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ABSTRACT

Price, Edward F. III Ph.D., Purdue University, August 2020. On the Defining Ideals
of Rees Rings for Determinantal and Pfaffian Ideals of Generic Height. Major
Professor: Bernd Ulrich.

This dissertation is based on joint work with Monte Cooper and is broken into two

main parts, both of which study the defining ideals of the Rees rings of determinantal

and Pfaffian ideals of generic height. In both parts, we attempt to place degree bounds

on the defining equations.

The first part of the dissertation consists of Chapters 3 to 5. Let R = K[x1, . . . , xd]

be a standard graded polynomial ring over a field K, and let I be a homogeneous R-

ideal generated by s elements. Then there exists a polynomial ring S = R[T1, . . . , Ts],

which is also equal to K[x1, . . . , xd, T1, . . . , Ts], of which the defining ideal of R(I) is

an ideal. The polynomial ring S comes equipped with a natural bigrading given by

deg xi = (1, 0) and deg Tj = (0, 1). Here, we attempt to use specialization techniques

to place bounds on the x-degrees (first component of the bidegrees) of the defining

equations, i.e., the minimal generators of the defining ideal of R(I). We obtain degree

bounds by using known results in the generic case and specializing. The key tool are

the methods developed by Kustin, Polini, and Ulrich in [45] to obtain degree bounds

from approximate resolutions. We recover known degree bounds for ideals of maximal

minors and submaximal Pfaffians of an alternating matrix. Additionally, we obtain

x-degree bounds for sufficiently large T -degrees in other cases of determinantal ideals

of a matrix and Pfaffian ideals of an alternating matrix. We are unable to obtain

degree bounds for determinantal ideals of symmetric matrices due to a lack of results

in the generic case; however, we develop the tools necessary to obtain degree bounds

once similar results are proven for generic symmetric matrices.
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The second part of this dissertation is Chapter 6, where we attempt to find a

bound on the T -degrees of the defining equations of R(I) when I is a nonlinearly

presented homogeneous perfect Gorenstein ideal of grade three having second analytic

deviation one that is of linear type on the punctured spectrum. We restrict to the

case where R(I) is not Cohen-Macaulay. This is a natural next step following the

work of Morey, Johnson, and Kustin-Polini-Ulrich in [54], [39], and [48], respectively.

Based on extensive computation in Macaulay2, we give a conjecture for the relation

type of I and provide some evidence for the conjecture. In an attempt to prove the

conjecture, we obtain results about the defining ideals of general fibers of rational

maps, which may be of independent interest. We end with some examples where the

bidegrees of the defining equations exhibit unusual behavior.
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1. INTRODUCTION

Let R be a Noetherian ring and I be an R-ideal. The Rees ring of I, denoted R(I), is

the subring R[It] ⊆ R[t] and is isomorphic to
⊕∞

k=0 I
k. Rees rings are of interest for

a variety of reasons. For example, since R(I) ∼=
⊕k

i=0 I
k, R(I) encodes information

about all powers of the ideal I. Many invariants of an ideal, such as multiplicities,

depend on the asymptotic properties of the powers Ik. As such, studying the Rees

ring of I can give insight into these invariants. Additionally, Rees rings are useful

in the study of the integral closure of ideals. In particular, an R-ideal I is integrally

closed in R if and only if R(I) = R[It] is integrally closed in R[t] as a ring. Although

there are algorithms to compute the integral closure of special classes of ideals, such as

monomial ideals (see [30, 1.4.3] for monomial ideals and, more generally, [60, Chapter

15]), the only known general method to compute the integral closure of an ideal I is

to compute the integral closure of the Rees ring R(I).

Rees rings also play an important role in algebraic geometry. One application of

Rees rings is in resolution of singularities. Let V be a variety and W be a subvariety.

One can perform the process of blowing up V along W . This process “pulls apart”

V along W . The blowup projects onto the original variety V . After a finite number

of blowups, one may achieve a nonsingular variety which projects onto the original

variety V . For more details, see [27, pp. 28-30] or [21, Section 5.2]. To make this

more precise, let K be a field and V be a variety in An
K . Suppose W is a subvariety

of V . Let R be the coordinate ring of V and I = I(W ) in R. Then R(I) is the

homogeneous coordinate ring of the blowup of V along W .

On the other hand, suppose R = K[x1, . . . , xd] is a standard graded polynomial

ring over the field K and

Φ : Pd−1
K Ps−1

K
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is a rational map between projective spaces defined by

[a1 : · · · : ad] 7→ [f1(a1, . . . , ad) : · · · : fs(a1, . . . , ad)]

for some homogeneous polynomials f1, . . . , fs in R of the same degree D. Let I =

(f1, . . . , fs). Then R(I) is the bihomogeneous coordinate ring of the graph of Φ. As

such, the study of rational maps is aided by the study of Rees rings.

In most of the examples above, a great deal of insight can come from under-

standing the implicit equations defining the Rees ring R(I). Let R be a Noethe-

rian ring and I = (f1, . . . , fs) be an R-ideal. The definition of R(I) as the subring

R[It] ⊆ R[t] gives a parametric definition of R(I). However, there exists a poly-

nomial ring S = R[T1, . . . , Ts] and a natural R-algebra epimorphism π : S → R(I)

with Ti 7→ fit. Let J denote the kernel of π. A generating set of J is a set of im-

plicit equations defining R(I). Often, implicit defining equations provide a great deal

more insight than parametric defining equations. For instance, with implicit defining

equations, it is much easier to detect if a point lives on the subvariety in question.

Additionally, determining ring-theoretic properties and invariants is much easier with

implicit defining equations than with parametric equations. Further, having a defin-

ing ideal, rather than a defining subring, allows the use of Gröbner basis techniques

for computations. Indeed, there has even been use in studying Rees rings from the

field of geometric modeling and image processing, specifically from the aspect of im-

plicitization. See, for example, [18].

A considerable amount of work has been done to study the defining equations of

certain types of determinantal and Pfaffian ideals.

In particular, many have contributed to the study of the defining equations in the

setting of perfect ideals of grade two. Much can be said about such ideals thanks

to the Hilbert-Burch structure theorem, which characterizes these ideals as the ideal

generated by the maximal minors of an n × (n+ 1) matrix [11]. Contributions to

the study of defining equations in the case of perfect ideals of grade two include

Herzog-Simis-Vasconcelos [28], Morey [54], Morey-Ulrich [55], Cox-Hoffman-Wang

[17], Hong-Simis-Vasconcelos [32], Busé [13], Kustin-Polini-Ulrich [44], Cortadellas
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Beńıtez-D’Andrea [14] and [15], Lan Nguyen [56], Madsen [51], Boswell-Mukundan

[5], Kustin-Polini-Ulrich [47], and Kim-Mukundan [42].

Similarly, some work has been done to study the defining equations in the case

of perfect Gorenstein ideals of grade three. Indeed, the Buchsbaum-Eisenbud struc-

ture theorem characterizes all such ideals as the ideal generated by the submaximal

Pfaffians of an alternating matrix of odd size [10]. Contributions to the study of

the defining equations in the case of perfect Gorenstein ideals of grade three include

Morey [54], Johnson [39], and Kustin-Polini-Ulrich [48].

There has been some work to study the defining equations in the settings of other

types of determinantal ideals as well. In particular, in [6], Bruns, Conca, and Varbaro

study the defining equations ofR(I) in the setting of non-maximal minors of a generic

matrix and make a conjecture on the degrees of the defining equations. In [7], Bruns,

Conca, and Varbaro study the defining equations of R(I) in the setting of maximal

minors of a matrix with linear entries. Additionally, in [33], Huang, Perlman, Polini,

Raicu, and Sammartano prove parts of the conjecture of [6] in the case of the 2 × 2

minors of a generic matrix over the field of complex numbers C.

This dissertation is based on joint work with Monte Cooper. The aim of this work

is to study the defining equations of R(I) when I is a determinantal ideal or Pfaffian

ideal of generic height. The main techniques are the use of specialization and ap-

proximate resolutions. Eisenbud and Huneke developed the theory of specialization

of Rees rings in [22]; however, we do not study the specialization of Rees rings in and

of itself. Rather, given an ideal J and a specialization I of J , we approximate R(I)

using the specialization ofR(J), particularly in the case where J is a determinantal or

Pfaffian ideal of a generic matrix. The tools we employ related to approximate reso-

lutions come from the work of Kustin, Polini, and Ulrich in [45, 3.8, 4.8]. Specifically,

we use approximate resolutions of the specialization of powers of determinantal and

Pfaffian ideals of generic matrices to place degree bounds on the defining equations

of the Rees ring R(I), where I is a determinantal or Pfaffian ideal of a matrix which

is sufficiently “close”to being generic.
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This dissertation is organized in the following manner.

Chapter 2 introduces terminology, notation, and preliminary results necessary for

the work done in the subsequent chapters. We begin in Section 2.1 with gradings and

bigradings, including terminology and notation for the generation and concentration

degrees of graded modules. Next, in Section 2.2, we define the Rees ring, symmetric

algebra, and special fiber ring of an ideal and discuss the relationships between them.

We also discuss how the defining equations of each of these rings relate to each other.

Additionally, the gradings and bigrading on these rings are made explicit. Section 2.3

deals primarily with determinantal and Pfaffian ideals. Some important properties

of determinants and Pfaffians are discussed. We also discuss the height bounds of

determinantal ideals for ordinary and symmetric matrices as well as for the Pfaffian

ideals of alternating matrices, and define generic height in each case. We end the

chapter with Section 2.4, a discussion on finite free complexes. In particular, we

mention the Buchsbaum-Eisenbud criterion for a finite complex of finite rank free

modules to be acyclic. We also make explicit the grading on resolutions of graded

modules and define the Castelnuovo-Mumford regularity.

In Chapter 3, we discuss key properties of determinantal and Pfaffian ideals of

generic matrices. The chapter is split into three main sections: Section 3.1 develops

results for generic ordinary matrices, Section 3.2 does the same for generic symmetric

matrices, and Section 3.3 develops these results for generic alternating matrices. All

sections cover the same basic results but in the explicit context of the appropriate type

of matrix. In each section, we compute the analytic spread for such ideals, depending

on the size of the minors or Pfaffians. We also compute the maximum of the projective

dimensions of powers of these ideals over a polynomial ring. We end with proving

the containment lemmas, Lemmas 3.1.5, 3.2.5 and 3.3.6. Both the computations of

the maximum of the projective dimensions and the containment lemmas are crucial

tools in Chapter 4. The containment lemmas, in particular, allow us to control the

specializations of resolutions of powers by knowing sufficient information about the

matrices themselves.
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The goal of Chapter 4 is to develop the specialization techniques and use approxi-

mate resolutions to show how degree bounds can be placed on the defining equations

of the Rees ring in the case of determinantal and Pfaffian ideals of generic height.

We prove Lemma 4.1.1 which shows under which circumstances specializations of

resolutions of powers of a generic determinantal ideal are themselves resolutions or

approximate resolutions of the specialization of the powers. Additionally, part (c) of

Lemma 4.1.1 gives a way to “approximate” the defining equations of R(I) from the

defining equations of R(J) (where I is a specialization of J) and from knowing how

“close” R(I) is to being a specialization of R(J). In particular, it provides an exact

sequence where the defining ideal of R(I) fits between the specialization of the defin-

ing ideal of R(J) and the kernel of the natural map from the specialization of R(J) to

R(I). We then employ the techniques of approximate resolutions to place conditions

on I in order to obtain degree bounds on the kernel of the map from the specialization

of R(J) to R(I). Finally, we use the containment lemmas and projective dimenions

computed in Chapter 3 to apply these specialization results to determinantal and

Pfaffian ideals of generic height.

The results of Chapter 5 apply the tools of Chapter 4 to obtain specific degree

bounds on the defining equations of R(I) where I is a determinantal or Pfaffian ideal

of generic height. This chapter is broken into three main sections.

Section 5.1 proves degree bounds in the case of ideals of minors of an ordinary

matrix. Our most complete and sharpest results in this section are given in Theo-

rem 5.1.3, due to knowing explicit minimal free resolutions of the powers of the ideal

of maximal minors of a generic matrix, thanks to the work of Akin, Buchsbaum,

and Weyman in [1]. For the rest of the section, we are unable to use explicit free

resolutions of the powers of determinantal ideals of a matrix, since they are generally

unknown. Therefore, we rely on the computations of the Castelnuovo-Mumford reg-

ularity by Raicu in [59], in the case of characteristic zero. We obtain complete degree

bounds for the case of 2× 2 minors of a matrix in Theorem 5.1.6 since Raicu has the

regularity for all powers of the ideal of 2 × 2 minors of a generic matrix. We obtain
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partial degree bounds in the case of submaximal minors of a square matrix in Theo-

rem 5.1.9 and for arbitrary size minors in Theorem 5.1.11. We obtain partial results

since Raicu has the regularity for sufficiently high powers of such ideals. Throughout

the section, we analyze the degree bounds to state when I is of linear type or fiber

type.

As far as we are aware, neither minimal free resolutions nor the Castelnuovo-

Mumford regularity have been computed for the case of the ideal of minors of a

symmetric matrix. As such, Section 5.2 consists of only a minor result which can

be used to prove degree bounds in the future once resolutions or the regularity have

been computed.

In Section 5.3, we obtain degree bounds in the case of ideals of Pfaffians of an

alternating matrix. Our most complete and sharpest result is Theorem 5.3.4, which

treats the case of the submaximal Pfaffians of an alternating matrix of odd size, i.e.,

the perfect Gorenstein ideals of grade three. The sharpness and completeness of this

result is due to the construction of explicit resolutions of the powers of such ideals

in the generic case by Kustin and Ulrich in [49]. For the rest of the section, we use

computations of Perlman in [58] of the Castelnuovo-Mumford regularity of the powers

of Pfaffian ideals of a generic alternating matrix since explicit resolutions are unknown

in these cases. We obtain partial degree bounds for the cases of (n− 2) × (n− 2)

Pfaffians in Theorem 5.3.7, 4 × 4 Pfaffians in Theorem 5.3.9, and of general size

Pfaffians in Theorem 5.3.10. Throughout the section, we analyze the degree bounds

to state when I is of linear type or fiber type.

The final chapter, Chapter 6, discusses some results concerning nonlinearly pre-

sented perfect homogeneous Gorenstein ideals of grade three having second analytic

deviation one that are of linear type on the punctured spectrum. We provide a conjec-

ture for the relation type of such ideals in Conjecture 6.2.5. Inspired by the conjecture,

in Section 6.3, we introduce fiber row ideals and morphism fiber ideals to study the

fibers of rational maps. Additionally, we prove Theorem 6.3.7 which gives new in-

formation about the defining ideals of generic fibers of rational maps where the base
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locus consists of finitely many points. Finally, we end with Examples 6.4.1 and 6.4.2

which demonstrate unusual behavior for the bidegrees of the defining equations. In

particular, the x-degree can increase as the T -degree increases.



8

2. PRELIMINARIES

2.1 Graded Rings and Modules

2.1.1 Gradings

Definition 2.1.1 Let R be a ring with a decomposition R =
⊕

i∈ZRi into Abelian

groups so that for each i and j in Z, RiRj ⊆ Ri+j. We call R a graded ring. The

Abelian groups Ri are called the graded components of R. An element f ∈ R is said

to be homogeneous of degree i if f ∈ Ri. If R is a graded ring, then R0 is a subring of

R. If Ri = 0 for i < 0, we say that R is nonnegatively graded. If R is nonnegatively

graded and is generated in degree 1 as an R0-algebra, we say that R is standard graded.

Suppose M is an R-module with a decomposition M =
⊕

i∈ZMi into Abelian

groups so that for each i and j in Z, RiMj ⊆ Mi+j. Then M is called a graded R-

module. The Abelian groups Mi are R0-modules and are called the graded components

of M . An element f ∈ M is said to be homogeneous of degree i if f ∈ Mi. An

R-submodule N of M is a graded submodule of M if N is a graded R-module with

Ni ⊆Mi for all i ∈ Z.

An R-ideal I is a homogeneous ideal if I is a graded R-submodule of R. An R-

ideal m is a maximal homogeneous ideal of R if m maximal with respect to being a

proper homogeneous ideal.

Let M and N be graded R-modules. An R-linear map f : M → N is said to be

homogeneous if f(Mi) ⊆ Ni for all i ∈ Z.

We will sometimes use the notation [M ]i to denote the ith graded component of

M . This is mainly done in situations where the notation for the module is a bit more

complicated, in order to make it clear that we are taking a graded component. There

are some useful consequences of these definitions.
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Observation 2.1.2 Let R be a graded ring. An R-ideal I is homogeneous if and only

if I has a homogeneous generating set.

If f : M → N is a homogeneous R-linear map of graded R-modules, then ker f

and Im f are graded R-modules.

Homogeneous R-linear maps are extremely useful. However, important R-linear

maps may be slightly off from being homogeneous. For example, one might have an

R-linear map f : M → N so that, for some j ∈ Z and for every i ∈ Z, f(Mi) ⊆ Ni−j.

In order to force f to be a homogeneous map, we may regrade M or N .

Definition 2.1.3 Let R be a graded ring, M be a graded R-module, and j ∈ Z. The

jth twist of M , denoted M(j), is the regrading of M so that [M(j)]i = Mi+j. M(j)

is a graded R-module.

If f : M → N is an R-linear map of graded R-modules as described above, i.e.,

such that f(Mi) ⊆ Ni−j, then f : M(j)→ N is homogeneous.

Let R be a Noetherian graded ring. If R has a unique maximal homogeneous ideal

m which is an actual maximal ideal of R, then (R,m) behaves like a Noetherian local

ring when restricting consideration to homogeneous R-ideals and graded R-modules.

In such a setting, there are graded versions of Nakayama’s Lemma, the Auslander-

Buchsbaum Formula, etc. See [8] for more details.

One particular setting of interest is when R is a nonnegatively graded Noetherian

ring with R0 local. In such a setting, R has a unique maximal homogeneous ideal

which is an actual maximal ideal of R. More specifically, let m0 denote the unique

maximal ideal of R0, and define R+ =
⊕∞

i=1Ri. Then the unique homogeneous

maximal ideal of R is m0 +R+. A polynomial ring R = K[x1, . . . , xd] over a field K is

an example of such a ring, provided that we give each variable a nonnegative degree,

with unique homogeneous maximal ideal (x1, . . . , xd).
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2.1.2 Generation and Concentration Degrees

We often care about the maximal degrees in which a module is generated or in

which a module is concentrated. This leads to the following defintions.

Definition 2.1.4 Let R be a Noetherian graded ring and M a graded R-module.

b0(M) = inf

{
p

∣∣∣∣∣R
(⊕

j≤p

Mj

)
= M

}
.

If the infemum is a minimum, the number b0(M) is the largest degree of a generator

in a minimal homogeneous generating set of M . In general, M is generated in degrees

less than or equal to b0(M). Note that if M = 0, then for all p ∈ Z, we have

R

(⊕
j≤p

Mj

)
= M . Therefore, b0(0) = inf Z = −∞.

Definition 2.1.5 Let R be a Noetherian graded ring and M a graded R-module.

topdeg(M) = sup{j |Mj 6= 0} .

The number topdeg(M) is called the top degree of M .

If the supremum is a maximum, the number topdeg(M) is the largest degree in

which M is nonzero. In general, M is concentrated in degrees less than or equal

to topdeg(M). Note that if M = 0, then {j |Mj 6= 0} = ∅. Therefore, we have

topdeg(0) = sup∅ = −∞.

Observation 2.1.6 For any graded R-module M , b0(M) ≤ topdeg(M).

2.1.3 Bigradrings

We will also often deal with bigraded rings and modules.

Definition 2.1.7 Let R be a ring with a decomposition R =
⊕

(i,j)∈Z2 R(i,j) into

Abelian groups so that for each (i, j) and (i′, j′) in Z2, R(i,j)R(i′,j′) ⊆ R(i+i′,j+j′). We
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call R a bigraded ring. The Abelian groups R(i,j) are called the bigraded components

of R. An element f ∈ R is said to be bihomogeneous of degree (or bidegree) (i, j) if

f ∈ R(i,j). If R is a bigraded ring, then R(0,0) is a subring of R. If R(i,j) = 0 whenever

i < 0 or j < 0, we say that R is nonnegatively bigraded. If R is nonnegatively bigraded

and is generated in bidegrees (1, 0) and (0, 1) as an R(0,0)-algebra, we say that R is

standard bigraded.

Suppose M is an R-module with a decomposition M =
⊕

(i,j)∈Z2 M(i,j) into Abelian

groups so that for each (i, j) and (i′, j′) in Z2, R(i,j)M(i′,j′) ⊆ M(i+i′,j+j′). Then M

is called a bigraded R-module. The Abelian groups M(i,j) are R(0,0)-modules and are

called the bigraded components of M . An element f ∈M is said to be bihomogeneous

of degree (or bidegree) (i, j) if f ∈ M(i,j). An R-submodule N of M is a bigraded

submodule of M if N is a bigraded R-module with N(i,j) ⊆M(i,j) for all (i, j) ∈ Z2.

An R-ideal I is a bihomogeneous ideal if I is a bigraded R-submodule of R.

Let M and N be bigraded R-modules. An R-linear map f : M → N is said to be

bihomogeneous if f
(
M(i,j)

)
⊆ N(i,j) for all (i, j) ∈ Z2.

Let M be a bigraded R-module. We often use the notation M(∗,j) =
⊕

i∈ZM(i,j)

and M(i,∗) =
⊕

j∈ZM(i,j).

2.2 Blowup Algebras and Defining Equations

2.2.1 The Rees Ring and the Symmetric Algebra

Definition 2.2.1 Let R be a Noetherian ring and I be an R-ideal. The Rees ring of

I, denoted R(I), is the subring R[It] ⊆ R[t].

We note that R(I) ∼=
⊕∞

k=0 I
k. From this, we see that R(I) has a natural grading,

even if R is not graded. The case where R is graded will be discussed in Subsec-

tion 2.2.2.

Since R is Noetherian, I is finitely generated. For instance, I = (f1, . . . , fs) for

some nonnegative integer s. Hence, R(I) = R[f1t, . . . , fst]. We may then define

the polynomial ring S = R[T1, . . . , Ts] over R. There exists a natural homogeneous
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R-algebra epimorphism π : S → R(I) given by Ti 7→ fit. Let J = ker π. Then

R(I) ∼= S/J . Because of this, we call J the defining ideal of R(I). An element of S

which is part of a minimal generating set of J is called a defining equation of R(I).

The defining equations of R(I) are the implicit equations defining R(I).

Definition 2.2.2 Let R be a Noetherian ring and M = Rf1 + . . .+Rfs be a finitely

generated R-module. Define S = R[T1, . . . , Ts]. Suppose ϕ is a presentation matrix

of M ; that is, the sequence

Rr Rs M 0
ϕ [f1,...,fs]

is exact. Consider the vector [`1, . . . , `s] = [T1, . . . , Ts]ϕ with entries in S. Let L =

(`1, . . . , `s). The symmetric algebra of M , denoted Sym(M), is the quotient ring S/L.

The elements `1, . . . , `s are linear forms in S. Therefore, Sym(M) inherits a

natural grading from S. Typically, we consider the symmetric algebra of an ideal

I. A useful property of the symmetric algebra is how it respects base change.

Remark 2.2.3 If S is an R-algebra and M is an R-module, then SymR(M)⊗R S ∼=

SymS(M ⊗R S).

For more details, see, for instance, [21, Proposition A.A2.b].

Observation 2.2.4 Adopt the setting of Definition 2.2.2 and assume that M = I is

an R-ideal. Then the S-ideal L is contained in J . Therefore, there exists a natural R-

algebra epimorphism α : Sym(I)→ R(I) induced by the identity on S. Let A = kerα.

We will also use the notation A(I).

Proof Apply the homomorphism π : S → R(I) to the vector [`1, . . . , `s].

π([`1, . . . , `s]) = π([T1, . . . , Ts])ϕ = [f1, . . . , fs]ϕ = 0.
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It is not common practice to denote A as A(I); however, throughout this disser-

tation, we consider Rees rings of multiple ideals simultaneously. The notation A(I)

is designed to help keep the ideal in question clear.

We also note that the epimorphism α is homogeneous; thus, A is homogeneous as

well.

Observation 2.2.5 Adopt the setting of Observation 2.2.4. Then A = J /L.

Definition 2.2.6 We use the notation Symk(I) to mean [Sym(I)]k. In other words,

Symk(I) is the degree k component of Sym(I). Similarly, we use the notation Ak(I)

to mean [A(I)]k. In other words, Ak(I) is the degree k component of A(I).

Observation 2.2.7 The homomorphism α : Sym(I) → R(I) is an isomorphism

when restricted to the degree 1 components. Therefore, J1 = L and A1(I) = 0.

Since it is easy to compute the linear defining equations of J (the generators of

L) through the use of a presentation matrix of I, the problem of finding the defining

equations of R(I) reduces to finding a minimal generating set of A.

2.2.2 The Bigrading on the Rees Ring and Symmetric Algebra

Most of the work which has been done to study the defining equations of R(I) are

in a setting where R is a polynomial ring over a field and I is a homogeneous ideal.

We can then use the grading on R to place bigradings on the rings R(I) and Sym(I).

We have to be careful how we define these bigradings, however.

Definition 2.2.8 Let R be a nonnegatively graded Noetherian ring, and suppose I =

(f1, . . . , fs) is a homogeneous R-ideal with deg fi = D for all i satisfying 1 ≤ i ≤ s.

We give the ring S = R[T1, . . . , Ts] the bigrading so that S(i,0) = Ri for all i ∈ Z

and deg Ti = (0, 1) for each i satisfying 1 ≤ i ≤ s.

In order to make the natural epimorphism π : S → R(I) bihomogeneous, we es-

tablish a bigrading on R[t] given by R[t](i,0) = Ri for all i ∈ Z and deg t = (−D, 1).
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The bigrading on R(I) is induced by the bigrading on R[t]. If R is standard graded,

then R(I) is standard bigraded. The isomorphism R(I) ∼=
⊕∞

k=0 I
k(kD) is bihomoge-

neous. Moreover, π : S → R(I) is bihomogeneous. Therefore, J is a bihomogeneous

S-ideal.

In order to make the natural epimorphism α : Sym(I)→ R(I) bihomogeneous, we

take the ring Sym(I(D)) instead. Since α is bihomogeneous, A is a bihomogeneous

ideal. If R is standard graded, then Sym(I(D)) is standard bigraded.

Whenever we discuss R(I), Sym(I(D)) ,J ,L, or A in the setting where R is

nonnegatively graded, we use the bigradings in the definition above.

The remarks made above concerning the relationships between J , L, and A cor-

respond to relationships in the bigraded setting as well. For instance, it is the case

that J(∗,1) = L. Therefore, A1(I) = A(∗,1) = 0.

Throughout this dissertation, we are mainly concerned with obtaining degree

bounds on A with respect to the grading on R. As such, in the setting where R

is nonnegatively graded, we use the following definitions.

Definition 2.2.9 Let R be a nonnegatively graded Noetherian ring and I a homoge-

neous R-ideal generated by forms of the same degree D.

b0(A) = inf

{
p

∣∣∣∣∣ Sym(I(D))

(⊕
j≤p

A(j,∗)

)
= A

}
.

b0(Ak(I)) = inf

{
p

∣∣∣∣∣ Sym(I(D))

(⊕
j≤p

A(j,k)

)
= Ak(I)

}
.

Definition 2.2.10 Let R be a nonnegatively graded Noetherian ring and I a homo-

geneous R-ideal generated by forms of the same degree D.

topdeg(A) = sup
{
j
∣∣A(j,∗) 6= 0

}
.

topdeg(Ak(I)) = sup
{
j
∣∣A(j,k) 6= 0

}
.
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2.2.3 Ideals of Linear Type

An important class of ideals in the study of Rees rings are those of linear type.

Definition 2.2.11 The ideal I is said to be of linear type if α : Sym(I(D))→ R(I)

is an isomorphism.

The name comes from the fact that when α is an isomorphism, J is generated

only by forms which are linear in the T ’s.

