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ABSTRACT 

Cadmium (Cd) is a highly mobile and toxic heavy metal that negatively affects plants, soil biota, 

animals and humans, even in very low concentrations. Currently, Cd contamination of cocoa 

produced in Latin American countries is a significant problem, as concentrations can exceed 

acceptable levels set by the European Union (0.5 mg/kg), sometimes by more than 10 times 

allowable levels. In South America, Theobroma cacao is an essential component of the basic 

market basket. This crop contributes to the Latin-American trade balance, as these countries export 

cacao and chocolate-based products to major consumer countries such as the United States and 

Europe. Some soil amendments can alter the bioavailability and uptake of Cd into edible plant 

tissues, though cacao plants can accumulate Cd without displaying any visible symptoms of 

phytotoxicity, which makes it difficult to determine if potential remediation strategies are 

successful. Currently, the only effective way to quantify Cd accumulation in plant tissues is via 

destructive post-harvest practices that are time-consuming and expensive.  New hyperspectral 

imaging (HSI) technologies developed for use in high-throughput plant phenotyping are powerful 

tools for monitoring environmental stress and predicting the nutritional status in plants. 

Consequently, the experiments described in this thesis were conducted to determine if HSI 

technologies could be adapted for monitoring plant stress caused by Cd, and estimating its 

concentration in vegetative plant tissues. Two leafy green crops were used in these experiments, 

basil (Ocimum basilicum L. var. Genovese) and kale (Brassica oleracea L. var. Lacinato), because 

they are fast growing, and therefore, could serve as indicator crops on cacao farms. In addition, we 

expected these two leafy green crops would differ in their morphological responses to Cd stress. 

Specifically, we predicted that stress responses would be visible in basil, but not kale, which is 

known to be a hyperaccumulator. The plants were subject to four levels of soil Cd (0, 5, 10 and 15 

ppm), and half of the pots were amended with biochar at a rate of 3% (v/v), as this amendment has 

previously been demonstrated to improve plant health and reduce Cd uptake. The experiments 

were conducted at Purdue’s new Controlled Environment Phenotyping Center (CEPF). The plants 

were imaged weekly and manual measurements of plant growth and development were collected 

at the same times, and concentrations of Cd as well as many other elements were determined after 

harvest. Fourteen vegetation indices generated using HSI images collected from the side and top 

view of plants were evaluated for their potential to identify subtle signs of plant stress due soil Cd 
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and the biochar amendment. In addition, three mathematical models were evaluated for their 

potential to estimate Cd concentrations in the plant biomass and determine if they exceed safe 

standards (0.28 mg/kg) set by the Food and Agriculture Organization (FAO) for leafy greens. 

Results of these studies confirm that like many plants, these leafy green crops can accumulate Cd 

levels that are well above safety thresholds for human health, but exhibit few visible symptoms of 

stress. The normalized difference vegetation index (NDVI) and the chlorophyll index at the red 

edge (CI_RE) were the best indices for detecting Cd stress in these crops, and the plant senescence 

and reflectance index (PSRI) and anthocyanin reflectance index (ARI) were the best at detecting 

subtle changes in plant physiology due to the biochar amendment. The heavy metal stress index 

(HMSSI), developed exclusively for detecting heavy metal stress, was only able to detect Cd stress 

in basil when images were taken from the top view. Results of the mathematical models indicated 

that principal components analysis (PCA) and partial least squares (PLS) models overfit despite 

efforts to transform the data, indicating that they are not capable of predicting Cd concentrations 

in these crops at these levels. However, the artificial neural networks (ANN) was able to predict 

whether leafy greens had levels of Cd that were above or below critical thresholds suggested by 

the FAO, indicating that HSI could be further developed to predict Cd concentrations in plant 

tissues. Further research conducted in the field and in the presence of other environmental stress 

factors are needed to confirm the utility of these tools, and determine whether they can be adapted 

to monitor Cd uptake in cacao plants. 
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 INTRODUCTION 

Theobroma cacao is a tropical evergreen tree that has been cultivated throughout history for 

its great-tasting and highly nutritional seeds. Its seeds are generally processed to produce cocoa 

powder, cocoa butter and chocolate. An average of 4.81 millions tons of cacao beans are produced 

worldwide each year  (ICCO, 2020). Cocoa is grown commercially in Central America, South 

America and the Caribbean, as well as in West Africa and tropical Asia. Africa is the largest 

producer, with 73.1% of world cocoa production, followed by Latin America with 16.9%, and 

Asia and Oceania with 9.9% (ICCO, 2018) The most notable cacao producing countries in Africa 

include the Ivory Coast, Ghana, Nigeria, Cameroon, and in Asia, Indonesia and Malaysia. In the 

Americas, the main cacao producing countries are Brazil, Ecuador and Venezuela, and to a lesser 

extent, Colombia, Costa Rica, Cuba, Mexico, Peru and the Dominican Republic. However, the 

type of cacao grown in different region of the world can vary. For example, most of the finer, 

aroma cacao production occurs in the America’s producing 70% of the world’s fine or flavor cocoa  

(Caligiani et al., 2016; FAO, 2013). According to ICCO (International Cocoa Organization) 

estimates that 95% of cacao from Colombia is exported as fine and flavor. It is found through the 

Andes toward the low-lands of Venezuela, Colombia, and Ecuador and northward to Central 

America and Mexico, and to a large number of Caribbean Islands. (Caligiani et al., 2016). 

Currently, Venezuela, Ecuador, Mexico and Colombia produce the finest aroma cocoa (creole 

variety) , representing approximately 5% of the total world cacao production (Caligiani et al., 

2016). However, creole is difficult to cultivate because it is highly susceptible to diseases. 

There are many opportunities to increase production and exportation of this fine aroma cacao 

to major importing countries like Europe (40%) and the United States (Benjamin et al., 2018). 

However, the cocoa sector is unstable, and prices can drop quickly due to concentration of the 

cocoa business in the hands of a few transnational corporations that dominate the trade in raw 

cacao materials and the confectionery industry (ICCO, 2009). In addition, in many Latin American 

countries, cacao can be contaminated by cadmium, a toxic heavy metal, which threatens existing 

production and could limit opportunities for further expansion (Zug et al., 2019). The broad goal 

of the research described in this thesis, was to identify new technologies that could be used to help 

address this issue, opening up opportunities for further development of the cacao industry in 

Colombia. 
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1.1 Cacao history and production 

Theobroma cacao is a member of the Malvaceae family, but it is also sometimes classified 

within the Sterculiaceae family (Aprotosoaie et al., 2016; Caligiani et al., 2016; de Souza et al., 

2018). The name comes from the Greek "Theos" which means god and "broma" which means 

food. The full name means “the food of Gods”. The Theobroma genus contains roughly 22 species 

of small understory trees that are native to the tropical forests of Central and South America 

(Whitlock and Baum, 1999) These trees are characterized by large, alternate unlobed leaves and 

small flowers that grow in the leaf axils or directly on the trunk. Flies and midges are the main 

pollinators, though mosquitoes can also feed on their pollen (Russel et al., 2008). Natural 

propagation is by seed, and cultivation is possible only in tropical areas. The seeds are roasted and 

pulverized to make cocoa after the fat has been removed, though if the goal is to make chocolate, 

then the fat is retained (Caligiani et al., 2016).  The fruit is harvested twice a year, in February-

March and April-July. However the summer harvest usually produces fruit of better quality 

(Caligiani et al., 2016) While cacao has been consumed in Latin America for over 1,000 years, 

chocolate became cherished worldwide around 1850 when food entrepreneurs discovered that by 

using more cacao butter, it was possible to create a solid form of this delicious bean (World Cocoa 

Foundation, 2015). 

There is a lot of genetic variation among Theobroma cacao varieties and individual clonal 

lines, each producing cacao seed with different flavors, aromatics and bitterness (Aprotosoaie et 

al., 2016) The three major types of cocoa are Forastero, Criollo and Trinitario (Benjamin et al., 

2018). Forastero is the most common source of 'bulk' cocoa in the global market (~80% of the 

world’s total cacao market) (Benjamin et al., 2018). Criollo produces the highest quality beans and 

best chocolate, because its seeds are less bitter and more aromatic than the others  (Benjamin et 

al., 2018)). The beans produced from Criollo yield fine cocoa with greater smoothness and a high 

lipid content, and white chocolate is made from seeds produced by these trees. Criollo represents 

less than 5% of the total amount of cocoa produced, because it has lower yields and and is 

susceptible to fungal pathogens and other pests (Benjamin et al., 2018). Trinitario is hybrid of 

Criollo and Forastero, and it yields some of the best traits from both of these types (Benjamin et 

al., 2018). Trinitario was developed by The International Cocoa Organization (ICCO). Forastero 

is commonly found in Africa, while Criollo and Trinitario is common in Latin America, the 

Caribbean, and some countries in the Atlantic, Indian, and Pacific oceans (Benjamin et al., 2018). 
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Altitude and temperature are critical considerations for cacao production. Cocoa can only be 

cultivated in a narrow strip of land running from sea level up to 1,300 meters above sea level that 

has an average temperature of between 22 and 30 °C and a minimum temperature of 18°C (ICCO, 

2013). Cacao trees also require a lot of water and are commonly grown in areas where average 

rainfall is 2,500 millimeters per year that is evenly distributed throughout the year, and a relative 

humidity 80% (ICCO, 2013). The trees cannot be exposed to high winds, and windbreaks are 

highly recommended to prevent damage in areas where this could be an issue (Ruf and zadi, n.d.). 

Cacao trees thrive in the shade of other more robust trees, and shade greater than 70% is critical 

during establishment (Ngala, 2015). After the third year, shade requirements can be reduced to 

30%. Both excessive shade and shade deficits are detrimental to cacao production, because they 

can favor the incidence and severity of diseases and pests (Moreno and Sánchez, 1990). Soil health 

is another critical factor in cacao production. The pH of the soil must be between 5.0 and 7.0 in 

the surface layer to a depth of one meter, and the soil must have sufficient organic matter to retain 

nutrients and decrease compaction (Ngala, 2015). There has been a significant amount of research 

conducted to optimize fertilization, irrigation, draining and planting in cacao production, though 

in many countries, farmers lack technological training associated with best management practices, 

which limits productivity (Bot et al., 2005). 

1.2 Cacao production in Colombia  

In South America, cacao is an essential component of many local economies. The crop 

contributes to the Latin-American trade balance, as these countries export cacao and chocolate-

based products to major consumer countries such as the United States and Europe (Benjamin et 

al., 2018; ICCO, 2009). In Colombia, cacao has long been an important crop, though with the 

signing of the recent peace treaty in 2016 that ended a civil war that lasted over 60 years, there are 

many opportunities to scale up production of this valuable crop. In particular, there is a lot of 

interest in replacing the cultivation of illicit crops, which flourished during the civil war period, 

with cacao. In 2015, the U.S. Department of Agriculture (USDA) and the U.S. Agency for 

International Development (USAID) initiated a project called Cacao for Peace 

(https://www.fas.usda.gov/data/colombia-cacao-peace-overview) to aid in this effort. The. 

Cacao for Peace Project aims to "strengthen key Colombian agricultural institutions for cocoa, in 

the public and private sectors, with cooperative research, technical assistance, outreach, and 

https://www.fas.usda.gov/data/colombia-cacao-peace-overview
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education. The Cacao for Peace vision is to “improve rural well-being through development that 

is inclusive and sustainable with a positive impact on cacao farmers' incomes, economic 

opportunities, stability and peace." (Colombia Purdue partnership) 

 Efforts like the Cacao for Peace project have appeared to be successful, as acreage devoted 

to this high value crop have increased over the past ten years. For example, according to the 

Colombian National Administrative Department of Statistics, DANE ( https://www.dane.gov.co ) 

Production went from 106 thousand hectares planted to 162 thousand hectares in 2015. During 

2015, cacao cultivation increased by another 32.6% and in 2017 Colombia produced a total of 

60,000 tons of cacao beans (Benjamin et al., 2018). In 2015, exports of cocoa and confectionery 

products reached US$333.2 million, which represents 10 % of the total exports of the Colombian 

agribusiness sector (DANE, 2015). According to the Colombian Ministry of Agriculture, “we are 

currently in the right moment for the cocoa sector, as planting this crop has become an important 

post-conflict strategy and there are many opportunities to support the growth of this valuable crop”. 

Cacao is currently grown in 30 departments of the country. It is an essential axis of the economy 

in more than 760 municipalities with about 38 thousand producers producing 60500 tons 

(FEDECACAO, 2018). According to Fedecacao 

(https://www.fedecacao.com.co/portal/index.php/es/), an organization established in 1960 to 

provide support for small and medium sized cacao farmers in Colombia, the main cocoa-producing 

department in Colombia is in Santander, which produces 23.3% of the country’s cacao crop 

(Figure 1.1). The second largest producing department is Arauca with 11.7% of the country’s crop 

in municipalities such as Arauquita, Saravena, Fortul and Tame. The third most significant 

producing department is Antioquia with 10% of the crop in the Urabá area. Other departments 

with smaller but growing cocoa production sectors include Norte de Santander, Nariño, Tolima, 

Meta, Huila, Boyacá and Cesar.  

Since the signing of the peace treaty and efforts to facilitate post-conflict development 

programs, farmers have returned to their plantations and have embraced the technology taught by 

the National Cocoa Federation in terms of disease management, which has been a major problem 

in Colombia. However, awareness of potential problems associated with cadmium (Cd) 

contamination in many Latin American countries have now become apparent. The German 

Confederation of Confectioners was one of the first groups to identify the problem. They contacted 

the embassy of Colombia to report the existence of cadmium in imports from Latin America. New 

https://www.dane.gov.co/
https://www.fedecacao.com.co/portal/index.php/es/
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standards for the maximum accepted level for cadmium (Cd) in beans in cacao beans that was 

recently established in Europe and is being adopted in many other countries worldwide, is 0.5 mg 

kg-1 (Arévalo-Gardini et al., 2017; Cacao for peace, personal communication). However, according 

to Casa Luker (www.casaluker.com), a major chocolate company in Colombia, Cd levels in 

Colombian cacao beans can reach as high as 30 ppm mg kg-1 (Casa Luker, personal 

communication). 

 

http://www.casaluker.com/
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Figure 1.1 Cacao production map in Colombia (adapted from Benjamin et al., 2018) 
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1.3 Cadmium in soils 

Cadmium is a heavy metal that is commonly found in the earth’s crust in low concentrations. 

It is ranked seventh in the top-ten priority list of hazardous substances by the US Department of 

Health and Human Services’ Agency for Toxic Substances and Disease Registry (He et al. 2015). 

This is due to the fact that Cd exposure can lead to renal tubular dysfunction, bone damage, and 

lung diseases, posing health risks for both humans and animals even when present in very low 

concentrations (Ismael et al., 2019). The presence of high levels of Cd in soil can also negatively 

affect critical soil processes like nutrient cycling (He et al., 2015), as well as critical plant processes 

such as photosynthesis (He et al., 2015). Nevertheless, this heavy metal can accumulate in edible 

plant tissues like cacao beans, even though plants show no visible symptoms of toxicity (Sánchez-

Pardo et al., 2013), making it difficult to know when this element is a problem. 

Cadmium can be found in some soils due to natural geogenic processes, but high levels are 

generally associated with anthropogenic activities such as mining and contaminated fertilizers (He 

et al., 2017) Once this element is introduced into soils, it is nearly impossible to remove, therefore 

if possible, identifying sources and preventing the introduction of this heavy metal into cacao farms 

is a critical step in mitigating the challenge associated with its accumulation in cacao beans. 

However, once soils become contaminated, like many of the more traditional cacao growing 

regions in Colombia, understanding factors that affect the bioavailability of Cd in soil is important 

for mitigation. Not all forms of Cd that are present in soil are in soluble form and therefore are 

bioavailable for plant uptake. For example, Cd can be present in soil in water-soluble fractions, in 

interchangeable fractions on soil particles that are bound by carbonates, Fe-Mn oxides, organic 

matter and sulfur, or in tightly bound residual materials (He et al., 2015). Water-soluble and 

exchangeable fractions (the Cd pool on cation exchange sites in soil) are generally the most 

bioavailable, while the remaining fractions are considered the most inactive and least available to 

biota (He et al., 2015). Cadmium from anthropogenic processes is usually more mobile than 

geogenic processes (He et al., 2015).  

