazon and other smaller rainforest areas in 

Asia. The misrepresentation of rainforests, one of the largest biomes in the tropics, and their 

characteristic light-following relationship is of major concern. As mentioned above, incorporating 

increased rooting depth, leaf demography, or other processes could improve the representation of 

seasonality in simulations (Poulter et al., 2009; Wu et al., 2017; Serbin et al., 2017). The VPM 

GPP dataset was able to reproduce the light-following relationship, something that neither the 

models nor Fluxcom GPP did. VPM's capacity to represent this type of relationship might be 

associated with the light-based model it uses to estimate GPP, which is not used by the other 

datasets analyzed in this study. This light-use efficiency (LUE) GPP type of model not only gives 

high importance to radiation but also takes into account the fraction of PAR absorbed by 

chlorophyll, which directly depends on EVI and helps to improve the representation of the seasonal 

variation of photosynthetic capacity (Zhang et al., 2017).  Among the three models and the two 

global GPP datasets studied, LPJ-GUESS and VPM showed the closest agreement with our 

satellite-based results.  
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Land cover change has undoubtedly influenced the types of relationships observed in SIF 

and MAIAC EVI. The model output analyzed here uses a static land cover type and could, 

therefore, misrepresent some of the observed dynamics between climate and SIF and MAIAC EVI. 

Therefore, we recommend a careful reading of our comparison in regions with high levels of land 

cover change. 

Despite all the physiological, microclimatic and ecological variation in the tropics, at large 

spatial and temporal scales, observed relationships of photosynthetic activity with precipitation 

and radiation emerged in clear, distinct patterns. The large-scale nature of this study, at relatively 

low resolution, necessarily ignores important ecological factors and confounding variables 

associated with both climate and photosynthetic activity. Nutrient availability, microclimate, 

topography, soil texture, plant community dynamics, and anthropogenic disturbances are all 

important factors that influence photosynthetic activity and are not considered here. Yet, the broad 

spatial patterns identified here can guide research on the predominant mechanistic processes 

driving photosynthetic activity. The model and GPP products evaluation presented here revealed 

the types of climate-vegetation relationships that are least accurately simulated by models. We 

expect that our classification of the types of relationships will simplify model comparison and 

benchmarking for tropical ecosystems. Our characterization of the time lags shows the existence 

and extent of important delayed relationships of photosynthetic activity with each of the climate 

drivers in specific vegetation types and regions in the tropics. These results should guide modeling 

and experimental studies about the potential processes that determine seasonality of photosynthetic 

activity in the tropics. We believe this improved understanding could lead to more realistic 

predictions of how tropical vegetation will respond to ongoing climate change and feedback to the 

climate system. 
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Fig. 2.1. Scatterplots showing the maximum correlation coefficient from the CCF analysis for 
vegetation productivity from each of the datasets with precipitation (x axis) and radiation (y 

axis). (Top-left/Reference panel): the nine colors and numbers correspond to each of the types of 
relationships; the rings indicate the strength of the correlation with both drivers (distance from 

the origin). Regions 1-4 (red, blue, yellow, and brown) indicate significant correlations with both 
drivers. Region 5 (gray color) indicates non-significant relationships with any driver. Regions 6-
9 (pink, purple, green, and orange indicate non-significant correlations with one of the drivers. 

(Other panels): the numbers indicate the percentage of pixels with the type of relationship where 
the number is located. 
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Fig. 2.2. Maps of biomes and results from the CCF analysis. (Top panel): biomes of the tropics 
(WWF). (Other panels): Maps showing the spatial distribution of the maximum correlation 
coefficient from the CCF analysis for vegetation productivity from each of the datasets with 
precipitation and radiation. Colors in the map correspond to the colors and numbers in the 

reference panel Fig. 2.1, which contain information about the type of combined relationship and 
strength of the correlations. White pixels correspond to water bodies or pixels with scarce data 

for CCF analysis. 
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Table 2.1. Kappa coefficients (κ) and overall difference (D) between the maps resulting from the 
CCF analysis (Fig. 2.2). Larger κ values indicate closer agreement between the results of two 

datasets. Larger D values indicate larger differences between the results of two datasets. 

 MAIAC EVI CLM4.5 JULES LPJ-GUESS FLUXCOM VPM 

SIF κ = 0.5 

D = 35.12 

0.28 

50.23 

0.3 

49.31 

0.39 

43.16 

0.4 

41.15 

0.48 

37.26 

MAIAC EVI  0.45 

35.05 

0.45 

35.31 

0.55 

29.02 

0.5 

31.96 

0.55 

31.24 

CLM4.5   0.52 

28.2 

0.54 

29.03 

0.44 

34.81 

0.31 

49.2 

JULES    0.55 

28.42 

0.4 

38.6 

0.32 

48.18 

LPJ-GUESS     0.43 

36.42 

0.47 

36.6 

FLUXCOM      0.43 

39.01 

 

Fig. 2.3. Frequency (number of pixels) of the length of lags in the strongest correlations between 
SIF and (a) precipitation and (b) radiation for the three most common types of relationships 

(n=2533). Colors correspond to the colors of the types of relationships shown in the reference 
panel in Fig. 2.1. In order to differentiate the direction of the correlation, the count of pixels with 

positive correlation coefficients between the climate driver and SIF is shown upward and the 
count with negative correlation coefficients is shown downward. Note the difference in scales 

between (a) and (b). 
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Fig. 2.4. Climate characteristics of the three most common types of relationships inferred from 
SIF. The shape of the violin plots and the horizontal lines inside of them represent number of 
pixels; wider shapes and longer horizontal lines are more pixels at that level of that specific 

variable. The boxplot shows the median and the quartiles. Significant differences between pairs 
of groups are represented through letters; groups with same letters are not significantly different. 
Colors and numbers of the types of relationships (legend) correspond to the colors and numbers 

in the reference panel in Fig. 2.1. 

 

Fig. 2.5. Summary of the most important types of relationships identified in this study. Includes 
climate properties and the biomes where each of them is more common. 



 

43 

 

2.6 References 

Bertani, G., Wagner, F. H., Anderson, L. O., & Aragão, L. E. O. C. (2017). Chlorophyll 

Fluorescence Data Reveals Climate-Related Photosynthesis Seasonality in Amazonian 

Forests. Remote Sensing, 9(12), 1275. https://doi.org/10.3390/rs9121275 

Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. 

M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, 

O., Cox, P. M., Grimmond, C. S. B., & Harding, R. J. (2011). The Joint UK Land 

Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. 

Geoscientific Model Development, 4(3), 677–699. https://doi.org/10.5194/gmd-4-677-

2011 

Bombardi, R. J., Kinter, J. L., & Frauenfeld, O. W. (2019). A Global Gridded Dataset of the 

Characteristics of the Rainy and Dry Seasons. Bulletin of the American Meteorological 

Society. https://doi.org/10.1175/BAMS-D-18-0177.1 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., Ljung, G. M., & Ljung, G. M. (2015). Time Series 

Analysis: Forecasting and Control. John Wiley & Sons, Incorporated. 

http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=2064681 

Bradley, A. V., Gerard, F. F., Barbier, N., Weedon, G. P., Anderson, L. O., Huntingford, C., 

Aragão, L. E. O. C., Zelazowski, P., & Arai, E. (2011a). Relationships between phenology, 

radiation and precipitation in the Amazon region. Global Change Biology, 17(6), 2245–

2260. https://doi.org/10.1111/j.1365-2486.2011.02405.x 

Bradley, A. V., Gerard, F. F., Barbier, N., Weedon, G. P., Anderson, L. O., Huntingford, C., 

Aragão, L. E. O. C., Zelazowski, P., & Arai, E. (2011b). Relationships between phenology, 

radiation and precipitation in the Amazon region. Global Change Biology, 17(6), 2245–

2260. https://doi.org/10.1111/j.1365-2486.2011.02405.x 

Chan, K.-S., & Ripley, B. (2012). TSA: Time Series Analysis. R package version 1.01. 

https://CRAN.R-project.org/package=TSA 

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological 

Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104 

Cryer, J. D., & Chan, K.-S. (2008). Time Series Analysis: With Applications in R (2nd ed.). 

Springer-Verlag. https://doi.org/10.1007/978-0-387-75959-3 



 

44 

 

Doughty, R., Köhler, P., Frankenberg, C., Magney, T. S., Xiao, X., Qin, Y., Wu, X., & Moore, B. 

(2019). TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence 

in the Amazon forest. Proceedings of the National Academy of Sciences, 116(44), 22393–

22398. https://doi.org/10.1073/pnas.1908157116 

Dunn, O. J. (1964). Multiple Comparisons Using Rank Sums. Technometrics, 6(3), 241–252. 

JSTOR. https://doi.org/10.2307/1266041 

Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K., Sheffield, J., Wood, E. 

F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., & Lyapustin, 

A. I. (2015). Photosynthetic seasonality of global tropical forests constrained by 

hydroclimate. Nature Geoscience, 8(4), 284–289. https://doi.org/10.1038/ngeo2382 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, 

D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., 

Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-

Century Forest Cover Change. Science, 342(6160), 850–853. 

https://doi.org/10.1126/science.1244693 

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of 

monthly climatic observations – the CRU TS3.10 Dataset. International Journal of 

Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711 

Hilker, T., Lyapustin, A. I., Tucker, C. J., Hall, F. G., Myneni, R. B., Wang, Y., Bi, J., Mendes de 

Moura, Y., & Sellers, P. J. (2014). Vegetation dynamics and rainfall sensitivity of the 

Amazon. Proceedings of the National Academy of Sciences, 111(45), 16041–16046. 

https://doi.org/10.1073/pnas.1404870111 

Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., 

Nemani, R. R., & Myneni, R. (2006). Amazon rainforests green-up with sunlight in dry 

season. Geophysical Research Letters, 33(6). https://doi.org/10.1029/2005GL025583 

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, 

K. P., & Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): 

Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal 

of Hydrometeorology, 8(1), 38–55. https://doi.org/10.1175/JHM560.1 

Hyndman, R. (2017). _forecast: Forecasting functions for time series and linear models_. R 

package version 8.2. http://pkg.robjhyndman.com/forecast 



 

45 

 

Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. 

F., Yoshida, Y., & Frankenberg, C. (2013). Global monitoring of terrestrial chlorophyll 

fluorescence from moderate-spectral-resolution near-infrared satellite measurements: 

Methodology, simulations, and application to GOME-2. Atmospheric Measurement 

Techniques, 6(10), 2803–2823. https://doi.org/10.5194/amt-6-2803-2013 

Joiner, J., Yoshida, Y., Vasilkov, A. P., Schaefer, K., Jung, M., Guanter, L., Zhang, Y., Garrity, 

S., Middleton, E. M., Huemmrich, K. F., Gu, L., & Belelli Marchesini, L. (2014). The 

seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to 

vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sensing of 

Environment, 152, 375–391. https://doi.org/10.1016/j.rse.2014.06.022 

Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., & Middleton, E. M. (2011). First 

observations of global and seasonal terrestrial chlorophyll fluorescence from space. 

Biogeosciences, 8(3), 637–651. https://doi.org/10.5194/bg-8-637-2011 

Jung, M., & Team, F. (2016). FLUXCOM (RS+METEO) Global Land Carbon Fluxes using 

CRUNCEP climate data [Data set]. 

https://doi.org/10.17871/fluxcom_rs_meteo_cruncepv6_1980_2013_v1 

Kato, S., Loeb, N. G., Rose, F. G., Doelling, D. R., Rutan, D. A., Caldwell, T. E., Yu, L., & Weller, 

R. A. (2013). Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere 

Shortwave and Longwave Irradiances. Journal of Climate, 26(9), 2719–2740. 

https://doi.org/10.1175/JCLI-D-12-00436.1 

Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal 

of the American Statistical Association, 47(260), 583–621. JSTOR. 

https://doi.org/10.2307/2280779 

Lawrence, D., & Vandecar, K. (2015). Effects of tropical deforestation on climate and agriculture. 

Nature Climate Change, 5(1), 27–36. https://doi.org/10.1038/nclimate2430 

Li, X., & Xiao, J. (2019). A Global, 0.05-Degree Product of Solar-Induced Chlorophyll 

Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sensing, 11(5), 

517. https://doi.org/10.3390/rs11050517 

 

 



 

46 

 

Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., G.Hall, F., Sellers, P. J., Tucker, C. J., & Korkin, 

S. V. (2012). Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 

3. Atmospheric correction. Remote Sensing of Environment, 127, 385–393. 

https://doi.org/10.1016/j.rse.2012.09.002 

Lyapustin, A., Wang, Y., Korkin, S., & Huang, D. (2018). MODIS Collection 6 MAIAC algorithm. 

Atmospheric Measurement Techniques, 11(10), 5741–5765. https://doi.org/10.5194/amt-

11-5741-2018 

Maeda, E. E., Moura, Y. M., Wagner, F., Hilker, T., Lyapustin, A. I., Wang, Y., Chave, J., Mõttus, 

M., Aragão, L. E. O. C., & Shimabukuro, Y. (2016). Consistency of vegetation index 

seasonality across the Amazon rainforest. International Journal of Applied Earth 

Observation and Geoinformation, 52, 42–53. https://doi.org/10.1016/j.jag.2016.05.005 

Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., & Nobre, C. A. (2008). Climate 

Change, Deforestation, and the Fate of the Amazon. Science, 319(5860), 169–172. 

https://doi.org/10.1126/science.1146961 

Meir, P., & Pennington, R. T. (2011). Climatic Change and Seasonally Dry Tropical Forests. In R. 

Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally Dry Tropical Forests: 

Ecology and Conservation (pp. 279–299). Island Press/Center for Resource Economics. 

https://doi.org/10.5822/978-1-61091-021-7_16 

Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 

527. https://doi.org/10.1038/s41586-018-0300-2 

Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan, 

K., Fu, R., Juárez, R. I. N., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V., Tan, 

B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., … Salomonson, 

V. V. (2007). Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the 

National Academy of Sciences, 104(12), 4820–4823. 

https://doi.org/10.1073/pnas.0611338104 

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, 

R. B., & Running, S. W. (2003). Climate-Driven Increases in Global Terrestrial Net 

Primary Production from 1982 to 1999. Science, 300(5625), 1560–1563. 

https://doi.org/10.1126/science.1082750 



 

47 

 

Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., 

da Silva, E. D., Stone, T. A., Trumbore, S. E., & Vieira, S. (1994). The role of deep roots 

in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 

372(6507), 666–669. 

http://search.proquest.com/docview/16600521?rfr_id=info%3Axri%2Fsid%3Aprimo 

Ogle, D. H., Wheeler, P., & Dinno, A. (2018). FSA: Fisheries Stock Analysis. R package version 

0.8.22. https://github.com/droglenc/FSA 

Oleson, K., Lawrence, M., Bonan, B., Drewniak, B., Huang, M., Koven, D., Levis, S., Li, F., Riley, 

J., Subin, M., Swenson, S., Thornton, E., Bozbiyik, A., Fisher, R., Heald, L., Kluzek, E., 

Lamarque, J.-F., Lawrence, J., Leung, R., … Yang, Z.-L. (2013). Technical description of 

version 4.5 of the Community Land Model (CLM). https://doi.org/10.5065/D6RR1W7M 

Pontius Jr., R. G., & Santacruz, A. (2019). DiffeR: Metrics of Difference for Comparing Pairs of 

Maps or Pairs of Variables (R package version 0.0-6) [Computer software]. 

https://CRAN.R-project.org/package=diffeR 

Pontius, R. G., & Santacruz, A. (2014). Quantity, exchange, and shift components of difference in 

a square contingency table. International Journal of Remote Sensing, 35(21), 7543–7554. 

https://doi.org/10.1080/2150704X.2014.969814 

Poulter, B., Heyder, U., & Cramer, W. (2009). Modeling the Sensitivity of the Seasonal Cycle of 

GPP to Dynamic LAI and Soil Depths in Tropical Rainforests. Ecosystems, 12(4), 517–

533. https://doi.org/10.1007/s10021-009-9238-4 

Probst, W. N., Stelzenmüller, V., & Fock, H. O. (2012). Using cross-correlations to assess the 

relationship between time-lagged pressure and state indicators: An exemplary analysis of 

North Sea fish population indicators. ICES Journal of Marine Science, 69(4), 670–681. 

https://doi.org/10.1093/icesjms/fss015 

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for   

Statistical Computing, Vienna, Austria. https://www.R-project.org/ 

Restrepo-Coupe, N., da Rocha, H. R., Hutyra, L. R., da Araujo, A. C., Borma, L. S., Christoffersen, 

B., Cabral, O. M. R., de Camargo, P. B., Cardoso, F. L., da Costa, A. C. L., Fitzjarrald, D. 

R., Goulden, M. L., Kruijt, B., Maia, J. M. F., Malhi, Y. S., Manzi, A. O., Miller, S. D., 

Nobre, A. D., von Randow, C., … Saleska, S. R. (2013). What drives the seasonality of 

photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower 



 

48 

 

measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182–

183, 128–144. https://doi.org/10.1016/j.agrformet.2013.04.031 

Restrepo-Coupe, N., Levine, N. M., Christoffersen, B. O., Albert, L. P., Wu, J., Costa, M. H., 

Galbraith, D., Imbuzeiro, H., Martins, G., Araujo, A. C. da, Malhi, Y. S., Zeng, X., 

Moorcroft, P., & Saleska, S. R. (2017). Do dynamic global vegetation models capture the 

seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Global 

Change Biology, 23(1), 191–208. https://doi.org/10.1111/gcb.13442 

Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., Gamo, M., Hirano, T., 

Kondo, H., Kosugi, Y., Li, S.-G., Nakai, Y., Takagi, K., Tani, M., & Wang, H. (2008). 

Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, 

and tropical forests in East Asia. Agricultural and Forest Meteorology, 148(5), 700–713. 

https://doi.org/10.1016/j.agrformet.2007.12.006 

Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C., da Rocha, H. R., de 

Camargo, P. B., Crill, P., Daube, B. C., de Freitas, H. C., Hutyra, L., Keller, M., Kirchhoff, 

V., Menton, M., Munger, J. W., Pyle, E. H., Rice, A. H., & Silva, H. (2003). Carbon in 

Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses. Science, 

302(5650), 1554–1557. JSTOR. http://www.jstor.org/stable/3835784 

Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of 

global terrestrial ecosystems to climate variability. Nature, 531(7593), 229–232. 

https://doi.org/10.1038/nature16986 

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, 

S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, 

B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., … Myneni, R. (2015). Recent 

trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 12(3), 

653–679. https://doi.org/10.5194/bg-12-653-2015 

Smith, B., Prentice, I. C., & Sykes, M. T. (2001). Representation of Vegetation Dynamics in the 

Modelling of Terrestrial Ecosystems: Comparing Two Contrasting Approaches within 

European Climate Space. Global Ecology and Biogeography, 10(6), 621–637. JSTOR. 

http://www.jstor.org/stable/3182691 

 



 

49 

 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., 

Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., 

& Papale, D. (2016). Predicting carbon dioxide and energy fluxes across global FLUXNET 

sites with regression algorithms. Biogeosciences, 13(14), 4291–4313. 

https://doi.org/10.5194/bg-13-4291-2016 

Wagner, F. H., Hérault, B., Rossi, V., Hilker, T., Maeda, E. E., Sanchez, A., Lyapustin, A. I., 

Galvão, L. S., Wang, Y., & Aragão, L. E. O. C. (2017). Climate drivers of the Amazon 

forest greening. PLOS ONE, 12(7), e0180932. 

https://doi.org/10.1371/journal.pone.0180932 

Walsh, R. P. D., & Lawler, D. M. (1981). Rainfall Seasonality: Description, Spatial Patterns and 

Change Through Time. Weather, 36(7), 201–208. https://doi.org/10.1002/j.1477-

8696.1981.tb05400.x 

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., & Zhao, W. (2015). Time-lag effects 

of global vegetation responses to climate change. Global Change Biology, 21(9), 3520–

3531. https://doi.org/10.1111/gcb.12945 

Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., 

Stark, S. C., Christoffersen, B., Prohaska, N., Tavares, J. V., Marostica, S., Kobayashi, H., 

Ferreira, M. L., Campos, K. S., Silva, R. da, Brando, P. M., Dye, D. G., Huxman, T. E., … 

Saleska, S. R. (2016). Leaf development and demography explain photosynthetic 

seasonality in Amazon evergreen forests. Science, 351(6276), 972–976. 

https://doi.org/10.1126/science.aad5068 

Wu, J., Serbin, S. P., Xu, X., Albert, L. P., Chen, M., Meng, R., Saleska, S. R., & Rogers, A. 

(2017). The phenology of leaf quality and its within-canopy variation is essential for 

accurate modeling of photosynthesis in tropical evergreen forests. Global Change Biology, 

23(11), 4814–4827. https://doi.org/10.1111/gcb.13725 

Xu, L., Saatchi, S. S., Yang, Y., Myneni, R. B., Frankenberg, C., Chowdhury, D., & Bi, J. (2015). 

Satellite observation of tropical forest seasonality: Spatial patterns of carbon exchange in 

Amazonia. Environmental Research Letters, 10(8), 084005. https://doi.org/10.1088/1748-

9326/10/8/084005 



 

50 

 

Zhang, Y., Joiner, J., Gentine, P., & Zhou, S. (2018). Reduced solar-induced chlorophyll 

fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Global 

Change Biology, 24(6), 2229–2230. https://doi.org/10.1111/gcb.14134 

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., & Dong, J. (2017). A global moderate 

resolution dataset of gross primary production of vegetation for 2000–2016. Scientific Data, 

4, 170165. https://doi.org/10.1038/sdata.2017.165. 

  



 

51 

 

 LAND COVER CHANGE ALTERS SEASONAL 
PHOTOSYNTHETIC ACTIVITY AND TRANSPIRATION OF AMAZON 

FORESTS AND SHRUBLANDS 

3.1 Abstract 

The relationship between tropical ecosystems and the atmosphere influences the local, 

regional, and global climate. This relationship is largely based on photosynthetic activity and 

transpiration of vegetation. When the natural vegetation is replaced, both of these processes are 

altered, with consequences for climate. Land cover change in the Amazon started decades ago and 

is expected to continue. Because of the close relationship of vegetation with climate, it is key to 

understand and monitor the effects of land cover change on photosynthetic activity and 

transpiration. However, long-term data are scarce in the tropics, hindering our ability to study these 

effects in the field. Here, we use remote sensing data to analyze the impact of land cover change 

on photosynthetic activity and transpiration at the seasonal scale in the southern Amazon. This 

region, which includes tropical forest and the Cerrado ecosystems, has seen high rates of land 

cover change. We find that this land cover change has reduced photosynthetic activity and 

transpiration in forest-dominated regions, specifically during the dry season. The decrease in 

photosynthetic activity is also observed in a switch from dry season greening in forest regions to 

dry season browning. In contrast, land cover change increases photosynthetic activity in shrubland-

dominated pixels during the wet season, and has no effect during the dry season. In both 

ecosystems, land cover change results in a higher annual range of photosynthetic activity, typically 

because of either higher maximum or lower minimum photosynthetic rates. The observed effects 

are often intensified with increasing land cover change. We expect this study to contribute to our 

current knowledge and model representation of the effects of land cover change on photosynthetic 

activity and transpiration. 

3.2 Introduction 

Tropical ecosystems provide several ecosystem services to the rest of the planet. In addition 

to storing large amounts of carbon in live biomass and sheltering biodiversity, they influence the 

regional and global climate (Nobre et al., 2016). The high rates of photosynthetic activity that 
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characterize these ecosystems lead to large and fast exchanges of water, energy, and carbon with 

the atmosphere. This strong interaction with the atmosphere influences climate in different ways. 

For instance, about 32% of the Amazon rainfall is produced locally, and 75% of the rainfall is 

returned to the atmosphere (Lovejoy & Nobre, 2019; Staal et al., 2018). In addition to affecting 

local rainfall, these forests also influence continental precipitation (Lawrence & Vandecar, 2015), 

regional surface temperature (Alkama & Cescatti, 2016), and atmospheric carbon concentrations 

(Hubau et al., 2020).  

Natural ecosystems of the Amazon basin and the ecosystem services they provide to the rest 

of the planet are threatened by high rates of anthropogenic land cover change (LCC; Nobre et al., 

2016). Current estimates indicate that about 17% of the tropical forests of the Amazon basin have 

been deforested (Lovejoy & Nobre, 2019). Model projections estimate that, in a business-as-usual 

scenario, as much as 47% of the Brazilian Amazon could be deforested by 2050 (Spracklen and 

Garcia-Carreras 2015).  

Removing and replacing native vegetation changes carbon and water cycling, among many 

other socio-economic and environmental effects (Chambers & Artaxo, 2017; Marengo et al., 2018; 

Spracklen & Garcia-Carreras, 2015). The changes in carbon and water exchanges with the 

atmosphere are, in large part, the result of differences in photosynthetic rates and water-use 

efficiency between the original and the replacing vegetation (Butt et al., 2011). In the Amazon, 

tropical forests increase photosynthetic activity and transpiration during the dry season (Saleska et 

al., 2003; Zemp et al., 2017). Deep roots and hydraulic redistribution enable large, old trees to 

access water in the deeper layers of the soil (Nepstad et al., 1994; Rafael S. Oliveira et al., 2005). 

Without these large trees, other vegetation types in similar climatic conditions could not access 

deep water, which would limit photosynthetic activity and growth during the dry season (R. S. 

Oliveira et al., 2005). Changes in land cover that alter the relationship between photosynthetic 

activity and climate would modify the relationship between the land surface and the atmosphere 

(Nepstad et al., 1994). More specifically, a shift in the seasonality of photosynthetic activity could 

shift the seasonality of precipitation (Chambers & Artaxo, 2017). Furthermore, changes in 

precipitation seasonality affect vegetation distribution, phenology, and photosynthetic activity. 

This feedback loop could, eventually, lead to a tipping point for ecosystems in this region 

(Marengo et al., 2018). 
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In the Amazon region, there have been challenges in monitoring the changing relationship 

between land cover and regional climate as land cover continues to change. Historically, large 

scale changes in precipitation, temperature, and evapotranspiration due to LCC in the Amazon 

have been studied using global circulation models (GCM) (Chambers & Artaxo, 2017; D'Almeida 

et al., 2007). Fewer studies have used field- and remote sensing-derived data to investigate these 

changes (Vergopolan and Fisher 2016). In addition to problems with the lack of observational 

studies, land surface models coupled to GCMs inaccurately represent seasonality of photosynthetic 

activity of tropical forests of the Amazon (Restrepo-Coupe et al., 2017, Chapter 1). Modern remote 

sensing datasets provide a useful tool for investigating changes in photosynthetic activity and 

transpiration in the Amazon.  

Understanding how LULCC affects seasonality of photosynthetic activity and transpiration 

is necessary if we are to predict the effects of LULCC on water and carbon cycling. In this study, 

we estimate the current effects of LULCC on photosynthetic activity and transpiration by 

evaluating differences in remote sensing-derived data products between areas with low and high 

LULCC. We answer the following questions: What is the effect of LULCC in photosynthetic 

activity and transpiration in two ecosystems in the Amazon? Are these effects different between 

the wet and the dry season? And, does the magnitude of these effects change as LULCC increases 

within an area? We hypothesized that photosynthetic activity and transpiration decrease with 

LULCC, specifically during the dry season, in both ecosystems. We expected these dry season 

reductions to decrease annual averages and to increase the range of variation of photosynthetic 

activity and transpiration. 