Observation 2.2.12 Let R be a nonnegatively graded Noetherian ring, and consider

the R-ideal I = (f1, . . . , fs) so that deg fi = D for each i satisfying 1 ≤ i ≤ s. The

following are equvialent.

a. I is of linear type.

b. J = L.

c. A = 0.

d. topdeg(A) = −∞.

e. b0(A) = −∞.

Proof The equivalences of (a), (b), and (c) are clear from the definitions. Part

(c) implies part (d) by the definition of top degree. Part (d) implies part (e) since

b0(A) ≤ topdeg(A) is always true. All that remains to show is that part (e) implies

part (c). Now, b0(A) = −∞ implies that

Sym(I(D))

(⊕
j≤p−1

A(j,∗)

)
= A

for all p ∈ Z. Therefore,

Sym(I(D)) (0) = A,

giving A = 0.
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2.2.4 The Special Fiber Ring and Ideals of Fiber Type

Another ring of interest, particularly in algebraic geometry, is the special fiber

ring of an ideal.

Definition 2.2.13 Let K be a field and R = K[x1, . . . , xd] be a standard graded

polynomial ring over K. Let m = (x1, . . . , xd) be the unique maximal homogeneous

ideal of R. Suppose I = (f1, . . . , fs) is a homogeneous R-ideal with deg fi = D for

each i satisfying 1 ≤ i ≤ s. The special fiber ring of I, denoted F(I), is given by

R(I)⊗R R/m.

Remark 2.2.14 Let K be a field and R = K[x1, . . . , xd] be a standard graded poly-

nomial ring over K. Let m = (x1, . . . , xd) be the unique maximal homogeneous ideal

of R. Suppose I = (f1, . . . , fs) is a homogeneous R-ideal with deg fi = D for each i

satisfying 1 ≤ i ≤ s.

Consider the rational map

Φ : Pd−1
K Ps−1

K

with base locus V (I) defined by

[a1 : · · · : ad] 7→ [f1(a1, . . . , ad) : · · · : fs(a1, . . . , ad)] .

Let X denote the closed image of Φ, T = K[T1, . . . , Ts] be the homogeneous coordinate

ring of Ps−1
K , and I(X) denote the defining ideal of X in T .

Then F(I) is the homogeneous coordinate ring of X. In other words, F(I) ∼=

T /I(X).

See, for instance, [21, 12.5].

Remark 2.2.15 Adopt the assumptions of Remark 2.2.14. The Rees ring R(I) is

the bihomogeneous coordinate ring of the graph of Φ. In particular, I(X)S ⊆ J .
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A typical explanation of I(X)S ⊆ J is to consider the natural morphisms of

projective varieties

Pd−1
K × Ps−1

K graph Φ

Ps−1
K Im Φ = X

and use the correspondence with bihomogeneous K-algebra homomorphisms to obtain

the commutative diagram below.

S R(I)

T F(I) ∼= T /I(X)

π

π|T

Indeed, the above commutative diagram gives us something much stronger: J(0,∗) =

I(X)S.

Definition 2.2.16 Adopt the setting of Remark 2.2.14. The ideal I is said to be of

fiber type if J = L+ I(X)S.

Observation 2.2.17 Adopt the setting of Remark 2.2.14. The following are equiva-

lent.

a. I is of fiber type.

b. A = I(X) Sym(I(D))

c. J is generated in bidegrees (∗, 1) and (0, ∗).

d. b0(A) ≤ 0.

Proof The equivalence of (a), (b), and (c) follow from the facts previously discussed

about the bigrading of J and the definition of fiber type.

Since L = J(∗,1) and A = J /L, condition (c) holds if and only if A is generated

in bidegrees (0, ∗) and possibly A = 0 (if J = L). Recall our definition of b0(A) in

the bigraded setting from Definition 2.2.9. Then A is generated in bidegrees (0, ∗) if

and only if
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b0(A) = inf

{
p

∣∣∣∣∣ Sym(I(D))

(⊕
j≤p

A(j,∗)

)
= A

}
≤ 0.

2.2.5 Analytic Spread

Definition 2.2.18 Adopt the setting of Remark 2.2.14. We denote dimF(I) as `(I)

and refer to it as the analytic spread of I.

The analytic spread of an ideal has been an important invariant in the study of

reductions of ideals. See, for instance, [57].

Remark 2.2.19 Adopt the setting of Remark 2.2.14.

a. `(I) ≤ min{µ(I) , dimR}.

b. If I is of linear type, then `(I) = µ(I).

c. (Burch [12, Corollary pg 373])

`(I) + inf
{

depthRR/I
k
}
≤ dimR.

d. (Eisenbud-Huneke [22, 3.3]) If R(I) is Cohen-Macaulay and ht I ≥ 1, then

`(I) + inf
{

depthRR/I
k
}

= dimR.

Proof To prove (a), notice that α : SymR(I) � R(I) induces a surjective K-algebra

homomorphism SymR(I)⊗R R/m � F(I). Therefore, `(I) ≤ dim SymR(I)⊗R R/m.

Now, SymR(I) ⊗R R/m ∼= SymR/m(I ⊗R R/m) ∼= (R/m)[T1, . . . , Ts]. Hence, `(I) =

s = µ(I).

Furthermore, one notes that R(I) /IR(I) ⊗R R/m ∼= R(I) ⊗R R/m. Therefore,

`(I) ≤ dimR(I) /IR(I). The ring R(I) /IR(I) is typically known as the associated

graded ring of R with respect to I. It is a well-known fact that dimR(I) /IR(I) =

dimR when I is a proper ideal (see, for instance, [53, 15.7]). Therefore, `(I) ≤ dimR.
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The proof of (b) follows quickly from the proof of (a). If I is of linear type,

then the natural surjection α : Sym(I) � R(I) is an isomorphism. Hence, the

induced map Sym(I) ⊗R R/m � F(I) is an isomorphism. As we have already seen,

dim Sym(I)⊗R R/m = µ(I).

2.3 Determinantal and Pfaffian Ideals

2.3.1 Types of Matrices

Let R be a Noethering ring, and let m and n be integers satisfying 1 ≤ m ≤ n.

We consider three types of matrices with entries in R. Namely, ordinary matrices,

symmetric matrices, and alternating matrices. The use of the term “ordinary matrix”

is mainly to distinguish from the case of symmetric and alternating matrices.

Definition 2.3.1 Let A be a matrix with entries in R. The matrix A is said to be

symmetric if AT = A. The matrix A is said to be skew-symmetric if AT = −A. The

matrix A is said to be alternating if A is skew-symmetric and if all diagonal entries

of A are 0.

We note that symmetric, skew-symmetric, and alternating matrices are all square

matrices.

The distinction between skew-symmetric and alternating matrices depends on

whether 2 is a non-zero-divisor in R. If 2 is a non-zero-divisor in R, then A is skew-

symmetric if and only if A is alternating. Indeed, by the definition of skew-symmetric,

the diagonal element Aii = −Aii; hence, 2Aii = 0. Since 2 is a non-zero-divisor, we

obtain Aii = 0, giving that A is alternating. On the other hand, if 2 is a zero-divisor

in R, then skew-symmetric matrices need not be alternating. For example, over the

ring Z/6Z, the matrix 3 4

2 3


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is skew-symmetric but not alternating. The extreme version of this is when charR =

2. In this situation, for every x ∈ R, x = −x. Hence, skew-symmetric matrices are

equivalent to symmetric matrices.

Many of the important and useful properties of alternating matrices fail for skew-

symmetric matrices when 2 is a zero-divisor in R. This is why we discuss alternating

matrices.

2.3.2 Determinants and Pfaffians

If A is an alternating matrix with entries in R, then det(A) is a perfect square in

R. Indeed, there exists a polynomial in the entries of A, called the Pfaffian of A and

denoted Pf(A), so that Pf(A)2 = det(A). If A is an n× n alternating matrix with n

odd, then Pf(A) = det(A) = 0. Therefore, we typically restrict our attention to the

Pfaffian of an n× n alternating matrix where n is even.

Pfaffians of an alternating matrix share many properties with determinants, as

can be seen from the following two remarks.

Remark 2.3.2 Let R be a ring and A be an n× n matrix with entries in R.

a. There exists a Laplace expansion to compute the determinant. In particular, for

any fixed j with 1 ≤ j ≤ n, one has

det(A) =
n∑
i=1

(−1)i+j Aij detij(A) ,

where detij(A) denotes the determinant of the matrix obtained from A by delet-

ing row i and column j.

b. There exists an n×n matrix Adj(A), called the classical adjoint of A, such that

Adj(A)A = det(A) In.

c. det(Adj(A)) = det(A)n−1
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d. If A is a block diagonal matrix

A =

 B 0

0 C


where B and C are square matrices, then det(A) = det(B) det(C).

Remark 2.3.3 Let R be a ring and A be an n×n alternating matrix with entries in

R, where n is a positive even integer.

a. There exists a Laplace expansion to compute the Pfaffian. In particular, for any

fixed j with 1 ≤ j ≤ n, one has

Pf(A) =
∑
i<j

(−1)i+j−1Aij Pfij(A) +
∑
i>j

(−1)i+j Aij Pfij(A) ,

where Pfij(A) denotes the Pfaffian of the matrix obtained from A by deleting

rows and columns i and j.

b. There exists an n × n alternating matrix PfAdj(A), called the Pfaffian adjoint

of A, such that PfAdj(A)A = Pf(A) In.

c. det(PfAdj(A)) = Pf(A)n−2.

d. If A is a block diagonal matrix

A =

 B 0

0 C


where B and C are alternating matrices, then Pf(A) = Pf(B) Pf(C).

For a more detailed look at Pfaffians, the following references may be consulted:

[24, Appendix D], [10, Section 2], or [3, pp. 140-142].

Parts (a) and (d) of Remark 2.3.3 are standard results about Pfaffians which

can be found in the above references. However, parts (b) and (c) are less common

in the literature. As such, we provide a definition of PfAdj(A). In particular, for

1 ≤ i < j ≤ n, one takes the (i, j)-entry of PfAdj(A) to be (−1)i+j Pfij(A). Part
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(b) then follows from part (a), and part (c) follows from part (b) and the fact that

det(A) = Pf(A)2.

An important consideration is studying the minors of a matrix.

Definition 2.3.4 Let t, m, and n be integers satisfying 1 ≤ t ≤ m ≤ n. Let A

be an m × n matrix with entries in R. Suppose i1, . . . , it and j1, . . . , jt are integers

satisfying 1 ≤ i1 < · · · < it ≤ m and 1 ≤ j1 < · · · < jt ≤ n. There exists a

t × t submatrix of A given by selecting rows i1, . . . , it and columns j1, . . . , jt of A.

Moreover, all t × t submatrices of A can be obtained in this manner. A t × t minor

of A is the determinant of a t× t submatrix.

We now define determinantal ideals.

Definition 2.3.5 Let R be a Noetherian ring and A be an m×n matrix with entries

in R, where 1 ≤ m ≤ n. We let It(A) denote the ideal generated by the t× t minors

of A, provided that 1 ≤ t ≤ m. For t ≤ 0, we define It(A) = R, and for t > m, we

define It(A) = 0.

2.3.3 Height Bounds on Determinantal Ideals

Proposition 2.3.6 (Eagon-Northcott [19, Theorem 3]) Let R be a Noetherian

ring, t, m, and n be integers satisfying 1 ≤ t ≤ m ≤ n, A be an m × n matrix with

entries in R, and I = It(A) a proper ideal. Then ht I ≤ (m− t+ 1) (n− t+ 1).

Proposition 2.3.7 (Eagon [20, Theorem 2]) Let R be a Noetherian ring, t, m,

and n be integers satisfying 1 ≤ t ≤ m ≤ n, let X be a matrix whose entries are

distinct indeterminates over R, S = R[X] the polynomial ring over R generated by

the entries of X, and J = It(X). Then ht J = (m− t+ 1) (n− t+ 1).

The matrix X above is often referred to as a “generic (ordinary) matrix” since

the entries are indeterminates over R. Generic matrices will be defined and studied

in more detail in Chapter 3.
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Definition 2.3.8 Let R be a Noetherian ring, t, m, and n integers satisfying 1 ≤

t ≤ m ≤ n, A an m × n ordinary matrix with entries in R, I = It(A). If ht I =

(m− t+ 1) (n− t+ 1), then we say that I is of generic (ordinary) height.

We now discuss the corresponding results for symmetric matrices.

Proposition 2.3.9 (Józefiak [40, 2.1]) Let R be a Noetherian ring, t and n be

integers satisfying 1 ≤ t ≤ n, A be an n×n symmetric matrix with entries in R, and

I = It(A) a proper ideal. Then ht I ≤
(
n−t+2

2

)
.

Proposition 2.3.10 Let R be a Noetherian ring, t and n be integers satisfying 1 ≤

t ≤ n, X be a symmetric matrix whose entries in the upper triangle are distinct

indeterminates over R, S = R[X] the polynomial ring over R generated by the entries

in the upper triangle of X, and J = It(X). Then ht J =
(
n−t+2

2

)
.

The above result is an immediate consequence of Proposition 2.3.9 when combined

with the earlier result of Kutz in [50, 6.2], which states that grade J =
(
n−t+2

2

)
.

Like before, the matrix X above is often referred to as a “generic symmetric

matrix” since the entries are indeterminates over R. Generic symmetric matrices will

be defined and studied in more detail in Chapter 3.

Definition 2.3.11 Let R be a Noetherian ring, t and n integers satisfying 1 ≤ t ≤ n,

A an n × n symmetric matrix with entries in R, I = It(A). If ht I =
(
n−t+2

2

)
, then

we say that I is of generic symmetric height.

2.3.4 Pfaffian Ideals

Definition 2.3.12 Adopt the notation of Definition 2.3.4. We call a t× t submatrix

principal if i1 = j1, . . . , and it = jt.
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Example 2.3.13 Let R = Z, and

A =


0 1 −4 3

−1 0 5 −7

4 −5 0 2

−3 7 −2 0


be a matrix with entries in Z. Then

0 −4 3

4 0 2

−3 −2 0


is the principal 3× 3 submatrix given by rows and columns 1, 3, and 4 of A.

When A is symmetric or alternating, every principal submatrix of A is also sym-

metric or alternating, respectively.

Let A be an alternating matrix. In a bit of an abuse in terminology, we refer to

the Pfaffian of a principal t× t submatrix of A as a t× t Pfaffian of A. We emphasize

that t× t Pfaffians of an alternating matrix of A are restricted to the principal t× t

submatrices of A.

Definition 2.3.14 Let R be a Noetherian ring and A be an n×n alternating matrix

with entries in R, where 1 ≤ n. We let Pft(A) denote the ideal generated by the t× t

Pfaffians of A, provided that 1 ≤ t ≤ n. For t ≤ 0, we define Pft(A) = R, and for

t > n, we define Pft(A) = 0.

We recall that if t is odd, then Pft(A) = 0. As such, from now on, we will restrict

our attention to ideals of the form Pf2t(A).

2.3.5 Height Bounds on Pfaffian Ideals

Proposition 2.3.15 (Józefiak-Pragacz [41, 2.1]) Let R be a Noetherian ring, t

and n be integers satisfying 2 ≤ 2t ≤ n, A be an n×n alternating matrix with entries

in R, and I = Pf2t(A) a proper ideal. Then ht I ≤
(
n−2t+2

2

)
.
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Proposition 2.3.16 (Józefiak-Pragacz [41, 2.3]) Let R be a Noetherian ring, t

and n be integers satisfying 2 ≤ 2t ≤ n, X be an alternating matrix whose entries

above the diagonal are distinct indeterminates over R, S = R[X] the polynomial ring

over R generated by the entries above the diagonal of X, and J = Pf2t(X). Then

ht J =
(
n−2t+2

2

)
.

Similarly to the ordinary and symmetric cases, the matrixX above is often referred

to as a “generic alternating matrix” since the entries are indeterminates over R.

Generic alternating matrices will be defined and studied in more detail in Chapter 3.

Definition 2.3.17 Let R be a Noetherian ring, t and n integers satisfying 2 ≤ 2t ≤

n, A an n× n alternating matrix with entries in R, I = Pf2t(A). If ht I =
(
n−2t+2

2

)
,

then we say that I is of generic alternating height.

2.4 Finite Free Complexes

2.4.1 Buchsbaum-Eisenbud Criterion

Let R be a Noetherian ring and

C• = 0→ Rβn ∂n−→ Rβn−1
∂n−1−−−→ · · · ∂2−→ Rβ1 ∂1−→ Rβ0 → 0

be a finite complex of R-modules where each βi is finite. Then, after a choice of basis,

each ∂i can be viewed as an βi−1 × βi matrix with entries in R. For any t, It(∂i) is

independent of the choice of basis.

Buchsbaum and Eisenbud studied when such complexes are acyclic in [9]. The

proposition below is an improved version of their main result, which can be found in

[8, 1.4.13].

Proposition 2.4.1 (Buchsbaum-Eisenbud) Let R be a Noetherian ring and

C• = 0→ Rβn ∂n−→ Rβn−1
∂n−1−−−→ · · · ∂2−→ Rβ1 ∂1−→ Rβ0 → 0
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be a complex with each βi finite. Set

ri =
n−i∑
j=0

(−1)j βi+j.

Then the following are equivalent.

a. C• is acyclic.

b. grade Iri(∂i) ≥ i for all i satisfying 1 ≤ i ≤ n.

To make notation more concise, whenever we are in this setting, we will use I(∂i)

to mean Iri(∂i).

We will frequently perform a base change on complexes such as these. Specifically,

if S is an R-algebra, we will consider the complex C• ⊗R S. We note that the ranks

of the free modules are preserved under base change. Therefore, for each i satisfying

1 ≤ i ≤ n, I(∂i ⊗R S) = Iri(∂i ⊗R S) = Iri(∂i)S = I(∂i)S as S-ideals.

2.4.2 Graded Resolutions and Regularity

Definition 2.4.2 Let R be a Noetherian graded ring, M a graded R-module, and

(C•, ∂•) a complex consisting of graded R-modules. The complex (C•, ∂•) is said to

be homogeneous if ∂i is homogeneous for each i.

A free R-resolution (F•, ∂•) of M is said to be homogeneous if the exact sequence

F• →M → 0 is homogeneous.

We emphasize the definition of a homogeneous resolution of M . Namely, the

natural map F0 → M must be homogeneous. This distinction is critical throughout

this dissertation, as we often take homogeneous free resolutions of both a module M

and of a twist M(j).

If R a graded ring with unique homogeneous maximal ideal m which is an ac-

tual maximal ideal of R and if M is a graded R-module, then M has a minimal

homogeneous free R-resolution. The minimal homogeneous free R-resolution of M
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is unique up to homogeneous isomorphism of complexes and is a direct summand of

every homogeneous free R-resolution of M .

Definition 2.4.3 Let R be a graded ring with unique maximal homogeneous ideal m

which is a homogeneous ideal of R, M a graded R-module, and (F•, ∂•) the minimal

homogeneous resolution of M . The Castelnuovo-Mumford regularity of M (also called

the regularity of M) is

regM = sup
i
{b0(Fi)− i} .

Again, we stress the importance of the definition of a homogeneous resolution

when it comes to the definition of regularity. In particular, regM(j) = regM − j.
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3. GENERIC DETERMINANTAL AND PFAFFIAN

IDEALS

The study of determinantal and Pfaffian ideals is considerably less challenging when

the entries of the matrix are distinct variables. For instance, if X is an m×n matrix

with 1 ≤ m ≤ n whose entries are distinct variables, then for any t with 1 ≤ t ≤ m,

the set of t × t minors of X are homogeneous polynomials in those variables whose

terms are square free. As such, there has been a considerable amount of work done

to study the structure of generic matrices and the Rees algebras associated with their

determinantal ideals. The main technique of this dissertation is to use the known

results about generic matrices to study determinantal and Pfaffian ideals of matrices

which are, in some sense, “close” to being generic. This chapter is dedicated to the

study of determinantal and Pfaffian ideals of different types of generic matrices.

This chapter is organized into three sections. Section 3.1 is dedicated to the study

of the determinantal ideals of generic ordinary matrices, Section 3.2 is dedicated to

the study of determinantal ideals of generic symmetric matrices, and Section 3.3 is

dedicated to the study of Pfaffian ideals of generic alternating matrices.

The primary goal for this chapter is to prove the ultimate lemma in each section,

Lemmas 3.1.5, 3.2.5 and 3.3.6, which we refer to as the containment lemmas. Loosely

speaking, let X be a generic matrix, fix t, and let J = It(X). These lemmas allow

us to relate the determinantal ideals Ij(X) for j < t to the ideals I
(
∂ki
)
, where ∂ki

is the ith boundary map in a free resolution of Jk. When we specialize the generic

matrix X to a specific matrix A, the containments are preserved under base change

of complexes to the specialized ring. Hence, if A is “close to” being generic, we will

be able to determine information about the ideals of minors of A from the generic

case. The specialization arguments are presented in Chapter 4.
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Before we delve into the specifics of generic matrices, we need a result about

resolutions.

Lemma 3.0.1 Let R be a Noetherian ring and S be a free R-algebra. Suppose

f1, . . . , fn are elements in R. Let I = (f1, . . . , fn)R and J = (f1, . . . , fn)S. Then

pdS J = pdR I.

Proof Since S is a free R-algebra, I ⊗R S ∼= IS = J as an S-module. Let P• be a

projective R-resolution of I. Since S is a flat R-algebra, P• ⊗R S is an S-resolution

of J . Let P be a projective R-module. Then P is a direct summand of a free R-

module. In other words, there exists an R-module M and an indexing set Γ such that

P ⊕M ∼=
⊕

ΓR. Hence, we have (P ⊗R S)⊕ (M ⊗R S) ∼=
⊕

Γ S. Hence, P ⊗R S is

a projective S-module. Therefore, P• ⊗R S is a projective S-resolution of J . Thus,

we see pdS J ≤ pdR I.

On the other hand, let Q• be a projective S-resolution of J . By restriction of

scalars, Q• is an R-resolution of I (since the generators of J as an S-module are equal

to the generators of I as an R-module). Let Q be a projective S-module. Then Q is a

direct summand of a free S-module. In other words, there exists an S-module N and

an indexing set Λ such that Q⊕N ∼=
⊕

Λ S. Since S is a free R-algebra, there exists

an indexing set Σ so that S ∼=
⊕

Σ R as an R-module. Therefore, Q⊕N ∼=
⊕

Λ

⊕
Σ R

as an R-module. Since Q is a direct summand of a free R-module, Q is projective as

an R-module. Hence, Q• is a projective R-resolution of I. Therefore, pdR I ≤ pdS J .

The primary use of this lemma is to “strip away” unnecessary variables from poly-

nomial rings while bounding projective dimensions. In particular, given a polynomial

ring K[x1, . . . , xd, X1, . . . , Xs] in two sets of variables over a field K, if we have an

ideal whose generators are polynomials in X1, . . . , Xs, we will be able to remove the

variables x1, . . . , xd while preserving projective dimension.

The above lemma also has the added benefit of allowing us to change the base

field K to another field L of the same characteristic. For example, if K and L
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are fields of characteristic 0, then K[X1, . . . , Xs] and L[X1, . . . , Xs] are free algebras

over Q[X1, . . . , Xs]. Therefore, if we have an ideal generated by polynomials in the

variables X1, . . . , Xs with rational coefficients in the ring K[X1, . . . , Xs], then the

projective dimension is preserved when considering the ideal generated by the same

polynomials in the ring L[X1, . . . , Xs].

In particular, these uses of the lemma apply when we take powers of determinantal

ideals of generic matrices.

3.1 Determinantal Ideals of Ordinary Matrices

Let R be a Noetherian ring. As a reminder, by an ordinary matrix, we refer to a

matrix without any special characteristics. The use of the phrase “ordinary matrix”

is meant to distinguish this case from the other two cases we consider - namely,

symmetric and alternating matrices.

Consider the following example of a 2× 4 generic ordinary matrix over Z.

X11 X12 X13 X14

X21 X22 X23 X24


Definition 3.1.1 Let R be a Noetherian ring, and consider positive integers m and n

with 1 ≤ m ≤ n. Let X = {Xij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a set of mn indeterminates

over R, and let S = R[X ] be the polynomial ring over R generated by the elements of

X . Suppose X is an m × n matrix with entries in S so that the (i, j)-entry of X is

Xij. We say that X is a generic (ordinary) matrix over R.

Often, we will start with a ring R and say “let X be an m× n generic (ordinary)

matrix over R.” When doing this, we implicitly assume that one has fixed a set X of

mn indeterminates as in the definition above.

A key feature of generic matrices is that if a submatrix is made invertible, then

the ideal of t× t minors (for 1 ≤ t ≤ m) is still an ideal of minors of a generic matrix
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in the localized ring. The following lemma makes this idea rigorous and allows us to

study localizations of determinantal ideals of generic matrices.

Lemma 3.1.2 Let R be a Noetherian ring. Suppose X is an m × n generic matrix

over R which can be written as the following block matrix

X =

 A B

C D

 ,

where A is a j×j matrix. Let ∆ = detA, and consider the ring T = R[A,B,C,∆−1].

Let Y be a generic (m− j) × (n− j) matrix over T . Then there exists a T -algebra

isomorphism ϕ : T [D] → T [Y ] so that the extension of It(X)k T [D] along ϕ is equal

to It−j(Y )k T [Y ] for each k.

Proof It is well-known that multiplying a matrix by an invertible matrix (on either

side) does not change the ideal of minors of the matrix. Now, consider the matrix

product below where, by an abuse of notation, each instance of the symbol I denotes

an appropriately sized identity matrix. I 0

−CA−1 I

 A B

C D

 A−1 −A−1B

0 I



=

 I 0

−CA−1 I

 I 0

CA−1 D − CA−1B


=

 I 0

0 D − CA−1B


Hence, It(X) = It

 I 0

0 D − CA−1B

. Using the Laplace expansion of the

determinant, one sees It(X) = It−j(D − CA−1B).

Next, we establish the T -algebra homomorphism ϕ : T [D] → T [Y ] given by

Dij 7→ (Y + CA−1B)ij. To see that this homomorphism is a bijection, we establish

its inverse. Let ψ : T [Y ] → T [D] be the T -algebra homomorphism defined by Yij 7→

(D − CA−1B)ij.
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Now, ψ(ϕ(Dij)) = ψ
(

(Y + CA−1B)ij

)
= (D − CA−1B + CA−1B)ij = Dij. Simi-

larly, ϕ(ψ(Yij)) = ϕ
(

(D − CA−1B)ij

)
= (Y + CA−1B − CA−1B)ij = Yij.

Finally, we note that the entries of D − CA−1B are mapped via ϕ to the corre-

sponding entries of Y . Hence, by the Laplace expansion of the determinant, the set

of (t− j)× (t− j) minors of D − CA−1B are mapped to the set of (t− j)× (t− j)

minors of Y . Therefore, we conclude that the extension of It(X)k T [D] through ϕ is

It−j(Y )k T [Y ] for each k.

To establish bounds on the projective dimenion of It(X)k, we will make use of the

analytic spread of It(X). The following lemma is due to Cowsik and Nori, but we

provide a proof.

Lemma 3.1.3 (Cowsik-Nori [16]) Let t, m, and n be integers satisfying 1 ≤ t ≤

m ≤ n, K a field, X an m× n generic matrix over K, S = K[X], and J = It(X) .

a. If t = m, then `(J) = m (n−m) + 1.

b. If t < m, then `(J) = mn.

Proof To prove part (a), one notes the analytic spread of ideal of the maximal

minors of a generic matrix is the dimension of the Grassmannian in its Plücker em-

bedding. Hence, `(J) = m (n−m) + 1.

For a proof of (b), we start with the special case that m = n = t + 1. Let

M1, . . . ,Ms be the set of t× t minors of X. Then

`(J) = dimF(J) = trdegK K(M1, . . . ,Ms) .

