
ROBUST ITERATIVE LEARNING CONTROL FOR LINEAR

PARAMETER-VARYING SYSTEMS WITH TIME DELAYS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Florian Maurice Browne III

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Neera Jain, Chair

School of Mechanical Engineering, Purdue University

Dr. George Chiu

School of Mechanical Engineering, Purdue University

Dr. Martin Corless

School of Aeronautics and Astronautics, Purdue University

Dr. Douglas Bristow

Department of Mechanical and Aerospace Engineering, Missouri University of

Science and Technology

Approved by:

Dr. Nicole Key

Associate Head Graduate Studies



iii

ACKNOWLEDGMENTS

There are many people that I need to thank for their support and guidance

throughout my graduate studies. First, and foremost, I would like to thank my

advisor Professor Neera Jain. She has taught me so much and her guidance and

mentorship has helped me become the person that I am today. I also want to thank

Professor George Chiu for his guidance with my research since I arrived on campus

in 2015. Both professors were instrumental in helping me progress through my grad-

uate studies and have helped me mature as an engineer and as an individual. I have

learned many lessons from them that I will continue to use for the rest of my life.

Furthermore, I would like to thank the other members of my committee – Professors

Martin Corless and Doug Bristow – for their valuable insights and encouragement

throughout my graduate studies.

The work I present in this dissertation would not be possible without the spon-

sorship and support of Castrip, LLC. I want to extend my deepest gratitdue to Brad

Rees, Wal Bledje, and all of the other Nucor and Castrip, LLC. employees for teaching

me about their process and giving me the opportunity to test my controllers at their

plant. Their insight into how their process works and also how the industry operates

helped me better understand the problems that can occur during the casting process.

I would not have been able to finish this dissertation without the support, encour-

agement, and feedback from my colleagues in the Jain Research Lab – Austin, Yesh,

Akash, Trevor, Ana, Aaron, Karan, Jack, and Matt – and in the Ray W. Herrick

Labs. Both groups fostered a collaborative and supportive environment that helped

me grow as a researcher. I will always value the friendships that I formed during my

time at Purdue.



iv

To my family, I would have never completed my studies without your support.

Even though I moved three states away, I always knew that I could count on my

parents, Florian and Ruth, and brother, Ben, if I ever needed them for anything.

Finally, and most importantly, I want to thank my fiance Sarah for giving me the

moral support I needed during the hardest parts of the process. I can’t wait to begin

the next chapter of our life together and see where the future takes us.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. TWIN ROLL STRIP CASTING . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Modelling Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Steel Pool Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Solidification Stages . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Switching Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Roll Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Thermal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 Outer Boundary Condition . . . . . . . . . . . . . . . . . . . . . 24

2.5 Simulation/Numerical Implementation . . . . . . . . . . . . . . . . . . 25
2.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Model Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.1 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Control Implementation Case Study: Twin-Roll Strip Casting . . . . . 34
2.7.1 Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. ITERATIVE LEARNING CONTROL FOR TIME DELAY SYSTEMS . . . 43
3.1 Iterative Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Adaptive Delay Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Coupled Delay Estimation . . . . . . . . . . . . . . . . . . . . . 51

3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



vi

Page

3.3.1 Plant Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Simulation Results for Adaptive Time Delay Estimation . . . . . . . . 60
3.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4. LINEAR PARAMETER VARYING ITERATIVE LEARNING CONTROL . 74
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Robust Norm Optimal ILC . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Simulation Plant: Second Order System . . . . . . . . . . . . . 80
4.3.2 Case 1: Plant Parameter Uncertainty . . . . . . . . . . . . . . . 83
4.3.3 Case 2: Delay Estimation Uncertainty . . . . . . . . . . . . . . 85
4.3.4 Case 3: LPV Dynamics . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.5 Case 4: LPV Dynamics with Parametric Uncertainty . . . . . . 89
4.3.6 Case 5: LPV Dynamics with Parametric and Delay Estimation

Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1 Summary of Research Contributions . . . . . . . . . . . . . . . . . . . 95
5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . 96

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



vii

LIST OF FIGURES

Figure Page

2.1 A twin-roll strip caster with dashed lines representing the boundaries be-
tween the liquid, mushy, and solid steel phases. . . . . . . . . . . . . . . . 9

2.2 The moving boundaries, R1 and R2, corresponding to the liquidus, T1, and
solidus, T2, isotherms respectively. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A schematic of a half steel pool model divided into control volume slices
with angular thickness δθ. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The thermal impedance model used to characterize the steel pool thermal
dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 A schematic of the roll composed of a copper sleeve encasing a set of water
channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 A schematic depicting how the water channels are extended so as to en-
compass the entire inner radius of each roll slice. . . . . . . . . . . . . . . . 24

2.7 The thermal resistance network for the roll. . . . . . . . . . . . . . . . . . 24

2.8 A flowchart describing the solution procedure. . . . . . . . . . . . . . . . 28

2.9 The phases of steel on the roll surface. . . . . . . . . . . . . . . . . . . . . 32

2.10 A zoomed in view of the nip in Fig. 2.9 shows that there is mushy steel
present at the nip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.11 The shell profile at different rotational speeds. . . . . . . . . . . . . . . . 35

2.12 The shell profile produced at a casting speed of Ω = 0.7 rad/s has a solid
kiss point that is approximately 48 µm above the nip. . . . . . . . . . . . 36

2.13 Changing xG results in a change in the mushy fraction at the nip. . . . . . 36

2.14 The steel strip leaves the casting rolls and enters a hotbox where it pas-
sively cools before being compressed on a hot rolling stand. The thickness
measurements are obtained at point C as the strip moves along the table
rolls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.15 The time delay can be measured in post processing by comparing the time
at which the steps occur in both the caster roll tilt signal and the wedge
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



viii

Figure Page

3.1 For SISO systems, (3.10) can be expressed as the summation of vectors in
the frequency domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 The normalized magnitude of the measured wedge signal changes in re-
sponse to the input signal. The sign of the measurements signifies which
side of the strip is thicker. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 The measured wedge signal is a delayed measurement of the plant’s re-
sponse to the input tilt signal summed with a periodic disturbance and
measurement noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 The fast Fourier transform of the measured wedge signal shows large peaks
at the rotational frequency and twice the rotational frequency. . . . . . . . 56

3.5 The filtered wedge signal reflects the step changes in the input signal. The
solid line is the normalized filtered wedge signal and the dashed line is the
normalized input signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 A comparison of the estimated plant dynamics to the filtered wedge dynamics.58

3.7 When the estimated values of nk and τ are equal to their true values, the
norm of the error signal converges to zero asymptotically. . . . . . . . . . . 60

3.8 When the estimated value τ differs from its true value by a small amount,
the norm of the error signal still converges to a value that is less than the
initial error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 When the estimated value τ differs from its true value by a large amount,
the norm of the error signal converges to a value greater than its initial value.61

3.10 When the estimated value nk differs from its true value by a small amount,
the norm of the error signal still converges to a value that is less than the
initial error, but the transient response changes. . . . . . . . . . . . . . . . 61

3.11 The norm of the error signal in case 1 converges to the theoretical minimum
value of 0.61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 The norm of the error signal in case 2 initially is larger than if a static
τ̂ = 80 is used. It eventually converges to the same value as case 1, which
represents the performance with a perfect delay estimate. . . . . . . . . . . 64

3.13 Time delay estimate versus the true time delay for case 2. . . . . . . . . . 64

3.14 The norm of the error signal in case 3 is always smaller than if a static
τ̂ = 140 is used. It eventually converges to the same value as case 1, which
represents the performance with a perfect delay estimate. . . . . . . . . . . 65

3.15 Time delay estimate versus the true time delay for case 3. . . . . . . . . . 65



ix

Figure Page

3.16 The norm of the error signal in case 4 behaves similarly to the norm of the
error signal in case 2. In this case, however, the norm never exceeds en(0). 66

3.17 Time delay estimate versus the true time delay for case 4. . . . . . . . . . 66

3.18 Switching parameter, γ(k), for case 4. . . . . . . . . . . . . . . . . . . . . . 67

3.19 In the first test, the combined time delay estimation and ILC algorithm
is able to reduce the norm of the wedge signal by approximately 48%, on
average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.20 In the second test, the ILC algorithm was initiated at approximately it-
eration 100. There was a ladle change at approximately iteration 2900,
which caused the wedge to increase and the casting speed to change. . . . 70

3.21 In the second test, the combined time delay estimation and ILC algorithm
is able to reduce the norm of the wedge signal by approximately 29%, on
average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.22 After a ladle change causes a change in the grade of steel being cast in
the second test, the ILC algorithm is able to recover from the change in
the process and reduce the norm of the wedge signal within approximately
500 roll revolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 The disturbance signal that is repeated during every iteration of the sim-
ulated case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Simulation results for Case 1 - parametric uncertainty. . . . . . . . . . . . 85

4.3 Simulation results for Case 2 - Time Delay Uncertainty. . . . . . . . . . . . 87

4.4 Simulation results for case 3 - LPV dynamics. . . . . . . . . . . . . . . . . 89

4.5 The norm of the error signal obtained when using (4.13) has a better
transient response to changes in θ than an ILC law based solely on G(θk+1). 90

4.6 Simulation results for Case 4 - LPV dynamics and parametric uncertainty. 92

4.7 Simulation results for Case 5 - LPV dynamics with parametric and time
delay uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



x

GLOSSARY

drive side side of the strip and/or casting rolls farthest from the operator

mushy semi-solid metal with temperature between the solidus and liq-

uidus temperatures

operator side side of the strip and/or casting rolls closest to the operator

tilt drive side position minus operator side position

wedge a strip profile perturbation where one side of the strip is wider

than the other



xi

ABSTRACT

Browne, Florian M. Ph.D., Purdue University, August 2020. Robust Iterative Learn-
ing Control for Linear Parameter-Varying Systems with Time Delays. Major Pro-
fessor: Neera Jain, School of Mechanical Engineering.

The work in this dissertation concerns the construction of a robust iterative learn-

ing control (ILC) algorithm for a class of systems characterized by measurement

delays, parametric uncertainty, and linear parameter varying (LPV) dynamics. One

example of such a system is the twin roll strip casting process, which provides a prac-

tical motivation for this research. I propose three ILC algorithms in this dissertation

that advance the state of the art. The first algorithm compensates for measurement

delays that are longer than a single iteration of a periodic process. I divide the de-

lay into an iterative and residual component and show how each component effects

the asymptotic stability properties of the ILC algorithm. The second algorithm is

a coupled delay estimation and ILC algorithm that compensates for time-varying

measurement delays. I use an adaptive delay estimation algorithm to force the de-

lay estimate to converge to the true delay and provide stability conditions for the

coupled delay estimation and ILC algorithm. The final algorithm is a norm optimal

ILC algorithm that compensates for LPV dynamics as well as parametric uncertainty

and time delay estimation error. I provide a tuning method for the cost function

weight matrices based on a sufficient condition for robust convergence and an upper

bound on the norm of the error signal. The functionality of all three algorithms is

demonstrated through simulated case studies based on an identified system model of

the the twin roll strip casting process. The simulation testing is also augmented with

experimental testing of select algorithms through collaboration with an industrial

sponsor.



1

1. INTRODUCTION

1.1 Motivation

Near-net-shape manufacturing processes are becoming a major contributor to the

reduction of both environmental and economic costs in the industrial sector [1]. For

the steel industry, twin roll strip casting is one of the most prominent near-net-shape

manufacturing processes. In twin roll casting, molten steel is poured directly onto

the surface of two counter-rotating casting rolls which simultaneously cool and com-

press the steel into a strip that is approximately the desired thickness. However,

combining the cooling and compression steps into a single continuous casting pro-

cess introduces coupling between the rapid thermal solidification dynamics and the

mechanical stiffness of the resulting steel strip.

Introducing coupling between multiple manufacturing steps is a common approach

used by near-net-shape manufacturing processes to reduce operating costs. The cou-

pling, however, can make such processes more difficult to model and control. Some

common features that need to be addressed when controlling a near-net-shape man-

ufacturing process are their variability as a function of operating condition and sus-

ceptibility to parametric uncertainty. Additionally, these processes can experience

significant measurement delays due to the inability to co-locate sensors and actu-

ators. Given that these manufacturing processes are commonly periodic, a useful

control approach to overcome these challenges is iterative learning control (ILC).

1.2 Iterative Learning Control

The concept of having the system automatically learn and improve its performance

after each iteration has been around for more than 50 years. A patent filed in 1967

by Murray Garden described a control system where a command signal is stored in



2

memory and iteratively “corrected by an amount related to the error” [2]. The first

academic contribution published on the topic was written in Japanese by Uchiyama

[3]. The term “iterative learning control” was first applied in 1984 [4], the same year

ILC became an active area of research [5–7]. Since the papers in 1984, ILC has been

a very rich area of research, with many surveys [8, 9] and books [10, 11] written on

the topic.

In industrial manufacturing processes, the desire is that the system not only has

good performance but that it is robust to changes in the process. As outlined by the

motivating example, many manufacturing processes require control algorithms that

are robust to model uncertainty and that can overcome measurement delays, which

may be time-varying.

Many researchers have studied robust ILC algorithms in the past [12–15] with

robustness defined relative to various signals and sources of uncertainty. In [12],

a higher-order ILC algorithm that is robust to initial state inaccuracies is proposed.

In [13], an ILC algorithm is synthesized using an H∞ approach that explicitly accounts

for uncertain system knowledge. In [14], 2-D systems theory is used to analyze the ro-

bustness of a D-type ILC algorithm when applied to systems with multiple state time

delays and initial output shifts. In [15], an L1 adaptive feedback controller is com-

bined with an ILC algorithm to compensate for low-frequency parametric uncertainty

in the time domain.

Norm optimal ILC is a type of ILC algorithm that has recently been used to

improve the robust performance of the closed loop system in the presence of multi-

plicative uncertainty [16–20]. The norm optimal ILC formulation uses a cost function

to design the ILC filters so that the closed loop system achieves optimal performance

with respect to the cost function. The formulation is useful because parametric un-

certainty is incorporated into the design of the cost function’s weighting matrices. A

significant gap in existing norm optimal ILC literature, however, is that no one has

examined how delay uncertainty effects the norm optimal ILC formulation.



3

Some recent developments have been focused on developing ILC algorithms for

linear parameter-varying (LPV) systems [21–24], which is a useful way to model

systems whose dynamics change as a function of the operating condition [25, 26].

de Rozario et al. show that an ILC algorithm that directly accounts for the LPV

dynamics of the system is able to achieve better accuracy and convergence rates

than a linear time-invariant ILC algorithm that has been made robust to model

uncertainty [24]. These algorithms, however, assume perfect LPV models of the

process and do not address time-varying measurement delays.

Regarding the effects of measurement delays, there is limited research concern-

ing the effect that measurement delays have on ILC algorithms and overall process

stability. Algorithms have been developed to compensate for state delays [27–32].

These algorithms, however, focus on delays that occur within a single iteration of

the process. A higher order ILC algorithm is needed for control of processes that

have measurement delays longer than a single iteration of the process. Higher order

ILC algorithms were introduced in [33] and were shown to have better convergence

performance than first-order ILC algorithms.

Furthermore, a control algorithm that is robust to time-varying measurement

delay will typically require an estimate of the delay itself. Correlation-based methods

[34–36] are common algorithms used to estimate the time delay within a process.

The periodicity of a process, however, makes correlation-based methods unreliable

when the delay is multiple periods in length. This is because the periodicity causes

the correlation function to have a local maximum for every period within the search

window.

1.3 Thesis Objective

In this thesis, I contribute three ILC algorithms that advance the state of the art

of ILC research. These algorithms focus on compensating for time delay estimation

errors as well as LPV dynamics and parametric uncertainty. The first algorithm is



4

developed to compensate for measurement delays that are longer than one iteration

of a periodic process. To incorporate the delay into the ILC algorithm, I develop a

delay model that has both an iterative component and a residual component. This

enables the estimation of each component separately, and their sum represents the

total measurement delay in the system. I then use that model to design and synthesize

an ILC algorithm that accounts for the measurement delay and is robust to delay

estimation error.

The second algorithm is a coupled delay estimation and ILC algorithm that com-

pensates for time-varying measurement delays using an adaptive delay estimate. The

adaptive delay estimation algorithm is designed such that the delay estimate con-

verges to the true delay as the number of process iterations increases, resulting in

improved tracking error performance.

The final contribution is a norm optimal ILC algorithm that compensates for LPV

dynamics, parametric uncertainty, and measurement delay uncertainty. I provide a

tuning method that details how the weighting functions of the cost function can be

designed in order to achieve error attenuation, input saturation avoidance, and robust

convergence.

All three algorithms’ functionality is demonstrated through simulated case studies

on an system model that is motivated by the twin roll strip casting process. The sim-

ulation results are further augmented with experimental testing of select algorithms

at an industrial sponsor’s site.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, I discuss the twin roll

strip casting process and identify some of the key parameters that are used to control

the process. Chapter 3 introduces two ILC algorithms for time delay systems. Chap-

ter 3 also illustrates the performance of both algorithms when applied to the twin roll

strip casting process. Chapter 4 then describes a norm-optimal LPV ILC algorithm



5

that can be used to account for parametric uncertainty and linear parameter-varying

dynamics. Finally, I present conclusions and discuss potential future research direc-

tions in Chapter 5.



6

2. TWIN ROLL STRIP CASTING

This chapter provides a description of the twin roll strip casting process that motivates

the research in this thesis and presents modeling information about the process that

I published with Professors George T.-C. Chiu and Neera Jain in the ASME Journal

of Dynamic Systems Measurements and Control [37]. A table of nomenclature used

in this chapter is provided in Table 2.1.

Table 2.1. Nomenclature for the twin roll strip casting model

Variables Subscripts

c Specific heat of steel 1 Liquidus

fm Mushy fraction 2 Solidus

F Force g Gap

h Heat transfer coefficient k Kiss

k Effective thermal conductivity ` Liquid

L Latent heat Lev Steel pool level

R Radius m Mushy

T Temperature O Outer boundary

x Horizontal distance R Steel at the roll

y Height from the nip Roll Roll surface

Z Transverse direction s Solid

ε Switching parameter

ρ Density

θ Angle

Ω Rotational speed



7

2.1 Modelling Introduction

Twin-roll strip casting is a near-net-shape manufacturing process used in the steel

industry to improve energy efficiency and reduce operating costs [38]. It requires just

one-tenth of the facility space and reduces the energy consumption by a factor of

nine, as compared to traditional steel casting [39]. One reason for this is that in tra-

ditional casting, molten steel is first solidified into thick slabs and then reheated and

compressed via a series of rollers to create thin strips of steel. On the other hand, in

twin-roll casting, molten steel is directly poured onto the surface of two casting rolls

which simultaneously cool and compress the steel into a strip with a thickness of 1−3

millimeters. In this process, the steel solidification and accompanying casting dynam-

ics evolve within a fraction of a second [40]. This suggests that an accurate model

of the process will require simultaneous consideration of the solidification (thermal)

dynamics with the rolling (mechanical) dynamics.

Combining these two steps into a single continuous casting process also introduces

coupling between the control inputs—the casting speed, Ω, and the gap distance

between the rolls, xG—and their effect on the solidification dynamics. To address this

coupling, I require a simple and accurate model that characterizes how Ω and xG affect

the periodic steady state behavior of the process. Many researchers have modeled

the solidification process in twin-roll casting [41–52], but developing a reduced-order

model requires a balanced modeling approach that captures the relevant input-output

dynamics of the process while using a relatively small number of dynamic states.

