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ABSTRACT

Pritchett, Robert E. Ph.D., Purdue University, August 2020. Strategies for Low-
Thrust Transfer Design Based on Direct Collocation Techniques. Major Professor:
Kathleen C. Howell.

In recent decades the revolutionary possibilities of low-thrust electric propulsion

have been demonstrated by the success of missions such as Dawn and Hayabusa 1

and 2. The efficiency of low-thrust engines reduces the propellant mass required to

achieve mission objectives and this benefit is frequently worth the additional time of

flight incurred, particularly for robotic spacecraft. However, low-thrust trajectory de-

sign poses a challenging optimal control problem. At each instant in time, spacecraft

control parameters that minimize an objective, typically propellant consumption or

time of flight, must be determined. The characteristics of low-thrust optimal solutions

are often unintuitive, making it difficult to develop an a priori estimate for the state

and control history of a spacecraft that can be used to initialize an optimization algo-

rithm. This investigation seeks to develop a low-thrust trajectory design framework

to address this challenge by combining the existing techniques of orbit chaining and

direct collocation. Together, these two methods offer a novel approach for low-thrust

trajectory design that is intuitive, flexible, and robust.

This investigation presents a framework for the construction of orbit chains and

the convergence of these initial guesses to optimal low-thrust solutions via direct

collocation. The general procedure is first demonstrated with simple trajectory design

problems which show how dynamical structures, such as periodic orbits and invariant

manifolds, are employed to assemble orbits chains. Following this, two practical

mission design problems demonstrate the applicability of this framework to real world

scenarios. An orbit chain and direct collocation approach is utilized to develop low-
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thrust transfers for the planned Gateway spacecraft between a variety of lunar and

libration point orbits (LPOs). Additionally, the proposed framework is applied to

create a systematic method for the construction of transfers for the Lunar IceCube

spacecraft from deployment to insertion upon its destination orbit near the Moon.

Three and four-body dynamical models are leveraged for preliminary trajectory design

in the first and second mission design applications, respectively, before transfers are

transitioned to an ephemeris model for validation. Together, these realistic sample

applications, along with the early examples, demonstrate that orbit chaining and

direct collocation constitute an intuitive, flexible, and robust framework for low-thrust

trajectory design.



1

1. INTRODUCTION

Science fiction has long imagined spacecraft of all shapes and sizes hurtling through

space, bound for fantastic destinations. Rarely in these stories does anyone do any-

thing as mundane as check the fuel gauge. While this makes for enthralling fiction

it is, unfortunately, not a principle by which present spacecraft can operate. The

strictures imposed by the reality of a limited fuel supply are often the driving forces

behind spacecraft mission design. However, the recent development of innovative

means of spacecraft propulsion have brought humanity’s dreams of uninhibited space

travel a little closer.

The field of low-thrust propulsion offers a variety of exciting advancements in

spacecraft propulsion technology which exchange force for efficiency. Propelling a

spacecraft via the explosive mixture of volatile chemicals is spectacular and powerful,

but not efficient. A variety of alternatives to this type of chemical engine have been

developed that fall under the broad label of low-thrust propulsion. This classification

encompasses a variety of technologies from ion engines to solar sails. And, while the

implementation of these technologies is recent, their conceptualization is not. Indeed,

in correspondence with Galileo Galilei in the early 17th century, the astronomer Jo-

hannes Kepler postulated, “provide ships or sails adapted to the heavenly breezes,

and there will be some who will brave even that void” [1]. Several centuries later,

a far-sighted adventurer in Jules Verne’s 1865 novel From the Earth to the Moon

discusses the possibility of lunar travel and predicts that, “there will some day ap-

pear velocities far greater than [currently imagined], of which light or electricity will

probably be the mechanical agent” [2]. While Kepler and Jules Verne were not the

originators of low-thrust spacecraft propulsion, these quotes demonstrate that artists

and visionaries were contemplating the concept well before it began to take physical

form.
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Though the scientific foundations of various low-thrust propulsion concepts were

laid in the early 20th century, it would be many years before the promise of these tech-

nologies was more fully realized [3]. Some of the same visionaries that pioneered early

rocket technology, were pivotal in the initial development of electric propulsion (EP),

the form of low-thrust propulsion that is the focus of this investigation. Scientists and

engineers such as Tsiolkovsky, Oberth, and Goddard recognized the potential of EP

to radically transform space travel. The efficiency of low-thrust engines reduces the

propellant mass required to achieve mission objectives and this benefit is frequently

worth the additional time of flight incurred, particularly for robotic spacecraft. De-

velopment and testing of low-thrust engines have been underway since the 1950s [4];

however, the revolutionary possibilities of this technology have only been realized in

recent decades with the stunning success of missions such as Deep Space 1, Dawn,

and Hayabusa 1 and 2 [5–7]. Given these successes, many forthcoming missions, such

as DESTINY+, Psyche, DART, and Gateway, plan to utilize low-thrust propulsion.

The best engine in the world (or out of it) is of little use unless there is some

notion of where to point it to arrive at the intended destination. This task of deter-

mining a trajectory from point A to point B and how the engine will operate along

this path falls to the mission designer. Recognizing the promise of low-thrust propul-

sion, mission designers have developed improved methods for designing low-thrust

trajectories. However, low-thrust trajectory design still poses a challenging optimal

control problem. At each instant in time, spacecraft control parameters that opti-

mize an objective must be determined. This objective is frequently minimization of

propellant consumption or time of flight. A primary challenge to solving this optimal

control problem is the determination of an initial estimate for the state and control

history of a spacecraft, i.e., an initial guess.

Whether a chemical or low-thrust engine is employed, the overall process of de-

signing a trajectory is similar and typically begins with the development of an initial

guess. Most algorithms employed to compute spacecraft trajectories are iterative. To

obtain a final solution that satisfies all the requirements of the given problem, these
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algorithms are first supplied with an initial estimate of that solution; then, successive

updates are made to the initial guess until all the problem constraints are met, i.e., the

algorithm converges. When the algorithm employed merely seeks to satisfy a set of

constraints it is termed a corrector, and if the algorithm has the additional objective

of minimizing some parameter it is called an optimizer. Given a poor initial guess,

i.e., an a priori estimate that insufficiently resembles the final solution, a corrector or

optimizer may not converge. Thus, the development of an initial guess is a nontrivial

endeavor and the creation of improved methods for carrying out this step is a key

area of research.

A primary challenge of low-thrust trajectory design is that the characteristics of

optimal low-thrust solutions are often unintuitive, making it difficult to develop an

adequate initial guess. Initial guess development is especially arduous in unfamiliar

dynamical regimes where the natural flow characteristics that could be leveraged for

design are unknown. An additional challenge is that many optimization techniques

only provide local optimal solutions, and it is computationally expensive to employ

methods that search the entire solution space for a global optimal result. This inves-

tigation seeks to develop a low-thrust trajectory design framework to address these

challenges by combining the existing techniques of orbit chaining and direct colloca-

tion. Together, these two methods offer a novel approach for low-thrust trajectory

design that is intuitive, flexible, and robust. Ultimately, improved methods for low-

thrust trajectory design enable scientists and engineers to fully harness the promise

of this revolutionary technology.

1.1 Problem Definition

The main goal of this investigation is the development of a framework that com-

bines the strengths of an orbit chain technique and direct collocation method to

facilitate versatile and robust low-thrust trajectory design, particularly in unfamiliar

dynamical regimes. This strategy addresses two of the primary challenges of low-
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thrust trajectory design, namely developing an initial guess and identifying solutions

beyond a local optimum. The orbit chain approach offers a flexible scheme for linking

dynamical structures to generate an initial guess for a corrections process, and direct

collocation is a robust optimization method that is adaptable to many different tra-

jectory design scenarios. The proposed framework is developed via the completion

of three research objectives. First, a robust tool that implements a direct colloca-

tion scheme and is compatible with multiple dynamical models is created. Second,

a framework for low-thrust trajectory design is developed that is based on an orbit

chain approach and leverages direct collocation. Finally, the efficacy of the trajectory

design framework is verified through application to realistic trajectory design scenar-

ios. The first three chapters of this document present necessary background material

and detail the completion of the first objective. Chapter 4 details the orbit chain

and direct collocation low-thrust trajectory design framework created in fulfillment

of the second objective. Lastly, Chapters 5 and 6 describe the Gateway and Lunar

IceCube sample applications utilized to validate the proposed framework. Altogether

this work offers a procedure for low-thrust trajectory design that offers solutions to

the previously described formidable design challenges.

1.2 Previous Contributions

The work of many previous authors contributes to the development of the orbit

chain and direct collocation approach and the application of this strategy to the

selected design problems. The research that influences the creation of the design

framework is discussed in the following sections, while the previous contributions to

the Gateway and Lunar IceCube trajectory design problems are examined in the

chapters dedicated to these problems.
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1.2.1 Orbit Chain Approach

A variety of authors have explored techniques for trajectory design similar to

the chaining approach leveraged in this investigation. For example, this strategy

is employed in the context of the circular restricted three body problem (CR3BP)

to link invariant manifolds that facilitate transfers between periodic orbits. Howell,

Barden, and Lo demonstrate this approach and its applicability in their exploration

of trajectories for what was to become the Genesis mission [8]. Koon et al. [9] further

develop this application of dynamical systems theory by linking heteroclinic cycles

with homoclinic orbits to form “dynamical chains” that reveal global flow within the

CR3BP. These authors also expand their work to three dimensions and demonstrate

its application to the design of a tour of the Jovian moons, among other examples [10].

Similarly, Ross and Lo describe the existence of a vast array of invariant manifold

tubes emanating from three-body systems throughout the solar system that, when

linked together, form an “Interplanetary Superhighway” [11]. The method of chaining

together LPOs and their manifolds to form complex new periodic orbits is continued

by Lo and Parker [12], as well as Parker et al. [13], who present a generalized approach

for prescribing the itineraries of these chains.

More recently, Vaquero and Howell show that resonant orbits offer a wide ar-

ray of trajectory arcs that may be similarly connected to design transfers between

LPOs [14]. A framework for constructing transfers between LPOs using invariant

manifolds is detailed by Haapala and Howell, and subsequently employed to gener-

ate and catalog a large number of such transfers [15]. Finally, Restrepo and Russell

present a method of “Patched Periodic Orbits” that leverages an extensive database

of periodic orbits [16] to quickly design low-energy transfers throughout the CR3BP

by patching together successive periodic orbits [17]. While these works have many

different applications, each employs a chaining strategy to link trajectories embedded

within well-known dynamical structures, as this is a straightforward and practical

approach to trajectory design. The present investigation builds upon these develop-
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ments by assembling chains of various dynamical structures to alleviate the challenge

of initial guess generation for low-thrust trajectory design.

1.2.2 Low-Thrust Trajectory Design with Direct Collocation

Many authors have leveraged direct collocation to explore solutions to the chal-

lenging problem of low-thrust trajectory design. For example, Grebow, Ozimek, and

Howell utilize this method to design lunar pole-sitting orbits [18,19]. The robustness

and flexibility of collocation techniques enabled the discovery of these orbits despite

crude initial guesses. Herman offers various improvements to collocation methods for

low-thrust trajectory optimization, and demonstrates a variety of low-thrust trans-

fers within the Earth-Moon system [20]. Similarly, Parrish et al. provide a number of

low-thrust transfers within the same regime computed with collocation [21]. Parrish

et al. constructs initial guesses for these transfers by stacking ballistic revolutions of

periodic orbits generated in the Earth-Moon CR3BP. A straightforward approach to

generating low-thrust transfers that leverages a similar initial guess assembly tech-

nique involving stacking and chaining orbits is described by Pritchett, Howell, and

Grebow [22]. This framework is expanded upon in subsequent work by these authors

which demonstrates the wide variety of trajectory segments that can be incorporated

into the initial guess generation procedure [23,24]. Overall, these recent applications

of direct collocation for low-thrust trajectory design demonstrate that the robustness

and adaptability of this method make it a powerful tool.

1.3 Current Work

This investigation builds upon the work of the authors cited above to combine an

orbit chain technique and direct collocation into a systematic framework that retains

the strengths of these individual approaches. This document describes the develop-

ment and testing of this framework via the fulfillment of the research objectives. It

is organized as follows:
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• Chapter 2: Dynamical Models

The three dynamical models employed in this investigation are presented, begin-

ning with the Circular Restricted Three-Body Problem (CR3BP). A derivation

of the equations of motion for the CR3BP expressed in a rotating frame is pre-

sented and several features of this dynamical model are highlighted, including

the existence of equilibrium points and an integral of the motion. Following

this, the Bicircular Restricted Four-Body Problem (BCR4BP) is presented and

its epoch dependence is discussed. Furthermore, a formulation for transforming

states between a P1-P2 rotating frame and a Sun-B1 rotating frame is offered.

Next, the equations of motion are provided for the high-fidelity ephemeris model

utilized to validate trajectories generated in the CR3BP and BCR4BP. Finally,

the inclusion of an additional low-thrust force in any of the aforementioned

models is discussed and realistic values for such a force are offered.

• Chapter 3: Low-Thrust Trajectory Design and Optimization

Low-thrust trajectory design is cast as a continuous optimal control problem,

and a general form of this problem is stated. The categories of methods em-

ployed to solve this problem are discussed, focusing on direct optimization.

Concepts central to the direct optimization approach, e.g., the nonlinear pro-

gramming problem and Newton’s method, are presented. Direct collocation,

the direct optimization scheme employed in this investigation, is outlined, along

with the specific implementation of this algorithm employed here.

• Chapter 4: Orbit Chain Technique for Low-Thrust Trajectory Design

Examples of the various types of dynamical structures utilized by the orbit chain

technique are presented. Then a transfer scenario from a distant retrograde orbit

to a Lyapunov near the Earth-Moon L3 libration point is used to illustrate the

essential steps of the orbit chain and direct collocation framework. Following

this, more examples of the orbit chain and direct collocation technique are

provided that highlight aspects of the robustness and flexibility of the method.
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Some of these results are compared to a low-thrust trajectory computed with

a direct multiple shooting algorithm, and the differences between these two

approaches are discussed. Finally, the role various parameters of the orbit chain

and direct collocation technique play in the convergence process is qualitatively

examined.

• Chapter 5: Gateway Mission Design

The orbit chain and direct collocation technique is applied to design optimal

low-thrust transfers for the Gateway spacecraft from the 9:2 synodic resonant

near rectilinear halo orbit (NRHO) to three other libration point orbits near

the Moon. Background information on the Gateway spacecraft is followed by a

description of the methodology employed to compute low-thrust transfers and

conduct missed thrust analysis. Transfers from the 9:2 NRHO to a distant

retrograde orbit (DRO), a low-amplitude halo orbit, and a northern L1 NRHO

are computed in the CR3BP and transitioned to an ephemeris model. Exterior

and interior type transfer geometries are obtained from the 9:2 NRHO to each

destination orbit. A missed thrust analysis is conducted for the exterior transfer

to the DRO and insight on sensitive areas of the baseline trajectory is gained.

• Chapter 6: Lunar IceCube Mission Design

The orbit chain and direct collocation technique is utilized within a systematic

procedure for designing an end-to-end low-thrust transfer for the Lunar IceCube

spacecraft. In total, this transfer takes Lunar IceCube from deployment near

the Earth to insertion upon its destination orbit near the Moon. The proposed

framework divides the trajectory design challenge into two distinct phases con-

nected by a staging orbit at the Earth-Moon L2 libration point. The BCR4BP

is utilized for trajectory design because this allows the perturbing acceleration

of the Sun to be leveraged to achieve the change in energy required to reach the

destination orbit. The proposed framework is employed to design transfers to

either a low lunar orbit or the 9:2 NRHO. Transfers are computed for multiple
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deployment dates and in each case, Lunar IceCube is delivered to the final orbit

with significant reserves of propellant. Finally, sections of the transfers devel-

oped for each deployment date are successfully transitioned to an ephemeris

model.

• Chapter 7: Conclusions

A summary of the results presented in preceding chapters is provided along with

recommendations for future work.
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2. DYNAMICAL MODELS

Every trajectory design problem begins by defining the universe. While this freedom

is sadly lacking in everyday life, it is a legitimate choice for the mission designer.

In this case, the “universe” is comprised of the set bodies and forces that govern

the motion of a spacecraft and, for this reason, it is more aptly termed a dynamical

model. The spacecraft that will ultimately utilize the results of the mission designer’s

efforts is consigned to abide by the dynamics of the actual universe. However, the set

of models employed to design trajectories for this spacecraft need not capture every

reality. Indeed, if it were even possible, this choice would lead to an overly complex

dynamical model. In reality, a relatively small number of forces deliver the most

significant contributions to a spacecraft’s motion at any given time, and the design

problem is greatly simplified by incorporating only these forces.

The mission design process often begins with the simplest possible dynamical

model that adequately captures the major forces in a problem. For example, the

design of an orbit at a Lagrange point must, at least, include the two bodies whose

gravitational interactions define this equilibrium point. After a preliminary solution

is developed in this simpler dynamical model, it is recomputed in a higher-fidelity

one. The process of increasing the model’s fidelity occurs in one step or many, but it

always leads to a final result that is validated in one or more highly accurate models

that are employed for the actual flight of the spacecraft. The strategy of starting

simply and gradually increasing complexity often saves time and frequently leads to

superior solutions compared to an approach that conducts the entire design process

in a model of the highest possible complexity.

Many different dynamical models are available and each possesses distinct advan-

tages for use in various mission design scenarios. The models in this investigation all

originate from the N-body dynamical model first described by Newton and governed
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by his well known three laws. From this model, the two, three, and four-body prob-

lems and their respective variants are derived. Although other options are available,

the increasing complexity of these models typically limits rigorous analytical analysis

to these three options.

2.1 N-Body Model

Issac Newton’s groundbreaking work PhilosohphæNaturalis Principia Mathemat-

ica, published in 1687, introduced his three laws of motion as well as, the universal

law of gravitation [25]. While subsequent discoveries have uncovered more accurate

models of gravity and its effects, Newton’s classic laws of motion are often sufficient

to model the gravitational interactions for the purpose of spacecraft trajectory design.

When combined, Newton’s second law of motion and universal law of gravitation yield

an expression that represents the gravitational interaction of N point masses, Pi. In

vector form, this expression is,

MiR̃
′′
i = −G̃

N∑
j=1
j 6=i

MiMj

R̃3
ji

R̃ji, (2.1)

where G̃ is the universal gravitational constant and R̃′′i is the second derivative of the

position vector defined from the inertially fixed origin to the particle Pi with mass Mi.

Vector and matrix quantities are denoted with a bold typeface, and the tilde symbol

above a variable indicates a dimensional quantity. The relative position vector of

particle Pi with respect to particle Pj with mass Mj is expressed, R̃ji = R̃i− R̃j, and

the scalar magnitude of this vector is written, R̃ji = ‖R̃ji‖, where the l2-norm is used

to calculate magnitude. Figure 2.1 offers a schematic that demonstrates these vector

relationships between massive bodies. The unit vectors, X̂, Ŷ , and Ẑ, define the axes

of an inertially fixed frame, and are denoted as unit vectors by the carat symbol above

each variable. Collecting differential equations in the form of Equation (2.1) generates

an increasingly intractable system as N grows larger. Thus, simplifying assumptions
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Fig. 2.1. Vector diagram of an N-Body System

are applied to systems with low values of N for the purpose of preliminary trajectory

design.

The least complex systems occurs when N = 2. This system is denoted the two-

body problem and has been a problem of interest to mathematicians for hundreds of

years. By rearranging terms such that one of the bodies in this systems is treated as

an inertially fixed base point, and assuming that the other body has a negligible mass

compared to the first body, an analytical solution to the two-body system is derived.

This analytical solution generates orbits that are conic sections, e.g., circles, ellipses,

and hyperbolas. These simple closed-form solutions render reasonably accurate ap-

proximations for the motion of many celestial bodies. Indeed, the paths described by

these orbits closely match the observations made by Kepler prior to the publication of

Newton’s work. The solutions of the two-body problem were especially useful when

computational capabilities were more limited. However, the rapid advancement of

computing power over the last 75 years has enabled feasible examination of motion

in more complex dynamical models. As a result, a new and diverse set of tools for

understanding gravitational interactions has emerged.
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While increasing the value of N leads to a more complex dynamical model, it also

improves the accuracy of solutions generated. In some cases, the two-body problem

is wholly sufficient for preliminary mission design. For example, the design of a

trajectory for a satellite in low-Earth orbit typically does not need to consider any

forces outside those exerted by the Earth until the latter stages of the trajectory

design process. However, trajectory design for other missions cannot even begin

without the introduction of an additional gravitational body. For example, trajectory

design to one of the Sun-Earth libration points must include at least the two bodies

whose mutual gravitational interaction generates these points, e.g., the Earth and

Sun. Thus, the benefits of increased accuracy must be carefully weighed against the

disadvantages of heightened complexity when considering whether to increase the

value of N.

2.2 Circular Restricted Three-Body Problem

The limitations of the two-body problem sometimes necessitate the introduction

of one or more gravitational bodies. A primary limitation of the two-body model is

that it often requires a piecemeal approach to mission design. Furthermore, the effects

of additional gravitational fields are typically only included in the two-body problem

as perturbations. While this approach is successful in certain dynamical regimes, it

obscures the impact of these additional forces when they contribute more than simple

perturbations, and prevents them from being more fully leveraged in the mission

design process. Admitting one additional gravitational field into the dynamical model

yields the three-body problem (3BP), where N = 3. This expanded model possesses

no closed-form analytical solution and even by the year 1900 it was clear that insight

into the three-body problem requires a fundamental shift in approach. This new

strategy begins by reducing the problem to its most essential elements, a process that

yields the circular restricted three-body problem (CR3BP). Analysis in the CR3BP

has produced a wealth of dynamical insights that, in turn, have resulted in innovative
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approaches to mission design. The CR3BP model is particularly useful for low-thrust

trajectory design, and for this reason, it is the primary dynamical model explored in

this investigation.

2.2.1 Assumptions

Derivation of the CR3BP equations of motion begins by setting N = 3 in Equation

(2.1). This choice limits the number of active gravitational fields to three, correspond-

ing to the three particles P1-P3. The motion of P3 is assumed to be the focus, thus,

M3R̃
′′
3 = −G̃M3M1

R̃3
13

R̃13 −
G̃M3M2

R̃3
23

R̃23, (2.2)

represents the vector differential equation that describes the motion of P3. Solving

for the motion of P3 from Equation (2.2) requires knowledge of the time histories of

P1 and P2; however, because these particles are themselves influenced by the motion

of P3, such information is generally not available a priori. Therefore, a solution

of Equation (2.2) necessitates that the equations of motion of all three particles be

solved simultaneously. When Cartesian coordinates are employed, integrating the

equations of motion simultaneously requires six scalar integrals per particle, three

for position and three for velocity. Thus, a total of 18 constants of integration are

needed; but only 10 constants of integration are known to exist in this problem. Six

of these constants are obtained from the conservation of linear momentum, three from

conservation of angular momentum, and one from conservation of energy. Because

an insufficient number of integration constants are available, a time history for the

motion of all three bodies is not available analytically. However, several assumptions

can transform the problem into a more tractable form.

Three key assumptions reduce the complexity of the three-body problem. First,

the mass of the third particle, P3, is assumed to be infinitesimal compared to the

masses of P1 and P2, e.g., M3 � M2 < M1. Because the masses of these latter two

bodies are assumed to be much larger than that of P3, these bodies are termed the

“primaries”. The result of this assumption is that the motion of the primaries is not
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influenced by P3; this scenario is a reasonable approximation for many applications,

for example, the path of a spacecraft under the gravitational influence of the Sun and

a planet. Another consequence of this assumption is that the motion of the primaries

can be modeled in terms of conics, which leads to the second assumption. From the

large set of potential closed conics, the primary system orbit may be assumed to be

circular. Again this simplification is reasonable for many celestial systems of interest

such as the Earth-Moon or Sun-Jupiter systems, where the relative orbit eccentricity

is very small. The final assumption is that the mass of the first primary is greater than

the second, M1 > M2. Therefore, the primaries orbit about a common barycenter

located near P1 as shown in Figure 2.2. Depending on the mass ratio of M1 and M2,

Fig. 2.2. Circular-Restricted Three-Body Problem

the barycenter may even be located beneath the surface of the body corresponding

to P1. Together, these simplifications reduce the three-body problem to the circular

restricted three-body problem (CR3BP) offering a decrease in complexity that still

reasonably approximates the motion in a three-body system.



16

2.2.2 Coordinate Frames

Motion in a dynamical model is defined relative to a reference frame, and, as seen

with the two-body problem, intelligent selection of this frame can lead to a more

manageable and intuitive problem definition. The formulation of many dynamical

models begins with the establishment of an inertial reference frame, i.e., a frame that

is theoretically at rest or moving at a constant linear velocity. Define an inertial

reference frame, I, with origin fixed at the barycenter of the primary system and

unit vectors X̂ and Ŷ spanning the fixed plane of motion of P1 and P2. A third unit

vector, Ẑ, is defined such that I is a right-handed coordinate system. The out-of-

plane unit vector, Ẑ, is aligned with the orbital angular momentum vector of the

primary system.

Viewing motion from a reference frame that rotates with the primary system can

improve the understanding and analysis of dynamical behavior. Define a rotating

coordinate system, R, that is initially aligned with the inertial system, I. The frame

R represents a simple rotation about the out-of-plane direction, i.e., Ẑ, through the

angle i. The frame R is defined by the orthonormal triad x̂,ŷ,ẑ. The x̂-axis of R

is defined along the the line passing through the primaries and is directed toward

P2; ẑ remains aligned with Ẑ. Finally, ŷ completes the right handed coordinate

system; thus, it is perpendicular to x̂ and in the plane of motion of the primaries.

The time rate of change i̇, is the magnitude of the angular velocity of the primary

system, IωR = i̇ẑ. Because the path of the primaries is circular, i̇ is a constant

value equal to the mean motion, N , of the two-body system, thus, i = N t. The

inertial and rotating coordinate frames are related by the angle i, therefore, vectors

are transformed between frames using a simple direction cosine matrix (DCM).
X

Y

Z

 =


cos(Ṅ t) − sin(Ṅ t) 0

sin(Ṅ t) cos(Ṅ t) 0

0 0 1



x

y

z

 . (2.3)
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The DCM in Equation (2.3) permits the straightforward transformation of vectors

from the rotating to the inertial frames, and the opposite transformation is enabled

by the transpose of this DCM.

2.2.3 Formulation of the CR3BP Equations of Motion

Expressing the equations of motion in the rotating frame eliminates explicit de-

pendence on time t. Thus, Equation (2.2) is rewritten using quantities defined within

the rotating frame. Figure 2.2 shows that the barycenter, B, defined by P1 and P2, is

utilized as the inertially fixed basepoint for both the inertial and rotating frames. Up-

percase and lowercase variable names are employed to distinguish between quantities

expressed in the inertial and rotating frames, respectively. An exception to this rule

is mass, which is equivalent in both frames. Therefore, the relative position vectors

from P1 and P2 to P3 are,

r̃13 = (x̃− x̃1)x̂+ (ỹ − ỹ1)ŷ + (z̃ − z̃1)ẑ (2.4)

r̃23 = (x̃− x̃2)x̂+ (ỹ − ỹ2)ŷ + (z̃ − z̃2)ẑ, (2.5)

where the variables x̃, ỹ, and z̃ are the components of the position vector r̃3. The

subscripts of the other position components indicate whether they correspond to r̃1

or r̃2. Subscripts are omitted from the components of r̃3 since the motion of P3 is

the focus of this derivation. These new variable definitions allow Equation (2.2) to

be rewritten as,

M3
I r̃′′3 = −G̃M3M1

r̃3
13

r̃13 −
G̃M3M2

r̃3
23

r̃23, (2.6)

where the superscript I to the left of r̃′′3 indicates that the second derivative is observed

from the inertial frame.

Analysis in the CR3BP is simplified by nondimensionalizing the quantities in

Equation (2.6). This step transforms dimensional quantities that typically possess

very different magnitudes, e.g., position and velocity, into nondimensional quanti-

ties with similar orders of magnitude. This trait is particularly useful for numerical
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analysis because it reduces numerical error. To enable nondimensionalization, several

characteristic quantities are defined, one for each type of fundamental measurement

encountered in the differential equations. Distance is nondimensionalized using the

characteristic length, l∗, defined as the constant distance between the primaries:

l∗ = r̃1 + r̃2, (2.7)

where r̃1 = ‖r̃1‖ and r̃2 = ‖r̃2‖. Likewise, the characteristic mass, m∗, is defined as

the sum of the masses of P1 and P2, i.e.,

m∗ = M1 +M2. (2.8)

The characteristic time, t∗, is evaluated such that the nondimensional value of the

universal gravitational constant, G̃, is equal to one,

t∗ =

[
(r̃1 + r̃2)3

G̃(M1 +M2)

]1/2

=

[
(l∗)3

G̃m∗

]1/2

. (2.9)

The designation of a characteristic time quantity permits the definition of a nondi-

mensional time,

t =
t̃

t∗
, (2.10)

such that time derivatives of nondimensional quantities are evaluated with respect to

nondimensional time.

The choice for the definition of characteristic time also simplifies nondimensional

mean motion. Recall that the motion of P2 with respect to P1 is assumed to be

circular; thus, employing the definition of mean motion in a two-body system we can

express the dimensional mean motion, N , of the primaries as,

N =

(
G̃m∗

l∗3

)
. (2.11)

It follows, then, that the nondimensional mean motion, n, is equal to unity,

n = N t∗ =

(
G̃m∗

l∗3

)(
l∗3

G̃m∗

)
= 1. (2.12)
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The period, P , of a circular orbit is related to mean motion by P = 2π/n, thus, the

nondimensional period of the primaries in this formulation of the CR3BP is 2π.

The expression for nondimensional mass in the equations of motion is supported

by the definition of a mass ratio. The nondimensional mass of P2 is defined as the

mass ratio, µ.

µ =
M2

m∗
(2.13)

By solving Equation (2.13) for M2, substituting this expression into Equation (2.8),

and rearranging, the nondimensional value of M1 is also defined using µ.

1− µ =
M1

m∗
(2.14)

Therefore, only the mass ratio, and not M1 or M2, need appear explicitly in the

CR3BP equations of motion.

Another benefit of the mass ratio, µ, is that it offers a useful metric for the char-

acterization of a CR3BP system. The Earth-Moon system, the primary focus of this

investigation, is represented in terms of a mass ratio µ = .01215, which is relatively

large compared to other CR3BP systems such as Saturn-Titan, where µ = 0.000237 or

Sun-Jupiter with µ = 0.000954. This difference in µ implies that dynamical features

that appear in the Earth-Moon system may not appear in lower mass ratio systems

and vice versa. Tables 2.1 and 2.2 offer the characteristic quantity and µ values for

the Earth-Moon and Sun-B1 systems, respectively, where B1 is the barycenter of the

Earth-Moon system. These are the values employed for these quantities throughout

this investigation.

The characteristic length l∗ is applied to nondimensionalize quantities in Equation

(2.6) that include units of length. First, the nondimensional vectors that appear in

Figure 2.2 are defined,

r1 =
r̃1

l∗
r2 =

r̃2

l∗
r3 =

r̃3

l∗
(2.15)

r13 =
r̃13

l∗
r23 =

r̃23

l∗
, (2.16)

where the absence of the tilde symbol denotes a nondimensional value. These defini-

tions are employed, along with the mass ratio, to express the nondimensional location
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Table 2.1.
Characteristic quantity and mass ratio values for the Earth-Moon CR3BP

Parameter Value

l∗ 384747.99198 km

m∗ 6.04604× 1024 kg

t∗ 375699.85904 sec

µ 0.01215

Table 2.2.
Characteristic quantity and mass ratio values for the Sun-B1 CR3BP

Parameter Value

l∗ 149597894.00511 km

m∗ 1.98855× 1030 kg

t∗ 5022636.42910 sec

µ 3.04042× 10−6

of P1 and P2. To begin, the barycenter, B, i.e., the center of mass of the P1-P2 system,

is expressed in the rotating frame as,

Bx̂ =
−M1r1x̂+M2r2x̂

m∗
= 0, (2.17)

where r1 = ‖r1‖ and r2 = ‖r2‖. Figure 2.2 illustrates that r1 and r2 lie on the x̂-axis,

thus, these vectors as well as the vector locating the center of mass include only x̂

components. Substituting Equations (2.13) and (2.14) into Equation (2.17) yields,

− (1− µ)r1 + µr2 = 0. (2.18)
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Dividing Equation (2.7) by l∗ generates r1+r2 = 1, that is rearranged and substituted

into Equation (2.18) to produce expressions for r1 and r2 in terms of µ.

r1 = µ (2.19)

r2 = 1− µ (2.20)

Thus, because r1 and r2 only contain components along the x̂-axis, these vectors are

succinctly expressed as r1 = −µx̂ and r2 = 1 − µx̂. Furthermore, these vectors are

employed along with the nondimensional counterparts of Equations (2.4) and (2.5)

to express the relative position vectors as:

r13 = (x+ µ)x̂+ yŷ + zẑ (2.21)

r23 = (x− 1 + µ)x̂+ yŷ + zẑ. (2.22)

Finally, the nondimensional quantities developed thus far are leveraged to rewrite

Equation (2.6) in nondimensional form,

Id2r3

dt2
= I r̈3 = −(1− µ)

r3
13

r13 −
µ

r3
23

r23, (2.23)

where r̈3 denotes the 2nd derivative of the position vector r3 with respect to nondi-

mensional time observed from the inertial frame. While Equation (2.23) is written

entirely with quantities expressed in the rotating frame, the final form of the equa-

tions of motion should instead express r̈3 as an acceleration observed from the rotating

frame.

The transformation of a derivative observed in one frame to the same derivative

observed in another frame is enabled by the Basic Kinematic Equation (BKE). For

example, the 1st derivative of r3 with respect to nondimensional time observed in the

inertial frame is related to the same quantity observed in the rotating frame by,

Idr3

dt
=
Rdr3

dt
+ IωR × r3, (2.24)

where IωR is the angular velocity of the rotating frame relative to the inertial frame.

As noted previously, a result of the assumptions of the CR3BP is that this angular
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velocity is equivalent to the mean motion of P1 and P2, thus, IωR = nẑ. Comput-

ing the 2nd derivative with respect to nondimensional time of Equation (2.24) and

applying the BKE in the resulting expression produces an equation that relates the

acceleration of r3 observed in two different frames:

Id2r3

dt2
=
Rd2r3

dt2
+ 2IωR ×

Rdr3

dt
+ IωR × IωR × r3. (2.25)

The second and third terms in Equation (2.25) are termed Coriolis and centrifugal

accelerations, respectively, which contribute to the total acceleration of r3 when ob-

served in a rotating frame. The Cartesian components of each vector quantity on the

right side of Equation (2.25) are substituted and the resulting expression is evaluated:

Id2r3

dt2
= (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈x̂. (2.26)

Recall that the nondimensional mean motion, n, equals one. Thus, Equation (2.26)

is simplified by substituting in this value.

A complete expression of the CR3BP equations of motion in the rotating frame

offers insight on the individual terms that contribute to the motion of P3. To obtain

this complete expression, Equation (2.26) is substituted into the left side of Equation

(2.23). Additionally, Equations (2.21) and (2.22) are used to replace r13 and r23

on the right side of Equation (2.23). The components of the resulting equation are

written as three separate scalar equations:

ẍ− 2ẏ − x = −(1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

(2.27)

ÿ + 2ẋ− y = −(1− µ)y

r3
13

− µy

r3
23

(2.28)

z̈ = −(1− µ)z

r3
13

− µz

r3
23

, (2.29)

where the fact that n = 1 is employed to eliminate the appearance of this variable

from the equations. Furthermore, the magnitudes of the relative position vectors are:

r13 =
√

(x+ µ)2 + y2 + z2 (2.30)

r23 =
√

(x+ µ− 1)2 + y2 + z2. (2.31)
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In summary, Equations (2.27)-(2.29) are expressed in the coordinates of the rotating

frame, and the scalar velocity and acceleration terms that appear in these equations

are derivatives observed in the rotating frame. This system of second-order differential

equations describes the motion of P3 under the influence of the primary system.

The equations of motion in the CR3BP model are also represented in terms of

the gravitational potential function of the CR3BP. Because the equations of motion

are expressed in the rotating frame, a psuedo-potential function, U∗, rather than the

true potential U is utilized:

U∗ =
(1− µ)

r13

+
µ

r23

+
1

2
n2(x2 + y2), (2.32)

where the third term of this expression is introduced to accommodate the rotation

of the coordinate frame. In the rotating coordinate frame is what differentiates the

pseudo-potential from the true potential, U , formulated in the inertial frame. The

equations of motion are then available in a more succinct form,

ẍ− 2ẏ =
∂U∗

∂x
(2.33)

ÿ + 2ẋ =
∂U∗

∂y
(2.34)

z̈ =
∂U∗

∂z
. (2.35)

This formulation also lends insight into the existence of an integral of motion and

equilibrium solutions.

2.2.4 Integral of Motion

In theory, Equations (2.27)-(2.29), supply all of the necessary information to solve

for the motion of P3. However, the equations are coupled and nonlinear; no general

closed-form solution is currently known. Valuable insight into this challenging prob-

lem is supplied by an integral of motion, and the potential for such a quantity is
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suggested by the existence of U∗. To derive such a quantity, use the dot product of

acceleration with velocity.

Rr̈3 · Rṙ3 = ẍẋ+ ÿẏ + z̈ż =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.36)

The pseudo-potential, U∗, is autonomous, i.e., not a function of time, therefore, the

right side of Equation (2.36) is equivalent to the scalar derivative dU∗/dt. Thus, it

is straightforward to integrate Equation (2.36) with respect to nondimensional time

resulting in,
1

2

(
ẋ2 + ẏ2 + ż2

)
= U∗ + integration const. (2.37)

where the integration constant J is defined with a negative sign by convention. Equa-

tion (2.37) is more succinctly expressed as,

v2 = 2U∗ − J, (2.38)

where v is the scalar magnitude of the velocity of P3, v = ‖Rṙ3‖, as viewed by a

rotating observer. Equation (2.38) is denoted Jacobi’s integral and the integration

constant J is labeled the Jacobi constant after the mathematician Carl Gustav Jacob

Jacobi. This constant represents an energy-like quantity in the CR3BP. The Jacobi

constant has various uses, such as approximating the energy change necessary for

transfers and as a check on the accuracy of numerical integration. The Jacobi constant

yields powerful insights into behavior within the CR3BP, especially when combined

with particular solutions to the differential equations.

2.2.5 Equilibrium Solutions

Another strategy for gaining insight into the CR3BP is the search for equilibrium

solutions. These particular solutions are states for which the first and second order

differential equations evaluate to zero. Equilibrium states are located by recognizing
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that, at any equilibrium point, the velocity and acceleration of P3 relative to the

rotating frame equals zero. Thus, applied to Equations (2.27)-(2.29), the result is:

0 = −(1− µ)(xeq + µ)

r3
13eq

− µ(xeq − 1 + µ)

r3
23eq

+ xeq (2.39)

0 = −(1− µ)yeq
r3

13eq

− µyeq
r3

23eq

+ yeq (2.40)

0 = −(1− µ)zeq
r3

13eq

− µzeq
r3

23eq

, (2.41)

where each equation is rearranged so that all nonzero terms appear on the right side.

The subscript eq on the state variables indicates that these equations are satisfied at

the equilibrium points. Equation (2.41) is only satisfied when zeq = 0, thus all the

equilibrium solutions are planar. Similarly, Equation (2.40) is satisfied with yeq = 0,

therefore, at least one or more of the equilibrium solutions are located on the x-axis of

the rotating coordinate frame. To locate these collinear equilibrium solutions, recall

that n = 1 and substitute zeq = yeq = 0 into Equation (2.39).

0 = −(1− µ)(xeq + µ)

|xeq + µ|3
− µ(xeq − 1 + µ)

|xeq − 1 + µ|3
+ xeq (2.42)

Equation (2.42) yields five solutions for xeq, two of which are imaginary and are ne-

glected for the purposes of this evaluation. No closed-form solutions exist for Equa-

tion (2.42); therefore, the remaining three values of xeq are solved for iteratively. This

numerical process is aided by reformulating Equation (2.42) in terms of the displace-

ment, γi, from the nearest primary. The three possible values of xeq are defined as

follows,

xeq1 = 1− µ− γ1 (2.43)

xeq2 = 1− µ+ γ2 (2.44)

xeq3 = −µ− γ3. (2.45)

These definitions indicate that one equilibrium point, xeq1 , is located between the

two primaries on the x-axis, while xeq3 and xeq2 are outside P1 and P2, respectively.

Such a configuration appears in Figure 2.3, where the equilibrium points are numbered
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consistent with the typical NASA convention. Equations (2.43)-(2.45) are substituted

into Equation (2.42) yielding three possible scalar equations,

0 = − (1− µ)

(1− γ1)2
+

µ

(γ1)2
+ 1− µ− γ1 (2.46)

0 = − (1− µ)

(1 + γ2)2
− µ(γ2)

(γ2)2
+ 1− µ+ γ2 (2.47)

0 =
(1− µ)

(γ3)2
+

µ

(γ3 + 1)2
+−µ+ γ3. (2.48)

Newton’s method is used, in combination with a reasonably accurate initial guess, to

solve for γi in Equations (2.46)-(2.48). The resulting values of γi are substituted into

Equations (2.43)-(2.45) to compute the positions of the collinear equilibrium points,

L1, L2, and L3.

Two additional equilibrium points are located for yeq 6= 0 in Equation (2.40).

When the equilibrium points are off the x-axis, the values of r13 and r23 must be

equivalent to satisfy Equations (2.39) and (2.40). When r13 = r23, two possible

values for the location of the equilibrium point exist, i.e.,

xeq4,5 =
1

2
− µ (2.49)

yeq4,5 = ±
√

3

2
. (2.50)

The points L4 and L5 are located on either side of the x-axis equidistant from the

primaries and, for this reason, they are denoted the equilateral or triangular points.

The locations of these points are also depicted in Figure 2.3. Note, when observed in

an inertial frame, L4 appears to lead P2 by 60◦ while L5 lags by 60◦.

2.3 Bicircular Restricted Four-Body Problem

The bicircular restricted four-body problem (BCR4BP) is a useful dynamical

model because it offers some of the simplicity of the CR3BP, while including per-

turbations from a fourth gravitational body, thus, N = 4. For mission scenarios that

are not adequately modeled with the assumptions of the CR3BP alone, the BCR4BP
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Fig. 2.3. Configuration of the Lagrange points in the Earth-Moon CR3BP
as viewed in the rotating frame.

offers an alternative to conducting preliminary design in a full ephemeris model. For

example, some missions that operate primarily in the Earth-Moon system are heavily

influenced by the gravity of the Sun due to temporary excursions far beyond the ra-

dius of the Moon; thus, conducting design in a BCR4B model that includes the Earth,

Moon, and Sun yields more accurate preliminary results. This investigation focuses

exclusively on a BCR4BP model that includes these three gravitational bodies; how-

ever, the BCR4BP can be utilized to model many other collections of gravitational

bodies, for example, other Planet-Moon-Sun systems or a binary asteroid system in

heliocentric orbit. A more comprehensive analysis of the BCR4BP model utilized in

this investigation is presented by Boudad [26,27].
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2.3.1 Assumptions

The BCR4BP adds to the assumptions of the CR3BP to supply a model that

includes a fourth body without introducing an overwhelming increase in complexity.

In this investigation, the Sun is the fourth body that is introduced to the three-body

system, which consists of the primaries P1 and P2, and the body of interest P3. The

first new assumption is that the Sun and the P1-P2 barycenter move in circular orbits

about their mutual barycenter B2. The barycenter of the P1-P2 system considered

in Section 2.2 is redefined, B1 = B, to distinguish it from the new barycenter, B2.

A second assumption is that the circular orbits of P1 and P2 are unaffected by the

gravitational force of the Sun. A consequence of this assumption is that the BCR4BP

is not coherent because the motion of P2 is not a dynamical result of the influence

of P1 and the Sun. Other formulations of the BCR4BP that implement a coherent

dynamical model are available, but are not implemented here [28]. These first two

assumptions generate a dynamical model that consists of two nested circular orbits,

hence the inclusion of the term bicircular in the model’s title. Next, the restricted

assumption of the CR3BP, namely that the mass of P3 is infinitesimally smaller than

that of the other bodies, remains true in the BCR4BP, except that the mass of the

Sun is now included, i.e., m3 � m2 < m1 < mS. Finally, the circular orbits of the

Sun-B1 system and P1-P2 are assumed to be coplanar. Formulations of the BCR4BP

that do not include this final assumption are available [26]; however, because the

angle of the Earth-Moon orbital plane is only 5◦ relative to the ecliptic a coplanar

assumption is reasonable for the applications considered here.

A new rotating coordinate frame, associated with the circular orbits of the Sun

and B1, is established to facilitate design and analysis in the BCR4BP. The origin of

this new coordinate frame is located at B2, and the axes of this coordinate frame are

distinguished from those of the P1-P2 rotating frame by augmenting the variables with

an apostrophe. Thus, the x̂′-axis of the Sun-B1 rotating frame is oriented along the

line passing through B1 and the Sun and is directed towards the latter of these bodies,
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as displayed in Figure 2.4. The ẑ′-axis is aligned with the orbital angular momentum

x̂

ŷ

B1

P1 P2

θS

x̂′

aS

SunB2

Fig. 2.4. Definition of the Sun angle in the Bicircular Restricted Four-
Body Problem.

vector of the Sun-B1 system, which, given the coplanar assumption is parallel to the

angular momentum vector of the P1-P2 system. Finally, the ŷ′-axis completes the

right-handed coordinate system. Another result of the coplanar assumption is that a

single angle, the Sun angle, θS, is relates the Sun-B1 and P1-P2 reference frames. The

angle between the x̂′ and the x̂ axes defines, θS, as illustrated in Figure 2.4. The Sun

angle orients the Sun within the P1-P2 frame, and changes continuously with time.

The inclusion of a time-varying angle implies that the BCR4BP is time-dependent,

i.e., a nonautonomous model unlike the CR3BP. Fortunately, the BCR4BP is still

periodic; one period corresponds to a complete revolution of the Sun about B1 in

the P1-P2 rotating frame. For the Earth-Moon-Sun system, this period is equivalent

to the synodic period of the Moon, approximately 29.5 days. Because the BCR4BP

remains periodic, analogs to some of the dynamical structures available in the CR3BP

are available in this higher-fidelity model. However, computation and analysis of these

structures is complicated by the fact that every state must be associated with a time

or epoch. The Sun angle itself is employed to denote the epoch corresponding to a

given state.
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An alternative to the Sun angle for tracking the epoch in the BCR4BP is the

P1-P2 angle, θP2 , which is defined in the Sun-B1 rotating frame. Figure 2.5 illustrates

the angle as defined between the x̂′-axis and the projection of the x̂-axis in the Sun-

B1 rotating frame. From Figure 2.5, it is clear that a value of θP2 = 0◦ produces

x̂′

ŷ′

B2

Sun
B1

P1

P2

θP2

Fig. 2.5. Definition of the P1-P2 angle in the Bicircular Restricted Four-
Body Problem.

a Sun-P1-P2 alignment. Similarly, observation of Figure 2.4 reveals that a value of

θS = 0◦ generates a P1-P2-Sun alignment. Given the difference in the order of the

bodies for these two alignments, it is evident that the Sun and P1-P2 angles are related

by θP2 = θS − π. That is, when θS = 0◦, then θP2 = 180◦. This alternative epoch

angle, θP2 , is useful for computing a rotation matrix that transforms states from one

rotating frame to another.

Two additional constant parameters complete the relationship between the Sun-

B1 and P1-P2 rotating frames. First, the distance from B1 to the Sun, aS, establishes

the orbital radii for the Sun and B1 with respect to B2. In reality, this value oscil-

lates with time, but a reasonable average value is selected over the time period of

interest for a given problem. The second constant parameter is the mass of the Sun,

mS. This quantity, along with the location of the Sun, determines the nature of the

additional acceleration imparted by the Sun in the BCR4BP. When employed within

the BCR4BP equations of motion, aS and mS are nondimensionalized by the same
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characteristic quantities that would be employed for the P1-P2 CR3BP. The definition

of aS and mS permits the calculation of the nondimensional mean motion of the Sun

in the inertial frame:

nS =

√
1 +mS

a3
S

. (2.51)

The mean motion of the Sun in the inertial frame is related to the nondimensional

angular velocity of the Sun as viewed in the P1-P2 frame by,

ωS = nS − 1. (2.52)

Thus, the angular velocity of the Sun in the BCR4BP is a constant value that is used

to calculate the value of the Sun angle at any time as long as the initial value of the

Sun angle, θS0 , is known. The Sun angle at time t is given by,

θS = ωSt+ θS0 , (2.53)

where θS0 operates as the initial epoch that determines the value of θS at the current

time. Table 2.3 offers the values of aS and mS employed in this investigation.

Table 2.3.
Values of constant Sun parameters in the BCR4BP.