Now, consider the classical adjoint matrix Adj(X). The entries of this matrix are

precisely M1, . . . ,Ms. Hence, det(Adj(X)) ∈ K(M1, . . . ,Ms). However, det(X)n−1 =

det(Adj(X)). Therefore, det(X) satisfies the monic polynomial Y n−1 − det(Adj(X))

in K(M1, . . . ,Ms)[Y ]. Thus, det(X) is algebraic over K(M1, . . . ,Ms). Ergo,

trdegK K(M1, . . . ,Ms) = trdegK K(M1, . . . ,Ms, det(X)) .
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Next, consider Adj(X)X = det(X) In. Let Dj denote the jth column vector

of det(X) In, Zj denote the jth column vector of X, and Aj denote the matrix

obtained by replacing column j of Adj(X) by Dj. Applying Cramer’s rule to the

equation Adj(X)Zi = Di, we obtain Xij = det(Aj) / det(Adj(X)). Let Aîj denote

the matrix obtained from Adj(X) by deleting row i and column j. Then by the

Laplace expansion for determinants, det(Aj) = (−1)i+j det(X) det
(
Aîj
)

. Therefore,

we see Xij ∈ K(M1, . . . ,Ms, det(X)) for each i and each j. Next, we consider K(X ),

where X is the set of variables Xij. Now, Mi ∈ K(X ) and det(X) ∈ K(X ), so

K(M1, . . . ,Ms, det(X)) = K(X ). Hence, we see

trdegK K(M1, . . . ,Ms) = trdegK K(X ) .

We finish the proof by returning to the general case: 1 ≤ t < m ≤ n. By varying

over the collection of (t+ 1) × (t+ 1) submatrices of X, and applying the above

special case argument, we see

`(J) = dimF(J) = trdegK K(X ) = mn.

We now use the analytic spread of J to compute the maximum of the projective

dimensions of the powers Jk.

Lemma 3.1.4 Let t, m, and n be integers satisfying 1 ≤ t ≤ m ≤ n, K a field,

R = K[x1, . . . , xd] a polynomial ring in d variables over K, X an m × n generic

matrix over R, S = R[X], and J = It(X) .

a. If t = m, then maxk
{

pd Jk
}

= m (n−m).

b. If t < m, then maxk
{

pd Jk
}

= mn− 1.

Proof We begin by applying Lemma 3.0.1. More specifically, J is an S-ideal whose

generators are elements of the ring K[X], and S is a polynomial ring over K[X].

Therefore, we may reduce to the case that R = K.
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From the work of Eisenbud and Huneke in [22, 3.5], we know that R(J) is Cohen-

Macaulay in the setting of (a), where t = m. Therefore, Burch’s inequality is an

equality. In other words, `(J) + infk
{

depth S/Jk
}

= dimS.

The Auslander-Buchsbaum Formula gives pd S/Jk + depth S/Jk = dimS. In

particular, dimS − depth S/Jk = pd S/Jk. Therefore,

`(J) = dimS − inf
k

{
depth S/Jk

}
= sup

k

{
dimS − depth S/Jk

}
= sup

k

{
pd S/Jk

}
.

Hence, by Lemma 3.1.3, we have maxk
{

pdS S/J
k
}

= m (n−m) + 1. We note that

a free S-resolution D• of Jk can be extended to a free S-resolution of S/Jk by ap-

pending D• → S and that every free resolution of S/Jk may be obtained in this

way. Therefore, we have pd Jk = pd S/Jk− 1. Consequently, we see maxk
{

pd Jk
}

=

maxk
{

pd S/Jk
}
− 1 = m (n−m).

We now prove (b). Since S is a polynomial ring in mn variables over a field, by

Hilbert’s Syzygy Theorem, we have maxk
{

pd S/Jk
}
≤ mn. Hence,

max
k

{
pd Jk

}
≤ mn− 1.

On the other hand, by Burch’s inequality, we have `(J) + infk
{

depth S/Jk
}
≤ dimS.

Then, using the Auslander-Buchsbaum Formula as above, `(J) ≤ maxk
{

pd S/Jk
}

.

Therefore, `(J) ≤ maxk
{

pd Jk
}

+ 1, so `(J) − 1 ≤ maxk
{

pd Jk
}

. We now apply

Lemma 3.1.3 to obtain

mn− 1 ≤ max
k

{
pd Jk

}
.

We end the section with the following lemma, which is be critical to the special-

ization results in Chapter 4.

Lemma 3.1.5 (Containment Lemma for Ordinary Matrices) Let t, m, and n

be integers satisfying 1 ≤ t ≤ m ≤ n, K a field, R = K[x1, . . . , xd] a polynomial ring

in d variables over K, X an m×n generic matrix over R, S = R[X], and J = It(X).

For each k, let
(
Fk
•, ∂

k
•
)

be a finite free S-resolution of Jk where each module Fk
i

is finitely generated.
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a. If t = m, then for each j satisfying 1 ≤ j ≤ t− 1,
√
Ij(X) ⊆

√
I(∂ki) for all k

whenever i ≥ (m− j) (n−m) + 1.

b. If t < m, then for each j satisfying 1 ≤ j ≤ t− 1,
√
Ij(X) ⊆

√
I(∂ki) for all k

whenever i ≥ (m− j) (n− j).

Proof Fix j with 1 ≤ j ≤ t− 1, and suppose p ∈ Spec(S) \ V (Ij(X)). We wish to

show that p /∈ V
(
I
(
∂ki
))

for all i in the appropriate range (i ≥ (m− j)n−m+ 1 in

(a) and i ≥ (m− j) (n− j) in (b)). To do this, it suffices to prove that pdSp
Jkp < i

for the appropriate range of i values.

Since p /∈ V (Ij(X)), it follows that Xp must have a j × j submatrix with unit

determinant in Sp. Since performing elementary row and column operations does not

affect the ideal of minors of a matrix, we may assume that the upper left j × j block

of Xp has unit determinant.

To make notation consistent with Lemma 3.1.2, let

X =

 A B

C D

 ,

where A is a j× j matrix. Let ∆ = detA, and consider the ring T = R[A,B,C,∆−1].

Let Y be a generic (m− j) × (n− j) matrix over T . Under this notation, S =

R[A,B,C,D].

Now, since A has unit determinant in Sp, it follows that ∆−1 ∈ Sp. Therefore, Sp

is a localization of T [D] = R[A,B,C,∆−1, D]. Hence, pdSp
Jkp ≤ pdT [D] J

k.

Recall from Lemma 3.1.2 that there exists a T -algebra isomorphism ϕ : T [D] →

T [Y ] so that the extension of JkT [D] along ϕ is equal to It−j(Y )k T [Y ]. There-

fore, pdT [D] J
k = pdT [Y ] It−j(Y )k. Since T [Y ] = R[A,B,C,∆−1, Y ] is free over

R[A,∆−1, Y ] and since the generators of It−j(Y )k are elements of R[A,∆−1, Y ], by

Lemma 3.0.1, pdT [Y ] It−j(Y )k = pdR[A,∆−1,Y ] It−j(Y )k. Moreover, R[A,∆−1, Y ] is

a localization of R[A, Y ] obtained by inverting the powers of ∆. Hence, one has

pdR[A,∆−1,Y ] It−j(Y )k ≤ pdR[A,Y ] It−j(Y )k. Now, R[A, Y ] is free over R[Y ] and the
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generators of It−j(Y )k are elements of R[Y ]. Therefore, by Lemma 3.0.1, we have

pdR[A,Y ] It−j(Y )k = pdR[Y ] It−j(Y )k. Consequently, pdSp
Jkp ≤ pdK[Y ] It−j(Y )k.

Since Y is a (m− j)× (n− j) generic matrix over R, which is a polynomial ring

over a field, we may apply Lemma 3.1.4.

For (a), we have

pdSp
Jkp ≤ pdK[Y ] It−j(Y )k ≤ (m− j) ((n− j)− (m− j)) = (m− j) (n−m) ,

and for (b), we have

pdSp
Jkp ≤ pdK[Y ] It−j(Y )k ≤ (m− j) (n− j)− 1.

Therefore, for (a), pdSp
Jkp < i whenever i ≥ (m− j) (n−m) + 1. Thus, p /∈

V
(
I
(
ϕk

i

))
for all i ≥ (m− j) (n−m) + 1. Hence, we conclude

√
Ij(X) ⊆

√
I(∂ki)

for all k whenever i ≥ (m− j) (n−m) + 1.

Similarly, for (b), pdSp
Jkp < i whenever i ≥ (m− j) (n− j). Thus, p /∈ V

(
I
(
ϕk

i

))
for all i ≥ (m− j) (n− j). Hence, we conclude

√
Ij(X) ⊆

√
I(∂ki) for all k whenever

i ≥ (m− j) (n− j).

3.2 Determinantal Ideals of Symmetric Matrices

Let R be a Noetherian ring. Recall that a symmetric matrix A is defined by the

property AT = A.

Definition 3.2.1 Let R be a Noetherian ring, and n be a positive integer. Let X =

{Xij | 1 ≤ i ≤ j ≤ n} be a set of
(
n+1

2

)
indeterminates over R, and let S = R[X ] be

the polynomial ring over R generated by the elements of X . Suppose X is an n × n

symmetric matrix with entries in S so that, for i ≤ j, the (i, j)-entry of X is Xij.

We say that X is a generic symmetric matrix over R.

As an example, the following is a 4× 4 generic symmetric matrix over Z.
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
X11 X12 X13 X14

X12 X22 X23 X24

X13 X23 X33 X34

X14 X24 X34 X44


Often, we will start with a ring R and say “let X be an n× n generic symmetric

matrix over R.” When doing this, we implicitly assume that one has fixed a set X of(
n+1

2

)
indeterminates as in the definition above. We, similarly, will often then define

S = R[X]. This is shorthand for the polynomial ring over R in the entries of the

upper triangle of X.

As with the ordinary case, a key feature of generic symmetric matrices is that if

a submatrix is made invertible, then the ideal of t × t minors (for 1 ≤ t ≤ n) is still

the ideal of minors of a generic matrix in the localized ring.

Lemma 3.2.2 Let R be a Noetherian ring. Suppose X is an n×n generic symmetric

matrix over R which can be written as the following block matrix

X =

 A B

BT C

 ,

where A is a j × j matrix. Let ∆ = detA, and consider the ring T = R[A,B,∆−1].

Let Y be an (n− j)× (n− j) generic symmetric matrix over T . Then there exists a

T -algebra isomorphism ϕ : T [C] → T [Y ] so that the extension of It(X)k T [C] along

ϕ is equal to It−j(Y )k T [Y ] for each k.

Proof It is well-known that multiplying by an invertible matrix (on either side)

does not change the ideal of minors of a matrix. Now, consider the matrix product

below where, by an abuse of notation, each instance of the symbol I denotes the

appropriately sized identity matrix. I 0

−BTA−1 I

 A B

BT C

 A−1 −A−1B

0 I





38

=

 I 0

−BTA−1 I

 I 0

BTA−1 C −BTA−1B


=

 I 0

0 C −BTA−1B


Hence, It(X) = It

 I 0

0 C −BTA−1B

. Using the Laplace expansion of the

determinant, one sees that It(X) = It−j
(
C −BTA−1B

)
.

Next, we establish the T -algebra homomorphism ϕ : T [C] → T [Y ] given by

Cij 7→
(
Y +BTA−1B

)
ij

for i ≤ j. To see that this homomorphism is a bijection, we

establish its inverse. Let ψ : T [Y ] → T [C] be the T -algebra homomorphism defined

by Yij 7→
(
C −BTA−1B

)
ij

for i ≤ j.

For i ≤ j, ψ(ϕ(Cij)) = ψ
((
Y +BTA−1B

)
ij

)
=
(
C −BTA−1B +BTA−1B

)
ij

=

Cij. Similarly, ϕ(ψ(Yij)) = ϕ
((
C −BTA−1B

)
ij

)
=
(
Y +BTA−1B −BTA−1B

)
ij

=

Yij.

Finally, we note that the entries of C − BTA−1B are mapped via ϕ to the corre-

sponding entries of Y since C −BTA−1B is a symmetric matrix and since the map ϕ

sends entries of the upper triangle of C −BTA−1B to the corresponding entry in the

upper triangle of Y . Therefore, by the Laplace expansion of the determinant, the set

of (t− j)× (t− j) minors of C −BTA−1B are mapped to the set of (t− j)× (t− j)

minors of Y . Thus, we conclude that the extension of It(X)k T [D] through ϕ is

It−j(Y )k T [Y ] for all k.

Like in the ordinary case, we compute the analytic spread of J in order to obtain a

global bound on the projective dimension of the ideals Jk. We mimic the Cowsik-Nori

argument, just like in the ordinary case.

Lemma 3.2.3 Let t and n be integers satisfying 1 ≤ t ≤ n, K a field, X an n × n

generic symmetric matrix over K, S = K[X], and J = It(X).

a. If t = n, then `(J) = 1.
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b. If t < n, then `(J) =
(
n+1

2

)
.

Proof To prove part (a), one notes that det(X) is a regular element in S. Hence,

In(X) = (det(X)) is generated by a regular sequence. All such ideals are of linear

type, according to the work of Huneke in [34, 3.1]. Hence, `(J) = µ(J) = 1, as in

Remark 2.2.19.

We now prove (b). Start with the special case that n = t+ 1. Let M1, . . . ,Ms be

the set of t× t minors of X. Then

`(J) = dimF(J) = trdegK K(M1, . . . ,Ms) .

Now, consider the classical adjoint matrix Adj(X). The entries of this matrix are

precisely M1, . . . ,Ms. Hence, det(Adj(X)) ∈ K(M1, . . . ,Ms). However, det(X)n−1 =

det(Adj(X)). Therefore, det(X) satisfies the monic polynomial Y n−1 − det(Adj(X))

in K(M1, . . . ,Ms)[Y ]. Thus, det(X) is algebraic over K(M1, . . . ,Ms). Ergo,

trdegK K(M1, . . . ,Ms) = trdegK K(M1, . . . ,Ms, det(X)) .

Next, consider Adj(X)X = det(X) In. Let Dj denote the jth column vector

of det(X) In, Zj denote the jth column vector of X, and Aj denote the matrix

obtained by replacing column j of Adj(X) by Dj. Applying Cramer’s rule to the

equation Adj(X)Zi = Di, we obtain Xij = det(Aj) / det(Adj(X)). Let Aîj denote

the matrix obtained from Adj(X) by deleting row i and column j. Then by the

Laplace expansion for determinants, det(Aj) = (−1)i+j det(X) det
(
Aîj
)

. Therefore,

we see Xij ∈ K(M1, . . . ,Ms, det(X)) for each i and each j. Next, we consider K(X ),

where X is the set of variables Xij. Now, Mi ∈ K(X ) and det(X) ∈ K(X ), so

K(M1, . . . ,Ms, det(X)) = K(X ). Hence, we see

trdegK K(M1, . . . ,Ms) = trdegK K(X ) .

We finish the proof by returning to the general case: 1 ≤ t < n. By varying over

the collection of (t+ 1)× (t+ 1) submatrices of X, and applying the above argument

in the special case, we see

`(J) = dimF(J) = trdegK K(X ) =

(
n+ 1

2

)
.
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We now use the analytic spread of J to find a global bound on pd Jk.

Lemma 3.2.4 Let t and n be integers satisfying 1 ≤ t ≤ n, K a field, R =

K[x1, . . . , xd] a polynomial ring in d variables over K, X an n×n generic symmetric

matrix over R, S = R[X], and J = It(X) .

a. If t = n, then maxk
{

pd Jk
}

= 0.

b. If t < n, then maxk
{

pd Jk
}

=
(
n+1

2

)
− 1.

Proof We begin by applying Lemma 3.0.1. More specifically, J is an S-ideal whose

generators are elements of the ring K[X], and S is a polynomial ring over K[X].

Therefore, we may reduce to the case that R = K.

For (a), we know that J is a principal ideal generated by a regular element. Hence,

for all k, Jk is a free R-module. Therefore, for all k, pd Jk = 0.

To prove (b), we note that since S is a polynomial ring in
(
n+1

2

)
variables over a

field, by Hilbert’s Syzygy Theorem, we have maxk
{

pd S/Jk
}
≤
(
n+1

2

)
, so

max
k

{
pd Jk

}
≤
(
n+ 1

2

)
− 1.

On the other hand, by Burch’s inequality, `(J) + infk
{

depth S/Jk
}
≤ dimS. The

Auslander-Buchsbaum Formula gives us that pd S/Jk + depth S/Jk = dimS. In

particular, dimS − depth S/Jk = pd S/Jk. Therefore,

`(J) ≤ dimS − inf
k

{
depth S/Jk

}
= sup

k

{
dimS − depth S/Jk

}
= sup

k

{
pd S/Jk

}
.

Hence, `(J) ≤ maxk
{

pd Jk
}

+1, so `(J)−1 ≤ maxk
{

pd Jk
}

. Applying Lemma 3.2.3,

we obtain (
n+ 1

2

)
− 1 ≤ max

k

{
pd Jk

}
.

We conclude this section with the following lemma, which is a critical tool in the

specialization arguments of Chapter 4.
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Lemma 3.2.5 (Containment Lemma for Symmetric Matrices) Let t and n be

integers satisfying 1 ≤ t ≤ n, K a field, R = K[x1, . . . , xd] a polynomial ring in d

variables over K, X an n × n generic symmetric matrix over R, S = R[X], and

J = It(X). For each k, let
(
Fk
•, ∂

k
•
)

be a finite free S-resolution of Jk where each

module Fk
i is finitely generated.

a. If t = m, then for each j satisfying 1 ≤ j ≤ t− 1,
√
Ij(X) ⊆

√
I(∂ki) for all k

whenever i ≥ 1.

b. If t < m, then for each j satisfying 1 ≤ j ≤ t− 1,
√
Ij(X) ⊆

√
I(∂ki) for all k

whenever i ≥
(
n−j+1

2

)
.

Proof Fix j with 1 ≤ j ≤ t− 1, and suppose p ∈ Spec(S) \ V (Ij(X)). We wish to

show that p /∈ V
(
I
(
∂ki
))

for all i in the appropriate range (i ≥ 1 in (a) and i ≥
(
n−j+1

2

)
in (b)). To do this, it suffices to prove that pdSp

Jkp < i for the appropriate range of

i values.

Since p /∈ V (Ij(X)), it follows that Xp must have a j × j submatrix with unit

determinant in Sp. Since performing elementary row and corresponding column oper-

ations does not affect the ideal of minors of a matrix, we may assume that the upper

left j × j block of Xp has a unit determinant.

To make notation consistent with Lemma 3.2.2, let

X =

 A B

BT C

 ,

where A is a j × j symmetric matrix. Let ∆ = detA, and consider the ring T =

R[A,B,∆−1]. Let Y be an (n− j)×(n− j) generic symmetric matrix over T . Written

in this notation, S = R[A,B,C].

Since A has unit determinant in Sp, it follows that ∆−1 ∈ Sp. Therefore, Sp is a

localization of T [C]. Hence, pdSp
Jkp ≤ pdT [C] J

k.

Recall from Lemma 3.2.2 that there exists a T -algebra isomorphism ϕ : T [C] →

T [Y ] so that the extension of JkT [C] along ϕ is equal to It−j(Y )k T [Y ]. Therefore,
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pdT [C] J
k = pdT [Y ] It−j(Y )k. Since T [Y ] = R[A,B,∆−1, Y ] is free over R[A,∆−1, Y ]

and since the generators of It−j(Y )k are elements of R[A,∆−1, Y ], by Lemma 3.0.1,

pdT [Y ] It−j(Y )k = pdR[A,∆−1,Y ] It−j(Y )k. The ring R[A,∆−1, Y ] is a localization of

R[A, Y ] obtained by inverting powers of ∆. Consequently, pdR[A,∆−1,Y ] It−j(Y )k ≤

pdR[A,Y ] It−j(Y )k. Now, R[A, Y ] is free over R[Y ] and the generators of It−j(Y )k are

elements of R[Y ]. Therefore, by Lemma 3.0.1, pdR[A,Y ] It−j(Y )k = pdR[Y ] It−j(Y )k.

Hence, pdSp
Jkp ≤ pdK[Y ] It−j(Y )k.

Since Y is an (n− j) × (n− j) generic symmetric matrix over R, which is a

polynomial ring over a field, we may apply Lemma 3.2.4.

For (a),

pdSp
Jkp ≤ pdK[Y ] It−j(Y )k ≤ 0,

and for (b),

pdSp
Jkp ≤ pdK[Y ] It−j(Y )k ≤

(
n− j + 1

2

)
− 1.

Therefore, for (a), pdSp
Jkp < i whenever i ≥ 1. Thus, p /∈ V

(
I
(
∂ki
))

for all i ≥ 1.

Hence,
√
Ij(X) ⊆

√
I(∂ki) for all k whenever i ≥ 1.

Similarly, for (b), pdSp
Jkp < i whenever i ≥

(
n−j+1

2

)
. Thus, p /∈ V

(
I
(
∂ki
))

for all

i ≥
(
n−j+1

2

)
. Hence,

√
Ij(X) ⊆

√
I(∂ki) for all k whenever i ≥

(
n−j+1

2

)
.

3.3 Pfaffian Ideals of Alternating Matrices

Let R be a Noetherian ring. Recall that a matrix A is alternating if it is skew-

symmetric and the diagonal entries of A are 0. We reiterate that skew-symmetric

implies alternating only in the case where 2 is a non-zero-divisor in R. Since the

useful properties of alternating matrices do not, in general, hold for skew-symmetric

matrices, we must take care when performing operations on alternating matrices.

Definition 3.3.1 Let R be a Noetherian ring and n be a positive integer. Let X =

{Xij | 1 ≤ i < j ≤ n} be a set of
(
n
2

)
indeterminates over R, and let S = R[X ] be

the polynomial ring over R generated by the elements of X . Suppose X is an n × n
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alternating matrix with entries in S so that, for i < j, the (i, j)-entry of X is Xij.

We say that X is a generic alternating matrix over R.

As an example, the following is a 4× 4 generic alternating matrix over Z.


0 X12 X13 X14

−X12 0 X23 X24

−X13 −X23 0 X34

−X14 −X24 −X34 0


Often, we will start with a ring R and say “let X be an n× n generic alternating

matrix over R.” When doing this, we implicitly assume that one has fixed a set X

of
(
n
2

)
indeterminates as in the definition above. We, similarly, will often then define

S = R[X]. This is shorthand for the polynomial ring over R in the entries above the

diagonal of X.

As with the ordinary and symmetric cases, a key feature of generic alternating

matrices is that if a submatrix is made invertible, then the ideal of 2t× 2t Pfaffians

(for 2 ≤ 2t ≤ n) is still an ideal of Pfaffians of a generic alternating matrix in the

localized ring. Before we can do this proof, however, we need a lemma.

Lemma 3.3.2 Let R be a ring, n a positive integer, A an n × n alternating matrix

with entries in R, and M an n × n matrix with entries in R. Then MTAM is an

alternating matrix.

Proof We have
(
MTAM

)T
= MTAT

(
MT

)T
= −MTAM . Thus, MTAM is skew-

symmetric. This is not sufficient to guarantee that MTAM is alternating, since 2

could be a zero-divisor in R.

Therefore, we consider the ring Z. Let X be an n× n generic alternating matrix

over Z and N be an n×n generic ordinary matrix over Z[X]. As demonstrated above,

the product NTXN is skew-symmetric. Moreover, 2 is a non-zero-divisor in Z[X,N ].

Therefore, NTXN is an alternating matrix.
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We establish the Z-algebra homomorphism ϕ : Z[X,N ] → R so that Xij 7→

Aij for i < j and Nij 7→ Mij. Then for all i and j, Xij 7→ Aij. Since ϕ is a

ring homomorphism, it follows that, for all i and j,
(
NTXN

)
ij
7→
(
MTAM

)
ij

. In

particular, 0 7→
(
MTAM

)
ii

for all i. Thus, MTAM is alternating.

Lemma 3.3.3 Let R be a Noetherian ring. Suppose X is an n×n generic alternating

matrix over R. which can be written as the following block matrix

X =

 A B

−BT C

 ,

where A is a 2j × 2j block. Let ∆ = Pf(A), and consider the ring T = R[A,B,∆−1].

Let Y be an (n− 2j)× (n− 2j) generic alternating matrix over T . Then there exists

a T -algebra isomorphism ϕ : T [C] → T [Y ] so that the extension of Pf2t(X)k T [C]

along ϕ is equal to Pf2t−2j(Y )k T [Y ] for all k.

Proof It is well-known that multiplying by an invertible matrix (on either side)

does not change the ideal of Pfaffians of a matrix. Now, consider the matrix product

below where, in an abuse of notation, each instance of the symbol I denotes the

appropriately sized identity matrix. I 0

BTA−1 I

 A B

−BT C

 I −A−1B

0 I


=

 I 0

BTA−1 I

 A 0

−BT C +BTA−1B


=

 A 0

0 C +BTA−1B

 = L

The above matrix is alternating by Lemma 3.3.2.

Hence, Pf2t(X) = Pf2t(L). We wish to show Pf2t(L) = Pf2t−2j

(
C +BTA−1B

)
.

From Remark 2.3.3, we know that if M and N are alternating matrices, then

Pf

 M 0

0 N

 = Pf(M) Pf(N) . (3.3.3.A)
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Therefore, setting M = A and letting N be a 2t − 2j principal submatrix of

C + BTA−1B, we see that ∆ · Pf(N) ∈ Pf2t(X). Since ∆ is a unit in T , this implies

that Pf(N) ∈ Pf2t(L). Thus, Pf2t−2j

(
C +BTA−1B

)
⊆ Pf2t(L). Let P be a (2t)×(2t)

principal submatrix of L which isn’t a principal submatrix of C + BTA−1B. Then

P is of the form in Eq. (3.3.3.A), where M is a principal submatrix of A and N

is a principal submatrix of C + BTA−1B. We may assume M and N have even

dimensions otherwise Pf(P ) = 0. Also, we may assume the dimensions of N are

larger than 2t − 2j, otherwise, M = A, which was handled earlier. Then Pf(P ) =

Pf(M) Pf(N) ∈ Pf2t−2j

(
C +BTA−1B

)
, since Pf(N) ∈ Pf2t−2j

(
C +BTA−1B

)
by the

Laplace expansion of Pfaffians. Therefore, Pf2t(X) = I2t−2j

(
C +BTA−1B

)
.

Next, we establish the T -algebra homomorphism ϕ : T [C] → T [Y ] given by

Cij 7→
(
Y −BTA−1B

)
ij

for i < j. To see that this homomorphism is a bijection, we

establish its inverse. Let ψ : T [Y ] → T [C] be the T -algebra homomorphism defined

by Yij 7→
(
C +BTA−1B

)
ij

for i < j.

For i < j, ψ(ϕ(Cij)) = ψ
((
Y −BTA−1B

)
ij

)
=
(
C +BTA−1B −BTA−1B

)
ij

=

Cij. Similarly, ϕ(ψ(Yij)) = ϕ
((
C +BTA−1B

)
ij

)
=
(
Y −BTA−1B +BTA−1B

)
ij

=

Yij.

Finally, we note that the entries of C + BTA−1B are mapped via ϕ to the corre-

sponding entries of Y since both Y and C + BTA−1B are alternating matrices and

since the map ϕ sends entries of the upper triangle of C + BTA−1B to the corre-

sponding entry in the upper triangle of Y . Therefore, by the Laplace expansion of

Pfaffians, the set of (2t− 2j)× (2t− 2j) Pfaffians of C−BTA−1B are mapped to the

set of (2t− 2j) × (2t− 2j) Pfaffians of Y . Thus, we conclude that the extension of

Pf2t(X)k T [C] through ϕ is Pf2t−2j(Y )k T [Y ] for all k.

As in the ordinary and symmetric cases, we apply the Cowsik-Nori argument to

compute the analytic spread of J .

Lemma 3.3.4 Let t and n be integers satisfying 2 ≤ 2t ≤ n, K a field, X an n× n

generic alternating matrix over K, S = K[X], and J = Pf2t(X) .
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a. If 2t = n, then `(J) = 1.

b. If 2t = n− 1, then `(J) = n.

c. If 2t ≤ n− 2, then `(J) =
(
n
2

)
.