Some researchers [41–43] propose simple models of the twin-roll casting process, but

these models assume an abrupt transition from liquid to solid steel when, in reality,

this transition involves the storage of latent heat in a two-phase region known as

mushy steel. Characterizing the amount of mushy steel in the steel pool is essential

to understanding the solidification dynamics of the process because the size of the

mushy layer affects the overall cooling rate of the steel [45]. Mushy steel can also

have a significant impact on the compression dynamics at the exit of the casting rolls



8

because the liquid portion of the steel creates a region that is much easier to compress

than a completely solid strip [46, 53, 54]. This is important in practice because, as

discussed in [53], allowing small amounts of mushy steel to remain in the strip as it

leaves the casting rolls can reduce chatter during casting.

Other researchers [47–52] have developed high-resolution numerical simulations

of the solidification process that include the mushy region. Their models, however,

are too complex to be used for control design or real-time simulation. For example,

Santos et al. derived a model with over 400 states and Liu et al. built a model for

use in ANSYS. This level of detail is useful for creating high fidelity models of the

system but requires computational resources that may not always be available. For

that reason, I propose a reduced-order model that characterizes the dynamics of the

process, including the mushy region, in a computationally efficient manner.

In [55], I proposed a model of the solidification dynamics using a lumped param-

eter moving boundary approach. In this chapter, I extend my preliminary work by

modeling the thermal dynamics of the twin-rolls themselves as well as the coupling of

these dynamics with the steel solidification dynamics. Given the sensing limitations

inherent in a twin-roll casting process, e.g. high molten steel temperatures that can

damage sensors placed in or near the steel pool, validation of such a model is diffi-

cult. Nonetheless, I compare the water temperature leaving the rolls in the proposed

model with water temperature measurements obtained from an industrial twin-roll

strip casting facility operated by Nucor Corporation. Finally, I illustrate how the

roll speed and gap distance influence the system dynamics through simulated case

studies.

2.2 Background

In twin-roll casting, molten steel is poured onto the surface of two casting rolls,

covering them up to an angle, θLev. Thermal energy is then transferred from the

steel, through the rolls, and into a set of water cooling channels which extract the



9

Figure 2.1. A twin-roll strip caster with dashed lines representing
the boundaries between the liquid, mushy, and solid steel phases.

Figure 2.2. The moving boundaries, R1 and R2, corresponding to the
liquidus, T1, and solidus, T2, isotherms respectively.

heat from the roll assembly. As the heat leaves the steel, the liquid steel begins to

solidify, causing it to transition into a two-phase state known as mushy steel. The

mushy steel then cools further and completely solidifies. Figure 2.1 shows a schematic

of the twin-roll casting process after the shell formation reaches a quasi-steady state.



10

The phase transition of steel, from liquid to solid, begins when the steel cools

to below the liquidus temperature and concludes when the steel temperature drops

below the solidus temperature. Within our model, steel with a temperature above

the liquidus temperature, T1, is treated as completely liquid. Likewise, steel below

the solidus temperature, T2, is treated as completely solid. The remaining volume of

steel, whose temperature is between T1 and T2, is treated as mushy. Thus, the steel

pool is divided into three regions – liquid, mushy, and solid – with borders coinciding

with the T1 and T2 isotherms as shown in Fig. 2.2.

Mushy and solid shells begin to form on each roll’s surface as the rolls rotate

through the steel pool; they continue to grow as the rolls rotate and adhere to each

roll’s surface. A completely solid width of steel is formed when the micro-structures

of the mushy and solid shells from each roll intersect at the center-line. If the width

is larger than the desired strip thickness, the steel must be compressed to achieve

the desired thickness. This compression is achieved by applying a force, F , to both

rolls using a set of actuators that are in line with the nip. The nip is defined as the

location of the minimum displacement between the rolls, as shown in Fig. 2.1. The

amount of force required for the compression is dependent on the location of the kiss

point, which is defined as the intersection point between the two mushy shells at the

centerline. The location of the kiss point relative to the nip is, in turn, dependent

on the rolls’ rotational speed, Ω and the gap distance between the rolls, xg [41, 44].

I define the nip region as the volume of steel located between the nip and the kiss

height, yk. Within this region, the force required to compress the steel is influenced

by the amount of mushy steel present, which is dependent on the growth rate of the

solid steel shell.

I am interested in developing a computationally efficient model that captures how

both the rotational speed and the gap distance affect one’s ability to manufacture

a steel strip of a desired thickness. To achieve this, I must understand how Ω and

xG influence the locations of the liquidus and solidus isotherms, which define both

the kiss height and the amount of mushy steel present in the nip region. In the next



11

section, I discuss the modeling approach that I use to predict the locations of these

isotherms.

2.3 Steel Pool Model

I model the locations of the liquidus and solidus isotherms using a lumped pa-

rameter moving boundary approach. This approach is commonly used in models

of multi-phase flows to simplify the physics and track the boundaries between the

phases using thermodynamic analysis techniques [56, 57]. The twin-roll casting pro-

cess is well suited to be modeled with this approach because the steel pool can be

divided into three distinct regions – liquid, mushy, and solid – by defining boundaries

at the solidus and liquidus isotherms.

To begin, I assume that the physics of the solidification process are mirrored onto

both rolls. As a result, the steel pool is divided in half, and I model the process

acting on one roll with the center-line of the pool treated as the outer boundary of

each half pool. The half pool model is then divided into smaller, angular discretized

control volumes, which I call slices, with an angular thickness δθ as shown in Fig.

2.3. Within each slice, I assume that the mushy and solid shells adhere to the roll’s

surface as the roll rotates and that there is no slippage between the shells and the roll.

The liquid steel is assumed to be separate from the mushy and solid shells. As the

rolls rotate, the amount of liquid steel in each slice changes to fill the entire volume

of the slice, adjusting for changes in the size of the mushy and solid shells.

2.3.1 Governing Equations

I define a lumped parameter set within each slice to model the dynamics through

a combination of energy balances and boundary continuity equations.



12

Figure 2.3. A schematic of a half steel pool model divided into control
volume slices with angular thickness δθ.

Energy Balance.

The energy balance for each region of steel is represented by the equation

∂ρcT

∂t
= 5 (k5 T ) + S , (2.1)

where ρ is the density, k is the effective thermal conductivity [58], T is the tem-

perature, and c is the specific heat corresponding to the steel phase. The variable S

represents the heat source associated with phase transition and is only necessary when

modeling the mushy region. The heat source characterizes the release of latent heat

needed to fully solidify the steel within the mushy region. Similar to the approaches

used in [47] and [59], the concept of pseudo-specific heat is used here to model the

release of latent heat. The concept of pseudo-specific heat is predicated on the as-

sumption that the release of the latent heat needed to fully solidify the steel varies

only with respect to temperature. Then the latent heat model can be combined with

the specific heat model to give an effective specific heat model. Both [47] and [59]

propose using Scheil’s equation to model how the release of latent heat relates to the



13

temperature of the mushy region. This representation, however, requires a model of

the eutectic properties of the steel, which introduces more complexity to the model

and makes it more difficult to tune. To simplify the model, I assume that the amount

of latent heat released during the solidification process is linear with respect to the

temperature of the mushy steel. This assumption is acceptable because the primary

goal of this model is to characterize the total fraction of mushy steel in the strip,

rather than the liquid fraction of the mushy region itself. Our approach results in a

pseudo-specific heat given by

cm = c+
L

T1 − T2

, (2.2)

where T1 is the liquidus temperature, T2 is the solidus temperature, and L is the

latent heat of fusion.

Within each slice, the total rate of change of the energy in each steel phase is ob-

tained by integrating Eqn. (2.1) over the volume of each phase as shown in Eqn. (2.3).

This equation is simplified by substituting dV = rdrdθdz and assuming that the pa-

rameters are uniform in both the angular (θ) and transverse (z) directions of the roll

for a given slice. The result is Eqn. (2.4), where Z denotes the transverse length of

the slice along the length of the roll and δθ denotes the angular thickness of the slice.∫∫∫
V

∂ρcT

∂t
dV =

∫∫∫
V

5 (k5 T ) dV (2.3)

Zδθ

∫
∂ρcT

∂t
rdr =

∫∫∫
V

5 (k5 T ) dV (2.4)

Leibniz’s rule and the product rule are then applied to the left hand side of

Eqn. (2.4) resulting in Eqn. (2.5) for the mushy region. The liquid and solid re-

gions are similarly simplified as given by Eqns. (2.6) and (2.7). While the control

inputs do not explicitly appear in either equation, note that RO is dependent on xG,

the gap distance. Moreover, the roll speed Ω dictates the duration of time that the



14

steel is present in each slice. More details regarding the roll speed’s influence on the

system dynamics are given in Section 2.5.2.

Zδθ

(
ρmcm

2
(R2

1 −R2
2)
dTm
dt

+ ρmcm(Tm − T1)R1
dR1

dt

)
+ Zδθρmcm(T2 − Tm)R2

dR2

dt
=

∫∫∫
V

5 (k5 T ) dV

(2.5)

Zδθ

(
ρ`c

2
(R2

O −R2
1)
dT`
dt

+ ρ`c(T1 − T`)R1
dR1

dt

)
=

∫∫∫
V

5 (k5 T ) dV

(2.6)

Zδθ

(
ρsc

2
(R2

2 −R2
R)
dTs
dt

+ ρsc(Ts − T2)R1
dR2

dt

)
=

∫∫∫
V

5 (k5 T ) dV

(2.7)

The right hand side of Eqn. (2.4) is simplified by assuming that the heat transfer

through the steel is dominated by the steel-roll interface and, thus, occurs only in the

radial direction. Divergence theorem is then applied and the resulting simplification,

in its most general form, is(
1

r

∂

∂r

(
kZδθr

∂T

∂r

))
i

+

(
1

r

∂

∂r

(
kZδθr

∂T

∂r

))
o

, (2.8)

where k is the effective thermal conductivity of each phase of steel and the subscripts

i and o denote the inner and outer radial boundaries of each phase.

Equation (2.8) is further simplified by assuming the process reaches a quasi-steady

state and by applying a thermal impedance model similar to Fig. 2.4. The resulting

simplification is
kpZδθ(Ti − Tp)

ln
(
Rp
Ri

) +
kpZδθ(To − Tp)

ln
(
Ro
Rp

) , (2.9)

where the subscript p ∈ {`,m, s} denotes parameters that are specific to the phase of

steel being modeled.

Finally, the boundary between the steel and the roll is modeled by adding a

contact resistance between TR, the temperature of the steel at the roll, and TRoll, as

shown in Fig. 2.4. Then as the roll temperature changes (see Section 2.4), so does



15

the inner boundary temperature of the steel pool model. In reality, the heat transfer

between the steel pool and the roll depends on the roll topography and the microscopic

processes that govern the solidification behavior, such as nucleation [40, 60]. In this

model, I simplify these dynamics into a single heat transfer coefficient, ho.

Continuity Equation.

The rate of energy crossing the liquidus isotherm should be the same for both the

liquid and mushy regions. Likewise, the rate of energy crossing the solidus isotherm

should be the same for both mushy and solid regions. I apply the following two

continuity equations to ensure that these constraints are enforced.

0 = k`
T` − T1

ln
(
R`
R1

) − km T1 − Tm
ln
(
R1

Rm

) (2.10)

0 = ks
T2 − Ts
ln
(
R1

Rs

) − km Tm − T2

ln
(
Rm
R2

) (2.11)

Building upon our lumped parameter assumption, in both Eqns. (2.10) and (2.11),

R` is the radius corresponding to the center of the liquid phase in a single slice

(control volume) and is calculated by R` =
√

0.5(R2
1 +R2

O). Similarly, Rm is the

center of the mushy phase and Rs is the center of the solid phase, determined by

Rm =
√

0.5(R2
1 +R2

2) and Rs =
√

0.5(R2
2 +R2

R), respectively. Equations (2.10) and

Figure 2.4. The thermal impedance model used to characterize the
steel pool thermal dynamics.



16

(2.11) are true for all time. Thus, the time derivative of both equations is also equal

to zero.

State Matrix Equation.

The combination of the three energy balances and the two time derivatives of

the continuity equations yields a system of equations that describes the interactions

between the state variables, R1, R2, Ts, Tm, and T`. The five state equations can

then be written in a matrix form similar to Eqn. (2.12). For example, when all

states are actively being modeled (see Section 2.3.2) the state equations are written

as Eqn. (2.13) with the nonzero terms listed in Table 2.2. This matrix equation

representation applies to each slice, and the number of slices can fluctuate based on

the engineer’s needs. The total number of states needed to describe the solidification

dynamics is then five times the number of slices used.

M



Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


= A (2.12)



0 M12 M13 0 0

M21 M22 0 M24 0

M31 0 0 0 M35

M41 M42 0 M44 M45

M51 M52 M53 M54 0





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



A1

A2

A3

0

0


(2.13)

2.3.2 Solidification Stages

The state vector in Eqn. (2.12) can be used to represent the dynamics of every slice.

Therefore, switching between solidification stages requires selecting the appropriate



17

Table 2.2. The nonzero values of the state matrix equation (2.13)

Term Value

M12 ρsc(Ts − T2)R2

M13
ρsc
2

(R2
2 −R2

R)

M21 ρmcm(Tm − T1)R1

M22 ρmcm(T2 − Tm)R2

M24
ρmcm

2
(R2

1 −R2
2)

M31 ρ`c(T1 − T`)R1

M35
ρ`c
2

(R2
O −R2

1)

M41

km(T1−Tm)

(
1
Rm
− 0.5R2

1
R3
m

)
Rm

ln( R1
Rm

)
2
R1

−
k`(T`−T1)

(
0.5
R`
−R`
R2
1

)
R1

ln
(
R`
R1

)2
R`

M42
.5km(T1−Tm)R2

ln( R1
Rm

)
2
R2
m

M44
km

ln( R1
Rm

)

M45
k`

ln
(
R`
R1

)
M51

0.5km(Tm−T2)R1

ln
(
Rm
R2

)2
R2
m

M52

ks(T2−Ts)
(

1
Rs
− 0.5R2

2
R3
s

)
Rs

ln(RsRs )
2
R2

−
km(Tm−T2)

(
0.5
Rm
−Rm
R2
2

)
R2

ln
(
Rm
R2

)2
Rm

M53
ks

ln(R2
Rs

)

M54
km

ln
(
Rm
R2

)
A1

ks(T2−Ts)
ln(R2

Rs
)
− Ts−TRoll

ln(Rs/RR)
ks

+ 1
hoRR

A2
km(T1−Tm)

ln( R1
Rm

)
− km(Tm−T2)

ln
(
Rm
R2

)
A3

k`(TO−T`)
ln
(
RO
R`

) − k`(T`−T1)

ln
(
R`
R1

)

equation set to be solved for the next time step. The solidification dynamics of a

given slice can be divided into 6 possible stages:

1. only liquid steel;



18

2. liquid and mushy steel;

3. liquid, mushy, and solid steel;

4. mushy and solid steel;

5. only mushy steel; and

6. only solid steel.

Each stage has its own dynamic equations. Depending on which phases of steel are

represented in each stage of the solidification process, some of the states may become

inactive. In this case, I hold them at a constant value.

Stage 1.

When liquid steel is the only phase of steel within the control volume, as it is when

the steel initially contacts the roll, the only state that is modeled is the temperature

of the liquid steel, T`. All other states are held at a constant value. The mushy

and solid temperatures are set to the liquidus and solidus temperatures, respectively,

because those are the temperatures that the states will have when they initially

form. Similarly, the liquidus and solidus isotherm locations are set to the roll radius,

because that is where the isotherms will initially form. In other words, Iset Tm =

T1, Ts = T2, R1 = RR, and R2 = RR. The stage 1 dynamics are then described by

Eqn. (2.14).



0 0 0 0 M15

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



A1

0

0

0

0


M15 =

ρ`c

2
(R2

O −R2
R)

A1 =
k`(TO − T`)

ln
(
RO
R`

) − (T` − TRoll)
ln
(
R`
RR

)
k`

+ 1
hoRR

(2.14)



19

Stage 2.

Stage 2 occurs when the mushy shell starts to grow on the surface of the roll but

the solid shell has not yet grown. In this stage, the active states are T`, Tm, and R1.

The values of the solidus isotherm and solid steel temperature are held constant at

R2 = RR and Ts = T2, respectively, as in Stage 1. The dynamics of Stage 2 are

described by Eqn. (2.15).

0 1 0 0 0

M21 0 0 M24 0

M31 0 0 0 M35

M41 0 0 M44 M45

0 0 1 0 0





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



0

A2

A3

0

0


M24 =

ρmcm
2

(R2
1 −R2

R)

A2 =
km(T1 − Tm)

ln
(
R1

Rm

) − (Tm − TRoll)
ln
(
Rm
RR

)
km

+ 1
hoRR

All other terms are as defined in Table 2.2

(2.15)

Stage 3.

Stage 3 is the stage when both the mushy and solid shells are growing. All state

are active. The dynamics of this stage are described by Eqn. (2.13) with the nonzero

terms listed in Table 2.2.

Stage 4.

Once the mushy shell intersects the centerline of the process, the liquid phase of

steel is no longer present in the control volume. Icall this Stage 4 of the solidification

process. In this stage, the active states are Tm, Ts, and R2. The values of T` and R1

are held constant at T` = T1 and R1 = RO. The dynamics of this stage are described

by Eqn. (2.16).



20



0 M12 M13 0 0

0 M22 0 M24 0

1 0 0 0 0

0 0 0 0 1

0 M52 M53 M54 0





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



A1

A2

0

0

0


M24 =

ρmcm
2

(R2
O −R2

2)

A2 =
km(TO − Tm)

ln
(
RO
Rm

) − km(Tm − T2)

ln
(
Rm
R2

)
All other terms are as defined in Table 2.2

(2.16)

Stage 5.

Stage 5 occurs when the mushy shell grows so fast that the liquidus isotherm

intersects the outer boundary of the slice, but the solid steel has not yet formed. It

can also occur if the steel is in Stage 4 and the solid shell remelts. In this case, the

only active state is Tm and all other states are held constant at T` = T1, R1 = RO,

Ts = T2, and R2 = RR. The dynamics for this stage are described by Eqn. (2.17).



0 0 0 M14 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



A1

0

0

0

0


M14 =

ρmcm
2

(R2
O −R2

R)

A1 =
km(TO − Ts)

ln
(
RO
Rm

) − Ts − TRoll
ln
(
Rm
RR

)
ks

+ 1
hoRR

(2.17)

Stage 6.

The final stage, stage 6, occurs if the solid shell grows sufficiently such that the

solid kiss point is above the nip. In this case, no mushy nor liquid steel will be present

in the slice and only the solid steel temperature state, Ts, is active. The other states



21

are held constant at R1 = R2 = RO, T` = T1, and Tm = T2. The dynamics of this

stage are described by Eqn. (2.18).



0 0 M13 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1





Ṙ1

Ṙ2

Ṫs

Ṫm

Ṫ`


=



A1

0

0

0

0


M13 =

ρsc

2
(R2

O −R2
R)

A1 =
ks(TO − Ts)

ln
(
RO
Rs

) − Ts − TRoll
ln
(
Rs
RR

)
ks

+ 1
hoRR

(2.18)

2.3.3 Switching Criteria

In Stages 2, 3, and 4, a new phase of steel may begin forming on the surface of the

roll. When this occurs, the M matrix is singular because either R1 or R2 is initially

equivalent to RR. This singularity results in a numerical instability that can produce

large errors in the simulation when I attempt to invert M . I compensate for this by

introducing a switching parameter, ε, and simulating a reduced-state model until the

isotherm has grown a distance ε away from the surface of the roll. At that point, I

switch to the full simulation of the solidification stage as described in Section 2.3.2.

2.4 Roll Dynamics

To obtain an accurate representation of how the rotational speed impacts the

solidification model, I have to understand how Ω affects the boundary temperature

between the the steel and the roll. This section explores the thermodynamic model

of the roll, which provides a characterization of the roll surface temperature that is

used in the steel pool model.



22

Figure 2.5. A schematic of the roll composed of a copper sleeve
encasing a set of water channels.

