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ABSTRACT

Procedural level generation is a novel area of research within the field of computer graphics and

game development. However, current research and implementations of procedural generation for

cooperative games is sparse.  Further study is  required to validate  the use of automatic  level

creation  and to  test  additional  methods  of  optimization  for  cooperative  games.  Additionally,

despite  many  recent  developments,  many  areas  within  the  field  of  virtual  reality  remain

underexplored.  We  propose  a  mathematically  defined  total  cost  function  for  controlling  a

procedural  level  generation  algorithm  for  cooperative  virtual  reality  games.  This  cost  term

controls an algorithm which gradually improves a generated solution over a series of iterations,

bringing it to an optimal state. We present here two games with procedurally created levels and

gameplay elements using this mathematical total cost function, as well as proposed experiments

to validate the effectiveness of this content in encouraging cooperation and potential use cases

for this technology.
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Procedural  content  generation  (PCG)  is  an  extremely  versatile  and  up-and-coming  area  of

research, particularly for companies in the entertainment gaming industry. It allows developers to

automate  many tasks  and to  semi-intelligently  create  large amounts  of  content  quickly,  thus

saving a significant amount of time and resources. Procedural generation typically incorporates a

stochastic process and can create game content at runtime, leading to infinite replayability in

games which make use of it. The rogue-like genre of games is particularly keen to use random

procedural generation to create an endless variation of game levels which are unique in each

playthrough. 

Several considerations must be taken into consideration by the developers during the creation of

content generation algorithms. For example, the algorithm must be designed in such a way to

ensure a  consistent  experience  (e.g.  a  consistent  level  of  difficulty)  with  each “solution”  or

“combination” of random elements.  If  done poorly,  separate  playthroughs can lead to vastly

different  levels  of  difficulty.  In  addition,  developers  must  account  for  many potential  “edge

cases” which may cause a generated level or configuration to be unplayable or impossible to

complete.

One area which is yet under-explored is tailoring procedural content generation algorithms in a

way to encourage cooperation in a multiplayer game. Very few games handle cooperation in a

way which truly encourages players to work together, instead simply having them act as identical

(or near-identical) agents who act on their own. Two good examples of cooperative multiplayer

games  are  Portal  2’s1 multiplayer  mode  and Overcooked2.  In  both  cases,  the  game requires

players to communicate with one another in order to complete a task. 

Procedural content generation has immense potential to speed up the game development pipeline

and to create unique content in each playthrough. However, due to factors such as the complexity

of the issue, the high levels of creative and intuitive thinking to see its  possible uses, and a

1 https://store.steampowered.com/app/620/Portal_2/
2 https://store.steampowered.com/app/448510/Overcooked/
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perceived lack of artist control over the generation process, many companies fail to utilize it to

its full potential (if at all). 

This results in consistent but slow development times for hand-placed content which can greatly

limit the size and scope of a game with a limited timeline. By making use of current procedural

generation techniques, developers can significantly speed up their development pipeline and save

artists/designers the tedious tasks of repetitively assembling similar levels.

1.2 Research Question

The following items represent the research questions for this study:

● To what degree can we control procedural level generation through a mathematical

formula to effectively encourage cooperation 

● To what degree are the levels of cooperation between two players in procedurally

generated game levels similar to the degrees of cooperation between two players in

manually created game levels?

● To what degree can this optimization algorithm ensure a fairly consistent level of

required cooperation and difficulty across solutions?

● To what degree does playing procedurally generated cooperative game levels improve

the cooperative behavior of individuals in performing cooperative tasks?

1.3 Research Significance

Procedural content generation holds immense potential for solving a wide variety of problems in

a  highly  efficient  manner.  In  addition  to  being  incorporated  into  existing  game  companies

workflows, procedural generation holds great potential for rapid development of virtual reality

training software. Additional research must be performed to help verify the effectiveness and

reliability of procedural generation to encourage its expanded usage in industry.

In addition to its  applications  in the field of entertainment  video games,  rapid generation of

collaborative content has potential applications for the field of collaborative training. Whether

for the purpose of creating games to teach team members to collaborate or to generate scenarios

for safety/training simulators, these same generative systems can be applied to the developing

field of serious gaming and VR training.
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1.4 Purpose

The question which this research project intends to answer is as follows: to what degree can

cooperative game levels be defined mathematically to procedurally generation game content. The

results of the procedural content ideally should be user-tested and compared with a similar hand-

assembled game level for validity. However, due to the COVID-19 pandemic and subsequent

suspension of in-person user studies, this test was not able to be performed.

1.5 Assumptions

● Participants have some prior experience with video games

● Participants have some prior experience with virtual reality

● Participants should all be physically capable of interacting with virtual reality motion

tracked controllers

1.6 Limitations

● Due to health concerns resulting from the COVID-19 outbreak, user studies were not

able to be performed

● It may be difficult to accurately quantify the level of cooperation between two players

● Cooperation  is  a  loosely  defined  concept  and  is  highly  situational  and  a  user’s

awareness

● Different  participants  may  have  different  social  behaviors  and  be  more  or  less

inclined to cooperation due to their personality

1.7 Delimitations

● Given the time constraints of the project, only two simple games will be developed to 

test the generation algorithm.

● The generation will be balanced with two players in mind.

9



1.8 Definitions

Simulated  Annealing: an  optimization  algorithm  used  for  finding  an  optimal  (or  close-to-

optimal) solution to an optimization problem (Carr, 2012)

Procedural Content Generation (PCG): a method of automatically creating content (typically

randomly) in a structured, algorithmic way rather than creating content manually or by hand.

Virtual  Reality: a  digital  experience/simulation  in  which  a  user  is  immersed  in  a  virtual

environment

Cooperative  (co-op) Games:  a game in which two or  more  players  must  work together  to

accomplish a shared goal

1.9 Summary

This study aims to validate the usage of a total cost function for procedurally generating levels

for  a  virtual  reality  cooperative  game.  Recent  developments  in  procedural  generation,  the

efficiency of  random level  generation  to  create  vast  amounts  of  replayable  content,  and the

limitations  of  existing  research  in  its  applications  for  cooperative  games  necessitates  further

research to examine its potential effectiveness and use cases. This project proposes the usage of a

mathematical  total  cost  function  to  control  a  procedural  generation  system  for  creating

cooperative VR game levels.
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CHAPTER 2. LITERATURE REVIEW

2.1 Virtual Reality

Virtual reality is one of the most popular recent developments in technology in the field of game

design. The emergence of consumer-affordable virtual reality equipment has created a boom in

development  and  research.  According  to  a  Reuters  article  from 2018,  “The  Global  Virtual

Reality Market was valued at  USD 3.13 billion in 2017 and is expected to reach USD 49.7

billion by 2023.” (Costello, 2018). According to a 2018 TrendForce study, total VR hardware

sales have increased from 3.7 million to  5 million between 2017-2018 (Tsaj,  2018).  Similar

trends can be seen in the data from Forbes on monthly connected VR headsets as found through

Steam (Rogers, 2019).