Proof To prove part (a), one notes that Pf(X) is a regular element in S. Hence,

Pfn(X) = (Pf(X)) is a complete intersection ideal. All complete intersection ideals

are of linear type. Therefore, by Remark 2.2.19, `(J) = µ(J) = 1.

To prove part (b), we note that J is of linear type, as proved by Huneke in [35,

2.2]. Therefore, as in the proof of part (a), `(J) = µ(J) = n.

For a proof of (c), we start with the special case that n = 2t+ 2. Let M1, . . . ,Ms

be the set of 2t× 2t Pfaffians of X. Then

`(J) = dimF(J) = trdegK K(M1, . . . ,Ms) .

Now, consider the Pfaffian adjoint matrix PfAdj(X). The entries of this matrix

are either 0 or a unit multiple of one of M1, . . . ,Ms. Hence, det(PfAdj(X)) ∈

K(M1, . . . ,Ms). From Remark 2.3.3, we know Pf(X)n−2 = det(PfAdj(X)). Thus,

Pf(X) satisfies the monic polynomial Y n−2 − det(PfAdj(X)) in K(M1, . . . ,Ms)[Y ].

Therefore, Pf(X) is algebraic over K(M1, . . . ,Ms). Ergo,

trdegK K(M1, . . . ,Ms) = trdegK K(M1, . . . ,Ms,Pf(X)) .

Next, consider PfAdj(X)X = Pf(X) In. Let Pj denote the jth column vector

of Pf(X) In, Zj denote the jth column vector of X, and Aj denote the matrix ob-

tained by replacing column j of PfAdj(X) by Pj. Applying Cramer’s rule to the

equation PfAdj(X)Zj = Pj, we obtain Xij = det(Aj) / det(PfAdj(X)). Let Aîj de-

note the matrix obtained from PfAdj(X) by deleting row i and column j. Then by

the Laplace expansion for determinants, det(Aj) = (−1)i+j Pf(X) det
(
Aîj
)

. There-

fore, we see Xij ∈ K(M1, . . . ,Ms,Pf(X)) for each i and each j. Next, we consider

K(X ), where X is the set of variables Xij. Now, Mi ∈ K(X ) and Pf(X) ∈ K(X ), so

K(M1, . . . ,Ms,Pf(X)) = K(X ). Hence,

trdegK K(M1, . . . ,Ms) = trdegK K(X ) .
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We finish the proof by returning to the general case: 2 ≤ 2t ≤ n− 2. By varying

over the collection of principal (2t+ 2)× (2t+ 2) submatrices of X, and applying the

above special case argument, we see

`(J) = dimF(J) = trdegK K(X ) =

(
n

2

)
.

We apply the above result to obtain projective dimension bounds on Jk.

Lemma 3.3.5 Let t and n be integers satisfying 2 ≤ 2t ≤ n, K a field, R =

K[x1, . . . , xd] a polynomial ring in d variables over K, X an n × n generic alter-

nating matrix over R, S = R[X], and J = Pf2t(X).

a. If 2t = n, then maxk
{

pd Jk
}

= 0.

b. If 2t = n− 1, then maxk
{

pd Jk
}

= n− 1.

c. If 2t ≤ n− 2, then maxk
{

pd Jk
}

=
(
n
2

)
− 1.

Proof We begin by applying Lemma 3.0.1. More specifically, J is an S-ideal whose

generators are elements of the ring K[X], and S is a polynomial ring over K[X].

Therefore, we may reduce to the case that R = K.

For (a), we know that J is a principal ideal generated by a regular element. Hence,

for all k, Jk is a free R-module. Therefore, for all k, pd Jk = 0.

For (b), from the work of Huneke in [35, 2.2], we know that R(J) is Cohen-

Macaulay. Therefore, Burch’s inequality is an equality. In other words, `(J) +

infk
{

depth S/Jk
}

= dimS.

The Auslander-Buchsbaum Formula gives pd S/Jk + depth S/Jk = dimS. In

particular, dimS − depth S/Jk = pd S/Jk. Therefore,

`(J) = dimS − inf
k

{
depth S/Jk

}
= sup

k

{
dimS − depth S/Jk

}
= sup

k

{
pd S/Jk

}
.

Hence, by Lemma 3.3.4, we have maxk
{

pd S/Jk
}

= n. We note that a free S-

resolution F• of Jk can be extended to a free S-resolution of S/Jk by appending
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F• → S and that every free resolution of S/Jk may be obtained in this way. Thus,

pd Jk = pd S/Jk − 1. Therefore,

max
k

{
pd Jk

}
= max

k

{
pd S/Jk

}
− 1 = n− 1.

To prove (c), we note that since S is a polynomial ring in
(
n
2

)
variables over a

field, by Hilbert’s Syzygy Theorem, maxk
{

pd S/Jk
}
≤
(
n
2

)
, so

max
k

{
pd Jk

}
≤
(
n

2

)
− 1.

On the other hand, by Burch’s inequality, `(J) + infk
{

depth S/Jk
}
≤ dimS. The

Auslander-Buchsbaum Formula gives us that pd S/Jk + depth S/Jk = dimS. In

particular, dimS − depth S/Jk = pd S/Jk. Therefore,

`(J) ≤ dimS − inf
k

{
depth S/Jk

}
= sup

k

{
dimS − depth S/Jk

}
= sup

k

{
pd S/Jk

}
.

Thus, `(J) ≤ maxk
{

pd Jk
}

+ 1, so `(J)− 1 ≤ maxk
{

pd Jk
}

. Applying Lemma 3.3.4,

we obtain (
n

2

)
− 1 ≤ max

k

{
pd Jk

}
.

We end the chapter with the containment lemma for alternating matrices. This

lemma is an important tool in the specialization results of Chapter 4.

Lemma 3.3.6 (Containment Lemma for Alternating Matrices) Let t and n

be integers satisfying 2 ≤ 2t ≤ n, K a field, R = K[x1, . . . , xd] a polynomial ring in

d variables over K, X an n × n generic alternating matrix over R, S = R[X], and

J = Pf2t(X). For each k, let
(
Fk
•, ∂

k
•
)

be a finite free S-resolution of Jk where each

module Fk
i is finitely generated.

a. If 2t = n, then for each j satisfying 2 ≤ 2j ≤ 2t− 2,
√

Pf2j(X) ⊆
√
I(∂ki) for

all k whenever i ≥ 1.

b. If 2t = n− 1, then for each j satisfying 2 ≤ 2j ≤ 2t− 2,
√

Pf2j(X) ⊆
√
I(∂ki)

for all k whenever i ≥ n− 2j.
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c. If 2t ≤ n− 2, then for each j satisfying 2 ≤ 2j ≤ 2t− 2,
√

Pf2j(X) ⊆
√
I(∂ki)

for all k whenever i ≥
(
n−2j

2

)
.

Proof Fix j with 2 ≤ 2j ≤ 2t− 2, and suppose p ∈ Spec(S) \V (Pf2j(X)). We wish

to show that p /∈ V
(
I
(
∂ki
))

for all i in the appropriate range (i ≥ 1 in (a), i ≥ n− 2j

in (b), and i ≥
(
n−2j

2

)
in (c)). To do this, it suffices to prove that pdSp

Jkp < i for the

appropriate range of i values.

Since p /∈ V (Pf2j(X)), it follows that Xp must have a 2j× 2j principal submatrix

with unit Pfaffian in Sp. Since performing elementary row and corresponding column

operations does not affect the ideal of Pfaffians of a matrix, we may assume that the

upper left 2j × 2j block of Xp has a unit Pfaffian.

To make notation consistent with Lemma 3.3.3, let

X =

 A B

−BT C

 ,

where A is a 2j × 2j alternating block. Let ∆ = Pf(A), and consider the ring

T = R[A,B,∆−1]. Let Y be an (n− 2j) × (n− 2j) generic alternating matrix over

T . In this notation, S = R[A,B,C].

Since A has a unit Pfaffin in Sp, it follows that ∆−1 ∈ Sp. Therefore, Sp is a

localization of T [C]. Hence, pdSp
Jkp ≤ pdT [C] J

k.

Recall from Lemma 3.3.3 that there exists a T -algebra isomorphism ϕ : T [C] →

T [Y ] so that the extension of JkT [C] along ϕ is equal to Pf2t−2j(Y )k T [Y ]. There-

fore, pdT [C] J
k = pdT [Y ] Pf2t−2j(Y )k. Since T [Y ] = R[A,B,∆−1, Y ] is free over

R[A,∆−1, Y ] and since the generators of Pf2t−2j(Y )k are elements of R[A,∆−1, Y ],

by Lemma 3.0.1, we have pdT [Y ] Pf2t−2j(Y )k = pdR[A,∆−1,Y ] Pf2t−2j(Y )k. The ring

R[A,∆−1, Y ] is a localization of R[A, Y ] obtained by inverting powers of ∆. Hence,

pdR[A,∆−1,Y ] Pf2t−2j(Y )k ≤ pdR[A,Y ] Pf2t−2j(Y )k. Now, R[A, Y ] is free over R[Y ] and

the generators of Pf2t−2j(Y )k are elements of R[Y ]. Therefore, by Lemma 3.0.1,

pdR[A,Y ] Pf2t−2j(Y )k = pdR[Y ] Pf2t−2j(Y )k. Hence, pdSp
Jkp ≤ pdK[Y ] Pf2t−2j(Y )k.

Since Y is an (n− 2j) × (n− 2j) generic alternating matrix over R, which is a

polynomial ring over a field, we may apply Lemma 3.3.4.
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For (a),

pdSp
Jkp ≤ pdK[Y ] Pf2t−2j(Y )k ≤ 0,

for (b),

pdSp
Jkp ≤ pdK[Y ] Pf2t−2j(Y )k ≤ n− 2j − 1,

and for (c),

pdSp
Jkp ≤ pdK[Y ] Pf2t−2j(Y )k ≤

(
n− 2j

2

)
− 1.

Therefore, for (a), pdSp
Jkp < i whenever i ≥ 1. Thus, p /∈ V

(
I
(
∂ki
))

for all i ≥ 1.

Hence,
√

Pf2j(X) ⊆
√
I(∂ki) for all k whenever i ≥ 1.

Similarly, for (b), pdSp
Jkp < i whenever i ≥ n − 2j. Thus, p /∈ V

(
I
(
∂ki
))

for all

i ≥ n− 2j. Hence,
√

Pf2j(X) ⊆
√
I(∂ki) for all k whenever i ≥ n− 2j.

Similarly, for (c), pdSp
Jkp < i whenever i ≥

(
n−2j

2

)
. Thus, p /∈ V

(
I
(
∂ki
))

for all

i ≥
(
n−2j

2

)
. Hence,

√
Pf2j(X) ⊆

√
I(∂ki) for all k whenever i ≥

(
n−2j

2

)
.
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4. APPROXIMATION OF REES RINGS THROUGH

SPECIALIZATION

This chapter is concerned with using specialization to approximate Rees rings. Let

S be a positively graded Cohen-Macaulay ring with S0 local. Suppose J and N are

S-ideals so that N is generated by a sequence which is weakly regular on S and S/J .

Let R = S/N and I = JR. Then I is a specialization of J . The critical property of

I being a specialization of J is that J ⊗S R ∼= I. This will be demonstrated in the

proof of Lemma 4.1.1, which is one of the main tools of the chapter. In particular,

part (c) of Lemma 4.1.1 describes how A(I) fits between A(J) ⊗S R and the kernel

of the natural surjection ψ : R(J) ⊗S R → R(I). Because of this, we are able to

bound b0(A(I)) and topdeg(A(I)) in terms of b0(A(J)), topdeg(A(J)), b0(kerψ), and

topdeg(kerψ).

In order to control kerψ, we use the concept of approximate resolutions.

Definition 4.0.1 Let R be a nonnegatively graded Noetherian ring with R0 local and

d = dimR. Suppose M is a graded R-module. A complex C• of graded R-modules is

called an approximate resolution of M if the following three conditions hold:

a. H0(C•) ∼= M ,

b. dim Hj(C•) ≤ j for all 1 ≤ j ≤ d− 1, and

c. depth Cj ≥ min{d, j + 2} for all 1 ≤ j ≤ d− 1.

An approximate resolution can be used to bound the generation and concentration

degrees of the zeroth local cohomology of the module it is approximately resolving,

as in the following lemma.
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Lemma 4.0.2 (Kustin-Polini-Ulrich [45, 3.8, 4.8]) Let K be a field, and sup-

pose R = K[x1, . . . , xd] is a standard graded polynomial ring over K with m =

(x1, . . . , xd) and d > 0. Let M be a graded R-module and C• be an approximate

resolution of M where each Ci is finitely generated. Then

b0

(
H0

m(M)
)
≤ b0(Cd−1)− d+ 1, and

topdeg
(
H0

m(M)
)
≤ b0(Cd)− d.

The majority of Section 4.1 is dedicated to showing the conditions under which

we can use minimal homogeneous free resolutions of Jk to obtain degree bounds on

kerψ.

Section 4.2 is dedicated to transferring the results of Section 4.1 to determinantal

ideals It(A) and Pfaffian ideals Pf2t(A) of generic height by placing height bounds on

Ij(A) and Pf2j(A) for j < t. The results of this section will be analyzed in Chapter 5.

4.1 General Tools Concerning Specialization

Lemma 4.1.1 Let S be a nonnegatively graded Cohen-Macaulay ring with S0 local, J

be a homogeneous S-ideal generated by homogeneous elements of S of the same degree

D. Suppose Y1, . . . , Ys is a sequence of homogeneous elements of S which is weakly

regular on both S and S/J . Let N = (Y1, . . . , Ys), R = S/N , I = JR, and d = dimR.

For each k, let
(
Fk
•, ∂

k
•
)

be a homogeneous finite free S-resolution of Jk(kD) so that

each Fi is finitely generated. Further, for each i, suppose there exists a family {Ki}

of S-ideals satisfying the condition Ki ⊆
√
I(∂ki) for all k.

a. If htKiR ≥ i for all i, then for each k, Fk
• ⊗S R is a homogeneous free R-

resolution of Jk(kD)⊗S R.

b. If htKiR ≥ min{i, d− 1} for all i, then for each k, Fk
•⊗S R is a homogeneous

approximate R-resolution of Jk(kD)⊗S R.
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c. Let ψk : Jk ⊗S R → Ik be the natural surjection. For each k, there exists a

homogeneous exact sequence

Ak(J)⊗S R→ Ak(I)→ (kerψk)(kD)→ 0.

Proof We begin with a proof of (a). By the right exactness of the tensor prod-

uct, Fk
• ⊗S R is a homogeneous finite complex of finitely generated free S-modules

with H0

(
Fk
•
) ∼= Jk(kD) ⊗S R. By the Buchsbaum-Eisenbud criterion (see Proposi-

tion 2.4.1), it suffices to prove that grade I
(
∂ki ⊗S R

)
≥ i for each i. Since S is a

Cohen-Macaulay ring and N is generated by a sequence which is weakly regular on S,

it follows that S/N ∼= R is Cohen-Macaulay as well. Therefore, grade I
(
∂ki ⊗S R

)
=

ht I
(
∂ki ⊗S R

)
. Since Ki ⊆

√
I(∂ki), it follows that KiR ⊆

√
I(∂ki ⊗S R). There-

fore, by assumption, i ≤ htKiR ≤ ht I
(
∂ki ⊗S R

)
. Hence, Fk

• ⊗S R is acyclic,

completing the proof of (a).

We now prove (b). We first discuss properties of S and R. Since S is nonnegatively

graded with S0 local, S has a unique maximal homogeneous ideal which is a maximal

ideal of S. Call it M. Therefore, since R = S/N where N is a homogeneous ideal, it

follows that R has a unique maximal homogeneous ideal which is a maximal ideal of

R, m = M/N . Therefore, we also have htm = dimR = d.

Since R is a Cohen-Macaulay ring and each Fk
i ⊗S R is a free R-module, the

depth conditions in Definition 4.0.1 are automatically satisfied. Additionally, as in

part (a), H0

(
Fk
• ⊗S R

) ∼= Jk(kD)⊗S R. Therefore, all that remains to show is that

dim Hj

(
Fk
• ⊗S R

)
≤ j for all 1 ≤ j ≤ d − 1. By definition, dim Hj

(
Fk
• ⊗S R

)
=

dimR/ ann
(
Hj

(
Fk
• ⊗S R

))
. Since R is a Cohen-Macaulay ring with unique maximal

homogeneous ideal of height equal to its dimension and since Fk
• ⊗S R is a homoge-

neous complex of R-modules, this is equal to dimR−ht ann
(
Hj

(
Fk
• ⊗S R

))
. There-

fore, it remains to show d − ht ann
(
Hj

(
Fk
• ⊗S R

))
≤ j, or equivalently it remains

to show, ht ann
(
Hj

(
Fk
• ⊗S R

))
≥ d − j. Hence, we may show that Hj

(
Fk
• ⊗S R

)
vanishes locally at primes of height at most d− j − 1.
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Fix j with 1 ≤ j ≤ d − 1. Let p ∈ Spec(R) with ht p ≤ d − j − 1. Consider

the complex
(
Fk
• ⊗S R

)
p
. As in part (a), we have KiR ⊆

√
I(∂ki ⊗S R). Therefore,

KiRp ⊆
√
I(∂ki ⊗S Rp). Since heights cannot decrease after localization, htKiRp ≥

min{i, d− 1}. Since 1 ≤ j ≤ d− 1, it follows that d− j ≤ d− 1. Moreover, because

dimRp ≤ d − j − 1, for all i, we have htKiRp ≥ i. Therefore, ht I
(
∂ki ⊗S Rp

)
≥ i.

Consequently,
(
Fk
• ⊗S R

)
p

is a free resolution. Thus, Hi

((
Fk
• ⊗S R

)
p

)
= 0. Since

exact functors commute with homology, Hi

(
Fk
• ⊗S R

)
p

= 0, completing the proof of

(b).

We now prove (c). We begin by showing that ψ1 : J ⊗S R→ I is an isomorphism.

Note that J⊗SR = J⊗SS/N ∼= J/JN . Moreover, by definition, I = J/N . Therefore,

kerψ1
∼= ker(J/JN → J/N) = J ∩ N/JN ∼= TorS1 (S/J, S/N). Now, since N is

generated by a sequence which is weakly regular on S/J , TorS1 (S/J, S/N) = 0. Hence,

ψ1 is an isomorphism.

For each k, the sequence

0→ Ak(J)→ Symk(J(D))→ Jk(kD)→ 0

is exact and homogeneous (recall the bigrading of the Rees ring and symmetric algebra

from Definition 2.2.8). Therefore, by the right exactness of the tensor product, the

sequence

Ak(J)⊗S R→ Symk(J(D))⊗S R→ Jk(kD)⊗S R→ 0

is exact and homogeneous as well.

By the base change property of the symmetric algebra combined with the fact

that ψ1 is an isomorphism, Symk(J(D)) ⊗S R ∼= Symk(J(D)⊗S R) ∼= Symk(I(D)).

Therefore, we obtain the following commutative diagram with exact rows and all

maps homogeneous.

Ak(J)⊗S R Symk(I(D)) Jk(kD)⊗S R 0

0 Ak(I) Symk(I(D)) Ik(kD) 0

f ψk
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Hence, by the Snake Lemma, coker f ∼= (kerψk)(kD) is a homogeneous isomorphism.

Therefore, the sequence

Ak(J)⊗S R→ Ak(I)→ (kerψk)(kD)→ 0

is a homogeneous exact sequence for each k.

In order to use Lemma 4.0.2 to bound b0(kerψk(kD)) and topdeg(kerψk(kD)),

we need to show that kerψk = H0
m

(
Jk ⊗S R

)
. The following lemma gives a criterion

for proving such statements.

Lemma 4.1.2 Let R be a nonnegatively graded Cohen-Macaulay ring of dimension

d > 0 with R0 local. Let m denote the unique maximal homogeneous ideal of R.

Suppose M and L are graded R-modules so that M is finitely generated and pdM <

∞. Suppose f : M → L is a homogeneous R-linear map. Let K = ker f , and suppose

K = τ(M), the R-torsion of M . Then K = H0
m(M) if and only if pdRp

Mp < ht p for

all homogeneous prime ideals p of R with p 6= m and ht p > 0.

Proof Since R is a Cohen-Macaulay ring of positive dimension, it follows that m

contains a non-zero-divisor in R. Indeed, if all elements of m were zero-divisors in

R, then m would be an associated prime of R, giving that depthRm = 0 < dimRm,

contradicting that R is Cohen-Macaulay. Hence, if x ∈ M and mix = 0 for some i,

then x ∈ τ(M). Since H0
m(M) consists of all elements of M which are annihilated by

a power of m, it follows that H0
m(M) ⊆ τ(M) = K. Since R is Noetherian, H0

m(M) =

{x ∈M | Supp(Rx) ⊆ {m}}. Therefore, K ⊆ H0
m(M) if and only if Supp(K) ⊆ {m},

or equivalently, H0
m(M) = K if and only if Supp(K) ⊆ {m}. Since K = ker f with f

homogeneous, K is homogeneous. Hence, Supp(K) ⊆ {m} if and only if Kp = 0 for

all homogeneous prime ideals p of R with p 6= m.

We now prove that torsion localizes. In other words, we now prove that τR(M)p =

τRp(Mp). Now, τR(M) = ker(M → Quot(R)⊗RM), where Quot(R) is the localiza-

tion of R with respect to the multiplicative set R \
⋃

q∈Ass(R) q. Since R is Cohen-

Macaulay, Ass(R) = Min(R). Thus, Quot(R) is the localization of R with respect to
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the multiplicative set R\
⋃

q∈Min(R) q. Similarly, for any prime ideal p, Quot(Rp) is the

localization of Rp with respect to the multiplicative set Rp \
⋃

q∈Min(Rp) q. Hence, it

follows that Quot(R)⊗RRp
∼= Quot(Rp). Therefore, for any prime ideal p, τR(M)p =

ker(Mp → Rp ⊗R Quot(R)⊗RM) ∼= ker(Mp → Quot(Rp)⊗RM) = τRp(Mp).

Recall that we have already shown that H0
m(M) = K if and only if Kp = 0 for all

homogeneous primes p with p 6= m. Since K = τR(M), from the above paragraph, we

see that Kp = 0 for all homogeneous primes p with p 6= m if and only if τRp(Mp) = 0

for all homogeneous primes p with p 6= 0. Hence, H0
m(M) = K if and only if Mp is

torsionfree for all homogeneous primes p with p 6= m.

We next prove that Mp is torsionfree for all homogeneous primes p with p 6= m

if and only if depthMp > 0 for all homogeneous primes p with p 6= m and with

ht p > 0. Suppose Mp is torsionfree for all homogeneous primes p with p 6= m.

Let p be a homogeneous prime with p 6= m and ht p > 0. Then Mp is torsionfree.

Therefore, if qRp ∈ AssRp(Mp), then qRp ⊆ rRp for some rRp ∈ AssRp(Rp). Since Rp

is Cohen-Macaulay, rRp is a minimal prime of Rp. Thus, qRp = rRp is a minimal

prime of Rp. Hence, if it were the case that depthMp = 0, then pRp ∈ AssRp(Mp),

giving that pRp is a minimal prime of Rp, and hence, p is a minimal prime of R.

This would contradict ht p > 0. Thus, we conclude that depthMp > 0. Conversely,

suppose depthMp > 0 for all homogeneous primes p with p 6= m and with ht p > 0.

Let p be a homogeneous prime with p 6= m. If Mp had nonzero torsion, then there

would exist qRp ∈ AssRp(Mp) with qRp not contained in any associated primes of

Rp. Since the set of associated primes localizes, q must be an associated prime of

M . Since M is graded, the associated primes of M are all homogeneous; thus, q is

homogeneous. Since Rp is Cohen-Macaulay, the associated primes of Rp are minimal.

Hence, ht qRp > 0 (since qRp is not contained in any minimal primes of Rp). Thus,

ht q > 0. Additionally, q 6= m since p 6= m and qRp is a prime ideal. Hence, by

assumption, depthMq > 0, contradicting that q ∈ AssR(M).
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Finally, since R is a graded ring with unique maximal homogeneous ideal m which

is a maximal ideal of R and since M is a graded R-module with finite projective

dimension, for any homogeneous prime ideal p with p 6= m and ht p > 0, we have

depthMp + pdRp
Mp = depthRp

by the Auslander-Buchsbaum Formula. Since Rp is Cohen-Macaulay, depthRp =

dimRp = ht p. Therefore, we have

depthMp + pdRp
Mp = ht p.

Hence, we see that pdRp
Mp < ht p if and only if depthMp > 0.

We now use Lemma 4.0.2 and Lemma 4.1.2 to place bounds on b0(Ak(I)) and

topdeg(Ak(I)) in terms of Jk and minimal homogeneous free resolutions of Jk.

Proposition 4.1.3 Let K be a field and R = K[x1, . . . , xd] a standard graded poly-

nomial ring in d > 0 variables over K. Let A1, . . . , As be a sequence of elements

of R which are each homogeneous of the same degree δ, X1, . . . , Xs be a sequence of

indeterminates over R, and define S = R[X1, . . . , Xs]. Give S the grading so that R

is a graded subring and so that degXi = δ for each i. Suppose J is an S-ideal which

is generated by homogeneous elements of the same degree D. Define Yi = Xi − Ai

for each i, let N = (Y1, . . . , Ys), and assume that N can be generated by a sequence

which is weakly regular on S and S/J . We give R the S-algebra structure induced by

the homogeneous isomorphism R ∼= S/N . Let I = JR. For each k, let
(
Gk
•,q

k
•
)

be a minimal homogeneous free S-resolution of Jk(kD). Suppose that there exists a

family {Ki} of S-ideals having the property that, for each i, Ki ⊆
√
I(qk

i) for all k.

If htKiR ≥ min{i+ 1, d} for all i, then

b0(Ak(I)) ≤ max
{
b0(Ak(J)) , b0

(
Gk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{

topdeg(Ak(J)) , b0

(
Gk

d

)
− d
}
.
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Proof The hypotheses of Lemma 4.1.1 are satisfied. Let ψk : Jk ⊗S R→ Ik be the

natural surjection. By part (c) of Lemma 4.1.1, the sequence

Ak(J)⊗S R→ Ak(I)→ (kerψk)(kD)→ 0.

is exact and homogeneous for each k.

We begin by proving

b0(Ak(I)) ≤ max{b0(Ak(J)) , b0((kerψk)(kD))}

for each k.

Suppose g1, . . . , gm and h1, . . . , hn are minimal homogeneous generating sets of

Ak(J) and (kerψk)(kD), respectively. Let g1, . . . , gm be the images of g1, . . . , gm

in Ak(I), respectively. Similarly, let h1, . . . , hn be preimages of h1, . . . , hn in Ak(I)

respectively. Then g1, . . . , gm, h1, . . . , hn is a homogeneous generating set of Ak(I).

The result follows from the homogeneity of the sequence.

Next, we prove

topdeg(Ak(I)) ≤ max{topdeg(Ak(J)) , topdeg((kerψk)(kD))}

for each k.

This, again, follows from the homogeneous exact sequence above. Indeed, if for

some p one has [Ak(J)]p = 0 and [(kerψk)(kD)]p = 0, then the sequence

0→ [Ak(I)]p → 0

is exact, giving [Ak(I)]p = 0.

Therefore, we have

b0(Ak(I)) ≤ max{b0(Ak(J)) , b0((kerψk)(kD))} , and

topdeg(Ak(I)) ≤ max{topdeg(Ak(J)) , topdeg((kerψk)(kD))} .

We wish to characterize b0((kerψk)(kD)) and topdeg((kerψk)(kD)) in terms of

the minimal homogeneous free resolution
(
Gk
•,q

k
•
)

of Jk(kD). Our strategy will
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be to use Lemma 4.1.2 to show that kerψk = H0
m

(
Jk ⊗S R

)
, where m = (x1, . . . , xd).

We will then use part (b) of Lemma 4.1.1 to show that Gk
• ⊗S R is an approximate

resolution of Jk ⊗S R. Lastly, we will use Lemma 4.0.2 to recast generation degree

and concentration degree bounds of (kerψk)(kD) in terms of the complexes Gk
•.