Parameter Value

ãS = aS · l∗ 149597894.00511 km

MS = mS ·m∗ 1.98855× 1030 kg

2.3.2 Equations of Motion

Motion in the BCR4BP is described by a set of differential equations similar to

those of the CR3BP, but modified to accomodate the perturbing acceleration of the

Sun. The P1-P2 rotating frame together with the Sun-B1 rotating frame are commonly
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employed for analysis in the BCR4BP, and the equations of motion for P3 may be

expressed in either of these frames. The equations of motion for P3 expressed in terms

of the P1-P2 frame are,

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r3
13

− µ(x− 1 + µ)

r3
23

− mS(x− xS)

r3
S3

− mS

a3
S

xS (2.54)

ÿ = −2ẋ+ y − (1− µ)y

r3
13

− µy

r3
23

− mS(y − yS)

r3
S3

− mS

a3
S

yS (2.55)

z̈ = −(1− µ)z

r3
13

− µz

r3
23

− mS(z − zS)

r3
S3

− mS

a3
S

zS, (2.56)

where the vector rS3 is the relative position vector from the Sun to P3, and rS3 =

‖rS3‖. This vector is computed by subtracting the position of the Sun relative to B1

from the position of P3 with respect to B1, i.e., rS3 = r − rS. The location of the

Sun with respect to B1 is determined by,

rS =


xS

yS

zS

 =


aS cos(ωSt+ θS0)

aS sin(ωSt+ θS0)

0

 . (2.57)

Thus, the value of rS3 must be updated at each instant in time when Equations

(2.54)-2.56 are integrated.

As in the CR3BP, a psuedo-potential is also defined for the BCR4BP, and is useful

for expressing the equations of motion in an abbreviated form. The pseudo-potential

can be formulated in either the P1-P2 or Sun-B1 rotating frames. In the P1-P2 rotating

frame it is expressed as,

Ψ =
1− µ
r13

+
µ

r23

+
1

2
(x2 + y2) +

mS

rS3

− mS

a3
S

(xSx+ ySy + zSz) , (2.58)

where the first three terms of the pseudo-potential are identical to those of the CR3BP

pseudo-potential in Equation (2.32), and the final two terms incorporate the influence

of the Sun. As a result of the Sun’s inclusion, the value of the BCR4BP pseudo-

potential varies with time in contrast to its CR3BP counterpart. The BCR4BP
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equations of motion expressed in the P1-P2 rotating frame using the pseudo-potential

are:

ẍ− 2ẏ =
∂Ψ

∂x
(2.59)

ÿ + 2ẋ =
∂Ψ

∂y
(2.60)

z̈ =
∂Ψ

∂z
. (2.61)

The pseudo-potential is also useful for describing the energy of the BCR4BP system

in the form of the system Hamiltonian.

The pseudo-potential is also formulated in terms of coordinates and quantities ex-

pressed in the Sun-B1 frame. Recall, variables expressed in this frame are augmented

with an apostrophe, thus, the pseudo-potential in the Sun-B1 frame is written,

Ψ′ =
1

2
(x′2 + y′2) +

1− µSB1

r′S3

+
µSB1(1− µP1P2)

r′13

+
µSB1µP1P2

r′23

, (2.62)

where µSB1 is the mass ratio of the Sun-B1 system and µP1P2 is the mass ration of the

P1-P2 system. If P1 and P2 are the Earth and the Moon, then these two mass ratios

are presented in Tables 2.2 and 2.1, respectively. The Ψ′ pseudo-potential is useful

for developing equation of motion or the system Hamiltonian in the Sun-B1 frame.

2.3.3 System Hamiltonian

The time dependence of the BCR4BP implies that the value of the pseudo-

potential Ψ is not constant, thus, dΨ/dt 6= 0, and an integral of the motion does

not exist. However, the Hamiltonian, the total energy of the system, serves as a

useful metric for analyzing the motion of P3 in the BCR4BP. The Hamiltonian is

evaluated using coordinates expressed in the P1-P2 or Sun-B1 rotating frames. The

Hamiltonian values calculated in these two frames are similar in magnitude to the

Jacobi constant values computed in either of these two frames; that is, the Jacobi
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constant of the Sun-B1 CR3BP is similar in magnitude to the BCR4BP Hamiltonian

computed in the Sun-B1 rotating frame, HSB1 .

HP1P2 = 2Ψ− (ẋ2 + ẏ2 + ż2)− ℵ (2.63)

HSB1 = 2Ψ′ − (ẋ′2 + ẏ′2 + ż′2) (2.64)

The value of HP1P2 is scaled by a constant parameter ℵ that is included to offset

the high value terms introduced by the Sun and ensure that HP1P2 is of a similar

magnitude to the Jacobi constant value in the Earth-Moon CR3BP. Throughout this

analysis, ℵ = 1690 nondimensional units.

2.3.4 Coordinate Frame Transformation

The equations of motion of the BCR4BP are formulated within the P1-P2 rotating

frame, thus, it is straightforward to plot the results in this same frame. However, it is

frequently advantageous to observe trajectories in the Sun-B1 rotating frame as well

because analysis in this frame highlights the influence of the Sun on the motion of P3.

Therefore, a means of transforming states between the P1-P2 and Sun-B1 rotating

frames is necessary.

States are transformed from the P1-P2 rotating frame to the Sun-B1 rotating via

a single rotation. This rotation is about the ẑ axis and through the angle π−θS. The

DCM for this rotation is,

C =


cos(π − θS) − sin(π − θS) 0

sin(π − θS) cos(π − θS) 0

0 0 1

 , (2.65)

where the coordinate frame emerging from this rotation is the desired Sun-B1 frame

with axes x̂′, ŷ′, and ẑ′. Thus, the matrix C is applied to a position vector to transform

it from the P1-P2 to the Sun-B1 rotating frame. The successful transformation of

velocity vectors from the P1-P2 to the Sun-B1 requires that Ċ, the time derivative of

C, be computed. The derivative of each element of C with respect to nondimensional
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time t yields Ċ. While time does not appear explicitly in Equation (2.65), recall that

the variable θS is a function of time, θP2 = ωSt + θS0 . Therefore, the variable ωS

appears in some of the components of the Ċ matrix, written as,

Ċ =


ωS sin(π − θS) ωS cos(π − θS) 0

−ωS cos(π − θS) ωS sin(π − θS) 0

0 0 1

 . (2.66)

Together C and Ċ enable states expressed in the P1-P2 rotating frame to be trans-

formed to the Sun-B1 rotating frame.

Once the rotation matrices C and Ċ are assembled, the transformation process

from the P1-P2 to the Sun-B1 rotating frame is accomplished. The matrices C and Ċ

are combined into a single 6 × 6 matrix that is employed to transform a row vector

of position and velocity states between frames.

[
x′ y′ z′ ẋ′ ẏ′ ż′

]
=
[
x y z ẋ ẏ ż

]C Ċ

0 C

 (2.67)

Following the rotation, the result from Equation (2.67) is first dimensionalized using

the characteristic quantities of the P1-P2 system and then nondimensionalized with

the characteristic quantities of the Sun-B1 system. The characteristic quantities and

mass ratio employed to plot trajectories in the Sun-B1 frame are the same as for a

Sun-B1 CR3B model. Finally, the origin for the position states of the rotated vector

are shifted from B1 to B2, by adding the nondimensional quantity (1− µSB1) to the

x′ component. If states in a B1-centered Sun-B1 frame are desired, then this final

step is omitted.

2.4 Higher-Fidelity Modeling

While it is frequently beneficial to conduct preliminary mission analysis in a sim-

plified dynamical model, all trajectory designs must be validated in a high-fidelity dy-

namical model before they are utilized for an actual mission. The N-body ephemeris
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model from Section 2.1 is frequently employed for this validation step. This model

permits an arbitrary number of gravitational bodies to be included as perturbing in-

fluences and draws on highly accurate ephemeris data to update the states of these

bodies. The inclusion of N bodies in the dynamical model is most straightforward

when the equations of motion are expressed in an inertial reference frame. Thus,

all computations in the ephemeris model occur in an inertial frame and results are

transformed into alternate frames as desired. The J2000 ecliptic frame is employed

in this investigation; however, other frames, e.g., the J2000 Equatorial, are available.

Furthermore, the DE438 ephemeris file from the Jet Propulsion Laboratory’s Naviga-

tion and Ancillary Information Facility is utilized to obtain ephemerides for all bodies

included in this analysis.

The ephemeris model employs the N-body equations of motion to compute the

path of a particle of interest, Mi, whose mass is assumed to be negligible relative to

the N− 1 other bodies included in the model. The motion of the particle of interest

is typically expressed in an inertial reference frame that is fixed at one of the massive

bodies, called the central body, with mass, Mq. The N−2 other bodies included in the

model are considered perturbing bodies with masses, Mj, and these exert additional

accelerations on the particle of interest with mass, Mi. All massive bodies included

in this model are assumed to be centrobaric point masses and their paths, relative to

the central body, are defined at each instant in time with ephemeris data. Equation

(2.1) is modified to supply an expression that describes the motion of Mi with respect

to the central body Mq while under the gravitational influence of Mq and N− 2 other

bodies. The modification process begins by defining the expression for the relative

position vector from Mq to Mi and computing the second derivative of each term:

R̃qi = R̃i − R̃q (2.68)

Id2R̃qi

dt2
=

Id2R̃i

dt2
−

Id2R̃q

dt2
(2.69)

This step yields an expression for the desired quantity, i.e., the acceleration of the

relative position vector from Mq to Mi as observed from the inertial frame. Next, the
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two terms on the right side in Equation (2.69) are expanded to produce an expression

comprised solely of masses and position vectors. Equation (2.1) in Section 2.1 provides

an expression for one of these two terms, that is,

Mi

Id2R̃i

dt2
= −G̃

N∑
j=1
j 6=i

MiMj

R̃3
ji

R̃ji, (2.70)

where the second derivative is now written in Leibniz form for consistency with Equa-

tion (2.69). Recall that Rji = ‖R̃ji‖. An expression for the second term in Equation

(2.69) is obtained in a similar manner, by replacing i with q in Equation (2.70) to

represent the particle of interest:

Mq

Id2R̃q

dt2
= −G̃

N∑
j=1
j 6=q

MqMj

R̃3
jq

R̃jq. (2.71)

Following these definitions, both sides of Equations (2.70) and (2.71) are divided

by the mass terms Mi and Mq, respectively, to remove these variables from each

equation. Then, the results of this operation are substituted into the appropriate

terms in Equation (2.69) that yields,

Id2R̃qi

dt2
= −G̃

N∑
j=1
j 6=i

Mj

R̃3
ji

R̃ji + G̃
N∑
j=1
j 6=q

Mj

R̃3
jq

R̃jq. (2.72)

Next, the direction of the relative position vectors on the right side of Equation (2.72)

are reversed, which effects a sign change on both terms, thus,

Id2R̃qi

dt2
= G̃

N∑
j=1
j 6=i

Mj

R̃3
ij

R̃ij − G̃
N∑
j=1
j 6=q

Mj

R̃3
qj

R̃qj, (2.73)

where this reversal in direction is conducted for consistency with the literature. The

final form of the desired expression is generated by extracting the j = i iterate from

the second term in Equation (2.73) and combining the remaining sums to yield,

IR̈qi = −Gmq

R3
qi

Rqi +G
N∑
j=1
j 6=i,q

mj

(
Rij

R3
ij

− Rqj

R3
qj

)
. (2.74)
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As in the previous two models, the mass of the particle of interest in the N-body

ephemeris model is regarded as negligible and, therefore, does not appear in Equation

(2.74). Furthermore, the quantities in Equation (2.74) are nondimensionalized with

the characteristic quantities described in Section 2.2.3. The exact values of these

quantities are a choice for the user and should be selected based upon the gravitational

bodies included in the system.

Though an inertial reference frame is employed to compute trajectories in an

ephemeris model, solutions are transformed into alternate frames for further analysis.

The applications in this investigation include trajectories in the Earth-Moon system,

thus, one of these two bodies is typically employed as the central body in the inertial

frame while the other body, along with the Sun, are included as additional perturb-

ing bodies. More than one approach for transforming trajectories from an Earth or

Moon centered inertial frame to a barycentered rotating frame are available. Thor-

ough details for the steps required to transform the states computed in an ephemeris

model between the inertial and rotating frames are presented by Pavlak [29] and

Das-Stuart [30]. The explanations offered by Das-Stuart are notable to illustrate two

versions of the transformation process that yield different results each offering distinct

advantages.

2.5 Low-Thrust Electric Propulsion

The dynamical models previously introduced all assume ballistic motion; that

is, motion influenced solely by the naturally occurring forces within a model, e.g.,

those forces exerted by gravitational bodies. However, if the particle of interest in

these simulations is a spacecraft, it is likely equipped with the means to introduce

a force of its own. Low-thrust spacecraft, in particular, those propelled via solar

electric propulsion, are the focus of this investigation; this type of spacecraft imparts

a relatively small force over a long period of time to affect changes in the motion of a

spacecraft. The gradual nature of low-thrust spacecraft requires that the accelerations
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they introduce be included in the equations of motion of the dynamical model and

integrated along with the naturally occurring accelerations.

Many options, over a wide range of fidelity, are available for modeling the force

imparted by a low-thrust engine; a relatively simple model is employed in this inves-

tigation. The acceleration imparted by a low-thrust force, aT , is defined as,

aT =
T

ms

, (2.75)

where T = [Tx, Ty, Tz] and ms is the spacecraft mass. Moreover, the magnitude

of the thrust vector is determined by the l2-norm, T = ‖T ‖. The thrust vector

indicates the direction of the force imparted by the low-thrust engine. This vector

is expressed in any number of frames and rotated between them as illustrated for

a position vector. Thus, Equation (2.3) is employed to transform the thrust vector

from the rotating to an arbitrary inertial frame in the CR3BP and BCR4BP. Similarly,

transformations in an ephemeris model that are typically applied to position vectors

are also utilized for thrust vectors, although ensuring that the dimensionalization and

nondimensionalization steps employ the appropriate characteristic quantities is a key

step.

Many options for parameterizing the spacecraft mass and thrust vector are avail-

able; however, they all ultimately generate an acceleration vector of the form in

Equation (2.75). The vector aT is split into its component parts and added to any of

the equations of motion. It is essential to ensure that aT and the associated equations

of motion are expressed in the same frame. Thus, while the thrust vector may be

initially defined in a different frame, it is transformed to the frame consistent with

the equations of motion before aT is calculated. In contrast, the value of the space-

craft mass is independent of the selected frame. Together, the thrust vector and the

mass of a low-thrust spacecraft determine the acceleration added to the equations of

motion at a given instant in time.
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The spacecraft mass, ms, evolves with time as the thrust maneuvers are executed.

The mass flow rate, ṁs, governs the rate at which spacecraft propellant is consumed

and is expressed as,

ṁs =
T

ve
, (2.76)

where ve is the exhaust velocity evaluated as, ve = Ispg0. A value of g0 = 9.80665 m/s2

is employed for the acceleration due to gravity on the surface of the Earth. Specific

impulse, Isp, is a measure of engine efficiency. It is clear from Equation (2.76) that,

if the thrust magnitude remains fixed, then an increase in Isp decreases ṁs, thus, de-

creasing propellant consumption for the same thrust magnitude. Low-thrust engines

possess far higher Isp values than their high-thrust chemical counterparts, which is

the primary motivation for employing this engine type. The manner in which the

thrust vector and spacecraft mass are parameterized determines whether Equation

(2.76) is integrated along with the other equations of motion in the dynamical model.

When the thrust magnitude is constant, it is straightforward to analytically compute

the resulting change in spacecraft mass given Equation (2.76) and the duration of

the thrust arc. Indeed, this approach is used for the direct collocation scheme intro-

duced later in the document. However, if the selected parameterization permits the

thrust magnitude to change at every instant in time, then Equation (2.76) must be

numerically integrated along with the equations of motion in the dynamical model.

The scheme for incorporating a low-thrust force into the equations of motion is

adaptable to many types of low-thrust spacecraft. Three key parameters differenti-

ate one low-thrust spacecraft from another in the selected thruster model: maximum

thrust (Tmax), specific impulse (Isp), and initial spacecraft mass (ms0). Together Tmax

and ms0 are used to evaluate a spacecraft’s maximum acceleration, aTmax . This quan-

tity is the maximum low-thrust acceleration a spacecraft can impart at the beginning

of its lifetime. The maximum acceleration for a low-thrust spacecraft dictates its

control authority, that is, its ability to alter its natural motion. The larger the value

of aTmax for a spacecraft, the more quickly it can affect its velocity and ultimately

the position. A spacecraft with low control authority often requires more time than
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a spacecraft with a higher control authority to achieve the same transfer, and some-

times a transfer may not be possible for a given level of control authority. Of course,

as the mass of a spacecraft decreases through the consumption of propellant, the

acceleration it imparts increase, however, this change is often gradual and relatively

small. Finally, note that a higher-fidelity model of the low-thrust engine introduces

additional characteristics that distinguish one spacecraft from another, e.g., available

spacecraft power and thruster performance curves. However, these more complex

considerations are omitted in the present investigation.

It is essential to examine aTmax , not solely Tmax, when comparing the capabilities of

multiple spacecraft. This necessity is illustrated by Table 2.4, which displays the key

spacecraft and engine parameters from a range of real low-thrust spacecraft. Table

Table 2.4.
Spacecraft and engine parameters for real low-thrust spacecraft.

Spacecraft ms0 [kg] Tmax [mN] Max Isp [sec] aTmax [m/s2]

Deep Space 1 [31] 486.3 92.7 3127 1.91× 10−4

Lunar IceCube [32] 14 1.24 2640 8.86× 10−5

Dawn [6] 1217.8 91 3127 7.47× 10−5

Hayabusa 2 [33] 608.6 27 2890 4.44× 10−5

Gateway [34] 39000 1132.6 2323 2.90× 10−5

2.4 illustrates that Gateway, the spacecraft with, by far, the highest Tmax, actually

possesses the lowest value of aTmax as a result of its extremely large mass. Thus,

despite its powerful low-thrust engines, Gateway exhibits the least control authority

of all the spacecraft listed. In contrast, Lunar IceCube, a very small spacecraft with a

comparably tiny engine, actually possesses substantially more control authority than

Gateway. Other spacecraft operate above and between Lunar IceCube and Gateway

in Table 2.4, thus, demonstrating the wide range of capabilities.
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3. LOW-THRUST TRAJECTORY COMPUTATION

AND OPTIMIZATION

Selection of a dynamical model for simulating the motion of a spacecraft serves as

the foundation for trajectory design. Trajectory design encompasses many different

objectives, from creating a stable orbit around a planet to constructing a transfer

between two different orbits. In this investigation, transfer design for low-thrust

spacecraft is the goal. For low-thrust spacecraft, trajectory design is markedly dif-

ferent than the process required for chemical spacecraft because it requires solving a

continuous optimal control problem. The nature of this problem is discussed prior to

presenting several approaches for solution. This development follows the work from

Betts [35] from Longuski, Guzmán, and Prussing [36], as well as from other authors.

One particular method, direct collocation, is utilized to solve low-thrust trajectory

design problems in this investigation and a specific direct collocation formulation is

implemented.

Mathematically, the dynamical models are characterized by the equations of mo-

tion that describe the motion of a spacecraft. The equations of motion for the three

models examined previously are all represented as sets of three scalar second-order

differential equations. However, it is straightforward to transform these equations into

a system of six first-order differential equations via a change of variables approach.

A general format for representing these equations is,

ẋ =


ẋ1

ẋ2

...

ẋnx

 =


f1[x1(t), . . . , xnx(t)]

f2[x1(t), . . . , xnx(t)]
...

fnx [x1(t), . . . , xnx(t)]

 = f [x(t), t], (3.1)
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where nx denotes the number of state variables and, therefore, the number of first-

order ODEs included in the dynamical system. For the problems considered here, the

state variables are expressed in Cartesian coordinates, thus, nx = 6 where x consists

of three position states r and three velocity states ṙ, thus x = {r, ṙ}T . Equation (3.1)

represents a dynamical system that is only a function of states and time; however,

some systems also include control variables, u(t), and various parameters that are

constant over time, ρ. When these additional variables and parameters are included

the system of equations is represented as,

ẋ = f [x(t),u(t),ρ, t], (3.2)

where ρ is not a function of time. The dynamical system provided by the selected

model and expressed in Equation (3.2) supplies the foundation for the general optimal

control problem.

3.1 The Optimal Control Problem

Fundamentally, an optimal control problem concerns the determination of a set

of inputs to a system to extremize a desired parameter. The problem of low-thrust

trajectory design perfectly fits this description. At each instant in time, the thrust

vector of a low-thrust spacecraft, the input, must be selected to minimize a cost,

typically propellant consumption or time of flight. The world is filled with optimiza-

tion problems, both naturally occurring, such as light refracting through water, and

human-made. Thus, significant effort has been invested in solving these problems.

The modern field of optimal control theory originated in the 1690s when Johann

Bernoulli challenged his fellow mathematicians to solve the brachistochrone problem.

This prompting led to several solution methods, including ones by Issac Newton and

Bernoulli himself, whose concepts are utilized to this day. The advent of computers in

the 20th century spurred rapid advancement in the field of optimal control, leading to

many new approaches for solving such problems. However, regardless of the method
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selected, all approaches require an initial mathematical formulation of the optimal

control problem.

3.1.1 General Formulation

A simple optimal control problem that omits inequality constraints is examined

first to facilitate introduction of the Euler-Lagrange Theorem. This problem states

that the control values u(t) must be selected to minimize the function,

J = φ
[
x(tF ),u(tF ),ρ, tF

]
+

∫ tF

tI

L
[
x(t),u(t),ρ, t

]
dt, (3.3)

where the first and second terms in the total cost, J , represent terminal and path

costs, respectively. The terminal cost is evaluated at the final time, tF , and the final

state xF = x(tF ). While the path cost is accumulated over the entire duration of the

path, and is equal to the integral of the Lagrangian, L
[
x(t),u(t),ρ, t

]
, from the initial

to the final time. Equation (3.3) is described under a variety of names including cost

function, objective function, and performance index. Minimization of Equation (3.3)

is subject to the state equations,

ẋ = f
[
x(t),u(t),ρ, t

]
, (3.4)

and the boundary constraints,

ψ
[
x(tF ),u(tF ),ρ, tF

]
= 0, (3.5)

where u(t) is restricted to the set of admissible controls u(t) ∈ U . Furthermore, the

initial conditions xI = x(tI) are given at the initial time tI and the final time tF is

free. Two types of equality constraints are imposed in this optimal control problem.

The constraints in Equation (3.4) are continuous, because they apply over the entire

time interval, tI ≤ t ≤ tF . In contrast, Equation (3.5) represents discrete constraints

that are only evaluated at the final time, tF .
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3.1.2 Euler-Lagrange Theorem

The solution of the brachistochrone problem spurred the development of a new

field of mathematical analysis, the calculus of variations. The mathematicians Euler

and Lagrange furthered this area of research in the 1700s with their development

of the aptly named Euler-Lagrange Theorem. As this theorem is the basis for an

entire branch of optimization methods called indirect methods, it merits examination

here. The development of the Euler-Lagrange theorem is aided by reformulating the

general optimal control problem as introduced in the previous section. First, the cost

function, Equation (3.3), is augmented with the constraints,

Ĵ =
(
φ+ νTψ

)
tF

+

∫ tF

ti

L
[
x(t),u(t),ρ, t

]
+ λT

{
ẋ− f

[
x(t),u(t),ρ, t

]}
dt, (3.6)

where the Lagrange multipliers, ν, are included with the discrete constraints and

the costate or adjoint variables, λ(t), are multiplied by the continuous constraints.

This modification ensures that minimization of the cost function does not ignore

enforcement of the constraints. Next, the expression for the augmented cost function

is simplified with the definition of several additional variables, i.e., the Hamiltonian,

H = L
[
x(t),u(t),ρ, t

]
+ λ(t)Tf

[
x(t),u(t),ρ, t

]
, (3.7)

and the auxiliary function,

Φ = φ+ νTψ. (3.8)

The necessary conditions of the Euler-Lagrange theorem are derived by setting the

first variation of the augmented cost function to zero, Ĵ = δ0. A detailed explanation

of this derivation is presented by Longuski, Guzmán, and Prussing [36]. The results

of this process are four necessary conditions that must be met to obtain a constrained

optimum that satisfies the optimal control problem presented in Equations (3.3)-(3.5).

These necessary conditions are,

λ̇ = −HT
x , (3.9)

called the costate or adjoint equations,

0 = −HT
u , (3.10)



46

called the control equations, and

λ(tF ) =
∂ΦT

∂xF
(3.11)

0 =

(
dΦ

dt
+H

) ∣∣∣∣
t=tF

, (3.12)

denoted the transversality conditions. The variables Hx and Hu denote the par-

tial derivatives of the Hamiltonian with respect to the state and control variables,

respectively. These partial derivatives are considered column vectors, thus, Hx =

[∂H/∂x1, . . . , ∂H/∂xn]T . Together Equations (3.9)-(3.12) are termed the Euler-Lagrange

equations. Note that Equation (3.12) only applies if the final time tF is free.

The Euler-Lagrange equations provide a set of necessary conditions that must be

met to minimize J while satisfying the given constraints. These necessary conditions

consist of the system of differential algebraic equations formed by Equations (3.4),

(3.9), and (3.10), whose boundary conditions at tI and tF are given by Equations

(3.5), (3.11), and (3.12). Collectively, these equations form a two-point boundary

value problem (TPBVP) whose solution yields an answer to the optimal control prob-

lem posed in Section 3.1.1. A variety of solution methods for TPBVPs are available,

several of which are discussed in subsequent sections. Finally, note that the simple

optimal control problem addressed in this section omits inequality constraints; how-

ever, strategies for applying the Euler-Lagrange Theorem to a problem that includes

these types of constraints are available [36].

3.1.3 General Multi-Phase Formulation

A more general presentation of the optimal control problem highlights other con-

straints that can appear, and to offer a framework for problems that consist of multiple

phases. A phase is defined by Betts [35] as a section of an optimal control problem

where the differential equations that define the dynamical system remain unchanged.

Time, t, is typically the independent variable in low-thrust optimal control problems,

thus, each phase is denoted by its start and end times, tκI < t < tκF . Phases are
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typically ordered sequentially such that tκ+1
I = tκF and constraints may be enforced

that require state and control variables to remain continuous between phases, though

this constraint is not required. In this investigation, all problems have one phase,

thus Q = 1; however, a multi-phase scheme is presented to demonstrate potential

extensions for the current framework. State and control variables are the dynamic

variables, z, of the optimal control problem, i.e.,

z =

x(κ)(t)

u(κ)(t)

 . (3.13)

The goal of the optimal control problem is determination of the histories of these

time-dependent dynamic variables that satisfy the problem dynamics and constraints

while minimizing the objective function. The dynamic variables are constrained to

abide by the dynamical equations of the current phase at all times,

ẋ(κ) = f (κ)
[
x(κ)(t),u(κ)(t),ρ(κ), t

]
, (3.14)

and are also restricted by additional path constraints that are applicable over the

duration of a phase,

g
(κ)
L ≤ g

(κ)
(
x(κ)(t),u(κ)(t),ρ(κ), t

)
≤ g(κ)

U . (3.15)

Furthermore, the state and control variables themselves are bounded to remain within

set upper and lower limits,

x
(κ)
L ≤ x

(κ)(t) ≤ x(κ)
U (3.16)

u
(κ)
L ≤ u

(κ)(t) ≤ u(κ)
U . (3.17)

Boundary constraints are evaluated at the initial and final times of each phase. The

simplest forms of these constraints fix the initial and final values of the dynamic vari-
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ables themselves, but other boundary constraints may apply to quantities evaluated

with the initial or final values of these variables.

ψL ≤ ψ
[
x(1)(t

(1)
I ),u(1)(t

(1)
I ),p(1), t

(1)
I ,

x(1)(t
(1)
F ),u(1)(t

(1)
F ),ρ(1), t

(1)
F ,

x(2)(t
(2)
I ),u(2)(t

(2)
I ),ρ(2), t

(2)
I ,

x(2)(t
(2)
F ),u(2)(t

(2)
F ),ρ(2), t

(2)
F ,

· · ·

x(Q)(t
(Q)
I ),u(Q)(t

(Q)
I ),ρ(Q), t

(Q)
I ,

x(Q)(t
(Q)
F ),u(Q)(t

(Q)
F ),ρ(Q), t

(Q)
F

]
≤ ψU (3.18)

An additional type of constraint is enforced via quadrature functions. These are

expressed as, ∫ t
(κ)
I

t
(κ)
F

w(κ)
(
x(κ)(t),u(κ)(t),ρ(κ), t

)
dt, (3.19)

and these functions are required to evaluate to certain quantities when integrated

over the time span of a given phase. The constraints presented in Equations (3.14),

(3.15), (3.19) are all continuous functions and apply at all times within a phase.

Alternatively, constraints evaluated at specific times, such as boundary constraints,

are termed point functions. This differentiation between constraint types is similar

to the distinction between the terms of the cost function J . The cost function in the

multi-phase optimal control problem also consists of terminal and path terms and
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is evaluated with variables and parameters from all Q phases. The complete cost

function is expressed as,

J = φ
[
x(1)(t

(1)
I ),u(1)(t

(1)
I ),ρ(1), t

(1)
I ,

x(1)(t
(1)
F ),u(1)(t

(1)
F ),ρ(1), t

(1)
F ,

x(2)(t
(2)
I ),u(2)(t

(2)
I ),ρ(2), t

(2)
I ,

x(2)(t
(2)
F ),u(2)(t

(2)
F ),ρ(2), t

(2)
F ,

· · ·

x(Q)(t
(Q)
I ),u(Q)(t

(Q)
I ),ρ(Q), t

(Q)
I ,

x(Q)(t
(Q)
F ),u(Q)(t

(Q)
F ),ρ(Q), t

(Q)
F

]
+

Q∑
j=1

{∫ t
(j)
I

t
(j)
F

w(j)
(
x(j)(t),u(j)(t),ρ(j), t

)
dt

}
, (3.20)

where the sum in the second term is included to ensure that the path cost is evaluated

for each phase. The objective function expressed in Equation (3.20) includes both

terminal and path costs, and is termed a problem of Bolza. When no path terminal

constraints are included in the cost function, the optimal control problem is called

a problem of Lagrange and, in the opposite case, the result is denoted a problem of

Mayer. Together, Equations (3.13)-(3.20) represent the variables, constraints, and ob-

jective functions that compose a standard multi-phase optimal control problem. From

this very general form, the smaller single-phase optimal control problems explored in

this investigation can be derived. Correctly stating the optimal control problem in

mathematical form is the first step towards determining an optimal solution.

3.2 Optimization Methods

Once the optimal control problem is stated mathematically, many different opti-

mization methods are potentially utilized to determine a solution. Generally, these

approaches are sorted into two broad categories: indirect and direct methods. Indi-

rect methods apply the Euler-Lagrange theorem to the continuous optimal control
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problem to transform it into a TPBVP. The proof of the Euler-Lagrange theorem

demonstrates that solving this TPBVP supplies an extremal (optimal) solution to

the original optimal control problem. In contrast, direct methods operate directly on

the cost function, employing the gradient of this function with respect to the problem

variables to compute a minimum cost. This minimum is obtained in an iterative

fashion by assessing the value of the cost function as well as the constraints from

one step to the next. While a diversity of approaches for solving the optimal control

problem exists within the indirect and direct categories, these labels capture the most

significant distinctions between methods.

Despite their differences, both categories of optimization methods require dis-

cretization and optimization, and Betts notes [35] that the order in which these two

steps are performed offers a convenient means of distinguishing between indirect and

direct optimization methods. Due to their complexity, most real-world optimization

problems necessitate the use of a computer to produce a solution, and the contin-

uous optimal control problem must be discretized to pose the problem in a format

amenable to this approach. Direct optimization approaches are discretized first; the

continuous optimization problem is transcribed into a Nonlinear Programming (NLP)

problem. Shooting and collocation methods are often employed to offer a framework

for the discretization process and to serve as function generators that translate state

and control variables into an evaluated objective function and a set of constraints.

Following the discretization step, direct methods implement the optimization step by

utilizing any one of the many solution methods available for solving the NLP. Due to

the importance of the discretization step, direct optimization is alternately denoted

as parameter optimization. Conversely, indirect methods implement the optimization

step first by applying the Euler-Lagrange theorem to the continuous optimal control

problem to generate a TPBVP. While this reformulation does not itself provide an

optimal solution, it sets up a problem whose solution is guaranteed to be locally opti-

mal. Next, the TPBVP is discretized and solved using one of the strategies available

for solving this type of problem, such as shooting and collocation techniques. The
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order of the discretization and optimization steps is a simple means of distinguishing

between the indirect and direct optimization approaches.

Greater detail on indirect and direct methods is offered in the following subsec-

tions. The advantages and disadvantages of these two techniques are highlighted, as

well as the process for the selection of a technique in this investigation. Additionally,

several other optimization approaches are briefly introduced. This overview of various

optimization approaches is aided by several helpful survey papers, including those by

Betts [35, 37], Conway [38], Rao [39], and Topputo and Zhang [40].

3.2.1 Indirect Optimization Methods

Indirect methods are as old as the field of optimal control itself, yet they are still

successfully employed today for a variety of problems, including low-thrust trajec-

tory optimization. These methods offer an advantage, i.e., the necessary conditions

guarantee that a solution to the TPBVP is a local optimal. Additionally, application

of the Euler-Lagrange theorem provides a convenient control law. Another benefit

of this approach is the costates provide information on the sensitivity of the objec-

tive. A sometimes underappreciated aspect of the indirect optimization technique

is the beauty of its elegance and mathematical rigor. However, indirect optimiza-

tion approaches also possess a number of challenges that have, perhaps, caused their

popularity to wane in the field of spacecraft trajectory optimization.

The drawbacks of the indirect optimization approach center around the rigidity

of the problem formulation and the difficulty in producing a satisfactory initial guess.

First, application of the Euler-Lagrange theorem is non-trivial and the computation of

the required partial derivatives can be quite challenging for some problems. Moreover,

changes to the original optimal control problem, such as the addition of new variables

or constraints, require reapplication of the Euler-Lagrange Theorem to formulate a

new TPBVP. Furthermore, Betts notes that if a problem contains path inequalities,

then an a priori guess for the constrained arc sequence is required. In low-thrust
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trajectory optimization problems, this situation manifests as the requirement to pro-

vide an initial estimate for the sequence of thrust and coast arcs along a trajectory.

Similarly, it is difficult to formulate an initial guess for the costate variables that

appear in the TPBVP, particularly because these variables do not directly relate to

any physical quantity. Compounding this difficulty is the fact that the TPBVP can

be quite sensitive to the values of the costates. Thus, a poor initial guess greatly

hinders or often prevents convergence. These challenges, along with drastic increases

in computing power, have contributed to increased interest in direct optimization

methods.

3.2.2 Direct Optimization Methods

In the latter half of the 20th century, the application of direct optimization methods

to the continuous optimal control problem garnered increased attention, as advances

in computer technology made these methods increasingly practical. The initial dis-

cretization of the continuous optimal control problem that direct methods require can

produce very large optimization problems whose solution demands significant compu-

tational resources. Recent increases in computational capability have made the size

of many direct optimization problems less prohibitive, enabling the benefits of direct

optimization to be fully leveraged.

The benefits of direct optimization methods center on the flexibility and robust-

ness of these methods. Transcribing the continuous optimal control problem into

an NLP does not require detailed knowledge of optimal control theory or even ex-

tensive analytical derivations (unless analytical derivatives are desired). Thus, it is

more straightforward to implement a direct optimization method in comparison to

an indirect strategy. This trait also influences the adaptability of direct approaches

to changes in an optimization problem. It is again comparatively easy to add or re-

move constraints; moreover, direct methods render the inclusion of path constraints
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simpler. In general, direct optimization techniques are also more robust than indirect

ones, that is, a direct method is more likely to converge a poor initial guess.

Despite the advantages, direct methods are not the obvious choice for every prob-

lem; there are disadvantages beyond simply the large problem size. A second draw-

back is that the solution supplied by a direct optimization technique is frequently a

local optimal in the neighborhood of the initial guess and offers no information on

potential improvements. This result is in contrast to the indirect approach which,

though it also only offers local optimal solutions, includes costate values that offer

helpful information regarding potential improvements. Therefore, it can be challeng-

ing to determine how close the result is to the true local optimal of the continuous

optimal control problem. As Conway indicates, the provided solution is the best

available for the problem structure supplied to the optimizer [38].

3.2.3 Global Optimization and Other Methods

The propensity of indirect and direct optimization methods to yield local optimal

solutions within the neighborhood of the initial guess motivates the development of

a distinct set of optimization techniques, termed evolutionary algorithms and meta-

heuristics by Conway [38]. These algorithms exploit heuristic methods, often based

conceptually upon processes observed in nature, to compute globally optimal solu-

tions. Examples include ant-colony optimization, simulated annealing, and monotonic

basin hopping. For real-world problems, it is rarely possible to verify that the solu-

tions obtained by these methods are true global optimals, though these approaches

can produce very good solutions given sufficient time. Moreover, they can obtain

solutions even when provided with a random initial guess, thus circumventing this

challenge in the trajectory design process. However, an additional drawback is that

the number of variables must be relatively small or the process becomes computa-

tionally prohibitive. This requirement reflects the fact that explicit propagation is

likely required to accurately represent a trajectory, thereby further increasing the
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computation time. Despite these drawbacks, evolutionary algorithms are successfully

employed for trajectory design by a number of authors [41–44]. Furthermore, other

authors pair global optimization techniques with indirect or direct methods to offer

approaches that possess the strengths of both strategies [30,45,46].

Another optimization approach that does not neatly fit into either the indirect or

direct optimization categories is Differential Dynamic Programming (DDP). A version

of this method is utilized within the low-thrust trajectory design tool Mystic, devel-

oped by Gregory Whiffen [47–49], which is employed to conduct trajectory design for

the Dawn and Psyche missions. In recent decades applications of the DDP technique

for low-thrust trajectory design have received increased study. A variety of authors

have successfully utilized this technique to optimize low-thrust transfers [50–54]. The

success of these efforts suggests that the application of DP to low-thrust trajectory

design merits further investigation to improve understanding of the comparisons to

the approaches in this investigation.

3.2.4 Selecting an Optimization Method

Clearly, there is no one best optimization method. The many approaches avail-

able have been developed over time to address the needs of many different types of

problems. Each approach possesses strengths and weaknesses that make it the ideal

solution to one problem and a poor choice for another. It is the role of the engineer

to apply their knowledge and experience to the selection of an optimization technique

best suited for the problem at hand. Thus, the available optimization techniques are

considered and a direct optimization approach is selected for use in this investigation.

The motivation for selecting a direct optimization technique follows from the cen-

tral goals of this investigation. A robust and adaptable approach for low-thrust

trajectory design over a range of dynamical environments is desired, and direct opti-

mization best meets these needs. Direct optimization techniques are generally more

robust than indirect optimization formulations and faster than global optimization
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approaches. As a consequence, direct optimization is potentially less precise than

indirect optimization, nor does it offer any guarantee of global optimality. Direct

optimization is selected as the best approach for solving the type of optimal control

problems encountered in this analysis due to its balance of robustness and efficiency.

3.3 Newton’s Method

When solving an NLP problem or a TPBVP, many of the strategies are iterative

and fundamentally rely upon Newton’s method. Also labelled the Newton-Raphson

method, it is a strategy for determining the root of one or more equations, and is

generalized for a problem of multiple variables. The goal of this scheme is to determine

the nz × 1 vector zT = {z1, . . . , znz} such that,

c(z) =



c1(z)

c2(z)
...

cm(z)


= 0, (3.21)

where c(z) is an meq × 1 vector of nonlinear equality constraints and meq denotes

the number of equality constraints. The column vector z is also termed the design

variable vector, and nz designates the total number of design variables. The root of

Equation (3.21) is denoted z∗, such that c(z∗) = 0. If the number of variables is

greater than or equal to the number of constraints, that is nz ≥ meq, then a value

of z∗ is typically available. When nz < meq, the problem is overconstrained and

the system of equations in Equation (3.21) is overdetermined, thus, no solutions are

available unless some of the constraints are redundant. An approach for determining

z∗ is supplied by approximating the nonlinear constraint equations via the first two

terms of a Taylor series expansion about an initial guess, z0, that is,

c(z) ≈ c(z0) +
∂c

∂z0
(z− z0). (3.22)

Because the abbreviated Taylor Series offers only an approximation of c(z), an it-

erative process is required to converge upon a value of z that sufficiently satisfies
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Equation (3.21). Thus, Equation (3.22) is rewritten such that the zero superscript is

replaced with k to indicate an iterative procedure,

0 ≈ c(zk) +
∂c

∂zk
δzk, (3.23)

where δzk = (zk+1− zk) and Equation (3.23) is set equal to zero for consistency with

Equation (3.21). For simplicity, the partial derivative in Equation (3.23) is defined

such that,

Gk =
∂c

∂zk
=



∂c1
∂zk1

∂c1
∂zk2

· · · ∂c1
∂zknz

∂c2
∂zk1

∂c2
∂zk2

· · · ∂c2
∂zknz

...
...

. . .

∂cmeq
∂zk1

∂cmeq
∂zk2

· · · ∂cmeq
∂zknz

 , (3.24)

where Gk is an meq × nz matrix, termed the Jacobian matrix. Equation (3.23) is

solved for δzk which is employed to update zk. The update step is written,

zk+1 = zk + ηaδz
k, (3.25)

where ηa is a scalar value used to attenuate the magnitude of the update step; however,

ηa = 1 unless otherwise indicated. In general, each step of the iterative process offered

by Equation (3.23) satisfies ‖c(zk+1)‖ ≡ ‖c(zk + δzk)‖ ≤ ‖c(zk)‖. This procedure

is continued until zk+1 = z∗, or, more practically, until ‖c(zk+1)‖ ≤ ε where ε is a

tolerance. When the value of zk satisfies this tolerance, the iterative procedure is said

to converge. Solving Equation (3.23) for δzk can be challenging and the approach is

dependent on the relationship between nz and meq, that is, the number of variables

and constraints.

3.3.1 Number of Variables Equals the Number of Constraints

When nz = meq, the Jacobian, Gk, is square and it is straightforward to solve

Equation (3.23) for δzk. Rearranging Equation (3.23) provides a multidimensional

form of the familiar Newton’s method equation,

δzk = −(Gk)−1c(zk), (3.26)
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where (Gk)−1 is the matrix inverse of Gk. Newton’s method is quadratically conver-

gent provided zk is within a region of convergence. This extremely advantageous trait

implies that zk is two significant digits closer to z∗ with each iteration. Practically

speaking, the initial guesses, z0, employed in this analysis rarely initiate quadratic

convergence from the first iteration; however, quadratic convergence is observed as

the algorithm hones in upon a solution, z∗. Finally, while Equation (3.26) appears

simple, the process of computing (Gk)−1 numerically is sometimes computationally

expensive, thus, implementation proceeds cautiously.

3.3.2 Number of Variables Greater than the Number of Constraints

When nz > meq, the root-finding problem is underconstrained and the system of

equations in Equation (3.21) is underdetermined. In this scenario, an infinite number

of solutions are available that satisfy Equation (3.23). A beneficial strategy for isolat-

ing one of these solutions is to select the update zk+1 that is closest to zk. Selecting

the nearby solution leverages the fact that gradient searches are more successful when

the updated solution is close to the reference, i.e., when ‖δzk‖2 is minimized. Further-

more, seeking a solution nearby zk biases the convergence process towards zk+1 that

inherit some of the characteristics of the previous step. This tendency is typically

beneficial within the trajectory design procedure because the initial guess is selected

to possess advantageous characteristics that are also desired in the final solution. The

unique solution zk+1 closest to zk is labelled the mininum-norm and the equation that

yields this solution is derived by first posing the optimization problem,

min F = ‖δzk‖2 = (δzk)T δzk, (3.27)

subject to Equation 3.23. The derivation of the solution to this problem presented

here follows that offered by Grebow [55]. Next, an expression equivalent to Equa-

tion (3.27) where the cost function is augmented with the problem constraints is

formulated,

min F ∗ = (δzk)T δzk + ΛT
[
c(zk) + Gkδzk

]
, (3.28)
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where Λ is an nz × 1 vector of Lagrange multipliers. Note, this set of multipliers is

introduced to solve the NLP problem and is not necessarily equivalent to the Lagrange

multipliers first presented in Equation (3.6) that are employed to reformulate the

continuous optimal control problem. Observe that at z∗, the augmented cost function

is equivalent to Equation (3.27) because, when this condition is met, the constraints

are satisfied and thus equal to zero. The necessary conditions for a minimum solution

to the optimization problem are computed by calculating the partial derivatives of

Equation (3.28) with respect to z and Λ.

∇δzF
∗ = 2(δzk)T + ΛTGk = 0 (3.29)

∇ΛF
∗ = c(zk)T + (δzk)T (Gk)T = 0 (3.30)

Following this step, the system of equations formed by Equations (3.29) and (3.30) is

manipulated to eliminate Λ. This process begins with the multiplication of Equation

(3.29) on the right by (Gk)T . The result of this operation is,

2(δzk)T (Gk)T + ΛTGk(Gk)T = 0. (3.31)

Next, rewrite Equation (3.30) as,

− c(zk)T = (δzk)T (Gk)T , (3.32)

and substitute this expression into Equation (3.31) to produce,

− 2c(zk)T + ΛTGk(Gk)T = 0. (3.33)

Equation (3.33) is then solved for Λ,

ΛT = 2c(zk)T
[
Gk(Gk)T

]−1
. (3.34)

Substituting this expression into Equation (3.29) and computing the transpose results

in,

2(δzk) + 2(Gk)T
[
Gk(Gk)T

]−1
c(zk) = 0. (3.35)
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Thus, Equation (3.35) presents an expression where Λ no longer appears explicitly.

Finally, Equation (3.35) is solved for δzk which yields,

δzk = −(Gk)T
[
Gk(Gk)T

]−1
c(zk), (3.36)

where Equation (3.36) is the well known Minimum-Norm Equation. To ensure that

a solution to Equation (3.36) is truly a local minimum of the optimization problem

posed in Equation (3.27), the second-derivative test is applied by taking the second

partial derivative of Equation (3.28) with respect to δz. The result of this step is,

∂

∂δz

(
∂J

∂δz

)T
= 2I > 0, (3.37)

where I is an nz × nz identity matrix. Thus, the second-derivative test is satisfied

and the solution of the minimum-norm equation is indeed always a local minimum

of Equation (3.27). Equation (3.36) is utilized along with Equation (3.25) to itera-

tively converge upon z. Like Newton’s Method, Equation (3.36) also offers quadratic

convergence when zk is within a region of convergence. Newton’s method or the

minimum-norm equation solve shooting and collocation problems in this investiga-

tion when no objective function is included in a problem statement; i.e., when a

feasible solution alone is desired.

3.4 Nonlinear Programming

Today the word “programming” is automatically associated with the task of writ-

ing computer code. However, when the term nonlinear programming (NLP) was

conceived, this word included the work of algorithm development. Thus, nonlinear

programming is the field of mathematics concerned with developing schemes for opti-

mizing an objective function subject to a set of constraints. The general NLP problem

appears similar in form to the root-finding problem solved with Newton’s Method.

The primary difference is that the NLP problem is concerned with determining the

nz × 1 vector zT = {z1, . . . , znz} that minimizes the scalar objective function,

F (z), (3.38)
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subject to the m constraints,

cL ≤ c(z) ≤ cU , (3.39)

with bounds,

zL ≤ z ≤ zU , (3.40)

where the subscripts L and U denote lower and upper constraints or bounds, respec-

tively. Equality constraints are enforced by setting cL = cU . In the special case where

the objective function and constraints are all linear, the resulting problem is termed

linear programming (LP) and is a special case of the NLP problem. Similarly, if the

constraints remain linear, but the objective function is instead quadratic, this special

case is called a quadratic programming (QP) problem. These simpler special cases are

important because they often provide the basis for methods to solve more complex

NLP problems.

One category of approaches for solving the NLP involves satisfying the Karush-

Kuhn-Tucker (KKT) necessary conditions. A derivation of the KKT system and

resulting necessary conditions is offered by Betts [35]. Two methods for solving the

NLP that rely upon satisfying the KKT necessary conditions are sequential quadratic

programming (SQP) and interior-point (IP) methods. The fundamental approach for

an SQP algorithm is to approximate the NLP problem as a QP problem, and by suc-

cessive applications of this approximation, to iteratively approach an optimal solution

to the true NLP problem. The popular optimizer SNOPT (Sparse Nonlinear OPTi-

mizer) leverages an SQP algorithm and is particularly well-suited for the large highly

sparse NLP problems encountered when solving low-thrust trajectory design prob-

lems via direct optimization [56, 57]. Alternatively, IP methods (also termed barrier

methods) recast the NLP problem as an optimization problem whose unconstrained

minimum is equal to the minimum of the original problem. Then, a penalty function

approach is utilized to guide this new problem towards a solution that satisfies all the

constraints of the initial NLP problem. The open-source optimizer IPOPT (Interior

Point OPTimizer) leverages this approach and is also implemented in an efficient

manner that is well-suited for large sparse problems [58]. Finally, note that solving
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the NLP via the KKT conditions is one of a variety of approaches for solving a math-

ematical optimization problem. Other solution strategies fall under the categories

of feasible direction methods, Lagrangian methods, and penalty function methods.

However, not all of these methods are well-suited for solving the NLP, especially the

NLP formulated from the low-thrust trajectory optimization problem.

3.5 Transcription Methods

The process of discretizing a continuous optimal control problem to pose it as

an NLP problem is called transcription. The optimal control problem in Section

3.1.1 consists of functions that are continuous with time, e.g., ẋ(t) and u(t). In

contrast, the NLP problem in Section 3.4 includes a finite set of discrete variables and

constraints, x and c. Thus, the process of transcription involves converting the first

type of problem into the second. Naturally, representing a continuous time system

with a finite set of variables and constraints entails a loss of accuracy. Thus, if the

result of the NLP problem does not adequately approximate the original continuous

optimal control problem, then the transcription process is modified and repeated.