A common roll assembly consists of a copper sleeve that encloses a set of water

channels, as shown in Fig. 2.5. The water channels act as a heat sink for the process

and help regulate the temperature of the copper. As the roll rotates, its surface

temperature will increase as the roll passes through the steel pool and then decrease

once the roll rotates past the nip. During periodic steady-state operation, I assume

that the surface temperature at the steel meniscus will be periodic with the same

period as one roll revolution. This means that, in the period of one roll revolution,

the heat absorbed from the steel pool is transferred from the roll to either the water

flowing through the cooling channels or the air surrounding the roll. Then, as the

water flows out of the roll, the energy stored in the water is removed from the roll

assembly entirely.



23

2.4.1 Thermal Model

The dynamics of the roll assembly are modeled by dividing the roll into equal

volume radial slices such that each water channel coincides with one slice. I assume

that the heat transfer into the water is much higher than the conduction into the

interior portion of the copper sleeve. Therefore I modify our model of the water

channel by extending it so that it encompasses the entire inner boundary as shown in

Fig. 2.6. With this architecture, I extend our radial resistance analogy into the roll

model using the structure shown in Fig. 2.7 and by applying a lumped parameter

assumption to the temperatures of both the copper and the water contained within

each slice. Then the dynamics for each slice are written as two differential equations

with two states – TCu and TW (see Eqn. (2.19) and Eqn. (2.20)).

∂TCu
∂t

=

2

(
TR−TCu

1
kCu

ln
(
RR
RCu

)
+ 1
hoRR

+ TW−TCu
1

kCu
ln
(
RCu
R@W

)
+ 1
hiR@W

)
ρCucCu(R2

R −R2
@W )

(2.19)

∂TW
∂t

=

2

(
TCu−TW

1
kCu

ln
(
RCu
R@W

)
+ 1
hiR@W

)
ρW cW (R2

@W −R2
W )

(2.20)

In Eqn. (2.19), TR represents the outer boundary temperature, ho is the heat

transfer coefficient between the surface of the roll and the outer boundary, and hi

is the convection coefficient of the water. The value of hi is determined using the

Dittus-Boelter equation for calculating the Nusselt number,

hi =
NuWkW
DC

=
kW
DC

0.0233

(
4V̇

νWπD2
C

)0.8

Pr0.4
W , (2.21)

where V̇ , PrW , νW , and kW are, respectively, the volumetric flow rate, Prandtl num-

ber, kinematic viscosity, and conduction coefficient of the water, and DC is the water

channel diameter.



24

Figure 2.6. A schematic depicting how the water channels are ex-
tended so as to encompass the entire inner radius of each roll slice.

Figure 2.7. The thermal resistance network for the roll.

2.4.2 Outer Boundary Condition

As the roll rotates, the outer boundary condition of a slice of the roll changes

when the slice transitions between contacting steel and contacting air. During the

time that a slice is in contact with the steel, both TRoll and TCu increase. When the

slice stops contacting the steel, TRoll and TCu begin to cool as the heat continues to

be transferred into the water channels. When the slice is contacting the steel pool,

I introduce the variable TR as the surface temperature of the steel. Then, when the



25

slice is contacting air, I assume that the outer boundary is almost adiabatic. This

approach is similar to that taken in [51] and [52], in which an effective heat transfer

coefficient of 50W/m2K between the rolls and their surroundings is used. Comparing

this value to the value that [51] and [52] use for the effective heat transfer coefficient

between the rolls and the water, 10000W/m2K, results in approximately 0.5% of the

heat in the rolls being transferred to the surroundings. Therefore, I assume that the

heat transfer from the rolls to the surrounding air is negligible compared to the heat

transferred into the water channels. The reason I cannot assume the boundary is

adiabatic is that ho = 0 results in a numerical instability in the lumped impedance

model. Thus, I reduce ho to a number that is close to zero. In other words, I condition

ho such that the copper sleeve almost exclusively cools by transferring its heat into

the water channels. This form of analysis provides us with a way to compare the

heat transfer from our model with temperature measurements taken from the exiting

water flows.

2.5 Simulation/Numerical Implementation

Simulating the steel pool and roll models together is challenging due to the differ-

ence in how each model is discretized (which is a function of their individual geome-

try). In this section I discuss the numerical implementation of the integrated model

as well as parameter selection for the steel pool model.

2.5.1 Simulation Setup

One of the first parameters that must be selected is the number of slices to use for

discretization of the roll and steel pool models. In this manuscript, I consider water

channels arranged in a circular pattern with 8 degrees of separation between each

channel. Therefore, I choose an 8 degree wide angular slice structure for both the

steel pool and roll models. This enables alignment of the steel pool slices with the roll

slices so that the heat transfer between the steel pool and roll models is only affected



26

by a single slice in both directions. This eliminates the complexity that would be

introduced by having multiple states acting on the boundary between the models.

The one-to-one configuration also allows for a better estimate of the inner boundary

conditions in the steel pool model.

The second parameter to select is ε, the switching parameter that I introduced

in Section 2.3.3. If the value is too small, the simulation becomes unstable due to

the numerical singularity that occurs when a new phase of steel forms on the surface

of the roll. Selecting a large value, conversely, further propagates the error that is

introduced by our switching criteria simplification. I found that a value of 50µm, or

2.5% of the nominal gap distance, xG, results in numerical stability while keeping the

initial transient error confined to a small percentage of the overall shell profile.

The third parameter to select is the heat transfer coefficient between the roll and

the steel pool, hO. In practice, this value is difficult to determine because it depends

on the the roll topology and the microscopic processes that govern the solidification

behavior [40,60]. Instead, I treat hO as a tuning parameter, where the value is chosen

such that the mushy fraction at the nip is between 1 − 10%. This range of possible

mushy fraction values is based on the information provided in [61]. At the nip, the

mushy fraction, as a percentage of the gap distance, can be calculated from the shell

profile as

fm = 100(xG/2−R2) . (2.22)

2.5.2 Model Integration

Figure 2.8 provides a flowchart of the solution procedure. There are two design

decisions that must be made regarding how the roll rotation is introduced into the

steel pool and roll models. Recall that the steel pool model is composed of stationary

slices (control volumes) with angular thickness δθ, and the roll model is composed

of angular slices defined by the water channel configuration, which rotate with the

roll. Rotating the models at every time step would thus disrupt alignment of the



27

slice geometry that I chose earlier. Instead, I simulate the model for δθ/Ω seconds in

one alignment before rotating both the steel pool and the roll models by an angular

distance of δθ. This approach allows us to maintain the alignment between the

two models while also simulating the effects that the rotational speed has on the

solidification dynamics.

When the models rotate, I must update their boundary conditions. The roll model

is updated according to the procedure described in Section 2.4.2. The steel pool, on

other hand, is updated based on the geometry of the new slice location. Recall that

the steel pool can be divided into regions based on the phase of the steel, as shown

in Fig. 2.2. Within a given slice, the inner phases of steel, in a radial sense from

the roll’s surface, are assumed to be identical before and after the rotation occurs.

The outer phase, however, must be updated to reflect the change in the slice volume.

Recall from Fig. 2.3 that a slice’s outer boundary either intersects with the centerline

of the process or the surface of the steel pool. Along the top slices which intersect

the surface of the steel pool, the outer temperature is set to the inlet steel temper-

ature; the lumped parameter temperature state is determined using the continuity

equation between the outer phase of steel and the adjacent (radially, in the direction

of the roll) phase of steel. When the outer boundary does intersect the centerline, I

use a projection method to determine the outer boundary temperature. I calculate

the temperature of the steel, in the slice before the rotation, at the location that

would correspond to the outer boundary after the rotation. This value becomes the

outer boundary temperature after the rotation and the temperature state is updated

according to the same continuity assumption used in the top slices.

2.6 Simulation Results

Validating the proposed model requires an unorthodox approach due to the high

operating temperatures of the process (> 1000◦C) and the limitations this imposes

on real-time measurements of the thermodynamic state of the steel. This section



28

Figure 2.8. A flowchart describing the solution procedure.



29

discusses our approach for model validation. I also illustrate, through two case studies,

how the model responds to different input commands for the rotational speed and

the roll gap distance.

2.6.1 Model Validation

While the model is defined by many fewer dynamic states than some previously

developed models, it still requires more states than I can individually validate. Fur-

thermore, complete validation of the solidification model is impractical due to 1) the

high temperatures of molten steel (> 1000◦C), which can melt many sensors and limit

their use, and 2) spatial limitations, such as the size and position of the rolls relative

to the gap distance, which prevent the use of imaging techniques to measure the tem-

perature and shell profiles within the steel pool. These limitations hinder one’s ability

to measure both the isotherm locations and the temperature profiles that emerge dur-

ing a cast. However, I can use industrial data describing the total amount of energy

transferred to the water, as well as the mushy fraction calculated from the manufac-

tured strip [61], as surrogate measurements to verify that the heat transfer dynamics

captured by the model are consistent with an actual twin-roll casting process.

To compare the model with the experimental data, I consider a roll model with 45

water channels. This results in a roll model that has 45 angular slices, each with an

angular thickness of 8 degrees. I then divide our solidification model into 6 slices, each

with an angular thickness of 8 degrees, for the reasons described in Sec. 2.5. I also

use the set of material properties summarized in Table 2.3, which are a reasonable

approximation of the properties of the steel associated with the cast data that is used

for comparison [62]. The simulation parameters are listed in Table 2.4.

Once the meniscus conditions reach periodic steady state, the shell profile stabi-

lizes as shown in Fig. 2.9. The liquid steel cools and starts to transition into mushy

steel 0.03 seconds after it comes into contact with the roll. The solid shell then grad-

ually grows as more energy is extracted from the mushy steel. As a given slice of



30

Table 2.3. Steel material properties

Property Value

c 750 J/kg◦C

L 272 kJ/kg

k` 4000 W/mK

km 3800 W/mK

ks 77 W/mK

T1 1524◦ C

T2 1502◦ C

ρ` 7200 kg/m3

ρs 7860 kg/m3

Table 2.4. Simulation parameters

Parameter Value

ho 20000 W/m2K

Tin 1600◦ C

TW,in 30◦ C

V̇ 0.0835 m3/s

xG 2 mm

θLev 48 deg

Ω 4.47 rad/sec

the steel pool model rotates toward the nip, the growth rate of both shells begins to

slow due to less heat being transferred into roll as the roll heats up. The mushy shell

intersects the centerline at a distance of 45.2µm above the nip. This indicates that,

because the solid shell does not intersect the centerline, there is a region of mushy

steel at the nip when the strip exits the casting rolls, as shown in Fig. 2.10.



31

In the case shown in Fig. 2.10, the mushy fraction at the nip, as defined by Eqn.

(2.22), is 9%, which is similar to the measurements obtained by Nucor Corp. In [61],

it is claimed that the mushy material between the metal shells of the strip cast can be

controlled to between 10µm and 200µm for a strip with a thickness between 0.6mm

and 2.4mm. That means that for our chosen gap distance (xG = 2mm), there can be

up to 10% mushy steel present at the nip.

The results are also similar to the work described in [50]. Li et al. showed that for

an inlet (molten) steel temperature of 1600◦ C and a casting speed of ≈ 1.11m−1s,

their model estimated that the solidification point of the steel would be below the nip.

This implies that, at the nip, there would be a region of mushy steel as I show in Figure

2.10. Li et al. considered stainless steel instead of low-carbon steel; nonetheless the

properties of the steel strip in the nip region as estimated by our model are consistent

with published literature.

In the absence of experimental measurements of the solidification dynamics, changes

in the cooling water temperature between inlet and exit are a reasonable proxy for

the aggregate heat removal of the process during periodic steady state operation.

Measurements from the Nucor facility show that the water temperature increases by

approximately 3.6◦C per pass through the roll. In our simulation, TW increases by

3.66◦C in the period of a roll revolution. Because the water is the primary source of

cooling in the system, the similarity between the predicted and actual increase in the

water temperature indicates that the model is accurately estimating the amount of

heat being extracted from the steel at any given time.

2.6.2 Case Studies

The primary motivation for this model is to predict how different values of the

control inputs—Ω and xG—affect the shell profile. To illustrate this, I propose two

case studies. The first case study examines how a change in the commanded rota-

tional roll speed, Ω, affects the shell profile. The second shows that a change in the



32

Figure 2.9. The phases of steel on the roll surface.

commanded gap distance, xG, results in a change in mushy fraction, fm, and kiss

point, yk. The analysis I provide in each case study focuses on the periodic steady

state response of the process in response to a change in the commanded values for Ω

and xG. I focus on this type of analysis because, as stated in Section 2.6.1, the steel

solidification begins after only 0.03 seconds whereas the period of one roll revolution

is approximately 1.4 seconds in length. Based upon this separation in time scales, I

assume that neither Ω nor xG can be actuated sufficiently fast enough to affect the

transient response of the solidification dynamics.

As Fig. 2.11 shows, when the rotational speed, Ω, is changed from 4.47 to 3.49

radians per second, the solid shell (shown by the thin dashed line) intersects the

centerline. This corresponds to a mushy fraction of 0, which is 9% lower than when

Ω = 4.47 radians per second (shown by the thick dashed line). The mushy shell when



33

Figure 2.10. A zoomed in view of the nip in Fig. 2.9 shows that there
is mushy steel present at the nip.



34

Ω = 3.49 radians per second (shown by the thin solid line) also intersects the centerline

much earlier than when Ω = 4.47 radians per second (shown by the thick solid line).

This results in a kiss point, yk, that is 450µm higher. Both changes affect the size

and composition of the compression region, which affects the force requirements for

consistent casting [55].

The existence of the solid shell kiss point above the nip is a common assumption

that is made in many of the published models on twin-roll casting [41–44], but that

assumption is violated when the process is operating at the speeds currently used in

industry (> 4rad/s). Nevertheless, when our model is simulated at speeds of 0.7rad/s

as is the case in Santos et al., the solid shell kiss point moves farther above the nip,

resulting in no mushy steel in the nip region, as shown in Fig. 2.12. In this way,

the proposed model is consistent with previously published models but extends the

state-of-the-art by relaxing the aforementioned assumption.

In the second case study I show that an increase in xG results in a decrease in the

shell thicknesses relative to the overall gap distance. Figure 2.13 shows the differences

between the case with xG = 2mm and the case with xG = 2.2mm. The shell profiles

are identical, but the location of these shells within the process changes. The increase

in the gap distance results in a larger mushy fraction at the nip (i.e. y = 0 mm) and

a smaller nip region.

2.7 Control Implementation Case Study: Twin-Roll Strip Casting

In this section I apply the combined delay estimation and ILC algorithm from

Sec. 3.1 to a twin roll strip casting process at Nucor Corporation’s Castrip plant

in Crawfordsville, Indiana. The objective of this section is to demonstrate how the

combined delay estimation and ILC algorithm proposed in Chapter 3 can be used to

reduce the wedge produced in the twin roll strip casting process. To accomplish this

objective, I define an iteration of the process as equal to one revolution of the casting

rolls and then use data from Nucor to identify the periodic dynamics of the system.



35

Figure 2.11. The shell profile at different rotational speeds.



36

Figure 2.12. The shell profile produced at a casting speed of Ω = 0.7
rad/s has a solid kiss point that is approximately 48 µm above the
nip.

(a) xG = 2mm (b) xG = 2.2mm

Figure 2.13. Changing xG results in a change in the mushy fraction at the nip.



37

As shown in Fig. 2.14, after the strip has formed, it passes into an environmentally

controlled box, called a hot box, where it continues to passively cool before undergoing

a final round of compression in a hot roll stand. Due to the high temperature of

the metal exiting the casting rolls at point A, as well as the physical limitations of

accurately measuring the thickness of the strip near the nip, the strip thickness is

not measured until the strip is on the tables rolls leading into the hot rolling stand.

The measurement delay is thus the amount of time that it takes for the strip to move

from the actuation point at the nip of the casting rolls, point A, to the measurement

location, point C. This time can change during the cast based on the amount of steel

that is in the free hanging loop, shown in Fig. 2.14 as the length of strip between

points A and B. The depth of this loop is variable and depends on a number of

parameters, including the casting roll speed, the hot rolling stand speed, and the

grade of steel being cast. Below I describe in detail how I estimate this variable time

delay.

2.7.1 Delay Estimation

While the periodic nature of the twin roll strip casting process makes it well suited

for learning-based control, the periodicity also complicates the use of a data-based

approach, such as correlation methods [34], to estimate the delay. To overcome this

difficulty, I divide the estimation of the delay TD into two estimation problems, based

on the definition of the time delay that I introduced in (3.4). The first problem is to

estimate the iterative component of the delay, nk. Once I establish a value for nk, I

estimate the residual component of the delay, τ .

To estimate the delay, I relate it to the length of the strip between the nip of the

casting rolls and the measurement location. I can express the length of the strip as

L = nkCCR + δL , (2.23)

where CCR is the circumference of a single casting roll, nk is the number of complete

roll revolutions that occur during the delay, and δL is the remainder of L/CCR.



38

HOT
ROLLING
STANDS

CASTING
ROLLS

MEASUREMENT
LOCATION

STRIP

HOT BOX

DRIVE SIDE (DS)

OPERATOR SIDE (OS)

STEEL POOL

x

y

V

A

B C

Figure 2.14. The steel strip leaves the casting rolls and enters a
hotbox where it passively cools before being compressed on a hot
rolling stand. The thickness measurements are obtained at point C
as the strip moves along the table rolls.

As shown in Fig. 2.14, when the strip leaves the casting rolls, it initially forms

a free-hanging loop in the hot box between point A and point B. At point B, the

strip passes onto a set of table rolls that transport it past the measurement location

at point C and into the hot rolling stand. From the layout of the hot box, I can

determine the distances between A and B: xB − xA =: x̄AB and yA− yB =: ȳAB; and

the distance from B to C: xC − xB =: x̄BC .

I assume that the loop between A and B can be described by a catenary curve [63],

y = a cosh
(x
a

)
, (2.24)

where x and y are defined such that the x-coordinate of the vertex of the curve, xV ,

is at x = 0. The term a > 0 is a parameter of the curve and is related to the material



39

that forms the curve. This description enables us to write the arc length of the curve

as

s = a sinh

(
|xB|
a

)
+ a sinh

(
|xA|
a

)
. (2.25)

Then the length of the strip can be rewritten as

L = s+ x̄BC . (2.26)

To compute the length, I first need to determine a. This is done by solving the

following system of equations:

yA = a cosh
(xA
a

)
, (2.27a)

yB = a cosh
(xB
a

)
, (2.27b)

xB − xA = x̄AB , (2.27c)

yA − yB = ȳAB , (2.27d)

yA − hLoop = a cosh(0) = a , (2.27e)

where hLoop is the measured loop depth relative to the nip (hLoop = yA − yV ). The

value of a is then the solution to

x̄AB =a cosh−1

(
a+ hLoop

a

)
+ a cosh−1

(
a+ hLoop − ȳAB

a

)
.

(2.28)

Once the value of a has been determined, the total length of the strip between A

and B is calculated using (2.25) and (2.26), and the values of xA and xB, which are

calculated as part of solving the system of equations (2.27). With the calculated value

of L, I can estimate nk and τ using (2.29) and (2.30), respectively, where TR is the

period of one revolution and Lk is length of strip produced during each revolution of

the casting rolls, which I assume to be equivalent to the circumference of the casting

rolls, CCR. In Eqn. (2.30), the operator mod(L/Lk) represents the modulus of L/Lk.

n̂k = floor(L/Lk) (2.29)



40

τ̂ = mod(L/Lk)TR (2.30)

Remark 1 In practice, the circumference of the casting roll may not be known exactly

after it has thermally expanded due to the high temperatures of the casting process.

This can introduce inaccuracies in the time delay estimates. To compensate for the

expansion of the casting rolls and other measurement uncertainties, an adaptive pa-

rameter can be introduced so that the estimated length of strip produced during each

revolution is modified. For example, I can approximate the circumference of the cast-

ing roll as ĈCR ≈ αCCR where CCR is the circumference of the casting roll at room

temperature and α is an adaptive parameter. The approximated circumference of the

casting roll circumference can then be used in place of Lk in (2.29) and (2.30). The

modification allows the delay estimate to converge toward the true delay, assuming

α makes ĈCR converge to the true circumference of the casting roll under operating

conditions.