We begin by applying Lemma 4.1.2. Since R is a polynomial ring over a field, it is

the case that R is a nonnegatively graded Cohen-Macaulay ring of dimension d > 0

with R0 local. Choosing M = Jk ⊗S R and L = Ik, we have that ψk : Jk ⊗R S → Ik

is a homogeneous R-linear map between graded R-modules. Moreover, since R is

a polynomial ring over a field, by Hilbert’s Syzygy Theorem, Jk ⊗S R has finite

projective dimension. We must prove that kerψk is the torsion of Jk ⊗S R. Consider

the module Jk ⊗S R⊗R Quot(R):

Jk ⊗S Quot(R) ∼= Jk ⊗S
SN
NSN

∼= Jk ⊗S SN ⊗S
S

N
∼= JkSN ⊗S

S

N

Since N is a prime ideal (because R is a domain), if Jk ⊆ N , it would follow that

J ⊆ N . Since N is generated by a sequence which is weakly regular on S/J , this is

impossible. Thus, JkSN = SN . Hence, we conclude Jk⊗S R⊗R Quot(R) ∼= Quot(R).

Also, Ik ⊗R Quot(R) ∼= Quot(R) since Ik 6= 0 and R is a domain. Therefore, since

Quot(R) is flat over R, we have that the sequence

0→ kerψk ⊗R Quot(R)→ Quot(R)→ Quot(R)→ 0

is exact. Hence, kerψk ⊗R Quot(R) = 0. Thus, kerψk ⊆ τ
(
Jk ⊗S R

)
. Finally, since

Ik is torsionfree as an R-module, it follows that τ
(
Jk ⊗S R

)
⊆ kerψk. Therefore,

kerψk is the torsion of Jk ⊗S R.

Thus, by Lemma 4.1.2, kerψk = H0
m

(
Jk ⊗S R

)
if and only if pdRp

(
Jk ⊗S R

)
p
<

ht p for all homogeneous primes p of R with p 6= m and ht p > 0. Let p be a

homogeneous prime ideal of R with p 6= m and ht p > 0. Since Ki ⊆
√
I(qk

i), it

follows that KiRp ⊆
√
I(qk

i ⊗S Rp). Since p 6= m, it follows that ht p < d. Therefore,

since htKiR ≥ min{i+ 1, d}, it follows that htKiRp ≥ i+1, giving ht I
(
qk

i ⊗S Rp

)
≥

i+1. Therefore, by the Buchsbaum-Eisenbud Criterion in Proposition 2.4.1, Gk
•⊗SRp
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is a homogeneous free Rp-resolution of
(
Jk ⊗S R

)
p
. Moreover, for i = ht p, we have

ht I
(
qk

ht p ⊗S Rp

)
≥ ht p + 1 > dimRp. Therefore, I

(
qk

ht p ⊗S Rp

)
= Rp, giving that

the resolution becomes split exact after position ht p− 1. Hence, pdRp

(
Jk ⊗S R

)
p
<

ht p. Thus, we conclude kerψk = H0
m

(
Jk ⊗S R

)
.

Next, we show that Gk
• ⊗S R is an approximate resolution of Jk(kD)⊗S R. By

part (b) of Lemma 4.1.1, we just need htKiR ≥ min{i, d− 1}. However, we have a

stronger condition, htKiR ≥ min{i+ 1, d}.

Finally, we apply Lemma 4.0.2. Since R is a standard graded polynomial ring

over a field and Gk
• ⊗S R is an approximate resolution of Jk(kD)⊗S R, we have

b0

(
H0

m

(
Jk(kD)⊗S R

))
≤ b0

(
Gk

d−1 ⊗S R
)
− d+ 1, and

topdeg
(
H0

m

(
Jk(kD)⊗S R

))
≤ b0

(
Gk

d ⊗S R
)
− d.

Since (kerψk)(kD) = H0
m

(
Jk(kD)⊗S R

)
and since base change cannot add gen-

erators, we have

b0((kerψk)(kD)) ≤ b0

(
Gk

d−1

)
− d+ 1, and

topdeg((kerψk)(kD)) ≤ b0

(
Gk

d

)
− d.

Since we have already shown

b0(Ak(I)) ≤ max{b0(Ak(J)) , b0((kerψk)(kD))} , and

topdeg(Ak(I)) ≤ max{topdeg(Ak(J)) , topdeg((kerψk)(kD))}

earlier in the proof, we conlcude

b0(Ak(I)) ≤ max
{
b0(Ak(J)) , b0

(
Gk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{

topdeg(Ak(J)) , b0

(
Gk

d

)
− d
}
.
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4.2 Determinantal and Pfaffian Ideals

We now apply the result to determinantal and Pfaffian ideals. We begin by show-

ing that determinantal and Pfaffian ideals of generic height are specializations of

generic determinantal and Pfaffian ideals.

Remark 4.2.1 Let R be a nonnegatively graded Cohen-Macaulay ring of dimension

d > 0 with R0 local. Let t, m, and n be integers satisfying 1 ≤ t ≤ m ≤ n. Suppose A

is an m×n matrix with entries in R and I = It(A) is of generic height. Let X be an

m× n generic matrix over R, S = R[X], and J = It(X). Then I is a specialization

of J . In particular, let N be the S-ideal generated by the entries of the matrix X−A.

Then N is generated by a sequence which is regular on S and on S/J , R ∼= S/N , and

I = JR.

Proof The isomorphism R ∼= S/N is clear via theR-algebra epimorphism ϕ : S → R

defined by Xij 7→ Aij. Since the entries of X are mapped to the corresponding entries

of A and because the t×t minors of a matrix are integer polynomials in the entries, we

also have I = JR. Although it is fairly easy to see that N is generated by a sequence

which is regular on S, we provide a more detailed proof, as the same technique will

be used to show that N is generated by a sequence which is regular on S/J .

Since S is Cohen-Macaulay and N is generated by a sequence of length mn,

to show that N is generated by a regular sequence on S, it suffices to show that

dimS − dimS/N = mn. This follows since S is a polynomial ring in mn variables

over R and S/N ∼= R. More precisely, dimS = d + mn and dimS/N = d. Thus,

dimS−dimS/N = d+mn−d = mn. Therefore, N is generated by a sequence which

is regular on S.

By the work of Hochster and Eagon in [31, Corollary 2], it is known that S/J

is Cohen-Macaulay. Therefore, as above, to show that N is generated by a regular

sequence on S/J , it suffices to show that dimS/J−dim (S/J) / (N + J/J) = mn. By

the Third Isomorphism Theorem, (S/J) / (N + J/J) ∼= (S/N) / (J +N/N) ∼= R/I.

Therefore, we just need to show dimS/J − dimR/I = mn. Since S and R are
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both Cohen-Macaulay, dimS/J = dimS − ht J and dimR/I = dimR − ht I. Since

ht I = ht J by assumption, dimS/J −dimR/I = dimS−dimR = d+mn−d = mn.

Therefore, N is generated by a sequence which is regular on S/J .

Observation 4.2.2 The result in Remark 4.2.1 also applies to determinantal ideals

of a symmetric matrix of generic symmetric height and for Pfaffian ideals of an

alternating matrix of generic alternating height.

There are three key aspects of the proof in Remark 4.2.1. The first is that deter-

minants are polynomials in the entries of a matrix with integer coefficients. As such,

I = JR. The second is that the ideal I has the same height as J . Both of these as-

pects are preserved in the symmetric and alternating cases. For the alternating case,

the first aspect is preserved since Pfaffians are also polynomials in the entries of the

matrix with integer coefficients. The third key aspect is that S/J is Cohen-Macaulay.

For determinantal ideals of symmetric matrices, this was proven by Kutz in [50]. For

Pfaffian ideals of alternating matrices, this was proven by Marinov in [52].

4.2.1 Ordinary Matrices

Corollary 4.2.3 Let K be a field and R = K[x1, . . . , xd] a standard graded poly-

nomial ring in d > 0 variables over K. Let t, m, and n be integers satisfying

1 ≤ t ≤ m ≤ n. Suppose A is an m × n ordinary matrix with entries in R so

that every entry of A is homogeneous of the same degree δ. Let I = It(A) be of

generic height. Let X be an m × n generic ordinary matrix over R, S = R[X], and

J = It(X). Give S the grading so that R is a graded subring and so that degXij = δ

for each i and j. Define Yij = Xij − Aij for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, let

N be the S-ideal generated by the Yij. We give R the S-algebra structure induced by

the homogeneous isomorphism R ∼= S/N . For each k, let
(
Gk
•,q

k
•
)

be a minimal

homogeneous free S-resolution of Jk(ktδ). Assume one of the following two situations

holds.

a. Let t = m and ht Ij(A) ≥ min{(m− j + 1) (n−m) + 1, d} for all 1 ≤ j ≤ t−1.
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b. Let t < m and ht Ij(A) ≥ min{(m− j + 1) (n− j + 1) , d} for all 1 ≤ j ≤ t−1.

Then for each k,

b0(Ak(I)) ≤ max
{
b0(Ak(J)) , b0

(
Gk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{

topdeg(Ak(J)) , b0

(
Gk

d

)
− d
}
.

Proof We apply Proposition 4.1.3. We just have to check that all of the hypotheses

have been satisfied. For the sequence of elements Ai in Proposition 4.1.3, we select

the entries of A. For the sequence of indeterminates, we select the entries of X.

Since J = It(X), we note that J is generated by homogeneous elements of degree

tδ, since each entry of X has degree δ and since we are taking the t × t minors. By

Remark 4.2.1, we know that N is generated by a sequence which is regular on S and

on S/J and that I = JR. All that remains is to construct the family {Ki} and prove

that this family satisfies the desired properties.

Let 1 ≤ i ≤ ht J − 1. We take Ki =
√
J . For any k,

√
J =

√
Jk. We must show

that, for each i with 1 ≤ i ≤ ht J − 1,
√
Jk ⊆

√
I(qk

i). Since Gk
• is the minimal

homogeneous free resolution of Jk(ktδ), we can extend it to a free resolution of S/Jk

by appending a new map qk
0 : Gk

0 → S where qk
0 is given by multiplication with the

row vector of a minimal homogeneous generating set of Jk. Since ann
(
S/Jk

)
6= 0, a

structure theorem by David Buchsbaum and David Eisenbud on finite free resolutions

in [10, Remarks pg 261] gives that
√
Jk ⊆

√
I(qk

0) ⊆ · · · ⊆
√
I
(
qk

grade Jk−1

)
. Since

S is a Cohen-Macaulay ring, grade Jk − 1 = ht Jk − 1 = ht J − 1. Therefore, for

each i with 1 ≤ i ≤ ht J − 1, we have Ki =
√
J =

√
Jk ⊆

√
I(qk

i). Moreover,

htKiR = ht JR = ht I = ht J since I has generic height. Therefore, htKiR ≥ i + 1

for all i with 1 ≤ i ≤ ht J − 1.

Let ht J ≤ i ≤ maxk
{

pd Jk
}

. The choice of Ki depends on whether we are

in case (a) where t = m or case (b) where t < m. For case (a) where t = m,

let ji = min{j | i ≥ (m− j) (n−m) + 1}. For case (b) where t < m, let ji =

min{j | i ≥ (m− j) (n− j)}. Then, in either case, define Ki =
√
Iji(X).
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We begin by proving that 1 ≤ ji ≤ t − 1 for each i in the range ht J ≤ i ≤

maxk
{

pd Jk
}

.

In case (a), when substituting j = 0 into (m− j) (n−m) + 1, one obtains

m (n−m) + 1. By part (a) of Lemma 3.1.4, m (n−m) + 1 = maxk
{

pd Jk
}

+ 1.

Hence, this value is strictly greater than i. Since (m− j) (n−m) + 1 is decreasing

in j, by the definition of ji as the minimum value of j with i ≥ (m− j) (n−m) + 1,

it follows that ji ≥ 1. When substituting j = t − 1 into (m− j) (n−m) + 1, one

obtains (m− t+ 1) (n−m) + 1. In this case, t = m, so we have n − t + 1. This is

equal to ht J in this case, which is less than or equal to i. Hence, since ji is defined

as the minimum value j so that i ≥ (m− j) (n−m) + 1, it follows that ji ≤ t− 1.

In case (b), when substituting j = 0 into (m− j) (n− j), one obtains mn. By

part (b) of Lemma 3.1.4, mn = maxk
{

pd Jk
}

+ 1. Thus, this value is strictly greater

than i. Since (m− j) (n− j) is decreasing in j, by the definition of ji as the minimum

value of j with i ≥ (m− j) (n− j), it follows that ji ≥ 1. When substituting j = t−1

into (m− j) (n− j), one obtains (m− t+ 1) (n− t+ 1). This is equal to ht J in this

case, which is less than or equal to i. Hence, since ji is defined as the minimum value

j so that i ≥ (m− j) (n− j), it follows that ji ≤ t− 1.

Finally, we end by proving that htKiR ≥ min{i+ 1, d}. We have htKiR =

ht Iji(A). In part (a), by assumption, ht Iji(A) ≥ min{(m− ji + 1) (n−m) + 1, d}.

But note that (m− ji + 1) (n−m) + 1 = (m− (ji − 1)) (n−m) + 1. Since ji − 1 <

ji = min{j | i ≥ (m− j) (n−m) + 1}, it follows that i < (m− ji + 1) (n−m) + 1.

Therefore, htKiR ≥ min{(m− ji + 1) (n−m) + 1, d} ≥ min{i+ 1, d}. Similarly,

in part (b), by assumption, ht Iji(A) ≥ min{(m− ji + 1) (n− ji + 1) , d}. But note

that (m− ji + 1) (n− ji + 1) = (m− (ji − 1)) (n− (ji − 1)). Since ji − 1 < ji =

min{j | i ≥ (m− j) (n− j)}, it follows that i < (m− ji + 1) (n− ji + 1). Therefore,

htKiR ≥ min{(m− ji + 1) (n− ji + 1) , d} ≥ min{i+ 1, d}.

In the above corollary, we needed to put a fairly unnatural grading on the entries

of X to preserve homogeneity. Typically, people take degXij = 1. We now recast
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the previous result in terms of this more natural grading. This difference of grading

is also why we distinguished the notation of Gk
• and Fk

•.

Corollary 4.2.4 Let K be a field and R = K[x1, . . . , xd] a standard graded poly-

nomial ring in d > 0 variables over K. Let t, m, and n be integers satisfying

1 ≤ t ≤ m ≤ n. Suppose A is an m × n ordinary matrix with entries in R so

that every entry of A is homogeneous of the same degree δ. Let I = It(A) be of

generic height. Let X be an m × n generic ordinary matrix over R, S = R[X], and

J = It(X). Give S the grading so that R is a graded subring and so that degXij = 1

for each i and j. Define Yij = Xij − Aij for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, let N

be the S-ideal generated by the Yij. We give R the S-algebra structure induced by the

isomorphism R ∼= S/N . For each k, let
(
Fk
•, ∂

k
•
)

be a minimal homogeneous free

S-resolution of Jk(kt). Assume one of the following two situations holds.

a. Let t = m and ht Ij(A) ≥ min{(m− j + 1) (n−m) + 1, d} for all 1 ≤ j ≤ t−1.

b. Let t < m and ht Ij(A) ≥ min{(m− j + 1) (n− j + 1) , d} for all 1 ≤ j ≤ t−1.

Then for each k,

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

Proof We apply Corollary 4.2.3. The only difference is the grading on S due to

the grading on the variables Xij. To change from the grading in this setting to the

grading in the setting of Corollary 4.2.3, we multiply the degrees of homogeneous

polynomials in the variables Xij by δ.

Recall that for each k, the exact sequence

0→ Ak(J)→ Symk(J(t))→ Jk(kt)→ 0

is homogeneous. Therefore, multiplying degrees by δ preserves the homogeneity.

Hence, b0(Ak(J)) in the setting of Corollary 4.2.3 is the same number as δb0(Ak(J))
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in the current setting. The same reasoning applies for topdeg(Ak(J)) in the setting

of Corollary 4.2.3 and δ topdeg(Ak(J)) in the current setting.

Finally, we wish to show that b0

(
Gk

i

)
from Corollary 4.2.3 is the same number as

δb0

(
Fk

i

)
in the current setting for each i. To do this, it suffices to show that the the

minimal free resolutions Fk
• only depend on the variables Xij. We employ the argu-

ment of Lemma 3.0.1. In particular, let Hk
• be the minimal homogeneous free reso-

lution of Jk(kt) viewed as a graded K[X]-module. Then, since S = K[X][x1, . . . , xd],

Hk
• ⊗K[X] S must be the minimal homogeneous free resolution of Jk(kt) viewed as

an S-module. Consequently, b0

(
Gk

i

)
= δb0

(
Fk

i

)
.

4.2.2 Symmetric Matrices

Corollary 4.2.5 Let K be a field and R = K[x1, . . . , xd] a standard graded polyno-

mial ring in d > 0 variables over K. Let t and n be integers satisfying 1 ≤ t ≤ n.

Suppose A is an n×n symmetric matrix with entries in R so that every entry of A is

homogeneous of the same degree δ. Let I = It(A) be of generic symmetric height. Let

X be an n× n generic symmetric matrix over R, S = R[X], and J = It(X). Give S

the grading so that R is a graded subring and so that degXij = δ for each i and j.

Define Yij = Xij − Aij for each 1 ≤ i ≤ j ≤ n, and let N be the S-ideal generated by

the Yij. We give R the S-algebra structure induced by the homogeneous isomorphism

R ∼= S/N . For each k, let
(
Gk
•,q

k
•
)

be a minimal homogeneous free S-resolution of

Jk(ktδ). Assume one of the following two situations holds.

a. Let t = n.

b. Let t < n and ht Ij(A) ≥ min
{(

n−j+2
2

)
, d
}

for all 1 ≤ j ≤ t− 1.

Then for each k,

b0(Ak(I)) ≤ max
{
b0(Ak(J)) , b0

(
Gk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{

topdeg(Ak(J)) , b0

(
Gk

d

)
− d
}
.
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Proof We apply Proposition 4.1.3. We just have to check that all of the hypotheses

have been satisfied. For the sequence of elements Ai in Proposition 4.1.3, we select

the entries in the upper triangle of A. For the sequence of indeterminates, we select

the entries in the upper triangle of X. Since J = It(X), we note that J is generated

by homogeneous elements of degree tδ, since each entry of X has degree δ and since

we are taking the t× t minors. By Observation 4.2.2, we know that N is generated by

a sequence which is regular on S and on S/J and that I = JR. All that remains is to

construct the family {Ki} and prove that this family satisfies the desired properties.

By part (a) of Lemma 3.2.4, we see maxk
{

pd Jk
}

= 0 in case (a). Therefore, the

family {Ki} = ∅ and the height conditions are vacuously satisfied. Therefore, we

only need to construct the family {Ki} and prove the relevant height bounds in case

(b).

Let 1 ≤ i ≤ ht J − 1. We take Ki =
√
J . For any k,

√
J =

√
Jk. We must show

that, for each i with 1 ≤ i ≤ ht J − 1,
√
Jk ⊆

√
I(qk

i). Since Gk
• is the minimal

homogeneous free resolution of Jk(ktδ), we can extend it to a free resolution of S/Jk

by appending a new map qk
0 : Gk

0 → S where qk
0 is given by multiplication with the

row vector of a minimal homogeneous generating set of Jk. Since ann
(
S/Jk

)
6= 0,

a structure theorem by Buchsbaum and Eisenbud on finite free resolutions in [10,

Remarks pg 261] gives that
√
Jk ⊆

√
I(qk

0) ⊆ · · · ⊆
√
I
(
qk

grade Jk−1

)
. Since S

is a Cohen-Macaulay ring, grade Jk − 1 = ht Jk − 1 = ht J − 1. Therefore, for

each i with 1 ≤ i ≤ ht J − 1, we have Ki =
√
J =

√
Jk ⊆

√
I(qk

i). Moreover,

htKiR = ht JR = ht I = ht J since I has generic height. Thus, htKiR ≥ i + 1 for

all i with 1 ≤ i ≤ ht J − 1.

Let ht J ≤ i ≤ maxk
{

pd Jk
}

. Let ji = min
{
j | i ≥

(
n−j+1

2

)}
, and define Ki =√

Iji(X).

We begin by proving that 1 ≤ ji ≤ t − 1 for each i in the range ht J ≤ i ≤

maxk
{

pd Jk
}

.

When substituting j = 0 into
(
n−j+1

2

)
, one obtains

(
n+1

2

)
. Applying part (b) of

Lemma 3.2.4, we see
(
n+1

2

)
= maxk

{
pd Jk

}
+ 1. Hence, this value is strictly greater
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than i. Since
(
n−j+1

2

)
is decreasing in j, by the definition of ji as the minimum value

of j with i ≥
(
n−j+1

2

)
, it follows that ji ≥ 1. On the other hand, when substituting

j = t − 1 into
(
n−j+1

2

)
, one obtains

(
n−t+2

2

)
. This is equal to ht J , which is less than

or equal to i. Hence, since ji is defined as the minimum value j so that i ≥
(
n−j+1

2

)
,

it follows that ji ≤ t− 1.

Finally, we end by proving that htKiR ≥ min{i+ 1, d}. We have htKiR =

ht Iji(A). By assumption, ht Iji(A) ≥ min
{(

n−ji+2
2

)
, d
}

. But note that
(
n−ji+2

2

)
=(

n−(ji−1)+1
2

)
. Since ji − 1 < ji = min

{
j | i ≥

(
n−j+1

2

)}
, it follows that i <

(
n−ji+2

2

)
.

Therefore, htKiR ≥ min
{(

n−ji+2
2

)
, d
}
≥ min{i+ 1, d}.

Like in the ordinary case, we placed a fairly unnatural grading on the entries of

X in order to preserve homogeneity. The next result recasts the previous result in

terms of this more natural grading, where degXij = 1.

Corollary 4.2.6 Let K be a field and R = K[x1, . . . , xd] a standard graded polyno-

mial ring in d > 0 variables over K. Let t and n be integers satisfying 1 ≤ t ≤ n.

Suppose A is an n×n symmetric matrix with entries in R so that every entry of A is

homogeneous of the same degree δ. Let I = It(A) be of generic symmetric height. Let

X be an n× n generic symmetric matrix over R, S = R[X], and J = It(X). Give S

the grading so that R is a graded subring and so that degXij = 1 for each i and j.

Define Yij = Xij − Aij for each 1 ≤ i ≤ j ≤ m, let N be the S-ideal generated by the

Yij. We give R the S-algebra structure induced by the isomorphism R ∼= S/N . For

each k, let
(
Fk
•, ∂

k
•
)

be a minimal homogeneous free S-resolution of Jk(kt). Assume

one of the following two situations holds.

a. Let t = n.

b. Let t < n and ht Ij(A) ≥ min
{(

n−j+2
2

)
, d
}

for all 1 ≤ j ≤ t− 1.

Then for each k,

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.
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Proof We apply Corollary 4.2.5 and repeat the proof of Corollary 4.2.4.

4.2.3 Alternating Matrices

Corollary 4.2.7 Let K be a field and R = K[x1, . . . , xd] a standard graded polyno-

mial ring in d > 0 variables over K. Let t and n be integers satisfying 2 ≤ 2t ≤ n.

Suppose A is an n×n alternating matrix with entries in R so that every entry of A is

homogeneous of the same degree δ. Let I = Pf2t(A) be of generic alternating height.

Let X be an n × n generic alternating matrix over R, S = R[X], and J = Pf2t(X).

Give S the grading so that R is a graded subring and so that degXij = δ for each

1 ≤ i < j ≤ n. Define Yij = Xij−Aij for each 1 ≤ i < j ≤ n, and let N be the S-ideal

generated by the Yij. We give R the S-algebra structure induced by the homogeneous

isomorphism R ∼= S/N . For each k, let
(
Gk
•,q

k
•
)

be a minimal homogeneous free

S-resolution of Jk(ktδ). Assume one of the following three situations holds.

a. Let 2t = n.

b. Let 2t = n− 1 and ht Pf2j(A) ≥ min{n− 2j + 2, d} for all 1 ≤ j ≤ t− 1.

c. Let 2t ≤ n− 2 and ht Ij(A) ≥ min
{(

n−2j+2
2

)
, d
}

for all 1 ≤ j ≤ t− 1.

Then for each k,

b0(Ak(I)) ≤ max
{
b0(Ak(J)) , b0

(
Gk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{

topdeg(Ak(J)) , b0

(
Gk

d

)
− d
}
.

Proof We apply Proposition 4.1.3. We just have to check that all of the hypotheses

have been satisfied. For the sequence of elements Ai in Proposition 4.1.3, we select

the entries above the diagonal of A. For the sequence of indeterminates, we select

the entries above the diagonal of X. Since J = Pf2t(X), we note that J is generated

by homogeneous elements of degree tδ, since each entry of X has degree δ and since

the t × t Pfaffians are polynomials of degree t. By Observation 4.2.2, we know that
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N is generated by a sequence which is regular on S and on S/J and that I = JR.

All that remains is to construct the family {Ki} and prove that this family satisfies

the desired properties.

By part (a) of Lemma 3.3.5, we see maxk
{

pd Jk
}

= 0 in case (a). Therefore, the

family {Ki} = ∅ and the height conditions are vacuously satisfied for case (a) here.

Therefore, we only need to construct the family {Ki} and prove the relevant height

bounds in cases (b) and (c).

Let 1 ≤ i ≤ ht J − 1. We take Ki =
√
J . For any k,

√
J =

√
Jk. We must show

that, for each i with 1 ≤ i ≤ ht J − 1,
√
Jk ⊆

√
I(qk

i). Since Gk
• is the minimal

homogeneous free resolution of Jk(ktδ), we can extend it to a free resolution of S/Jk

by appending a new map qk
0 : Gk

0 → S where qk
0 is given by multiplication with the

row vector of a minimal homogeneous generating set of Jk. Since ann
(
S/Jk

)
6= 0,

a structure theorem by Buchsbaum and Eisenbud on finite free resolutions in [10,

Remarks pg 261] gives that
√
Jk ⊆

√
I(qk

0) ⊆ · · · ⊆
√
I
(
qk

grade Jk−1

)
. Since S

is a Cohen-Macaulay ring, grade Jk − 1 = ht Jk − 1 = ht J − 1. Therefore, for

each i with 1 ≤ i ≤ ht J − 1, we have Ki =
√
J =

√
Jk ⊆

√
I(qk

i). Moreover,

htKiR = ht JR = ht I = ht J since I has generic height. Hence, htKiR ≥ i + 1 for

all i with 1 ≤ i ≤ ht J − 1.

Let ht J ≤ i ≤ maxk
{

pd Jk
}

. The definition of Ki depends on whether we

are in case (b) where 2t = n − 1 or in case (c) where 2t ≤ n − 2. For case (b)

where 2t = n − 1, let ji = min{j | i ≥ n− 2j}. For case (c) where 2t ≤ n − 2, let

ji = min
{
j | i ≥

(
n−2j

2

)}
. For either case, define Ki =

√
Pf2ji(X).

We begin by proving that 1 ≤ ji ≤ t − 1 for each i in the range ht J ≤ i ≤

maxk
{

pd Jk
}

.

For case (b), when substituting j = 0 into n − 2j, one obtains n. By part (b)

of Lemma 3.3.5, n = maxk
{

pd Jk
}

+ 1. Thus, this value is strictly greater than i.

Since n− 2j is decreasing in j, by the definition of ji as the minimum value of j with

i ≥ n−2j, it follows that ji ≥ 1. When substituting j = t−1 into n−2j, one obtains

n− 2t+ 2 = n− (n− 1) + 2 = 3. This is equal to ht J in this case, which is less than
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or equal to i. Hence, since ji is defined as the minimum value j so that i ≥ n − 2j,

it follows that ji ≤ t− 1.