The manner in which a continuous optimal control problem is transcribed is in-

dependent of the chosen optimization method. The algorithms described here as

shooting and collocation, may be utilized in either an indirect or direct optimization

scheme. In the former case, these methods are employed to numerically solve the

TPBVP generated via application of the Euler-Lagrange Theorem. In direct opti-

mization schemes, shooting and collocation methods guide the discretization process

and act as function generators that compute the objective and constraints of the NLP

problem when supplied with the problem variables.

Both shooting and collocation schemes offer a framework for conducting the tran-

scription step, and each approach has unique benefits. Historically, collocation has

more often been employed to complete the transcription step, therefore, the term

transcription is sometimes used interchangeably with the word collocation. Thus, a
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direct optimization method that utilizes collocation for the transcription step may

either be labeled direct collocation or direct transcription. However, in this work,

only the title direct collocation is employed. Likewise, a direct optimization method

that instead leverages a shooting method for the transcription step is denoted direct

shooting.

Shooting and collocation techniques begin with the same discretization approach.

For astrodynamics applications, a trajectory is typically discretized with respect to

time. The points along a trajectory associated with these times are termed boundary

points or patch points. Cumulatively, this set of boundary points is termed a mesh.

The mesh is represented as,

Π : tI < t1 < . . . < ts+1 = tF , (3.41)

where Π is comprised of s+1 mesh points, and these points define s segments. Motion

along each segment of a trajectory is defined by the dynamical system, Equation

(3.2), associated with the selected model. An accurate representation of this motion

is obtained by integrating Equation (3.2), and both shooting and collocation methods

offer a means to complete this task.

The fundamental difference between shooting and collocation techniques is the

number of segments and integration steps each employs. A single shooting formula-

tion, the most rudimentary shooting technique, utilizes a single segment and many

integration steps to represent a trajectory. A multiple shooting scheme expands upon

this approach by subdividing a trajectory into multiple segments; over each segment,

many integration steps are implemented. A collocation method also employs many

segments to represent a trajectory, but the number of integration steps equals the

number of segments. Thus, a single integration step is occurs for each segment in

a collocation scheme. In sum, shooting and collocation techniques are the means of

solving boundary value problems, and their primary difference is the spacing in time

over which they perform the integration step.

Shooting and collocation schemes are a means of transcribing the general opti-

mal control problem, as outlined in Section 3.1.1, into the NLP problem described in
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Section 3.4. However, these algorithms are also paired with the simple root finding

schemes discussed in Section 3.3. In the latter case, shooting and collocation tech-

niques generate feasible solutions to the trajectory design problem. Feasible solutions

satisfy the problem constraints but do not optimize a cost function.

3.6 Shooting Methods

Shooting methods offer an approach for solving boundary value problems and are

also employed to transcribe continuous optimal control problems into NLP problems.

Shooting techniques leverage explicit integration to determine the design variable

values that satisfy a given set of problem constraints. Single shooting is the simplest

type of shooting approach and conveniently illustrates the principles that underlie

all shooting methods. A single shooting scheme represents an entire trajectory via a

single segment, thus, s = 1 and the entirety of the mesh is [tI , tF ]. Following definition

of the mesh, single shooting schemes proceed in four basic steps:

1. Estimate the initial conditions z0.

2. Explicitly propagate the differential equations in Equation (3.2) from tI to tF .

This propagation is the “shooting” step.

3. Evaluate the boundary constraints c(z) = ψ[x(tF ),u(tF ),ρ, tF ].

4. Employ an NLP technique to satisfy the constraints c(z) = 0, i.e., repeat the

first three steps.

The NLP solution technique described in Step 4 can be as straightforward as Newton’s

method or the minimum-norm equation, or one of the optimizers discussed in Section

3.4 can be employed. One advantage of the single shooting technique is the relative

simplicity of implementing it, and that it discretizes a problem into a small number

of variables. Step 1 above illustrates that the number of variables need only equal

the number of first-order equations in the dynamical system, f [x(t),u(t),ρ, t]. The
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small number of variables that is required enables the single shooting approach to be

quite computationally efficient, provided a good initial guess. One disadvantage of

the single shooting method is the sensitivity (sometimes extreme) to the quality of the

initial guess, z0. Because a single explicit propagation is employed across the entire

segment, small changes in the initial conditions potentially generate large changes

in the states at the end of the propagation, particularly if the dynamical system is

nonlinear or the segment time span is quite long. This sensitivity leads to difficulty in

determining a vector z that satisfies the problem constraints because every update of

this vector causes significant changes to the end states of the subsequent propagation

step, thus, the algorithm can iterate endlessly with very little, if any, improvement in

the satisfaction of the constraints.

To mitigate the sensitivity of the single shooting approach, employing a greater

number of segments to represent the trajectory is beneficial. This strategy distributes

the problem sensitivity by defining a mesh consisting of s segments, as seen in Equa-

tion (3.41). These segments represent s shooting subproblems that complete each of

steps 1-3 over a shorter timespan. The nonlinearity of the shooting problem across any

individual segment is significantly less than in the single shooting scenario, thereby,

each subproblem is easier to solve. This approach is termed multiple or parallel shoot-

ing because it leverages numerous independent shooting problems. To ensure that

these subproblems collectively produce a coherent result, continuity constraints are

enforced that ensure the final result from one propagation equals the boundary point

at the corresponding time. These constraints are illustrated in Figure 3.1 and are

represented in mathematical form as,

c =



x2 − xt2(x1)

x3 − xt3(x2)
...

xs+1 − xts+1(xs)


= 0, (3.42)

where xt2(x1) is the state vector at the end of the explicit propagation from x1 for

time T1. By subdividing a problem into s segments, the multiple shooting approach
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Fig. 3.1. Multiple (Parallel) Shooting Problem

introduces more design variables, thereby, increasing the size of the NLP problem.

However, this drawback is mitigated by the fact that the s subproblems formed by

the multiple shooting technique are independent and, therefore, the Jacobian matrix

utilized to solve the NLP problem is quite sparse. When only continuity constraints

are included in the multiple shooting problem, the Jacobian matrix is banded with

nx×nx blocks of partial derivatives where each block pertains to a shooting subprob-

lem. The multiple shooting approach is a powerful technique for solving boundary

value problems that generates highly accurate explicitly integrated results.

Shooting methods typically exploit efficient third-party integration algorithms to

propagate the equations of motion for a given dynamical model. Many such algo-

rithms are available and possess varying traits with regard to accuracy and com-

putational efficiency. The primary explicit integration algorithm employed in this

investigation is an explicit embedded Runge-Kutta Prince-Dormand (8,9) scheme

implemented in C++ and available within the GNU scientific library (GSL). This al-

gorithm is both computationally efficient and highly accurate. Alternately, Matlab’s

ode113 explicit integrator is occasionally employed. This tool utilizes a variable-

step, variable-order (VSVO) Adams-Bashforth-Moulton PECE solver of orders 1 to

13 and, while it is very accurate, its implementation in Matlab means that it is gener-

ally slower than the GSL propagator. Regardless of the explicit integration method,

the integration tolerances are defined to equal at least 1× 10−12 or less. These tools
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implement complex explicit integration schemes in a software package that offers a

straightforward interface for shooting methods or other explicit integration needs.

3.7 Collocation Methods

Collocation is a method for implicitly integrating differential equations, and is

frequently utilized to transcribe continuous optimal control problems into NLP prob-

lems. This technique approximates motion along a trajectory by fitting piecewise

polynomials to a discretization in time. When paired with a direct optimization algo-

rithm, the resulting scheme is denoted as direct collocation or direct transcription [59].

Descriptions of collocation methods date at least to the first half of the 20th century

and references to the early work on this subject appear in “The Numerical Treatment

of Differential Equations” by Collatz [60]. This text, along with those by de Boor [61]

as well as Russell and Shampine [62], mention that Russian researchers performed

some of the earliest work on collocation techniques. In the 1960s and 70s, a number

of authors applied collocation methods to solve two-point boundary value problems;

Russell and Shampine, in particular, generalized a collocation approach to this type

of problem [61–63]. By the late 1980s, authors such as Hargraves and Paris began

applying collocation methods in the field of trajectory design and optimization [64].

Interest in the utilization of collocation methods for trajectory design has only grown

since then, due to its robustness and relative simplicity. Subsequent research has

delivered an increase in the order of the polynomials to be leveraged in a collocation

scheme [65,66], and introduced mesh refinement strategies for improving the solution

accuracy [37]. Along with the development of enhanced collocation strategies, many

researchers implement and distribute these strategies as software packages. Such

options include COLSYS [67], OTIS [64], AUTO [68], SOCS [69], MColl [70], and

CSALT [71] as examples of the many tools that have been developed for this pur-

pose. Finally, direct transcription is discussed within the broad context of trajectory

optimization techniques in several excellent survey papers on the topic [38,40,72].
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3.7.1 General Formulation

A general formulation of the collocation problem is presented here that is appli-

cable to any dynamical system. This scheme computes a result with state continuity

and that abides by the equations of motion of the dynamical system. The general

formulation begins by considering the mesh in Equation 3.41 that is discretized with

respect to time. For numerical convenience, the time along each segment of a col-

location problem is typically normalized to the span [−1, 1]. The mesh defined in

Equation (3.41) consists of s+1 boundary points and s segments where the time step

along each segment is ∆ti = ti+1 − ti. The conversion from nondimensional time t to

normalized time τ is then,

τ =
2

ti+1 − ti
(t− ti)− 1, (3.43)

where ti and ti+1 are the times at the boundary points at the beginning and end of the

ith segment, respectively. Computations on a normalized time scale improves scaling

and, thus, computational efficiency. This normalization practice, and the remainder

of the collocation framework, follow the approach utilized by Ozimek, Grebow, and

Howell [19] and refined by Grebow and Pavlak [70,73].

Each segment in a collocation problem approximates the solution to Equation (3.2)

along the timespan, [ti, ti+1], over that segment. The fidelity of these approximations

is governed both by the duration of each segment and the scheme employed to solve

Equation (3.2). The simplest approach to solving this dynamical system utilizes

Euler’s integration rule, i.e.,

xi+1 = xi + ∆tif [x(ti),u(ti),ρ, ti], (3.44)

where xi = x(ti) and xi+1 = x(ti+1). Equation (3.44) utilizes the vector field infor-

mation, or “slope”, at ti to predict the states at ti+1. The discrepancy between the

states predicted by Euler’s rule and the actual states at ti+1 is termed the defect, and

defined,

∆i = xi − xi+1 + ∆tif [x(ti),u(ti),ρ, ti] = 0. (3.45)
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The collocation problem is solved when all defects equal zero within a desired toler-

ance, thus ensuring state continuity between adjacent segments and a mesh that ap-

proximates the system dynamics. The Euler rule method of collocation is depicted in

Figure 3.2. Euler’s rule supplies a simple demonstration of the collocation approach;

Fig. 3.2. Collocation Using Euler’s Rule

however, it only approximates a solution to a set of differential equations with first

order accuracy, O(h). While the low accuracy associated with Euler’s method is mit-

igated by employing segments with shorter time duration, this approach requires an

extremely large number of segments to produce an accurate solution. Alternatively,

employing higher order methods to approximate the dynamics along each segment

allows a reduction in the number of segments necessary to accurately solve a collo-

cation problem. A method based on the trapezoidal rule, illustrated in Figure 3.3,

supplies an additional order of accuracy over Euler’s rule, O(h2). The defect equation

based on the trapezoidal rule is,

∆i = xi − xi+1 +
∆ti
2
{f [x(ti),u(ti),ρ, ti] + f [x(ti+1),u(ti+1),ρ, ti+1]} = 0. (3.46)

Low order of accuracy integration schemes, such as Euler’s rule, and the trapezoidal

rule conveniently demonstrate the fundamental collocation strategy; however, both

approaches are generally too coarse for practical application in the dynamical systems

encountered in trajectory design problems.
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Fig. 3.3. Collocation Using the Trapezoidal Rule

The accuracy of a collocation scheme is determined by the number of segments

and the order of the integration method employed to approximate the dynamical

system. Most collocation algorithms utilize polynomials to implicitly integrate the

differential equations in the dynamical system. Higher degree polynomials typically

perform this integration with greater accuracy; although there are diminishing returns

after a certain degree is reached. Similar orders of accuracy are achieved either by

fitting a coarse discretization with high degree polynomials or by using lower degree

polynomials in a discretization with a larger number of segments. The particular

approach that is best-suited for implementation to attain the desired solution accuracy

is determined by the problem objectives and available computational power.

Given that the benefits of varying the polynomial degree or the segment number

are problem dependent, it is advantageous to implement a flexible collocation scheme

that can leverage either approach by adjusting the polynomial degree N . Such a

scheme is developed by Williams [66] and refined by Grebow and Pavlak [70,73]. The

method supplied by these latter two authors is represented here. Grebow and Pavlak

demonstrate that odd and even degree polynomials whose degrees are adjacent, i.e.,

4th and 5th degree, yield the same accuracy while the odd degree polynomials require
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a less complex formulation. Thus, only odd degree polynomials are employed in this

investigation. Consider an N th degree polynomial for the ith segment,

pi(τ) = Ci{1 τ τ 2 · · · τN}T , (3.47)

where Ci is a matrix of polynomial coefficients for the ith segment with dimensions

nx × (N + 1). The polynomial defining the ith segment is then an nx × 1 vector

that approximates the states at the normalized time, τ . This general formulation

for representing the polynomials of a collocation scheme accommodates any degree

polynomial and an arbitrary number of state variables, nx.

A variety of schemes are available for constructing the polynomials along each

segment. The matrix of polynomial coefficients, Ci, is constructed using states at

one or more nodes on the ith segment. Each segment is subdivided into (N + 1)/2

variable nodes and (N − 1)/2 defect points. The index of a variable node or defect

point is indicated by the subscript j = 1, 2, . . . , N ; moreover, the variable nodes and

defect points occur at odd and even numbered j, respectively, as demonstrated in

Figure 3.4. A node placement scheme determines the normalized times τj at which

Fig. 3.4. Collocation Using a 7th Degree Polynomial

the variable nodes and boundary points are placed. Though equally distributing the

variable nodes in normalized time is the simplest scheme, higher orders of accuracy are

delivered by placing the nodes at the roots of Legendre or Chebyshev polynomials.

Several node placement schemes prevalent in the literature are listed in Table 3.1,
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where PN(τ) are degree N Legendre polynomials. In this investigation, a collocation

Table 3.1.
Node Placement Schemes

Method Description Order of Accuracy

Legendre-Gauss-Lobatto (LGL)
τj at -1 and 1 and at

the roots of ṖN−1(τ)
2N − 2

Legendre-Gauss-Radau (LG)
τj at the roots of

PN−1(τ) and PN(τ)
2N − 1

Legendre-Gauss (LG) τj at the roots of PN(τ) 2N

scheme that utilizes Legendre-Gauss (LG) points is employed due to its high order of

accuracy. However, the other methods in Table 3.1 possess similar orders of accuracy

and are somewhat less complicated to implement because they include at least one of

the segment endpoints. All three schemes lend themselves to highly efficient numerical

implementation.

The piecewise polynomials that comprise a collocation problem are constructed

with state and gradient information from each segment. A polynomial pi approx-

imates states and derivatives at times τj along the ith segment. The states and

derivatives, as evaluated by the polynomial for the ith segment at each τj, are repre-

sented as pi,j = pi(τj) and ṗi,j = dpi(τj)/dτ , respectively. The goal of the collocation

problem is, for every segment i = 1, . . . , s, and time, j = 1, . . . , N , to satisfy the

following expressions,

pi,j = xi,j, i = 1, . . . , s (3.48)

ṗi,j = ẋi,j, j = 1, . . . , N, (3.49)
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where xi,j and ẋi,j are the states and derivatives of the dynamical system. The

derivatives of the dynamical system are converted to normalized time by,

ẋi,j =
∆ti
2
f [τj,xi,j,ui,j] , (3.50)

where ∆ti is the non-normalized time interval of the ith segment. Equations (3.48) and

(3.49) are first satisfied at the variable nodes by using xi,j and ẋi,j at the variable node

times to construct the polynomial pi,j. Substituting Equation (3.47) into Equations

(3.48) and (3.49) yields a matrix representation of the variable node constraints along

a segment,

Ci [τ τ̇ ] = [xi,1,xi,3, · · ·xi,N |ẋi,1ẋi,3 · · · ẋi,N ] , (3.51)

where τ and τ̇ represent the matrices,

τ =



1 1 · · · 1

τ1 τ3 · · · τN

τ 2
1 τ 2

3 · · · τ 2
N

...
... · · · ...

τN1 τN3 · · · τNN


(3.52)

τ̇ =



0 0 · · · 0

1 1 · · · 1

2τ1 2τ3 · · · 2τN
...

... · · · ...

NτN−1
1 NτN−1

3 · · · NτN−1
N


. (3.53)

Recall that the variable nodes occur at odd values of the subscript j. The system of

equations in Equation (3.51) contains 2N × nx constraints and nx ×N + 1 unknown

coefficient values. The constraint represented by Equation (3.51) is implicitly enforced

within the collocation scheme by using the states at the variable nodes to construct

the segment polynomials. Thus, the states at the variable nodes are supplied as part

of the initial guess for the collocation problem, and Equation (3.51) is solved for Ci

to facilitate polynomial construction. The resulting expression is,

Ci = [xi,1,xi,3, . . . ,xi,N |ẋi,1, ẋi,3, . . . , ẋi,N ]A−1, (3.54)
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where the matrices τ and τ̇ are combined into a single matrix A that is square and

nonsingular,

A =



1 1 · · · 1 | 0 0 · · · 0

τ1 τ3 · · · τN | 1 1 · · · 1

τ 2
1 τ 2

3 · · · τ 2
N | 2τ1 2τ3 · · · 2τN

...
... · · · ... | ...

... · · · ...

τN1 τN3 · · · τNN | NτN−1
1 NτN−1

3 · · · NτN−1
N


, (3.55)

where a subscript i is omitted fromA because this matrix is the same for all segments.

The states included in the initial guess are used in Equation (3.54) to compute the

unknown polynomial coefficients. Note, if first order differential equations are avail-

able for any of the control variables, ui,j, then polynomials are constructed for these

variables in a similar manner. However, this approach is not employed in this inves-

tigation.

Next, the constructed polynomials are leveraged to approximate the states at the

defect points. Recall that the normalized times, τj, at which the defect points are

located are determined by the LG node placement scheme and that these points occur

at even values of j. These normalized times are used to create the matrices B and

D,

B =



1 1 1 · · · 1 1

−1 τ2 τ4 · · · τN−1 1

−1 τ 2
2 τ 2

4 · · · τ 2
N−1 1

...
...

... · · · ...
...

−1 τN2 τN4 · · · τNN−1 1


(3.56)

D =



0 0 · · · 0

1 1 · · · 1

2τ2 2τ4 · · · 2τN−1

...
... · · · ...

NτN−1
2 NτN−1

4 · · · NτN−1
N−1


, (3.57)
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where, once again, subscripts are omitted from B and D because these matrices are

identical for all segments. The first and last columns of B are included to compute

the states at the segment boundary points, i.e., τ = −1 and 1. While these points are

not a part of the LG node placement scheme, they are included here because states

at these points are used elsewhere in the collocation framework to ensure segment

continuity and enforce boundary constraints. The matricesA,B, andD demonstrate

the utility of normalizing time along each segment. This normalization ensures these

matrices as identical for all segments, therefore, they are computed only once, at the

beginning of a collocation problem and stored in memory. The matrix B and the

polynomial coefficients are then employed to evaluate the states at the defect and

boundary points, [
xpi,I x

p
i,2 x

p
i,4 · · · x

p
i,N−1 x

p
i,F

]
= CiB, (3.58)

where xpi,I and xpi,I are the states at the initial and final boundary points along the

ith segment, and the superscript p denotes that these states are computed with the

polynomial, pi. If a polynomial representation of the control history is employed, then

control values at the defect points are also computed as demonstrated in Equation

(3.58). The polynomial coefficients computed with Equation (3.54) are also used to

compute the derivatives of the states at the defect points,[
ẋpi,2 ẋ

p
i,4 · · · ẋ

p
i,N−1

]
= CiD, (3.59)

where the superscript p again denotes that these derivatives are computed with the

polynomial, pi. The derivatives at the defect points are also calculated with the dy-

namical system equations and the states at the defect points given by the polynomials,

i.e.,

[ẋi,2 ẋi,4 · · · ẋi,N−1] = [f (pi(τ2)) f (pi(τ4)) · · · f (pi(τN−1))] . (3.60)

Then, the defect equations are defined by the difference between the two approaches

for constructing the derivatives at the defect points demonstrated by Equations (3.59)

and (3.60), that is,

∆i = [CiD − [ẋi,2 ẋi,4 · · · ẋi,N−1]]W = 0, (3.61)
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where the diagonal matrix W incorporates quadrature weights for the even nodes

that enable the selected node placement scheme to supply a higher order of accuracy

than the same number of unweighted nodes. Driving the defect constraints, Equation

(3.61), to zero, or some acceptable tolerance, ensures that the polynomials constructed

for each segment sufficiently approximate the system dynamics. When convergence is

obtained, the solution for the collocation problem yields piecewise polynomials that

approximate the state at any point along a solution arc. The variable node states

that result in defect constraints that evaluate to zero are determined by posing the

collocation problem as an NLP problem which is implemented as described in Section

3.4. The design variables in this framework are the position and velocity states at

the variable nodes, i.e.,

X =


x1,1 x1,3 . . . x1,N

x2,1 x2,3 . . . x2,N

...
...

. . . x1,N

xs,1 xs,3 . . . xs,N

 , (3.62)

where the X matrix in Equation (3.62) is reshaped into a single column vector and

included in z, the column vector of design variables for NLP problem. The defect

constraints along each segment are included in the constraint vector of the NLP

problem, as are continuity constraints that ensure that the segments comprising the

final trajectory are continuous in position and velocity,

c =



xp2,I − x
p
1,F

xp3,I − x
p
2,F

...

xps,I − x
p
s,F

[C1D − [ẋ1,2 ẋ1,4 · · · ẋ1,N−1]]W

[C2D − [ẋ2,2 ẋ2,4 · · · ẋ1,N−1]]W
...

[CsD − [ẋs,2 ẋs,4 · · · ẋs,N−1]]W



= 0. (3.63)
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The constraints that define the collocation problem are formulated such that com-

putations along each segment are independent. Therefore, the Jacobian matrix that

results from the partial derivatives of c with respect to z is quite sparse. The sparsity

of the Jacobian matrix is leveraged to implement strategies that reduce the com-

putational times for general collocation algorithms. These strategies are especially

essential when the collocation problem becomes very large. The procedure for solv-

ing a NLP problem by collocation is illustrated in the flowchart in Figure 3.5. A

converged result to a collocation problem yields the approximation of a solution to a

system of differential equations, and this approximation is dependent upon the pa-

rameters of the discretization technique and the implicit integration method. The

accuracy of the final solution is improved by refining the discretization mesh.

Start

Initial

Guess

Construct

Polynomials

Interpolate to Obtain

Defect Constraints

Error Below

Tolerance?

Converged

Solution

Calculate

Jacobian

Update

Segment Times

Stop

yes

no

Fig. 3.5. Procedure for Applying Collocation with Newton’s Method or
Minimum-Norm Equation
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3.7.2 Mesh Refinement

Collocation is typically paired with a mesh refinement scheme to generate a so-

lution that solves the given differential equations with a sufficient level of accuracy.

Because each segment in a collocation problem utilizes a single integration step to

solve the equations of motion, the initial solution of this problem may poorly ap-

proximate the dynamical system. Mesh refinement schemes update the mesh, Π, by

adjusting the boundary point times displayed in Equation (3.41) to evenly distribute

and ultimately reduce error. Together, collocation and mesh refinement schemes gen-

erate solutions equal in accuracy to those supplied by a multiple shooting strategy.

Several mesh refinement schemes are available and each possesses distinct advan-

tages and disadvantages that inform their use. Russell and Christiansen compare

several mesh refinement schemes [74], including the de Boor mesh refinement tech-

nique. Originally developed by Carl de Boor [75], this approach reduces and equally

distributes the error among the segments in the collocation problem. An alternate

mesh refinement approach termed Control with Explicit Propagation (CEP) is pro-

posed by Grebow and Pavlak [70, 76]. This strategy employs explicit propagation to

add and remove segments from the mesh and ensure the accuracy of the final collo-

cation solution. Finally, Grebow and Pavlak also propose a hybrid mesh refinement

approach that combines the method from de Boor and the CEP technique to yield

an approach that leverages the advantages of both strategies.

Method from de Boor

The mesh refinement method from de Boor relies on an analytical estimation of

the error for each segment to determine the redistribution of the boundary points as

well as additions and removals. This entirely analytical approach to mesh refinement

implies that the de Boor method typically requires the least computational time of any

of the mesh refinement schemes in this investigation. The de Boor mesh refinement

method, as outlined here, follows from a framework employed by Ozimek et al. [19]



78

and further developed by Grebow and Pavlak [73]. The de Boor method estimates

the error in a polynomial approximation of order N for the ith segment as,

ei = K∆tN+1
i ξi +O(∆tN+2

i ), (3.64)

where the scalar error due to the omission of higher order terms, O(∆tN+2
i ), is deter-

mined by the time interval along a given segment. The N th+1 derivative of the con-

structed polynomial is represented by ξ and the constant K is a dimensionless scalar

value that is dependent on the degree of the polynomial. A method for computing K

appears in Russell and Christiansen (Appendix) [74] and several pre-computed values

are listed in Table 3.2. De Boor states that the variable ξi is estimated by the N th+1

Table 3.2.
Constant Values for Odd Degree Polynomial Error Calculation

Degree K Value

1 1.25

2 8.01875373874480× 10−3

3 5.20833333333334× 10−4

4 2.45076190281488× 10−5

5 1.03339947089947× 10−6

6 3.59267656090070× 10−8

7 1.12915151977652× 10−9

8 3.08927792667408× 10−11

9 7.74907905728965× 10−13

10 1.74408359272640× 10−14

11 3.64148451940432× 10−16

derivative of the solution [75]; however, this value cannot be determined directly from
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the polynomial in the collocation solution. As an alternative, the polynomial and time

intervals on the converged collocation solution are used to approximate ξi,

ξi ≈



2max

[ ∣∣∣p(N)
1 −p(N)

2

∣∣∣
∆t1+∆t2

]
, on (t1, t2)

max

[ ∣∣∣p(N)
i−1−p

(N)
i

∣∣∣
∆ti−1+∆ti

]
+ max

[ ∣∣∣p(N)
i+1−p

(N)
i

∣∣∣
∆ti+1+∆ti

]
, on (ti, ti + 1), i = 2, . . . , s− 1

2max

[ ∣∣∣p(N)
s+1−p

(N)
s

∣∣∣
∆ts+1+∆ts

]
, on (ts, ts+1)

.

(3.65)

The error calculated with Equations (3.64) and (3.65) is an approximation of the

error in the polynomial fit to the dynamical system differential equations for the

ith segment. This error approximation is not equivalent to the error determined by

comparing the polynomial to an explicit propagation of the same segment.

Following the initial solution of the NLP problem, the error associated with each

segment of a collocation scheme may vary significantly along a path. Equally dis-

tributing this error along a trajectory is desirable because it promotes efficient node

placement. When error is evenly distributed more boundary points are placed in re-

gions of the trajectory where states are changing rapidly and vice versa. The de Boor

method offers a strategy of updating the times at the boundary points to achieve

error equidistribution; these times are identified by,

ti+1 = I−1

[
iI(ts+1)

s

]
, i = 1, . . . , s− 1, (3.66)

where I is determined from the integral,

I(t) =

∫ t

t1

ξi(s)
1
s+2ds. (3.67)

Calculation of the integral in Equation (3.67) is simplified by the fact that ξi(s) is

approximated by a piecewise constant method. Therefore, Equation (3.67) is pre-

cisely constructed by the rectangle rule of integration. Note, Equation (3.67) is the

inverse integral of I, computed at the value indicated by the expression within the

brackets. State and control values at the new boundary point node times, computed

via Equation (3.67), are interpolated from the mesh nodes that support the previ-

ously converged collocation solution; the NLP problem is then resolved with these
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new values. The process of computing the quantities in Equations (3.64)-(3.67) and

re-solving the NLP problem is iterated until the maximum difference between the

segment errors is less than a predefined tolerance.

After the error in the polynomial approximations is equally distributed along each

segment of the mesh, the number of segments is updated as well. The updated number

of segments in the mesh is calculated as,

sr+1 = round

[
sr

(
10ei
tol

) 1
N+1

+ 5

]
, (3.68)

where sr is the number of segments employed for the rth solution of the NLP. Then

the new times for the boundary points are calculated using Equation (3.66) and the

NLP problem is solved again. The procedure for equally distributing and reducing

the total error by updating the mesh is repeated until the tolerances governing both

these processes are satisfied. A schematic of the de Boor mesh refinement method is

illustrated in Figure 3.6.

The two strengths of the de Boor mesh refinement method are its computational

speed and the even distribution of error across segments. Equations (3.64)-(3.68)

are implemented in an efficient form that enables rapid computation of all necessary

quantities. Additionally, the error distribution step included in the de Boor method

reduces the total number of segments that must be added to a problem because

existing segments are moved to regions of the trajectory where they are needed most

rather than always simply adding more segments in problematic areas. A drawback

of the de Boor approach is that the computation of the segment error is based on

approximations, thus, the solution generated by this procedure likely must still be

verified with an explicit propagation technique. Additionally, experience indicates

that the segment addition step of the de Boor method typically adds more segments

than other approaches. Despite these downsides, the de Boor method is still an

effective means of performing mesh refinement for a solution to the NLP problem

computed via collocation.
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Fig. 3.6. Procedure for de Boor method of mesh refinement.
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Control with Explicit Propagation (CEP)

An alternate approach to the mesh refinement process is offered by the CEP

method. This straightforward technique leverages explicit propagation to validate the

accuracy of the solution in the NLP problem computed via collocation. A flowchart

depicting the essential steps of the CEP approach is offered in Figure 3.7. This dia-

gram illustrates that the CEP mesh refinement method involves two separate phases:

segment removal and segment addition. In the segment removal phase, an explicit

propagation is performed for every pair of segments, i.e., for the timespan [titi+2].

Following propagation, the errors between the states at the end of the propagation

and the states at the boundary point for the corresponding time are computed. If the

l2-norm of these errors is below a user-defined tolerance, i.e., εrem = 1 × 10−12, then

the shared boundary point of the segment pair is removed, that is, the two segments

are merged into one. The segment removal phase of the CEP method is continued

until a comparison with no segments removed.

After extraneous segments are removed from the collocation problem, segments

are added where the desired solution accuracy is not satisfied. The steps for the

segment addition phase are nearly identical to the removal process except that an

explicit propagation is conducted between every segment as opposed to pairs, i.e., for

the timespan [titi+1]. The errors between the states at the terminus of every explicit

propagation and the states at the time corresponding to the boundary point are once

again assessed. If the l2-norm of this error is greater than a user-defined tolerance,

εadd = 1× 10−12, then the segment is split in two where the time at the new segment

boundary point is, tnew = ti + (ti+1 − ti)/2. The segment addition phase of the CEP

method is continued until no segments are added. The final result from the CEP

mesh refinement procedure is a solution to the NLP problem solved via collocation

where the accuracy of every segment is verified by a third-party explicit integration

tool.
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The external validation offered by the CEP mesh refinement approach is the pri-

mary benefit of this method. When this mesh refinement strategy is employed, the

end result is a solution with a high level of accuracy verified by an outside tool. An

additional benefit is that the error associated with each segment is not an approxima-

tion and is more easily understood. More accurate knowledge of the segment errors

prevents extraneous segments from being included, thus frequently, fewer segments

are added than in the de Boor method. A drawback of the CEP approach is the

explicit propagation of every segment that is computationally expensive relative to

the analytical segment error estimation in the de Boor technique. However, the mesh

refinement step is only performed between successive solutions of the NLP problem

and, thus, comprises a relatively small portion of the total computational process.

Therefore, the explicit propagation required by the CEP method is usually not pro-

hibitive with regard to computational time. However, if the mesh refinement process

becomes a “choke point” in the overall solution process in a given optimal control

problem, then it may be beneficial to switch to the de Boor approach. Finally, as the

CEP method also does not directly attempt to distribute error across a trajectory, it

may require more iterations for segment addition and subtraction than the de Boor

process.

Hybrid Mesh Refinement

The hybrid mesh refinement approach combines the strengths of the de Boor and

CEP mesh refinement techniques to offer a powerful mesh refinement method that is

employed as the default approach for the trajectory design problems in this current

investigation. The hybrid method performs the error distribution step of the de

Boor method before executing the segment removal and addition phases of the CEP

mesh refinement process. Thus, the equations presented in Section 3.7.2 are utilized

to determine the error distribution along the trajectory and, once the tolerance for

this distribution is satisfied, the CEP mesh refinement process begins. No additional
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error distribution steps are introduced once the CEP method commences. Combining

these two approaches offers the error distribution of the de Boor method as well as the

accuracy and validation of the CEP technique. Completing the error distribution step

before the CEP phases reduces the number of segments that are added or removed

and, therefore, the total computational time. Because the hybrid mesh refinement

technique possesses the strength of the two previously described methods without

adding significant computational time, it is typically the default mesh refinement

technique employed in this investigation.

3.8 Collocation with Optimization for Low-Thrust (COLT) Implementa-

tion

The collocation scheme in the preceding section is adapted to generate optimal

low-thrust trajectories, a transformation that introduces additional variables and con-

straints. The set of algorithms produced by this process is collectively termed COLT

(Collocation with Optimization for Low-Thrust). This tool, developed in collabora-

tion with Daniel Grebow at the Jet Propulsion Laboratory, serves as a prototype for

MColl [70]. MColl is the direct collocation tool, developed by Grebow and Pavlak,

included in the MONTE (Mission Analysis, Operations, and Navigation Toolkit) soft-

ware package. The COLT algorithm computes optimal low-thrust solutions in any of

the dynamical models described in Chapter 2, and serves to generate all low-thrust

solutions in this document.

Several additional design variables are added to the collocation scheme detailed

in Section 3.7 to adapt it for the purpose of low-thrust trajectory optimization. Nu-

merous options are available for parameterizing control, that is, u in a low-thrust

trajectory optimization problem, and some schemes offer favorable numerical prop-

erties. In COLT, the control variables are the three components of the thrust unit

vector, i.e., u = T = [Tx, Ty, Tz]. The thrust vector is defined in an inertial frame and

transformed into the frame of the selected equations of motion at the necessary times.
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The components of the thrust unit vector are constrained such that ‖u‖ = 1. The

magnitude of the thrust vector, T , is computed using the initial, mi,I , and final, mi,F ,

mass of each segment. These two quantities are employed to calculate a throttling

value, σi, for each segment that is constrained to the range 0 ≤ σi ≤ 1.

σi =
mi,I −mi,F

ṁmax,i∆ti
(3.69)

The throttling value from Equation (3.69) produces the thrust magnitude, Ti =

σiTmax,i, and the mass flow rate, ṁi = σiṁmax,i, for a given segment. The max-

imum mass flow rate, ṁmax,i, and maximum thrust magnitude, Tmax,i, are defined

by the selected low-thrust engine model. In this investigation ṁmax,i and Tmax,i are

constant values; however, they can also be formulated as functions of other quantities

such as power and distance from the Sun.

The design variables for the collocation scheme implemented in COLT are included

in a single column vector, x, that includes all of the design variables of the NLP

problem as described in Section 3.4. The same types of design variables define each

segment along the low-thrust trajectory. The design variables for the ith segment are

collected into the vector, Si, and these vectors are consolidated in the design variables

vector z, i.e.,

Si =
{
ui mi,I mi,F xi,1 xi,3 · · · xi,N

}T
(3.70)

z =
{
S1 S2 · · · Ss

}T
. (3.71)

The total vector of design variable values for the NLP problem is then comprised

of s of these smaller column vectors. Equations (3.70) and (3.71) illustrate that the

control variables and thrust magnitude are constant over each segment. The elements

of the design variable vector are updated throughout the optimization process and,

at each iteration, these variables are used to evaluate the problem constraints.

A variety of problem constraints are available in COLT. While some are enforced

to obtain a solution to the low-thrust trajectory optimization problem, others are
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only included for certain scenarios. Within COLT, these constraints are arranged

into equality constraints, ceq, and inequality constraints, cineq.

ceq =
[
gdefect gcontinuity gT̂ ψI ψF

]T
= 0 (3.72)

cineq =
[
gσ grad

]T
≤ 0 (3.73)

Equations (3.72) and (3.73) illustrate, at a high level, the organization of common

constraints in COLT. A collocation scheme always enforces defect constraints, gdefect,

to obtain a valid solution. Because of the selected node spacing scheme, COLT also

requires the enforcement of continuity constraints between segments, gcontinuity, as do

some other collocation implementations. Both of these constraints are incorporated

in Equation (3.63) in Section 3.7.1. When control variables are included, additional

constraints are required to ensure that these variables maintain realistic values. The

three components of the thrust unit vector are constrained to possess unit magnitude,

that is,

‖ui‖ =
√
T 2
i,x + T 2

i,y + T 2
i,z = 1, (3.74)

where Equation (3.74) is the equality constraint, gT̂ , included in Equation (3.72).

Furthermore, the throttle value, σi is bounded to be between 0 and 1 via a set of

inequality constraints denoted in Equation (3.73) as gσ.

All other constraints included in Equations (3.72) and (3.73) are optional and

problem specific. Frequently, boundary constraints are applied at the initial, ψI , and

final, ψF , boundary points along the trajectory to fix the values of the states, energy,

and/or orbital elements at these times. This type of constraint is employed in this

investigation to ensure trajectories depart from and insert onto specific orbits. Fur-

thermore, it is often beneficial to include minimum radius constraints with respect to

gravitational bodies, i.e., grad. These constraints enforce a “keep-out” zone around

these bodies such that the trajectory cannot pass within the zone. This type of con-

straint is particularly necessary when a trajectory includes, or is likely to include,

a flyby of a primary body. Specific low-thrust trajectory design scenarios may re-

quire other constraints, and these are straightforward to incorporate in a collocation
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framework. Depending on their nature, additional constraints are appended to either

Equation (3.72) or Equation (3.73).

The minimum radius constraints included in COLT enable low-thrust trajectories

to converge that would otherwise remain “stuck” near primary bodies. These con-

straints require each variable node along a trajectory to include a radius value with

respect to a chosen body that is greater than or equal to a user-defined value, rPmin .

For example, a trajectory that passes close to the Moon may require all variable nodes

to have a distance from the center of the Moon equal to, at least, 2 lunar radii, i.e.,

3474.8 km. For a single variable node the minimum radius constraint is written,√
(xi,j − xP )2 + (yi,j − yP )2 + (zi,j − zP )2 ≥ rPmin (3.75)

where the variable node position is ri,j = {xi,j yi,j zi,j}T and the location of the pri-

mary body is rP = {xP yP zP}T . This constraint is intended to prevent any arcs of a

trajectory from passing beneath the surface of the primary body and producing an im-

practical result. Moreover, the nonlinear dynamics near primary bodies significantly

challenge convergence of a trajectory that passes close to these bodies. Compounding

this difficulty is the fact that optimization algorithms often shift trajectories closer

to primary bodies to leverage the effective adjustments in energy that close flybys of

them offer. Convergence challenges that result from close flybys of primary bodies

are mitigated by preventing a trajectory from passing too close to the Moon. Unfor-

tunately, while this constraint is helpful for obtaining convergence, it is only enforced

at the variable nodes, thus, it is still possible for a trajectory to sometimes pass below

the minimum radius value. The development of alternative approaches to enforcing

a minimum radius constraint may offer more effective strategies (see Chapter 7).

The objective of a low-thrust optimal control problem is typically the minimization

of propellant consumption or time of flight. In this investigation, the objective is

always the minimization of propellant consumption. Thus, the objective function is,

F =
s∑
i=1

(mi,I −mi,F ), (3.76)
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one that sums the change in mass over all segments to compute the total change

in mass for the trajectory. An alternate formulation of the objective function is

F = −ms,F that maximizes the final mass of the trajectory. While both formulations

promote the same objective, their different numerical implementations potentially

produce disparate convergence behavior. The expression in Equation (3.76) is utilized

in this investigation; however, a rigorous analysis of the effect on convergence behavior

of the alternate formulations would be beneficial.

The design variables, constraints, and objective in the collocation scheme im-

plemented in COLT form an NLP problem and several approaches for solving this

problem are available. If a merely feasible solution is desired, the objective function

is ignored and Equations (3.71), (3.72), and (3.73) are utilized in a Newton’s method

or minimum-norm scheme to compute a value of z that satisfies the problem con-

straints. In this scenario, slack variables are added to the design variable vector to

enforce the inequality constraints in Equation (3.73). An approach for implementing

slack variables is presented by Pavlak [29]. If optimization is desired, then one of sev-

eral third-party optimizers is employed. The optimizers, fmincon, SNOPT [56, 57],

and IPOPT [58], are available within COLT to pair with the collocation algorithms,

and IPOPT is used for all optimal solutions in this investigation.

Whether a feasible or optimal solution of the NLP problem is sought, the Jacobian,

the matrix of partial derivatives of the constraints with respect to the design variables,

is necessary to compute a solution. Within COLT, this matrix is computed via a

mixture of finite difference approximations and analytical expressions. The partials of

the defect and continuity constraints are computed with complex-step differentiation,

while the partial derivatives of most other constraints are calculated via analytical

expressions. Analytical expressions are typically the most computationally efficient

approaches for computing the required partial derivatives. However, evaluation of

these expressions must be implemented in a computationally efficient manner or, else,

they can be as computationally cumbersome as a finite difference approximation.
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Bounding the design variables is an additional step taken within the COLT frame-

work to make large NLP problems more tractable. This step limits the range of the

design variable values that the optimizer searches over that, ideally, facilitates conver-

gence towards an optimal solution. The standard design variables included in COLT

are bounded as follows,

zU =
[
u1U mI,1U mF,1U r1,1U ṙ1,1U · · ·

]T
=
[
1 mI mI r1,10 + νr ṙ1,10 + νṙ · · ·

]T
(3.77)

zL =
[
u1L mI,1L mF,1L r1,1L ṙ1,1L · · ·

]T
=
[
−1 0 0 r1,10 − νr ṙ1,10 − νṙ · · ·

]T
.

(3.78)

Some design variables possess obvious upper and lower bounds; for example, necessary

constraints on the control and mass variables can be enforced simply by applying

bounds, as apparent in Equations (3.77) and (3.78). Bounds on other variables, such

as the position and velocity states, are left as user inputs. Position and velocity

states are bounded to remain within a certain range of their initial values, and the

maximum deviations from these values are labelled νr for position states and νṙ for

velocity states. While applying bounds to the design variables aids the optimization

algorithm in identifying an optimal solution, it is undesirable for the final solution,

delivered from the optimizer, to be in contact with any of the bounds unless these

bounds define an actual physical limitation such as the minimum spacecraft mass.

A solution with design variables that equal their bounds typically indicates that the

bounds prevented the optimizer from reaching the values of these design variables that

generate the true local optimal solution. Therefore, if this scenario is encountered,

then the computed solution should be employed as an initial guess for an optimization

problem with larger bounds on the design variables.

The COLT software package offers an implementation of a direct collocation

scheme developed specifically to solve low-thrust optimization problems. When com-

bined with the orbit chain methodology introduced in the following chapter, the

COLT tool supplies an approach for computing optimal low-thrust trajectories even
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in unfamiliar dynamical regimes. The variety of dynamical models, constraints, and

third-party optimizers that COLT is able to leverage enhances the utility of this tool,

enabling real-world trajectory design scenarios. Despite its efficiency and robustness,

there are several potential upgrades that could increase the capability of COLT and

these are discussed in the final recommendations.

3.9 Finite Difference Approach for Partial Derivative Computation

Analytically determining the partial derivatives necessary to construct the Jaco-

bian matrix for the NLP problem posed within the COLT algorithm is challenging,

moreover, any modifications of the dynamical force models necessitate an update to

the derivation of the partials. Therefore, it is sometimes advantageous to numeri-

cally approximate partial derivatives for the STM because such approximations are

typically straightforward and easily implemented. Even if analytical derivatives are

ultimately employed, possessing a means of validating the analytically-derived par-

tial derivatives is beneficial. However, such an approach warrants caution because

the Jacobian is approximated with varying degrees of accuracy. Additionally, this

technique can be computationally expensive, increasing the time required to produce

a solution. Nonetheless, when used appropriately, numerical approximation methods

for partial derivatives provide a powerful approach.

The first-order central difference approximation is a finite difference method com-

monly employed to numerically approximate partial derivatives. This strategy is

based on differencing two first order Taylor-series expansions, resulting in

∂fj
∂xi

=
fj[xi + h]− fj[xi − h]

2h
+O(h2), (3.79)

where h is the step size and O(h2) indicates a truncation error on the order of h2.

A small step size, h, is selected for a low truncation error. However, if h is too

small, excessive round off error occurs due to the subtraction step in the numerator.

Strategies for selecting a value of h that mitigates these two sources of error are

available [77].
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Complex step differentiation affords an even more powerful method for numerical

approximation of partial derivatives. This approach is also derived from a Taylor-

series expansion but, in this case, a step occurs along the imaginary axis [78].

f(x+ ih) = f [x] + ihf ′[x]− h2f ′′[x]/2!− ih3f (3)/3! + . . . (3.80)

Focus on the imaginary part of both sides of Equation (3.80) and solve for f ′(x), i.e.,

Im (f [x+ ih]) = hf ′[x]− h3f (3)/3! + . . .

f ′[x] = Im (f [x+ ih]) /h+O(h2) (3.81)

The division required in Equation (3.81) does not induce round-off error, therefore,

h can be set to be arbitrarily small. The step size, h, is typically selected such that

the truncation error O(h2) is below the numerical precision of the computational tool

in use, i.e. Matlab, rendering the resulting approximation equal in accuracy to a

numerically implemented analytical method.

A third approach to numerically computing partial derivatives is automatic (al-

gorithmic) differentiation (AD). While not implemented in this investigation, such a

technique is increasingly applied to trajectory design and optimization problems [79].

The term AD describes a variety of techniques for computing derivatives by imple-

menting basic differentiation rules within the source code of a numerical method. Its

primary advantages include the avoidance of truncation errors and automatic compu-

tation of the derivatives of a function in parallel with the computation of the function

itself [80]. While this procedure is more complex to implement than finite differencing

approaches, it is less computationally expensive. Automatic differentiation is facili-

tated by object-oriented programming and is implemented in many languages with

this capability, including Matlab [81].
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4. ORBIT CHAIN TECHNIQUE FOR LOW-THRUST

TRANSFER DESIGN

Powerful tools alone are not sufficient to meet the challenge of low-thrust trajectory

design; a methodology with which to employ these tools is also required. This chapter

describes such a methodology and demonstrates its efficacy with several low-thrust

trajectory design scenarios. The framework developed in this chapter utilizes direct

collocation along with orbit chaining to generate optimal low-thrust transfers. Orbit

chaining, in this context, refers to the linking together of various dynamical struc-

tures, e.g., periodic orbits and their invariant manifolds, to form an initial guess for

a low-thrust transfer. This approach leverages the strengths of direct collocation to

produce a methodology capable of obtaining optimal low-thrust transfers in an in-

tuitive, flexible, and robust manner. The procedures developed in this chapter are

applied in subsequent chapters to generate low-thrust transfers for two upcoming

NASA missions.

4.1 Motivation and Overview

Linking together orbits or other dynamical structures to design trajectories is

a strategy as old as the space age. Missions to the Moon in the 1960s employed

one version of this approach, the patched conics approximation, to design successful

trajectories from Earth to the Moon and back. The same strategy was used in the

next decade to develop the elegant sequence of flybys that compose the trajectories of

Voyager 1 and 2. Exploration of the CR3BP and other multi-body dynamical models

in recent decades yielded new dynamical structures which were linked together to

design a variety of successful missions within the Earth-Moon system and beyond.

As the orbit chain approach described in this chapter is based on the same principles
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employed in these earlier missions, the strategy is not a new one. However, in this

case, its close pairing with a direct collocation algorithm yields a novel approach that

is intuitive, flexible, and robust. Thus, the primary contribution of this investigation

is to pair the two familiar strategies of orbit chaining and direct collocation in a

unified framework for low-thrust trajectory design.

The orbit chain and direct collocation framework presented in this investigation

is developed to directly address some of the main challenges of low-thrust trajectory

design. The greatest of these challenges is the formulation of an initial guess for the

complex and frequently unintuitive state and control histories of many low-thrust tra-

jectories. The proposed framework meets this challenge by utilizing periodic orbits

and other dynamical structures to provide the necessary position and velocity states

for an initial guess. This approach is beneficial because it biases the resulting transfer

to leverage the natural dynamics of the orbits or manifold paths included in the initial

guess; generally, the more a transfer exploits the natural dynamical flow of a model,

the less propellant it will require. Constructing an initial guess from existing dynam-

ical structures has the added benefit of being relatively straightforward. A designer

can “mix and match” known dynamical structures in a manner that best serves the

desired transfer. The robust nature of the direct collocation algorithm permits great

freedom of choice in this approach because often even initial guesses with large state

discontinuities can still lead to optimal solutions. The direct collocation algorithm

determines the control profile necessary to eliminate the state space discontinuities

and maximize the mass delivered to the final orbit. This simplicity makes the orbit

chain and direct collocation approach available to mission designers of all experience

levels. Regardless of familiarity, the orbit chain and direct collocation technique of-

fers a methodical approach for the creation of effective initial guesses for low-thrust

transfers.

The freedom that the orbit chain approach offers to quickly test a variety of initial

guess configurations addresses one of the other key challenges of low-thrust trajectory

design: the exploration of a solution space. Unless a global optimization algorithm
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is also employed, optimization methods such as direct collocation only produce lo-

cal optimal solutions whose optimal value in relation to other solutions is unknown.