Figure 1: Forbes data on monthly connected headsets on Steam3.

Market trends show a strong increase in virtual reality content, likely due to significantly reduced

prices making the hardware affordable to consumers, coupled with the novelty of the relatively

new technology. As compared to more traditional games or interactive digital media, immersive

virtual  reality  has  much greater  room for  future  development  and a  larger  untapped market

potential.  Industry  developers  and  researchers  alike  must  take  advantage  of  the  booming

popularity of this technology in order to utilize it to its full potential.

3 Retrieved from: https://www.forbes.com/sites/solrogers/2019/06/21/2019-the-year-virtual-reality-gets-real/
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2.2 Virtual Reality Training

As virtual  reality  becomes  more  affordable  and  easily  available  to  consumers  and  software

developers, new and creative use cases for the technology are being found. Virtual reality offers

an  incredibly  high  level  of  immersion  and  a  level  of  physical  interaction/motion  which

traditional computer games/software lack, while being safe to use (Noguchi, 2019). This allows

content  creators  to  simulate  potentially  dangerous  situations  (such as  construction  job  sites)

without the risk of physical injury or to simulate tasks with large consequences for failure (such

as performing surgery or flying planes) without risking damage to property of individuals (De

Vries, et al. 204). Additionally, using virtual reality technology is a highly engaging and novel

experience, often motivating greater levels of participation and focus which leads to long-term

retention benefits. As a result, companies are becoming increasingly interested in virtual reality

as an alternative to real-world or on-site training for applicable tasks.

In their 2013 paper, Farra et al.  (Farra et al.,  2013) discuss the potential  for VR training for

disaster  response  for  nurses.  When compared  with  a  more  traditional  web-based  method  of

instruction,  the  researchers  found that  virtual  reality  training  resulted  in  significantly  higher

retention of the information over a 2 month period. 

Virtual reality training, along with virtual reality in general, is becoming increasingly popular

due to its many benefits. Given the importance of teamwork in many jobs (such for firefighters

and the police), cooperative virtual reality training software could be greatly beneficial. 

2.3 Cooperative Games

Cooperative games are a subcategory of multiplayer games in which two or more players must

work cooperatively, typically against AI enemies or to solve puzzles (games with two or more

teams  against  each  other  are  usually  regarded  as  competitive,  even  though  they  involve

cooperation). Several different methods have been used throughout the history of video games to

encourage  (or  even  force)  cooperative  behavior  between  players.  In  their  paper  “Game

Mechanics for Cooperative Games,” Rocha et  al.  lists  some of the ways in which gameplay

elements can be used to encourage cooperative behavior. Perhaps the most obvious of these is
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“shared goals” in which cooperating players have similar (or identical) objectives which they

need to complete, putting them on the same pathway to their goal. Two other similar design

patterns mentioned are “complementary” and “synergies between abilities” which both involve

asymmetry between the two (or more) players and their abilities. Creating differences between

players is done to ensure that no one player can “do everything” and thus must rely on each other

to make up for one’s own deficiencies (Rocha, 2008). 

There  are  many  other  unique  methods  in  which  game  mechanics  can  be  used  to  force  or

encourage two players to cooperate in a video game. Some of these different methods are noted

in a 2018 Gamasutra article by Thierry Lauret. Luaret defines four categories named “The Gate,

The  Comfort,  The  Class,  and  the  Job”  (Lauret,  2018).  “The  Gate”  refers  to  cooperative

mechanics which require both players to be present to complete a task (i.e. two players lifting a

gate,  hence the name).  “The comfort,” however,  “ relies on having a challenge mechanic so

incredibly hard that having more than one player is a necessity.” As compared to gate mechanics,

comfort mechanics are theoretically possible but extremely difficult for a solo player to perform,

thus strongly encouraging cooperative behavior rather than rigidly enforcing it. “The Class” and

“The  Job”  both  involve  assigning  different  roles  to  each  player,  either  through their  player

avarater or character (as in the class) or simply through player actions (as in the job). Similarly,

in his 2011 Game Developers Conference (GDC) talk, Ubisoft’s Patrick Redding defines several

cooperative  “dynamics”  which  are  mechanics  to  create  cooperative  behavior  between  two

players. These are placed on a gradient of “prescriptive” (forced cooperation)  to “voluntary”

(encouraged  but  not  required  cooperation).  These  dynamics  are  “gating/tethering,  exotic

challenges, punitive systems, buffing systems, asymmetric abilities, combined abilities, survival/

attrition” (Redding, 2011). 

The  options  available  for  cooperation-inducing  mechanics  are  many  and  designers  have

numerous  options  to  choose  from when  designing  such  multiplayer  games.  The  distinction

between forced and voluntary cooperation (being somewhat of a gradient/spectrum rather than

discrete states) is critical as well to define the degree of autonomy that players are allowed in a

game and to define the minimum level of cooperation that is desired. More coercive methods can

be utilized by developers/designers aiming to create an experience which is strictly multiplayer

13



(such as  A Way Out4)  while  less  coercive  methods can be used to  create  a game in which

multiplayer is strongly encouraged and implied but not rigidly enforced (such as with dungeons

in World of Warcraft5).

2.4 Video Games’ Effects on Cooperative Behavior

The topic of the impact  of video games on human psychology and behavior is  quite  broad,

especially with regards to violent video games. One subset of this research area is the effect of

games  (either  cooperative  or  competitive)  on  human  cooperative  behavior.  A  study  by

Greitemeyer  and  Cox  aimed  to  examine  this  effect.  The  researchers  defined  two  condition

groups: one group of participants to play a game (Mario Kart: Double Dash6) in single player

mode and another to player with a partner. Following this, the groups were separated and the

participants were paired randomly with another participant (other than the one with which they

had played previously). Participants were asked to complete a moral/trust dilemma with playing

chips in which they were asked to give as many chips as they expected to receive from the other

person. The study found that those who had played the cooperative mode experienced higher

levels of trust than those who had played single player, even when paired with someone other

than their original partner. (Greitemeyer & Cox, 2013). 

2.5 Procedural Content Generation

Procedural content generation (PCG) is a popular new area of research as it allows developers to

rapidly create large amounts of content without having to manually create them. This results in

slower upfront development times as the procedural generation algorithms are developed and

much quicker development speeds later as only fine-tuning needs to be made (Kruel, 2017). 

The history of procedural generation in games can be traced back many years to early pioneering

games such as Rogue7. The original Rogue created a random dungeon for the player to explore

and fight their way through and featured a perma-death (permanent-death) system in which a

4 https://www.ea.com/games/a-way-out
5 https://worldofwarcraft.com/en-us/
6 https://www.mariowiki.com/Mario_Kart:_Double_Dash!!
7 https://docs.freebsd.org/44doc/usd/30.rogue/paper.pdf
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player’s death was permanent and required a complete restart of the game. This game’s core

concepts and namesake have spawned the genres “Rogue-Like” and “Rogue-Lite” which feature

randomly generated content and frequently similar permadeath mechanics to the original. 