For case (c), when substituting j = 0 into
(
n−2j

2

)
, one obtains

(
n
2

)
. By part (c)

of Lemma 3.3.5,
(
n
2

)
= maxk

{
pd Jk

}
+ 1. Thus, this value is strictly greater than

i. Since
(
n−2j

2

)
is decreasing in j, by the definition of ji as the minimum value of j

with i ≥
(
n−2j

2

)
, it follows that ji ≥ 1. When substituting j = t − 1 into

(
n−2j

2

)
, one

obtains
(
n−2t+2

2

)
. This is equal to ht J in this case, which is less than or equal to i.

Hence, since ji is defined as the minimum value j so that i ≥
(
n−2j

2

)
, it follows that

ji ≤ t− 1.

Finally, we end by proving that htKiR ≥ min{i+ 1, d}. We have htKiR =

ht Pf2ji(A).

For part (b), by assumption, ht Pf2ji(A) ≥ min{n− 2ji + 2, d}. But note that

n − 2ji + 2 = n − 2 (ji − 1). Since ji − 1 < ji = min{j | i ≥ n− 2j}, it follows that

i < n− 2ji + 2. Therefore, htKiR ≥ min{n− 2ji + 2, d} ≥ min{i+ 1, d}.

For part (c), by assumption, ht Pf2ji(A) ≥ min
{(

n−2ji+2
2

)
, d
}

. But note that(
n−2ji+2

2

)
=
(
n−2(ji−1)

2

)
. Since ji − 1 < ji = min

{
j | i ≥

(
n−2j

2

)}
, it follows that

i <
(
n−2ji+2

2

)
. Therefore, htKiR ≥ min

{(
n−2ji+2

2

)
, d
}
≥ min{i+ 1, d}.

Similarly to the ordinary and symmetric cases, the following result places a more

natural grading on the entries of X, where degXij = 1, as opposed to the grading

above which was necessary to preserve homogeneity.

Corollary 4.2.8 Let K be a field and R = K[x1, . . . , xd] a standard graded polyno-

mial ring in d > 0 variables over K. Let t and n be integers satisfying 2 ≤ 2t ≤ n.

Suppose A is an n×n alternating matrix with entries in R so that every entry of A is

homogeneous of the same degree δ. Let I = Pf2t(A) be of generic alternating height.

Let X be an n × n generic alternating matrix over R, S = R[X], and J = Pf2t(X).

Give S the grading so that R is a graded subring and so that degXij = 1 for each

1 ≤ i < j ≤ n. Define Yij = Xij − Aij for each 1 ≤ i < j ≤ n, let N be the S-ideal

generated by the Yij. We give R the S-algebra structure induced by the isomorphism
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R ∼= S/N . For each k, let
(
Fk
•, ∂

k
•
)

be a minimal homogeneous free S-resolution of

Jk(kt). Assume one of the following three situations holds.

a. Let 2t = n.

b. Let 2t = n− 1 and ht Pf2j(A) ≥ min{n− 2j + 2, d} for all 1 ≤ j ≤ t− 1.

c. Let 2t ≤ n− 2 and ht Ij(A) ≥ min
{(

n−2j+2
2

)
, d
}

for all 1 ≤ j ≤ t− 1.

Then for each k,

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

Proof We apply Corollary 4.2.7 and repeat the proof of Corollary 4.2.4.
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5. DEGREE BOUNDS ON THE DEFINING EQUATIONS

Recall Corollaries 4.2.4, 4.2.6 and 4.2.8. In order to find explicit bounds on b0(Ak(I))

and topdeg(Ak(I)), we must evaluate or find upper bounds for b0(Ak(J)), b0

(
Fk

d−1

)
,

topdeg(Ak(J)), and b0

(
Fk

d

)
to the best of our ability. This chapter is dedicated to

this task.

It is rarely known, specifically, what b0(Ak(J)) and topdeg(Ak(J)) are. However,

there are a few cases where we have some information about these values. These will

be discussed throughout the chapter.

We begin with a few results which describe whether we can find a meaningful

bound on topdeg(A(I)) by determining when topdeg(A(J)) =∞ or topdeg(A(J)) <

∞.

Definition 5.0.1 Let S be a nonnegatively graded Noetherian ring with S0 local, M

be the unique maximal homogeneous ideal of S, and J be a homogeneous S-ideal. We

say that J is of linear type on the punctured spectrum of S if for all homogeneous

prime ideals p of S with p 6= M the ideal Jp is of linear type.

Remark 5.0.2 Let S be a polynomial ring of dimension d with 0 < d < ∞ over a

field K, and let M denote the unique maximal homogeneous ideal of S. Suppose J is a

homogeneous S-ideal generated by homogeneous elements of S of the same degree D.

Then topdeg(A(J)) <∞ if and only if J is of linear type on the punctured spectrum

of S.

Proof Recall that the sequence

0→ A(J)→ Sym(J(D))→ R(J)→ 0

is homogeneous exact sequence of S-modules. Since R(J) ⊆ S[t], R(J) is a tor-

sionfree S-algebra. Therefore, τS(Sym(J)) ⊆ A(J). Since S is Cohen-Macaulay of
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positive dimension and M is a maximal ideal of S, M contains a non-zero-divisor of

S. Therefore, H0
M(Sym(J)) ⊆ τS(Sym(J)) ⊆ A(J). Since S is a Noetherian ring,

A(J) = H0
M(Sym(J)) if and only if SuppS(A(J)) ⊆ {M}. Because A(J) is a homo-

geneous S-module, A(J) = H0
M(Sym(J)) if and only A(J)p = 0 for all homogeneous

prime ideals p of S with p 6= M.

Recall R(J) ∼=
⊕∞

i=0 J
i. Thus, R(J) ⊗S Sp

∼=
⊕∞

i=0 J
i
p
∼= R(Jp). Furthermore,

Sym(J) ⊗S Sp
∼= Sym(J ⊗S Sp) ∼= Sym(Jp). Thus, for any prime ideal p of S, the

sequence

0→ A(J)p → Sym(Jp)→ R(Jp)→ 0

is exact. In particular, A(J)p = 0 if and only if Sym(Jp)→ R(Jp) is an isomorphism,

or equivalently, Jp is of linear type. Combining this with the previous paragraph,

we see that A(J) = H0
M(Sym(J)) if and only if J is of linear type on the punctured

spectrum of S. Thus, we may show that topdeg(A(J)) < ∞ if and only if A(J) =

H0
M(Sym(J)).

Now, if topdeg(A(J)) < ∞, then there exists some p ≥ 0 so that for all q ≥ p

[A(J)]q = 0. Then Mp+1A(J) = 0. Therefore, A(J) ⊆ H0
M(Sym(J)). Since we have

already seen that H0
M(Sym(J)) ⊆ A(J), we have that A(J) = H0

M(Sym(J)). Hence,

if topdeg(A(J)) <∞, then A(J) = H0
M(Sym(J)).

Conversely, suppose A(J) = H0
M(Sym(J)). Since Sym(J) is a finitely generated

S-algebra, there exists some p such that MpH0
M(Sym(J)) = 0. Again, since Sym(J)

is a finitely generated S-algebra, it follows that topdeg(H0
M(Sym(J))) <∞.

5.1 Ordinary Matrices

We begin with a list of known facts concerning b0(A(J)) and topdeg(A(J)).

Proposition 5.1.1 Let, t, m, and n be integers satisfying 1 ≤ t ≤ m ≤ n, K be a

field, X be an m× n generic ordinary matrix over K, S = K[X], and J = It(X).

a. If t = 1, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.
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b. [36, Proposition 1.1] If n ≤ m+ 1 and t = m, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

c. If n ≥ m+ 2 and t = m, then J is not of linear type on the punctured spectrum

of S. Hence,

topdeg(A(J)) =∞.

d. [22, 2.6] If t = m, then J is of fiber type. Hence,

b0(A(J)) ≤ 0.

e. [38, 2.4] If n = m and t = n− 1, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

f. [33, 7.3] If charK = 0, m = 3, n ≥ 3, and t = 2, then J is of fiber type. Hence,

b0(A(J)) ≤ 0.

g. If t = 2, then J is of linear type on the punctured spectrum of S. Hence,

topdeg(A(J)) <∞.

h. If 2 < t < m and it is not the case that t + 1 = m = n, then J is not of linear

type on the punctured spectrum of S. Hence,

topdeg(A(J)) =∞.

Proof Part (a) follows from the fact that J is the ideal generated by the set of

variables. Hence J is generated by a regular sequence. In [36], Huneke developed the

theory of d-sequences. Every regular sequence is a d-sequence. Moreover, any ideal

generated by a d-sequence is of linear type [34, Theorem 3.1]. This also proves the

case of part (b) where n = m and t = m. The case of part (b) where n = m + 1 is
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again proven by d-sequences in [36, Proposition 1.1], which is the reference provided

for part (b). Parts (d), (e), and (f) are proven in the provided references and by

applying Observation 2.2.12 and Observation 2.2.17.

The proofs of (c), (g), and (h) are similar.

To prove (c), let X be an m × n generic matrix where n ≥ m + 2. Let p be

the homogeneous prime ideal of S generated by all of the variables of X with the

exception of X11. We apply Lemma 3.1.2. To make notation consistent, let A be

the 1× 1 matrix with A =
(
X11

)
. Since Sp is a localization of the ring T [D] (using

the notation of Lemma 3.1.2), it suffices to show that the extension of J to T [D]

is not of linear type. By the isomorphism in Lemma 3.1.2, it suffices to show that

Im−1(Y ) is not of linear type where Y is a generic (m− 1)×(n− 1) matrix. But since

n ≥ m+ 2, it follows that (n− 1) ≥ (m− 1) + 2. Hence, we are taking the maximal

minors of a matrix with at least two more columns than rows. By the classification

of ideals of minors of linear type given by Huneke in [38, 2.6], Im−1(Y ) is not of linear

type. Hence, J is not of linear type on the punctured spectrum of S. Therefore, by

Remark 5.0.2, topdeg(A(J)) =∞.

The same argument applies in case (h), localizing at the same prime ideal p

consisting of all variables of X with the exception of X11. Then locally at p, this

ideal is the same as the ideal generated by taking (t− 1) × (t− 1) minors of an

(m− 1)× (n− 1) generic matrix. Again, by [38, 2.6], this ideal is not of linear type.

Hence, by Remark 5.0.2, topdeg(A(J)) =∞.

Lastly, we prove (g). Let X be an m× n generic matrix and t = 2. Let p be any

homogeneous prime ideal of S with p 6= M. Then at least one entry of X must be

invertible after localizing at p. If X contains a block of size 2 × 2 or higher that is

invertible locally at p, then Jp = S, which is of linear type. Thus, we may assume that

the largest invertible block locally at p is a 1×1 matrix. Without loss of generality, we

may assume X11 is invertible. We apply Lemma 3.1.2. To make notation consistent,

let A be the 1× 1 matrix with A =
(
X11

)
. By the isomorphism in Lemma 3.1.2, it

suffices to show that I1(Y ) is of linear type where Y is a generic (m− 1) × (n− 1)
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matrix. This is immediate. Thus, Jp is of linear type. Hence, J is of linear type on

the punctured spectrum of S. Therefore, by Remark 5.0.2, topdeg(A(J)) <∞.

There are few cases in which explicit resolutions of Jk are known. However, we

do know explicit resolutions for the case of maximal minors, i.e., when t = m.

Proposition 5.1.2 (Akin-Buchsbaum-Weyman [1, 5.4]) Let R be a nonnega-

tively graded Noetherian ring with R0 local, m and n integers satisfying 1 ≤ m ≤ n, X

an m×n generic matrix over R, S = R[X], and J = Im(X). For any positive integer

k, let Fk
• be the minimal homogeneous free S-resolution of Jk(kt). Then Fk

• is a lin-

ear resolution of length min{k,m} (n−m). In other words, b0

(
Fk

i

)
= i for all i with

1 ≤ i ≤ min{k,m} (n−m) and b0

(
Fk

i

)
= −∞ for all i with i > min{k,m} (n−m).

This proposition is implicit from the proof of [1, 5.4] but is not directly stated. A

direct statement and justification for the length of the resolution can be found in [7,

3.1], and a direct statement for the linearity of the resolution can be found in [7, 3.6].

Theorem 5.1.3 (Maximal Minors) Let K be a field, R = K[x1, . . . , xd] be a poly-

nomial ring in d > 0 variables over K, m and n be integers satisfying 1 ≤ m ≤ n, A be

an m×n matrix whose entries are all homogeneous elements of R of the same degree

δ, and I = Im(A) be of generic height (that is, ht I = n −m + 1). Further, suppose

that ht Ij(A) ≥ min{(m− j + 1) (n−m) + 1, d} for all j in the range 1 ≤ j ≤ m−1.

a. Let n = m. Then

b0(A(I)) = topdeg(A(I)) = −∞.

b. Let n = m+ 1.

If d > min{k,m} (n−m), then

b0(Ak(I)) = topdeg(Ak(I)) = −∞.

If d ≤ min{k,m} (n−m), then

b0(Ak(I)) ≤ (d− 1) (δ − 1) and topdeg(Ak(I)) ≤ d (δ − 1) .
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c. Let n ≥ m+ 2.

If d− 1 > min{k,m} (n−m), then

b0(Ak(I)) ≤ 0.

If d− 1 ≤ min{k,m} (n−m), then

b0(Ak(I)) ≤ (d− 1) (δ − 1) .

Proof To prove (a), we note that R is a domain and that ht I = ht Im(A) =

ht (det(A)) = 1. Thus, det(A) is a non-zero-divisor in R. Therefore, I is gener-

ated by a regular sequence on R. By [34, Theorem 3.1], I is of linear type, giving the

result.

For parts (b) and (c) we apply Corollary 4.2.4. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

We now prove (b).

By part (b) of Proposition 5.1.1, b0(A(J)) = topdeg(A(J)) = −∞. Therefore,

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and

topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

By Proposition 5.1.2, if d > min{k,m} (n−m), then b0

(
Fk

d

)
= −∞. Therefore,

we have topdeg(Ak(I)) ≤ −∞. Thus, topdeg(Ak(I)) = −∞. It is always the case

that b0(Ak(I)) ≤ topdeg(Ak(I)); hence, we also conclude that b0(Ak(I)) = −∞.

By Proposition 5.1.2, if d ≤ min{k,m} (n−m), then b0

(
Fk

d

)
= d. Therefore,

we have topdeg(Ak(I)) ≤ δd − d = d (δ − 1). Similarly, it must be the case that

d − 1 ≤ min{k,m} (n−m). Hence, b0

(
Fk

d−1

)
= d − 1. Therefore, b0(Ak(I)) ≤

δ (d− 1)− d+ 1 = (d− 1) (δ − 1).
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We now prove (c). By part (c) of Proposition 5.1.1, topdeg(A(J)) = ∞, so we

do not draw any conclusions about topdeg(A(I)). On the other hand, by part (d) of

Proposition 5.1.1, we know b0(A(J)) ≤ 0. Therefore, we have

b0(Ak(I)) ≤ max
{

0, δb0

(
Fk

d−1

)
− d+ 1

}
.

By Proposition 5.1.2, if d− 1 > min{k,m} (n−m), then b0

(
Fk

d−1

)
= −∞. Thus,

b0(Ak(I)) ≤ 0. On the other hand, if d − 1 ≤ min{k,m} (n−m), then b0

(
Fk

d−1

)
=

d− 1. Therefore, b0(Ak(I)) ≤ δ (d− 1) + d− 1 = (d− 1) (δ − 1).

Combining the results of the above theorem with Observation 2.2.12 and Observa-

tion 2.2.17, we obtain the following corollary. Note that when n = m+ 1, n−m = 1.

Corollary 5.1.4 Let K be a field, R = K[x1, . . . , xd] be a polynomial ring in d > 0

variables over K, m and n be integers satisfying 1 ≤ m ≤ n, A be an m × n matrix

whose entries are all homogeneous elements of R of the same degree δ, and I = Im(A)

be of generic height (that is, ht I = n − m + 1). Further, suppose that ht Ij(A) ≥

min{(m− j + 1) (n−m) + 1, d} for all j in the range 1 ≤ j ≤ m− 1.

a. If δ = 1, then I is of fiber type.

b. If n = m+ 1 and d > m, then I is of linear type.

c. If n = m+ 1, d ≤ m, and δ = 1, then (x1, . . . , xd)A(I) = 0.

d. If n ≥ m+ 2 and d > m (n−m) + 1, then I is of fiber type.

Parts (a), (b), and (c) are known results that we recover. Part (a) was proven by

Bruns, Conca, and Varbaro in [7, 3.7] using techniques from representation theory.

Part (b) can be proven in the following way. The requirements in the corollary and

in part (b) imply that I satisfies a condition known as G∞ or F1. From the work of

Apéry in [2] or of Gaeta in [25], it is known that I is in the linkage class of a complete

intersection. Thus, I is strongly Cohen-Macaulay [35, 1.4]. Hence, I satisfies sliding

depth. Any ideal which satisfies G∞ and sliding depth is of linear type [29]. Part (c)
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follows from the work of Kustin, Polini, and Ulrich in [48, 6.1.a], where they applied

the same technique we used here. We are unaware of whether part (d) is known from

other methods.

Aside from maximal minors, resolutions of powers of J are not known. For

these other situations, we use the Castelnuovo-Mumford regularity to approximate

b0

(
Fk

d−1

)
and b0

(
Fk

d

)
(in the cases where topdeg(Ak(J)) <∞).

Proposition 5.1.5 (Raicu [59, Theorem on Regularity]) Let m and n be inte-

gers satisfying 2 ≤ m ≤ n, X be an m× n generic matrix over C, and J = I2(X).

For 1 ≤ k ≤ m− 2,

reg Jk = k +m− 1.

For k ≥ m− 1,

reg Jk = 2k.

Although Raicu proved this result over C, it holds over any field of characteristic

zero. Indeed, let Fk
• be the minimal homogeneous free resolution of Jk when viewed

as an ideal of Q[X], and let K be any field of characteristic zero. Then K[X] is a

free algebra over Q[X] and the generators of Jk are elements of Q[X]. Therefore, by

Lemma 3.0.1, Fk
•⊗Q[X]K[X] is the minimal homogeneous free resolution of Jk when

viewed as a K[X]-ideal.

Theorem 5.1.6 (2× 2 Minors) Let K be a field of characteristic zero. Let R =

K[x1, . . . , xd] be a polynomial ring in d > 0 variables over K, m and n be integers

satisfying 2 ≤ m ≤ n, A be an m × n matrix whose entries are all homogeneous

elements of R of the same degree δ, and I = I2(A) be of generic height (that is,

ht I = (m− 1) (n− 1)). Let X be an m × n generic matrix over R and J = I2(X).

Further, suppose that ht I1(A) ≥ min{mn, d}.

a. Let m = 3. Then

b0(A(I)) ≤ (d− 1) (δ − 1) , and

topdeg(A(I)) ≤ max{δ topdeg(A(J)) , d (δ − 1)} .
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b. If 2 ≤ k ≤ m− 2, then

b0(Ak(I)) ≤ max{δb0(Ak(J)) , (d− 1) (δ − 1) + δ (m− k − 1)} , and

topdeg(Ak(I)) ≤ max{δ topdeg(Ak(J)) , d (δ − 1) + δ (m− k − 1)} .

If k ≥ m− 1, then

b0(Ak(I)) ≤ max{δb0(Ak(J)) , (d− 1) (δ − 1)} , and

topdeg(Ak(I)) ≤ max{δ topdeg(Ak(J)) , d (δ − 1)} .

Proof We apply Corollary 4.2.4. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

Furthermore, by part (g) of Proposition 5.1.1, topdeg(A(J)) <∞. Thus, we can

place meaningful bounds on topdeg(Ak(I)).

Since Fk
• is the minimal homogeneous free resolution of Jk(2k), we have that

b0

(
Fk

d−1

)
≤ reg Jk(2k) + d− 1 and b0

(
Fk

d

)
≤ reg Jk(2k) + d. Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(2k) + (d− 1) δ, and

δb0

(
Fk

d

)
≤ δ reg Jk(2k) + dδ.

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(2k) + (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ reg Jk(2k) + d (δ − 1) .

Note that reg Jk(2k) = reg Jk − 2k.

Now, A1(I) = 0 (for any ideal I), so we only concern ourselves with Ak(I) for

k ≥ 2.
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By Proposition 5.1.5, if 2 ≤ k ≤ m − 2, then reg Jk = k + m − 1. Hence,

reg Jk(2k) = k +m− 1− 2k = m− k − 1. Thus, for 2 ≤ k ≤ m− 2,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ (m− k − 1) + (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ (m− k − 1) + d (δ − 1) .

Thus, we conclude that for 2 ≤ k ≤ m− 2,

b0(Ak(I)) ≤ max{δb0(Ak(J)) , (d− 1) (δ − 1) + δ (m− k − 1)} , and

topdeg(Ak(I)) ≤ max{δ topdeg(Ak(J)) , d (δ − 1) + δ (m− k − 1)} .

By Proposition 5.1.5, if k ≥ m − 1, then reg Jk = 2k. Hence, reg Jk(2k) =

2k − 2k = 0. Thus, for 2 ≤ k ≤ m− 2,

δb0

(
Fk

d−1

)
− d+ 1 ≤ (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ d (δ − 1) .

Therefore, we conclude that for k ≥ m− 1,

b0(Ak(I)) ≤ max{δb0(Ak(J)) , (d− 1) (δ − 1)} , and

topdeg(Ak(I)) ≤ max{δ topdeg(Ak(J)) , d (δ − 1)} .

This concludes the proof of (b). The proof of (a) is a special case.

In the setting of (a), m = 3. Thus, k ≥ m − 1 if and only if k ≥ 2. There-

fore, we restrict our attention to the case where k ≥ m − 1 above. By part (f) of

Proposition 5.1.1, we have b0(A(J)) ≤ 0. Hence, we have the global conditions

b0(A(I)) ≤ (d− 1) (δ − 1) , and

topdeg(A(I)) ≤ max{δ topdeg(A(J)) , d (δ − 1)} .
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Corollary 5.1.7 Let K be a field of characteristic zero, R = K[x1, . . . , xd] be a

polynomial ring in d > 0 variables over K, n an integer satisfying 3 ≤ n, A a 3× n

matrix whose entries are all homogeneous elements of R of degree 1, and I = I2(A)

be of generic height (that is, ht I = 2 (n− 1)). Further, suppose that ht I1(A) ≥

min{3n, d}. Then I is of fiber type.

In other cases, Raicu is not able to compute the regularity for all powers of the

ideal J , but is able to compute the regularity for sufficiently high powers.

Proposition 5.1.8 (Raicu [59, Theorem on Regularity]) Let t,m, and n be in-

tegers satisfying 1 < t < m ≤ n, X be an m×n generic matrix over C, and J = It(X).

For k ≥ m− 1,

reg Jk = tk +


(
t−1

2

)2
if t is odd

(t−2)t
4

if t is even.

As noted before, despite the fact that this computation was done over C, the

result holds over any field of characteristic zero.

Theorem 5.1.9 (Submaximal Minors of a Square Matrix) Let K be a field of

characteristic zero, R = K[x1, . . . , xd] be a polynomial ring in d > 0 variables over

K, n be an integer satisfying 2 ≤ n, A be an n × n matrix whose entries are all

homogeneous elements of R of the same degree δ, and I = In−1(A) be of generic

height (that is, ht I = 4). Further, suppose that ht Ij(A) ≥ min
{

(n− j + 1)2 , d
}

for

all j in the range 1 ≤ j ≤ n− 2.

If k ≥ n− 1, then

b0(Ak(I)) ≤ (d− 1) (δ − 1) + δN(n) , and

topdeg(Ak(I)) ≤ d (δ − 1) + δN(n) ,

where N(n) =


(
n−2

2

)2
if n is even

(n−3)(n−1)
4

if n is odd.
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Proof We apply Corollary 4.2.4. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

By part (e) of Proposition 5.1.1, b0(A(J)) = topdeg(A(J)) = −∞. Therefore, we

have

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and

topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

Since Fk
• is the minimal homogeneous free resolution of Jk(k (n− 1)), we have

that b0

(
Fk

d−1

)
≤ reg Jk(k (n− 1)) + d − 1 and b0

(
Fk

d

)
≤ reg Jk(k (n− 1)) + d.

Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(k (n− 1)) + (d− 1) δ, and

δb0

(
Fk

d

)
≤ δ reg Jk(k (n− 1)) + dδ.

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(k (n− 1)) + (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ reg Jk(k (n− 1)) + d (δ − 1) .

Note that reg Jk(k (n− 1)) = reg Jk − k (n− 1).

By Proposition 5.1.8, if k ≥ n− 1, then

reg Jk = k (n− 1) +


(
n−2

2

)2
if n is even

(n−3)(n−1)
4

if n is odd.

Let N(n) =


(
n−2

2

)2
if n is even

(n−3)(n−1)
4

if n is odd.

Thus, for k ≥ n− 1,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δN(n) + (d− 1) (δ − 1) , and
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δb0

(
Fk

d

)
− d ≤ δN(n) + d (δ − 1) .

Therefore, we conclude that for k ≥ n− 1,

b0(Ak(I)) ≤ (d− 1) (δ − 1) + δN(n) , and

topdeg(Ak(I)) ≤ d (δ − 1) + δN(n) .

Corollary 5.1.10 Let K be a field of characteristic zero, R = K[x1, . . . , xd] be a

polynomial ring in d > 0 variables over K, A be a 3× 3 matrix whose entries are all

homogeneous elements of R of degree 1, and I = I2(A) be of generic height (that is,

ht I = 4). Further, suppose that ht I1(A) ≥ min{9, d}. Then I is of fiber type and

(x1, . . . , xd)A(I) = 0.

Theorem 5.1.11 (Minors of an Ordinary Matrix) Let K be a field of charac-

teristic zero, R = K[x1, . . . , xd] be a polynomial ring in d > 0 variables over K, t,

m, and n be integers satisfying 2 < t < m ≤ n, A be an m× n matrix whose entries

are all homogeneous elements of R of the same degree δ, and I = It(A) be of generic

height (that is, ht I = (m− t+ 1) (n− t+ 1)). Let X be an m×n generic matrix over

R and J = It(X). Further, suppose that ht Ij(A) ≥ min{(m− j + 1) (n− j + 1) , d}

for all j in the range 1 ≤ j ≤ t− 1.

If k ≥ m− 1, then

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1) + δN(t)} ,

where N(t) =


(
t−1

2

)2
, t is odd

(t−2)t
4
, t is even.

Proof By part (h) of Proposition 5.1.1, topdeg(A(J)) = ∞, so we do not draw

conclusions about topdeg(A(I)).

We apply Corollary 4.2.4. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
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Since Fk
• is the minimal homogeneous free resolution of Jk(k (n− 1)), we have

that b0

(
Fk

d−1

)
≤ reg Jk(k (n− 1)) + d− 1. Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(kt) + (d− 1) δ, and

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(kt) + (d− 1) (δ − 1) , and

Note that reg Jk(kt) = reg Jk − kt.

By Proposition 5.1.8, if k ≥ m− 1, then

reg Jk = tk +


(
t−1

2

)2
if t is odd

(t−2)t
4

if t is even.

Let N(t) =


(
t−1

2

)2
if t is odd

(t−2)t
4

if t is even.

Thus, for k ≥ n− 1,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δN(t) + (d− 1) (δ − 1) , and

Thus, we conclude that for k ≥ n− 1,

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1) + δN(t)} .

5.2 Symmetric Matrices

We begin with a list of known facts concerning b0(A(J)) and topdeg(A(J)).

Proposition 5.2.1 Let t and n be integers satisfying 1 ≤ t ≤ n, K be a field, X be

an n× n generic symmetric matrix over K, S = K[X], and J = It(X).

a. If t = 1, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.
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b. If t = n, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

c. [43, 2.10] If t = n− 1, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

d. If t = 2, then J is of linear type on the punctured spectrum. Hence,

topdeg(A(J)) <∞.

e. If 2 < t < n− 1, then J is not of linear type on the punctured spectrum. Hence,

topdeg(A(J)) =∞.

Proof Part (a) follows from the fact that J is the ideal generated by the set of

variables. Hence J is generated by a regular sequence. Every regular sequence is

a d-sequence. Moreover, any ideal generated by a d-sequence is of linear type [34,

Theorem 3.1]. This also proves part (b).