3.3 Methods 

To test the effects of LULCC we compared photosynthetic activity and transpiration in areas with 

high and low land cover change in a region located in the southeastern Amazon. We used linear 

mixed-effects models to identify differences in average, minimum, maximum and variation in 

photosynthetic activity and transpiration. We ran separate tests for the dry and wet seasons, and 

for forest- and Cerrado-dominated pixels. 
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3.3.1 Area of study and data collection 

Our analysis is based on a 3.7 million km2 region in the southwestern part of the Amazon 

basin, where the "Arc of Deforestation" is located (Fig. 3.1). This region has undergone extensive 

LCC and includes the two most common types of natural vegetation in the Amazon (i.e., tropical 

rainforest and Cerrado) (Silva et al., 2016). Thus, this area of study allowed us to compare regions 

with high and low LCC for both forest and the Cerrado ecosystems. 

Land cover data were obtained from the European Space Agency Climate Change Initiative 

Land Cover Time Series v2.0.7. This is an annual product of land cover available for the period 

1992-2015 at a 300 m spatial resolution (ESA, 2017). Land cover was estimated using 

unsupervised classification and machine learning algorithms for change detection and delineation 

of remote sensing land products (MERIS, AVHRR, SPOT-VGT, and PROBA-V).  The dataset 

has 22 land cover types, including natural (e.g., tree, shrubland, and grassland) and anthropogenic 

(e.g., cropland and urban) land covers. Fourteen of the 22 land cover types are found in the area of 

study. We excluded urban areas and water bodies from our analyses. The Cerrado ecosystem is 

classified as a shrubland in this dataset, therefore, we will refer to the Cerrado ecosystem as 

shrublands from this point on.  

We used remote sensing-derived monthly data of photosynthetic activity and transpiration 

between 2007 and 2016. Photosynthesis was analyzed using measurements of Solar Induced 

Fluorescence (SIF), a remote sensing measurement of the energy emitted by leaves as fluorescence, 

which is highly correlated with plant photosynthesis (Joiner et al., 2011). We used the GOME2_F 

product V27 (Level 3) from the Global Ozone Monitoring Experiment-2 on MetOp-A and MetOp-

B (https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/) (Joiner et al., 2013). This 

monthly dataset is available at a 0.5-degree x 0.5-degree spatial resolution since 2007. 

Transpiration (TR) data were obtained from the Global Land Evaporation Amsterdam Model 

(GLEAM). In GLEAM, the different components of actual evapotranspiration are derived using 

potential evaporation and a multiplicative evaporative stress factor (Martens et al., 2017). Potential 

evaporation is calculated with the Priestley and Taylor equation, which is based on air temperature 

and radiation. The stress factor in vegetated areas is based on remote-sensing data of Vegetation 

Optical Depth (VOD) and root-zone soil moisture content. VOD accounts for phenological 

constraints and soil moisture for water availability for vegetation transpiration (Martens et al., 
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2017). The GLEAM transpiration dataset is available at 0.25- x 0.25-degree resolution between 

1980 and 2018. 

We used the Rainy and Dry Seasons (RADS) dataset (Bombardi et al., 2019) to define the 

start and end of the dry and wet seasons for each year between 2007-2016. RADS uses the TRMM 

global gridded daily precipitation dataset to provide several characteristics of precipitation 

seasonality at 0.25 x 0.25-degree resolution. Seasons are defined based on accumulated 

precipitation anomalies (S), which correspond to the difference between daily precipitation and 

the annual daily average precipitation. The calculation of the S starts at a date t0 within the dry 

season every year (i.e., full cycle). In each pixel, t0 is estimated as the minimum of the first 

harmonic in the mean annual cycle of precipitation. The start and end of the wet season are 

calculated by finding inflection points in S for each site and each year. Starting in t0, in the dry 

season, the S curve first declines. When the rainy season starts, S increases progressively and 

causes an inflection point in the curve. The S curve is smoothed to eliminate false inflection points. 

More details about the algorithms and assumptions used in these calculations can be found in 

Bombardi et al. (2017, 2019). We provide a description of the wet and dry seasons in the area of 

study in the Supplementary Materials (Supplementary Text).  

Mean elevation data were obtained from the SRTM30 Digital Elevation Model (DEM) 

dataset (Saatchi, 2013). This dataset is derived using Shuttle Radar Topography Mission (SRTM) 

and the U.S. Geological Survey's GTOPO30 data. The data original resolution is 30 arc seconds 

(~ 1 km). The transpiration, RADS, and elevation datasets were all resampled with bilinear 

interpolation to match the 0.5-degree resolution of the SIF dataset. 

3.3.2 Pixel-pair selection and data analysis 

To test the difference in photosynthetic activity and transpiration between regions with high 

and low LCC, we extracted pixels with high rates of LCC between 1992 and 2015. Given that the 

resolution of our SIF and transpiration data was coarser than the land cover data, we calculated the 

percentage of smaller pixels (300m x 300m) within a larger pixel (0.5º x 0.5º) with a change of 

land cover type from 1992 to 2015. For the pair selection, we first selected all the pixels in the 

region with high LCC using a threshold of more than 20% smaller pixels with LCC in a larger 

pixel (Appendix B, Fig. B2). We then found a reference pixel for each of the high LCC pixels 

selected. The reference pixel is a pixel with the same dominant land cover type but low LCC (i.e., 
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less than 5% smaller pixels with LCC in a larger pixel). A maximum distance of one degree (~ 

100 km) was allowed between each pair of high and low LCC pixels; if no pixel with low LCC 

within such proximity was found, the high LCC pixel was discarded. A detailed graphic 

explanation of the LCC calculations and the pixels selected for the 20% threshold are shown in the 

supplementary information (Appendix B, Fig. B1-B2, respectively). 

We built linear mixed-effects models (LMMs) to test if there were significant differences in 

SIF and TR between all pairs of pixels (low and high LCC). Given that SIF data are only available 

since 2007, we performed our SIF and transpiration comparative analysis for the period 2007-2016. 

We calculated each pixel's mean (Eq. 1a-b), mean minimum (Eq. 2a-b), mean maximum (Eq. 3a-

b), and average range (Eq. 4a-b) SIF and TR. Each mean value was calculated as an annual (Eqs. 

1a, 2a, 3a, 4a) or seasonal average (Eqs. 1b, 2b, 3b, 4b), separately for the wet and the dry seasons. 

We calculated one additional metric to measure the mean change in SIF and transpiration from the 

start to the end of each season (Eq. 5). The start and end dates of each season were obtained from 

RADS. 
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Where # represents either SIF or TR; SS represents either wet or dry season; ?$, and ?.. 

represent the number of years and seasons; #,, and #0 denote annual and seasonal observations; 

#13)and	#156 indicate the minimum and maximum values of a year or season; and #9=>	and #>=> 

denote end and start of season values (Appendix B, Fig. B3). 

In our LMMs, the different SIF and TR metrics are the response variables, LCC level (i.e., 

high and low) is the categorical explanatory variable, elevation is a covariate and pixel pair is a 

random effect. To account for the possibility of spatial autocorrelation, we also fit models that 

included spatial autocorrelation functions. The final model for each metric was selected based on 

the Akaike information criterion (AIC) value, after meeting the regression assumptions. LMMs 
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provide estimates for the difference between low and high LCC pixels (ß1; Appendix B, Fig. B4) 

and their statistical significance (p-value). We also fit LMMs separately for the two most important 

ecosystems in the area of study, forests (ß1f) and shrublands (ß1s). LMM analyses were performed 

using the R package nlme  (Pinheiro et al., 2020).  

To understand how variables were affected by increasing extents of LCC, we performed 

the same pixel selection and statistical analyses using a range of different LCC thresholds. We 

varied the threshold for high-LCC pixels, using thresholds of >10%, >30% and >40% of smaller 

pixels with LCC within a larger pixel (Appendix B, Fig. B1). For each definition of "high-LCC" 

pixels, we identified a reference pixel (i.e., less than 5% smaller pixels with LCC in a larger pixel) 

using the same criteria used in the main analyses above. Finally, we calculated the same metrics 

and fit the LMM for each LCC threshold category. We compared the estimated differences and 

statistical significance of high vs. low LCC across the different high LCC thresholds. The number 

of pairs selected under each threshold is provided in Table S1. 

We investigated whether any differences in photosynthesis and transpiration between high- 

and low-LCC regions could be caused by different precipitation patterns, rather than LCC. To test 

differences in precipitation, we compared the annual precipitation and the dry and wet season 

lengths and intensities. We used the same methods used to compare SIF and transpiration and the 

same pixel samples. Paired low- and high-LCC pixels did not differ in mean annual precipitation, 

or in the durations or total precipitation of the dry and wet seasons (Table S2), suggesting that any 

differences in photosynthetic activity and transpiration result from differences in land cover (i.e., 

vegetation), rather than climate. 

3.4 Results 

The effects of land cover change on photosynthetic activity and transpiration depended on the 

season and ecosystem type (Fig. 3.3). In forests, LCC decreased SIF and TR in the dry season. In 

shrublands, LCC increased SIF in the wet season. The average range of SIF increased with LCC 

in forests in the dry season and in shrublands in both seasons. The average range of TR increased 

with LCC only in forested pixels during the dry season. Most effects of LCC intensified in regions 

where a greater fraction of the landscape was converted, despite smaller sample sizes. 
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3.4.1 Land cover change and precipitation in the area of study 

The most common land cover types in 1992 were forests and shrublands, which covered about 

63% and 17% of the region, correspondingly (Fig. 3.2). By that same year, about 14% of the region 

was already converted to herbaceous cropland, woody cropland, or some mosaic between natural 

vegetation and cropland. By 2015, forests had decreased to 55%, a loss of about 12% of the forest 

extent from 1992. Shrublands, surprisingly, were only reduced to 16% of land cover in 2015, a 

reduction of about 3%, of their 1992 area. This small reduction could be explained by the high 

conversion rates of shrublands to anthropogenic cover before 1992. Agricultural expansion 

through the Cerrado biome started in the 1920s, and some estimates indicate that by 2002, about 

40-55% of the Cerrado biome (i.e., shrublands in the Brazilian Amazon) had already been 

converted to pastures or agricultural lands (Klink & Machado, 2005; Sano et al., 2008). In our 

region of study, anthropogenic land cover types increased from 14% in 1992 to 21% in 2015. The 

main anthropogenic land cover types in the region were herbaceous and woody croplands. In 1992, 

each of these two covers represented 6% of the region. By 2015, they expanded to 7 and 11%, with 

a greater increase in woody than herbaceous croplands. By 2007, the year when SIF and 

transpiration measurements used here started, most LCC had already happened. In 2007, forest, 

shrubland, and anthropogenic covers were 56%, 16%, and 21% of the region. 

3.4.2 Photosynthetic activity and land cover change 

Across the entire region, LCC affected photosynthetic activity differently in the wet and dry 

seasons. Throughout the wet season, LCC increased photosynthesis; 65% of pixels with high LCC 

had higher means, and 59% had higher minimum and maximum SIF than their paired low  

LCC pixels (Fig. 3.4e-g). In contrast, in the dry season, LCC consistently reduced photosynthesis; 

78%, 71%, and 62% high LCC pixels had a lower mean, minimum, and maximum SIF, 

respectively (Fig. 3.4i-k). SIF average range was significantly larger in the high LCC pixels in the 

dry season (61% of pairs of pixels) (Fig. 3.4l).  

The opposing effects of LCC during the wet and dry seasons drove mean annual SIF values 

in different directions. LCC significantly decreased mean annual minimum SIF (62% of pixels), 

while increasing mean annual maximum SIF (60% of pixels) (Fig. 3.4b-c). Together, these changes 

led to increases in the annual range of SIF in 73% of pixels (Fig. 3.4d).  
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Broadleaf evergreen forests were the most common dominant land cover type in 1992 and the 

one with the highest LCC between 1992 and 2015. Therefore, our pooled results were often 

dominated by those pixels. In forest-dominated pixels, LCC resulted in lower mean and minimum 

annual SIF (73% and 68% of pixels, respectively) (Fig. 3.4a-b). In the dry season, LCC reduced 

mean and minimum SIF (88% and 78% of pixels, respectively) (Fig. 3.4i-k). Contrary to the annual 

and dry season decrease in SIF, LCC increased mean and minimum SIF in the wet season (68% 

of the pixels) (Fig. 3.4e-h). The average annual and dry season range of SIF increased with LCC 

in 65% and 60% of the pixels, respectively. 

Shrublands, the second most common land cover in 1992, often showed opposite trends to 

forests. In shrubland-dominated pixels, LCC increased mean and maximum annual SIF in 93% 

and 86% of pixels (Fig. 3.4a,c). These increases were driven by wet season responses; during this 

time, LCC increased mean and maximum SIF (86% of pixels) (Fig. 3.4e,g). In the dry season, 

neither the mean, minimum, or maximum SIF were significantly different under high LCC. 

However, LCC increased the mean range of SIF at the annual scale (86% of pixels) and in both 

seasons (86% of pixels in the wet and 79% in the dry season). 

3.4.3 Transpiration and land cover change 

Across both vegetation types, LCC reduced transpiration in the dry season; 75%, 74%, and 

68% of high LCC pixels had lower mean, minimum and maximum TR, respectively (Fig. 3.5i-k). 

In the wet season, LCC did not significantly affect mean, minimum, maximum, or range of TR 

(Fig. 3.5e-h). Therefore, the lower annual TR seems to be driven by the reduction in TR in the dry 

season; 79%, 62%, and 70% high-LCC pixels had lower mean, minimum and maximum annual 

transpiration, respectively (Fig. 3.5a-c). The average range of TR increased with LCC within the 

dry season (66% and 51% of pixels, respectively) (Fig. 3.5l). 

The reductions in transpiration due to LCC across the two vegetation types were primarily 

caused by the differences in pixels that were originally dominated by forests (Fig. 3.5). In forest-

dominated pixels, LCC reduced transpiration; 86%, 71%, and 76% of high LCC pixels had lower 

mean, minimum, and maximum annual TR, respectively (Fig. 3.5a-c). The annual reductions were 

a result of decreased TR in the dry season; 86%, 84%, and 76% of high LCC pixels had lower 

mean, minimum, and maximum TR, respectively (Fig. 3.5i-k). In shrublands, the change was 
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opposite to that of forests, with LCC increasing transpiration values on average. However, this 

increase in transpiration in high-LCC shrubland-dominated pixels was not significant. 