Remark 2 As previously discussed, correlation-based delay estimation techniques are

unreliable for estimating delays in a periodic process that are multiple periods in

length. However, by using (2.29) as the definition of the iterative component of the

delay, the region of potential delays can be reduced to a single period of the process.

This enables the use of correlation-based delay estimation techniques to estimate the

residual component of the delay, τ̂ . One example of how this can be accomplished is

discussed in [64].

I validated the time-delay estimation algorithm using a dataset where the tilt of

one of the casting rolls (the position of one side of the roll minus the position of the

other side) undergoes a step sequence and the wedge signal tracks the step changes.

During the step sequence, the normalized loop height had a mean value of 0.45 and

a variance of 0.03 throughout the duration of the test. This results in a mean strip

length estimate of 5970mm with a variance of 60mm. Then, with the rotational



41

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-350

-300

-250

-200

E
nt

ry
 R

ol
l T

ilt
 (
7

m
)

0 20 40 60 80 100 120 140 160 180 200

Time (sec)

-40

-20

0

20

40

W
ed

ge
 (
7

m
)

Step down at 89.5 sec

Step down at 96.2 sec

Step up at 164.5 sec

Step up at 171.2 sec

Figure 2.15. The time delay can be measured in post processing by
comparing the time at which the steps occur in both the caster roll
tilt signal and the wedge measurement.

period being approximately TR = 1.47 seconds, the resulting time delay estimate is

675 samples on average, with a variance of 13 samples.

Furthermore, the estimate can be manually verified offline by measuring the delay

between the step sequence in the tilt signal versus the step sequence in the measured

wedge signal. As shown in Fig. 2.15, the delay between the tilt signal and the wedge

signal is approximately 6.7 seconds which means the estimate of TD is accurate to

within 0.1 seconds.

2.8 Chapter Summary

In this chapter I provided more details about the twin roll strip casting process

and how the input dynamics affect the solidification process of the strip. In Chapter

3, I will leverage that understanding to implement an ILC algorithm that adjusts



42

the tilt of the casting rolls, which affects the gap distance between the casting rolls,

to reduce the strip wedge that is formed due to eccentricities that appear during

the casting process. The eccentricities appear, in part, due to the nonuniform heat

transfer between the casting rolls and the molten steel as the rolls rotate through the

steel pool. The nonuniform heat transfer can cause localized thermal expansion in

the roll, which leads to a change in the gap distance that the steel is cast through.

Another key takeaway from this chapter is the insight I provided into the un-

certainty and aperiodic behavior that is experienced during the casting process. I

showed that a change in the rolls’ rotational speed or in the gap distance set point

affects the mushy fraction of the strip as it exits the nip of the casting rolls. The

mushy fraction provides a measure of the amount of steel exiting the nip of the cast-

ing rolls that is not completely solidified. A different mushy fraction at the nip of

the casting rolls can alter the mechanical dynamics associated with adjusting the gap

distance. This means that variations in the solidification dynamics could change the

effective damping and stiffness coefficients of the strip being produced. Because there

are some uncertainties associated with the solidification parameters, there is also un-

certainty in the mechanical parameters. Furthermore, the knowledge that the casting

speed can alter the magnitude of the mushy fraction means that when the casting

process is operating at a different speed, the nominal effective stiffness and damping

of the strip may also be different. These two findings—the parametric uncertainty

of the damping and stiffness coefficients and the ability of the casting speed to alter

the nominal behavior of the mechanical dynamics—motivate the work in Chapter 4,

which develops a robust linear parameter-varying ILC algorithm that accounts for

delays within the system.



43

3. ITERATIVE LEARNING CONTROL FOR TIME DELAY SYSTEMS

This chapter discusses the first two ILC algorithms that I propose in this thesis. This

chapter contains information that I published with Brad Rees, George T.-C. Chiu,

and Neera Jain in IEEE Transactions of Control Systems Technology [65] and at the

2019 ASME Dynamic Systems and Control Conference [66].

3.1 Iterative Learning Control

In this chapter, I consider the following discrete-time plant model for a periodic

process:

x(t+ 1, k) = Ax(t, k) +Bu(t, k) ,

y(t, k) = Cx(t− TD, k)

= C(zI − A)−1Bu(t− TD, k) + d(t− TD)

= G(z)u(t− TD, k) + d(t− TD)

(3.1)

where t is the time index, k is the iteration index, x is the state of process, u is the

input signal, and y is a delayed measurement of the output, which is taken some

time TD after the input signal u is applied to the process. The signal d(t − TD) is

an iteration-invariant exogenous signal that includes disturbances and the effects of

the initial condition of x. For the purpose of this paper, the initial condition of x

in iteration k is assumed to be equal to the final condition of x in iteration k − 1,

i.e., x(0, k) = x(TR, k − 1), where TR is the number of samples in each iteration.

The parameter G(z) , C(zI − A)−1B represents the discrete transfer function from

u(t−TD, k) to y(t, k), where z is a forward shift operator in the time domain zx(t, k) ≡

x(t + 1, k). The matrices A,B, and C are assumed to be appropriately dimensioned

state space matrices.



44

To analyze the effect of the delay on the ILC algorithm, I consider the widely used

ILC control law [9]

u(t, k + 1) = Q(z)[u(t, k) + L(z)e(t, k)] , (3.2)

where u(t, k) is the control input signal and e(t, k) is the error signal at time t

in iteration k. The linear time-invariant functions Q(z) and L(z) are the Q-filter

and learning function, respectively. The error of the process, e(t, k), relative to an

iteration-independent desired output for the process yd(t), is defined as

e(t, k) = yd(t)− y(t, k) ,

= yd(t)−G(z)u(t− TD, k)− d(t− TD) .
(3.3)

To compensate for a time delay longer than a single iteration of the process, i.e,

TD > TR where TR is the period of one iteration, I construct a model of TD as follows:

TD(k) = nkTR + τ(k) , (3.4)

where nk is the number of iterations that occur during the delay, and τ(k) is the

residual of TD(k) − nkTR. This definition allows us to treat the delay as the sum of

two delays: a delay of nk in the iteration domain and a delay of τ in the time domain.

With this definition, I can rewrite the error signal as

e(t, k) = −G(z)u(t− τ, k − nk) + yd(t)− d(t− τ)

= −G(z)u(t− τ, k − nk) +W (t) ,
(3.5)

where W (t) , yd(t)− d(t− τ) represents the iteration-invariant component of the

error that does not depend on the input signal u.

Using (3.4) and (3.5), the control law in (3.2) can be rewritten as

u(t, k + 1) = Q(z)[u(t, k) + L(z)(−G(z)u(t− τ, k − nk)

+W (t))] .
(3.6)

The mixed indices of u on the right hand side of (3.6), however, can result in

stability and performance problems because the controller modifies u(t, k+1) without



45

knowledge of how u(t, k) actually affected the process. To address this misalignment,

I modify the control law so that the control signal being defined is based on a prior

control signal and the error generated by it. In this modification, I shift the error

signal forward by an estimate of the delay. To maintain continuity, I shift the left

hand side of (3.6) forward by n̄k, which is the smallest positive integer that satisfies

n̄kTR > TD. I then use our estimate of TD to align the error signal with u(t, k). This

results in the control law given by

u(t, k + n̄k + 1) =Q(z)[u(t, k)

+ L(z)(−G(z)u(t+ τ̂ − τ, k + n̂k − nk)

+W (t+ τ̂)] ,

(3.7)

where τ̂ and n̂k are the estimates of the two components of TD.

By introducing a forward shift operator q in the k-domain qx(t, k) ≡ x(t, k + 1)

and reusing the z operator from before, (3.7) is rewritten as

qn̄k+1u(t, k) =Q(z)[I − L(z)qn̂kzτ̂e(t, k)]

=Q(z)(I − L(z)G(z)qn̂k−nkzτ̂−τ )u(t, k)

+Q(z)L(z)qn̂kzτ̂W (t) .

(3.8)

I can then state the following two proposition, which are extensions of the theorems

presented in [67].

Proposition 3.1.1 The system is asymptotically stable if and only if

ρ(Q(z)[I − L(z)G(z)qn̂k−nkzτ̂−τ ]) < 1 , (3.9)

where ρ(A) is the spectral radius of A.

A sufficient condition for stability of the system can be obtained by requiring

that Q(z)[I − L(z)G(z)qn̂k−nkzτ̂−τ ] be a contraction mapping [9,67]. For a z-domain

system G(z), I define ||G(z)||∞ = supθ∈[−π,π] |G(eiθ)|.

Proposition 3.1.2 The ILC system defined in (3.1), (3.8) is asymptotically stable if∥∥Q(z)(I − L(z)G(z)qn̂k−nkzτ̂−τ )
∥∥
∞ < 1 . (3.10)



46

Figure 3.1. For SISO systems, (3.10) can be expressed as the sum-
mation of vectors in the frequency domain.

The condition in (3.10) is a sufficient case and is generally more conservative than

the necessary and sufficient case in (3.9).

For a single-input single-output (SISO) system, (3.10) can be expressed as a re-

striction on the magnitude of the sum of two vectors in the frequency domain as

shown in Fig. 3.1. The time delay estimation error is equivalent to adding additional

phase to a vector of magnitude −|QLG|.

Corollary 1 For a SISO system and a control law (3.8) with positive scalar values

for Q and L, i.e., Q(z) = Q > 0 and L(z) = L > 0, if n̂k = nk, then the system is

asymptotically stable if

[Q−QL|G(ω)| cos(ω(τ̂ − τ) + ∠G(ω))]2

+ [−QL|G(ω)| sin(ω(τ̂ − τ) + ∠G(ω))]2 < 1 ,

for all ω ∈ R.



47

For SISO systems where τ is known and nk is unknown, an equivalent inequality

to the one stated in Corollary 1 can be obtained by substituting TR(n̂k−nk) for τ̂−τ .

The resulting inequality and its counterpart in Corollary 1 describe the effect that

estimation errors in τ and nk, respectively, have on the stability of the controller.

Remark 3 When there is non-zero delay estimation error, it can be shown that the

ILC algorithm is only stable if |Q| < 1 [9]. The error signal, however, cannot converge

to zero when |Q| < 1. For a stable controller, the asymptotic error of the system is

given by

‖e(t,∞)‖2 = lim
k→∞
‖e(t, k)‖2

= lim
q→1

∥∥(I −G(qn̄k+1I −Q+QLGqn̂k−nkzτ̂−τ )−1QLqn̂k−nkzτ̂−τ )(yd(t)− d(t))
∥∥

2

=
∥∥(I −G(I −Q+QLGzτ̂−τ )−1QLzτ̂−τ )(yd(t)− d(t))

∥∥
2
. (3.11)

Note that the asymptotic error is not dependent on the nk estimation error. How-

ever, as shown in Section 3.3.2, the nk estimation error affects the transient behavior

of the system.

Remark 4 For a stable SISO system with a sinusoidal output disturbance at the

frequency ω, (3.11) can be reduced to the following sensitivity function from ‖d(t)‖2

to ‖e(t,∞)‖2:

‖e(t,∞)‖2 =
(1−Q) ‖d(t)‖2

[(1−Q)2 +Q2L2G2 + 2(1−Q)QLG cos(ω(τ̂ − τ))]1/2
.

This expression provides a convenient way to calculate the norm of the asymptotic

error of the system given the values of Q, L, and τ̂ − τ . Specifically, I can examine

the effect that the delay estimation error has on the coefficient multiplying ‖d(t)‖2.

In order for the disturbance to be attenuated, the coefficient must have a value less

than 1. Using this relationship, I can derive the following inequality which provides a



48

bound on how much delay estimation error can be tolerated before the error from the

disturbance signal is amplified:

cos(ω(τ̂ − τ)) >
−QLG

2(1−Q)
. (3.12)

3.2 Adaptive Delay Estimation

In this section, I introduce an adaptive measurement delay estimation algorithm

for determining τ̂ in Eqn. (3.2), assuming that n̂k = nk. The goal of this algorithm

is to estimate the delay using the information that is available to the ILC algorithm,

as described in Sec. 3.1, and to improve the overall performance of the controller.

3.2.1 Nomenclature

To enable this analysis, I propose the following nomenclature. First, I will shift

the representation of the plant model and the ILC algorithm into the lifted domain. A

lifted-system representation of the linear time-invariant plant is created by expanding

G(z) as an infinite power series yielding

G(p) = g0 + g1z
−1 + · · ·+ gT−1z

−(T−1)



49

where the coefficients gk are Markov parameters [68]. The sequence g0, g1, . . . is the

impulse response of G. Stacking the input and output signals in vectors, the plant

dynamics in Eqn. (3.1) can be written as the T × T - dimensional lifted system
y(τ, k)

y(τ + 1, k)
...

︸ ︷︷ ︸
yk(τ)

y(τ + T − 1, k)

 =


gτ 0 . . . 0

gτ+1 gτ . . . 0
...

...
. . .

...

︸ ︷︷ ︸
G

gτ+T−1 gτ+T−2 . . . gτ




u(0, k)

u(1, k)
...

︸ ︷︷ ︸
uk

u(T − 1, k)



+


d(τ, k)

d(τ + 1, k)
...

︸ ︷︷ ︸
d

d(τ + T − 1, k)

 ,
(3.13)

with the error vector expressed as
e(0, k)

e(1, k)
...

︸ ︷︷ ︸
ek

e(T − 1, k)

 =


yd(0, k)

yd(1, k)
...

︸ ︷︷ ︸
yd

yd(T − 1, k)

−


y(0, k)

y(1, k)
...

︸ ︷︷ ︸
yk

y(T − 1, k)

 . (3.14)



50

The ILC algorithm (3.7), with nk = 0, n̄k = 1, can be represented in a lifted

format as

uk+1 =


q0 q1 . . . qT−1

q−1 q0 . . . qT−2

...
...

. . .
...

︸ ︷︷ ︸
Q

q−T+1 q−T+2 . . . q0

uk−1

+


`0 `1 . . . `T−1

`−1 `0 . . . `T−2

...
...

. . .
...

︸ ︷︷ ︸
L

`−T+1 `−T+2 . . . `0




e(τ̂ , k − 1)

e(τ̂ + 1, k − 1)
...

︸ ︷︷ ︸
ek−1(τ̂)

e(τ̂ + T − 1, k − 1)

 .
(3.15)

Then, due to the assumption that each iteration begins at the conclusion of the

previous iteration, any samples referring to an index t > T in iteration k − 1 would

correspond to samples at index t − T in iteration k. For the error vector in Eqn.

(3.15), this can be represented in the lifted-system form

ek−1(τ̂) =

0T−τ̂×τ̂ IT−τ̂×T−τ̂

︸ ︷︷ ︸
R(τ̂)

0τ̂×τ̂ 0τ̂×T−τ̂

 ek−1

+

0T−τ̂×τ̂ 0T−τ̂×T−τ̂

︸ ︷︷ ︸
S(τ̂)

Iτ̂×τ̂ 0τ̂×T−τ̂

 ek ,

(3.16)

where 0x and Ix are, respectively, zero and identity matrices of dimension x.

Furthermore, I make the following definition to simplify some of the notation used

when deriving the adaptive time delay estimation,

en(k) , ‖R(τ̂k)ek−1 + S(τ̂k)ek‖∞ .



51

3.2.2 Coupled Delay Estimation

As I showed in Eqn. (3.11), the time delay estimate affects the performance of the

system described by Eqns. (3.1) and (3.2). Assuming the system is asymptotically

stable for all delay estimates, i.e. even when τ̂ is not equal to τ , the asymptotic

norm of the error will be greater than the minimum value achievable for a given gain

set. The minimum error norm for a given plant and ILC algorithm is determined by

setting τ̂ = τ in Eqn. (3.11) and solving for ‖e(t,∞)‖∞. I denote this value as e∗.

To drive the norm of the measurement error toward e∗, I propose an adapta-

tion algorithm that updates τ̂ after each iteration to move toward τ . The proposed

adaptation law is

τ̂(k + 1) = τ̂(k) + β(en(k)− e∗) , (3.17)

where β is the adaptation gain associated with the error between en(k) and e∗.

Note that because I am working with a discrete system of period T , the value τ̂(k)

must be kept at integer values in the range [0, T − 1]. This can be accomplished by

rounding the value of τ̂(k) from Eqn. (3.17) down to the nearest integer value using

a floor operation and then adding or subtracting T , as needed, until the estimate is

within the range [0, T − 1]. The latter operation is akin to wrapping a phase angle

between [0, 2π].

Because the adaptation law relies on the error generated by the ILC algorithm,

the two are coupled. Therefore, satisfying Eqn. (3.10) does not guarantee asymptotic

stability of the coupled algorithm. I provide a new stability criteria in Theorem 3.2.1.

Theorem 3.2.1 If Q, L, and β are chosen such that

‖Q‖∞ + (‖L‖∞ + β) ‖G‖∞ < 1 , (3.18)

the closed loop adaptive time delay estimation and ILC system described by Eqns.

(3.1), (3.2), and (3.17) is asymptotically stable.

Proof Combining Eqns. (3.15) and (3.16) results in

uk+1 = Quk−1 +L[R(τ̂k)ek−1 + S(τ̂k)ek] . (3.19)



52

The error vectors in Eqn. (3.19) are obtained by combining Eqns. (3.13) and (3.14)

and representing the delay similar to the representation in Eqn. (3.16).

ek−1 = yd − [R(τ)Tyk−1 + S(τ)Tyk−2]

= yd −R(τ)T [Guk−1 + d]− S(τ)T [Guk−2 − d]

ek = yd − [R(τ)Tyk + S(τ)Tyk−1]

= yd −R(τ)T [Guk + d]− S(τ)T [Guk−1 − d]

(3.20)

This system is asymptotically stable if there exists a Lyapunov function V (X(k))

such that V (X(k)) > 0 for X ∈ D− {0} and V (X(k + 1))− V (X(k)) ≤ 0 for X 6= 0

in a domain D of X [69]. For this system, the fundamental dynamics are uk, uk−1,

and τ̂k. Therefore, I consider X(k) to be a vector that contains uk, uk−1, and τ̂k

and that has been defined such that X = 0 is an equilibrium point. To accomplish

both objectives I define the following terms: ũk = uk−u∞, ũk−1 = uk−1−u∞, and

τ̃k = τk − τ , where u∞ and τ are the equilibrium values of the control signal and the

time delay estimate, respectively. Then I can define X(k) as

X(k) =


ũk

ũk−1

τ̃

 .

Consider the following candidate Lyapunov function

V (X(k)) = ‖ũk‖∞ + ‖ũk−1‖∞ + |τ̃k| . (3.21)

From the definition of the vector ∞-norm and the definition of the absolute value

function, V (X(k)) > 0 for all nonzero X.

The value of V (X(k + 1)) is given by

V (X(k + 1)) = ‖ũk+1‖∞ + ‖ũk‖∞ + |τ̃k+1|

= ‖Qũk−1 +L[R(τ̂k)ẽk−1 + S(τ̂k)ẽk + F (τ̃k)e∞]‖∞

+ ‖ũk‖∞ + |τ̃k + β(en(k)− e∗)| ,



53

where ẽk = ek − e∞ and F (τ̃k) = R(τ̂k)−R(τ) +S(τ̂k)−S(τ). Then the difference

between V (X(k + 1)) and V (X(k)) is given by

V (X(k + 1))− V (X(k)) =

‖Qũk−1 +L[R(τ̂k)ẽk−1 + S(τ̂k)ẽk + F (τ̃k)e∞]‖∞

+ ‖ũk‖∞ + |τ̃k + β(en(k)− e∗)| − ‖ũk‖∞

− ‖ũk−1‖∞ − |τ̃k|

(3.22)

Expanding en(k), and noting e∗ = ‖e∞‖∞ = ‖[R(τ) + S(τ)]e∞‖∞ results in

|τ̃k + β(en(k)− e∗)| =

|τ̃k + β (‖R(τ̂k)ek−1 + S(τ̂k)ek‖∞ − ‖[R(τ) + S(τ)]e∞‖∞)| .

