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ABBREVIATED GLOSSARY 

Term Brief definition Section 

accommodation 
A mode of learning from Piaget's theories where new information 
causes some restructuring of what a person 'knows'. 

6.1.2 

ANM 

The Applied Notional Machine (ANM) is a theoretical construct of 
TAMP using Bruner's representations to add design to the mental 
representations surrounding the notional machine. 

7.5.2.1 
7.5 

assimilation 
A mode of learning from Piaget's theories where a person adopts 
new information into their existing knowledge on the topic. 

6.1.2 

Cartesian model of 
cognition 

Rene Descartes famously described human reasoning as pure and 
separated from the body.   His notion lends to a belief that people 
can think purely rationally and may distort many interpretations of 
human behavior by overlooking other modes of cognition. 

4.1 

cognitive load 

A formal look at cognitive load measures the burden placed on 
short-term memory when a person processes a task.  Cognitive load 
theory considers the educational ramifications of overloaded 
students, but just as often, authors invoke cognitive load simply to 
describe a complex task.   

2.2.3 

debugging 

The process of identifying the source of an error in programming or 
other endeavors and making a change that removes that error from 
the designed product. 

9.3.3.2 

declarative memory 
Memories that we consciously recall and use in our remembrances 
or reasoning 

7.3.1 

enactive 
representation 

One of Bruner's representations describing our mental model of 
actions and experiences 

6.3.2.1 

episodic memory 
A type of declarative memory that strings together facts and events 
in some timeline.   

7.3.1 

fragile knowledge 

While Section 2.2.1 describes several types of fragile knowledge, the 
main idea is we sometimes know something but do not reliably 
recall that information when needed. 

2.2.1 
5.2.1 

iconic 
representation 

One of Bruner's representations that generalizes from enactive and 
blends with symbolic representations.  Bruner categorizes iconic as 
'imagery', though TAMP looks to add to this definition in Section 
7.4.3. 

6.3.2.2 
7.4.3 

iconic manipulation 

The process of restructuring knowledge within an iconic 
representation to generalize from experience, solve problems, or 
otherwise make connections between other representations. 

7.4.3.3 

inner speech 

Vygotsky believed that children learn language from others, that 
leads to egocentric speech, personal utterances, that eventually 
becomes inner speech, our conscious thought processes.  

7.4.3 

mental load 

Mental load is similar to cognitive load, but mental load allows for 
'non-cognitive' factors and focuses on operators completing tasks, 
often using technology. 

6.1.2 
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misconception 
A personalized belief or fact that does not align with a shared 
concept or belief.   

2.2.2 

‘non-cognitive’ 

If 'cognitive' reasoning is logic separate from human concerns, 'non-
cognitive' involves those human concerns like emotions, 
motivations, values, or attitudes. 

2.2.4 
 

nondeclarative 
memory 

Memories that do not surface in our consciousness but drive much 
of our thinking and behavior.  For instance, physical behaviors, 
perceptual traits, judgment without conscious rules are all learned, 
but we do not consciously consider them. 

7.3.1 

notional machine 
A mental model that simulates the execution of the source code of a 
specific language on a specific computational device. 

2.1.2 

preoperational 
One of Piaget's stages of development where a learner begins to 
blend their action-based knowledge with reasoning. 

2.1.3 
6.1.1 

prospection A neuroscience concept of using memories to plan future events. 7.3.2 

Schema 

A model of memory and knowledge proposed by Piaget but used by 
many traditions, including cognitive load theory.  Schemas group and 
organize knowledge hierarchically around concepts. 

6.1.1 

semantic memory A type of declarative memory for remembering facts. 7.3.1 
symbolic 
knowledge 

Information that comes from external sources (e.g., books, lectures) 
that form the basis of symbolic representations 

7.4 

symbolic 
representation 

One of Bruner's representations describing facts and ideas that 
come from outside our experience, generally communicated by 
another person, perhaps using a unique system of symbols. 

6.3.2.3 

System 1 
The intuitive and automatic mechanism of thinking from dual 
process theory. 

4.2.1.1 

System 2 
The conscious and reasoning mechanism of thinking from dual 
process theory. 

4.2.1.2 

TAMP 
The Theory of Applied Mind of Programming, a theory describing the 
way experts think about programming 

1.1 
7 
9.1 

Theory 

A way of describing the world that looks to explain the 
interrelationships between observations and, in its best form, offers 
some predictive power. 

3.1 

Tracing 

A programming activity where the programmer uses a set of inputs 
to a sample of code to predict the resulting execution.  Tracing is a 
popular pedagogical activity primarily but has occasional use in 
professional practice. 

2.1.3 
5.2.2 

Zone of Proximal 
Development (ZPD) 

Vygotsky's theory described how two individuals who perform the 
same on an assessment can each show vastly different potential in 
future learning, particularly when given external support (latter 
named “scaffolding”) from a more knowledgeable other. 

6.2 
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ABSTRACT 

The Theory of Applied Mind of Programming (TAMP) provides a new model for describing 

how programmers think and learn.  Historically, many students have struggled when learning to 

program.  Programming as a discipline lives in logic and reason, but theory and science tell us that 

people do not always think rationally.  TAMP builds upon the groundbreaking work of dual 

process theory and classical educational theorists (Piaget, Vygotsky, and Bruner) to rethink our 

assumptions about cognition and learning.  Theory guides educators and researchers to improve 

their practice, not just their work but also their thinking.  TAMP provides new theoretical 

constructs for describing the mental activities of programming, the challenges in learning to 

program, as well as a guidebook for creating and recognizing the value of theory. 

This dissertation is highly nontraditional.  It does not include a typical empirical study using 

a familiar research methodology to guide data collection and analysis.  Instead, it leverages 

existing data, as accumulated over a half-century of computing education research and a century 

of research into cognition and learning.  Since an applicable methodology of theory-building did 

not exist, this work also defines a new methodology for theory building.  The methodology of this 

dissertation borrows notation from philosophy and methods from grounded theory to define a 

transparent and rigorous approach to creating applied theories.  By revisiting past studies through 

the lens of new theoretical propositions, theorists can conceive, refine, and internally validate new 

constructs and propositions to revolutionize how we view technical education. 

The takeaway from this dissertation is a set of new theoretical constructs and promising 

research and pedagogical approaches.  TAMP proposes an applied model of Jerome Bruner's 

mental representations that describe the knowledge and cognitive processes of an experienced 

programmer.  TAMP highlights implicit learning and the role of intuition in decision making 

across many aspects of programming.  This work includes numerous examples of how to apply 

TAMP and its supporting theories in re-imagining teaching and research to offer alternative 

explanations for previously puzzling findings on student learning.  TAMP may challenge 

conventional beliefs about applied reasoning and the extent of traditional pedagogy, but it also 

offers insights on how to promote creative problem-solving in students.   
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 INTRODUCTION 

1.1 What is TAMP? 

The Theory of Applied Mind of Programming (TAMP) defines a model of thinking and 

learning specific to the domain of computing education.  A theory of mind describes the mental 

model one being has for the thought processes of another (Leslie, 1987; Premack & Woodruff, 

1978).  TAMP looks to model the way expert programmers think, and from that model describe 

the struggles novices face when learning.  While computing education researchers have studied 

people of all ages for nearly a half-century, most of these efforts have paid little attention to 

theories of cognition and learning.  In the introduction to the recently released Cambridge 

Handbook of Computing Education Research, the editors noted, 

Too much of the research in computing education ignores the hundreds of years 
of education, cognitive science, and learning sciences research that has gone 
before us. (Fincher & Robins, 2019, p. 3) 

While I started the process of creating TAMP a few years before Fincher and Robin published 

their observation, TAMP follows their advice by blending classical theory with studies in 

computing education to create a discipline-based theory. 

 This dissertation does not attempt to ‘solve’ any specific problems in research or the 

classroom.  In time, TAMP may be an inspiration or even drive empirical studies or classroom 

interventions, but these pages merely contain ideas, but not just any ideas.  TAMP builds upon 

established, long-lived, and empirically supported theories of cognition and learning.  This 

dissertation blends what we ‘know’ about how people think and learn with empirical and 

occasionally anecdotal observations from computing education research.  In doing so, TAMP 

defines theoretical constructs that describe the mental activities of programmers, including how 

they use and form memories of programming knowledge and skills.  TAMP’s theoretical 

constructs provide researchers with the foundation to build theoretical frameworks for their studies 

and educators with practical guides for designing their curricula. 

 TAMP is a theory to guide research and practice.  TAMP is not a set of heuristics or 

practices that shortcut the practices of research or teaching.  Making the most of TAMP may 

require at least multiple readings of this work or visiting the original source materials referenced.  
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As described in Section 3.1.2.3, I do not see theory as a tool that practitioners pick up as needed, 

but a way of seeing the world.  TAMP reflects the combination of neuroscience, learning theory, 

and practical experience teaching and working in programming with empirical research to propose 

a new way to evaluate how programmers think and students learn.  

1.2 Organization of this dissertation 

While many aspects of this work mirror a traditional literature review-methods-results-

discussion format, the nature of the data and methodology add a twist.  This chapter frames what 

to expect from this dissertation and its conventions.  Chapter 2 resembles a more traditional 

literature review defining the ‘problem space’ – what literature says about training new 

programmers.  It investigates what computing education literature says programmers need to learn, 

the struggles many students face during their learning, and the creative methods educators have 

proposed to improve early programming education.  Chapter 3 captures several definitions of 

theory to establish the scope and contents of TAMP before defining a new methodology for theory 

building that drives the rest of this work.   

The methodology of theory building proposed in Chapter 3 is a bit different than traditional 

empirical studies, and thus so is the remainder of this dissertation.  While this dissertation is rich 

with data, it is not newly collected.  Rather the data supporting TAMP comes from existing theories, 

empirical studies, and scientific findings on cognition and learning.  Chapters 4 and 6 contain 

‘working literature reviews’ that analyze the bodies of knowledge surrounding dual process theory 

and theories of learning and development, respectively.  The dual purpose of these chapters is to 

summarize the pertinent features of several models of cognition and learning and rethink how they 

apply to programmers and learning to program.   

The creation of TAMP primarily occurs within Chapter 7, leveraging theory, findings, and 

interpretations from the preceding chapters.  TAMP’s major contribution is applied theoretical 

constructs within the domain of programming, but Chapter 7 also proposes several models that 

capture and compare expert and novice programmer’s cognition.  Chapters 5 and 8 each revisit 

past studies under a new analytical framework.  Chapter 5 considers the epistemological 

ramifications of dual process theory on programming education.  It also reinterprets foundational 

studies on concepts like fragile knowledge and tracing through the lens of dual process theory.  
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Chapter 8 explores the cognitive model of expert design thinking from Chapter 7 by revisiting two 

studies that tested how novices design and write code.  Chapter 9 considers the implications of 

TAMP on research and teaching. 

1.3 Disclaimers 

More than anything, this work looks to promote a dialog on the use of theory within 

computing and engineering education.  I believe that the ideas in this work are promising, 

supported, and defensible, but I am not ready to say they are immutably correct.  People are entirely 

too complex to fall into clean theoretical categories and predicted behaviors.  New theories should 

wax and wane as better explanations emerge for specific aspects of education.  It is the dialog, not 

the dogma, that should be the focus of theory.  When I started this journey, I had an affinity for 

Jerome Bruner’s research that I am still not sure was due to reason or undefinable preference.  I 

was skeptical of Piaget and unsure of Vygotsky and skeptically wrote about many other theorists 

and theories.  Possibly because of time spent in competitive debate, philosophy, or political science 

coursework, I started with an implicit mindset that theory was a competitive game rooted in 

outdoing the competition.  At several points, I will say things like “TAMP offers better 

explanations than,” which is both comparative and possibly competitive, but I believe factual.  My 

goal is not to diminish other theories so much as the improvisational comedy mantra of “Yes and”.  

Improvisation is said to be most entertaining when it builds upon the work of others.  Likewise, I 

have come to believe that theory is best when built on the insights of prior theorists.  In reviewing 

the work of others, I am generally looking to build upon the solid work they published and offer 

additional insights. 

Theory building should be a collaborative effort over time that includes both hard data and 

squishy intuition.  Anecdotal stories are not the materials for validating theory, but they can serve 

well in inspiring and explaining one.  In this narrative, I will frequently share stories of personal 

experience to frame or elaborate on a point.  I am not expecting my story to stand as proof of expert 

reasoning or novice struggles but as a starting point for seeing such phenomena in theory and data.  

Reading about dual process theory, may raise questions on how we make decisions, and when to 

feel confident about our knowledge.  Theory is not about undercutting our confidence.  Theory 

provides additional viewpoints to how we interpret what we see and make decisions in our practice.  
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Part of being a great practitioner is developing an intuition for our subject, but it may be that great 

researchers and educators also need to be aware of their own cognition and limitations. 

I sincerely hope that some or many aspects of TAMP resonate with existing work.  I regret 

to say, at this stage, even if TAMP inspires new arguments, it cannot act as proven science.  My 

methodology looks to establish consistency in TAMP’s propositions, but only further research can 

confirm my arguments.  Chapter 9 describes some of the ways I plan to continue validating aspects 

of TAMP.  New empirical data and analysis can help to validate TAMP further, and I look forward 

to seeing how others will make use (or alter) what I am proposing – and glad to collaborate as 

needed! 
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 WHY DO NOVICES STRUGGLE TO LEARN PROGRAMMING? 

2.1 What programmers “need to know” 

Learners of any subject are judged proficient once they have developed a set of desired 

knowledge and skills, yet that set may differ based on their intended use.  For example, I thought 

I was an excellent saxophonist based on my experiences in band class, concerts, and even 

competitions, up to the point where I had to play a solo in a Jazz band.  I could sight-read nearly 

any song with few mistakes and, after a few classes, play pieces without error.  Jazz required an 

entirely new set of skills for which traditional practice did not prepare me.  Jazz demands 

musicality and improvisation.  My experience strengthened the mechanics of playing the 

saxophone (seeing and playing notes) but taught nothing about understanding the composition of 

chords and rhythms required to improvise on the fly (or even prepare ‘improvisations’ ahead of 

time).  Each time we reached the solo in the song, I had no idea what to do or where to start.  My 

mechanical expertise, which was nearly flawless, did nothing to help me solve the problem of 

creating a new musical experience.  Similarly, the skills taught in programming courses seem too 

often to build mechanical skill in producing code, yet fail to create innovative, applied, 

programmers.  This section considers what computing education literature suggests that 

programmers must learn beyond the basic skills of coding, in the hopes of creating innovative 

programmers. 

2.1.1 Programming versus coding 

 Many computing professionals use the terms programming and coding synonymously, yet 

accurately describing the knowledge and skills of a programmer seems to require a distinction.  At 

a high level, it may be enough to say that coding is a subset of all that happens within programming, 

like typing sentences is a subset of all that happens when composing a novel.  Becoming an 

excellent author (or programmer) requires skill in the vocabulary and grammar (syntax and 

semantics) of the language, but these skills are a small fraction of what it takes to tell a compelling 

story.  Nearly every student studies the mechanics of their language, yet few people become 

authors, and even fewer are excellent authors.  Becoming a computing professional often starts 

with mastering a specific programming language, but many excellent coders struggle in other 
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aspects of the work of programming.   Some highly regarded computing professionals spend very 

much time writing code.  Over the first decade of my career, I honed my skills as a coder and 

programmer to the point that I was ‘promoted’ to work on larger and more complex problems 

(often with the title of ‘architect’).  With the change in responsibilities, my employers no longer 

expected me to code, in one case, forbidden to do so as I was ‘too expensive’ to merely write code.  

I believe I completed many of the same tasks as programmers, except coding.  What are the skills 

that a person must develop to not only code but program as well? 

 The computing education literature has captured the expected skillset of programmers since 

the early days of the technologies involved in programming.  Some authors explicitly listed their 

thoughts on the concepts and skills required to be a programmer.  Other researchers attempted to 

gather data to identify skills by watching experts while coding, or simply asking novices what they 

think they are learning.  Ruven Brooks (1975) proposed a theoretical framework, describing “A 

model of human cognitive behavior in writing code for computer programs”.  His theory divided 

the writing of code from other programming tasks, such as debugging code.  He went as far as to 

state, “a theory of program writing would have strong implications for a theory of debugging and 

ought to be developed first” (p. 137).  He suggested that programmers make errors in one of three 

places corresponding to his three steps of writing a program. 

1. Understanding – “Specifically, he must have representations of the initial state of the 

problem, the desired final state or goal, and one or more operations which he can apply, 

appropriately, to begin the transformation on the initial state” (p. 8)  

(e.g., solving the wrong problem) 

2. Planning – “a method for solving the programming problem; it consists of specifications 

of the way in which information from the real world is to be represented within the 

program and of the operations to be performed on these representations in order to 

achieve the desired effects of the program” (p. 10) 

(e.g., choosing the wrong approach) 

3. Coding – “using the plan to select and write a piece of code, assigning as effect or 

consequence to the code that has been written, and comparing the effect or consequence 

to the stipulations of the plan” (p. 16) 

(e.g., failing to realize the plan) 
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As early as 1975, Brooks is differentiating the role of coding as the act of translating a plan into 

the programming language.  Long before even starting this task, the programmer must make sense 

of the problem and consider promising solutions. 

 Brook’s early work included two specific themes that continue in the literature for decades, 

even perhaps after the industry abandons such ideas.  Brooks described the programming process 

as sequential – understanding then planning then coding – that aligns with early software 

development processes.  Until the advent of agile processes (Legaspi, 2014), most formal software 

development processes suggested strict ordering for building software.  The sequential approach 

sometimes referred to as waterfall development, assumes that a programmer can fully understand 

a problem and conceive of a solution before starting to write code.  There is some irony in this 

assessment as even Brooks “makes no claim about the understanding or planning process, [the 

process of coding] is not relevant to errors occurring in them” (p.138).  Brooks seemed to imply 

that the details of coding and other aspects of programming are disconnected.  If mistakes made in 

the coding process do not influence those of understanding or design, then these aspects of 

programming must require training that is distinct from that required for coding. 

 Later authors added their support to Brooks’ idea to separate coding as only a part of 

programming skills.  One summary added details and variety to the list of programming skills. 

“It is widely accepted that to program effectively one must: 
 have a good knowledge of the syntax and semantics of the target 

programming language (i.e., have an understanding of the conceptual 
machine supported by the programming language); 

 be able to debug programs;  
 and be able to analyze (complex) tasks and design algorithms aimed at 

solving these tasks.” (Sleeman, Putnam, Baxter, & Kuspa, 1986, p. 6) 

This list suggests that programmers must remember facts about the language and use this 

knowledge in analysis, design, and debugging.  What these lists do not illustrate is how a student 

acquires strategies for analysis, design, and debugging that often feel foreign to students.  Eckerdal 

and Berglund (2005) interviewed programming students who left with the impression that 

“learning to program is a way of thinking, which enables problem solving, and which is 

experienced as a ‘method’ of thinking” (p.141).  Their students believe they needed to think in 

new and ‘alien’ ways to become a programmer.  Many experts talk about programming in terms 

of processes (Sime & Arblaster, 1977) or cognitive processes (Brooks, 1977) rather than a ‘way 
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of thinking’ that is new or different.  Where students saw unfathomable ways of thinking, these 

‘insider’ experts see procedures.  Pennington and Grabowski (1990), a psychologist and 

anthropologist, brought another perspective seeing programming as “a complex cognitive and 

social task composed of a variety of interacting subtasks and involving several kinds of specialized 

knowledge” (p. 47).  Programmers seem to call upon knoweldge and skills that are various and 

seem unstructured.   

 Some researchers focused on the changes a novice undertakes in “becoming” a 

programmer.  Benedict Du Boulay (1986) captured five “areas of difficulty” that programmers 

face. 

1. Recognize programming’s orientation (“finding out what programming is for, what kinds 
of problem can be tackled and what the eventual advantages might be of expending effort 
in learning the skill” (p.57)) 

2. Understanding the notional machine (described later) 
3. Acquiring the notation of the language (syntax and semantics) 
4. Discovering standard structures (patterns for solving everyday problems) 
5. Programming pragmatics (“how to specify, develop, test, and debug a program using 

whatever tools are available” (p.58)) 

Du Boulay started with the realization that not everyone understands the value of programming 

and what advantages a computer offers.  Forty years later, the value of computers may be an easier 

sell, but what they do and how they function are perhaps even less clear.  Du Boulay described 

programming as a “Tool-Building Tool” (p. 59) that hides its inner workings from the user but 

must expose its secrets to the aspiring programmer.  Du Boulay distinguished the notional machine, 

the functioning of a program, from the syntax and semantics of the language.  The notional 

machine models a programming language in action, or as Sorva (2010) calls it, program dynamics, 

and Du Boulay splits code in action from the rules that govern that behavior.  Once again, the 

primary focus of coding, learning the rules of a language, is only a small fraction of the skills of a 

programmer.   

Computing education literature repeatedly suggests that becoming a programmer requires 

more than “learning to code” even if the programming language dominates early learning.  

Understanding the language and how to use it to write code is a subset of programming skills, but 

authors also regularly point to specifying (understanding) the problem, designing (planning) 

solutions, and debugging as critical skills.  The amount of detail and the number of publications 

dedicated to these aspects of becoming a programmer is significantly less than aspects of coding.  
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Learning to code is a significant challenge for many new programmers, but without tackling other 

aspects of programming, students will struggle later in their education. 

Sidebar on the two definitions of the notional machine 
Depending on the application of the notional machine, the distinction between a mental 

model or a standalone mode may be negligible, but it is worth considering to understand how 
TAMP will apply the term notional machine.  TAMP leans towards the use of notional machine 
as a mental model of a program’s execution.  When programming language designers create a 
new language, they define and codify a set of rules as to how their code behaves.  In some cases, 
they control the behavior down to the chosen hardware, in other cases, an interpreter or virtual 
machine may introduce possible variances, but generally, their definition and implementation 
define the full bounds of the notional machine.  In theory, a notional machine’s rules and 
behavior can be in perfect alignment.  The quality of the notional machine, in this sense, matters 
little to the programmer who is attempting to make their program function.  Many programmers 
with incomplete or incorrect mental models of a language have produced a working program, 
despite their misconceptions.  The code written by the designer of a programming language 
(who defined the notional machine) will still fail to run properly if their plan for the language 
(mental model) does not match the actual behavior.  To the working and learning programmer, 
it matters little what the perfect model of execution looks like if there is a flaw in their mental 
model that results in an error.  In computing education, it is the programmer’s mental model that 
is of primary interest.  In an ideal state, the programmer’s mental model would perfectly match 
the execution model of the notional machine, which is the goal state of computing education.  
The notional machine, as currently defined, does little to measure the variance between a  mental 
model and the ideal model (or even define the ideal model) a gap that TAMP seeks to fill. 

2.1.2 The notional machine 

The notional machine names a theoretical construct that is frequently mentioned in 

computing education literature, yet not clearly defined 1.  The notional machine encompasses the 

execution rules of a programming language at some level of abstraction.  Du Boulay et al. (1981) 

distinguished that “the properties of the notional machine are language, rather than hardware, 

dependent,” meaning the model of the notional machine abstracts specifics of the underlying 

hardware.  In fact, in the age of virtual machines, the notional machine for languages like Python 

and Java might require few, if any, facts about the underlying hardware.  Since each programming 

language may ‘tweak’ the behavior of familiar language constructs, a programmer must understand 

 
11 Szabo et al. (2019) conducted a review of the use of theory in computing education and noted the catgegory “theories 
for which we could not find a description, e.g., notional machines” (p. 104).  The notional machine is widely invoked, 
and seemingly important, but this group of researchers did not feel it was adequately defined to include in their list of 
theories. 
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these subtle differences between their notional machines.  The notional machine may even abstract 

further away from the language.  Berry and Kölling (2016) created a tool that draws diagrams to 

visualize object-oriented concepts in the code, noting 

The notional machine does not need to accurately reflect the exact properties of 
the real machine; it presents a higher conceptual level by providing a 
metaphorical layer above the real machine (or indeed several such layers) that 
are hoped to be easier to comprehend than the real machine. (p. 54) 

They stated that some instructors believed that students must understand every detail of the 

underlying language and hardware, but the notional machine allows for the abstraction of some of 

these details.  The notional machine represents an abstract concept of the important details that a 

student must acquire as they begin to learn to program.   

 It is worth noting a small split in how the literature discusses the notional machine.  Du 

Boulay, O’Shea, and Monk’s original description never identifies where the notional machine 

‘exists’ leading to some confusion and carefully selected language.  Is the notional machine a 

document or tool that someone creates?  Is the notional machine implied in the combination of 

language and hardware specifications?  Is there a mechanism for validating the definition of a 

notional machine against reality?  The vagueness of the notional machine may be the reason that 

“Notional machines, code tracing, mental models and program visualization are often appear 

conflated in the literature at least to non-experts.” (Dickson, Brown, & Becker, 2020, p. 164).  

Many authors speak of the need for new programmers to build a mental model of the notional 

machine (Rountree, Robins, & Rountree, 2013; Sorva, 2013; Teague, 2014).  Others speak of the 

notional machine as the mental model itself (Cunningham, Blanchard, Ericson, & Guzdial, 2017; 

Guzdial, 2015; Lopez, Whalley, Robbins, & Lister, 2008; Qian & Lehman, 2017; Xie, Nelson, & 

Ko, 2018).   

A programmer needs an accurate and robust notional machine and facility with 
defining the list of instructions for the computer to achieve desired ends. 
Programming is not the only reason to have a robust mental model of the 
computer. If we want people to be able to use the computer expressively, they 
need to know the computer’s capabilities and limitations. The ability to use the 
computer to express ideas and to consume others’ ideas is known as 
computational literacy. (Guzdial, 2015, p. 2) 

Guzdial stated that programmers need a notional machine for almost every programming task and 

expands that need as a prerequisite for computational literacy as well.  While there may be a 
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distinction between Du Boulay’s original concept of the notional machine and a mental model of 

such an abstraction that a programmer holds, the value seems to be in the formation of mental 

models within new programmers.   

 Many computing education researchers place a mature mental model of the programming 

language as a cornerstone for mastering programming (Ahadi, Lister, & Teague, 2014; 

Cunningham et al., 2017; Du Boulay, 1986; Du Boulay et al., 1981; Garner, Haden, & Robins, 

2005; Guzdial, 2015; Ma, Ferguson, Roper, & Wood, 2011; Mead et al., 2006; D. N. Perkins, 

Hancock, Hobbs, Martin, & Simmons, 1986; Qian & Lehman, 2017; Rountree et al., 2013; Sorva, 

2010, 2013; Sorva, Karavirta, & Malmi, 2013; Teague, 2014).  Khalife (2006) believed, “the first 

threshold students need to pass is to develop a simple but yet concrete mental model of the 

computer internals and how it operates during program execution” (p.246).  Sorva suggested to 

instructors, “it is probably better to have learning about a notional machine as an explicit goal than 

an implicit one” (Sorva, 2013, p. 8:20).  Authors point to several ways the notional machine helps 

students.  Vainio & Sajaniemi (2007) said it was important for understanding the concepts of 

object-orientation and the associated diagrams.  Several authors discuss the connection between 

the notional machine and tracing (Cunningham et al., 2017; Sorva, 2013).  Teague (2014) included 

the “skills for reasoning about programs, sometimes referred to as the notional machine” (p. 155).  

Authors often tout the importance of the notional machine and seek ways to promote it. 

Leading students to form a mental model/notional machine is challenging.  Remember, Du 

Boulay (1986) suggested that the notional machine is distinct from syntax and semantics and it is 

vital to expose learners to the inner workings of a program (Du Boulay et al., 1981).  The notional 

machine as a mental model is only measurable through secondary observations in tasks such as 

tests, tracing, or coding.  While misconception literature (see Section 2.2.2) categorizes the 

mistakes students make in programming classes, the source of mistakes is unique to each student.  

For example, beginners often confuse programming syntax with their natural language origins (e.g., 

words like while, switch, or try), falling back on the colloquial meaning rather than that of 

the notional machine (Bonar & Soloway, 1985; Du Boulay, 1986; Pea, 1986).  Instructors cannot 

hope to teach the notional machine through lectures alone, and each student may need different 

feedback to correct their very personalized mistakes. 
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 The notional machine is primarily a theoretical construct used by researchers to describe 

learning and direct pedagogy, but the ambiguity of its nature introduces confusion.  The discussion 

of the notional machine, this section being no exception, tends to treat the concepts as monolithic.   

The notional machine, like the language it models, is made up of numerous constructs that have 

many possible interactions.  The knowledge required to describe the notional machine seems to 

have different forms and uses as well.  The notional machine seems to offer an essential construct 

for describing the challenge of learning to program and perhaps can be more powerful still when 

enhanced by theory. 

2.1.3 Tracing 

Researchers often suggest that one measure of strong programming students is their ability 

to predict the execution of code, most often called tracing2.  Tracing requires a programmer to 

determine the runtime flow/output given a snippet of code and set of inputs, often framed as a 

multiple-choice question to ease grading or provide instant feedback.  The correct answer is only 

part of the feedback that tracing offers to researchers in studying the learning process.  Some 

novices will take notes to help track the changes of values in the code (called sketches, doodles, 

or sometimes simply, their ‘trace’).  The presence/absence and quality of sketches is a common 

discussion point in the literature.  Some instructors take time to teach a formal notation style (Xie 

et al., 2018) in which to track the code’s execution, such as a trace table (see example in Figure 

2.1).  A trace table provides a handy format for tracking multiple variables, particularly involving 

iteration, but does not reflect the underlying hardware-execution mechanics.  Novices seem to 

prefer an individualized sketching approach, as even when shown a specific method, not all 

students will readily adopt the technique (Cunningham et al., 2017).  Researchers often point to 

sketching while tracing as a good indicator of ability (Cunningham et al., 2017; Lister et al., 2004).   

 

 
2 Tracing is the most common term, though some early literature uses different terms, such as close tracking (D. N. 
Perkins et al., 1986). 
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Figure 2.1 An example of a trace table that includes four 
variables: sum, lim, i, and len (Lister et al., 2004). 

Tracing provides a moderately authentic activity3 that provides significant scaffolding to 

help new programmers.  Tracing does not require the programmer to write of perfect syntax, use 

complex tools, or even have a computer.  Many tracing examples allow instructors to isolate 

specific language features and do not require the manufacture of real-world scenarios to elicit 

specific ideas.  Many researchers point to tracing as a foundational skill on the path to becoming 

a programmer (Cunningham et al., 2017; Lister et al., 2004; D. N. Perkins et al., 1986; Sorva, 2013; 

Thomas, Ratcliffe, & Thomasson, 2004; Whalley et al., 2006; Xie et al., 2018).  Raymond Lister 

(2011, 2016) and Donna Teague (2014) placed tracing at the heart of their Piagetian development 

construct focused on programming.  Lister (2016) suggested tracing as “the path for acquiring 

[programming] knowledge” (p. 5). 

 Despite the encouragement of educators, students often find tracing arduous.  Perkins et al. 

(1986) describe tracing as a “mechanical procedure” yet “mentally demanding” (p. 45).  Few 

students in their study used tracing as a natural strategy for overcoming challenges in debugging 

their code, “sometimes simply that students do not even try to track” (p. 46) unless prompted.  

They proposed that their students were reluctant to trace because of several reasons. 

1. motivational influences stemming from lack of understanding that tracking 
is important and lack of confidence in one’s ability to track;  

2. faulty understanding of how the programming language works; 
 

3 Cunningham et al. (2017) note “Sketching is not as frequently used or as successful on code fixing, code ordering, 
and code writing problems”, but they suggest should be more common.  Experienced programmers sometimes trace 
when debugging or during code reviews, but rarely do so in the absence of a computer to run the code. 
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3. projecting intentions onto the code so that one cannot objectively map the 
code as written onto the output;  

4. cognitive style differences (p. 47-48) 

Perkins et al. noted that students first need to view tracing as valuable and feel confident in doing 

so.  Their students were working in code they wrote, yet still, they struggled to understand what 

their code was doing, and what it was supposed to do.  Perkins et al. suggested that “students who 

naturally approach problems methodically and reflectively may be better [tracers] than those who 

approach their work in a more trial-and-error, or impulsive, fashion” (p. 47).  Tracing may be 

easier than writing code, but it seems that new programmers still need a strong foundation in how 

the code behaves and how to consider code methodically. 

 The research into tracing is generally promising, but its role in programming is unclear.  

Lister et al. (Lister et al., 2004) demonstrated that students are generally learning to be reasonable 

good tracers, but only on certain types of problems.  Xie et al. (2018) explicitly taught to students 

a ‘lightweight’ tracing approach involving tracking variables line-by-line and reported 

improvements in tracing skills, in contrast to the findings of Cunningham et al. (2017).  They 

suggested that “completeness of tracing is more predictive of correctness than tracing strategy” (p. 

171).  The approach used by their students mattered less than their ability to complete the trace 

through the entire problem.  Tracing was not a predictor of other programming abilities for Lopez 

et al. (2008).  They tested their students’ skills at tracing, explaining the meaning of code, and 

writing code, with no significant correlation between these skills.  They saw students who were 

good tracers, but not very good at other skills and vice versa.  While tracing seems to be a useful 

activity in teaching programming, the literature is not entirely clear on what skills it builds and 

how it supports other programming activities. 

2.1.4 Patterns of use 

One aspect that researchers focus on that is not language-centric is the strategies commonly 

used to solve problems.  Discussions on learning to program often overlook the pedagogy of design, 

but one place that it does manifest is in the study of software patterns.  Patterns are common 

strategies that designers customize to a given problem.  For instance, a civil engineer might choose 

from a series of patterns for entering and exiting a highway, such as the ubiquitous cloverleaf.  

Each construction pattern offers advantages for managing the flow of traffic, the space required, 
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and other high-level principles that the engineer uses to guide the specific plan for that specific 

exit.  Computing researchers capture and categorize “patterns of use” (Falkner, Vivian, & Falkner, 

2013; Sajaniemi, 2002; Sajaniemi & Kuittinen, 2005; Shneiderman, 1977; Soloway, 1986; 

Soloway & Ehrlich, 1984; Wiedenbeck, 1985) and some curricula include coursework that 

explicitly teaches such patterns as a means for teaching design.  Soloway (1986) described 

programming experts as having “built up large libraries of stereotypical solutions to problems as 

well as strategies for coordinating and composing them” and suggests teaching students “about 

these libraries and strategies for using them” (p. 850).  Wiedenbeck (1985) noted that experts 

automate such libraries and “have overlearned certain stereotyped patterns to the point where 

recognition and generation of the patterns can be done without thought” (p. 389).  Pattens seem to 

be a type of knowledge that experts have, and novices need to learn. 

Patterns seem to play an important role in how experts approach programming.  Soloway 

and Ehrlich (1984) asked the question, “what is it that expert programmers know that novice 

programmers don’t?” (p. 595), arriving at two categories of knowledge: programming plans and 

rules of programming discourse.  Programming plans “represent stereotypical action sequences” 

(p. 595), which are customized to meet the details of the current problem, such as using a loop to 

search for an item in a list.  Rules of discourse act as heuristics for writing quality code such as,  

“variables are usually updated in the same fashion as they are initialized” or “programmers do not 

like to include statements that have no effect” (p. 595). Soloway and Ehrlich also tested their ideas 

by presenting sample code to experts and novices with a missing line that the participants needed 

to complete.  Four of the code samples they created conformed to the standard programming plans 

they proposed while the other four did not conform to their standard plans and violated one or 

more of the rules of discourse.  As they expected, the experts performed better than novices (by 

18%), but their advantage dropped for the non-conforming code (to 6%).  Soloway and Ehrlich’s 

summarized, “advanced programmers have strong expectations about what programs should look 

like, and when those expectations are violated – in seemingly innocuous ways – their performance 

drops drastically” (p. 608).  Both novices and experts struggled with non-conforming problems, 

missing those problems more than two times as much as conforming code.  Patterns seem to offer 

experts quite an advantage and promoting them in novices may be critical.  