3.4.4 Different LCC thresholds and changes in SIF and transpiration 

The estimated differences between high- and low-LCC pixels tend to increase in magnitude 

as the threshold percentage of LCC to be considered high-LCC (i.e., >10%, >20%, >30% or >40%) 

increases (Fig. 3.6). Even though the sample size decreased because there were fewer pixels with 

the highest percentages of LCC, several differences continued to be significant. Differences tended 

to increase with the LCC threshold for (1) annual, wet, and dry season SIF, and (2) annual and dry 

season TR metrics for the pooled land cover types and forests. Mean and minimum SIF became 

increasingly lower in the dry season and at the annual scale, and higher in the wet season, although 

to a lesser extent (Fig. 3.6a). With increasing LCC differences, the effect of LCC on maximum 

SIF became larger in the wet season and at the annual scale, and smaller in the dry season (Fig. 

3.6a). Land cover change increasingly reduced mean and minimum TR in the dry season and at 

the annual scale (Fig. 3.6b). In the wet season, the mean, minimum, and maximum TR differences 

were only significantly reduced at the >10% LCC threshold (Fig. 3.6b). The mean ranges of SIF 

and TR in the dry season and at the annual scale also increased with higher LCC thresholds up to 

>30%; at the >40% threshold, the effects either tapered or decreased in magnitude (Fig. 3.6a,b). 

The SIF and TR dry season decreases observed in high-LCC forested pixels strongly and 

progressively increased in magnitude with higher LCC thresholds (Fig. 3.6c-d). In the wet season, 

both SIF and TR in forested pixels increased from LCC thresholds of >10 to >20%, but the 

increases either tapered (in SIF) or decreased in magnitude (in TR) for thresholds above >30%. In 

the wet season, LCC-driven increases in SIF and TR got larger as thresholds increased from >10 

to >20%, and tapered or slightly decreased at the >30 and >40% thresholds. The annual and dry 

season range of SIF and TR increased along with LCC thresholds up to >30%; at the >40% 

threshold, the effects of LCC either tapered or decreased in magnitude (Fig. 6c,d). 

The LCC threshold analysis for shrubland pixels was only feasible for two thresholds due to 

a lack of pixels with LCC higher than 30% to perform our comparisons (Fig. 3.6e-f). For the 

analyzed thresholds, most changes became larger as LCC differences increased from >10% to >20% 

(Fig. 3.6c,f). This pattern was observed for annual, wet, and dry season SIF mean, maximum, and 

range. TR differences between high and low LCC pixels dominated by shrublands were only 
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significant for some metrics, and only at the >10% LCC threshold. These metrics were dry season 

mean transpiration, annual and dry season minimum, and decreases in the annual, wet, and dry 

season range. Other metrics, such as maximum TR across all seasons, and most metrics in the wet 

season, were not significantly different at any LCC threshold. 

3.4.5 Dry season "greening" and land cover change 

We evaluated the effect of LCC on changes in photosynthetic activity from the beginning to 

the end of the dry season. Photosynthesis and transpiration increased throughout the dry season in 

forest-dominated pixels with low LCC (Fig. 3.7b,e). Land cover change strongly dampened this 

pattern; in forested pixels with high LCC, the change in SIF and TR during the dry season 

significantly decreased (Fig. 3.7b,e). Throughout the wet season, SIF and TR decreased in pixels 

with low LCC. With high LCC, the change in SIF and TR throughout the wet season increased 

and is closer to zero (Fig. 3.7b,e). 

In contrast to forests, shrubland photosynthesis and transpiration increased across the wet 

season and decreased during the dry season in pixels with low LCC (Fig. 3.7c,f). Also contrasting 

with forest, LCC in shrubland amplified the seasonal changes in these properties; SIF increased 

even more in the wet season and decreased more in the dry season with high LCC (Fig. 3.7c,f). 

Most of these changes in SIF and TR throughout the seasons with LCC intensified with increasing 

LCC thresholds (Fig. 3.8). 

3.5 Discussion 

Water, carbon and energy feedbacks from tropical ecosystems to the atmosphere strongly 

influence the local, regional, and global climates. Land cover change has the potential to 

significantly alter those feedbacks, particularly the rate and timing at which water, energy, and 

carbon are returned to the atmosphere. In this study, we identified the effects of LULCC on 

photosynthetic activity and transpiration using remote sensing-derived data. We also analyzed the 

distinct and consistent effects between ecosystems and between the dry and wet seasons.  

In forest-dominated pixels, LCC reduced annual photosynthetic activity and transpiration, 

mainly by slowing these processes during the dry season. We also observed the reduction in 

photosynthetic activity with LCC in the switch from dry season "greening" to dry season 
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"browning" in forests. During the wet season, LCC increased mean photosynthetic activity, 

without significantly affecting transpiration. However, this wet season increase in photosynthetic 

activity did not compensate for the decrease during the dry season so the annual average values 

decreased with LULCC. Photosynthetic activity patterns of common anthropogenic vegetation 

types in the Amazon, such as pastures for cattle or croplands without irrigation (Seymour & Harris, 

2019), are consistent with our observations. During the wet season, crops and grasses reach their 

productivity peaks, with SIF values and transpiration rates resembling those from forested areas. 

In the dry season, these non-irrigated croplands and pastures are either cleared (e.g., annual crops) 

or have a natural decrease in productivity (e.g., perennial plants) (Doughty et al., 2019). Our results 

agree with previous findings of dry season greening in the Amazon tropical forests and dry season 

water limitation in vegetation types with shallower roots (Nepstad et al., 1994; R. S. Oliveira et 

al., 2005; Rafael S. Oliveira et al., 2005). 

 Differences in dry season photosynthetic activity and transpiration between forests and 

anthropogenic vegetation are essential for the balance of the water cycle in this region (Marengo 

et al., 2018; Zemp et al., 2017). Positive feedbacks involving decreased water flow from the land 

surface to the atmosphere and vice versa can lead the ecosystem to a tipping point (Marengo et al., 

2018; Zemp et al., 2017). Even if it takes a longer time to reach this point at a large spatial scale, 

local and regional agriculture likely will be affected in the near future (Coe et al., 2017; Lawrence 

& Vandecar, 2015). Analyses similar to the one presented here could help monitor changes in the 

water cycling feedback and vegetation responses to such changes. The increased availability of 

remote sensing data allows for large-scale evaluation of changes in photosynthetic activity and 

transpiration patterns at the annual and seasonal scale. This information can be used to evaluate 

the influence of agricultural management in the region (Voldoire & Royer, 2004); for instance, by 

tracking larger-scale changes in SIF and transpiration under different (1) degrees of land cover 

change, (2) spatial patterns of land cover change, (3) agricultural land cover types, or (4) farming 

practices. 

The effect of LCC on shrubland-dominated pixels showed very different trends in both 

photosynthetic activity and transpiration. Photosynthetic activity was similar in the dry season 

under high and low LCC, but significantly increased under high LCC in the wet season. Unlike 

forests, shrublands and croplands are both expected to be water-stressed and to decrease their 

photosynthetic activity during the dry season. The increased photosynthetic activity with LCC 
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during the wet season could be explained by productivity optimization in human-managed 

vegetation during the growing season. In the wet season, high LCC pixels' SIF even approached 

that of forests. Although LCC increased photosynthetic activity in the wet season, it had little effect 

on transpiration. This contrast could be explained by different water use efficiency of shrublands, 

croplands, and pastures. However, it could also be a result of the parameters used in the algorithms 

for transpiration estimates. We recommend (1) studying differences in water use efficiency of 

shrublands and common croplands in this area, and (2) closely examining the parameters used in 

the transpiration algorithms for these vegetation types. This would lead to more accurate estimates 

of the impact of shrubland cover change on the water cycle. 

Land cover change increased mean annual and seasonal ranges of photosynthetic activity 

and transpiration in both forest- and shrubland-dominated pixels.  Human-managed vegetation is 

expected to cause this type of pattern, particularly with non-irrigated and annual crops. Most of 

these practices promote plant growth and increased photosynthetic activity during the growing 

season (i.e., months of increased water availability) and a complete decline in photosynthetic 

activity for the rest of the year. Neither forests nor shrublands have such extreme changes in 

photosynthetic activity. The increasing ranges of photosynthetic activity and transpiration caused 

by LCC are likely to affect the local and regional climate seasonality (Leite-Filho et al., 2019; 

Wright et al., 2017). 

The differences found in photosynthetic activity and transpiration between the high and low 

LCC regions intensify with increasing LCC. Although agroecosystems and other converted 

systems typically remain a small fraction of the landscape (i.e., within a pixel), even in "high-

LCC" regions, these pixels often showed differences large enough to be considered significant. 

The increases in the magnitude of the effects of LCC in photosynthetic activity and transpiration 

are consistent with GCM projections. Our analyses may be used to validate and benchmark past 

and future simulations that explore multiple deforestation scenarios. 

Our results indicate that LCC affected both photosynthetic activity and transpiration, in both 

wet and dry seasons. However, we did not find the mean annual precipitation, duration or total 

precipitation in the dry and wet seasons to be significantly different between low and high LCC 

regions. We, therefore, attribute the differences in photosynthetic activity and transpiration to 

differences in vegetation ecophysiology. The lack of changes in precipitation rates accompanied 

by decreases in the amount of water transpired back to the atmosphere indicate a different fate for 
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a fraction of the precipitated water. This finding supports previous modeling and observational 

LCC studies that show an increase in water runoff and river discharge (Coe et al., 2009; Dos Santos 

et al., 2018; Guimberteau et al., 2017; Swann et al., 2015). Most of those studies relate changes in 

runoff and river discharge with decreased evapotranspiration and small changes in precipitation. 

We used remote sensing-derived data of photosynthetic activity and transpiration to quantify 

differences in high- and low-LCC regions at annual and seasonal scales. LCC decreased 

photosynthetic activity and transpiration in the dry season in forest-dominated pixels. Additionally, 

LCC increased the range of photosynthetic activity and transpiration in forest- and shrubland- 

dominated pixels. Most changes found in photosynthetic activity and transpiration intensify with 

higher LCC. Measuring and assessing changes in remotely-sensed photosynthetic activity and 

transpiration resulting from LCC can be used to (1) characterize human-induced changes to water 

and carbon fluxes and their impacts on natural ecosystems, (2) evaluate the effects of different 

agricultural practices in the region, and (3) benchmark photosynthetic and transpiration flux 

simulations in land surface and climate models. Finally, the combined analysis of changes in 

photosynthetic activity and transpiration should also help us understand the relationship between 

these two processes in the different vegetation types in this region. We hope our results highlight 

the value of rapidly developing remote sensing-derived data for public policy and for future studies 

in ecophysiology, climate modeling, and LCC impact in the Amazon. 

 
Fig. 3.1. Location of the area of study and land cover types in 2015. 
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Fig. 3.2. Representative seasonal profiles of mean monthly SIF and transpiration (TR) in low- 
and high-LCC pixels for forest- and shrubland-dominated sites.  Shaded areas represent the dry 
season in the low- (gray) and high-LCC (pink) pixels, as calculated from the RADS dataset (see 

Methods). 

 

 

  
Fig. 3.3. Land cover and land cover change in the area of study. (a) Land cover types in 1992, (b) 
pixels that changed land cover type from 1992 to 2015, and (c) land cover change from 1992 to 
2007 and 2015 (only land cover types greater than 2% are displayed). The color legend is the 

same for (a) and (c). In (b), pixels in white had the same land cover type in 1992 and 2015, and 
pixels in black had different land cover types in 1992 and 2015. 
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Fig. 3.4. SIF (mW m-2 nm-1 sr-1) of low (x-axis) vs. high (y-axis) LCC pixels for each metric 
(rows) and at the annual and seasonal scale (columns). Colors correspond to forest- (green) and 
shrubland- (gold) dominated pixels. LMM estimates for the difference of SIF in low and high 
LCC are represented by ß1, ß1f and ß1s for all pixels, forest- and shrubland-dominated pixels, 

correspondingly. Asterisks (*) indicate statistically significant effects of LCC (p < 0.05).  
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Fig. 3.5. Transpiration (mm m-1) of low (x-axis) vs. high (y-axis) LCC pixels for each metric 
(rows) and at the annual and seasonal scale (columns). Colors correspond to forest- (green) and 
shrubland- (gold) dominated pixels. LMM estimates for the difference of SIF in low and high 
LCC are represented by ß1, ß1f and ß1s for all pixels, forest- and shrubland-dominated pixels, 

correspondingly. Asterisks (*) indicate statistically significant effects of LCC (p < 0.05). 
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Fig. 3.6. Estimates of the effect of LCC (ß1) on SIF (left-column) and transpiration (right-
column) when different thresholds for high LCC are selected (i.e., >10%, >20%, >30%, and 

>40%). Top row: all LC types (blue); middle row: forest-dominated pixels (green); bottom row: 
shrubland-dominated pixels (gold). Asterisks (*) indicate a statistically significant effect of LCC 

(p < 0.05). 
  