Figure 2: A screenshot8 of the game Rogue. 

Another well-known title which features heavy amounts of procedural generation is Minecraft, a

sandbox exploration/crafting game and the current best-selling video game of all time9.

Procedural content can also be created by the developers and “baked” into static content, rather

than being generated at runtime. In his talk at the 2012 SIGGRAPH conference, Caleb Howard

of Electronic Arts explains how his team created 300 tracks for the snowboard racing game SSX,

a feat which would have been impossible if done manually (Howard, 2012). 

As the growing number of unique and interesting use cases shows, the potential applications for

procedural content generation in the gaming industry are quite vast.  A 2017 article by Jonas

Freiknecht  and  Wolfgang  Effelsberg  (Freiknecht  &  Effelsberg,  2017)  examined  the  various

forms that procedural generation has taken in computer graphics as well as the prevalence of

each type as found in either scholarly research or in industry. Some of the types of procedural

content  generation  include:  “creation  of  textures  and  materials,  generation  of  floor  plans,

humanoid  model  generation,  animation  of  humanoid  models,  and  artificial  personality

generation” (Freiknecht & Effelsberg, 2017). One key takeaway from this study is the apparent

8 Taken from https://commons.wikimedia.org/wiki/File:Rogue_Screen_Shot_CAR.PNG
9 https://www.engadget.com/2019/05/17/minecraft-has-sold-176-million-copies-worldwide/
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divide  between  procedural  content  generation  in  research  and  in  industry  in  some areas  of

procedural generation, suggesting a lack of communication between the two fields. This is the

case with areas such as generating “stories  and quests” which is  more common in research,

despite its obvious potential use cases. Additionally, the authors mention that “large companies

are thrifty  about how they model  or automatically  generate  cities” (Freiknecht & Effelsberg,

2017).  This  shows  that  despite  its  increasing  potential  and  the  rise  of  popular  procedural

modeling software such as Houdini10, companies can be slow to adopt procedural generation into

their existing workflow. This issue is also mentioned by Luiz Kruel in his 2017 GDC talk on

technical  art  and  proceduralism.  In  this  talk,  he  describes  some  of  his  experiences  in  his

profession  (as  well  as  some  colleagues’  experiences)  in  which  artists,  designers,  and

management  are  all  slow and  hesitant  to  adopt  new methods  of  performing  common  tasks

(Kruel, 2017). As with many industries, veterans in game development tend to become “stuck in

a rut” and without exposure to newer, more innovative techniques, their workflow may remain

inefficient and outdated.

There  are  many  possible  reasons  why  developers,  especially  large  developers  with  well-

established workflows, would not  make use of procedural  generation.  As mentioned by Joel

Couture in a Gamasutra article, procedural generation “can create stages that are too hard, stages

that are too easy or plain dull, stages that feel like repeats of each other, or just otherwise create

an  array  of  flavorless  or  frustrating  experiences.”  (Couture,  2016).  In  addition,  procedural

content can impact the “flow” of the game due to a lack of direct designer influence and it is

often difficult  to tune a generation algorithm to adequately replicate  this  flow. Additionally,

given  the  random  element  of  content  creation  involved,  games  with  procedural  generation

sacrifice  the  hand  placement  of  game  elements  for  faster  and  more  varied  content.  This

relinquishing of artist control can make developers feel uneasy and unsure over the consistency

of the product which they will be delivering.

However,  when  done  effectively  and  when  sufficient  consideration  has  been  given  to  the

possible  edge cases, procedural content generation can be effective in creating game content

without having it feel “bland” or “soulless.” While a few llarger scale projects in recent years,

10 https://www.sidefx.com/products/houdini/
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such as No Man’s Sky11 and Shadow of Mordor12appear to show a widening acceptance of PCG,

Additional research on procedural generation and its use cases are required to ease developer

anxieties regarding the topic and encourage its expanded usage in the gaming industry.

2.6 Procedural Content Generation for Cooperative Games

Many of the well-known coop-supported procedural games (such as Minecraft13, Don’t Starve14,

and No Man’s Sky15) feature extensive single player modes as well and appear to have coop as

an additional feature rather than a key element of the game. By comparison, many of the most

iconic  cooperative  games  (such  as  Overcooked  16and  Portal  217’s  multiplayer  mode)  feature

manually created content.

Very  little  research  has  been  done  on  the  usage  of  procedural  level  generation  in  coop

multiplayer  games.  One noteworthy article,  “Procedural  Content  Generation  for  Cooperative

Games” by Rafael Ramos stands alone in this area of study. In this study, the author aimed to

examine the viability of using a procedural generation algorithm in a simple cooperative game

(Geometry  Friends)  and whether  or  not  users  could  determine  which  content  was  manually

created and that which was automatically created. The results found that users believe all content

to be made by hand and found strong levels of cooperation (even in levels which did not force

cooperation). This study is a critical beginning for this area of research (Ramos, 2015). However,

it has many limitations as mentioned by the author. Firstly, the generation algorithm used is not

evolutionary,  meaning it  generates a random solution and checks its  viability.  If  the level is

unsuitable, a completely new solution is generated. By comparison, algorithms such as simulated

annealing  progress through a series  of iterations  and gradually  bring a  solution closer  to  an

optimal state. Secondly, the scope of the game itself is quite small. All game levels are 2D and

take place on a single screen (no scrolling maps). This limits the content being generated to a

very small area.  Additionally,  the levels are fairly simple puzzles which require the users to

11 https://www.nomanssky.com/
12 https://store.steampowered.com/app/241930/Middleearth_Shadow_of_Mordor/
13 https://www.minecraft.net/en-us/
14 https://www.klei.com/games/dont-starve
15 https://www.nomanssky.com/
16 https://store.steampowered.com/app/448510/Overcooked/
17 https://store.steampowered.com/app/620/Portal_2/
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cooperatively  gather  purple  diamonds scattered  about.  The game features  very few elements

(players, diamonds, platforms, walls) and simple cooperative mechanics. In order to verify the

usefulness of procedural generation for cooperative games, it must be applied to a wider array of

games with different genres and form factors.

2.7 Simulated Annealing

Simulated  annealing  is  a  stochastic  optimization  technique  for  finding  a  solution  to  a

computational  problem  through  randomly  generated  solutions.  It’s  named  is  based  on  the

classical blacksmithing where metal is heated to a high temperature for making large changes.

As the material  cools down over time,  it  becomes less malleable and changes become more

precise. Similarly, with simulated annealing, a series of optimization iterations will start with a

high temperature value which allows for a wide range of values to be accepted during each

proposed change to the solution, including potentially “bad” changes which take the solution

farther from a desired outcome. As the iterations progress and the temperature cools down, the

changes become less drastic until, ultimately, a final solution is reached which meets the desired

conditions (Carr, 2012). During each iteration, a “move” is performed: an action in which the

current configuration or solution is altered slightly in a random way. Depending on the desired

results and the content being optimized, developers can define any number of moves to be a part

of their optimization process.

