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ABSTRACT 

Field-Programmable Gate Arrays (FPGAs) were invented in the 1980s. Since then the use of 

FPGAs in many fields has been growing rapidly. Due to the inherent reconfigurability and 

relatively low development cost FPGA technology has become one of the important components 

in data processing and communication systems. 

 The recent development of computing technology affects not only the software but also 

requires integrating and utilizing a custom logic design on a dedicated hardware platform. 

In this context, this research work analyses and compares on-chip interfaces for 

hardware/software communications in the Zynq-7000 all programmable SoC-based platform. 

Several experiments were carried out to evaluate the performance of data communication between 

the processing system and the programmable logic through general-purpose (GP), high-

performance ports (HP), and accelerator coherency port (ACP); the experiments were conducted 

for bare-metal standalone applications. The results identified the most effective interfaces for 

transferring data from the PL to PS and store the data to DRAM memory. The Xilinx Software 

Development Kit (SDK) and Vivado Design Suite together provide hardware/software 

development platform to evaluate their performance.  

One conclusion of this work is that the selection of suitable ports depends on application 

requirements. For low-bandwidth applications the GP port is appropriate. For high-speed 

applications, the High Performance (HP) port and Accelerator Coherence Port (ACP) are suitable 

and work better. The results of this thesis are useful in high-performance embedded systems design.  
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 INTRODUCTION 

FPGAs continue to have a remarkable impact on computing technology and various fields 

in engineering. The inherent reconfigurability of FPGAs and comparatively cheap development 

cost has made it an important tool for research. Nowadays the availability of field-configurable 

micro-chips that combine multi-core processors and reconfigurable logic incorporated with several 

DSP slices and block memories has made this path smoother. Such integration leads to the ease of 

communication system between two different types of processors allowing the systems-on-chip to 

reduce the complexity of computation and communication. The Zynq-7000 all programmable 

system-on-chip (APSoC) device from Xilinx integrates a dual-core processing unit running on 

different software and programmable logic which can be customized to develop different 

hardware-accelerated systems using different logic combinations and computations, and which 

further allows interfaces enabling interactions and data exchange between the dual-core processing 

system using software and hardware components. These cost-effective devices permit complete 

solutions for embedded systems to be integrated on a chip. To achieve the best and optimal 

performance of this type of platform, the fastest and best communication channel is required 

between two different processors. The interfaces between the Processing system (PS) and 

Programmable Logic (PL) are supported by different intellectual property (IP) cores and the AXI 

interface system bus. The combination of architectural and technological advances has enabled 

Zynq-7000 to open a new era in the development of highly optimized computational systems with 

enormous variations of practical applications. These applications not only include high-

performance computing but also data, signal, and image processing with embedded systems. On 

this contrary, the potential methods need to be studied to decide which method is better for data 

communications. This type of comparison study has been shown in this thesis with different test 

cases for Zynq-7000 APSoC. The design flow includes the development of hardware-accelerated 

tools in the PL supported by available Xilinx IP cores and customized design of IP cores with 

available features in VIVADO and software development tools (SDK) in the PS for the 

applications on the bare metal operating system. Bare metal application can be defined as the 

operating system, which is operational directly on the hardware with no underlying specification. 

Bare metal application typically has a limited bootloader to start the processor, time, and memory 

spaces and switch into the main program. 
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1.1 Motivation 

A system-on-chip (SoC) like the ZYNQ -7000 series consists of all the necessary parts and 

peripherals (e.g. processing units (PS & PL), peripheral interfaces (UART, JTAG, USB, Ethernet, 

etc.), memory systems, clocking circuit units, Interrupt systems and input/output). Xilinx Zynq-

7000 family is the first All Programmable System-On-Chip - APSoC system which is a 

combination of the dual-core ARM CortexTM MPCoreTM-based processing system (PS) and 

programmable logic (PL) on the same microchip [1].  

The processors were used to connect with a Field Programmable Gate Array (FPGA) via 

remote communication method which made communication between the Programmable Logic (PL) 

and Processing System (PS) more complicated before the development of the ZYNQ-7000. The 

Zynq all programmable (SoC) is the latest generation of Xilinx’s all-programmable System-on-

Chip (SoC) families which combines a dual-core ARM Cortex-A9 with programmable logic 

(FPGA). To establish communication between the different components, specifically between PS 

& PL,  the Zynq architecture is based on the Advanced extensible Interface (AXI) standard, which 

provides high bandwidth and low latency connections [1]. 

          The PL(FPGA) part of Zynq is ideal for implementing high-speed logic, arithmetic, and data 

flow subsystems. On the other hand, the dual-core PS (Processing System) supports software 

routines and operating systems which ensures the overall functionality of the designed system. The 

PS-PL interface consists of all the signals available for the designer to integrate the PL-based 

functions and the PS [2]. A typical simplified model of Zynq is shown in Figure 1-1. 

 

 

Figure 1-1: A simplified model of Zynq 
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1.2 Why Performance Analysis is Needed - Data Movement Challenges: 

Microelectronics has recently been exponentially progressed with the rapid growth of field-

programmable gate array technology (FPGA). This growth has contributed to a range of highly 

promising applications. Also, adding more transistors on the FPGA chip allows the vast amounts 

of parallel calculations. Secondly, recent developments in high-speed transceivers permit the 

transfer of data into and out of FPGAs in high bandwidths. Further, FPGA technology supports 

computerized algorithms, such as those with LiDAR(Light Detection and Ranging) systems or 

middleware communication systems that can be used with several FPGA components to accelerate 

hardware efficiently. 

Using a standard interface like AXI, data movement in a System-on-a-Chip ( SoC) like Zynq 

can be on-chip from one usable block to another or off-chip. However, Advanced eXtensible 

Interface (AXI) protocol, has been adopted by Xilinx as the IP cores. An AXI interface can be 

defined as an end-to-end linkage between master and slave clients inside the system for 

transmitting data, addresses, and handshaking signals.  Nonetheless, data transfer between normal 

or memory interfaces are normally performed as on-chip communication. The big issue for a 

hardware engineer is to determine the appropriate data transfer method for a memory subsystem. 

Although small data transfer on the chip can be performed using the software instructions, it can 

be done more effectively with special data transfer tools when large data transfers are made.   

         The communication overheads have to be evaluated to assess the potential performance 

increase that can be accomplished with hardware accelerators. Data can be exchanged across a 

wide range of ports and the right approach for faster data transmission is preferred. The amount of 

data to be transmitted, the communication bus configuration, and the sharing of the memory of the 

ARM cache are a key factor in assessing the analysis. Multi-processor approaches to improve 

system performance are pursued by engineers. Moreover, the processors also need to compute 

several tasks in parallel. Hence, without an effective mechanism for communication, the purpose 

or the idea of the development of the multiple-processor system will be degraded. 

The right bus protocol and data widths are required for each peripheral on the SoC to 

optimize the use of on-chip bus structures, that reduce silicone infrastructure or the resources by 

supporting high-performance on-chip low-power communication. 
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1.3 Application Areas of ZYNQ-7000-“Data Flow”: 

Many data streaming applications like video and multimedia processing or packet switching 

needs great performance, which can be achieved by mapping the multi-task parallel application on 

the System on Chip (SoC). A smooth transition of a task from software to hardware 

implementation demands a unified system for information exchange. Some applications that have 

relatively modest requirements for multi-processing, and that could be done within the available 

PL components and resources would be more cost-effectively implemented with the Zynq-7000 

platform. Some sets of applications/examples will be demonstrated here which heavily requires 

data transfer performance analysis among the processors. 

1.3.1 Video Processing of Drones 

A common use of drones is aerial photography. In recent days, drones are used in individual 

filming, news, and sports broadcasting, monitoring, security inspection, and agricultural 

applications, etc. An HW/SW co-design can be used in video and image processing in this 

application. 

However, to achieve professional-quality recording by using drones some parallel 

combinations of tasks are needed. Fast frame rates, integration of the 4K or higher resolution, and 

(HDR) video, may result in a huge quantity of the data to be stored. 

Video streaming from drones brings new challenges, and current research areas usually 

involve some compression methods. These methods are appropriate for wide mobility cameras, 

and drone-based cameras for sports and other live broadcasts. Also, this type of advanced camera 

technology includes the system to monitor and detect an exact location of an object in the video. 

All of these tasks regarding video processing involves complicated processing. A software 

program running on the Zynq SoC-7000 application processing unit (APU), preferably with the 

advantage of hardware acceleration in the Programmable Logic(PL), would be an optimal solution 

in this application. For this reason, the data transfer needs to be faster and the suitable interface 

must be chosen as per the application [33]. 



 
 

15 

1.3.2 LiDAR in Autonomous Vehicle 

LiDAR (Light Detection And Ranging), which uses radar-like concepts of laser light, is 

fast to emerge as an impressive technology particularly for autonomous vehicles.  Even though 

LiDAR systems are currently significantly large and costly, there is an increasing potential to 

develop lower-cost and relatively portable solutions that are suitable for mass-market vehicles. 

 

 

Figure 1-2: LiDAR in Autonomous Vehicle[33] 

 

Figure 1-2[33] shows a typical representation of an autonomous vehicle where different 

types of sensors are placed around the vehicle. For example, adaptive cruise control, blind-spot 

detection, etc. Front, rear, and sided cameras can be used to capture visuals data elements from the 

image to gather the sensor information. In this case, LiDAR is an important choice as it can deliver 

greater distance precision than radar at medium distances (10-100 meters), including complete 

360-degree coverage, which is appropriate for autonomous vehicles.[33] 

To determine the vehicle's condition, the significant amount of data produced in the sensor 

systems must be processed, merged, and evaluated. .This implies enormous signal processing on 

sensor nodes input. Also, accurate syncing and further processing to incorporate the data helps to 

interpret hazards and take immediate measures accurately. All this process (including both PL and 

PS based components in Zynq-7000) should occur simultaneously as quickly as possible, 
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considering the high speed at which vehicles can drive and the reaction times required to prevent 

collisions. 