A few researchers have attempted to teach patterns explicitly.  Sajaniemi (2002) built a 

pattern library describing the use of variables in code.  He suggests that “variable plans and roles 
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are tacit knowledge that is not mentioned explicitly in teaching” (p. 37).  Sajaniemi later joined 

with Kuittinen (2005) to test the impact of explicitly teaching variable roles to students.  They split 

students into three groups: a control, a group that received lectures on the roles of variables, and a 

group that used an animation tool that presented the roles of variables.  They reported the approach 

“seemed to foster the adoption of role knowledge” (p. 80), and students were better at 

comprehending code with attention on patterns, yet their analysis is mixed.  They reported little or 

no difference across the performance of the three experimental groups in their conclusion.  They 

noted that the animation group’s average final grades were lower, which they attributed to the 

method of grading by instructors.  It seems that discovering patterns of use is important for novice 

programmers, but there is no clear pedagogy to promote such knowledge. 

2.1.5 Summarizing what programmers should know 

While researchers may occasionally favor their specific area of study, the literature is 

generally consistent in describing what novices are expected to learn.   Novices should understand 

the purpose and function of computers, know the programming language and how it executes, 

strategies for solving problems, and acquire several more supporting skills that are essential (e.g., 

analysis, tracing, debugging, use of tools).  Each topic seems to bring new stumbling blocks for 

some subset of students, as does the eventual integration of knowledge and skills.  The next section 

investigates some of the more significant novices struggles that literature describes. 

2.2 How literature describes novice struggles 

From the earliest reports looking at how people learn to program, the literature has reported 

that many, if not most, students face significant struggles4.  The performance of College-bound 

students in math and literacy skills tend to demonstrate a ‘normal distribution’ - most students 

scoring in the middle with a few strong or weak learners (College Board, 2018).  Some studies 

report that the performance in programming courses is bimodal - students either struggling or 

 
4 High fail rates are the most extreme indicator of struggling, some studies report as many as one-third of all first year 
students leaving computing (Stephenson et al., 2018) and another that sees only a handful of students who start their 
program succeed (Beaubouef & Mason, 2005).  Struggle is not just about quitting though, but in facing situations 
where pedagogy leaves students unprepared for programming work.  Literature shows that some seemingly simple 
assessments confound students (McCracken et al., 2001) and even when students are successful in some areas they 
struggle in others (Lister et al., 2004; Lopez et al., 2008). 
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excelling, and few in between (Dehnadi & Bornat, 2006; Robins, 2010; Rountree et al., 2013).  

Perkins et al. (1986) described this phenomenon as “Johnny can do anything, but Ralph just can’t 

seem to get the hang of it” (p. 37).  Some postulate that a “geek gene” causes this bimodality, 

where a combination of talent and motivation sets some apart, yet this view is also challenged 

(Lister, 2010).  Looking at the two AP Computer Science exams, for instance, the test on principles 

demonstrates characteristics of a normal distribution, while the core test slightly favors higher-

scoring students (“AP Score Distributions – AP Students | College Board,” n.d.).  Identifying the 

struggles that novices face is not merely about tackling the seeming barriers to learning but 

improving the entire process of learning; learn more, faster, and with less unneeded toil along the 

way. 

Programming’s very nature presents the first struggle for new programmers.  Novice’s code 

is first judged by the unforgiving compiler and runtime rather than a sympathetic mentor.  

Programming tools do not recognize ‘close enough’ answers or offer partial credit.  A program 

must be syntactically perfect, logically sound, and represent the desired behavior for a learning 

programmer to succeed.  Few disciplines demand this level of perfection so early from their 

learners.  By comparison, it seems that new programmers struggle more than those in other 

disciplines.  The computing education literature breaks down several themes describing the 

struggles that novices face. 

2.2.1 Acquiring and applying conceptual knowledge 

 When students are unable to complete seemingly simple programming activities, 

the natural question is: are they learning anything at all?  In a critical study of programming 

abilities, McCracken et al. (2001) reported, “first and most significant result was that the students 

did much more poorly than we expected” (p. 132).  Very few students in their study came up with 

promising approaches, much less wrote working code, to realize a simple calculator.  They 

suggested that in “future studies, we might specify the level of prior programming experience or 

the specific programming knowledge that the students are assumed to have for each exercise.” (p. 

134).  The assumption that seems to be behind this suggestion is that conceptual knowledge was 

lacking in their students and resulted in poor performance when writing code.  Taking up the 

challenge offered by McCracken et al., Lister et al. (2004) designed a study to assess if students 
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were learning programming concepts.  Using tracing as the primary test of understanding, they 

reported more promising results.  Their students showed they were learning basic programming 

concepts, though they sometimes forgot to apply them on the more challenging questions.  

Conceptual understanding, it seemed, was dependent on the use as well as the concept. 

 Researchers and instructors have long lamented student forgetfulness.  Perkins and Martin 

(1985) coined the term “fragile knowledge” to describe the tendency of novice programmers to 

incorrectly, inconsistently, or forget to apply concepts that they have previously demonstrated.  

Perkins and Martin used a clever strategy for testing their participants’ knowledge while 

completing coding exercises.  A researcher watched the student work and was to offer advice that 

frequently ‘activated’ the forgotten information, demonstrating that students may not have 

forgotten concepts, but merely failed to use them when needed.  Guzdial (2015) described the 

problem as “[w]hen a student knows something but seems unable to access that information in a 

new context, we say that there is a lack of knowledge transfer” (p. 28).  Transfer is a seemingly 

elusive goal in teaching, where students can apply concepts into new tasks or domains.  Hatano 

and Inagaki (1984) described the challenge of transfer as adaptive expertise that requires both 

conceptual understanding but also some degree of procedural expertise.  Conceptual knowledge, 

it seems, is not merely “acquired or not” but contextualized to specific tasks, at least at first. 

2.2.2 Misconceptions 

 Where a faulty computer program contains bugs, researchers often describe a 

struggling programmer as holding misconceptions.  Pea (1986), in fact, described novice 

misunderstandings as conceptual “bugs” in his work capturing programming misconceptions.  

Qian and Lehman (2017) defined, “misconceptions are the flawed ideas held by students, often 

strongly, which conflict with commonly accepted scientific consensus” (p. 2).  Misconceptions are 

problematic as they are barriers to creating useful computing solutions.  Studies frequently look to 

document, categorize, and remediate misconceptions in both novices and experts.  The literature 

categorizes misconceptions into various topics like language syntax (Du Boulay, 1986; Khalife, 

2006) and constructs (Du Boulay, 1986; Garner et al., 2005; Khalife, 2006; Spohrer & Soloway, 

1986), or identifying the problem to be solved (Garner et al., 2005; Kwon, 2017; Spohrer & 

Soloway, 1986), assembling complex programs (Spohrer & Soloway, 1986) or even how 
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computers execute programs (Kwon, 2017; Pea, 1986).  Misconceptions provide an intriguing 

window into how novices think, particularly in comparison to experts, and some believe 

understanding and teaching to misconceptions can yield improvements in learning. 

2.2.2.1 Common Programming Misconceptions 

 The first major source of misconceptions seems to be the lack of, or misplaced information 

students bring about computers and how they function.  Even when students do not think they 

understand a programming language, they seem to fill in missing information with similar but 

unrelated concepts.  Pea (1986) explained, “novice programmer works intuitively and pursues 

many blind alleys in learning the formal skill of programming” (p. 26).  Several researchers have 

pointed to the tendency of new programmers to try to interpret programming languages through 

the misleading meaning of their English counterparts (Bonar & Soloway, 1985; Du Boulay, 1986; 

Kwon, 2017; Spohrer & Soloway, 1986).  For instance, many programming languages use the 

syntactic keyword while to declare an iteration construct (i.e., loops).  The term sometimes 

confuses novices, who “treated the WHILE loop as if it generated some kind of interrupt” where 

“the loop could terminate at the very instant that the controlling condition changed value” (Du 

Boulay, 1986, p. 69).  It is not just English that poses such problems, as the symbols and operations 

used in algebra can also interfere with the core concepts of variables and assignments (Du Boulay, 

1986; Khalife, 2006; Kwon, 2017; Sorva, 2013).  Researchers report that novices are far from an 

empty vessel to fill with information, and instructors may need to refine prior knowledge to meld 

with programming concepts. 

 Misconceptions are far from universal in students as prior knowledge makes each learner 

unique.  One cohort of students may suffer from misconceptions that never appear in another.  

Spohrer and Soloway (1986) classified the bugs they captured from their students into categories, 

yet seemingly paradoxically claim both that: 

misconceptions about language constructs do not seem to be as widespread or as 
troublesome as is generally believed. (p. 624) 

and 
Most bugs arise because novices do not fully understand the semantics of 
particular programming language constructs (p. 627)  
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Their students did not hold as many misconceptions about language constructs as expected, yet 

gaps in knowledge about the language caused most of a program’s bugs.  They seemed to be 

missing required knowledge as often as applying knowledge incorrectly.  Spohrer and Soloway 

explained that novices struggled to create a proper plan for how to solve the problem.  Novices did 

not struggle with individual constructs, rather they struggled to apply and combine constructs to 

solve problems.  It seems that the rules and use of language constructs are two types of knowledge 

that may form independently.  For example, Kwon (2017) studied how pre-service teachers plan 

algorithms on paper, despite having no prior instruction in programming.  Kwon’s pre-service 

teachers demonstrated strategies for solving problems but struggled to do so with well-defined 

commands at the level of abstraction of a programming language.  On the one hand, Spohrer and 

Soloway’s students received instruction on the language but struggled to use that knowledge to 

create a functional design.  On the other hand, Kwon reported that his students proposed reasonable 

designs but struggled to use individual language constructs properly.   

 A major stumbling block for many novices is translating their rough plans into language 

constructs and understanding the details of what they created.  Kwon’s participants could express 

their ideas in any desired format, yet “[w]hile people are intelligent interpreters of conversations, 

computer programming languages are not” (Pea, 1986, p. 26).  At one point in time, computers 

were strange machines with arcane interfaces, but modern devices seek to mimic human 

interactions.  Even when computers used rudimentary interfaces, Pea noted that novices sometimes 

believed that a computer was an intelligent agent.  They seemed to think the computer knows and 

secretly is hiding the ‘right answer’ if only the novice can uncover the truth.  Pea named this novice 

mindset the “superbug” and believed it leads to other misconceptions.  It is not that novices 

consciously attribute intelligence to the computer.  Instead, they fail to recognize their agency in 

causing (and thus fixing) bugs and hope in vain their disparate fragments of code will produce the 

intended behavior.   

2.2.2.2 Misconceptions in experts and novices 

 If programming mistakes are sometimes rooted in misconceptions, experts are not immune.  

Youngs (1974) captured the errors that novices and experts make, finding that both groups 

produced the same number of errors on a first run of their new program, but experts fixed their 
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mistakes quicker.  The experience obtained by Youngs’ experts did not prevent mistakes, but it 

did help them identify errors quicker and to fix more of them in response compared with novices.  

Misconceptions among working programmers have influenced the design of programming 

languages as well.  Early programming languages contained a construct that no longer seems to 

exist in programming, the goto statement.  A goto statement allowed a program to jump to any 

line of code in their program, a powerful but potentially problematic construct as it can lead to 

unexpected jumps in the flow of code.  Some experts suggested that goto statements allow for 

simpler logic in certain instances (Du Boulay, 1986), but they were against the tide.  Sime and 

Arblaster (1977) conducted a series of tests with experts and novices to see if a structured approach 

to creating logic reduced the number of errors produced (it did).  Inevitably, language designers 

deemed the goto statement’s risks outweighed its advantages.   

 One possible reason the goto statement was problematic was the lack of conformity to 

predictable patterns.  As described in Section 2.1.4, Fix, Wiedenbeck and Scholtz (Fix, 

Wiedenbeck, & Scholtz, 1993) noted experts’ “skill at recognizing basic recurring patterns, skill 

at understanding the particular structure inherent in a program text, skill at recognizing the links 

tying the separate program modules together” (p. 78).  People may be less likely to fall to 

misconceptions when they are following well-trained patterns.  It may be that goto statements 

presented a challenge since the patterns obvious in looping and other such constructs are harder to 

identify.  The research into experts does not seem to indicate a lack of misconceptions, rather that 

experts are better at identifying and fixing mistakes. 

2.2.2.3 Approaches to address misconceptions 

The next step after identifying misconceptions is finding ways to correct, combat, or 

prevent them from forming.  In the early days of computing education, misconception researchers 

proposed many improvements to the language and tools.  Computer scientists created some of the 

first languages, “such as BASIC (1964) and Pascal (1970)… explicitly to ease learning how to 

program” (Fincher & Robins, 2019, p. 11).  The Logo language, developed in 1967, targeted young 

people to enhance and motivate the learning of mathematics (Feurzeig, Papert, & Lawler, 2011) 

and continued as a way to introduce programming (Seymour; Papert, 1978; Seymour Papert, 1987; 

Pea, 1983, 1987; Weyer & Cannara, 1975).  Logo neither revolutionized the teaching of math and 
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programming, nor improved the learner’s general problem-solving skills, as hoped (Pea, 1983)5.  

Other researchers tried simplified syntax that better aligns with natural language (Soloway, Bonar, 

& Ehrlich, 1983) or even removing text in favor of “block-based” programming languages that 

use pictures instead.  Graphical programming languages seem to allow novices to start quicker, 

but in the long run, did not radically change the learning outcomes compared with text-based 

languages (Weintrop & Wilensky, 2015).  A debate as to the best ‘teaching language’ has waxed 

and waned over the decades, but no single language has proven to be vastly superior to another. 

Other efforts looked to improve programming tools to facilitate learning.  The compiler 

has long been a source of frustration, and studies have sought to improve its communications and 

assistance (Becker, 2016; Becker et al., 2019; Youngs, 1974).  The compiler is a primary source 

of feedback for students, so this research seeks to improve the error messages produced.  Some 

researchers seek to create tools to help new programmers visualize code and how it executes 

(Bednarik & Tukiainen, 2006, 2008; Ma et al., 2011; Sorva et al., 2013).  These efforts seek to 

present the structure of code during execution and, as Du Boulay suggested, expose the inner 

workings of the notional machine.  Efforts to create a friendlier language or improve tools have 

demonstrated limited success but may take students only so far as misconceptions “have less to do 

with the design of programming languages than with the problems people have in learning to give 

instructions to a computer” (Pea, 1986, p. 26).  Inevitably instructors must also consider 

misconceptions in their teaching. 

 One approach that educators use to combat misconceptions is attacking them as or before 

they form.  Garner et al. (2005) identified 27 categories of programming problems in programming 

and noted the number of times students sought help in each.  They believed that better data on the 

errors that students make could help improve learning during an ongoing course. 

A valid, reliable analysis of programming students’ problems would have many 
potential applications. On the basis of such an analysis we can adjust the amount 
(and kind) of attention devoted to various topics in lectures, laboratories and 
other resource materials. (p. 173) 

By categorizing misconceptions, educators can plan their work to combat them directly.  Garner 

et al. took a tactical look at misconceptions, where Spohrer and Soloway (1986) considered the 

 
5 This finding was publicly debated (Seymour Papert, 1987; Pea, 1987), and while descendants of Logo exist, they are 
far from the forefront of early childhood learning, much less current efforts to teach programming. 
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larger picture.  They looked beyond individual issues to help students “put the pieces together” by 

“[f]ocusing explicitly on specific strategies for carrying out the coordination and integration of the 

goals and plans that underlie program code” (p. 632).  Spohrer and Soloway proposed that the root 

cause of a misconception is not a lack of understanding, but an inability to assemble pieces of a 

language.  They described earlier work, where “experts have and use such concepts [design 

strategies], although only on an implicit level… Students typically must acquire this tacit 

knowledge by induction from their teachers and their textbooks” (p. 632).  They indicate that the 

strategies that experts use to solve problems successfully are not conscious or something they will 

learn in traditional pedagogies.   

 Much of the misconception literature describes misconceptions as muddled thinking that 

with the proper training and knowledge, novices can explicitly correct.  Even ideas like simpler 

language, easier to understand tools, and directly addressing misconceptions in pedagogy seem to 

assume that the problem is one of consciously managing complexity and correcting unhelpful 

memories.  Spohrer and Soloway suggested that experts transcend conscious planning strategies 

and perform much of these tasks implicitly.  Researchers frequently point to the role of tacit 

knowledge and intuition in expert programming, as Section 2.3.3 will discuss further. 

2.2.3 Cognitive load 

Cognitive load is frequently invoked within computing education literature, but often 

without definition or theoretical underpinnings to inform how it impacts novices 6.  Cognitive load 

captures that familiar feeling when struggling with a complex task, but the science behind the 

concept has evolved dramatically.  For the sake of scope, this work will not tackle in detail analysis 

of cognitive load in light of the theory proposed by TAMP, but it still seems useful to describe the 

basics of cognitive load and Cognitive Load Theory as it is very influential in computing education.   

Programming tasks can quickly become complicated as the mind tackles intricate rules, 

tracks numerous data points, and carefully reasons through exacting logical statements and 

 
6 The term cognitive load is often used without any references in computing literature (Bednarik & Tukiainen, 2006; 
Denny, Luxton-Reilly, & Simon, 2008; Kwon, 2017; Robins et al., 2003; Vainio & Sajaniemi, 2007) and even 
sometimes when the authors cite theory they do not explicitly describe  how that theory influences their work (Guzdial, 
2015; McCartney et al., 2013; Muller et al., 2007).  I am not critiquing the inclusion of cognitive load but pointing out 
that many authors assume that readers are familiar with a concept that is used in many ways and has evolving 
definitions.  
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calculations.  Two theories attempt to model the impact on an overloaded mind – mental load 

investigates people’s interactions with machines (Moray, 2013) while Cognitive Load Theory 

(CLT) focuses on instruction (Plass, Moreno, & Brünken, 2010; Sweller, 1994; Tindall-Ford, 

Agostinho, & Sweller, 2019).  Understanding the mental load, the precursor to CLT (Plass et al., 

2010) is helpful since authors frequently use the term cognitive load as a catch-all any intense 

period of mental effort and the same theoretical constructs may or may not apply. 

Cognitive load occurs when a task overloads a person’s available short-term memory (STM) 

with more facts than they can currently manage.  When reaching the limits of memory, a person 

may feel strained and begin to forget details.  Sweller (1994) looked at the impacts of cognitive 

load on learning specifically.  His early theory proposed that when STM is overloaded, the learner 

no longer has the resources to learn, a process he called germane load.  Germane load, however, 

may not be a tenet of CLT, as the authors do not mention it in the most recent publication on CLT 

(Tindall-Ford et al., 2019).  The more salient factor in CLT might be the automation of knowledge 

and skills.  Automation enables the execution of rules “without conscious control” (Sweller, 1994, 

p. 297), freeing up the mind for other tasks.  CLT addresses some aspects of problem-solving, but 

primarily in the classroom and considering pedagogical approaches, where mental load considers 

a wider scope. 

Mental load includes more factors than cognitive load, which focuses primarily on ‘pure’ 

cognition, excluding ‘non-cognitive’ factors.  Unlike in the CLT model, an individual’s mental 

load can be alleviated or exacerbated by the thinker’s motivation, innate abilities, prior learning, 

or even their current physical status, such as general stress or fatigue.  CLT included only prior 

learning as a salient factor7.  Moray (2013) considered mental load as a limiting factor in a person’s 

ability to complete tasks which require interaction with a machine effectively.  He modeled the 

operator workload to include 1.) the inputs to the task, 2.) the operator effort, which 3.) result in 

some performance output, often becoming inputs to other processes.  Moray and CLT each 

consider the design of inputs (e.g., the machine’s interface, pedagogy) and the complexity of the 

task as a source of external load.  Moray’s model also considers internal factors “such as 

psychophysical characteristics, general background, personality; and fluctuating ones such as 

experience, motivation and attentiveness” (p. 4).  While Moray’s theory seems to focus on 

 
7 The exclusion of ‘non-cognitive’ factors is questioned in more recent work (Plass et al., 2010), but not included in 
the CLT model 
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production line workers, the concepts may more closely match the tasks required of programmers. 

Programmers are highly dependent on the design of tools (e.g., language, compilers, libraries), 

processes, and problem domain all relate to inputs and different individual demonstrate a broad 

spectrum of performance (Klerer, 1984; Raymond, 2005). 

2.2.4 Emotion, motivation, and ‘non-cognitive’ factors 

 It is with great regret that I will only give lip service to the impact of ‘non-cognitive’ factors 

in this work.  ‘Non-cognitive’ factors include emotions, but also ideas like motivation or 

persistence that is not part of traditional cognition.  You may note that I prefer to add quotes to 

‘non-cognitive’ as the research in neuroscience indicate that our cognition relies on emotions as a 

core part of our reasoning (Immordino-Yang & Damasio, 2007).  Computing education research 

has long noted the impacts on the emotional states of learners as, “[s]tudents in introductory 

programming courses have misconceptions about computers and the programming process which 

produce anxiety” (Shneiderman, 1977, p. 193).  More recently, Eckerdal et al. (2007) reported 

students frequently using “emotionally laden terms” (p. 128) in describing their learning 

experience.  ‘Non-cognitive’ factors in computing classrooms may be of similar import as other 

research since according to Wilson (2010), “[c]omfort level in the computer science class was the 

best predictor of success in the course” (p. 153).  While the scope of this work does not allow for 

a deeper discussion of the intersection TAMP and ‘non-cognitive’ factors, this brief section looks 

to acknowledge the import of such work and act as a placeholder for future efforts. 

2.3 How to teach programming 

Having considered the type of knowledge and skills that programmers need to acquire and 

some of their struggles, the last important detail is the ways and means by which educators teach 

programming.  Pea (1983) considered Computing education different from other subjects, saying, 

“it is necessary to develop an instructional science for teaching programming and to rethink the 

educational goals programming is meant to fill” (p. 1).  While traditional teaching methods are 

common, the literature suggests ways to support, augment, or even entirely discard the historical 

methods of instruction.   
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2.3.1 Critical content and common pedagogy 

 The backbone of any programming curriculum is the programming language, and 

researchers have offered advice on methods to introduce its concepts.  Du Boulay (1986; 1981) 

believed instruction needs to be careful, consistent, and simple.  Many researchers (Guzdial, 2015; 

Khalife, 2006) have advocated for teaching languages with simpler notional machines to introduce 

the concepts of programming.  The use of ‘blocked-based’ languages offers another alternative, 

though with mixed results (Weintrop & Wilensky, 2015).  Paired with the syntax and semantics of 

programming languages, researchers suggest methods to expose the inner-workings of code 

through tools (Guzdial, 2015; Ma et al., 2011; McCauley et al., 2008; Sorva et al., 2013), diagrams 

(Thomas et al., 2004) or tracing (Cunningham et al., 2017; Xie et al., 2018).  Becoming familiar 

and proficient with the language is only a small portion of the challenge of instruction. 

Researchers discuss the need to engender problem-solving skills using the programming 

language.  Teague (2014) describes two dimensions of the programming curriculum.  Instructors 

must teach syntax and semantics, but the “more neglected dimension comprises the skills for 

reasoning about programs” (p. 268).  She advocated tracing as a way to improve reasoning, but 

novices must eventually apply their knowledge to solving problems.  Several studies have tested 

the novice’s ability to interpret meaning from code (Bayman & Mayer, 1983; Fuller et al., 2015; 

Whalley et al., 2006), noting that many students struggle to derive meaning from code.  Mayer 

(1981) pointed out that many novices lack sufficient domain-specific expertise to solve problems.  

He suggested that “learner should be able to describe the effects of each program statement in his 

own words” but needs domain knowledge to do so.  Learning about constructs alone does not seem 

to provoke a learner to discern the intent of those constructs as part of reading sample code.  One 

approach researchers suggest to promote such skills is creating tasks that challenge students to 

explain the purpose of code snippets (Lopez et al., 2008; Whalley et al., 2006). 

 Some advice in the literature focuses on fine-tuning the practices already in place.  Sleeman 

et al. (1986) suggested that code reading competency comes from a combination of knowing a 

language’s syntax and semantics combined with debugging skills.  They advocated for the 

formation of mental models to provide a means of organizing and accelerating learning but did not 

have new strategies for promoting them, “other than by extensive practice” (p. 6).  Wiedenbeck 

(1985) also advocated that “it is probably important that the teaching process stress continuous 
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practice with basic materials to the point that they become overlearned” (p. 389).  Repetition may 

be a mundane but important aspect of mastering foundational skills. 

 Computing education research creates, revisits, and refines teaching practices that target 

various aspects of programming.  Table 2.1 compiles approaches starting with basic knowledge 

and moving towards encouraging the learner to complete basic programming tasks.   

Table 2.1 Suggested learning activities from computing education 
Intervention Description 

Worked Examples From CLT, learners watch an expert complete an activity, either live or 
more often recorded.  Each worked example focuses on some aspect of 
the subject and may repeat a single or show multiple examples to cover 
the breadth and depth of the subject thoroughly. (Caspersen & 
Bennedsen, 2007; Guzdial, 2015; Morrison, 2015) 

Mimicry The learner will follow, most often precisely, the work of another to 
rehearse the steps they will eventually be expected to take independently.  
(Eckerdal et al., 2007; Sorva, 2010) 

Parsons problems Learners receive a sequence of code statements, but they are out of order 
and require arrangement to complete the specified behavior. (Guzdial, 
2015; Lopez et al., 2008) 

Fill-in-the-blank Learners receive partially completed code and must either choose from a 
list of options or write the appropriate line(s).  (Muller, Ginat, & 
Haberman, 2007; Soloway & Ehrlich, 1984) 

Live coding  Similar to a worked example, but more interactive with a live audience 
of learners.  (Morrison, 2017) 

 

 

Subgoal labels 

 

As an extension of worked examples, subgoals focus on metacognitive 
awareness of the purposes of each problem-solving step.  Subgoals apply 
to code, defining a ‘plain English’ explanation of the underlying 
algorithm (Morrison, 2015) or the role of variables (Sajaniemi & 
Kuittinen, 2005), for example. 

Pointed examples Some examples worked or otherwise, are formulated to draw out 
misconceptions learners may hold (McCauley et al., 2008) 

Focus on patterns After/within examples, focus on the patterns of use that may exist in the 
chosen solution (Caspersen & Bennedsen, 2007) 

Scaffolding Scaffolding simplifies complex tasks by reducing the learner’s workload 
to one or a few steps of the full problem.  In programming, the design, 
code, test cases, or step-by-step instructions provided to help the novice 
get started. (Caspersen & Bennedsen, 2007; Guzdial, 2015) 

 Continued on next page 
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Table 2.1 – continued from previous page 

Intervention Description 

Faded guidance Faded guidance gradually removes the scaffolding provided to a learner 
challenging them to complete more steps within complete tasks. 
(Caspersen & Bennedsen, 2007) 

Peer instruction Learners engage first with materials at ‘home’ and spend time in class 
engaging with peers to answer questions and discuss the subject in more 
detail (Guzdial, 2015) 

Labs Learners must complete all or some of a code problem, typically starting 
with some statement of the problem and requiring them to complete a full 
solution.  (McCracken et al., 2001; Robins, Rountree, & Rountree, 2003; 
Utting et al., 2013) 

Pair programming A lab, or similar coding activities, is completed by a pair of learners, who 
trade-off in coding and helping, fulfilling formal roles in coding and 
learning. (Cliburn, 2003; Cockburn & Williams, 2001; McDowell, 
Werner, Bullock, & Fernald, 2002; Salleh, Mendes, & Grundy, 2011; 
Van Toll, Lee, & Ahlswede, 2007) 

“Authentic” tasks Authentic tasks make up a whole array of possible activities which better 
resemble the work professionals do, rather than what learners perceive as 
contrived ‘classroom activities’ (Guzdial, 2015) 

2.3.2 On the order of instruction 

 Many subjects offer a natural order for introducing various topics.  For example, learning 

to recognize the alphabet seems a natural precursor for learning to read, as, in mathematics, 

addition is a natural precursor to subtraction or multiplication.  Many computing researchers have 

proposed an optimal ordering for teaching programming concepts (Berges, 2015; Lister, 2016; Ma 

et al., 2011; Mead et al., 2006; Shneiderman, 1977), with slightly overlapping but also differing 

results and priorities.  Spohrer and Soloway (1986) noted that many classrooms use a construct-

centered ordering, “reinforced by the structure of most introductory programming textbooks” (p. 

626).  The early textbook authors may have stumbled on an optimal order of instruction, or we 

simply follow their example by habit. 

 Raymond Lister (2016) described two very different approaches to instruction, bottom-up 

and top-down.  He stated a preference for bottom-up while admitting the need for both.  His 

bottom-up approach would resemble that of phonics in reading, focusing on “the relationship 

between written letters and spoken words” (p. 6).  Lister advocated that programmers should learn 
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the mechanics of the language first.   The top-down approach that allows readers to “make guesses 

about words they do not recognize, based on clues such as the context of the word in the text” (p. 

6).  Along the same vein, ‘block-based’ languages like Scratch allow very young programmers to 

build simple programs quickly with little concern for syntax.  The carefully shaped blocks only 

assemble in legal ways, so they can create programs without even fully understanding the 

component pieces.  Advocates of the top-down approach focus on the value programming offers 

and the processes of problem-solving.  Bonar and Soloway (1985) suggested introducing problems 

using step-by-step natural language before dealing with specific programming knowledge, similar 

to Kwon’s (2017) work described in Section 2.2.2.1.  Spohrer and Soloway (1986) promoted a 

“goal/plan” approach rather than teaching construct-by-construct.  They suggest that focusing on 

goals rather than isolated constructs helps the learner to assemble programs from the pieces.   

Students typically must acquire this tacit knowledge by induction from their 
teachers and their textbooks” (p. 632).   

While Lister has his preference, students may need both methods to promote different aspects of 

programming. 

Many researchers suggest it takes more than a single pass to teach programming concepts.  

Mead et al. (2006) suggested teaching using a spiral curriculum.  A spiral curriculum (Wood, 

Bruner, & Ross, 1976) introduces then revisits key ideas multiple times with greater depth and 

challenge, eventually integrating with other concepts.  Shneiderman (1977) offered an early 

proposal for using a spiral curriculum based on work by Bruner (1976a).  Shneiderman suggests a 

“parallel acquisition of syntactic and semantic knowledge in a sequence which provokes student 

interest by using meaningful examples, builds on previous knowledge” (p. 193).  His top-down 

approach looks to head off the anxiety that “keypunching” activities might induce.  Schneiderman 

believed that focusing on low-level details might cause stress where meaningful examples instead 

build confidence.  He suggested that syntax knowledge will follow if “frequently rehearsed and is 

anchored by repetition” (p. 197) and semantic knowledge will be “resistant to forgetting but it 

must be presented in small units which are either subtle variations or higher level organizations of 

previously acquired knowledge” (p. 197).  Thuné and Eckerdal (2010) echoed the role of variation 

in learning within their phenomenographic look at programming concepts and learning.  If a 

natural ordering to programming concepts exists, these researchers suggest that variation and 

repetition are essential in forming pedagogy. 
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Instructors must inevitably choose some order to present programming topics to students, 

but that choice may impact the quality, efficacy, and success of learning.  Spohrer and Soloway 

are not alone in pointing out the need to teach not only the composite ‘pieces’ of programming but 

also help learners to develop strategies to assemble the pieces.  Clancy (2004) emphasized the need 

to integrate knowledge to battle misconceptions.  Pea and Kurland (1984) stated, 

“programming” is not a unitary skill. Like reading, it is comprised of a large 
number of abilities that interrelate with the organization of the learner’s 
knowledge base, memory and processing capacities, repertoire of 
comprehension strategies, and general problem-solving abilities such as 
comprehension monitoring, inferencing, and hypothesis generation. (p. 144) 

Pea and Kurland drew a parallel between reading and programming knowledge.  Literacy and 

programming each demand that learners acquire and integrate not just information but a variety of 

skills.  The resulting abilities are only useful, though, when a person can apply them in new ways.  

Instructors should select topics and order their curriculum as to build skilled problem-solvers. 

2.3.3 An undercurrent of tacit knowledge and skill 

 Already in reviewing the literature of what programmers do and how to teach them, the 

notion of tacit knowledge, implicit skills, and intuition has regularly entered the conversation.  

Many authors point to intuition as a marker of expertise, but few pedagogies seem to mention, 

much less explicitly promote such abilities.  A critical aspect of TAMP is the role of intuition in 

programming, so this section looks to capture additional appearances of intuition in computing 

education literature beyond that already mentioned.   

Researchers often note the importance of intuition in design.  Brooks (1975) said that 

knowledge of the programming language is “usually acquired from formal study of manuals and 

similar materials which give the grammatical rules for the language” (p. 140), but understanding 

and planning skills are acquired “almost exclusively by experience in programming in these 

domains” (p. 139).  Since even mastering code “is acquired by direct experience with using these 

structures and operations in writing programs” (p. 6), experience seems vital to many aspects of 

programming.  Mayer (1981) agreed, comparing the experience of programmers to that of chess 

masters, whose advantage seems to lie in their pattern recognition (Chase & Simon, 1973).     
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 Researchers who compare experts and novices often identify intuition as an important 

difference.  Wiedenbeck (1985) compared the speed and accuracy of novices and experts on simple 

code compilation rules and categorizing the purpose of code.  She “predicted that even novices 

would be very accurate, as accurate as experts in these tasks” (p. 388), yet slower, only to find that 

experts were both faster and more accurate.  Wiedenbeck’s initially believed novices and experts 

would show similar accuracy since they have learned the same information.  The results showed 

that experience adds to the quality and speed of knowledge leading to her conclusion that it is 

“probably important that the teaching process stress continuous practice with basic materials to the 

point that they become overlearned” (p. 389).   

 Implicit skills are not the only ‘hidden’ advantage of experts described in the literature.  

Soloway (1986) noted that “teaching the syntax and semantics of a programming language is not 

enough” (p. 858) because “[e]xperts are not necessarily conscious of the knowledge and strategies 

they employ to solve a problem, write a program, etc.” (p. 851).  He challenged researchers to 

identify the various types of tacit knowledge so educators could make them explicit – a task TAMP 

seeks to undertake.  Eckerdal and Berglund (2005) pursued one type of tact knowledge by seeking 

the implicit canonical procedures that programmers develop.  Hazzan (2003) originally defined a 

canonical procedure as “a procedure that is more or less automatically triggered by a given 

problem” (p. 108, emphasis added).  Hazzan implied that programmers may not consciously decide 

the procedures they use in design.  Intuition seems to influence many areas of programming, and 

the inability to reliable create such abilities in students may be a major limitation of current 

pedagogy. 

2.4 The state of teaching and learning in programming 

 It would be unfair to say there is a crisis in the teaching of programming, but there seem to 

be significant gaps in educational practices that leave some students underserved.  This chapter 

introduced a sliver of the research on learning to program as a foundation for further discussions.  

Before leaving this review of the literature, it seems helpful to highlight a few points important for 

the formation of TAMP.  First, while learning to code (i.e., write syntax, perform basic tests and 

debugging) is an essential first step, becoming a programmer requires applying these skills to 

identifying, analyzing, and solving problems.  It may not be reasonable to expect that students will 
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acquire this full skillset in a single class or even year of schooling but identifying the need and a 

potential path seem to be the first steps.   