In the paper “Make it Home: Automatic Optimization of Furniture Arrangement” explored the

use of simulated annealing as part of an algorithm to generate random arrangements of furniture.

(Yu, et  al.  2011).  The generation algorithm determines  things such as pairwise relationships

between objects (such as between tables and chairs) and required visibility (such as between a

sofa and a tv) by providing examples of hand-placed furniture arrangements. Based on these

pairwise relationships, several cost terms are defined for the simulated annealing process. Less

accurate arrangements lead to higher costs which the optimization then tries to correct. During

each iteration, a random move of objects occurs. Then, the system re-assesses the current cost.

This cycle continues as the furniture arrangement becomes more optimal, ultimately resembling

a sensible configuration. The key factor which allows simulating annealing to be effective for

solving this problem is that the relationships between objects can be mathematically defined and
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therefore  optimized  using  cost  terms.  For  instance,  if  a  chair  is  very  far  away  from  its

corresponding table, the system knows to correct this by gradually moving the chair towards the

table (or vice versa), thus reducing the cost.

Another study conducted by Zhang, et al. in 2019 used simulated annealing to create a virtual

exercise game which can easily alter the difficulty (Zhang, et al. 2019). The game is similar to

preexisting dance games in which the user must perform a sequence of poses, one after the other.

The researchers used a Microsoft Kinect to capture full-body movements for gameplay. A series

of  10  movements  were  defined  and  the  100  different  transitions  between  these  poses  were

measured  for  difficulty. Based  on  the  difficulty  of  moving  from  one  pose  to  another,  the

generation algorithm is able  to create  sequences of poses for the player  which have a fairly

uniform difficulty. A similar study, also in the vein of virtual reality exercise games, examined

the use of simulated annealing to generate optimized game levels of a user-specified difficulty by

formulating the game level design problem to a total cost function. One feature of this study is

that the generation system uses a series of predefined “chunks” which are assembled together

randomly to create the final level. (Xie, et al. 2018). 

Simulated  annealing  is  shown to be  an effective  means for  generating  solutions  to  complex

problems.  Additionally,  it  allows  a  developer  to  mathematically  define  terms  by  which  to

perform an optimization. It allows for solving complex problems and, as can be seen from the

various applications, it readily applied to many complex issues.
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CHAPTER 3. METHODOLOGY

3.1 Development

The primary development tool for this project is the Unity 3D Game Engine. Models and other

assets were primarily acquired through the Unity Asset Store. A list of assets used in this project

is included below:

● Photon Unity Networking18 (networking scripts)

● Polygon Dungeons19 (fantasy dungeon 3D models)

● Polygon City20 (city 3D models)

● Epic Toon FX21 (cartoony VFX)

● An HDRI Image from HDRI Haven22 (a skybox) 

● Steam VR23 (the VR framework for the project)

The game is developed in Unity using the Steam VR framework. This framework contains many

scripts to rapidly develop virtual reality projects and can be targeted to many different platforms,

including Vive, Oculus, and Windows Mixed Reality. The project was primarily targeted for the

HTC Vive Headset and testing was performed on a Windows Mixed Reality Headset (Samsung

Odyssey). 

Input for the two games varied. For the thief chasing game, a keyboard was used, while for the

dungeon RPG game, two motion-tracked VR controllers were used. Likewise, the thief chasing

game was designed to be played while seated while the dungeon crawl game was designed to be

played while standing.

18 https://assetstore.unity.com/packages/tools/network/pun-2-free-119922
19 https://assetstore.unity.com/packages/3d/environments/dungeons/polygon-dungeons-pack-102677
20 https://assetstore.unity.com/packages/3d/environments/urban/polygon-city-pack-95214
21 https://assetstore.unity.com/packages/vfx/particles/epic-toon-fx-57772
22 https://hdrihaven.com/hdris/
23 https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
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In the initial stages of development, it was also planned to use the Virtuex Omni for movement.

However, due to the closure of campus due to health concerns, this was not feasible. Rather, for

the dungeon game, a gesture based movement system was employed.

3.2 Games

In order to test the algorithm and its effectiveness in encouraging cooperation, two games were

developed.  The  first  game  is  a  simple  game  in  which  the  two  players  control  police/law

enforcement  officers who must locate  and apprehend a criminal  running through a city.  The

users need to work together to corner and apprehend the thief. The second game is a fantasy

dungeon crawl game, somewhat in the vein of the original rogue game (a pioneer of procedural

content  in games).  The users are required to  navigate  through the dungeon,  fighting various

enemies, solving puzzles, and ultimately locating various keys to open the door to the exit. These

two games are described in further detail below.

3.3 Game 1: Criminal Chase

The first game developed with the simulated annealing procedural generation algorithm is a thief

chase  game.  In  this  game,  players  would  control  two  police  officers  in  cars.  They  will  be

instructed to chase down a criminal in a red sports car who will be driving around the city in an

attempt to evade the officers. If players get within a close distance of the criminal (~5 meters),

the criminal will have been successfully caught, thus ending the game and prompting a victory

message. The players each have a map which allows them to see the location of themselves and

the other player so that they can coordinate with one another. 

Figure 3: An Example Level Layout of the Criminal Chase Game
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Figure 4: An Screenshot of a First Person View from Within the Police Car

The optimized parameters for this game include the following:

● The enemy speed

● The enemy detection radius

● The traffic density

● The starting distance between the players

● The navigation difficulty of the level (based on the number of streets)

● The speed of traffic light changes

These cooperative parameters are designed in a way to create variations in how the players must

collaborate. For example, in a configuration with a fast thief but minimal traffic, players must

collaborate to try to corner the player since one player would not be fast enough to catch them. 
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Figure 5: The street patch (left) and the street block/building patches(right) which are placed
within the street patch

3.4 Game 2: Dungeon Delver

The second game developed is a fantasy RPG dungeon crawler game. In this game, players will

be instructed to collect a certain number of keys scattered throughout the generated dungeon in

order to unlock a door and escape the dungeon.

Figure 6: Two Examples of Generated Levels for the Dungeon Delver Game
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Figure 7: A Screenshot of Inside a Dungeon Level

Figure 8: A Screenshot of Inside a Dungeon Level

Movement in this game uses gesture based controls to reduce motion-sickness. To move around, 

users hold down the trackpad on either or both controllers (a button typically used for movement 

or teleportation in VR), and then swing their arms in the reverse direction that they wish to move

(i.e. swing arms backwards to move forwards). This motion simulates the real-world motion of 

the arms when walking/running and is sometimes referred to as “rowing.” The players are unable

to jump and their vertical motion is controlled only by gravity.

The optimized parameters for this game include the following:

● The number of rooms

● The number of traps/hazards
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● The number of enemies

● The number of required keys

● The starting health of player

● The likelihood of a torch being lit by default

This game has slightly different cooperative elements due to asymmetrical player roles. 