1.4 Thesis Outline  

For this thesis, the outline is divided into five chapters. Chapter 2 contains the background 

or related work on the mentioned topic. At first, a brief overview of the background work related 

to Hardware-Software Co-design is discussed. Later some related work with ZYNQ APSoC is 

provided. The present scenario of the available related platform is also discussed. Afterward, the 

applications of Zynq both in research and the present application has been discussed.  

Chapter 3 discusses the Zynq platform, its architecture, and its specific features regarding 

communication between the processors and operating system descriptions. This section focuses on 

the PL & PS part interface types and how each port can be used to transfer data from PL to PS and 

the corresponding IP cores to establish the communication. This chapter also focuses on the 

software platform that can be used for designing the hardware and the software development tool 

for PS part considering the Standalone Bare-Metal operating system and describes how each of 

these interfaces is dependent on each other. This portion also describes the methodology to be 

followed to implement the design and the analysis. 

Chapter 4 describes the design and implementation part using the Vivado software platform 

and software development kit (SDK). Vivado has been used for designing IP cores with Verilog 

RTL based designing system. This part also discussed the test bench of the designed IP core. 

Finally, at the end of this chapter, it discusses the different IP cores and the corresponding 

designing techniques and the implementation of hardware design to transfer the data from the 

custom based IP core located at the FPGA part and transferring a stream data to the DDR memory 

of the Zynq processing system using AXI interconnect. The implementation of the different port-

based design is also explained in this chapter. It also discusses the software part implementation 

using the Software Development Kit (Xilinx SDK) tool. A complete flow diagram of the 

data/packet moving process is also described in this section. It also discusses the Standalone Bare 

metal operating system implementation of the processing system.  

Chapter 5 describes the performance analysis of the interfaces after the hardware 

implementation of the design on the Zedboard using JTAG port. It also discusses the data 

collection of the time in different data transferring conditions for different slave port to transfer 
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the data from PL to PS. Graphical based performance analysis of the AXI interconnection ports is 

also presented for the different traffic conditions and the packet size. 

            Chapter six is the conclusion where the summary of the full thesis is discussed along with 

the future work scope and analysis plan. A complete flow graph of the thesis outline is presented 

in Figure 1-3. 

  

Figure 1-3: A flow graph of thesis outline 
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 BACKGROUND AND RELATED WORK 

A literature review on the latest cutting-edge method of data transfer for hardware/software 

Co-Design is the first approach of this work for achieving the goals defined in the previous chapter. 

There is also a need for a thorough understanding of the Advanced Extensible Interface (AXI) 

protocol bus and the software and hardware platform.  

2.1 Background: 

2.1.1 Hardware-Software co-design 

The Hardware / Software co-design has been a popular field of research for developers. 

However, hardware/software (HW / SW) co-design can be defined as a simultaneous development 

of the system's both hardware and software sides. The HW parts should be run in FPGAs or ASICs 

on an all-inclusive processor while the SW parts are being translated into a low-level programming 

language.  

ASIC- Application-Specific Integrated Circuits 

The integrated circuits ASICs are fully configured for a specific purpose. It can be 

configured in a specific application where high efficiency and lower energy consumption are the 

key issues. The optimization process can be controlled by the engineers due to its reconfigurability 

for a specific application. This implies that for a particular application it produces very high output 

and low power consumption. By completely configuring the ASICs, engineers can save on 

additional resources and reduce large-volume costs dramatically.  

FPGA- Field Programmable Gate Arrays 

As a configurable computing platform, the Field Programmable Gate Arrays (FPGA) has 

become especially important for high-performance computing applications. It can typically 

improve performance considerably over the conventional computing platforms while reducing 

energy consumption considerably. Hardware designs typically take a bit longer time equivalent to 

software designs. A wide variety of resources are available at FPGA such as the Flip-flop (FF), 
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LUT, Optical Signal Processing and RAM Block (BRAM). FFs are small gate elements that can 

store a data bit between cycles. For each particular set of inputs, LUT has an N-bit Table of preset 

responses. However, DSPs are a block of interconnected computational units like the adder, 

subtractor, and multiplier. BRAM is a single-port or dual-port RAM block very similar to the 

fabric of the FPGA.  

Zynq-7000 SoC 

The Xilinx Zynq-7000 SoC is a group of FPGA and CPU chips integrated into the same 

chip, which allows effective and quick interaction during software acceleration. Software 

Acceleration is the method of maximizing system function and delegating performance-critical 

functions for specialized external hardware so that it can reduce program execution time. The dual 

ARM Cortex-A9 CPU and two Neon co-processors are used on every 7000 chip array. Each of the 

dual processors has independently owned high speed, low-power cores, and L1 level and 32 KB 

data cache. Additionally, 512 KB of L2 cache is shared. This also allows FPGA and CPU to share 

external memory much greater than the usable internal memory by adopting the DDR3 storage 

interface. Zynq SoC has a Processing System (PS) and a Programmable Logic (PL) in its internal 

structure. In the PS part, the application processing unit (APU) is located.  

2.2 Related Works with Hardware/Software Co-Design: 

Co-designing the hardware/software refers to the simultaneous design of both software and 

hardware in a system. The software is executed in processing elements such as Central Processing 

Units (CPU), and Digital Signal Processors (DSP). Application-specific Integration Circuits 

(ASICs) or FPGAs typically implement hardware logic. Since software and hardware systems have 

different characteristics, there is potential for a hybrid system to utilize the best of both worlds. 

The publication [11] analyzes the key properties of co-designing hardware/software: teamwork, 

flexibility, precision, and complexity.  

Hardware/software co-design has evolved considerably since it was first used in electrical 

systems. Co-design 's earliest use case appeared in the 1980s [12]. Partitioning was the key 

problem to be addressed during the first generation of co-design. Two approaches have been 

proposed: (a) starting with pure software and then migrating software functions to hardware; [13], 
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and (b) starting with a hardware-only system and ending with a codesigned system[14]. Multicore 

and multiprocessor were used in the second generation, and thus multi-threads were used instead 

of a single thread. Thread planning is one of the biggest challenges in this approach. Besides, the 

interface and communication between hardware /software are important because they have a 

drastic impact on device efficiency and design space [15]. According to [11], the co-design is now 

in its third generation, where it shortens the time-to-market cycles by optimizing the flow of 

hardware/software development. Also, different languages for the hardware /software co-design 

are needed. The language for both hardware and software development should be appropriate as 

per their platform. Neither Hardware Description Languages (HDLs) nor C/C++ seems to be able 

to replace the other. 

The major difference in hardware/software codesign is described in [12] as compared to 

pure-software design. They are, 1) Allocation: there are plenty of options for SoC architecture 

design and designers need to pick suitable resources for their systems among different processors, 

ASICs, FPGAs, DSPs, etc. 2) Binding: Developers having different resources in SoC(s), have to 

link applications, tasks or variables to similar resources; partitioning, stated in the first generation, 

was one kind of binding. In [16] it was proved that the binding mechanism is an NP-complete 

problem, so finding an optimal solution is time-consuming. 3) Scheduling: several resources are 

shared (such as processors, memory, and communication bus, etc.) so, real-time analysis is 

required when complex co-design is being implemented.  

Additional factors today influence the development of hardware/software co-design [11]. 

Heterogeneous SoCs is a new phenomenon where many more resources can be combined into a 

single chip, e.g. one multi-billion transistor chip includes multiprocessors, DSPs, FPGA, IP, 

memory, and peripherals. First, the complexity of SoC(s) systems is highly increasing, as many 

SoCs need to work together. Last but not least, as systems become more complex, it is very 

common for different subsystems to be introduced by different suppliers, so all entities must share 

shared standards.     
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Figure 2-1: FPGA and CPU Integration[11] 

2.3 Related Works with ZYNQ 7000: 

The Zynq architecture and its flexibility of communication have attracted may researchers 

to work on it. Particularly in this thesis, all the implementation is based on the Zedboard, which 

features an XC7Z020 Zynq device. Zedboard is a joint venture between Xilinx, Avnet (the 

distributor), and Digilent (the board manufacturer) [2]. The books [1] & [2]  mainly focus on the 

Zynq platform and its architecture on different topics. 

A paper for analyzing the impact of hardware accelerator data transfer granularity on the 

performance of a typical embedded system is presented in [3]. An insight into maintaining 

coherency between CPU caches and accelerator data in a multi-core embedded system is discussed 

in [4].  The same research paper emphasizes on possible hardware architectures and related 

software solutions to reduce the problem. The research [4] concludes that the optimal solution is 

more dependent on the type of application. It also discusses the solutions at the architecture level 

but it doesn’t provide any performance comparisons on the mentioned topic. In [5] the author 

mainly explores the performance of HP ports under different traffic conditions. However, the study 

[5] doesn’t explore the performance of the ACP and GP slave ports. There are several publications 

on the implementation of image processing. In [6] the author uses the ZYNQ architecture for image 

restoring contrast by defogging. This type of application is becoming more popular in automobile 

industries. Hence, application development using such SOCs is developing rapidly. Another 

research work discusses the driver awareness monitoring system [8]. A car simulator has been 

used to prove their method. A project of Microsoft’s Catapult was explored in [9] which is mostly 

concentrated on the acceleration of the Bing Search Engine data center. The project combines the 
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server rack computers and FPGAs used in achieving a significant improvement in the ranking 

throughput of each server. This project did not use the Zynq technology. 

In this research paper, a custom design is implemented for the data transfer from PL and PS 

DDR memory. AXI interface is used for the internal data transfer which is on-chip. On the contrary, 

data transfer between two devices with measurable distance has some critical challenges when the 

link operates at high frequency, and also the communication becomes hard to maintain. Hence, 

efficient on-chip communication between two different types of processors was an important topic  

to ensure the optimal data flow. The performance analysis between the available port to transfer 

the data from the PL to the PS portion of the Zynq was analyzed in different conditions and a 

graphical representation of the performance analysis is also discussed.  

2.4 Some More Work On A Different Platform 

Diverse research on the use of reconfigurable architectures in hardware-software co-design 

applications has been shown in the industry and academia over the last few years. Studies and 

experiments on different platforms were also performed. The following are some of these works.  