 The other critical role this chapter plays is identifying the big questions that new theory 

should address.  Why do some students seem so much better suited to programming than others?  

Fragile knowledge is a problem, but why is knowledge fragile, and what can instructors do about 

it?  What role does intuition play in expert thinking, and how do we prepare novices to think like 

experts?  Later chapters will revisit some of the studies mentioned here and others to tackle such 

questions and offer evidence for how TAMP proposes to model how programmers think and learn. 



 

 

47 
 

 THE CONSTRUCTION OF THEORY 

 The goal of TAMP is to define a new theory, but while many educational theories exist, 

the theorists at best hint at the process of their creation.  The closest any methodology comes to 

claiming to build theory is the qualitative method called grounded theory.  Glaser and Strauss 

(1967), the creators of grounded theory, defined grounded theory to create what that called 

substantive theory, “developed for a substantive, or empirical, area of sociology inquiry” (p. 32).  

They contrast the theories created using grounded theory with formal theory, “developed for a 

formal, or conceptual, area of sociological inquiry” (p. 32).  Grounded theory helps researchers to 

build new ideas based on never-before-seen phenomena.  TAMP looks to build formal theory by 

applying existing theory to computing education.  This chapter defines the methodology for 

building such a theory, which leverages elements from philosophy, grounded theory, and a formal 

method for using existing data as the testbed for new theories. 

3.1 What is theory? 

 Theory should play a central role in rigorous research, yet disciplinary education 

researchers often lament how little it appears in publications.  Section 1.1 quoted Fincher and 

Robins, who directly called for the greater inclusion of theory in computing education research.  

Section 3.1.2.3 will describe research on the use of theory in computing education, but before 

considering the need for theory, it may be helpful to define what theory is for TAMP.  Part of the 

challenge in understanding theory is its pervasiveness and grand role. 

The basic aim of science is theory.  Perhaps less cryptically, the basic aim of 
science is to explain natural phenomena.  Such explanations are called 
“theories.” (Kerlinger & Lee, 2000, p. 11)   

Educational researchers construct and use theories to help students.  Engineers use theory to inform 

their designs and help improve the human condition.  The nature of theory is scientific, a way of 

abstracting various behaviors and events into a simpler model of how the world may function.  

While the heart of theory may be easily enough defined, how researchers use theory varies 

dramatically. 
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3.1.1 Exploring formal definitions of theory 

Quantitative research has a defined role for theory, yet often oversimplified compared with 

the nuance required in the most challenging problems in education.  Creswell (2008) stated, “[a] 

theory in quantitative research explains and predicts the probable relationship between 

independent and dependent variables” (p. 131).  Quantitative researchers invoke theory to select 

the variables that likely have relationships worth studying.  Simple theories predict how one 

variable impacts the other.  Richer theories also explain the relationship offering guidance for 

applying theory.  Kerlinger and Lee noted, “the very nature of a theory lies in its explanation of 

observed phenomena” (p. 12).  For example, reinforcement theory originally predicted that 

rewards lead to a specific behavior but did not explain how.  The lack of an explanation could lead 

to the assumption that continuing rewards will always elicit the desired behavior.  Eventually, 

neuroscience identified the effect of dopamine within the rewards center of the brain (Eagleman 

& Downar, 2016), explaining why the impact of rewards might fade, and offering better ways of 

battling addiction.  When theory also contains explanations, it allows for more refined studies and 

discussion in research. 

 Qualitative researchers use theory for some of the same reasons as quantitative, but also 

hold different perspectives on theory.  Creswell (1997) described qualitative researchers using 

“social science theories [to] provide an explanation, a prediction, and a generalization about how 

the world operates” (p. 84).  Qualitative methods do not look to prove causality through statistical 

inference, but instead, seek to describe relationships between observations. Kerlinger and Lee 

(2000) provided a more comprehensive view of theory 

 (1) a theory is a set of propositions consisting of defined and interrelated 
constructs, (2) a theory sets out the interrelations among a set of variables 
(constructs), and in doing so, presents a systematic view of the phenomena 
described by the variables, and (3) a theory explains phenomena; it does so by 
specifying which variables are related to which variables and how they are 
related, thus enabling the researcher to predict from certain variables to certain 
other variables (p. 11).   

The strength and validity of qualitative research may rest on the details of what theory can provide. 

Robust theories offer clear definitions, widely observed relationships, and rich explanations.  

Qualitative traditions have radically different views on the role of theory, as we will see in the next 
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section.  When used in qualitative research, theory offers support through detailed descriptions 

that simplify the task of seeking order in data. 

 Theorists agree on the core purpose of theory as an explanation, but some proposed 

additional caveats and addendums.  Dubinsky and McDonald (2001) created a theory to describe 

learning mathematics, including the criteria that theories (italics added) 

 “support prediction, 
 have explanatory power, 
 be applicable to a broad range of phenomena, 
 help organize one’s thinking about complex, interrelated phenomena, 
 serve as a tool for analyzing data, and 
 provide a language for communication of ideas about learning that go beyond superficial 

descriptions” (p.275) 

Kerlinger and Lee (2000) agreed theories should apply “to many phenomena and to many people 

in many places” (p 13).  If reinforcement theory only described a relationship between rats and the 

amount of time they spend in a maze, the utility of such a theory would be limited.  Theories may 

start from such observations but gain power when they are shown to apply to a broader range of 

phenomena.  Dubinsky and McDonald also note the value theory has in organizing and 

communicating complex ideas. 

 Theory defines a new framework, and even vocabulary, for discussing ideas.  Dubinsky 

and McDonald suggest their theory offers a new language for discussing learning, built on robust 

descriptions.  Theory can provide a shorthand for complex ideas helping to simplify discussions 

on research.  The framework and vocabulary also help to discuss the theory itself.  As Kerligher 

and Lee (2000) put it, “Theories are tentative explanations” (p. 13).  A theoretician should not 

expect to perfectly describe all aspects of the world in their first theory.  New theories lead to 

discussions on their validity use, and refinement.  An initial theory may not correctly capture a 

phenomenon but may spark interest in under-researched ideas by offering a new perspective and 

vocabulary.  Utilizing theory, according to Silver (1983), takes effort.  She believed 

“understanding [theories] requires more than simply memorizing the terms, their definitions, and 

their interrelationships” (p. 8).  Silver (1983) describes theory as personal and transformative. 

A unique way of perceiving reality. An expression of someone’s profound 
insight into an aspect of nature. A thought system that reaches beyond 
superficial experience to reveal a deeper dynamic than people usually perceive. 
A fresh and different perception of an aspect of the world we inhabit (p.4) 
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Silver views theory less as a tool for using, and more of a pattern of thought.   

To understand theory is to travel into someone else’s mind and become able to 
perceive reality as that person does.  To understand a theory is to experience a 
shift in one’s own mental structure and discover with startling clarity a different 
way of thinking. To understand theory is to feel some wonder that one never 
saw before what now seems to have been obvious all along.  This interpretation 
of the nature of theory does not sound very scientific.  More formal definitions 
are dry, however, robbing theory of its beauty, its emotional significance, its 
importance in everyday life.  A theory is a distinctive way of perceiving reality.  
(p. 4) 

Silver describes theory in much more demanding terms than other sources.  Theory is less a tool 

for Silver than a mindset.  This view resonates with many qualitative traditions but may seem 

extreme for most other researchers.  Theory seems most influential when it challenges 

conventional views and offers new perspectives on research and the application of knowledge.   

3.1.2 Why is theory important? 

Researchers probably speak the most about theory, but Silver’s definition of theory makes 

the case that educators can also benefit from a strong theoretical grounding.  Theory not only 

informs the construction of studies but curricula.  Theory is not merely a tool to occasionally 

inform a specific step thought; it can serve as a set of values and a viewpoint for interacting with 

participants or students.   

3.1.2.1 Theory and research 

 The quality of research and practice improves when grounded in theory.  Kerlinger and 

Lee (2000) noted that many researchers complete valuable studies without a theoretical basis, but 

such studies report on “shorter-range goals of finding specific relations”, and “ultimately most 

usable and satisfying relations… are those that are the most generalized, those that are tied to other 

relations in a theory” (p. 13).  Theory allows researchers to link findings across studies with a 

consistent rationale and extend one investigation into the next, either confirming, refining, or 

possibly refuting the propositions of theory.  In quantitative studies, theory informs the data to be 

captured and its analysis.   
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A theory in quantitative research explains and predicts the probable relationship 
between independent and dependent variables…  Not all quantitative studies 
employ a theory to test, but doing so represent the most rigorous form of 
quantitative research.  It is certainly better than basing variables on your own 
personal hunches that are subject to challenge by other students and professors. 
(Creswell, 2008, p. 131) 

Theory informs the research protocol to direct the study at data most likely to be useful.  Theory 

acts as a backstop against data mining practices gone awry such as “p-hacking”.  P-hacking occurs  

When a researcher “[records] many response variables and deciding which to report postanalysis 

[or decides] whether to include or drop outliers postanalyses” (Head, Holman, Lanfear, Kahn, & 

Jennions, 2015, p. 1) thereby achieving a statistically significant, but potentially meaningless result.  

Theory not only identifies proper measures but to provide enlightening reasons they matter.  Does 

an average improved test score of 2% indicate stronger comprehension?  Did the intervention help 

students even though their scores are failing?  The proper inclusion of theory enables a more 

vibrant and consistent story regardless of the outcome. 

 Qualitative researchers share less consensus on the role of theory, yet theory still 

contributes in many useful ways.  Anfara and Mertz (2014) classified three viewpoints qualitative 

researchers hold: 

first, that theory has little relationship to qualitative research; second, that theory 
in qualitative research relates to the methodology the researcher chooses to use 
and the epistemologies underlying that methodology; and third, that theory in 
qualitative research is broader and more pervasive in its role than methodology 
(p. 7) 

These viewpoints are not mutually exclusive; many researchers flow between each position.  

Researchers who see little value in theory during qualitative research are not diminishing theory, 

but feel theory stems from qualitative research.  ‘Methodology theorists’ believe theory establishes 

the epistemology, nature, and source of knowledge that guides qualitative research.  Theory acts 

as a lens for evaluating data (Anfara Jr & Mertz, 2014; Creswell, 1997), influencing the 

methodology and analysis.  The final group believes theory plays a role implicitly even when not 

explicitly included.  Anfara and Mertz summarized about qualitative researchers, “[t]heory has a 

place—an unavoidable place for all but a few of the authors we reviewed—and plays a substantive 

role in the research process” (p. 14).  The direct role of theory in conducting qualitative research 

may vary, but its link to theory is undeniable. 
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3.1.2.2 Theory and practice 

 Educators also lean on theory as a guide toward classroom practices.  Dubinsky and 

McDonald (2001) argued the “[d]evelopment of a theory or model in [disciplinary] education 

should be… part of an attempt to understand how [a discipline] can be learned and what an 

educational program can do to help that learning” (p. 275).  The development and validation of 

theory in research may be an exercise in ‘pure science’, but educators can and should use theory 

to inform practice.  Pellegrino (2002) leveraged models of cognition as a foundation for assessing 

“what students know”.  Svinicki (2004) promoted the use of cognitive theories that align 

instruction to the ways people learn.  General theories of cognition and learning are prevalent in 

education, but as Dubinsky and McDonald point out, customized theories for a specific discipline 

provide learning strategies tailored to that subject.  Computing education research increasingly 

sees the need for inclusion of theory yet struggles to do so in literature and practice. 

3.1.2.3 Theory in computing education research 

 Computing education literature has historically leveraged little theory in 

publications.  Joy, Sinclair, Sun, Sitthiworachart, and López-González (2009) reported: “the 

proportion of papers with a largely theoretical education focus is currently small overall (8.9% for 

journal papers and 3.3% for conference papers)” (p. 120).  Other fields also struggle to including 

theory, but the 25% presence in other disciplines still dwarfs computing education publications.  

Joy et al.’s survey cast a wide net, though, including venues covering both research and practice, 

which may not expect rigorous research and the use of theory.  Lishinski, Good, Sands, and Yadav 

(2016) completed similar research focused on computing education research’s ‘elite’ conference 

(ICER) and journal (Computer Science Education).  These two publications included theory in 66% 

and 77% of the respective articles – a much better saturation of theory, but with the very shallow 

threshold “if they contained at least one citation to a reference on learning theory from outside CS 

education” (p. 165).  Lishinski et al. did not look at how the author incorporated the referenced 

theory, if theory informed the methodology or analysis, or if the authors merely mentioned the 

citation as part of a literature review.  Even at the ‘top’ it there might be room for improvement in 

the use of theory in research.   
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 One of the most significant impacts of the underutilization of theory is the inability to 

translate research into practice.  Take, for example, the research around tracing.  Green (1977) first 

identified tracing as a crucial skill in learning to program back in the ’70s.  Perkins and Martin 

(1985) documented how novices struggle to trace yet touted its value in learning to program.  

Despite early identification of tracing as a valuable pedagogy, two decades later, researchers 

reported inconsistent tracing skills (Lister et al., 2004) and could not connect tracing to other 

crucial programming skills (Lopez et al., 2008).  Only in the last decade has theory emerged, 

describing the value of tracing (Lister, 2011, 2016; Sorva, 2013; Teague, 2014) and how it might 

promote overall programming skills and many other themes in research can also benefit from 

theory. 

The story of tracing seems to reflect what happens when theory is missing.  Researchers 

identified the importance of tracing forty years ago.  I would argue researchers still cannot entirely 

explain what makes tracing critical, how to mature tracing skills, and how (or if) they relate to 

other aspects of programming.  Practitioners who do not study educational theory and research are 

even less likely to pinpoint the aid struggling students need.  

3.2 How is theory constructed? 

 The classical theories in education (e.g., Piaget, Vygotsky, Bruner) are well-known, but 

even though we have a chain of publications that describe these theories, the theorists do not share 

the step-by-step process of their creation.  Theories seem to emerge from a series of studies and 

publications rather than an intentional effort rather than a specific process or method.  TAMP may 

be different in that I am setting out to build theory as a purpose.  TAMP seeks to apply existing 

theory in new ways.  TAMP applies theories of cognition and learning to the discipline of 

computing education, and from that application considers new theoretical elements.  While a 

guidebook for building theory may not exist in full, many authors speak to the building blocks of 

theory and the ways that theorists present and validate their work.  This section considers how 

theorists use rhetoric to define their theory and how a technique from philosophy can help to hone 

such arguments.  It also considers concepts from grounded theory as a means of validating the 

emerging theory. 
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3.2.1 Rhetorical methods for building theory 

 Within education, most theory comes to us in the form of books or long articles that 

spell out the theorist’s ideas using a combination of rhetorical arguments, anecdotal stories, and 

descriptions of research.  John Dewey’s (1938) description of the role of experience in education 

is almost entirely a reasoned argument with little empirical data.  Jean Piaget (1970) famously built 

his learning theory based on observations of his children and expanding his theory through decades 

of pivotal studies.  Lev Vygotsky (1978, 1986) made a case for the social aspects of learning in 

response to Piaget, and Jerome Bruner (1966c) refined Piaget’s and Vygotsky’s ideas with small 

studies.  Reading these works, the theorists never seemed to be formally constructing a theory, but 

certainly, that is the result.   

 Often the challenge in reading these theorists is identifying the exact definitions and 

relationships, if not the components of their theory.  We hear terms like schema, 

assimilation/accommodation, the zone of proximal development, iconic representation, or spiral 

curriculum, but seldom do the authors stop to provide direct definitions.  Often other authors seem 

to codify these terms and their relationships.  With time, many authors have considered the 

construction of theory and its building blocks.  Glaser and Strauss (1967) suggest that researchers 

using grounded theory define categories, properties of categories, and hypotheses to describe the 

groups of people under research.  While these building blocks make sense for substantive theories, 

particularly for sociology, broader theoretical building blocks are also available.  Kerlinger and 

Lee (2000) and Silver (1983) included a different set of three building blocks for constructing 

theory: concepts, constructs, and propositions, as visualized in Figure 3.1 visualizes and defined 

in Table 3.1.  

 

Figure 3.1. Concepts, constructs, and propositions as a building block of theory 
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Table 3.1 Silver’s (1983) definitions for building blocks of theory 

Idea Definition 
Concept “a mental representation of a unit of concrete experience” (p. 5) 
Construct “a mental representation of a cluster or blend of concepts” (p. 5) 
Proposition “a statement of relationships between or among constructs” (p. 6) 
Theory “A set of logically interrelated propositions” (p. 6) 

Science provides many examples of these four building blocks of theory.  One such 

example that is likely familiar to many technology students is the theory of mechanics.  Mechanics 

deals with the broad space of bodies in motion and contains many propositions, such as the 

conservation of energy, momentum, and angular momentum.  These propositions rely on various 

constructs such as energy (e.g., potential or kinetic) and describe the relationships between these 

constructs (e.g., a ball that transitions from resting high up on a tower to falling to the ground).  

The constructs of energy are derived based on directly observable concepts.  Kinetic energy builds 

upon the concepts of mass and velocity (which also includes the notions of distance and time).  

The physical science of mechanics provides a concrete example of theoretical building blocks that 

may help to translate into the construction of theory in social sciences. 

Concepts provide the basic building blocks of a theory that capture what we can see in the 

real world.  “A concept is a mental device for interpreting a unit in the stream of sensations we 

experience” (Silver, 1983, p. 5).  Concepts define observable experiences as abstractions that can 

project into the past, present, or future.  Concepts generally, but not always, relate to words – a 

single word captures a single concept.  Some concepts transcend a single word, though, or since 

language is ambiguous, words might differ across contexts.  For example, a person’s age is a 

directly observable concept by comparing dates (birth date with some future date), but intelligence 

requires some interpretation based on the nature of the testing.  The word ‘age’ perfectly parallels 

the concept, where intelligence is contextualized depending on the type of testing, as we will see 

later with the notion of fluid intelligence.  Concepts are not all simple traits, but concepts all should 

tie to some sensation or experience.   

Theorists define constructs to represent complex ideas involving multiple concepts.  

Constructs “cluster and merge [concepts] into a higher unit of thought” (Silver, 1983, p. 5).  

Constructs capture ideas that cannot be directly perceived but can be inferred based on the included 

concepts.  Silver used IQ (the Intelligence Quotient) as an example of a construct.  Intelligence is 
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a concept describing the results of testing, where IQ captures the notion that intelligence changes 

as people mature, thus combines intelligence and age.  We expect children to know less than an 

adult, thus a high-scoring child would possess a greater IQ than an adult with an equal score.  

Constructs generally represent abstract ideas, blending experiences with a slight separation from 

perception.  Silver noted that constructs often have ‘made-up’ names (like IQ) as words already 

exist to describe concepts, so constructs need new monikers.  Theorists create better constructs by 

linking to and defining the relationship between concepts8.   

Just as concepts combine to form constructs, propositions blend constructs to offer, what 

Silver called “a unique conceptualization of reality” (p. 6).  Propositions are helpful when “an 

individual conceives of a pattern of relationships among several constructs and can articulate these 

relationships clearly, logically and convincingly” (Silver, 1983, p. 6).  Take, for example, the 

proposition: education improves IQ.  Education and IQ are constructs that are not directly 

observable, but since they include observable concepts, educators can take measurements and test 

the proposition.  It seems apparent that this proposition makes sense, but investigating the 

proposition is made easier since its constructs, tied to concepts, are all measurable.  The 

construction of propositions upon well-defined constructs moves beyond the quality of rhetorical 

logic and provides a pathway to empirical exploration.   

Turner (2003) described four schemes for producing propositions, one of which seems to 

overlap the type of theory TAMP is seeking to produce.  His meta-theoretical scheme describes a 

process for asking retrospective questions about existing theories to enhance a theory or investigate 

its gaps.  Theorists sometimes perform “a reanalysis of previous scholars’ ideas in light of [various] 

philosophical issues… to summarize the metaphysical and epistemological assumptions of the 

scholars’ work and to show where the schemes went wrong and where they still have utility” (p. 

9).  Turner did not describe a formal structure of meta-theoretical propositions, except to rethink 

the existing theory, but his scheme offers justification for defining such a process here. 

 Theory offers new ways of perceiving reality, but methodically constructing that reality 

makes it easier to share with others.  Silver advised, “[constructs] must be defined and explained 

 
88 It may be helpful to note that once a concept becomes very familiar, we may implicitly blur constructs with concepts.  
Once familiar with the concept of IQ, or even before, you may jump directly from displayed intelligence to IQ 
implicitly knowing that a very young child’s spark will likely outshine the older person’s equally competent answer.  
The razor between concepts and constructs is one of direct observability, which requires a shrewd interpretation of 
what is perceived versus what is derived. 
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carefully so that others, who may have tended to think in terms of concepts or of different 

constructs, can grasp their meaning” (p. 6).  Readers can misconstrue a theory if the author does 

not differentiate their definition of concepts from existing ones.  The theorist should take care 

when offering new propositions to ensure they are clear and built upon distinct constructs.  Silver 

suggested that the process of building theory “is the culmination of a highly abstract thought 

process whereby ideas are removed in successive stages from the world of immediate experience” 

(p. 6).  Each step away from experience risks introducing imprecision, so precisely defining 

concepts, constructs, and propositions help to produce a clear and cohesive theory.  

3.2.2 Formal philosophical reasoning 

The challenge with rhetorical methods of theory building is providing clear and concise 

propositions amid the flurry of data.  Most scientific fields rely on empirical data as the primary 

source of evidence, but philosophers must rely on arguments and logical reasoning.  Philosophers 

rely on the structure of their arguments as much as their content.  Educational researchers can 

rarely make irrefutable arguments by logic alone but can improve their discussion by borrowing 

the structure and style of philosophical arguments.  While this dissertation is a requirement for a 

Doctor of Philosophy, it is not a Doctorate in Philosophy, so for the benefit of the author and reader, 

this section details the bare bones of formal reasoning9.   

The core of philosophical reasoning is defining an argument for your proposition. Talbot 

(2014b) used an example taken from a Monty Python sketch to define an argument: 

An argument is a connected series of statements to establish a definite 
proposition. (location 141)10 

In the context of philosophy, people make arguments for something – an idea they wish you to 

accept.  Philosophers convert prose arguments into a ‘logic-book style’ (location 594) to aid in 

their analysis of its quality.  The logic-book reconstructs an argument into a series of premises 

leading to a conclusion.  Figure 3.2 provides an example of an argument in the logic-book style.   

 
9 For readers who seek more on formal reasoning, this section is entirely based on the continuing education series 
(Talbot, 2012), podcast (Talbot, 2014a), and accompanying book (Talbot, 2014b) by Marianne Talbot.   
10 The Kindle edition of Talbot’s book does not include page numbers but “locations”. 
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Premise one:  It is currently the morning 
Premise two: I am starting to get hungry 
Premise three: In the morning it is customary to eat breakfast food 
Conclusion: I shall stop writing this example and grab some breakfast 

Figure 3.2. An example of a logic-book style argument 

 Restructuring an argument into a logic-book style has several advantages.  While prose 

allows for flexibility and occasionally beauty in describing an argument, the simplicity of the logic-

book and its strictures offer clarity and concision.  Each premise stands independently.  The logic-

book deconstructs complex sentences into simpler premises with distinct statements of truth (or 

not).  As will be discussed in a moment, arguments are easier to assess when written in this format.  

The logic-book format also helps to identify ambiguities in the argument.  Talbot notes three types 

of ambiguities: structural, lexical, and cross-reference (when reading argument, spoken word 

ambiguities are not present).  Structural ambiguities occur due to the poorly ordered words.  Talbot 

provided the example: 

So the sentence 1 (Every good girl loves a sailor) has two interpretations 
1a.   There is a sailor such that every girl loves him 
1b.   Every girl is such that there is a sailor she loves. (location 608) 

Lexical ambiguities appear when a word can have multiple meanings.  For example, Talbot uses 

the example “I went to the bank” (location 641), which could identify either the edge of the river 

or a financial institution.  Cross-reference issues occur when a sentence is not clear on the use of 

pronouns or other words that refer to another part of the sentence.  I often abuse pronouns in first 

drafts such as “Researchers presented participants with assessments which they found difficult to 

analyze.”  Was the analysis difficult for the researcher, students, or both?  Logic-books add value 

since “every sentence is such that we can offer reasons for believing that it is true, and every 

sentence can be a reason for believing the truth of another sentence” (location 746).  Logic books 

help to form well-structured, disambiguated, and easy-to-follow arguments. 
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3.2.3 Grounded theory 

Qualitative researchers often seek to describe areas of experience that yet to be formally 

described by theory.  Creswell (1997) describes five traditions of qualitative research, as listed in 

Table 3.2.  Qualitative studies in education seek to gather rich descriptions of students, educators, 

the classroom, or some other aspect of learning.  Generally speaking, most qualitative traditions 

gather similar data using similar methods and vary in their analysis and goals.  Qualitative research 

gathers data primarily through observation.  A researcher may observe people at work or play, 

conduct interviews, read documents, or watch videos.  Some qualitative traditions use theory to 

guide their observations and analysis.  Grounded theory researchers prefer to observe with an ‘open 

mind’, unbiased by existing theory or expectations.  Grounded theory has a specific goal of 

generating theory, but as noted early, a specific type of early targeted at filling gaps based on new 

or unexplored phenomena.   

Table 3.2 Qualitative traditions of research as identified by Creswell (1997) 
Tradition Typical focus Used to describe 
Biographical Single person An individual portrait 
Phenomenological Several individuals A concept or phenomenon 
Grounded Theory Several individuals A theory 
Ethnography A group A cultural group portrait 
Case Study Bounded system Portray a case 

 The grounded theory process may be easier to understand by following an example from 

computing education.  Kinnunen and Simon (2010a, 2010b, 2010c, 2011, 2012) employed 

grounded theory to “[shed] light on the various processes and contexts through which students 

constantly assess their self-efficacy as a programmer” (p. 1).  They interviewed nine students five 

different times across a ten-week term.  They defined an initial interview protocol and immediately 

began analyzing the responses to find patterns in student responses, a process called open coding.  

Open coding helps researchers to see patterns in the data that transcend individuals and may lead 

to a category that provides an abstraction of particular phenomena, a process referred to as axial 

or analytical coding (Merriam & Tisdell, 2016).  The collection of categories, their properties, and 

the relationships between categories form the beginning of a new theory.  A robust theory is 

unlikely to emerge from a single round of data collection, however.  Grounded theory suggests 

that the research team repeatedly refine their data collection approach to elicit additional targeted 



 

 

60 
 

information to describe their emerging categories better and test their bounds.  Kinnunen and 

Simon (2012), for instance, modified their interview and “added questions concerning students’ 

emotional reactions towards the process of doing the programming assignments to our protocol” 

(p. 5) since emotions emerged as a significant category.  By returning to their students with the 

emerging importance of emotions as part of programming, Kinnunen and Simon discovered more 

than they initially expected from their data. 

Grounded theory does not seek to ‘prove’ a theory but seeks to manage its consistency.  

Grounded theory seeks to manage the emerging theory’s internal validity, deferring the later 

generalizability and external validity to future work.  Zetterberg (1966) described the difference 

between internal and external validity as follows. 

The major difference is that the former expresses a “logical” relationship, while 
the latter expresses an “empirical” relationship.  Internal validity, in other words, 
can be appreciated without empirical studies, while the determination of external 
validity is a test of a hypothesis. (p. 115) 

A major strategy within grounded theory for ensuring the integrity of its data analysis is the 

constant comparison of data.   

Constant comparison is an inductive (from specific to broad) data analysis 
procedure in grounded theory research of generating and connecting categories 
by comparing incidents in the data to other incidents, incidents to categories and 
categories to other categories. (Creswell, 2008, sec. 443) 

The initial analysis seeks to create abstractions from data.  Later rounds of analysis confirm, refine, 

or eliminate aspects of the theory as dictated by the growing set of data.  The repeated comparison 

challenges the researchers to consider if their theory explains existing and new rounds of data.  

Researchers continue to gather new data until they find no new information, a point called 

saturation. 

 Grounded theory provides a systematic approach to exploring an area with little 

understanding but is only the fledgling start of building theory.  Kinnunen and Simon studied just 

nine programming students at one university.  Substantive theory risks being ‘localized’ to the 

participants, course, school, country, or some other subgroup that may not generalize in future 

studies.  Grounded theory seeks to identify new theory, but as Creswell (2008) described, “After 

developing a theory, the grounded theorist validates the process by comparing it with existing 

processes found in literature” (p. 450).  Grounded theory researchers prefer to start without 
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consulting the literature to reduce the chance that it biases their analysis.  Comparisons from 

literature at the end of the process allow the researchers to compare the emerging theory with other 

studies and theories.   

 Grounded theory contains important concepts and methods for theory-building, I argue the 

entire process may not fit with the approach needed for TAMP.  Novice struggles in computing 

education are hardly unexplored territory, nor theories of cognition and learning.  Collecting new 

data not only ignores the rich sources only touched upon in Chapter 2, but new data comes with 

no guarantee of generalizability.  TAMP seeks to build, using Glaser and Strauss’s (1967) phrasing, 

a formal theory that leverages existing theories and data that already contributes to substantive 

theories in computing education.  While a traditional application of grounded theory may not apply, 

some of its methods will when defining a new method of theory building in Section 3.2.4. 

3.2.4 An approach to building theory 

Theory construction, like any creative task, blends inspiration with established knowledge, 

typically requiring some process or procedure.  Personal experience, whether first-hand 

observation or through literature, motivates, and guides theory.   

Formal theory formulated directly from comparative data on many substantive 
areas is hard to find, as have noted earlier, since stimulation and guidance, even 
if unacknowledged, have usually come from substantive theory.  However, it is 
possible to formulate formal theory directly.  The core categories can emerge in 
the sociologist’s mind from his reading, life experiences, research and 
scholarship.  He may begin immediately to generate a formal theory by 
comparative analysis, without making any substantive formulations from one 
area (Glaser & Strauss, 1967, p. 90) 

The educational theorists mentioned earlier used their experiences as inspiration for their theories 

and used these stories to guide and inform their audiences.  The genesis of a theory is less important 

than the follow-up process by which that theory is elaborated, refined, and validated. 

3.2.4.1 Making clear arguments 

A perfect argument is only helpful to readers if they find it impactful and actionable.  

Readers often prefer a few concise lines that summarize the findings within an empirical study, 

but pithy quotes rarely capture the nuance required to describe the complex arguments of theory.  
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The methodology in theory building must, therefore, support both validity and challenge the 

reader’s perspective.  Silver (1983) defined theory’s value, not by its profound implications, but 

how it transforms perspective.  Theory may hold the most value when it not only proposes new 

ideas but considers how people use those ideas.  In addressing why technology often fails, Safi 

Bahcall noted:   

It’s not about the supply of the idea or the creation of the idea, innovation 
usually fails in the transfer.  And it’s not just transfer in one way, but it’s 
feedback the other way.  (TechNation Radio Podcast, 2019, sec. 16 minutes 38 
seconds) 

Theory loses value if it is unable to guide readers to a new perspective.  Logical reasoning is 

important but must be supported by rich descriptions, examples, and details if the reader is to enter 

the theorist’s mind.  The use of logic-books adds a level of transparency to major propositions.  

While not every argument needs a logic book, the most important theoretical constructs and 

propositions can benefit from a clear and concise summary.  The logic-book inserts, in the style 

and format of Figure 3.2, signify an important concept and, in this work, act as an advance 

organizer (Ausubel, 1960) for the coming argument.  An explicit method of theory-building must 

present arguments that are both defensible and enable readers to form lasting impressions. 

3.2.4.2 Validating theoretical assertions 

Grounded theory offers a systematic framework for validating theory.  The constant 

comparison approach enforces the gradual integration of new ideas with iterative checks for 

consistency using various sources of data.  New data serves to refine a theory until the theorist can 

either confirm or reject their proposed theory.  At this point, grounded theory suggests a process 

for a ‘final’ confirmation called discriminant sampling.  Discriminant sampling offers one last 

comparison of the new theory against a previously unanalyzed set of data as a measure of its 

descriptiveness and accuracy in modeling the target phenomena.  This reinterpretation approach is 

not without precedent as not every grounded theory study collects data from new sources.  Bowen 

(2009) used documents as part of his study’s data and noting, “entire studies can be conducted 

with only documents” (p. 34).  The fundamental difference in this new approach and traditional 

grounded theory is the source of data and the type of theory produced.  Where grounded theory 

seeks to avoid the bias of existing ideas to build substantive theory, this approach embraces 
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existing ideas to build formal theory.  These two methods from grounded theory offer a rigorous 

approach to considering substantive theories that also seem to apply to formal theory creation. 

The proposed methodology for theory building borrows the methods of constant 

comparison and discriminant sampling, refined to work with existing theory and data.  Existing 

‘data’ – in the form of past studies – replaces newly collected data.  The ‘theory under test’ may 

take the form of existing theory applied to a new domain (e.g., how well dual process theory 

describes computing education issues like fragile knowledge) or to test new theories derived from 

existing.  Instead of axial coding, the new method is a reinterpretation of a past study under the 

guise of a new theory.  Section 3.3.6 describes the details of this reinterpretation method, but the 

concept is simple.  If the new theory offers a better explanation than the old after reanalyzing a 

study, it is a promising replacement.  Figure 3.3 presents a high-level view of the TAMP approach 

compared to a traditional grounded theory approach.   

 

 

Figure 3.3. TAMPs stages of analysis in comparison to grounded theory 



 

 

64 
 

3.3 Methodology for constructing TAMP 

Philosophy offers some guidance for making rhetorical arguments, and grounded theory 

offers an approach for validating theory, so this section combines these elements to propose a 

formal methodology for building theory.  This section includes not just general methods for 

creating applied disciplinary theories, but the specifics of TAMP. 

3.3.1 Scoping TAMP 

TAMP’s inevitable goal is the creation of an expansive theory of how programmers think.  

The full model is far beyond the scope of what a single dissertation can accomplish.  This work 

will introduce the scope of what TAMP might eventually accomplish but inevitably focuses on a 

small fraction of the full theory of mind, specifically looking at how programmers design as a 

substantive contribution.   

3.3.2 What is a theory of mind? 

Some an educators or researchers may wish to “get in that person’s head” to see what they 

were thinking?  The task of teaching or researching education would be so much simpler if we 

could see the proverbial “gears turning” and map out the moment comprehension goes awry.  The 

desire to understand another’s thinking is the foundation of the theory of mind. 

In saying that an individual has a theory of mind, we mean that the individual 
imputes mental states to himself and others (either to conspecifics or to other 
species as well).  A system of inference of this kind is properly viewed as 
theory, first, because such states are not directly observable, and second, 
because the system can be used to make predictions, specifically about the 
behavior of other organisms.  (Premack & Woodruff, 1978, p. 515) 

Premack and Woodruff used a “theory of mind” to understand the mental life of chimpanzees, but 

the construct is equally helpful in understanding students (Leslie, 1987).  We apply our theory of 

mind when using words like believes, thinks, doubts, guesses, and knows when speaking about 

others.  Educators regularly assess what students ‘know’.  Researchers try to capture what 

participants are guessing or what they believe.  Both routinely apply a theory of mind without 

realizing, much less documenting their assumptions on how people think. 
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The concept of theory of mind not only applies to students, but to the work of educators 

and researchers.  Premack and Woodruff described all humans as inferring a theory of mind about 

each other (and often animals as well!).  Our theory of mind influences how we perceive the actions 

of others, yet how does a theory of mind form?   