 

69 

 

 

a d 

b e 

c f 

Fig. 3.7. Wet and dry season changes in SIF and transpiration in low vs. high LCC pixels. 
Each boxplot shows the minimum, first quartile, median, third quartile, and maximum data 

points. Outliers are shown as black dots outside the boxplot. ß1, ß1f and ß1s values indicate the 
LMM estimate for the difference of SIF and transpiration in low and high LCC,  for all pixels, 
forests and shrublands, correspondingly. Asterisks (*) indicate statistically significant effects 

of LCC (p < 0.05). 
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Fig. 3.8. Estimates of the effect of LCC on SIF and transpiration in the wet and dry season when 
different thresholds for high land cover change are selected. Asterisks (*) indicate statistically 

significant effects of LCC (p < 0.05). 
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 REDUCTIONS IN AMAZON BASIN 
EVAPOTRANSPIRATION AFTER DEFORESTATION: ESTIMATES 

FROM REMOTE SENSING AND MODELS 

4.1 Abstract 

In the Amazon region, extensive deforestation has the potential to change the relationship 

between the land and atmosphere, and ultimately, climate. Many regional and global climate 

models suggest that deforestation will reduce evapotranspiration (ET) and affect climate. However, 

ET data based on remote sensing and physical models have not yet been used to estimate the net 

effect of deforestation. The increasing availability of relevant satellite data provides a new 

opportunity to estimate changes in ET from deforestation during the past couple of decades. Here, 

we estimate the change in ET due to deforestation in the Amazon basin using two remote sensing-

derived datasets for the period 2000-2018. We compare our estimates with those from previous 

modeling studies. Our results indicate a basin-wide decrease in ET of 0.11 mm d-1 (2.81%) and 

0.06 mm d-1 (1.58%) from the GLEAM and MODIS datasets, respectively, due to deforestation of 

9.3% of the region. These estimates are in close agreement with previous modeling estimates, 

which collectively predict ET will decrease by 0.007 mm d-1 or 0.21% for each 1% increase in 

deforestation. Together, our remote sensing-derived estimates and our synthesis of model 

predictions provide a best estimate for how past and future deforestation affect ET in the Amazon, 

with implications for the regional climate. Our spatial and seasonal analyses also highlight the 

importance of specific changes in ET in the southern part of the basin as well as during the dry 

season. 

4.2 Introduction 

The vast tropical forests of the Amazon basin have a strong relationship with the 

atmosphere that influences the regional and global climates. The region’s warm temperatures and 

abundant rainfall have shaped the dense and highly productive forests. At the same time, the forests 

help regulate local temperatures, regional and global precipitation, and atmospheric carbon 

(Lawrence and Vandecar 2015; Prevedello et al. 2019). Estimates suggest that about a third of the 

regional rainfall originates within the Amazon basin and 20% has been transpired at least once by 
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the Amazon forests (Staal et al. 2018). Precipitation patterns in other parts of South America and 

in distant extratropical regions are also influenced by water recycling in the Amazon through 

teleconnections (Lawrence and Vandecar 2015). Forest cover in the tropics has also been 

associated with lower mean and maximum temperatures, and lower diurnal temperature variations 

(Alkama and Cescatti 2016; Cohn et al. 2019; Prevedello et al. 2019). However, the natural 

feedbacks of energy, carbon and water between tropical forests and the atmosphere are threatened 

by human-induced land cover change (Davidson et al. 2012; Lovejoy and Nobre 2019). 

Recent estimates indicate that 17% of the Amazon has already been deforested and this 

area is expected to keep increasing (Lovejoy and Nobre 2019). The highest deforestation rates are 

located in the Brazilian Amazon, in the southern and eastern parts of the basin, and in the lower 

Andes in the western border of the basin (Malhi et al. 2008). Cattle ranching, agriculture (e.g., for 

soy and palm oil), and selective logging are the main drivers of land clearing (Davidson et al. 

2012). By 2050, models predict that almost half of the forests of the Amazon basin will be 

converted to other land cover types (Spracklen and Garcia-Carreras 2015). These deforestation 

predictions range from 28% under a governance scenario to 47% under a business-as-usual 

scenario (Soares-Filho et al. 2006). The effects of deforestation in the Amazon can range from 

local to global scales (Cohn et al. 2019; Lawrence and Vandecar 2015; Swann et al. 2015). 

Therefore, it is important to evaluate the magnitude of the effects of deforestation on climate at 

different temporal and spatial scales. 

Evapotranspiration (ET) is the most important link between changes in land cover and 

changes in climate (Fisher et al. 2017). ET is related to several mechanisms through which land 

cover change affects water and energy fluxes from the land surface to the atmosphere (Bonan 2008; 

Cai et al. 2019). Replacing the natural land cover modifies ET rates and partitioning through 

changes in (1) albedo and the amount of energy available for evaporation; (2) roughness length 

and aerodynamic resistance to transpiration; (3) the amount of precipitation intercepted by 

vegetation; (4) leaf area index, stomatal resistance, and photosynthetic and transpiration rates; (5) 

soil water storage capacity and plant water stress; and (6) water infiltration and runoff (Butt, 

Oliveira, and Costa 2011; Cai et al. 2019; Voldoire and Royer 2004). A better understanding of 

the changes in ET would help to improve our information about changes in the cycling of water 

and energy in the Amazon. 
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Multiple efforts have been made to estimate the effects of deforestation in ET and climate 

in the Amazon (D’Almeida et al. 2007; Guimberteau et al. 2017). ET cannot be directly measured 

from remote sensing, and field data from the Amazon are scarce. Therefore, most ET studies are 

based on regional and global circulation models and land surface models. Simulating the feedbacks 

between the atmosphere and the land surface with process-based models allows testing of different 

land cover scenarios and their effects on different aspects of climate. However, in the last two 

decades, a few global ET datasets have been developed based on meteorological and remote 

sensing data (Miralles et al. 2016; Paca et al. 2019). These datasets use algorithms that describe 

the biogeophysical processes of ET and are driven by remote sensing measurements of vegetation, 

soil water content, and climate (Miralles et al. 2016).  

As a result of a few decades of modeling efforts, many estimates of the changes in ET that 

result from land cover change are now available. However, the almost two decades’ worth of 

remote sensing-derived ET data have rarely been used to estimate the effects of deforestation 

(Vergopolan and Fisher 2016). Here, we first estimate the change in ET caused by deforestation 

in the Amazon basin using remote sensing-derived data. Second, we analyze estimates from 

previous modeling studies and compare them with our remote sensing-based estimates. We 

specifically answer the questions: How much does ET change as a result of deforestation in the 

Amazon basin according to remote sensing-derived datasets? Are there spatial and temporal trends 

in the effect of deforestation on ET? And, do our remote sensing-derived estimated changes in ET 

agree with models’ predictions? We hypothesized that deforestation has caused a decrease in ET, 

in accordance with previous modeling studies. We expected a larger effect of deforestation in ET 

in the southern Amazon, where deforestation has occurred at higher rates. Because of crops and 

pastures lower resistance to drought, we also expected higher reduction of ET due to deforestation 

during months and years with low precipitation. 

4.3 Methods 

4.3.1 Data 

Land cover data were obtained from the European Space Agency Climate Change Initiative 

Land Cover Time Series v2.0.7. This product provides annual land cover data for the period 1992-

2018 at a 300-meter spatial resolution (ESA 2017). Land cover types are obtained using 
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unsupervised classification and machine learning algorithms for change detection and delineation 

of remote sensing land products (MERIS, AVHRR, SPOT-VGT and PROBA-V).  The dataset has 

22 land cover types including natural (e.g., tree, grassland and shrubland) and anthropogenic (e.g., 

cropland and urban) land covers. We used the definition of Amazon basin from Mayorga et al. 

(2012), where land topography from ETOPO5 was used to trace watershed limits of the Amazon 

river tributaries (Mayorga et al. 2005). We then identified the tropical forest biome within the basin 

using the biome distribution from Olson et al. (2001) to delimit our area of study (Fig. 4.1). 

Evapotranspiration data were obtained from two remote sensing-derived datasets, namely, 

the Global Land Evaporation Amsterdam Model (GLEAM v3.3a) and the MODIS/Terra Net 

Evapotranspiration Gap-Filled product (MOD16A2GF V006) (Martens et al. 2017; Miralles et al. 

2011; S. Running et al. 2019). Both datasets are global products with a strong physical modeling 

component largely driven by remote sensing and climate reanalysis data. GLEAM data are 

available as monthly averages for the period 1980-2018 at a spatial resolution of 0.25- x 0.25-

degree resolution. MODIS data are available as 8-day composites for the period 2000-2018 at a 

500- x 500-meter resolution. Our analyses were performed with monthly averages for the period 

2000-2018 at a 0.25- x 0.25-degree resolution to match the temporal and spatial resolution of both 

datasets. 

GLEAM evapotranspiration is derived by estimating potential evaporation, rainfall 

interception and a stress factor (Martens et al. 2017). Potential evaporation is calculated with the 

Priestley-Taylor (PT) equation, which is based on air temperature, net radiation and vegetation 

cover type. Rainfall interception is estimated using the Gash analytical model based on 

precipitation and vegetation properties. The stress factor, which accounts for water availability and 

phenological constraints, is estimated from microwave remote-sensing data of vegetation optical 

depth (VOD) and estimates of root-zone soil moisture. Lower VOD or soil moisture result in higher 

evaporative stress. An advantage of using GLEAM ET in tropical forests is its exclusive use of 

microwave remote sensing observations (Martens et al. 2017). Unlike visible and infrared radiation, 

microwaves are relatively unaffected by clouds, which can severely limit data collection in the wet 

season in the tropics. Furthermore, GLEAM uses a detailed interception model that is ideal for 

forested regions where canopy interception and evaporation represent a large fraction of ET. 

Similar to GLEAM, MODIS ET is also calculated with a combination of algorithms, 

climate reanalysis data and satellite imagery. However, both ET datasets differ in the algorithms 
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and satellite datasets used. MODIS ET is based on the Penman-Monteith (PM) equation, in which 

ET is also a function of vapor pressure deficit and aerodynamic and canopy resistances in addition 

to the climate limitations included in the PT equation (S. W. Running et al. 2019). The PM equation 

is used to separately calculate vegetation transpiration, canopy evaporation, and soil evaporation. 

Input data for these calculations include reanalysis meteorological data (e.g., air temperature, PAR, 

specific humidity), and MODIS vegetation data (e.g., Leaf Area Index (LAI), Fraction of 

Photosynthetically Active Radiation (FPAR)), albedo, and land cover. For instance, FPAR is used 

as a proxy of vegetation cover fraction to estimate the radiation partitioning between canopy and 

soil surface within a pixel; LAI is used in the wet canopy evaporation and stomatal conductance 

calculations. An advantage of MODIS ET is that it is parameterized for 11 vegetation types, 

including evergreen broadleaf forests, grasslands and croplands. 

4.3.2 Estimate of changes in ET due to deforestation 

In order to estimate the change in ET due to deforestation, we compared monthly remote 

sensing-derived ET with ET from a simulated non-land cover change scenario. This simulated 

scenario, from this point called the no-LCC scenario, was built by predicting ET in areas of high 

land cover change as if there had not been land cover change. First, we identified areas with low 

and high land cover change in the Amazon basin. The fraction of land cover change was 

determined by calculating the proportion of 300-m pixels with anthropogenic land cover types (i.e., 

pasture, croplands, and mosaics of natural and anthropogenic vegetation) within each 0.25-degree 

evapotranspiration pixel (Fig. 4.1). We then masked out high land cover change areas (>1% pixels 

with land cover change) and used ET data from low land cover change areas to estimate ET for 

the masked areas of high land cover change. The interpolation of the ET data from low land cover 

change pixels to the high land cover change areas was performed with universal kriging. This 

technique has been extensively used and has proven to be a robust interpolation method in the 

environmental sciences (Li and Heap 2014). Using kriging, we estimated potential values of ET 

in the no-LCC scenario using observed ET from nearby undisturbed forests. We specifically 

avoided using additional climate data for our predictions (e.g., precipitation or temperature) since 

they could be associated with climate-land cover-ET feedbacks. 

Kriging is an interpolation technique to predict unknown values of a variable of interest in 

new locations based on measured values in other locations (Singh and Verma 2019). The 
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predictions result from using the spatial autocorrelation in the data. The kriging process is divided 

in two main steps, the spatial model fitting and the predictions. Given a set of locations (D(, … , D)) 

and the corresponding known values of our variable of interest (F(D(),… , F(D))), we fit a spatial 

model that describes the correlation among the available data. Model fitting is done by calculating 

the sample variogram, which corresponds to the semi-variance G(ℎ) of the measured data points 

separated by different distances ℎ (Eq. 1, Plant 2012). 

G(ℎ) = 	 (

I|K(L)|
∑ (F(D3 + ℎ) − F(D3))I
K(L)
3-(      (Eq. 1) 

 We fit a model that describes the semi-variance of the sample and use that model to predict 

values for the new locations. In our case, predictions were performed through universal kriging 

(Eq. 2). In this kriging method, new values are the sum of a regional mean estimated as a function 

of location N(D), and the random, spatially-correlated error O(D) calculated with the fitted model 

(Singh and Verma 2019). 

F(D) = 	N(D) + 	O(D)      (Eq. 2) 

We used K-fold cross validation to evaluate the accuracy of our interpolation. The 

validation process consists of (1) removing 1/k of the measured data points; (2) performing the 

predictions at the location of the removed data points; and (3) comparing the predictions with the 

actual values. Multiple iterations of the same process are repeated with different groups of data 

points removed in each iteration, until all the points in the dataset have been removed at least once. 

After completing all the iterations, diagnostic statistics such as mean error (bias) and root mean 

square error (RMSE) are calculated. The cross-validation results are shown in Table S1. We used 

the R packages gstat (Gräler, Pebesma, and Heuvelink 2016; Pebesma 2004) and automap 

(Hiemstra et al. 2009) for the kriging and cross-validation analyses. 

To estimate the effect of land cover change on ET (∆ET), we calculated the difference 

between the observed and the no-LCC scenario ET from each dataset. We calculated absolute (mm 

d-1) and relative (%) differences between the ET estimates from the two scenarios across the entire 

Amazon basin. We followed up with spatial and temporal analyses of ET changes caused by 

deforestation. We evaluate seasonal and interannual variation in our basin-wide estimates, and 

separately for the northern and southern halves of the basin. The boundary between the two regions 

corresponds exactly to the median latitude of the basin (dotted line in Fig. 4.1). 
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4.3.3 Synthesis of estimates of change in ET due to deforestation from modeling studies 

We collected and synthesized publications that estimate the effects of deforestation on ET 

in the Amazon basin. Using Google Scholar and Web of Science in February, 2020, we searched 

scientific articles in peer reviewed journals using the terms “evapotranspiration + deforestation + 

Amazon”. The initial results included 11,000 studies in Google Scholar and 110 studies in Web of 

Science. We examined titles and abstracts of the papers in the search results to identify studies that 

were relevant to this study. We examined all titles and abstracts in the Web of Science Results. In 

Google Scholar, results were ranked by relevance and titles and abstracts were searched starting 

with the most relevant results. This search continued until more than 30 consecutive articles’ titles 

and abstracts were found not to be relevant for this study. From the studies initially identified as 

related to the topic, we selected those with available data for estimates of changes in ET. If a 

relevant study was referenced in one of our selected publications but was not part of our initial 

search results, the new study was added to the collection. The final collection includes 40 studies 

with different amounts of data availability.   