2.4.1 HW/SW Co-design for Exascale System 

The study was conducted by the “Lawrence Berkeley National Laboratory” in a joint 

project involving three laboratories. The experiment was performed on Codesign for 

Exascale(CoDEx), a robust co-design platform for hardware-software, which provides 

applications and algorithm researchers with an unparalleled opportunity. This paper discussed the 

comparative analysis and the experimental results of the “Green Wave” co-design process and the 

conventional HPC system (Intel Nehalem and Nvidia) in a project to develop climate modeling 

and seismic imaging applications. The result shows a significant benefit in using co-design 

applications. The results indicate that the co-designed device provides 5 to 7.6 times higher 

performance compared to a traditional HPC design for similar constraints lithographic scale, on-

chip region, and memory interface technology. [22] 
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2.4.2 Coarse-Grained Reconfigurable Accelerators (CGRA Architecture) 

Several studies were performed recently on the CGRA architecture. In one recent study, 

domain-specific accelerators (DSAs) has been implemented on a CGRA platform. A new approach 

for assembling and characterizing the reconfigurable accelerators, based on data flow was 

implemented in this report. The concepts of functional programming, which can resolve the 

challenges of the efficient design of CGRA, have been explored. The comparative resource 

utilization analysis with the other state-of-the-art high-level synthesis(HLSs) is the main advantage 

of the proposed approach.[23] 

In another work [24], the implementation was in the same CGRA based platform. The work 

described the design and implementation of a “C-programmable hybrid coarse-grained array, 

single-instruction, multiple-data (CGA-SIMD)”  based SDR accelerator. It also analyzes the 

performance of the design for the SDR based baseband signal processing and also in terms of 

power efficiency.  

2.4.3 Different Embedded System Platform for Co-Design Applications 

There are a lot of works with embedded system Co-designing applications. One of the 

research papers [25] discusses the rapid prototyping in a real-time embedded system platform. A 

design cycle has been proposed for this framework. The main target of this research is to have an 

integrated framework Co-design and Rapid-Prototyping System for Applications with Real-Time 

Constraints. The design flow includes implementation, specification-synthesis, system-synthesis, 

and performance analysis. 

Another work focuses on the unified designing approach for the HW/SW components in 

an embedded system [26]. However, the goal of this work is mainly to reduce the gap between 

hardware and the software in the design method. This was done by introducing the object-oriented 

and aspect-oriented programming, which provides a unified description for an embedded system. 

The purpose of this work is to explain how the components and element unified design weaving 

processes can only be applied using the standard interface and its metaprogramming. Hence, the 

separation of the hardware/software implementation in unified implementation takes place directly 

via changing at the language level, thus enabling integration with various -related HLS software 

and flow architecture. 
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The status and evolution in the field of co-designing of an embedded system has been 

discussed in [27],[28]. These review papers discuss the major processes in the field of computer-

aided embedded systems.  In the current system analysis, co-simulation of HW/SW is the main 

requirement.[27] 

However, embedded systems face special problems for the evolution of systems. They are 

embedded in a dynamic environment and they have to interact with the evolving processes of 

different organizations. To address these problems the research and the industrial practices need 

to improve.[28] 

2.4.4  FPGA and other SoC Platforms 

For low power and distributed applications, FPGA and SoC platforms are widely used for 

the research and industry sectors. In one of recent the research works,[29] an algorithm has been 

proposed to determine and manage the problems of resource management/ allocation and task 

assignment. To assess the timing of all assignments and coordination events in the system, a 

priority task scheduling was also developed. Another research work represents[30] an 

experimental analysis and of an SoC platform. This “Dalton Project” shows that platform 

tuning(parameterization of the IP and IC) can increase the performance of an SoC-based embedded 

platform. 

However, reconfigurable architecture and the computing system has brought immense 

performance increment in terms of power and resource-based efficiency[31]. Reconfigurable 

Computing has established groundbreaking accelerator architectures, hardware, and RTR models 

and support for the past 25 years. A timeline of that evolution can be illustrated in figure 2-2 [31]. 

  



 
 

25 

 

 

 

 

 

  

Figure 2-2: A timeline of reconfigurable computing system evolution[31] 
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 HARDWARE-SOFTWARE PLATFORM AND METHODOLOGY 

In this chapter, we introduce the hardware and software platforms that have been used in 

the course of this work. First, we describe the Xilinx Zynq-7000 device architecture and the AXI 

protocol, which manages its internal communication. Then, the software workflow is described 

that is used in this thesis. In the last section, the methodology for performance analysis is briefly 

described. 

3.1 ZYNQ-7000 Architecture  

The analysis assesses the implemented design on Z-7020, which belongs to the Xilinx 

ZYNQ-7000 SoC family. Detailed architecture and its features are provided in the following 

sections.  

3.1.1 Overview 

Xilinx ZYNQ-7000 SoC has a Processing System (PS) and Programmable Logic (PL), as 

shown in Figure 3-1[18]. The PS comprises of different working blocks like I / O peripherals, 

internal and interconnection memory interfaces. PS-PL communication is carried out via high-

bandwidth AMBA AXI interfaces (define AMBA). 

 

Figure 3-1: Zynq Block Diagram[18] 
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The ZYNQ framework integrates reconfigured functionality with a PS ASIC interface 

through this architectural scheme. This is necessary as the PL is capable of performing a parallel 

data-intensive task, while PS can handle the sequential process. This leads to increased 

performance overall. The AMBA AXI4 connects a high-bandwidth connection between the PS 

and PL as well as the connections within the PS. With the AMBA Standard AXI4 Interfaces, a 

high-bandwidth connection between PS and PL is established. This ensures effective 

communication with the functional units. 

First, the PS is configured. Only after the PS configuration, the hardware design will be 

loaded into the PL fabric. Once the system starts, a hard-coded boot ROM is performed, which in 

turn allows PS to load a First Stage Boot Loader (FSBL) from OCM. On the second-stage, the 

bootloader can be used to load the kernel to DDR memory.  A bitstream file can then be used to 

set up the PL fabric, if necessary. 

Zynq-7000 family PL uses Xilinx 7 Series FPGAs such as  Z-7020 (which is used in this 

thesis). The Zynq contains Xilinx-7 series FPGA. An external clock pin or a PS may be used to 

produce the clock to PL. Three PLLs (phase-locked loops) are used by PS and four input clocks 

are provided for the PL. Architecture manages clock synchronization between PS and PL. In a 

wide range of fields, such as industrial motor control, automotive and medical diagnostics, SoC 

devices Zynq-7000 are used. Figure 3-2 shows the target hardware platform for design and 

implementation. 

 

Figure 3-2: Zedboard 
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3.1.2 ZYNQ-7000 Features 

Figure 3-3[17] shows the functional blocks integrated into the ZYNQ-7000. The figure 

also displays the location of the Processing System (PS) and Programmable Logic (PL) within the 

same chip. 

 

Figure 3-3: Zynq-7000 Architecture[18] 

 

Application Processor Unit (APU) consists of a processing system that incorporates a dual-

core ARM-Cortex A9 processor with a 32 kB level 1 cache memory. The Floating Point Unit (FPU) 

provides the necessary floating operation for applications such as DSP. To improve system 

functionality by employing data parallelism, the NEON Engine supports “Single Instruction 

Multiples Data” (SIMD). DMA Controller and Memory Management Unit (MMU) are also 

components in APU. The processor design implies automatic cache coherence between processor 

cores [17].  

Central interconnection binds the APU to several peripherals. It uses a 64-bit AXI interface 

[18] based on ARMNIC301 (Network Interface Configuration). The Processing System (PS) has 

the “Core Sight controller” to debug and track the software design. PS usually communicates with 

the PL by using two General Purpose ports (GP ports) based on 32 bit of AXI interfaces.  

To communicate with the functional units in PS, different types of ports are provided in PL. Two 

32-bit General Purpose ports are suitable for the transfer of a small amount of data, for example, 
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control signals. Two master ports and two slave ports are available as General Purpose ports. Four 

64-bit high-performance ports provide high-performance memory access to OCM (On-Chip 

Memory) and DDR memory. In APU, the Snoop Control Unit (SCU) access is provided by the 

Accelerator Coherence Port (ACP). PL can use OCM and Level-2 cache memory. XADC (Xilinx 

Analog to Digital Converter) module is included in the PL for "Analog Mixed Signal" (AMS) 

processing It offers a dual 12-bit, 1 mega per second ADC, which allows 17 analog external input 

channels to access[19]. 

As Figure 3-3[18] shows, both PS and PL devices are mapped to system memory. Zynq 

has an EMIO (Extended multiplexed I / O) interface for unmapped peripherals in PS, which allows 

the PL pins in to use those peripherals.  

3.1.3 ZYNQ-7000 Communication Interfaces 

The Zynq-7000 family uses ARM AMBA4 AXI. An end-to-end protocol between an AXI 

master interface and an AXI slave interface is established by the AXI Interface. The AMBA4 

consists of 

three AXI interface types : 

• AXI4 Memory-Mapped Interfaces 

– AXI4-Lite Memory Mapped Interface 

– AXI4-Full Memory Mapped Interface 

• AXI4 Stream Interfaces 

 

Figure 3-4: System-Level Address map[17]  
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In terms of performance and functionality, each AXI interface defines a protocol that 

differs from each other. The developer can choose an acceptable AXI protocol depending on the 

application. This enhances design flexibility. 

AXI4 Memory-Mapped Interfaces 

The AXI4 Memory-mapped interfaces have several channels to allow read/write 

communication through AXI interconnect from the master to the slave. These channels are distinct 

and include the data signal, address signal, and, control signals as shown in Figure 3-5[17]. 

 

 

Figure 3-5: Read and Write Channels[17] 

 

Upon transmitting address/control or data signals, each channel employs a two-way VALID/ 

READY handshake process. As shown in figure 3-6[17], only when both VALID and READY 
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signals are high,  the information is transferred. There may be dependence between channel hand-

shake signals that can result in a deadlock. AMBA AXI Protocol Specification thus specifies the 

dependence rules which must be complied with during the design implementation. 

 

Figure 3-6: Two-way VALID/READY Handshake[17] 

 

Data transmission can be concurrent and bidirectional due to different addresses and data 

channels to read/write. These channels are used in two kinds of interfaces with memory mapping.  