Substituting this expression into Eqn. (3.22) and using the triangle inequality pro-

duces

V (X(k + 1))− V (X(k)) ≤

‖Q‖∞ ‖ũk−1‖∞ + ‖L‖∞ ‖[R(τ̂k)ẽk−1 + S(τ̂k)ẽk + F (τ̃k)e∞]‖∞

+ |τ̃k|+ |β| ‖R(τ̂k)ek−1 + S(τ̂k)ek − [R(τ) + S(τ)]e∞‖∞

− ‖ũk−1‖∞ − |τ̃k|

=(‖Q‖∞ − 1) ‖ũk−1‖∞

+ (‖L‖∞ + |β|) ‖[R(τ̂k)ẽk−1 + S(τ̂k)ẽk + F (τ̃k)e∞]‖∞ .

Substituting in Eqn. (3.20) and again using the triangle inequality results in

V (X(k + 1))− V (X(k)) ≤

(‖Q‖∞ − 1) ‖ũk−1‖∞ + (‖L‖∞ + |β|) ‖F (τ̃k)‖∞ ‖e∞‖∞

+ (‖L‖∞ + |β|)
∥∥∥R(τ̂k)[−S(τ)TGũk−2 −R(τ)TGũk−1]

+ S(τ̂k)[−S(τ)TGũk−1 −R(τ)TGũk]
∥∥∥
∞

By defining U = maxi∈{k, k−1, k−2} ‖ui‖∞ and noting that ‖F (τ̃)‖∞ = 0, I obtain

the following inequality, which is satisfied by assumption:

V (X(k + 1))− V (X(k)) ≤ [‖Q‖∞ + (‖L‖∞ + |β|)G− 1]U < 0 .



54

3.3 Simulation Results

In this section I will demonstrate the functionality of the ILC algorithm that I

propose in Section 3.1 through a series of simulations. The simulations will be based

on the twin roll strip casting process described in Chapter 2. The rotational nature

of the casting process introduces repetitive dynamics into the system, which makes

it a good candidate for ILC. Furthermore, due to the high temperatures associated

with casting process, there is also a large time delay present in the system. This time

delay can span more than one roll revolution in length, which makes feedback control

difficult, if not practically infeasible. The feedforward nature of the ILC algorithm

is therefore an attractive approach for regulating the strip thickness of the casting

process.

3.3.1 Plant Model

Controlling the gap distance between the casting rolls is the primary actuation

mechanism used for regulating the thickness profile of the strip. [70]. In order to

study the effect that the proposed ILC algorithm has on reducing the strip wedge,

I require a plant model that describes how a gap reference signal, specifically a tilt

reference command, affects the wedge measurement signal. The tilt of a casting roll is

defined as the relative displacement of one end of the roll compared to the other end

of the roll. The wedge measurement signal is generated by comparing the thickness

of one edge of the strip to the thickness on the opposite edge of the strip.

To construct a model that I can use in simulation and for tuning the ILC algorithm,

I use system identification techniques on a dataset where the input tilt signal is a

square wave. The resulting normalized measured wedge signal is shown in Fig. 3.2.

The normalization is done such that the maximum allowable value for the signal is

given a value of 1.

The effect of the input square wave is apparent in Fig. 3.2, but the dynamic

response is masked by the presence of the periodic disturbance as well as measurement



55

0 50 100 150 200 250 300

Time (sec)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

M
ea

su
re

d 
W

ed
ge

Figure 3.2. The normalized magnitude of the measured wedge signal
changes in response to the input signal. The sign of the measurements
signifies which side of the strip is thicker.

noise. The measured wedge signal represents a noisy, delayed measurement of the

plant’s response to the input tilt signal in addition to a periodic disturbance that is

caused by the unmodeled eccentric properties of the casting rolls. The relationship

between the input, output, and disturbance signals is shown in Fig. 3.3.

To identify a model of the plant using the data shown in Fig. 3.2, I apply filters

to remove the disturbance and noise signals. The magnitude plot of the fast Fourier

transform of the measured signal is shown in Fig. 3.4. There are large peaks at

both the rotational frequency (0.68 Hz) and twice the rotational frequency (1.36

Hz). These correspond to the periodic disturbance signal. There are also peaks at

higher harmonics, but the first two harmonics are more than five times greater than

the other peaks. Significant measurement noise exists above 1.5 Hz, which can also

hinder the plant identification process. To reduce the effect of the disturbance and

noise signals, I used MATLAB’s filtfilt command to filter the measured wedge

signal. To attenuate the disturbance signals, I applied two third-order Butterworth

band-stop filters: one with cutoff frequencies at 3 rad/sec and 6 rad/sec and another



56

Figure 3.3. The measured wedge signal is a delayed measurement of
the plant’s response to the input tilt signal summed with a periodic
disturbance and measurement noise.

0 2 4 6 8 10

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

U
nf

ilt
er

ed
 W

ed
ge

 S
ig

na
l

M
ag

ni
tu

de

Rotational Frequency - 0.68 Hz

2x Rotational Frequency - 1.36 Hz

Figure 3.4. The fast Fourier transform of the measured wedge signal
shows large peaks at the rotational frequency and twice the rotational
frequency.

with cutoff frequencies of 6 rad/sec and 10 rad/sec. The high frequency noise was

removed using a sixth-order low-pass Butterworth filter with a cutoff frequency of 9

rad/sec. The resulting filtered signal is plotted in Fig. 3.5.



57

0 50 100 150 200 250 300

Time (sec)

-0.2

-0.1

0

0.1

0.2

F
ilt

er
ed

 W
ed

ge

-1

-0.5

0

0.5

1

In
pu

t

Figure 3.5. The filtered wedge signal reflects the step changes in the
input signal. The solid line is the normalized filtered wedge signal
and the dashed line is the normalized input signal.

After filtering the wedge signal to obtain XW,f , I used the SysID Toolbox in

MATLAB to find a polynomial model of the form A(z)XW,f (t) = B(z)u(t) given by

XW,f (k) = 0.186z−671u(k) . (3.23)

The model is able to achieve a normalized root mean square error fit percentage of

81.65% as shown in Fig. 3.6. Note that the exponent of z represents the time delay

of the process, in samples. The value that the SysID Toolbox determined was 671

samples.

3.3.2 Simulation Results

Using the plant model identified in Section 3.3.1 and the error function defined in

(3.3), I obtain

e(t, k) = yd(t)− 0.186u(t− τ, k − nk) + ∆(t) . (3.24)



58

0 50 100 150 200 250 300

Time (sec)

-0.2

-0.1

0

0.1

0.2

W
ed

ge

Actual
Estimate - Fit 81.68%

Figure 3.6. A comparison of the estimated plant dynamics to the
filtered wedge dynamics.

For this simulation I consider the case in which yd(t) = 0∀t, τ = 10, nk = 4, and

∆(t) = sin( 2π
TR
t), where TR = 180 samples. I use a control law of the same form as

(3.7), where

u(t, k + n̄k + 1) = Q(z)[u(t, k)

+ L(z)(− sin

(
2π

TR
(t+ τ̂ − τ)

)
− 0.186u(t+ τ̂ − τ, k + n̂k − nk))] .

(3.25)

If both τ̂ = τ = 10 and n̂k = nk = 4, Proposition 3.1.2 states that the system will

be asymptotically stable if I choose Q > 0 and L > 0 such that

‖Q− 0.186QL‖∞ < 1 .

Choosing Q = 1 means I may choose any L < 10.75. Considering L = 5, the norm of

the error signal converges to zero as shown in Fig. 3.7.

If τ̂ 6= τ , but n̂k = nk = 4, Corollary 1 states that the system will be asymptoti-

cally stable if I choose Q > 0 and L > 0 such that

(Q− 0.186QL cos (10ω))2 + (0.186QL sin(10ω))2 < 1 ,



59

for all ω ∈ R. Choosing a gain set of Q = 0.7 and L = 10/7 satisfies this criteria for

all τ̂ ∈ [0, TR). As Figs. 3.8 and 3.9 show, the norm of the error signal resulting from

an ILC algorithm with this gain set converges for all τ̂ ∈ [τ, τ + TR/2], but the final

value is never zero. This is expected, as mentioned in Remark 3, because Q < 1 and

there are errors in the estimate of τ . Note that the range τ̂ ∈ [τ, τ+TR/2] = [10, 100]

represents the full range of errors in the estimate of τ in this example because of the

periodicity of the process.

Furthermore, I can see in Fig. 3.9 that when

cos
( π

90
(τ̂ − τ)

)
<
−(0.7)(10/7)(0.186)

2(1− 0.7)

the asymptotic error is greater than the initial error. In these cases, the delay esti-

mation error is too large for the ILC algorithm to improve system performance over

open loop operation. Note that in the case when τ̂ = 100, the angle of the −QLG

vector in Fig. 3.1 is 2π/180(100− 10) = π radians, which places the −QLG arrow on

the positive real axis, pointing away from the origin. This is the worst possible case

for the delay estimation.

As noted in Remark 3, the nk estimate does not affect the asymptotic error. This is

illustrated in Fig. 3.10, where an ILC algorithm of the form (3.8) and gain set Q = 0.7

and L = 10/7 causes the norm of the error signal to converge to the same steady-state

value, regardless of the nk estimate. The transient behavior of the system, however,

varies considerably. Underestimating nk leads to faster convergence, but the behavior

becomes oscillatory in the iteration-domain. This may be unacceptable for a given

application.

Overall, these demonstrations illustrate how the proposed delay estimation algo-

rithm can be incorporated into an ILC framework. They also show that the ILC

algorithm is capable of reducing the magnitude of the error signal, even in the pres-

ence of nonzero estimation errors when (3.12) is satisfied.



60

0 10 20 30 40 50

Iteration Index, k

0

0.2

0.4

0.6

0.8

1

||e
|| 1

Figure 3.7. When the estimated values of nk and τ are equal to their
true values, the norm of the error signal converges to zero asymptot-
ically.

0 50 100 150 200 250 300

Iteration Index, k

0.6

0.7

0.8

0.9

1

||e
|| 1

=̂ = 10
=̂ = 20
=̂ = 30
=̂ = 40
=̂ = 50

Figure 3.8. When the estimated value τ differs from its true value
by a small amount, the norm of the error signal still converges to a
value that is less than the initial error.

3.4 Simulation Results for Adaptive Time Delay Estimation

In this section, we demonstrate the performance of the combined iterative learning

control and adaptive time delay estimation algorithm proposed in Section 3.2 using



61

0 50 100 150 200 250 300

Iteration Index, k

0

0.5

1

1.5

2

2.5

3

||e
|| 1

=̂ = 60
=̂ = 70
=̂ = 80
=̂ = 90
=̂ = 100

Figure 3.9. When the estimated value τ differs from its true value
by a large amount, the norm of the error signal converges to a value
greater than its initial value.

0 20 40 60 80 100

Iteration Index, k

0.5

0.6

0.7

0.8

0.9

1

||e
|| 1

n̂k = 4
n̂k = 3
n̂k = 2
n̂k = 1
n̂k = 0

Figure 3.10. When the estimated value nk differs from its true value
by a small amount, the norm of the error signal still converges to a
value that is less than the initial error, but the transient response
changes.

a simulated case study. For these simulations, we consider the plant model in Eqn.



62

‖e(t,∞)‖ =
∥∥∥ 1−Q

[(1−Q)2+L2|G(ω)|2+2(1−Q)L|G(ω)| cos(ω(τ̂−τ)+∠G(ω))]1/2
(yd(t)− d(t))

∥∥∥
∞

=

∥∥∥∥ 0.3

[(1−0.7)2+(1)2(0.186)2+2(1−0.7)(1)(0.186) cos( 2π
180

(τ̂−(50)))]1/2
(0− d(t))

∥∥∥∥
∞

=

∣∣∣∣∣ 0.3

[0.124596 + .1116 cos
(

2π
180

(τ̂ − 50)
)
]1/2

∣∣∣∣∣
(3.26)

(3.1) with G = 0.186, τ = 50 samples, d(t) = sin(2π
T
t), and T = 180 samples. The

control objective is to reduce the output of the system to zero, i.e. yd(t) = 0. To do

this we will use the ILC control law defined in Eqn. (3.2) and τ̂(k) given by Eqn.

(3.17). Different values of τ̂(0) will be considered in the case study. Based on the

plant model G, we choose Q(p) = 0.7, L(p) = 1, and β = 0.5 so that Eqn. (3.18) is

satisfied. With this system description, the asymptotic error for a static τ̂ in Eqn.

(3.11) can be expressed as Eqn. (3.26). This enables us to compare the proposed

algorithm’s performance against the performance of an ILC algorithm that uses a

static delay estimate.

The first case we illustrate is one in which τ̂(k) = τ , for all k. In this case, we

expect that the ILC algorithm will reduce the norm of the error to a value of 0.61,

which is equivalent to e∗ for the given plant and ILC algorithm. As shown in Fig.

3.11, this is indeed achieved. The reason the error does not converge to zero is because

a nonunity Q value was used to make the algorithm robust to time delay estimation

error.

In the second case, we use the adaptation algorithm in Eqn. (3.17) with an initial

delay estimate of τ̂(0) = 80 samples. As shown in Fig. 3.12, this estimation error

causes the error signal to deviate away from the minimal error. If we used τ̂ = 80 for

all k, the norm of the error converges to 0.71. However, with the proposed adaptation

law, we are able to reduce the norm of the error to the minimal value by changing

the value of τ̂ . The value of τ̂ is shown in Fig. 3.13. Due to the sign of β, the delay

estimate initially deviates further away from the true value of τ , resulting in the norm



63

0 50 100 150 200

Iteration Index, k

0.6

0.7

0.8

0.9

1

||
e

||
∞

Figure 3.11. The norm of the error signal in case 1 converges to the
theoretical minimum value of 0.61.

of the error signal deviating from the optimal trajectory. After the value of τ̂ moves

above τ̂ = τ + T/2, the norm of the error signal begins to decrease until it converges

to e∗ as τ̂ wraps back to zero and converges to τ .

In the third case, we again use the adaptation algorithm in Eqn. (3.17), but

with an initial delay estimate of τ̂(0) = 140 samples. This represents the worst

case scenario, where τ̂ is T/2 samples away from the true value of τ and the cosine

function in Eqn. (3.26) has a value of −1. In this case, the ILC algorithm we have

proposed remains asymptotically stable with a steady state norm of the error signal

of 2.63, meaning that the ILC algorithm results in a larger error than if the system

was operating open loop. With the adaptive time delay estimate, however, we are

able to reduce the norm of the error signal to the minimal value 0.61, as shown in

Fig. 3.14. To do this, the adaptation law increased the value of τ̂ until it reached

T , at which point we wrapped the value back to 0, so that τ̂ stayed in the range



64

0 1000 2000 3000 4000 5000

Iteration Index, k

0.5

1

1.5

2

2.5

||
e
||
∞

Adaptive τ̂

Perfect

τ̂ = 80

Figure 3.12. The norm of the error signal in case 2 initially is larger
than if a static τ̂ = 80 is used. It eventually converges to the same
value as case 1, which represents the performance with a perfect delay
estimate.

0 1000 2000 3000 4000 5000

Iteration Index, k

0

50

100

150

200

τ̂

Adaptive τ̂

Perfect

Figure 3.13. Time delay estimate versus the true time delay for case 2.

0 ≤ τ̂ < T . Then the delay estimate increased from 0 until it converged to the true

value of τ = 50. The wrapping effect and the convergence to τ = 50 is shown in Fig.

3.15.



65

0 500 1000 1500 2000

Iteration Index, k

0.5

1

1.5

2

2.5

3

||
e
||
∞

Adaptive τ̂

Perfect

τ̂ = 140

Figure 3.14. The norm of the error signal in case 3 is always smaller
than if a static τ̂ = 140 is used. It eventually converges to the same
value as case 1, which represents the performance with a perfect delay
estimate.

0 500 1000 1500 2000

Iteration Index, k

0

50

100

150

200

τ̂

Adaptive τ̂

Perfect

Figure 3.15. Time delay estimate versus the true time delay for case 3.

Note that in both cases 2 and 3, the delay estimate increases until it wraps around

from τ̂ = T to τ̂ = 0 and then continues to increase until τ̂ converges to τ . The

reason for this is that β(en(k) − e∗) is a strictly positive number with my choice of



66

0 1000 2000 3000 4000 5000

Iteration Index, k

0.6

0.7

0.8

0.9

1

||
e
||
∞

Adaptive τ̂

Perfect

τ̂ = 80

Figure 3.16. The norm of the error signal in case 4 behaves similarly
to the norm of the error signal in case 2. In this case, however, the
norm never exceeds en(0).

0 1000 2000 3000 4000 5000

Iteration Index, k

50

60

70

80

90

100

τ̂

Adaptive τ̂

Perfect

Figure 3.17. Time delay estimate versus the true time delay for case 4.

β. To correct for this, we can multiply β by the term γ(k) ∈ {−1, 1}, which we can

use to adapt the direction in which the delay estimate is updated, i.e. increased or

decreased. We denote the new adaptation gain as β̄ = βγ(k). Due to the definition of



67

0 200 400 600 800 1000

Iteraton Index, k

-1

-0.5

0

0.5

1

γ

Figure 3.18. Switching parameter, γ(k), for case 4.

γ(k), |β̄| = |β| and condition (3.18) is still satisfied, guaranteeing asymptotic stability.

One way to update the direction of the adaptation law is to change the sign of γ(k)

if en(k − 1) − en(k − 2) > ε and en(k − 1) − 2en(k − 2) + en(k − 3) > 0 for some

small positive number ε. This update causes the adaptation law to switch directions

if the norm of the error signal increases from iteration to iteration and if the rate of

that increase is increasing. This makes the algorithm perform in a similar manner to

a gradient descent method.

Case 4 repeats the simulation from case 2 using the new β̄ adaptation gain in

place of β, with γ(0) = 1 and ε = 0.001. This results in the error profile shown in Fig.

3.16 and the delay estimate shown in Fig. 3.17. After the change in the error profile

has satisfied both en(k− 1)− en(k− 2) > ε and en(k− 1)− 2en(k− 2) + en(k− 3) >

0, the sign of γ changes, as shown in Fig. 3.18. This change in the adaptation

direction causes τ̂ to converge to τ without having to wrap from τ̂ = T to τ̂ = 0.

This also results in a norm of the error signal being below the value of en(0) at

every iteration, meaning that the combined ILC and adaptive time delay estimation

algorithm improved performance of the system at every iteration.



68

3.5 Experimental Validation

In addition to the simulation studies, I tested the combined time delay estimation

and ILC algorithm at Castrip’s facility in Nucor Corporation’s plant in Crawfordsville,

Indiana. In one test, I used a constant gain of Q = 0.8 and L = 10/7. The delay

estimate, TD, and the normalized ‖eW‖∞ for each iteration k are plotted in Fig.

3.19. In this case, ‖eW‖∞ is defined as the vector ∞-norm of the error signal over all

samples t in iteration k. The dashed line at iteration 70 designates the time at which

the ILC algorithm was initiated. The normalization was done in such a way that the

average ‖eW‖∞ during the period before the ILC was initiated was assigned a value

of 1. The wedge measurement is not perfectly periodic, which causes the scatter seen

in the ‖eW‖∞ plot. Therefore, I analyze the average reduction that the algorithm is

able to achieve. From the time the ILC algorithm was initiated until iteration 400,

the ILC algorithm reduced the wedge by approximately 48%, on average.