Many biochemical processes can affect the mobility of Cd in soils, including sorption 

(specific, nonspecific and ligand mediated) on inorganic and organic colloidal materials, 

precipitation and complexation with organic and inorganic ligands in the soil solution, and 

reactions such as chelation-dissociation, mineralization, assimilation and protonization-

deprotonation (He et al., 2015; Loganathan et al., 2012)). Unlike some other heavy metals, 
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approximately 70% of Cd present in soil is bound via adsorption, which can result in this element 

becoming desorbed and migrating to deeper layers of the soil (He et al., 2015). At high 

concentrations, the dominant mechanism tends to be precipitation with anions such as sulfide (S2−), 

Hydroxide (OH−), carbonate (CO3
2−) and phosphate (PO4

3− ) due to industry (Longathan et al., 

2012; He et al., 2015).  When Cd is bound due to a nonspecific sorption, it is usually retained on 

negatively charged sites on the surfaces of soil colloids by electrostatic attraction, which can 

undergo ion exchange with other cations in the soil solution (Loganathan et al., 2012). In contrast, 

specifically sorbed Cd is retained on soil particles due to chemical bonds with neutral and 

negatively charged sites, and therefore, this fraction is not easily exchanged for other cations. This 

type of sorption can decrease the net negative surface charge of soil particles, and increase the 

ground zero net charge point (He et al. 2015). When Cd is in soil solution, factors such as the type 

and amount of clay and organic matter present, soil pH, presence of other cations and anions, and 

the percentage of sorption sites occupied by Cd can all influence its bioavailability to plants (He 

et al., 2015; Araujo et al., 2016). For example, Cd2+ on cation exchange sites (negatively charged 

exchange sites in soil) such as those on the edges and interlayers of 1:1 and 2:1 layer silicate 

minerals, respectively (Loganathan et al., 2012) as well as negatively charged carboxylic and 

phenolic groups in soil organic matter (He et al 2015).  

 Given this information, soil scientists are working on ways to stabilize and promote long-

term Cd sequestration in soils, to prevent uptake into edible plant tissues like cacao beans. For 

example, amending soil with certain types of biochar has been shown to reduce the uptake of Cd 

in soil (Gomez and Hoagland, unpublished; Hayyat et al., 2016; Lehmann and Joseph, n.d.) 

1.4 Using leafy greens as indicator crops 

Plant species differ dramatically in their ability to tolerate the presence of Cd and accumulate 

this toxic element in different plant compartments for reasons that are still not well understood. 

Plant tissue concentrations of 3-30 mg kg-1 are generally considered toxic for most plant species 

(Chen et al., 2011; He et al 2015), though some so-called ‘hyperaccumulator’ species, can contain 

more than 100 mg Cd kg-1 in plant tissues without displaying any visible signs of toxicity (He et 

al 2015). Cacao crops appear to be able to tolerate high levels of soil Cd without displaying visible 

symptoms of toxicity (Chavez et al., 2015). Moreover, this is a perennial crop and thus cacao trees 

are capable of reallocating elements internally over long time periods, making it difficult to 
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determine if efforts to stabilize Cd in soil are working. Instead, annual leafy greens crops could be 

used as an indicator crop because they also take up large volumes of Cd and have a relatively high 

potential for Cd translocation to above ground tissues (Baldantoni et al., 2015). Moreover, they 

tend to grow quickly and some species like spinach can display severe symptoms of Cd stress 

(Gomez and Hoagland, unpublished). Finally, these crops are also an important component of the 

human diet, and can put human health at risk when grown on contaminated soils (Huang et al., 

2017). Therefore, soil remediation strategies are also needed for these crops. 

 Basil is grown worldwide for direct consumption, as well as a medicinal herb used in some 

medical treatments, and to produce oil for use in flavoring and perfumes (Kumar et al., 2016). 

Previous reports indicate that factors such as seed germination and early seedling growth of basil 

plants are severely affected by Cd, especially when levels reach 15-20 ppm of Cd (Gharebaghi et 

al., 2017). In the latter study, many aspects of the basil plant foliage were affected by Cd, including 

the number of leaves, plant height, height of the cotyledons following emergence and root length. 

Consequently, detecting Cd stress in basil by the naked eye is possible. In contrast, many Brassica 

species like kale have been classified as Cd hyperaccumulators, which can be useful in 

phytoremediation strategies that use plants to accumulate Cd in their leaves by harvesting the plant 

biomass to remove Cd from the system (Haghighi et al., 2016). Kale plants have been shown to be 

tolerant to soil Cd, displaying no visible symptoms of toxicity, and no significant reduction in plant 

biomass even at high soil Cd concentrations (Haghighi et al., 2016). Consequently, in most cases, 

it would be impossible to detect Cd uptake in kale crops visibly, making these crops particularly 

dangerous to grow on contaminated soils.  

1.5 Using hyperspectral imaging to detect Cd stress and quantify Cd accumulation in 

edible plant tissues 

Currently, the most effective way to quantify Cd in plant tissues is via post-harvest by 

extracting the tissues with a chemical procedure followed by analysis such as inductively coupled 

plasma mass spectroscopy (ICP-MS). However, this procedure is time consuming and expensive, 

thus most growers and many researchers in Colombia may not have access to this technique. 

Alternatively, a noninvasive and faster technique such as hyperspectral imaging (HSI) could be 

developed as a means to quantify Cd stress and estimate Cd concentrations in leaves. Hyperspectral 

imaging measures reflectance of plant tissues in the visible light and near-infrared light ranges. It 
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is widely used in studies to detect environmental stress caused by factors that include high 

temperatures, drought, salinity, flooding, nutritional deficiencies (Bergsträsser et al., 2015; 

Neilson et al., 2015). In addition, some have begun evaluating its potential to quantify stress caused 

by pollutants such as heavy metals, herbicides, detergents (Wang et al., 2018; Zhou et al., 2019). 

Consequently, the goals of the studies described in this thesis, were to 1) determine whether HSI 

can be used to detect Cd stress in two distinct leafy green crops, and 2) investigate whether HSI 

can be used to estimate Cd concentrations in the edible tissues of these crops.  
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 USING HYPERSPECTRAL IMAGING TO DETECT 

CADMIUM STRESS IN KALE AND BASIL AND DETERMINE WETHER 

BIOCHAR CAN REDUCE UPTAKE INTO EDIBLE PLANT TISSUE. 

2.1 Abstract 

Cadmium (Cd) is a heavy metal found naturally in the earth's crust in low concentrations, 

but it can accumulate in soil and the edible tissues of crops, which can negatively affect soil, plant 

and human health. Soil amendments like biochar have potential to reduce the bioavailability of Cd 

in soil thereby reducing uptake in crops and preventing human health risks. However, currently 

the only effective way to quantify Cd accumulation is via destructive post-harvest practices that 

are time consuming and expensive. Consequently, the primary goal of this study was to determine 

whether hyperspectrial imaging (HSI) can be used as a non-destructive method to quantify Cd 

stress and estimate uptake in two distinct leafy green crops (basil and kale) during crop production. 

In addition, we aimed to characterize how Cd affects the development and health of these crops, 

and determine whether a locally sourced biochar amendment derived from hardwoods can enhance 

the health of these plants and reduce Cd uptake into the edible tissues. Results confirm that while 

these crops can both accumulate levels of Cd that are well above safe thresholds for human health, 

they generally show few visible symptoms of plant stress. The biochar amendment and rate 

evaluated in this trial did appear to have some subtle effects on reducing plant stress responses due 

to Cd in basil, but was not effective in preventing Cd uptake in either crop species. Several 

vegetative indices including the normalized difference vegetation index (NDVI) and chlorophyll 

index at red edge (CI_RE) appear to have the potential to reveal Cd stress in these crops. Also, the 

plant senescence and reflectance index (PSRI) and the anthocyanin reflectance index (ARI) appear 

to have potential to detect subtle changes in plant physiology due to Cd and biochar amendments. 

However, further research conducted in the field and in the presence of other environmental stress 

factors are needed to confirm the utility of these tools.  

2.2 Introduction 

Cadmium (Cd) is a heavy metal found in the earth’s crust and in some soils used to grow 

crops. This metal is ranked seventh among the top ten-priority list of hazardous substances by the 
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US Department of Health and Human Services’ Agency for Toxic Substance and Disease Registry 

(He et al., 2015) because it can cause many health problems in humans, even in very small 

concentrations. For example, Cd can cause renal tubular dysfunction, bone damage and lung 

diseases in humans (Ismael et al., 2019). One of the biggest sources of Cd for humans is plant-

based foods. It has been estimated that plant consumption can contribute from 70 to more than 

90% of the total human intake of Cd (Baldantoni et al., 2015). The biggest challenge in preventing 

this human health risk, is that plants can accumulate concentrations of Cd that are toxic to humans, 

while appearing to be healthy and showing no toxicity symptoms (Ismael et al., 2019; Sánchez-

Pardo et al., 2013). Thus, farmers may continue to grow, harvest and sell contaminated produce 

without being aware that they are putting their customers at risk.  

The presence of Cd in soil can come from both geogenic and anthropogenic sources. 

Geogenic sources include Cd release following weathering of sedimentary rocks. For example, 

black shales may contain more than 200 mg kg-1 Cd, and phosphate rocks can contain 

approximately 25 mg kg-1 ( He et al., 2015). Anthropogenic sources include mine waste and 

industrial processes such as battery production and disposal (He et al., 2015). Agricultural inputs 

can also be a source of Cd. For example, in South America, contaminated phosphate fertilizers 

have been identified as the principal source of Cd contamination in cacao production systems 

(Daniel Bravo, personal communication). Soils with concentrations above 1 mg kg-1 of Cd indicate 

anthropogenic sources, since levels this high due to geogenic sources are rare (He et al., 2015). 

Anthropogenic sources are estimated to contribute ten times more Cd than geogenic sources (He 

et al., 2015). Therefore, identifying and preventing anthropogenic sources of Cd into agricultural 

systems represents the best way to protect human health. 

Once soils become contaminated with heavy metals like Cd, remediation options are 

limited because heavy metals will not degrade or decompose over time. Consequently, scientists 

are investigating factors that can immobilize Cd in soil, thereby preventing uptake into plants. 

Heavy metals in soils and sediments can be divided into various binding phases, which affect their 

bioavailability for plants. Metals may be bound to the surface of soil particles in several ways, 

complexed with ligands in solution, or be present as free ions in solution. Many physicochemical 

and mineralogical factors can affect the binding activity of heavy metals in soils. Soil pH in 

particular, is well known to be a critical factor affecting the speciation, solubility and 

bioavailability of many heavy metals in soil. Cadmium solubility in soil tends to exhibit a sigmoid-
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like behavior within a range of pH 4 and 8 (He et al., 2015). Cd is mobile in the pH range of 4-6 

in soil, while at higher pH values it converts to insoluble carbonate and phosphate forms.  An 

indirect linear relationship between soil pH and bioavailability or plant uptake of Cd exists;  as pH 

decreases, Cd uptake by plant increases (He et al., 2015) 

Soil organic matter and the amount and type of clay particles present are also important 

factors affecting the bioavailability of Cd due to the potential for adsorption on cation exchange 

sites present on the surface of these particles (Olaniran et al., 2013). As a result, organic soils tend 

to have a sorption affinity for Cd that is up to 30 times greater than mineral soils (He et al. 2015). 

In contrast, soils in tropical regions tend to be acidic and low in organic matter, and their 

mineralogy is dominated by kaolinite (1:1 clay with only cation exchanges sties on the clay edges), 

which makes them have a low cation exchange capacity (CEC) (Fontes et al., 2006; Hayyat et al., 

2016). Consequently, soils like these when contaminated with metals can be phytotoxic to plants 

because of their inability to retain heavy metals that exist as cations like Cd (Melo at, 2011). 

Finally, the presence of salts can alter Cd bioavailability by producing complexes such as CdCln
2-

n  (Filipovic et al., 2018), as can the composition of soil microbial communities, because microbes 

regulate speciation and solubility of Cd via several processes including redox reactions (Ma et al., 

2016). 

Because soil amendments can alter soil physical, chemical and biological properties, they 

have potential to alter Cd bioavailability, and therefore, uptake into edible plant tissues. For 

example, amending soils with lime can increase soil pH, thereby reducing bioavailability of Cd in 

soils (Ramtahal et al., 2018). Some studies have also demonstrated that amending soils with 

composts that are high in organic matter can also reduce Cd uptake into plants such as leafy greens 

(Gomez and Hoagland, unpublished). However, the organic materials in composts can decompose, 

and therefore the long-term success of this remediation strategy is unclear. Consequently, another 

remediation option being investigating is amending soils with biochar, which is defined as a 

carbon-rich product obtained when biomass such as wood, manure or leaves is heated at 

temperatures between 350-450 C in the absence of air (Lehmann and Joseph, 2009). Biochar is 

extremely stable and can last for centuries in soil (Lehmann and Joseph, 2009). Amending soils 

with biochar can improve soil and plant health (Shoaf et al., 2016), and some biochars have the 

additional benefit of making heavy metals less mobile via several physicochemical and biological 

processes (Joseph and Lehman, 2015). For example, when organic materials are subject to 
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pyrolysis to produce biochar, the surface area and number of cation exchange sites on the surface 

of the organic materials increases (Joseph and Lehman, 2015). Consequently, amending soils with 

biochar can cause an increase in pH due to the presence of additional ion exchange sites on biochar 

surfaces, as well electrostatic interactions between positively charged heavy metals (Hayyat et al., 

2016). This allows biochar to act as a sorbent for solution-phase metals. However, the feedstock 

and pyrolysis temperatures used to make biochar dramatically alters its physical and chemical 

properties, and therefore, the potential to alter soil properties and plant health (Shoaf et al., 2016), 

as well as bioavailability of heavy metals in soil (Lehmann and Joseph, n.d.). Biochar produced 

from hardwoods tend to have greater surface area and CEC sites than those produced from 

materials such as grass or manure (Lehmann and Joseph, 2015.). Biochar produced from 

hardwoods have been shown to increase the success of ryegrass germination in soils with Cd 

contamination (Beesley et al. 2010), thus have potential for remediation of Cd contaminated soils.  

Other factors that can affect soil bioavailability and uptake of Cd into edible plant tissues 

include plant species and genotype (Ismael et al., 2019). In many plants, concentrations of heavy 

metals are generally higher in roots than shoots because of negative ion exchanges sites on roots 

(Baldantoni et al., 2015). However, leafy vegetables have a relatively high potential for Cd 

absorption and translocation into aboveground tissues, thus are considered Cd accumulators 

(Baldantoni et al. 2015). As leafy vegetables are an important component of the human diet, they 

can be a significant risk factor in areas with high soil Cd concentrations, so identifying effective 

remediation strategies is critical. However, scientists need effective tools to determine if 

remediation strategies are effective. Currently, the most effective and common way to quantify the 

presence of heavy metals in plants tissues is through the use of wet post-harvest chemical methods 

such as ICP-OES, but these techniques are laborious and expensive (Zhou et al., 2018). 

Consequently, identifying alternative approaches to quantify Cd uptake in plants would be 

valuable for scientists and farmers. 

Some plants, including leafy greens like spinach and basil, are highly sensitive to the 

presence of Cd and show clear morphological responses such as stunting, chlorosis, necrosis, 

blackening of the roots and even death as soil concentrations increase (Gomez and Hoagland, 

unpublished). This is because Cd can interfere with important physiological processes such as 

photosynthesis and respiration, and absorption, transport and assimilation of mineral nutrients and 

water (He et al., 2015). In addition, Cd can interfere with gene and protein expression, inducing or 
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inhibiting the activity of enzymes, increasing the accumulation of reactive oxygen species, causing 

lipid peroxidation and altering plant metabolism (He et al., 2017). For example, in Abelmoschus 

esculentus L. and Zea mays, Cd has been demonstrated to decrease transcription of photosynthesis-

related genes and inactivate enzymes involved in CO2 fixation and chlorophyll biosynthesis (He 

et al., 2017; Sharma et al., 2010). Cadmium can also affect nitrogen (N) metabolism by inhibiting 

nitrate absorption and reducing the activity of enzymes involved in nitrate assimilation pathways 

(He et al. 2017). However, in some plant species, particularly Brassicas, plants may not exhibit 

any negative effects of Cd even though they may be experiencing some of these physiological 

stress responses. For example, kale is an important leafy green in the human diet that seems to be 

tolerant of Cd, displaying no visibly symptoms of toxicity or significant reductions in plant 

biomass when grown in contaminated soils. Thus, scientists and farmers cannot always rely on 

morphological symptoms alone to identify “hot spots” of contamination, or determine if 

remediation strategies are working. 

Imaging technologies that use various wavelengths to detect differences in key plant 

physiological processes represent one approach that could be used to help researchers and farmers 

quantify Cd without relying on destructive sampling. For example, SPAD meters are commonly 

used to quantify chlorophyll concentrations and estimate foliage N based on the close relationship 

between chlorophyll and foliage N concentrations  (Xiong et al., 2015). Since heavy metals like 

Cd can interfere with photosynthesis and nitrogen uptake and metabolism, SPAD meters could be 

helpful in identifying Cd stress. However, a nonlinear relationship between chlorophyll and foliage 

N at high N levels has been shown (Huang et al., 2014), indicating that SPAD meters are not 

always reliable in different situations. Instead, other imaging technologies that separate light into 

individual wavelengths could provide better insights. For example, machine vision systems based 

on this technology are being used to quantify plant populations and plant physiology and stress 

responses (Lowe et al., 2017). These systems rely on hyperspectral images that can be used to non-

destructively assess plant growth rates or morphological changes. These employ digital cameras 

with subsequent software image analysis that allows for faster and more accurate determination of 

measurements. Hyperspectral imaging (HSI) in particular, detects hundreds of contiguous narrow 

wavelength bands in a broad spectral range (Lowe et al., 2017).  This technique analyzes a wide 

spectrum of light instead of just assigning primary colors (red, green, blue) to each pixel. It works 

in the visible (VIS), NIR, and SWIR regions. VIS-NIR stands for the visible near-infrared regions 
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that go from 400 nm to 1400 nm, and SWIR stands for the short-wavelength infrared region and 

goes from 1400– 3000 nm (Huber et al., 2014). These wavelengths can capture changes in leaf 

pigmentation (400–700 nm), mesophyll cell structure (700–1300 nm) and water content of plants 

(1300–2500 nm).  