AXI4-Full Interface 

AXI4-Full interface applies a point to point burst-based protocol which offers several 

options for data transfer performance. By placing the first address on the address channel of the 

burst transfer, AXI Master initiates a data transfer. The slave needs to measure the following 

transaction addresses based on burst parameters (size and length). Burst size demonstrates the 

width of a data bit while burst length represents the number of bits in a burst. One of the most 

important characteristics is mentioned in [20] about the incremental burst size. For the incremental 

bursts and 1 to 16 bits of wrap bursts, a burst length of 1 to 256 bits is accepted. Support is given 

for variable data widths between 32 and 256 bits.  If required, data can be upsized or downsized. 

There can be multiple pending addresses. Transactions like non-order transfers and unaligned 

transfers that provide greater overall throughput are acceptable. Safety features such as read and 

write access security are also included for the interface. It has an option for adding register slices 

during pipelines to improve performance. 
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AXI4-Lite Interface 

AXI4-Lite is almost the same as that of AXI4-Full interfaces but does not allow burst 

transfers. On a different note, it only supports a burst length of 1. The AXI Lite protocol is used 

by the Processing systems (PS) to set up an IP by mapping the system addresses. This can be used 

to transfer control signals because only some few clock cycles are needed. This requires the AXI 

Lite protocol. For example, if AXI Port0 uses, then port 0 address space of the General purpose 

(GP0) port will be used to interface the IP. This offers a fixed data width of 32-bit or 64-bit. Yet 

Xilinx IP only has a 32-bit big data bus[17]. 

AXI4-Stream Interface 

For applications that are usually focused on a data-centric and data-flow framework, the 

protocol of AXI-Stream (for high-speed streaming data) is used. However, the HLS interface has 

been used to transmit end to end data transmission without the need for an address. This means 

that data is transferred without addressing from a master node to a slave node. For each AXI4 

stream, a one-way channel for handshaking the flow of data is used. This can be shown in figure 

3-7[17]. For data flow applications AXI4 Stream IP may be optimized better for performance. 

 

 

Figure 3-7: AXI4-Stream Transfer with Unidirectional Channel[17] 
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Our main emphasis for this thesis is the AXI4-stream that is used in our design for the 

communications system. AXI4-Stream is used in high-speed streaming data. TVALID, TDATA, 

TREADY, TLAST, and TUSER/ TSTRB are standard AXI4 connectivity signals. The connection 

TUSER / TSTRB enables additional, fully user-definable information to be transferred. The detail 

about the AXI stream signals for designing any stream module is discussed in chapter 4. 

Zynq-7000 has four high-performance (HP) AXI 32/64-bit ports, which are mostly used for 

reading/writing to the OCM and DDR memory through the AXI4 stream protocol. Certain features 

of the protocol are [17]: 

 The Stream protocol has an unlimited burst length: It has different options for chosing 

the different burst lengths. 

 It has sparse, continuous aligned & unaligned streams: A sparse stream is the 

combination of position and data bytes, but usually most of the bytes are data bytes. also 

continuous aligned stream is defined as the transfer of a number of data bytes that have no 

position or null bytes in each packet. On the other hand, an unaligned continuous stream 

may have a number of contiguous bytes at the beginning, end or at beginning and end of a 

packet. 

 Data transfer features:  It has different data transfer features, for example- interleave, 

merge, upsize or downsize. Interleaving transmission is the process to interleave transfers 

from various streams based on transfer types. 

 Ordered transfer : The stream protocol only allows ordered transfers. The data stream 

should be ordered in such a way that, the low order bytes of the data stream bus will be the 

earlier bytes in the stream. 

Table 3.1 summarizes the key features and differences of the AXI4 Interfaces.  

Table 3.1: AXI4 Feature Availability and IP Replacement 

Interface Features IP Replacements 

AXI4 
Memory-mapped address/data 

interface PLBv3.4/v4.6,OPB, NPI,XCL 
Data burst support 

AXI4-Lite 
Memory-based address/data 

interface PLBv4.6,DCR,DRP 
Single data cycle only 

AXI4-Stream Data-only burst Local Link,DSP, TRN,FSL 
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3.1.4 Processing System and Programmable Logic Interfaces 

The PS-PL interface includes all the signals to combine the PL and the PS functions. There 

are two types of PL-PS interfaces: 

Functional interfaces: This interface includes AXI interconnect, extended MIO interfaces 

(EMIO) for most of the I/O peripherals, interrupts, DMA flow control, clocks, and debug interfaces. 

These signals can be used to connect the user-designed PL IP blocks.  

Configuration signal interfaces: This includes the single event upset (SEU), Processor 

configuration access port (PCAP), configuration status, Program/Done/Init, etc. The 

configurations signals, which provide PS control, are connected to the fixed logic of the PL 

configuration block. 

For primary data communication between the PS-PL, the following AMBA AXI interfaces 

are included. These interfaces are under the functional interface family : 

• (M_AXI_GP): Two 32-bit AXI master interfaces 

• (S_AXI_GP) : Two 32-bit AXI slave interfaces 

• High-performance (HP) AXI ports (AXI_HP): Four 64-bit/32-bit configurable buffered AXI 

slave interfaces. These ports have direct access to DDR memory and OCM. 

• AXI slave interface (ACP port) : One 64-bit for coherent access to CPU memory 

  

Figure 3-8: Zynq Processing System Architecture[18] 
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Figure 3-8[18] shows that all of the interfaces are specifically connected to AXI 

interconnects within the PS, with the only exception being the ACP interface, which is connected 

directly to the Snoop Control Unit inside the APU. 

Inside the processing device, AXI interfaces are used both within the ARM APU (making 

connections between processing cores and SCU, cache memory, and OCM), and more broadly to 

link the various interconnections within the PS. These interconnect are internally connected to the 

central Interconnect as shown in figure 3-8. 

To move data from the FPGA part to the Processing system part, the processing system 

part works as a slave port and the PL part works as a master port. The two GP AXI slave ports (S 

AXI GP) allow PL AXI master to access the PS memory on the PS subsystem or any of the PS 

peripherals. 

The high-performance AXI ports (HP) and the ACP interface are the two highest-

performance interfaces for PS and PL for data transference. The high-performance AXI (AXI_HP) 

ports provide a high-bandwidth PL slave interface to the OCM and DDR3 memories of the PS. 

The AXI ACP interface offers a User IP topology similar to the HP ports (AXI HP). Because of 

its communication within the PS, the ACP varies from the HP output ports. The ACP connects to 

the L2 CPU cache, allowing ACP transactions to communicate with subsystems in the stack.  

3.1.5 Theoretical Data Transfer Throughput of PL-PS Interfaces 

Many other documents and descriptions are readily accessible about the use of interfaces 

as well as how the programmable logic can communicate with the processing system. However, 

most of the documents didn’t fully addressed about the maximum throughput with an experimental 

analysis using different conditions. In this work a comparative analysis for the three interfaces was 

presented. However, Xilinx in their document[18] has presented about tthe maximum theoretical 

(without any overhead protocol) estimated data throughput for a single read/write operations for 

each of the PL-PS interfaces. Table 3.2 shows the details of that. 
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Table 3.2: Theoretical Data Transfer Throughput of PL-PS Interfaces  

PL-PS Interfaces Data Bus width(bits) 
Maximum Estimated 

Bandwidth(MB/s) 
S_AXI_GP  32 600 
S_AXI_HP 32/64 1200 
S_AXI_ACP  32/64 1200 
EMIO/GPIO  32/64  <25 
M_AXI_GP  32 600 

 

3.2 Software Platforms 

Designing for the Zynq system requires the use of several different software tools which 

together form an end-to-end work-flow which will produce a functioning Zynq system.  

3.2.1 Vivado Design Suite 

Vivado is the tool suite for Xilinx FPGA designs. Vivado is the overall project manager 

and is used for developing and designing the environment for the configuration of PS, and 

hardware design for PL. The platform also includes peripheral simulation and logic analyzer.The 

hardware portion will be primarily designed using Xilinx Vivado software. This program can be 

configured with the presets of the particular board one is using, which allows it to automatically 

generate a large number of circuit connections that would otherwise need to be specified manually. 

Is also contains an extensive catalog of hardware IP which can be integrated into one’s design. 

Many of these IP blocks are targeted at signal processing applications such as the Fast Fourier 

Transform block. 

Vivado also contains an extensive set of analysis tools. Hardware expressed using IP blocks 

or HDL can be simulated and its behavior analysed on the signal level. This can be vital in 

applications where a single clock cycle delay in a particular operation could cause the system to 

fail. Additionally Vivado allows for design validation which will quickly pick up any errors or 

critical warnings in the design before it is processed. This is especially useful as the full bitstream 

generation flow can take a very long time, over an hour depending on the extent of the design. 

Vivado also supports on-chip debugging which allows for a live analysis of the signal values while 

the system is powered on and operating. 



 
 

37 

The most important functionality that Vivado provides is the ability to take a hardware 

bitstream that can be loaded onto the board. This is a multistage process that begins with a project 

specified at the register transfer level (RTL) and ends with a bitstream that describes the FPGA 

custom hardware. The first of these stages is called synthesis. Synthesis is essentially the process 

of taking the RTL description which may be a combination of IP blocks and HDL and convert this 

into a logic gate level representation. Figure 3-9 shows the VIVADO software starting window. 

Once the design has been synthesized and a gate-level representation has been generated, 

it must be converted to be compatible with the FPGA. This stage which seeks to configure the 

FPGA resources to represent the gate-level logic expression is called implementation [21]. With 

the design implemented it must be converted to a format that can be loaded onto the board, this 

process is called bitstream generation. 

3.2.2 Software Development Kit (SDK) 

SDK is an Eclipse-based Integrated Development Environment ( IDE) that has been 

extensively used to meet the unique needs of the Zynq framework. Using the “Program FPGA 

"command, the hardware description that has been exported from Vivado will be loaded to the 

chip via SDK. This hardware description can also be used by the SDK to create a Board Support 

Package (BSP). The BSP contains drivers that are automatically generated for the hardware that 

was implemented in the design. This allows the user to communicate with the board in C/C++ 

code using driver calls. 