Unfortunately, global optimization algorithms are frequently time intensive when ap-

plied to mission design problems, particularly in multi-body dynamical models. The

ease with which the orbit chain approach allows a variety of initial guesses to be

assembled and tested enables the exploration of a solution space without employ-

ing a cumbersome global optimization technique. Multiple solutions for the same

trajectory design scenario can be obtained using different orbit chain formulations,

as is demonstrated later in this chapter. Therefore, the solution space for a given

problem can be explored by constructing orbit chains that utilize different types of

intermediate orbits. This technique offers insight on the characteristics of various

families of solutions available to address a given trajectory design problem. While

experimenting with different orbit chain configurations is unlikely to yield a global

optimal solution, it is often sufficient to generate results that satisfy the requirements

of a given mission design problem.

The flexibility of the orbit chain and direct collocation framework is reflected

not only in the multiple solutions it provides for a single problem, but in that this

strategy can be adapted to a variety of dynamical models. Within this investigation,

the approach is employed in the CR3BP and BCR4BP models; moreover, structures

from the CR3BP+LT model are included in an orbit chain. These results demonstrate

that the orbit chain and direct collocation method can be implemented in different

dynamical models and can use structures from multiple dynamical models as links

in an orbit chain. This methodology is valid for many other dynamical models not

examined in this investigation. Ideally, the model employed possesses dynamical

structures that can be leveraged for trajectory design; however, if this is not the case,

then structures from other models can be imported. The adaptability of the orbit

chain approach heightens its appeal because it broadens the range of trajectory design

problems this method can be applied to.
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This chapter offers a detailed description of the proposed orbit chain and di-

rect collocation framework and multiple demonstrations of its application. A sample

transfer design scenario is employed to illustrate the six step procedure for orbit

chain construction and how the direct collocation algorithm transforms this initial

guess to an optimal solution. Following this, multiple sample problems that highlight

the broad applicability and versatile nature of the orbit chain and direct collocation

approach are presented. The effectiveness of direct collocation compared to direct

multiple shooting is then contrasted based on a literature review and brief example

problem. Finally, the various parameters in the proposed framework whose values

have the most significant impact on convergence behavior are detailed. In subsequent

chapters, the orbit chain and direct collocation framework presented here is applied

to compute low-thrust transfers for two upcoming NASA missions.

4.2 Dynamical Structures

A benefit of employing one of the simplified dynamical models discussed in Chap-

ter 2 is that these models are amenable to the application of a variety of mathematical

tools that yield insights useful for trajectory design. The field of mathematics that

encompasses these tools is sometimes called dynamical systems theory (DST). Ap-

plication of DST to models such as the CR3BP and BCR4BP reveals patterns of

dynamical flow resulting from the interaction of the gravitational bodies included

in each model. Cumulatively, these patterns comprise a dynamical “topography”,

that is leveraged to design trajectories which exploit the natural flow of a dynamical

system to achieve mission objectives, in the same way a boat might employ natural

currents in the ocean. Individual elements of this overall topography, such as periodic

orbits or invariant manifolds, are termed dynamical structures. Thus, utilizing these

structures in an orbit chain technique enables information on the natural flow within

a dynamical model to be included within an initial guess. Periodic orbits and invari-
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ant manifolds are discussed here before their use within the orbit chain framework is

demonstrated.

4.2.1 Periodic Orbits

Periodic orbits are solutions to the equations of motion for a given dynamical

model that repeat exactly. These orbits are extremely useful because they supply

information on dynamical motion over infinite time but require only finite time to

compute. Figure 4.1 displays a Lyapunov orbit, one type of periodic orbit available in

the CR3BP, about the Earth-Moon L1 libration point. The period, P , of a periodic

Fig. 4.1. Lyapunov orbit about the L1 libration point in the Earth-Moon
CR3BP. The period of this orbit is P = 15.356 days and the Jacobi
constant value is J = 3.053.

orbit is the length of time required to complete one full revolution and, in the case

of the L1 Lyapunov orbit depicted in Figure 4.1, is equal to P = 15.356 days. This

orbit is one of many orbits in the CR3BP that exhibit symmetry about one or more

of the axes of the rotating frame. This symmetry is a product of the Mirror Theorem

and assists the generation of periodic orbits because only half the orbit need be

computed to obtain the whole orbit [82]. Whether this symmetry is exploited or not,

the shooting and collocation techniques discussed in Chapter 3, offer strategies for
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computing periodic orbits. Pavlak discusses methods for computing these orbits [29],

and McCarthy offers strategies for the generation of quasi-periodic orbits for which

motion is bound to a surface, but does not exactly repeat [83].

A limitless number of periodic orbits exist in the CR3BP, and these solutions are

organized into distinct categories, denoted families, based on common characteristics.

Each orbit along a family is characterized by some parameter (for example P , J) that

evolves along the family. These families are evolved from a single initial orbit using

a continuation method e.g., natural parameter or psedo-arclength continuation [84].

Figure 4.2(a) displays the family of L1 Lyapunov orbits of which the single periodic

orbit displayed in Figure 4.1 is a part.

(a) Position Space (b) Parameter Space

Fig. 4.2. (a) Subset of the family of L1 Lyapunov orbits in the Earth-
Moon CR3BP plotted in position space. (b) Subset of the family of L1

Lyapunov orbits plotted in parameter space. Note, a smaller subset of the
family is depicted in (a) than in (b).

Clearly several parameters are available to characterize the family of L1 Lyapunov

orbits. Not only does the x-axis crossing location of each Lyapunov orbit differ for

each orbit in the family but also the period and Jacobi constant of each member.

Plotting the L1 Lyapunov family in parameter space offers another perspective on

these orbits. Figure 4.2(b) shows the Jacobi constant value of each orbit in the L1
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Lyapunov orbit family plotted as a function of its period. Viewing an orbit family

in parameter space is advantageous if an orbit at a particular energy level or which

possesses a specific period is desired.

Equilibrium points and periodic orbits are solutions to the equations of motion

in the CR3BP and BCR4BP with stability characteristics that are analyzed via a

linearization about each solution. Simply put, the stability of these solutions describes

the tendency of a particle to return to, or remain in the vicinity of, the solution

following a perturbation. A simple conceptualization of stability is furnished by

imagining a ball at the bottom of a basin or the peak of a hill subject to a uniform

gravitational field on the surface of the Earth. Following a slight perturbation away

from the lowest point of a basin, the ball will oscillate about and ultimately return to

the bottom of the basin. In contrast, after a perturbation the ball at the peak of the

hill is likely to roll away never to return. This latter configuration is analogous to an

unstable solution while the former is a stable one. Thus, by extension, a spacecraft

positioned in a stable periodic orbit is more likely to remain in or stay near that orbit

following a perturbation, than a spacecraft in an unstable orbit. A more detailed

and mathematical discussion of stability is offered by Vaquero [84]. The natural flow

into or out of orbits that are characterized as unstable is indicated by its invariant

manifolds and these offer another set of useful dynamical structures.

4.2.2 Invariant Manifolds

Invariant manifolds indicate the natural flow towards or away from an unsta-

ble equilibrium point of periodic orbit in the CR3BP and BCR4BP. The invariant

manifolds of periodic orbits are leveraged in this investigation, and these dynamical

structures are useful because they can be used to design efficient paths into or out of

a given orbit. The same linearization process employed to determine the stability of

a periodic orbit is also used to compute its stable and unstable invariant manifolds.

However, these manifolds are only available if the solution is characterized as unsta-



100

ble. The linearization provides states on the manifold nearby the solution, then the

manifolds are globalized by propagating from these states forward in time along the

unstable manifolds and backward in time along the stable manifold. Figure 4.3 dis-

plays paths on the stable and unstable manifolds of the L1 Lyapunov orbit projected

in the x-y plane. Paths on the unstable manifold, plotted in magenta, asymptotically

Fig. 4.3. Paths on the stable and unstable invariant manifolds correspond-
ing to the L1 Lyapunov orbit shown in Figure 4.1.

depart the periodic orbit in forward time, while paths on the stable manifold, plotted

in blue, asymptotically approach the orbit in forward time. Because the periodic

orbit is a six-dimensional dynamical structure, with three position and three velocity

states, the invariant manifolds of the orbit are also six-dimensional. However, only

two dimensions are depicted in Figure 4.3. Moreover, the individual trajectories visi-

ble in this Figure are distinct paths on the invariant manifold; the manifold itself is a

six-dimensional surface. More in-depth discussion of the computation and utilization

of invariant manifolds is provided by Haapala [82] and Vaquero [84].
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4.3 Orbit Chain Methodology

Orbit chaining offers a flexible and relatively simple approach to initial guess con-

struction for low-thrust trajectory design. The orbit chain strategy is not tied to a

specific dynamical model; thus, it can be applied within whatever model best meets

the needs of a given design problem. This methodology can also employ any type of

dynamical structure whether these structures are generated in the working dynamical

model or taken from a different one. The use of existing dynamical structures also

lends the orbit chain approach its simplicity. At its core, it merely identifies dynami-

cal structures that help traverse gaps in position and velocity space between an initial

and final location. This relative simplicity makes the orbit chain approach accessible

to mission designers with a range of experience levels. The adaptable and straight-

forward nature of the orbit chain approach is captured in the six step procedure

employed to construct an orbit chain.

1. Analyze

2. Select

3. Clip

4. Subdivide

5. Stack

6. Define Control History

The six steps of the orbit chain procedure are demonstrated via a sample scenario in

the CR3BP that requires the design of a low-thrust transfer from a DRO near the

Moon to an L3 Lyapunov orbit. Once the orbit chain is constructed, it is passed

to the direct collocation algorithm which ultimately computes an optimal solution.

This example problem aptly highlights the flexibility and straightforward nature of

the orbit chain process.
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4.3.1 Orbit Chain Construction: Analyze and Select

The initial step of the orbit chain process, analysis, entails the identification of the

types of dynamical structures that will provide links for the orbit chain. The open

ended nature of this step means it is often the most time consuming part of the entire

assembly procedure. In this investigation, an orbit chain is typically constructed to

facilitate a transfer from one periodic orbit to another. When this is the case, the

desired departure and destination orbits are automatically designated as the initial

and final links in the orbit chain. It is not always necessary to include additional links

beyond these two; however, the addition of intermediate links to an orbit chain can

help reduce state and energy discontinuities between successive links. The challenge

of this step of the orbit chain construction process is the sheer number of options

that exist. Many types of dynamical structures are available for use in an orbit chain

and this is especially the case in the CR3BP, which is employed for the majority

of the examples in this chapter. Fortunately, in many cases a large number of the

available options can be quickly eliminated for any given scenario because they do

not beneficially reduce discontinuities between the initial and final orbit chain links.

The reduction of state space discontinuities is the first quality sought after when

searching for useful intermediate orbit families. The example trajectory design sce-

nario requires a transfer from a DRO to an L3 Lyapunov orbit. Many orbit families

are clearly of little use for facilitating this type of transfer; for example, the axial

or vertical orbit families would introduce undesirable out-of-plane components if in-

cluded. In contrast, several other families offer obviously useful candidates for orbit

chain construction, e.g., the L4/5 SPOs or 3:4 resonant orbits, because of their sub-

stantial state space overlap with the initial and final orbit families. Figure 4.4(a)

displays how the L4 SPO family intersects numerous members of both the DRO and

L3 Lyapunov family. Not only does the L4 SPO family overlap in position space,

but the direction of motion around each orbit is in the same clockwise direction as

members of the other two families. A similar direction of velocity is often as im-
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(a) Position Space (b) Parameter Space

Fig. 4.4. Orbit families included in the orbit chain constructed for a
DRO to L3 Lyapunov orbit transfer. An orbit from the L4 SPO family
is employed as an intermediate link because it bridges discontinuities in
position and energy space between the initial and final orbits.

portant as intersections in position space. Adjacent orbit chain links that exhibit

small discontinuities in position space but possess opposite directions of motion can

hinder rather than help convergence. It is also possible to examine discontinuities in

velocity between potential orbit chain links by plotting families of interest in velocity

rather than position space. Whichever combination of visualizations is utilized, the

analysis of potential orbit chain components in state space is often the first step in

the assembly process.

A reduction of discontinuities in energy is another desirable quality of intermedi-

ate orbit chain links. Energy parameters, e.g., the Jacobi constant in the CR3BP, are

functions of position and velocity, and assessing the energy values of potential mem-

bers of an orbit chain yields insights not easily ascertained from direct examination of

state space discontinuities. Transferring between orbits in the CR3BP at two differ-

ent energy levels requires expending propellant to change the Jacobi constant value

of the spacecraft. Ideally a transfer between two orbits is achieved by consuming only

the amount of propellant required to monotonically change the energy level of the
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spacecraft. In practice, this ideal is not always achievable, because equivalences in

energy do not necessarily entail equivalences in position. Thus, two orbits at similar

Jacobi constant values but very different positions will require more propellant to

transit between than their energy levels alone imply. Nonetheless, there are transfer

scenarios where it is possible and preferable to achieve a monotonic change in energy

between the initial and final orbit. Given that this monotonic behavior is the ideal

scenario, it is often better to select intermediate orbit chain links that promote this

type of energy trend. This preference means choosing links with energy values equal

to or between the energy values of the initial and final orbit. This L4 SPO family

is chosen to provide intermediate orbit chain links not only because of its favorable

qualities in state space, but also because members of this family span the same range

of energy values covered by the DRO and L3 Lyapunov orbit families as shown in

Figure 4.4(b). The overlap in energy space between the three orbit families included

in the example scenario ensures that an orbit chain with a monotonic trend in energy

can be constructed.

After determining the types of dynamical structures to be used in an orbit chain, it

is necessary to select the individual structures that will be included in the chain. The

selection step is closely tied to the analysis step because it involves examination of the

configuration and parameter space plots composed in the previous step. Typically,

the initial and final orbits of a transfer are determined by mission requirements,

so only the intermediate orbits to be included in an orbit chain need be selected.

The energy levels of the initial DRO and final L3 Lyapunov orbits included in the

example transfer scenario are marked in Figure 4.4(b), and the same orbits are plotted

in position space in Figure 4.5(a). Following definition of the departure and arrival

orbits in the transfer scenario, intermediate orbit chain links are selected. In this

case, only one orbit chain link is employed. The intermediate link chosen from the L4

SPO family possesses an energy value almost directly between the Jacobi constant

values of the initial and final orbits and intersects the final orbit in position space,

as shown in Figures 4.4(b) and 4.5(a), respectively. If desired, additional members
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(a) Orbit Chain - Full Orbits (b) Orbit Chain - Clipped Orbits

Fig. 4.5. Individual orbits from each orbit family are selected for inclusion
in the orbit chain. The initial and final orbits in the chain are the depar-
ture and arrival orbits of the resulting low-thrust transfer. The orbits
included in the chain are clipped to reduce discontinuities between links
and reduce the time of flight of the final transfer.

of the L4 SPO family could be included as intermediate links to further reduce state

and energy discontinuities; however, a single type of intermediate link will suffice to

produce a continuous transfer in this case.

4.3.2 Orbit Chain Construction: Clip, Subdivide, and Stack

Following selection of the components of an orbit chain, these components can be

clipped to reduce discontinuities between links. Figure 4.5(b) offers an example of

this technique. The asterisks and dots on this plot indicate the starting and ending

point of each orbit, respectively. When a full revolution of an orbit is included in

a chain these points are identical. The starting and ending point of the L4 SPO is

selected to be close in position space to the starting and ending points of the DRO

because this choice reduces the discontinuity between these two adjacent links. While

this placement is advantageous for connecting with the DRO, it actually increases the
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discontinuity with respect to the subsequent L3 Lyapunov orbit. Therefore, a second,

partial, revolution of the selected L4 SPO is included in the orbit chain to bridge this

gap. The second revolution of the L4 SPO begins at the same point as the first, but is

clipped such that it ends at one of its intersections with the L3 Lyapunov orbit. The

intersection point farther from the Earth is used for the clipping location because the

difference in velocity direction at this point is smaller. Moreover, it is typically harder

to converge discontinuities close to primary bodies due to the especially nonlinear

dynamics in these regions. The L3 Lyapunov orbit that immediately follows this

orbit chain link is also clipped such that it begins at the intersection point with the

L4 SPO and ends where the orbit crosses the xz-plane in the +x direction. Only this

partial segment of the L3 Lyapunov orbit is included to avoid adding extra time of

flight to the resulting transfer. Clipping, along with adjustment of the initial point

on an orbit, is an important step for reducing state discontinuities within an orbit

chain, and thus increasing the likelihood of its leading to a converged solution.

After any necessary clipping of orbit chain links, the subdivision step is performed.

Subdivision is the partitioning of orbit chain links into segments; a step that is nec-

essary to make the initial guess compatible with the direct collocation algorithm. As

described in Chapter 3, collocation represents a trajectory as a series of segments over

which polynomials approximate the dynamics of the chosen model. The discretized

trajectory is called a mesh, thus the subdivision of the orbit chain is the definition

of the initial mesh for the direct collocation algorithm. The initial mesh defined for

the DRO to L3 Lyapunov transfer is displayed in Figure 4.6(a). Multiple strategies

for defining the initial mesh are available, and two are primarily used in this study:

even spacing in time or in position.

The default approach for defining the initial mesh is evenly spacing the segment

boundary points in time. With this strategy, a desired number of segments for each

orbit chain link is defined and the total propagation time of the link is divided such

that the time duration of each of the resulting segments is equivalent. The DRO and

L4 SPO links shown in Figure 4.6(a) utilize this mesh definition strategy. Some of the
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(a) Initial Guess (b) Feasible Solution

Fig. 4.6. An initial mesh along with the desired number of stacked revolu-
tions is determined for the orbit chain initial guess. The orbit chain leads
to a feasible solution with a redistributed mesh, but a geometry similar
characteristics to that of the initial guess.

segments along the L4 SPO appear uneven due to the overlap of the full and partial

L4 SPO revolutions. Evenly spacing segments in time is straightforward and often

sufficient for achieving convergence. However, the shortcoming of this approach is

apparent when a trajectory passes close to a primary body. During a close approach,

motion along a trajectory is rapid, meaning a large distance is covered in a short

amount of time. Therefore, when even spacing in time is employed, the spacing

of boundary points near a primary body is quite sparse unless a large number of

segments are employed. Because position and velocity states change quickly near

a primary body, more segments are required to accurately approximate motion, or

the collocation algorithm may fail to converge. One solution to this dilemma is

to maintain even time spacing between boundary points and utilize a shorter time

interval to obtain many segments near the primary. Indeed, this approach is used for

the DRO in Figure 4.6(a), which is divided into 30 segments for a single revolution.

While this approach works well for the DRO, other orbits may include sections that

are both near and far from a primary body. In these cases, employing even time
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spacing for all segments will add many extraneous segments and create a larger than

necessary collocation problem. Alternate mesh spacing strategies are developed to

address this problem.

To achieve a sufficiently fine segment distribution near primary bodies while avoid-

ing a needlessly dense mesh in other regions, one mesh definition strategy is to space

segments evenly in position. With this technique, a set Euclidean distance between

each boundary point is designated rather than a desired number of segments. An

orbit chain link is propagated from end to end, with the Euclidean distance from one

boundary point to the next being no more than the set spacing distance. When a

low segment spacing distance is used, a fine mesh is generated even near a primary

body. However, this strategy can still produce superfluous segments for orbit chain

links where only a part of the trajectory passes near a primary body. Therefore,

a variant of the even position spacing approach is more commonly employed that

utilizes a variable position spacing. In this method, two different segment spacing

values are employed; the smaller one is used when a trajectory is within a set radius

of a primary body and the other larger one is used everywhere outside this radius.

The variable position spacing technique enables a fine spacing to be achieved near

gravitational bodies without adding a large number of segments in regions where they

are not needed. This strategy is employed for the L3 Lyapunov orbit link in Figure

4.6(a), because while the majority of this orbit is far from either primary, it does

include a close approach of the Earth. The mesh for this link is defined such that a

spacing of 4000 km is used when the trajectory is within 10 Earth radii of the center

of the Earth, and a spacing of 160,000 km is used everywhere else. These settings

produce the dense segment spacing near the Earth evident in Figure 4.6(a), without

requiring the same fineness everywhere else along the orbit. This sample transfer

problem demonstrates that a suitable mesh definition strategy may be chosen inde-

pendently for each link of an orbit chain to generate the best overall initial mesh for

the problem at hand.
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The mesh definition strategy alone does not determine the total number of seg-

ments that are employed in a collocation problem. The stacking step of the orbit

chain construction process allows additional trajectory, and therefore segments, to

be added to an initial guess to improve the likelihood of achieving convergence. An

orbit chain that appears to adequately connect two regions of position space may be

constructed, but the ease with which this chain is corrected to a continuous transfer

is partly a function of the low-thrust acceleration level, amax employed in the transfer

problem. The lower the value of amax, the more time will be required to execute the

desired transfer. Because a fixed-time direct collocation algorithm is employed in this

study, the time of flight of a transfer can only be increased by including additional

trajectory segments in the initial guess. An example of the benefit of stacking is

offered in the example transfer scenario, where three revolutions of the initial DRO

are stacked. This choice provides extra trajectory, and therefore additional time of

flight that the direct collocation algorithm may employ to correct the discontinuity

between the first and second links in the orbit chain. Indeed, this is shown to be the

case in Figure 4.6(b), where some of the additional DRO revolutions are “unspooled”

to correct the discontinuity between the DRO and L4 SPO. Alternately, additional

links could be included in an orbit chain to provide supplementary time of flight for

achieving a transfer; however, the stacking approach is simpler because it avoids the

extra steps of identifying extra links. Finally, note that the stacking procedure is only

applied to orbit chain links that are periodic orbits; otherwise, stacking introduces

additional state discontinuities because the end point of the link is not equivalent to

its initial point.

4.3.3 Orbit Chain Construction: Define Control History

The final step of the orbit chain assembly process is the definition of a control

history for the initial guess. Utilizing dynamical structures to assemble an orbit

chain provides an initial guess for the position and velocity history along a transfer;
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however, these structures do not typically include any control history information,

with the exception of structures generated in the CR3BP+LT. For the vast majority

of dynamical structures that do not include control history information, a crude

initial guess is developed and employed in the orbit chain. This initial guess requires

definition of the thrust vector direction and magnitude for each segment in the orbit

chain. Recall that these control values are held constant for the duration of each

segment and that the thrust vector direction is fixed in the inertial frame. The initial

thrust vector direction is typically set parallel to the direction of the rotating frame

velocity vector at the beginning of each segment. In the CR3BP, setting the thrust

vector parallel or anti-parallel to the rotating frame velocity vector produces the most

rapid increase or decrease in energy, respectively. Most transfers generated with the

orbit chain method require some change in energy, thus it is reasonable to define a

control history initial guess that most efficiently achieves this change. The direction

of the desired change in energy typically determines the + or − direction of the initial

thrust vector, i.e., if the destination orbit is at a higher energy (lower Jacobi constant

value) than the departure orbit, then the initial thrust vector should be oriented in the

+ direction of the velocity vector, and vice-versa. Other strategies can be employed

to define the initial thrust vector direction; however, these strategies should ensure

that the initial guess is a unit vector so that the constraint corresponding to this

condition is initially satisfied.

The chosen collocation scheme defines the magnitude of the thrust vector implic-

itly according to the change in mass over the segment. Thus, specifying this aspect

of the control history actually requires an initial guess for the mass history of the

transfer. Generally, the initial thrust magnitude is set to a value near zero across

the entire transfer to bias the direct collocation algorithm towards a result that uses

less thrust. Though the optimization step removes thrust segments to achieve a more

mass optimal transfer, using an initial guess with a nonzero thrust magnitude may

still bias the algorithm towards a local optimal that requires more mass than would

otherwise be the case. However, the initial thrust magnitude is not set exactly to zero
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because this can cause numerical difficulties that hinder convergence. Thus a small

nonzero value, typically 1 × 10−8 N, is employed. An exception to the null thrust

initialization is made if using a larger initial thrust magnitude makes the difference

between obtaining a solution or not. There are scenarios where this is the case, be-

cause beginning with a nonzero thrust magnitude influences the direct collocation

algorithm towards a solution basin where convergence can be obtained. While it is

generally preferable to use a null thrust initial guess and adjust other parameters

when attempting to obtain a solution, changing the initial thrust magnitude is an

acceptable and sometimes necessary step.

The orbit chain constructed for the DRO to L3 Lyapunov orbit transfer scenario

uses a near zero magnitude initial thrust vector as shown in Figure 4.7(a). Addi-

tionally, the initial thrust vector direction is set parallel to rotating frame velocity

vector because an increase in energy (decrease in Jacobi constant value) is required to

transfer from the departure to the destination orbit. The strength of the direct collo-

cation algorithm is highlighted by this step, because this algorithm is able to modify

a highly simplistic initial control history to produce a continuous optimal transfer.

This robustness is one of the key strengths of the orbit chain and direct collocation

methodology.

(a) Initial Guess (b) Feasible Solution (c) Optimal Solution

Fig. 4.7. Thrust profiles for the initial guess, feasible solution, and optimal
result of the DRO to L3 Lyapunov transfer. As expected, the thrust profile
of the optimized solution consists almost exclusively of thrust arcs at the
maximum thrust magnitude.
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4.3.4 Orbit Chain to Optimal Solution

Once an orbit chain initial guess is successfully constructed, it is passed to the

direct collocation algorithm for convergence. The process of obtaining an optimal

solution occurs in two steps. First, the orbit chain initial guess is used to compute

a feasible solution, then this solution is optimized with the objective of maximizing

the final mass at the end of the transfer. The influence of the orbit chain initial guess

on the final result is most apparent in the feasible solution. For example, Figure

4.6(b) illustrates how the feasible solution computed for the DRO to L3 Lyapunov

transfer retains much of the geometry of the orbit chain initial guess. Notably, Figure

4.6(b) also demonstrates how the collocation mesh is redistributed by the hybrid mesh

refinement procedure so that a greater density of boundary points occurs when the

trajectory is near the Earth or the Moon. Similarity between the initial guess and

feasible result is an indicator that the initial orbit chain is well constructed for the

desired transfer scenario. A poorly chosen initial orbit chain will lead to a result

that looks quite different from the initial guess, if convergence can even be achieved.

This behavior suggests that the orbit chain was of little use for guiding the direct

collocation algorithm towards a solution. If similarity to the initial orbit chain is

particularly desired, an attenuation factor that reduces the size of the update step

taken in each iteration can be employed.

The thrust profiles of the initial guess and feasible solution possess fewer similar-

ities. These profiles are offered in Figure 4.6, where the difference in thrust profile

between the initial guess and feasible solution is significant. These differences are

displayed in Figure 4.7 which shows that the majority of the feasible trajectory in-

cludes segments at maximum thrust magnitude. The maximum thrust magnitude

employed for this sample scenario and the reminder of the examples in this section

is Tmax = 200 mN, while the corresponding specific impulse is Isp = 2000 seconds.

The initial mass of the spacecraft is assumed to be 1000 kg. From departure from the

DRO to insertion on the L3 Lyapunov orbit, a total time of flight of 79 days and a
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propellant consumption of 55 kg is required. Because a fixed time direct collocation

algorithm is utilized, the time of flight of the initial guess dictates the time of flight

of the final optimal solution. Therefore, careful consideration of the desired transfer

duration should be undertaken when the orbit chain is constructed. If difficulty ob-

taining a converged solution is encountered, additional revolutions can be stacked in

the orbit chain to provide additional time in which to achieve the desired transfer.

The feasible transfer computed from the initial orbit chain is optimized to produce

the final result of the orbit chain and direct collocation procedure. The optimal

transfer is displayed in Figure 4.8(b) and its corresponding thrust profile is shown

in Figure 4.7(c). Both the configuration space plot and thrust profile demonstrate

(a) Feasible Solution (b) Optimal Solution

Fig. 4.8. The feasible solution obtained from the orbit chain initial guess
is optimized to maximize the mass delivered to the final orbit.

that many of the thrust segments are converged to coast segments to maximize the

final mass. To accommodate this change, the geometry of the transfer is altered, and

this shift is highlighted in Figure 4.8. While the final optimal low-thrust transfer

shares fewer obvious similarities with the initial orbit chain, the choice of initial guess

significantly influences the final result. The following section will demonstrate how

alternate orbit chains affect the optimal solution for this transfer. Ultimately, the
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computed optimal trajectory requires 28 kg of propellant to deliver the spacecraft

to the final orbit, a reduction in mass consumption of nearly half compared to the

feasible solution.

The orbit chain constructed for the sample transfer scenario examined in this

section intentionally employed an intermediate link with a Jacobi constant value

between that of the initial and final orbit. As stated previously, this choice is made

to bias the resulting transfer towards an energy profile that is monotonic and remains

between the Jacobi constant value of the departure and arrival orbits. Plotting the

Jacobi constant value of the low-thrust spacecraft as a function of time of flight at

each step of the trajectory construction process, as shown in Figure 4.9, highlights

whether the desired profile is successfully achieved. The Jacobi constant profile of the

(a) Initial Guess (b) Feasible Solution (c) Optimal Solution

Fig. 4.9. Jacobi constant profiles for the initial guess, feasible solution,
and optimal result of the DRO to L3 Lyapunov transfer.

initial guess displays the energy values of the orbit chain links in similar fashion to

Figure 4.4(b), which was employed to select these links. The Jacobi constant profiles

of the feasible and optimal solutions reveal that the chosen orbit chain imparted

the desired influence on the final solution. The feasible solution does not exhibit

an entirely monotonic energy profile, but the energy of the spacecraft does remain

between that of the initial and final orbits. The optimal solution maintains the same

upper and lower bounds as the feasible result and also exhibits a monotonic trend



115

in energy. Interestingly, the energy level of the intermediate link in the orbit chain

initial guess does not appear to influence the energy at which the extended coast arcs

of the optimal solution occur. This shift indicates that while the orbit chain clearly

influences the optimal result, it does not provide the exact dynamical structures

employed in the final solution. While clear correlations between initial guess and

final result cannot always be established, analysis of the energy profiles at these two

steps frequently offers insight on how the orbit chain influences the optimal solution.

The orbit chain constructed for this example scenario leads to a successful optimal

transfer; however, it is far from the only chain that will produce this result. Alternate

choices could be made at any of the orbit chain construction steps and an initial

guess that generates a satisfactory solution will likely be the result. Moreover, the

orbit chain alone is not what leads to a successful result. The settings of the direct

collocation algorithm can make the difference between convergence and failure even

for a well constructed orbit chain. The key parameters that affect convergence are

listed and discussed in subsequent sections. The flexibility of the orbit chain and direct

collocation technique is a strength, especially when it is utilized in a new dynamical

regime; however, this same characteristic can also make it difficult to prescribe a

specific formula for applying the technique to any given trajectory design scenario.

The following section offers examples of the technique’s successful application to a

variety of trajectory design scenarios. These demonstrations offers guidance on how

to utilize the orbit chain and direct collocation technique that can apply to a variety

of mission design problems.

4.4 Orbit Chain Examples

The orbit chain methodology can be applied to many different trajectory design

scenarios in a variety of dynamical models. This section demonstrates its applica-

tion to several additional sample problems posed within the CR3BP, that highlight

particular strengths of the orbit chain and direct collocation approach. The first of
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these examples shows that the robust nature of the direct collocation and orbit chain

technique enables it to compute solutions even if no intermediate arcs are included

in an orbit chain. This most simple type of orbit chain is especially viable when the

departure and destination orbits are relatively close to one another in configuration

space, as is the case for the L1 and L2 Lyapunov orbits displayed in Figure 4.10(a).

A transfer from the L1 to the L2 Lyapunov orbit is computed using an orbit chain

(a) Initial Guess (b) Optimal Solution

Fig. 4.10. The orbit chain initial guess and final optimal solution for a
transfer from an L1 Lyapunov orbit to an L2 Lyapunov orbit.

initial guess consisting of one revolution on the departure orbit and two revolutions

stacked on the arrival orbit. Despite the absence of invariant manifolds or any other

kind of guiding dynamical structures in the orbit chain, this initial guess is sufficient

to guide the direct collocation algorithm to the optimal low-thrust transfer displayed

in Figure 4.10(b). Tables summarizing the characteristics of each orbit employed for

orbit chains in this section and the performance of the resulting low-thrust transfers

are provided in Appendix A.

Orbit chains lacking any intermediate links are not only successful for planar

transfer problems, but can also be employed for spatial problems such as a transfer

between two halo orbits. A transfer from an L1 halo orbit to an L2 halo orbit is
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generated using an orbit chain consisting of one revolution on the departure orbit

and two revolutions on the destination one. The selected halo orbits are displayed

in Figure 4.11(a). Note that because these orbits are located farther from the Moon

(a) Initial Guess (b) Optimal Solution

Fig. 4.11. The orbit chain initial guess and final optimal solution for a
transfer from an L1 halo orbit to an L2 halo orbit.

than the Lyapunov orbits examined in the planar transfer scenario, the resulting two

link orbit chain is actually easier to converge. Distance from the Moon reduces the

sensitivity of the corrections problem and makes it unnecessary to pay particular

attention to the boundary point spacing or attenuation factor size employed. The

assembled orbit chain leads to the optimal solution shown in Figure 4.11(b). As

with the Lyapunov transfer, the direct collocation algorithm is able to “unspool” the

stacked revolutions on either orbit to overcome the large discontinuity between them

and compute a continuous solution.

The Lyapunov and halo orbits utilized in the previous two transfers all possess

invariant manifolds that can be leveraged to develop transfers between these orbit

pairs that require very little, if any, propellant. An initial guess including these

manifolds could be passed to the direct collocation algorithm to obtain such a result;

however, this approach is not demonstrated here because one of the primary goals



118

of the orbit chain and direct collocation method is to enable rapid exploration of

an unfamiliar dynamical system or problem. The ease with which a simple two

link orbit chain yields a solution offers a quick method for assessing the range of

geometries and approximate costs for transfers between the orbits of interest. After

obtaining a general understanding of the solution space, subsequent analyses can focus

on obtaining the lowest possible cost transfer using the powerful but time consuming

approach of generating Poincare maps and identifying manifold intersections.

Two link orbit chains are sufficient for generating solutions in some cases, but most

trajectory design scenarios require a more precise orbit chain to guide the optimizer

to a solution. Three link orbit chain scenarios offer excellent examples of how the

composition of an orbit chain influences the resulting solution. Merely by changing

the intermediate link in a three link chain, solutions with different characteristics

are obtained. A useful demonstration of this effect is encountered by reexamining

the DRO to L3 Lyapunov orbit transfer developed in Section 4.3. The three link

orbit chain created for this transfer utilizes an L4 SPO as an intermediate link, but

other orbit families also offer prime candidates for filling this role. Members of the

2:3 resonant orbit family are especially well suited for this transfer scenario because

they pass near both the Moon and the L3 libration point as shown in Figure 4.12(a).

Moreover, Figure 4.12(b) illustrates that the 2:3 resonant orbit family spans the gap

in energy space between the selected initial and final orbits. Thus, an intermediate

link that biases the transfer towards the desired monotonic energy profile can be

obtained. With respect to geometry and energy, the 2:3 resonant orbit family offers

ideal candidates for inclusion in an orbit chain that facilitates the desired DRO to L3

Lyapunov orbit transfer.

A balance of geometry and energy is struck when choosing a single member of the

2:3 resonant orbit family for use in the desired orbit chain. Selecting a 2:3 resonant

orbit with a Jacobi constant value roughly equivalent to that of the final L3 Lyapunov

orbit ensures that the orbit chain biases the resulting transfer towards a result with

a monotonic energy profile. The energy of the selected orbits is provided in Figure
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(a) Position Space (b) Parameter Space

Fig. 4.12. The 2:3 resonant orbit family is selected to provide an inter-
mediate link for a transfer from a DRO to an L3 Lyapunov orbit because
this family bridges discontinuities in position and energy space between
the initial and final orbits.

4.12(b), which highlights that the selected DRO and L3 Lyapunov orbit are the exact

same as the those employed in Section 4.3. A compromise is made when considering

the geometry of the intermediate orbit, because orbits that are small enough to pass

close to the initial DRO only intersect the final L3 Lyapunov orbit at locations where

the velocity vectors are not well aligned. Alternately, 2:3 resonant orbits that are

large enough to offer favorable intersections with the final orbit do not pass close to

the DRO. Ultimately, an orbit that falls within this latter category is selected because

it tends to offer better convergence. However, it is possible to construct orbit chains

with smaller members of the 2:3 resonant orbit that also lead to satisfactory results.

Figure 4.13(a) shows that the selected resonant orbit is clipped at an x-axis crossing

that is near the initial point on the L3 Lyapunov orbit. This location is favorable not

only because the two links are close in position space, but also because at this point

the velocity vectors on both orbits are nearly parallel.

The orbit chain constructed with a 2:3 resonant orbit as the intermediate link is

utilized to compute an optimal transfer from the DRO to the L3 Lyapunov. This
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(a) Orbit Chain - Clipped Orbits (b) Optimal Solution

Fig. 4.13. An orbit chain that includes a clipped 2:3 resonant orbit is
assembled and used to compute an optimal transfer from a DRO to an L3

Lyapunov orbit. Contrast this result with that obtained from the alternate
orbit chain displayed in Figure 4.5(b) which includes an L4 SPO.

transfer, displayed in Figure 4.13(b), exhibits a geometry similar to that of the 2:3

resonant orbit and reaches the L3 Lyapunov orbit by traversing the space on the -y

of the Earth in the rotating frame. This path contrasts with the transfer exhibited in

Figure 4.8(b), which arrives at the destination orbit via a route on the exact opposite

side of the Earth. Thus, the two orbit chains constructed to achieve the DRO to L3

Lyapunov orbit transfer demonstrate how the “mix-and-match” approach offered by

this methodology is easily exploited to obtain a variety of solution types for the same

transfer scenario. It is not possible to assess on the basis of these two transfers alone

if one of these two geometries tends to provide lower-cost transfers than the other.

However, a more exhaustive analysis that examines the results of these and other

potential orbit chains could shed light on this question.

Theoretically, there is no limit on the number of links that can be included in an

orbit chain. Links are added when their inclusion is likely to aid convergence towards

a solution by reducing discontinuities or increasing time of flight. However, assuming

the same number of segments is used for each link, the addition of links expands the
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size of the direct collocation problem as it requires that a greater number of design

variables be included. This problem can be alleviated by reducing the number of

segments that some or all of the orbit chain links are subdivided into, but eventually

the addition of links is bound to increase problem size. The trade-off between number

of links and problem size should be held in mind as an orbit chain is assembled. Of

course, despite the increased computation time, a larger collocation problem that

leads to a solution is always preferable to a smaller problem that never converges.

An orbit chain that uses a large number of intermediate links to achieve a low-cost

transfer is exemplified in the L2 Lyapunov to L2 vertical orbit transfer scenario. While

the motion of both these orbit families is symmetric about the L2 libration point, a

large plane change is required to transition from one type of motion to the other.

Another type of orbit family, the L2 axials, includes trajectories that can assist the

transition between these two types of motion. An orbit chain that includes multiple

members of the L2 axial orbit family is constructed to facilitate a transfer from an

L2 Lyapunov orbit to an L2 vertical orbit. This chain is displayed in Figure 4.14(a),

which shows that six different axial orbits are included in the assembled chain. While

(a) Orbit Chain (b) Optimal Solution

Fig. 4.14. An orbit chain that includes multiple members of the L2 axial
family as intermediate links is used to compute an optimal transfer from
an L2 Lyapunov to an L2 vertical orbit.
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the L2 axial family does not span the entirety of the energy space between the initial

and final orbits, the Jacobi constant values of the selected axials do fall between those

of the initial and final orbit.

The axial orbits included in this multi-link orbit chain provide a gradual transition

in energy and geometry from the initial to the final orbit. The suitability of the initial

guess is evidenced by the fact that the computed optimal solution, displayed in Figure

4.14(b), maintains nearly the same geometry as the initial guess. The connection

points between all orbits in the chain lie on the x-y plane at nearly the same location,

thus the discontinuities between links are easily corrected via the addition of brief

thrust arcs. This result is evidenced by the fact that all the thrust arcs depicted in

Figure 4.14(b) occur near the x-y plane crossing. This transfer is one of many possible

examples that illustrate how any number of links can be included in an orbit chain.

A greater or lesser number of intermediate arcs could be included for this transfer

and a successful result would likely still be obtained. Rarely if ever is there a single

correct orbit chain. As a mission designer develops an intuition for the orbit chain

and direct collocation approach, the quantity and type of links to include in a given

orbit chain will become more apparent.

The orbit chain methodology can be employed with dynamical structures from

any type of dynamical model. Dynamical structures generated in the CR3BP+LT,

a CR3BP model augmented with a low-thrust acceleration described in Chapter 2,

offer a wealth of new possibilities for creating and converging orbit chains. Recall

that the CR3BP+LT model affords equilibrium points, periodic orbits, and invariant

manifolds just as in the CR3BP, except that these structures are influenced by the

direction and magnitude of the included low-thrust acceleration. Thus, the inclusion

of low-thrust dynamical structures in an orbit chain offers geometries that are not

available in the natural CR3BP, as well as a defined control history for each low-thrust

arc. For example, the orbit chain shown in Figure 4.15(a) includes a low-thrust SPO

and an unstable manifold trajectory of this orbit. These two low-thrust arcs are

generated using a specific thrust magnitude and direction, and these data points
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(a) Initial Guess (b) Optimal Solution

Fig. 4.15. Low-thrust transfer from an L4 SPO to an L1 Lyapunov orbit in
the Earth-Moon CR3BP. An orbit chain approach leveraging dynamical
structures from the CR3BP+LT is utilized. Unlike its natural CR3BP
counterpart, the L4 SPO generated in the CR3BP+LT offers manifolds
that are leveraged for trajectory design.
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are used in the initial guess for the control profile of the desired transfer from an

L4 SPO to an L1 Lyapunov orbit. Moreover, SPOs in the natural CR3BP do not

permit the generation of invariant manifolds, thus this orbit chain geometry is only

possible because structures from the CR3BP+LT are employed. The optimal low-

thrust transfer that results from this orbit chain, shown in Figure 4.15(b), is influenced

by the geometry of the initial guess, but the control history has been significantly

altered. Further exploration has indicated that low-thrust dynamical structures are

useful for constructing an initial guess and influencing the geometry of an optimal

result, but that the control profiles of these structures are often significantly altered

by the optimizer [24]. This is because the low-thrust arcs included in the initial

guess assume continuous thrust, and some of this thrusting time is removed by the

optimizer to reduce propellant consumption. The CR3BP+LT is one of many different

dynamical models in which an orbit chain methodology can be applied to simplify

the process of initial guess construction. In Chapter 6, the orbit chain approach is

successfully employed in the BCR4BP.

The examples in this section elaborate on the orbit chain and direct collocation

technique introduced in previous sections. A comparison of optimal transfers con-

necting the same two orbits but generated with two different three link orbit chains

highlights the intuitive “mix and match” approach offered by the orbit chain method,

as well as the adaptability that allows it to accommodate a variety of orbit chain com-

positions. This same flexibility is again highlighted when structures from a different

dynamical model, the CR3BP+LT, are leveraged to compute a transfer from an L4

SPO to an L1 Lyapunov orbit. The ability of the direct collocation algorithm to elim-

inate the large state discontinuities present in the orbit chains assembled for many

of these examples exhibits the robustness of this scheme. This robustness combined

with the other strengths of the orbit chain approach yields a particularly effective

approach to low-thrust trajectory design. The sample problems presented in this

chapter are constructed to highlight the strengths of the proposed method. However,

to fully demonstrate the merit of the orbit chain and direct collocation technique, it
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must be applied to several real world mission design scenarios. Two such scenarios

are presented in subsequent chapters and the manner in which the orbit chain and

direct collocation approach is applied to these problems is described.

4.5 Direct Collocation and Direct Multiple Shooting

Direct collocation methods are well suited for generating optimal low-thrust solu-

tions from the discontinuous orbit chains assembled in this and subsequent chapters.

However, given the diversity of approaches available for solving the low-thrust optimal

control problem, it is worth considering whether other strategies perform similarly

to direct collocation. Indirect and global optimization methods are not examined

because of the characteristics outlined in Chapter 3 that make them ill-suited for

the type of optimization problems encountered in this investigation. However, the

method of direct multiple shooting is another approach to low-thrust trajectory opti-

mization that merits further consideration due to the many strengths it shares with

direct collocation. A rigorous comparison of direct collocation and multiple shooting

methods is outside the scope of this study; however, qualitative comparisons available

in the literature are reviewed and the result of a direct multiple shooting algorithm

applied to an orbit chain from the previous section is examined. The brief analysis

undertaken here suggests avenues for further investigation on the effectiveness of the

direct multiple shooting method when paired with an orbit chain technique.

While many authors offer qualitative contrasts of collocation and multiple shoot-

ing methods, few offer quantitative comparisons. Nonetheless, beneficial insights can

be gained from the experiences of previous authors. Lust offers an overview of the

various methods available for computing periodic solutions of ordinary differential

equations, and these include shooting and collocation techniques [85]. No optimiza-

tion, either indirect or direct, is considered in Lust’s analysis. Lust states that the

explicit time integration of the nonlinear ODEs required by shooting procedures may

cause these technique to fail where collocation methods succeed. However, he also



126

asserts that, if the boundary points are well chosen, a multiple shooting technique

could be nearly as robust as a collocation technique. Keller also examines shooting

and collocation methods as means for solving a TPBVP [86]. He states that the dif-

ficulty of determining a suitable initial guess is reduced for finite difference methods,

in which he includes collocation. Like Betts, Keller also indicates that the difference

between collocation and multiple shooting approaches is often simply a function of

the integration step size. Russell focuses more specifically on collocation and de-

clares that the high rate of convergence of this technique should make it competitive

with other efficient procedures for solving TPBVP, including multiple shooting [87].

Together, these authors make the case that collocation can be at least as robust as

multiple shooting schemes for solving TPBVP, if not more so.

Pairing a collocation or multiple shooting technique with an NLP solver does not

appear to introduce significant distinctions in the effectiveness of the two approaches.

In his survey of numerical methods for trajectory optimization, Betts notes the various

drawbacks of direct collocation and direct multiple shooting techniques, but does not

indicate the superiority of one approach over another [37]. This remains the case in a

later text by Betts where he also applies both techniques to solve the same example

problem. In another survey of optimization techniques, Rao calls direct collocation

the “workhorse” for solving optimal control problems. [39] Furthermore, Rao states

that while direct shooting methods are quite effective if a simple control parame-

terization can be employed, direct collocation methods are arguably more powerful

as the problems increase in complexity. Grebow and Ozimek both demonstrate the

robust nature of direct collocation when they apply it to design lunar pole-sitter or-

bits. [55, 88] However, they refrain from claims that this approach is superior to a

similar direct multiple shooting implementation. The experience of previous authors

indicates the suitability of direct collocation for the problems encountered in this in-

vestigation, but does not preclude the utility of a direct multiple shooting approach.

The apparent dearth of quantitative comparisons between direct collocation and

direct multiple shooting methods applied to the low-thrust optimal control problem
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suggests a gap in the literature. Filling this gap would inform mission designers

and enable them to intelligently select the optimization technique best suited for

their problem. For some problems it can be easier to implement a multiple shooting

technique because these approaches leverage “black-box” explicit integration tools,

e.g., Matlab’s ode suite of integrators. Thus, understanding when it is acceptable,

or even advantageous, to utilize a direct multiple shooting formulation rather than a

direct collocation technique would be valuable.

The primary challenge in comparing the effectiveness of the two techniques is that

their performance is highly dependent on the specific implementation of each method

as well as the nature of the problems they are applied to. Due to these complexities,

a rigorous comparison of these two methods is not undertaken here; however, a direct

multiple shooting scheme developed for low-thrust trajectory optimization is applied

to the orbit chain assembled in Section 4.3. This result demonstrates the potential of

utilizing a direct multiple shooting scheme with the orbit chain technique.

Relative to the NLP optimizer, in this case IPOPT, the change from collocation

to multiple shooting merely represents a change in the function generator, i.e., the

means by which the NLP problem variables are used to calculate the problem con-

straints. Like the direct collocation framework, the direct multiple shooting approach

employed here assumes the thrust vector is constant across each segment. Further-

more, in addition to the CR3BP+LT EOMs presented in Chapter 2, the multiple

shooting formulation also propagates the variational equations derived from these

EOMs. Propagating these additional ODEs provides many of the partial derivatives

required in the Jacobian matrix of the NLP problem, and does so with a high degree

of accuracy. Other partial derivatives that appear in the Jacobian are computed an-

alytically, further improving the accuracy and speed of the direct multiple shooting

framework. Finally, this formulation also leverages the sparsity of the Jacobian to

reduce computation time. Direct shooting schemes similar to the one leveraged in

this investigation for low-thrust trajectory optimization are offered by Parrish [89]

and Das-Stuart. [30]
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The orbit chain assembled in section 4.3 is employed as an initial guess for the

direct multiple shooting tool and the resulting transfer is compared with the results

of the direct collocation algorithm. The orbit chain initial guess constructed for the

DRO to L3 Lyapunov transfer in section 4.3 is kept as similar as possible where it

is used with the direct multiple shooting algorithm. This means that the number of

links, number of stacked revolutions, and even the number of segments is kept the

same. Likewise, the initial control profile is identical to the direct collocation initial

guess. For every segment along the initial guess, the thrust vector has zero magnitude

and is oriented parallel to the velocity vector as expressed in the rotating frame. The

primary difference between the initial guesses employed for the two different optimiza-

tion methods is how each segment is discretized. The multiple shooting formulation

includes only the boundary points of these segments. The collocation scheme intro-

duces variable nodes which define a polynomial that approximates each segment. The

low-thrust transfer computed from this initial guess via direct multiple shooting is

plotted in Figure 4.16(a). The direct multiple shooting algorithm converges upon the

(a) Optimal Solution (b) Thrust Profile

Fig. 4.16. Low-thrust transfer from a DRO to an L4 Lyapunov orbit in
the Earth-Moon CR3BP. This transfer is computed with a direct multiple
shooting algorithm using the orbit chain initial guess depicted in 4.6(a).
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displayed solution with relative ease and rapidity.