One optimization parameter is the chance for a torch in a room to be lit at the start of the game.

There is one grabbable torch which the players can use to light other torches in the scene to

illuminate their path. Fewer lit torches is a result of higher target cooperation values.

Traps and hazards often contain “cooperation-suggestive” elements which become significantly

more difficult when done alone. A list of these traps/hazards is given below:

Table 1: A list of hazards for the dungeon crawler game

Crates Must be pushed out of the way, are easier/quicker to push with more players
cooperating

Stone Doors Doors with switches, one player can stand on a switch, players can run 
through themselves if quick enough

Stuck Door Doors which can only be broken by the warrior character

Locked Door Doors which can only be unlocked by the mage character

Claptraps Traps a player temporarily, preventing them from moving

Pendulum Deals damage to a player when hit

This game features several patches used in its procedural generation which are divided into two

categories:  rooms and hallways.  The game begins with a fixed starting room from which to

build. When a new room or hallway is being added, a random door of the new patch is snapped

to a random available door (a door in a patch already in the level which does not have another

patch connected to it). Following this, the system performs a quick check using the bounding

boxes of all the patches in the scene to check for overlap, in which case the new room would be

discarded regardless of whether or not the addition of the room improved the current solution.

Below are some in-editor screenshots of the different patches.
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Figure 9: Dungeon room patches (from left to right): starting room, two exit room, diamond
room, L-shape room

Figure 10: Dungeon hallway patches

3.5 Target Cooperation Value

The main adjustable parameter of the optimization algorithm is the target cooperation value. This

value is intended to control the degree of cooperation by adjusting the amount and intensity of

several level elements and gameplay parameters. 

When the optimization begins, the cost will be very high due to the initial emptiness of the scene

and the lack of cooperative elements in it. As the optimization progresses, random moves will

begin to  place  gameplay  elements  and adjust  parameters  until  the  level  matches  closely the

desired  cooperation  level,  thus  decreasing  the  cost  to  near  zero.  This  setup  allows  certain

configurations to rely on different gameplay elements in order to encourage cooperation than

other configurations. For example, one generated level for the city game may have a fast enemy

with minimal  traffic  and pedestrians  whereas  in  another  level  the inverse may be true.  This
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allows for a  diverse array of levels  to be generated  with different  challenges  to  face across

configurations.

3.6 Cost Terms

The cost term comprises the core of the optimization algorithm. Cost here is  defined as the

“distance”  between  the  current  solution  and  a  desired  solution.  Higher  costs  penalize  the

algorithm into making decisions to reduce the cost, thus dissuading it from making sub-optimal

changes resulting in poor content.

The total cost function (CTotal) will feature two main cost terms (C) which each break down into

more subterms. These are detailed below:

● Level Cost Term (CL)

o Adjacent Chunk Variation Cost (CV)

o Level Size Cost (CLS)

● Game Cost Term (CG)

o Players (CP)

o Enemies (CE)

o Items (CI)

o Environment Hazards (CH)

The Level Cost Term controls the foundational level structure, such as the placement of building

patches. This is separated from the target cooperation value in order to ensure levels are of a

consistent size/content  amount.  The Game Cost Term is controlled by the target cooperation

value.  A higher desired cooperation would require more cooperative elements (such as more

difficult enemies or more hazards). 

Each cost term is assigned a certain weight (W) to which it is multiplied. This value is user-

defined and is used to increase or decrease the influence of a particular cost term. The total cost

of the entire optimization solution is calculated from the sum of these two costs multiplied by
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their respective weights. Depending on which game is being played, these cost terms will affect

different parts of the generated level and its contents. For example, the “level layout” parameter

in the criminal chasing game will alter the placement of city buildings and streets whereas in the

dungeon crawler RPG it will place the adjacent dungeon rooms.

The Game Cost  Term is  controlled  by  the  amount  of  desired  cooperation  between the  two

players. 

Some game elements  feature  discrete  elements  (such as  rooms) which  feature  a  fixed  value

associated with them. As rooms are added, their values are summed together to find the total

contribution of all rooms in the scene. The same concept applies for elements such as enemies in

which the total value of enemies is the sum of the value of each enemy.

The game cost (CG) is formulated using the following equations:

CCOOP = | VCOOP - TCOOP |

VCOOP = WPVP:+WEVE+WIVI + WHVH

where:

VP,E,I,H = f(VMin, VMax, VCurrent)

The layout cost (CL) is formulated using the following euqation:

CL = WLP|VLP-TLP| + WVCV

Firstly, a target cooperation value (TCOOP) is specified by the user. The Cooperation cost (CCOOP) 

is defined as the distance from the current cooperation value (VCOOP) calculated from the current 

configuration and the target cooperation value. The current cooperation value (VCOOP) is 

calculated from the sum of each of the four cooperation elements with their respective weights 

(P=Players, E=Enemies, I=Items, H=Hazards). Each of these values is defined by an inverse 

linear interpolation function (f). Due to the usage of an inverse linear interpolation (inverse lerp),

all the values are normalized to the range of 0.0 and 1.0. Minimum difficulty (VMin) and 

maximum difficulty (VMax) values are defined and the current values of a parameter (VCurrent). For 

example, the player optimization value (VP) is calculated using the current distance between the 
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players by inverse interpolating this value between the minimum required cooperation player 

distance and the maximum required cooperation player distance. 

The level layout cost term is handled separately from the cooperative gameplay elements and is 

defined by the cost term CL. VLP and TLP refer to the current value of the level patches and the 

desired value for level patches, respectively. CV is the variation cost, a unique cost term 

(calculated differently for different games) which is use to disincentivize the generation 

algorithm from placing many of the same patches and attempts to alternatively create a diverse 

and varied solution.

The individual cost of elements (such as enemy cost CE for example) will be calculated based on

which game is currently being played. One example would be an “enemy” optimization move in

the RPG game.  The total  value of the enemies  would be determined by factors  such as the

number of enemies and their difficulty.  An example of this is the room placement cost term

equation as provided below. The current cost of the room optimization is defined as the distance

between the sum of the current room values (based on the number of rooms and their sizes) from

the desired total value.

CLP=∑
i

❑

❑|Ri❑−R i'|

CT=CL+CCoop

where  Rdenotes the desired room configuration,  R∈{Ri
❑

, where i=1,...,N} and  R❑
' denotes the

new room configuration.

Similar calculations will be performed for the additional cost term elements. Some additional

examples of these cost terms and their  implementations in the two games are detailed in the

diagram below.
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Figure 11 11: A diagram showing the cost terms applied to each game.

This optimization algorithm can be readily applied to numerous other game types which feature

similar elements (level, environment hazards, players, items, enemies). 