Using the identified studies, we compared the estimated changes in ET under different 

deforestation scenarios. We fit a regression model to evaluate the agreement and trend in the 

estimates across specified levels of deforestation. The linear regression was forced through the 

intercept, with no change in ET with no change in deforestation. We used the stats R package to 

perform the regressions (R Core Team 2019). We compared our results from the satellite-based 

data analyses with the synthesis of estimates from the modeling studies. We compare our estimated 

values with the mean projected ET change inferred from modeling studies. We also compare our 

ET estimates with data from previous modeling studies that related changes in ET to changes in 

precipitation, temperature, and sensible heat flux across the Amazon basin. 

4.4 Results 

4.4.1 Estimated changes in ET in the Amazon basin due to deforestation from remote 
sensing-derived data 

The GLEAM datasets suggest that deforestation reduced mean ET in the Amazon basin by 

0.11 mm d-1, or 2.81%, during the period 2000-2018; ET dropped from 3.84 (±0.35) mm d-1 in our 

simulation of intact forest to an actual mean ET of 3.74 ±0.34 mm d-1 (Fig. 4.2a,c,e). The MODIS 

datasets suggest a smaller effect of deforestation; a reduction of 0.06 mm d-1, or 1.58%.  The 
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MODIS analyses suggest that an intact, fully forested Amazon would have averaged ET of 3.63 

(±0.42) mm d-1, as compared to an estimate of actual ET of 3.57 ±0.36 mm d-1 (Fig. 4.2b,d,f).  

The two datasets show different spatial variation in ET within the region (Fig. 4.2a-b). In 

GLEAM, ET is higher in the northern and central part of the basin and lower in some regions in 

the western, southern and southeastern parts of the basin. In MODIS, the highest ET values are in 

some parts of the northeastern and southeastern regions. The areas where ET differs between 

observations and the no-LCC scenario coincide with the spatial pattern of deforestation (Fig. 4.1); 

most of these areas are located along the western border, or are in patches in the southern and 

northern parts of the Amazon. 

The effect of deforestation on ET was distinctly higher in the southern part of the basin 

than the in northern part. In the southern region, deforestation decreased ET by 0.18 mm d-1 or 5.5% 

in the GLEAM dataset. In the no-LCC scenario, average GLEAM ET was 3.55 (±0.62) mm d-1, 

and decreased to 3.37 (±0.6) mm d-1 in the deforested scenario. In this same region, the decrease 

in MODIS ET was 0.12 mm d-1 or 3.25%. In the no-LCC scenario, MODIS ET was 3.57 (±0.4) 

mm d-1, decreasing to 3.46 (±0.32) mm d-1 with observed deforestation. In the northern part, the 

decrease in GLEAM ET from deforestation was only 0.06 mm d-1 or 1.4%. In this dataset, the 

average no-LCC scenario ET was 4.03 (±0.24) mm d-1 and dropped to 3.97 (±0.23) mm d-1 with 

deforestation. In MODIS, the decrease in ET was 0.03 mm d-1 or 0.7%, where the no-LCC scenario 

mean ET was 3.66 (±0.5) mm d-1 and dropped to 3.63 (±0.49) mm d-1. The full time series of 

observed and no-LCC ET and the difference between the two are shown in the supplementary 

materials (Appendix C, Fig. C1). 

In addition to spatial variation, there was also seasonal variation in the observed and no-

LCC scenario ET, as well as in the effect of deforestation on ET. In both remote sensing datasets, 

the seasonal variations were stronger in the southern than in the northern part of the basin.  

In the northern Amazon (Fig. 4.3-left column), mean monthly ET values fluctuated over a 

range of 0.63 mm d-1 (3.58-4.21 mm d-1) in GLEAM and 1.22 mm d-1 (3.15-4.37 mm d-1) in 

MODIS (Fig. 4.3a,c). The seasonal variation of GLEAM showed one peak in ET in the wet season 

and a second one by the end of the dry season (Fig. 4.3a). In MODIS, there was a single peak by 

the end of the dry season (Fig. 4.3c). ET in the no-LCC scenario from GLEAM was only slightly 

but constantly higher than observed ET for this region, with a mean monthly difference of between 
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0.05 and 0.07 mm d-1 (Fig. 4.3b and Fig. 4.4). For MODIS, the difference remained close to zero 

for most of the year, with a peak of 0.07 mm d-1 during the dry season (Fig. 4.3d and Fig. 4.4). 

In the southern Amazon (Fig. 4.3-right column), GLEAM ET variation was over two times 

higher than in the northern part, with an annual range of 1.6 mm d-1 (2.43- 4.03 mm d-1) (Fig. 4.3f). 

The seasonal pattern of GLEAM ET followed that of precipitation, decreasing in the dry season 

and increasing in the wet season. In the MODIS dataset, the annual range of ET in the southern 

part was smaller; only 0.46 mm d-1 (3.17 to 3.63 mm d-1), and the seasonal pattern did not follow 

precipitation (Fig. 4.3h). The mean monthly variation in the effect of deforestation ranged between 

0.08 and 0.27 mm d-1 in GLEAM and -0.03 and 0.4 mm d-1 in MODIS (Fig. 4.3g,i). In GLEAM, 

the effect of deforestation on ET peaked both in the middle of the wet season and late in the dry 

season, while in MODIS there was one single large peak in the late dry season (Fig. 4.3g,i and Fig. 

4.4). 

Year-to-year variation in ET was relatively small. In the northern region, mean annual ET 

had a range of 0.21 mm d-1 (3.84 to 4.05 mm d-1) and 0.47 mm d-1 (3.33 to 3.8 mm d-1) in GLEAM 

and MODIS, respectively (Fig. 4.5a,c), across the 18-year dataset. In the southern region, mean 

annual ET range was 0.21 mm d-1 (3.26 to 3.47 mm d-1) in GLEAM and 0.51 mm d-1 (3.13 to 3.64 

mm d-1) in MODIS (Fig. 4.5f,h). The small year-to-year variation was observed across extremely 

dry (e.g., 2004-2005, 2009-2010, 2015-2016) and wet years (e.g., 2007-2008, 2010-2011, 2011-

2012), when GLEAM and MODIS ET were not consistently higher or lower than other years.  

In both GLEAM and MODIS, the difference between ET in the no-LCC and deforested 

scenarios remained relatively constant across years in both the northern and southern regions. In 

the northern region, these differences remained between 0.05 to 0.06 mm d-1 in GLEAM and 0.02 

to 0.03 mm d-1 in MODIS (Fig. 4.5b,d). In the southern region, these differences were larger, 

ranging from 0.19 to 0.26 mm d-1 in GLEAM and 0.06 to 0.16 mm d-1 in MODIS (Fig. 4.5g,i). 

4.4.2 Synthesis of estimates of changes in ET in the Amazon basin from deforestation: 
modeling and remote sensing studies 

 Modeling studies consistently predict decreased ET as a result of deforestation in the 

Amazon basin and our ET estimates closely follow this pattern. Across all of the studies, when the 

deforestation extent used in the simulations is taken into account, mean ET is estimated to decrease 

by -0.007 mm d-1 or -0.2% for each 1% increase in deforestation (Fig. 4.6). Our estimated ET 
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change from remote sensing data is well within the range of modeling estimates. GLEAM and 

MODIS ET showed an average change of -0.06 and -0.11 mm d-1 or -1.6 and 2.8%, while the linear 

regression for the change in models’ estimates of ET predicts a -0.069 mm d-1 or 2% decrease in 

ET at our 9.3% deforestation. 

Differences in ET obtained from the control simulations in the different studies illustrate 

the variation across the model structures and the simulation setups (input data, deforestation 

scenarios, etc). The mean annual ET in control scenarios is 3.73 mm d-1, with estimates as low as 

2.28 mm d-1 and as high as 5.74 mm d-1. In the deforestation scenarios, the mean annual ET is 3.09 

mm d-1 and ranges from 1.64 to 5.21 mm d-1. The studies analyzed here differ in several ways, 

including (1) spatial and temporal coverage and resolution of the simulations; (2) model structure, 

input data and parameter estimation; and (3) deforestation and climate scenarios (Appendix C, 

Table C2 and Fig. C2). 

Model development, data quality and availability, and computational advances are 

expected to influence the simulation results. Mean ET change was -0.84 mm d-1 (-19.1%) and -

0.26 mm d-1 (-12.9%) in studies before and after the year 2000, respectively. The higher estimated 

changes of older studies are partly caused by a prevalent use of total deforestation of the Amazon 

forests. Across our collection of studies, one of the biggest advances has been the simulation of 

more realistic deforestation scenarios. However, even if we focus on studies considering 100% 

deforestation in the Amazon, older studies have larger absolute values (-0.87 mm d-1) than newer 

studies (-0.54 mm d-1) and similar relative values (-19.8% and -21.8%, respectively). 

Predictions of the change of precipitation with changes in ET are not as consistent as they 

are for the effects of deforestation on ET. Simulations range from positive to negative changes in 

precipitation, and are particularly scattered at low absolute changes in ET (Fig. 4.7a,b). 

Precipitation differences range between -5.45 and 1.08 mm d-1 and between -56 and 15.3%. The 

linear model fit from models data suggests a decrease of 0.9 mm d-1 and 0.7% in precipitation for 

each unit (mm d-1 or %) change in ET (Fig. 4.7a-b). According to the predicted relationship 

between changes in ET and P from modeling studies, our GLEAM and MODIS ET change 

estimates would suggest -0.09 mm d-1 (-1.87%) and -0.06 mm d-1 (-1.05%) changes in P, 

respectively. These estimates, however, ignore the complex atmospheric dynamics that have led 

to divergent precipitation change estimates due to deforestation (Khanna et al. 2017; Ramos da 

Silva, Werth, and Avissar 2008). As addressed in previous modeling studies, changes in 
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precipitation are highly influenced by the effect of deforestation mesoscale thermodynamics and 

moisture convergence, which are highly variable.  

Modeling studies also indicate an increase in temperature due to deforestation. This 

relationship indicates an increase of 1.64 degrees Celsius per each 1 mm d-1 of decrease in ET (Fig. 

4.7c). Our estimates of mean ET change from GLEAM and MODIS thus would imply temperature 

increases of 0.17 and 0.1 degrees Celsius, respectively. Changes in temperature with ET are 

associated with changes in sensible heat flux (H). According to modeling studies, H increases 8.02 

W m-2 (1%) with each 1 mm d-1 (1%) decrease in ET (Fig. 4.7d). This trend would represent an 

increase of 0.84 W m-2 (2.8%) and 0.49 W m-2 (1.6%) based on our mean ET change estimates 

from GLEAM and MODIS, respectively. 

4.5 Discussion 

ET is a key connection between land cover and climate. This relationship is particularly 

important in the Amazon basin, where large amounts of water and energy are exchanged with the 

atmosphere. In accordance with our hypothesis, using remote sensing-derived datasets, we 

estimated a decrease in ET due to deforestation between 2000 and 2018. These estimates are in 

close agreement with a long record of estimates from modeling studies. Additionally, we found 

the effects of deforestation on ET to be larger and with higher seasonal variation in the southern 

than in the northern part of the basin. These effects usually peaked in the late dry season, but, 

contrary to our expectations, showed low interannual variation.  

The agreement in ET change is observed despite the large variation in the methodological 

differences used to estimate it among the collection of studies. Even though climate models and 

remote sensing-derived datasets share some structural principles about ET, there is also a wide 

variation in parameter estimates, input data, and other model assumptions. The consistency of the 

previous estimates through time, even under continuous model improvement, and the close fit of 

our estimate into those predictions, increases the confidence in the predicted changes in ET. The 

differences among estimates help to quantify uncertainty and to provide a wider view of potential 

paths for future changes in ET with continued deforestation.  

Our estimates revealed the stronger influence of deforestation on ET in the southern part 

of the basin. The differences between southern and northern Amazonia have also been observed 

in recent modeling studies with more realistic scenarios of deforestation (Alves et al. 2017; Zemp 
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et al. 2017). The higher differences observed in the southern part of the basin are the result of 

higher deforestation rates, at least in part. In simulations of total deforestation in the entire region, 

the ET decrease after deforestation is also higher in the southern than in the northern Amazon 

(Voldoire and Royer 2004). Those studies attribute the regional difference to the year-round high 

precipitation rates in the northern Amazon. Constant water availability reduces vegetation water 

stress, including in croplands and pastures, resulting in ET rates from these anthropogenic land 

cover types that are more similar to those of forests. An important region of large changes in ET 

in our study stretches along the western border of the basin. This region, close to the Andean 

mountains, showed large differences in ET between our non-deforested scenario and observations. 

The differences in this region could be partly due to the transition zone where it is located (i.e., 

lowlands to higher elevations), and the impact this has on the spatial autocorrelation technique 

used in this study. Given the differences between areas at higher elevation and lowland forests, the 

interpolation predictions might overestimate ET in these regions. On the other hand, there were 

also contrasting results in the effect of deforestation on ET from both datasets in some parts of this 

same region; GLEAM and MODIS predict lower and higher ET with deforestation, respectively. 

These discrepancies could be attributed to the potential lack of appropriate parameters in the ET 

algorithms for mountainous tropical vegetation, where ET has been less studied (Ochoa-Sánchez 

et al. 2019).  