The SDK's principal function is the development of the software part. When a new application is 

created, one can choose between a bare metal\standalone application or a Linux application. The 

bare metal application runs directly on the hardware, with no OS layer. That gives an outstanding 

performance. The Linux application option will create an application. When it builds, it will be 

cross-compiled using the GNU Linux compiler. This is appropriate for the ARM processor on the 

chip in use. The cross-compiled application can then be transferred via storage media to the board 

and executed from the OS running on the board. 

Another important aspect of the SDK is its debugging capabilities. Applications can be 

started on the hardware remotely, and a connection can be maintained that allows SDK to handle 

the control of the program flow. Breakpoints and operation stepping function just like they would 

in a conventional IDE but the code is being executed remotely. 
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Figure 3-9: Hardware-software design tools 

3.3 Methodology 

The main target of this thesis is to design a hardware system in order to evaluate the 

performance of AXI interfaces (ACP, HP and GP). The design is implemented on Zedboard. The 

AXI Interfaces have to be evaluated under different criteria and conditions to determine the most 

appropriate interface as per the application.  The approach is as follows:  

1.  Evaluation of three different AXI Interfaces: 

            1.1.  Designing the Hardware in VIVADO for three different AXI4 Interfaces. 

            1.2.  To analyze the performance of three AXI4 interfaces determine several Test cases. 

2.    Implement the Software algorithm on SDK.     

3.  Analyze the test result data, and determine the application-oriented usage of each AXI4 

interface. 

4.   The test cases to evaluate the performance of AXI4 interfaces:  

 Data transfer time of write operation DDR memory of PS. 

 Data transfer time for different PL clock frequency. 

 Data transfer time for different data widths and burst transfer. 

 Energy consumption during data transfer. 
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 DESIGN AND IMPLEMENTATION 

The purpose of this chapter is to present the complete design flow in detail and tools used 

for implementing the sample data generator. Since the target device is a Xilinx Zynq platform, the 

Xilinx tool-chain is used. It is composed of Vivado HLS (RTL flow and the HLS), for designing 

the accelerator and the hardware part and the Xilinx Software Development Kit (SDK) for 

modifying the original software to work on the accelerated system. The design flow includes 

hardware design and software design using the tools described in the previous chapter. The 

hardware design process will be described at first, followed by the software implementation on 

SDK to run the application on the target board. 

4.1 Hardware-Software Design Co-simulation process 

A description of the Harware / Software co-design to be used in this study is shown in 

figure 4-1. The first step in hw/sw co-design is the high-level specs of the system behavior which 

includes the behavioral simulation, power, functionality, and other constraints of the expected 

circuit or design. 

The following move is to partition the functionality of device design between the software 

and hardware. The partitioning of the Hardware / Software is the mechanism that separates the 

functions into a part of the hardware and software. The partitioning phase gathers the information 

from the profiling task to make decisions about the instances to map the software and  the hardware. 

Once the instance of hardware and software creation has been established, and the interfaces has 

been established between them, the next step is the coding & simulation. In this stage, specs are 

refined, where autonomous system specifications are translated into HW and SW specifications. 

When the coding & simulation action is over, the subsequent phase is authenticated by the design 

flow, which collectively simulates both the hardware/software. This is called the co-simulation 

process.  

The co-simulation process verifies whether or not the design objective has been achieved. 

When the specification is appropriate, the co-simulation ends. The design cycle is repeated until 

the satisfactory design output is reached; if the design is not satisfactory, the design returns to the 

HW/SW partitioning step. 
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If the results of co-simulation are acceptable, then the next task is the simulation-level 

implementation of both hardware and software parts. 

 

 

Figure 4-1: Hw/Sw Co-design Flow 

 

Once the partitioning task is finished, the executable program and the bitstream files are 

combined to create the.elf file and to run it on the hardware platform. The performance of these 

parameters relies on the level of design constraints and the reduction in design costs. If the design 

parameters are not fulfilled, then to boost the performance some optimization techniques must be 

used to obtain the desired performance.  
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4.2 Hardware Design 

This portion describes the hardware design implementation using VIVADO Design Suite 

software. The main idea is to integrate custom stream IP (Sample Data generator) and through the 

AXI-Bus interface and DMA engine to establish the communication between the processing 

system and FPGA. Where, through the custom IP, the FPGA portion will send the data to the DDR 

memory which is accessible by the ARM processing system. This communication has been 

established using different AXI slave interfaces.  

The hardware design implementation is described in three main sections. Firstly, to start 

with the proposed design, a custom IP “Sample Data Generator” is designed using the RTL flow. 

The designed IP is then modified with the Verilog code. Secondly, the designed IP is verified using 

a Vivado logic flow simulation to test the proper functionality. Thirdly, the “Sample Data 

generator” block IP will be integrated with the AXI DMA and AXI-Bus interfaces as illustrated 

above.  

4.2.1 Designing “Sample Data Generator” using RTL Flow:  

The data generator is a customizable, programmable logic core designed in Verilog 

language, mostly known as "Hardware Description Language" (HDL). It produces a stream of 

sample data which the AXI DMA Core finally receives. The clock is created by the PS-configured 

FPGA common clock. The clock is produced by toggling on each nth edge of the common clock 

and N is a natural number greater than 1. Finally, the data generator introduces a standard FPGA 

clock-driven AXI 4-stream protocol. The new value is moved to the stream and to the AXI DMA 

core, when the counter register is updated. 

There are two modules in the sample data generator: the slave port and the internal data 

generation counter. In Figure 4-2 one can see the  a graphical representation of the inputs , outputs, 

and mutual connections of these modules. At the top level of sample data generator, the AXI4-

Stream interface is implemented..  In the designed AXI4 stream module the “En- Enable Signal” 

is used to enable and disable the module. “AXI_En – AXI Enable” plug is used as an input signal 

to switch between the S_AXIS and the Frame Size. 
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Figure 4-2:  The sample data generator AXI stream module 

 

The clock is derived by measuring the rise edges of the general FPGA clock/ACLK as well 

as by restoring the output as per the user input value. In figure 4-3 and in the entire module in 

Appendix A, the reset circuit and counter implementation of the sample data generator can be 

illustrated. 

 

 

Figure 4-3: Clock cycle and counter circuit for sample data generator 
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The clock is being used in the counter data generator so that a counter register is increased 

each time the clock is changed from 0 to 1. As a result, for an ACLK clock time, the TVALID 

register is set to 1. The faster ACLK clock is used in the data generation circuit. Figure 4-4 presents 

the data generation circuit with the implementation of the TVALID and TLAST signal, while 

Appendix A displays the module program as a whole. 

 

 

Figure 4-4: Data Generation Circuit 

4.2.2 AXI4-Stream interface signals 

The IP sample data generator is interfaced with 5 signals at AXI4 output.: 

M_AXI_TREADY, M_AXI_TVALID, M_AXI_TLAST, M_AXI_DATA, and M_AXI_TSTRB. 

Figure 4-5 illustrates the AXI4-Stream protocol using 5 signals. 
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Figure 4-5: AXI4 stream signals 

 

A data transfer for a sample data generator which is an AXI stream module can be seen 

from figure 4-5. The slave (AXI Slave) must configure the TREADY signal, which indicates that 

the slave is prepared to accept the data transmission, before transmitting the data. The master will 

be able to write the stream of data through the TDATA bus after the signal is configured. The 

master must also configure the TVALID signal, that shows valid data in the stream. Otherwise, 

the slave will ignore it. After a transfer is complete the master sets the TLAST signal. The TSTRB 

signal is indicating the amount of valid data bytes in the data stream. For example, in a transfer, 

the data frame consists of 3 data bits. In this case, while implementing the sample data generator, 

the 4-bit constant "1111" can be safely written. 

4.2.3 Sample Data Generator- Testbench Logic Simulation 

A test bench was developed to check proper functionality of the AXIS interface. The 

behavioral simulation was performed in the Vivado Design Suite, the default design development 

environment for Xilinx devices. The test bench produces an input of 100 MHz ACLK clock for 

the generation of a series of sample data frames. figure 4-6 shows the wave-diagram generated by 

the simulation environment. The testbench was written in Verilog code. The TDATA bus 

maintains the same frequency of the clock, as seen in the wave diagram created by the Vivado 

simulator. On the testbench design wrapper level, a customized behavior was written indicating 

the appearance of the TLAST signal after 16 cycles of the clock. In this wrapper level the block 

design is wraped into a vhdl or verilog file so it can be synthesized to generate the output products. 
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From the below figure it can be observed that, whenever the TLAST signal appears, it shows the 

end of the last frame of the data. The testbench also shows the proper functionality of the sample 

data generator. When the “En” signal falls to 0, there is no TDATA or TLAST signal. That means, 

no stream of data will pass when the “En” signal is not enabled which disables the stream module. 

These signals are reasonably straightforward. The top-level Verilog-code for the testbench of the 

sample data generator can be seen in Appendix B.This logic simulation ensures the proper 

functionality of the designed stream module.  

 

 

 

Figure 4-6: The sample data generator test bench simulation showing the logic simulation wave 
diagram 
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4.2.4 Hardware Design with VIVADO Design Suite 

The hardware design is done in the Vivado design suite. It is used to configure and connect 

the Zynq Processing System with the other Intellectual Property (IP) cores from the Xilinx 

Embedded IP library as well as with the custom-designed IP “Sample Data Generator”.  

 

 

Figure 4-7: Basic Hardware Block Diagram 

 

Figure 4-7 shows the proposed hardware architecture. The custom-designed PL block 

which is named the “ Sample Data Generator” is responsible for generating a series of data. The 

series of data is then passed to the PS using AXI DMA. AXI DMA has memory mapped 

interconnection between the PL and PS. The used memory is specified through mapping. DDR has 

different pre-allocated ranges of addresses that have to be properly chosen in hardware modules 

(in the Vivado design suite) and in software modules (in the Xilinx software development kit - 

SDK). As the data will be passing from the PL side to PS side, the AXI DMA is working as a 

master port and the available AXI stream interfaces e,g. S_AXI_GP, S_AXI_HP, S_AXI_ACP 

will be working as a slave port. After the transfer of each packet from the PL side to PS DRAM 
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memory and interrupt will be initiated from the PS side to start new data transfer. Data transfers 

between hardware and software are supported by Xilinx IP cores. 