In another test conducted on a different day with a different roll set, I used a

constant gain of Q = 0.8 and L = 1.25. The delay estimate, TD, and the normalized

‖eW‖∞ for each iteration k are plotted in Fig. 3.20. The dashed line at iteration

100 designates the point at which the ILC algorithm was initiated.The results are

normalized such that the average value of ‖eW‖∞ during the first 100 iterations is

assigned a value of 1.

To analyze the effectiveness of the ILC algorithm in this test, I focus on the results

from the first 400 iterations, which are shown in Fig. 3.21. From the time the ILC

algorithm was initiated until iteration 400, the ILC algorithm was able to reduce the

wedge by approximately 29%, on average.

At approximately iteration 2900, the grade of steel being cast changed, and the

casting speed changed in reaction. The change in the casting speed is shown indirectly

by the changes in the delay estimate in Fig. 3.20(a). Focusing on the region of the test

where the grade of steel changed, Fig. 3.22 shows that, after some initial transients,

the ILC algorithm was able to recover from the change in the process and reduce the



69

0 50 100 150 200 250 300 350 400

Iteration Index

6.5

7

7.5

D
el

ay
 E

st
im

at
e 

(s
ec

)

(a)

0 50 100 150 200 250 300 350 400

Iteration Index

0

0.5

1

||e
W

|| 1

(b)

Figure 3.19. In the first test, the combined time delay estimation
and ILC algorithm is able to reduce the norm of the wedge signal by
approximately 48%, on average.

norm of the wedge signal beginning at approximately iteration 3500. The change in

the grade of steel occurred when the operator changed ladles during the cast. The

ladles are used to pour molten steel on the casting rolls. During a single cast, multiple

ladles may be used to maximize the strip production. However, each ladle may contain

a slightly different grade of steel, which can introduce an aperiodic disturbance to the

casting process. The use of a non-unity Q-filter makes the ILC algorithm robust to

these aperiodic disturbance because the non-unity Q-filter discounts the learning from

previous control inputs.



70

0 1000 2000 3000 4000 5000 6000 7000

Iteration Index

6

6.5

7

7.5

D
el

ay
 E

st
im

at
e 

(s
ec

)

ILC Initiated
Ladle Change

(a)

0 1000 2000 3000 4000 5000 6000 7000

Iteration Index

0

0.5

1

1.5

2

||e
W

|| 1

(b)

Figure 3.20. In the second test, the ILC algorithm was initiated at
approximately iteration 100. There was a ladle change at approxi-
mately iteration 2900, which caused the wedge to increase and the
casting speed to change.

3.6 Chapter Summary

In this chapter I described two different iterative learning control (ILC) algorithms

designed to compensate for time-delays in periodic systems. First, I proposed an ILC

algorithm for a class of periodic processes with a variable time-delay that is greater

than one iteration in length. I separated the total delay estimate into two compo-

nents: an iterative estimate, nk, based on the number of iterations contained within

one delay period and a residual estimate, τ . This structure enabled the derivation

of an ILC stability law that is a function of the estimation error in nk and in τ .



71

0 50 100 150 200 250 300 350 400

Iteration Index

6.6

6.8

7

7.2

7.4

7.6

D
el

ay
 E

st
im

at
e 

(s
ec

)

(a)

0 50 100 150 200 250 300 350 400

Iteration Index

0

0.5

1

1.5

2

||e
W

|| 1

(b)

Figure 3.21. In the second test, the combined time delay estimation
and ILC algorithm is able to reduce the norm of the wedge signal by
approximately 29%, on average.

Through a simulated case study, I demonstrated the sensitivity of the ILC algorithm

to estimation error in nk and in τ as well trade-offs in performance that arise through

errors in each estimate.

I also proposed a coupled adaptive measurement delay estimation and ILC algo-

rithm for a class of periodic systems characterized by unknown measurement delay.

The delay estimation algorithm works similarly to a gradient descent method that

drives the norm of the output error signal from the ILC system to its minimal value.

I provided a sufficient condition that can be used to design an asymptotically stable

algorithm. Through simulation, I demonstrated that the combined measurement de-



72

2500 3000 3500 4000

Iteration Index

6

6.5

7

7.5

D
el

ay
 E

st
im

at
e 

(s
ec

)

(a)

2500 3000 3500 4000

Iteration Index

0

0.5

1

1.5

2

||e
W

|| 1

(b)

Figure 3.22. After a ladle change causes a change in the grade of steel
being cast in the second test, the ILC algorithm is able to recover from
the change in the process and reduce the norm of the wedge signal
within approximately 500 roll revolutions.

lay estimation and ILC algorithm is capable of reducing the norm of the error signal

to its minimal value, even if the initial delay estimate is 180 degrees out of phase with

the process.

In addition to the simulations, I applied an uncoupled ILC and time delay es-

timation algorithm to a twin roll strip casting process operated by Nucor Steel in

Crawfordsville, Indiana. The ILC algorithm was used to counteract one measure of

the strip eccentricity that appears during the casting process. By defining one it-

eration of the process as one roll revolution, the ILC law I proposed in Section 3.1



73

reduced the norm of the strip wedge signal by approximately 50% compared the strip

wedge that is present before the ILC algorithm is used.

Overall, the two ILC algorithms described in this chapter demonstrated that in-

corporating the delay estimate into the ILC formulation enables more robustness and

better performance. However, both algorithms are sensitive to plant variations. In

Fig. 3.22, the process parameters changed when the casting speed changed, as de-

scribed in Chapter 2. This resulted in the increase in the norm of the wedge signal

seen at approximately iteration 3100 in Fig. 3.22(b) because the algorithm did not ac-

count for the change in operating condition. In the coupled ILC and delay estimation

algorithm, a similar problem arises if the plant model is not known perfectly and e∗ is

incorrect. In that case, the adaptive time delay does converge to the true delay and

the algorithm is not guaranteed to reduce the error. Both of these scenarios motivate

the work discussed in Chapter 4, where both parametric and delay uncertainty are

factored into the formulation of a norm-optimal ILC algorithm.



74

4. LINEAR PARAMETER VARYING ITERATIVE LEARNING CONTROL

As stated in Chapter 2, the twin roll strip casting process motivating this research

can be characterized as a periodic system that can experience parametric uncertainty,

time delay estimation error, and linear parameter varying dynamics, especially if the

rotational speed changes. These features can result in poor system performance

or even instability if not considered in the controller design. For that reason, it

is important to examine how all three types of features affect the iterative learning

control algorithm and how the algorithm can be formulated to improve its robustness.

In this chapter I describe a norm-optimal ILC algorithm that defines the ILC filters

such that both performance and robustness criteria are satisfied. Norm-optimal ILC

algorithms have been proposed recently, e.g., [17–20], for achieving robust control in

the presence of multiplicative plant uncertainty. However, as discussed in Chapter.

1, existing literature does not consider how norm-optimal ILC can be extended to

plants with time delay uncertainty and LPV dynamics.

4.1 Problem Definition

To begin the analysis, consider the following discrete-time plant model with mea-

surement delay

y(t, k, θ) = G(p, θ)p−τu(t, k) + d(t) , (4.1)

where G(p, θ) is an asymptotically stable, parameter-varying plant model mapping

the input signal u(t, k) at sample t ∈ [0, T ] in iteration k ∈ Z+ to the measured

output signal, y(t, k), and p is a forward shift operator in the sample t-domain.

The signal d(t) represents a periodic (iteration-invariant) disturbance signal that is

assumed to be bounded such that ‖d(t)‖∞ ≤ dm. The variable θ represents the

scheduling parameter about which a set of plant models is defined. The measurement



75

delay, τ , is assumed to be an unknown integer value in the range 0 ≤ τ < T samples.

Additionally, I assume that the initial conditions are reset at the beginning of each

iteration such that y(t, k) = 0 for t ∈ [−T, 0].

The control objectives for this plant are defined as follows:

O1 Tracking Performance - Minimize the tracking error between y(t, k) and an

iteration-invariant desired output signal yd(t) where the tracking error is given

by

e(t, k) = yd(t)− y(t, k) . (4.2)

O2 Input Saturation Avoidance - Prevent input saturation by satisfying,

|u(t, k)| ≤ usat , (4.3)

where usat is the saturation level.

O3 Convergence Speed - Achieve convergence of the error signal to a maximum

tolerable error norm value, Ē, within K iterations.

To achieve the control objectives, I assume a process model of the following form

with multiplicative uncertainty:

y(t, k) = Ĝ(p, θ, τ̂)[1 +Wo(p, θ)∆(p)]u(t, k) + d(t) , (4.4)

where Ĝ is the nominal process model, τ̂ is the delay estimate, Wo(p, θ) is a stable,

invertible, and potentially parameter-dependent weighting matrix, and ∆ is a stable

transfer transfer function such that ‖∆(p)‖∞ < 1. The vectors y(t, k), u(t, k), and

d(t) are as defined in (4.1).

To reject the periodic disturbance, I define an ILC algorithm of the form

u(t, k + 1) = Q(θ)u(t, k) + L(θ, τ̂)e(t+ 1, k) , (4.5)

where Q(θ) and L(θ, τ̂) are filters to be designed.



76

Because ILC operates over a finite period of time in each iteration, a lifted setting

can be used to analyze the system. A lifted-system representation of the linear time-

invariant plant is created by expanding G(p, θ, τ) as an infinite power series yielding

G(p, θ, τ) = gτ (θ)p
−τ + gτ+1(θ)p−τ−1 + · · ·+ gτ+T−1(θ)p−τ−(T−1)

where the coefficients gk(θ) are Markov parameters that may depend on θ [68]. The

sequence gτ (θ), gτ+1(θ), . . . is the impulse response of G(p, θ, τ). Stacking the input

and output signals in vectors, the plant dynamics in Eqn. (4.4) can be written as the

T × T dimensional lifted system

yk = Ĝ(θ, τ̂ )[I +Wo∆]uk + d (4.6)

with the error vector expressed as


e(0, k)

e(1, k)
...

︸ ︷︷ ︸
ek

e(T − 1, k)

 =


yd(0, k)

yd(1, k)
...

︸ ︷︷ ︸
yd

yd(T − 1, k)

−


y(0, k)

y(1, k)
...

︸ ︷︷ ︸
yk

y(T − 1, k)

 . (4.7)

The ILC update law can also be represented in the lifted domain as

uk+1 = Quk +Lek (4.8)

One desired outcome of the ILC algorithm is robust convergence, which, for the

ILC system (4.6), (4.8), is defined as having the property that there exists 0 < γ < 1

for all G such that for some k > K ∈ N:

‖ek+1‖2 ≤ γ ‖e0‖2 ,

where e0 is the initial error.



77

Satisfying control objectives O1 and O3 is directly influenced by the the robust

convergence property of the system. Control objective O1 is effected by the size of

γ. To minimize the tracking error of the system, a minimal value of γ is needed.

Similarly, to satisfy control objective O3 and converge to a maximum tolerable norm

value of the error signal, γ must satisfy γ ≤ Ē/ ‖e0‖2.

4.2 Robust Norm Optimal ILC

To achieve robust convergence and also satisfy control objectives O1, O2, O3, I

propose a robust norm-optimal ILC algorithm. Norm-optimal ILC algorithms have

previously been used in literature [18,19] to address the robust convergence property

but have not considered the effect that delays and parameter variations have on the

design procedure.

For a norm optimal ILC algorithm, the control objectives are recast as an opti-

mization problem with the cost function

J = ek+1
TRek+1 +Uk+1

TSUk+1 + (Uk+1 − Uk)TT (Uk+1 − Uk) , (4.9)

where R = RT > 0, S = ST > 0, T = T T > 0 denote weighting matrices that

are to be designed. The minimal value of the cost function can be solved for the

nominal model of the process by substituting (4.6) and (4.7) with Wo = 0 into the

cost function and solving ∂J
∂Uk+1

= 0. After substituting (4.6) and (4.7) into (4.9) and

dropping the τ̂ term from G(θ, τ̂ ) to simplify the notation, J is given as,

J = (yd − yk+1)TR(yd − yk+1) +Uk+1
TSUk+1 + (Uk+1 − Uk)TT (Uk+1 − Uk)

= (yd − Ĝ(θk+1)Uk+1 − d)TR(yd − Ĝ(θk+1)Uk+1 − d)

+Uk+1
TSUk+1 + (Uk+1 − Uk)TT (Uk+1 − Uk) .

(4.10)

Then ∂J
∂Uk+1

is given by,



78

∂J

∂Uk+1

= 2Ĝ(θk+1)
T
R(yd − Ĝ(θk+1)Uk+1 − d) + 2SUk+1 + 2T (Uk+1 − Uk)

= 2
(
Ĝ(θk+1)

T
RĜ(θk+1) + S + T

)
Uk+1

− 2
(
T + Ĝ(θk+1)

T
RĜ(θk)

)
Uk − 2Ĝ(θk+1)

T
Rek

(4.11)

Setting (4.11) equal to zero and solving for Uk+1 results in

Uk+1 =
(
Ĝ(θk+1)

T
RĜ(θk+1) + S + T

)−1

×
((
T + Ĝ(θk+1)

T
RĜ(θk)

)
Uk + Ĝ(θk+1)

T
Rek

)
.

(4.12)

Noting that (4.12) has the same structure as (4.8), setting both equations equal to

each other yields the following optimal values for Q and L :

Q =
(
Ĝ(θk+1)

T
RĜ(θk+1) + S + T

)−1 (
T + Ĝ(θk+1)

T
RĜ(θk)

)
(4.13)

L =
(
Ĝ(θk+1)

T
RĜ(θk+1) + S + T

)−1

Ĝ(θk+1)
T
R (4.14)

While the optimal ILC filters are designed based on the nominal model Ĝ, a

sufficient condition for achieving robust convergence is needed and provided in [19]

as

‖Q− LG(θk, τ )‖i2 < 1 . (4.15)

Substituting (4.8), (4.13), and (4.14) into (4.15) results in (4.16), which can be

used to design the weighting matrices (R, S, T ) such that robust convergence is

achieved for the true system with multiplicative uncertainty.

max
∆

∥∥∥∥(Ĝ(θk+1)
T
RĜ(θk+1) + S + T

)−1 (
T − Ĝ(θk+1)

T
RĜ(θk)Wo∆

)∥∥∥∥
i2

< 1

(4.16)

In (4.16), it can be seen that S is the only matrix that is exclusively in the inverted

portion of the expression. Because of this, S is the most powerful term for ensuring



79

robust convergence. Increasing ‖S‖i2 yields a smaller quantity on the left hand side of

(4.16). However, S also has an effect on the error attenuation in the system because

it is the weighting matrix for the input signal in the cost function, and increasing

‖S‖i2 results in less emphasis on tracking performance.

The error attenuation of the system can be evaluated by examining the error as

the iteration index increases. For an LTI system, the notion of e∞ , limk→∞ ek is

commonly used to evaluate the performance. For an LPV case such as the one consid-

ered in this thesis, the error signal does not necessarily converge as k →∞. Instead, I

define e∗ as e∗ , lim supk→∞ ‖ek‖ and use e∗ to evaluate the error attenuation ability

of the ILC algorithm [20]. The value e∗ exists if the system is bounded, which is

guaranteed if (4.16) is satisfied. To evaluate e∗, I assume |yd(t)| < ζ, ∀ t ∈ [0, T ] and

that the ILC update law satisfies

‖Q− LG‖2 < λ < 1 , (4.17)

where G is given by (4.6) and represents all admissible plants, and Q and L are given

by (4.13) and (4.14), respectively. This then yields the same inequality as (4.16), with

the notable addition of requiring that the left hand side is less than λ < 1.

By assuming (4.17) is true, it can be shown that the input signal converges to a

bounded region about the nominal input signal, ūk, which is defined as the input that

is produced by the ILC algorithm assuming the nominal model is correct:

lim sup
k→∞

∥∥Uk − Ūk∥∥ ≤ ‖L‖
∥∥∥ĜWo

∥∥∥∥∥Ū∞∥∥+ ζ + dM

1− λ
. (4.18)

Then the error can be shown to converge to a bounded region about the nominal error,

ēk, which is defined as the error that is achieved if the nominal model is correct:

lim sup
k→∞

‖ek − ēk‖ ≤ ‖L‖


∥∥∥Ĝ∥∥∥+

∥∥∥ĜWo

∥∥∥
1− λ

+ 1

 (
∥∥∥ĜWo

∥∥∥∥∥Ū∞∥∥+ ζ + dM) . (4.19)

In (4.18) and (4.19), it is clear that the quantity ‖L‖ /(1−λ) affects the magnitude

of the upper bound. I can then tune the values of (R, S, T ) to minimize the value

of ‖L‖ /(1− λ) subject to satisfying objectives O1-O3 and (4.17).



80

To satisfy all three control objectives, I propose the following tuning method.

Method 1 Norm Optimal LPV ILC Tuning Method

1. Design R: Let R = I for uniform weighting of the error.

2. Design T : Use T to minimize λ where
∥∥∥Q− LĜ(I +Wo)

∥∥∥ < λ and satisfy O3.

3. Design S: Use S to minimize ‖L‖ /(1−λ) and to make sure that O2 is satisfied

by constraining the right hand side of (4.18) to be less than usat with Ū = 0.

4. Iterate process: If ILC performance does not meet design specifications, one

may need to return to any previous step, including system identification, to

alter the ILC tuning in order to satisfy the desired convergence and performance

objectives.

I use T to minimize λ because, as shown in (4.16), adjusting T affects the relative

weighting of the uncertainty within the convergence criteria. It is also the natural

candidate to achieve O3 because its role in the cost function (4.9) is to weigh the

change inU between iterations, which is directly related to how fast the ILC algorithm

can converge.

I use S in step 3 to minimize ‖L‖ /(1− λ) because the S term is in the inverted

portion of the definition of L in (4.14), which means scaling S directly affects the

numerator of ‖L‖ /(1− λ). S is also the natural candidate for achieving O2 because

it provides the weight for the input signal’s contribution to the cost function in (4.9).

4.3 Case Study

4.3.1 Simulation Plant: Second Order System

Many systems can be described as second order with variable damping and stiff-

ness. For example, in Chapter 2, I discussed how a variable damping and stiffness

model can be used to represent the compression dynamics in a twin roll strip casting



81

process. A second order system with variable damping and stiffness can be repre-

sented as

m
d2x(t)

dt2
+ b(θ)

dx(t)

dt
+ k(θ)x(t) = u(t) , (4.20)

where m is the mass of the system, b(θ) is the damping coefficient, and k(θ) is the

stiffness coefficient. Both b(θ) and k(θ) are dependent on the scheduling parameter

θ. The signal x(t) is the state of the system and u(t) is the input to the system. In

the twin roll casting example, x(t) would correspond to the thickness of the strip and

u(t) would correspond to the force applied to the strip by the casting rolls.

In this model, I assume that the damping and stiffness coefficients can be modeled

by the following relationships:

b(θ) = b0 + fb(θ) , (4.21)

k(θ) = k0 + fk(θ) , (4.22)

where b0 and k0 represent the nominal damping and stiffness coefficients and fb(θ)

and fk(θ) are linear functions that describe how the scheduling parameter affects the

coefficients. For this thesis, I assume that fb(θ) and fk(θ) are known but that there

may be some uncertainty in the nominal damping and stiffness coefficients.

Additionally, I assume that there is a measurement delay τ such that the output

signal, y(t), is not measured until τ samples after u(t) is applied to the system. The

output can be described by the following relationship where C describes measurement

dynamics and d(t) represents a disturbance that repeats during every iteration of the

system,

y(t) = Cx(t− τ) + d(t) . (4.23)

In the following subsections I examine how to design the norm optimal ILC de-

scribed in Section 4.2 for different kinds of model features. The model features tested

in each case are summarized in Table 4.1.



82

Table 4.1. The model features tested in each case.