The direct multiple shooting algorithm computes a different local optimal solution

than the direct collocation approach. The time of flight of the optimal transfer shown

in Figure 4.16(a) is approximately 79 days, the same as the direct collocation result.

Although a variable time multiple shooting scheme is employed, the length of the

transfer is fixed to simplify comparison with the direct collocation solution. The

direct multiple shooting result consumes 36 kg of propellant, roughly 8 kg more

than the direct collocation solution. The differences in performance between the

direct collocation and direct multiple shooting solutions reflect the alternate route

and thrust profile adopted to reach the L3 Lyapunov orbit. Figure 4.16(a) illustrates

that the optimal solution computed with direct multiple shooting maintains more

of the initial guess geometry, compared to the direct collocation result displayed in

Figure 4.8(b). The thrust profile of the direct multiple shooting result, plotted in

Figure 4.16(b), likewise highlights the difference from the direct collocation solution

whose thrust profile is provided in Figure 4.7(c). The thrust profile of the latter result

clearly requires a similar number of thrust segments, but they are generally shorter in

duration. Thus, the direct collocation solution consumes less propellant. Adjusting

optimization parameters such as step size and problem bounds may enable the direct

multiple shooting algorithm to compute a local optimal solution more similar to the

direct collocation result. However, attaining this different result may also require

increasing the number of segments in the multiple shooting initial guess.

The thrust profile of the direct multiple shooting result highlights a drawback of

the framework chosen to implement this algorithm. The multiple shooting scheme re-

quires fewer segments to compute an accurate solution than the collocation approach,

because each segment is explicitly propagated with a highly accurate third-party inte-

grator (in this case, a Runge-Kutta Prince-Dormand (8,9) integrator from the GNU

Scientific Library). Moreover, because no mesh refinement scheme is utilized, the

number of segments in the initial guess and final solution are equal. Since both the

multiple shooting and collocation based optimization approaches use a fixed thrust
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vector along each segment, the multiple shooting scheme has fewer opportunities to

change the magnitude or direction of the thrust vector. This difference increases the

likelihood that the two optimization methods generate distinct results, as is the case

here. When the same initial guess discretization is employed for both methods, the

result computed by the direct multiple shooting approach exhibits signs that a finer

mesh should be employed. The thrust profile displayed in Figure 4.16(b) shows that

some segments of the optimal trajectory utilize thrust magnitude values that fall be-

tween zero and Tmax, a behavior observed when the discretization employed to solve

an optimal control problem is too coarse. Subdividing the initial guess into more

segments will reduce the “choppiness” of the optimal thrust profile plotted in Figure

4.16(b), leading to the type of bang-bang solution that is expected. Furthermore, this

change would likely also improve the optimality of the final result. If a using direct

multiple shooting approach like the one implemented here the links between segment

number, accuracy and optimality must be considered.

The results of this section suggest that further examination into an orbit chain

and direct multiple shooting technique is merited. There may be situations where this

pairing is preferred over one that includes direct collocation, either due to ease of im-

plementation or improved convergence behavior. Generalizations concerning whether

a direct multiple shooting approach is better or worse than the direct collocation

method at pairing with the orbit chain technique are not possible on the basis of one

example problem alone. A rigorous comparison with the direct collocation technique

would require a range of sample problems with varying levels of complexity. The

results would inform the work of mission designers as they seek to identify the tools

best suited for solving various low-thrust trajectory design problems.

4.6 Orbit Chain and Direct Collocation Parameter Analysis

The combination of an orbit chain and direct collocation approach to low-thrust

trajectory design produces a method with many variables that can be adjusted to
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obtain a solution. Some of these variables are changed with each new problem, while

others typically remain constant. The number of variables available can make it

initially challenging for the unacquainted practitioner of the orbit chain and direct

collocation approach to compute solutions, and this problem is compounded by the

sensitivity of the procedure to some of these variables. This section details the major

parameters that can be adjusted by the user to obtain feasible and optimal solutions,

with the goal of diminishing the need for a new user to undergo a tedious process of

trial and error.

Understanding the effect of the parameters identified in this section is compli-

cated by the fact that their impact varies based on the mission design problem under

consideration. If the problem takes place in an especially sensitive dynamical regime,

then the parameter values of the orbit chain and direct collocation approach have an

amplified effect. Therefore, a comprehensive analysis of all parameters is not under-

taken in this investigation. Instead, a discussion of the key parameters that impact

direct collocation convergence is provided and suggestions for how to enhance under-

standing of the effect of these parameters is provided. Finally, in this investigation, a

feasible solution is often computed first, and then used to initialize the optimization

step. Thus, changes to the parameters discussed here are typically most effective

when seeking an initial feasible solution. However, several parameters unique to the

optimization step are discussed as well.

The parameters that impact the composition of the orbit chain initial guess should

always be modified first when attempting to obtain convergence with a given orbit

chain, because these settings typically have the most impact on whether a solution to

the collocation problem is obtained. The primary parameters that dictate the makeup

of the orbit chain are covered in the previous sections, including: type and number

of intermediate links, the number of revolutions stacked on a link, and the initial

distribution of the mesh. The type and number of orbit chain links are the most

obvious characteristics of an orbit chain, because these are evident in a configuration

space plot of the initial guess. However, the importance of the unseen parameters
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should not be underestimated. Failure of the collocation algorithm to converge a given

orbit chain can be remedied simply by stacking more revolutions on a given link, thus

providing additional trajectory and time of flight with which to achieve the desired

transfer. Similarly, adding additional boundary points along an orbit chain link that

passes close to a primary body can enable convergence when the collocation algorithm

would have otherwise failed. Additional insight on the construction of effective orbit

chains is offered by Prado et al. [90, 91]

Besides the orbit chain parameters, several criterion of the collocation algorithm

itself can be adjusted in an attempt to achieve convergence. The most important of

these parameters include the attenuation factor and initial control profile. The first of

these, the attenuation factor, is a scalar value utilized to adjust the size of the update

step applied at each successive iteration of the collocation algorithm, and is discussed

in greater detail in Chapter 3. The wide convergence basin of collocation means that

this technique can sometimes produce solutions with very different characteristics

than the initial guess. Moreover, when in search of a feasible solution, a collocation

algorithm will occasionally “blow-up.” That is, in an attempt to locate a feasible

solution, the algorithm drastically alters the initial guess and gets “stuck” attempting

to converge transfers that satisfy nearly all of the problem constraints. Examples of

this behavior include a transfer that is continuous, but includes a flyby that passes

through the Moon or thrust arcs that far exceed the value of Tmax. These scenarios

can sometimes be avoided by utilizing an attenuation factor that encourages the

collocation algorithm to converge upon solutions similar to the initial guess. Of course,

if there are no feasible solutions similar to the initial guess, then the attenuation

factor will merely hinder progress towards a solution or delay an inevitable failure

to converge. However, at times the attenuation factor can make the difference in

whether or not a solution is obtained.

The control profile defined for an initial guess is another critical factor that effects

whether a feasible or optimal solution is successfully computed. Section 4.3.3 describes

how the initial control profile is typically defined by three criterion: thrust vector
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direction, throttle value, and maximum thrust magnitude. Altering any of these

parameters can make the difference between attaining convergence or not. Perhaps

the most obvious parameter that can be changed to facilitate convergence is the

maximum thrust magnitude. Raising the maximum available thrust increases the

control authority of a spacecraft, typically making it easier to obtain a solution.

For this reason, one approach to obtaining a desired low-thrust transfer is to first

converge the transfer with a higher value of Tmax, and then employ natural parameter

continuation to reduce Tmax to the desired value. Alternatively, rather than raising

Tmax, simply changing the initial throttle value can assist convergence. Defining an

initial guess such that most or all segments employ a maximum throttle value can

bias the collocation algorithm towards results that would otherwise not be obtained.

Finally, the direction of the thrust vectors in the initial guess can sometimes affect

the outcome of the convergence process. Typically, the these vectors are oriented

parallel or anti-parallel to the direction of the velocity vector as expressed in the

rotating frame. The choice between these two options is made based on whether

the energy of the destination orbit is greater or less than that of the initial orbit.

However, switching between these two potential thrust vector orientation schemes or

even utilizing alternate orientations for the initial thrust vector can help the direct

collocation algorithm to converge.

The collocation algorithm implemented in this investigation includes several other

parameters that typically remain constant, but which can be adjusted if the afore-

mentioned steps have not lead to convergence. These parameters are the degree of the

collocation polynomial, the type of mesh refinement employed, and the value of the

minimum radius constraint. The degree of the collocation polynomial can be raised

instead of or in combination with increasing the number of segments in the initial

guess. Higher degree polynomials approximate the dynamics along a segment more

accurately, thus using a higher degree polynomial can enable a collocation scheme to

use fewer segments to converge upon a solution. Increasing the degree of the colloca-

tion polynomials is especially helpful if a significant portion of a transfer takes place
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near a primary body where the dynamics are highly nonlinear. Of course, there are

diminishing returns to increasing the value of the polynomial, and doing so must be

balanced with the resulting increase in size of the collocation problem. Only 7th and

9th order Legendre-Gauss polynomials are employed in this investigation.

The type of mesh refinement paired with the collocation algorithm can also in-

fluence the characteristics of the solution, and even whether a solution is obtained.

Typically, the hybrid mesh refinement technique is employed because this approach

produces a highly accurate solution along which error is evenly distributed. At times,

utilizing the coarse-hybrid mesh refinement routine can facilitate convergence because

this technique redistributes the mesh in an advantageous manner as the collocation

algorithm converges upon a more accurate solution.

The minimum radius constraint is introduced in collocation problems to prevent

the algorithm from getting “stuck” near gravitational bodies or producing solutions

that pass through the surface of one of these bodies. If a transfer is likely to pass

near a gravitational body, then a minimum radius constraint with respect to this body

should be included. Often the minimum radius value should be at least several times

the radius of the body so that the constraint influences the behavior of the collocation

algorithm well before it has a chance to get “stuck.” However, performing flybys of

gravitational bodies is one way that the optimality of a transfer can be improved as

a spacecraft can leverage the gravity of these bodies with a well-timed maneuver to

effect large changes in energy. Therefore, if the minimum radius constraint is set too

large, the direct collocation algorithm may not converge because it is unable to effec-

tively leverage flybys. Achieving the appropriate balance between these competing

factors sometimes requires experimentation with the value of the minimum radius

constraint to aid convergence of the direct collocation algorithm.

After a feasible collocation solution is computed it is typically optimized by uti-

lizing it as an initial guess for a direct collocation scheme. The type of NLP solver

employed to conduct the optimization dictates the types of parameters available to

effect the convergence behavior of the optimization routine. These parameters and
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their default values are typically described in the users manual for the given op-

timizer. However, two types of parameters related to direct optimization that are

separate from these optimizer specific settings are the design variable bounds and the

scaling method. Utilizing the capability of most optimizers to impose bounds on the

design variables is a highly effective means of promoting convergence. The manner in

which these bounds are set is described in Chapter 3. This approach can be employed

to set tight bounds on an optimization problem, which effectively reduces the solu-

tion space explored by the optimization algorithm and makes it easier to compute a

solution. If the solution computed using these tight bounds contains design variable

values that equal any of the bounds, this is an indicator that the bounds should be

expanded. The optimization process is then restarted with wider bounds and using

the previously computed solution as an initial guess. Thus, a process of imposing

tight bounds that are gradually increased can be an effective means of obtaining an

optimal solution.

The other optimization specific set of parameters that can be altered to obtain a

solution are the variable and constraint scaling. The scaling approach implemented

in this investigation is described in Chapter 3. While these scaling techniques can

be helpful, they are not always applied to solve every optimization problem. Be-

cause all variables in the direct collocation problem are nondimensionalized using

the characteristic quantities described in Chapter 2, the need for further scaling is

somewhat reduced. Nonetheless, scaling can be helpful. Applying variable scaling,

constraint scaling, or both, can aid convergence towards an optimal solution. As

described previously, utilizing constraint scaling requires the definition of acceptable

convergence thresholds in dimensional units, and these values can be experimented

with individually in efforts to promote convergence.

More thorough investigation of how the orbit chain and direct collocation param-

eters included in this section impact convergence behavior would provide valuable

insight that can enhance the overall effectiveness of the technique. The most com-

mon parameters adjusted to facilitate convergence have been discussed, but there
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are others not considered that may also play a role. Further analysis is required to

improve understanding of how best to employ the orbit chain and direct collocation

technique. Experience from solving the real world low-thrust mission design prob-

lems presented in the next two chapters offers additional insight on best practices for

implementing this trajectory design framework.
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5. GATEWAY MISSION DESIGN

NASA and many of its partners have expressed a renewed interest in returning humans

to the Moon, which has led to increased focus on trajectory design in cislunar space.

A major component of NASA’s strategy for returning to the Moon and continuing on

to Mars is the Gateway. The Gateway will be an intermittently crewed space station

that serves as a platform for missions to the lunar surface and beyond the Earth-

Moon system [92]. The nominal orbit of the Gateway will be a 9:2 synodic resonant

near rectilinear halo orbit (NRHO). This orbit is selected due to its high stability,

favorable eclipse avoidance properties, and continual line of sight with the Earth.

The Gateway space station will utilize powerful low-thrust engines to transfer to this

orbit and to navigate to other orbits in the lunar vicinity. Compared to a chemical

propulsion system of the same mass, these efficient engines will expand the range and

lifetime of the Gateway. The total thrust magnitude provided by its engines is much

higher than other current low-thrust spacecraft; however, given the massive size of the

Gateway space station, its maximum low-thrust acceleration is actually quite small.

The Gateway mission’s use of the 9:2 NRHO along with its low-thrust capability

make it a compelling mission from a trajectory design perspective. This mission

necessitates the development of low-thrust transfers between a variety of multi-body

orbits in the Earth-Moon system for a spacecraft with very limited control authority.

Application of the orbit chain and direct collocation trajectory design framework to

this challenging trajectory design scenario is the focus of this chapter.

Multiple aspects of the Gateway mission make it a beneficial application for

demonstrating the orbit chain and direct collocation trajectory design framework.

First, the methodology proposed in this investigation is specifically tailored to low-

thrust trajectory design, and low-thrust propulsion will be the primary means by

which the Gateway navigates within the cislunar environment. Secondly, the nominal
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staging orbit for the Gateway, the 9:2 NRHO, does not possess invariant manifolds

(the dynamical structures often used for the construction of transfers to and from

other multi-body orbits). However, the orbit chain technique does not require invari-

ant manifold paths, as other orbits near the 9:2 NRHO can be included in an orbit

chain that is converged via direct collocation to produce transfers to and from the

NRHO. Fortunately, a wide variety of orbits exist in the immediate vicinity of the

9:2 NRHO that can be leveraged to guide the direct collocation algorithm to optimal

low-thrust solutions. Finally, the relatively low maximum acceleration level available

to Gateway makes this a helpful trajectory design scenario for testing the limits of

the orbit chain technique. When very low acceleration magnitudes are employed the

geometry and energy profiles of low-thrust transfers are often nonintuitive, and the

orbit chain technique is an effective tool for rapidly exploring this unfamiliar solution

space.

In this chapter the orbit chain and direct collocation approach is applied to con-

struct transfers for the Gateway spacecraft that depart from the 9:2 NRHO and arrive

at other multi-body orbits in the vicinity of the Moon. Destinations of interest in-

clude a distant retrograde orbit, a low-amplitude halo orbit, and a northern NRHO.

Orbit chain initial guesses for transfers to these orbits are assembled using a variety

of intermediate orbits. These intermediate orbits are selected to generate two types

of geometry for each transfer, exterior and interior. In the first type of geometry, the

spacecraft may depart the vicinity of the Moon and embark on one or more transits

about the Earth. During these long transits, while the spacecraft is far from either

primary, the required changes in plane and energy may be executed. Alternatively,

some trajectories remain relatively close to the Moon during the entirety of a trans-

fer, and this geometry is denoted interior. All solutions are initially computed in

the CR3BP, and are subsequently transitioned to an ephemeris model for validation.

Finally, one solution is selected for conducting missed thrust analysis, which reveals

the times when a trajectory is most sensitive to a missed thrust event. This chap-
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ter demonstrates that the orbit chain and direct collocation technique is an effective

approach to trajectory design for the Gateway mission.

5.1 Background

As the Gateway program is ongoing, the specific details of the mission and space-

craft will likely change as the program matures. The information presented in this

chapter is accurate as of the time of writing. Barring significant alterations to the

Gateway architecture, this methodology can be adapted to any changes to Gateway

that occur during its development. An overview of the Gateway mission as it is

currently envisioned is presented here. Additionally, literature on trajectory design

strategies and solutions previously developed for Gateway is reviewed. Lastly, the

approach to missed thrust analysis employed in this investigation is discussed with a

survey of relevant literature.

5.1.1 Mission Overview

The Gateway spacecraft will facilitate human and robotic exploration of the Moon

and serve as a proving ground for the development of capabilities essential for mis-

sions to Mars. NASA intends the Gateway to consist of several modules that, at

minimum, provide, power, propulsion, habitation, and an airlock, as seen in Figure

5.1. The first of these modules, the power and propulsion element (PPE), is being

developed by Maxar Technologies and is scheduled for launch in 2022 [94]. Following

delivery of the PPE to the 9:2 NRHO, the remainder of the Gateway will be assembled

incrementally over several years. As with the International Space Station, the Gate-

way’s construction and operation will include international collaboration. The initial

spacecraft mass in this investigation is 39 metric tons, in line with the estimated total

mass of the Gateway after its complete assembly [34].

Multiple low-thrust engines will enable the Gateway to complete its required trans-

fer and station keeping tasks. The current baseline PPE configuration includes six
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Fig. 5.1. Concept for the Gateway spacecraft [93].

low-thrust engines [95]. Two of these engines will be 13 kW Advanced Electric

Propulsions Systems (AEPS) developed by Aerojet Rocketdyne [96, 97] in collabo-

ration with NASA, and the other four are 6 kW Hall effect thrusters built by Busek

and Maxar. Together, these engines provide approximately 50 kW of beginning of

life propulsive power, though it is unlikely that they will be used simultaneously

at any point in the Gateway’s mission lifetime. Therefore, the maximum thrust

value used to design transfer trajectories in this investigation is lower than the total

thrust capability the engines could technically provide. This analysis uses a maximum

thrust of Tmax = 1.1326 N, which is consistent with the work performed by McCarty,

Burke, and McGuire [34]. Additionally, this work assumes a 90% duty cycle is em-

ployed, making the maximum thrust available to the Gateway for a typical transfer

T = 0.9∗Tmax. Despite being equipped with multiple engines that utilize cutting edge

low-thrust propulsion technology, the control authority of the fully assembled Gate-

way spacecraft is extremely limited. Control authority is best expressed in terms of

the maximum acceleration a spacecraft can impart at any given instant in time. Con-

sidering its mass and maximum thrust capability, the maximum acceleration Gateway
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is capable of is, amax = 2.904×10−5 m/s2, which is an order of magnitude lower than

other recent low-thrust missions, e.g., Deep Space 1 and Dawn. The low maximum

acceleration magnitude available to Gateway is the primary challenge associated with

trajectory design for this spacecraft.

The Gateway is intended to spend the vast majority of its mission lifetime in its

nominal staging orbit, a 9:2 synodic resonant NRHO. This orbit was selected after

extensive analysis of a variety of candidate orbits [98–100]. The near rectilinear halo

orbits are a subset of the halo family of orbits in the CR3BP. The NRHOs are all

stable or nearly stable orbits, which reduces the propellant required for stationkeeping.

The 9:2 NRHO is a single member of the group of NRHOs that exist within the

southern L2 halo family. It possesses a unique 9:2 resonance with the synodic period

of the Earth-Moon system, which means that nine revolutions of the 9:2 NRHO are

equal to two synodic periods in the Earth-Moon system, where one synodic period

equals approximately 29.5 days. This resonance offers the 9:2 NRHO favorable eclipse

avoidance properties, for the orbit may be designed such that prolonged eclipses of

the Sun by the Earth are avoided. Another advantageous property of the 9:2 NRHO

is its geometry; it not only provides a continual line-of-sight with the Earth, but also

ensures that the majority of each orbit is spent within view of the lunar south pole,

where the majority of the upcoming human exploration activities are expected to

occur. While the 9:2 NRHO offers an excellent location for the Gateway to carry out

most of its mission objectives, some tasks may require it to temporarily relocate to

other orbits in the lunar vicinity. For example, a transfer to an NRHO in a northern

halo family may be required to gain easier access for landers to the Moon’s northern

latitudes. The design of low-thrust transfers from the 9:2 NRHO to other orbits such

as this one is the focus of this chapter.
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5.1.2 Previous Contributions

Transfers to and from NRHOs to other orbits in the Earth-Moon system were of

interest prior to the inception of the Gateway project and since this project began,

several studies focusing on transfers for this specific spacecraft have been conducted.

Alternate orbits of interest to the Gateway project include distant retrograde orbits

(DRO), other NRHOs, and low-amplitude halo orbits, all of which are depicted in Fig-

ure 5.4. Capdevila presents families of impulsive transfer options between L2 NRHOs

and lunar DROs [101] and Zimovan continues this work by incorporating arcs from

other multi-body orbits into transfers between these orbits [102]. Low-thrust trans-

fers between DROs and members of the southern L2 halo family, including NRHOs,

are also examined by Parrish [89]. Lantoine offers an innovative method for design-

ing highly efficient transfers from an NRHO to a DRO that leverages Moon-to-Moon

transfer arcs generated in the Sun-Earth CR3BP [103]. Most recently, McCarty et

al. examine transfers from an NRHO to a DRO, as well as several other destina-

tion orbits for a spacecraft with the mass and engine characteristics planned for the

Gateway [34, 104]. This investigation extends the work of these authors by applying

an orbit chain and direct collocation approach to compute similar transfers from an

NRHO to other multi-body orbits of interest.

5.1.3 Missed Thrust Background

Missed thrust analysis is a critical step in the mission design process for low-thrust

spacecraft. Trajectories designed for spacecraft with conventional chemical engines

include maneuvers that require engine burns lasting minutes. In contrast, low-thrust

trajectories frequently require thrust arcs lasting days, weeks, or even months at a

time. Because a low-thrust spacecraft’s engines are expected to operate for a signifi-

cantly larger proportion of its time of flight, any event that inhibits engine operation

is more likely to have an impact on the trajectory. The most likely event that would

prevent engine operation is a spacecraft entering into safe mode. This mode is a



143

default configuration that a spacecraft can assume upon encountering any number of

internal or external anomalies, from a software error to cosmic rays striking electronic

components. In safe mode a spacecraft continues only its most essential functions

while its operators determine how to address the cause of the safing event. Entering

safe mode is not a rare occurrence for spacecraft, and past low-thrust missions have

encountered safe modes that significantly disrupted their planned trajectories [105].

The Deep Space 1 and Dawn missions offer the most prominent examples of this

scenario [106, 107]. Given the higher probability of a safing event occurring during a

maneuver, low-thrust trajectories must be designed with sensitivity to this possibility

in mind. This aspect of the design process is denoted missed thrust analysis, and

ascertains the portions of a spacecraft trajectory where the occurrence of a missed

thrust event causes the most additional propellant consumption. In the worst pos-

sible case, recovery from a missed thrust event may demand more propellant than

the spacecraft can supply, thus causing mission failure. Identifying the sections of a

trajectory that are most susceptible to such a catastrophe allows mission designers

to redesign the trajectory with increased robustness.

As a consequence of the importance of accounting for missed thrust events in low-

thrust mission design, a growing body of research has developed to address this topic.

Much work has focused on missed thrust analysis, that is, analysing the sensitivity of a

low-thrust trajectory to missed thrust events. More recently, attention has been paid

to missed thrust design, where robustness to missed thrust events is incorporated into

the trajectory design process from the very beginning. An analysis of the margins

that should be utilized for a low-thrust mission to account for the occurrence of

missed thrust events is conducted by Oh et al. [108]. Explorations of the types of

safing events that can cause thrust outages for low-thrust spacecraft are offered by

Imken et al. [105] and this work is employed by Pujari, Imken, and Lightsey [109]

to model such safing events. Various strategies for conducting missed thrust analysis

are available, this investigation follows an approach similar to the scheme presented

by McCarty and Grebow [110]. Other frameworks for missed thrust analysis are
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offered by Laipert and Longuski [111], Rubinsztejn, Sood, and Laipert [112], and

Sarli et al. [113]. Furthermore, techniques for missed thrust design are presented

by Olympio [114, 115], Ozaki et al. [116–118], and Tsuda [119]. This investigation

focuses on missed thrust analysis and utilizes some of the strategies for this process

developed by previous authors.

5.2 Gateway Methodology

The computation of Gateway transfers is conducted with the same strategy em-

ployed for the simpler orbit chains presented in the previous chapter. However, be-

cause the low-thrust acceleration level is quite low for the Gateway spacecraft, ad-

ditional steps are necessary. Namely, a continuation process is employed to achieve

transfers that utilize the correct low-thrust acceleration level. The complete sequence

of steps employed to go from a discontinuous orbit chain in the CR3BP to an optimal

low-thrust transfer in the ephemeris model is outlined in this section. Additionally,

the process of conducting missed thrust analysis on a computed low-thrust transfer

is detailed.

5.2.1 Sample Transfer Computation

A multi-step procedure is employed to transition an orbit chain initial guess to an

optimal transfer in an ephemeris model. The process begins with the construction of

an orbit chain using dynamical structures available in the CR3BP. This chain is then

employed as an initial guess for the direct collocation algorithm. Experience indicates

that, for spacecraft with low maximum acceleration values, it is often challenging to

transition directly from a discontinuous orbit chain to a continuous transfer at the

desired acceleration level. Instead, it is often easier to obtain a transfer using a

slightly higher low-thrust acceleration level and then to incrementally decrease this

value to the desired value. Although this process requires more steps, it is frequently

the most reliable way of obtaining the desired low-thrust solution. The schematic in
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Figure 5.2 outlines the procedure employed to transform orbit chain initial guesses to

optimal low-thrust solutions in the CR3BP.

Fig. 5.2. Schematic of trajectory design framework for computing optimal
Gateway transfers beginning with an orbit chain initial guess.

Following assembly of an orbit chain initial guess, a feasible low-thrust transfer

with a maximum thrust value N times that of the desired maximum thrust value,

Tmax, is converged. There is no set rule as to what value of N should be employed

to obtain the first transfer in the continuation process. If the selected value of N is

too high then it is unlikely that the thrust level can be continued all the way down

to N = 1; however, if the value of N is not high enough, then it may not be possible

to converge the orbit chain in the first place. Experience indicates that a thrust level

approximately 1.5 to 2 times that of the desired thrust level is sufficient to achieve

convergence while still enabling the resulting transfer to be continued down to N = 1.

In this investigation a value of N = 2 is employed to converge feasible transfers from

the orbit chain initial guess, i.e., two times the maximum thrust capability of the

Gateway spacecraft. Once a feasible solution is computed using the orbit chain initial

guess, natural parameter continuation is applied to lower the maximum thrust value

and thereby the maximum acceleration value of the spacecraft in the transfer.

Each successive step of the continuation process can compute either a feasible or

an optimal solution. Less computational time is required to obtain a feasible solu-

tion; however, at times computing optimal solutions allows the continuation process

to successfully reach the desired maximum thrust value when it would otherwise fail.

A compromise between these two approaches is to optimize only the first solution

in the continuation process and compute feasible solutions for the remainder of the

continuation steps. Regardless of which approach is employed, a successful imple-
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mentation of the continuation process will lead to a transfer that utilizes the desired

maximum acceleration level.

After a low-thrust transfer at the desired thrust level is obtained, the solution

is optimized. Even when the result produced at the conclusion of the continuation

process is already optimized it is sometimes possible to meaningfully improve its op-

timality by repeating the optimization process with minor changes. These changes

include increasing the density of the solution mesh. This step provides more oppor-

tunities along the transfer for the thrust magnitude and direction to be changed, thus

yielding a more optimal solution. Additionally, the bounds of an optimization prob-

lem can be increased, allowing the optimizer greater freedom to potentially improve

local optimal solutions. Once a satisfactory optimal solution is obtained, the process

of transitioning the solution to a higher fidelity model can begin.

Optimal Gateway transfers computed in the CR3BP are transitioned to an ephemeris

model to demonstrate that the solutions persist in a higher fidelity model. The pro-

cess utilized to transition the Gateway transfers is identical to the general process

outlined in Chapter 4. The initial and final orbits of each transfer are converged

separately from the transfer itself, which is converged with constraints that require

it to depart and insert from selected points on these separately converged ephemeris

orbits. The proximity of the Gateway transfer scenarios to the Moon increases the

difficulty of achieving convergence in the ephemeris model because slight fluctuations

in the position of the Moon have significant effects on the trajectory. As no specific

dates are presently required for any of the transfer scenarios examined, there is free-

dom to select the initial epoch of each transfer according to what eases the conversion

process to the ephemeris model. This flexibility, in addition to careful placement of

the departure and insertion points on the separately converged initial and final orbits,

enables the successful transition of all trajectories to a full ephemeris model. If alter-

nate dates for the ephemeris transfers are desired, these may be obtained by applying

a continuation process to the converged ephemeris transfer to gradually change its

initial epoch.
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The selection of a initial epoch for each transfer that eases transition to the

ephemeris model is made by scanning through a range of possible dates within a

set time period. In this case, the month of June 2024 is the month that all com-

puted transfers will begin. Each CR3BP solution is converted to the ephemeris based

inertial frame and propagated in the ephemeris model. This step generates a dis-

continuous initial guess whose general outline, when plotted in configuration space,

should resemble that of the original CR3BP solution. The discontinuities between

successive segments in the initial guess will vary in magnitude based on the selected

initial epoch. A range of departure epochs within the chosen month are scanned and

the average discontinuities between all segments are recorded for each epoch tested.

Then the epoch that leads to the lowest average velocity discontinuity is selected, as

this metric is often the dominant factor in determining the likelihood of an initial

guess converging. If desired, a larger range of dates could be scanned to determine

the most favorable initial epoch; however, this change would require greater compu-

tational time.

5.2.2 Missed Thrust Analysis

The missed thrust analysis scheme employed in this investigation analyzes the

sensitivity of a trajectory to missed thrust events by introducing these events at

successive intervals on a baseline solution. The analysis procedure begins with an

already computed low-thrust solution. In this case, CR3BP solutions presented in

Section 5.3.1 are subjected to analysis. The pre-computed low-thrust trajectory is

termed the baseline solution and offers a point of comparison for the results of the

missed thrust analysis.

After a baseline solution is selected, a time interval between successive missed

thrust events is defined. The procedure presented here examines the effect of a single

missed thrust event of a fixed duration, introduced at different times on the baseline

trajectory in an iterative process. This procedure ultimately provides a complete pic-
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ture of the baseline trajectory’s sensitivity to the missed thrust event. The total time

of flight of the baseline trajectory and the interval between successive missed thrust

events determines the number of iterations this process will take. The smaller the

time spacing is, the more comprehensive the missed thrust analysis will be, because

the effect of a missed thrust event will be assessed at more times on the baseline

trajectory. However, a finer time spacing will also require more computational time,

thus a balance between time and accuracy must be struck. An interval of 4 hours

between successive missed thrust events is employed.

Once a time interval for the introduction of successive missed thrust events is

chosen, the duration of the missed thrust event must also be defined. A realistic thrust

outage time is dependent on a variety of spacecraft and mission factors. However,

conservative outage times are usually several days or longer. Thus, thrust outage

times of 3, 5, 7 and 14 days are examined.

The final parameter defined prior to the commencement of the missed thrust

analysis is the duration of the margin time appended to the end of the baseline

solution. Extra time of flight is often required for a spacecraft to recover from a missed

thrust event. Therefore, additional trajectory is added to the end of the baseline

solution to provide ample time for the spacecraft to reach its destination following

a missed thrust event. This extra trajectory is added by ballistically propagating

the final periodic orbit for the desired length of margin time, beginning at the final

point of the baseline transfer. This additional trajectory is subdivided into segments

and affixed to the end of the baseline solution. The newly extended baseline is

then converged while the added segments are forced to remain coast segments. This

constraint preserves the original baseline, while providing additional trajectory that

can be utilized following a missed thrust event. Generally, the duration of the added

margin time should scale with the length of the thrust outage; however, a constant

margin of 20 days is employed for missed thrust analyses so that the results of analyses

conducted with several different outage times are easily compared. This duration is

sufficient for the longest missed thrust event examined in the present analysis. A
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schematic of a baseline low-thrust solution with added margin time and a defined

missed thrust time interval is offered in Figure 5.3(a). The definition of the three time

parameters: missed thrust time interval, the outage duations, and margin durations,

completes the setup of the missed thrust analysis procedure.

(a) Baseline Solution with Margin (b) Solution Reconverged with Thrust Outage

Fig. 5.3. Missed thrust analysis schematic. (a) An evenly spaced missed
thrust time interval is applied to an existing low-thrust solution and time
margin is appended to the end of the trajectory. (b) A thrust outage
period is enforced on the newly modified trajectory, and the added margin
is utilized to achieve the desired end state.

After the missed thrust problem is defined, an iterative process of optimizing the

baseline solution with forced thrust outages at different times begins. This procedure

essentially “walks” the thrust outage period along the entire trajectory, beginning at

the first time in the predefined interval. Boundary points are added to the baseline

trajectory at the exact start and stop times of the missed thrust event. This addition

allows all segments that fall between these new points to be fixed as coast segments,

while the remainder of the trajectory is free to change to satisfy the problem con-

straints. This freedom includes the margin at the end of the trajectory where thrust

segments can now be introduced. Figure 5.3(b) offers a schematic of a solution con-

verged following the introduction of a missed thrust event. Note that the section

of trajectory originally designated margin in Figure 5.3(a) now includes thrust seg-

ments in Figure 5.3(b). With each successive step of the missed thrust procedure the

times of the thrust outage period are updated, so that it begins at a new time in the

predefined interval.
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The shifting times of the thrust outage period allow the size of the optimization

problem to change with each step. Because it is assumed that all trajectory before

the initial thrust outage time is flown without incident, all boundary points that

occur prior to this time are excluded from the optimization problem. As a result, the

optimization problem solved with each successive step of the missed thrust procedure

reduces in size with each iteration. The thrust outage period is transitioned along

the entirety of the baseline trajectory until the initial time of the missed thrust event

coincides with the final time of the baseline solution (excluding the added margin

time). Because each step of the missed thrust analysis is independent, the procedure

lends itself to parallelization, which substantially reduces the wall-clock time required

to complete the analysis.

The results of the missed thrust analysis offer insight into the locations on the

original low-thrust trajectory that are most sensitive to the occurrence of a missed

thrust event. In some cases the introduction of a missed thrust event may prevent

the trajectory from being reconverged. In this situation, it may be possible to achieve

convergence by adjusting the optimizer settings or including additional coast margin

at the end of the trajectory. However, if these steps fail, a more drastic redesign may

be required. One strategy employed to improve the results of a missed thrust analysis

is to design the baseline low-thrust trajectory with a lower thrust level than the Tmax

of the spacecraft, i.e., to use an engine duty-cycle below 1. This technique generates

a trajectory that is more robust to missed thrust events because if one occurs, the

spacecraft can then utilize its maximum thrust capability to reach the same desti-

nation that was originally attained with a lower thrust level. In this investigation,

a duty cycle of 0.9 is employed to compute all transfers in Section 5.3 while a duty

cycle of 1 is permitted during the missed thrust analysis. The results of this phase

reveal the insights available from missed thrust analysis.

In summary, the steps of the missed thrust analysis procedure implemented in

this investigation are:

1. Select baseline optimal low-thrust transfer.
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2. Define time interval between successive missed thrust events.

3. Designate duration of a missed thrust event.

4. Define time span of margin appended to the end of the baseline trajectory.

5. Cycle through successive missed thrust events. At each step solve a low-thrust

optimization problem that includes the missed thrust event and all subsequent

trajectory (including margin).

6. Record the delivered spacecraft mass and whether the direct collocation algo-

rithm converges at the conclusion of each step.

5.3 Sample Transfers

The orbit chain and direct collocation technique is employed to develop low-thrust

transfers from the 9:2 NRHO to a variety of multi-body orbits that may be destina-

tions of interest for the Gateway spacecraft. The destination orbits examined in this

investigation are a distant retrograde orbit, a low-amplitude halo orbit, and a north-

ern L1 NRHO. Because the maximum excursion in the ẑ direction for the selected

halo orbit is quite small, it is termed low-amplitude. These orbits, along with the

9:2 NRHO, are displayed in Figure 5.4(a). It is clear from this plot that transfers

from the 9:2 NRHO to the DRO or low-amplitude halo orbit require significant plane

changes. A trajectory to either of these orbits necessitates a nearly 90◦ plane change.

Alternately, although the northern NRHO lies in nearly the same orbital plane as

the 9:2 NRHO, its opposing direction of motion requires a 180◦ rotation within the

plane that is analogous to a change in argument of perigee. The alternative to this

maneuver is a sudden change in the direction of velocity near the Moon, and this not

only requires a large ∆v but is likely infeasible with a low-thrust engine. Differences

in orbit geometry is one of several factors to consider when designing a transfer. The

discrepancy in energy between the departure and arrival orbits must also be weighed.

The Jacobi constant values of the four primary orbits examined in this study are plot-
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(a) Configuration Space View (b) Jacobi Constant vs. Orbital Period

Fig. 5.4. Orbits of interest for the Gateway spacecraft.

ted as a function of their period in Figure 5.4(b). This plot shows that the destination

orbit with the largest difference in energy from the 9:2 NRHO is the DRO, closely

followed by the low-amplitude halo orbit. Extended thrust maneuvers are required

to overcome these disparities in energy along with the differences geometry.

Two types of transfer geometries, interior and exterior, are computed for each pair

of departure and arrival orbits. While imprecise, these two categories help classify the

various types of transfer geometries that arise when constructing transfers from the 9:2

NRHO to other orbits. Both of these transfer geometries can be desirable and results

indicate that one type is not clearly superior to the other. The results demonstrate

that an orbit chain and direct collocation approach is capable of computing both

types of transfers. Following the development of optimal low-thrust transfers in the

CR3BP, all transfers are validated in an ephemeris model and a subset of trajectories

are subjected to missed thrust analysis. Overall, despite the varied energies and

geometries of the target orbits, an orbit chain and direct collocation approach is

capable of generating optimal low-thrust transfers for the Gateway spacecraft that

withstand subsequent ephemeris validation.
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Table 5.1.
Jacobi constant, period, and initial state values for departure and des-
tination orbits used to compute Gateway transfers. All quantities are
presented in nondimensional units.

9:2 NRHO DRO
Low-Amplitude Northern

Halo Orbit NRHO

Jacobi Constant 3.0466 2.9281 3.1518 3.0004

Period 1.5091 3.2181 3.4150 1.8064

x 1.0219 0.8051 1.1808 0.9253

y -7.0043E-04 3.5921E-05 -2.2127E-05 -5.2460E-07

z -0.1820 0 8.2714E-03 0.2191

ẋ -8.9630E-04 5.0407E-05 -2.1395E-05 -8.3998E-07

ẏ -0.1029 0.5202 -0.1563 0.1210

ż 3.4282E-03 0 -2.6562E-06 2.0272E-06

5.3.1 9:2 NRHO to DRO Transfers

Low-thrust transfers from an NRHO to a DRO have been a focus of study since

the inception of the Gateway project. The highly stable DRO family offers a range

of attractive staging orbit candidates for the Gateway spacecraft or other assets des-

tined for lunar orbit. The DRO in this investigation has a radius from the Moon of

approximately 70,000 km at its x-axis crossings, hence it is denoted the 70K DRO.

This particular DRO was a potential destination orbit for the Asteroid Redirect Mis-

sion (ARM), and is examined here so that insights gained from the ARM analysis

can benefit the Gateway mission.

Due to the low perilune altitude of the 9:2 NRHO, it is especially advantageous

to include other orbits as intermediate links when constructing an orbit chain for an

NRHO to DRO transfer. Without these intermediate links, the direct collocation
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algorithm might converge upon solutions that pass through the surface of the Moon.

The selection of orbit families that offer useful intermediate links is guided by an

examination of geometry and energy, as discussed in Chapter 4. The family of 3:4

resonant orbits offers useful candidates for the assembly of orbit chains that yield

exterior type transfers from the NRHO to the DRO. This planar family includes

orbits that perform close flybys of the Moon and cross the path of the 70K DRO in

the same direction of motion. A subset of orbits from the planar 3:4 resonant orbit

family are displayed in Figure 5.5(a). Moreover, Figure 5.6(a) shows that members of

(a) 3:4 Resonant Orbits (b) P4HO2 Orbits

Fig. 5.5. Subsets of the orbit families from which intermediate links are
selected for the construction of orbit chains that link the chosen NRHO
and DRO.

the 3:4 resonant orbit family span the entire range of Jacobi constant values between

the 9:2 NRHO and DRO. Another orbit family whose members cover nearly the same

range of Jacobi constant values are the P4HO2 orbits [120,121]. The Jacobi constant

values of a subset of this family are plotted as a function of orbital period in 5.6(b).

The P4HO2 orbit family, which bifurcates from the NRHOs, includes orbits near

the 9:2 NRHO that possess similar out-of-plane geometry. As this family evolves,

subsequent members exhibit increasingly planar motion as shown in Figure 5.5(b).

An orbit chain that includes several members of this family can generate a low-thrust
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(a) Exterior (b) Interior

Fig. 5.6. Jacobi constant values as a function of orbital period for the
orbits selected for the construction of orbit chains that link the chosen
NRHO and DRO.

transfer that progresses through the P4HO2 orbits, thus approaching the energy and

planar geometry of the DRO. The two orbit families selected for the construction of

NRHO to DRO transfers produce favorable results, but the flexibility of the orbit

chain process means that these are only two of several potentially useful choices.

Following the identification of orbit families that offer useful intermediate links,

specific members of these families are selected for use in orbit chains. The black

markers in Figure 5.6 indicate the chosen orbits. For the exterior type NRHO to

DRO transfer, 3:4 resonant orbits near the Jacobi constant value of the departure

and arrival orbits are selected. The chosen orbits are plotted in position space in

Figure 5.7 which shows that the resonant orbits are clipped so that only a section of

each orbit is used. Clipping is performed to reduce the total time of flight of the initial

guess and to produce more favorable connections between orbit chain links. The first

resonant orbit is clipped such that it begins at approximately the same x value as the

apoapse of the 9:2 NRHO. Although other points along the resonant orbit pass closer

to the 9:2 NRHO, these points occur very close to the Moon, a region with high

sensitivity, which make correcting the resulting discontinuity difficult. Experience
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(a) xy-Plane (b) Zoomed View

Fig. 5.7. Orbit chain initial guess for an NRHO to DRO exterior type
transfer plotted in position space.

indicates that the likelihood of convergence is improved by clipping the resonant

orbit at the location indicated in Figure 5.7(b). The first resonant orbit is included

up until its x-axis crossing on the opposite side of the Earth. At this point, it is clipped

and the second 3:4 resonant orbit employed in the orbit chain begins. Locating the

discontinuity between resonant orbits at this position is beneficial because it is far

from either primary and offers the direct collocation algorithm ample space for the

insertion of thrust arcs to eliminate the discontinuity. The segment of the second

3:4 resonant orbit included in the orbit chain continues until it intersects the path of

the 70K DRO. The subsequent link in the orbit chain is a section of the DRO that

begins where the resonant orbit is clipped and continues to the initial point of the

DRO on the opposite side of the Moon. The final link in the orbit chain is then a

full revolution of the DRO that begins and ends at this same point. In total, the

orbit chain assembled as an initial guess for the exterior NRHO to DRO transfer

consists of five links. States associated with the beginning of each link along with

parameter settings utilized to converge this and all following orbit chains are provided

in Appendix B.
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It is evident from the plots in Figure 5.6 that the selected orbit families consist

of many additional members that could be included in the constructed orbit chains.

While these additional orbits may reduce state and energy discontinuities between

orbit chain links, they would also increase time of flight. Orbit chains with a greater

number of intermediate links can also lead to successful NRHO to DRO transfers;

however, these additional orbits are avoided here in an effort to keep the total time

of flight from growing too large. The maximum additional time of flight added by

each potential link is quickly assessed by examining the period of each orbit plotted

in Figure 5.6. Of course, additional time of flight is incurred if multiple revolutions

are stacked on a chosen link. Time of flight can also be reduced if the selected orbit

is clipped so that only a section of it is employed in the orbit chain.

After an orbit chain is assembled, it is passed to the direct collocation algorithm

for convergence. The process of transitioning from the discontinuous orbit chain to

an optimal low-thrust transfer that employs the desired engine parameters is detailed

in Figure 5.2. While the steps remain the same for every transfer presented here,

this procedure can be straightforward or arduous depending on the characteristics of

the desired transfer. In general, it is easier to compute the exterior type transfers

because they involve less motion in the sensitive region near the Moon. This benefit

is seen in the exterior NRHO to DRO transfer, whose final locally optimal result is

displayed in Figure 5.8. While not evident in Figure 5.7, the initial and final links

of this orbit chain include multiple revolutions of each orbit, three of the NRHO and

four of the DRO. These additional revolutions are critical for achieving convergence

because the extra time of flight they contribute provides the time necessary for the

Gateway spacecraft to depart the NRHO and arrive at the DRO. Figure 5.8(b) illus-

trates how the stacked revolutions on the NRHO and DRO are “unspooled” by the

direct collocation algorithm to create a continuous low-thrust transfer. The transfer

displayed in Figure 5.8 requires 399 kg (∆v = 234 m/s) of propellant and a total

time of flight of 164 days. The key parameters for this, and all subsequent Gateway

transfers computed in the CR3BP, are summarized in Table 5.2.
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(a) xy-Plane (b) Zoomed View

Fig. 5.8. Optimal exterior type transfer from an NRHO to a DRO, com-
puted in the CR3BP and plotted in position space.

An orbit chain composed of members of the P4HO2 family is employed to compute

an interior type NRHO to DRO transfer. Multiple members of the P4HO2 family

must be included in the orbit chain to ease the required plane change and to allow

adequate time for the transfer to be completed. A half revolution of the first P4HO2

orbit included in the orbit chain is employed to connect the 9:2 NRHO to the other

P4HO2 orbits. This half revolution begins near the 9:2 NRHO and ends at the purple

dot marker shown in Figure 5.9(b). The next P4HO2 orbit included in the chain

begins and ends at a point near the end of the previous link, and is indicated by

a purple asterisk in Figure 5.9(b). The connection points of the remaining P4HO2

orbits in the chain are placed at the same location on each orbit, and are also marked

by purple asterisks. Positioning the discontinuities between links at this location on

each P4HO2 orbit is advantageous because it is one of the farthest excursions from

the Moon for this orbit geometry. Thus, the sensitivity associated with correcting

the discontinuities between links is reduced. The connection point on the DRO, the

final link in the orbit chain, is placed at the location on the orbit that is closest

to the end of the previous link, that is, at the x-axis crossing on the right side of



159

(a) xy-Plane (b) 3D View

Fig. 5.9. Orbit chain initial guess for an NRHO to DRO interior type
transfer plotted in position space.

the Moon in Figure 5.9. The intermediate P4HO2 selected for inclusion in the orbit

chain possesses Jacobi constant values between those of the initial and final orbits,

as shown in Figure 5.6(b). However, the intermediate orbits here are not selected to

have a strictly monotonic energy trend because doing so would result in larger state

space discontinuities. Altogether, the orbit chain assembled as an initial guess for the

interior NRHO to DRO transfer consists of six links.

The six link orbit chain constructed to compute an interior type NRHO to DRO

transfer is delivered to the direct collocation algorithm, which ultimately generates

a continuous optimal low-thrust transfer. Figure 5.10 displays the optimal solution

produced by the process described in Section 5.2.1. While the resulting transfer

is chaotic in appearance, it clearly retains elements of the geometry present in the

original orbit chain. These geometric similarities are most evident in the farthest

excursions from the Moon, for example, the two lobes of the largest P4HO2 in Figure

5.9(a) are present, though modified, in Figure 5.10(a). This same commonality is also

apparent in the three-dimensional views of the orbit chain and final transfer, which

show similarities in the out-of-plane geometry. Once again, additional revolutions are
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(a) xy-Plane (b) 3D View

Fig. 5.10. Optimal interior type transfer from an NRHO to a DRO, com-
puted in the CR3BP and plotted in position space.

stacked on the initial and final links of the orbit chain to aid convergence; however,

in this case, only two revolutions are included for each link. The interior type NRHO

to DRO transfer requires 402 kg (∆v = 236 m/s) of propellant and a total time of

flight of 227 days. While the time of flight of the interior NRHO to DRO transfer is

over two months longer than the exterior version, the total propellant consumption

is nearly the same. Due to the extended coast arcs in the interior NRHO to DRO

transfer, it is possible that the time of flight of this result could be decreased. These

two results demonstrate that practical transfers from the 9:2 NRHO to a DRO can

be achieved for both exterior and interior type geometries. Further study is required

to assess whether one of these geometry types has favorable properties not considered

here, such as eclipse avoidance or an unimpeded line-of-sight for communications.