From the previous section, when the RTL is successfully verified by the logic simulation 

testbench verification, the “Sample Data Generator” can be exported in IP format, to be used in 

Vivado design. This is done by exporting the IP in the repository. The exported design should be 

copied into the project’s local IP repository, so it appears in the list of available IPs. All the 

necessary components are added to the design and connected appropriately. The Processing 

System and the accelerator should share a memory space to store the source and destination grids, 

which is the DDR memory. The sample data generator can access the DDR through the DMA and 

AXI slave ports of the Processing System (PS).  

Xilinx's programmable logic core, AXI DMA (Direct Memory Access), is implemented in 

VHDL. It is AXI4- compliant and can be accessed from AMBA bus from the Z-7020 SoC side of 

the PS (Processing System). It matches with the input and output AXI4 stream defined as stream 

to memory mapping  (S2MM) and memory mapping to stream (MM2S) ports separately. These 

AXIS interfaces support TDATA buses which are 8, 16, 32, 64, 128, 265, 512, and 1024 bit long. 

The AXI DMA IP handled all memory transaction address generation, scheduling, and burst 

formatting. For the other analysis, the burst size was also varied to measure the performance.  

Most connections are generated automatically via Vivado after initializing the core to the graphical 

Vivado block design. The sample data generator can now be linked as an AXIS master data source 

in the design. Figure 4-8 displays the entire Vivado block design of the implemented system. 

Figure 4-9 shows the mapping of the address for all three interfaces. 

The figure demonstrates how the sample generator's AXI4-Stream output M_AXIS links 

to the AXI DMA core. The GPIO core is used to control the sample data generator via the AMBA 

bus using the general purpose interfacing port (M AXI GP0) is also shown in the design. AXI 

GPIO cores control and configure the sample data generator. The master port of AXI DMA is 

connected to the processing system via a high-performance slave interface port (S_AXI_HP0). 

Similarly, for the ACP ports and the GP ports, the master port of AXI DMA core connects to the 

(S_AXI_ACP) and (S_AXI_GP0). Before starting the data transfer, the DMA controller should 

have some specific information which is, the destination address, the source address, & the size of 

the data that needs to be transferred. The s2mm_introut signal from the AXI DMA is also another 

important feature of the block diagram. The signal links to an interface (IRQ F2P), which can 
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generate system interruptions. DMA begins transferring the sample data to the DDR, while the 

main data processor performs the other calculations. If the data transfer is completed, the Zynq 

Processor is sent an interrupt from the AXI DMA to inform the processor that it can complete data 

transmission.



 
 

 

49

 

 

 

Figure 4-8: VIVADO hardware design with high-performance interfacing port and AXI DMA   
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Figure 4-9:  ZYNQ memory mapping for the custom design interfaces (HP, ACP, and GP ports) 
in VIVADO 
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4.3 Software Design 

In this thesis, the software design is done using Xilinx SDK. It can be exported to the 

software development kit ( SDK) after the hardware design has been synthesized, implemented, 

and converted to a bitstream in Vivado. A bare-metal application was used which directly runs on 

the ARM host without any operating system. A Standalone Board Support Package (BSP) is added 

to the project to run the application on the target device. It contains all the libraries required to run 

the bare-metal application along with the configuration headers, which define the peripheral 

addresses. However, when communicating with the hardware, the processor still needs to know 

where exactly it should send data to. As the entire device is connected by AXI interfaces when the 

hardware platform is created, the configured peripherals become memory mapped within the 

reserved custom logic address space. The required addresses are found within the BSP.  

Table 4.1: ZYNQ Memory Map 

Start Address Description 
0x0000 0000  External DDR RAM 
0x4000 0000  Custom Peripherals 
0xE000 0000  Fixed I/O Peripherals 
0xF800 0000  Fixed Internal Peripherals 
0xFC00 0000  Flash Memory 
0xFC00 0000  On-Chip Memory 

 

 

A peripheral-communicating software program begins by initializing the DMA controller 

driver. It initializes the DMA interrupts, too. This includes binding a suitable service interrupt 

routine to be called upon when a specific interrupt is called. When the data transfer to the device 

is complete, the interrupt routine is called.  

Test cases were implemented in C for the evaluation of the mentioned hardware designs. 

Each interface is tested for PL-initiated write operation to access DDR memory via PS. Testing 

takes time to complete the operation for a given input data length defined as packet size and packet 

number. Elapsed time is measured using the library function declared by the header file 

"xscutimer.h". “XScuTimer_LoadTimer” timer load register will update the timer counter register 

with the new value.   Before starting the data transfer “XScuTimer_Start” register timer will be 
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started and after the full data transfer is completed “XScuTimer_Stop”  will stop the timer. 

“XScuTimer_GetCounterValue”  register  returns the current timer counter register value. 

The data transfer process needs to complete the following steps to run the algorithm into 

the ARM host and also to program the FPGA. 

 Import the hardware (Bitstream) from the VIVADO. 

 Enable the FSBL (First Stage Boot Loader) on ARM host to enable the Bare-metal 

Application which is a standalone operating system on ARM host. 

 The FSBL can be created in SDK and takes the form of an ELF file. It is responsible for 

the early stages of the boot process including determining which pieces of hardware are to 

be used and need to be powered on. 

 Initialize Level Shifter. This level shifter enables the input and output signals which are 

routed through voltage level shifters. 

 Program FPGA 

 Connect the ARM host using the XMD command prompt shell. 

 Enable PL clocks and PL-PS interfaces. 

 Initialize DMA 

 Enable the Sample Data Generator through GPIO 

 Set the interrupt system and interrupt handling 

 Start the packet/data transfer 

 Record the time using the timer after each packet transfer. 

 Data transfer time is shown through the UART port where the messages between Zynq and 

the development computer can be visualized. 

 

A number of data have been passed using the sample data generator for different packet 

size and numbers. The flow chart of the whole algorithm can be illustrated in figure 4-10. 

 

 

 



 
 

53 

Initialize the PS and the level shifter

Define the packet size and the 
number of packets

Initialize the DMA

Initialize the sample data generator 

Initialize the interrupt handler

Start Packet Transfer

Is packet transfer complete?

Continue to transfer the data to 
DRAM Memory

Interrupt acknowledged

yes

No

 

Figure 4-10 :  Flow chart  for the data transfer from PL to DDR memory 
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 EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

In this chapter, two test cases have been discussed to evaluate the performance of the 

proposed data transfer method from PL to PS DDR memory using the three types of AXI4 ports. 

Using the first case, we show how the transfer time varies, in terms of the data size for each of the 

ports. A comparison analysis has been presented graphically. The energy consumption was also 

measured during data transfer time. The second case was to measure the performance for different 

traffic conditions and PL clock and burst size for each of the interfaces.  

5.1 Experimental Setup 

Hardware design is implemented on the Zedboard, featuring a Xilinx ZynqTM-7000 All 

Programmable SoC. Together with the FPGA on the same chip, the ARM CortexTM-A9 provides 

a powerful and flexible platform for high-performance accelerator application implementation. 

The OS running on the board is bare-metal without any operating system requirement. 

The Software development is performed on a host computer, with main memory IntelR Core i5, 

2.66GHz, and 4 GB, and Xilinx Architecture Suite 14.2. Power measurements are performed using 

a multimeter. 

The Zedboard features a UART controller and a JTAG to communicate with the host 

computer. These controllers have a USB interface that allows them to be connected via simple 

USB cable. The UART is used to transfer messages between the Zynq computer and the 

development computer. The UART port was configured with a 115200 bps baud rate, 8 bits of 

data, no parity, and one-stop bit. The host computer runs "Tera Term" to communicate via UART 

to connect to the COM port. JTAG controller helps host machine to program and debug the Zynq. 

Figure 5-1 shows the experimental setup for the evaluation with the Tera Term console. 

 

 

 

 



 
 

55 

 

Figure 5-1:Experiemntal Set up and the Tera Term Serial COM port  

5.1.1 Power Measurement in Zedboard 

The application code for the software runs on Zynq bare-metal. A current sense resistor 

which is installed on the Zedboard is used to calculate the power consumed by the Zedboard while 

executing the designed application. The shunt-resistor is a 10mili-Ohm series resistor with the 

board's input supply line, and this resistor can be used to measure the entire board 's current draw. 

The current consumption can be used to measure the board's power usage, using the rule of Ohm 

and the supply voltage. Since the voltage of the power supply is 12V, the board's power 

consumption is: 

 

                                                     𝑃 = 𝑋 12 𝑉                                                            (1) 

 

The current sensor shunt resistor is connected in parallel with the header ’J21’, which 

allows easy measurement of the voltage over the shunt resistor. The location of ’J21’ is shown in 

Figure 5-2. 
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Figure 5-2: Current sensor shunt resistor on Zedboard 

5.2 Performance Analysis For Different Data Length 

A test case was developed to assess the performance of the three interfaces for different 

data lengths. In this case, the length of the burst and the frequency of PL were maintained constant. 

A program running in the bare-metal system inside the ARM cores tested the various interfaces by 

using the sample generator to pass a different data size to DRAM memory through AXI DMA. 

The word size for each interface was set to the maximum during the first analysis, e.g, 64-bit for 

HP and ACP and 32-bit for GP. The FPGA clock was set to 100MHz clock speed. 