Case Parametric Uncertainty Delay Uncertainty LPV Dynamics

1 X

2 X

3 X

4 X X

5 X X X

For this case study, I consider a second order LPV model described by (4.20),

(4.21), (4.22), and (4.23) that operates over multiple iterations in succession with

the initial conditions resetting after each iteration. For each simulation I use model

parameters listed in Table 4.2 and assume that the system is effected by the periodic

disturbance shown in Fig. 4.1 during every iteration.

Table 4.2. The nominal parameters used in the simulated case study.

Parameter Value

b0 100

C 1

fb (10− θ)

fk (θ − 10)/10

k 10

m 10

usat 200

yd 0

τ 0

θ 3



83

0 50 100 150
Sample Index, t

-5

0

5

d
(t

)

Figure 4.1. The disturbance signal that is repeated during every
iteration of the simulated case study.

4.3.2 Case 1: Plant Parameter Uncertainty

In Case 1, I evaluate the performance of the proposed control algorithm in the

presence of plant parameter uncertainty. I assume that both b0 and k0 are within a

known bounded range of possible values, bl ≤ b0 ≤ bu and kl ≤ k0 ≤ ku. From those

bounds, I define two models to represent the edges of the admissible model set. I

denote G− as the model produced using b0 = bu and k0 = ku, which represent the

model with the lowest magnitude. I also denote G+ as the model produced using

b0 = bl and k0 = kl, which represents the model with the highest magnitude. It

follows that G is defined as

G = G−
(

1 +
G+ −G−

G−
∆

)
(4.24)

where 0 ≤ ∆ ≤ 1 represents the uncertainty. Note that this has the same form as

(4.6), with Wo = G+−G−

G− . Also, note that larger model uncertainty results in larger

values of Wo.

With the parametric uncertainty relationship given by (4.24), Method 1 takes the

the following form.



84

1. Design R: Let R = I for uniform weighting of the error.

2. Design T : Use T to minimize λ where ‖Q− LG+‖ < λ and satisfy O3.

3. Design S: Use S to minimize ‖L‖ /(1−λ) and to make sure that O2 is satisfied

by constraining the right hand side of (4.18) to be less than usat with Ū = 0.

4. Iterate process: If the ILC’s performance does not meet design specifications,

one may need to return to any previous step, including system identification, to

alter the ILC tuning in order to satisfy the desired convergence and performance

objectives.

For this case study, I assume that G− is the nominal model. Then I assume

that the maximum amount of parametric variability in each iteration is 50%, which

corresponds to a multiplicative uncertainty filter value of Wo = 0.5. After applying

the proposed tuning guidelines, I find that setting R = I, T = (1× 10−4) I, and

S = (1× 10−4) I results in λ = 0.5 and ‖L‖ /(1 − λ) = 66.8. This results in the

magnitude of u(t, k) remaining less than usat = 200 in each iteration and at each

sample as shown in Fig. 4.2(a). With these tuning values, the closed loop system’s

ability to reject the disturbance improves by a factor of 50, as shown in Fig. 4.2(b).

This corresponds to ‖e(t, k)‖2 < 50 for every iteration after the ILC algorithm is

applied to the system in iteration 1, as shown in Fig. 4.2(c). Additionally, Fig.

4.2(d) shows that the chosen norm optimal ILC design reduces the cost function from

approximately 1250 when the ILC is not applied to the system to approximately 150

after the ILC is applied. Note that the error norm in this case is significantly lower

than the value of e∗ calculated using (4.19), which is shown by the dashed line in Fig.

4.2(c). This is because parametric variations are rarely at the peak deviation away

from the nominal model and the model is mostly accurate.



85

0 50 100 150
Sample Index, t

-300

-200

-100

0

100

200

300

u
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(a) Input signal at different iterations.

The dashed lines represent the satura-

tion limit usat.

0 50 100 150
Sample Index, t

-5

0

5

y
(t

;k
)

Iteration 0
Iteration 10
Iteration 20
Iteration 40

(b) Output signal at different iterations.

(c) The norm of the error signal at each

iteration. The dashed line represents e∗.

0 10 20 30 40
Iteration

0

500

1000

1500

J

(d) The cost at each iteration.

Figure 4.2. Simulation results for Case 1 - parametric uncertainty.

4.3.3 Case 2: Delay Estimation Uncertainty

To control a system with an uncertain time delay, an approach similar to that

described in [71] can be used to characterize the delay uncertainty as a multiplicative

uncertainty. In [71], Wang et al. show that if the delay uncertainty is bounded above

by δτ , then the weighting function

w0(s) =
δτs

1 + δτs/2
(4.25)



86

can be used to represent the delay uncertainty in a multiplicative uncertainty frame-

work. After representing (4.25) as a lifted domain matrix Wo, I use Method 1 to tune

the norm-optimal LPV ILC algorithm.

Assuming that the delay is known to within 20 samples, i.e., δτ = 20, Method 1

can be used to find that the values R = I, S = (5× 10−4) I, and T = (5× 10−4) I will

result in stable and convergent behavior. This is illustrated in Fig. 4.3, which shows

the results produced when applying the ILC algorithm to a simulated plant with a

measurement delay of τ = 20 samples but a delay estimate of τ̂ = 0 samples. Figure

4.3(a) shows that the input signal never exceeds a magnitude of usat = 200, which

means O2 is satisfied. Figure 4.3(b) shows that, despite having a delay estimation

error of 20 samples, the ILC algorithm is able to reduce the magnitude of the error

signal by a approximately 60%. There is also an 80% reduction in the 2-norm sense,

as seen in Fig. 4.3(c). Finally, Fig. 4.3(d) shows that the cost is reduced from

approximately 1250 to approximately 650.

Note that this improvement in performance relative to the first iteration is much

less than the performance improvements achieved in Case 1. The reason for this is that

by making the controller robust to a large range of potential time delay estimation

errors, I had to make the controller quite conservative. This is reflected in the choice

of S: S = (5× 10−4) I in Case 2 versus S = (1× 10−4) I in Case 1. The larger

eigenvalues of S are needed in Case 2 to offset the phase mismatch that occurs due to

the introduction of delay estimation error. Using the same tuning values from Case

1 on the system in Case 2 results in the magnitude of the input signal exceeding usat.

The large input values are a product of the integral-like behavior that is inherent in

the ILC algorithm structure. Under ideal conditions where the delay is known and

compensated for appropriately, the ILC algorithm updates u(t, k+1) using u(t, k) and

the error signal generated by applying u(t, k). When there is delay estimation error

δτ , however, u(t, k+1) is updated using u(t, k) and error information that is generated

by u(t− δτ , k). This causes the input signal to be out of phase with the error signal

that it is trying to control, in turn resulting in a situation where the input signal may



87

0 50 100 150
Sample Index, t

-300

-200

-100

0

100

200

300

u
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(a) Input signal at different iterations.

The dashed lines represent the satura-

tion limit usat.

0 50 100 150
Sample Index, t

-5

0

5

y
(t

;k
)

Iteration 0
Iteration 10
Iteration 20
Iteration 40

(b) Output signal at different iterations.

(c) The norm of the error signal at each

iteration. The dashed line represents e∗.

0 10 20 30 40
Iteration

0

500

1000

1500

J

(d) The cost at each iteration.

Figure 4.3. Simulation results for Case 2 - Time Delay Uncertainty.

increase after each iteration in an effort to decrease the tracking error. This behavior

resembles integrator wind up seen in proportional-integral feedback controllers with

input saturation. The way to counteract the “wind up” is to detune the controller

by decreasing the eigenvalues of Q, as also shown in Chapter 3. In the norm-optimal

framework proposed in this chapter, a method of reducing the eigenvalues of Q is

to increase the eigenvalues of S. By increasing the eigenvalues of S, I reduce the

magnitude of the input signal so that control objective O2 is satisfied. The results

I show in this case apply to the situation when the delay estimation uncertainty



88

is relatively small (20 samples out of a possible 150 samples in an iteration in this

simulation). If the estimation error were larger, the ILC algorithm would not be able

to simultaneously reduce the tracking error and satisfy the saturation condition. This

is similar to the results shown in Sec. 3.3.2. In those situations, an adaptive time

delay estimate, such as the algorithm proposed in Sec. 3.2, could be used to decrease

the estimation uncertainty.

4.3.4 Case 3: LPV Dynamics

In this case, I study the effects that the LPV dynamics have on the performance of

the ILC algorithm. I assume that the model is known exactly and that the scheduling

parameter, θ, changes at iteration k = 20 from θ = 3 to θ = 5. This alters the

damping and stiffness coefficients as described in (4.21) and (4.22). For this case, the

tuning guidelines I propose in Method 1 show that the weighting matrices R = I,

S = (2× 10−4) I, and T = 10−4I result in satisfactory performance for both G(θ = 3)

and G(θ = 5), which are the models used in this case. The results of this simulation

are shown in Fig. 4.4. During the iterations when θ = 3, the results are similar to

the results in Case 1, with the noticeable absence of the fluctuations in Figs. 4.4(c)

and 4.4(d) because I assume that the plant parameters are known in this case. After

iteration 20, when θ = 5, the error signal increases both in magnitude and in the

2-norm sense because the system becomes more stiff, as described by (4.22). This

causes the system to be less responsive to the input signal.

By incorporating an LPV model structure in the problem formulation, the ILC

control law depends on both G(θk) and G(θk+1). Allowing the ILC filters to change as

the scheduling parameter changes results in better performance than if an LTI model

of the plant is used as is done in existing literature [20].

Additionally, by using both θk and θk+1 when calculating Q in (4.13), I am able to

improve the transient response of the system when the scheduling parameter changes.

This is demonstrated in Fig. 4.5, which shows the value of ‖ek‖2 produced when using



89

0 50 100 150
Sample Index, t

-300

-200

-100

0

100

200

300

u
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(a) Input signal at different iterations.

The dashed lines represent the satura-

tion limit usat.

0 50 100 150
Sample Index, t

-5

0

5

y
(t

;k
)

Iteration 0
Iteration 10
Iteration 20
Iteration 40

(b) Output signal at different iterations.

(c) The norm of the error signal at each

iteration. The dashed line represents e∗.

0 10 20 30 40
Iteration

0

500

1000

1500

J

(d) The cost at each iteration.

Figure 4.4. Simulation results for case 3 - LPV dynamics.

different definitions of Q. The performance shown in the solid line, which is the result

of defining Q using (4.13), allows for a smoother transition after θ changes. At the

transition point, the LTI approach causes the 2-norm of the error to approximately

double compared to the LPV approach I propose in this thesis.

4.3.5 Case 4: LPV Dynamics with Parametric Uncertainty

To illustrate that the proposed control algorithm can achieve robust stability and

performance in the presence of more than one type of plant variation, in Case 4 I apply



90

0 10 20 30 40
Iteration

0

200

400

600

800

1000

1200

1400

jje
jj 2

Norm optimal LPV ILC
Norm optimal LTI ILC

Figure 4.5. The norm of the error signal obtained when using (4.13)
has a better transient response to changes in θ than an ILC law based
solely on G(θk+1).

the proposed LPV ILC algorithm to a plant that experiences both the parametric

uncertainty described in Case 1 and the LPV dynamics described in Case 3. Here

the design procedure proposed in Method 1 is again used with the uncertainty model

proposed in Case 1, and the robust convergence criteria is tested for both G(θ = 3)

and G(θ = 5). Because the formulation is similar to Case 3, the same tuning set can

be used for Case 4, i.e, R = I, S = (2× 10−4) I, and T = (1× 10−4) I.

The results of this case study are shown in Fig. 4.6. As Fig. 4.6(a) shows,

control objective O2 is satisfied because the magnitude of the input signal is less than

usat = 200. Figures 4.6(b) and 4.6(c) show that the error is attenuated within 10

iterations despite the parametric uncertainty. This means that control objectives O1

and O3 are satisfied. During the first 20 iterations, the performance of the system

is similar to the performance in Case 1 because θ = 3 is the scheduling parameter

used during Case 1 and the first half of Case 4. The error attenuation in Case 4

is slightly worse than in Case 1 because the eigenvalues of S are larger in Case 4.

During iterations 21-40, the amount of error attenuation achieved in Case 4 is again



91

less than the amount of error attenuation achieved in Cases 1 and 3. In addition to

the larger eigenvalues of S, less error attenuation is achieved after iteration 20, when

θ = 5, because the nominal system has a lower process gain due to the variations in

b and k described in (4.21) and (4.22) respectively. The 50% variability associated

with the nominal plant gain can then result in some iterations of the process that

are less reactive to a given control input than the previous iterations, resulting in

larger values of ‖ek‖2. Conversely, when the parametric variability produces higher

process gains than expected, the system can become more reactive to the input signal.

This may reduce ‖ek‖2 in some iterations but may also generate overreactions to the

input signal and produce larger values of ‖ek‖2. By incorporating the LPV dynamics

and the multiplicative representation of the parametric uncertainty into the tuning

guidelines, I generate an ILC tuning set that limits the effects of the uncertainty

and enables the controller to limit the value of ‖ek‖2 to less than e∗, as shown in

Fig. 4.6(c). This in turn enables the controller to achieve all three control objectives

described in Section 4.1.

4.3.6 Case 5: LPV Dynamics with Parametric and Delay Estimation

Uncertainty

Case 5 highlights the combined effect that all three plant features have on the

tuning of the LPV ILC algorithm. The LPV dynamics are accounted for by using

the ILC formulation (4.5). The parametric and delay estimation uncertainty are

accounted for by multiplying the two weighting functions presented in Cases 1 and 2

to generate a comprehensive Wo that can then be used in Method 1. Similar to Cases

3 and 4, I again consider two possible values of θ: θ = 3 and θ = 5. Assuming that the

parametric uncertainty is ±50%, as in Cases 1 and 4, and that the delay uncertainty is

less than or equal to 20 samples, i.e., δτ = 20, a tuning set of R = I, S = (5× 10−4) I

and T = (5× 10−4) I can be used to achieve some error attenuation while satisfying

control objective O2, as shown in Fig. 4.7. Satisfying control objective O3, however,



92

0 50 100 150
Sample Index, t

-300

-200

-100

0

100

200

300

u
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(a) Input signal at different iterations.

The dashed lines represent the satura-

tion limit usat.

0 50 100 150
Sample Index, t

-5

0

5

y
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(b) Output signal at different iterations.

(c) The norm of the error signal at each

iteration. The dashed line represents e∗.

0 10 20 30 40
Iteration

0

500

1000

1500

J

(d) The cost at each iteration.

Figure 4.6. Simulation results for Case 4 - LPV dynamics and para-
metric uncertainty.

is difficult in this situation because the uncertainty in the delay generates the “wind

up” behavior (described earlier as a result of a phase delay between the input and

error signals) in the learning algorithm while the magnitude uncertainty affects the

sensitivity of the system to the input signal. Because the plant’s sensitivity to the

input varies from iteration to iteration, the delay uncertainty results in large shifts in

the error signal between iterations. The controller bounds the effect on the norm of

the error such that ‖ek‖2 is less than e∗, as shown in Fig. 4.7(c), but e∗ is not much

lower than the initial error norm of the system. To reduce the effect of the variable



93

sensitivity, the eigenvalues of S should be increased. Increasing the eigenvalues of

S, however, causes the the controller to become less reactive to the plant parameter

variations, and can also result in large tracking errors.

Ultimately, if the uncertainty in the system is large, satisfying all three control

objectives may not be possible without reducing the uncertainty in some way. This

could include enhancing the LPV model so that it better captures the parameter

variations or by adding a more sophisticated delay estimation algorithm. With either

of those implemented, it may be possible to use a more aggressive tuning to achieve

all three control objectives.

4.4 Chapter Summary

In this chapter I developed a norm optimal ILC algorithm that accounts for LPV

dynamics along with parametric and time delay uncertainty. Based on a sufficient

condition for robust convergence as well as an upper bound on the norm of the error

signal, I constructed a tuning method for the cost function weighting matrices that

are used to define the optimal ILC filters. Through a numerical case study, I demon-

strated that compensating for parametric and delay uncertainty simultaneously can

be difficult. The phase issues that occur due to delay estimation errors generate large

input signals that are then applied to a process that experiences varying sensitivity

to the input signal due to parameter variations. This can result in large tracking

errors that do not satisfy the control objectives. Improving the model to reduce the

plant uncertainty would improve the ILC algorithm’s performance, but that may not

be feasible. An alternative approach for improving the algorithm’s performance is

defining the necessary condition for robust convergence and using that to tune the

ILC algorithm.



94

0 50 100 150
Sample Index, t

-300

-200

-100

0

100

200

300

u
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(a) Input signal at different iterations.

The dashed lines represent the satura-

tion limit usat.

0 50 100 150
Sample Index, t

-5

0

5

y
(t

;k
)

Iteration 1
Iteration 10
Iteration 20
Iteration 40

(b) Output signal at different iterations.

(c) The norm of the error signal at each

iteration. The dashed line represents e∗.

0 10 20 30 40
Iteration

0

500

1000

1500

2000

J

(d) The cost at each iteration.

Figure 4.7. Simulation results for Case 5 - LPV dynamics with para-
metric and time delay uncertainty.



95

5. CONCLUSION

5.1 Summary of Research Contributions

Iterative learning control (ILC) is a useful approach for controlling periodic sys-

tems, such as many manufacturing processes. While ILC has successfully been applied

to many different systems, one major gap in literature was developing an ILC algo-

rithm that is robust to time delay estimation error, especially for systems that have

delays longer than one iteration or that are time-varying. One example of such a sys-

tem is the twin roll strip casting process, where the important outputs of the system,

such as the strip thickness, cannot be measured until after a long and variable time

delay that spans multiple revolutions of the casting rolls. The variable time delay, as

well as the complex dynamics of the process, motivated the design of three algorithms

that advance the ILC literature.

The first algorithm I designed addresses the problem of having a delay that is

longer than one iteration. I proposed that the delay should be divided into two com-

ponents: an iterative component that measures the integer number of iterations that

occur during the delay and a residual delay that measures the length of the delay

remaining after the iterative component is measured. Dividing the delay into two

components allowed me to develop separate estimation algorithms for both compo-

nents. Using the delay components in an ILC algorithm enabled the definition of

sufficient conditions for asymptotic stability in the presence of both iterative and

residual delays.

To compensate for time-varying delays I proposed a second ILC algorithm that

coupled the time delay estimation with the ILC formulation. I defined a sufficient

condition for asymptotic stability of the coupled algorithm. Simulation results illus-

trated that the proposed time delay estimate converges to the true time delay as the



96

number of iterations goes to infinity, which enables the norm of the process error to

converge to its optimal value.

The coupled algorithm, however, depended on having an accurate model of the

plant, which is not always realistic. To compensate for plant uncertainty, I developed

a third ILC algorithm that is based on the norm optimal ILC formulation. The third

algorithm accounts for parametric uncertainty as well as time delay uncertainty. It

is also constructed assuming a linear parameter (LPV) plant model, which can be

used to more accurately capture some nonlinear behaviors that may otherwise be

difficult to capture in a control-oriented model. Based on a sufficient condition for

robust convergence as well as an upper bound on the norm of the error signal, I

constructed a tuning method for the cost function weighting matrices that are used

to define the optimal ILC filters for plant models that feature plant uncertainty, delay

uncertainty, and/or LPV dynamics. Through a case study involving these different

system features, I demonstrated some of the benefits and disadvantages of using

the norm optimal framework particularly for systems that experience all three plant

feature simultaneously.

In addition to my theoretical contributions, I also demonstrated the first ILC

algorithm on a commercial twin roll strip casting process. After extensive testing, I

showed that the ILC algorithm reduced the impact of the strip wedge disturbance

by approximately 50 percent compared to measurements obtained before the ILC

algorithm was enabled. This level of reduction was achieved despite not knowing a

precise model of the system dynamics nor having a way to validate the time delay

estimation during the experiments.