3.7 Optimization

The optimization  begins  by generating  a  random starting  condition,  depending on the game

chosen.  For  the  dungeon  game,  the  starting  condition  is  a  starting  room,  from  which  the

optimization algorithm branches off of. For the city chasing game, the starting condition is a city

with  completely  random patches  and default  parameters  for  all  variables.  Then,  it  proceeds

through a number of iterations and checks (in the proposed case, one iteration/move per frame).

During an iteration, the system first decides which type of change to perform (called a “move”).

The types  of moves are  detailed  in  the  section below  (3.8).  Once a  type of move has  been

randomly chosen, a random change to the scene is proposed. For example, for a level layout

move, the system could add or remove a room from the level. The cost (C) of the proposed

alteration (CP) is computed and compared to the cost of the current configuration (Cc). If the cost
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of the proposed configuration is less than that of the current configuration (meaning the proposed

solution is closer to an optimal solution), the proposed change is accepted and the changes to the

level are made (such as actually adding the in-game object for a proposed room). However, if the

solution  is  less  optimal/has  a  higher  cost,  the  algorithm  has  a  probability  (p)  of  accepting

depending on the cost difference (D) and temperature (t) as defined by the function below:

p(CC∨C P)=exp(
−1
t
D)<R(0,1)

where:

D=CC−CP

R(0,1) is a random floating point number between zero and one. When the optimization first

begins, due to the high temperature, the probability of accepting “bad” moves is quite high. As

the iterations continue, the temperature “cools down” as the solution becomes closer to its final

configuration. 

In  this  equation,  the  value  t refers  to  the  current  optimization  temperature.  As  with  the

metallurgical  process  which  the  simulated  annealing  process  is  named  for,  the  optimization

begins with a very high temperature which lowers as the optimization progresses. While this can

be done gradually (i.e. linearly decreasing the temperature each iteration from max temperature

to zero),  in this  project,  we lower the temperature in three fixed intervals.  This temperature

impacts the optimization in multiple ways. First and foremost, as can be seen from the above

equation,  a  higher  temperature  results  in  a  higher  chance  of  a  “bad”  move  being accepted.

Secondly,  during  the  different  temperature  intervals,  we  prioritize  certain  moves  (i.e.  we

prioritize  more drastic  moves such as add/replace room during high temperatures  with more

gradual/fine  moves  being  for  lower  temperatures).  Both  of  these  result  in  the  optimization

exploring a wider range of variations earlier on while gradually refining to a final configuration

(as with metal smithing). 

3.8 Optimization Moves

Each iteration of the optimization process results in a random change, called a “move” being

proposed.  This  random move  may  or  not  be  accepted  depending  on whether  or  not  it  is  a
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beneficial  move and what the current temperature of the optimization is. Each random move

consists of a small change to the current optimization configuration/solution. Some of the options

for moves may take the solution in opposite directions. For example, there can exist moves for a

room based game generation to add a room or to remove a room. 

When a move is proposed, before the actual changes are made in the scene (i.e. before a room is

added), the costs of the current solution and the proposed solution are calculated. For instance,

the current  solution could contain  the values  of  3 different  rooms while  the  proposed room

contains 4 different rooms, the cost being the difference between the room value and the ideal

room value. If the cost of the proposed solution is lower than the cost of the current solution, this

signifies that the proposed change is beneficial and the change is accepted. If the change is not

beneficial (if proposed cost ≥ current cost), the algorithm will accept or reject based on the

acceptance function defined in the previous section (3.8 optimization).

Only after the change has been accepted will the changes be made in the scene. In the case of

adding a room, at this stage the new room game object/prefab is actually instantiated into the

level and placed in the correct position, linked to an existing room by a doorway. It is in this

place that certain move-specific checks will be performed. When a room is being added, physics

overlap checks are used to check whether or not the new room would overlap an existing room. 

Table 2: An example list of moves of the RPG dungeon game, divided into the 5 main categories
of moves

Level Player Item Environment Enemy

Add Room Move Player 
Spawn

Add Key Add Lit Torch Add Enemy

Remove Room Increase Player 
Health

Remove Key Remove Lit Torch Remove Enemy

Move Room Decrease Player 
Health

Add Chest Add Trap Swap Enemy

Swap Rooms Remove Chest Remove Trap Increase Enemy 
Detect Radius

Replace Room Decrease Enemy 
Detect Radius
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3.9 Stopping Condition

There  are  multiple  methods  of  determining  when  the  optimization  should  halt.  First  and

foremost,  a  maximum  number  of  possible  iterations  should  be  set  which  will  stop  the

optimization  when  reached.  Additionally,  when  the  optimization  begins  to  approach  an

“acceptable”  cost  (where CT approaches  0),  the moves will  result  in  minimal  to  no positive

changes. If it is detected that no changes have been made over the last several hundred iterations,

the current solution can be regarded as the ideal solution and the optimization can stop. The

number of iterations to wait prior to stopping is user defined and depends on the complexity of

the problem being solved.
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3.10 Code Diagrams and Pseudocode

Figure 12 Flowchart of the optimization logic.
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Figure 13: Pseudocode of the main iteration loop, the random move picking, and the stop
condition
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Figure 14: Pseudocode of a level move for the dungeon game

Figure 15: Pseudocode of an example move (propose adding a room)

Figure 16: Pseudocode of the move check equation
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3.11 Example Results

Based on this simulated annealing algorithm, here are some example layouts of levels in the

current prototype. Increasing the total value (as seen in the second set of images) leads to more

rooms being placed into the scene. A user-defined target total value can be adjusted to control

this. A higher target coop value results in a higher initial cost, resulting in moves adding value to

the  scene  in  the  form of  additional  rooms to  reduce  the  cost  (with  the  total  cost  being  the

difference between the current value and optimalvalue). Likewise, increases in the ideal value for

the “coop” cost term could result in more enemies being placed.

Figure 17: Some example dungeon layouts from the prototype (Total Room Value=50).

Figure 18: Some example dungeon layouts from the prototype (Total Room Value=100).

In order to test the patterns of the simulated annealing algorithm and its changes to the game

level,  we  can  plot  the  total  cost  of  the  level  as  it  progresses  through  the  iterations.  Some

examples of this are shown below, along with screenshots of the corresponding game level. One

key element of the simulated annealing process is that it will occasionally accept a suboptimal

response (at the points where the trend line goes up rather than down) in order to overcome a
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local  minimum.  However,  the  likelihood  to  accept  a  bad  move  decreases  as  the  iterations

progress and the temperature is cooled.

Figure 19: Some examples of the prototype optimization iterations along with in-game
screenshots of the results.

3.12 Specific Overrides

The simulated annealing algorithm works well to ensure varied configurations by examining a

wide range of possible solutions and using its decreasing temperature. However, there are several

instances where this system of proposing moves and accepting or rejecting based on costs must

be  circumvented.  For  instance,  in  the  case  of  a  game where  players  must  acquire  a  certain

number of items to complete their task (as in the dungeon RPG game), care must be taken to

ensure that enough of these are spawned in each solution. In this case, a more direct method must

be used, circumventing the typical system of suggesting change and discouraging bad moves. All

potential edge cases must be considered to prevent uncompletable solutions.
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CHAPTER 4. PROBLEM FORMULATION

4.1 Objectives

This study aims to examine the validity of procedural content generation for levels in cooperative

games. 