Although it is reasonable to assume that [inferences about others depend] on 
some form of experience, that form is not immediately apparent.  Evidently it is 
not that of an explicit pedagogy.  Inferences about another individual are not 
taught, as are reading and arithmetic; their acquisition is more reminiscent of 
that of walking or speech.  Indeed, the only direct impact of pedagogy on these 
inferences would appear to be suppressive, for it is only the specially trained 
adult who can give an account of human behavior that does not impute states of 
mind to the participants.  All this is to say that theory building of this kind is 
natural in man. (p. 525) 

It is safe to assume anyone practicing or studying education has likely spent time as a student in a 

classroom.  Educators and researchers automatically and often unconsciously infer student’s 

motivations, internal processes, and capabilities.  Premack and Woodruff contended such 

assumptions are natural, unavoidable, and individualized based on experience – perhaps making 

them untrainable.  A person can be taught to suppress their assumptions, but not consciously 

reform them11.  The question is not if educators generalize, just in what way.  A theory of mind 

exposes our implicit ontology, epistemology, axiology, and judgments of students.  

 A complete theory of mind for learning is a slippery concept, but thankfully TAMP is 

focusing on modeling the mind only when applied to programming.  This type of applied thinking 

was used by Leslie (1987), who investigated the role of pretending in cognition.  Theory of mind 

acts both as a construct that children form to “comprehend opaque states in oneself and in others” 

(p. 421) as well as a construct for describing a child’s thoughts while pretending.  Leslie compared 

children with and without autism, noting “autistic children should also show serious impairment 

in their later theory of mind” (p. 423).  Theory of mind acts as a means for comparing the two 

groups of children.  TAMP, like Leslie’s study, looked to model select aspects of cognition.  A 

theory of mind describing how trained programmers think can be compared with novices to see 

what knowledge and skills must be acquired.   

 
11 The nature of which seems to align with the contents of Chapter 4. 
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3.3.3 TAMP’s scope for “What programmers need to know” 

Chapter 2 provided a baseline set of skills that a programmer should possess.  Rountree, 

Robins, and Rountree (2013) extended the discussion of what a programmer should know, to the 

types of mental structures they need, in extending the theory of Threshold Concepts within 

computing education12 .  A novice who masters a threshold concept gains a perspective that 

accelerates and enhances future learning.  Threshold concepts are compelling in computing 

education as a solution to the alleged ‘bi-modality’ seen in learners (see Section 2.2).  Rountree, 

Robins, and Rountree described three areas of required learning.  

passing the threshold requires the successful acquisition and internalization not 
only of knowledge, but also its practical elaboration in the domains of applied 
strategies and mental models.  (p.286) 

They suggested that threshold concepts are not just about remembering but applying knowledge.  

Students must develop “schema and automatization” (p. 283), which we will see in Chapter 4 

aligns well with dual process theory.  Rountree, Robins, and Rountree do not discuss the content 

of learning to program but focus on ways of knowing as a threshold concept.  The gap that remains 

in theory and literature is what that ‘way of knowing’ looks like and how novices might acquire it. 

 This dissertation covers a few focused areas that provide the foundation for the cognitive 

model of TAMP.  The first key contribution will be establishing the role of dual process theory in 

describing programming cognition.  To tackle the process of learning and problem-solving, this 

work combines Jerome Bruner’s representations with dual process theory and neuroscience to 

establish a set of refined constructs to model mental activity.  Returning to computing education, 

TAMP revisits the notional machine and defines a new theoretical construct focused around the 

mental model programmers form around the notional machine, the Applied Notional Machine 

(ANM) as a computing education-specific educational construct.  This work concludes by defining 

two proposed models that use elements of the ANM to describe how programmers read code and 

come up with designs. 

 
12 TAMP does not address threshold concepts (TCs).  TCs are compelling, but as Rountree, Robins, and Rountree 
discussed, the definition of TCs is very difficult to nail down in programming.  TAMP may align with or totally 
mitigate TCs, but the overhead of making that case on top of the bevy of literature and theory only serves to complicate 
the discussion.  As most practitioners will never have heard of TCs, they felt extraneous and complicated with little 
added value. 
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3.3.4 Contributing theories and literature 

 TAMP builds upon existing theory and past studies from computing and other educational 

literature.  Chapter 4 focuses on dual process theory as a foundational framework replacing 

traditional models of cognition.  Chapter 6 revisits theories of learning and development, 

specifically Piaget, Vygotsky, and Bruner.  While findings and studies from neuroscience appear 

throughout several chapters, Section 7.3 specifically investigates specific findings from 

neuroscience and their relationship to computing education.  Table 3.3 provides an overview of 

the included literature across the chapters described above as well as existing theories or 

commonly used within computing education. 

Table 3.3 Contributing theories and studies with references to their core literature 
Purpose Sources 
Dual process theory Kahneman (1973, 2011; 1983), Stanovich (2012), Evans (2009) 

Neuroscience Burton (2009), Eagleman & Downar (2016), Immordino-Yang & 
Damasio (2007), Kandel (2009), Ledoux, Brown, Lau, & Mobbs 
(2017), Squire & Kandel (2003) 

Contributory Learning 
Theories 

Piaget (1970; 1952), Others on Piaget (Ginsburg & Opper, 1988; 
Inhelder, Chipman, & Zwingmann, 1976; Piaget & Inhelder, 
1967), Neo-Piaget (Case, 1996; Fischer & Bidell, 2007; Lister, 
2016; Morra, Gobbo, Marini, & Sheese, 2008; Teague, 2014), 
Vygotsky (1978, 1986), 

Computing education Notional Machine (Du Boulay et al., 1981; Sorva, 2013) 
Cognitive Load Theory (Morrison, 2017; Morrison, Dorn, 
& Guzdial, 2014; Plass et al., 2010; Sweller, 1989, 1994) 

Bruner’s representations Bruner (1966a, 1966b, 1966c, 1971, 1979a, 1979b, 1997; 1956) 

3.3.5 Methods of building and documenting TAMP 

The theory-building toolbox contains tools for theory creation and content for TAMP, as 

shown in Table 3.4.  All that remains is assembling the pieces into a plan. 

Table 3.4 Tools available for constructing TAMP 

Theory creation devices TAMP-specific content 
Rhetorical argument (Table 3.1) Theory of mind (Section 3.3.2) 
Logic-book format (Figure 3.2) Scope of TAMP (Section 3.3.3) 
Modified grounded theory (Figure 3.3) Literature (Table 3.3) 
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The next chapters each tackle a step building and validating TAMP (see Figure 3.4).  Chapter 4 

describes dual process theory, and Chapter 5 provides a series of reinterpretation studies acting as 

a constant comparison for how well dual process theory explains the struggles of novices.  Chapter 

6 introduces theories of learning and development, including Bruner’s representations and new 

theoretical constructs of TAMP.  Chapter 7 assembles the theoretical constructs and propositions 

of TAMP, including a detailed vignette of how experts and novices think when designing code.  

Chapter 8 performs the equivalent of the discriminant sampling step from grounded theory.  

Chapter 8 validates TAMP’s propositions by revisiting three studies that tested students’ ability to 

design and write code.  Chapter 9 provides one last form of validation by looking at potential 

research and pedagogical implications of TAMP.   

 

Figure 3.4. Overview of the argument structure for the dissertation 

3.3.6 Past studies as data and reinterpretation as validation  

Premise 1:  A replacement theory provides a better model compared to the original or 
alternative theories. 
Premise 2: Experimental studies offer a strong methodology for comparing two 
alternatives. 
Premise 3: The selected theory is the only dependent variable 
Premise 4: Reinterpreting past studies, whose methods do not change under either 
theory, allows comparison of the dependent variables with other variables controlled. 
Conclusion: Past studies provide an effective methodology for comparing theories 
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Before describing the methodology of past studies, it is first essential to establish why they 

are superior in building TAMP.  To get in the habit of using and reading logic-book arguments, 

this section includes one to present its case for reinterpretation studies.  The validity of theory must 

be weighed both against how well it describes its target and does it do so better than existing theory.  

Researchers typically choose experimental methods to compare alternatives, in this case, 

competing theories.  The best experiments tightly control every aspect of the study such that the 

only variation is the treatment.  Any variance in the procedure risks obfuscating the differences 

between the alternatives.  Establishing control between experimental groups is notoriously difficult, 

particularly in educational studies.  Even studies that merely replicate past studies exactly struggle 

to replicate results.  In a study to compare theories, the only variable of interest is the chosen theory, 

but how can you vary theory in a study?   

A study with theory as the dependent variable seeks to control every other variable, but 

what variables interact with theory?  Theory generally appears in the planning and analysis phases 

of a study.  Theory informs methodology, yet so long as methods do not vary based on theory, any 

methodology and resulting data will suffice.  Theory plays a more significant role in analysis, so 

a ‘controlled’ study of theories can branch at the phase of analyzing data and reporting results.  

Using past studies also allow exploring multiple phenomena in many studies with various methods.  

Each reinterpretation shares any faults from the original study’s data collection and methodology 

holding TAMP as the only changing variable.   

One limitation of the reinterpretation approach is the lack of ‘original’ data.  Most studies 

publish only a fraction of data, often filtered through statistics and the author’s perceptions.  The 

original dataset might allow TAMP to make unreported findings, but the comparison of TAMP as 

a theory to the original theoretical framework only requires better, not additional insights.  At this 

phase, establishing TAMP possesses a superior interpretive power than the original publication 

demonstrates validity.  The studies included in the following chapters were selected because their 

authors report something paradoxical they could not explain sufficiently.  The reinterpretation 

studies used here are not looking to contradict the initial findings, but to explain the paradox, 

augment suggestions, or suggest how follow-up studies can go further.  Theory is always evolving, 

and future research might confirm or refute TAMP.  Using reinterpretation studies to show TAMP 

is plausible, consistent, and worth pursuing provides success at this stage. 
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An additional advantage of reinterpretation is the low cost of comparing multiple past 

studies across different phases of learning, types of research questions, and theoretical approaches.  

The selected reinterpretation studies vary in content, contain valid methodologies, cogent analysis, 

and clear reporting.  Each also documents gaps in understanding about novices and their struggles.  

These are not ‘bad’ studies with hopeless findings, but well-constructed with sensible conclusions 

yet perhaps limited due to limitations in the theoretical framework.  Reinterpreting these studies 

provides the reader with a demonstration of how a new theoretical viewpoint can open doors in 

teaching and researcher. 

The process for conducting a reinterpretation study mirrors that of any article, except its 

data collection is already completed.  The responsibilities and steps of the study include: 

1. Describe the past study, its theory (if any), methods, and report findings 

2. Describe any paradoxical findings or inconsistencies 

3. Present the relevant alternative theory 

4. Apply the alternative theory to analyzing #2 

Some of the reinterpretation studies are standalone publications, while other studies are as part of 

this narrative.  When the studies are standalone, the chapter will provide a summary, but the 

original publication will hold many of the details.   

3.3.7 Theoretical architecture for TAMP 

 This chapter established a mechanism for capturing theory, its construction process, and 

the methods of validation.  Before diving into TAMP, it is worth considering its architecture.  I 

have worked as a ‘software architect’ for the better part of two decades, so let me share my 

perspective of the purpose and value of architecture.  Architecture provides an enabling technology 

from which the actual functionality emerges.  As a software architect, I would choose between 

frameworks, languages, tools, and, most importantly, standards (driven by values) that describe 

how these things combine.  As mentioned in Chapter 1, I am passionate about how people first 

come to learn to program, but TAMP is using early programming research as a vehicle for defining 

its architecture, not its end goal.  Learning to program is one application of TAMP, but the concepts 

underlying that argument apply to many computing education challenges. 
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 Dual process theory (Chapter 4) and the learning theories (Chapter 6) are the foundations 

upon which the rest of TAMP builds.  The dual process perspective is critical to understanding the 

role of intuition and tacit knowledge in programming.  Without dual process theory, the rest of the 

insights of TAMP are useful but tenuous.  Dual process theory explains both the advantages experts 

hold over novices and the baffling struggles novices often exhibit.  Dual process theory provides 

an alternative model of cognition to explain programmers in action, but alone does little to inform 

how people learn.   The theories of learning and development proposed by Piaget, Vygotsky, and 

Bruner encompass many of the observations of dual process theory, yet from different perspectives.   

Piaget wrote deeply about implicit learning and individual development, where Vygotsky focused 

more on burgeoning reason and the social impacts of learning.  Reviewing each of their theories 

provides insights on how people learn explicitly and implicitly.  Bruner’s theories are critical in 

explaining how people blend each type of knowledge and ability to solve problems.   

 Dual process theory and the collection of learning theories provide a theoretical 

architecture from which to pursue any learning endeavor.  I chose programming because that is 

what I am the most familiar with, and because it offers the most ‘self-contained’ discipline.  I 

cannot think of any other design discipline that allows every student access to every tool and skill 

with essentially no cost.  Even art requires basic supplies and time to clean up, where once a student 

has a computer, the only other cost is typically an electric bill.  While I am not attempting to 

generalize the findings of TAMP to other disciplines, if the architectural foundation holds for 

programming, it may hold for other disciplines, STEM and beyond.  Programmers solve very 

complex sociotechnical problems and generally get to see the final product and receive feedback.  

Programming languages provide a medium from which to capture the nuance of design decisions 

at every level.  There are always tacit elements to design, but programming goes further than nearly 

any other discipline in capturing the thinking of practitioners simply because of the nature of the 

product – a socially constructed set of rules defining a software program.  While TAMP focuses 

on early programming/CS1 type questions, it is important to remember that such questions are 

merely just one amongst countless cases of how people learn complex problem-solving activities. 
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 DUAL PROCESS THEORY 

This chapter explores the cognitive model proposed by dual process theory and its 

applications in programming.  A model of cognition describes how the human mind processes and 

retains information as well as responding to stimuli.  Most models of cognition also imply or 

directly describe the mechanics of learning, offering guidance to educational researchers who 

embrace them.  This chapter starts by describing several models of cognition, some explicitly used 

in computing education research, before considering dual process theory.  The tenets of dual 

process theory challenge the traditional epistemic definition of knowing that rely on logic alone as 

a source of knowledge and reason.  The remainder of the chapter considers the possible influence 

by revisiting fragile knowledge and tracing through the lens of dual process theory.   

Premise 1: Using dual process theory as a model of cognition enhances the epistemology of 
programming to align with updated models of how people use knowledge and experience 
Premise 2: Dual process theory explains the nature of fragile knowledge, which can lead to 
better approaches to manage it. 
Premise 3: Dual process theory provides a better explanation of the tracing behavior of students 
than the authors in Lister et al.’s study, rationalizing why students ‘decide’ to stop using notes 
to aid their tracing and the resulting change in performance 
Premise 4: Cognitive load theory only helps explain novice struggles in the narrowest of senses, 
particularly in comparison with dual process theory 
Premise 5: Dual process theory, in conjunction with the ‘feeling of knowing’, can help model 
non-cognitive impacts and offer support for improving curriculum 
Conclusion: Dual process theory provides a model of cognition that explains both how experts 
use knowledge and several examples of why novices struggle to learn programming 

4.1 Traditional models of cognition 

The stereotypical programmer is someone who is analytic, pays attention to detail, and 

driven by logic and reason (“5 Personality traits every new programmer should have,” 2014; “Top 

10 qualities of information technologists,” 2018; Dunn, 2013; James, 2008; Sloyan, 2017).  While 

programmers may demonstrate mastery of logic and reason in their work, many believe that logical 

reasoning is not just a characteristic of programmers, but humankind.  For centuries philosophers 

and economists have positioned all humans as above all analytical thinkers who make logical 

decisions, perhaps most famously Rene Descartes whose famous words “Cogito, ergo sum,” 

translated to “I think, therefore I am.”  Perhaps arguably (or not) programmers are stereotyped as 
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being highly logical thinkers.  Software programs must be precise, attend to arcane details, and 

implement flawless logic.  Daniel Kahneman and Amos Tversky (1973) coincidentally used the 

stereotype of programmers as the content of one of their tests.  They presented the following to a 

group of participants.  

Tom W is of high intelligence, although lacking in true creativity.  He has a 
need for order and clarity, and for neat and tidy systems in which every detail 
finds its appropriate place.  His writing is rather dull and mechanical, 
occasionally enlivened by somewhat corny puns and flashes of imagination of 
the sci-fi type.  He has a strong drive for competence.  He seems to have little 
feel and little sympathy for other people, and does not enjoy interacting with 
others.  Self-centered, he nonetheless has a deep moral sense. (Kahneman, 2011, 
p. 147) 

Participants overwhelmingly predicted that Tom W was “more likely to study computer science 

than humanities or education, although they were surely aware of the fact that there are many more 

graduate students in the latter field” (Kahneman & Tversky, 1973, p. 239).  Kahneman and 

Tversky’s test tells us two things, most people stereotyped programmers as driven by order and 

logic and easily forgot to apply the logical rules of probability in making their assessment.  Do 

programmers think differently than other people making them immune from such mistakes?  Are 

programmers, by training or nature, scions of rational thinking beyond that of other people and 

professions?   

Programmers probably are not fundamentally different from other people.  Papert (1988) 

observed, “[c]omputers are a domain where everyone expects that analytic to reign supreme, yet 

this situation makes it especially clear that for certain children, the development of intelligence 

and programming expertise can reach high levels without becoming highly analytic as well” (p. 

12).  Papert reported that children could become good programmers without being notably logical 

thinkers.  So, what is the relationship between rational cognition and programming?  Is there a 

better assumption about how people think if they are not entirely rational?  To best understand the 

impact dual process theory might have on how we research and teach computing, it is useful to 

understand the legacy of Descartes’ philosophy and how it has influenced conventional beliefs 

about cognition.   

Mathematician and philosopher Rene Descartes established the modern view of cognition.  

Descartes believed that physics was the root of a tree of knowledge with branches, including 

morality, medicine, and mechanics (Ariew, 1992).  Three principles underly his philosophy: 
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1. To employ the procedure of complete and systematic doubt to eliminate 
every belief that does not pass the test of indubitability (skepticism). 

2. To accept no idea as certain that is not clear, distinct, and free of 
contradiction (mathematicism). 

3. To found all knowledge upon the bedrock certainty of self-consciousness, so 
that “I think, therefore I am” becomes the only innate idea unshakable by 
doubt (subjectivism). (“The rationalism of Descartes,” 2019) 

Descartes believed philosophers should be logical but skeptical.  His view of this ‘highest form of 

thinking’ seems to have seeped into the Western world’s definition of the everyday nature of 

thought.  Many seem to translate rationality as an existential differentiator of humanity.  Human 

reasoning is what set us apart from the rest of the animal kingdom, and our civilized behaviors 

were far beyond that of other creatures.  As Frans de Waal (2016) described, each time a study 

showed how animals expressed behaviors that met the current definition of culture, some scientists 

would redefine culture to a higher standard.  The last several decades of research have 

demonstrated animals with many ‘human-like’ abilities, but far from undercutting our humanity, 

these insights help to explain our occasionally irrational behaviors.  Philosophers continue to 

debate Descartes's assertions (Hintikka, 1962), yet while rationality may be distinctly human, 

modern research shows that humans are far from being distinctly rational. 

 Many people, even scientifically trained ones, seem to hold implicit views that trace back 

to a Cartesian model of cognition.  It is not that our teachers explicitly teach us a model of how 

people think and learn, but we seem to acquire subtle hints of a Cartesian view of rationality handed 

down through the centuries.  Donald MacKay (2019) saw “Rene Descartes [as] the main reason 

why twenty-first century scientists find it difficult to imagine” (p. 96) the recent findings on 

memory, perception, and behavior.  MacKay described the Cartesian model of cognition as 

flowing through “sensory perception, comprehension-and-thinking, memory-storage, memory-

retrieval, and muscle-movement” (p. 96).  He used the analogy of a train to describe the order of 

each stage of thinking, as shown in Figure 4.1.  
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Figure 4.1. MacKay’s view of the Cartesian train of thinking. 

MacKay’s Cartesian train describes the (mostly implicit) model of how we make decisions 

that misleads our understanding of cognition.  For most of history, people believed the brain 

contained one type of memory for remembering everything.  MacKay recalled Plato describing 

the brain as a piece of wax upon which any memory could be impressed.  Memories under the 

Cartesian train model do not form until after we have considered what to remember, perhaps 

implying we only learn what we choose to and thus we should not remember wrong ideas (e.g., “I 

told the students the bad aspects of this analogy, but they still remembered them”).  The Cartesian 

train model is not entirely without modern twists.  Each ‘car’ within the train might describe 

“episodic versus semantic memory, explicit versus implicit memory, sensory and perceptual versus 

modality-independent memory, procedural versus declarative memory, reference versus working 

memory, short-term versus long-term memory and long-term versus very long-term memory” 

(MacKay, Burke, & Stewart, 1998, pp. 29–90)13.  By accommodating various types of memory, 

the Cartesian train model seems flexible and powerful, but MacKay found deficiencies in how the 

linear model of thinking describes cognition in action.   

 The beauty of the Cartesian train is its simplicity and alignment with a centuries-old 

narrative of how people think.  The challenge of sticking to Descartes view of cognition is how 

quickly it breaks down when researching the details of how people think and learn.  It is reassuring 

to believe the engineers of an airplane and legislators of public policy use flawless logical 

reasoning at each step of the creative process.  We know, however, that professional programmers 

make numerous mistakes along the way to constructing their ‘logical’ applications.  Teaching 

seems easier when the goal is merely creating a perfectly logical description from which students 

learn.  At some level, the model from Figure 4.1 even feels right, as it often resembles the stories 

 
13 The details of some of these types of memories are discussed further in Section 7.3.1. 



 

 

76 
 

we might tell of making conscious decisions.  Carefully constructed empirical studies poke holes 

in this model, leaving room for alternatives that better match observations on cognition.  MacKay’s 

(2019) book speaks about his work with the famous patient H.M. (Henry Molaison), who battled 

severe problems forming memories after a surgery to stop life-threatening seizures removed 

portions of his hippocampus and amygdala.  When Henry lost his amygdala, he lost the ability to 

form new memories, even forgetting people he just met when they left the room.  Henry dedicated 

the rest of his life to participating in perhaps thousands of studies to help the scientists understand 

the brain.  Many studies reported that Henry suffered from long-term memory loss alone (Milner, 

Corkin, & Teuber, 1968).  MacKay believed Henry struggled with language issues at the least, yet 

he did not lose all types of learning, something not easily explained in the Cartesian train model. 

4.2 Dual process theory 

 Dual process theory formalized the role of automation and intuition within cognition.  

Under dual process theory, the mind utilizes two mechanisms, commonly named System 1 and 

System 2  (Evans & Frankish, 2009; Kahneman, 2011).  System 1 includes mental processes that 

are intuitive, swift, automatic, and complete without focused attention.  Examples of System 1 in 

action are our ability to instantly read a billboard as we speed by on the highway or complete a 

simple math problem (e.g., 6 x 7).  System 2 performs tasks that require attention, focus, and effort, 

such as complex calculations and logic, or waiting at the starting line for the official to start the 

race. Table 4.1 provides an overview of the two Systems.  Separating the two Systems is helpful 

for description, and later learning, yet we will see thinking, ‘rational’ or not, relies on both Systems 

working in concert. 

Table 4.1 Overview of the two Systems in dual process theory 
 System 1 System 2 
Traits Quick and automatic 

Unconscious and supportive 
Learns slowly 

Logical/Rational 
Requires attention, focus, and effort 
Updates quickly yet can be ephemeral 

A.K.A. The Autonomous Set of Systems (TASS) 
System X (refleXive) 

Type 2 processes 
System C (refleCtive) 

Examples Understand simple sentences 
Find a strong chess move 
Read “camel case”14 words in code 

List your social security number 
Fill out a tax form 
Trace an entire algorithm 

 
14 Camel case is a style for naming things in code (e.g., numberOfCharacters or printSalesReport).   
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 Many theorists have contributed to dual process theory.  This introduction primarily 

follows the phrasings and descriptions used by Daniel Kahneman in his book “Thinking Fast and 

Slow” as a way of making the concepts more accessible.  Kahneman’s book targets a general 

audience and avoids the often jargon-filled descriptions used in literature aimed at psychologists 

on dual process theory.  Section 4.2.2 will visit some of the additional literature to refine 

Kahneman’s basic descriptions of System 1 and 2. 

4.2.1 Introducing dual process theory 

The most significant contribution of dual process theory might be the inclusion of intuition, 

tacit knowledge, and implicit skills as mechanisms supporting rational thinking.  Before diving 

into the details of System 1 and 2, it is important to remember that these are parallel systems that 

are highly intertwined.  As an analogy to set the frame for dual process theory, consider a hybrid 

vehicle.  It is easy to talk about a gas engine versus an electric engine, yet if you have ever looked 

under the hood of a hybrid, it is not so easy to pick apart these major mechanisms – it looks like 

just a regular car, not two side-by-side devices.  A driver has little control over which fuel system 

activates at any given time; the vehicle’s computer decides.  Dual process theory helps to remind 

us that our brain holds two mechanisms for thinking and learning but does not create distinct ‘easy-

to-work-on’ Systems any more than a hybrid.  Like the hybrid-trained mechanic, an educator must 

be aware of the two Systems of dual process theory but must consider them together in action to 

get the best results.  It is helpful to remember that dual process theory gives us a useful vocabulary 

for describing cognition, but it is often counterproductive to take this separation too literally or 

forget they are mostly inseparable. 

4.2.1.1 Introducing System 1 

Some of our most impressive mental feats involve our automatic and subconscious System 

1.  A very counterintuitive example of System 1’s prowess is mastering the game of chess.  Chess, 

at least in western culture, is often held up as the epitome of strategy, logic, and planning.  One 

chess website offers the following advice to novices. 
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There are many novice players out there, who don’t feel like calculating deeper 
than one move ahead. They use their intuition to judge if the move is good or 
not. Although, the intuition can be a valuable resource for a chess player, 
calculation of variations is something that will help you win a lot more games, 
than solely relying on intuition and luck! (Markushin, 2013 emphasis added) 

People believe that chess masters look deeper into the future than lesser players, weighing each 

move and possible countermove.  Markushin’s description asks novice players to not only consider 

their next move but that of their opponent and then possible combinations of moves beyond that 

point.  The ever-expanding tree of possible moves easily overwhelms new player’s memories, so 

perhaps chess masters have vastly superior memories than regular people.  The IBM artificial 

intelligence (AI) program, Deep Blue, used its vast memory stores and the ability to compute each 

move to push the game towards promising future moves that eventually defeated one of the top 

chess masters of the day (Ellis, 2008).  Deep Blue used Markushin’s strategy as the algorithmic 

approach for playing chess, yet it took fifty years of advancement in electronics hardware to 

achieve.  At that time, Moravec (1998) suggested that Deep Blue probably possessed 1/30th of the 

computing power of a human, and thus perhaps computing finally ‘caught up’ to the processing 

power of the brain, at least for this one task.   

 The surface description of Deep Blue aligns well with the conventional wisdom of how to 

play chess like an expert but does not tell the whole story.  Chase and Simon (1973) used chess 

pieces in a famous study investigating short-term memory.  Researchers asked participants to 

memorize pieces on a chessboard then recreate the scene.  Participants who regularly played chess 

remembered significantly more pieces than those who had not, but only when the pieces fell into 

recognizable chess patterns.  When the pieces are placed randomly (in unlikely game positions), 

skilled chess players lose their advantage.  Chase and Simon postulated the expert advantage 

“derives from the ability of those players to encode the position into larger perceptual chunks, each 

consisting of a familiar subconfiguration of pieces” (p. 80).  They suggested that chess players 

recognized and thus recreated patterns better than non-chess players.  According to one of its 

creators, Murray Campbell, Deep Blue used the same shortcuts for matching human players. 

One, in particular, was to help with the opening library, which every chess 
program uses in order to save time and make sure it gets into reasonable 
positions.  
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And then we increased the chess knowledge of the system by adding features 
to the chess chip that enabled it to recognize different positions and made it 
more aware of chess concepts. (Greenemeier, 2017) 

The Deep Blue team programmed their AI with a library of opening moves honed through 

centuries of games and created special hardware to recognize patterns.  Chess is not just a matter 

of logical deduction, but experience and near-instant recognition of board positions that are 

advantageous or risky.  Markushin suggested that new chess players must develop both planning 

and intuition to improve their game.  Like we saw in Section 2.3.3, the concept of intuition is easily 

evoked, but often much more difficult to define. 

 System 1 provides a model for not only describing intuition in action but also provide hints 

at is formation.  Computing education researchers have often cited Chase and Simon’s work in 

noting the importance of pattern matching (Brooks, 1975, 1977; Crk, Kluthe, & Stefik, 2015; 

Mayer, 1981; Pea & Kurland, 1984; D. N. Perkins et al., 1986; Soloway, 1986; Teague, 2014).  

Pattern matching is a core part of developing expertise. 

However, expert knowledge depends not on the prowess of some general 
memory talent but on highly specialized abilities, acquired through experience, 
to encode and organize particular kinds of information.  These abilities give 
experts the ability to recognize quickly a large number of patterns. (Squire & 
Kandel, 2003, p. 73) 

Experts are not necessarily supremely gifted with an expansive memory but develop specialized 

abilities to recognize patterns in a particular area given enough practice.  Despite the popular belief 

that chess makes you smart15 (C. Chabris, 2016), it seems that the experts benefit as much from 

pattern matching as other cognitive abilities, based on Chase and Simons’ results. 

Dual process theory formalizes the research around tacit knowledge and implicit skills into 

the theoretical construct that is System 1.  System 1 provides a proverbial Swiss-army knife of 

cognitive support tools, including quick access to information, instant computation, and under the 

right circumstances, a cognitive autopilot.  Kahneman (2011) gave examples of System 1 such as, 

Read large words on a billboard 
Answer to 2 + 2 =? 

 
15 Seymore Papert (1987) and Roy Pea (1987) similarly debated if programming would improve general problem 
solving skills.  Papert believed that programming in Logo could create general problem-solving skills in children.  
Pea’s work tended to argue against, and it seems the neuroscience favors Pea’s position.  In so far as patterns and 
knowledge help expert problem-solving it seems no single field will help another.  It may be that in certain problem-
solving approaches may transfer, but this is probably not due to ‘generally being smarter’. 
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Find a strong move in chess (if you are a chess master) (p. 21).   

One of System 1’s major roles is to automate activities that frequently occur within the brain.  In 

many ways, our brain evolved just like we suggest that software programs should; if a sequence 

of code is reusable, it is better to encapsulate that algorithm in its own container.  The same way a 

programmer builds a subprogram to allow reuse and optimization, System 1 builds memories that 

provide fast, automatic, and essentially effortless responses to familiar experiences.  Given time, 

the strange lines and curves that are letters not only become easier to discern but become 

impossible not to recognize.  The multiplication tables are cumbersome to memorize for many 

children, but the work pays off later in life in instantly computing the practiced calculations.  

System 1 also tackles more complex aspects of cognition that Kahneman described as intuition. 

System 1’s processing is ‘invisible’ to the rest of our cognition, so intuition provides an apt 

description for how it influences our thinking.  Kahneman (2011) noted, “most of what you (your 

System 2) think and do originates in your System 1, but System 2 takes over when things get 

difficult, and it normally has the last word” (p. 25).  The Cartesian view of cognition is compelling 

because reason is the final arbiter of our choices, even when it does not fully understand the 

framing of those choices.  As we will see further in the next section, System 1 influences how we 

make decisions by preprocessing what we sense and offering System 2 filtered information based 

on our experience, a process called priming.  Priming takes advantage of the patterns recognized 

by System 1 to reduce the effort required by System 2.  Chess masters, for instance, can ‘see’ 

further into the future because System 1 offers immediate feedback if certain moves are good or 

bad.  A new player, on the other hand, must spend significantly more effort evaluating threats and 

opportunities and thus considers far fewer possible future moves. 

 System 1 offers speed, accuracy, and automaticity that improve the quality of other types 

of reasoning, but all these advantages come with a cost.  System 1 processes may be quick to 

process but are relatively slow to form.  People do not learn to read or become great chess players 

overnight.  In most cases, direct instruction seems to have much less benefit to System 1 learning 

than simple repetition.  Rote repetition, though, may not develop the type of skills desired.  System 

1 learning is not limited to behaviors we find desirable and helpful; we can learn bad habits as 

easily as good ones.  One simple example, I tend to mistype the word ‘language’, swapping the ‘u’ 

and ‘a’ when I am typing quickly.  I assume that this is because the smallest finger on my left hand 

rests on the ‘a’ key while my right index finger must move up to the ‘u’ key.  Regardless, I must 



 

 

81 
 

correct this misspelling quite often even though I never misspell ‘language’ in any other venue.  

Knowing the possible cause of my mistake has done nothing to correct the problem alone, as fixing 

the problem will require retraining System 1 to properly sequence the letters of the word 

‘language’16. 

 System 1 processes must also account for a variety of experiences to provide reliable 

priming and behavior.  System 1 requires not only repetition but variety in its training.  Artificial 

intelligence offers another example of the nature of System 1 and the risk of training a process 

without enough variety.  Cognitive models inspired many of the approaches and algorithms of 

machine learning (Sun, 1997), specifically System 1.  As described further in Section 4.2.1.3, 

machine learning iterates through large sets of data to gradually train computers on complex tasks 

like facial recognition.  Recent studies have shown that facial recognition solutions are 

significantly worse at recognizing the faces of people of color because these groups are 

underrepresented in the training set (Simonite, 2019).  Intensive training of neither AI models nor 

System 1 guarantees that their behavior will extend beyond the variety of the input/experience.  

System 1 behaves based on what it has experienced in the past, leaving System 2 to deal with new 

circumstances and make appropriate choices. 

4.2.1.2 Introducing System 2 

System 1 supports our mental processing of familiar tasks, but System 2 kicks in when 

things are new or strange, and prior experience provides no clear guide.  Once System 2 takes on 

a challenge, it requires focus and attention.  When distracted, System 2 risks forgetting what it was 

considering.  Kahneman (2011) provided examples of System 2 tasks like  

Look for a woman with white hair 
Tell someone your phone number 
Check the validity of a complex argument (p. 22).   

To search a crowd, System 2 focuses on the specific feature, white hair, filtering out other stimuli 

while combing the masses of people.  System 1 continues to function and may interrupt System 2 

if it sees a familiar face, but System 2 can also choose to filter out all other stimuli other than its 

 
16 System 2 can help this retraining effort by calling attention to my mistake, but only through repetition will I come 
to consistently type the word ‘language’. 
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current task.  Kahneman described the study by Chabris and Simons (2011; Simons & Chabris, 

1999), who asked participants to count the number of passes made by a basketball team during a 

short video.  Many of the viewers were quite successful at counting the correct number of passes 

but failed to notice a woman in a gorilla suit walk through the game in progress.  System 2 gives 

us the concentration to handle new and unusual tasks, yet in doing so, narrows our focus and 

perception. 

System 2 leverages the speed and automation of System 1, so much so it is challenging to 

describe System 2 fully in isolation from System 1.  In many ways, System 2 acts as an emergency 

backstop for System 1. 

The main function of System 1 is to maintain and update a model of your 
personal world (Kahneman, 2011, p. 71).   