During HSI, the light striking each pixel is broken down into many different spectral bands 

in order to provide more information on what is being imaged, a process that produces large 

amounts of data. Because these large datasets are so complex and difficult to decipher, some 

researchers instead focus on a small number of wavelengths that can quantify specific changes in 

plant responses and be used to develop vegetation indices. Many vegetation indices have been 

established and each uses a different set of wavelengths to quantify physiological attributes of 

vegetation that can include general properties of the plant or specific parameters of its growth 

(Lowe et al., 2017). These indices have also been used to detect early stages of stress symptoms 

due to heavy metals. For example, the normalized difference of vegetation indices (NDIV) is 

commonly used to estimate chlorophyll content for photosynthetic efficiency (Humplík et al., 

2015), and has also been demonstrated to have some value in detecting heavy metal stress (Zhou 

et al., 2018). While some of these imaging technologies and associated indices are being used in 

field settings, lighting can alter the quality of the images and plants can be subject to multiple 

stress factors. Consequently, it can be difficult to identify indices that best measure individual plant 

stress factors due to all the confounding factors present in the field.  

Comprehensive, high-throughput phenotyping facilities can overcome challenges 

associated with HSI conducted in the field by providing researchers with the opportunity to 

combine automated, simultaneous and non-destructive analysis of plant growth, morphology and 

physiology, to develop a more complete picture of plant growth and vigor throughout the plants 

life cycle (Neilson et al., 2015). These systems also allow researchers to conduct controlled studies 

that focus on the evaluation of individual plant stress components. Nevertheless, there is still much 

work to be done to optimize approaches to evaluating HIS in these phenotyping facilities. For 

example, while many of these facilities use controlled lighting, the images generated can present 

specific problems because overlapping leaves, twisting and curving can distort determination of 

the growth area. In addition, distortion can be generated when the hyperspectral image is taken 

only from one view (for example, from the top view), or the quality of the camera used is 
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inadequate. A configuration that introduces more projections (i.e., side views in addition to top 

views) on the phenotyping platforms can partially solve this problem.  

The primary goal of this study was to determine whether HSI can be used as a non-destructive 

method to quantify Cd stress and uptake in leafy greens crops. In addition, we aimed to characterize 

how Cd affects the development and health of two distinct leafy green crops, and determine 

whether a locally sourced biochar amendment derived from hardwoods can enhance plant health 

and reduce Cd uptake into the edible tissues of these crops. We predicted that increasing levels of 

Cd would cause morphological responses in basil that could be observed by the naked eye, while 

Cd stress in kale would only be apparent using HSI imaging. We also predicted that the biochar 

amendment could reduce Cd uptake levels from soil, but overall reduction would become less at 

higher concentrations. To test these hypotheses, soils were amended with biochar or left untreated, 

and subject to three levels of Cd that are all above safe limits for human toxicity, and have been 

observed to produce visual differences in morphology among some, but not all, of the leafy green 

crops in previous experiments.  

2.3 Materials and Methods  

2.3.1 Experimental design 

The experiment was set up with a total of 64 pots containing a growth media in equals parts 

by volume (1:1:1 sand: soil: BM8 potting mix) at Purdue University’s Controlled Environment 

Phenotyping Facility (CEPF) in West Lafayette Indiana, U.S. during spring 2019. The water 

holding capacity of the growth media was determined by adding increasing amounts of water until 

the media was fully saturated and water started dripping from the pots. This equated to 1200ml of 

water in a 4.2 ml pot. Then, the pots were weighed dry (3.9 kg) and wet (5 kg) to know when pots 

needed supplemental water. During the plant growth phase described below, each pot was weighed 

daily and watered as needed to maintain adequate moisture, with increasing rates of water as the 

plants grew over time.  

In preparation for the experiment, half of the pots were amended with a locally sourced 

biochar made from a mix of hardwoods at a rate of 3% v/v, and the other half were left untreated. 

Individual pots were also amended with CdCl2 to obtain concentrations of total soil Cd of 0, 5, 10, 

and 15 ppm.  For each Cd concentration, CdCl2 (Sigma Aldrich) fwas diluted in sterile water to 
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obtain the amount needed in 1 ml of solution to ensure that the volume of the growth media in the 

pot (3.9 kg) would be at the appropriate concentration. One ml of this mixture was and added to 

the pots using a pipettman, and was stirred around the pot using a bamboo stake to mix into the 

soil. Then all of the pots were saturated with water (1200 ml) and allowed to equilibrate for two 

weeks to facilitate Cd adsorption onto soil particles.  

After the incubation period, half of the pots were planted with basil (cv. Genovese basil), and half 

with kale (cv. Lacinato kale), that had been sown four weeks earlier in potting media (Berger,Ca). 

Each plant species X soil amended with or without biochar X Cd rate was replicated four times. 

The pots were set up in a completely randomized design on separate belts for each crop species 

and sent to the growth chamber where they were subject to 14 hours of daylight and 10 hours of 

night, 25o C, and 60 % humidity. The plants were watered daily with a mixture of water and 10 

ppm Peters 15-5-15 Ca-Mg  fertilizer until they were destructively harvested to collect 

aboveground biomass after approximately 3 months. Specifically, basil plants matured earlier 

(when they started to flower) and were harvested 62 days after transplanting, and kale plants were 

harvested 84 days after transplanting. All plant materials were dried in an oven at 60 C for 3 days 

to obtain dry biomass, and ground to 1 mm size using a UDY cyclone sample mill (UDY Corp., 

Boulder, Col) for elemental analyses described below.  

2.3.2 Manual plant measurements 

The height and width of each plant were physically quantified using a ruler at three time 

points for basil (April 1st, April 13th, April 18th), and four time points for kale (April 2nd, April 12th, 

April 25th, May 9th). The chlorophyll content was also estimated at each of these time points using 

a SPAD chlorophyll meter (Konica Minolta, inc., New Jersey, U.S.A), which measures the 

difference between the transmittance of red (650 nm) and infrared (940 nm) light through leaves 

over a specific leaf area (Uddling et al., 2007; Yuan et al., 2016). During each sampling event, 

SPAD readings were taken on the third leaf from the top of each plant to ensure that the leaves 

were approximately the same age during each sampling event.  
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2.3.3 RGB and hyperspectral imaging 

At the same time that the first three manual measurements of each plant species described 

above were conducted, each plant was also imaged using two cameras. One of these cameras 

collected red, green and blue (RGB) wavelengths (visible spectrum: 400-700 nm) (Aris, 

Eindhoven, Netherlands), and the other collected hyperspectral wavelengths. The hyperspectral 

camera (Middleton Spectral Vision, Middleton, Wisconsin, USA) is a VIS-NIR camera capable of 

sweeping from 400 to 998 nm wavelengths, and has a spectral resolution of 473 bands. The images 

from the hyperspectral camera were processed using MATLAB .  The orientation and height of 

each plant was determined in the RGB imaging booth; this information was used in managing the 

hyperspectral imaging process when each plant entered the hyperspectral imaging booth. Irrigation 

scheduling and experiment management were carried out with programs developed at Purdue.  

2.3.4 Spectral processing and vegetative indices 

To increase the quality of the hyperspectral images, the images were pre-processed to 

remove environmental and physiological factors (noise). Consequently, spectral bands 

representing images in the 500 nm to 980 nm range were retained, and bands representing the 400 

nm to 500 nm range and above 980 nm range were discarded. In addition, the images were subject 

to white and black referencing to calculate the target reflectance. The hyperspectral images were 

then used to create values for fourteen different indices that have previously been developed to 

quantify differences in plant physiological parameters (Table 2.1).  
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Table 2.1 Fourteen hyperspectral indices with potential to detect cadmium stress in leafy green 

Vegetation 

index 
Formulas Description Application Citation 

NDVI 
𝑅800  −  𝑅680

𝑅800  +  𝑅680

 
Normalized 

difference vegetation 

Green Biomass, leaf area 

index (LAI) 

(Sims and 

Gamon, 2002; 

Yu et al., 

2018) 

NBNDVI 
𝑅850  −  𝑅680

𝑅850   +  𝑅680

 

Narrow-band 

normalized difference 

vegetation index 

Green Biomass 

Sims and 

Gamon, 2002; 

Yu et al., 

2018) 

PRI 
𝑅570 − 𝑅530

𝑅570 + 𝑅530

 
Photochemical 

reflectance pigment 
Physiology, photosynthesis 

(Peñuelas et 

al., 1997) 

NRI 
𝑅570 − 𝑅670

𝑅570 + 𝑅670

 
Nitrogen reflectance 

index 
Nitrogen 

(Huang et al., 

2014) 

TCARI 

3[(R700–R670)-

0.2(R700-R550) 

R700/R670] 

 

Transformed 

chlorophyll 

absorption and 

reflectance index 

Chlorophyll,  LAI 
(P. Lin et al., 

2012) 

SIPI 
𝑅800 − 𝑅445

𝑅800 + 𝑅445

 
Structure insensitive 

pigment index 

Pigment ratio between 

carotenoid and chlorophyll 

a. Canopy stress and LAI 

Yu et al., 

2018 

PSRI 
𝑅680 − 𝑅500

𝑅750

 
Plant senescence / 

reflectance index 
Senescence 

7/30/2020 

1:30:00 PM 

PhRI 
𝑅550 − 𝑅531

𝑅550  +  𝑅531

 
Physiological 

reflectance index 

Solar utilization efficiency 

during development.  

Discriminate disease and 

abiotic stress 

(Huang et al., 

2018) 

NPCI 
𝑅680 − 𝑅430

𝑅680 +  𝑅430

 
normalized pigment 

chlorophyll index 
Chlorophyll 

Huang et al., 

2014 

ARI 
𝑅550 − 1

𝑅700 − 1
 

Anthocyanin 

reflectance Index 
Anthocyanin 

(Gitelson et 

al., 2003) 

NDVI_RE 
𝑅705 −  𝑅705

𝑅705  +  𝑅705

 

Normalized 

difference vegetation 

at the red edge 

Chlorophyll 
(Sun et al., 

2019) 

CI_RE (𝑅800 − 𝑅705) − 1 
Chlorophyll index at 

red edge 
Chlorophyll 

Zhang et al., 

2018 

MSR_RE 

[
(

𝑅800

𝑅670
) − 1

(
𝑅800

𝑅670
) + 1

]

1/2

 

 

Linearize the 

relationship between 

the index and 

biophysical 

parameters 

Chlorosis 
(Ashourloo et 

al., 2014) 

HMSSI 

CIred − edge

PSRI
 

 

Difference in heavy 

metal stress 
Heavy metal 

Zhang et al., 

2018 
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2.3.5 Colormaps and reflectance graphs 

To evaluate potential correlations between plant health and soil Cd concentrations, and 

estimate where plants may be accumulating Cd (i.e., old vs. young leaves), colormaps and 

reflectance graphs were developed using NDVI reflectance data collected from plants that had 

received biochar and were subject to 0 and 15 ppm soil Cd concentrations during the first and last 

sampling time points. Each image represents one random plant from each plant species x soil Cd 

concentration. 

2.3.6 Elemental concentrations in aboveground plant biomass 

Total carbon (C) and nitrogen (N) in kale and basil aboveground biomass was quantified 

after subjecting 0.5 g samples of dry biomass to combustion at 840 C (LECO, CE Elantech, 

Lakewood, NJ, USA). Concentrations of total Cd as well as aluminum (Al), arsenic (As), barium 

(Ba), beryllium (Be), bismuth(Bi), boron (B), calcium (Ca), cadmium (Cd), caesium (Cs), 

chromium (Cr), cobalt (Co), copper (Cu), gallium (Ga), indium (In), iron (Fe), lead (Pb), lithium 

(Li), magnesium (Mg), manganese (Mn), nickel (Ni), phosphorous (P), potassium (K), rubidium 

(Rb), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium 

(Te), thallium (Tl), vanadium (V) and zinc (Zn) in plant tissues were determined using ICP-OES 

(Shimadzu ICPE-9820 and location) following digestion using a Mars 6 (CEM, Charlotte NC, 

USA) with Xpress vessels. Briefly, 0.5 g samples were placed in 10 ml HNO3 and subject to a 

temperature of 200 C, a pressure of 800 psi, and a power of 900-1050 watts.   

2.3.7 Statistical analysis  

All statistical analyses (F-tests, ANOVA’s and T-tests) were performed using R-studio, 

MATLAB and Excel 2016 (Microsoft Inc). A deep learning tool was used to create hyperspectral 

indices within the MATLAB. A general linear model (one-way ANOVA) was used to evaluate 

individual differences in among the two leafy green species, Cd rate and soil amendment with 

biochar. Then if the interaction between two factors was not significant, a two-way ANOVA was 

applied to quantify differences across both of these factors. All multiple comparisons (t-tests) were 

conducted using Fisher’s LDS (p<.0.05). 
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2.4 Results 

 

Figure 2.1 Basil and kale plants grown in soils amended or not with biochar and subject to 0, 5, 

10 and 15 ppm soil Cd concentrations.  These pictures were taken just prior to harvesting. 

2.4.1 Influence of soil Cd concentration on the development, and dry weight, elemental 

concentrations and SPAD readings of basil and kale   

 

Figure 2.2 Height of basil plants at three time points (a) and dry weight of aboveground biomass 

after harvest (b) when grown in soil amended with four soil Cd concentrations. Different letters 

represent significant differences between treatments (P<0.05). 
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Visible changes in plant development and morphology were observed in basil plants in 

response to increasing levels of soil Cd (Figure 2.1). In particular, basil plants grown in soil 

amended with 5 ppm Cd appeared to flower earlier than plants subject to higher soil Cd 

concentrations (Figure 2.1), and were significantly taller than the control treatment (0 ppm Cd) 

during the second and third sampling times (Figure 2.2). There were also significant differences 

in plant height over time among plants subject to individual soil Cd levels (Figure 2.2). 

Specifically, plants grown in 5, 10 and 15 ppm Cd had significantly greater height between each 

sampling point, whereas the control plants grown in soil with 0 ppm Cd increased between the first 

and second time point, but not between the second and third. Basil plants grown in soil with 5 ppm 

soil Cd also had the highest dry weight of aboveground biomass at harvest, but were not 

statistically significantly different control plants or those grown in soil with 10 or 15 ppm Cd 

(Figure 2.2). There were also no differences in the percentage of total C and N or the C:N ratio in 

basil biomass subject to the different soil Cd treatments, or in Zn concentrations (Table 2.2). In 

contrast, Cd concentrations were significantly different in the aboveground biomass of all basil 

plant, and increased concentrations directly corresponded with increasing soil Cd levels (Table 

2.3).  
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Table 2.2. Effect of soil cadmium concentrations and plant species on aboveground biomass and 

elemental concentrations in basil and kale at harvest 

 

*Values with different letters represent significant differences as indicated by LSD (p<0.05) 

  

Species Cd levels 

Dry wt. 

(mg) 

Carbo

n % 

Nitroge

n % 

C:N 

ratio 

Zn 

(ppm) 

Cd 

(ppm) 

Basil 0 43.38 42.10 2.05 21.12 53.00 0.20 

Basil 5 51.23 41.18 1.57 30.11 83.70 1.34 

Basil 10 47.15 41.97 2.13 20.21 49.93 2.42 

Basil 15 43.34 44.68 2.32 20.70 71.06 2.93 

Kale 0 64.57 41.47 1.73 24.30 35.31 0.10 

Kale 5 66.60 41.49 1.75 24.06 55.65 2.06 

Kale 10 72.54 43.53 1.96 22.87 28.45 2.56 

Kale 15 75.01 40.69 1.59 25.75 65.28 3.45 

Basil   46.28 42.48 2.02 a 23.04 64.42 2.04 b 

Kale   69.68 41.80 1.76 b 24.25 46.17 1.72 a 

  0 53.98 41.79 1.89 22.71 44.16 0.15d 

  5 58.92 41.34 1.66 27.09 69.67 2.05 c 

  10 59.85 42.70 2.05 21.45 39.19 2.55 b 

  15 59.18 42.68 1.96 23.23 68.17 3.45 a 

Statistic

s Model NS NS S S NS S 

  Species NS NS S NS NS S 

  Cd level NS NS NS S NS S 

  

Spp. X Cd 

level NS NS NS S NS NS 
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Table 2.3 Effect of soil amendments on aboveground biomass and elemental concentrations at 

harvest in basil and kale grown in soil subject to one of four soil Cd concentrations 

*S refers to significant differences (p<0.05) 

Species Soil trt 

Cd 

level 

Dry wt. 