A data length of 16bytes to 65536bytes has been transferred to the DRAM memory for 

each of the interfaces. Using the timer, the transfer time has been recorded. The below table shows 

the relative performance analysis data among the HP, ACP, and GP slave interfaces in transferring 

the data. Figure 5-3 shows the graphical analysis among them. 
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Table 5.1: Data Transfer Performance Analysis for GP,1-HP and ACP ports 

Packet 
size(Bytes) 

GP-Port 1-HP Port ACP Port 

Time (ns) Speed(MB/s) Time (ns) Speed(MB/s) Time (ns) Speed(MB/s) 

16 2060 7.767 1870 8.56 940 17.02 
32 2200 14.545 1920 16.67 1790 17.88 
64 2470 25.911 2160 29.63 1930 33.16 

128 2650 48.302 2360 54.24 2080 61.54 
256 3100 82.581 2610 98.08 2410 106.22 
512 3930 130.280 3340 153.29 3050 167.87 

1024 5790 176.857 4680 218.80 4360 234.86 
2048 9670 211.789 7450 274.90 6930 295.53 
4096 17210 238.001 12810 319.75 12090 338.79 
8192 32090 255.282 23700 345.65 22270 367.85 

16384 61980 264.343 45480 360.25 42710 383.61 
32768 121710 269.230 88950 368.39 83700 391.49 
65536 241370 271.517 176050 372.26 165640 395.65 

 

 

 

Figure 5-3: Performance Analysis of three AXI  ports in transferring data from PL to PS 
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Figure 5-3 and Table 5.1 shows the data transfer performance of the PS/PL interfaces using 

AXI-Stream protocols.  In figure 5-3, the vertical axis shows the packet transfer time. On the other 

hand, the horizontal axis shows the packet size in bytes.  

The interface with the lowest transfer time is ACP (Green column), achieving highest speed 

when moving significant amounts of data. The ACP is closely followed by HP port (Orange 

Column).  GP port (blue column) also achieves very high speed but, since it uses a 32-bit data bus, 

the transfer time achieved is much higher. However, up to 1024 bytes, the data transferring time 

(from the PL to PS) difference between the three ports is very negligible. High-performance port 

and the ACP port has shown almost the same performance. ACP port has the lowest data transfer 

time. The transferring time between HP and ACP port is very small. Transferring data through 

ACP is on average about 1.15 times faster than a single HP port. 

5.3 Energy Consumption 

The Zedboard's power consumption was calculated during the hardware accelerator and 

the software-driven operation for data transfer. The power consumption measured is the difference 

between the idle /static power consumption and active/dynamic power consumption. The active 

power consumption is that which will be used for data transfer in all the energy. It's an 

approximation of the power added to the baseline idle power by a given system configuration. The 

idle power consumption for all measurements serves as a common reference. Table 5.2 displays 

the specifics of the measured power consumption by using equation 1. To find the Vmeasured from 

Zedboard, the "J21" pin serves as the current sensor.  

Table 5.2: Power Consumption during data transfer 

Vmeasured 
(Dynamic) V measured (Idle) 

Power 
(Dynamic) 

[W] 
Power( idle) 

[W] Power consumption [W] 
2.775mV 2.55mV 3.33 3.18 0.15 

 

From the last column of Table 5.2, it can be observed that the difference in power 

consumption is very low. Hence, the difference in energy consumption depends heavily on the 

execution time for the data transfer. Using the execution time for the data transfer of the designed 
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application the comparison of energy consumption can be calculated. The energy for the transfer 

time is given by equation 2: 

             𝐸(𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡𝑖𝑚𝑒) = 𝑃(𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) ∗ 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑝𝑎𝑐𝑘𝑒𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟                       (2) 

The energy consumption for the packet transfer is listed in Table 5.3. 

Table 5.3: Energy Consumption 

Packet 
size(Bytes) 

Energy (nJ) 
GP-Port 1-HP Port ACP Port 

16 309 280.5 141 
32 330 288 268.5 
64 370.5 324 289.5 

128 397.5 354 312 
256 465 391.5 361.5 
512 589.5 501 457.5 

1024 868.5 702 654 
2048 1450.5 1117.5 1039.5 
4096 2581.5 1921.5 1813.5 
8192 4813.5 3555 3340.5 

16384 9297 6822 6406.5 
32768 18256.5 13342.5 12555 
65536 36205.5 26407.5 24846 

 

5.4 Performance Analysis For Different Burst Size and PL Clock Frequency 

The second case mentioned earlier is to measure the performance for different burst sizes 

of data and also by varying the PL clock frequency. This condition was implemented for each of 

the interfaces. A fixed amount of data (4294967296 Bytes) was transferred from PL to the DDR 

memory using the AXI DMA. In this case, keeping the total data size constant, only the packet 

size and the number of packets, that is the traffic size was varied to measure the speed of the 

transferring data. 

Three cases were implemented. For the first case, the burst size and the PL clock frequency 

are 16 bits and 100 MHz respectively. For the second case, it is 256 bits and 100 MHz and for the 

third one, it was set to a maximum 256 bits and 125 MHz. However, this same condition was 

applied to test all three interfaces, HP0 (High-Performance Port), ACP (Accelerator Coherency 

Port), and GP (General Purpose Port). The results can be illustrated in both tabular and graphical 
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format to analyze the changes due to different traffic conditions. Fig 5-4 shows an example of the 

resultant window on the “Tera Term” COM console procedure while running the software 

application on ARM host. 

 

 

Figure 5-4: Tera Term COM console 

 

Focusing on three tables and four graphs (Fig. 5-5, 5-6, 5-7, and Table 5.4, 5.5, and 5.6), 

we can see that, with an increasing number of packets, the transfer time increases. However, the 

speed difference between the ACP and HP0 interfaces is very small. The difference is a bit big in 

the case of GP port, though. 
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High-Performance Port (HP0): 

Table 5.4: Performance Analysis of High-performance port(HP0) For Different Burst Size and 
PL Clock Frequency 

Packet 
Size(Bytes) 

Number of 
Packets 

Total Data 
Size (Bytes) 

PL Clock= 100MHz ; 
Burst Size = 16bits 

PL Clock= 
100MHz ; Burst 
Size = 256bits 

PL Clock= 
125MHz ; Burst 
Size = 256bits 

Time (S) 
Speed 
(MB/s) Time (S) 

Speed 
(MB/s) Time (S) 

Speed 
(MB/s) 

32 134217728 4294967296 220 19.52 219 19.61 187.2 22.94 

128 33554432 4294967296 67 64.10 70 61.36 59.3 72.43 

512 8388608 4294967296 30 143.17 32 134.22 28 153.39 

2048 2097152 4294967296 20 214.75 18 238.61 15.9 270.12 

8192 524288 4294967296 17.2 249.71 12 357.91 10.8 397.68 

32768 131072 4294967296 16.3 263.49 11.2 383.48 8.9 482.58 
 

 

 

Figure 5-5: Graphical analysis of HP0 interface port For Different Burst Size and PL Clock 
Frequency 
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Accelerator Coherency Port (ACP): 

Table 5.5: Performance Analysis of Accelerator Coherency Port (ACP) For Different Burst Size 
and PL Clock Frequency 

Packet 
Size(Bytes) 

Number of 
Packets 

Total Data 
Size (Bytes) 

PL Clock= 100MHz ; 
Burst Size = 16bits 

PL Clock= 100MHz 
; Burst Size = 

256bits 

PL Clock= 
125MHz ; Burst 
Size = 256bits 

Time (S) 
Speed 
(MB/s) Time (S) 

Speed 
(MB/s) Time (S) 

Speed 
(MB/s) 

32 134217728 4294967296 218 19.70 219 19.61 186 23.09 

128 33554432 4294967296 66 65.08 69.8 61.53 58 74.05 

512 8388608 4294967296 29 148.10 31.8 135.06 27.5 156.18 

2048 2097152 4294967296 20 214.75 19 226.05 15 286.33 

8192 524288 4294967296 16.8 255.65 13 330.38 10 429.50 

32768 131072 4294967296 16 268.44 11.8 363.98 8 536.87 
 

 

 

 

Figure 5-6: Graphical analysis of ACP interface port For Different Burst Size and PL Clock 
Frequency 
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General Purpose Port (S_GP0): 

Table 5.6: Performance Analysis of General Purpose Port (S_GP0) For Different Burst Size and 
PL Clock Frequency 

Packet 
Size(Bytes) 

Number of 
Packets 

Total Data 
Size (Bytes) 

PL Clock= 100MHz ; 
Burst Size = 16bits 

PL Clock= 100MHz 
; Burst Size = 

256bits 

PL Clock= 
125MHz ; Burst 
Size = 256bits 

Time (S) 
Speed 
(MB/s) Time (S) 

Speed 
(MB/s) Time (S) 

Speed 
(MB/s) 

32 134217728 4294967296 462.16 9.29 464.28 9.25 394.32 10.89 

128 33554432 4294967296 139.92 30.70 147.976 29.02 122.96 34.93 

512 8388608 4294967296 61.48 69.86 67.416 63.71 58.3 73.67 

2048 2097152 4294967296 42.4 101.30 40.28 106.63 31.8 135.06 

8192 524288 4294967296 35.616 120.59 27.56 155.84 21.2 202.59 

32768 131072 4294967296 33.92 126.62 25.016 171.69 16.96 253.24 
 

 

 

Figure 5-7: Graphical analysis of S_GP0 interface port For Different Burst Size and PL Clock 
Frequency 
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5.4.1 Analysis 

The performance of three different AXI4-Interfaces has been evaluated in terms of 

processing time and different traffic conditions. However, for all the three interfaces it can be 

observed that, whenever the burst size is increased from 16 bits to 256 bits, keeping the sample PL 

frequency, the speed for transferring the data is increased. Although it has shown some exception 

with the 128 and 512 bytes of data, overall the transfer speed is improved. However, with the 

increase of the PL frequency to 125MHz, the speed also increased to about 1.25%. With the 

increment of the bigger packet sizes the packet numbers decreases hence the speed increases for 

the reduced traffic.  

However, in transferring data from PL to DDR memory this performance might not be the 

same in all cases. For example, if the DDR memory is engaged in another task, this performance 

might be changed. Even if the PL frequency is increased, the performance wouldn’t change much 

due to the bottleneck of the memory subsystem. 

In terms of the number of packets or the traffic conditions, it can be observed that whenever 

the number of packets increases the speed or the bandwidth decreases. This is due to the high 

interrupt rates that are coming from the AXI DMA, which configures the PS after the receipt of 

each packet. 

Hence, with the increment of the packet numbers, the performance is influenced. Among 

all the three interfaces, ACP port has a better performance compared to HP0 and S_GP0 interface.  

Compared to the HP0 port, the ACP has almost the same speed, but it showed the best performance 

among the three. This is due to the connection of the ACP port to the CPU cache, which allows 

ACP transactions to interact with the CPU cache due to internal connection. This decreases mutual 

latency for the data that a CPU would be using.  