System 1 efficiently manages our response to the world so long as it conforms to our model.  When 

what we are experiencing violates the normal responses of that model, System 2 has the option to 

change our response.  Our brain handles decisions like that of a medieval castle: the gate guards 

(System 1) handles everyday transactions with merchants and peasants where the king (System 2) 

is summoned only when receiving an unexpected and important visitor.  Like the king, System 2’s 

time is too precious to waste on mundane matters.  Kahneman (2011) goes so far as to call System 

2 lazy and not just for simple decisions. 

when people believe a conclusion is true, they are also very likely to believe 
arguments that appear to support it, even when these arguments are unsound.  
System 1 is involved, the conclusion comes first and the arguments follow. 
(p.45) 

Priming not only prepares System 2 for making decisions, but System 1 also offers a degree of 

confidence in that decision.  Most of the time, System 2 “adopts the suggestions of System 1 with 

little or no modification” and “is activated when an event is detected that violates the model of the 

world that System 1 maintains” (p. 24).  System 2 generally accepts System 1’s suggestions until 

it is ‘uncomfortable’ that the current situation does not match past experiences sufficiently.  System 

2 might choose to offer an alternative response or keep the chosen response of System 1. 

 System 2’s laziness can manifest itself as an unwillingness to challenge System 1, or 

merely that System 2 has better things to do.  Kahneman (2011) offered the example, “Drive a car 

on an empty road” (p. 21).  Many drivers have become lost in thought or enjoying the radio while 
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driving down a long stretch of familiar road.   Minutes or even hours may seem to pass with little 

awareness of the minor adjustments to the steering wheel or gas pedal required to stay in your lane 

and avoid cars.  On many occasions, I become so lost in contemplation that I navigated towards a 

habitual, yet unintended destination only later recognizing my mistake.  System 1 can manage 

complex tasks in parallel with other complex deliberations of System 2.  A sudden change to the 

familiar routine (e.g., seeing a deer or police car) will snap System 2 back into the (in this case, 

literal) driver’s seat.  Our brain is often content to let System 1 make major decisions when they 

are routine. 

The interplay between System 1 and 2 helps to define each of the Systems and offers 

insights when our cognition goes awry.  Writing code requires a programmer to remain focused 

and attentive, yet as we saw in Section 2.3.3, experts are often unaware of their reasoning.  They 

learn to see patterns in code, but not through instruction, rather through experience.  Design seems 

to rely as much on intuition as it does on deliberate planning on which algorithm to choose and 

how to translate that algorithm into code.  System 2 relies on System 1 for contextual priming to 

jumpstart reasoning.  System 2 rarely (if ever) begins its work tabula rasa.  Before System 2 

engages, System 1 activates memories and offers insights based on collective experience.  For 

example, fill in the missing letter of the following word: 

CO_E 

What word or words came to mind?  Did a word immediately spring to mind?  At any point, did 

you search your memory for words that begin with a CO and end with an E?  Dual process theory 

suggests it is likely the word CODE came quickly to mind since the start of this paragraph primed 

your System 1 to recognize that word over several other alternatives17. 

System 2 is more effective when leveraging the networks of information System 1 has 

gathered from experience than when it must acquire knowledge on its own.  The prior paragraph 

created an associative activation between the story of how experts design and the word code, 

intentionally used several times.  System 1’s priming activates one or more related networks of 

information related to the stimulus within System 2.  Reading about computing education made 

code a more likely choice than if you were reading about soft drinks (coke), road construction 

 
17 In my search of dictionary.com, you could have chosen the words coke, cole, come, cone, cope, core, cose, cote, 
cove, or coze 
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(cone), or apples (core).  While System 2 is free to pursue any line of inquiry to solving a problem, 

the effects of priming create a strong attraction to solutions we have seen in the past, whether these 

solutions are eventually helpful or not.  Priming provides a powerful shortcut for cognition, but 

for the inexperienced, it can confound System 2 more than it helps.  Priming impacts our thinking 

in unexpected ways.   

When we meet or are reminded of an acquaintance, an unconscious mental 
process may begin that “primes” us to initiate behaviors characteristic of that 
individual. Some studies have shown that college students exposed to 
descriptions associated with the elderly—“Florida,” “gray,” “bingo,” and so 
on—subsequently walk down the hall more slowly after the experiment is 
finished, in line with the stereotype of the elderly as slow and weak. Similarly, 
“priming” words or images related to the stereotypical idea of a nurse leads to 
greater helping behavior, and cuing stereotypes associated with politicians 
results in more long-winded speeches. All these effects appear to occur 
unconsciously, without the participants being aware of how their behavior has 
been influenced.  (Bargh, 2014) 

Bargh’s research shows that recent experiences change the way we respond in very unconscious 

ways.  Our perceptions trigger memories of past experiences that influence our next actions.  

 The computing education research discussed in Section 2.3.3 seemed to have identified 

this exact reaction amongst experts.  Rather than creating designs based on superior analytical 

skills or learned processes, experienced programmers seem to use patterns learned through 

experience in making decisions.   For example, a decade ago, I moved from a position as a software 

architect at a bank to the same role in a health insurance company.  My recent experience at the 

bank was in bill payments and credit cards, contrasted with my new team, who held decades of 

collective experience automating insurance claims.  My manager assigned me to a project that 

proposed to use a specialized debit card to make individuals more aware of their spending on health 

care18, an interesting bridge between these two otherwise separated worlds.  The main difference 

is one of timing.  Debit card payments happen (relatively) instantly for a known amount due.  

Insurance payments may take a week or more after the time of service to reconcile since they must 

account for many additional factors (e.g., negotiated rates, deductibles, co-insurance, out-of-

pocket limits) that can change daily.  The current team struggled to see a viable solution to blend 

a banking solution within the health insurance paradigm. 

 
18 The policymakers did not seem to do the research on how credit cards vs. cash influence spending (Abramovitch, 
Freedman, & Pliner, 1991), but the program was soon scrapped anyway. 
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Experience had primed my new teammates to think of the problem in terms of health 

insurance solutions, where my experience was that of banking instead.  Under the rules of 

insurance claims, providers are paid only after adjudicating a series of rules to ensure accurate 

information and fair compensation.  Paying a provider before considering these rules was an 

anathema to the entire foundation of insurance claims.  My time in the world of finance suggested 

this problem was nothing more than shuffling money between ledgers of credits and debts.  The 

transaction was not an official claim yet, but merely an advance on a forthcoming claim.  The 

provider could receive funds today as a credit, which would balance upon approval fo the claim; 

otherwise, future claims would settle against the credit already extended.  An existing process was 

already in place to handle such adjustments to payments, except for the new debit card as a means 

of transferring money.  The necessary changes were far from trivial, but the required processes 

existed.  The team simply lacked the experience to frame the problem as banking rather than 

insurance.  System 2 is often blinded to options, as Kahneman (2011) put it, “because you were 

not aware of the choice or the possibility of another interpretation” (p. 80).  I was able to offer my 

team a new choice based on the happenstance of my prior employment.  Given that slightly new 

perspective, their expertise in insurance took over, and we created a successful solution. 

 Education tends to value the ‘clear’ rational thinking of System 2, but dual process theory 

tells us that System 2 is nothing without the right support from System 1.  Researchers speak of 

intuition, but often only as the mysterious advantage that experts possess, and novices must 

someday acquire.  Dual process theory suggests intuition is not just useful in experts but essential 

for knowing how to program.  Researchers often overlook the importance of System 1 when 

describing the Cartesian view of rational thinking19, but dual process theory helps us to see where 

intuition and ‘non-cognitive’ factors play into our reasoning.   

4.2.1.3 Better understanding System 1 and 2 through an AI example 

 The science behind dual process theory provides abstractions of brain functions that 

are not only useful for describing human cognition but in developing AI.  AI research benefits 

from dual process theory (Sun, 1997; Sun, Merrill, & Peterson, 2001; Sun, Slusarz, & Terry, 2005), 

and dual process theory has evolved with insights from AI (Evans & Frankish, 2009).  Considering 

 
19 Perhaps because they lacked a way of describing it? 
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an example from AI further illustrates dual process theory’s concepts.  AI researchers simulate the 

interactions between neurons in the brain by creating an artificial neural network (ANN), a field 

often called deep learning.  The mechanisms modeled in deep learning are the same as those in 

System 1, so we can simultaneously learn about an important aspect of computing and computing 

education at the same time. 

An ANN uses simple math to represent the exchange of electrical impulses and chemical 

stimulations between neurons in living brains.  AI developers ‘teach’ neural networks by 

repeatedly presenting inputs (e.g., pictures of faces) and comparing the ANN’s result to the desired 

outcome (e.g., the identity of the matching person).  Whereas neurons learn through chemical 

changes and growing new connections, ANN learning occurs mathematically.  AI programmers 

write algorithms that slightly tweak a matrix of numerical values (i.e., weights) to better 

approximate the desired answer from the last input.  A training session typically includes many 

thousands or millions of input/desired output combinations to train an ANN properly.  Each new 

input brings the ANN a bit closer to the desired behavior, but the more complicated the problem, 

the more time it takes to learn.   

Traditional programming languages act like System 2.  Code represents a logical flow of 

decision making, and we can see and fix errors directly.  System 2 is similar, in that, you can 

correct your memory if you attribute the wrong name to a person20.  Instructors can access the 

‘inner state’ of System 2 thinking because students are aware of their reasoning.  Neither AI 

programmers nor educators can debug the inner working of neural networks except to offer refined 

training cycles that better reflect the desired output.  As noted in Section 4.2.1.1, the reliability of 

a neural network’s output requires a comprehensive dataset.  If a training set (e.g., the diversity of 

faces, the types of problems assigned for homework) do not cover all intended uses of the neural 

network, it will not respond as desired in all circumstances.  When new inputs extend beyond 

training, System 1 returns its best answer and leaves it up to System 2 to make the final decision.  

System 2 can sometimes infer the correct path but is at a disadvantage when System 1’s priming 

does not actually align to the needs at hand.  Without useful priming, System 2 may have the wrong 

knowledge activated that may not transfer to the current problem.  Asking students to transfer their 

 
20 Such mistakes are not always so easy, however.  I played Ultimate with an undergraduate and for some reason I 
picked up the wrong name of Curtis, his name was Ethan.  It took me a few weeks of conscious effort to stop calling 
out Curtis during the game when my System 2 was focused on playing and System 1 clung to the wrong name. 
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learning is challenging since transfer often relies on either relevant prior experience acquired by 

System 1 or a particularly alert and clever System 2 to move beyond insufficient or inappropriate 

priming.  Dual process theory suggests that instructors should only expect transfer in specific 

circumstances. 

Cognition and computation solutions use a blend of explicit and implicit logic to tackle 

complex problems.  Kahneman used the example “Look for a woman with white hair” as a function 

of System 2.  Searching a crowd for a particular person requires concentration but leverages 

System 1’s ability to match patterns (e.g., look for something white or shaped like women’s hair).  

System 2 determines the best search pattern (e.g., broadly scan the crowd or methodically look 

through each area of people).  System 1 supports this strategy by indicating when to ignore an area 

or drawing attention when spotting the desired patterns.  System 2 would quickly grow tired with 

the arduous task of carefully evaluating each person spotted (and spotting a person already 

leverages System 1).  Utilizing System 1’s prodigious pattern matching abilities with a flexible 

strategy for searching based on the environment maximizes the likelihood of finding the desired 

woman while minimizing the required effort.  Programmers use a similar strategy to find specific 

features within computer vision systems. 

Some AI solutions can require users to provide very specific inputs, making their work 

simpler.  For example, a facial recognition system could use either driver’s license or passport 

photos that all have specific dimensions and fill the picture mostly with a person’s face as a reliable 

form of input.  Such systems are good at matching identities, but only if the input also is similarly 

framed.  To create a solution to find a person in a crowd is significantly more complex.  Imagine 

trying to teach a computer to find the famous character from children’s books, Waldo.   The 

illustrator of “Where’s Waldo” books is notorious for creating densely packed scenes with many 

people, objects, animals, and somewhere in the chaos, the distinctly dressed Waldo.  Waldo’s 

iconic striped shirt, blue jeans, hat, and glasses make him instantly recognizable, yet deceptively 

hard to find at a glance.  While I always hope to spot a flash of stipes or his red and blue theme, 

my success usually requires a systematic search that focuses my pattern matching to likely areas 

where he might be lurking.  An AI solution would take a very similar approach.  One deep learning 

approach for finding specific content within images is to break the full image into small pieces 

(see Figure 4.2) and submit each sub-image to an ANN trained in ‘seeing’ the target.  The result 
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of each sub-piece is a numerical value that represents the likelihood of the target (e.g., Waldo) 

being in that image.  The image with the greatest value is most likely the place to find Waldo. 

 

Figure 4.2. A sample search grid of a “Where’s Waldo?” puzzle 21 

Earlier, we saw how the simplified depiction of Deep Blue, using a computer’s vast 

memory to consider all possible moves, overlooks the role of System 1.  Deep Blue’s chess strategy 

relies on vital information obtained through experience in addition to logic (e.g., opening moves, 

patterns of pieces).  Visually identifying an object in unpredictable space opens up entirely new 

challenges compared with automating chess.   A chessboard contains only 64 potential locations, 

and the computer knows perfectly where each piece resides.  Computer vision, even the simple 

example of finding Waldo, introduces uncertainty beyond simply which of all known possible 

moves the opponent will make.  Waldo’s illustrator is generally kind enough not to overly obscure 

his image, but computer vision in the real world must contend with weather, motion, changes in 

appearance, and the uncertainty of similarly looking targets or simply a profile view rather than a 

direct image.    

Engineers creating ANN solutions seek large and diverse sets of data from which to train 

their solutions, with one facial recognition company claiming to have amassed over 3 billion 

images to train its network (O’Flaherty, 2020).  Teaching neural networks complex tasks requires 

repetition and variety, and even then, are only as ‘good’ as their training.  Evolution has provided 

living systems with specialized subsystems for processing different aspects of vision (e.g., 

 
21 Modified image retrieved from http://clmmag.theclm.org/home/article/Wheres-Waldo.  For those purists, the actual 
algorithm would likely use overlapping segments instead of the easier to draw clean grid, but that imagery is more 
difficult to render in a static image. Oh, and Waldo is in the first column, sixth row if you did not find him. 
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focusing on shapes, color, movement), yet even a human’s powerful ability to recognize faces 

breaks down when the faces do not meet our expectations.  Research shows that people have 

trouble recognizing faces when the arrangement of eyes, nose, and mouth no longer conforms to 

what we expect, for example (Dowling, 2018).  System 1 processes, like ANNs, are not particularly 

flexible beyond their training. 

While cognition as a whole can be very flexible, skills that reside within System 1 generally 

do not transfer beyond their training.  Avi Karni and Dov Sagi (1991) tested the plasticity of the 

visual processing center of the brain.  Plasticity describes the restructuring of the brain’s network 

in response to learning and when accommodating for injury.  At the time of the study, 

neuroscientists believed that “visual processing is… ‘hard-wired’ in adult mammals” (p. 4966), 

Karni and Sagi sought to prove that the brain continually learns even in its core areas involved in 

vision.  Their test created a simple ‘texture’ on a computer screen of vertical or horizontal dashes 

and asked participants to identify three successive virgules (///).  As quickly as possible, the 

participants needed to find the outliers and indicate if the three characters aligned or horizontally 

(see a. and b. respectively in Figure 4.3) with only a brief glimpse at the screen.   

 

Figure 4.3. Replicated displays from (Karni & Sagi, 1991) 

Karni and Sagi found their participants indeed improved over time, a sign of continued 

learning long after physical maturity.  With practice, they identified the orientation of the outliers 
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more accurately, even when seeing the image for less time.  The participants responded very 

quickly (< 200 ms), meaning there was no time for System 2 deliberation, yet the smallest changes 

to the test erased any gains the participants made through changing.  To perform well, each eye 

required individual training.  Merely moving quadrant where the outlying slashes occurred (e.g., a 

versus c. in Figure 4.3) erased the speed and accuracy gains of training, as did swapping top-to-

bottom (a versus b) or the texture (d).  Karni and Sagi’s research show that some aspects of learning 

are highly bound to specific stimuli and do not transfer to even the same stimuli occurring in a 

slightly different place.  This type of behavior and learning is typical of System 1 and points to the 

need to not just train for localized mastery, but any expected use of a skill.  If, for example, when 

students only ever use geometry in the classroom, they may not think of the Pythagorean theorem 

to ensure the deck of a porch rests at a right angle.  A well-trained System 1 is fast and accurate 

but often limited in how it supports System 2.  Conversely, System 2 is flexible and creative, but 

often relies on System 1 to tackle (easily) problems that we struggle even to describe, much less 

solve programmatically. 

4.2.2 Refining the dual process model 

 The prior section used the descriptions of Daniel Kahneman (2011) to provide an 

introduction to dual process theory.  This section further explores the dual process model to revisit 

the main ideas (i.e., help train our System 1 through repetition) and expand on specific areas that 

may relate to education and programming. 

4.2.2.1 The many processes of System 1 

Creating awareness of System 1 is the most valuable addition that dual process theory 

offers, yet System 1 is also almost entirely a vague abstraction.  We can talk quite a bit about what 

System 1 does, but little about how.  Reber (1989) extensively researched intuition, offering 

numerous compelling studies yet concluded by saying: 

There is probably no cognitive process that suffers from such a gap between 
phenomenological reality and scientific understanding. Introspectively, intuition 
is one of the most compelling and obvious cognitive processes; empirically and 
theoretically, it is one of the processes least understood by contemporary 
cognitive scientists. (p. 232) 
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Reber has little doubt that intuition exists, is important, and should be fostered.  At the time of his 

writing, and maybe even today, we have little understanding of what goes on behind the curtains 

of System 1.  Some dual process theorists contend that the moniker ‘System 1’ is too generalized 

and potentially misleading.  They fear using it leaves the false impression of a single region of the 

brain where all such behaviors exist, preferring to describe Type 1 and Type 2 processes rather 

than Systems.  Some dual process theory literature replaces System 1 with a collective group of 

Type 1 processes called The Autonomous Set of Systems or TASS (Evans & Frankish, 2009, p. 56).  

The difference between System 1 and TASS is mere nomenclature, but the implication is notable.  

System 1/TASS is far from monolithic, and each process is distinct and potentially unrelated unless 

trained otherwise.  It is like assuming that sending one employee to project management training 

will make every coworker a project manager.  True mastery comes with integrating skills across a 

variety of experiences.  The introduction of System 1 serves to remind educators of the importance 

of experience and practice as well as gathering knowledge. 

 Experience defines an individual as much or more than genetics.  Our brains are certainly 

‘hardwired’ to perform certain behaviors and perform them effectively.  Squire and Kandel (2003) 

noted that DNA guides some of the early formations of our nervous system.  “A given neuron will 

always connect with certain neurons and not others” (p. 35), but whether these connections flourish 

or wither depends on their use.  Experiments on animals showed that when the optic nerve is 

detached and later reconnected, the animal recovers vision, but the brain needs time to relearn and 

may never be as adept (Dowling, 2018).  System 1 requires time to learn, and while those skills 

fade slowly, they diminish if unused.  When a complicated skill requires some aspect of System 1, 

System 2 can only compensate so much until the System 1 process matures.  One such example of 

the importance of System 1 is the tragic tale of Genie and the quest to teach her to speak. 

 

Genie was born in April 1957. When we first encountered her, she was 13 years 
and 7 months old-a painfully thin child who appeared six or seven years old. 
When hospitalized for malnutrition, Genie could not stand erect or chew food; 
she was not toilet trained; and she did not speak, cry or produce any vocal 
sounds. The reconstruction of her previous life presents a bizarre and inhuman 
story. From the age of 20 months, Genie had been confined to a small room 
under conditions of apparently increasing physical restraint. In this room she 
received minimal care from a mother who was herself rapidly losing her sight.  
She was physically punished by her father if she made any sounds. Most of the 
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time she was kept harnessed into an infant’s potty chair; otherwise she was 
confined in a homemade sleeping bag in an infant’s crib covered with wire 
mesh. She was fed only infant food. (Curtiss, Fromkin, Krashen, Ringler, & 
Ringler, 1974, p. 529) 

Genie’s parents denied her the basic human interactions that help our brain to communicate and 

form bonds with others.  Her cruel deprivation left her brain deprived of the experiences it needed 

to acquire spoken language and possibly many other typical human behaviors. 

When Genie was first admitted to the hospital, there was little evidence that she 
had acquired any language; she did not speak. Furthermore, she seemed to have 
little control over the organs of speech… 
It appeared, therefore, that Genie was a child who did not have linguistic 
competence; i.e., who had not yet acquired language.  (Curtiss et al., 1974, p. 
530) 

Genie initially did not seem to comprehend the speech of her caregivers and therapists.  With time 

and training, she started to understand and eventually speak, but her path and proficiency varied 

significantly from traditional language development in children.   

While Genie eventually started to speak, sadly, she is not the only example of a child 

suffering such treatment.  A young Florida girl, Dani, was found in a similar condition, yet while 

she matured in many aspects of cognition, she had not started talking as Genie did (Degregory, 

2017).  Even while our brains are predisposed to certain types of learning, such as language, we 

still need experience and practice.  Physical traits (e.g., genetics or brain damage) and experience 

alter cognition and learning.  Dani’s story might lead some to believe that after a ‘prime’ period, 

learning is difficult or impossible, where Genie’s story showed that growth is possible, if slow.  

Genie and Dani’s story of isolation and neglect provide heart-rending accounts of how vital 

experience is in learning.  Many aspects of language processing are automatic and occur within 

System 1 (see Section 7.3.1), and System 2 can only go so far to compensate. 

Studies of behavior combined with neuroscience support the role of experience as a critical 

guide in learning.  In his chapter on dual process theory, Lieberman names the two Systems as X 

and C, “RefleXive and RefleCtive” (Evans & Frankish, 2009, p. 45).  He describes system X as 

residing within the basal ganglia within the brain, tied to implicit learning.  System C lives within 

the temporal lobe and hippocampus, associated with explicit learning22.  While much of dual 

 
22 The hippocampus is also involved in processing novel experiences (MacKay, 2019) 
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process theory describes how the two Systems model thought, Lieberman also looked at how 

System 1 acquires skill by discussing a study by Knowlton, Mangels, and Squire (2016).  The 

study tested the relationship between implicit and explicit learning by comparing participants with 

amnesia (who are unable to form explicit memories) or Parkinson disease (who have difficulty 

creating implicit memories) against a control group of ‘unafflicted’ individuals.  Researchers 

showed participants a series of cards with geometric shapes and asked if it would rain.   The shapes 

equated to a probabilistic pattern telling if it would rain, but participants received no instructions 

and could only guess if it would rain.  During the trials, participants might derive a pattern in the 

cards forecasting rain (either explicitly or implicitly) or continue to make chance guesses.  After 

many iterations of guesses, amnesic and control participants began to correctly predict rain around 

70% of the time, showing they were learning what the symbols meant to some degree.  The 

Parkinson’s participants made correct guesses at the same level of chance (50%), showing they 

were not learning the patterns. Since the amnesic patients could not explicitly learn such 

information, it confirmed not only the presence of implicit learning but its import in making good 

decisions in the absence of explicit knowledge.  System 1 can learn without exposure to the rules 

or even conscious awareness that learning occurred.   

System 1 not only acts but learns implicitly.  Knowlton, Mangels, and Squire showed that 

learning happens without explicit knowledge, but other studies show that explicit training is not 

always beneficial.  Berry and Broadbent (1988) used several computer simulations to test implicit 

versus explicit learning.  One simulation, for example, asked participants to control a sugar factory 

by altering the number of workers at the plant.  The participants either received explicit instructions 

on how the factory operated or jumped directly to the simulation without instructions.  Berry and 

Broadbent both compared the participant’s performance at the job (implicit skill) and their ability 

to answer questions about the task (explicit knowledge).  They reported that “providing an 

individual with detailed verbal instruction that is understood and later remembered is not 

necessarily sufficient to improve task performance,” in fact, “verbal instruction significantly 

improves ability to answer questions, yet it has no effect on control performance” (p. 229).  The 

untrained participants seemed to implicitly learn the task, doing so better than their explicitly 

taught peers.  The trained peers had the advantage in describing the process, yet this advantage did 

not make them better at the task.  Berry and Broadbent’s study supports the “dual epistemology” 

idea that ‘knowing’ is not just remembering, but also how knowledge is applied. 
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A mature and robust System 1 is important yet forms in ways that may not be covered by 

current pedagogy, particularly in computing education.  Squire and Kandel (2003) commented,  

“The remarkable feature of learning is that it is often highly specific to the task and to the specific 

way in which the training is carried out” (p. 165).  The implications from neuroscience and dual 

process theory test the efficacy of traditional learning theory, as will be discussed in the next 

chapter.  Advances in the understanding of memory and cognition should alter how we perceive 

the acquisition of knowledge and skill.  Squire and Kandel included a quote by Henri Bergson who 

described habits, the worker-bees of System 1. 

 [It is] a memory profoundly different... always bent upon action, seated in the 
present and looking only to the future... In truth it no longer represents our past 
to us, it acts it; and if it still deserves the name memory, it is not because it 
conserves bygone images, but because it prolongs their useful effect into the 
present moment. (p. 175) 

Each process within System 1 represents the sum of our weighted experience, not a memory of 

history or rules.  System 1 may or may not provide the best response, but it offers a familiar reply 

from which System 2 can methodically analyze the best course of action. 

4.2.2.2 Refining System 2 – Algorithmic processing 

While System 1 describes a collection of various processes, System 2 may share underlying 

and multi-purposed resources, yet some dual process theorists describe two distinct ‘parts’.  

Stanovich (2012) described System 2 as having “the algorithmic level and the reflective level” (p. 

57).  The algorithmic level represents the logical thinking that lies at the heart of System 2, where 

reflective processes include an individual’s beliefs and goals. The reflective side is the topic of the 

next section, while this section examines how Stanovich’s algorithmic System 2 provides cogent 

insights into programming. 

Algorithmic System 2’s main function is managing mental models of what might be.  

Programmers regularly work with mental simulations across numerous tasks.  They must consider 

potential designs and algorithms, weighing their flaws and merits.  Testers translate the 

requirements into the anticipated behavior that makes up test cases.  Debuggers compare the 

predicted implementation against the erroneous execution to pinpoint faults in code.  A critical 

part of the work of programming is creating mental models or representations.  A primary 
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representation relies on sensory information, with each sight, sound, smell, and touch adding to a 

temporary mental model.  Primary representations are grounded in sensory information, but 

algorithmic System 2 focuses on building and manipulating decoupled representations.  Leslie 

(1987) proposed that children create decoupled representations to separate ideas from the concrete 

world so that they can pretend during play.  When pretending, a child can control factors they 

cannot in the real world, testing their understanding of how the world operates.  Stanovich 

proposed that System 2 forms such secondary representations to consider novel situations or 

alternative responses.  Designers, testers, and debuggers must create decoupled representations to 

handle novel encounters.  

 

Figure 4.4. An example code snippet to demonstrate decoupling representations 

Programmers create decoupled representations when they read code, but code presents 

many layers of potential representations.  Determining the intent of the code in Figure 4.4 seems 

obvious – the preceding comment (//) states the end result – but Stanovich suggests that the 

novice programmer must blend two primary representations into a single mental model.  The code 

itself forms the first primary representation, with the output of the running code being the second.   

The novice System 2 must align each line of code with its corresponding output, which does not 

seem terribly demanding in this simple example.  Yet, as the notes within Figure 4.4 suggest, it 

still contains several important concepts to discern.  Identifying each ‘moving part’ is critical to 

understanding the full purpose of the construct.  Even a simple task, like reading code, demands 

that algorithmic System 2 manage several representations.  Experienced programmers have an 

easier time reading code, as we will see in Section 7.6.2, since they have the support of System 1 

to interpret syntax, analyze output, and even divine purpose. 

What makes programming particularly challenging is the need to create, manipulate, and 

reconcile multiple decoupled representations.  When presented the example in Figure 4.4, a 
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programmer must simultaneously interpret the syntax, compute the output, and even divine the 

purpose of the algorithm to fully 'understand' it.  Experts do this quickly and effortlessly, but we 

saw in Chapter 2 that novices often have difficulties with any of these, much less all of these at 

once.  Figure 4.4 even shows code that compiles, runs, and completes its intended purpose.  A 

programmer’s System 2 may face its most difficult test when the code does not operate as expected 

because it has a bug.  Debuggers must consider both the code they believe should work and the 

output that says it does not.  “[W]hen considering an alternative goal state different from the 

current goal state, [a debugger] needs to be able to represent both” (Stanovich, 2012, p. 63).  

Debuggers must simultaneously hold a representation of the code they read/wrote and the observed 

output of the buggy code.  The challenge of debugging is “the latter must not infect the former 

while the mental simulation is being carried out” (Stanovich, 2012, p. 63).  It is too easy for the 

expectation of what the code ‘should do’ to corrupt the mental model of what the code is doing.  

Kahneman (2011) called the tendency for us to overlook conflicting information – such as an 

incorrect execution of our code may not convince a programmer their code has a bug – as the 

confirmation bias.  The confirmation bias makes us less likely to seek evidence that disturbs, and 

instead seek information that confirms, our mental model.  Rather than tracing their code, a 

programmer may first blame the test case, as an example.  Clancy (2004) placed the confirmation 

bias as a severe challenge for programmers.  Debugging can be challenging for competent 

programmers who have the skills to eventually look beyond their confirmation bias.  Novices carry 

the additional burdens of managing their fledgling language skills, understanding algorithms, and 

how to debug, so they may already doubt their knowledge.  One reason that intelligence is highly 

valued amongst programmers may be how a strong algorithmic System 2 helps in managing 

representations in the absence of System 1 support. 

Algorithmic System 2’s aptitude can vary across individuals depending on their fluid 

intelligence.  Fluid intelligence measures a person’s ability to find relationships between seemingly 

unrelated items and solve problems without first requiring mastery of the subject.  Fluid 

intelligence’s counterpart is crystallized intelligence, which reflects the sum of individual 

learning23, or more simply, what they know.  In some ways, these constructs resemble those of 

 
23 Crystallized versus fluid intelligence looks to separate the available educational opportunities from the capabilities 
of physiology (e.g., genetic predisposition, brain damage).  Intelligence testing use this distinction to divide 
intelligence based in educational opportunities from ‘raw talent’.  Tests of fluid intelligence focus on talents in 
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Hatano and Inagaki (1984).  A learner develops procedural expertise (crystallize intelligence, 

System 1 processes) through study and practice.  Algorithmic System 2 is critical in helping 

adaptive experts extend their mastery to new problems.  Stanovich might suggest adaptive experts 

are better at forming decoupled representations of problems.   

I have conjectured that the raw ability to sustain such mental simulations while 
keeping the relevant representations decoupled is likely the key aspect of the 
brain’s computational power that is being assessed by measures of fluid 
intelligence (Stanovich, 2012, p. 63)  

To think creatively, a person must parse sensation into a working model and maintain the 

separation between observation and plan while manipulating their model towards the intended goal.  

The scope of fluid intelligence also integrates factors beyond memory, such as attention and 

resistance to distractions, each critical for complex manipulations within System 2.  System 2 

demands focus because any distraction risks disrupting representations in short-term memory.  

Without System 1 support, some new programmers may struggle compared with their peers who 

possess a greater fluid intelligence. 

To be the most effective, System 2’s algorithmic thinking needs support from System 1.  

The literature on tracing in Chapter 2 reported many examples where novices struggled to trace 

code.  Several of the authors from Chapter 2 also discussed the role of cognitive load during tracing 

and aligns well with Stanovich’s model of managing decoupled representations.  Without mature 

System 1 support, novices must juggle multiple primary representations of the code and evolving 

trace.  The next chapter explores an example of a student juggling mental models while tracing 

and the evidence that their thinking requires frequent shifts in context (Section 5.2.2).  Stanovich’s 

algorithm level of System 2 fits well in explaining many types of novice struggles.  What the 

algorithmic level does not spell out is why some novices who excel tasks like tracing still struggle 

to write code. 

 
grouping, classification, analogy, forming relationships and other mental task not focused on semantic knowledge 
alone.  For more see (Horn & Cattell, 1967) 
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4.2.2.3 Refining System 2 - Reflective processing 

Stanovich (2012) presented an enticing example demonstrating the two levels of reasoning 

within System 2 that aligns with the logic-book concept presented in Chapter 3.  He points to a 

study which asked if the following conclusion is valid: 

Premise 1: All living things need water. 
Premise 2: Roses need water. 
Therefore, Roses are living things. (p. 60) 

If you agree with the 70% of university students that this is valid, then you have succumbed to a 

failure in your reflective processing.  A philosopher would break down the argument as: 

Premise 1: If P then Q 
Premise 2: Q 
Therefore, P 

When phrased as such, the argument is easier to see as invalid, falling to what Talbot (2014b) 

called the “fallacy of affirming the consequent” (location 3010).  “Clearly, the believability of the 

conclusion is interfering with the assessment of logical validity” (p. 61).  Stanovich argued that 

the truth of the conclusion makes the argument seem valid.  Consider this argument. 

Premise 1: All living things need water. 
Premise 2: Tile saws need water 
Therefore, tile saws are living things.  

It is much less likely that you thought this argument was valid since the statement that tile saws 

are living things seems wrong, where a rose felt right.  The argument violates norms, which 

Stanovich placed as a value that people hold.  Rather than fluid intelligence, the reflective mind 

processes tasks based on an individual’s disposition.  Rather than working from pure logic alone, 

reflective System 2 alters its response based on our values. 

 The algorithmic and reflective levels of System 2 coordinate their work, yet each has a 

distinct mission to complete.  On the surface, both levels of System 2 are similar as “the 

algorithmic and reflective mind will both share properties (capacity-limited serial processing for 

instance) that differentiate them from the autonomous mind” (Stanovich, 2012, p. 58).  The 

algorithmic level works with System 1 to build decoupled representations and complete 

simulations of alternative realities to test what could be.  The reflective level performs critical 

thinking tasks, perhaps comparing simulated results with the results System 1 predicted from 
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experience or other simulations.  A person’s beliefs and goals add weight to the evaluation and 

subsequent decision to form a response.  The response could be to go with experience (System 1’s 

“gut response”) or replace it with an alternative. 

Stanovich touted hypothetical thinking as a critical capability of the reflective System 2.   

“All hypothetical thinking involves the analytic system, but not all analytic system thought 

involves hypothetical thinking” (p. 68).  Stanovich claimed the algorithmic level is responsible for 

overriding System 1, yet this is not hypothetical thinking, but a direct comparison.  Besides being 

lazy, algorithmic System 2 can also engage but do so using false pretenses.  Say a programmer 

starts a code trace with a faulty decoupled representation of the code (e.g., they misread a function 

name) or ‘bad’ System 1 prompt (e.g., they execute a line of code incorrectly).  Unless the 

reflective level catches the error using hypothetical thinking, the algorithmic level will simulate 

the code using the wrong information, never realizing the problem.  An experienced coder might 

be more likely to detect something that went wrong, but all programmers are vulnerable.  System 

2’s algorithmic processing, in conjunction with System 1, does not consider what is ‘right’, simply 

the task at hand.  It is up to the reflective processing in System 2 to discern if the results are 

meaningful and appropriate.  Stanovich’s two levels of System 2 might explain how some people 

can recover from misdirected System 1 prompts while others cannot or take much longer to do so. 

 
Figure 4.5. Mental representations involved in design trade-offs 

Design demonstrates another example of hypothetical thinking.  Designers use algorithmic 
processing to form alternatives decoupled from their mental model of the requirements (see  

Figure 4.5).  Reflective processing engages in hypothetical thinking to compare design 

alternatives, influenced by the designers’ personal views of what makes a ‘good’ design.  Does the 

designer seek the most efficient algorithm or the simplest?  Do they minimize the use of memory 
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or maximize throughput?  What programming language do they choose?  The designer’s 

preferences influence the reflective mind, combined with logical reasoning, to pick their preferred 

alternative.  The inclusion of goals and beliefs explains why two equally informed and rational 

designers can choose different alternatives based on the same requirements; they hold different 

beliefs/goals. 