(mg) Carbon Nitrogen 

C:N 

ratio Cd Zn 

Basil Control 0 42.29 41.89 2.11 20.73 0.23 54.83 

Basil Control 5 57.30 39.87 1.48 32.51 1.29 125.10 

Basil Control 10 46.53 41.67 2.13 19.67 2.40 48.75 

Basil Control 15 43.91 42.13 1.96 21.79 3.16 86.33 

Basil Biochar 0 44.48 42.31 1.99 21.52 0.17 51.18 

Basil Biochar 5 45.16 42.50 1.67 27.71 1.39 42.30 

Basil Biochar 10 47.78 42.27 2.12 20.75 2.44 51.10 

Basil Biochar 15 42.76 47.22 2.69 19.62 2.69 55.80 

  Control   45.04 43.58 2.12 22.40 1.77 50.09 

  Biochar   47.51 41.39 1.92 23.67 1.67 78.75 

    0 43.38 42.10 2.05 21.12 0.20 d 53.00 

    5 51.23 41.18 1.57 30.11 1.34 c 83.70 

    10 47.15 41.97 2.13 20.21 2.42 b 49.93 

    15 43.34 44.68 2.32 20.70 2.93 a 71.06 

  Statistics Model NS NS NS NS S NS 

    Soil Trt. NS NS NS NS NS NS 

    Cd level NS NS NS NS S NS 

    

Soil Trt. 

X Cd 
level NS NS NS NS NS NS 

Kale Control 0 63.62 41.17 1.71 24.71 0.11 41.15 

Kale Control 5 72.95 41.05 1.63 25.47 2.21 76.68 

Kale Control 10 79.99 41.49 1.77 23.50 2.92 35.55 

Kale Control 15 71.81 40.93 1.60 25.60 3.55 44.73 

Kale Biochar 0 65.53 41.77 1.76 23.88 0.08 29.48 

Kale Biochar 5 60.26 41.93 1.86 22.65 1.90 34.63 

Kale Biochar 10 65.09 46.26 2.21 22.04 2.20 21.35 

Kale Biochar 15 78.22 40.45 1.57 25.91 3.34 85.83 

  Control   67.27 42.36 1.82 23.73 2.20 42.82 

  Biochar   72.09 41.16 1.68 24.82 1.88 49.53 

    0 64.57 41.47 1.73 24.30 0.10 c 35.31 

    5 66.60 41.49 1.75 24.06 2.06 b 55.65 

    10 72.54 43.53 1.96 22.87 
 2.56 

ab 28.45 

    15 75.01 40.69 1.59 25.75 3.45 a 65.28 

  Statistics Model NS NS S S S NS 

    Soil Trt. NS NS NS NS NS NS 

    Cd level NS NS NS NS S NS 

    

Soil Trt. 
X Cd 

level NS NS NS NS NS NS 
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Stress symptoms in kale were impossible to detect by the naked eye (Figure 2.1, Figure 

2.3). In addition, neither aboveground dry biomass (Figure 2.3) or total percent C and N, C:N ratio 

and Zn in aboveground biomass (Table 2) at harvest were significantly different for plants grown 

in soil amended with the four soil Cd treatments.  Plant height was not significantly different 

between soil Cd treatments during individual time points, and only the 15-ppm Cd treatment was 

different between the second and third sampling points (Figure 2.3).  Like basil, Cd concentrations 

in the aboveground biomass of kale increased with increasing soil Cd levels (Table 2.2).  

The percentage of N in the aboveground biomass of basil at harvest was significantly 

higher than kale, and the concentration of Cd was significantly greater in kale than basil (Table 

2.3). 
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Figure 2.3 Height of kale plants at three time points (a) and dry weight of aboveground biomass after harvest (b) when grown in soil 

amended with four soil Cd concentrations. Different letters represent significant differences between treatments (P<0.05) 
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Chlorophyll content estimated using a SPAD meter was not significantly different among 

basil plants subject to individual soil Cd levels, however, there were a few subtle differences over 

time (Ffigure 2.4). Specifically, in the absence of biochar, the 5 ppm soil Cd treatment was 

significantly lower in the third than the second sampling time point, and the 10 ppm soil Cd 

treatment amended with biochar was also significantly lower in the third relative to the second 

time pint. For kale, there were no significant differences in SPAD readings (Figure 2.5) 
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Figure 2.4 SPAD readings taken on the leaves of basil plants grown in soil amended with four Cd concentrations at three time points. 

Different letters represent significant differences between treatments (P<0.05) 
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Figure 2.5  SPAD readings taken on the leaves of kale plants grown in soil amended with four Cd concentrations at three time points. 

Different letters represent significant differences between treatments (P<0.05) 

a

a

a

a

a
a

aa

a

a

a

a

a
a

a

a
a

a

a

a

a

a

a

a

First sampling point Second sampling point Third sampling point

C
h
lo

ro
p

h
y
ll

 c
o

n
te

n
t

6
0

   
   

   
 6

5
   

   
   

   
   

7
0

   
   

   
   

   
 7

 5
   

   
   

   
   

8
0

   
   

   
   

  8
5

   
   

   
   

   
9

0
   

   
   

   
  9

5
   

   
   

   
  1

0
0

6
0

   
   

   
 6

5
   

   
   

   
   

7
0

   
   

   
   

   
 7

 5
   

   
   

   
   

8
0

   
   

   
   

  8
5

   
   

   
   

   
9

0
   

   
   

   
  9

5
   

   
   

   
  1

0
0

0         5      10    15               0        5        10       15            0         5         10       15     0          5        10        15           0        5         10         15            0         5        10      15     

Cd in Soil (ppm)

control control controlbiochar biochar biochar



 

42 

2.4.2 Influence biochar addition on the growth, dry weight, elemental concentrations and 

SPAD readings of basil and kale plants subject to one of four soil Cd concentrations 

There were some visible differences in basil plants grown with and without biochar. 

Specifically, differences in flowering among basil plants subject to the different soil Cd levels 

were not as dramatic in plants amended with biochar compared to plants that did not receive 

biochar (Figure 2.1). Moreover, while there were no significant differences in plant height among 

basil plants treated or not with biochar and subject to individual Cd levels at any time point, there 

were subtle differences over time between plants with addition or not of biochar, with slower rate 

of growth in biochar amended pots (Figure 2.4). For example, during the second and third sampling 

point, in the absence of the biochar addition, basil plants subject to 5 ppm Cd were significantly 

taller than the control (0 ppm Cd rate), but there were no differences among soil Cd levels in plants 

that did not receive the biochar addition. There were no visible differences in development (Figure 

2.1), or plant height among kale plants amended with or without, and subject to the different soil 

Cd concentrations at any time point (figure 2.7). 

There were no differences in the aboveground dry plant biomass, total C and N, C:N ratio 

or Zn concentrations at harvest in basil or kale plants amended or not with biochar, and subject to 

the four soil Cd concentrations (Table 2.3). There were not significant differences in either basil 

and kale plants with respect to total Cd concentrations in the aboveground biomass, however, there 

were subtle differences between the two species (Table 2.3). In basil, increasing Cd concentrations 

in the aboveground biomass were correlated with increasing of soil Cd, while in kale, there was 

no difference between plants subject to 5 and 10 ppm Cd. 
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Figure 2.6 Height of basil plants grown with and without biochar (3% v/v) and subject to one of four soil Cd concentrations 

during three time points. Black bars represent basil plants without biochar (NB) and blue bars represent plants with biochar. 

Different letters represent significant differences between treatment (p<0.05) 
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Figure 2.7  Height of kale plants grown with and without biochar (3% v/v) at one of four soil Cd concentrations during four time points.  

Black bars represent basil plants without biochar (NB) and blue bars represent plants with biochar. Different letter represents 

significant differences between treatment (p<0.05)
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2.4.3 Effect of soil Cd concentrations on plant physiological indices generating using HSI 

taken from the side and top view in basil plants  

Significant differences among plant vegetation indices were only apparent during the first 

sampling point regardless of whether images were acquired from the side or top view of basil 

plants (Tables 2.4 and 2.5). When vegetation indices were generated using the side view spectra 

during the first sampling point, NDVI, PSRI, NCPI and ARI were significantly different (Table 

2.4). In addition, the index NCPI index detected differences among plants with/without the biochar 

addition, and NDVI, PSRI and ARI indices detected differences among basil plants with respect 

to the different Cd levels (Table 2.4). The PSRI index also detected an interaction between the 

biochar addition and Cd levels, indicating that it could detect subtle differences in Cd levels when 

plants had or not  biochar addition  

More indices were able to detect differences in basil when plants were imaged from the top 

view (Table 2.5). In particular, during the first sampling point, NDVI, NBNDVI, NRI, SIPI, PSRI, 

NDVI_RE, CI_RE, MSR_RE and HMSSI were all significantly different (Table 2.5). Like the 

side view, most of these indices detected differences among the Cd levels, and only the PSRI index 

detected differences among plants amended with an addition or not of  biochar (Table 2.
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Table 2.4 Effect of soil amendment and soil cadmium concentration on fourteen hyperspectral indices generated using the side view of 

images of basil plants collected at three time points. 

Soil amendment Cd level NDVI NBNDVI PRI NRI TCARI SIPI PSRI PhRI NPCI ARI NDVI_RE CI_RE MSR_RE HMSSI 

Time point 1 

Biochar 0 0.76 0.81 0 0.43 0.08 0.75 

-

0.0304 0.07 -0.36 -1.85 0.5 2.08 1.01 -69.25 

Control 0 0.77 0.82 0 0.43 0.08 0.75 -0.028 0.07 -0.36 -1.91 0.51 2.2 1.06 -79.05 

Biochar 5 0.76 0.816 0 0.438 0.087 0.75 -0.027 0.07 -0.35 -1.77 0.501 2.145 1.032 -78.809 

Control 5 0.77 0.83 0 0.44 0.09 0.77 

-

0.0287 0.07 -0.36 -1.71 0.51 2.25 1.07 -91.5 

Biochar 10 0.77 0.82 0 0.43 0.09 0.76 

-

0.0262 0.07 -0.35 -1.79 0.51 2.17 1.04 -84 

Control 10 0.78 0.83 0 0.44 0.09 0.77 -0.024 0.07 -0.36 -1.82 0.52 2.31 1.1 -94.4 

Biochar 15 0.75 0.81 0.01 0.44 0.09 0.75 -0.027 0.07 -0.34 -1.66 0.48 1.97 0.97 -71.13 

Control 15 0.75 0.82 0 0.46 0.09 0.75 -0.032 0.07 -0.35 -1.58 0.47 1.87 0.94 -57.94 

F-test   S NS NS NS NS NS S NS S S NS NS NS NS 

Soil amendment    NS NS  NS NS NS NS NS NS S NS NS NS NS  NS 

Cd level   S  Ns  NS NS NS NS S NS NS S NS NS NS  NS 

Interaction    NS NS  NS NS NS NS S NS NS NS NS NS NS  NS 

Time point 2 

Biochar 0 0.76 0.82 0 0.46 0.08 0.77 -0.03 0.07 -0.36 -2.02 0.51 2.31 1.08 -91.67 

Control 0 0.77 0.83 0 0.45 0.07 0.77 -0.02 0.07 -0.37 -2.27 0.53 2.52 1.15 -103 

Biochar 5 0.71 0.8 0.01 0.46 0.09 0.75 -0.03 0.06 -0.32 -1.68 0.46 1.9 0.93 -68.08 

Control 5 0.75 0.82 0 0.47 0.08 0.77 -0.03 0.07 -0.35 -1.84 0.5 2.17 1.03 -82.11 

Biochar 10 0.77 0.83 0 0.46 0.08 0.78 -0.03 0.07 -0.37 -2.2 0.53 2.45 1.13 -97.17 

Control 10 0.78 0.84 0 0.47 0.08 0.78 -0.02 0.07 -0.37 -2.11 0.53 2.46 1.14 -102.73 

Biochar 15 0.76 0.82 0 0.46 0.09 0.77 -0.03 0.07 -0.36 -1.83 0.5 2.2 1.05 -86.19 

Control 15 0.76 0.83 0 0.48 0.09 0.77 -0.03 0.07 -0.36 -1.8 0.5 2.1 1.02 -79.27 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS S NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS S NS NS NS NS NS NS NS S NS S S 
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Table 2.4 continued 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Time point 3 

Biochar 0 0.73 0.8 0 0.44 0.08 0.75 -0.03 0.06 -0.33 -1.86 0.49 2.17 1.03 -87.87 

Control 0 0.75 0.81 0 0.44 0.07 0.76 -0.03 0.06 -0.35 -2.06 0.51 2.38 1.1 -92.53 

Biochar 5 0.73 0.80 0.01 0.45 0.08 0.75 -0.03 0.06 -0.33 -1.81 0.48 2.07 0.99 -75.93 

Control 5 0.72 0.8 0.01 0.45 0.08 0.75 -0.03 0.06 -0.32 -1.7 0.47 2.02 0.97 -76.8 

Biochar 10 0.74 0.81 0 0.44 0.07 0.76 -0.03 0.06 -0.34 -2.07 0.51 2.32 1.08 -88.62 

Control 10 0.75 0.82 0 0.47 0.08 0.77 -0.02 0.07 -0.35 -2.06 0.51 2.36 1.09 -96.2 

Biochar 15 0.74 0.81 0 0.45 0.08 0.76 -0.03 0.06 -0.34 -1.88 0.5 2.19 1.04 -84.97 

Control 15 0.74 0.82 0 0.47 0.08 0.76 -0.03 0.06 -0.34 -1.75 0.49 2.04 0.99 -75.37 

F-test   NS NS NS NS NS NS NS NS NS Ns NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction  NS NS NS NS NS NS NS NS NS NS NS NS NS N 

*S refers to significant differences (p<0.05) 
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Table 2.5 Effect of biochar and soil cadmium concentration on fourteen hyperspectral indices generated using the top view of images 

of basil plants collected at three time points. 

Soil amendment Cd level NDVI NBNDVI PRI NRI TCARI SIPI PSRI PhRI NPCI ARI NDVI_RE CI_RE MSR_RE HMSSI 

Time point 1 

Biochar 0 0.76 0.82 -0.03 0.44 0.20 0.76 -0.0292 0.07 -0.34 -0.47 0.46 1.79 0.91 -61.60 

Control 0 0.77 0.82 -0.03 0.42 0.18 0.76 -0.0265 0.07 -0.34 -0.51 0.48 1.95 0.97 -74.14 

Biochar 5 0.77 0.83 -0.02 0.45 0.21 0.77 -0.0274 0.07 -0.35 -0.39 0.47 1.87 0.94 -68.67 

Control 5 0.77 0.83 -0.02 0.44 0.21 0.77 -0.0254 0.07 -0.34 -0.34 0.48 1.96 0.97 -77.38 

Biochar 10 0.76 0.81 -0.02 0.43 0.21 0.76 -0.0280 0.07 -0.33 -0.38 0.46 1.81 0.91 -64.93 

Control 10 0.77 0.82 -0.02 0.44 0.20 0.77 -0.0253 0.07 -0.34 -0.38 0.48 1.94 0.97 -76.98 

Biochar 15 0.75 0.81 -0.02 0.45 0.21 0.75 -0.0302 0.07 -0.33 -0.40 0.45 1.68 0.86 -55.93 

Control 15 0.75 0.82 -0.02 0.46 0.22 0.76 -0.0289 0.07 -0.33 -0.24 0.43 1.59 0.83 -55.81 

F-test   S S NS S NS S S NS NS. NS S S S S 

Soil amendment    NS NS NS NS NS NS S NS NS NS NS NS NS S 

Cd level   S S NS S NS S S NS NS NS S S S S 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Time point 2 

Biochar 0 0.77 0.84 -0.03 0.48 0.20 0.79 -0.03 0.07 -0.34 -0.56 0.48 2.00 0.98 -76.18 

Control 0 0.79 0.85 -0.03 0.47 0.18 0.80 -0.02 0.07 -0.36 -0.61 0.51 2.19 1.05 -88.29 

Biochar 5 0.77 0.84 -0.02 0.49 0.21 0.79 -0.03 0.07 -0.35 -0.53 0.48 1.98 0.97 -75.01 

Control 5 0.77 0.84 -0.02 0.50 0.20 0.79 -0.03 0.07 -0.35 -0.53 0.48 1.97 0.97 -75.26 

Biochar 10 0.78 0.84 -0.03 0.48 0.19 0.79 -0.03 0.07 -0.35 -0.61 0.50 2.11 1.02 -82.28 

Control 10 0.78 0.85 -0.03 0.49 0.20 0.80 -0.03 0.07 -0.36 -0.55 0.50 2.10 1.02 -82.33 

Biochar 15 0.77 0.84 -0.02 0.49 0.21 0.79 -0.03 0.07 -0.35 -0.49 0.48 1.94 0.96 -71.64 

Control 15 0.77 0.84 -0.03 0.49 0.22 0.79 -0.03 0.07 -0.35 -0.43 0.47 1.87 0.94 -68.66 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Time point 3 

Biochar 0 0.75 0.82 -0.02 0.47 0.18 0.77 -0.03 0.06 -0.33 -0.57 0.48 1.99 0.97 -76.08 
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Table 2.5 continued 

Control 0 0.76 0.83 -0.02 0.46 0.17 0.78 -0.03 0.06 -0.35 -0.64 0.50 2.20 1.04 -86.66 

Biochar 5 0.75 0.83 -0.02 0.48 0.19 0.78 -0.03 0.06 -0.34 -0.53 0.47 1.98 0.96 -72.40 

Control 5 0.73 0.81 -0.02 0.47 0.19 0.77 -0.03 0.06 -0.32 -0.50 0.46 1.88 0.93 -69.29 

Biochar 10 0.76 0.83 -0.02 0.46 0.18 0.78 -0.03 0.06 -0.33 -0.66 0.49 2.14 1.02 -79.58 

Control 10 0.76 0.84 -0.02 0.48 0.19 0.79 -0.03 0.06 -0.34 -0.61 0.49 2.11 1.01 -80.35 

Biochar 15 0.76 0.83 -0.02 0.48 0.19 0.78 -0.03 0.06 -0.34 -0.57 0.48 2.03 0.98 -76.24 

Control 15 0.77 0.84 -0.02 0.49 0.20 0.79 -0.03 0.07 -0.34 -0.52 0.48 1.96 0.97 -75.37 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

*S refers to significant differences (p<0.05
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2.4.4 Effect of soil Cd concentrations on plant physiological indices generating using HSI 

taken from the side and top view in kal plants  

Like basil plants, differences among plant physiological conditions in kale plants were only 

apparent during the first sampling point, but fewer indices were able to detect differences due to 

biochar addition or Cd levels (Tables 2.6 and 2.7). When images were taken from the side view, 

the overall model was significant for the TCARI index, but neither soil amendment or Cd levels  

were significant (Table 2.6). However, there was an interaction, indicating that there could be 

subtle differences among individual treatments. The ARI index was also significantly different 

with respect to the biochar addition and there was also an interaction, indicating there could be 

subtle differences among Cd levels (Table 2.6).  