The geometry, and, to an extent, the propellant consumption of both types of

NRHO to DRO transfer remain consistent when they are transitioned to an N -body

ephemeris model that includes the Earth, Moon, and Sun. No specific departure or

arrival dates are currently required for these transfers. Thus, in an effort to ease

the transition to the ephemeris model, the initial epoch of each transfer is selected
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by identifying the date that yields the lowest average velocity discontinuity between

segments when the CR3BP result is first imported to the ephemeris model. The month

of June 2024 is chosen, and dates within this month are scanned to identify the initial

epoch that meets the desired selection criteria. The initial epochs employed for each

ephemeris transfer are presented in Table 5.3 which also summarizes the Gateway

ephemeris transfer results. Plots in the xy-plane of the exterior and interior NRHO

to DRO transfers transitioned to the ephemeris model are presented in Figure 5.11.

Comparison of these configuration space plots with the CR3BP results displayed in

(a) Exterior (b) Interior

Fig. 5.11. Optimal exterior and interior type transfers from an NRHO to
a DRO, computed in an ephemeris model and plotted in the xy-plane.

Figures 5.8(a) and 5.10(a) reveals the consistency between the results of the two

models.

Disparities between the CR3BP and ephemeris results are more apparent when

the transfers’ propellant consumptions computed in the two models are compared.

While the interior type transfer requires nearly the same propellant mass, the exterior

transfer consumes approximately 100 kg more propellant. The reason for such a large

difference between the CR3BP and ephemeris results is unclear, but may be largely

due to the selected initial epoch. The initial epoch selected for a transfer in the
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ephemeris model can significantly influence the geometry and propellant consumption

of the computed result. The relative positions of the included point masses may

work in favor of the desired transfer for some epochs, thus reducing the propellant

cost, while other epochs may hinder the transfer. Thus, a more complete picture

of the performance of these transfers in an ephemeris model can only be obtained

by computing them for a range of initial epochs. A single ephemeris solution for

each transfer type is presented here because the goal is merely to demonstrate that

the computed solutions, despite their complexity, are indeed viable in an ephemeris

model that includes all of the most relevant gravitational bodies. The results offered in

Figure 5.11 validate the computed exterior and interior type transfers in the ephemeris

model, thus indicating that the orbit chain and direct collocation approach utilized

to compute these transfers for the Gateway spacecraft is a practical framework.

5.3.2 9:2 NRHO to Low-Amplitude Halo Orbit Transfers

A low-amplitude L2 halo orbit is of interest to the Gateway project not as a final

destination, but as a waypoint that offers access to other locations in the Earth-Moon

system and beyond. The stable and unstable invariant manifolds of a low-amplitude

halo orbit provide paths that transit to orbits about L1, include close approaches of

Earth, or depart the Earth-Moon system. If not employed by Gateway itself, these

low-energy pathways could be utilized by other spacecraft departing from or arriving

at Gateway. Therefore, transfers of the Gateway to a low-amplitude halo orbit where

these departures or rendezvous may take place are explored in this investigation.

Low-amplitude halo orbits are not formally defined in literature, but this category

generally includes halo orbits whose maximum excursion in the z direction is small

compared to other members of the halo family. The particular halo orbit selected for

this investigation belongs to the northern L2 halo family, and possesses a maximum

+z amplitude of 3182 km. Many other similar orbits in the northern and southern
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L2 halo families could have been selected and would likely yield results quite similar

to those shown here.

In contrast to the DRO employed in the previous section, the selected low-amplitude

halo orbits possesses a Jacobi constant value higher than that of the 9:2 NRHO. There-

fore, other orbit families with different ranges of Jacobi constant are examined for

useful intermediate orbit candidates. The most obvious of these families is the L2

halo orbits because this family includes both the initial and final orbits for the present

transfer. A subset of the members of the L2 halo family are displayed in Figure 5.12.

These orbits are members of the southern part of this family, i.e., those members

whose maximum excursion from the xy-plane is in the -z direction. The destination

halo orbit is in the northern part of the L2 halo family, but, due to its low-amplitude,

it is very near the southern L2 halo orbits. The L2 halo orbits also bridge the gap in

Fig. 5.12. A subset of the southern members of the L2 Halo orbit family
colored according to Jacobi constant value.

energy between the initial and final orbit as illustrated in Figure 5.13(a). Members of

this family of orbits are selected to construct an orbit chain that leads to an interior

type transfer from the 9:2 NRHO to the low-amplitude halo orbit.

It is more challenging to identify intermediate orbits that offer useful orbit chain

links for an exterior type transfer from the 9:2 NRHO to a low-amplitude halo orbit.
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(a) Exterior (b) Interior

Fig. 5.13. Jacobi constant values as a function of orbital period for the
orbits employed to construct orbit chains for the exterior and interior
NRHO to low-amplitude L2 halo transfers.

Resonant orbits are employed to construct exterior transfers for the other destination

orbits in this investigation; unfortunately, the resonant orbits with geometry useful

for the construction of this type of transfer do not possess Jacobi constant values at

the same level as the low-amplitude halo orbit. Therefore, an orbit chain that includes

resonant orbits which span the gap in energy between the departure and arrival orbits

cannot be constructed. However, the previous transfer scenario demonstrated the

existence of a 3:4 resonant orbit whose Jacobi constant value is equal to that of the 9:2

NRHO and which offers geometries that facilitate an exterior type transfer. Therefore,

the family of 3:4 resonant orbits is employed once again to provide intermediate links

in an orbit chain connecting the 9:2 NRHO and a low-amplitude halo orbit.

A single member of the family of 3:4 resonant orbits is utilized to construct an

orbit chain that yields an exterior transfer from the 9:2 NRHO to the low-amplitude

halo orbit. A 3:4 resonant orbit at nearly the same energy level as the 9:2 NRHO

is selected, and the Jacobi constant value of this orbit in relation to the initial and

final orbits is displayed in Figure 5.13(b). The selected 3:4 resonant orbit is included
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as two distinct links in the assembled orbit chain, clipped at different locations. The

first use of the 3:4 resonant orbit is clipped near the Moon around the same x value

as the apoapse of the 9:2 NRHO. This point is indicated with a red asterisk in Figure

5.14(b). This initial resonant orbit link continues until it terminates at its closest

(a) xy-Plane (b) Zoomed View

Fig. 5.14. Orbit chain initial guess for an NRHO to low-amplitude L2 halo
exterior type transfer plotted in position space.

approach to the Moon where y = 0. This terminus is also the beginning of the second

resonant orbit link in the orbit chain and is marked with another red asterisk in

Figure 5.14(b). The second resonant orbit includes an additional transit around the

Earth before it is clipped where it appears to cross the path of the low-amplitude

halo orbit as viewed in the xy-plane. This crossing is marked by a purple asterisk in

Figure 5.14(b). A partial revolution of the low-amplitude halo orbit is included as

the next link in the orbit chain followed by a full revolution of the halo orbit which

constitutes the final link in the assembled chain. In its entirety, the constructed orbit

chain includes two transits around the Earth-Moon system that follow the exact same

3:4 resonant orbit, as displayed in Figure 5.14(a). Alternate orbit chain assemblies

for this exterior transfer could include members of the L2 Lyapunov family or the

stable invariant manifolds of the destination L2 halo orbit. These additional orbit
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chain links could reduce the discontinuities in geometry and energy present in the

orbit chain offered in Figure 5.14.

With the selected 3:4 resonant orbit as the sole intermediate link, the orbit chain

assembled to generate an exterior transfer from the 9:2 NRHO to the low-amplitude

halo is passed to the direct collocation algorithm. Three revolutions of the initial

NRHO and four revolutions of the final halo orbit are stacked to aid convergence via

the provision of additional time of flight. This orbit chain is successfully converged,

producing a low-thrust transfer that executes the required plane change gradually

over the course of the two transits about the Earth-Moon system, as shown in Fig-

ure 5.15(a). The stacked revolutions of the initial and final orbits are distributed

(a) xy-Plane (b) Zoomed View

Fig. 5.15. Optimal exterior type transfer from an NRHO to a low-
amplitude L2 halo, computed in the CR3BP and plotted in position space.

to facilitate departure and arrival, respectively, and Figure 5.15(b) highlights this

behavior. The transfer displayed in Figure 5.15 requires 492 kg (∆v = 289 m/s) of

propellant and a total time of flight of 225 days, and these parameters are summa-

rized in Table 5.2. As an alternative to the exterior geometry, an interior transfer

from the 9:2 NRHO to the low-amplitude halo orbit is computed using an orbit chain

that includes multiple members of the southern part of the L2 halo family. Figure
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5.13(b) illustrates that when plotted as a function of orbital period, the Jacobi con-

stant values of this family do not follow a monotonic trend. The Jacobi constant

value of the destination halo orbit is higher than that of the 9:2 NRHO; thus, to

encourage a monotonic energy profile in the optimal result, the assembled orbit chain

should only include intermediate links with Jacobi constants at or above that of the

NRHO. However, the southern L2 halo orbits closest to the NRHO in position space

possess Jacobi constant values less than that of the NRHO. To avoid this decrease

in energy, the first intermediate halo orbit included in the orbit chain is selected to

possess approximately the same energy, but a significantly larger period as the initial

NRHO. This difference in period is displayed in Figure 5.13(b) and the resulting gap

in position space between the first and second members of the orbit chain is apparent

in Figure 5.16(a). After this initial jump, the remaining orbits in the chain are more

similar in energy and geometry. The configuration space plot in Figure 5.16 shows

(a) xz-Plane (b) 3D View

Fig. 5.16. Orbit chain initial guess for an NRHO to low-amplitude L2 halo
interior type transfer plotted in position space.

that, as they approach the L2 libration point, the southern halo orbits became in-

creasingly planar. Therefore, a transfer from the very out of plane 9:2 NRHO to the
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low-amplitude halo orbit is accomplished simply by transferring between successive

members of the L2 halo family.

The orbit chain constructed from members of the southern L2 halo family is

employed to compute an interior transfer from the 9:2 NRHO to the low-amplitude

halo orbit. The resulting transfer, displayed in Figure 5.17, exhibits how the original

orbit chain is modified to obtain an optimal low-thrust transfer. The assembled orbit

(a) xz-Plane (b) 3D View

Fig. 5.17. Optimal interior type transfer from an NRHO to a low-
amplitude L2 halo, computed in the CR3BP and plotted in position space.

chain includes three revolutions of the 9:2 NRHO and a single revolution for all other

links. These stacked revolutions are distributed by the direct collocation algorithm

to create a continuous transfer that spans the gap between the first and second halo

orbits. The distributed revolutions produce a trajectory that briefly passes to the L1

side of the Moon before a close lunar flyby that enables the spacecraft to transit the

gap in position space between the first and second orbits in the chain. The initial

departure from the 9:2 NRHO exhibits geometry that is similar to orbits within the

butterfly family [55, 121]. Experience indicates that similar patterns occur for other

transfers which begin in the 9:2 NRHO. Indeed, another instance of this behavior is

shown in Section 6.3.3. The remaining halo orbits included in the chain are modified



169

such that they form a quasi-periodic like structure. This structure, which consists

primarily of thrust arcs, enables a gradual plane change from the NRHO to the final

halo orbit. In total, the transfer displayed in Figure 5.17 requires 515 kg (∆v = 303

m/s) of propellant and a total time of flight of 178 days.

With only one solution for each transfer type, it is not possible to state whether

either the exterior or interior transfer from the NRHO to the low-amplitude halo

orbit is superior, especially because this assessment is highly situation dependent.

The duration of the interior transfer is roughly 1.5 months less than that of the

exterior transfer; however, it necessitates about 20 kg more propellant. The higher

propellant cost may be worth the shorter time of flight and a geometry that remains

near the Moon, but this judgement must be made using mission requirements that

are not presently available. Overall, these results indicate that both transfer types are

viable options for transiting between the desired orbits. Moreover, it is likely that very

similar geometry and performance would be obtained for most other low-amplitude

L2 halo orbits.

Both types of transfer, exterior and interior, are successfully validated in an

ephemeris model that includes the Earth, Moon, and Sun. The geometry and propel-

lant consumption of the ephemeris transfers are similar to those of the CR3BP results,

as evidenced by the configuration space plots displayed in Figure 5.18 and the perfor-

mance characteristics summarized in Table 5.3. Once again the initial epochs for these

ephemeris transfers are selected to reduce velocity discontinuities in the initial guess.

For the chosen initial epochs, the exterior type transfer requires nearly 15 kg more

propellant, while the interior transfer demands slightly less than the corresponding

CR3BP results. These discrepancies are within the expected range of variation when

transitioning low-thrust trajectories to an ephemeris model. Thus, the ephemeris re-

sults displayed in Figure 5.18 further validate the efficacy of the orbit chain and direct

collocation approach to computing low-thrust transfers for the Gateway mission.
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(a) Exterior (b) Interior

Fig. 5.18. Optimal exterior and interior type transfers from an NRHO to
a low-amplitude halo orbit, computed in an ephemeris model.

5.3.3 9:2 NRHO to Northern L1 NRHO Transfers

An NRHO within the northern members of the L1 halo family is another desti-

nation of interest for the Gateway mission. This orbit offers similar benefits to the

9:2 southern NRHO, but is oriented such that its apoapse is located over the north-

ern pole of the Moon, as displayed in Figure 5.19(a). This configuration is useful

if line-of-sight of the Moon’s northern hemisphere from the Gateway is required for

an extended period of time by human or robotic operations in this region. Thus,

transfers from the nominal 9:2 NRHO to a northern NRHO are examined here.

The Jacobi constant value of the selected northern NRHO is less than that of the

9:2 NRHO, but out of the three destination orbits examined, it is the most similar

in value to this orbit. This nearness in energy is countered by a large difference

in configuration space. As noted in Section 5.3, a large plane change is required

to efficiently transition from the southern to the northern NRHO. Two means of

executing this plane change are examined, and these are facilitated with the use of

several types of intermediate orbits. Like the transfer from the 9:2 NRHO to the low-

amplitude halo orbit, the interior type transfer to the northern NRHO will utilize
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(a) L1 Northern Halo Orbits (b) 4:3 Resonant Orbits

Fig. 5.19. Orbit families from which intermediate links are selected for the
construction of orbit chains used to compute exterior and interior NRHO
to an L1 northern NRHO transfers.

multiple members of the L1 and L2 families of halo orbits to transition along these

families towards the destination orbit. The exterior type transfer will instead utilize

another type of resonant orbit family in addition to the already examined 3:4 resonant

orbits to aid in transitioning motion from the vicinity of the L2 libration point to the

L1 libration point. The new family of orbits examined in this section are the 4:3

resonant orbits, displayed in Figure 5.19(b). This family of orbits exhibits motion

near the L1 libration point in the same direction of motion as the lower amplitude

members of the L1 halo family. By combining a member of the 4:3 resonant orbit

family with members of the 3:4 resonant orbit family in an orbit chain, a useful initial

guess for the transfer from a southern to a northern NRHO can be obtained.

The orbit chain employed to compute the exterior transfer from the 9:2 NRHO to

the selected northern NRHO incorporates clipped sections of two types of resonant

orbit. This initial guess is inspired by the results of McCarty, Burke, and Mcguire [34].

The same transfer scenario is examined by these authors and their result is similar

in geometry to the orbit chain initial guess assembled here, and thus similar to the
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resulting transfer as well. Figure 5.20(a) illustrates that the two selected resonant

orbit families span the entire range of Jacobi constant values between the initial and

final orbits of this transfer. The two orbit chain links that immediately follow the

(a) Exterior (b) Interior

Fig. 5.20. Jacobi constant values as a function of orbital period for the
orbits employed to construct orbit chains for the exterior and interior
NRHO to low-amplitude L2 halo transfers.

initial orbit are members of the 3:4 resonant orbit family; the two members selected

from this family possess Jacobi constant values similar to those of the departure and

destination orbits, respectively. Next, a member of the 4:3 resonant orbit family is

chosen that has nearly the same Jacobi constant value as the final northern NRHO.

The complete orbit chain assembled for the exterior transfer from the southern to the

northern NRHO is displayed in Figure 5.21. The two 3:4 resonant orbits in the orbit

chain are clipped so that they connect near y = 0 on the -x side of the Earth; recall,

this same approach was taken for the exterior NRHO to DRO transfer. Furthermore,

as in the previous two transfers, the 3:4 resonant orbits are clipped so that they do

not begin or end at their closest approach to the Moon, but rather at some desired

distance from the Moon. The second 3:4 resonant orbit employed in the orbit chain

is actually clipped such that it ends at one of its intersection points with the selected
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4:3 resonant orbit, as seen in Figure 5.21(b). The entirety of the selected 4:3 resonant

(a) xy-Plane (b) Zoomed View

Fig. 5.21. Orbit chain initial guess for an NRHO to an L1 northern NRHO
exterior type transfer plotted in position space.

orbit is then employed up until its next close approach of the Moon, at which point

the orbit is clipped such that it ends near xMoon, that is the location of the Moon

on the x-axis. The complete orbit chain, displayed in Figure 5.22, offers a geometry

that aids the transition from the southern to the northern NRHO and provides ample

time in which to achieve this transfer.

The orbit chain constructed for the exterior transfer from the southern to the

northern NRHO successfully guides the direct collocation algorithm to an optimal

low-thrust solution. Figure 5.22 displays the low-thrust transfer obtained at the

conclusion of the computation process outlined in Figure 5.2. The resulting transfer

retains much of the same geometry as the orbit chain, indicating that this initial

guess was useful for obtaining the final result. Three revolutions of the initial and

final NRHOs are stacked in the initial guess, and single revolutions of all other orbit

chain links are employed. The lengthy resonant orbit segments included in the orbit

chain provide ample time for the desired transfer to be conducted and allow the

required plane change to occur gradually during the transits around the Earth. The
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(a) xy-Plane (b) Zoomed View

Fig. 5.22. Optimal exterior type transfer from an NRHO to an L1 northern
NRHO, computed in the CR3BP and plotted in position space.

transfer displayed in Figure 5.22 requires 236 kg (∆v = 138 m/s) of propellant and a

total time of flight of 176 days.

A variety of orbit families are suitable for the construction of interior type transfers

from the southern to northern NRHO; in this analysis a straightforward approach is

employed that leverages numerous orbits from the L1 and L2 halo families. The

concept of moving up or down a family of halo orbits to transfer from one member to

another is exploited in Section 5.3.2 to obtain an interior transfer from the 9:2 NRHO

to the low-amplitude halo. Here this idea is expanded to first move “up” the southern

L2 halo family and then “up” the northern L1 halo family. The challenge with this

approach is the large gap in state space between the final member of the southern L2

halo family and the initial member of the northern L1 halo family employed in the

orbit chain. The work of Haapala and Howell [15] serves to fill this gap by highlighting

the role invariant manifolds can play in offering low-cost transits between these types

of orbits. Haapala and Howell present a transfer from a southern L2 halo orbit to

a northern L1 halo orbit that utilizes the unstable and stable invariant manifolds of

each orbit, respectively. These same two halo orbits are included in the orbit chain
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constructed in this investigation, with the intent of biasing the resulting transfer to

utilize the same invariant manifold structures observed by Haapala and Howell. Of

course, the invariant manifold structures themselves could be included in the orbit

chain; however, this step is avoided to determine whether a similar result can be

obtained without the additional process of generating and selecting suitable invariant

manifold paths.

With the first and last members of each halo orbit family to be included in the

orbit chain selected, the task of choosing additional intermediate links to reduce the

discontinuities between these orbits remains. Figure 5.20(b) shows that a relatively

even spacing in Jacobi constant between successive intermediate links is used when

selecting additional intermediate orbits from the L1 and L2 halo families. The excep-

tion to this rule occurs between the initial and final NRHOs and their adjacent links.

In both cases a jump along the orbit family is made to avoid including intermediate

links whose Jacobi constant values are below those of the initial or final orbits. These

gaps between successive links are evident both in the parameter space plot displayed

in Figure 5.20(b) and the plot of the orbit chain in configuration space in Figure

5.23. Figure 5.23(a) reveals that, unlike the other orbits included from the northern

L1 halo family, the initial point on the first orbit used from this family is located at

the lowest z excursion of the orbit. The connection point is shifted for this first orbit

to reduce the state discontinuity between it and the final member of the southern

L2 halo orbit family included in the chain. The discrepancy between the initial and

subsequent members of the northern L1 halo family is mitigated by including an ad-

ditional half revolution of the initial halo orbit that ends at the maximum z excursion

of the orbit. This point is indicated with a red dot marker in Figure 5.23(a), and it

is clearly the point on this orbit that is closest to the initial point of the next link in

the chain. Overall, many members of the L1 and L2 halo orbit families are included

in the orbit chain for the interior southern to northern NRHO transfer. The large

number of orbits included helps reduce the state and energy discontinuities between
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(a) xz-Plane (b) 3D View

Fig. 5.23. Orbit chain initial guess for an NRHO to an L1 northern NRHO
interior type transfer plotted in position space.

the initial and final orbits, though it also significantly increases the time of flight of

the resulting transfer.

The orbit chain consisting solely of members of the L1 and L2 halo families leads to

a successful interior type transfer from the 9:2 NRHO to a northern NRHO. The many

halo orbits included in the initial guess are transformed by the direct collocation algo-

rithm into complicated quasi-periodic like structures concentrated about the L1 and

L2 libration points. These structures are apparent in Figure 5.24, which displays the

computed low-thrust transfer. Transit from the L1 to the L2 region is accomplished in

a single crossing of the xz-plane centered at the Moon. Though the resulting transfer

does not utilize the same invariant manifold paths observed by Haapala and Howell,

it is unclear whether any other such structures are leveraged instead. The xz plane

view highlighted in Figure 5.24(a) reveals that the low-thrust transfer includes brief

crossings from one “side” of the Moon to the other during departure or insertion

from the initial and final NRHOs respectively. The same behavior is observed in the

interior NRHO to low-amplitude halo orbit displayed in Figure 5.17. In total, the

interior low-thrust transfer from the 9:2 NRHO to a northern NRHO requires 425 kg
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(a) xz-Plane (b) 3D View

Fig. 5.24. Optimal interior type transfer from an NRHO to an L1 northern
NRHO, computed in the CR3BP and plotted in position space.

of propellant (∆v = 250 m/s) and a total time of flight of 355 days. The significant

amount of coasting time indicates that it may be possible to remove some of the

halo orbits included in the initial guess and still compute an optimal result, thereby

reducing the protracted time of flight and possibly the propellant consumption.

The exterior and interior type transfers computed from the 9:2 NRHO to a north-

ern NRHO are successfully validated in an ephemeris model that includes the Earth,

Moon, and Sun. The geometry and propellant consumption of these transfers remains

reasonably close to the CR3BP results. Figure 5.25 offers views of both ephemeris

results. The most noticeable change in geometry is in the exterior type trajectory

displayed in Figure 5.25(a). Aside from the slight difference in the orientation of the

second transit around the Earth, there are few perceptible differences. The initial

epochs for both transfers are selected to reduce velocity discontinuities in the initial

guess, and are provided in Table 5.4. For the selected epochs, the propellant con-

sumption of both transfers is less than their CR3BP counterparts, but still within

the expected range of variance. Altogether, the ephemeris results displayed in Figure

5.25 and summarized in Table 5.3 validate the ability of the orbit chain and direct
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(a) Exterior (b) Interior

Fig. 5.25. Optimal exterior and interior type transfers from the 9:2 NRHO
to a northern L1 NRHO, computed in an ephemeris model.

collocation approach to generate practical trajectories from the 9:2 NRHO to other

orbits of interest.

5.3.4 Summary of Transfers from the 9:2 NRHO

The results of this section demonstrate that transfers are available from the 9:2

NRHO to a variety of other orbits of interest in the lunar region. The performance

of all six transfers computed in the CR3BP and ephemeris models are summarized

here in Tables 5.2 and 5.3, respectively. Moreover, the initial epochs employed to

compute the ephemeris transfers are provided in Table 5.4. The limited number

of results computed for each trajectory type prevent broad generalizations about the

superiority of any one transfer option. However, several observations and comparisons

can be made.

First, utilizing an interior rather than an exterior type transfer from the 9:2 NRHO

does not guarantee a shorter time of flight or reduced propellant consumption. For

the transfers to the DRO and northern NRHO, the interior option requires a longer
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Table 5.2.
Summary of Gateway transfers computed in the CR3BP.

Transfer Type Time of Flight [days] ∆m [kg] ∆v [m/s]

NRHO to DRO - Exterior 163.91 399.04 234.27

NRHO to DRO - Interior 227.46 401.56 235.76

NRHO to Low-Amp. Halo - Exterior 225.24 492.07 289.24

NRHO to Low-Amp. Halo - Interior 178.17 515.04 302.83

NRHO to North NRHO - Exterior 175.92 235.84 138.17

NRHO to North NRHO - Interior 355.33 425.07 249.64

time of flight. Moreover, the propellant consumption of the interior and exterior

transfers are comparable for the transfers to the DRO and low-amplitude halo, and

significantly more propellant consumption is demanded by the interior transfer to the

northern NRHO. Both time of flight and propellant consumption are highly dependent

on the initial guess, and it is possible that different results could be obtained if further

experimentation with suitable orbit chains were conducted for each transfer scenario.

The construction of every orbit chain involves a trade-off between state discon-

tinuities and time of flight. Intermediate orbits are included in an orbit chain to

reduce state discontinuities between subsequent links; however, the addition of these

links also increases the time of flight. Too few links in an orbit chain may hinder or

even prevent convergence, while too many could lead to a large optimization problem

and an overly long low-thrust transfer. Striking a proper balance between these two

factors can be challenging, and it is likely that the time of flight of the transfers pre-

sented in this section could be reduced with further experimentation. Most notably,

while the interior transfer to the northern NRHO includes many intermediate links,

it may be possible to converge a similar transfer with fewer intermediate orbits and

shorten the transfer duration.
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Table 5.3.
Summary of Gateway transfers computed in an ephemeris model including
the Earth, Moon, and Sun.

Transfer Type Time of Flight [days] ∆m [kg] ∆v [m/s]

NRHO to DRO - Exterior 163.91 501.39 294.75

NRHO to DRO - Interior 227.46 404.25 237.35

NRHO to Low-Amp. Halo - Exterior 225.24 505.69 297.30

NRHO to Low-Amp. Halo - Interior 178.17 513.84 302.12

NRHO to North NRHO - Exterior 175.92 210.35 123.19

NRHO to North NRHO - Interior 355.33 412.27 242.08

Additional trial and error with the orbit chains assembled in this section could

also lead to orbit chains with reduced state discontinuities that are more easily con-

verged to optimal solutions. For example, paths on the invariant manifolds of the

low-amplitude orbit could be leveraged as intermediate links in an orbit chain con-

structed to facilitate a transfer to this orbit. The invariant manifolds of intermediate

orbits utilized in orbit chains assembled for other destination orbits could also prove

useful. An orbit chain with reduced state discontinuities will typically converge with

fewer iterations and less computational time, and may permit the reduction or even

elimination of the continuation process employed to obtain Gateway transfers with

the correct low-thrust acceleration level. The continuation process is time consuming,

and occasionally a solution computed with a higher low-thrust acceleration level can-

not be continued down to the desired thrust level. Thus ideally, an improved initial

guess would dispose of the need for the continuation process step.

The exterior transfers examined here are similar in geometry and destination to

those obtained by McCarty et al. [34], thus the work of these authors offers a conve-

nient point of comparison. McCarty et al. employ a global optimization algorithm
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Table 5.4.
Julian dates of initial epochs used to compute each Gateway transfer in
an ephemeris model.

Transfer Type Julian Date [days]

NRHO to DRO - Exterior 2460472.16

NRHO to DRO - Interior 2460487.92

NRHO to Low-Amp. Halo - Exterior 2460480.81

NRHO to Low-Amp. Halo - Interior 2460463.01

NRHO to North NRHO - Exterior 2460482.84

NRHO to North NRHO - Interior 2460462.50

to compute their transfers [122]; all three of the exterior type transfers computed in

their work require less propellant than those generated in this investigation. However,

the geometries, performance, and time of flight of the transfers computed here are

near enough to those computed by McCarty et al. to indicate that reasonable results

are obtained. Moreover, it is probable that employing the results of this section in

a global optimization scheme similar to the one in McCarty et al. would lead to

results with similar levels of propellant consumption. Indeed, it is possible that the

orbit chain initial guesses themselves could be directly linked with such a strategy.

This pairing would provide the global optimization process with an good initial guess

while skipping the intervening step of computing a single optimal point solution for

the desired transfer.

5.4 Missed Thrust Analysis

Missed thrust analysis is conducted for the exterior transfer computed from the

9:2 NRHO to the DRO. The intent is to demonstrate an approach to missed thrust
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analysis and highlight how direct collocation can be employed in this aspect of the

trajectory design process. It is not necessary to conduct a missed thrust analysis for

all computed Gateway trajectories to achieve this purpose. However, if any of the

solutions presented in Section 5.3 were utilized in an actual mission, missed thrust

analysis would be an essential step. Missed thrust analysis is conducted in the CR3BP

to reduce computation time; however, similar results are likely to be found if the

analysis is repeated in an ephemeris model.

A range of thrust outage periods are examined to provide an understanding of the

baseline trajectory’s robustness to missed thrust events of varying severity. In the

event of a thrust outage, ample time must be afforded for engineers on the ground to

identify and respond to the root cause of the event. The amount of time this process

requires depends upon the complexity of the initial error; thus, the sensitivity of the

baseline trajectory to a range of outage times must be understood. Outage times of

5, 7, and 14 days are explored. Together these results offer insight on how increasing

outage times impact the missed thrust analysis.

A missed thrust analysis that employs a five day outage time is examined first. The

results of the analysis are summarized in Figure 5.26 which plots the total propellant

consumption of each computed transfer as a function of the initial time of the thrust

outage period. Thus, each marker in Figure 5.26 represents a unique low-thrust

solution, each of which includes a thrust outage period that begins at a different

time. The color of each marker designates whether a new transfer was successfully

computed when a thrust outage, beginning at the indicated time, was introduced.

Blue markers denote a successfully recovered solution while red markers indicate

failure. Note, the y-axis values of the red markers do not reflect the actual propellant

consumption of these transfers at the end of the optimization routine. Rather, these

red markers are plotted with the same y value as the baseline solution to improve

the clarity of the plot. The actual propellant consumption of some of these failed

cases lies far outside the range of the successfully recovered cases, thus trends in the
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Fig. 5.26. Missed thrust analysis results for 5 day thrust outage time.

successful cases would be obscured if the true propellant consumption of the failed

cases was used to locate the red markers.

Trends in the missed thrust analysis are correlated with the thrust profile of the

baseline solution, therefore it is useful to plot the thrust profile along with these

results. The thrust profile of the baseline solution is outlined with white and grey

shading in Figure 5.26, where these colors indicate thrust and coast arcs, respectively.

For comparison, the thrust profile of the NRHO to DRO Gateway transfer is also

provided in Figure 5.27(a). Inspection of this plot reveals that the grey shaded regions

in Figure 5.26 correspond to thrust arcs that utilize, the maximum available thrust

value.
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(a) Thrust Profile (b) Configuration Space - Zoomed View

Fig. 5.27. Thrust profile and zoomed configuration space plot correspond-
ing to the Gateway transfer from a 9:2 NRHO to a DRO.

The missed thrust analysis generates many different optimal low-thrust transfers.

Given the 4 hour time interval between thrust outage events employed for this analysis

the total number of transfers represented in Figure 5.26 is 984. Some of these solutions

are essentially identical to the baseline because the thrust outage period falls entirely

within a preexisting set of coast arcs. However, if the thrust outage occurs within any

part of a thrust arc, a new transfer to the DRO is computed. The extent to which

this new solution differs from the baseline depends on where in the thrust arc the

outage occurs.

Two distinct trends are apparent in the results of the missed thrust analysis. First,

Figure 5.26 exhibits a linear trend in propellant consumption, where total propellant

consumption is higher when a thrust outage occurs later in a trajectory. The second

pattern evident in the missed thrust results is that propellant consumption spikes

when a thrust outage occurs during a thrust arc. The peaks of these spikes are not

necessarily centered at the middle of a thrust arc, and in some cases a thrust arc can

include more than one peak. The causes of these two trends are distinct, and thus

explained separately.
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The linear trend observed in Figure 5.26 results from the ability to leverage the

full duty cycle of the engines after a missed thrust event, rather than leveraging

the 90% duty cycle that is employed to converge the transfers presented in Section

5.3. This abillity means that the earlier a missed thrust event occurs on the base-

line trajectory, the more time is available for the higher duty cycle to be employed.

Counter-intuitively, the higher thrust level actually enables a lower total propellant

consumption because the duration of thrust arcs can be shortened due to the in-

creased effectiveness of the engines. Allowing Gateway to utilize a 100% duty cycle

for the entirety of a transfer following a missed thrust event does not necessarily re-

flect how the spacecraft would operate in reality. It may be that a higher duty cycle

is employed temporarily until a sufficient recovery from the missed thrust event is

achieved. However, it is easier to implement a general policy of permitting a 100%

duty cycle for the purposes of the missed thrust analysis. Following this analysis,

individual cases can be reexamined with different thrust policies if desired.

The second trend observed in the the missed thrust results is spikes in propellant

consumption when a thrust outage overlaps with all or part of a planned low-thrust

maneuver. The baseline solution is optimized such that the timing of low-thrust

maneuvers maximizes the mass delivered to the final orbit, thus it is expected that an

interruption of these maneuvers will result in a transfer that requires more propellant

to reach the same destination. However, this expectation does not account for the

fact that a higher duty cycle is permitted following a missed thrust event. Therefore,

some missed thrust results actually require less total propellant than the baseline,

even with the missed thrust event, because a 100% duty cycle is enabled. The peaks

of each spike in propellant consumption are generally located nearer the leading edge

of each thrust arc because a thrust outage at the beginning of a thrust arc has a

greater impact on the resulting trajectory than if one were to occur over halfway

through a planned maneuver. However, the geometry of the thrust arc does affect

this trend. For example, the thrust arc lasting from approximately 108 to 127 days

includes two spikes in propellant consumption with different amplitudes. This thrust
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arc corresponds to the spiral down to the DRO observed in Figure 5.8(b), and lasts for

one complete revolution around the Moon. Two regions on roughly opposite sides of

this loop are particularly sensitive to missed thrust events; however, a thrust outage

in the first of these regions has greater impact than one during the second.

Despite spikes in propellant consumption none of the cases that successfully re-

cover from a missed thrust event utilize more propellant than is available onboard

Gateway. The transfer that requires the most propellant only uses about 45 more

kilograms than the baseline solution, which is well within Gateway’s propellant mass

budget. These results are of course bolstered by the 100% duty cycle afforded to Gate-

way following recovery. The only region of concern on the baseline transfer occurs at

the beginning of the trajectory.

Unsurprisingly, the missed thrust analysis indicates that the most sensitive section

of the baseline trajectory is a thrust arc near the Moon. The occurrence of a 5 day

thrust outage early on in the NRHO to DRO Gateway transfer causes the optimizer

to fail to converge to a new solution even with the added 20 day margin. These failed

cases occur within the first 5 days of the transfer and all fall within the initial thrust

arc. A total of 29 cases, about 3%, of the missed thrust analysis fail to converge.

The section of trajectory corresponding to this thrust arc is plotted in configuration

space in Figure 5.27(b). This initial thrust arc allows the Gateway to escape the 9:2

NRHO and depart the lunar vicinity to begin its transit around the Earth. The highly

nonlinear dynamics near the Moon mean that even small changes to the trajectory

in this region can have significant effects on its downstream behaviour. Thus, a

thrust outage during this critical maneuver has an understandably large impact. The

failure of the optimizer to reconverge when a thrust outage occurs at the beginning

of the trajectory is not necessarily an indicator that it is impossible to reach the final

orbit in this scenario. It may be possible to compute a new transfer if a different

transfer geometry is introduced, or if steps are taken to improve the robustness of the

optimization routine.
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Some amount of “noise” is apparent in this first and subsequent missed thrust

solutions. That is, individual results that do not neatly fit the two broad trends just

described. The most obvious example of such noise is apparent in the first coast arc

that lasts from approximately 7 to 27 days on the baseline trajectory. Because the

thrust outages that fall within this period occur within a preexisting thrust arc the

results of each optimal transfer should be relatively similar and follow a neat positive

linear trend. Instead, the computed solutions are scattered around the mean of this

linear trend, and this scattering represents the direct collocation algorithm converging

upon solutions in similar but different optimal basins. This jumping between basins

is again the case when a sizable leap in propellant consumption is observed at around

75 days in Figure 5.26. A smoother set of missed thrust analysis results could likely

be obtained with adjustments to the direct collocation algorithm that discourage this

jumping behavior.

Extending the duration of the thrust outage has the expected result of increasing

the number of cases that fail to converge as well as the propellant consumption of

cases that do. Figure 5.28 features summaries of the missed thrust analysis results

obtained when 7 and 14 day thrust outage periods are employed. In both cases the

(a) 7 Day Thrust Outage (b) 14 Day Thrust Outage

Fig. 5.28. Summaries of missed thrust analysis results when 7 and 14 day
thrust outage times are employed.
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sensitive region at the beginning of the baseline transfer persists, and even grows.

However, the extended outage times also cause failed cases in new regions of the

baseline. For example, the results of generated with the 7 day thrust outage, shown

in Figure 5.28(a), reveal an area near the end of the baseline solution where the

optimizer fails to converge. This region corresponds to the final approach of the

DRO. The difficulty caused by a thrust outage occurring here is multiplied when the

outage time is doubled to 14 days. For this duration all missed thrust cases fail to

reconverge when an outage occurs later than 143 days on the baseline trajectory. It

is likely that more cases at the end of the baseline trajectory could be reconverged

if greater freedom were permitted for where the transfer inserts onto the DRO. This

freedom could be introduced by increasing the margin time added to the end of the

baseline, or by modifying the direct collocation algorithm so that the transfer is free

to connect with a range of points on the final DRO. In total, the percentage of failed

missed thrust analysis cases are 6% and 39% for the 7 and 14 day thrust outage

scenarios, respectively.

The results of the missed thrust analysis suggest several approaches for designing a

more robust NRHO to DRO transfer. Moreover, these strategies are likely applicable

to the other five Gateway transfers computed in this investigation. First, the initial

escape from the 9:2 NRHO should likely be redesigned to reduce the sensitivity of this

phase of the transfer to missed thrust events. One approach would be to create a more

immediate escape from the NRHO that does not include any additional loops around

the Moon. Thus, if a thrust outage does occur, the Gateway is already on a path

away from the sensitive region around the Moon, therefore a successful transfer to the

final orbit is more likely to be recovered following the thrust outage. Another region

of the baseline trajectory that could benefit from modification is the final approach

to the DRO. Several thrust arcs during this phase enable the Gateway to successfully

insert upon the final orbit. As suggested previously, greater freedom in the insertion

location on the DRO could reduce the failure rate due to missed thrust events in this

region. Additionally, it may be beneficial to include additional revolutions near the
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DRO for this phase that provide slack to utilize in the event of a thrust outage. A

simple way to implement this change is to stack additional revolutions of the final

DRO in the orbit chain employed to converge the initial guess.

The results of the 14 day missed thrust scenario highlight that the baseline solution

likely needs to be modified if thrust outages of this duration are expected. When

thrust outages are 2 weeks long, even missed thrust events that occur during the

long transit around the Earth-Moon system, far from either body, pose significant

challenges. Adding more time margin to the end of the baseline trajectory may

increase the number of recovered trajectories in Figure 5.28(b), but it is unlikely to

fix every case. Increasing the robustness of the NRHO to DRO transfer to 14 day

missed thrust events may require utilizing missed thrust design strategies such as

those proposed by the authors noted in Section 5.1.3.

Missed thrust analysis is not conducted for interior type transfers; however, the

results of the current analysis suggest that interior transfers could be particularly

difficult to make robust to missed thrust events. For the same reason that the intro-

duction of a thrust outage during the initial thrust arc of the NRHO to DRO transfer

poses difficulty, it will be challenging to accommodate similar outages on interior tra-

jectories where the majority of the transfer takes place near the Moon. This proximity

to the Moon is especially the case for the interior NRHO to DRO transfer, which in-

cludes multiple close flybys of the Moon. Further analysis is required, but if this type

of transfer geometry does prove difficult it would be a reason to favor exterior type

trajectories for achieving the transfers of interest to the Gateway mission.
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6. LUNAR ICECUBE MISSION DESIGN

The number of CubeSats launched per year has increased considerably in the last

decade and there are no signs of slowing. This trend is motivated by the low cost and

low risk of CubeSat missions compared to their larger counterparts supporting more

complex missions. The evolution of CubeSat applications is enabled by advancements

in spacecraft technology miniaturization and a greater availability of launch opportu-

nities. The vast majority of CubeSat missions, thus far, have remained in low-Earth

orbit (LEO); however, an increasing number of missions are pursuing applications in

regions well beyond LEO. The two MarCO spacecraft became the first interplanetary

CubeSats when they were deployed from the cruise stage of the Insight lander and

flew by Mars in 2018 [123]. In the near future, thirteen CubeSats will launch as

secondary payloads aboard the Artemis-1 mission, which delivers an uncrewed Orion

spacecraft on a test flight around the Moon. All of these CubeSats are bound for des-

tinations beyond LEO. Some, such as the Near Earth Asteroid Scout (NEA Scout)

and the CubeSat for Solar Particles (CuSP), will reach heliocentric space. Others,

such as Lunar IceCube, Lunar Flashlight, and LunaH-Map, expect to enter orbits

about the Moon. The CubeSats aboard Artemis-1 further demonstrate the utility of

the CubeSat platform in more far-flung regions of space and motivate the develop-

ment of similar mission scenarios. Already, a new set of CubeSat missions are being

developed as secondary payloads for Artemis-2.

While the CubeSat revolution brings extraordinary new opportunities for conduct-

ing science and demonstrating new technologies, it also introduces new challenges.

Despite technological improvements, ambitious CubeSat mission planning often in-

volves learning to do “more with less.” As a result of the challenges, some mission

design scenarios are enabled only via innovative trajectory design approaches that

fully exploit natural dynamics. The Lunar IceCube (LIC) concept offers an excellent
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example of the challenges. The current concept for operations involves the delivery

of a 6U CubeSat to a low lunar orbit (LLO), where LIC will collect data on water

transport throughout the lunar surface. Inherent in the task is a challenging tra-

jectory design scenario, as the huge change in energy required to transfer from the

initial deployment state to LLO is compounded by the limited control authority of the

LIC low-thrust engine. Furthermore, as a secondary payload, LIC is subject to shifts

in the launch date and in other conditions required by the primary mission. These

challenges necessitate a trajectory design strategy that is flexible and incorporates

natural forces to assist with achieving the required energy change.

This investigation extends the framework introduced by Pritchett, Howell and

Folta [124, 125] for designing the LIC baseline trajectory. The proposed framework

addresses some of the challenges of the Lunar IceCube trajectory design problem by

utilizing dynamical structures available in the Bicircular Restricted Four-Body Prob-

lem (BCR4BP) and a robust direct collocation algorithm. Designing in the BCR4BP

enables the gravitational force of the Sun to be smoothly leveraged to achieve part

of the required energy change while avoiding the additional perturbations of a full

ephemeris model. A key feature of the proposed design approach is the use of a

staging orbit near the Moon to split the trajectory into two phases: the first from

spacecraft deployment to the staging orbit and the second from the staging orbit to

the science orbit. This strategy allows the two halves of the LIC trajectory to be

designed mostly independently, thus simplifying the redesign process if deployment

conditions are modified. Moreover, a periodic orbit in the BCR4BP is employed as the

staging orbit to leverage its invariant manifolds for the design of efficient paths to and

from the staging orbit. Another crucial component in the proposed framework is a di-

rect collocation algorithm to collect the initial guesses produced in the BCR4BP and

deliver optimal low-thrust trajectories. The robust convergence properties of direct

collocation facilitate a wider variety of initial guesses despite large discontinuities in

states and/or time. Together, these key design choices produce a design process that

directly addresses some of the key challenges of the Lunar IceCube mission. After an
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overview of the necessary background, the proposed trajectory design framework is

described. Using the proposed strategies, sample Lunar IceCube trajectories are con-

structed in the BCR4BP for four different deployment dates. Additionally, transfers

to a different final orbit are explored in response to the recent interest in alternate

mission profiles for LIC. Finally, a portion of these trajectories are validated in an

ephemeris model. While the trajectory design procedure is applied to the Lunar

IceCube mission, it is sufficiently general for a wide variety of low-thrust missions,

especially those with limited control authority.

6.1 Background

The initial phases of development for the Lunar IceCube (LIC) mission began in

the early 2010s. While the specific objectives and composition of LIC have changed,

its ultimate destination, an orbit in the lunar vicinity, remains the same. The chal-

lenge of designing a low-thrust trajectory from the Earth to the Moon for LIC has

motivated many researchers to investigate this problem, and this work builds on their

efforts. A brief overview of the LIC spacecraft and mission follows, including the

pertinent literature.

6.1.1 Mission Overview

Selected in 2015 for launch aboard Artemis-1, the LIC mission is a collaborative

effort led by Morehead State University and supported by Goddard Space Flight

Center (GSFC), the Jet Propulsion Laboratory (JPL), and Busek [126]. The primary

objective of this mission is an investigation of the presence and transport of lunar

volatiles across a broad swath of the Moon’s surface, with a particular focus on water.

To enable collection of this data, the 6U CubeSat, depicted in Figure 6.1, conducts

science operations in a highly inclined low lunar orbit (LLO) with a perilune altitude

of 100 km. This orbit enables LIC’s primary science instrument, BIRCHES, to collect

IR spectral measurements across a range of longitudes on the sunlit side of the Moon.
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Fig. 6.1. Artist rendition of Lunar IceCube in lunar orbit. Credit: More-
head State University

The full set of Keplerian orbital elements that define the current science orbit are

summarized in Table 6.1; the orbit selection is driven by the science requirements

and the desire to maximize spacecraft lifetime while minimizing the station-keeping

costs [127]. Ultimately, science measurements collected by LIC will complement data

from similar past and contemporary missions, e.g., LCROSS and Lunar Flashlight,

to provide a more complete understanding of environmental processes on the Moon.

The transfer trajectory to the science orbit and any station-keeping control strat-

egy are accomplished via a BIT-3 Busek ion thruster, which is capable of a maximum

thrust level equal to 1.24 mN, a specific impulse (Isp) of 2640 seconds, and stores up to

1.5 kg of propellant [32]. Given the total 14 kg mass of LIC, these engine characteris-

tics deliver a maximum acceleration of 8.857×10−5 m/s2. This value is comparable to

the maximum acceleration values for other recent low-thrust spacecraft like Dawn [6].

The primary mission design challenge for LIC is a massive change in energy required

to transfer from the high-energy deployment state near the Earth to the low-energy
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Table 6.1.
Lunar IceCube science orbit Keplerian orbital elements defined in a

Moon-centered inertial frame. Inclination is measured relative to the
Moon’s equator and the right ascension of the ascending node (RAAN) is
defined with respect to the vernal equinox vector.

Orbital Element Value

Semi-Major Axis, a 4271.4 km

Eccenctricity, e 0.5697

Inclination, i 89.35◦

RAAN, Ω 65◦

Argument of Periapsis, ω 355◦

LLO, much of it delivered by this low-thrust engine. While the initial velocity of

LIC relative to the Earth is less than escape velocity, the subsequent ballistic path

includes a flyby of the Moon that enables LIC to escape the Earth-Moon system.

Low-thrust maneuvers are initiated shortly after deployment to prevent escape. In

contrast to this high-energy deployment, the LIC science orbit possesses an energy

sufficiently low to ensure that the spacecraft is securely captured at the Moon. While

accomplishing this transfer with a low-thrust engine presents challenges, it also offers

a unique opportunity to demonstrate the utility of this type of propulsion system for

future CubeSat missions beyond LEO.

6.1.2 Previous Contributions

Despite the trajectory design challenges of the LIC mission, engineers at GSFC

have developed baseline trajectories for a range of potential deployment dates; how-

ever, additional work is required to streamline the design process. A baseline tra-

jectory, developed at GSFC, which utilizes a launch date of November 6th 2020, is

plotted in Figure 6.2. The expected launch date for Artemis-1 is presently in flux;
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(a) Earth-Centered J2000 Inertial Frame (b) Earth-Moon Rotating Frame

Fig. 6.2. Baseline Lunar IceCube trajectory developed for a November
6th, 2020 launch date and computed in an ephemeris model.

however, a range of dates from early November 2020 through the following year are

under consideration. Each time a new deployment state and epoch is selected, the

baseline trajectory must be redesigned. Moreover, experience has demonstrated that

varying the launch date can significantly impact the geometry of any trajectories that

deliver LIC to the specified science orbit. Given the challenges of trajectory design

and the variability of the launch date, a systematic approach for generating a transfer

for LIC from deployment to a selected science orbit is desirable. Such a framework

must offer strategies for designing the LIC transfer that are applicable regardless of

launch date, and that reduce the time required to develop a baseline for a given launch

date. The necessity for such a framework has motivated a number of researchers to

formulate innovative trajectory design approaches for LIC. The present investigation

builds upon this excellent body of work. Moreover, these researchers draw upon a

wealth of literature on trajectory design with dynamical systems theory.