In terms of transferring a bulk amount of data incorporating four HP ports can give a good 

performance with the increase bus size by four times of one HP port.   
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 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This thesis evaluates and analyzes the performance of the three most important AXI 

interfaces used for PL-PS communication. The results in this thesis are based on the physical 

implementation of the hardware design using the Vivado design tools on Xilinx Zynq SoC 

platform. The design is developed with a focus on performance analysis of the AXI interfaces. 

Based on the described test concept, execution, and results obtained, it can be concluded that 

the selection of suitable ports should be carried out based on application requirements. ZYNQ PS-

PL interfacing provides a rich variety of interfaces supporting low, moderate, and high data rates. 

It also provides memory-mapped and stream interface with and without mode addressing.  The 

quality of data rates and bandwidth explains the necessity of this performance analysis. For 

applications with low bandwidth, the GP port is appropriate. In addition to that, for high-speed 

applications High Performance (HP) port and Accelerator Coherence Port (ACP) are suitable and 

work better. 

Both interfacing port (HP and ACP) have some advantages and disadvantages. ACP port has 

the advantage of cache coherencey. This ensures the uniformity of shared resource of data which 

is stroed in different local caches. The ACP links the PL directly with the ARM Cortex-A9 

processor's snoop control unit, which allows cache-coherent access to L1 and L2 caches' CPU data. 

Due to this advantage, it can use less energy for some data processing applications and low 

iteration time. Due to this reason, ACP can have a high speed compared to HP port. If any other 

computational function with higher priority is in a parallel process, performance can degrade due 

to such coherent L2 cache entry. In this case, the HP port is better because it offers the same output 

in transferring data to DDR memory. HP port is also suitable in transferring a bulk amount of data 

when all four HP ports are in use.  
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6.2 Future Work 

As a part of future work the performance analysis can also be done on the real-time data 

transfer, such as by using Ethernet port, the TCP, IP protocol data transfer can also be analyzed. 

Furthermore, the work that has presented in this thesis work can also be extended by analyzing 

and reducing the interrupt rate or by using the AXI DMA in scatter-gather mode.  Moreover, the 

Zynq processor can also be used in data acquisition application, and also in RF data transmitter-

receiver application and also for Video Processing. 

 

 

Figure 6-1: Proposed workflow of video processing 

 

This analysis will be a great reference in video processing, as a part of future work for this platform. 

In order to implement the design for the video processing, the camera module can be connected 

with the HDMI input or through the serial camera control bus (SCCB) interface. For the further 

modification, some processing algorithm can be implemented in PL using VIVADO HLS. That 

cusmoised IP can be exported and integrated with the AXI VDMA. To get the output processed 

streaming data, the AXI_VDMA need to be connected to HP0 port of the ZYNQ through an AXI 

interconnect.  
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APPENDIX A 

Source codes of “Sample Data Generator” 

////////////////////////////////////////////////////////////////////////////////// 

// Name: Tilottoma Barua 

// Create Date: 10/15/2019 11:47:03 PM 

// Design Name: Source code for Sample Data Generator 

// Module Name: AXI Stream module_Sample Data Generator 

// Project Name: Data Transfer Performance Analysis from PL to PS 

// Target Devices: Zedboard –Z7020 

////////////////////////////////////////////////////////////////////////////////// 

`timescale 1 ps / 1 ps 
 module sample_generator_v1_0_M_AXIS # 
 ( 
  // Users to add parameters here 
  // User parameters ends 
  // Do not modify the parameters beyond this line 
  // Width of S_AXIS address bus. The slave accepts the read and write addresses of 
width C_M_AXIS_TDATA_WIDTH. 
  parameter integer C_M_AXIS_TDATA_WIDTH = 32, 
  // Start count is the numeber of clock cycles the master will wait before 
initiating/issuing any transaction. 
  parameter integer C_M_START_COUNT = 32 
 ) 
 (// Users to add ports here 
  input wire [31:0] FrameSize, 
  input wire  En, 
  // User ports ends 
  // Do not modify the ports beyond this line 
  // Global ports 
  input wire  M_AXIS_ACLK, 
  // input wire  M_AXIS_ARESETN, 
  // Master Stream Ports. TVALID indicates that the master is driving a valid transfer, 
A transfer takes place when both TVALID and TREADY are asserted.  
  output wire  M_AXIS_TVALID, 
  // TDATA is the primary payload that is used to provide the data that is passing 
across the interface from the master. 
  output wire [C_M_AXIS_TDATA_WIDTH-1 : 0] M_AXIS_TDATA, 
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  // TSTRB is the byte qualifier that indicates whether the content of the associated 
byte of TDATA is processed as a data byte or a position byte. 
  output wire [(C_M_AXIS_TDATA_WIDTH/8)-1 : 0] M_AXIS_TSTRB, 
  // TLAST indicates the boundary of a packet. 
  output wire  M_AXIS_TLAST, 
  // TREADY indicates that the slave can accept a transfer in the current cycle. 
  input wire  M_AXIS_TREADY 
 ); 
 // sample generator - counter  
 reg [C_M_AXIS_TDATA_WIDTH-1 : 0] counterR;  
 assign M_AXIS_TDATA = counterR;  
 assign M_AXIS_TSTRB = {(C_M_AXIS_TDATA_WIDTH/8){1'b1}}; 
 // counterR circuit 
 always @(posedge M_AXIS_ACLK)  
  if ( ! M_AXIS_ARESETN ) begin 
   counterR <= 0; 
  end 
  else begin 
   if ( M_AXIS_TVALID && M_AXIS_TREADY ) begin 
    if ( M_AXIS_TLAST )  
     counterR <= 0;  
    else  
     counterR <= counterR + 1;  
   end 
  end 
 // circuit to count number of clock cycles after reset.  
 reg  sampleGeneratorEnR;  
 reg [7:0] afterResetCycleCounterR;  
 always @(posedge M_AXIS_ACLK)  
  if ( ! M_AXIS_ARESETN ) begin 
   sampleGeneratorEnR <= 0; 
   afterResetCycleCounterR <= 0;  
  end 
  else begin 
   afterResetCycleCounterR <= afterResetCycleCounterR + 1;  
 
   if ( afterResetCycleCounterR == C_M_START_COUNT )  
    sampleGeneratorEnR <= 1;  
  end 
 // M_AXIS_TVALID circuit 
 reg  tValidR; 
 assign M_AXIS_TVALID = tValidR;  
 always @(posedge M_AXIS_ACLK)  
  if ( ! M_AXIS_ARESETN ) begin 
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   tValidR <= 0; 
  end 
  else begin 
   if ( ! En )  
    tValidR <= 0; 
   else if ( sampleGeneratorEnR )  
    tValidR <= 1;  
  end 
 // M_AXIS_TLAST circuit 
 reg [31:0] packetCounter; 
 always @(posedge M_AXIS_ACLK)  
  if (! M_AXIS_ARESETN ) begin 
   packetCounter <= 32'hffffffff; 
  end 
  else begin 
   if ( M_AXIS_TVALID && M_AXIS_TREADY ) begin 
    //if ( packetCounter == (FrameSize-1) )  
    // packetCounter <= 32'hffffffff;  
    if ( M_AXIS_TLAST )  
     packetCounter <= 32'hffffffff; 
    else  
     packetCounter <= packetCounter + 1;  
   end 
  end 
 assign M_AXIS_TLAST = ( packetCounter == (FrameSize-2) ) ? 1 : 0;  
endmodule 
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APPENDIX B 

Testbench Logic Simulation of  “Sample Data Generator” 

////////////////////////////////////////////////////////////////////////////////// 

// Name: Tilottoma Barua 

// Create Date: 10/15/2019 11:47:03 PM 

// Design Name: Source code for Sample Data Generator Test Bench 

// Module Name: testbenchsamplegenerator 

// Project Name: Data Transfer Performance Analysis from PL to PS 

// Target Devices: Zedboard –Z7020 

////////////////////////////////////////////////////////////////////////////////// 

module testbenchsamplegenerator(); 
reg           AXI_En; 
reg           En; 
reg   [7:0]   FrameSize; 
wire  [31:0]  M_AXIS_tdata; 
wire          M_AXIS_tlast; 
reg           M_AXIS_tready; 
wire  [3:0]   M_AXIS_tstrb; 
wire          M_AXIS_tvalid; 
reg   [31:0]  S_AXIS_tdata; 
reg           S_AXIS_tlast; 
wire          S_AXIS_tready; 
reg   [3:0]   S_AXIS_tstrb;  
reg           S_AXIS_tvalid;       
reg           Clk; 
reg           ResetN; 
initial begin 
        AXI_En= 0; 
        FrameSize= 16; 
        S_AXIS_tdata=0; 
        S_AXIS_tlast=0; 
        S_AXIS_tstrb=0; 
        S_AXIS_tvalid=0; 
end 
initial begin 
        Clk= 0; 
        forever #1 Clk=~Clk; 
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end   
initial begin 
        ResetN = 0; 
        #100 ResetN= 1; 
end   
initial begin 
        En = 1; 
        #1000 En= 0; 
        #100 En= 1; 
end        
initial begin 
        M_AXIS_tready = 0; 
        #200  M_AXIS_tready= 1; 
        #2000 M_AXIS_tready= 0; 
        #200  M_AXIS_tready= 1; 
end              
design_1test_wrapper dut 
   (.AXI_En(AXI_En), 
    .En(En), 
    .FrameSize(FrameSize), 
    .M_AXIS_tdata(M_AXIS_tdata), 
    .M_AXIS_tlast(M_AXIS_tlast), 
    .M_AXIS_tready(M_AXIS_tready), 
    .M_AXIS_tstrb(M_AXIS_tstrb), 
    .M_AXIS_tvalid(M_AXIS_tvalid), 
    .S_AXIS_tdata(S_AXIS_tdata), 
    .S_AXIS_tlast(S_AXIS_tlast), 
    .S_AXIS_tready(S_AXIS_tready), 
    .S_AXIS_tstrb(S_AXIS_tstrb), 
    .S_AXIS_tvalid(S_AXIS_tvalid), 
    .s_axis_aclk(Clk), 
    .s_axis_aresetn(ResetN)); 
endmodule 
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