When images were taken from the top view, ARI and CI_RE were significant (Table 2.7). 

The ARI index detected differences with respect to biochar addition, soil Cd rate and their 

interaction, indicating that this is a powerful index for detecting differences in kale to Cd stress. 

The CI_RE index was able to detect differences in Cd rate (Table 2.7).



 

 

5
1
 

Table 2.6 Effect of soil amendment and soil cadmium concentration on fourteen hyperspectral indices generated using the side view of 

images of kale plants collected at three time point. 

Soil amendment Cd level NDVI NBNDVI PRI NRI TCARI SIPI PSRI PhRI NPCI ARI NDVI_RE CI_RE MSR_RE HMSSI 

Time point 1 

Biochar 0 0.71 0.74 -0.02 0.2 0.02 0.65 -0.05 0.02 -0.34 -2.3 0.6 3.26 1.39 -64.58 

Control 0 0.66 0.7 -0.02 0.21 0.03 0.6 -0.06 0.02 -0.31 -1.28 0.52 2.34 1.1 -42.69 

Biochar 5 0.7 0.73 -0.02 0.2 0.02 0.63 -0.05 0.02 -0.34 -2.1 0.57 2.87 1.27 -54.63 

Control 5 0.69 0.72 -0.02 0.2 0.03 0.63 -0.05 0.02 -0.33 -2.06 0.56 2.78 1.24 -53.46 

Biochar 10 0.68 0.71 -0.02 0.19 0.02 0.61 -0.06 0.02 -0.33 -2.14 0.56 2.79 1.25 -47.66 

Control 10 0.68 0.71 -0.02 0.21 0.03 0.62 -0.05 0.02 -0.32 -1.72 0.55 2.67 1.21 -51.24 

Biochar 15 0.69 0.72 -0.02 0.21 0.03 0.63 -0.05 0.02 -0.33 -1.81 0.55 2.68 1.21 -52.36 

Control 15 0.69 0.72 -0.02 0.19 0.02 0.62 -0.06 0.02 -0.33 -2.24 0.57 2.79 1.25 -49.23 

F-test   NS NS NS NS S NS NS NS NS S NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS S NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS S NS S NS NS NS NS S NS S S NS 

Time point 2 

Biochar 0 0.71 0.74 -0.05 0.18 0.02 0.63 -0.07 0.01 -0.35 -1.5 0.61 3.45 1.44 -49.14 

Control 0 0.7 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.13 0.58 3.01 1.31 -42.73 

Biochar 5 0.71 0.74 -0.05 0.18 0.03 0.63 -0.07 0.01 -0.35 -1.29 0.6 3.18 1.37 -43.36 

Control 5 0.69 0.72 -0.04 0.17 0.03 0.61 -0.07 0.01 -0.33 -1.22 0.58 2.97 1.31 -39.9 

Biochar 10 0.69 0.71 -0.05 0.17 0.02 0.6 -0.08 0 -0.34 -1.35 0.59 3.06 1.33 -38.1 

Control 10 0.7 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.17 0.58 3.08 1.33 -42.28 

Biochar 15 0.69 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.18 0.57 2.95 1.29 -39.7 

Control 15 0.68 0.71 -0.04 0.18 0.02 0.6 -0.08 0 -0.33 -1.25 0.58 2.91 1.29 -36.63 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amenment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Time point 3 

Biochar 0 0.69 0.72 -0.04 0.18 0.04 0.61 -0.07 0.01 -0.33 -1.13 0.57 3.02 1.3 -41.31 
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Table 2.6 continued 

Control 0 0.67 0.71 -0.04 0.19 0.05 0.61 -0.07 0.01 -0.31 -0.85 0.54 2.71 1.2 -39.2 

Biochar 5 0.68 0.71 -0.04 0.17 0.03 0.6 -0.08 0 -0.32 -1.11 0.57 2.97 1.29 -38.74 

Control 5 0.67 0.7 -0.04 0.16 0.02 0.59 -0.08 0 -0.31 -1.16 0.57 2.94 1.29 -38.35 

Biochar 10 0.65 0.69 -0.04 0.16 0.02 0.57 -0.09 0 -0.31 -1.12 0.56 2.8 1.24 -33.21 

Control 10 0.67 0.71 -0.04 0.18 0.04 0.6 -0.07 0.01 -0.32 -1 0.56 2.88 1.25 -38.57 

Biochar 15 0.67 0.71 -0.04 0.18 0.03 0.59 -0.08 0.01 -0.32 -1.03 0.56 2.77 1.23 -34.93 

Control 15 0.66 0.69 -0.04 0.17 0.01 0.58 -0.08 0 -0.31 -1.16 0.56 2.82 1.25 -34.14 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd level   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

*S refers to significant differences (p<0.05) 
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Table 2.7 Effect of soil amendment and soil cadmium concentration on fourteen hyperspectral indices generated using the top view of 

images of kale plants collected at three time points 

Soil amendment 

Cd 

level NDVI NBNDVI PRI NRI TCARI SIPI PSRI PhRI NPCI ARI NDVI_RE CI_RE MSR_RE HMSSI 

Time point 1 

Biochar 0 0.75 0.77 -0.04 0.17 0.03 0.68 -0.05 0.01 -0.35 -1.37 0.63 3.72 1.53 -68.36 

Control 0 0.73 0.76 -0.04 0.19 0.05 0.66 -0.05 0.02 -0.33 -0.77 0.59 3.01 1.33 -57.48 

Biochar 5 0.74 0.76 -0.04 0.19 0.06 0.67 -0.05 0.02 -0.33 -0.84 0.59 3.06 1.34 -58.89 

Control 5 0.73 0.76 -0.04 0.20 0.07 0.67 -0.05 0.02 -0.33 -0.79 0.58 2.96 1.30 -57.31 

Biochar 10 0.73 0.75 -0.04 0.18 0.05 0.66 -0.06 0.01 -0.33 -0.86 0.59 3.08 1.35 -56.29 

Control 10 0.74 0.76 -0.04 0.19 0.06 0.68 -0.05 0.02 -0.33 -0.65 0.59 3.10 1.35 -63.47 

Biochar 15 0.74 0.77 -0.04 0.20 0.06 0.68 -0.05 0.02 -0.34 -0.82 0.60 3.10 1.35 -63.70 

Control 15 0.72 0.75 -0.04 0.18 0.05 0.65 -0.06 0.01 -0.33 -0.86 0.59 3.02 1.33 -53.73 

F-test   NS NS NS NS NS NS NS NS NS S NS S NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS S NS NS NS NS 

Cd rate   NS NS S NS NS NS NS NS NS S NS S NS NS 

Interaction    NS NS NS NS NS NS NS NS. NS S NS NS NS NS 

Time point 2 

Biochar 0 0.71 0.74 -0.05 0.18 0.02 0.63 -0.07 0.01 -0.35 -1.50 0.61 3.45 1.44 -49.14 

Control 0 0.70 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.13 0.58 3.01 1.31 -42.73 

Biochar 5 0.71 0.74 -0.05 0.18 0.03 0.63 -0.07 0.01 -0.35 -1.29 0.60 3.18 1.37 -43.36 

Control 5 0.69 0.72 -0.04 0.17 0.03 0.61 -0.07 0.01 -0.33 -1.22 0.58 2.97 1.31 -39.90 

Biochar 10 0.69 0.71 -0.05 0.17 0.02 0.60 -0.08 0.00 -0.34 -1.35 0.59 3.06 1.33 -38.10 

Control 10 0.70 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.17 0.58 3.08 1.33 -42.28 

Biochar 15 0.69 0.73 -0.04 0.19 0.04 0.62 -0.07 0.01 -0.34 -1.18 0.57 2.95 1.29 -39.70 

Control 15 0.68 0.71 -0.04 0.18 0.02 0.60 -0.08 0.00 -0.33 -1.25 0.58 2.91 1.29 -36.63 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd rate   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 
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Table 2.7 continued 

Time point 3 

Biochar 0 0.69 0.72 -0.04 0.18 0.04 0.61 -0.07 0.01 -0.33 -1.13 0.57 3.02 1.30 -41.31 

Control 0 0.67 0.71 -0.04 0.19 0.05 0.61 -0.07 0.01 -0.31 -0.85 0.54 2.71 1.20 -39.20 

Biochar 5 0.68 0.71 -0.04 0.17 0.03 0.60 -0.08 0.00 -0.32 -1.11 0.57 2.97 1.29 -38.74 

Control 5 0.67 0.70 -0.04 0.16 0.02 0.59 -0.08 0.00 -0.31 -1.16 0.57 2.94 1.29 -38.35 

Biochar 10 0.65 0.69 -0.04 0.16 0.02 0.57 -0.09 0.00 -0.31 -1.12 0.56 2.80 1.24 -33.21 

Control 10 0.67 0.71 -0.04 0.18 0.04 0.60 -0.07 0.01 -0.32 -1.00 0.56 2.88 1.25 -38.57 

Biochar 15 0.67 0.71 -0.04 0.18 0.03 0.59 -0.08 0.01 -0.32 -1.03 0.56 2.77 1.23 -34.93 

Control 15 0.66 0.69 -0.04 0.17 0.01 0.58 -0.08 0.00 -0.31 -1.16 0.56 2.82 1.25 -34.14 

F-test   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Soil amendment    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Cd rate   NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Interaction    NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

*S refers to significant differences (p<0.05)
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2.4.5 Effect of soil Cd concentration on colormaps and reflectance graphs generated using 

NDVI data collected during the first and third sampling time points 

The individual color maps produced from basil and kale plants were performed to visualize 

the vegetation index distribution on the plant. Each pixel of these images corresponds to the NDVI 

value represented in a color. With an NDVI close to 1 the pixel is redder and is correlated with 

more chlorophyll content, while the closer the pixel is to 0 it appears as bluer. This allows 

visualization of areas where the NDVI differes in the plant. Normal range for NDVI is between -

1 to 1, but in this study values fell within 0 to 1.   In plants grown in soil with biochar addition and 

subject to 0 and 15 ppm soil Cd concentrations during the first sampling poing did not indicate 

that there were clear differences in NDVI between treatments (Figure 2.8). However, during the 

third sampling point, differences between plants grown in the two soil Cd treatments were 

detectable between old and new leaves. In particular, newer basil leaves in the 0 ppm soil Cd 

treatment had a higher NDVI value than that of the older leaves found on the periphery, whereas 

newer leaves in 15 ppm Cd treatment had a lower NDVI value than that  of the older leaves found 

in the periphery. The greater number of flowers in the 0 relative to 15 soil Cd treatment, were also 

apparent during the third sampling point. When comparing the reflectance spectra, there were no 

differences between the first and final sampling point in basil plants subject to 0 ppm Cd, though 

there were differences between the two time points in plants subjected to soil Cd concentrations 

of 15 ppm (Figure 2.8). Specifically, during the first sampling time point in the 15 ppm treatment, 

the NDVI was lower, which is related to a decrease in chlorophyll content but also to more light 

reflected, while the NDVI reflectance was higher at the final sampling point. 

 Like basil, there did not appear to be any clear differences in the individual color maps 

produced from kale plants grown in soil amended with biochar and subject to 0 and 15 ppm soil 

Cd concentrations during the first or final sampling point (Figure 2.9). However, during the third 

sampling point, each Cd treatment plant differed in the reflectance between the leaf tips and the 

center of the plant. The tips had a bluer and greenish color correlated with less chlorophyll. There 

were also differences in the reflectance spectra (Figure 2.9). Specifically, in the plant subject to 0 

ppm soil Cd, the reflecantce was lower during the first relative to the third week, while in the plant 

grown in 15 ppm Cd, there were differences in lower wavelengths between the first and third 

sampling point (Figure 2.9).  
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Figure 2.8 NDVI color maps and reflectance graphs of basil plants grown in soil amended with 

biochar and subject to 0 or 15 ppm soil Cd during the first and third sampling points. 
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Figure 2.9 NDVI color maps and reflectance graphs of kale plants grown in soil amended with 

biochar and subject to 0 or 15 ppm soil Cd during the first and third sampling point. 
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2.5 Discussion  

Practical approaches to immobilize Cd in soil and prevent uptake into edible plant tissues 

are needed to improve crop production and protect human health. Current post-harvest approaches 

used to quantify Cd uptake in plants is time consuming and expensive, which makes identification 

of effective remediation strategies difficult. Consequently, the primary purpose of this study was 

to determine if HSI can be used to rapidly detect Cd stress and predict Cd uptake during crop 

production. To answer this question, we conducted experiments using two distinct leafy green 

species that are known to accumulate Cd, yet generally differ in their physiological responses to 

Cd stress. We also aimed to determine whether a locally sourced biochar addition could increase 

plant health and prevent Cd stress in these crops, and if subtle differences in plant responses to the 

presence of this soil amendment could be detected by HSI. 

 As predicted, visible differences in plant morphology due to soil Cd stress were visually 

observable in basil, but not kale plants (Figs. 2.1, 2.2, 2.3). In particular, basil plants subject to 5 

ppm soil Cd appeared to flower earlier and were significantly taller than the control (0 ppm soil 

Cd), and growth rates in basil over time in all Cd treatments were greater than the control (Fig. 

2.1; Fig. 2.2). Similar developmental responses to low levels of Cd stress have been observed in 

other leafy green plants (Baldantoni et al., 2016). We suspect that this could be due to a 

phenomenon known as hormesis, where an organism exhibits a biphasic response to low amounts 

of a toxic substance such as heavy metals (Morkunas et al., 2018). This overcompensation in plant 

growth is theorized to be an evolutionary adaptation to low levels of plant stress (Calabreseet al., 

2015). Based on these results, it is possible that basil plants could be used as a quick, simple test 

to determine if remediation strategies are working in the field, though additional studies are needed 

to confirm this hypothesis.    

As expected, we observed no visible stress responses in kale plants (Fig. 2.1; Fig. 2.3) 

despite the fact that kale plants accumulated more total Cd in their aboveground biomass than basil 

(Table 2.2). The lack a visual response to increasing concentrations of soil Cd corresponds with 

the results of Jakovljevc et al. (2013), who also observed no visible responses in several Brassica 

species including kale, to soil Cd levels of 5 and 10 ppm. In another experiment comparing levels 

of 4, 8 and 16 ppm soil Cd showed differences in plant biomass in kale at the highest soil 

concentration (Haghighi et al. 2016). Therefore, it is possible that Cd levels in our study were not 

high enough to cause visually observable  plant response. The results of this study confirm what 
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previous studies have indicated that Brassica species like kale could be used in phytoremediation 

efforts to extract Cd from soil (Mourato et al., 2015). However, they also provide additional 

evidence to indicate that growing these crops on soils that could be contaminated by heavy metals 

poses high risks for human health. 