 Hypothetical thinking builds upon the decoupled representations introduced in algorithmic 

processing.  Each design alternative becomes a “secondary representation – the decoupled 

representations that are the multiple models of the world that enable hypothetical thought” 

(Stanovich, 2012, p. 63).  A designer must balance at least three representations in order to weigh 

options and trade-offs.  At a minimum, the designer must consider the needs for the design and 

compare two or more alternatives.  Designers working in complex systems or comparing many 

options need exceptional fluid intelligence or System 1 support to manage the permutations! 

 It is at this point that Stanovich’s model might break down, at least in aiding a discussion 

of programming education.  Stanovich talked about how a conflict between the two Systems favors 

beliefs over intuition.  For example, I am not fond of spiders, particularly when startled by one, 

and my instinct when startled is to slap and swat at whatever landed on my body.  A long time ago, 

I learned about how spiders not only prefer to avoid me but are very helpful at managing other 

pests.  Now when I encounter a spider without being startled, my intuition might say swat at it, but 

my acquired value for not needlessly killing things24 generally wins.  I instead escort my arachnid 

housemate outside.  It is one thing to talk about personal beliefs such as valuing all forms of life, 

but where do programmers acquire their beliefs about preferred software design?  Is it reason or 

habit that tilts a programmer to prefer Java or Android over C or iOS?  Software design seems to 

hold many reasonable alternatives for choosing an appropriate design, so where do beliefs and 

goals ‘live’ in memory?  Stanovich’s model holds compelling ideas about how programmers make 

design choices, and Section 7.6.3 considers how dual process theory impacts the way designers 

think and thus how novices learn this critical aspect of programming.  

 
24 Mosquitos being the exception as I am sure they have violated a pact somewhere 
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 PROGRAMMING AND DUAL PROCESS THEORY 

 At this point, it is hopefully becoming clear how the dual process theory viewpoint of 

cognition and might offer alternative explanations for performance differences between experts 

and novices.  The rational decision-making System 2 should feel familiar, plus the formation of 

mental models for those familiar with the notional machine, though the next chapter will cover 

that in some depth.  For some, System 1 may be new while others may finally have a name to the 

oft-reported yet indefinable sense of intuition possessed by experts.  Dual process theory presents 

a formal framework from which to deconstruct programming thinking and remodel it with better 

precision and explanatory power. 

This section will revisit the contents of Chapter 2, this time through the lens of dual process 

theory.  This section should provide further examples of the two Systems and how they relate to 

the tasks of programming.  As discussed in Chapter 3, the developing argument for TAMP will 

continue to emerge making the case that dual process theory provides a superior model of cognition 

which starts to explain the nature of expertise and the obstacles that novices face in acquiring it. 

5.1 The epistemology of what programmers “need to know” 

Premise 1: Epistemology has a basis in individual cognition 
Premise 2: Dual process theory changes the model of cognition typically assumed by researchers 
and instructors in studying/teaching programmers 
Conclusion: Using dual process theory as a model of cognition enhances the epistemology of 
programming to better align with how professionals use knowledge 

 Dual process theory does not change the content of what programmers need to know but 

may change the meaning of ‘knowing’.  Dual process theory challenges the conventional 

epistemology of what it means to “know how to program”.  Epistemology is critical to philosophy 

and theory, yet not an everyday subject for even most academics.  Before diving into how dual 

process theory changes epistemology, it seems helpful to define what is meant by it, particularly 

as in the current discussion has a slightly different flavor. Epistemology generally describes the 

reasons and method used to believe knowledge to be true. 
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Defined narrowly, epistemology is the study of knowledge and justified belief. 
As the study of knowledge, epistemology is concerned with the following 
questions: What are the necessary and sufficient conditions of knowledge? What 
are its sources? What is its structure, and what are its limits? As the study of 
justified belief, epistemology aims to answer questions such as: How we are to 
understand the concept of justification? What makes justified beliefs justified? Is 
justification internal or external to one's own mind? Understood more broadly, 
epistemology is about issues having to do with the creation and dissemination of 
knowledge in particular areas of inquiry.  (“Epistemology,” 2005)  

Unlike most subjects, programming has a clear and easy to trace epistemology; many of the 

creators of programming languages and environments are still alive!  Programming is entirely 

artificial, thus being altogether made by humans here is no higher and unknowable natural law to 

consider, and if you feel strongly enough, you can create a new language of your own.  For 

programming, and specifically programming education, Goldman’s (1986) definition of 

epistemology is more descriptive.   

Epistemology, as I conceive it, divides into two parts: individual epistemology 
and social epistemology.  Individual epistemology- at least primary individual 
epistemology- needs help from the cognitive sciences.  Cognitive science tries to 
delineate the architecture of the human mind-brain, and an understanding of this 
architecture is essential for primary epistemology.  Social epistemology needs 
help from various of the social sciences and humanities, which jointly provide 
models, facts, and insights into social systems of science, learning and culture. 
(p. 1) 

Goldman splits epistemology into what the individual knows, possibly opposite societal consensus.  

Programming languages, at least popularly used ones, generally are formed based on a social 

agreement for their foundation, construction, and the rules of use.  What is especially interesting 

in Goldman’s split is that individual epistemology based on cognition.  Programming epistemology 

has always included a dimension of knowledge and skills as part of ‘knowing how to program’.  

Chapter 2 saw multiple authors describing programming as an active enterprise with as many verbs 

(e.g., understand, plan, code, trace, debug) as concepts (e.g., syntax, semantics, notional machine, 

patterns).  In their descriptions of novice struggles, we can see that the cognitive model that many 

researchers use allows for only ‘knowing’ or ‘not-knowing’ programming and its parts.  Fragile 

knowledge cataloged how novices toggle between these states at different times, yet cognition is 

absent from the discussion as a possible cause.  Using Goldman’s notion of individual 
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epistemology rooted in cognition opens the door to a new definition of ‘knowing how to program’ 

when changing the presumed model of cognition. 

 Under dual process theory, ‘knowing how to program’ involves forming knowledge and 

skills across System 1 and 2, and integration of cross-System skills.  The main limitation of the 

current epistemology is the number of students who are successful in their CS1 experience yet 

seem to forget their programming, or even coding skills when they reach their next course.  The 

remainder of this section describes how dual process theory accounts for such observations and 

reinforces the need for an epistemological shift in programming25. 

5.2 Novice struggles viewed through dual process theory 

 Dual process theory offers a new perspective for evaluating novice struggles.  At a 

minimum, it offers a new way to view how information is learned and used.  Within dual process 

theory, it is not unexpected for students to learn something yet sometimes forget.  Misconceptions 

are not a failure of learning, but a core part of how our brain is designed to compensate within an 

unknown world.  The theoretical frameworks of past studies have been useful in exposing the 

struggles novice face, but often unable to entirely explain the nature of the struggles, much less 

providing guidance to overcome them.  This section will revisit four aspects of novices struggles 

to show the explanatory power of dual process theory and create a foundation for improvements 

to pedagogy and curriculum. 

5.2.1 Fragile knowledge - Perkins and Martin (1985) 

 Students in many disciplines confound their instructors with the fragile knowledge they 

display.  Fragile knowledge, when students seem to know something at one point, only to forget it 

later, was first discussed within computing education by Perkins and Martin (1985) and through 

the years has become a popular way of describing novice learning (Ben-Ari, 2004; Berges, 2015; 

Eckerdal et al., 2007; Fitzgerald et al., 2008; Ko & Myers, 2005; Lister, Fidge, & Teague, 2009; 

 
25  What the shift in epistemology looks like is the subject of Chapters 5 and 6.  As a brief preview for the 
curious/impatient, the ripples of dual process theory should start at the top.  It may mean shifting the expectations of 
the content of CS1 courses and certainly alters the assessments to determine if novice programmers are ‘ready’.  It 
certainly does not throw out most of what is taught or even how it is taught, instead suggesting a restructuring and 
ways of augmenting practice. 
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Lister et al., 2004; Lopez et al., 2008; McCauley et al., 2008; Qian & Lehman, 2017; Robins et al., 

2003; Sajaniemi & Kuittinen, 2005; Sorva, 2013; Teague, 2014; Vainio & Sajaniemi, 2007; 

Whalley & Kasto, 2014; Xie et al., 2018).  Fragile knowledge is a useful construct for naming a 

specific type of struggle but naming the issue has not led to pedagogical interventions to fix it.  

Dual process theory offers a new take at the observations of Perkins and Martin and perhaps the 

alternative explanation it offers can invoke new ways of compensating for fragile knowledge. 

Premise 1: An insufficiently trained System 1 leads to inert and misplaced knowledge  
Premise 2: Conglomerate knowledge is exacerbated by inert and misplaced knowledge, 
requiring System 2 to compensate and risk become overloaded 
Premise 3: Dual process theory leads to strategies for building knowledge in System 1 and 2 
Conclusion: Dual process theory does a better job explaining fragile knowledge, which can lead 
to better approaches to manage it. 

5.2.1.1 Summary of the original study 

Perkins and Martin (1985) investigated why some learners struggled to learn to program.  Their 

inquiry differentiated two areas of student learning: knowledge of the programming language and 

problem-solving26.  They described the leading problem that novices have in learning to program 

is a fragility in their knowledge.  Fragile knowledge represents the middle ground of understanding 

between comprehension and ignorance.  “Rather, the person sort of knows has some fragments, 

can make some moves, has a notion, without being able to marshall [sic] enough knowledge with 

sufficient precision to carry a problem through to a clean solution ” (D. Perkins & Martin, 1985, 

pp. 6–7).  Perkins and Martin have captured many educators’ experiences with novices who may 

know how they want to solve a problem, but not remember the appropriate constructs.  Or 

recognize the general construct to use but forget the correct syntax.  Their study used a brilliant 

methodology to draw out examples of forgetting to seek its source organically. 

The cornerstone of Perkins and Martin’s study was allowing students to work freely yet having 

a researcher available to support as needed.  The study included twenty high-school students 

learning the BASIC language.  Each student selected one of eight progressively more difficult 

problems that was “challenging, not too easy, but not too hard” (p. 10)  A researcher then observed 

 
26 The focus on problem-solving seems to continue the study of programming as a tool to build general problem-
solving abilities (Seymour Papert, 1987; Pea, 1987; Pea & Kurland, 1984), though little of their report focuses on that 
aspect. 
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the student’s work, occasionally asking questions to illuminate the student’s thinking or to offer 

aid if they seemed to struggle.  The questions were purposefully formulated to probe at the nature 

of the struggle, either an issue in problem-solving or with the language.   

The protocol called for three specific levels of intervention by the researcher.  The first level 

of probes was to prompt.  To create a prompt, the researcher would ask “high-level strategic 

questions one might ask oneself” (D. Perkins & Martin, 1985, p. 10),  to trigger memories that 

may otherwise be inert.  If the student continued to languish after several prompts, the researcher 

provided a hint.  Researchers offered hints based on their understanding of the student’s current 

problem and the best path to the desired solution.  If hints offered no help, the researcher provided 

the student with step-by-step instructions towards until the student could continue independently.   

Perkins and Martin tallied the prompts, hints, and provides that the researchers offered to 

students.  Since researchers attempted to always start with a prompt before moving to hints and 

finally provides, accompanied by questions, they could explore where the student struggled, and 

test what knowledge they were using or lacked.  A prompt might trigger unused, but available 

knowledge from their mind.  A hint might provide a missing problem-solving strategy but allow 

the student to show their knowledge of the underlying constructs.  Providing the next few steps 

permitted the student to move past one issue and continue if they were able.  Perkins and Martin 

captured qualitative data from audio recordings as well as quantitative data by tracking the 

progression of prompts, hints, and provides.  They categorized fragile knowledge into four types. 

 Partial- never remembered or never was learned/taught 
 Inert- recalled at times, but not applied when needed 
 Misplaced - used in a way that does not apply to the need 
 Conglomerated – “code that expresses loosely the intent without following the strict rules 

that govern how the computer actually' executes code” (D. Perkins & Martin, 1985, p. 
19) 

The description of the four categories of fragile knowledge provides numerous insights into 

the novice mind.  It is easy to assume that all fragile knowledge is partial, students learn some 

pieces of the puzzle, but the missing ones are entirely absent.  The fact that simple prompt could 

invoke knowledge implies it was there, just not at first active.  Perkins and Martin offer ideas on 

why this is so. 

The causes of such fragile knowledge seemed varied but comprehensible. 
Among the factors discussed were a sparse network of associations, 
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underdifferentiation of commands binding of commands and programming plans 
to customary contexts without recognizing their generality, treating a 
programming language more like a natural language where one can say what 
one means in many ways, and, of course, underuse of general strategic questions 
to prompt oneself to better marshall one's knowledge. (p. 25) 

Why is knowledge fragile?  Students fail to connect facts about programming, struggle to decouple 

what they see, confuse programming with speaking habits, and do not self-regulate to “prompt 

oneself” to activate relevant tacit knowledge.  But why do they do this?  How do you teach them 

to stop?  The prevailing view of cognition at the time of Perkins and Martin’s study would not 

have answered any of these questions, but thankfully, dual process theory does. 

5.2.1.2 Applying dual process theory to the study 

Dual process theory can go a long way to explain the causes of fragile knowledge.  Perkins 

and Martin do not express any specific cognitive model as part of their research, so given the 

period and lack of explicit description, a traditional model of memory and Cartesian thinking was 

probably implicit27.  The characteristics of the sub-types of fragile knowledge are insightful and 

align well within dual process theory.  The causes are likewise well thought out, but the 

explanations offer more abstract reasons that lead to suggestions of vague actions.  Dual process 

theory can dissect each type of fragile knowledge and explain why it occurs.   

The nature of fragile knowledge 

Premise 1: Knowledge is inert when its recall is unreliable 
Premise 2: Knowledge is misplaced when recalled in the wrong circumstances 
Premise 3: System 1 recalls knowledge based on observations from the closest relating 
experience, which may or may not match the current situation 
Conclusion: An insufficiently trained System 1 leads to inert and misplaced knowledge 

Partial, inert, and misplaced knowledge seems to be rooted in System 1.  Partial knowledge 

is what it is – a novice remembers only parts of the required knowledge.  Whether the student has 

forgotten or never learned the content, the only answer is to fill in the gaps.  In many instances, 

 
27 Perkins and Martin may or may not have held a wider view of cognition, but the general reader likely did.  Perkins 
certainly went on to write influential and informative works outside the ‘mainstream’ views (David N Perkins, 2010; 
David N Perkins & Salomon, 1992) 
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the only way to compensate for partial knowledge during a programming activity is to look up the 

information and hope that System 2 retains it the next time it is needed.  The just-in-time 

acquisition of information is helpful for more than simply rectifying partial knowledge.  It may 

help System 1 to prime System 2 when similar circumstances occur in the future with the newly 

acquired knowledge.  While Perkins and Martin could only distinguish partial and inert knowledge 

in instances when the student never seems to remember the required information, dual process 

theory reminds us that System 1 needs trained context to aid System 2 properly.  Students may 

have no memory of important facts, but it may also be difficult to distinguish when knowledge is 

partial versus inert. 

Inert and misplaced knowledge likely represent that beginning knowledge forming in 

System 1.  Perkins and Martin noted the “sparse network of associations” that might explain inert 

knowledge.  For example, a novice might remember the if statement, but not immediately recall 

the details of the else branch.  Dual process theory suggests System 1 was able to identify the 

need for an if statement but probably has not seen that specific problem used with an else 

branch.  The novice might search their mind knowing the concept of else is on the tip of their 

tongue.  They might look at other examples or read the book looking for a trigger to invoke the 

memories of the else option.  If they find the correct prompt, they will have the “Aha!” moment 

that signals remembering.  A better student might return to their book in depth to relearn about 

decisions, yet at the cost of attention and focus required to keep System 2 in the moment for solving 

the specific problem.  Thus, many students may remain in limbo hoping to stumble across the 

answer, particularly if they are focused on completing the task rather than filling in the missing 

knowledge. 

Misplaced knowledge represents the opposite deficiency within System 1.  Some aspect of 

the problem triggers System 1 to prime System 2 with the wrong information, leading to a framing 

error.  Most of Perkins and Martin’s exercises focused on printing out a specific pattern using 

asterisks (*).  They described one student, Stan, who remembered that a formatting command was 

used to convert data into printable formats and was determined to use it to print a column of stars, 

even though that approach is difficult or even impossible.  A conceptual review of the format 

command says that it is used to turn the variable amount_due holding a value of 10.0 into the 

formatted string "Amount Due: $10.00".   If Stan was using System 2 to apply his conceptual 

knowledge, he might not have made a mistake.  More likely, Stan’s undertrained System 1 
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associated every printing problem with this command and primed his System 2 with this 

knowledge.  Stan would remain unable to solve the problem until his System 2 could break through 

the framing error that the formatting command was needed.   

If partial, inert, and misplaced knowledge are issues of System 1, correcting these types of 

fragile knowledge requires repeated and varied exposure.  Programming lecture and examples tend 

to focus on code snippets, but System 1 need to connect not just code with behavior but constructs 

with the needs they satisfy.  The protocol of the study encouraged researchers to wait until the 

student was stuck, far past the point where the initial prompt may have misdirected the student.  

At that point, their strategies for correcting fragile knowledge are limited.  Perkins and Martin 

pulled from literature to suggest strategies for overcoming inert knowledge in the moment, 

“[c]onventional tactics of fluency such as, brainstorming ideas seem to offer little help; however 

the strategy of listing words that might be used in an essay considerably increases students' 

retrieval of relevant information” (D. Perkins & Martin, 1985, p. 13).  Listing words is a superior 

strategy to open brainstorming as it has a better shot of triggering System 1, where brainstorming 

likely would continue in the ‘wrong’ framing under which the problem started.  Brainstorming is 

more productive in experts who have a broader pool of experience from which to draw.  Novices, 

under traditional pedagogical approaches, spend significantly more time looking at 

decontextualized simple code examples, derived to isolate individual elements within language 

construct.  Presenting many small examples may support the automaticity required to promote 

System 1, but neglects to connect code constructs with the open-ended problem statements and 

sometimes even useful algorithms needed to solve problems. 

Conglomerated knowledge seems to be the catch-all for any other cases, and as such, offers 

little explanation.  By its nature, conglomerated knowledge makes little sense to experts.  Experts 

are generally baffled when novices are unable to piece together perfectly logical rules into a simple 

working program. 

The remaining question asks why programmers take such stabs rather than doing 
the "right thing?" Several answers seem relevant. First of all, the "right thing" 
often involves knowledge inert or not possessed at all, leaving the programmer 
no proper recourse. Second, the programmer often works from an 
underdifferentiated [sic] knowledge base, leading to misplacements that yield 
conglomerates. (D. Perkins & Martin, 1985, p. 21) 
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Perkins and Martin listed possible reasons the programmers struggle to pull together a complete 

program.  It starts with fragile knowledge.  If a novice begins with a shaky plan to solve the 

problem, they are more likely to start throwing whatever pops to mind into their code.  Their lack 

of expertise in syntax makes the code even more incomplete and disjointed.  The weak System 1 

forces System 2 to conglomerate knowledge in a valiant attempt to make do with what knowledge 

is available.  System 2 must fill in the gaps for what is not offered by System 1.  The effort to do 

this, whether searching memory or relearning from resources, takes attention away from the 

problem-solving.  System 2 must therefore frequently context shift, making it more likely the 

results are disjointed as information is lost and reloaded into short-term memories. 

Premise 1: Knowledge becomes conglomerated when various pieces of information are 
associated improperly and/or incompletely 
Premise 2: System 2 is responsible for dealing with novel situations and forming mental models 
that allow for hypothetical thinking 
Premise 3: System 1 supports System 2 by automating skills and providing fast recall 
Premise 4: Inert knowledge adds to the burden of System 2 to either force the novice to search 
for missing knowledge, or to temporarily ‘relearn’ within System 2. 
Premise 5: Misplaced knowledge can disrupt System 2 with incorrect primes 
Conclusion: Conglomerate knowledge is exacerbated by inert and misplaced knowledge, 
requiring System 2 to compensate and risk become overloaded 

When a novice programmer tackles a complex problem without the aid of a well-trained 

System 1, they are more likely to suffer from conglomerated knowledge.  System 1 supports 

System 2 by activating relevant knowledge, which helps programmers, for example, to complete 

the required syntax of a language construct without adding any burden to System 2.   

Conglomerated knowledge signifies situations where a student produces code 
that jams together several disparate elements in a syntactically or semantically 
anomalous way in an attempt to provide the computer with the information it 
needs. (D. Perkins & Martin, 1985, p. 7) 

Perkins and Martin provide an example of conglomerated knowledge where a student attempted 

the syntax PRINT "*" * X to print out X asterisks in a row.  The student conjoined the concept 

and syntax from multiplication with the syntax for printing in a clever, but still illegal syntax.  Dual 

process theory explains that the student may have followed a misplaced System 1 prompt that 
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System 2 failed to reconcile with its knowledge of programming syntax.  Conglomerated 

knowledge may seem illogical when you know the rules, but through the lens of dual process 

theory, such creations seem less erratic.   

Perkins and Martin noted that conglomerated knowledge not only impacts writing code but 

other areas of programming as well.  Without support from System 1, a novice programmer must 

simultaneously manage their plan for solving the problem, the appropriate language constructs to 

realize that plan, and the syntax for those constructs.  When the problem exceeds the fluid 

intelligence of a programmer’s System 2, they may end up demonstrating conglomerated 

knowledge.  Continuing from Perkins and Martin (1985) earlier quote, 

Third, the programmer fails to close track tentative conglomerates or may be 
unable to do so with precision. Fourth, the programmer lacks the general critical 
sense that one simply cannot expect to throw things together in a programming 
language and have them work. (p. 21) 

They noted that their students struggled to close track (i.e., trace) code, and did so infrequently.  

Students initiated tracing without prompting only 20% of the time, and only 50% of those attempts 

were successful.  Furthermore, Perkins and Martin implied that their students were making 

irrational plans that had little logical chance of succeeding.  Not only were students ‘inventing’ 

new syntax but optimistically believing their various efforts would result in success.  

Conglomerated knowledge seems to describe failures within System 2, yet many of these issues 

may start in System 1.  

The aid offered to novices by the researchers might have worsened some cases of 

conglomerated knowledge.  When offering a prompt or hint, the researcher triggered System 1 to 

prime the required information.  The good news is that the student recalled the knowledge they 

needed to proceed.  The bad news is that they had not yet associated the current problem with that 

knowledge, so System 2 must now reconcile its original plan with the new prompt.  The guidance 

from the researcher may keep the novice moving, but their decoupled representation may not 

include the new information.  If a researcher, for example, prompted a student to use a loop, the 

resulting priming may be enough to complete the syntax of a loop successfully but does not assure 

the student understands the purpose of the loop.  If the resulting code does not work, the student 

is now debugging the researcher’s plan, not their own. A student may be less likely to consider 

tracing when working with the researcher’s plan instead of their own. 
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The seemingly haphazard planning that Perkins and Martin observed also may come from 

System 1.  Experienced programmers have spent years working at the algorithmic level (or higher), 

where most of a new programmer’s experience may be at the construct level.  Textbooks are full 

of examples that isolate individual programming constructs, and only later will students see robust 

examples of loops, decisions, and other constructs working to solve complex problems.  When a 

novice programmer “throws things together,” they are likely following multiple System 1 prompts, 

yet none of these are sufficient for solving the entire problem.  Without a concerted effort to 

reconcile the various prompts, System 2 may never create a cohesive mental model of the design 

approach.  The result, as Perkins and Martin captured, is a jumble of disconnected, seemingly 

nonsensical pieces, possibly made worse by the advice given by the researchers.  Fragile 

knowledge may not merely be a problem of recall, but also in the contextualization of the 

knowledge offered by experience. 

Reconciling fragile knowledge 

Perkins and Martin’s definition captures fragile knowledge’s symptoms but does not seem 

to explain its nature.  They provided excellent examples for each type of fragile knowledge as case 

studies yet did not explain the origins of fragile knowledge.  They offered three suggestions to 

instructors. 

1. Teach things such that knowledge is not fragile 
2. Encourage exploration in learning to program 
3. Promote basic problem-solving approaches 

As the last section demonstrated, dual process theory can explain the nature of fragile knowledge, 

and thus can refine Perkins and Martins’ advice to teachers. 

After crafting an exemplary methodology and offering insightful analysis, the first 

suggestion sadly amounts to teach clearly.  Perkins and Martin (1985) suggested that teachers 

should “convey an understanding of exactly what commands do” (p. 30).  Their advice echoes the 

Cartesian model of cognition, where the rational mind will think logically so long as the thinker is 

disciplined and remembers all the required information.  The epistemological shift of dual process 

theory reminds us that logical thinking is not just about having or lacking information but also 

about having the right kind of information contextualized appropriately.  An accurate 

understanding of a language construct helps only if that knowledge is activated and if similar 
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knowledge (e.g., multiplication of asterisks) does not interfere.  Instructors cannot simply do what 

they are already doing better.  Dual process theory suggests that programmers need variety and 

possibly new pedagogical techniques to promote the integration of knowledge required within both 

Systems 1 and 2. 

 Perkins and Martin’s second suggestion, having students experiment with programming, 

is not as easy as suggested.  Papert (1978) also believed that experimentation could help novices 

learn to program but found that students could not do this unaided. When teaching students to 

program in Logo, he noted that “Dan tells them to ‘experiment’ but it seems to me that they don’t 

know what that means” (p. 70).  He contrasted systematic experimentation with “messing about” 

– an unstructured attempt to derive meaning from actions.  Papert suggested that children need the 

experience of “messing about” before they can begin to experiment, invoking Piaget’s work (see 

Section 6.1) to explain why.  Experimentation requires conscious goals and measured responses 

that may be difficult without, as Du Boulay (1986) referred to, an “orientation” for the types of 

problems a programming language can solve.  Like Berry and Broadbent’s (1988) work with the 

sugar factory, some tasks need an intuitive response before reasoning can help performance.  

Without developing some affinity for programming within System 1, it may be extremely difficult 

to conceive of experiments that expand a new programmer’s understanding about programming.   

One study (T. A. Lowe, 2018) sought to teach children basic programming concepts by 

starting with rudimentary instruction and open play using a robot mouse (see Figure 5.1).  The 

researcher demonstrated the mouse’s basic abilities to move forward or back and swiveling left or 

right, as well as how to store and clear a sequence of such 

commands.  After this quick explanation, the children 

directed their mouse across a grid to a plastic block of cheese 

in any way they saw fit.  The children commanded the mouse 

like a remote-control toy, rather than an autonomous device.  

If their programmed path did not reach the cheese, they 

simply cleared the commands and added new ones until they 

reached their goal.  Without intervention, they did not 

develop the concept of planning a program to run from the 

same spot independently and repeatedly but seemingly 

viewed the mouse as an extension of their will.  

Figure 5.1. A robot mouse 
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The open play by these children amounted to “messing about” and helped in some aspects 

but not in others.  Open play seemed to increase their intuitive sense of the motions associated 

with commands but did not prepare them for the spatial reasoning28 required to navigate a mouse 

programmatically.  A common challenge in programming such a device is a shifting frame of 

reference as the mouse turns.  From the perspective of the programmer, what might be a left turn 

becomes a right turn after the mouse completes its initial moves.  Since during open play, the 

children created new paths relative to the mouse’s final position, their System 2 did not need to 

reconcile the turning of the robot.  They came to understand the relationship between the buttons 

and the movements but did not learn anything about how to construct a program.  Worse, their 

open play developed a few habits that were, at least for a while, counterproductive.   

The basic intuition for interacting with most devices is fundamentally different from the 

task of writing a program.  The children’s intuitive open play demonstrated that they were actively 

considering each step rather than creating a decoupled representation (System 2 plan) for what 

their mouse should be doing.  The open play did not require the children to debug their previous 

plan, so they instead cleared the existing program and made a new one after each motion.  Some 

children only entered a few steps at a time until they reached their goal.  None of them arrived at 

the notion that they could, or should, plan and program complete paths with no intervention.  Even 

after the researcher introduced this concept, a few of the students still wanted to move their robot 

incrementally.  The children only arrived at the nature of programming after receiving clear 

feedback and direction from the researcher. After this point perhaps, allowing the children to 

experiment may have yielded better results.  

Perkins and Martin’s final recommendation is to promote problem-solving because novices 

do not know how, or they forget to use common approaches like tracing.  They suggested that 

students may benefit from being more metacognitive. 

As our data demonstrate, students would gain by prompting themselves more 
often with simple strategic questions such as “what does the program need to do 
next,” “what command do I know that might help to do that,” “what will what I 
have written really do,” or “how did my program get that wrong answers?” (p. 
31) 

 
28 Section 6.3.2.2 talks more about how such shifts in spatial reasoning requires the support of mental models to 
reconcile. 
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Considering such questions requires the attention of a novice’s System 2, which may be consumed 

with the details of the syntax, error messages, or other new concepts.  They may not have the 

bandwidth to consider such matters until a maturing System 1 unburdens System 2 of mundane 

tasks like producing proper syntax.  Without writing code, how will they gain the experience that 

System 1 requires to not only become familiar with coding constructs but create rich associations 

with other concepts?  Perkins and Martin long ago captured the need, and TAMP hopes to capture 

strategies for creating such experiences for new programmers. 

5.2.1.3 Reinterpretation Summary 

 The advice given by Perkins and Martin may not be perfect, but their observations 

provided a solid foundation for understanding this type of novice struggle.  The construct of fragile 

knowledge influenced how many computing educators and researchers view and assess novice 

programmers.  Revisiting their study through the lens of dual process theory reinforces their 

findings yet adds a new dimension of why fragile knowledge exists.  Instances of inert and 

misplaced knowledge occur when System 1 is not yet fully mature for that content.  For example, 

a student who has used loops to print items in a list, may not think of using loops as a mechanism 

for the validation of user input until they see an example.  Providing novices with more practice 

that emphasizes a variety of examples of language constructs in action may help reduce the 

likelihood of knowledge being misplaced or being left inert.  Conglomerated knowledge arises 

when gaps in System 1 confound an overburdened System 2.  System 2’s tendency to be lazy 

means that it is happy to follow promising, but maybe incomplete prompts from System 1, 

resulting in disjointed solutions that may not make sense to experts.  A combination of reflection 

and applying metacognitive strategies may help reduce the impact of conglomerated knowledge, 

but fully understanding the nature of this complex interaction between the two Systems will 

continue to emerge over the next few chapters.   

Most importantly, dual process theory offers educators a new perspective on fragile 

knowledge.  Rather than being a handicap, fragile knowledge is an expected state of learning as 

novices transition from tackling simple problems using mostly System 2, to tackling complex 

problems that require support from a fledgling System 1.  Making this transition through coding 

exercises alone proved challenging for students, even with the aid of a dedicated researcher.  In 
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the decades that have passed, computing educators have proposed numerous intermediate 

pedagogies to promote basic skills that may encourage the greater automaticity and intuition of 

System 1.  In addition to writing code, students can gain experience with a programming language 

through Parson’s problems, tracing exercises, worked examples, or other such pedagogies, as 

discussed in Section 2.3.   

Perkins and Martin’s study showed that knowledge is useful only if it is triggered when 

needed.  They introduced a valuable methodology (i.e., the use of prompts, hints, and provides) 

that looked beyond ‘forgetfulness’ and determined what knowledge students are acquiring, even 

if it is fragile.  Fragile knowledge, when considered as a byproduct of System 1, hints at gaps in 

traditional models of learning.  How can a novice programmer gain the necessary experience for 

building new solutions, when experience is the only way to acquire that knowledge?  Answering 

that question requires a better grasp of the interplay between experience (System 1) and traditional 

ways of knowing (System 2). 
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Counterpoint! 
Dual process theory seems to provide a better explanation of the nature of fragile knowledge, 
but some could claim the study by Perkins and Martin holds two specific nuisance elements that 
could explain fragile knowledge: 

 The difficult task of coding from scratch, perhaps before coders are ‘ready’ 

 The help provided by researchers could have extended students beyond what they have 
learned thus far, thus creating the overload by introducing students to unprepared 
content and challenges 

As noted, conglomerated knowledge could be the result of cognitive overload, which could 
explain such struggles without the existence of System 1.  Cognitive load theory might interpret 
conglomerated knowledge as an inability to manage short-term memory, and thus, the learner is 
struggling to keep up, much less learn new ideas.  Perhaps the students needed simpler tasks 
with more support?  The case studies by Perkins and Martin do not provide insight into the 
expected progress the student should make.  Remember, students could start with any of 8 tasks 
and progress to more difficult ones, but how far should the students have been expected to go?  
Perkins and Martin noted the challenges students had in tracing, yet the struggles in tracing 
could be related to an inability to fix bugs introduced after the help offered by the researchers?  
Since the original data are unavailable, it is unknowable.  Fragile knowledge, and thus the 
insights gained through dual process theory could be merely observations of how unprepared 
students flounder due to inadequate instruction.   
 
Thankfully, Lister et al. (2004) completed a study on the tracing abilities that the next section 
will revisit under dual process theory. 

5.2.2 Tracing - Lister et al. (2004) 

In 2001 an international group of computing education researchers created a tool to assess 

programming abilities.  McCracken et al. (2001) asked students to implement a simple calculator 

(i.e., addition, subtraction, multiplication, and division).  As in the study by Perkins and Martin 

(1985), McCracken et al. expected students should be able to analyze, design, code, test, and debug 

an application.  Unlike Perkins and Martin, the students taking this test were completing their 

initial collegiate experience in programming (i.e., CS1), thus in theory better prepared and ‘better’ 

students in general.  Chapter 8 will return to the details of McCracken et al., but for this section, 

the most notable finding from McCracken et al. was that “students did much more poorly than we 

expected” (p. 132).  The fact that most students struggled, and some never even got to the point of 

writing compilable code, or any at all, led to the question: what, if anything, were students learning?   
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Lister et al.’s (2004) removed the need for students to create working programs and merely 

trace code.  Where McCracken et al. exposed a significant gap in the abilities of new programmers, 

Lister et al. believed that students were still learning, and a different type of assessment could 

demonstrate it.  Their test not only demonstrated the types of knowledge and skills that new 

programmers acquired but offered insights into their thinking process by tracking their work.  The 

findings suggested that students are much more capable than reported by McCracken et al., but 

they still suffered from fragile knowledge.  Lister et al.’s work provides another example of the 

role that System 1 plays in basic programming abilities and how dual process theory can help to 

explain confounding findings in computing education. 

Premise 1: The lack of driving theory, much less theory of cognition left many unexplored 
avenues and gaps that dual process theory could have better informed the protocol and analysis 
Premise 2: Some tracing is helpful, but too much shows that System 1 is underdeveloped 
Premise 3: Many students did not trace on Question 8 at all, but instead used System 1 
Premise 4: Tracing presents a more manageable task for novices than writing code 
Conclusion: Dual process theory provide a better explanation of the tracing behavior of students 
in Lister et al.’s study, which closes the gap for the complexity of the programming task as a 
factor in fragile knowledge 

5.2.2.1 Summary of the original study 

 Lister et al. (2004) wanted to test the conceptual understanding of students by using 

multiple-choice questions rather than having them write code.  Multiple-choice questions remove 

the need of the test-taker to write syntax, allowing them to focus on concepts.  Rather than asking 

students questions about language constructs, the researchers presented sample code to trace or fill 

in missing lines.  Lister et al. created an intermediary assessment that required students to apply 

knowledge about programming languages, yet only through tracing, not creating new code.  Their 

goal was to test whether students were indeed learning from their CS 1 experience, even if unable 

to create new applications ‘from scratch’.  