Given a challenging trajectory design scenario and uncertain launch conditions,

engineers at GSFC have employed the results from several investigations on LIC tra-

jectory design. A strategy that utilizes the high-fidelity General Mission Analysis
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Tool (GMAT) to design an LIC trajectory with a capture orbit at the Moon is offered

by Mathur [128]. An innovative design approach for LIC is also presented by Bosanac,

Folta, Cox, and Howell; the Lunar IceCube trajectory is subdivided into three phases:

deployment, phasing and energy adjustment, and lunar capture. A strategy for link-

ing these phases that incorporates periapse maps and phasing arcs generated in the

Sun-Earth Circular Restricted Three-Body Problem (CR3BP) or the BCR4BP is de-

veloped by Bosanac et al. [129–131]. Particular focus on the dynamics of the lunar

capture phase is delivered separately by Folta et al. [132]. The strategy by Bosanac et

al. is effective, and the recent investigation by Pritchett, Howell, and Folta expands

upon this work by approaching the design problem with a framework that utilizes

BCR4BP dynamical structures and direct collocation [124,125]. The current analysis

offers greater detail on this recent strategy and demonstrates an extension via its

application to transfer design to an alternate final science orbit.

In addition to the previous work on LIC, this current investigation is influenced by

a greater body of literature on leveraging the influence of the Sun to design transfers

from the Earth to the Moon. Belbruno and Miller demonstrate new types of Earth-

to-Moon trajectories by simultaneously incorporating the gravitational influence of

the Sun in addition to the Earth and Moon. Strategies for utilizing this acceleration

to develop low-energy trajectories from the Earth to the Moon are developed by

many authors, including Koon et al. [133], Gómez et al. [134], as well as Parker

and Martin [135]. The work of these authors is applied to the Genesis [136] and

GRAIL [137] missions among several others. Low-energy trajectory design techniques

are also applied to design low-thrust trajectories to the Moon by Mingotti et al. [138]

and Zanottera et al. [139]. The current investigation employs direct collocation to

compute low-thrust transfers, building on the work of additional authors such as

Enright and Conway [140] as well as Grebow, Ozimek, and Howell [18] who also

employ this algorithm to generate low-thrust Earth-to-Moon transfers. Perez-Palau

and Epenoy explore similar transfers using an indirect optimal control approach in a

four-body dynamical model [141]. Some authors investigating low-energy trajectory
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design also demonstrate transfers from Earth-Moon halo orbits to LLO, a strategy

employed in this investigation. Parker and Anderson [142] offer an impulsive transfer,

while Mingotti et al. demonstrate a low-thrust result [143]. Recently, Cheng et

al. [144] and Cao et al. [145] have more closely examined impulsive transfers from

halo orbits to LLO in the CR3BP.

6.2 Trajectory Design Framework

The proposed trajectory design framework is distinguished by three key features:

modeling directly in the BCR4BP, employing a staging orbit, and computing low-

thrust transfers with a direct collocation technique. Together, these design choices

deliver a flexible and robust procedure for constructing the LIC trajectory. A staging

orbit near the Moon divides the mission design challenge into two phases, as illus-

trated in Figure 6.3. Phase 1 occurs from deployment to the staging orbit and Phase

Fig. 6.3. Schematic of a trajectory design framework for the nominal
Lunar IceCube mission profile.

2 passes from the staging orbit to the destination orbit, nominally the low lunar alti-

tude science orbit. Use of the staging orbit facilitates the division of the end-to-end

Lunar IceCube trajectory into these two distinct phases, thus, mitigating some of the

design challenge. Initial guesses for each phase are generated nearly independently.

Discrepancies in epoch between the two phases that result from this independence are

overcome by maintaining the staging orbit until reaching the desired departure epoch.
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Initial guesses for both phases in the trajectory design framework are assembled with

the aid of two different maps. These maps display intersections with the hyperplanes

Σ1 and Σ2, defined by the Sun angles θS1 and θS2 , respectively. The first map captures

intersections of Σ1 by forward propagated deployment trajectory arcs, D, and back-

ward propagated paths on the stable manifold for the staging orbit, W S. Similarly,

the second map captures intersections of Σ2 by forward propagated trajectories along

the unstable manifold of the staging orbit, WU , and backward propagated capture

trajectory arcs, C. Close alignments between hyperplane intersections of forward and

backward propagated trajectories are identified and their corresponding trajectory

segments are assembled into an initial guess for the direct collocation tool COLT.

When the pre-specified destination orbit in Phase 2 is shifted from an LLO to a near

rectilinear halo orbit, an alternate orbit chain approach is employed to construct an

initial guess.

6.2.1 Nearest Neighbor Search Algorithm

The proposed trajectory design framework employs maps to aid the construction

of initial guesses that are passed to the direct collocation algorithm. Maps capture

the returns of trajectory segments to a particular hyperplane, Σ. Frequently, maps

facilitate the identification of close connections between two sections of a spacecraft

trajectory, e.g., one propagated forward in time and the other backward. Points

along these trajectories that intersect the selected hyperplane are displayed on the

map. Sample hyperplanes include a physical plane in configuration space, e.g., the

xy-plane, or a representation of the state vectors at the occurrence of a specific epoch.

In this investigation the Sun angle, θS, defines hyperplanes for two different maps.

Parameters such as position, velocity, or energy at the hyperplane intersections may

be displayed on the map. The maps in this analysis include points, i.e., hyperplane

crossings, from many trajectories, and each trajectory potentially possesses multiple

returns to the hyperplane. Due to the large number of points and multiple dimensions
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representing each point plotted on the map, it is challenging to visually identify

the best links between trajectory segments. Therefore, a nearest neighbor search

algorithm aids the identification of points on maps that share similar characteristics.

Nearest Neighbor (NN) algorithms are employed in many computer science fields

under a variety of names [146]. Fundamentally, the nearest neighbor problem involves

locating the point p from within a larger set of points P with the shortest distance

to a given point q, assuming all points occupy a space of dimension D [147]. In

the present application, hyperplane intersections of the forward propagated group of

trajectories provide one set of points, while intersections of the backward propagated

trajectories comprise the other set. Thus, an NN search is ideally suited for identifying

close connections between these two sets. The tool Poincare, developed at JPL, em-

ploys NN algorithms for this purpose [148]. In this investigation, Matlab’s knnsearch

algorithm is employed for the NN search. Furthermore, a standardized Euclidean dis-

tance metric is employed to compute the distances between points. Eight parameters

associated with each hyperplane intersection are utilized as the NN search criteria in

this investigation: the six position and velocity states, the value of the Hamiltonian,

H, and the angle of the xy-plane projection of the velocity vector with respect to

x̂. While the Hamiltonian and the in-plane velocity vector angle do not include any

information not available in the state vectors, their inclusion is observed to improve

the quality of the “matches” identified by the NN search algorithm. Because these

eight parameters can possess different magnitudes, the standardized Euclidean dis-

tance metric applies scaling to prevent one set of parameters from biasing the search.

The standard deviations for each of the NN search parameters are used as scaling

factors. If desired, these scaling factors may be further weighted to emphasize close

matches in specific parameters. These capabilities enable the NN search algorithm as

a useful tool for complementing, or even replacing, visual inspection of the maps.
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6.2.2 Staging Orbit Selection

A staging orbit aids in dividing the LIC transfer into two distinct phases to be

designed with relative independence. The staging orbit simplifies the design problem,

alleviates epoch mismatches, and offers useful dynamical structures. It is advanta-

geous to decompose the LIC trajectory design problem into multiple phases, because

this reduction produces several smaller problems that are easier to design and op-

timize. Other researchers employ a similar approach for developing LIC transfer

solutions [131]. As long as solutions for Phase 1 and 2 arrive at or depart the staging

orbit, respectively, the total transfer solution is continuous in position and velocity.

However, a complete solution must also be continuous in time, and designing the

LIC trajectory as a series of smaller problems potentially introduces timing discon-

tinuities between phases. Fortunately, the staging orbit also offers a remedy for this

challenge. Timing discrepancies between the end of Phase 1 and the beginning of

Phase 2 are eliminated by remaining in the staging orbit until reaching the desired

departure epoch. Finally, many staging orbit candidates in the BCR4BP possess

invariant manifold structures that offer energy-efficient paths for inserting on or de-

parting from the staging orbit. These structures guide the trajectory design process

for Phases 1 and 2.

A variety of periodic and quasi-periodic structures available in the BCR4BP are

available to be leveraged as staging orbits for the LIC trajectory design problem, How-

ever, only one staging orbit candidate is examined in this investigation, a 2:1 synodic

resonant halo orbit about the Earth-Moon L2 libration point, depicted in Figure

6.4. This orbit is selected because of its location at the Earth-Moon L2 gateway,

its out-of-plane nature, and its simplicity relative to quasi-periodic orbits. Follow-

ing an initial lunar flyby, the high-energy deployment of LIC sends the spacecraft

well beyond the orbital radius of the Moon. When LIC finally returns and again

approaches the Earth-Moon vicinity, it most frequently arrives via the Earth-Moon

L2 gateway. Given this behavior, a staging orbit positioned in the Earth-Moon L2
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(a) X-Y Plane View (b) 3D View

Fig. 6.4. Two views of a 2:1 synodic resonant halo orbit computed in
the Sun-Earth-Moon BCR4BP and displayed in the Earth-Moon rotating
frame. This orbit is generated about the Earth-Moon L2 libration point,
and is used as a staging orbit in the proposed design framework.

gateway with invariant manifold structures that guarantee transit through the gate-

way is selected. Additionally, as the current LIC science orbit is highly inclined with

respect to the Moon’s equatorial plane, an out-of-plane staging orbit is selected to

reduce the plane change that is required to access the science orbit and potentially

leverage natural flows to further effect a plane change. A variety of quasi-periodic

orbits in the BCR4BP are located at the Earth-Moon L2 gateway and also exhibit

out-of-plane motion; however, these orbits are more complex to generate and do not

offer the exact periodicity that is most convenient for eliminating epoch discontinu-

ities. Thus, a periodic orbit is employed in this investigation and an exploration of

the utility of QPOs for this application is reserved for future work.

The 2:1 synodic resonant halo orbit in the BCR4BP possesses important differ-

ences in geometry compared to its CR3BP and ephemeris counterparts. A member

of the northern L2 halo family in the CR3BP that possess a 2:1 synodic resonance is

used as an initial guess to generate the same halo orbit in the BCR4BP. Two revolu-

tions of the CR3BP orbit are stacked and then converged to yield a BCR4BP orbit
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as displayed in Figure 6.4. While the CR3BP and BCR4BP versions of this orbit

possess the same time per revolution, they exhibit notably different geometries as is

apparent in Figure 6.5. The difference in geometry is most prominent along the ẑ-axis

(a) 3D View (b) X-Z Plane View

Fig. 6.5. Comparison of the selected staging orbit in three different mod-
els. Significant differences in geometry are apparent between the three
orbits, particularly when viewed in the X-Z plane. The CR3BP northern
L2 halo orbit possessing a 2:1 synodic resonance is used as an initial guess
for the same orbit in the BCR4BP. The BCR4BP result is then employed
as an initial guess for an ephemeris orbit with similar motion.

direction; the BCR4BP halo orbit possess greater excursions in the positive and neg-

ative out-of-plane directions associated with this component than the corresponding

CR3BP orbit. The dynamical justifications for this shift in geometry are not clearly

articulated; however, these orbits are consistent with similar variations between the

CR3BP and BCR4BP versions for other periodic orbits, for example, the 9:2 synodic

resonant NRHO [27,149]. This variation in geometry is particularly important when

transfers computed in the BCR4BP are transitioned to an ephemeris model because

some of the geometries available in the BCR4BP are not easily replicated in this latter

model.
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The ephemeris version of the 2:1 synodic resonant halo orbit that is selected

for use as a staging orbit is computed using the BCR4BP orbit as an initial guess.

Multiple revolutions of the BCR4BP orbit are stacked and these are transitioned to

the ephemeris model where they are corrected to be a continuous trajectory. When

transitioning the staging orbit to an ephemeris model from the BCR4BP, it is essential

to select an initial epoch that corresponds well with the initial Sun angle of the orbit.

This initial guess and transition process generate the orbit displayed in Figure 6.5.

The plotted ephemeris orbit exhibits similar geometry to its CR3BP and BCR4BP

counterparts, but with distinct differences. These differences may be a result of the

process employed to transition the desired orbit between the three models considered

in Figure 6.5. A similar procedure for achieving this transition is discussed by Boudad

et al. [27]. Further investigation is required to develop strategies for transitioning

solutions between models in a manner that preserves desirable characteristics.

Though the difference in geometry between the BCR4BP and ephemeris versions

of the staging orbit can make transitioning LIC transfers to the ephemeris model more

challenging, it is still possible. Moreover, the inclusion of the Sun in the BCR4BP

means that the dynamics along other sections of the LIC transfers computed in this

model are more similar to those of an ephemeris model, and therefore easier to tran-

sition. Overall, the differences between periodic orbits in the CR3BP, BCR4BP, and

ephemeris model add challenges to the process of transitioning results to an ephemeris

model, but do not eliminate the utility of employing the BCR4BP in this trajectory

design framework.

6.2.3 Phase 1 Trajectory Design: Deployment to Staging Orbit

Design of Phase 1 for the LIC trajectory is facilitated by the creation of maps that

display intersections of Σ1 along trajectories propagated forward from deployment and

backward along the stable trajectories on the invariant manifold of the staging orbit.

To expand the options available from these maps, a range of D and W S trajectory
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arcs are generated. Different W S arcs are produced by changing the state and epoch

corresponding to the departure point from the periodic orbit. In contrast, because the

deployment state and epoch are fixed, a span of D trajectory segments is generated

by varying the thrust force direction prior to the first lunar flyby. The deployment

dates and corresponding initial Sun angle used in this investigation are displayed in

Table 6.2.

Table 6.2.
Deployment dates and corresponding Sun angles considered for Lunar
IceCube. At the time of writing Lunar IceCube is scheduled to launch in
November 2020.

Deployment Date Initial Sun Angle [rad]

Oct. 9th, 2018 6.1557

Jun. 27th, 2020 4.8193

Nov. 6th, 2020 2.0185

Mar. 1st, 2021 2.6943

Trajectories propagated forward in time from the deployment condition, D, are

split into three parts, an initial coast interval, a thrust segment, and a second coast

interval. An example of this subdivision is displayed in Figure 6.6(a). In this case, the

duration of the first coast segment is set to 0.8 days. This time is variable, and can be

modified either during the formulation of the initial guess or by the direct collocation

algorithm; however, a minimum of 8 hours must be reserved for performing spacecraft

systems checkouts and collecting tracking data following deployment.

Following the initial coasting interval, a multi-day thrust segment is introduced.

A thrust segment of three days is introduced in this investigation; however, this value

is variable and is modified to adjust the post-flyby behavior of the deployment tra-

jectory. The direction of the thrust vector along this segment is varied to generate a

range of deployment trajectories. The angle, α, determines the thrust vector direc-
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(a) Deployment Trajectories (b) Staging Orbit Invariant Manifolds

Fig. 6.6. (a) Sample range for deployment trajectories in the creation of a
Phase 1 map, plotted in the Earth-Moon rotating frame. The first coast
period is 0.8 days, the thrust segment is 3 days, and the second coast
section is 4 days. Thrust vectors span a range of α angle values from 0 to
360◦ in the velocity-normal-binormal frame. Trajectories that impact the
Moon are omitted. (b) Stable (blue) and unstable (magenta) manifold
trajectories plotted in the Earth-Moon rotating frame and originating
from the 2:1 resonant L2 halo orbit displayed in Figure 6.4.

tion, measured, relative to the v̂ unit vector in the velocity-normal-binormal (VNB)

frame. This frame is defined such that the v̂ unit vector is in the direction of the

spacecraft velocity vector expressed in the rotating frame, as depicted in Figure 6.7.

Additionally, the n̂ unit vector is in the direction of the spacecraft’s angular momen-

tum vector relative to the barycenter, and the b̂ unit vector is defined to complete

the orthonormal set, b̂ = v̂ × n̂. The angle α determines the direction of the thrust

vector in the vb-plane, and no out-of-plane, i.e., n̂ component of the thrust vector, is

introduced. By varying α from 0◦ to 360◦, many different post-flyby trajectories are

generated, as seen in Figure 6.6(a). An out-of-plane angle in the VNB frame is omitted

to reduce the number of variables that are varied to generate post-flyby trajectories;

however the potential benefits of introducing such a variable could be explored in fu-

ture work. Following the thrust segment, a second coast segment is propagated until
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Fig. 6.7. Illustration of the orientation of the thrust vector, T , in the
velocity-normal-binormal (VNB) frame. The origin of this frame is cen-
tered on the spacecraft S. The vector r is the position vector from the
barycenter of the rotating frame to the spacecraft, and v is the spacecraft
velocity expressed in the rotating frame. The cross product of these two
vectors, n = v×r, yields the angular momentum vector of the spacecraft
with respect to the barycenter. The vector n̂ is defined such that v̂, n̂,
and b̂ are an orthonormal set.

a limit on either the number of days or the distance from the barycenter is reached.

Intersections of these D trajectory arcs with the hyperplane Σ1 are recorded and used

to generate the map. Any D trajectory arcs that impact the Moon are excluded from

the map.

The forward propagated D trajectory arcs are linked to trajectories propagated

backwards in time along the stable manifold, W S, of the staging orbit. The stable

invariant manifolds associated with periodic orbits offer efficient paths onto the orbits.

Thus, using these trajectories to guide LIC to the staging orbit should lead to a

solution that requires less propellant than other potential insertion paths. Figure

6.6(b) displays trajectories along the stable manifold. These manifold paths flow

either in the positive or negative x direction. In the former case, trajectories on the

manifold tend to escape the Earth-Moon system, and these paths offer more useful

connection points with the D trajectory arcs. Stepping off the periodic orbit and
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onto the stable manifold at different states and epochs around the orbit generates a

variety of manifold paths.

A map is created to facilitate the process of joining the two halves of the Phase

1 LIC trajectory by recording the intersections of the D and W S trajectory arcs on

the hyperplane Σ1. Trajectories are propagated until reaching either a maximum

time limit or a maximum distance from the Earth. In this case, a maximum time

of 100 days and a maximum Earth distance of 3 × 106 km are employed for both

the D and W S propagation. A set of sample maps is displayed in Figure 6.8, where

the Sun angle at which events are recorded is θS1 = 318◦. The events that occur

(a) Earth-Moon Rotating Frame (b) Sun-B1 Rotating Frame

Fig. 6.8. Map of Σ1 intersections of the forward propagated D and back-
ward propagated W S trajectory arcs in the BCR4BP plotted in the Earth-
Moon and Sun-B1 rotating frames. Intersections are projected in the xy-
plane for both frames. This map is generated for the November 2020
deployment and using a Σ1 Sun angle of θS1 = 318◦.

along the D trajectories are plotted as diamonds, while the events on the W S arcs

are marked as asterisks. The same events are plotted in the Earth-Moon and Sun-

B1 rotating frames; however, the Earth-Moon rotating frame map is referenced most

frequently in this investigation. Each map marker is colored according to the value

of the Hamiltonian, H, for the spacecraft at the time of the event. Additionally,
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the spacecraft’s xy-plane velocity direction is plotted as an arrow centered at the

marker. Adding this extra information (essentially, a glyph [15]) to each plot aids

the visual identification of close matches between D and W S trajectories. However,

despite these additional map features, the large number of points on each map make

it challenging to visually identify promising intersections.

To alleviate the difficulty of visually identifying intersections that align trajectories

from D and W S propagations, an NN algorithm is employed. Using the inputs and

weighting from Section 6.2.1, the NN algorithm rapidly identifies the best matches

on a given map. As a consequence of the speed of the NN algorithm, it is possible

to rapidly search maps across a range of θS1 values. To identify the most promising

Phase 1 initial guesses, maps are generated for θS values from 0◦ to 360◦ incorporating

an interval of 1◦. The top three NN algorithm results from each of these maps are

compiled and examined manually to determine the candidates to test as an initial

guess. The collection of NN algorithm results are sorted according to the lowest values

for discontinuities in either position magnitude, velocity magnitude, Hamiltonian, or

in-plane velocity pointing error. Matches that balance discontinuities in each of these

categories or possesses extremely low values for the discontinuities in any one quantity

are selected for use as an initial guess. The rapid search capability offered by the NN

algorithm allows the best matches from hundreds of thousands of possibilities to

be quickly identified. This technique improves the quality of the matches that are

selected and, therefore, the utility of the initial guesses generated for Phase 1. A close

match, identified by the NN algorithm, is highlighted in Figure 6.8. The D and W S

trajectories are propagated to the selected intersection times and used as an initial

guess for the direct collocation algorithm.

6.2.4 Phase 2 Trajectory Design: Staging Orbit to Science Orbit

Phase 2 along the nominal LIC trajectory consists of the transfer from the staging

orbit to the science orbit. An initial guess for this phase is assembled in a manner
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similar to Phase 1; intersections with Σ2, along a range of forward and backward

propagated trajectories, are plotted on a map to select the initial guess. In this case,

paths along the unstable manifold, WU , of the staging orbit comprise the forward

propagated trajectory segments, as depicted in Figure 6.3. The backward propagated

segments, C, consist of trajectories propagated with low-thrust, in reverse time, from

different true anomaly values along the specified science orbit. The map used to link

the forward and backward propagated trajectories consists of intersections with Σ2,

defined by the Sun angle θS2 , along these trajectory segments.

Trajectories along the unstable manifold, WU , from the staging orbit offer energy

efficient paths for departing the orbit and initiate a spiral down path to the science

orbit. Apart from their inverse direction, these trajectories behave similarly to those

along the stable manifold and are displayed in Figure 6.6(b). Paths on WU offer a

variety of locations and epochs at which to depart the staging orbit, and intersections

with Σ2 along these trajectories populate the Phase 2 map.

To generate a range of C trajectories that insert onto the final orbit, backward

propagation is initiated from true anomaly values on the orbit that span the full

360◦ range. The backward propagation assumes an anti-velocity control law; that

is, the thrust vector is always oriented along the −v̂ direction in the VNB frame as

displayed in Figure 6.7. Recall that the VNB frame is defined relative to the velocity

vector as defined in the rotating frame. Moreover, the magnitude of the thrust vector

is set equal to the maximum thrust of the LIC engine. Application of this control

law produces a trajectory that, in forward time, gradually spirals down to the final

science orbit, as plotted in Figure 6.9(a). While the magnitude and direction of the

thrust vector are constant for all backward propagated trajectories, using a range

of true anomaly values to initialize propagation ensures that each trajectory evolves

differently, as apparent in Figure 6.9(b). Trajectories are again propagated until

reaching either a maximum time limit or a maximum distance from the Earth. In

this case, WU arcs are propagated for a maximum time of 100 days while C trajectory

segments are propagated up to 200 days. Both types of trajectories are propagated
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(a) Single backward propagated trajectory in

the Moon-centered J2000 inertial frame.

(b) Multiple backward propagated trajectories

in the Earth-Moon rotating frame generated by

initiating propagation at different true anomaly

values on the science orbit.

Fig. 6.9. Backward propagation from the science orbit with a constant
maximum thrust anti-velocity thrust vector.

to a maximum distance from the Earth of 6 × 105 km. Intersections with Σ2 along

each propagated trajectory are recorded and added to the Phase 2 map.

To generate the C trajectory arcs, an epoch for insertion onto the science orbit

as well as a spacecraft mass at insertion must be assumed. Reasonable inferences

for these values introduced during the initial guess formulation are later adjusted by

the direct collocation algorithm to ensure a continuous final result. Experience with

previous analyses suggests that the total duration of the LIC transfer is approximately

one year. This duration is added to the deployment date to produce an estimated

epoch at science orbit insertion (SOI). The SOI epoch is then employed to compute a

corresponding Sun angle, θSOI , and the angle between the inertial and rotating frames,

iSOI , both required to propagate the C trajectory arcs in the BCR4BP. Earlier

investigations also indicate that LIC consumes approximately half of the available

propellant mass to execute the transfer from deployment to science orbit, therefore a

final mass at SOI, mSOI , of 13.25 kg is assumed. While this variable can be adjusted



211

in the direct collocation algorithm, the initial guess estimate does bias the mSOI value

for the converged Phase 2 solution. However, this bias is overcome by increasing mSOI

via a natural parameter continuation process after an initial solution is converged.

Finally, even without suitable insight or intuition for guidance in selecting the epoch

and mass at SOI, the robustness of the direct collocation algorithm increases the

likelihood that poor estimates for these values still produce useful initial guesses.

Intersections with Σ2 along theWU and C trajectory segments generated for Phase

2 are projected onto the xy-plane and colored according to their H value. These

three parameters, along with the in-plane direction of the velocity vector, assist with

visual identification of close matches between trajectory segments. A sample map is

displayed in Figure 6.10(a), where the Sun angle that defines Σ2 is θS2 = 75◦. The

(a) Phase 2 Map in the E-M Rotating Frame (b) Zoomed of Phase 2 Map Near the Moon

Fig. 6.10. Map of Σ2 intersections of the forward propagated WU and
backward propagated C trajectory arcs in the BCR4BP. Intersections are
projected in the xy-plane of the Earth-Moon rotating frame, and the Sun
angle selected for Σ2 is θS2 = 66◦. The zoomed view displays an intersec-
tion selected by the NN search algorithm. This map corresponds to the
October 2018 deployment date and assumes an SOI epoch of midnight on
September 24th, 2019.

intersections that occur along the C arcs are plotted as diamonds, while those on the

WU paths are displayed as asterisks. The process employed in Phase 1 for compiling
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the best NN algorithm results from maps across a range of θS values is again employed

in Phase 2. The rapid search capability offered by the NN algorithm is especially

advantageous in Phase 2 because it is generally more challenging to identify useful

matches from the map. This difficulty arises as the nonlinear dynamics near the

Moon evolve, increasing the sensitivity of the corrections process. The heightened

sensitivity heightens the importance of the construction of initial guesses with small

state discontinuities. A close match identified with this process, is highlighted in

Figure 6.10(b). The deployment and manifold trajectories propagated to the selected

intersection times are then used as an initial guess for the direct collocation algorithm.

Modifications to COLT’s nominal collocation scheme enable design of a continuous

low-thrust transfer from the staging orbit to the final science orbit for LIC. The

low-thrust spiral required to transfer between these two orbits is typically long and

includes many revolutions. This type of trajectory is challenging to optimize using the

collocation framework implemented in COLT, which employs Cartesian coordinates to

represent position and velocity states. Other collocation schemes that utilize modified

equinoctial elements (MEE) have successfully optimized low-thrust spiral trajectories

[150,151]. However, rather than implement a complex multi-phase collocation scheme

that mixes Cartesian and MEE coordinates, a simplified approach is introduced. This

strategy divides Phase 2 into two halves: one is solved with direct collocation and the

other is explicitly propagated backward in time from science orbit insertion (SOI).

The backward propagated section of the LIC trajectory is updated in the direct

optimization process by the addition of three design variables and a constraint. The

three design variables govern: the backward propagation time from SOI, τspiral, the

true anomaly value on the science orbit at insertion, νSOI , and the spacecraft mass

at insertion, mSOI . These three variables are appended to the design variable vector

that is typically employed for direct collocation, X, to form the set of design variables

used for Phase 2 of the LIC transfer, Xspiral, i.e.,

Xspiral = [X, τspiral, νSOI , mSOI ] . (6.1)



213

By including these variables in the corrections process, the evolution of the spiraling

LIC trajectory is allowed to change and is joined with the section of the transfer

that departs from the staging orbit at a match point. A constraint is added to ensure

state and mass continuity between these two halves of the LIC trajectory. Experience

suggests that convergence is improved when the match point for this constraint is

located at least several lunar radii beyond the Moon. This convergence difficulty is

due to the increased sensitivity of the constraint partials when the match point is

too near the Moon. Therefore, the initial guesses provided by the Phase 2 map are

filtered so that the potential match point is located at least 3 lunar radii from the

Moon.

With the addition of the three design variables and continuity constraint, a single

direct collocation problem is solved to generate a continuous low-thrust transfer from

the staging to the science orbit. Because a sub-optimal control law is used for the

spiraling portion of the trajectory, the result of the direct collocation algorithm is

not a fully optimized low-thrust transfer. However, optimization aids in minimiz-

ing the propellant consumed before the explicitly propagated spiraling phase begins.

Additionally, because the selected control law ensures the maximum rate of change

of the spacecraft’s energy, reducing the time required to achieve lunar capture, pro-

pellant consumption is also reduced. Finally, after an initial solution for Phase 2 is

computed, a continuation process increase the mass delivered to the science orbit. In

this approach, a feasible solution with a fixed mass at science orbit insertion, mSOI ,

is computed and the value of mSOI is raised at each continuation step. Despite the

sub-optimality of the low-thrust spiral, this approach for designing Phase 2 of the

LIC trajectory generates successful trajectories in the BCR4BP that deliver LIC to

the desired science orbit while remaining well within the allocated propellant mass.

Moreover, this technique achieves this goal without the complexity of a multi-phase

collocation scheme.
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6.2.5 Phase 2 Trajectory Design: Staging Orbit to NRHO

An alternate destination under consideration for LIC is a 9:2 synodic resonant

near rectilinear halo orbit (NRHO), henceforth denoted the 9:2 NRHO. This same

NRHO currently serves as the nominal orbit for the upcoming Gateway mission. The

orbit is a member of the southern halo orbit family evolving from the Earth-Moon

L2 libration point. Transferring to the 9:2 NRHO would afford LIC the opportunity

to demonstrate operations in this type of multi-body orbit prior to its use by the

Gateway mission. The trajectory design challenge of transitioning from the selected

staging orbit to a 9:2 NRHO offers an excellent application of the orbit chain approach

demonstrated in previous chapters.

As a result of the flexibility and robustness afforded by the use of the staging orbit

and the direct collocation algorithm, it is straightforward to adapt the LIC trajectory

design framework to a new Phase 2 destination. Because the 9:2 NRHO is at a

higher energy level than the low-altitude science orbit, the change in energy required

to reach the NRHO does not necessitate a long low-thrust spiral. Consequently,

constructing an initial guess for this alternate Phase 2 transfer scenario employs

a simpler orbit chain approach. Initial guess assembly follows the same procedure

outlined in Chapter 4, except the periodic orbits employed in this case exist in the

BCR4BP rather than the CR3BP. One or more revolutions for each periodic orbit

are stacked along the departure and arrival orbits, and the resulting initial guess

appears in Figure 6.11. A thrust magnitude of nearly zero and an anti-velocity thrust

vector orientation is initially assumed for all segments. This relatively uninformed

initial guess is sufficient for the direct collocation algorithm to compute an optimal

low-thrust transfer. However, a continuation process is often required to lower the

maximum thrust magnitude from a slightly higher value to the 1.24 mN available to

LIC.
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(a) xy-Plane View (b) 3D View

Fig. 6.11. Initial guess for a transfer from the 2:1 synodic resonant E-M
L2 northern halo orbit to the 9:2 synodic resonant E-M L2 southern near
rectilinear halo orbit in the BCR4BP.

6.2.6 Design Framework Summary

The proposed trajectory design framework offers a systematic approach for con-

structing a Lunar IceCube transfer from deployment to the final orbit beginning only

with an initial state and epoch. The required steps, described in detail in the preced-

ing sections, are summarized here:

1. Define Lunar IceCube deployment state and epoch.

2. Select staging orbit that splits the LIC transfer into Phase 1 and 2.

3. Create a Phase 1 map by propagating deployment arcs with varying thrust

profiles forward in time and trajectories on the stable manifold of the staging

orbit backward in time. On the map, record intersections of the hyperplane Σ1

that is defined by the Sun angle θ1.

4. Identify close intersections of forward and backward propagated arcs on the

Phase 1 map by employing a nearest neighbor algorithm, and use the corre-

sponding arcs to construct an initial guess for Phase 1.
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5. Utilize direct collocation to converge an optimal low-thrust solution for Phase

1 of the LIC transfer.

6. If the destination orbit is a low lunar orbit, then create a Phase 2 map by

propagating trajectories forward in time on the unstable manifold of the staging

orbit and low-thrust spirals backward in time from different true anomaly values

on the final orbit. On the map, record intersections of the hyperplane Σ2 that

is defined by the Sun angle θ2.

7. Select close intersections of forward and backward propagated arcs from the

Phase 2 map by employing a nearest neighbor algorithm, and use the corre-

sponding arcs to construct an initial guess for Phase 2.

8. If the destination orbit is the 9:2 NRHO, construct an initial guess with an orbit

chain technique.

9. Use the result of Steps 6 and 7 or Step 8 to converge a low-thrust solution for

Phase 2 of the LIC transfer using direct collocation. Use the delivered mass to

the staging orbit from Phase 1 as the initial mass for Phase 2.

10. Combine the results of Phases 1 and 2 and the intervening time on the staging

orbit to obtain the complete transfer characteristics.

The standardized procedure outlined by these steps is adaptable to a range of poten-

tial launch dates or final orbits. Thus, the baseline LIC trajectory may be quickly

adapted to changes in the mission profile that occur prior to launch.

6.3 Lunar IceCube Results

The previous framework is effective for designing LIC trajectories from deployment

to the destination orbit over a range of potential launch dates. Phase 1 results offering

examples of the available transfer geometries are included. Phase 2 results from the

staging orbit to both the low lunar orbit and the 9:2 NRHO are constructed. The
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Phase 2 results demonstrate the challenges and opportunities in the highly nonlinear

lunar environment. A subset of results generated in the BCR4BP are selected for

validation in an ephemeris model that includes the Earth, Moon, and Sun.

6.3.1 Phase 1 Results: Deployment to a Staging Orbit

An initial guess for Phase 1 of the Lunar IceCube trajectory is assembled by

employing the NN search algorithm to identify close matches between intersections

of the D and W S trajectories with the Σ1. The top NN search algorithm results

from maps over a range of θS1 values are examined to identify the most promising

candidates and the available transfer geometries. One such match is highlighted

by black markers in Figure 6.8, where the black square indicates the deployment

event and the black five-pointed star denotes the manifold event. The trajectories

that correspond to the selected match are plotted in the Sun-B1 and Earth-Moon

rotating frames in Figures 6.12(a) and 6.12(b), respectively. These trajectories, and

all others that correspond to the map intersections in Figure 6.8, are generated with

the November 2020 deployment date. While a discontinuity between the forward and

(a) Initial Guess S-B1 Rot. (b) Initial Guess E-M Rot. (c) Result E-M Rot.

Fig. 6.12. Initial guess and BCR4BP result for Phase 1 of the Lunar Ice-
Cube trajectory given a November 2020 deployment date. The resulting
transfer requires 117 days and 0.10 kg of propellant. The initial guess
is displayed in the Sun-B1 (S-B1) and Earth-Moon (E-M) rotating (rot.)
frames.
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backward propagated trajectories is evident, the NN search criteria used to identify

matches between Σ1 crossings yield a promising initial guess. This initial guess is

passed to COLT, which eliminates the discontinuity by inserting additional thrust

segments. The optimized trajectory in the BCR4BP that results from this initial

guess is displayed in Figure 6.12(c), and consumes 0.1 kg of propellant to reach the

staging orbit in 117 days. The time of flight (TOF) and mass consumption, ∆m, for

all Phase 1 transfers examined for this investigation are offered in Table 6.3 located

in Section 6.3.4. An initial 8-hour coasting interval following deployment is preserved

in the converged solution to allow time for systems checkout prior to the initiation of

the first thrust arc. This solution emerges from the collocation algorithm computes

this solution with relatively few iterations; moreover, the geometry of the initial guess

is generally preserved in the direct collocation result. These two factors indicate that

the initial guess identified from the Phase 1 map is useful in guiding the algorithm

towards a solution.

The strong influence of the initial guess on the final result is more evident when

alternate solutions are examined. For a single deployment date, a variety of transfer

geometries offered by the Phase 1 maps are viable. These transfers range from 90 to

over 200 days in duration and are primarily distinguished by the number of Earth

close approaches and lunar flybys. Generally, the longer duration transfers require

less propellant due to the inclusion of additional flybys or the opportunity to include

thrust arcs at more optimal times, such as Earth close approach. While launch

conditions determine the most favorable transfer geometries, every launch date yields

a plethora of options. A Phase 1 transfer generated for the June 2020 launch date,

plotted in Figure 6.13, offers an example of an alternate geometry. This transfer

possesses no Earth close approaches and instead incorporates several transits around

the Earth-Moon system before delivering the spacecraft into the staging orbit. In

total, this transfer requires more time and propellant to execute, but avoids the

complications associated with implementing an Earth close approach. The June 2020

Phase 1 solution is validated in an ephemeris model and the geometry and propellant
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(a) Initial Guess (b) BCR4BP (c) Ephemeris

Fig. 6.13. Initial guess (a) and BCR4BP (b) solutions for Phase 1 of
the Lunar IceCube trajectory given a June 2020 deployment date. The
resulting BCR4BP transfer requires 140 days and 0.21 kg of propellant.
The BCR4BP transfer is validated in an ephemeris model (c) where it
maintains similar characteristics.

consumption for the resulting trajectory, displayed in Figure 6.13(c), remain nearly

identical to the BCR4BP solution. This similarity indicates that, given the current

transition process, the BCR4BP result reasonably approximates the transfer in the

ephemeris model for Phase 1 of the Lunar IceCube transfer.

The Phase 1 transfer designed for the March 2021 launch date offers an example

of a trajectory to the staging orbit with a long time of flight, but which requires very

little propellant. The initial guess for this transfer is displayed in Figure 6.14(a) where

it is observed that the selected deployment and stable manifold arcs include three close

approaches of the Earth. Analysis of these trajectories in the Sun-B1 rotating frame

reveals that these close approaches lead to three apoapses with respect to B1 that

occur well beyond the orbital radius of the Moon. The optimized trajectory generated

from this initial guess, offered in Figure 6.14(b), preserves much of the geometry from

the initial guess. Several thrust arcs are added near the Earth close approaches along

the trajectory where these maneuvers incur the largest impact on the subsequent

path of the spacecraft. These close approaches of the Earth, rather than the long

time of flight, are the primary drivers for this trajectory requiring the least amount

of propellant of all the Phase 1 trajectories, only 0.08 kg. Trajectories that include
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(a) Initial Guess (b) BCR4BP (c) Ephemeris

Fig. 6.14. Initial guess (a) and BCR4BP (b) solution for Phase 1 of the
Lunar IceCube trajectory given a March 2021 deployment date. The re-
sulting transfer requires 194 days and 0.08 kg of propellant. The BCR4BP
transfer is validated in an ephemeris model (c) where it maintains similar
characteristics.

multiple Earth close approaches or additional lunar flybys tend to possess longer

times of flight, often with a longer duration, thus, seemingly requiring will require

less propellant than shorter alternatives. However, the Phase 1 trajectory generated

for the June 2020 deployment date demonstrates that a longer time of flight without

any additional lunar flybys or Earth close approaches does not inherently reduce

propellant consumption. The small change in mass for the Phase 1 trajectory in the

BCR4BP is preserved when the trajectory is transitioned to an ephemeris model.

Indeed, Figure 6.14(c) demonstrates that the ephemeris result is very similar to the

BCR4BP solution. The March 2021 Phase 1 result highlights the benefit of multiple

Earth close approaches for reducing propellant costs.

Additional lunar flybys, not just Earth close approaches, also offer propellant sav-

ings, without significantly lengthening the time of flight. A trajectory that demon-

strates the utility of lunar flybys is computed for the final deployment condition tested

in this investigation, a date in October 2018. In the Earth-Moon rotating frame,

the initial path for the deployment trajectory appears similar for all four deployment

dates. However, examination in the inertial or Sun-B1 rotating frames reveals that the

initial Sun angle for each deployment state is quite different. The values of the initial
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Sun angle employed for each deployment condition are offered in Table 6.2, included

in Section 6.2.3. These differences in epoch, along with changes to the deployment

state, cause the paths to the staging orbit to be quite different for each deployment

date. The October 2018 Phase 1 trajectory displayed in Figure 6.15 includes two

Earth close approaches that appear similar to the November 2020 transfer. However,

(a) Initial Guess (b) BCR4BP (c) Ephemeris

Fig. 6.15. Initial guess (a) and BCR4BP (b) solution for Phase 1 of the
Lunar IceCube trajectory given an October 2018 deployment date. The
resulting transfer requires 110 days and 0.1 kg of propellant. The BCR4BP
transfer is validated in an ephemeris model (c) where it maintains similar
characteristics.

this trajectory also incorporates a second lunar flyby, rendering this trajectory the

shortest in duration of all the Phase 1 transfers while only requiring slightly more

propellant than the similar November 2020 result. The geometry and performance

of this transfer also remains consistent when transitioned to an ephemeris model as

observed in Figure 6.15(c).

Despite the different deployment dates, all four Phase 1 transfers leverage the tidal

forces of the Sun to reach the staging orbit near the Moon. The use of tidal forces

is evidenced by the fact that the apoapse furthest from the Earth-Moon barycenter,

B1, in all four transfers occurs either in the second or fourth quadrants as viewed

in the Sun-B1 rotating frame, in Figure 6.16. In these quadrants, the acceleration

from the Sun is acting in the same direction as the prograde motion of LIC about the

Earth-Moon barycenter, B1. Therefore, the Sun’s acceleration tends to circularize
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(a) October 2018 (b) June 2020

(c) November 2020 (d) March 2021

Fig. 6.16. Phase 1 transfers computed in the BCR4BP and displayed in
the Sun-B1 rotating frame. For all four transfers the apoapse furthest
from the Earth-Moon (E-M) barycenter occurs in the second or fourth
quadrants of the Sun-B1 rotating frame. This geometry leverages the tidal
forces of the Sun to raise the periapse of LIC about the E-M barycenter
to the orbital radius of the Moon.

the LIC orbit about B1, helping raise its periapse to the radius of the Moon’s orbit.

This framework for understanding the influence of a primary body, e.g., the Sun, on

trajectories centered around a secondary body, e.g., the Earth, is well documented

and has been leveraged for trajectory design by a number of authors [26, 152,153].
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Many different transfer geometries and durations are offered by the NN search

results from Phase 1 maps. The examples in Figures 6.12 through 6.15 are a small

subset of the variety of options available. By experimenting with the top search

results from maps generated with a range of θS1 values, a variety of initial guess

geometries lead to an array of optimized solutions. The flexibility of this approach

and the diversity of solutions yields highly adaptable designs for different mission

constraints and deployment conditions.

6.3.2 Phase 2 Results: Staging Orbit to Science Orbit

A solution for Phase 2 of the LIC trajectory is computed in a manner similar to

the approach for Phase 1, although some information from the Phase 1 result must

be carried over to Phase 2. A close match between the Σ2 hyperplane crossings on a

Phase 2 map is identified and the corresponding trajectory segments are employed as

an initial guess for a direct collocation algorithm. The direct collocation algorithm

then delivers a continuous solution by adding thrust arcs where required. While little

information from Phase 1 is required to generate the initial guess for Phase 2, the

time of flight and final mass for a specific Phase 1 transfer is necessary to actually

converge to a Phase 2 transfer. This information initializes the spacecraft mass and

iSOI angle for Phase 2, thus ensuring that Phase 2 is continuous with the previous

phase.

Nearby intersections of WU and C arcs on a Phase 2 map are located using the

NN search algorithm. An example of a close match between the Σ2 crossings on

a Phase 2 map is identified in Figure 6.10(b). Because the staging orbit and the

science orbit are significantly out-of-plane, the xy-plane view of the Phase 2 map in

Figure 6.10(b) is deceptive. Hyperplane crossings that appear to overlap in this map

may differ significantly when the ẑ position and velocity components are considered.

Conversely, potentially useful matches may be obscured if intersections with larger

+z components are plotted on top of them. Thus, use of the NN search algorithm
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is even more essential for Phase 2 maps, as it ensures that close matches are not

overlooked.

After a promising match is identified, the corresponding trajectory segments are

employed to construct an initial guess. The trajectories corresponding to the intersec-

tions selected in Figure 6.10(b) are displayed in Figure 6.17. The endpoints along the

(a) XY-Plane View (b) 3D View

Fig. 6.17. Initial guess for Phase 2 of the Lunar IceCube trajectory. The
endpoints of the unstable manifold and the low-thrust spiral trajectory
are indicated with a black circle. This initial guess corresponds to the NN
match highlighted in Figure 6.10 which is generated for the October 2018
deployment date.

unstable manifold and low-thrust spiral trajectories are indicated with black circles.

Continuity between the departure arc from the staging orbit, solved via collocation,

and the explicitly propagated low-thrust spiral is enforced by matching these end-

points. While the position and velocity discontinuities between these endpoints are

generally smaller in magnitude in Phase 2 as compared to Phase 1, it is frequently

more difficult to achieve convergence because these discontinuities occur so near the

Moon. However, a number of strategies for improving the likelihood of convergence

are available.



225

Several techniques are employed to assist the direct collocation algorithm in con-

verging to a Phase 2 result. As previously noted, the primary cause of the challenges

in convergence is the proximity of the state discontinuities to the Moon. The nonlinear

dynamics near the Moon increases the sensitivity of the direct collocation algorithm,

thus it is more difficult to achieve convergence. The first strategy employed to improve

convergence is simply moving the endpoints of the unstable manifold trajectory and

the low-thrust spiral farther from the Moon. To accomplish this shift, the initial guess

is generated such that these endpoints are located at least three lunar radii from the

center of the Moon. All Phase 2 map crossings closer than this distance are excluded

from consideration. Distancing the endpoints and, thus, the eventual match point fur-

ther from the Moon decreases the sensitivity of the direct collocation algorithm and,

therefore, convergence is more likely. In addition to this approach, several features

of the direct collocation algorithm are potentially leveraged to achieve convergence.

These include: bounding the design variables, scaling variables and constraints, as

well as including a minimum radius constraint with respect to the Moon.

The final strategy introduced to increase the likelihood of convergence is provid-

ing COLT “more” trajectory on the initial periodic orbit, and therefore more time,

with which to achieve the desired transfer. “Stacking” additional revolutions of the

staging orbit prior to departure along the unstable manifold path [23]. Four addi-

tional revolutions along the staging orbit are added to the initial guess displayed in

Figure 6.17. Thus, the initial guess ultimately passed to COLT consists of these four

revolutions, the unstable manifold trajectory, and the backward propagation param-

eters, i.e., the three additional design variables, that produce the low-thrust spiral

displayed in Figure 6.17. Stacking additional staging orbit revolutions also accounts

for discrepancies between the SOI epoch estimated for initial guess design and the

actual SOI epoch determined by the Phase 1 transfer selected to initialize the mass

and iSOI angle in Phase 2. Several iterations of the Phase 2 initial guess design

process may be required if the estimated SOI epoch requires too many or too few

stacked staging orbit revolutions.



226

The initial guess displayed in Figure 6.17 is passed to the direct collocation algo-

rithm, COLT, for convergence. From this initial guess, the COLT algorithm delivers

the low-thrust transfer in Figure 6.18, which requires approximately 229 days and

0.5 kg of propellant. The solution displayed in Figure 6.18 shows that the stacked

(a) xy-Plane View (b) 3D View

Fig. 6.18. Converged result for Phase 2 of the Lunar IceCube trajectory
given the initial guess presented in Figure 6.17. The Phase 1 result for the
October 2018 deployment is used to initialize this transfer. The resulting
transfer requires 229 days and 0.5 kg of propellant.

staging orbit revolutions included in the initial guess are distributed somewhat by

the direct collocation algorithm, thereby demonstrating the utility of adding more

trajectory to the initial guess by stacking staging orbit revolutions. These revolu-

tions along with the subsequent lunar flyby achieve the changes in energy necessary

to deliver the spacecraft to the beginning of the low-thrust spiral. The distribution

of these revolutions is more evident in the three-dimensional view of the transfer

offered in Figure 6.18(b). A significant number of lengthy coast arcs are included

along the revolutions near the staging orbit which indicates the possibility to reduce

the number of staging orbit revolutions stacked in the initial guess for this transfer,

thus, reducing the transfer time. After several revolutions, the spacecraft departs the

vicinity of the staging orbit and continues through a powered lunar flyby to insert on
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the explicitly propagated low-thrust spiral trajectory. This geometry is influenced by

the close lunar flyby included in the initial guess.

The Phase 2 transfer converged for the June 2020 deployment date also exhibits

geometry that remains near the Moon. In this case, rather than leveraging a lunar

flyby, the plane change required to match the beginning of the low-thrust spiral is

achieved via repeated revolutions in the vicinity of the staging orbit, as displayed

in Figure 6.19. The three-dimensional view of this motion, offered in Figure 6.19(b),

(a) xy-Plane View (b) 3D View

Fig. 6.19. Converged result for Phase 2 of the Lunar IceCube trajectory.
This transfer is initialized using the Phase 1 result for the June 2020
deployment.

clearly illustrates the quasi-periodic character of the revolutions near the staging orbit

prior to insertion on the low-thrust spiral. Compared to the Phase 2 transfer for the

October 2018 deployment date, this June transfer possesses nearly the same time of

flight, 230 days, but requires more propellant mass, 0.64 kg. However, this geometry

may be preferred because it avoids the complications of a low-altitude lunar flyby.

A Phase 2 transfer similar to the previous two results, but which utilizes fewer

revolutions near the staging orbit is computed for the March 2021 deployment date.

Two views of the optimized Phase 2 transfer are displayed in Figure 6.20. These plots
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illustrate, as compared to the previous two Phase 2 transfers, this transfer requires

relatively fewer revolutions in the vicinity of the staging orbit before connecting with

the beginning of the spiral down to the science orbit. This characteristic is the result

(a) xy-Plane View (b) 3D View

Fig. 6.20. Converged result for Phase 2 of the Lunar IceCube trajectory.
This transfer is initialized using the Phase 1 result for the March 2021
deployment.

of employing only one stacked revolution along the staging orbit in the initial guess

used to compute this transfer. In this case only one revolution is required to set up

an initial guess that leads to convergence. The reduced number of initial revolutions

leads to a significantly lower time of flight, i.e., 153 days. This transfer time is nearly

3 months less than the next shortest Phase 2 transfer which requires 229 days. How-

ever, a comparable difference is not observed with propellant consumption where 0.51

kg is required for the March 2021 Phase 2 transfer, approximately the same as the

requirement for the other dates. The fact that Phase 2 transfer is achieved with com-

paratively fewer revolutions indicates that it is likely possible to remove extraneous

revolutions from the previous two Phase 2 transfers to shorten their transfer time.