Biochar has received a lot of interest in recent years for its potential to improve crop 

productivity (Shoaf et al., 2016), as well as immobilize soil Cd and prevent the uptake of this heavy 

metal into edible plant tissues (Kim et al., 2015; Gomez and Hoagland, unpublished). In this study, 

visible differences in flowering and plant growth among basil plants subject to soil Cd were not 

apparent in plants with biochar addition, in comparison to plant that did not receive this amendment 

(Figures 2.1 and 21.). This suggests that the biochar evaluated in this study did reduce Cd stress in 

this sensitive plant species, albeit the effects were subtle. However, the biochar amendment did 

not significantly reduce Cd uptake in either basil or kale (Table 2.2). The inability of this 

amendment to prevent Cd uptake could due to the fact that this particular biochar is not effective 

at immobilizing soil Cd, or that higher rate of this particular amendment would be needed to 

achieve the desired result. The lack of a response could also be due to the type of soil used in this 

study.    

Given subtle differences in plant responses to the presence of toxic heavy metals like Cd, 

non-destructive tools are needed to quantify Cd stress and estimate uptake. As described above, 

Cd can interfere with chlorophyll synthesis and N dynamics in crops (He et al., 2015). 

Consequently, SPAD meters, which are commonly used to estimate chlorophyll concentrations in 

plants, are one tool that could potentially be used to help detect Cd stress. However, this was not 

the case in this study. There were some subtle differences in SPAD readings in basil plants subject 

to different soil Cd levels during different sampling points (figure 2.4), but we did not observe any 

significant differences in SPAD readings in kale (figure 2.5). Thus, we conclude that SPAD meters 

could provide some limited value for detecting Cd stress in basil, but not kale.   

 Vegetation indices (VIs) derived from a range of wavelengths have also been used to detect 

plant stress and estimate concentrations of various compounds in plants such as chlorophyll, N, 

anthocyanins, water and heavy metals (Ashourloo et al., 2016). Many of these indices have 

integrated red-edge information and narrow-band spectral data (≤10 nm) to more accurately detect 

changes in plant physiology caused by many plant stresses (Zhang et al. 2018), but relatively little 

is about how these indices differ in their potential to detect heavy metal stress. Consequently, we 
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investigated whether fourteen plant physiological indices could be used to detect Cd stress, and 

quantify subtle differences in plant physiology due to a biochar soil amendment in our experiment 

with basil and kale plants. In addition, we aimed to determine if taking images from the top or side 

view of plants would affect the potential of these images to detect Cd stress and the effects of the 

biochar amendment. 

 One of the most commonly used VIs is the normalized difference vegetation index (NDVI). 

NDVI is sensitive to photosynthetic activity and is used to measure the greenness of plants (Sridhar 

et al., 2007; Tatishvili et al., 2018.). This index has previously been shown to be sensitive to 

chlorophyll concentration and cellular structure in plants (Sridhar et al., 2007), and some have 

suggested that it could be helpful in identifying symptoms of heavy metal toxicity (Yi 2019; Zhou 

et al., 2018). This is because Cd has been shown to inhibit photosynthesis and alter plant 

chlorophyll concentrations, even in plants that are considered hyperaccumulators (Zhou and Qiu, 

2005). Chlorophyll absorbs visible light from 0.4 to 0.7 µm (Weier & Herring , 2000) Cell 

structures in leaves reflect near-infrared light from 0.7 to 1.1 µm (Weier & Herring , 2000). 

Consequently, stressed vegetation tends to reflect more red light and less near-infrared light, 

because photosynthetic processes absorb most of the red light and the near infrared light is 

reflected (Tatishvili et al., 2018) The more leaves a plant has, the more these wavelengths tend to 

be reflected. Calculations of NDVI result in a number that ranges from -1 to +1. A value close to 

+1 indicates the highest possible density of green leaves, though values around 0.7 represent the 

average value in most non-stressed plants (Weier & Herring , 2000) 

Within the basil plants evaluated in this study, NDVI was able to detect differences caused 

by soil Cd, regardless of whether images were taken from the side or top or side view of the plants 

(Tables 2. 4 and 2. 5), validating previous reports that NDVI can be used to detect  Cd stress in 

some plant species (Zhou et al., 2018). The pixel-level “heatmap”  and reflectance spectra  shown 

in Figure 2.8, illustrate how NDVI can be used to detect Cd stress in basil. For example, while all 

plants maintained reflectance near 0.70, subtle differences were visible between plants subject to 

0 and 15 ppm soil Cd. However, while some subtle differences in NDVI profiles were apparent 

when comparing the individual colormaps and reflectance spectra in kale (Figure 2.9), this index 

was not able to detect overall treatment differences (Tables 2.6 and 2. 7), indicating that it will not 

work in all crop plants. The lack of response in kale relative to basil could be related to the lower 

overall N concentrations in kale relative to basil plants (Table 2.2). 
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Some have argued that NDVI has challenges related to saturation, which prevents this 

index from being able to accurately estimate biomass, and that the narrow band normalized 

difference vegetation index (NBNDVI) can be used to overcome this problem (Mutanga and 

Skidmore, 2004). In this study, NBNDVI was able to detect Cd stress in basil when images were 

taken from the top view (Table 2.5), but not from the side view (Table 2.4), or with either view in 

kale (Tables 2.6 and 2.7). Consequently, we conclude that NBNDVI is not a reliable indicator for 

quantifying Cd stress in leafy green crops 

Other researchers have suggested that red-edge approaches could help improve the 

accuracy of plant physiological indices for detecting heavy metal stress in crops (Zhang et al., 

2018). For example, the normalized difference vegetation at red edge (NDVI_RE), chlorophyll 

index at red edge (CI_RE) and modified simple ration at red edge (MSR_RE) have been developed 

to linearize the relationship between indices and biophysical parameters at the red edge. However, 

while models that include red edge indices are often sensitive to chlorosis and reductions in plant 

biomass, they are not susceptible to changes in internal cellular structure and therefore must be 

used with other indices to detect stress in plants (Sridhar et al., 2007). In this study, all three of 

these red edge indices were able to detect Cd stress in basil when the images were taken from the 

top view (Table 2.5), and the CI_RE index was also able to detect Cd stress in kale when plants 

were imaged from the top view (Tables 2.7). Consequently, results of this study confirm that by 

coupling standard indices with those that include red edges, researchers may be able to detect more 

subtle changes in the responses of leafy green plants to Cd stress.  

Because of the strong relationship between chlorophyll concentration and plant stress due 

to the presence of heavy metals, other indices that quantify chlorophyll concentrations such as the 

nitrogen reflectance index (NRI), the normalized pigment chlorophyll index (NPCI), and the 

transformed chlorophyll absorption reflectance index (TCARI)(Huang et al., 2014) might be useful 

in leafy greens . NRI and NPCI have previously been used to quantify changes in plant N status 

(Huang et al., 2014). The TCARI index exhibited high sensitivity for quantifying the leaf area 

index (LAI) among plants grown in different soils in comparison with single red-edge indices 

((Bandaru et al., 2016)) to suggest that it could be a strong index for quantifying heavy metal stress 

in plants (Zhang et. al 2018). In this study, NRI was able to detect differences in Cd stress among 

basil plants when images were taken from the top view (Table 2.5), but not when viewed from the 

side (Table 2.4), or when using either view in kale (Table 2.6 and 2.7), indicating that it is not 
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particularly sensitive in leafy green crops subject to Cd stress. The model for TCARI was 

significant for kale when plants were imaged from the side view (Table 2.6), but neither Cd stress 

or soil amendment were significant, indicating this is not a very sensitive measurement. 

Interestingly, NPCI was able to detect differences among basil plants when plants were imaged 

from the side view, but the index detected differences in the biochar amendment addition rather 

than Cd stress (Table 2.4). Consequently, the NPCI index might be able to detect other subtle 

differences in plant physiological status caused by biochar such as water status, or concentrations 

of other nutrients besides N. 

Other indices that could be useful in detecting subtle changes in plant physiological status 

due to Cd stress or soil amendments additions like biochar, include those designed to detect 

differences in other plant pigments such as carotenoids. This is because carotenoids act as 

accessory light-harvesting pigments, and are also expected to play an essential photoprotective 

role in plants (Young, 1991). The structure insensitive pigment index (SIPI), is said to be sensitive 

to the ratio of chlorophyll to bulk carotenoids in plants while minimizing the impact of the variable 

canopy structure, thereby potentially making it a valuable indicator for quantify plant stress ((Yu 

et al., 2018)). Similarly, the plant senescence reflectance index (PSRI) was also designed to 

quantify carotenoid pigments, and therefore could also be useful in detecting plant stress caused 

by heavy metals (Zhang et al., 2018). In this study, the SIPI index was able to detect Cd stress in 

basil when images were taken from the top view (Table 2.5), but not when they were taken from 

the side view (Table 2.4), or from either view in kale (Tables 2.6 and 2.7). Consequently, we 

conclude that the SIPI index is not particularly valuable in detecting Cd stress in leafy green crops. 

In contrast, PSRI was able to detect Cd stress in basil when images were taken from the side view 

and there was an interaction with the soil biochar addition (Table 2.4), indicating that this index 

could also detect subtle changes in plant physiological status caused by the biochar addition. 

Moreover, the PSRI index also detected changes caused by soil Cd and biochar when basil plants 

were imaged from the top view (Table 2.5), indicating that this index is powerful for detecting 

subtle changes in plant physiological status in basil.  

Indices that quantify ratios between chlorophyll and anthocyanins, such as the anthocyanin 

reflectance index (ARI), could also be useful in the context of this study, as concentrations of 

anthocyanins have also been demonstrated to play a protective role in plant stress due to heavy 

metals (Baek et al., 2012). Results of this study verify the strong potential of the ARI index, as it 
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was able to detect Cd stress in basil when plants were imaged from the side view (Table 2.4), and 

both Cd stress and biochar amendments in kale when plants were imaged from both the top and 

side view (Tables 2.6 and 2.7). Consequently, we conclude that ARI is a sensitive index for 

detecting subtle differences in plant physiological status in leafy green crops.   

Finally, the heavy metal stress index (HMSSI) was specifically developed to detect heavy 

metal stress in plants (Zhang et al., 2018). This new vegetative index is based on two red-edge 

indices, PSRI and CI_RE (Zarcotejada et al., 2005). When plant stress increases, the value of the 

CI_RE is expected to decrease while the value of PSRI increases, making this index particularly 

valuable for detecting heavy metal stress in plants. For example, Zhang, et al. (2018) determined 

that HMSSI was better at distinguishing heavy metal stress than when CI_RE and PSRI were used 

alone. However, in that study, the HMSSI index was not able to quantify heavy metal stress during 

all plant growth stages and the results of this study further support this observation. Like all indices 

evaluated in this study, the HMSSI index was only able to quantify Cd stress during one time point, 

and it was only able to detect Cd stress in basil when images were taken from the top view (Table 

2.5). Consequently, we conclude that it does not appear to be a particularly strong index for 

detecting Cd stress in leafy green crops.   

2.6 Conclusions 

Leafy green crops like basil and kale can accumulate levels of Cd in edible plant tissues that 

greatly exceed health standards set by the FAO (Baldantoni et al., 2016) while displaying few 

symptoms of plant stress. The biochar amendment evaluated in this trial appeared to have subtle 

effects on reducing Cd stress in basil, but did not reduce Cd uptake in either crop indicating that 

amending soils with a rate 3% (v/v) will not be effective in protecting human health in 

contaminated soils.  Several of the plant physiological indices evaluated in this trial appear to have 

some merit for detecting the subtle effects of Cd and soil amendments like biochar. In particular, 

NDVI holds promise for detecting Cd stress in basil and CI_RE may be able to detect Cd stress in 

both basil and kale. PSRI and ARI both appear to have potential for quantifying the effects of Cd 

and biochar amendments in both crops. Being able to take images from the top rather than the side 

view of plants, appears to be the most effective way of capturing subtle changes in plant 

physiological responses in these two leafy green crops. These studies were conducted in a highly 

controlled environment, where we were able to remove any variation caused by other potential 
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stress factors such as nutrient, water, or pest pressure. They were also conducted using only one, 

artificially constructed soil. Separating effects of heavy metal stress from other environmental 

factors using remote sensing technology and without knowing prior information has been difficult 

in the past (Zhang et al., 2018).  However, a distinct feature of heavy metal stress is that it is 

generally persistent, whereas other stress factors, such as nitrogen stress, are transient and only last 

for a short specific period of time (Zhang et al. 2018), so it is theoretically possible that these 

indices will be of value in the field. Consequently, additional studies will be needed to confirm 

that the indices identified in this can quantify the effects of Cd and biochar amendments in the 

presence of other plant stress factors, and future studies should be conducted in the field.  
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 IDENTIFICATION OF MATHEMATICAL MODELS 

THAT CAN QUANTIFY CADMIUM CONCENTRATION IN TWO LEAFY 

GREEN CROPS 

3.1 Abstract 

Cadmium (Cd) is a heavy metal that can get into the human body through the food chain, 

endangering human health. Phytotoxicity due to Cd stress is difficult to detect with the naked eye, 

making it difficult to determine whether plants are at risk, or if efforts to soil reduce bioavailability 

and uptake into edible plant tissues are working. New hyperspectral imaging (HSI) technologies 

developed for use in high-throughput plant phenotyping is a potent tool for monitoring 

environmental stress and predicting the nutritional status in plants. These imaging techniques have 

also proved valuable as non-invasive and autonomous approaches to detect biotic and abiotic stress 

during the early stages of plant stress symptoms. Previous studies have indicated the HSI can be 

used to detect Cd stress in plants like leafy greens that are at risk for Cd uptake, but it is unclear if 

this technology could be used to predict Cd concentrations in plant tissues. Consequently, this 

study was conducted to determine if mathematical models could be developed using HSI images 

to predict Cd concentrations in two leafy greens (kale and basil) amended or not with biochar, and 

subject to one of four soil Cd concentrations (0, 5, 10, and 15 ppm). The three models investigated 

were: principal components analysis (PCA), partial least squares (PLS) and artificial neural 

networks (ANN). Results of these studies indicate that the PCA and PLS models overfit (modeling 

error) the data despite efforts to transform the data in ways to predict more subtle signs of plant 

stress. In contrast, the ANN model was able to predict whether leafy greens had levels of Cd that 

were above or below critical thresholds suggested by the Food and Agriculture Organization 

(FAO), indicating that HSI could be used to predict Cd stress with this model.  

3.2 Introducion  

Heavy metals are among the most dangerous pollutants in the environment due to their high 

levels of biological toxicity and persistence over time. Heavy metals can destroy the normal 

functioning of soils, disrupting critical processes like nutrient cycling, and cause severe stress in 

crops, impeding their growth and productivity (Wang et al., 2018). Cadmium (Cd) is one of the 
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most phytotoxic heavy metals, because of its potential to inhibit critical physiological processes 

such as photosynthesis, respiration, and the absorption, transport, and assimilation of mineral 

nutrients and water (Wang et al., 2018). Cadmium interferes with gene and protein expression, 

induces or inhibits enzymatic activity, increase the accumulation of reactive oxygen species and 

cause lipid peroxidation (He et al., 2015). Cadmium can also affect nitrogen (N) metabolism by 

inhibiting nitrate absorption and reducing the activity of enzymes involved in the nitrate 

assimilation pathway (He et al., 2015). Moreover, if heavy metals accumulate in plant tissues, they 

can also enter the food chain and harm human health. 

It has been estimated that plant consumption of Cd contributes from 70 to more than 90% of 

the total intake of Cd by humans (Baldantoni et al., 2016). Leafy vegetables like spinach, lettuce, 

basil and kale are particularly problematic because they considered to be high Cd accumulators 

(Baldatoni et al., 2016). This is because these plants tend to have relatively high potential for Cd 

absorption and translocation, resulting in the accumulation of this toxic element in aboveground 

edible plant tissues. Leafy vegetables are an important component of human diet, and therefore 

they are an important source of Cd intake for people. The Food and Agriculture Organization 

(FAO) has determined that concentrations higher than 0.28 mg kg-1 of Cd in leafy vegetables can 

pose a serious threat to human health (Gu et al., 2015; FAO, 2018; Baldantoni et al., 2016). One 

of the biggest challenges in dealing with the threat of Cd in edible plant tissues like leafy greens 

is that toxicity symptoms can be difficult to detect. For example, while severe symptoms of Cd 

toxicity in plants can include growth retardation, chlorosis, necrosis, blackening of the roots and 

even death (He et al 2015), other plants can show no symptoms at all. Many Brassica species like 

kale appear to be particularly tolerant of Cd, displaying no visible symptoms of toxicity or 

significant reductions in plant biomass, even in the presence of  high levels of soil Cd (Haghighi 

et al., 2016).  