The proofs of (d) and (e) are similar.

To prove (e), let X be an n × n generic matrix and 2 < t < n − 1. Let p be

the homogeneous prime ideal of S generated by all of the variables of X with the

exception of X11. We apply Lemma 3.2.2. To make notation consistent, let A be the

1× 1 matrix with A =
(
X11

)
. Since Sp is a localization of the ring T [D] (using the

notation of Lemma 3.2.2), it suffices to show that the extension of J to T [C] is not of

linear type. By the isomorphism in Lemma 3.2.2, it suffices to show that It−1(Y ) is

not of linear type where Y is an (n− 1)× (n− 1) generic symmetric matrix. Now, it

follows that 1 < t− 1 < (n− 1)− 1. By the classification of ideals of minors of linear

type given by Kotzev in [43, 3.1], It−1(Y ) is not of linear type. Hence, J is not of

linear type on the punctured spectrum of S. By Remark 5.0.2, topdeg(A(J)) =∞.

Lastly, we prove (d). Let X be an n×n generic symmetric matrix and t = 2. Let

p be any homogeneous prime ideal of S with p 6= M. Then at least one entry of X
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must be invertible after localizing at p. If X contains a block of size 2× 2 or higher

that is invertible locally at p, then Jp = S, which is of linear type. Thus, we may

assume that the largest invertible block locally at p is a 1×1 matrix. Without loss of

generality, we may assume X11 is invertible (if a non-diagonal entry were invertible,

there would be a 2× 2 invertible block by symmetry). Then we are taking the 1× 1

minors of a generic symmetric matrix, which is of linear type since it is generated by

a sequence of variables. Thus, Jp is of linear type. Hence, J is of linear type on the

punctured spectrum of S. Therefore, by Remark 5.0.2, topdeg(A(J)) <∞.

Unfortunately, we are unaware of any work which has been done to compute

resolutions of Jk, nor are we aware of any work which has been done to calculate the

regularity of Jk. Therefore, we are not able to obtain explicit degree bounds using

our method. However, using the fact that J is of linear type when t = n− 1, we can

state the following result for submaximal minors.

Proposition 5.2.2 (Submaximal Minors) Let K be a field, R = K[x1, . . . , xd] be

a polynomial ring in d > 0 variables over K, n be an integer satisfying 2 ≤ n, A an

n×n symmetric matrix whose entries are all homogeneous elements of R of the same

degree δ, and I = In−1(A) be of generic symmetric height (that is, ht I = 3). Further,

suppose that ht Ij(A) ≥ min
{(

n−j+2
2

)
, d
}

for all j in the range 1 ≤ j ≤ n− 2. Then

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and

topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

Proof We apply Corollary 4.2.6. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

By part (c) of Proposition 5.2.1, b0(A(J)) = topdeg(A(J)) = −∞. Therefore, we

have

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and
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topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

Knowing this, if someone eventually computes resolutions of Jk or the regularity

of Jk, for instance, we could use the above result to obtain explicit degree bounds.

5.3 Alternating Matrices

We begin with a list of known facts concerning b0(A(J)) and topdeg(A(J)).

Proposition 5.3.1 Let t and n be integers satisfying 2 ≤ 2t ≤ n, K be a field, X be

an n× n generic alternating matrix over K, S = K[X], and J = Pf2t(X).

a. If 2t = 2, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

b. If 2t = n, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

c. [35, 2.2] If 2t = n− 1, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

d. [4, 2.1] If charK 6= 2 and 2t = n− 2, then J is of linear type. Hence,

b0(A(J)) = topdeg(A(J)) = −∞.

e. If 2t = 4, then J is of linear type on the punctured spectrum. Hence,

topdeg(A(J)) <∞.

f. If 4 < 2t < n−2, then J is not of linear type on the punctured spectrum. Hence,

topdeg(A(J)) =∞.
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Proof Part (a) follows from the fact that J is the ideal generated by the set of

variables. Hence J is generated by a regular sequence. By the work of Huneke in [34,

Theorem 3.1], J is of linear type. This also proves part (b).

The proofs of (e) and (f) are similar.

To prove (f), let X be an n × n generic alternating matrix and 4 < 2t < n − 2.

Let p be the homogeneous prime ideal of S generated by all of the variables of X

with the exception of X12. We apply Lemma 3.3.3. To make notation consistent, let

A be the 2× 2 matrix with A =

 0 X12

−X12 0

. Since Sp is a localization of the ring

T [C] (using the notation of Lemma 3.3.3), it suffices to show that the extension of J

to T [C] is not of linear type. By the isomorphism in Lemma 3.3.3, it suffices to show

that Pf2t−2(Y ) is not of linear type where Y is an (n− 2)×(n− 2) generic alternating

matrix. Now, it follows that 2 < 2t− 2 < (n− 2)− 2. By the classification of ideals

of Pfaffians of linear type given by Baetica in [4, 2.2], Pf2t−2(Y ) is not of linear type.

Hence, J is not of linear type on the punctured spectrum of S. By Remark 5.0.2,

topdeg(A(J)) =∞.

Lastly, we prove (e). Let X be an n × n generic alternating matrix and 2t = 4.

Let p be any homogeneous prime ideal of S with p 6= M. Then at least one entry of

X must be invertible after localizing at p. If X contains a principal submatrix of size

4 × 4 or higher that is invertible locally at p, then Jp = Sp, which is of linear type.

Thus, we may assume that the largest invertible principal submatrix locally at p is a

2× 2 matrix. Without loss of generality, we may assume X12 is invertible. Then we

are taking the 2× 2 Pfaffians of a generic alternating matrix, which is of linear type

since it is generated by a sequence of variables. Thus, Jp is of linear type. Hence,

J is of linear type on the punctured spectrum of S. Therefore, by Remark 5.0.2,

topdeg(A(J)) <∞.

In the case of submaximal Pfaffians, explicit resolutions of Jk are known thanks

to the work of Kustin and Ulrich. Their computations are much more general than

what is given below. However, in the case of the submaximal Pfaffians of a generic
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alternating matrix, we obtain explicit resolutions of Symk(J). Since J is of linear

type in this case, Symk(J) ∼= Jk, giving us the desired result.

Proposition 5.3.2 (Kustin-Ulrich [49, 2.7, 4.7, 4.13.b]) Let K be a field, n an

odd integer with 3 ≤ n, X an n × n generic alternating matrix over R, S = K[X],

and J = Pfn−1(X). The minimal free resolution of Jk(k (n− 1) /2) is a complex Dk
•

with

Dk
i =



S(−i)β
k
i , if i ≤ min{k, n− 1}

S
(
− (i− 1)− 1

2
(n− i+ 1)

)
, if i = k + 1 ≤ n− 1 and k is odd

0, if i = k + 1 and k is even

0, if i ≥ min{k + 2, n}

for some nonzero βi.

The details are given in more detail in [48, Proof of 6.1.b], specifically in equations

(6.1.4)-(6.1.7) of [48].

Corollary 5.3.3 Let K be a field, n an odd integer with 3 ≤ n, X an n× n generic

alternating matrix over R, S = K[X], and J = Pfn−1(X).

a. If i ≤ min{k, n− 1}, then b0

(
Dk

i

)
= i.

b. If i = k + 1 ≤ n− 1 and k is odd, then b0

(
Dk

i

)
= (i− 1) + 1

2
(n− i+ 1).

c. If i = k + 1 and k is even or if i ≥ min{k + 2, n}, then b0

(
Dk

i

)
= −∞.

Using the above results, we obtain the following degree bounds.

Theorem 5.3.4 (Submaximal Pfaffians) Let K be a field, R = K[x1, . . . , xd] be

a polynomial ring in d > 0 variables over K, n be an odd integer satisfying 3 ≤ n,

A be an n × n alternating matrix whose entries are all homogeneous elements of R

of the same degree δ, and I = Pfn−1(A) be of generic alternating height (that is,

ht I = 3). Further, suppose that ht Pf2j(A) ≥ min{n− 2j + 2, d} for all j in the

range 2 ≤ 2j ≤ n− 3.
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a. If k ≥ d and d ≤ n− 1, then

b0(Ak(I)) ≤ (d− 1) (δ − 1) , and

topdeg(Ak(I)) ≤ d (δ − 1) .

b. If d is even, d ≤ n− 1, and k = d− 1, then

b0(Ak(I)) ≤ (d− 1) (δ − 1) , and

topdeg(Ak(I)) ≤ (d− 1) (δ − 1) +
δ

2
(n− d+ 1)− 1.

c. If d is odd and k = d− 1, then

b0(Ak(I)) = −∞, and

topdeg(Ak(I)) = −∞.

d. If d ≥ n or k ≤ d− 2, then

b0(Ak(I)) = −∞, and

topdeg(Ak(I)) = −∞.

Proof We apply Corollary 4.2.8. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

By part (c) of Proposition 5.3.1, b0(A(J)) = topdeg(A(J)) = −∞. Therefore, we

have

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and

topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

If k ≥ d and d ≤ n − 1, then d ≤ min{k, n− 1}. Hence, by part (a) of Corol-

lary 5.3.3, b0

(
Fk

d

)
= d. Therefore, we have topdeg(Ak(I)) ≤ δd − d = d (δ − 1).
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Similarly, it must be the case that d− 1 ≤ min{k, n− 1}. Hence, b0

(
Fk

d−1

)
= d− 1.

Therefore, we have b0(Ak(I)) ≤ δ (d− 1)− d+ 1 = (d− 1) (δ − 1). This proves (a).

If d is even, d ≤ n − 1, and k = d − 1, then d = k + 1 ≤ n − 1 and k is odd.

Hence, by part (b) of Corollary 5.3.3, b0

(
Fk

d

)
= (d− 1) + 1

2
(n− d+ 1). Therefore,

we have topdeg(Ak(I)) ≤ δ
(
(d− 1) + 1

2
(n− d+ 1)

)
−d = δ (d− 1)+ δ

2
(n− d+ 1)−

d + 1 − 1 = (d− 1) (δ − 1) + δ
2

(n− d+ 1) − 1. Also, it must also be the case that

d − 1 ≤ min{k, n− 1}. Hence, b0

(
Fk

d−1

)
= d − 1. Therefore, we have b0(Ak(I)) ≤

δ (d− 1)− d+ 1 = (d− 1) (δ − 1). This proves (b).

If d is odd and k = d − 1, then d = k + 1 and k is even. Hence, by part (c) of

Corollary 5.3.3, b0

(
Fk

d

)
= −∞. Therefore, we have topdeg(Ak(I)) ≤ −∞. Thus,

topdeg(Ak(I)) = −∞ It is always the case that b0(Ak(I)) ≤ topdeg(Ak(I)). Hence,

we also conclude that b0(Ak(I)) = −∞. This proves (c).

If d ≥ n or k ≤ d−2, then d ≥ n or d ≥ k+2. Hence, d ≥ min{k + 2, n}. Thus, by

part (c) of Corollary 5.3.3, b0

(
Fk

d

)
= −∞. Therefore, we have topdeg(Ak(I)) ≤ −∞.

Thus, topdeg(Ak(I)) = −∞. It is always the case that b0(Ak(I)) ≤ topdeg(Ak(I)).

Hence, we also conclude that b0(Ak(I)) = −∞.

Applying the above results, we draw the following conclusions.

Corollary 5.3.5 Let K be a field, R = K[x1, . . . , xd] be a polynomial ring in d > 0

variables over K, n be an odd integer satisfying 3 ≤ n, A be an n × n alternating

matrix whose entries are all homogeneous elements of R of the same degree δ, and

I = Pfn−1(A) be of generic alternating height (that is, ht I = 3). Further, suppose

that ht Pf2j(A) ≥ min{n− 2j + 2, d} for all j in the range 2 ≤ 2j ≤ n− 3.

a. If d ≥ n, then I is of linear type.

b. If δ = 1, then I is of fiber type.

c. Ak(I) = 0 for all k ≤ d− 2.

d. If d is odd, then Ak(I) = 0 for all k ≤ d− 1.
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e. If d is odd and δ = 1, then (x1, . . . , xd)A(I) = 0.

All of these results have already been proven. We restate them here for com-

pleteness. In particular, all of these are implications of [48, 6.1.b]. Kustin, Polini,

and Ulrich used a similar technique to obtain the same results. The difference is a

matter of perspective. Kustin, Polini, and Ulrich applied the approximate resolution

arguments in settings where the ideal J is of linear type, a simpler context than

the method employed in this dissertation. In the setting of submaximal Pfaffians,

the broader perspective reduces to their technique and, therefore, recovers their re-

sults. Before [48], however, some of these results had already been recognized. Both

(c) and (d) had been observed by Morey in [54, 4.1], also using the complexes in

Proposition 5.3.2.

Moreover, (a) has been known for the longest amount of time. Indeed, due to

the work of J. Watanabe in [61], we know that such ideals as in the above corollary

are in the linkage class of a complete intersection. Hence, these ideals are strongly

Cohen-Macaulay, and therefore, satisfy a condition known as sliding depth [35, 1.4].

In the presence of the sliding depth condition, a homogeneous ideal is of linear type if

and only if the ideal satisfies a condition known as G∞ or F1 [29]. However, condition

(a) in the above corollary implies the condition G∞. Thus, part (a) has been known

from other methods.

For other values of 2t, we do not know explicit resolutions of Jk. However, due to

the work of Perlman, we know the regularity of Jk for sufficiently large k.

Proposition 5.3.6 (Perlman [58, Theorem A]) Let t and n be integers satisfy-

ing 2 < 2t ≤ n−2, X be an n×n generic alternating matrix over C, and J = Pf2t(X).

If n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

reg Jk = tk +

t
(
t
2
− 1
)

if t is even

1
2

(t− 1)2 if t is odd.



95

As with Raicu’s computation of regularity in the ordinary case (Proposition 5.1.5),

despite the fact that this result was proven over C, it holds over any field of charac-

teristic zero.

For the rest of the section, we obtain degree bounds using the regularity above.

As we are unaware of anyone else having proven degree bounds for Pfaffian ideals of

alternating matrices like this before, we believe that the results proven in the rest of

the section are novel.

Theorem 5.3.7 (Size n− 2 Pfaffians) Let K be a field of characteristic zero, R =

K[x1, . . . , xd] be a polynomial ring in d > 0 variables over K, n be an even integer

satisfying 4 ≤ n, A be an n×n alternating matrix whose entries are all homogeneous

elements of R of the same degree δ, and I = Pfn−2(A) be of generic alternating height

(that is, ht I = 6). Further, suppose that ht Pf2j(A) ≥ min
{(

n−2j+2
2

)
, d
}

for all j in

the range 2 ≤ 2j ≤ n− 4.

a. If n is divisible by 4 and k ≥ n− 2, then

b0(Ak(I)) ≤ (d− 1) (δ − 1) +
δ (n− 4)2

8
, and

topdeg(Ak(I)) ≤ d (δ − 1) +
δ (n− 4)2

8
.

b. If n is not divisible by 4 and k ≥ n− 2, then

b0(Ak(I)) ≤ (d− 1) (δ − 1) +
δ (n− 2) (n− 6)

8
, and

topdeg(Ak(I)) ≤ d (δ − 1) +
δ (n− 2) (n− 6)

8
.

Proof We apply Corollary 4.2.8. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.
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By part (d) of Proposition 5.3.1, b0(A(J)) = topdeg(A(J)) = −∞. Therefore, we

have

b0(Ak(I)) ≤ δb0

(
Fk

d−1

)
− d+ 1, and

topdeg(Ak(I)) ≤ δb0

(
Fk

d

)
− d.

Since Fk
• is the minimal homogeneous free resolution of Jk(k (n− 2) /2), we have

that b0

(
Fk

d−1

)
≤ reg Jk(k (n− 2) /2) + d− 1 and b0

(
Fk

d

)
≤ reg Jk(k (n− 2) /2) + d.

Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(k (n− 2) /2) + (d− 1) δ, and

δb0

(
Fk

d

)
≤ δ reg Jk(k (n− 2) /2) + dδ.

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(k (n− 2) /2) + (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ reg Jk(k (n− 2) /2) + d (δ − 1) .

Note that reg Jk(k (n− 2) /2) = reg Jk − k (n− 2) /2.

Since n is even, by Proposition 5.3.6, if k ≥ n− 2, then

reg Jk =
k (n− 2)

2
+


n−2

2

(
n−2

4
− 1
)

if n−2
2

is even

1
2

(
n−2

2
− 1
)2

if n−2
2

is odd.

One may check that n−2
2

is odd if and only if n is divisible by 4. Hence, in the case

that n is divisible by 4, when k ≥ n − 2, we have reg Jk = k(n−2)
2

+ 1
2

(
n−2

2
− 1
)2

=

k(n−2)
2

+ (n−4)2

8
.

Thus, for k ≥ n− 2,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ

(
(n− 4)2

8

)
+ (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ

(
(n− 4)2

8

)
+ d (δ − 1) .

Thus, we conclude that for k ≥ n− 2,

b0(Ak(I)) ≤ (d− 1) (δ − 1) +
δ (n− 4)2

8
, and
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topdeg(Ak(I)) ≤ d (δ − 1) +
δ (n− 4)2

8
.

This proves (a).

Similarly, one may check that n−2
2

is even if and only if n is not divisible by 4

(since n is assumed to be even). Hence, in the case that n is not divisible by 4, when

k ≥ n− 2, we have reg Jk = k(n−2)
2

+ n−2
2

(
n−2

4
− 1
)

= k(n−2)
2

+ (n−2)(n−6)
8

.

Thus, for k ≥ n− 2,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ

(
(n− 2) (n− 6)

8

)
+ (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ

(
(n− 2) (n− 6)

8

)
+ d (δ − 1) .

Thus, we conclude that for k ≥ n− 2,

b0(Ak(I)) ≤ (d− 1) (δ − 1) +
δ (n− 2) (n− 6)

8
, and

topdeg(Ak(I)) ≤ d (δ − 1) +
δ (n− 2) (n− 6)

8
.

This proves part (b).

Corollary 5.3.8 Let K be a field of characteristic zero, R = K[x1, . . . , xd] be a

polynomial ring in d > 0 variables over K, A be a 6 × 6 alternating matrix whose

entries are all homogeneous elements of R of degree 1, and I = Pf4(A) be of generic

alternating height (that is, ht I = 6). Further, suppose that ht Pf2(A) ≥ min{15, d}.

Then I is of fiber type and (x1, . . . , xd)A(I) = 0.

Proof We apply Theorem 5.3.7. Since 6 is not divisible by 4, we see that b0(Ak(I)) ≤

0 and topdeg(Ak(I)) ≤ 0 for all k ≥ 4.

We may then use the Macaulay2 computational software [26] to compute minimal

homogeneous free resolutions of J2 and J3. These resolutions are linear. Hence, we

also obtain b0(Ak(I)) ≤ 0 and topdeg(Ak(I)) ≤ 0 when 2 ≤ k ≤ 3 and δ = 1.

Therefore, b0(A(I)) ≤ 0 and topdeg(A(I)) ≤ 0, giving that I is of fiber type and

A(I) is annihilated by (x1, . . . , xd).
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Theorem 5.3.9 (Size 4 Pfaffians) Let K be a field of characteristic zero, R =

K[x1, . . . , xd] be a polynomial ring in d > 0 variables over K, n be an integer satisfying

4 ≤ n, A be an n× n alternating matrix whose entries are all homogeneous elements

of R of the same degree δ, and I = Pf4(A) be of generic alternating height (that is,

ht I =
(
n−2

2

)
). Let X be an n×n generic alternating matrix over R and J = Pf4(X).

Further, suppose that ht Pf2(A) ≥ min
{(

n
2

)
, d
}

.

If n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1)} , and

topdeg(Ak(I)) ≤ max {δ topdeg(Ak(J)) , d (δ − 1)} .

Proof We apply Corollary 4.2.8. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

By part (e) of Proposition 5.3.1, topdeg(A(J)) <∞. Therefore, we obtain mean-

ingful bounds on topdeg(A(I)).

Since Fk
• is the minimal homogeneous free resolution of Jk(2k), we have that

b0

(
Fk

d−1

)
≤ reg Jk(2k) + d− 1 and b0

(
Fk

d

)
≤ reg Jk(2k) + d. Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(2k) + (d− 1) δ, and

δb0

(
Fk

d

)
≤ δ reg Jk(2k) + dδ.

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(2k) + (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ δ reg Jk(2k) + d (δ − 1) .

Note that reg Jk(2k) = reg Jk − 2k.

Since 2 is even, by Proposition 5.3.6, if n is even and k ≥ n− 2 or if n is odd and

k ≥ n− 3, then reg Jk = 2k.
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Thus, if n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3,

δb0

(
Fk

d−1

)
− d+ 1 ≤ (d− 1) (δ − 1) , and

δb0

(
Fk

d

)
− d ≤ d (δ − 1) .

Hence, if n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1)} , and

topdeg(Ak(I)) ≤ max {δ topdeg(Ak(J)) , d (δ − 1)} .

Although we are not aware b0(Ak(J)) in the above result, one may conjecture that

b0(Ak(J)) ≤ 0 for all k. This is due to the work of Huang, Perlman, Polini, Raicu,

and Sammartano in [33]. They use techniques from representation theory to prove

that the ideal of 2 × 2 minors of a generic ordinary matrix (of certain sizes) are of

fiber type. Typically, representation theory techniques for ideals of minors of ordinary

matrices transfer to the corresponding size of Pfaffian ideals of a generic alternating

matrix. Therefore, one might suspect that in the near future, we may know whether

or not b0(A(J)) ≤ 0 for certain values of n in the above setting.

We end with the following general result.

Theorem 5.3.10 (Pfaffians of an Alternating Matrix) Let K be a field of char-

acteristic zero, R = K[x1, . . . , xd] be a polynomial ring in d > 0 variables over K,

t and n be integers satisfying 4 < 2t < n − 2, A be an n × n alternating ma-

trix whose entries are all homogeneous elements of R of the same degree δ, and

I = Pf2t(A) be of generic alternating height (that is, ht I =
(
n−2t+2

2

)
). Let X be an

n × n generic alternating matrix over R and J = Pf2t(X). Further, suppose that

ht Pf2j(A) ≥ min
{(

n−2j+2
2

)
, d
}

for all j in the range 2 ≤ 2j ≤ 2t− 2.

If n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1) + δN(t)} ,
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where N(t) =

t
(
t
2
− 1
)

if t is even

1
2

(t− 1)2 if t is odd.

Proof We apply Corollary 4.2.8. In particular, for each k, we have

b0(Ak(I)) ≤ max
{
δb0(Ak(J)) , δb0

(
Fk

d−1

)
− d+ 1

}
, and

topdeg(Ak(I)) ≤ max
{
δ topdeg(Ak(J)) , δb0

(
Fk

d

)
− d
}
.

By part (f) of Proposition 5.3.1, topdeg(A(J)) =∞. Therefore, we do not obtain

a meaningful bounds on topdeg(A(I)).

Since Fk
• is the minimal homogeneous free resolution of Jk(kt), we have that

b0

(
Fk

d−1

)
≤ reg Jk(kt) + d− 1. Therefore,

δb0

(
Fk

d−1

)
≤ δ reg Jk(kt) + (d− 1) δ.

Hence, we have

δb0

(
Fk

d−1

)
− d+ 1 ≤ δ reg Jk(kt) + (d− 1) (δ − 1) .

Note that reg Jk(kt) = reg Jk − kt.

By Proposition 5.3.6, if n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

reg Jk = tk +

t
(
t
2
− 1
)

if t is even

1
2

(t− 1)2 if t is odd.

Let N(t) =

t
(
t
2
− 1
)

if t is even

1
2

(t− 1)2 if t is odd.

Thus, if n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3,

δb0

(
Fk

d−1

)
− d+ 1 ≤ δN(t) + (d− 1) (δ − 1) .

Hence, if n is even and k ≥ n− 2 or if n is odd and k ≥ n− 3, then

b0(Ak(I)) ≤ max {δb0(Ak(J)) , (d− 1) (δ − 1) + δN(t)} .
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6. NONLINEARLY PRESENTED GRADE THREE

GORENSTEIN IDEALS

Much like in the case of perfect ideals of grade two, there has been much work done

to study the perfect Gorenstein ideals of grade three. The reason that both types of

ideals have been studied so extensively rests largely upon the structure theorems for

said ideals. This chapter concerns work done jointly with Monte Cooper to study the

Rees rings R(I), and in particular, the defining equations of R(I) in the case that I

is a perfect Gorenstein ideal of grade three.

6.1 Background

Definition 6.1.1 Let R be a Noetherian local ring and I be a perfect R-ideal of grade

g. Then I is said to be Gorenstein if ExtgR(R/I,R) ∼= R/I.

An analogous definition can be given in the case that R is a nonnegatively graded

Noetherian ring with R0 local.

This definition is in analogue with properties of Gorenstein rings. A Cohen-

Macaulay ring R is Gorenstein if and only if R has a canonical module ωR with the

property that ωR ∼= R. Additionally, suppose ϕ : R → S is a local homomorphism

of Cohen-Macaulay local rings and g = dimR − dimS. If R has a canonical module

ωR, then S has a canonical module ωS ∼= ExtgR(S, ωR). Essentially, an ideal I is

Gorenstein if R/I behaves like a canonical module for itself. Indeed, if we assume R

is a local Gorenstein ring, then I is Gorenstein ideal if and only if R/I is a Gorenstein

ring.

Proposition 6.1.2 (Serre) Let R be a Noetherian local ring and I be a perfect

Gorenstein ideal of grade at most two. Then I is a complete intersection.
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Proof Recall that an ideal is perfect if pdR/I = grade I.

If I is a perfect ideal of grade zero, then pdR/I = 0, making R/I a free R-module.

This is impossible unless I = 0. Hence, I is a complete intersection of grade zero.

If I is a perfect ideal of grade one, then pdR/I = 1. Hence, there is an acyclic

complex

0→ Rn → Rm → 0

resolving R/I. Indeed, we may assume that the complex is a minimal free resolution

of R/I. Since R/I is a cyclic module, m = 1. Further, because the above resolution

is a finite free resolution with consisting of free modules of finite rank, it follows that

m− n = 0. Therefore, n = 1 as well. Therefore,

0→ R→ R→ 0

is a minimal free resolution of R/I. It follows then that

0→ R→ 0

is a free resolution of I. Hence, I is a principal ideal. Since grade I = 1, I can be

generated by a regular sequence. Therefore, I is a complete intersection.

Finally, suppose I is a perfect Gorenstein ideal of grade two. Then pdR/I = 2,

and as before, we may assume we have a minimal free resolution of the cyclic module

R/I. Therefore, there is an acyclic complex

0→ Rn → Rm → R→ 0

resolving R/I. As before, 1−m+ n = 0, so m = n+ 1, giving that

0→ Rn → Rn+1 → R→ 0

is a free resolution of R/I. By the dualizing property of Gorenstein ideals, it follows

that n = 1. Therefore,

0→ R→ R2 → R→ 0
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is a free resolution of R/I. Hence,

0→ R→ R2 → 0

is a free resolution of I, giving that I can be generated by two elements. Since

grade I = 2, it follows that I is a complete intersection.

Serre also showed that perfect Gorenstein ideals of grade three are not complete

intersections. Hence, the first interesting case occurs for perfect Gorenstein ideals of

grade three. Buchsbaum and Eisenbud were able to develop the following structure

theorem for these ideals.

Proposition 6.1.3 (Buchsbaum-Eisenbud [10, 2.1]) Let (R,m) be a Noetherian

local ring.

a. Let n ≥ 3 be an odd integer, A be an n × n alternating matrix with entries

in m, and I = Pfn−1(A). Let Ai denote the alternating submatrix of A ob-

tained by deleting row and column i. Define fi = (−1)i+1 Pf(Ai), and let

~v =
(
f1 · · · fn

)
. If grade I ≥ 3, then I is a perfect Gorenstein ideal of

grade three, and

0 R Rn Rn R~vT A ~v

is a minimal free resolution of R/I.

b. Every perfect Gorenstein ideal of grade three is of the form described in part

(a).

The above structure theorem also yields a graded analogue for homogeneous per-

fect Gorenstein ideals of grade three.