4.2 Proposed Testing Methodology

The cooperative level generation algorithm can be used in multiple potential experiments. Here,

we propose two different experiments. Given health concerns and the recent decision of the IRB

to suspend all in-person user studies, coupled with the nature of this project as a virtual reality

project  (with  VR  headsets  being  difficult  to  sanitize  properly),  these  experiments  are  not

currently able to be conducted. They are proposed here as potential areas of research.

Firstly, we propose an experiment to analyze the effects of the “target cooperation” variable and

its impacts on the resulting levels of cooperation among the players. To test this, a study would

be conducted of at least 16 groups of two players, with analysis being conducted across these 16

groups. Each player group would play both games with procedurally generated levels with target

cooperation values of low, medium, and high. Following playing each of these, the participants

would  complete  a  brief  questionnaire  (included  as  a  appendix).  More  information  on  this

questionnaire can be found in section 4.2. In addition to the data from this survey, additional

logged data will be used (please see section 4.3). Corrections will be made to account for the

increased level of familiarity with the game as they have played more successive levels. We

hypothesize  that  the  target  cooperation  parameter  will  strongly  correlate  to  the  levels  of

cooperation experienced by the participants as they play the games.

Secondly,  we  propose  an  experiment  to  analyze  the  effectiveness  of  playing  procedurally

generated cooperative game levels on cooperation between two individuals.

39



4.3 Validation Questionnaire

A questionnaire  for the proposed experiment  can be used to  gauge the level  of cooperation

between two users. This questionnaire is included as Appendix A.

4.4 Data Logging

During the experiment, some quantitative data will be logged based on the players’ experience.

This data comes in various forms and contains mostly quantitative data. The following are the

pieces of data which will be logged:

● How long it took the players to complete the level

● The number of dialogue interactions over voice chat between the two players

● The distance of the two players to one another (logged 4 times/second)

4.5 Testing Networking

The Unity network package Photon will be used to facilitate networked functionality between the

two locations. Additionally, a common network solution will need to be found allowing the two

machines to connect. This may involve processes such as acquiring a router separate from the

campuses main network (to bypass restrictive firewalls)  or using a pass-through app such as

Hamachi. A software such as Discord or Skype will be used to transmit voice between the two

players.

Given the time constraint of the project, before playing, the procedurally generated levels are

“baked” by saving the level configuration to a static scene. This is done in order to prevent the

data  from  the  level  configuration  resulting  from  the  procedural  generation  (such  as  the

room/level layout and all the optimized parameters) from needing to be synced over the network.

Having the levels be generated at runtime rather than generating them ahead of time and saving

them would require a large amount of data to be synced across the network, causing lag and

possibly the loss of data. This method also has the additional benefit of allowing the navigation

mesh (navmesh) to be baked without needing to worry about runtime baking.
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The ideal solution to this issue would be to generate the level on one client machine (likely the

host machine) and have the optimized level data be transmitted only one time to the remaining

client machines upon loading into the game. Since the optimization would be completed prior to

playing the game itself, all of the parameters would remain static and would not need to update

after first loading the level.
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CHAPTER 5. RESULTS

5.1 Games

Using a mathematical formula, coupled with a simulated annealing optimization algorithm, we

were able to successfully create a procedural generation system which can create random game

levels for two different cooperative virtual reality games. Adjusting the target coop parameter

has  noticeable  and  expected  impacts  upon  the  content  placed  in  the  scene.  For  example,

increasing the target coop value for dungeon levels increases the number of enemies, hazards,

and required keys, while decreasing player health and the number of lit torches.

Figure 20: An example of dungeons generated with a target coop value of 1 

Figure 21: An example of a dungeon generated with a target coop value of 3.5 
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Figure 22: Examples of the city generation

5.2 Results

To test the speed and efficacy of the generation algorithm, we ran a series of 10 (n=10) test cases

for the dungeon crawl RPG game, generating 10 unique levels for target coop values of 1 and

3.5. The average time taken for these optimizations to reach completion (for 3000 maximum

iterations), was around 44 seconds. This also includes the time taken for loading in assets and

models (which can increase depending on the complexity of assets and the number of unique

assets). When the optimization ran for the full 3000 iterations without reaching its other stopping

condition, it would run for around a minute. Occasionally, it would reach its stopping condition

from finding a low cost solution early, terminating the algorithm. The quickest solution was 15.4

seconds long and had a cost of 0.0. The longest solution had a duration of 62.08 seconds and had

a total cost of 0.14.
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Figure 23: A graph of the total, layout, and game costs over time during an optimization

From the graph above showing the solution cost over time, the three different discrete 

temperature intervals can be seen. As the optimization progresses, the chances of accepting bad 

moves decreases significantly. This is clearly portrayed in the graph of the cost over time in the 

diminishing frequency of spikes, eventually leading to a flat line at a near-zero cost.

Figure 24: The Acceptance frequency of all proposed moves

When looking at the individual parameters, it can be clearly seen that those with higher target 

coop values feature more enemies, more hazards, lower player health, more required keys, and 

fewer lit torches. Given that the optimization can prefer one parameter over another for reaching 

its target coop amount, the deviations among these parameters for medium target coop value runs
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are high. For example, one optimization solution may have a high enemy count to reach the coop

value while another may have very few enemies, relying on other methods. 

Figure 25: The average time taken and total solution cost with target coop values of 1 and 3.5

Figure 26: The average enemy count and required keys with target coop values of 1 and 3.5

Figure 27: The average player health and hazard value with target coop values of 1 and 3.5
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Figure 28: The average percentage of lit torches with target coop values of 1 and 3.5

For comparison, a test level for the dungeon game was manually created to best show the time 

which can be saved using procedural generation. In total, this took around 35 minutes to 

complete. This process required the following steps:

● Placing the room patches while counting the room value

● Placing the correct number of enemies

● Placing the correct number of chests with keys

● Updating the main door to match the number of required keys

● Deleting the extra locks

● Updating the torch lit status

○ Calculating the torch lit percentage

● Locking/blocking doors

● Placing traps

● Placing the player prefabs

● Updating the players’ health

● Setting up the current room variable for each enemy to handle their navigation

5.3 Issues

There are several moves which can create conflict with one another during the optimization 

process. Two such move pairs are removing rooms and increasing the required keys. In the case 

of removing a room, the content within the room being deleted can have a significant impact on 

the other optimized parameters, undoing several iterations of previous work done by the 

algorithm. A potential solution to this issue would be to run the optimization in different 

“phases,” each with its own temperature and number of iterations. For instance, the first phase 
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would only consist of the room layout itself, without placing any content inside. After this, the 

game would then move on to deciding upon parameters, and then work on the actual placement 

of objects in the level. This division would solve numerous problems, including the 

aforementioned issue of having content being removed as well as the issue with earlier-added 

rooms being more likely to receive content given that they are present in the optimization longer.