5.2 Future Research Directions

The research presented in this dissertation focused on making ILC algorithms

robust to time delay estimation errors and parametric uncertainty based on a sufficient

condition for stability. The use of a sufficient condition in the formulation and tuning



97

of the ILC algorithms meant that the tuning sets may be overly conservative. The

performance of the algorithm could potentially be improved if a necessary condition

for stability can be derived for ILC algorithms operating on systems that feature

delay estimation errors or parametric uncertainty.

Another area where a sufficient condition may be limiting the ability to achieve

better performance is with the definition of robust convergence. Defining the neces-

sary condition for robust convergence could potentially yield a method for improving

the robustness of the ILC algorithm toward both delay and parametric uncertainty.

Future research could also focus on improving the coupled delay estimation and

ILC algorithm. The estimation scheme that I proposed is only applicable to systems

that have a known model. In cases where there is some model uncertainty, calculating

the converged state of the ILC algorithm may not be feasible. A time delay estimation

algorithm that does not rely upon knowledge of the exact plant model would expand

the class of systems that the coupled ILC and delay estimation algorithm can be

applied to.

A final direction for future research could be on how to relax the initial condition

resetting assumption used in the LPV ILC algorithm. A relaxed initial condition as-

sumption would expand the application base of the ILC algorithms to more processes

that operate in a continuous manner, such as the twin roll strip casting process, where

the initial condition of one iteration is the final condition of the previous iteration.



98

Publications

Peer Reviewed Journal Articles

J1 F. Browne, G.T.-C. Chiu, and N. Jain, “A Nonlinear Dynamic Switched-Mode

Model of Twin-Roll Steel Strip Casting.” ASME Journal of Dynamic Systems,

Measurement and Control, 2019. doi:10.1115/1.4042952.

J2 F. Browne, B. Rees, G.T.-C. Chiu, and N. Jain, “Iterative Learning Control

with Time Delay Compensation: An Application to Twin Roll Strip Casting.”

IEEE Transactions on Control Systems Technology, 2020.

doi:10.1109/TCST.2020.2971452

Peer Reviewed Conference Papers

C1 F. Browne, G.T.-C. Chiu, and N. Jain, “Dynamic Modeling of Twin-Roll Steel

Strip Casting.” Proceedings of the 2016 ASME Dynamic Systems and Control

Conference, Minneapolis, MN, October 12-14, 2016.

C2 F. Browne, G.T.-C. Chiu, and N. Jain, “Iterative Learning Control For Peri-

odic Disturbances in Twin-Roll Strip Casting with Measurement Delay.” Pro-

ceedings of the 2018 American Control Conference, Milwaukee, WI, June 27-29,

2018.

C3 F. Browne, B. Rees, G.T.-C. Chiu, and N. Jain, “ILC With Time-Varying

Delay Estimation: A Case Study on Twin Roll Strip Casting.” Proceedings

of the 2018 ASME Dynamic Systems and Control Conference, Atlanta, GA,

September 30 - October 3, 2018.

C4 F. Browne, G.T.-C. Chiu, and N. Jain, “A Coupled Adaptive Measurement

Delay Estimation and Iterative Learning Control Algorithm.” Proceedings of

the 2019 ASME Dynamic Systems and Control Conference, Park City, UT,

October 8-11, 2019.



99

Patents

P1 F.M. Browne III, G.T.C. Chiu, N. Jain, H.B. Rees, “Iterative Learning Con-

trol for Periodic Disturbances in Twin-Roll Strip Casting With Measurement

Delay.” U.S. Patent US20190091761A1.



REFERENCES



100

REFERENCES

[1] Jean-Pierre Birat, Rolf Steffen, and Stephan Wilmotte. State of the Art and
Developments in Near-Net-Shape Casting of Flat Steel Products: Final Ecsc Re-
port. Number 16671 in EUR Technical Steel Research - Steelmaking. European
Commision, Luxembourg, 1995.

[2] Murray Garden. Learning Control of Actuators in Control Systems, January
1971.

[3] M. Uchiyama. Formation of High Speed Motion Pattern of Mechanical Arm by
Trial. Transactions of the Society of Instrumentation and Control Engineers,
19(5):706–712, May 1978.

[4] Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Iterative Learning
Control for Robot Systems. In Proceedings of IECON, Tokyo, Japan, October
1984.

[5] Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering Operation
of Robots by Learning. Journal of Robotic Systems, 1(2):123–140, June 1984.

[6] J.J. Craig. Adaptive Control of Manipulators Through Repeated Trials. In
Proceedings of American Controls Conference, pages 1566–1573, San Diego, June
1984.

[7] G. Casalino and G. Bartolini. A Learning Procedure for the Control of Move-
ments of Robotic Manipulators. In IASTED Symposium on Robotics and Au-
tomation, pages 108–111, New Orleans, LA, 1984.

[8] Hyo-Sung Ahn, YangQuan Chen, and Kevin L. Moore. Iterative Learning Con-
trol: Brief Survey and Categorization. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 37(6):1099–1121, 2007.

[9] D. A. Bristow, M. Tharayil, and A. G. Alleyne. A Survey of Iterative Learning
Control. IEEE Control Systems, 26(3):96–114, June 2006.

[10] Kevin L. Moore. Iterative Learning Control for Deterministic Systems. Advances
in Industrial Control. Springer London, London, 1993.

[11] David H. Owens. Iterative Learning Control. Advances in Industrial Control.
Springer London, London, 2016.

[12] Y. Chen, M. Sun, B. Huang, and H. Dou. Robust Higher Order Repetitive
Learning Control Algorithm for Tracking Control of Delayed Repetitive Systems.
In [1992] Proceedings of the 31st IEEE Conference on Decision and Control,
pages 2504–2510 vol.3, December 1992.



101

[13] D. de Roover. Synthesis of a robust iterative learning controller using an H-
Infinity approach. In Proceedings of 35th IEEE Conference on Decision and
Control, volume 3, pages 3044–3049 vol.3, December 1996.

[14] D. Meng, Y. Jia, J. Du, and F. Yu. Robust Design of a Class of Time-Delay
Iterative Learning Control Systems With Initial Shifts. IEEE Transactions on
Circuits and Systems I: Regular Papers, 56(8):1744–1757, August 2009.

[15] Kira Barton, Sandipan Mishra, and Enric Xargay. Robust Iterative Learning
Control: L1 adaptive feedback control in an ILC framework. In Proceedings of
the 2011 American Control Conference, pages 3663–3668, San Francisco, CA,
June 2011. IEEE.

[16] Douglas A. Bristow. Weighting matrix design for robust monotonic convergence
in Norm Optimal iterative learning control. In 2008 American Control Confer-
ence, pages 4554–4560, Seattle, WA, June 2008. IEEE.

[17] Kira Barton, Jeroen van de Wijdeven, Andrew Alleyne, Okko Bosgra, and
Maarten Steinbuch. Norm optimal Cross-Coupled Iterative Learning Control.
In 2008 47th IEEE Conference on Decision and Control, pages 3020–3025, Can-
cun, Mexico, 2008. IEEE.

[18] D A Bristow. Optimal iteration-varying Iterative Learning Control for systems
with stochastic disturbances. In Proceedings of the 2010 American Control Con-
ference, pages 1296–1301, Baltimore, MD, June 2010. IEEE.

[19] Kira L. Barton and Andrew G. Alleyne. A Norm Optimal Approach to Time-
Varying ILC With Application to a Multi-Axis Robotic Testbed. IEEE Trans-
actions on Control Systems Technology, 19(1):166–180, January 2011.

[20] Berk Altın, Jeroen Willems, Tom Oomen, and Kira Barton. Iterative Learning
Control of Iteration-Varying Systems via Robust Update Laws with Experimen-
tal Implementation. Control Engineering Practice, 62:36–45, May 2017.

[21] M. Butcher and A. Karimi. Linear Parameter-Varying Iterative Learning Control
With Application to a Linear Motor System. IEEE/ASME Transactions on
Mechatronics, 15(3):412–420, June 2010.

[22] D. J. Hoelzle and K. Barton. Flexible Iterative Learning Control Using a Library
Based Interpolation Scheme. In 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pages 3978–3984, December 2012.

[23] D. Huang, J. Xu, V. Venkataramanan, and T. C. T. Huynh. High-Performance
Tracking of Piezoelectric Positioning Stage Using Current-Cycle Iterative Learn-
ing Control With Gain Scheduling. IEEE Transactions on Industrial Electronics,
61(2):1085–1098, February 2014.

[24] R. de Rozario, T. Oomen, and M. Steinbuch. Iterative Learning Control and
feedforward for LPV systems: Applied to a position-dependent motion system.
In 2017 American Control Conference (ACC), pages 3518–3523, May 2017.

[25] D. J. Leith and W. E. Leithead. Survey of Gain-Scheduling Analysis and Design.
International Journal of Control, 73(11):1001–1025, January 2000.



102

[26] C. Hoffmann and H. Werner. A Survey of Linear Parameter-Varying Control Ap-
plications Validated by Experiments or High-Fidelity Simulations. IEEE Trans-
actions on Control Systems Technology, 23(2):416–433, March 2015.

[27] L. M. Hideg. Stability and Convergence Issues in Iterative Learning Control:
Part II. In Proceedings of the 1996 IEEE International Symposium on Intelligent
Control, pages 480–485, September 1996.

[28] L. M. Hideg. Time Delays in Iterative Learning Control Schemes. In Proceedings
of Tenth International Symposium on Intelligent Control, pages 215–220, August
1995.

[29] E. Rogers and D.H. Owens. On the Stability of Linear Repetitive Processes
Described by a Delay-Difference Equation. IEEE Transactions on Circuits and
Systems II: Express Briefs, 51(7):359–363, July 2004.

[30] K.-H. Park, Zeungnam Bien, and D.-H. Hwang. Design of an Iterative Learn-
ing Controller for a Class of Linear Dynamic Systems with Time Delay. IEE
Proceedings - Control Theory and Applications, 145(6):507–512, 1998.

[31] Yangquan Chen, Zhiming Gong, and Changyun Wen. Analysis of a High-Order
Iterative Learning Control Algorithm for Uncertain Nonlinear Systems with State
Delays. Automatica, 34(3):345–353, 1998.

[32] Xiao-Dong Li, T. W. S. Chow, and J. K. L. Ho. 2-D System Theory Based
Iterative Learning Control for Linear Continuous Systems with Time Delays.
IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7):1421–1430,
July 2005.

[33] Z. Bien and K. M. Huh. Higher-Order Iterative Learning Control Algorithm. IEE
Proceedings D - Control Theory and Applications, 136(3):105–112, May 1989.

[34] C. Knapp and G. Carter. The Generalized Correlation Method for Estimation
of Time Delay. IEEE Transactions on Acoustics, Speech, and Signal Processing,
24(4):320–327, August 1976.

[35] G. C. Carter. Coherence and Time Delay Estimation. Proceedings of the IEEE,
75(2):236–255, February 1987.

[36] A. Cabasson and O. Meste. Time Delay Estimation: A New Insight Into the
Woody’s Method. IEEE Signal Processing Letters, 15:573–576, 2008.

[37] Florian Browne, George T.-C. Chiu, and Neera Jain. A Nonlinear Dynamic
Switched-Mode Model of Twin-Roll Steel Strip Casting. Journal of Dynamic
Systems, Measurement, and Control, 141(8):081004, August 2019.

[38] R. I. L. Guthrie and M. M. Isac. Conventional and near net shape casting options
for steel sheet †. Ironmaking & Steelmaking, 43(9):650–658, October 2016.

[39] T. Matsushita, K. Nakayama, H. Fukase, and S. Osada. Development and Com-
mercialization of Twin Roll Strip Caster. IHI Engineering Review, 42(1):1–9,
2009.

[40] C. R. Killmore, H. Creely, A. Phillips, H. Kaul, P. Campbell, M. Schueren, J. G.
Williams, and W. Blejde. Development of Ultra-Thin Cast Strip Products by
the CASTRIP R© Process. Materials Forum, 32:13–28, 2007.



103

[41] John B. Edwards and Alberto Cavazos. Interaction Analysis of the Twin-Roller
Strip-Casting Process and the Implications for Process Control. Journal of Ma-
terials Engineering and Performance, 14(3):395–407, 2005.

[42] S. Bernhard, M. Enning, and H. Rake. Automation of a Laboratory Plant for
Direct Casting of Thin Steel Strips. Control Engineering Practice, 2(6):961–967,
1994.

[43] Wenyu Zhang, Dongying Ju, Hongyang Zhao, Xiaodong Hu, Yao Yao, and Yujun
Zhang. A Decoupling Control Model on Perturbation Method for Twin-Roll
Casting Magnesium Alloy Sheet. Journal of Materials Science & Technology,
31(5):517–522, May 2015.

[44] Keum-Shik Hong, Jeom-Goo Kim, and Masayoshi Tomizuka. Control of Strip
Casting Process: Decentralization and Optimal Roll Force Control. Control
Engineering Practice, 9(9):933–945, 2001.

[45] A Hadadzadeh and M A Wells. Thermal fluid mathematical modelling of twin
roll casting (TRC) process for AZ31 magnesium alloy. International Journal of
Cast Metals Research, 26(4):228–238, August 2013.

[46] Jian Zeng, Roger Koitzsch, Herbert Pfeifer, and Bernd Friedrich. Numerical
Simulation of the Twin-Roll Casting Process of Magnesium Alloy Strip. Journal
of Materials Processing Technology, 209(5):2321–2328, March 2009.

[47] C. A. Santos, J. A. Spim, and A. Garcia. Modeling of Solidification in Twin-Roll
Strip Casting. Journal of Materials Processing Technology, 102(1):33–39, 2000.

[48] Lianlian Liu, Bo Liao, Jing Guo, Ligang Liu, Hongyan Hu, Yue Zhang, and
Qingxiang Yang. 3D Numerical Simulation on Thermal Flow Coupling Field of
Stainless Steel During Twin-Roll Casting. Journal of Materials Engineering and
Performance, 23(1):39–48, January 2014.

[49] R. I. L Guthrie and R. P Tavares. Mathematical and physical modelling of steel
flow and solidification in twin-roll/horizontal belt thin-strip casting machines.
Applied Mathematical Modelling, 22(11):851–872, November 1998.

[50] Q. Li, Y. K. Zhang, L. G. Liu, P. Zhang, Y. Zhang, Y. Fang, and Q. X. Yang.
Effect of Casting Parameters on the Freezing Point Position of the 304 Stainless
Steel During Twin-Roll Strip Casting Process by Numerical Simulation. Journal
of Materials Science, 47(9):3953–3960, May 2012.

[51] Manish Gupta and Yogeshwar Sahai. Mathematical Modeling of Fluid Flow,
Heat Transfer, and Solidification in Two-roll Melt Drag Thin Strip Casting of
Steel. ISIJ International, 40(2):144–152, 2000.

[52] Amit Saxena and Yogeshwar Sahai. Modeling of Fluid Flow and Heat Transfer
in Twin-Roll Casting of Aluminum Alloys. MATERIALS TRANSACTIONS,
43(2):206–213, 2002.

[53] Peter Woodberry, Wai Yee Daniel Yuen, and Nikolco Nikolovski. Method of
Operation of Twin Roll Strip Caster to Reduce Chatter, October 2017.

[54] Miroslaw Glowacki. Inverse Analysis Applied to Mushy Steel Rheological Prop-
erties Testing Using Hybrid Numerical-Analytical Model. INTECH Open Access
Publisher, 2012.



104

[55] Florian Browne, George Chiu, and Neera Jain. Dynamic Modeling of Twin-Roll
Steel Strip Casting. In Proceedings of the ASME 2016 Dynamic Systems and
Control Conference, Minneapolis, MN, 2016. American Society of Mechanical
Engineers.

[56] Eric W. Grald and J.Ward MacArthur. A Moving-Boundary Formulation for
Modeling Time-Dependent Two-Phase Flows. International Journal of Heat and
Fluid Flow, 13(3):266–272, September 1992.

[57] G. L. Wedekind and W. F. Stoecker. Theoretical Model for Predicting the Tran-
sient Response of the Mixture-Vapor Transition Point in Horizontal Evaporating
Flow. Journal of Heat Transfer, 90(1):165–174, 1968.

[58] Pilvi Oksman, Shan Yu, Heli Kytönen, and Seppo Louhenkilpi. The Effective
Thermal Conductivity Method in Continuous Casting of Steel. Acta Polytechnica
Hungarica, 11(9):6–22, 2014.

[59] V. R. Voller and C. R. Swaminathan. ERAL Source-Based Method for So-
lidification Phase Change. Numerical Heat Transfer, Part B: Fundamentals,
19(2):175–189, January 1991.

[60] H Fukase, S Osada, and H Otsuka. Solidification Model for Steel Strip Casting.
Iron and Steelmaker, 30(7):48–58, 2003.

[61] Walter N. Blejde, Rama Ballav Mahapatra, and Mark Schlichting. Method and
Apparatus for Controlling Strip Temperature Rebound in Cast Strip, March
2011.

[62] Eugene A Mizikar. Mathematical Heat Transfer Model For Solidification of Con-
tinuously Cast Steel Slabs. Transactions of the Metallurgical Society of AIME,
239(11):1747–1758, November 1967.

[63] Tom M. Apostol and Mamikon A. Mnatsakanian. New Horizons in Geometry.
Number 47 in Dolciani Mathematical Expositions. Mathematical Association of
America, Washington, D.C., 2012.

[64] Florian Browne, Brad Rees, George Chiu, and Neera Jain. ILC with Time-
Varying Delay Estimation: A Case Study on Twin Roll Strip Casting. In Pro-
ceedings of the ASME 2018 Dynamic Systems and Control Conference, Atlanta,
GA, October 2018.

[65] Florian Browne, Brad Rees, George T.C. Chiu, and Neera Jain. Iterative Learn-
ing Control With Time Delay Compensation: An Application to Twin Roll Strip
Casting. IEEE Transactions on Control Systems Technology, pages 1–10, Febru-
ary 2020.

[66] Florian Browne, George T.-C. Chiu, and Neera Jain. A Coupled Adaptive Mea-
surement Delay Estimation and Iterative Learning Control Algorithm. In Pro-
ceedings of the ASME 2019 Dynamic Systems and Control Conference, page 8,
Park City, UT, 2019. American Society of Mechanical Engineers.

[67] Mikael Norrlöf and Svante Gunnarsson. Time and Frequency Domain Conver-
gence Properties in Iterative Learning Control. International Journal of Control,
75(14):1114–1126, January 2002.



105

[68] Chi-Tsong Chen. Linear System Theory and Design. Oxford University Press,
Inc., New York, NY, USA, 3rd edition, 1999.

[69] Hassan K. Khalil. Nonlinear Systems, volume 3. Pearson, Upper Saddle River,
NJ, 2002.

[70] Hongbin Wang, Le Zhou, Yongwen Zhang, Yuanhua Cai, and Jishan Zhang. Ef-
fects of Twin-Roll Casting Process Parameters on the Microstructure and Sheet
Metal Forming Behavior of 7050 Aluminum Alloy. Journal of Materials Process-
ing Technology, 233:186–191, July 2016.

[71] ZI-QIN WANG, PETTER LUNDSTRÖM, and SIGURD SKOGESTAD.
Representation of uncertain time delays in the H∞ framework. In-
ternational Journal of Control, 59(3):627–638, March 1994. eprint:
https://doi.org/10.1080/00207179408923097.



VITA



106

VITA

Florian (Rian) Browne III was born in Topeka, KS in 1992. He attended Shawnee

Heights High School in nearby Tecumseh KS, graduating in 2011. He then became

a Wildcat and enrolled at Kansas State University. He graduated summa cum laude

with a Bachelor of Science degree in mechanical engineering in 2015. During his

junior year at K-State, he spent a semester working as a control theory co-op at

Fisher Controls in Marshalltown, IA. That motivated him to pursue graduate school

and he enrolled as a direct Ph.D. student in the school of mechanical engineering at

Purdue University in 2015. Under the advisement of Prof. Neera Jain, his studies

have focused on dynamic modeling and control of advanced manufacturing systems

and iterative learning control.