Currently, the most common and effective way for quantifying Cd in plant tissues is by post-

harvest wet chemical extraction and analysis with atomic adsorption (AA) or inductively coupled 

plasma (ICP). However, these techniques are time consuming and expensive. An alternative 

approach that could be faster and less expensive is the application of sensing-based reflectance to 

quantify Cd concentration in plant foliage. With this approach, electromagnetic radiation is 

reflected from a target and quantified using images (Wang et al., 2018). The digital images 

developed using these detection technologies have proved useful in quantifying plant populations 
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in the field, and in various phenotyping applications such as quantifying plant canopy closure 

(Neilson et al., 2015 ; Zhou et al., 2019). Most of these images are currently obtained using 

standard red, green and blue (RGB) images, though researchers and now taking advantage of 

hyperspectral imaging, which can capture much more information (Lowe et al., 2017). 

Hyperspectral imaging is now being used to detect petroleum hydrocarbons and landmines (Wang 

et al., 2018). However, the potential for hyperspectral imaging to detect and estimate heavy metal 

concentrations in plants is in its infancy. 

To understand how to develop imaging tools that can effectively detect and quantify heavy 

metals like in Cd in plants, researchers must first understand how these imaged are obtained. For 

example, RGB images are composed of blue light (approximately 475 nm), green light (520nm) 

and red light (650 nm) (Lowe et al., 2017). These three primary colors are part of the visible (VIS) 

light spectrum and are also visible to humans. RGB imaging systems rely on cones, which are 

photoreceptor cells that respond to different wavelengths. These cones are particularly sensitive to 

blue, green, and red bands, and capture these wavelengths in the brain. According to the light 

wavelengths emitted, the cone stimulation will be either strong or weak, and the colors perceived 

will have a high or low saturation or intensity. RGB technology integrates the intensity and 

saturation of these three primary colors in a pixel. A leaf image contains hundreds of pixels. These 

3-band-multispectral cameras based on RBG spectra have are often used to detect earlier stages of 

plant stress symptoms because they can track growth patterns, the greenness of plants, and 

parameters such as leaf area (Lowe et al., 2017). 

Hyperspectral imaging (HSI) captures hundreds of contiguous narrow band wavelengths in 

a broader spectral range within each pixel (Lowe et al., 2017). These cameras can capture 

wavelengths in the VIS, as well as near-infrared regions (NIR) that go from 400 to 1400 nm. By 

capturing these wavelengths it is possible to detect changes in the leaf pigmentation (400–700 nm), 

and mesophyll cell structure (700–1300 nm) (Lowe et al., 2017). Between the VIS and the NIR 

region, is the red edge position. The red edge refers to the 680–750 nm wavelength range, where 

the spectral reflectance of vegetation increases sharply due to the absorption of red radiation by 

chlorophyll, and the strong reflection of infrared (IR) radiation (Wang et al., 2018). Capturing the 

red edge position is expected to be crucial for capturing stress caused by heavy metals (Wang et 

al., 2018). This is because there is a strong correlation between the red edge and leaf chlorophyll, 

the amplitude of the red border and carotenoid concentrations, and the peak area of the red border 
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and the indices related the leaf area and quality of fresh leaves (Wang et al., 2018). The red edge 

position moves to a longer wavelength when the vegetation is vigorous and has abundant 

chlorophyll, but it changes to a shorter wavelength if the plant is under stress (Wang et al. 2018).  

Because of the high resolution, HSI cameras can generate a lot of environment noise; 

therefore, the spectral reflectance data generated by these cameras requires optimization. 

Optimizing reflectance data with spectral pretreatments will be particularly important for detecting 

heavy metal stress, since the responses are often very subtle and not always distinctive enough for 

detection (Zhao et al., 2018). Commonly used optimization methods include enhancement 

transformation, curve smoothing, first and second derivatives, continuous curve elimination, and 

wave-based noise elimination (Zhao et al., 2018). For example, the red edge position is often 

determined using the wavelength of the first maximum derivative in the VNIR range (Wang et al. 

2017). Developing models that can detect heavy metals will also require identification of spectral 

bands that are most sensitive to heavy metal content. Hyperspectral data has a high degree of data 

redundancy among available bands, which makes identification of the most significant bands 

difficult. So far, the spectral bands that are the most effective for detecting Cd in plants are still 

unclear.  

Some have suggested that the spectra of the first derivative that are found in the yellow 

border (IR 700–900 nm) are correlated with Cd, while others have suggested bands in the NIR is 

important (Zhao et al. 2018). In a recent study by Wang et al. (2018) that investigated spectral 

bands correlated with Cd contamination in Brassica rapa chinensis leaves, the researchers found 

that bands within the 690–1300 nm were sensitive, though 554, 631 and 557 nm appeared to the 

bands that were most highly correlated (Wang et al. 2018). Identification of the most sensitive and 

useful spectral bands can be performed by calculating the correlation between the heavy metal 

content measured in situ using traditional wet chemistry-based techniques with the raw spectral 

reflectance obtained during plant imaging (Wang et al. 2018). There are many approaches 

available to select wavelengths for plant stress analysis. The most typical model used to detect 

typical wavelengths is based on partial least squares regression (PLSR) analysis. This approach 

has been widely used to identify critical wavelengths among HSI images to quantify the quality of 

food and agricultural products (Olabe et al., 2005). However, it is necessary to explore other 

models that can model complex nonlinear relationship between inputs and outputs without 



 

69 

assuming specific distribution or independence of input variable  (M.-I. B. Lin et al., 2012) like 

ANN,  to determine if they could be more accurate. 

Three alternative models that could identify wavelengths that can detect Cd stress include 

principal component analysis (PCA), partial least squares (PLS), artificial neural network (ANN) 

as they are standard parametric statistical prediction approaches. Principal component analysis 

(PCA) is a statistical tool that simplifies a model with many dimensions into a model with a linear 

combination and rotation of the initial vectors so that in the new coordinate the first few dimensions 

accounts for the majority of the variance in the dependent variable  (Jollife et al., 2015; M.-I. B. 

Lin et al., 2012;  Olabe et al., 2005, ). PCA models are valuable because they reduce complexity. 

However, the main problem with PCA is that it can be difficult to validate results since there is no 

response variable contrasting them. Partial least squares (PLS) models combine characteristics of 

principal component analysis (PCA) and multiple regression, and generalize the data (Wang et al., 

2018; Zhou et al., 2019). They are useful because they can avoid the collinearity of simple 

regression models. PLS models transform predictor variables into uncorrelated orthogonal 

components, and perform least-squares regressions on these components rather than the original 

data, thus decreasing the size of the predictor variable space and preserving the same information 

of the original variables. Artificial neural networks (ANN) are mathematical models of artificial 

intelligence that are based on the biological behavior of neurons and structure of the human brain 

(Olabe et al., 2005) The elements of ANN models behave similar to the basic structure of biological 

neurons and present a series of characteristics of the human brain.  

ANN models are particularly interesting because they can be used to generate knowledge 

about a particular component based on previous studies, or exercises and experience. For example, 

the program is given a set of inputs and runs until it can produce consistent outputs. Because ANN 

can generalize automatically, it can provide precise answers even though the input variables cause 

some small disturbances or noises. ANN models can separately consider qualities of an object that 

does not have common or relative aspects. The neural system is made up of the following elements: 

neurons, connection pattern, memory and learning dynamics, and environment. The analog unit of 

a biological neuron is the PE processor component, which has several inputs and combines them 

by means of a basic addition operation. These are modified by a transfer operation, and return 

output values that go directly to the output of the processor element. The PE outputs connect to 

the inputs of other artificial neurons for the efficiency of the neuronal synapse. The ANN objective 
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is not only in the processor component, but also in the way in which they are connected. In general, 

PE is connected in the form of layers, and a traditional neural network is a sequence of connections 

between very close consecutive layers. The underlying neural architecture consists of an input 

layer or input buffer where the network data is presented and an output layer or output buffer where 

the network response to the input data is presented. The rest of the layers are called hidden layers. 

ANN can be viewed as universal model-free approximators, that can represent any nonlinear 

function with sufficient accuracy by seeking the proper combination of several sigmoid functions 

(Shi et. al 2014). It has the advantage of self-learning, robustness  and self-organization in 

modeling (Shi et al., 2014). ANN is rarely used for the quantitative analysis of plant stress and 

properties (Shi et al., 2014) However, the ANN model has been used the most in image processing, 

and is appropriate for large multivariate data sets Shi et al., 2014) and therefore has strong potential 

to identify Cd stress. Also, for this model we are able to preselect some wavelengths beforehand 

and use those for modeling. As we use fewer layers in the ANN we reduce dimensions. 

Not all Cd that is in soil is bioavailable and therefore can be taken up by plants. 

Consequently, identifying strategies that can reduce the bioavailability of this heavy metal in soil 

can reduce human health risks. For example, previous studies have demonstrated that soil 

amendments like biochar can reduce Cd uptake in leafy greens (Gomez and Hoagland, 

unpublished). However, to identify effective strategies for soil Cd immobilization, researchers 

need rapid and cost-effective approaches to detect Cd stress and estimate plant uptake. 

Hyperspectral imaging has potential to more rapidly and cost-effectively quantify Cd in plant 

tissues. However, making this a reality will require identification individual wavelengths that can 

most accurately detect Cd stress. This requires the use of statistical and mathematical tools to 

evaluate the large amount of data generating when using HSI. Therefore, the goal of this study is 

to identify mathematical models that can most accurately detect Cd stress and estimate Cd 

concentrations in the edible tissues using kale and basil as two representatives but distinctly 

different leafy green crops. 
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3.3 Materials and methods 

3.3.1 Experimental design and plant elemental concentrations at harvest 

The data used to identify models that would best fit the data and predict Cd concentrations 

in this chapter was presented in chapter 2. Briefly, the data came from a plant growth experiment 

conducted at Purdue University’s Controlled Environment Phenotyping Facility (CEPF) in West 

Lafayette Indiana, U.S. using a growth media derived of equal parts by volume of sand, soil and 

BM8 potting media mix. Half of these pots received a locally sourced biochar at a rate of 3% v/v, 

and the other half were left untreated, before pots with both soil treatments were amended with 

CdCl2 to obtain concentrations of 0, 5, 10, and 15 ppm total growth media Cd. After a brief 

incubation period to allow Cd to adsorb onto soil particles, the pots were planted with either basil 

or kale and placed in a carefully controlled growth chamber to facility plant growth. Each plant 

species X addition of biochar X Cd level was replicated four times. After approximately three 

months, the plants were destructively harvested to quantify total aboveground biomass and 

concentrations of C, N, Cd and other elements. 

3.3.2 Elemental concentrations in aboveground plant biomass 

Total carbon (C) and nitrogen (N) in kale and basil aboveground biomass was quantified 

after subjecting 0.5 g samples of dry biomass to combustion at 840 C (LECO, CE Elantech, 

Lakewood, NJ, USA). Concentrations of total Cd and zinc (Zn) in plant tissues were determined 

using ICP-OES (Shimadzu ICPE-9820 and location) following digestion using a Mars 6 (CEM, 

Charlotte NC, USA) with Xpress vessels. Briefly, 0.5 g samples were placed in 10 ml HNO3 and 

subject to a temperature of 200 C, a pressure of 800 psi, and a power of 900-1050 watts.   

3.3.3 Manual measurements and images collected during the experiment 

Plants spectral data were collected using a hyperspectral camera (400-998 nm) using a 

Middleton Spectral Vision Camera (Middleton Spectral Vision, Middleton, Wisconsin, USA). 

This HSI camera is a VIS + IR camera capable of sweeping from the 400 to 998 nm wavelengths, 

with a spectral resolution of 473 bands. Generated data generated swas collected by a program 

called Smarter AgTM (Purdue AgIT, West Lafayette, IN, USA). Each plant was imaged using two 

different views (top and side view), and the system automatically collected images at different 
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heights depending on the size of each plant.  Leaf area was estimated using images collected from 

the top and side view of basil and kale plants during the experiment at three time points. 

3.3.4 Spectral pre-processing  

To increase the quality of the hyperspectral images it was necessary to decrease 

environmental and physiological factors (noise), since this affect the signals in the hyperspectral 

data (Zhao et al 2018). For this to happen, data pre-processing is required. To obtain the spectral 

spectrum, the data was normalized using white and dark reference images using the following 

formula:  

𝑅 =  
𝑅0 − 𝑅𝐷

𝑅𝑊 −  𝑅𝐷
 

In this formula  R0 is the raw reflectance data,  RW is the white reference data, RD is the dark 

reference data and  R is the relative reflectance (Zhao et al., 2018)  

In addition, to promote the signal-to-noise ratio, data at the beginning and end of the 

spectral bands were removed (Zhao et al., 2018). The regions representing 457 to 980 nm were 

retained, and the spectral bands representing before 457 and greater than 980 nm, were removed.   

3.3.5 Standard normal variation (SNV) 

The average reflectance spectra were first transformed to absorbance log10 ( 1

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
) 

using methods described in Zhao et al. (2018).  We transformed reflectance data into absorbance 

data because absorbance data is related to plant activity, while reflection is more related to the 

plant surface. Then, to eliminate the undesirable impacts such as random noise, light scattering, 

and baseline shifts (Zhao et al., 2018), three spectral preprocessing techniques were performed: 

detrending, Savitzky–Golay first derivative and standard normal variate (SNV). SNV was applied 

to remove the scatter effect. Savitzky–Golay first derivative was used to remove the baseline shift 

and amplify small spectral features (Zhao et al. 2018). Detrending (the elimination of trending 

data) was used to eliminate the effects of baseline shifts and curvilinearity (Zhao et al. 2018). Then 

the first derivative and the detrending with normalization (SNV) were combined. The combination 

of SNV + detrending is used to remove curvilinearity and absorbance offsets from NIR spectra 

(Zhao et al., 2018) to show the essential information that we are looking for  
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3.3.6 Mathematical models 

For the PCA and PLS models, 10- fold cross-validation was performed to unify the data 

effectiveness. Normalization of data and the first derivative were also applied, and the models were 

performed using the spectral responses of kale and basil leaves, and the total amount of Cd found 

in the leaves. For the ANN model, correlation coefficients and the root mean square error (RMSE) 

were transformed to better predict Cd stress in kale and basil plants. For all models, data collected 

from the kale and basil plants were combined due to the low number of samples before performing 

regression and classification activities. An illustration taken from Shi et al., (2014) (see Figure 

3.1), illustrates the technical approaches used in this study to estimate Cd in plants using 

hyperspectral images. 

 

 

Figure 3.1 Diagram obtained from Shi et al. (2014) illustrating how hyperspectral imaged can be 

used to conduct experiments to develop models for estimated heavy metal concentrations 
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3.3.7 Statistical analyses 

Statistical differences in plant leaf area and cadmium and nitrogen concentrations were 

determined using the statistical software R and various R- packages. ANOVA was initially used 

to quantify differences in the model to identify correlations and significance between treatments 

was determined using the least significance difference (LSD) test. MATLAB 2019 was also used 

to perform the PCR and PCA mathematical models, and Python 3.8 was used to perform the ANN 

model. 

3.4 Results and Discussion  

3.4.1 Cadmium and nitrogen concentrations in basil and kale biomass at harvest quantified 

with traditional chemical extraction and analyses 

 

Figure 3.2 Boxplots indicating concentrations of cadmium and nitrogen obtained using ICP-OES 

in the aboveground biomass of basil and kale plants subject to four soil Cd concentrations. 

Different letters indicate significant differences at the P<0.05. 
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Figure 3.2 continued 

 
 

Results of the ICP-OES analyses demonstrate that there was a positive correlation between 

soil Cd concentrations and plant accumulation of Cd in the aboveground tissues of both kale and 

basil plants (Figure 3.2), demonstrating that these are good plant species for use in developing the 

models described in this chapter. Because of the strong negative relationship that Cd can have on 

plant nitrogen pathways, which could affect the potential for HSI to detect Cd stress, the 

concentration of N in basil and kale leaves was also determined. However, in this study, there were 

no significant differences in N concentrations among the soil Cd concentrations for either plant, 

indicating that Cd soil levels in this study may not have been high enough to generate severe 

symptoms of Cd toxicity symptoms (Figure 3.2). Nevertheless, results of the previous chapter 

demonstrated that it is possible to use HSI imaging to detect subtle differences in Cd stress in these 

two leafy green crops, even though this does not translate to changes in overall N. 
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3.4.2 Changes in basil and kale leaf area in response to biochar and soil Cd levels 

 

Figure 3.3 Figure 3.3 Changes in basil (top panel) and kale (bottom panel) leaf area in plants amended or not with biochar and subject 

to four soil Cd concentrations at three time points. Different letters indicate significant differences at the P<0.05 
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Figure 3.3 continued 
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Leaf area is an important indicator of plant stress that could be used in models to estimate 

Cd concentrations. Consequently, leaf area was estimated using images collected from the top and 

side view of basil and kale plants during the experiment at three time points. Only the results of 

the analyses using images take from the side view are presented here, as they better illustrate the 

results (Figure 3.3).  