In the case of increasing the required amount of keys, this parameter frequently conflicts with the

number of keys in the scene. Given there must be enough keys in the scene to meet the 

requirement, solutions that do not meet this criteria are not acceptable. The current solution to 

this issue is to simultaneously propose moves for increasing the required keys and adding a new 

key.

Another issue that was noticed with some moves which have very small total impacts on the 

level. For instance, given the large number of torches in a dungeon level, the original “light 

torch” and “unlight torch” had very little change and the total torch lit percentage never deviated 

much from its initial value. To remedy this, a loop was set up to propose the same move multiple

times (5 times in this case). 

5.4 Parameter Tuning

During the creation of the optimization algorithm, several parameters needed to be tuned to give 

optimal results. The most important of these variables is the temperature weight. This variable 

factors into the probability acceptance function along with the temperature. The tested range was

from 1-100 with 50 being the final chosen value. Too low of a value can result in the algorithm 

accepting too many bad moves and not reaching an acceptable cost. Too high values for this 

parameter could result in only good moves being accepted, defeating the purpose of the 

annealing algorithm to begin with.

In addition to the cooling rate, the maximum and minimum cooperation values for several 

parameters were needed. These are used in the inverse linear interpolation function which is part 

of the coop cost term. An example of this is the number of enemies in the scene. A minimal coop

solution will have 1 enemy and a maximum cooperation solution will have 4. In addition to these

interpolated values, solutions proposing any value outside of the maximum will be rejected. The 
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main parameters which needed adjustment to reach optimal solutions were the number of 

required keys and the number of enemies.

Table 3: The minimum and maximum for optimized parameters

Parameter Minimum Coop Value Maximum Coop Value

Number Enemies 4 1

Player Health 200 50

Required Keys 1 5

Hazard Value 3 10

Torch Lit Percent  100 0

5.5 Cooling Rate

As mentioned previously, the simulated annealing algorithm makes use of a temperature 

parameter which decreases throughout the optimization process. A higher temperature value 

results in more “bad” or sub-optimal moves being accepted, increasing the variability of the 

results and helping to overcome local minimums. The temperature is decreased over the course 

of the optimization. Lower temperature lead to reduced probability of move acceptance, bringing

the decision making process closer to that of a greedy algorithm as the temperature falls from 1 

to 0. For this project, rather than having the temperature decrease gradually over time, we instead

chose to make use of discrete temperature intervals. The optimization runs for a maximum of 

3000 iterations and temperature values range from 0.0 to 1.0. The final intervals chosen are as 

follows: a temperature of 1 for the first 1000 iterations, 0.5 for 1001-2000, and 0.25 for the 

remainder of the optimization. 

This method was chosen over a gradual decline for several reasons. Firstly,it allows us to clearly 

see the relationship between the acceptance probability of moves as a result of the temperature. 

Secondly, this method allows us to have different move probabilities for each temperature 

interval. For instance, the “add rooms” move is given a higher probability at the start of the 

optimization with a lower probability later due to its more drastic effect on the solution relative 

to other moves. With this additional system in place, the temperature intervals control not only 
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the probability of accepting moves, but also the probability of proposing certain types of moves, 

further allowing for an increase of volatility early on and a phase of refinement as it approaches 

the end. This method is similar to the method employed by Xie et al. in their study in which they 

decreased the temperature value “by 0.1 0.1 every 3,000 iterations, until it reaches zero” (Xie, et 

al. 2018), although using fewer total iterations and fewer discrete intervals.
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CHAPTER 6. LIMITATIONS AND DESIGN GUIDELINES

6.1 Limitations

Due to  health  concerns  resulting  from the  Covid-19 outbreak,  coupled  with  the  cooperative

virtual reality nature of this project, we were not able to perform the proposed user studies. As

mentioned in the previous section, there are several potential experiments which can be derived

from the work completed as part of this project. There are several factors which make this study

particularly difficult to be conducted remotely while following social distancing rules, including:

the VR nature of the study, the small population of users with personal VR headsets, and the fact

that the study requires two participants simultaneously. 

6.2 Design Guidelines

Below are included some suggestions for developers and researchers looking to utilize similar

methods of procedural generation.

● Developers looking to similarly work with VR should follow the standard guidelines for

VR games (such as those to avoid motion sickness)

● Patch-based methods of generation greatly simplify the generation process

● Using a smaller number of optimized parameters will greatly simplify the optimization

process and the total cost term function

● When developing for VR, considerations should be taken with regards to polygon count

to maintain an optimal performance at high resolutions
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this project, we demonstrate the usage of a mathematical cost term function to control the

procedural generation for cooperative games. We were able to generate and tune an algorithm

using mathematical cost function to create this game content. Results from several case levels

show that the optimization can successfully create levels with higher or level of cooperative

elements based on a target cooperative element parameter. Additionally, the system was able to

create levels consistently and with a low cost (as long as the target coop value is within an

acceptable range of ~1-4). 

7.2 Future Work

There are potential areas for future development for this project. Firstly, the same algorithm can

be tested  with  more  game genres  and game formats  to  show its  generalizability.  The same

methods could even be tested using non-entertainment simulations or educational games to test

its validity in more serious cases.

In addition to applying this same generation method/algorithm to more types of games, better

methods  of  evaluation  can  be designed.  For  the  proposed experiment,  the  main  methods  of

evaluation would be a custom questionnaire and other minor metrics such as time for completion

and  the  number  of  vocal  interactions  between  players.  However,  more  robust  methods  of

evaluating the levels and their impact on cooperation can be researched and implemented.

The current optimization algorithm performs all move variants (i.e. level moves, items moves,

hazard  moves,  etc.)  throughout  the  entire  optimization.  However,  a  more  robust  generation

system would perhaps opt to perform the generation in certain fixed ''stages.” For example, the

system could first generate all the rooms and the layout of the level before deciding to place

anything inside the rooms. This could help ensure a more even density of content throughout the

level as well as removing the need for moving content in the case of a game patch
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APPENDIX A. QUESTIONNAIRE

1. Our team had a shared goal or objective

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

2. Our team worked together effectively to complete our goal

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

3. Team problem solving resulted in effective solutions

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

4. My team member contributed adequately towards completing our goal

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

5. I contributed adequately towards completing our goal

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

6. Our individual contributions were equal in completing our goal

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

7. My team member participated for the entire duration of the experience

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

8. I participated for the entire duration 

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree

9. The game levels which I played felt as if they were designed manually

1 2 3 4 5

Strongly Disagree Disagree Neutral Agree Strongly Agree
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APPENDIX B. CODE SNIPPETS

Figure A.1: Code snippet of the total cost function for the dungeon game

Figure A.2: Code snippet of the move acceptance function
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Figure A.3: Code snippet of the city game’s level move, along with the swap building function
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