 The multiple-choice questions confirmed that students were learning basic ideas about 

programming, yet still struggled in many ways, including instances of fragile knowledge. 

One observation we make about the middle 50% of students is that, by virtue of 
the fact that they answered some questions correctly, they have demonstrated a 
conceptual grasp of loops and arrays. Therefore, the weakness of these students 
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is not that they do not understand the language constructs. Their weakness is the 
inability to reliably work their way through the long chain of reasoning required 
to hand execute code, and/or an inability to reason reliably at a more abstract 
level to select the missing line of code. Based on the performance data, it is not 
possible to draw any firm conclusions as to the exact cause of this weakness (p. 
128) 

Lister et al. report both quantitative details about each question and discuss qualitative examples 

for some of the questions.  Some students did quite well on the exam, though roughly half of the 

students answered 7 or fewer of the 12 questions correctly.  The individual questions varied in 

difficulty; 73% of the students answer the easiest and 35% the most difficult questions correctly.  

As Lister et al. mentioned, the results seemed to indicate that most students had gained a conceptual 

understanding of the non-trivial concepts of loops and arrays, but the quantitative data is 

insufficient to describe the nature of the weakness when tackling the more complex questions. 

The most compelling data providing evidence to the maturity of the student’s programming 

skills was their doodles (i.e., notes taken by students while tracing).  Doodles (also referred to as 

sketches or notes in the literature) are not typically a formal part of the answer (though some 

instructors may require them).  Lister et al.’s study used doodles as an additional piece of data for 

a subset of the submitted problems in addition to the multiple-choice answer.  Figure 5.2 presents 

a sample doodle taken from Lister et al. and further annotated within Lowe (2019).  Lister et al. 

tagged each submission’s doodles using qualitative coding categories, the ones of interest here 

shown in Table 5.1.  These categories included submissions that did not include any doodles (Blank 

Page) as well as those with relatively unique or unidentifiable markings (Extraneous Marks and 

Odd Traces).  Lister et al. identified the most ‘formal’ doodling approach as Synchronized Trace 

with the remainder being relatively ad hoc – tracing aids for basic concepts (Position) or tracking 

the changing values of variables and state (Number, Keeping Tally, Trace). 

Lister et al. analyzed the available doodles for insight into student’s thinking, using a 

qualitative coding system to categorize the doodles into different tracing strategies and which 

strategies seemed to indicate success.  Overall, students who did not doodle answered 50% of their 

questions correctly, that Lister et al. suggested offered “very useful statistics for teachers to quote 

to their students” (p. 129).  Lister et al. implied that doodling equated to better performance, based 

on this correlation, suggesting that students should adopt some form of doodle to become better 

tracers.  Overall, students chose not to doodle on 39% of the submissions, and paradoxically 
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included fewer doodles on more difficult questions.  Lister et al. mentioned that only 20% of the 

students failed to doodle on easier Question 2 than the 55% who left harder Question 8 blank 

except or their answer.  They offered three potential reasons why students did not doodle. 

1) The MCQ [multiple choice question] is relatively simple.  
2) The student has internalized a sophisticated reasoning strategy for answering 
that type of MCQ. 
3) The student is either guessing, or has heuristics for selecting a plausible 
answer without genuinely understanding the MCQ, which is essentially an 
educated guess. (p. 132) 

Each of these options seems grounded in Cartesian views of cognition.  They each imply a process 

or strategy for coming to an answer, including gaming the nature of multiple-choice questions that 

offer a 25% chance of discovering the correct answer. 

 

 

Figure 5.2. An annotated example of student work from (T. Lowe, 2019) 
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Lister et al. captured a robust data set and provided a cogent analysis of the students based 

on statistics, examples, and literature, yet were unable to peer through inconsistent behaviors by 

the test-takers.  Why is it that students doodled less often on harder questions?  How do they 

manage to answer twice as often as chance without taking notes?  Lister et al. investigated whether 

the struggles McCracken et al. found indeed had to do with problem-solving or, as they suspected, 

fragile knowledge.  Lister et al.’s study provides a rich dataset for exploring how dual process 

theory can answer questions, such as “the exact cause of this weakness” (p. 128) posed by the 

authors. 

5.2.2.2 Applying dual process theory to the study29 

The analysis by Lister et al. tells seemingly compelling stories about novices and tracing 

but given the lack of an explicit theory of cognition, their best advice seems to be to tell students 

that when they trace, they might do better.  Applying dual process theory to Lister et al. helps to 

draw out three specific arguments that help better explain student behaviors. 

Revisiting the quantitative analysis 

Premise 1: The frequency of the coded occurrences of tracing can tell a story about the novice’s 
cognition 
Premise 2: Blank doodles do not seem to directly correlate with failure, thus may not support 
the notion that doodling is an essential part of success 
Premise 3: Retroactively applying CLT to doodling values of variables invokes gaps in 
understanding, but without describing any reasons 
Premise 4: The ultimate haphazardness of the doodles was worth investigating 
Conclusion: The lack of driving theory, much less theory of cognition left many unexplored 
avenues and gaps that dual process theory could have better informed the protocol and analysis 

In many ways, Lister et al.’s study extends the concept of fragile knowledge into tracing 

as well as writing code.  The authors cited Perkins et al., yet seemed to consider fragility as a fault 

in learning, rather than a useful construct for informing their study.  They stated that correctly 

 
29 The following both summarizes and extends upon an existing analysis (T. Lowe, 2019).  The two narratives are 
intended to be complimentary, though this work is the newer and may superseded any prior analysis.  It is not required 
to read the other work to understand this section but doing so may provide additional details of the study and rational 
for the analysis. 
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answering some of the questions proved that students must have formed a conceptual 

understanding of loops and arrays.  Had they planned for fragile knowledge, Lister et al. may have 

tracked individuals across their submissions to see, when, and where the students successfully 

applied conceptual understanding.  What Lister et al. captured and reported was how frequently 

codes appeared in submissions and the corresponding percentage of students who answered 

correctly.  Table 5.1 restructures their original data to emphasize the codes that appeared most 

frequently. 

Table 5.1 Coding summary from traces performed by Lister et al. (2004) 

Category Answered correctly 
(%) 

Total instances Frequency 
in submissions (%) 

Blank Page 50 259 39 
Trace (updated values) 75 215 32 
Number 70 189 28 
Extraneous Marks 57 89 13 
Position 64 75 11 
Synchronized Trace 77 73 11 
Odd Traces 78 23 3 
Keeping Tally 100 6 1 

Sorting the table by frequency rather than the percentage correct helps to put each strategy 

for tracing (identified by the coding category) in context.  For example, Keeping Tally appeared 

important since 100% of the submissions included the correct answer, but occurred only six times 

in 672 submissions (perhaps for only one student!).  The Keeping Tally strategy merely entails 

using tally marks to track how many times a loop has run, so it hardly seems a comprehensive 

strategy that might yield regular success in students.  Keeping Tally might, at best, identify 

naturally disciplined students yet teaching others to keep tally may not instill discipline in other 

aspects of tracing.  Likewise, students who included Odd Traces generally answered correctly but 

it seems of little value to teach a strategy coded with the name Odd. 

By far, the most frequent coding category was Blank page occurring in nearly 2 out of 5 

submissions (remember, to be Blank means no other categories could be present).  While a fifty-

percent success rate seems poor for blank submissions, it is still better than the twenty-five-percent 

rate that would be change guessing.  Knowing the characteristics of non-doodlers would provide 

valuable insights into this behavior.  Were there groups of non-doodlers who consistently scored 
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well and others who seemed to be guessing?  Which students doodled on some problems and not 

others versus those who never doodled?  Dual process theory might offer insights to why students 

could be successful without ever doodling.  The black-box nature of System 1 suggests that strong 

students might trace successfully without the need to take notes.  If they had automated the mental 

execution of loops and other required language constructs, they may have arrived at answers from 

System 1 without access to the intermediate computations that would be annotated in doodles.  

Dual process theory would suggest looking for different types of ‘non-doodlers’: a group that is 

highly successful and a group that is essentially guessing. 

The categories where students doodled frequently offer additional insights.  A researcher 

could apply multiple codes to each submission; for example, the student in Figure 5.2 seemed to 

include at least Numbers, Trace, and Synchronized Trace.  Overall, the students averaged 1.6 

doodle categories per submission, but more accurately, averaged over 2 categories after removing 

those without any doodles.  The numbers indicate that students seemed to use multiple strategies, 

and did not seem to use the same ones, while tracing.  Some researchers have suggested teaching 

formal notations for tracing (Cunningham et al., 2017; Xie et al., 2018).  Cunningham et al. 

reported that novice programmers (and teaching assistants) tended to use ad hoc methods over the 

ones demonstrated in class, where Xie et al. made the formal use of tracing a part of their pedagogy 

and saw better conformance to their preferred style.  Lister et al.’s data seems to support this notion.  

Their coding category Synchronized trace described a formal tracing approach like that 

demonstrated in Figure 5.2 under the triangle marker 2.  Trace tables are a common systematic 

approach to tracing (basically what was taught by Xie et al.), yet after combining the 39% of Blank 

Page and 11% of Synchronized trace, half of the submissions used an ad hoc approach.  Students 

seem to prefer doodles of their own devising when they doodle at all. 

Dual process theory explains student’s aversion to formal tracing.  Without System 1 

support, students might find that formal tracing adds to their cognitive load rather than reducing it.  

The trace table may seem intuitive to experienced programmers, but only after extensive practice 

(hence Cunningham et al.’s observation that even teaching assistants avoid their professor’s 

notation style).  Until the formal tracing notation becomes automatic, it is unhelpful for novices; 

thus, only 11% of the students used Synchronized Trace, and as we will see in the next section, 

some do so incorrectly.  The doodles used seem to be manifestations of System 2’s processing that 

is unique to each student but may seem common due to prior experiences in mathematics education.  
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If you remember, Perkins and Martin (1985) noted that their younger students were also reluctant 

to trace, possibly exacerbated by less overall experience completing math problems.  These 

younger students may have lacked an example of what to write down and thus felt overwhelmed 

by the prospect of tracing their code.  Formal tracing syntax seems to require the same dedicated 

pedagogy as any other aspect of programming languages, as further elaborated in Section 6.3.2. 

 If most students are not using predefined methods to trace, the type of information they are 

documenting may provide a window into their thinking.  Some of the most frequently used traces 

seem to aid in the management of short-term memory by capturing the values of variables.  

Sometimes students do this in an orderly manner (43% for Trace and Synchronized Trace), but 

more often, they write down nothing (39%) or disjointed Numbers (28%).  Once again, formal 

tracing methods do not seem to indicate dramatically better outcomes, as in Table 5.1 shows that 

any approach that includes documenting values (Numbers, Trace, Synchronized Trace, and Odd 

Trace) show relatively similar success rates in answering questions (70-78%).  It seems that any 

means of offloading the burden of System 2 (i.e., freeing up short-term memory) is as helpful as 

the more meticulous note-taking strategies. 

It would again be helpful to see how the traces are used across the various problems, rather 

than merely the summary statistics.  Highly meticulous doodlers may need to do so because their 

System 2 requires the most support, where less organized (or non-) doodlers only need to capture 

the occasional value between bursts of System 1 automation.  The statistics on doodling do not 

seem to tell a consistent or informative tale on their own.  As we will see in the next section, the 

presence or absence of doodles may have less to do with a programmer’s maturity than their choice 

whether they feel it is helpful.  Some students may need doodles to manage even simple tasks as 

they have yet to automate the mental execution of even basic language constructs.  Other students 

may choose to take detailed notes (perhaps out of habit) even if these doodles will not inevitably 

help them arrive at the correct answer.  Dual process theory suggests that researchers might need 

more than the presence or absence of doodles to describe the mental activity of programmers when 

tracing. 

A Cartesian view of cognition overlooks the seeming inconsistencies in how students 

doodle.  While half of the students who did not doodle answered incorrectly, it was only a bit 

worse than students characterized as making Extraneous Marks that appeared 13% of the time.  

With only 11% of students using a formalized doodling strategy (Synchronized trace), it would 
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seem that the students did not learn a formal method of tracing, or they chose to ignore it in their 

doodles.  Cunningham et al. (2017) support this view, as they noted that students and even teaching 

assistants do not follow the strategy for annotating their traces explicitly demonstrated by their 

instructor.  The ad hoc nature of tracing seems to indicate that System 2 is only marginally effective 

at tracing without support from System 1.  The drop in accuracy when the problems become more 

complicated suggests that System 1 is reducing the demands on System 2 for some students but 

not others.  Furthermore, Cunningham et al. also noted that students who doodled (sketched, in 

their terms) took significantly more time – nearly double – to complete code fixing, ordering, 

writing, and even reading tasks.   Some of this may be due to students being meticulous in their 

work, but it also hints at students relying on System 2 in the absence of fast System 1.  When 

analyzed using dual process theory, the quantitative numbers from Lister et al. leave as many 

questions as answers.   

Revisiting the qualitative analysis 

Premise 1: The student in Figure 5.2 wrote down ‘simple’ calculations to aid in the formation 
of System 2 decoupled representations and manage short-term memory 
Premise 2: System 1, being unconscious, would not allow the student to write down intermediate 
variables, so the trace is not being completed by System 1 
Premise 3: Many students were able to answer the question successfully without tracing 
Conclusion: Some tracing is helpful, but too much shows that System 1 is underdeveloped 

What novices write down in their traces only reflects part of their growing maturity in 

programming.  Figure 5.2 presents an original example of doodles from Lister et al. with additional 

annotations.  The student in this problem used at least five of Lister et al.’s coded categories, 

including Position, Number, Trace, Synchronized Trace, and Computation.  A few of these 

categories seem confusing when observed in action, though.  Why are students writing down 

computations such as 4 + 1= 5, as seen in Figure 5.2 at triangle 4?  It seems a college student 

in a programming class should quickly perform such operations without needing to take notes?  

My in-depth analysis (T. Lowe, 2019) suggested that this student used the observed mix of 

doodling categories as a means of supporting System 2 when context shifting between different 

language constructs.  For example, the expression sum += x[i] may have been unfamiliar 

enough that writing down 4 + 1= 5 helped to reassure the student of the += operator’s function.  
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The student also seemed to excessively copy variable values between locations (triangles 3-6 in 

Figure 5.2) to support the math operations, decisions, and loop portions of the algorithm.  

Considering that System 1 does not need ‘scratchpads’, nor follows explicit rules that would allow 

the student to write down intermediate variables, the evidence hints that the student is tracing using 

their unsupported, or unsure System 2. 

The doodles shown in Figure 5.2 demonstrate a student who has learned the concepts of 

loops and arrays but is still working to automate them.  This student’s doodles seem to represent a 

form of conglomerated knowledge (D. Perkins & Martin, 1985) – but since the problem only 

demands tracing, disorganized knowledge seems sufficient.  Their doodles include a wide array of 

unrelated notes that we can guess, but only guess at what the student was thinking while tracing.  

My guess at deciphering the process, as detailed further in (T. Lowe, 2019), suggests that the 

student wrote down each separate doodle in the order dictated by the triangles in Figure 5.2 as they 

considered each successive language construct.  Notably, this student included a Synchronized 

Trace (triangle 2), but the table is not only incomplete but incorrect – the trace does not require all 

4 iterations.  The trace table is another example of conglomerated knowledge, something they did 

out of ritual, rather than as a contribution to their tracing process.  Given time and practice, dual 

process theory suggests that many or most of these traces would fade.  At a minimum, triangle 1, 

4, 5, 6, and 7 seem to reinforce easily automated calculations or offer redundant tracking of 

variables that occurs at triangle 3.  As the student feels confident, they may either embrace the 

trace table (triangle 2) as the primary mechanism for tracing or stick with an ad hoc process 

(triangle 3) or for simple problems stop tracing altogether. 

Neither Lister et al. nor to my knowledge, any researcher, has asked experts to trace code 

and compared their results to novices.  In my two decades as a working programmer, I rarely traced 

code, and do not remember many instances of doing so manually with notes.  The activity of 

tracing seems to be bound to the classroom, either as an effort to teach basic concepts or to avoid 

using the computer yet still test or exercise programming knowledge.  I suspect that most experts, 

given their robust System 1, would take ad hoc notes, like novices, or none at all.  Educators, on 

the other hand, may embrace formal doodling techniques since they often use such examples with 

students.  The point of this analysis is not to deride tracing or doodling, so much as consider the 

mechanisms involved.  Doodling, like showing one’s work on long division, seems to help most 

in the formative stage of learning and offer insights into a student’s thinking.  Asking a 
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programmer to trace in a specific manner may add to their System 2 workload, particularly if they 

must unpack the automated answers coming out of System 1.  Educators should consider how a 

learner’s thinking changes as System 1 takes on more of the mundane tasks, and System 2 might 

forget some of the details it once knew.  Another thread of analysis conducted by Lister et al. 

demonstrates how the interplay between the two Systems might be very different depending on a 

programmer’s expertise.  

Intuition as a driver of programming decisions 

Premise 1: Lister et al. must presume that tracing is the only way to solve Question 8, so when 
students do not doodle they must be traced in their head 
Premise 2: System 1 intuition offers a simpler explanation, a student may see a pattern 
Premise 3: The statistics do not support the assumption that more students mentally traced 
Conclusion: Many students did not trace on Question 8 at all, but instead used System 1 

Lister et al. included questions that seemed to demand tracing, yet dual process theory 

suggests that these questions could be solved intuitively.  Some questions (like that in Figure 5.2) 

specifically asked for the execution results; thus, tracing offered the best method to determine the 

answer reliably.   Other questions asked the students to complete a blank space in the presented 

code using one of the four multiple-choice answers (see Figure 5.3).  It is these types of questions 

that seem to defy the need to trace.  It would seem that Lister et al. expected their students to 

consider each answer in turn and use a combination of analysis of the code and tracing to select 

the one that is appropriate to produce the results described in the problem statement.  My 

experience (T. Lowe, 2019) in answering the question was entirely different.  I read the question 

and looked through the choices and immediately picked an answer (System 1).  I double-checked 

my answer by considering the bounds of the loop I selected in the context of the code (System 2, 

mostly).  I considered tracing to validate my answer, but only because I was reading a paper on 

tracing and then only with a cursory triple-check.  By that point, I was supremely confident and 

confirmed that I chose the correct answer, but I could have saved several minutes – especially on 

a timed test – by going with my intuition (I was pretty sure at that point already).  While my 

experience is definitively anecdotal, the data published by Lister et al. shows signs that many 

students also followed their intuition, but their novice intuition sometimes led them astray. 
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Figure 5.3. Question 8 from Lister et al. (2004), including some results information 

In their analysis, Lister et al. compare the results of the easier Question 2 to tougher 

Question 8, shown in Figure 5.3.  They noted that significantly fewer students not only answered 

Question 8 correctly, but they also doodled less (see Table 5.2).  They speculated that on the 

tougher Question 8, students chose to trace the question mentally with 25% fewer students 

doodling.  This analysis seems problematic in several respects, beyond my experience answering 

the question intuitively.  On Question 2, the students would have had to conduct a single trace, and 

80% chose to doodle.   On Question 8, they may have had to conduct up to 4 separate traces, yet 

did not feel the need to document any of these traces?  Lister et al. described Question 8 as more 

difficult because fewer students answered it correctly, yet they chose not to use a strategy that had 

helped them succeed on earlier questions.  Dual process theory suggests their choice was neither 

irrational nor likely conscious. 
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Table 5.2. Analysis of Questions 2 and 8 
 %  

Correct 
% Used  
Doodles 

By Quartile (%) 
1 2 3 4 

Question 2 65 80 87 76 56 28 
Question 8 51 55 81 47 30 20 
Difference -14 -25 -6 -29 -26 -8 

Fill-in-the-blank problems would seemingly add to the burden of System 2.  To cover every 

possibility, students might need to conduct up to four potential traces and do so for an algorithm 

that has a big blank spot in its middle!  The student would need to juggle a decoupled representation 

of the code with each substitution from the possible answers in turn.  And while doing so, choose 

not to take notes on up to four traces.  The greatest paradox is that tracing, however mundane or 

arduous, is a sure way to answer this problem.   Question 8 provides the answer (circled in Figure 

5.3) and only answers b. and c. arrive at that answer.  A student could discard any trace that did 

not arrive at an answer of 10 as a possible answer, thus eliminating a. or d. (the most popular 

incorrect answer).  Tracing would have also exposed the incorrect answer b., though this would 

have required that they double-checked their intermediate steps, not just the final answer, 

something easier for students who doodled. 

Like my experience, it seems that many students followed their intuition to answer 

Question 8.  System 1 adopts patterns that it sees regularly, and mere familiarity provides positive 

feelings (Zajonc & Rajecki, 1969) that likely misled some students.  Lister et al. commented that 

they were very careful in creating what they called “distractor” answers.  The distractor answers 

to Question 8 had a few ‘familiar’ items that could have tricked novices.  Java loops typically start 

with 0 and go to length, but the last element of an array is always length – 1.  Answers a. 

and b. seem to be very convincing distractors for this reason.  Answers c. and d. are more typical 

of the bounds of inner loops (i.e., starting with the index of the outer loop).  The choice between 

these two comes down to how well the test-taker understood the problem statement and its typical 

implementations (at least until they traced to check their answer).  My System 1 had encountered 

such problems many times and thus leapt to the correct answer.  Students who answered d. may 

have suffered from conglomerated knowledge (D. Perkins & Martin, 1985), conjoining several of 

the distractors and accurate ideas above.  System 1 seems to offer a better explanation than the 

possibility that students abandoned doodling as they tackled a more difficult problem. 
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Dual process theory explains how intuition could have provided an answer, and one with a 

reasonable degree of confidence that would not have felt like a total guess.  The use of intuition is 

not entirely without support, as the results from Table 5.2 offer quantitative support for this 

analysis.  Compared with Question 2, 14% few students answered Question 8 correctly but the 

drop disproportionately impacted students in the middle two quartiles.  Despite that 25 % fewer 

student doodled, the drop in scores was only 14%.  Many students did not doodle and still arrived 

at the correct answer.  While it would be great to know, particularly by quartile, who doodled or 

not and their result, it seems that students either had another strategy outside tracing or the doodles 

are not essential for tracing across all students.  Given the number of students taking this test, 

different groups probably arrived at correct and incorrect answers from either System 1 or 2.  Some 

students probably used detailed tracing to discover the correct answer, while others made mistakes 

while tracing.  Some students intuitively chose the wrong answer, while others guessed the correct 

one.  What dual process theory offers is an explanation of why students decided to abandon a 

strategy that seemed to work on prior questions yet answered the more difficult question correctly.   

While a Cartesian view of cognition does little to explain how students may have tackled 

these different types of problems, dual process theory suggests that intuition helps programmers.   

The top quartile continued to thrive, likely because they held a combination of System 1 intuition 

and a robust System 2 to support tracing activities.  The middle quartile likely lacked both System 

1’s automaticity and what priming they had might have been misleading as much as helpful.  The 

familiarity with the distractor answers could have seeded a false sense of confidence that, 

combined with time constraints, led them to feel confident in their answer without conducting a 

thorough chase with doodles to check that answer.  System 1 offered them a quick answer, but the 

quality of that answer was at the mercy of their experience in working with nested loops.   Lister 

et al.’s data demonstrated that students are learning many useful concepts about programming, but 

like Perkins and Martin (1985) noted, it is occasionally fragile.  The concepts of dual process 

theory seem to provide better explanations for the performance of novice programmers than those 

originally offered. 
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5.2.2.3 Reinterpretation Summary 

 Lister et al.’s (2004) study provided additional insights on fragile knowledge as 

well as hinting at how intuition may support different programming tasks.  Beyond Lister et al., 

several studies point to the benefits of taking notes while tracing (i.e., doodling or sketching) 

(Cunningham et al., 2017; Xie et al., 2018).  Dual process theory suggests that the mere presence 

of accurate doodles is not a sign of expertise, but educators could use doodles to track a developing 

programmer’s maturity.  The newest students may not doodle as they are not sure what to write 

down.  As they see examples and practice, they may take more notes, perhaps in an ad hoc manner, 

before adopting more rigorous methods to document their trace.  Eventually, doodling tails off, 

particularly for simple problems.   Over time a chart of doodling might appear as a ‘normal curve’, 

with the most notes taken when System 2 is driving the tracing tasks but tail off as these abilities 

grow in System 1.   

Dual process theory informs how to conduct future studies on tracing.  Researchers 

conducting a future tracing study might define their protocol to explore the relationship between 

tracing and doodling.  By ‘forcing’ all students to document their tracing on some problems, the 

study could evaluate the pattern of tracing across different skill levels.   Then by ‘banning’ 

doodles/sketching on other questions, they could explore the change in the quality of answers.  

Researchers could further capture metacognitive reflections of why participants sketch (or not) 

when given a choice.  Novices may use doodles to capture their progress and manage short-term 

memory as existing literature suggests but might also do so out of habit or as a self-soothing ritual.  

Some may claim the problem is ‘too easy’ to require notes, not know how to take notes, or merely 

forget to do so.  In an academic setting, doodling may seem a logical activity for ensuring correct 

answers, but dual process theory suggests people develop habits, or not, for many reasons. 

The last, accidental, and perhaps most important finding of revisiting Lister et al.’s study 

is how programmers may decide to construct their algorithms.  Across Chapter 2, we saw evidence 

that experts use intuition in ways novices cannot, particularly around design.  The analysis of 

Question 8 suggests that novices are starting to use the same mechanisms, but lack of training 

makes their intuition unreliable.  Question 8 was not merely about intuition, though, as System 2 

had every opportunity to step in and validate any intuitive decision making.  Dual process theory 

does not devolve thinking into either intuitive or rational; each System works in parallel to 
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optimize the cognitive process.  The challenge in tackling complex activities like programming 

lies in maturing both Systems and ensuring they work together collaboratively. 

5.3 Next Steps for Dual Process Theory 

Counterpoint! 
Dual process theory provides insights on developing the basic skills a programmer needs, but 
these are a small portion of what a programmer does.  Fast and automated mental execution of 
code does not necessarily mean a programmer will become a strong designer.  The core of 
programming is problem-solving.  Whether designing a solution or finding bugs, a programmer 
must learn quickly and manipulate abstract ideas which automation supports but cannot replace.  
Students must still learn concepts, and blend these ideas with automation, and dual process 
theory offers little insight on how to teach or how people learn. 

 

 Dual process theory goes a long way to describe the mind of a programmer, but most of 

the focus is on the demarcation between the Systems, with less attention given to the interaction 

between the two Systems.   Stanovich discussed the value of decoupled representations as a 

working ground for mentally manipulating the world but offered little guidance on how to promote 

the development of such knowledge.  Fortunately, learning theorists focus on exactly such 

manipulations.  The next chapter explores how traditional learning theories complement dual 

process theory before focusing on the work of Jerome Bruner as a guide for describing and forming 

decoupled representations.   
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 THEORIES OF DEVELOPMENT AND LEARNING 

 Dual process theory should prompt educators to consider an epistemological shift of what 

it means to know a subject upon completing a course of study.  Dual process theory confirms the 

importance observed in the undercurrent within computing education literature (Section 2.3.3), but 

knowing the importance of intuition does not immediately provide insights on how to promote it.  

Dual process theory is neither a theory of learning nor development, so it offers few insights to 

education.  Education research has a rich history of theory, with many theorists who speak of the 

role intuition in children but less so in the complex thinking of adults.  This chapter revisits the 

work of three of these theorists.  Computing education researchers sometimes invoke Jean Piaget 

and Lev Vygotsky’s theories and offer the foundations of many programming pedagogies.  The 

educational theorist that offers the most to the types of learning helpful in computing is Jerome 

Bruner.  Bruner’s model of mental representations, in particular, helps to integrate dual process 

theory with educational practice and help to define useful constructs for the construction of TAMP. 

6.1 Jean Piaget as an influencer in computing education 

Jean Piaget is a renowned theorist whom computing education researchers have often 

looked to for direction into how to teach programming.  Piaget, a French psychologist, developed 

a model of human learning and development that grew from observations of his infant children to 

a model of cognitive development that exposed several quirks in reasoning as people mature.  

While later research challenges aspects of Piaget’s model, its influence on modern education, and 

computing education specifically, are such that understanding his basic ideas offers insights to 

implicit beliefs that influence many classroom practices. 

6.1.1 Piaget’s model of human development 

Piaget’s primary influence on education comes from his model of cognitive development 

that defines stages of mental competence and ability.  Piaget tied his four stages – sensorimotor, 

preoperational, concrete operational, and formal operational – to physical maturation that comes 

with age, though later neo-Piagetian theorists suggested that factors other than age may drive 

development (Morra et al., 2008).  Understanding Piaget’s developmental stages as he saw them 
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in child development provides insights into his model that mirrors the cognitive model proposed 

by dual process theory.   

The sensorimotor (originally sensory-motor) stage models a preverbal child’s intelligence 

and learning based on their actions.  Piaget’s model of development and learning seems to start 

with the formation of implicit knowledge and skills that mirror System 1. 

Language appears somewhere about the middle of the second year, but before 
this, about the end of the first year or the beginning of the second year, there is a 
sensory-motor intelligence that is a practical intelligence having its own logic- a 
logic of action. The actions that form sensory-motor intelligence are capable of 
being repeated and of being generalized. (Piaget, 1970, pp. 41–42) 

Piaget noted that even before language develops, people think logically and learn through 

interacting with their environment.  He observed infants tugging blankets as tools to to pull toys 

close enough to reach.  As a child grows, “the practical logic of sensory-motor intelligence goes 

through a period of being internalized, of taking shape in thought at the level of representation 

rather than taking place only in the actual carrying out of actions” (p. 45).  Piaget suggested that 

mental activity grows out of our mind’s representations of action and model our impact on the 

surrounding world. 

 The action-driven sensorimotor stage leads to the preoperational stage when a child’s 

mental model operates independently of physical activity.  Preoperational mental representations 

are still quite immature.  Driven by experience, mental manipulations are limited to simple 

observations without considering the logical consequences of manipulating an object.  By the time 

a child reaches the concrete operational stage, they will understand “the identity of an object across 

transformations in its appearance or in the actions we perform upon it” (Bruner, 1997, p. 66), but 

until then their thinking still seems rooted in experience.  For example, a preoperational child who 

watches a ball of clay smashed into a pancake shape will state that it now contains less clay than 

when it was a ball, rather than knowing the clay merely changed shape.  Piaget called this concept, 

understanding that shape is not the same as quantity, conservation.  Preoperational children 

consider only the shape of the clay in each form, failing to deduce the amount of clay does not 

change.  The rules of conservation dictate that shape does not change the amount, but 

preoperational thinking seems to rely on perception, not logic. 

 Piaget documented many logical inconsistencies preoperational children exhibit.  

Preoperational children can classify jumbles of geometric shapes (e.g., circles, squares, triangles) 
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into distinct piles yet cannot articulate the relationships which distinguish the sorting process or 

logical operations on the groups.  Their reasoning tends to deal with observable matters at hand. 

A child of this age will agree that all ducks are birds and that not all birds are 
ducks. But then, if he is asked whether out in the woods there are more birds or 
more ducks, he will say, “I don’t know; I’ve never counted them.” (Piaget, 1970, 
pp. 27–28) 

Piaget referred to thinking at this stage as “semilogic,” which he “used to call this articulated 

intuitions” (p. 50).  Piaget’s semilogic seems to have much in common with System 1, and later 

research shows that children who fail in conservation tasks seem to struggle to suppress their 

System 1 response (Houdé & Borst, 2015).  Their thinking still requires visual evidence, not 

making leaps from ‘rules’ alone. 

 A child reaches the operational stages when their thinking grows beyond mere perception 

and starts to consider logic.  Concrete operational thinking conjoins multiple attributes (e.g., height 

and width of the clay) in making judgments.  Ginsberg and Opper (1988) summarized  

The concrete operational child focuses on several aspects of the situation 
simultaneously, is sensitive to transformations, and can reverse the direction of 
thought.  Piaget conceives of these three aspects of thought- centration-
decentration, static-dynamic, irreversibility-reversibility- as interdependent.  If a 
child centers on the static aspects of a situation, he is unlikely to appreciate 
transformations.  If he does not represent transformations, the child is unlikely to 
reverse his thought.  By decentering, he comes to be aware of the 
transformations, which thus leads to reversibility in his thought.  (p. 155)  

Becoming a concrete operational thinker requires the integration of several complex types of 

thinking, but this thinking tends to be bound to a specific example.  Piaget tested not only the 

conservation of solids (e.g., clay) but also used other media such as liquid in glasses, for example.  

Formal operational thinkers move beyond concrete operational reasoning by employing logic 

towards abstract and hypothetical thinking about the underlying principles.   

Confronted with a scientific problem, he begins not by observing the empirical 
results, but by thinking of the possibilities inherent in the situation.  He imagines 
that many things might occur, that many interpretations of the data might be 
feasible, and that what has actually occurred is but one of a number of possible 
alternatives. (Ginsburg & Opper, 1988, p. 201) 

Formal operational thinkers transcend specific predictions about a contextualized example (e.g., 

conservation within balls of clay) and instead deal with propositions (e.g., conservation of mass).  
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Observations inform thinking, but logic drives alternative explanations of the past or future for 

operational thinkers.   

The formal operational stage of thinking is where Piaget’s developmental model may break 

down for describing ‘generalized’ cognition.  Adults do not always apply formal operational 

thinking in all activities.  “Piaget does not mean to say that the typical adolescent of the formal 

stage always employs all or some of the formal operations,… but rather that he is capable of doing 

so” (Ginsburg & Opper, 1988, p. 203).  Piaget sidestepped the question of age by proposing an 

alternative explanation. 

all normal subjects attain the stage of formal thought if not between 11/12 to 
14/15 years in any case between 15/20 years. However this type of thought will 
reveal itself in the different activities of the individual according to their 
aptitudes and their professional specialisations (advanced studies or different 
types of apprenticeship for the various trades); the way in which these formal 
structures are used, however, is not necessarily the same in all cases.  (Piaget, 
1972, p. 10) 

Piaget conceded that, for example, a lawyer would reason very differently than a physicist, about 

their respective disciplines.  He suggested that each may ‘forget’ the required foundational 

knowledge they earlier learned when they later reason about topics outside their expertise.  Piaget’s 

explanation may sound familiar, as many educators are apt to point to ‘forgetfulness’ as a reason 

for student struggles. 

6.1.2 Piaget’s model of learning 

 Piaget wrote significantly more on his stages of development but also offered a model for 

learning.  Piaget’s driver of learning is “disequilibration, a process created by the relation between 

two component processes“ (Bruner, 1997, p. 66).  Learning happens when our model of the world 

conflicts with some new events or information.   

Disequilibrium, or imbalance, occurs when a person encounters an object or 
event that he is unable to assimilate due to the inadequacy of his cognitive 
structures.  In such situations, there is a discrepancy or a conflict between the 
child’s schemes and the requirements of experience.  This is accompanied by 
feelings of unease. (Ginsburg & Opper, 1988, p. 227) 

Piaget suggested that we learn when what we ‘know’ is challenged, resulting in discomfort.  

Learning is a natural response to better model our surrounding world.  Disequilibrium does not 
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require conscious reasoning to learn, but our mind implicitly matures through experience.  

Ginsburg and Opper’s summary of disequilibrium includes a few critical terms from Piaget’s 

model: scheme and assimilate that are also essential to his model of learning. 

 Schemes (a.k.a., schemas) are the mind’s mechanism for structuring knowledge.  Piaget 

proposed that schemes generate and mature through a logical process of restructuring the network 

of knowledge and behaviors. 