Corollary 6.1.4 Let R be a Noetherian nonnegatively graded ring with R0 local.

a. Let n ≥ 3 be an odd integer, A be an n × n alternating matrix with all entries

homogeneous of the same degree δ, D = δ (n− 1) /2, and I = Pfn−1(A). Let
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Ai denote the alternating submatrix of A obtained by deleting row and column

i. Define fi = (−1)i+1 Pf(Ai), and let ~v =
(
f1 · · · fn

)
. If grade I ≥ 3, then

I is a homogeneous perfect Gorenstein ideal of grade three and

0 R(δ + 2D) R(δ +D)n R(D)n R~vT A ~v

is a minimal homogeneous free resolution of R/I.

b. Every perfect homogeneous Gorenstein ideal of grade three is of the form de-

scribed in part (a).

A significant amount of work has been done to study the Rees algebras of perfect

homogeneous Gorenstein ideals of grade three, particularly in the setting where R =

K[x1, . . . , xd] is a polynomial ring over an infinite field K and I is of linear type on

the punctured spectrum of R. The condition that I is of linear type on the punctured

spectrum can be checked by a computational program, such as Macaulay2.

Proposition 6.1.5 Let K be a field and R = K[x1, . . . , xd] be a polynomial ring. Let

n ≥ 3 be an odd integer, A an n× n alternating matrix such that every entry of A is

a homogeneous element of R of the same degree δ ≥ 1, I = Pfn−1(A), and ht I = 3.

Then I is of linear type on the punctured spectrum of R if and only if I satisfies the

condition Gd. In other words, I is of linear type on the punctured spectrum if and

only if ht In−j(A) ≥ j + 1 for all j satisfying 1 ≤ j ≤ d− 1.

Proof Due to the work of J. Watanabe in [61], we know that perfect Gorenstein

ideals of grade three are in the linkage class of a complete intersection. Hence, such

ideals are strongly Cohen-Macaulay, and therefore, satisfy a condition known as slid-

ing depth [35, 1.4]. In the presence of the sliding depth condition, a homogeneous

ideal is of linear type on the punctured spectrum if and only if the ideal satisfies

the condition Gd, which means that µ(Ip) ≤ ht p for all prime ideals p ∈ V (I) with

ht p ≤ d− 1 [29]. Since ht I ≥ 1, the condition Gd is equivalent to ht Fittj(I) ≥ j + 1

for all j satisfying 1 ≤ j ≤ d − 1. Recall that if ϕ is an n × n presentation matrix
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of I, then Fittj(I) = In−j(ϕ). By Proposition 6.1.3, A is a presentation matrix for I;

therefore, Gd is equivalent to ht In−j(A) ≥ j + 1 for all j satisfying 1 ≤ j ≤ d− 1.

Because of the above proposition, instead of referring to I being of linear type on

the punctured spectrum, we will instead say that I satisfies Gd.

As was mentioned earlier, some work has been done to study the defining equations

of R(I) when I satisfies Gd. In [54], Morey studied the defining equations in the case

that I has second analytic deviation one and the presentation matrix A of I has linear

entries. In [39], Johnson studied the case where I has second analytic deviation

one and R(I) is Cohen-Macaulay. In particular, Johnson determined the defining

equations of R(I). More recently, in [48], Kustin, Polini, and Ulrich determined the

defining equations of R(I) when the presentation matrix A of I consists of linear

entries, or more generally, when I1(A) is a complete intersection.

A next natural step is to study the defining equations of R(I) when I has second

analytic deviation one, the presentation matrix of I does not consist of linear en-

tries, and R(I) is not Cohen-Macaulay. To make this more precise, we define second

analytic deviation.

Definition 6.1.6 Let R be a Noetherian nonnegatively graded ring with R0 local and

I be a homogeneous R-ideal. The second analytic deviation of I is µ(I)− `(I).

The terminology comes from two other “deviations” of I: the deviation of I is

µ(I) − grade I, and the analytic deviation of I is `(I) − grade I. Thus, we see that

the second analytic deviation of I is a form of “deviation” between the deviation and

the analytic deviation.

The second analytic deviation has a very natural connection to studying the defin-

ing equations of the special fiber ring.

Remark 6.1.7 Let R = K[x1, . . . , xd] be a polynomial ring over a field K. Let

I = (f1, . . . , fn) be an R-ideal where f1, . . . , fn is a minimal homogeneous generating

set of I and deg fi = D for all i satisfying 1 ≤ i ≤ n. Denote by I(X) the defining

ideal of the special fiber ring F(I).
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a. The second analytic deviation of I is equal to ht I(X).

b. If the second analytic deviation of I is zero, then I(X) = 0 and F(I) is a

polynomial ring of dimension µ(I).

c. If the second analytic deviation of I is one, then I(X) is principal. Moreover,

the degree of the generator of I(X) is e(F(I)).

Proof Consider the natural R-algebra epimorphism f : T → F(I). The defining

ideal I(X) = ker f . By the definition of T as K[T1, . . . , Tn], dim T = n = µ(I).

Hence, by the dimension formula, `(I) = dimF(I) = dim T − ht I(X) = µ(I) −

ht I(X). Therefore, µ(I)− `(I) = ht I(X), proving part (a).

Next, since F(I) is a domain, it follows that I(X) is a prime ideal of T . Therefore,

if ht I(X) = 0, then I(X) = 0 and F(I) ∼= T . Moreover, since T is a unique

factorization domain, if ht I(X) = 1, then I(X) is principal.

Lastly, the multiplicity of the quotient of a standard graded polynomial ring by a

principal ideal is the degree of the generator of the ideal.

Remark 6.1.8 Let K be an infinite field, R = K[x1, . . . , xd] a polynomial ring over

K, n ≥ 3 an odd integer, A an n×n alternating matrix whose entries are homogeneous

of the same degree δ. Suppose I = Pfn−1(A) with grade I = 3 and I satisfies Gd

but is not of linear type. Then I has second analytic deviation one if and only if

n = µ(I) = d+ 1. Consequently, d must be even.

Proof Recall from Remark 2.2.19 that `(I) ≤ min{n, d}. If we can show that `(I)

is maximal, i.e., that `(I) = min{n, d}, then the result follows quickly from there.

Indeed, it must be the case that n > d. If n ≤ d, then I is of linear type. Though this

has been known for some time, this is also follows from part (a) of Corollary 5.3.5.

Therefore, `(I) = d. Then, according to the definition of second analytic deviation,

I has second analytic deviation one if and only if n = d+ 1. Therefore, it suffices to

show that `(I) = d.
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Since K is infinite and since I is generated by homogeneous elements of the same

degree, I has a homogeneous reduction J with µ(J) = `(I) (see [57, Theorem 1

on pg. 150]). To say that J is a reduction of I means that there exists a positive

integer r so that JIr = Ir+1. Since I is of linear type on the punctured spectrum

by Proposition 6.1.5, it follows that Jp = Ip for all homogeneous prime ideals p with

p 6= m. Hence, Jp : Ip = Rp for all homogeneous prime ideals with p 6= m. Therefore,

ht J : I ≥ d. However, since I satisfies Gd, ht J : I ≤ µ(J) (see [37, 3.1]). Hence, it

follows that d ≤ µ(J) = `(I), which implies that `(I) = d.

For our proofs later, we will use the following fact.

Remark 6.1.9 Let d be an even integer with d ≥ 4, K an infinite field, R =

K[x1, . . . , xd] a standard graded polynomial ring, m = (x1, . . . , xd), A a (d+ 1) ×

(d+ 1) alternating matrix such that every entry of A is a homogeneous element of R

of the same degree δ ≥ 1, I = Pfd(A), and ht I = 3. Suppose that I satisfies Gd.

Then I1(A) is m-primary.

Proof Since I satisfies Gd, by Proposition 6.1.5, ht Id+1−j(A) ≥ j + 1 for all j

satisfying 1 ≤ j ≤ d − 1. Choosing j = d − 1, we have ht I2(A) ≥ d. Moreover,

I2(A) ⊆ I1(A). Therefore, ht I1(A) ≥ d. However, the generators of I1(A) are

homogeneous of positive degree. Thus, I1(A) ⊆ m. Hence, it follows that ht I1(A) = d.

Since I1(A) is a homogeneous ideal, its minimal primes are homogeneous. Thus, the

only prime ideal containing I1(A) is m. Therefore,
√
I1(A) = m, giving that I1(A) is

m-primary.

6.2 A Conjecture on the Relation Type

Definition 6.2.1 Let R be a Noetherian ring and I an R-ideal. The relation type of

I is given by

rt(I) = max

{
k

∣∣∣∣∣ J = S

(⊕
k

Jk

)}
.
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In other words, rt(I) is the maximal degree of a defining equation of R(I). In the

case R is graded and R(I) is bigraded, the relation type only concerns the second

component of the bidegree (the T -degree). This differs from the previous chapters in

this dissertation, which were primarly concerned with bounding the first component

(the x-degree) of the bidegrees of the defining equations.

There has been considerably less work done in the way of bounding the relation

type of an ideal than there has been in bounding the x-degrees. Indeed, the techniques

used in the previous chapters of this dissertation can only bound the relation type of

I if one can prove that, for sufficiently large k, topdeg(Ak(I)) = −∞ or b0(Ak(I)) =

−∞. Reviewing Chapter 5, one sees that obtaining such a result is a rare occurrence.

After extensive computations using the Macaulay2 computational software [26], we

have developed a conjecture for the relation type of perfect homogeneous Gorenstein

ideals of grade three having second analytic deviation one in which the Rees ring

is not Cohen-Macaulay. Before we can state the conjecture, we need to give some

definitions.

Definition 6.2.2 Let K be a field and R = K[x1, . . . , xd] be a standard graded poly-

nomial ring. Suppose I is an R-ideal. Then Mon(I) denotes the smallest monomial

ideal containing I.

Given such an ideal I = (f1, . . . , fn), computing Mon(I) is actually quite simple.

Indeed, Mon(I) = (supp(f1) , . . . , supp(fn)).

Example 6.2.3 Let R = Q[x, y, z] be a standard graded polynomial ring. Suppose

I =
(
x3 − 2xy2 + 3x, z4 − 2yz, xyz + y3

)
.

Then

Mon(I) =
(
x, z4, yz, y3

)
.

To see why, we break each generator of I into its terms: x3, xy2, x, z4, yz, xyz,

and y3. Then discard superfluous generators.
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Definition 6.2.4 Let K be a field and R = K[x1, . . . , xd] be a standard graded poly-

nomial ring. Given a monomial m = xα1
1 . . . xαd

d , define

deg-gcd(m) = gcd(α1, . . . , αd) .

We are now ready to state the conjecture.

Conjecture 6.2.5 Let d be an even integer with d ≥ 4, K an infinite field, R =

K[x1, . . . , xd] a standard graded polynomial ring, A a (d+ 1) × (d+ 1) alternating

matrix such that every entry of A is a homogeneous element of R of the same degree

δ ≥ 1, I = Pfd(A), and ht I = 3. Suppose I satisfies Gd and R(I) is not Cohen-

Macaulay. Let M be the minimal monomial generating set of Mon(I1(A)). Then

rt(I) = (d− 1)
∏
m∈M

δ

deg-gcd(m)
.

We will now provide some information to show that the conjecture is potentially

plausible.

First, we note that the conjectured value of rt(I) is an integer.

Remark 6.2.6 Adopt the setting of Conjecture 6.2.5. Then deg-gcd(m) divides δ for

all m ∈M.

Proof Let m = xα1
1 . . . xαd

d . Since all entries of A are homogeneous of degree δ, it

follows that m has degree δ. Therefore, α1 + . . . + αd = δ. Since deg-gcd(m) =

gcd(α1, . . . , αd) divides αi for each i satisfying 1 ≤ i ≤ d, it follows that deg-gcd(m)

divides the sum α1 + . . .+ αd = δ.

Next, we note that when δ = 1, the conjectured value for rt(I) is d − 1. Recall

that Kustin, Polini, and Ulrich have determined the defining equations of R(I) in

such a setting when δ = 1. Using their classification in [48, 8.3], we know that the

unique generator of I(X) must have degree d−1 when δ = 1. Therefore, in the δ = 1

case, the conjectured value of rt(I) is correct.

Lastly, we will go through two examples, showing how the conjectured value of

rt(I) is correct for those examples.
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Example 6.2.7 Let R = Q[x1, x2, x3, x4],

A =



0 x6
3 x3

1x
3
3 x2

2x
2
3x

2
4 x6

2

−x6
3 0 x6

4 0 x6
1

−x3
1x

3
3 −x6

4 0 x6
1 0

−x2
2x

2
3x

2
4 0 −x6

1 0 x6
3

−x6
2 −x6

1 0 −x6
3 0


,

and I = Pf4(A). The ideal I is a perfect homogeneous Gorenstein ideal of grade three

having second analytic deviation one which satisfies Gd, and R(I) is not Cohen-

Macaulay. Moreover, rt(I) = 18.

The above conditions were verified and the relation type was computed using the

Macaulay2 computational software [26].

We note here that d = 4, δ = 6, andM = {x6
1, x

6
2, x

6
3, x

6
4, x

3
1x

3
3, x

2
2x

2
3x

2
4}. Therefore,

the conjectured value for rt(I) is

(4− 1) · 6

6
· 6

6
· 6

6
· 6

6
· 6

3
· 6

2
= 18.

Example 6.2.8 Let R = Q[x1, x2, x3, x4],

A =



0 0 x6
1 x6

4 x6
3

0 0 0 x6
2 x6

1

−x6
1 0 0 0 x6

4

−x6
4 −x6

2 0 0 x2
1x

4
2

−x6
3 −x6

1 −x6
4 −x2

1x
4
2 0


,

and I = Pf4(A). The ideal I is a perfect homogeneous Gorenstein ideal of grade three

having second analytic deviation one which satisfies Gd, and R(I) is not Cohen-

Macaulay. Moreover, rt(I) = 9.

The above conditions were verified and the relation type was computed using the

Macaulay2 computational software [26].
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We note here that d = 4, δ = 6, and M = {x6
1, x

6
2, x

6
3, x

6
4, x

2
1x

4
2}. Therefore, the

conjectured value for rt(I) is

(4− 1) · 6

6
· 6

6
· 6

6
· 6

6
· 6

2
= 9.

We have made numerous computations using Macaulay2 satisfying the relevant

conditions, including scenarios with d = 4, d = 6, and d = 8, with δ ranging between

2 and 12, and even matrices where I1(A) is not a monomial ideal. In all such com-

putations, the conjectured value for rt(I) was correct. For d = 8, computation times

became prohibitive. Thus, we were only able to compute a few examples for d = 8

and no examples for d = 10.

We found some examples in which unusual behavior was observed. These examples

will be mentioned in Section 6.4. As mentioned above, the conjectured value for rt(I)

holds for these examples as well.

6.3 Row Ideals and Morphism Fiber Ideals

Unless otherwise stated, throughout this section, we will adopt the following set-

ting.

Setting 6.3.1 Let K be an infinite field and R = K[x1, . . . , xd] a standard graded

polynomial ring. Suppose I = (f1, . . . , fn) is a homogeneous R-ideal with deg fi = D

for all i and that f1, . . . , fn is a minimal generating set of I. Let A be a minimal pre-

sentation matrix of I so that [f1, . . . , fn]A = 0 and all entries of A are homogeneous

of the same degree δ. Let Φ be the rational map

Φ : Pd−1
K Pn−1

K

with base locus V (I) defined by

[a1 : · · · : ad] 7→ [f1(a1, . . . , ad) : · · · : fn(a1, . . . , ad)] .
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In order to investigate Conjecture 6.2.5, we introduce row ideals.

Definition 6.3.2 Adopt Setting 6.3.1. Let P ∈ Pn−1
K with projective coordinates

[a1 : · · · : an]. The row ideal of A at P is I1([a1, . . . , an]A).

The vector [a1, . . . , an]A is a generalized row of A. If P is a general point in Pn−1
K ,

then the vector [a1, . . . , an]A, in some sense, captures the essence of “rows” in A since

it is a general linear combination of the rows of A.

Definition 6.3.3 Adopt Setting 6.3.1. Let P ∈ Pd−1
K \ V (I). The fiber row ideal of

A at P , denoted FRP (A), is I1([f1(P ) , . . . , fn(P )]A).

This name is motivated by the rational map Φ defined by the generating set of I.

Given a point P ∈ Pd−1
K \ V (I), the fiber row ideal FRP (A) is the ideal defining the

fiber over Φ(P ).

Definition 6.3.4 Adopt Setting 6.3.1. Let P ∈ Pd−1
K \V (I). The morphism fiber ideal

of A at P is the saturation of FRP (A) with respect to I. We denote the morphism

fiber ideal of A at P as MFP (A). Symbolically, MFP (A) = FRP (A) : I∞.

Let X denote the closed image of the rational map Φ. Morphism fiber ideals have

a very strong connection with X, as can be demonstrated by the following result of

Kustin, Polini, and Ulrich.

Proposition 6.3.5 (Kustin-Polini-Ulrich [46, 3.7]) Adopt Setting 6.3.1. If P is

a general point in Pd−1
K , then

degX = e(F(I)) =
1

e(R/MFP (A))
· e
(

R

(g1, . . . , gn−1 : I∞)

)
where g1, . . . , gn−1 are general linear combinations of f1, . . . , fn.

Recall that if I has second analytic deviation one, then the degree of the unique

generator of I(X) is e(F(I)). Hence, to attempt to prove Conjecture 6.2.5, we would

wish to connect MFP (A) to I1(A) for a general point P . Since FRP (A) is more likely



113

to have a connection to I1(A) (as FRP (A) is the ideal of entries of a linear combination

of the rows of A), we may get closer to proving the conjecture (or understanding why

it is false) if we can prove or disprove that e(R/MFP (A)) = e(R/FRP (A)) for a

general point P . However, we note that one would need several more steps to prove

Conjecture 6.2.5. If this approach could work, it would merely give us that the

unique defining equation of F(I) has the conjectured degree, not that rt(I) has the

conjectured value. Therefore, even if we could prove a connection between e(F(I))

and the conjectured degree, one would still need to prove that the defining equation

of F(I) has the highest T -degree of the defining equations of R(I), which is the case

when the ideal I is of fiber type, for instance.

We are able to prove that e(R/MFP (A)) = e(R/FRP (A)) in the case that d =

dimR = 4. However, we need a lemma first.

Lemma 6.3.6 Adopt Setting 6.3.1. Assume that I1(A) is an m = (x1, . . . , xd)-

primary ideal. Consider the ring U = K(Y1, . . . , Yd)[x1, . . . , xd], and let F1, . . . , Fm be

f1(Y1, . . . , Yd) , . . . , fm(Y1, . . . , Yd), respectively. Let p be a prime ideal in R generated

by all but one of the variables, and let q = pU . Then I1([F1, . . . , Fm]A)q = Uq.

Proof Suppose that p is generated by all of the variables except for xi. Since I1(A)

is m-primary, it follows that Aq has at least one unit entry. Since A is a minimal

presentation matrix of I, it follows that such an entry is of the form cxδi + g for some

g ∈ p, c ∈ K. Suppose that the column of Aq containing this entry is
c1x

δ
i + g1

...

cnx
δ
i + gm


where each ci ∈ K and each gi ∈ p. Define

u =
[
F1 . . . Fn

]
c1x

δ
i + g1

...

cnx
δ
i + gm

 = xδi

m∑
j=1

cjFj +
m∑
j=1

Fjgj.
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Note that at least one of the cj is nonzero, otherwise the column above could not

contain a unit in Uq. We claim that xδi
∑m

j=1 cjFj is not in q. Indeed, as q is a prime

ideal of U and xi /∈ q, the only way xδi
∑m

j=1 cjFj could be in q is if
∑m

j=1 cjFj ∈ q.

Furthermore, since q = pS and p is generated by all variables of R except for xi,

the only way
∑m

j=1 cjFj could be in q is if
∑m

j=1 cjFj = 0. Since the fj’s are linearly

independent over K (being a minimal generating set of I), the Fj’s must also be

linearly independent over K. Hence, it is impossible for
∑m

j=1 cjFj = 0, since at least

one of the cj is nonzero. On the other hand, the sum
∑m

j=1 Fjgj must be in q, as each

gj ∈ p.

Hence, u is a unit in Sq, so we conclude that I1([F1, . . . , Fm]A)q = Uq.

Theorem 6.3.7 Let K be an infinite field, R = K[x1, . . . , xd] a standard graded

polynomial ring, m = (x1, . . . , xd), I a homogeneous ideal with ht I = d − 1, A an

m×n minimal presentation matrix of I in which all entries of A are homogeneous of

the same degree δ > 0. Let f1, . . . , fm be the homogeneous minimal generating set of I

so that [f1, . . . , fm]A = 0. Suppose that I is generically a complete intersection which

is not a complete intersection. Let P be a general point in Pd−1
K . Then MFP (A) =

FRP (A) : m∞. In particular,

e

(
R

FRP (A)

)
= e

(
R

MFP (A)

)
and ht FRP (A) = ht MFP (A) = d− 1.

Proof Without loss of generality, we may assume that K is algebraically closed.

Indeed, passing to the algebraic closure of K will not change the generators or the

heights of any of the relevant ideals.

To simulate all possible fiber row ideals, we pass to a ring extension and consider

a generic fiber row ideal of A. Let S = K[Y1, . . . , Yd, x1, . . . , xd] and [F1, . . . , Fm] =

[f1(Y1, . . . , Yd) , . . . , fm(Y1, . . . , Yd)]. Let [a1 : · · · : ad] be the homogeneous coordi-

nates of P . Specializing the variables Y1, . . . , Yd to a1, . . . , ad, respectively, will

map I1([F1, . . . , Fm]A) to FRP (A). Define T = K[Y1, . . . , Yd]. If we can show that

ht (I1([F1, . . . , Fm]A) + IS) ≥ d, then we will also have

ht ((I1([F1, . . . , Fm]A) + IS)⊗T Quot(T )) ≥ d,
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since height cannot decrease after localization. Hence, by the semicontinuity of fiber

dimension (see [21, 14.8]), we will have ht (FRP (A) + I) ≥ d.

Indeed, let q be a homogeneous prime ideal of S containing IS with ht q = d− 1.

It suffices to show that I1([F1, . . . , Fm]A)q = Sq.

Contracting q to R, we obtain a prime ideal p containing I. Since S is a faithfully

flat extension of R, it follows that ht p ≤ ht q. As ht q = d−1, ht p ≤ d−1. However,

since I ⊆ p and ht I = d− 1, it must be the case that ht p = d− 1. Again by faithful

flatness, ht pS = d − 1. However, we have pS ⊆ q (since pS is the extension of the

contraction of q) and ht pS = ht q. Consequently, pS = q. Therefore, q is extended

from a prime ideal of R of height d− 1.

Since K is algebraically closed and dimR/p = 1, p is generated by linear forms;

hence, by a linear change of coordinates, we may assume p is generated by all but

one of the indeterminates x1, . . . , xd. Consider the ring U = K(Y1, . . . , Yd)[x1, . . . , xd].

Since q is extended from R, Sq = UpU . Hence, by Lemma 6.3.6, I1([F1, . . . , Fm]A)q =

Sq. Therefore, ht (FRP (A) + I) ≥ d.

Recall that I and FRP (A) are homogeneous ideals. Let p be a homogeneous

prime ideal of R containing both I and FRP (A). Then p contains FRP (A) + I.

Since ht (FRP (A) + I) ≥ d, it follows that ht p ≥ d. Since dimR = d, and p is

a homogeneous prime ideal of height d, it follows that p = m. Since MFP (A) =

FRP (A) : I∞, but FRP (A) and I are homogeneous ideals which share no homogeneous

prime ideals except m, it follows that MFP (A) = FRP (A) : m∞. Therefore, MFP (A)

and FRP (A) have the same minimal primes. Hence, by the Associativity Formula for

multiplicities,

e

(
R

FRP (A)

)
= e

(
R

MFP (A)

)
.

Also, since they have the same minimal primes, ht FRP (A) = ht MFP (A). The fact

that ht MFP (A) = d − 1 is a consequence of the following proposition, Proposi-

tion 6.3.8, since `(I) = d as I is generically a complete intersection which is not a

complete intersection.
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Proposition 6.3.8 (Eisenbud-Ulrich [23, 3.1]) If P is a general point in Pd−1
K ,

then ht MFP (A) = dim Im Φ = `(I)− 1.

The results in Theorem 6.3.7 may, generally, be of interest for the study of rational

maps. If the base locus V (I) only consists of a finite number of points, then the

defining ideals of the generic fibers are simply the fiber row ideals FRP (A) because

the subschemes they define already do not meet the base locus.

We may apply the results in Theorem 6.3.7 to the setting of Conjecture 6.2.5 for

d = 4. This then implies that for a general point P ∈ P3
K , MFP (A) = FRP (A) : m∞,

e
(

R
FRP (A)

)
= e
(

R
MFP (A)

)
, and ht FRP (A) = ht MFP (A) = 3.

In order to make progress on Conjecture 6.2.5, one would hope to be able to extend

the results of Theorem 6.3.7 to even dimensions d ≥ 6, if possible. Additionally, one

would like to make a connection between

e

(
R

(g1, . . . , gn−1 : I∞)

)
in Proposition 6.3.5 and

e

(
R

FRP (A)

)
with the conjectured value of rt(I) in Conjecture 6.2.5.

6.4 Interesting Examples

Typically, when studying the bidegrees of the defining equations of R(I), there is

a pattern. If (a, h) and (b, k) are bidegrees of defining equations so that 1 < h < k and

a = max{j | R(I) has a defining equation of bidegree (j, h)}, then b ≤ a. In other

words, as the T -degrees of the defining equations increase, the maximum x-degree of

the defining equations tends to weakly decrease.

In this section, we give two interesting examples satisfying the conditions of Con-

jecture 6.2.5 in which the property described above does not hold.
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Example 6.4.1 Let R = Q[x1, x2, x3, x4],

A =



0 x8
4 x8

2 x2
1x

2
2x

2
3x

2
4 x8

1

−x8
4 0 0 x8

3 x8
2

−x8
2 0 0 x8

1 0

−x2
1x

2
2x

2
3x

2
4 −x8

3 −x8
1 0 x8

3

−x8
1 −x8

2 0 −x8
3 0


,

and I = Pf4(A). The ideal I is a perfect homogeneous Gorenstein ideal of grade three

having second analytic deviation one which is of linear type on the punctured spectrum

of R, and R(I) is not Cohen-Macaulay. The bidegrees of the defining equations of

R(I) are (8, 1), (6, 3), (8, 6), (6, 9), and (0, 12).

The above conditions were verified and the bidegrees were computed using the

Macaulay2 computational software [26].

Of particular note in this example is that the x-degree in T -degree 6 is larger than

the maximum x-degree in T -degree 3. However, we do note that x-degrees are all

bounded above by δ in this example.

Example 6.4.2 Let R = Q[x1, x2, x3, x4],

A =



0 x6
3 0 x6

4 3x6
1 + 4x6

3

−x6
3 0 x6

4 x6
2 0

0 −x6
4 0 x6

1 0

−x6
4 −x6

2 −x6
1 0 x6

3 − x1x
2
2x3x

2
4

−3x6
1 − 4x6

3 0 0 −x6
3 + x1x

2
2x3x

2
4 0


,

and I = Pf4(A). The ideal I is a perfect homogeneous Gorenstein ideal of grade three

having second analytic deviation one which is of linear type on the punctured spectrum

of R, and R(I) is not Cohen-Macaulay. The bidegrees of the defining equations of

R(I) are (6, 1), (4, 3), (5, 3), (4, 6), (6, 6), (8, 6), (3, 9), (4, 12), (4, 15), and (0, 18).

The above conditions were verified and the bidegrees were computed using the

Macaulay2 computational software [26].
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Of particular note in this example is that two of the x-degrees in T -degree 6 are

larger than the maximum x-degree in T -degree 3. Moreover, the maximum x-degree

is 8, which is larger than δ. Additionally, the x-degree in T -degree 12 is larger than

the maximum x-degree in T -degree 9. Therefore, this example breaks the typical

behavior twice.
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