Phase 2 transfers generally fall into one of two categories: transfers that remain

near the Moon, as seen already, and those that include one or more transits around
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the Earth. These categories are succinctly termed interior and exterior type transfers,

respectively. The latter of these two options is observed in a Phase 2 initial guess

generated for the November 2020 deployment date. A close connection is identified on

a Phase 2 map generated with Σ2 defined by a Sun angle of θS2 = 75◦, and the resulting

initial guess is displayed in Figure 6.21. While the path along the unstable manifold

(a) xy-Plane (b) Zoomed View

Fig. 6.21. Initial guess for Phase 2 of the Lunar IceCube trajectory gen-
erated for the November 2020 deployment date.

that is selected for this initial guess travels far away from the Moon, the actual

endpoint is still relatively close to the beginning of the low-thrust spiral. Despite the

discontinuity, COLT uses this initial guess to compute the low-thrust transfer plotted

in Figure 6.22. The converged result preserves the geometry of the departure from

the staging orbit and the initial flyby of the Moon. The subsequent transits around

the Earth, as well as the reentry through the L1 gateway, are modified by the direct

collocation algorithm to achieve a mass optimal transfer. In contrast to the previous

Phase 2 results, this transfer achieves the required plane change during the transits

around the Earth rather than through repeated revolutions near the staging orbit.

Because a large section of this trajectory is located far away from either primary,

such transfers are often easier to converge. Ultimately, the spacecraft is transferred
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(a) xy-Plane (b) Zoomed View

Fig. 6.22. Converged result for Phase 2 of the Lunar IceCube trajectory.
This transfer is initialized using the Phase 1 result for the November 2020
deployment.

from the staging orbit to the science orbit in 233 days, requiring 0.65 kg of propellant

mass.

The two basic types of Phase 2 transfer options, interior and exterior geometries,

are available regardless of the deployment date. This constancy is because the major-

ity of these transfers occur well within the Earth-Moon system where the gravitational

influences of these two bodies dominate. In this region the influence of the Sun is

sufficiently small that it has less effect on the available geometries regardless of the

value of θS. Thus, it is possible to design Phase 2 of the transfer in the CR3BP, this

investigation utilizes the BCR4BP in Phase 2 to maintain consistency with Phase 1.

Despite the additional complexity, the proposed framework enables successful design

of Phase 2 transfers in the BCR4BP for all four deployment dates examined. A sum-

mary of the Phase 2 transfers constructed in the BCR4BP for all of the deployment

dates is available in Table 6.3.

The modifications to the COLT algorithm that enable convergence of Phase 2

transfers from the staging orbit to the low-altitude science orbit also add challenges
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in producing results in an ephemeris model using the same formulation. There are

several reasons that contribute to this difficulty, the first being the increased com-

putation time. Explicit propagation in an ephemeris model is inherently slower than

in the BCR4BP because repeated calls to collect the ephemeris data are required.

Therefore, each iteration of the direct collocation algorithm requires multiple seconds

when converging Phase 2 in an ephemeris model. An additional complication is the

difference in the evolution of the explicitly propagated low-thrust spiral between the

BCR4BP and ephemeris models. This difference is exhibited in Figure 6.23, where the

spirals are quite similar at the beginning of the propagation, but begin to drastically

diverge as the spiral is propagated for more time. Some of the divergence between

(a) 10 Day Propagation (b) 90 Day Propagation

Fig. 6.23. Comparison of low-thrust spiral trajectories propagated in the
BCR4BP and ephemeris models and displayed in a Moon-centered inertial
frame. The ephemeris model includes the Earth, Moon, and Sun.

the two propagations is due to the accumulation of numerical error; some reflects

the differences between the BCR4BP and the ephemeris models. As a result of these

differences, a Phase 2 result converged in the BCR4BP will likely incur a large initial

error at the match point when transitioned to an ephemeris model. This error alone is

not sufficient to eliminate the utility of the corrections strategy employed for Phase 2.



232

However, the problem is compounded by the requirement for the Phase 2 match point

to be located at least 3 lunar radii from the Moon. This guideline, as discussed in

Section 6.2.4, requires that the low-thrust spiral be propagated over a longer duration

so that the matchpoint is located farther from the Moon; unfortunately this longer

duration also increases the error between the BCR4BP and ephemeris spirals. Con-

sequently, distancing the matchpoint from the Moon, which aids convergence in the

BCR4BP, hinders convergence in the ephemeris model. The final challenge for con-

verging results in the ephemeris model is the difference between the 2:1 resonant L2

halo orbit in the BCR4BP and its ephemeris model analog obtained with the current

transition process. This difference, as noted in Section 6.2.2, introduces a substantial

error between the initial point on the staging orbit in the BCR4BP and ephemeris

model. One solution to these challenges is to change the method used to converge

Phase 2 transfers in an ephemeris model. An alternate formulation is proposed in Sec-

tion 6.4 that would likely enable the Phase 2 results converged in the BCR4BP to be

successfully transitioned to a full ephemeris model. Another approach for addressing

the challenges that arise from the difference between the 2:1 resonant L2 halo orbit

in the BCR4BP and its ephemeris analog is to experiment with the process employed

to transition the orbit between models. It is possible that alternate strategies could

generate ephemeris trajectories that more closely resemble the BCR4BP orbit.

6.3.3 Phase 2 Results: Staging Orbit to NRHO

The orbit chain technique offers a straightforward approach for constructing an

optimal low-thrust transfer from the selected staging orbit to a 9:2 NRHO. No inter-

mediate orbit chain links are employed; stacking revolutions on the initial and final

orbits is sufficient to converge to a continuous result. However, sometimes it is neces-

sary to utilize a continuation process in Tmax to produce a transfer with the correct

maximum thrust value. Typically a transfer using Tmax = 1.74 mN or Tmax = 2.24

mN is computed initially and then continued to the required value of Tmax = 1.24
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mN. This continuation process could perhaps be mitigated, or even eliminated, if in-

termediate orbits, for example members of the L2 southern halo family in the CR3BP,

are included in the orbit chain. Whether or not intermediate orbits are employed,

the orbit chain technique is an effective approach for computing transfers from the

staging orbit to the 9:2 NRHO.

The direct collocation results, computed from an orbit chain initial guess, deliver

the LIC to the 9:2 NRHO in less time and with less propellant than a transfer to

the low-altitude science orbit. A sample transfer, displayed in Figures 6.24 and 6.25,

requires approximately 6 months and 0.2 kg of propellant mass. This result is com-

(a) xy-Plane View (b) xz-Plane View

Fig. 6.24. Projections of the optimal low-thrust transfer for LIC from the
staging orbit to the 9:2 NRHO in the xy-plane and xz-planes. This trans-
fer is initialized using the Phase 1 result for the March 2021 deployment.

puted assuming an initial launch date in March 2021; however, similar solutions that

employ the other three launch dates are also computed. The same orbit chain initial

guess delivers transfers for all four dates. Only the initial spacecraft mass and value of

iSOI are altered for each launch date to match the results from the Phase 1 transfer

to the staging orbit. The orbit chain initial guess is composed of three stacked copies

of the 2:1 halo orbit and one 9:2 NRHO. As a single orbit period includes multiple
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revolutions for both orbit types, the number of revolutions observed in the initial

guess and the converged result is greater than the number of stacked orbits. Because

the initial guess for all four deployment dates remains largely the same, the geometry

of all four resulting transfers is very similar. Therefore, only plots of the transfer com-

puted for a March 2021 deployment are displayed. The differences between the four

transfers are more clearly highlighted when their thrust profiles and total propellant

consumption are compared.

The orbit chain initial guess that is utilized for all four deployment dates is ma-

nipulated by the direct collocation algorithm to achieve a continuous and optimal

final result. The direct collocation algorithm distributes the stacked revolutions of

the 2:1 halo orbit into a quasi-periodic like structure that helps achieve the plane

change necessary to transfer to the 9:2 NRHO. This behavior is similar to some of

the transfers to the low-altitude lunar orbit observed in the previous section. The

transfer from the staging orbit to the vicinity of the 9:2 NRHO requires only 4 months

out of the full 6 month total time of flight. The final two months are spent approxi-

mately following the structure of the 9:2 NRHO with brief periods of thrusting near

periapse. Because the majority of this section of the trajectory consists of coast arcs,

it is likely that some of these revolutions near the Moon could be removed to shorten

the time of flight of the transfer. The thrust profile for the transfer, in Figure 6.25(b),

demonstrates the short duration of the thrust arcs that occur in the final two months

of the transfer.

The characteristics of the staging orbit to 9:2 NRHO transfers computed for

all four deployment dates are largely preserved when they are transitioned to an

ephemeris model. The ephemeris version of the transfer, computed for a June 2020 de-

ployment date, is offered in Figure 6.26. The primary difference in geometry between

the transfers computed in the BCR4BP and ephemeris models is that the ephemeris

repeated revolutions near the Moon possess apoapses that are less distributed in the

x̂ direction. This trend is also observed when transitioning the ballistic BCR4BP

9:2 NRHO to an ephemeris model. Generally, the apoapse locations collapse towards
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(a) 3D View (b) Thrust Profile

Fig. 6.25. Three-dimensional configuration space view and the thrust
profile of the optimal low-thrust transfer for LIC from the staging orbit
to the 9:2 NRHO. This transfer is initialized using the Phase 1 result for
the March 2021 deployment.

(a) xy-Plane View (b) xz-Plane View

Fig. 6.26. Projections of the optimal low-thrust transfer for LIC from the
staging orbit to the 9:2 NRHO in the xy-plane and xz-planes. This trans-
fer is initialized using the Phase 1 result for the March 2021 deployment.

the x position of apoapse on the CR3BP 9:2 NRHO. Therefore, it is not surprising

that this same behavior is observed in the transfer to the 9:2 NRHO. This change in
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geometry renders the location of the final insertion point along the BCR4BP transfer

onto the 9:2 NRHO a critical factor for ensuring a smooth transition to an ephemeris

model. If the final insertion point on the BCR4BP 9:2 NRHO is one of the outer

revolutions of this orbit, i.e., a revolution with a maximum deviation along the x̂-axis

with respect to the apoapse location of the CR3BP NRHO, then a large discrepancy

exists between the final point on the BCR4BP transfer and the insertion point on

the ephemeris 9:2 NRHO. This discrepancy is a result of the fact that the apoapse

location of the ephemeris 9:2 NRHO is more similar in geometry to the CR3BP 9:2

NRHO than its BCR4BP counterpart. If the insertion point on the 9:2 NRHO is

selected appropriately for the BCR4BP transfer, then the overall geometry of the

transfer is retained in the transition to the ephemeris model. However, the thrust

profile is likely altered so that the ephemeris model transfer requires slightly more

or less propellant than the BCR4BP result, depending on the deployment date as

apparent in Table 6.6.

6.3.4 Combined Transfer Trajectory Summaries

Combining the results computed for Phases 1 and 2 of the LIC trajectory yields

a complete deployment to destination orbit trajectories. Discrepancies between the

value of the Sun angle at the end of Phase 1 and the beginning of Phase 2 are

accommodated by “waiting” in the staging orbit until the desired Sun angle occurs.

For this reason, up to one synodic period of additional transfer time is generally

added to the total transfer time of flight to accomodate this phasing time. The results

demonstrate the flexibility and robustness of the method; however, each transfer is

not necessarily the most optimal trajectory for each deployment date in terms of

propellant consumption or time of flight. While it is possible to improve performance

with respect to these parameters, all trajectories here reach the final orbit with a

time of flight of about one year or less and with well over one third of the available
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propellant mass remaining. This level of performance is similar to that observed for

previous transfers developed with alternate techniques.

Transfers to the Low-Altitude Science Orbit

The LIC trajectories computed in the BCR4BP, from deployment to the low-

altitude lunar orbit, are summarized in Table 6.3. For these trajectories, the maxi-

mum phasing time required is just over 10 days and the minimum is less than one

day. Over two thirds of the total time of flight (TOF) is spent in Phase 2, where the

long transfer to the beginning of the low-thrust spiral is followed by the lengthy spiral

itself. Substantial time savings could be achieved by developing a strategy to reduce

the TOF of this phase. In total, all four transfers reach the science orbit about one

year after deployment.

Table 6.3.
Summary of sample transfers to the low-altitude lunar orbit for all four
deployment dates, computed in the BCR4BP. Given characteristics are
time of flight (TOF), change in mass (∆m), and final mass.

Deployment Phase 1 Phasing Phase 2 Total Final

Date ∆m TOF Time ∆m TOF ∆m TOF Mass

[kg] [days] [days] [kg] [days] [kg] [days] [kg]

Oct. 9th, 2018 0.11 109.82 7.72 0.49 228.87 0.60 346.31 13.40

Jun. 27th, 2020 0.21 139.90 0.89 0.64 229.85 0.85 370.64 13.15

Nov. 6th, 2020 0.10 117.39 10.24 0.55 233.39 0.65 361.02 13.35

Mar. 1st, 2021 0.08 194.46 24.93 0.51 153.14 0.59 372.54 13.41

The transfer times and propellant consumption values in Table 6.3 are compara-

ble to past baseline trajectories. While some of the transfers computed within this

framework require more time and propellant than previous baseline solutions, several
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steps are available that may reduce these parameters. First, some of the staging orbit

revolutions added in Phase 2 can be removed. While the additional staging orbit rev-

olutions in the the initial guess are useful to achieve convergence, it may be possible to

remove them after a transfer is converged. For example, some of the revolutions near

the staging orbit that include long coast arcs, as seen in Figure 6.19, could likely be

removed. Removing excess trajectory arcs will reduce transfer time. Second, using a

multi-stage collocation algorithm to solve Phase 2 increases the mass delivered to the

final orbit, particularly because the majority of propellant consumption occurs in this

phase. A multi-stage approach would permit the low-thrust spiral to the science orbit

to be fully optimized, thereby increasing mSOI . These two steps lead to reductions in

both time of flight and propellant consumption for the LIC transfer; the latter step

is discussed in Section 6.4 along with other profitable areas on which to focus future

work.

Three of the four transfers computed for Phase 1 of the LIC trajectory are verified

in an ephemeris model that includes the Earth, Moon, and Sun. In contrast to Phase

2 transfers to low lunar orbit, results from Phase 1 analysis in the BCR4BP are

often relatively straightforward to transition to an ephemeris model. An exception is

the case of the November 2020 deployment date and this instance suggests potential

improvements to the proposed framework. A summary of the LIC Phase 1 transfers

that are successfully transitioned to an ephemeris model is offered in Table 6.4. In

terms of both geometry and propellant consumption, the BCR4BP and ephemeris

results for the Phase 1 transfers match quite closely, indicating that the BCR4BP is

a fitting model for designing this phase of the LIC trajectory.

The failure of the November 2020 Phase 1 transfer to transition to an ephemeris

model is likely due to an unfortunate combination of the geometry of the initial lunar

flyby and the position of the Earth and Moon at the initial epoch. When viewed

in the Earth-Moon rotating frame, the November 2020 transfer is the only one of

the Phase 1 transfers whose initial lunar flyby passes between the Earth and the

Moon rather than transiting around the far side of the Moon. At the same time
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the actual distance between the Earth and the Moon shortly after the November

2020 deployment is roughly 20000 km less than the constant distance of 384748 km

assumed in the BCR4BP. The confluence of the flyby geometry and the nearness of

the Moon implies that the Moon is actually too close to achieve the desired flyby in

an ephemeris model. This discrepancy likely leads the direct collocation algorithm to

fail as it attempts to adjust this very sensitive section along the Phase 1 trajectory.

Unfortunately, with the current framework, a flyby geometry that passes on the far

side of the Moon cannot be achieved due to the simplistic way the initial thrust

profile is defined. An alternate initial thrust profile could be achieved if a B-plane

targeting procedure was employed to obtain a specific configuration for the initial

lunar flyby. Potential alterations of the Phase 1 initial guess generation procedure

that allow greater flexibility for achieving a desired flyby geometry are discussed in

the final section of this chapter.

Table 6.4.
Summary of sample Phase 1 transfers from deployment to the staging
orbit, computed in an ephemeris model. Given characteristics are time of
flight (TOF), change in mass (∆m), and final mass.

Deployment Phase 1 Final

Date ∆m TOF Mass

[kg] [days] [kg]

Oct. 9th, 2018 109.82 0.10 13.90

Jun. 27th, 2020 139.90 0.21 13.79

Nov. 6th, 2020 – – –

Mar. 1st, 2021 194.46 0.08 13.92
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Transfers to the 9:2 NRHO

The LIC trajectories that arrive at the 9:2 NRHO require lower times of flight

and less propellant than those that reach the LLO. This trend is expected, because

the 9:2 NRHO possesses a substantially higher energy than the LLO, so less time

and propellant is required to decrease the energy from that of the staging orbit.

A summary of the transfers computed in the BCR4BP from deployment to the 9:2

NRHO for four different deployment dates is offered in Table 6.5. Note that the Phase

1 results in Table 6.5 are the exact same as those in Table 6.3 because changes to the

Phase 2 destination do not effect the results of Phase 1. This consistency emphasizes

the flexibility of the staging orbit approach, one of its key strengths. The BCR4BP

transfers summarized in Table 6.5 all deliver LIC to the NRHO within about a year

or less and with more than two thirds of its propellant mass remaining.

Table 6.5.
Summary of sample transfers to the 9:2 NRHO for all four deployment
dates, computed in the BCR4BP. Given characteristics are time of flight
(TOF), change in mass (∆m), and final mass.

Deployment Phase 1 Phasing Phase 2 Total Final

Date ∆m TOF Time ∆m TOF ∆m TOF Mass

[kg] [days] [days] [kg] [days] [kg] [days] [kg]

Oct. 9th, 2018 0.11 109.82 7.72 0.22 173.92 0.33 291.46 13.67

Jun. 27th, 2020 0.21 139.90 0.89 0.19 173.92 0.4 314.71 13.60

Nov. 6th, 2020 0.10 117.39 10.24 0.26 173.92 0.36 301.54 13.64

Mar. 1st, 2021 0.08 194.46 24.93 0.07 173.92 0.14 393.31 13.86

The Phase 2 transfer to the 9:2 NRHO does not require a long low-thrust spiral,

therefore, many of the complications discussed in Section 6.3.2 that add convergence

difficulties in transferring to the science orbit in an ephemeris model no longer arise.
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Thus, it is possible to transition this type of Phase 2 trajectory from the BCR4BP to

an ephemeris model and to deliver end-to-end ephemeris transfers. Key parameters

for these ephemeris transfers from deployment to the 9:2 NRHO are summarized in

Table 6.6. While the propellant consumption for these transfers varies somewhat

between BCR4BP and ephemeris models, the results are sufficiently similar that the

BCR4BP result still offers a reasonable approximation of the ephemeris solutions.

Table 6.6.
Summary of sample transfers to the 9:2 NRHO for all four deployment
dates, computed in an ephemeris model. Given characteristics are time of
flight (TOF), change in mass (∆m), and final mass.

Deployment Phase 1 Phasing Phase 2 Total Final

Date ∆m TOF Time ∆m TOF ∆m TOF Mass

[kg] [days] [days] [kg] [days] [kg] [days] [kg]

Oct. 9th, 2018 0.11 109.82 7.72 0.25 173.92 0.36 291.46 13.64

Jun. 27th, 2020 0.21 139.90 0.89 0.17 173.92 0.38 314.71 13.62

Nov. 6th, 2020 – – 10.24 0.17 173.92 0.17 184.16 13.83

Mar. 1st, 2021 0.08 194.46 24.93 0.10 173.92 0.18 393.31 13.82

6.4 Concluding Remarks

This investigation presents a framework for constructing an LIC trajectory from

deployment to the final orbit. The approach utilizes dynamical structures available

in the BCR4BP along with the robust properties of direct collocation to create a

trajectory design framework capable of addressing the LIC spacecraft’s limited control

authority and need for adaptability. Employing a staging orbit to divide the trajectory

design problem into two distinct phases eases the design challenge by permitting

solutions to each phase to be developed largely independently of one another. The
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use of a staging orbit and two phase strategy also enables the final destination of LIC

to be easily changed from a low altitude lunar orbit to a 9:2 NRHO without the need

to redesign the post-deployment lunar approach.

Results indicate that the proposed framework generates continuous trajectories in

the BCR4BP that deliver LIC to its final orbit with a reasonable time of flight and

well within the allocated propellant mass. The use of maps and a nearest neighbor

algorithm to design each phase of the LIC trajectory offers many options for geometry

and other key transfer characteristics. This is particularly true for Phase 1, where

transfers with either no or many additional lunar flybys can be designed by selecting

different map intersections. This flexibility enables the proposed strategy to adapt to

changes in launch date, a trait that is demonstrated by providing complete trajectory

designs for four different launch dates. Phase 2 of the LIC transfer exhibits less

variation in geometry, but even here there are differences to be found as illustrated by

the exterior and interior transfer types in Section 6.3.2. Generally Phase 2 trajectories

are more challenging to converge and greater care must be taken when setting up the

initial guess and direct collocation algorithm.

Many of the results generated in the BCR4BP with the proposed framework can

be transitioned to an ephemeris model with minimal modifications. Section 6.3.4

provides tables that summarize results computed in the BCR4BP and ephemeris

models using the proposed methodology. These tables demonstrate that the differ-

ences in propellant consumption between solutions generated in both models is small

compared to the total available propellant mass. Moreover, plots of the ephemeris

trajectories in configuration space presented in the preceding sections show that the

actual geometry is likewise quite similar. Unfortunately, the methods employed to

converge the Phase 2 LIC trajectories from the staging orbit to LLO do not trans-

late well to an ephemeris model making it difficult, if not impossible, to transition

these results using the current approach. However, this does not mean that these

results cannot be replicated in a higher fidelity model. Rather, a different approach

for achieving this transition is required and is an area for future work.
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Creating and optimizing low-thrust spiral trajectories like the one found in this

study is a well-established sub-field within the discipline of astrodynamics. A va-

riety of approaches with various strengths and weaknesses have been developed to

generate optimal low-thrust spirals. The strategy employed in this study is one of

the simplest possible techniques: explicit propagation with continuous anti-velocity

thrusting. As the approach is modified to be compatible with the existing direct

collocation tools, the final result of the process is a sub-optimal result. Because of

the simplicity and alterations, the suggested procedure, which is already challenging

to use in the BCR4BP, is infeasible in an ephemeris model, as discussed at the close

of Section 6.3.2. The inability to transition the spiraling Phase 2 transfers to an

ephemeris model is more due to the inadequacy of the tools than the discrepancy

between models. Therefore, a change in the tools employed will likely enable the

generation of ephemeris versions of Phase 2 transfers to the LLO. Many alternate

techniques are available; however, one of the most promising may be a collocation

scheme that parameterizes the low-thrust spiral using modified equinoctial elements

(MEE) as presented by Falck or Olikara [150,151]. A primary reason that the strate-

gies employed by these authors are better suited for long spiraling trajectories is that

when formulated using the MEEs, the values of the equations of motion change more

slowly compared to when Cartesian coordinates are used. This behavior allows the

spiraling trajectories to be discretized into fewer segments, thus making the direct

collocation problem tractable by reducing its size. A multi-phase direct collocation

algorithm could combine the current parameterization employed in COLT and a new

MEE parameterization to pose a single direct optimization problem that can be solved

to generate a fully optimal transfer from the staging orbit to LLO. Implementing these

changes is nontrivial. However, the final result will be a tool that not only generates

more optimal transfers in the BCR4BP, but is also able to transition these transfers

to an ephemeris model.

An area for future work that could lead to more optimal Phase 1 solutions is to

construct the initial deployment trajectory by targeting a B-plane coordinate rather
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than varying a constant angle, α, in the VNB frame. Propagating deployment tra-

jectories with a range of fixed thrust vector directions in the VNB frame is a fast

but simplistic way of generating an array of options for the initial post-deployment

path. This approach can omit some deployment trajectories that are not attainable

with such a simple thrust profile. Targeting a B-plane coordinate instead will pro-

duce a more comprehensive set of potential flyby trajectories, and the complete set

of flyby options may include a path that produces a more optimal Phase 1 result

than could have been found with the current approach. Additionally, targeting a

B-plane is the technique that is actually used during spacecraft operations to achieve

a desired flyby, therefore utilizing this method in the design process could ease the

transition to implementing the final trajectory design. The primary disadvantage of

targeting a B-plane rather than selecting a fixed thrust direction is that the former

option requires more computational time, because the targeting process will require

multiple iterations to achieve convergence for each target. However, this increase in

time may be offset by the broader array of flyby options that result. Further study

will be required to understand whether this trade-off is worthwhile.

Examining alternate staging orbits and conducting missed thrust analysis are two

additional areas where future work should focus. The motivation for the selection of

the staging orbit employed in this investigation is detailed in Section 6.2.2, but other

staging orbit candidates may meet some or all of the criteria used in this process. In

particular, quasi-periodic orbits (QPO) about the L2 libration point offer a greater

range of staging orbit options and invariant manifold geometries. The incorporation

of BCR4BP QPOs into the proposed LIC trajectory design framework would expand

the array of manifold paths available for designing Phases 1 and 2; this inclusion

could lead to initial guesses with reduced state discontinuities and perhaps more

optimal transfers. Finally, missed thrust analysis is an essential step in the low-thrust

mission design process, as it reveals the sensitivity of a given low-thrust trajectory

to unexpected thrust outages. The LIC trajectories designed in this investigation

include many long duration thrust segments, and, particularly in Phase 2, these
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segments occur in the sensitive regions near one of the primary bodies. Missed thrust

analysis is critical for determining if these and other thrust segments are so sensitive

that a thrust outage could lead to a catastrophic course deviation. Furthermore,

LIC’s limited power necessitates that thrust segments occasionally be interrupted to

perform other essential tasks, e.g., communication back to Earth. A missed thrust

analysis will indicate at what times it is most convenient to perform these activities.

Many avenues for future work are apparent, and pursuing these topics would en-

hance the accuracy and adaptability of the proposed framework. Even without these

potential additions, the methodology presented in this chapter offers a systematic

approach for constructing an LIC trajectory from deployment to final orbit. This

procedure is adaptable to changes in launch date and generates transfers that fall

within the time of flight and propellant mass allotted to this phase of the LIC mis-

sion. Lastly, the proposed framework is applicable to other small satellite missions

that will be deployed as secondary payloads on launches similar to Artemis-1. Its

utility reaches well beyond the present application.
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7. CONCLUSION

The promise of low-thrust propulsion technology continues to increase as research in

this area produces more powerful engines. Further development of methods for low-

thrust trajectory design will enable mission designers to fully harness the potential

of this evolving technology, and the framework presented in this investigation offers

one such advancement. Combining the strengths of existing orbit chain and direct

collocation strategies yields an overall framework for low-thrust trajectory design

that is intuitive, flexible, and robust. This strategy is not only demonstrated with

straightforward example problems, but with application to the challenging trajectory

design scenarios encountered by the Gateway and Lunar IceCube spacecraft. The

results of these sample applications are summarized here and recommendations for

future work are offered.

7.1 Investigation Summary

The dynamical models and optimal control theory utilized in this investigation are

presented before the proposed framework is outlined and tested. The CR3BP and

BCR4BP dynamical models are employed in the Gateway and Lunar IceCube sample

problems, respectively. These simplified dynamical models include the essential forces

relevant to each sample application, but apply simplifications that make the trajectory

design problem more tractable. After preliminary mission design is conducted in

these simplified dynamical models, low-thrust trajectories are transitioned to a higher

fidelity model based on ephemeris data and the N-body equations of motion. Low-

thrust trajectory design presents a continuous optimal control problem, and here

the problem is addressed by applying a direct collocation scheme to discretize the

continuous problem and transform it into an NLP problem. Direct collocation is the
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method of choice because its adaptability and robustness complement the objectives

of this investigation and make the method well suited for pairing with an orbit chain

technique. The direct collocation algorithm implemented here is termed COLT and is

tailored to solve the types of low-thrust trajectory design problem encountered here.

This algorithm, in concert with an orbit chain strategy, offers a trajectory design

framework capable of solving the challenging Gateway and Lunar IceCube trajectory

design problems.

7.1.1 Orbit Chain and Direct Collocation Technique

Combining an orbit chain strategy with direct collocation yields a systematic ap-

proach to low-thrust trajectory design. Orbit chaining entails the linking together of

various dynamical structures, e.g., periodic orbits and their invariant manifolds, to

form an initial guess for a low-thrust transfer. The links that form an orbit chain

are selected by analyzing the differences in energy and geometry between the initial

and final orbits. After the components of an orbit chain are selected, they may be

clipped and stacked to further tailor an initial guess to a given transfer scenario. The

definition of the initial control profile is the final step before the direct collocation

algorithm converges the orbit chain initial guess. Low-thrust transfers between peri-

odic orbits in the CR3BP are used to demonstrate the steps of orbit chain assembly

and illustrate the flexibility of this approach. The intermediate links in an orbit chain

are easily interchanged to generate different transfers between the same initial and

final orbits. Moreover, the number and types of orbits included in a chain are highly

flexible. In this investigation, the constructed chains utilize dynamical structures

from the CR3BP, CR3BP+LT, and BCR4BP models. Overall, orbit chaining offers

a flexible and relatively simple approach to initial guess construction for low-thrust

trajectory design.
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7.1.2 Gateway Mission Design

Low-thrust transfers from the 9:2 NRHO to other potentially advantageous li-

bration point orbits in the lunar vicinity are possible using the engine parameters

and propellant mass budget currently planned for the Gateway spacecraft. Transfers

from the 9:2 NRHO to a DRO, low-amplitude halo orbit, and a northern L1 NRHO

are computed; moreover, exterior and interior type transfer geometries are obtained

for all three scenarios. These results indicate that utilizing an interior rather than

an exterior transfer geometry does not guarantee a shorter time of flight or reduced

propellant consumption. However, both time of flight and propellant consumption

are highly dependent on the initial guess, and it is possible that different results could

be obtained if further experimentation with suitable orbit chains were conducted for

each transfer scenario. Overall, the success of these example scenarios demonstrates

the utility of the orbit chain and direct collocation methodology even for spacecraft

with extremely limited control authority.

The missed thrust analysis applied to the exterior NRHO to DRO transfer result

exhibits that the COLT algorithm may also be utilized for this step of the trajectory

design process. The results highlight the sensitive regions of the NRHO to DRO

transfer, and illustrate that even for a five day thrust outage it is challenging to

reconverge the baseline transfer if the outage occurs along a particularly sensitive

part of the trajectory. The most sensitive region is the beginning of the trajectory

when the spacecraft is departing the NRHO and passes very close to the Moon. As

expected, the number of failed cases in the missed thrust analysis increases as the

duration of the thrust outage is lengthened. These results offer a demonstration of one

approach for employing direct collocation for missed thrust analysis, and more work

is necessary to complete this phase of the design process for the computed transfers.
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7.1.3 Lunar IceCube Mission Design

The orbit chain and direct collocation technique framework generates a complete

Lunar IceCube trajectory in the BCR4BP. The proposed scheme utilizes a staging

orbit to divide the trajectory design process into two distinct phases, which eases the

design challenge by enabling trajectories for each phase to be designed largely inde-

pendently. The multi-phase approach also supplies increased flexibility by permitting

the same Phase 1 trajectory result to be utilized for a range of potential Phase 2

transfers. Two destination orbits are examined: one low lunar orbit that requires a

long sub-optimal low-thrust spiral to reach, and a 9:2 NRHO which necessitates sig-

nificantly less time of flight and propellant to reach. The flexibility of the proposed

framework also enables quick adaptation to changes in launch date; Lunar IceCube

trajectories are generated for four different deployment dates from 2018 to 2021. This

resilience is advantageous for the Lunar IceCube mission in particular because, as a

secondary payload, it is subject to the needs of the primary mission and must be

adaptable to any changes in deployment conditions that this mission requires.

The Lunar IceCube trajectories generated for each launch date satisfy mission

requirements in the BCR4BP and, in many cases, an ephemeris model as well. All

computed end-to-end trajectories deliver the spacecraft to the final orbit with a sub-

stantial mass margin remaining. When the Phase 1 trajectories are analyzed in a

Sun-B1 rotating frame, it is evident that each one leverages the perturbing accel-

eration of the Sun to achieve the change in energy required for insertion upon the

science orbit. Moreover, many of the trajectories obtained in the BCR4BP are suc-

cessfully transitioned to an ephemeris model. Three of the four Phase 1 trajectories

are re-converged in an ephemeris model that includes the Earth, Moon and Sun, and

the resulting transfers perform similarly to their BCR4BP counterparts. Likewise,

Phase 2 trajectories from the staging orbit to a 9:2 NRHO in the BCR4BP are tran-

sitioned to an ephemeris model and these too exhibit similar mass consumption when

re-converged in the higher-fidelity model. Unfortunately, the method employed to
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compute Phase 2 trajectories to the selected LLO is not well suited for implementa-

tion in an ephemeris model. Potential modifications to this method that may enable

convergence in an ephemeris model are discussed both in Chapter 6 and in the future

work section of this chapter.

7.2 Recommendations for Future Work

Many avenues for future work are apparent, both with regard to the orbit chain

and direct collocation technique itself and with the two sample applications. Improve-

ments to the fundamental technique and the algorithms that enable it will broaden

the range of trajectory design scenarios it is applicable to. Furthermore, continued

investigation of the Gateway and Lunar IceCube trajectory design scenarios may pro-

duce superior solutions that require less time of flight or propellant. Opportunities

for future work are described below by topic.

7.2.1 Orbit Chain and Direct Collocation

• Minimum Radius Constraint - One of the greatest challenges encountered with

COLT is the tendency of the algorithm to get “stuck” when a trajectory passes

very close to a primary body. This challenge is not unique to COLT, but it is

frequently encountered here because the constructed orbit chains often provide a

coarse initial guess. The significant discontinuities and simplistic control history

included in the initial guess require the optimization process to make drastic

alterations as it seeks a solution. These significant changes can lead to one

or more trajectory segments being shifted such that they pass beneath the

surface of the Moon. This scenario hinders the convergence process, as the

highly nonlinear dynamics near the Moon increase the difficulty of computing

beneficial updates to the design variables. Moreover, because the minimum

radius constraint is enforced only at the variable nodes of each segment, the

aforementioned scenario can occur even without a constraint violation. Meeting
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this challenge requires a more comprehensive approach to enforcing a minimum

radius constraint. Investigation of how to adequately enforce a minimum radius

constraint would enhance the robustness of the orbit chain and direct collocation

technique.

• Orbit Chain Construction - The initial guess construction process offered by the

orbit chain and direct collocation technique involves many design choices, from

what structures to include in a chain to the direction of the initial thrust vector.

The relative importance of each of these choices for facilitating convergence is

discussed qualitatively in Section 4.6; however, additional analysis could offer

more concrete steps for the construction of effective orbit chain initial guesses.

Prado offers guidance on the selection of links for an orbit chain [90, 91], and

continued investigation in this vein could yield similarly beneficial results. A

more systematic approach to orbit chain design will expedite the design process

by indicating the appropriate type and number of intermediate links to include

in an orbit chain, thus avoiding the challenges in the convergence process that

can result from too few or too many intermediate links. Furthermore, analysis of

other aspects of orbit chain construction, e.g., number of segments or the initial

control profile, could yield similar benefits. Greater understanding of how each

of these parameters impacts the convergence process would allow their values

to be more purposefully selected.

• Orbit Chain and Trajectory Sensitivity - It may be advantageous to more closely

examine the sensitivity to perturbations of each dynamical structure employed

in an orbit chain and how this sensitivity impacts the robustness of the resulting

low-thrust transfer. Establishing quantitative or even qualitative correlations

between the sensitivity of an orbit chain’s components and the sensitivity of the

corresponding low-thrust transfer would enable engineers to more intelligently

construct an orbit chain initial guess to produce a transfer with a desired set of

characteristics.
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• Global Optimization Outer Loop - The orbit chain construction process as pre-

sented in this investigation requires the involvement of an intelligent mission

designer. However, it is possible that much if not all of this process can be

automated. Utilizing a global optimization algorithm of the type discussed in

Section 3.2.3 to explore many different orbit chain formulations could yield su-

perior low-thrust solutions while requiring reduced involvement from a mission

designer. Restrepo and Russell [16,17], Beeson et al. [46], and Das-Stuart [30],

all offer approaches that utilize a precomputed catalog, a global optimization

technique, or both to assemble an “orbit chain like” initial guess that is con-

verged into a continuous transfer. The work of these authors, among others,

could be drawn upon along with the orbit chain guidelines developed in this in-

vestigation to inform the creation of a hybrid approach to orbit chain trajectory

design. This approach would employ an outer loop guided by a global optimiza-

tion technique for the construction of an orbit chain initial guess. Following this

step, the initial guess would be transformed into an optimal low-thrust solution

via the direct collocation method described in this investigation.

• Direct Multiple Shooting - Further investigation is needed to determine the effi-

cacy of utilizing a direct multiple shooting algorithm in comparison to an orbit

chain approach. Preliminary investigation indicates that an efficiently imple-

mented direct multiple shooting algorithm could be nearly as robust as a direct

collocation method. Moreover, direct multiple shooting typically generates a

smaller optimization problem, thereby potentially decreasing the computation

time required to obtain a solution. However, this benefit may be offset by the

fact that direct multiple shooting requires explicit propagation. Additional ex-

amination will indicate when a direct multiple shooting could be leveraged with

an orbit chain technique. This knowledge would aid the designer in determining

the most appropriate method for diverse mission design scenarios.
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• Analytic First and Second Derivatives - The partial derivatives of the defect

and continuity constraints utilized within COLT are computed via complex-

step differentiation. If implemented efficiently, it would likely require less com-

putational time to compute these derivatives analytically instead. Moreover,

the second-derivatives necessary to determine an optimal solution are currently

approximated by a limited-memory quasi-Newton method within the IPOPT

software package. However, more accurate approaches for computing these

second-derivatives are available. Increased accuracy of the second derivatives

would likely improve the accuracy of the optimal solutions computed with COLT

and reduce the number of iterations required to reach these solutions. A va-

riety of approaches including analytic expressions, automatic differentiation,

or second-order complex-step differentiation may be leveraged to compute the

second-order derivatives. Though initially time consuming, deriving the expres-

sions required to evaluate these derivatives analytically would offer long-term

benefits of accuracy and efficiency.

7.2.2 Gateway Mission Design

• Alternate Orbit Chain Construction - Testing alternate orbit chain initial guesses

may reduce the time required to compute an optimal solution and could offer

more optimal final results. The continuation process employed to obtain low-

thrust transfers requires extended computation time and is sometimes unable to

produce the desired result. Improved initial guesses for Gateway transfers may

enable the elimination of the continuation process, or, at the very least, a reduc-

tion in the number of continuation steps required. Improving an initial guess

may entail reducing discontinuities between links by increasing the quantity or

type of orbits included as intermediate links. Some of the converged Gateway

transfers appear to exploit natural dynamical structures that were not included

in the original guess. Examples include motion that appears to correspond to
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quasi-periodic orbits as well as some of the higher period orbits described by

Zimovan et al. [121]. These characteristics indicate that explicitly incorporating

these dynamical structures into an orbit chain initial guess may facilitate con-

vergence. Similarly, as some of the Gateway transfers, particularly the interior

type ones, include significant amounts of coasting, it seems that there could be

alternate orbit chain formulations that generate transfers with shorter times of

flight.

• Global Optimization Algorithm - The exterior type transfers computed by Mc-

Carty et al. [34] indicate that lower cost, lower time of flight versions of the

trajectories computed in this investigation are available. A global optimization

algorithm similar to the one employed by McCarty et al. may be a helpful

tool for identifying these superior optimal solutions. Utilizing an orbit chain

result to initialize a global optimization algorithm may reduce the time spent

searching for a superior optimal solution. Combining the rapidity with which

the orbit chain and direct collocation technique is able to supply an optimal

result with the broad solution space search provided by the global optimiza-

tion procedure could yield an efficient process for obtaining superior optimal

low-thrust transfers for Gateway.

• Robust Missed Thrust Analysis and Design - Taking steps to improve the robust-

ness of the missed thrust analysis process will offer more informative results and

possibly reduce the required computation time for the analysis. Ideally there

should be no failed cases in the missed thrust analysis. The cases that fail in the

current analysis should instead be converged to solutions with extremely high

propellant consumption. Achieving this result requires changes to the direct col-

location algorithm that enhance its robustness, thus enabling convergence even

in these challenging scenarios. The path to improvement is not immediately

apparent, although improving the minimum radius constraint, as discussed pre-

viously, would like offer a significant benefit. Improving the robustness of the
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missed thrust analysis tools will enable the interior type transfers computed in

this investigation to be thoroughly tested to determine if they are too sensitive

to missed thrust events to be practical. Finally, potential uses of direct colloca-

tion for missed thrust design should be explored for the Gateway mission, among

other sample applications. Improved methods for missed thrust design have the

potential to not only enhance the robustness of low-thrust trajectories, but also

significantly reduce the time a mission designer must spend conducting missed

thrust analysis. It is possible that the robustness and relative computational

efficiency of direct collocation make this algorithm well-suited for conducting

missed thrust design.

7.2.3 Lunar IceCube Mission Design

• B-Plane Targeting for Initial Lunar Flyby - More optimal Phase 1 solutions

could result from constructing the initial deployment trajectory by targeting

a B-plane coordinate rather than varying a constant angle in the VNB frame.

While the current approach is fast, it can omit deployment trajectories that

are not attainable with a simplistic initial thrust profile. Targeting a B-plane

coordinate instead will produce a more comprehensive set of potential flyby

trajectories, and the complete set of flyby options may include a path that

produces a more optimal Phase 1 result than could have been found with the

current strategy. The B-plane targeting process will require more computational

time to produce the same number of deployment trajectories, and further study

is required to determine whether this trade-off is worthwhile.

• Alternate Staging Orbits - Other periodic or quasi-periodic orbits (QPO) in the

BCR4BP may be beneficial staging orbit candidates. In particular, alternate or-

bits, either due to geometry or energy, may offer improved access to the selected

final LLO. A potentially useful category of orbits are the QPOs about the L2

libration point. These orbits offer a greater range of staging orbit options and
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invariant manifold geometries. The incorporation of BCR4BP QPOs into the

proposed LIC trajectory design framework would expand the array of manifold

paths available for designing Phases 1 and 2. This inclusion could lead to initial

guesses with reduced state discontinuities and perhaps more optimal transfers.

• Multi-Phase Approach to Low-Thrust Spiral - A multi-phase direct collocation

algorithm would enable the optimization of Phase 2 transfers in the BCR4BP

and offer the flexibility required to successfully transition transfers to an ephemeris

model. The ability to setup a multi-phase problem would allow the current

parameterization employed in COLT and a new modified equinoctial element

(MEE) parameterization to be used to pose a single direct optimization problem

that can be solved to generate a fully optimal transfer. Previous literature on

computing low-thrust spirals via direct collocation demonstrates that an MEE

parameterization is well suited for this application. The final result of imple-

menting a multi-phase capability and an MEE parameterization will be a tool

that not only generates more optimal transfers in the BCR4BP, but is also able

to transition these transfers to an ephemeris model.

• Missed Thrust Analysis - An extensive missed thrust analysis of the type pre-

sented for the Gateway spacecraft is essential to ensure the practicality of the

proposed LIC trajectory designs. The same missed thrust analysis strategy em-

ployed for Gateway can be applied to LIC to reveal the regions of the presented

Phase 1 and 2 trajectories that are most sensitive to missed thrust events.

The results of this analysis may suggest alterations to the trajectory design

framework presented in Section 6.2 that will enhance the robustness of the LIC

trajectory to missed thrust events.
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[10] G. Gómez, W. S. Koon, M. W. Lo, J. E. Marsden, J. J. Masdemont, and
S. D. Ross, “Connecting orbits and invariant manifolds in the spatial restricted
three-body problem,” Nonlinearity, vol. 17, no. 5, pp. 1571–1606, 2004.

[11] S. Ross and M. Lo, “The lunar L1 gateway-portal to the stars and beyond,” in
AIAA Space 2001 Conference and Exposition, Albuquerque, New Mexico, 2001,
pp. 47–68.

[12] M. W. Lo and J. S. Parker, “Chaining Simple Periodic Three Body Orbits,”
in AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, California,
2005.



258

[13] J. S. Parker, K. E. Davis, and G. H. Born, “Chaining periodic three-body orbits
in the EarthMoon system,” Acta Astronautica, vol. 67, no. 5-6, pp. 623–638,
2010.

[14] M. Vaquero and K. C. Howell, “Leveraging Resonant-Orbit Manifolds to Design
Transfers Between Libration-Point Orbits,” Journal of Guidance, Control, and
Dynamics, vol. 37, no. 4, pp. 1143–1157, 2014.

[15] A. F. Haapala and K. C. Howell, “A Framework for Constructing Transfers
Linking Periodic Libration Point Orbits in the Spatial Circular Restricted
Three-Body Problem,” International Journal of Bifurcation and Chaos, vol. 26,
no. 05, 2016.

[16] R. L. Restrepo and R. P. Russell, “A Database of Planar Axi-Symmetric Pe-
riodic Orbits for the Solar System,” in AAS/AIAA Astrodynamics Specialist
Conference, Stevenson, Washington, 2017.

[17] ——, “Patched Periodic Orbits: A Systematic Strategy for Low Energy Trans-
fer Design,” in AAS/AIAA Astrodynamics Specialist Conference, Stevenson,
Washington, 2017.

[18] D. J. Grebow, M. T. Ozimek, and K. C. Howell, “Design of Optimal Low-Thrust
Lunar Pole-Sitter Missions,” The Journal of Astronautical Sciences, vol. 58,
no. 1, pp. 55–79, 2011.

[19] M. T. Ozimek, D. J. Grebow, and K. C. Howell, “A Collocation Approach for
Computing Solar Sail Lunar Pole-Sitter Orbits,” Open Aerospace Engineering
Journal, vol. 3, pp. 65–75, 2010.

[20] J. F. C. Herman, “Improved Collocation Methods to Optimize Low-Thrust Low-
Energy Transfers in the Earth-Moon System by,” Ph.D. dissertation, University
of Colorado, Boulder, Colorado, 2015.

[21] N. L. Parrish, J. S. Parker, S. P. Hughes, and J. Heiligers, “Low-Thrust Trans-
fers From Distant Retrograde Orbits To L2 Halo Orbits in the Earth-Moon
System,” in International Conference on Astrodynamics Tools and Techniques,
Darmstadt, Germany, 2016.

[22] R. E. Pritchett, K. C. Howell, and D. J. Grebow, “Low-Thrust Transfer De-
sign Based on Collocation Techniques: Applications in the Restricted Three-
Body Problem,” in AAS/AIAA Astrodynamics Specialist Conference, Steven-
son, Washington, 2017.

[23] R. E. Pritchett, E. Zimovan, and K. C. Howell, “Impulsive and Low-Thrust
Transfer Design Between Stable and Nearly-Stable Periodic Orbits in the Re-
stricted Problem,” in 2018 AIAA/AAS Space Flight Mechanics Meeting, Or-
lando, Florida, 2018.

[24] R. Pritchett, A. D. Cox, K. C. Howell, D. C. Folta, and D. Grebow, “Low-Thrust
Trajectory Design Via Direct Transcription Leveraging Structures from the
Low-Thrust Restricted Problem,” in 69th International Astronautical Congress,
Bremen, Germany, 2018, pp. 1–16.

[25] I. Newton, The Principia: Mathematical Principles of Natural Philosophy.
Berkely California: University of California Press, 1999.



259

[26] K. K. Boudad, “Disposal Dynamics From The Vicinity Of Near Rectilinear Halo
Orbits In The Earth-Moon-Sun System,” Master’s thesis, Purdue University,
2018.

[27] K. Boudad, K. Howell, and D. Davis, “Dynamics of Synodic Resonant Near
Rectilinear Halo Orbits in the Bicircular Four-Body Problem,” Advances in
Space Research, 2020.
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A. ORBIT CHAIN TECHNIQUE APPENDIX

The transfers displayed in Section 4.4 are summarized here. First, the time of flight

and propellant consumption for all of these transfers is displayed in Table A.1. Fol-

lowing this, Tables A.2 through A.7 provide the data necessary to reconstruct the

CR3BP orbit chain initial guesses employed to compute each transfer. The orbit

chain that includes dynamical structures from the CR3BP+LT is not included due

to the increased complexity of this initial guess. The first three rows of the tables

that summarize each orbit chain provide: the number of revolutions, the number

of segments per revolution, and propagation time for each link in the orbit chain.

The names of these quantities are abbreviated in each table as Num. Rev.’s, Num.

Seg.’s/Rev., and Prop. Time, respectively. Furthermore, all times, positions, and ve-

locities are presented in nondimensional units. Finally, for compactness, states whose

values equal zero are omitted from each table. For example, no z or ż states are

included in Table A.2 because this transfer is entirely planar.
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B. GATEWAY MISSION DESIGN APPENDIX

This appendix offers the data necessary to reconstruct the CR3BP orbit chain initial

guesses for each type of Gateway transfer presented in Chapter 5. The first three rows

of the tables that summarize each orbit chain provide: the number of revolutions, the

number of segments per revolution, and propagation time for each link in the orbit

chain. The names of these quantities are abbreviated in each table as Num. Rev.’s,

Num. Seg.’s/Rev., and Prop. Time, respectively. Furthermore, all times, positions,

and velocities are presented in nondimensional units. When a transfer includes more

links than can be fit in a single table the information is split over multiple tables.
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ẋ
-8

.9
63

0E
-0

4
0

0
0

0
0

ẏ
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