Over the entire basin, the changes in ET due to deforestation increased during the dry 

season. We hypothesize that this seasonal effect of deforestation on ET is related to differences in 

water stress between forest and other vegetation during the dry season. Previous research has 

shown the ability of Amazon forests to maintain and even increase photosynthetic activity during 

the dry season (Guan et al. 2015; Saleska et al. 2003). Large roots allow trees to reach water stored 

in the deeper soil layers. Other vegetation types with shorter roots, such as grasses and crops, are 

not able to access deep soil layers and are therefore water-limited during the dry season (Nepstad 

et al. 1994). These ET differences in the dry season have been reported by some of the modeling 

studies analyzed here (Dirmeyer and Shukla 1994; Kleidon and Heimann 2000; Lean and 

Rowntree 1993; Zemp et al. 2017). However, current land surface models are not able to capture 

the increase in photosynthetic activity during the dry season (Restrepo-Coupe et al. 2017). This 

could represent an important strength of GLEAM and MODIS ET, which capture this seasonal 

pattern. We believe that (1) using remote sensing observations for data assimilation and model 
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benchmarking, and (2) exploring the mechanisms incorporated in the ET calculations in GLEAM, 

MODIS, and other modeling studies that accurately capture the dry-season response would allow 

us to identify the components leading to these improved ET simulations. Accurate simulation of 

dry season ET is highly relevant for prediction of wet season onset in the Amazon (Khanna et al. 

2017; Leite-Filho, Costa, and Fu 2020; Nobre, Sellers, and Shukla 1991; Wright et al. 2017). 

Effects of deforestation on annual ET remained essentially constant, even across years of 

extreme drought or floods. Deforestation also did not seem to alter interannual variation of ET in 

general. These results are in agreement with some modeling studies where deforestation 

experiments have shown independent effects from ENSO events (Polcher and Laval 1994). Other 

studies have suggested that deforestation effects are greatest during extremely dry years (Ramos 

da Silva et al. 2008; Voldoire and Royer 2004). In these studies, ET differences between the control 

and the deforestation scenario are the result of soil water stress. The effect of Amazonian droughts 

and the resilience of Amazon forests to prolonged droughts is still an active field of study (Koren 

et al. 2018). 

Our deforestation estimates are very conservative. While current estimates of deforestation 

are around 17% for the Amazon basin (Lovejoy and Nobre 2019), our deforestation estimates are 

under 10%. To place the deforestation estimates we used in our ET calculations in a larger context, 

we separately calculated deforestation extent from the Tree Cover data of Hansen et al. (2013) 

from 2000-2018 in our area of study. In these calculations, the deforestation percentage by 2018 

was about 12.8%, which is 2.8% higher than our estimates from ESA Land Cover. The 

deforestation difference between the Tree Cover dataset and ours arises in part from our masking 

out areas close to the river in an attempt to remove pixels with substantial coverage of open water 

from the analyses. Our estimates from both ESA and Tree Cover data are still lower than other 

reported deforestation estimates. We believe this mismatch in estimates is likely due to differences 

among studies in the definitions of the Amazon’s boundaries.  

Our GLEAM and MODIS ET estimates are within the range of previous site-level 

measurements and basin-wide modeled ET estimates: from 2.1 to 4.49 mm d-1 (Costa et al. 2010; 

Maeda et al. 2017; Paca et al. 2019; Xu et al. 2019). However, there are strong spatial and temporal 

differences between the two datasets. The difference in the algorithms and remote sensing input 

data in the two datasets has previously led to spatial and temporal differences in ET estimates 

(Miralles et al. 2016). In our case, mean ET estimates are generally lower in MODIS than in 
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GLEAM in the central and northwestern part of the Amazon basin. Previous studies have indicated 

the tendency of the MODIS ET product to underestimate ET in tropical forests (Miralles et al. 

2016), which could partially explain our results. However, we also observed low MODIS ET 

specifically during the wetter months both in the northern and southern Amazon. Another 

shortcoming of MODIS is its reliance on satellite imagery that is highly susceptible to cloudiness, 

which is a known issue in the tropics and could explain differences in seasonal trends. Overall, we 

found GLEAM to show expected amounts of ET and its spatial and seasonal variation in the 

Amazon basin were closer to those estimated in previous studies. 

The remote-sensing derived ET data in this study support previous predictions from 

modeling about the trajectory of basin-wide ET change under continuing deforestation. Evaluating 

the magnitude of the effect of change in ET on climate and the region’s ecosystems will require 

further work. Therefore, we hope that this more precise estimate of changes in ET with 

deforestation can help future studies looking at changes in climate and the water budget of the 

Amazon. We also acknowledge that although there is broad agreement across models about how 

deforestation influences ET, there is a strong possibility of encountering a tipping point in the 

relationship as deforestation proceeds (Lovejoy and Nobre 2019; Zemp et al. 2017). While 

predicting a tipping point is a complex task, we believe that the fast development of dynamic 

vegetation models coupled to Earth System Models has the potential to provide valuable insight 

into this problem. 
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Fig. 4.1. Average deforestation (%) in the Amazon basin from ESA-CCI 2000-2018. The black 
line shows the boundaries of the area of study (i.e., tropical forests of the Amazon basin). We 
excluded from our analyses pixels that were not tropical forest (e.g., savannas and shrublands) 
and those with water cover >5%. The horizontal dotted line delimits the northern and southern 

regions of the basin used in our analyses 
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Fig. 4.2. Mean observed ET (mm d-1) from GLEAM (a) and MODIS (b), and mean ET in the no-
LCC scenario from GLEAM (c) and MODIS (d) for the period 2000-2018 in the Amazon basin. 
Mean change in ET (mm d-1) as the difference between observed and no-LCC mean ET (∆ET) 

from GLEAM (e) and MODIS (f). 
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Fig. 4.3. Seasonal variation in observed and no-LCC ET from GLEAM (a,f) and MODIS (c,h). 
Seasonal variation in the difference between observed and no-LCC ET (∆ET) from GLEAM 
(b,g) and MODIS (d,i). Precipitation seasonality (e,j). All data are shown separately for the 

northern (a-e) and southern (f-j) regions of the Amazon. Shaded area and error bars show the 
standard deviation. 
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Fig. 4.4. Difference between observed and no-LCC mean annual ET (∆ET) from GLEAM (a,c) 
and MODIS (b,d) ET in the early dry (a-b) and late dry (c-d) season. Data correspond to June 

(early dry season) and September 2011 (late dry season). 
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Fig. 4.5. Interannual variation in observed and no-LCC ET from GLEAM (a,f) and MODIS (c,h) 
for the period 2000-2018. Interannual variation in the difference between observed and no-LCC 

ET (∆ET) from GLEAM (b,g) and MODIS (d,i). Precipitation seasonality (e,j). All data are 
shown separately for the northern (a-e) and southern (f-j) regions of the Amazon. Shaded area 

and error bars show the standard deviation. 
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Fig. 4.6. Estimates of absolute (a) and relative (b) change in ET as a function of deforestation in 
the Amazon basin. The circular shapes correspond to estimates from modeling studies published 
between 1984 and 2017; older to newer publications are represented by lighter to darker shades. 

The ET change estimates from our study are represented by the golden square (GLEAM) and 
diamond (MODIS). The red line shows the linear regression between deforestation and change in 

ET. The regression intercept is set to zero. The shaded area around the line corresponds to the 
standard error of predicted means. The regression equation, adjusted R-squared (Adj. R2), and 

sample size for each regression is displayed in each figure. 
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Fig. 4.7. Relationship between changes in ET and, (a-b) precipitation, (c) temperature and (d) 
sensible heat flux from modeling studies. Older to newer publications are represented by lighter 

to darker shades. The size of the circle indicates the deforestation scenario (% deforestation) 
used in each simulation. The estimated change in GLEAM and MODIS ET from this study are 

represented by the long dashed and dotted lines, respectively. The red line shows the linear 
regression between change in ET and change in each of the corresponding climate factors. The 
regression intercept is set to zero. The shaded area around the line corresponds to the standard 

error. The regression equation, adjusted R-squared (Adj. R2), and sample size for each regression 
is displayed in each figure. 
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 CONCLUSIONS 

The first year within my PhD I realized how, despite much advance in our knowledge about 

tropical ecosystems, we still had so much to learn about them. I realized, from my own experience 

with models and from literature, that most of our state-of-the-art land surface models misrepresent 

broad patterns of vegetation seasonality in these regions. This discrepancy is particularly 

significant as tropical ecosystems constitute the largest part of global terrestrial photosynthesis. 

The goal of my research was to grow our knowledge about tropical ecosystems’ photosynthetic 

activity seasonality, its relationship with climate and with land cover change. 

In the first study, I characterize the relationship of photosynthetic activity with the two 

main climate drivers in the tropics at the seasonal scale; precipitation and radiation. I found that 

most regions in the tropics have a positive correlation with both climate drivers, or a positive 

correlation with one of the drivers and negative with the other one. Each of these types of 

relationships are characterized by specific climate properties. For instance, light-driven 

photosynthetic activity (i.e., positive correlation with radiation and negative with precipitation) is 

found in regions with high mean annual precipitation and a short dry season. The correlation 

between precipitation and radiation itself also contributes to explain these relationships. Regions 

where precipitation and radiation are uncorrelated or positively correlated tend to have positive 

correlation with both climate drivers. Regions where the two drivers are negatively correlated tend 

to have a positive correlation with one driver and negative with the other one. Based on our 

classification, ecosystem models tend to overestimate positive correlations with precipitation and 

underestimate positive correlations with radiation. 

 In the second chapter, I show the distinct seasonal effects of land cover change on 

photosynthetic activity and transpiration in two ecosystems of the southern Amazon. I demonstrate 

decreases in photosynthetic activity and transpiration of forested regions with land cover change. 

However, this decrease occurs specifically during the dry season. During the wet season, forested 

regions with high land cover change increase photosynthetic activity. In shrubland regions, land 

cover change increases photosynthetic activity during the wet season. No other significant effects 

are found during the wet season or in transpiration in shrubland areas. In general, the annual and 

seasonal range of variation in photosynthetic activity and transpiration increases under high land 

cover change. 
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In the last study, I estimated the amount of evapotranspiration that is inhibited by 

deforestation in the tropical forests of the Amazon basin. I compared this result with estimates 

from previous modeling studies. According to my estimates, ET decreased on average between 

1.58 and 2.81% in the entire the Amazon basin in the period of 2000-2018. Overall, I found close 

agreement between this estimated change in ET with those from modeling studies. I also found 

that these changes are mostly focused in the southern Amazon, where most of the deforestation 

occurs, and during the dry season. I did not find evident interannual variation in the effects of 

deforestation, not during extremely wet or dry years. Findings from this study are particularly 

concerning given (1) our agreement in the decrease in ET with models' simulations, and (2) models' 

prediction of decrease in precipitation and temperature associated with decrease in ET. 

The studies presented in this dissertation cover a wide range of tropical regions, with 

relatively long-term datasets of photosynthetic activity and evapotranspiration. These projects 

provide new insights, demonstrations and techniques to study tropical forests. Remote sensing of 

the Earth and our ecosystems will keep growing and improving. Studies like this should be 

increasingly used to evaluate and monitor changes in vegetation activity in the tropics. This 

information can be used not only to improve our understanding of tropical ecosystems, but also in 

policy making and model benchmarking. I hope I can use what I learned throughout these years to 

keep making use of technology and data analysis techniques to learn new things about tropical 

ecosystems. 
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APPENDIX A. CHAPTER 2 SUPPLEMENTARY INFORMATION  

Table A. 1. Spatial resolutions of the datasets analyzed. 
DATASET ORIGINAL SPATIAL RESOLUTION 

(DEGREES) 

MAIAC EVI 0.05 x 0.05 

SIF 0.5 x 0.5 

CLM 4.5 1.25 x 0.94 

JULES 1.875 x 1.25 

LPJ-GUESS 1 x 1 

FLUXCOM 0.5 x 0.5 

VPM 0.5 x 0.5 

GOSIF 0.05 x 0.05 

 

Fig. A. 1. Scatterplot (upper panel) and map (lower panel) for GOSIF data, showing the 
maximum correlation coefficient from the CCF analysis for vegetation productivity from GOSIF 

with precipitation (x axis) and radiation (y axis). The numbers in the scatterplot indicate the 
percentage of pixels corresponding to the type of relationship where the number is located. 



 

106 

 

 

Fig. A. 2. Types of relationships by biome (based on SIF results). The pie charts show the 
proportion of pixels with each type of relationship in each biome. Colors and numbers of the 
types of relationships (legend) correspond to the colors and numbers in the reference panel in 

Fig. A1. 
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Fig. A. 3. Spatial distribution of the most strongly and significant correlated length of lag 
between SIF and precipitation and radiation, shown for the three most common types of 

relationships (cosynchronous, rain-following and light-following). Only lags are shown; that is, 
lags in which peaks in SIF follow peaks or troughs in the climate variable by 0-4 months. 

Precipitation and radiation lags are plotted separately for each type of relationship 
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Relationship 

type 
Plot Lon Lat Biome Location Precipitation Radiation 

r Lag r Lag 
Cosynchronous a 25.5 -2.5 Rainforest Africa 0.59 0 0.55 0 

b -54.5 -
16.5 

Savanna S. America 0.58 1 0.48 2 

c 104.5 15.5 Dry Forest Asia 0.72 1 0.58 4 
Rain-following d 21.5 7.5 Savanna Africa 0.78 0 -0.66 0 

e -45.5 -4.5 Xeric 
shrubland 

S. America 0.47 1 -0.53 1 

f 95.5 17.5 Rainforest Asia 0.66 1 -0.22 2 
Light-following g 121.5 -1.5 Rainforest Asia -0.29 1 0.54 0 

h -52.5 4.5 Rainforest S. America -0.57 1 0.57 1 
i -70.5 -8.5 Rainforest S. America -0.56 4 0.49 2 

Fig. A. 4. Seasonality profiles of Precipitation, Radiation and SIF for the three main types of 
relationships. All data are scaled to fit and be comparable in the same plot. Relevant information 

of each site is provided in the accompanying table. 
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Table A. 2. Biome specific Kappa coefficients (κ) and overall difference (D, %) between SIF and 
each of the other photosynthetic activity datasets (Fig. 2). Larger numbers indicate closer 
agreement between the results of two datasets. Larger D values indicate larger differences 

between the results of two datasets. 