There were few differences in leaf area among basil plants in response to addition of 

biochar and the four soil Cd concentrations, indicating that leaf area is not a strong predictor of Cd 

stress in this crop. However, leaf area was significantly lower in the plants that were amended with 

biochar and subject to 15 ppm Cd during the third time point, than those that did not receive the 

biochar amendment addition but were subject to the same rate of soil Cd. As described in the 

previous chapter, plants have been demonstrated to increase growth in response to low levels of 

plant stress in a phenomenon known as hormesis, which has been theorized to be an evolutionary 

adaption (Agathokleous et al., 2019). Consequently, it is possible that the biochar amendment was 

reducing Cd stress at the highest soil Cd level. 

Among kale plants, there were no significant differences in response to the biochar addition 

among soil Cd treatments within individual time points; however, there were significant 

differences in growth rates over time, indicating the kale leaf area is more sensitive to Cd stress 

than basil (Figure 3.3). Specifically, between the first and second time points, in the absence of the 

biochar addition, leaf area was significant greater in the second time point when plants were subject 

to 5, 10 and 15 ppm Cd, but there was no difference when plants were amended with biochar. 

These results indicate that the soil amendment could have reduced early stimulations in plant 

growth caused by Cd stress, which could also be related to hormesis.  

3.4.3 Spectral pre-processing to develop models to predict Cd concentrations in plant 

foliage 

Previous studies investigating differences in leaf reflectance induced by heavy metals were 

not significant, and the authors concluded that plant responses to heavy metals are often so subtle 

that they are not sensitive enough to develop models for estimating heavy metal concentrations in 

plant tissues (Wang et al., 2018; Zhou et al. 2018). One of the reasons that these studies failed to 

detect a significant difference, is environmental-induced noise generated during the imaging 

process, which is generally higher than the subtle features associated with plant heavy stress (Zhou 
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et al. 2018). For example, during HSI, factors such as random noise, light scattering and baseline 

shifts can make it difficult to interpret data (Zhou et al., 2019). Therefore, it is necessary to remove 

noise and amplify stress response information in the original reflectance data (Zhou et al., 2019). 

Consequently, three spectral preprocessing techniques were used in this study to reduce the effects 

of environmental noise, and the reflectance data was transformed into absorbance data to increase 

the accuracy of the images. In addition, because Cd concentrations in both basil and kale plants 

were positively correlated with soil Cd levels, the data from the two plant species were combined 

to increase accuracy in the model.  

 

 

Figure 3.4 Raw reflectance and absorbance data and normalized absorbance generated using a 

random sample of basil and kale plants subjected to soil Cd stress 

 

Results of our efforts to reduce environmental noise and transform the data into information 

useful for developing models to predict Cd concentrations in basil and kale are shown in Figure 

3.4. The blue line illustrating a normalized correlation coefficient in the absorbance data where we 

see a decrease in the reflectance compared to the  raw absorbance data, especially with respect to 

wavelengths in the infrared region. This indicates that we were successful in our attempt to 

eliminate much of the environmental noise in this data set. To further eliminate background 
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interference, resolve overlapping spectra, and minimize the noise and baseline drift associated with 

the raw spectral data, we combined the SNV for the first derivative of absorption spectra. The first 

derivative can increase spectrum correlations but improve baseline shifts and amplify small 

spectral features, and it can also reduce the signal-to-noise ratio, especially in the 800-900 nm 

regions (Zhao et al. 2018). Using data from a random plant (Figure 5) it is possible to visualize 

differences in the absorption index between the first derivative and the normalization of the 

derivative data. Both of these curves had a peak when shifting from visible to the infra-red range. 

Cd does generally not cause plants to have unique absorption bands in the NIR region, though 

long-term exposure of plants to Cd may affect leaves chlorophyll synthesis, which could be 

detected (Zhao et al., 2013; Zhou et al., 2018). Most of the spectral features associated with plant 

chlorophyll are concentrated in the spectral region associated with the red-edge, such as the 

inflection point of the red edge (Zhao et al., 2018). Some of the transformations we performed 

appeared to decrease the noise to signal ratio, allowing us to better characterize subtle differences 

at the red edge. However, we could still see some interference in the normalized first derivative.  

 

 

Figure 3.5 Spectral data generated using a random basil or kale plant subject to soil Cd stress. 

The top panel represents the first derivative and first derivative + SNV absorbance data, and the 

right panel represents the detrending and detrending + SNV absorbance 



 

81 

Figure 3.5 continued 

 

 

Combining SNV and detrending of HSI data can be used to remove curvilinearity and 

absorbance offsets from the near-infrared region (NIR) to better characterize subtle differences at 

the red edge. For example, in Figure 3.5, it is possible to visualize differences between the 

absorption of detrending + normalized detrending data next to the detrending absorbance data 

alone. In this figure, the normalized first derivative (First derivative + SNV) and detrended data 

had a higher absorbance than the 1st derivative and normalized detrended data, indicating that this 

technique can better clarify responses. However, it was still possible to detect noise in the 

normalized detrending data (detrending + SNV), and in the normalized first derivative (first 

derivative + SNV), indicating that it is still difficult to detect subtle differences.  
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3.4.4 Developing mathematical models to estimate Cd concentration in leafy green crops 

 

Figure 3.6 ANN regression model generated using the detrending + SNV transformed data of 

plants subject to soil Cd stress 
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Figure 3.7 Confusion matrices generated using the ANN model and different data transformations 

using leafy greens subject to Cd stress. 
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Figure 3.7 continued 

 
 

 

Once all the data was transformed to improve accuracy, it was loaded into the three models 

evaluated here and further adjusted to attempt to improve the fit of the models. For example, for 

the ANN model, we conducted a regression for every data transformation, but were unable to 

identify any data set that could fit the model and predict Cd stress accurately (Figure 3.6) With 

machine learning, we were able to develop learning algorithms that could predict outcome values 

for previously unseen data. However, since only a finite number of samples were used, the 

evaluation of these samples can be sensitive to sampling error. As a result, measurements of 

prediction error on the current data may not provide much information about predictive ability on 

new data. 

Consequently, we decided to perform a confusion matrix using an ANN classification to 

see which one could best predict Cd concentrations in the plants (Figure 3.7). We used this 

approach because we wanted to determine if the model could classify plants that were considered 

health and unhealthy with respect to Cd concentrations. The threshold used in this analysis was 

taken from the FAO (Baldantoni et al., 2016), which states that concentrations of C greater than 

0.28 mg per kg of fresh weight is considered dangerous in leafy greens. The data were considered 

“true” if Cd concentrations in plant tissues exceeded maximum levels (0.28mg kg-1), and “false if 

it did not exceed this value. The model was divided into “tested” data, that which was obtained 

directly from the plant growth experiments, and “trained” data, which was generated by the 

program. All analyses were performed using random data from each data set. This model was able 
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to We classified the plants that had higher or lower Cd concentration than the threshold in the leafy 

green crops evaluated in this study (Table 3.1). 

 

Table 3.1 Statistics table demonstrating the power of these models to detect Cd concentrations in 

basil and kale aboveground foliage using the transformed data. 

 Precision 

Training 

Recall 

Training 

F1-score 

Training 

Precision 

Testing 

Recall 

Testing 

F1-score 

Testing 

Det and 

normalize   

1 1 1 0.828 0.923 0.873 

First Derivative 

and normalized 

1 1 1 0.808 0.808 0.808 

Detrend 1 1 1 0.84 0.808 0.824 

First derivative 

absorbance 

1 1 1 0.821 0.885 0.852 

Normalized 

absorbance  

 0.893 0.962 0.926 0.8125 1 0.897 

Absorbance 0.812 1 0.900 0.812 1 0.897 

Reflectance 1 1 1 0.793 0.885 0.834 

 

After performing the ANN model using the classification method and different data 

transformation approaches, we were able to quantify differences in their predictive value (Table 

3.1). This generated an F1 score, precision and recall information from the training and testing 

data. Recall is the ratio of correctly predicted positive observations to all observations in an actual 

class while precision is the ratio of correctly predicted positive observations to the total predicted 

positive observations  (Ping Shung, 2018). F1 is the weighted average of Precision and Recall.  

Therefore, precision is a good measure to determine if the costs of false positive are high. Recall 

is was the model metric we used to select our best model when there was a high cost associated 

with false negatives, since recall actually calculates how many of the actual positives the model 

was able to capture through labeling the data as positive (True Positive) (Ping Shung, 2018).. For 

example, the detrending + normalized (SNV) data set had a recall and F1 score of 100% for the 

training data and for 92 % the testing data, indicating that the model was very precise. The 

combination of absorbance and normalized absorbance (SNV) also had a high recall and F1 score 

for both the training and testing data sets. The detrending + SNV absorbance approach was able to 

predict 24 values that exceeded the Cd threshold out of 26, and 1 of the false values out of 6 that 

did not exceed maximum recommended limit. In contrast, the normalized absorbance (SNV) and 
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raw absorbance were able to predict 26 out of 26 true values, but only 0 out of 6 false values. Most 

of the approaches had high scores, which indicates that ANN is a good method to detect when 

leafy greens exceed the maximum level of Cd suggested by the FAO. For example, all of them had 

a recall testing value that was higher than 80%, indicating that they can classify more than 80% 

correctly. Consequently, we conclude that this classification method, derived using an artificial 

network, is a good model for detecting leafy greens that are considered safe for human health. 

Further testing to validate this hypothesis is underway using synthetic data to balance the range of 

Cd values 

The PCA model was conducted using 8 principal components, and the PLS model was 

conducted using both 4 and 3 principal components, and both the side and top view images were 

evaluated in both models to determine which view could provide a better fit for the data. Figure 

3.8 illustrates the relationship between the measured and predicted Cd concentrations when images 

were taken from the top view, and Figure 3.9 represents the relationship when images were 

collected from the side view. Previous studies have demonstrated that PLSR can be effectively 

used to estimate heavy metals including Cd (Wang et al., 2018). For example, Zhou et al. (2019) 

constructed a PLSR model using rice leaves spectrums that was able to estimate Cd concentrations 

in brown rice.  Similarly, Wang et al. (2018) used a PLSR model to overcome the limitation of 

other ordinary models in addressing collinearity among explanatory variables, and this model had 

greater accuracy in estimating heavy metal content. However, the pace of improvement was related 

to the type of metals. In Cd, the model had an R2 of 0.69 to 0.72 in rice.  Wang et al. (2018) found 

that a PLSR model produced better results that an ANN model, because the ANN model was 

unable to identify the unique contribution of selected variables to the dependent variable.  In our 

study, data was divided randomly into training (70%) and validation (30%) sets. When we created 

different PCA and PLSR models with these different sets, the sampled data fit well, where the R2 

of the training data was high, but this all created an overfitting model. Also the root mean square 

deviation (RSME) was high in all the models created. This means that the generalization error was 

high, indicating that the model may not provide much information about the predictive ability 

towards new data. Moreover, the top view in kale and side view for both models overfitted, 

indicating that these models were accurate, however, the validation data was not and therefore 

needing further analysis in order for these models to have value in detecting Cd stress in these 

crops.
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Figure 3.8 8 PCA and PLS models developed using basil and kale plants subject to soil Cd stress and images collected top view of 

plants. 
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Figure 3.8 continued 
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Figure 3.9 PCA and PLS models developed using basil and kale plants subject to soil Cd stress and images collected side view of plants 
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Figure 3.9 continued 
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3.5 Conclusions  

The PCA and PLS models constructed using hyperspectral images of kale and basil were 

able to detect plant stress due to Cd toxicity, but they were not effective in predicting Cd 

concentrations in the leaves of these plants. Cross-validation statistic procedures and normalization 

of the data increased the accuracy of these models to a certain degree and helped reduce the signal-

to-noise ratio data, but they still over fit the data. Consequently, we conclude that PCA and PLS 

were not useful for predicting Cd concentrations in the foliage of these two leafy green crops. In 

contrast, the ANN model, which often has greater accuracy in predicting data because in combines 

several sigmoid functions, was able to predict, at an accuracy of more 80%, whether these leafy 

greens had Cd levels that were considered safe and unsafe by the FAO. This indicates that this 

model could be incredibly helpful in identifying food lots that could be contaminated, and could 

be useful in research studies aimed at reducing soil bioavailability and uptake of Cd. However, 

since these trials were conducted under highly controlled conditions using a small number of 

samples, further studies conducted under real world conditions and with larger sample sizes are 

needed to validate this assertion and further improve the predictive capacity of this model 
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 CONCLUSION  

Cadmium is a toxic element that is detrimental to the health of soil, plants and humans. New 

methods for detecting and quantifying Cd bioavailability and uptake into edible plant tissues is 

critical to resolving these challenges. Not all plants display visible symptoms of Cd stress, and 

current methods for quantifying Cd concentrations in plant tissues involve a long process of 

destruction and wet chemistry, which is expensive and time-consuming.  

The research conducted as part of this thesis project demonstrate that hyperspectral 

imaging has potential for use in detecting subtle changes in plant stress caused by Cd, as well as 

potential Cd stabilization processes in soil (see chapter 2). Fourteen different indices generated 

using the HSI system were evaluated to determine which might be most helpful for detecting Cd 

stress in kale and basil. Results of this study confirmed that not all of them were useful, though 

NDVI was able to detect Cd stress in basil and CI_RE was able to detect Cd stress both basil and 

kale, indicating that these might be the most helpful indices for use in these crops. HMSSI, 

developed explicitly for heavy metal detection, was able to detect Cd stress in basil, but only when 

images were taken from the top view. Results for the red edge indices: MSRE_RE and NDVI_RE, 

were also only able to detect stress when images were taken from the side view. Therefore, we 

conclude that the location where images are taken is critical for the accuracy of hyperspectral 

vegetative indices in detecting Cd stress in these two leafy green crops. The top view images had 

better results than images collected from the side view, so future efforts to optimize this 

methodology should rely on images collected from the top view. In addition, all of the indices only 

detected differences in plant stress responses when plants were young, indicating that future efforts 

to optimize this technology should be conducted early. 

The second goal of the study described in this thesis was to determine whether 

mathematical models generated using the HSI images could be used to predict Cd concentrations 

in the leaves of kale and basil at harvest. Three mathematical models were evaluated, though only 

one, the Artificial Neural Network (ANN) model, was successful in predicting Cd concentrations. 

Interestingly, the model appeared to be able to predict whether kale and basil leaves contained Cd 

that exceeded values considered by the FAO (0.28 mg/kg of fresh weight) as safe for human 

consumption. This indicates that HSI technologies could be very useful in future studies aimed at 

Cd remediation efforts.  
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 Effective ways to immobilize Cd in soil is critical for preventing the uptake of this element 

on contaminated soils. In many places of the world, moving production to non-contaminated areas 

is not practical. Previous studies have provided evidence that some types of biochar can 

immobilize soil Cd and prevent uptake in crops. In these studies, we investigated whether a local 

biochar amendment derived from hardwood trees could reduce Cd uptake in kale and basil leafy 

greens, but results indicated that they rate we investigated was not effective. However, we did 

observe subtle differences in basil plants with respect to the disappearance of a stress response 

phenomenon, which we attribute to a phenomenon known as hormesis, indicating that the 

amendment could have some benefits, perhaps if higher rates were applied. In addition, we did 

observe that some vegetative indices (PSRI and ARI) were able to distinguish differences in plants 

amended with biochar and plants that were not. Interestingly, PSRI and ARI both quantify 

differences in secondary metabolites, which are often produced by plants under stress and can be 

helpful in mitigating challenges associated with stress, such as making plants more resistant to 

pathogens. Previous studies have demonstrated that biochar can make plants more resistant to 

pathogens, so it would be interesting to test these relationships in future studies. 

While the studies described in this thesis were conducted using leafy green crops, the long-

term goal of this project is to address the issue of excess Cd in cacao cropping systems in 

Colombia. Cacao plants are much larger and perennial, which makes them difficult to work with 

in a controlled chamber like what was used in this study. However, given that we observed most 

plant responses occurred when plants were young, we suspect that it may be possible to conduct 

these assays on young cacao plants in future research projects. A small experiment was conducted 

to see if the system could work on cacao plants and preliminary results indicate that it will be 

possible to generate HSI images on these plants (Figure 4.1) In the meantime, it may be possible 

to grow sensitive leafy green crops on cacao farms as indicator crops to detect high Cd levels, or 

determine whether remediation strategies are working. In addition, it may be possible to use 

hyperaccumulator leafy greens like kale, as part of a phytoremediation strategy on cacao farms. In 

either case, after further optimization of the system, results of these studies indicate that HSI could 

be used in these approaches. However, this would also require extensive testing in the field to 

validate this approach, as in this study, we were able to eliminate other potential plant stresses 

caused by factors such as nutrients, water or pest pressure, which could also affect the indices 

evaluated in this study. 
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Figure 4.1 NDVI color maps and reflectance graphs of cacao plants grown in soil subject to 0 or 10 ppm soil Cd. 
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