 MAIAC EVI CLM4.5 JULES LPJ-GUESS FLUXCOM VPM 
Rainforest κ = 0.45 

D = 41.72  
0.19 

62.78 
0.24 

58.56 
0.30 

52.62 
0.28 

53.78 
0.34 

45.36 
Dry forest 0.53 

41.72 
0.26 

45.68 
0.23 

46.63 
0.33 

39.76 
0.48 

22.89 
0.50 

24.26 
Grasslands and 
savannas 

0.45 
31.64 

0.35 
40.29 

0.33 
41.75 

0.40 
34.91 

0.46 
32.85 

0.46 
30.7 

Flooded 
grasslands and 
savannas 

0.44 
28.57 

0.38 
34.15 

0.52 
26.19 

0.43 
30.61 

0.46 
28.57 

0.44 
30.61 

Montane 
grasslands and 
shrublands 

0.53 
18.0 

0.57 
23.08 

0.53 
22.45 

0.48 
22.64 

0.41 
25.0 

0.46 
20.75 

Deserts and 
xeric shrublands 

0.31 
33.75 

0.33 
34.38 

0.30 
41.48 

0.12 
35.63 

0.29 
39.24 

0.27 
31.48 

Mangroves 0.31 
40.0 

-0.17 
72.73 

-0.08 
70.0 

0.00 
69.57 

0.28 
52.17 

0.15 
60.87 
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APPENDIX B. CHAPTER 3 SUPPLEMENTARY INFORMATION  

 
 

 

 
 

 

 

 

 

 

 

 

a 

<5% Land Cover Change 
(~ 154 km2 ) 

20% Land Cover Change 
(~ 616 km2 ) 

40% Land Cover Change 
(~ 1232 km2 ) 

b 

c 

60 

0 

30 

LCC (%) 

Fig. B. 1 Representation of LCC definitions in this study. The upper panel (a) is the map of 
land cover change at the original 300m x 300m resolution. Each black dot is a pixel with land 

cover change from 1992 to 2015. White pixels had the same land cover type in 1992 and 
2015. The middle panel (b) is the representation of land cover change calculations from 300m 

to 0.5º resolution. Each large square represents a 0.5º x 0.5º pixel (SIF and transpiration 
resolution) with a total area of 3000 km2. The smaller black and white pixels contained in the 
large pixel represent the 300m x 300m pixels (LCC resolution). Each black dot is a pixel with 
land cover change from 1992 to 2015. White pixels had the same land cover type in 1992 and 

2015. Land cover change (%) at 0.5º x 0.5º resolution is calculated based on the number of 
300m-resolution pixels that changed land cover type between 1992 and 2015 (black pixels). 

Examples of the <5%, 20% and 40% LCC thresholds selected for this study are shown in (b). 
The bottom panel (c) is the final map of land cover change at 0.5º x 0.5º resolution. 
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Fig. B. 2. High and low land cover change pixels selected for SIF and transpiration comparison. 

The percentage LCC calculation is explained in Fig. S1. 

 

 

Fig. B. 3. (a) Monthly SIF 2007-2017 for one of the selected pixels. The shaded areas correspond 
to the dry season. (b) Close-up of the dry season in 2016 to graphically show some of the terms 
used to calculate the annual and seasonal metrics. Each of the terms shown above are calculated 

for each year and each season, and then averaged across years and seasons. 
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Fig. B. 4. Example of estimate of the effect of LCC in annual mean minimum SIF in forests 
(ß1f). Each boxplot shows the minimum, first quartile, median, third quartile, and maximum data 

points. The black dots in the vertical line of each boxplot represent each data point or pixel of 
each category. Pairs of data points or pixels are connected by the gray lines. The ß1f  estimate 
shown in the red line is the average of all the slopes of the lines between each pair of points. In 
the linear mixed model used to calculate the ß1f estimate, the effects of elevation and spatial 
autocorrelation are accounted for. The asterisk (*) indicates a statistically significant effect of 

LCC (p < 0.05) 

 

Table B. 1. Number of pixels selected for SIF and transpiration (TR) analysis by threshold and 
ecosystem type. Number of pairs in parentheses. 

LCC 
Threshold Total Forests Shrublands 

 SIF TR SIF TR SIF TR 

10 348 (174) 376 (188) 240 (120) 262 (131) 108 (54) 108 (54) 

20 134 (67) 146 (73) 110 (55) 122 (61) 24 (12) 24 (12) 

30 58 (29) 68 (34) 56 (28) 66 (33) 2 (1) 2 (1) 

40 26 (13) 32 (16) 26 (13) 32 (16) 0 0 
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Table B. 2. Linear mixed model estimates and p-values for comparisons of precipitation 
seasonality between low and high land cover change pixels. 

ECOSYSTEM SEASON METRIC ESTIMATE P-VALUE 

ALL LC 
 

Annual Total P -0.002 0.271 
Wet Length 1.318 0.357 
Dry Length -1.288 0.372 
Wet Total P -6.724 0.702 
Dry Total P -12.395 0.126 

FORESTS 

Annual Total P -0.002 0.357 
Wet Length 2.023 0.230 
Dry Length -1.978 0.247 
Wet Total P -5.390 0.790 
Dry TotalP -9.945 0.290 

SHRUBLANDS 

Annual Total P -0.001 0.796 
Wet Length -3.625 0.180 
Dry Length 3.383 0.173 
Wet Total P -17.485 0.702 
Dry Total P 2.615 0.768 

 

Dry and wet season in the area of study 

The median durations of the wet and dry seasons in the region range from 110 to 222 and 

from 149 to 245 days, respectively, as estimated in RADS. In general terms, the length of the dry 

season increases from west to east. The median total precipitation of the wet season ranged from 

476 to 2507 mm across the study region, while the median for the dry season was between 29 and 

1189 mm. The wet season most commonly started in the second half of the year, between 

September and January. The date of end of the wet season or start of the dry season varied more 

widely, ranging from March through June. The wet-to-dry transition occurred earlier in the year 

in the south and later in the north. Within pixels, these dates varied by between 3-90 days for the 

start of the wet season, and between 3-75 days for the start of the dry season, from 2007-2015. 
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APPENDIX C. CHAPTER 4 SUPPLEMENTARY INFORMATION  

 Table C. 1. Cross-validation results for Universal Kriging. 
 Mean MSE Mean RMSE  

GLEAM  -0.000799 0.119569 

MODIS  -0.000375 0.107965 

 

Fig. C. 1. Time series of the monthly observed and no-LCC ET from GLEAM (a,f) and MODIS 
(c,h) for the period 2000-2018. Time series of the difference between observed and no-LCC ET 

from GLEAM (b,g) and (d,i) MODIS. Time series of precipitation (e,j). All data are shown 
separately for the northern (a-e) and southern (f-j) regions of the Amazon 
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Table C. 2 List of modeling studies of the effects of deforestation on ET included in our analyses. 

Study ID 
Year of 
Publica-

tion 
Region Time Model type Model Name 

(Alves et al. 2017) 1 2017 Southern and 
Northeastern 
Amazon 

51 years integration 
(1960 to 2010) + 
present day simulation + 
perturbed simulations 

RCM PRECIS-
HadRM3P 

(Bagley et al. 2013) 2 2013 Amazon rain 
forest 

2003-2010 (April-June 
and July-September) 

Meso+LSM WRF+NoahLSM 

(Correia, Alvalá, and 
Manzi 2008) 

3 2008 Amazon basin 1999-2001 (1 month of 
spinup) 

RCM+LSM ETA+SSiB 

(Costa et al. 2007) 4 2007 Amazon basin 20 years (10 years of 
spinup) 

GCM+LSM CCM3+IBIS 

(Costa and Foley 1997) 5 1997 Amazon basin 10 years (5 years of 
spinup) 

LSM LSX 

(Costa and Pires 2010) 6 2010 Amazon basin 20 years (10 years of 
spinup) 

GCM+LSM CCM3+ IBIS 

(Dickinson and 
Henderson-Sellers 1988) 

7 1988 Amazon basin 13 months GCM+LSM CCM+ BATS 

(Dickinson and Kennedy 
1992) 

8 1992 Amazon basin 7 years for control + 3 
years for deforestation 
scenario 

GCM+LSM CCM1+ BATS1e 

(Dirmeyer et al. 1992, in 
Zeng, Dickinson, and 
Zeng 1996) 

9 1992 Amazon basin NA NA NA 

(Dirmeyer and Shukla 
1994) 

10 1994 Amazon basin 4 years (3 months of 
spinup) 

AGCM COLA 

(Dos Santos et al. 2018) 11 2018 Iriri basin 17 years (1998-2015) Hydrological SWAT 
(Eltahir and Bras 1994) 12 1994 Amazon basin 

sub-region (256 x 
104 km2) 

Two months (January 
and July) 

Meso+LSM MM4+ BATS 

(Gedney and Valdes 
2000) 

13 2000 Amazon basin 11-12 years for control 
and deforestation 
scenarios (1 year of 
spinup) 

GCM European 
Centre's 
Integrated 
Forecast System 
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(Guimberteau et al. 
2017) 

14 2017 Amazon basin 1970-2100 (1970-2008 
represents current 
climate conditions and 
2009-2100 represents 
future climate 
projections) 

GCM+LSM LSMs: 
ORCHIDEE, 
INLAND-DGVM, 
LPJmL-DGVM 
 
GCMs: CCSM3, 
UKMO-
HadCM3, PCM  

(Henderson-Sellers and 
Gornitz 1984) 

15 1984 Amazon basin 20 years for control and 
10 years for 
deforestation 
simulations (5 last years 
used for analysis) 

GCM GISS 

(Henderson-Sellers et al. 
1993) 

16 1993 Amazon basin 6 years GCM+Ocean CCM1-Oz+ 
BATS 

(Kleidon and Heimann 
2000) 

17 2000 Amazon basin 20 years (5 years of 
spinup) 

GCM ECHAM 4  

(Lean and Warrilow 
1989) 

18 1989 Amazon basin 3 years GCM UKMO 

(Lean and Rowntree 
1993) 

19 1993 Amazon basin 3 years GCM UKMO 

(Lean and Rowntree 
1997) 

20 1997 Amazon basin 10 years GCM UKMO 

(Lean et al. 1996, in 
Zeng et al. 1996)  

21 1996 Amazon basin 11 years GCM UKMO 

(Lejeune et al. 2015) 22 2015 Amazon basin 1979-2010 (8 years of 
spinup) 

RCM+ LSM COSMO+ 
CLM3.5 

(McGuffie et al. 1995) 23 1995 Amazon basin 6 years GCM+ Ocean CCM1-Oz+ 
BATS 

(Medvigy, Walko, and 
Avissar 2010) 

24 2010 Amazon basin 1998-2005 Variable-resolution 
GCM 

OLAM 

(Moraes, Franchito, and 
Rao 2012) 

25 2012 Amazon basin 
(results reported 
for 5ºN and 5ºS) 

1 year (6 months of 
spinup) 

Coupled 
biosphere–
atmosphere 
statistical–
dynamical model  

SDM 

(Panday et al. 2015) 26 2015 Xingu basin 2001-2010 Water budget 
approach + LSM 

IBIS 
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(Polcher and Laval 
1994b) 

27 1994 Amazon basin 1.1 years GCM+ LSM LMD+ SECHIBA 

(Polcher and Laval 
1994a) 

28 1994 Amazon basin 11 years GCM+ LSM LMD+ SECHIBA 

(Ramos da Silva, Werth, 
and Avissar 2008) 

29 2008 Amazon basin 60-day period (January-
February) 

RCM RAMS 

(Shukla, Nobre, and 
Sellers 1990) 

30 1990 Amazon basin 1 year GCM NMC + SiB 

(Silva, Pereira, and da 
Rocha 2016) 

31 2016 Amazon basin 1999-2007 (2 years of 
spinup) 

RCM+ LSM RegCM3+ BATS 

(Sud et al. 1996) 32 1996 Amazon basin 1979-1982 (2 months of 
spinup) 

GCM+ LSM GLA+ SSiB 

(Swann et al. 2015) 33 2015 Amazon basin 2005-2007 RCM+ LSM BRAMS+ ED2 
(Voldoire and Royer 
2004) 

34 2004 Amazon basin 1970-1999 GCM+ LSM ARPEGE- 
Climat+ ISBA 

(Voldoire and Royer 
2005) 

35 2005 Amazon basin 25 years (5 years of 
spinup) 

GCM+ LSM ARPEGE- 
Climat+ ISBA 

(Walker, Sud, and Atlas 
1995) 

36 1995 Amazon basin 5-day period (February 
and March 1979)  

GCM+ LSM GLA+ SSiB 

(Zemp et al. 2017) 37 2017 Amazon basin 1989-1995 Empirical 
approach  

NA 

(Zeng et al. 1996) 38 1996 Amazon basin NA Intermediate-level 
model 

NA 

(Zhang, Henderson-
Sellers, and McGuffie 
1996)  

39 1996 Amazon basin 36 years (25 + 11 years 
for the control and 
deforestation 
experiment) 

GCM+ LSM CCM1+ BATS1e 

(Sampaio et al. 2007) 40 2007 Eastern Amazon 87 months (27 months 
of spinup) 

GCM+ LSM CPTEC-INPE+ 
SSiB 

AGCM: Atmospheric general circulation model; GCM: Global circulation model; LSM: Land surface model; Meso: Mesoscale model; 

RCM: Regional circulation model; + indicates coupled models 
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Fig. C. 2. Estimates of absolute (a) and relative (b) change in ET due to deforestation in the 
Amazon basin. ET change estimates are marked with numbers. Each number corresponds to the 

publication in which the estimate was reported. See the full record of publications with their 
corresponding numbers in table S2. The red line shows the linear regression between 

deforestation and change in ET. The regression intercept is set to zero. The shaded area around 
the line corresponds to the standard error of predicted means. 
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