Any given scheme in itself does not have a logical component, but schemes can 
be coordinated with one another, thus implying the general coordination of 
actions. These coordinations form a logic of actions that are the point of 
departure for the logical mathematical structures. For example, a scheme can 
consist of subschemes or subsystems. If I move a stick to move an object, there 
is within that scheme one subscheme of the relationships between the hand and 
the stick, a second subscheme of the relationship between the stick and the 
object, a third subscheme of the relationship between the object and its position 
in space, etc. (Piaget, 1970, p. 42) 

The ‘logic’ that goes into structuring schemes is not conscious reasoning, but a side effect of the 

complex reorganization of simpler facts and actions.  Complex actions originate from the 

coordination of many simpler actions.  When a baby waves a rattle in the air, they are learning to 

control an object in their hand.  When they poke other objects with that rattle, they are learning 

how to extend the reach of their hand.  These precursor skills go into the future ability to use a 

stick to drag a faraway object within reach.  The child’s schema combines existing knowledge in 

new ways and with new ideas to mature their schema. 

 Piaget’s definition of the schema is essential for his model of learning.  Schemes drive 

learning, implicit or explicit, since “new structures are continuously being created out of the old 

ones and are employed to assist the individual in interaction with the world” (p. 23).  For Piaget, 

memories build upon existing knowledge rather than forming anew upon instruction.  Long before 

formal schooling, a child brings a head full of knowledge grounded in action and experience.  New 

information, as a response to disequilibrium, updates our memory in one of two ways: assimilation 

into an existing schema or accommodation by recategorizing information to form new branches of 

our schema.  Guzdial (2015) summarized, “Assimilation is the process by which new memories 

get added to existing networks… Accommodation is when you realize that the way you thought 

about the world does not work for the new memory” (p. 27).  The process of learning seems 

individualized as a reflection of prior knowledge.  For instance, Chapter 4 probably builds upon 
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existing knowledge for readers who had previously read Kahneman’s (2011) book.   Readers who 

have never heard of Kahneman or dual process theory had no existing scheme to extend, so they 

may find it more difficult to contextualize such details at first.   Guzdial’s description of 

accommodation, intentionally or not, implies some conscious awareness of the need to restructure 

knowledge.  Piaget never detailed the mechanisms of learning to such a level of detail, that often 

leads to confusion about the differences in assimilation and accommodation. 

The concepts of assimilation and accommodation are equal parts straightforward and 

cryptic.  Ginsburg and Opper (1988) described Piaget’s two mechanisms of learning further: 

Assimilation involves the person’s dealing with the environment in terms of his 
structures, while accommodation involves the transformation of his structures in 
response to the environment (p. 19)  

When a person is assimilating information, they are viewing the information as similar to what 

they already know, thus classifying it through that lens.  For learning to be transformational, the 

learner must recognize a stark difference in what they are witnessing.  A transformational lesson 

to one learner is a small change to another.  For example, I learned to play the tenor saxophone 

starting in sixth grade, so five years later, it was a minor adjustment play the smaller soprano 

saxophone.  The switch between saxophones only required minor physical adjustments to grip and 

embouchure (assimilation).  In college, however, I taught myself to play the guitar.  Playing the 

guitar not only required different hand movements but added the concepts of chords on top of the 

already familiar concepts of playing music.  I had to accommodate not just new physical actions 

but also musical concepts in my learning.  Accommodation is not an entirely separate process, but 

a means of establishing equilibrium, “there is no assimilation without accommodation” (Inhelder 

et al., 1976, p. 18). 

 The bulk of Piaget’s theory of learning and development discusses infants and young 

children, but the same model likely applies through childhood and into adulthood.  Piaget’s model 

highlights the role of action and implicit learning as driver of development.  Piaget’s work long 

preceded the advent of the computer, though its ideas have influenced many computing education 

researchers.  One such was Seymore Papert, who studied in Geneva with Piaget, who trusted Papert 

as an authority on Piagetian theories (Thornburg, 2013).  Papert introduced many of Piaget’s ideas 

into computing education and programming as a model for learning mathematical concepts 

through his work in creating and promoting the Logo language (“Logo history,” 2015; Seymour; 



 

 

138 
 

Papert, Watt, DiSessa, & Weir, 1979).  Papert (1991) also promoted his own extensions/adaptions 

to Piagetian theory.  Raymond Lister (2016) and Donna Teague (2014) have promoted a Piagetian 

model for the developmental stages of programming.  Piaget’s influence on computing education, 

however tacit, is present in the literature, but educators lose many of his key observations in the 

disconnect between his model of disequilibrium, schema, assimilation, and accommodation and 

how they manifest in learners.  TAMP looks to offer theoretical constructs that are better at 

connecting a model of thinking and learning with novice programmer’s behaviors. 

6.2 The Social Constructivism of Lev Vygotsky 

 Lev Vygotsky’s tragically shortened career sparked intriguing ideas about learning and 

development that both complement and challenge the work of Piaget.  Vygotsky worked through 

the Russian revolution balancing the political demands of the Marxist Revolution with flaws he 

observed in “Marxist psychology” (Vygotsky, 1986).  His contributions, however influential, lay 

undiscovered for years due to –ironically– language, culture, and politics.  Vygotsky (1962) felt, 

“Psychology owes a great deal to Jean Piaget” (p. 9), and he used Piaget’s observations and 

analysis often in his work.  The major division came in how the two interpreted language’s role in 

development.  Vygotsky proposed that language, not age, drove development.  Vygotsky’s best-

known idea may be the Zone of Proximal Development (ZPD), which appears frequently in 

computing education publications (Berges, 2015; Chetty, 2015; Grover, 2014; Kalelioglu, 

Gulbahar, & Kukul, 2016; Kinnunen & Simon, 2012; Lister, 2016; Pea & Kurland, 1984; Robins, 

2010; Strawhacker & Bers, 2014; Szabo et al., 2019; Teague, 2014; Werner, Ruvalcaba, & Denner, 

2016; Whalley & Kasto, 2014; Williams, Layman, Osborne, & Katira, 2006).  It is Vygotsky’s 

thoughts on how language influences development that is the most salient for now. 

6.2.1 Language and logic development 

 Vygotsky believed that language is a primary catalyst for intellectual growth.  He stated, 

“an important concern of psychological research [is] to show how external knowledge and abilities 

in children become internalized” (Vygotsky, 1978, p. 91).  Vygotsky believed that learning, not 

aging, advances development.   
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Thought development is determined by language, i.e., by the linguistic tools of 
thought and by the sociocultural experience of the child. Essentially, the 
development of inner speech depends on outside factors; the development of 
logic in the child, as Piaget’s studies have shown, is a direct function of his 
socialized speech.  The child’s intellectual growth is contingent on his mastering 
the social means of thought, that is, language. (p. 51) 

Vygotsky believed that language is a forerunner for logical thinking, which he called inner speech. 

Vygotsky and Piaget arrived at drastically different conclusions from the same basic observations 

of children’s egocentric speech.  Egocentric speech is the tendency of younger children to verbalize 

their actions with themselves as the center.  Piaget viewed egocentric speech as a sign of 

immaturity with no behavioral purpose that children grow out of as they mature.  Vygotsky 

recategorized egocentric speech as a window to the development of reasoning in young children.  

He suggested that egocentric speech becomes inner speech.  Vygotsky’s work largely focused on 

children after they have reached the stage of verbal reasoning. 

Vygotsky differentiates classroom learning from understanding developed through 

experience.  He adopts Piaget’s spontaneous concepts – those formed through their personalized 

mental effort and observation – and non-spontaneous concepts – those formed through the 

influence of another person.  Concepts taught in the classroom tend to be non-spontaneous. 

In the case of scientific thinking, the primary role is played by initial verbal 
definition, which being applied systematically, gradually comes down to 
concrete phenomena. The development of spontaneous concepts knows no 
systematicity and goes from the phenomena upward toward generalizations. 
(Vygotsky, 1986, p. 148) 

Vygotsky noted that people learn scientific ideas, in particular, from external sources such as 

instruction.  Instruction begins with an organized and systematic sharing of the rules and concepts 

that eventually lead to concrete examples.  Spontaneous concepts, on the other hand, generalize 

from a person’s experiences.  Vygotsky describes learning as an intersection between these two 

types of learning.   

 Vygotsky warned that instructors should not solely relying on either a ‘top-down’ or 

‘bottom-up’ approach to learning.  Depending on instruction alone promotes an “empty verbalism, 

a parrotlike repetition of words by the child, simulating a knowledge of the corresponding concepts 

but actually covering up a vacuum” (p. 150).  Vygotsky suggests that instruction alone risks 
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leaving students who can speak to a subject, but devoid of practical uses for knowledge.  Equally 

problematic is practical knowledge without considering its potential.   

The weak aspect of the child’s use of spontaneous concepts lies in the child’s 
inability to use these concepts freely and voluntarily and to form abstractions. 
The difficulty with scientific concepts lies in their verbalism, i.e., in their 
excessive abstractness and detachment from reality. At the same time, the very 
nature of scientific concepts prompts their deliberate use, the latter being their 
advantage over the spontaneous concepts. (pp. 148–149) 

Vygotsky recognized that having a mental model of how the world behaves does not always lead 

to the abstract thinking required to apply that knowledge in new ways.  Truly mastering a concept 

requires more than a ‘parroting verbalism’ or mindless automaticity of action, but integration of 

each. 

[A] concept is more than the sum of certain associative bonds formed by 
memory, more than a mere mental habit; it is a complex and genuine act of 
thought that cannot be taught by drilling, but can be accomplished only when the 
child’s mental development itself has reached the requisite level. (p. 149) 

Vygotsky seemed to foreshadow concepts were later captured in dual process theory in noting the 

role of “mental habit” separate from the “genuine act of thought” that requires more than rote 

practice.  He suggested that further development is required, but perhaps never clearly establishes 

the nature of such development, which perhaps dual process theory might elaborate on. 

6.2.2 Ramifications of Vygotsky’s observations about language 

 Piaget and Vygotsky each advocated different sides of a ‘chicken and the egg’ argument: 

which comes first, language or understanding?  Piaget suggested that children’s early utterances 

are vacuous, and their real logic emerges from action.  Vygotsky proposes that such early speaking 

is the progenitor of reasoned thinking.  It would seem that words must have a well-defined meaning 

or, as Vygotsky (1962) put it, “A word without meaning is an empty sound, no longer part of 

human speech” (p. 5), yet people routinely use words they do not fully understand.   

The data on children’s language strongly suggests that for a long time the word 
is to the child a property, rather than a symbol, of the object; that the child 
grasps the external structure word-object earlier than the inner symbolic 
structure. (p. 50) 
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Vygotsky suggested that children associate words with objects long before the significance of the 

word emerges.  For example, think of how easily a brand name supplants the functional description: 

Kleenex for facial tissue, Rice Krispies instead of rice cereal, or in some regions of the United 

States, Coke for every type of soda/pop.  We frequently use words that blend the name and concept 

in familiar consideration that may lose the significance of our experience compared to that of 

others. 

 Vygotsky spoke to the need to build language and their associate concepts upon 

experiences.  Experience, as modeled by System 1, offers a rich and instant model of the world, 

but since System 2 is not always aware of the work of System 1, the formation of concepts from 

language takes a different path of acquisition. 

Closer study of the development of understanding and communication in 
childhood, however, has led to the conclusion that real communication requires 
meaning – i.e., generalization – as much as signs.  According to Edward Sapir’s 
penetrating description, the world of experience must be greatly simplified and 
generalized before it can be translated into symbols. Only in this way does 
communication become possible, for the individual’s experience resides only in 
his own consciousness and is, strictly speaking, not communicable. (Vygotsky, 
1962, p. 6) 

Vygotsky points to the need to integrate experience and language.  Language requires the 

reconciliation of two people’s experiences into a common set of symbols.  Learning through 

language is difficult or impossible if the learner has no personal experience with the concept behind 

the word.  Twenty years ago, for example, my toddler daughter used to sing, 

Twinkle twinkle little star 
How I wonder what you are  
Up a bubble world so high 
Like a diaper in the sky 

Notice how she substituted the word bubble and diaper.  Her world was full of bubbles and diapers, 

so she associated those ideas rather than the similar-sounding and proper words above and 

diamond.   

 Vygotsky suggested that learning new words and concepts at the same time is particularly 

difficult.  Dual process theory explains why.  My toddler daughter remembered words she was 

familiar without considering the underlying concepts (e.g., It may make sense that a bubble is “so 

high” after all, but a diaper in the sky!?).  One could argue that she was a toddler after all, why 
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should she consider a word’s meaning?   Age may be less of a factor than the mechanics of our 

brain suggested by dual process theory.  Take, for example, the video of an 85-year-old 

grandmother’s attempt to use Google’s smart device captured on YouTube (Actis, 2017)30.  Her 

family patiently instructed her to say either “Hey Google” or “OK Google” to activate the smart 

device before asking it a question.  In a rather amusing sequence, she called out several 

combinations of “Hello goo-goo”, “OK goo-goo”, and “Hey goo-goo” before asking, “He want to 

know is the weather… tomorrow”.  She also adopted a habit of tapping the device, perhaps because 

touching devices is a normal mode of interaction or because the device flashed when she did so 

earlier.  Eventually, the device responded with the weather, to which she grasps her husband’s 

hands and says, “I’m scared… I’m scared… It a mystery… Oh my gosh!”  This hilarious video 

offers a look at how people respond when language is unsupported by experience.   

 Technologists build a smart device to mimic natural interactions, but Vygotsky may have 

told them that the concept of interacting with a machine might still be a stretch for some people.  

In theory, a user simply needs to say a simple recognition phrase and speak in natural language, 

but despite careful instructions, our grandmother struggles in a very entertaining way.  We do not 

know if she is familiar with the company Google, but despite her relatives repeating the name quite 

clearly, she persists in saying goo-goo.  Like my daughter, her mind clings to the closest sounding 

word, seemingly baby-talk.  Before recent advances, most electronics technologies required touch, 

so she may have associated the accidentally timed flash of lights and her touch and continued to 

do so while she tried voice commands as well.  She is literally unable to speak its language properly. 

The grandmother, as Vygotsky phrased it, parrots empty verbalism in repeating her 

relative’s instructions.  Despite her thick accent, she seems fluent in English, so the issue is 

understanding Google Home’s communication protocol.  The alienness of the device and its 

purpose makes even mimicking a challenge.  Her example offers a wonderful depiction of how 

even a wise and revered adult can lose footing when language and action are devoid of referential 

experience.  The makers of smart devices seek to remove technology as a barrier by allowing for 

natural language as an interface – something that should be ‘intuitive’ to everyone.  Our 

grandmother knew the language, what she was asking it to do (retrieve the weather report), had 

the help of informed mentors, and still struggled to produce the required grammar for several tries 

 
30 For quick reference: https://www.youtube.com/watch?v=e2R0NSKtVA0 
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and was amazed when the device performed the simple task.  Perhaps her response is exactly what 

some novice programmers experience when they first encounter the foreign languages of 

programming? 

Vygotsky’s theories hold many valuable insights into learning and development, but for 

now, a brief look at his work on language and logic helps to inform the struggles novices may face 

when learning to program.  Piaget emphasized the importance of action in the early stages of 

learning, as captured within System 1.  Vygotsky explored the emergence of conscious reasoning 

and the intersection of experience and formal education, which seems to map to System 2.  Even 

when these two disagree, their arguments may simply be describing the different aspects of our 

brain’s mental mechanism as much as a fundamental schism in their models.  Both Piaget and 

Vygotsky, however, focus most of their work on the very early stages of childhood development 

and thus only take computing educators so far in tackling the much more complex task of learning 

to program. 

6.3 Jerome Bruner and his model of cognitive problem-solving 

 Jerome Bruner combined elements of Piaget and Vygotsky into a model that combines 

Piaget’s action and Vygotsky’s symbols.  Bruner (1966c) believed that humans “developed three 

parallel systems for processing information and for representing it – one through manipulation and 

action, one through perceptual organization and imagery, and one through symbolic apparatus” (p. 

28).  Bruner’s three mental representations – enactive, iconic, and symbolic – describe different 

ways of knowing yet also offer a model for how people combine experience and formal education 

and use their knowledge to solve problems.  Revisiting Bruner’s theories from the perspective of 

dual process theory not only offers insights into Bruner’s descriptions but provides a vocabulary 

to describe the complex interplay between intuition (System 1) and reason (System 2). 

6.3.1 Bruner’s view of ‘knowing’ and development 

 Bruner’s work challenges traditional measures of classroom learning.  Too often, 

assessments of knowledge devolve to simple remembering; can the student recall and apply the 

proper facts.  Bruner (1966a) described three ways our mind represents information. 
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There are two senses in which representations can be understood: in terms of the 
medium employed and in terms of its objective.  With respect to the first, we can 
talk of three ways in which somebody “knows” something: through doing it, 
through a picture or image of it, and through some such symbolic means as 
language. (p. 6) 

Bruner’s three “ways of knowing” reminds us that knowledge is only useful when it aligns with 

the intended purpose.  We can see a carpenter ‘knows’ construction as they build things.  Many 

may not ‘read’ blueprints or understand every rationale for each habit they employ in their trade, 

yet those habits passed down by example still lead to safe structures.  The architect may never pick 

up building tools but can envision the scope of the work and formulate plans to build trusses, 

stairways, or other elements in a building.  They work in the space of functionality and aesthetics 

yet turn over certain tasks to engineers.  The engineer tends to dwell in the symbology of 

construction (e.g., free body diagrams, mathematical computations) to ensure proper safety and 

durability.  They can calculate the precise load a beam must carry but may never see the final 

project after construction.  While some people learn to master every aspect of a discipline, often 

the role a person plays may influence the type of knowledge they must acquire to do a job.   

 Knowledge is often most valuable when contextualized to need.  Many years ago, I 

partnered with some friends to renovate a neglected Victorian home (circa 1890).  I brought 

financing, organization, planning, and thirst to learn more about construction.  My partners brought 

practical construction experience (much more useful in this case).  One of our first projects pitted 

my symbolic education as an engineer against their practical knowledge of construction.  We were 

replacing the deck on my side porch but first needed to ensure the frame was square (formed a 

right angle) with the house.  My twelve-year-past training as an electrical engineer triggered 

Pythagoras as a procedure for ensuring a right angle, so I proceeded to precisely measure the three 

sides to see if a-squared and b-squared indeed totaled c-squared.  After a few minutes on my 

calculator resolving the decimal to fractions of an inch on the tape measure, I was satisfied we 

were square.  My two partners, probably hiding their eye-roll, quickly marked out three feet on 

one board, four feet on the next, and checked if the distance between those points was five feet, 

effectively making a 3-4-5 right triangle in a fraction of the time and with much less computation.  

Either approach to ensure the corner was square could work, but one is significantly easier to learn, 

execute, and perfectly acceptable for the situation. 
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 Bruner’s representations remind educators that not only do we have different mechanisms 

for storing knowledge, but each mechanism also plays a specific role in how we later use that 

information.  To be the most effective, educators should understanding how each type of 

representation forms, how our mind uses them, and how to promote the types of knowledge 

required for the desired task.  Computing educators have the additional burden in that the discipline 

rarely allows for a ‘clean’ separation of duties as the earlier example of the carpenter, architect, 

and engineer.  Often a programmer must be an expert in all three, conceiving, building, and testing 

their solution entirely on their own. 

6.3.2 Bruner’s three representations 

Unfortunately, many who summarize Bruner’s representations provide such simple of his 

theory as to seems trivial.  One website presents the following. 

 Enactive representation (action-based) 
 Iconic representation (image-based) 
  Symbolic representation (language-based) (McLeod, 2019) 

As a very high-level summary, McLeod’s bullet points align with Bruner’s descriptions.  Enactive 

representations store implicit actions we take based on our perceptions of events.  Bruner described 

iconic representations as imagery but personalized and abstracted from experience.  Symbolic 

representations may be languages, but they could be diagrams, programming instructions, or 

merely a new set of facts using existing words.  The oversimplification of Bruner’s ideas may be 

the reason researchers overlook the power of his representation to describe the acquisition of 

complex ideas and abilities. 

6.3.2.1 Enactive Representations 

 Enactive representations capture the logic behind our actions grounded in experiences, 

much like Piaget described.   

By enactive representation I mean a mode of representing past events through 
appropriate motor response. We cannot, for example, give an adequate 
description of familiar sidewalks or floors over which we habitually walk, nor 
do we have much of an image of what they are like, yet we get about them 
without tripping or even looking much. Such segments of our environment—
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bicycle riding, tying knots, aspects of driving—get represented in our muscles, 
so to speak.  (Bruner, 1964, p. 2) 

Enactive representations form implicitly, though we intentionally shape them by consciously 

altering our perceptions of events.  For example, we may develop a fear of spiders as a child.  As 

an adult encountering a spider, we can remind ourselves that it is unlikely to attack us and with 

practice handle them with ease (at least the non-venomous varieties).  Bruner’s descriptions of 

enactive representations align closely with System 1. 

If you have tried to coach somebody at tennis or skiing or to teach a child to ride 
a bike, you will have been struck by the wordlessness and the diagrammatic 
impotence of the teaching process. (p. 10) 

Enactive representations require more than memorization of following a process and are difficult 

to master without practice.  Bruner (1966c) primarily described enactive representations within the 

domain of physical activity. Dual process theory allows us to comfortably extend enactive 

representations to any mental ability that is automatic, unconscious, and forms implicitly.   

Enactive representations provide the ‘gut feeling’ (i.e., intuition) for a subject.   

 

Figure 6.1. Using blocks to teach quadratic equations (Bruner, 1966c, p. 62) 

Bruner suggested that forming enactive representations is a critical step in learning.  In his 

research, he saw that when left to the symbols alone, learners fumbled with even basic conceptual 

understanding. 

What was so striking in the performance of the children was their inability to 
represent things to themselves in a way that transcended immediate perceptual 
grasp.  (p. 65) 

Instruction alone did little to guide learning.  Bruner suggested conceptual understanding requires 
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the building of a mediating representational structure that transcends such 
immediate imagery, that renders a sequence of acts and image unitary and 
simultaneous.  (p. 65) 

He proposed that learning is more effective when it starts with concrete examples and builds 

generalizations.  The example in Figure 6.1 shows how a set of blocks provides a tangible example 

of quadratic equations.  A child can reorder the blocks to represent the same equation in various 

ways.  The image on the left shows a chunk of (x blocks wide by x + 4 blocks tall) plus four more 

blocks.  The set of blocks are reordered to (x + 2 blocks wide) by (x + 2 blocks tall).  Bruner 

offered students a tangible, modifiable experience from which to understand the abstract rules of 

algebra.  To become proficient at algebra, a student must master the symbols of manipulating 

variables, but Bruner believed that abstractions are most powerful when formed out of the 

generalized experience provided within enactive representations. 

6.3.2.2 Iconic Representations 

 An iconic representation serves several purposes, the most important of which is 

generalizing experience and combining experience with formally acquired knowledge.  Bruner 

(1966a) summarized the iconic representation as “a set of summary images or graphics that stand 

for a concept without defining it fully” (p. 44).  Iconic representations are not perfect ‘textbook’ 

concepts.  They offer general ideas that emerge from personal experience.  Unfortunately, authors 

too often claim any picture acts as an iconic representation, but Bruner was quite specific on what 

makes imagery iconic. 

Iconic representation summarizes events by the selective organization of 
percepts and of images, by the spatial, temporal, and qualitative structures of the 
perceptual field and their transformed images. Images “stand for” perceptual 
events in the close but conventionally selective way that a picture stands for the 
object pictured. (Bruner, 1964, p. 2) 

A teacher cannot simply provide imagery to a leaner and state it satisfies the need for the iconic 

representations.  Imagery must “stand for” a concept that a person is forming from experience.  

Iconic representations help to move away from action alone and begin manipulating ideas.  

Once a schema becomes abstracted from a particular act and becomes related to 
serial acts in a one-many relation it can become the basis for action-free 
imagery. (Bruner, 1966a, p. 19) 
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Enactive representations are an implicit response based on experience.  Iconic representations 

allow a person to change that response to accommodate new demands.   

Bruner offered precious few examples of iconic imagery but did offer one useful example 

based on his research.  He described an experiment where a child sees a rack of 42 pegs set in 7 

rows and 6 columns of pegs with a ring on one of the pegs (see Figure 6.2).  The researcher asked 

the child to place a ring on a second rack to match the first.  Children at any age can easily place 

their ring so long as the racks face the same direction.  Simply turning the two racks to different 

orientations changes the task entirely.  Placing a ring within the same orientation is a matter of 

perceptual matching, an enactive task.  By changing orientation, the child must create an 

intermediary mental representation (iconic) to find the proper place on the grid.  As an adult, you 

may simplify the task to simply remembering the row/column of the target peg, then determining 

the new orientation of the starting point.  Where the child can complete the enactive task (the same 

orientation) perceptually, the iconic task (shifted orientation) requires conscious consideration of 

the change, and many struggle do so at first. 

 

Figure 6.2. Bruner’s peg task 

 The peg task demonstrates a difference in the level of abstraction required to solve even 

simple problems.  As a perceptual task, 42 pegs in the same orientation are relatively easy to match 

but is difficult to translate without the aid of counting or some other representation.  Simply 

mimicry is not enough to reliable complete the task when the orientation shifts, a conscious 

strategy is helpful.  Where most adults have seen similar tasks before (e.g., finding your car in a 

parking garage where every floor looks the same), children may not have a strategy easily at hand.  

When the task shifts from enactive to iconic, they are left to derive a novel solution, not merely 

retain a row/column value in short-term memory and then compute the proper placement.  Iconic 
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representations are not merely a simpler perceptual image of something, but also the ability to 

manipulate that image in a meaningful way. 

 Many novice programmers struggle in a similar shift in ‘orientation’ within coding 

examples.  Since most simple loops count upward, say from one to ten, new programmers begin 

to associate a loop as a thing that starts low and goes high.  They become experts at reproducing 

this pattern of code without much consideration of the details of the looping constructs.  When the 

test rolls around, the clever instructor presents a problem that loops ‘backward’ from the high 

number to the low instead to test the students’ conceptual understanding of loops31.  Some students 

are unfazed by this trick, yet many fall prey to the ‘backward’ loop and miss the question – a 

seemingly clear indicator that they do not know loops!  Like the children seeking the proper peg 

for their ring, past perception dominates their reasoning.  Until they encounter a ‘backward’ loop, 

they did not need to consider the specific details of the looping construct; their enactive 

representation served them well.  Iconic representations are a measure of ‘advanced thinking’, but 

Bruner suggests form best through varied experience. 

The crux of iconic representation is that they are individualized.  Bruner did not merely 

show students the diagram from Figure 6.1 to show a picture of quadratic equations.  Students 

needed a physical device to manipulate and form their own iconic representations.  As Du Boulay 

et al. (1981) noted, programmers need to see inside the black box that is a computer to understand 

its workings.  Bruner may have agreed that such knowledge is essential in building the iconic 

representations needed to learn to program.  The challenge in computing is creating environments 

that are truly interactive where learners can manipulate and see the results.  Merely providing 

intermediate notations is insufficient.  Section 5.2.2 offered an example of a forced intermediate 

symbolic notation in the form of the trace table.  Lister et al.’s (2004) example showed the student 

preferred their own doodles to the provided (and more logical) imagery.  In time, a learner may 

come to adopt such standard documentation styles, but not until they have acquired sufficient 

symbolic representations. 

 
31 For the moment, ignore the fact that the instructor probably lectured the students on the components of  a loop and 
the rules of iteration, both forward and backward.  Such instruction is rooted in symbolic representations.  This method 
of instruction is possible, but Bruner says less optimal as will be discussed later. 
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6.3.2.3 Symbolic Representations 

 Symbolic representations store knowledge from external sources, especially those that 

come with new systems of symbols.  The most common symbolic representation is language, 

though symbolic representations hold any system of symbols, like the notations used in 

mathematics, physics, or programming.  Even images can contain symbolic content, as Bruner 

(1966b) clarified since images “can be infused with symbolic functioning” (p. 30).  When 

knowledge comes from external sources, it begins as symbolic until internalized into other forms 

of representations.   

In general, when we speak of the grammar of a language we mean the set of 
rules that will generate any or all permissible utterances in that language and 
none that are impermissible.  When a person speaks a language, he “knows” 
these rules in some fashion, though he cannot (like a linguist) recite them to you. 
(p. 33) 

Symbolic representations are paradoxical in that they can develop quite implicitly.  Children do 

not learn to speak from lectures but from the experience of listening to others and receiving subtle 

feedback.  Some aspects of ‘knowing’, though seemingly symbolic, are implicit, though Bruner 

suggested the creation of symbolic representations opens the door to the conscious application of 

advanced logic. 

But the critical point of symbolic representation is that these powerful 
productive rules of grammar are linked to the semantic function as well–to the 
“real world”; that is to say, having translated or encoded a set of events into a 
rule-bound symbolic system, a human being is then able to transform that 
representation into an altered version that may but does not necessarily 
correspond to some potential set of events.  It is in this form of effective 
productivity that makes symbolic representations such a powerful tool for 
thinking or problem solving: the range it permits for experimental alteration of 
the environment without having, so to speak, to raise a finger by the way of trial 
and error or to picture anything in the minds eye by imagery.  (p. 37)  

Bruner implied that symbols enable hypothetical reasoning without the need to take action or 

construct images.  Language can transform reality by simply presenting a fanciful idea without 

considering the plausibility of such statements.  He used the example of a child asking, “What if 

there were never any apples?” (p. 37), which indeed is a simple language construct with profound 

logical consideration. 
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 Symbolic representations present a dichotomy that Bruner explored by invoking both 

Piaget and Vygotsky.  Invoking Piaget, he noted that children are generally unaware of the 

semantic implications of their words and thus do not often use words in creative ways outside their 

everyday implications.  Our language generally reflects our range of experience, so such fanciful 

“apples” questions are more likely to be spurious than deeply considered.  He seems to describe 

this aspect of language in terms of System 1.  At the same time, Bruner invoked Vygotsky’s inner 

speech, noting how difficult it is to observe and analyze.  Bruner rejected Vygotsky’s notion of 

internalized speech, instead preferring the idea that language helps to organize our thoughts. 

I tend to think of symbolic activity of some basic or primitive type that finds its 
first and fullest expression in language, then in tool-using, and finally in the 
organizing of experience. (p. 44) 

Learning a symbolic representation does not unlock logical potential but instead influences how 

people organize experiences.  Bruner might say that learning to code does not make one a logical 

thinker, but rather provides a framework to organize experience logically, at least using 

programming languages. 

Building useful symbolic representations requires not only recognizing symbols but also 

blending the symbols with other representations of knowledge.  Bruner pointed out that children 

reach syntactical maturity by the age of five yet cannot deconstruct their sentences into their 

grammatical parts.  The words convey intent and meaning with little connection to the implications 

of the chosen words.  Language is as much habitual as carefully chosen (e.g., System 2 often 

System 1’s word choice rather than directly forming sentences). 

One is thus led to believe that, in order for the child to use language as an 
instrument of thought, he must first bring the world of experience under control 
of principles of organization that are in some degree isomorphic with the 
structural principles of syntax.  Without special training in the symbolic 
representation of experience, the child grows to adulthood still depending in 
large measure on the enactive and ikonic modes of representing and organizing 
the world, no matter what language he speaks. (p. 47, emphasis is Bruner’s) 

Bruner, like Vygotsky, reinforced the need to blend knowledge and experience lest a leaner exhibit 

empty verbalism, speaking without comprehending.  The shallow understanding of symbolic 

notations is not limited to language.  Perkins (2010) told the story of physics students who 

masterfully compute the speed of an object falling from a tower, yet forget the same process applies 
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when falling into a hole.  Mastering a symbolic notation does not guarantee its application to all 

relevant circumstances.  Without symbolic representations, people may never transcend their 

experiences.  Generations of people watched the sky and concluded the Earth is flat and circled by 

the Sun.  Without a symbolic representation to restructure experience, we are unable to move 

beyond perception.  While instructors dedicate much of education to the expeditious creation of 

symbolic representations, Bruner’s tri-part model helps to organize the best use and formation of 

all three types of representations. 

6.3.2.4 A system of representations 

 Bruner’s three representations are highly interconnected, and knowledge of the same topic 

may transcend all three representations or ‘move between’ them.  Bruner suggested a preferred, 

possibly optimal, but hardly exclusive sequence to forming representations. 

It is true that the usual course of intellectual development moves from enactive 
through iconic to symbolic representation of the world, it is likely that an 
optimum sequence will progress in the same direction.  Obviously, this is a 
conservative doctrine.  For when the learner has a well-developed symbolic 
system, it may be possible to bypass the first two stages.  But one does so with 
the risk that the learner may not possess the imagery to fall back on when his 
symbolic transformations fail to achieve a goal in problem solving.  (Bruner, 
1966c, p. 49) 

In childhood, we learn first through observation and action and form enactive representations.  As 

we gain experience, we create iconic representations that reconcile various experiences with each 

other and with newly formed symbolic representations.  When we reach school, formal education 

often introduces information in symbolic form without associated experiences.  A student can learn 

geography to some degree without visiting each location, but the best part of chemistry may be the 

lab experiments for grounding the concepts with experience.  Du Boulay (1986; 1981) noted that 

programming students are often taught languages before understanding the inner workings of 

computers.  Bruner suggested that instruction about the system of symbols (e.g., language syntax 

and semantics) is possible but risks developing students who are weak at solving problems, an 

issue well documented amongst programming students (See Chapter 2).  Bruner’s representations 

offer a useful model for describing the different representations of knowledge that a programmer 

must develop and how these representations of knowledge work together in problem solving. 
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6.3.3 Applying Bruner’s theories 

 There is no evidence that Bruner ever discussed dual process theory, but his works are full 

of similar observations.  In “The Process of Education”, Bruner (1976b) dedicated an entire chapter 

to “Intuitive and Analytical Thinking” (p. 55).  He discussed the value placed on intuition in many 

fields suggesting, “the intuitive thinker may even invent or discover problems that the analyst 

would not” (p. 58).  Sounding quite the dual process theorist, he predicted that many problems 

were either unsolvable or would take much longer by analytical means and perhaps shadowing 

enactive representations he discussed the importance of intuition to learning. 

For, as we have seen, it may be of the first importance to establish an intuitive 
understanding of materials before we expose our students to more traditional 
and formal methods of deduction and proof. (p. 59) 

Much of Bruner’s work focused on learning mathematics, finding ways to create intuition through 

hands-on activities.  In “Studies in Cognitive Growth”, Bruner (1966c) noted, “when children give 

wrong answers it is not so often that they are wrong as that they are answering another question, 

and the job is to find out what question they are in fact answering” (p. 4).  In processing the 

disconnect between language and action, Bruner’s observation mirrors that of Kahneman (2011), 

“If a satisfactory answer to a hard question is not found quickly, System 1 will find a related 

question that is easier and will answer it” (p. 97).  I believe that Bruner saw the same quirks in 

cognition that led to dual process theory, and as such, his theoretical constructs relate to those of 

dual process theory as follows. 

Premise 1: Enactive representations are the memories used by System 1 
Premise 2: Symbolic representations describe factual knowledge used by System 2. 
Premise 3: Iconic representations model the individual’s use of facts and experience, 
particularly during problem solving 
Conclusion: Jerome Bruner’s representations provide a useful language for describing the 
mental representations used within the two Systems and how they interact during cognition, 
particularly for solving complex problems. 

6.3.3.1 Representations versus Systems 

 Bruner’s representations may not directly align with dual process theory, but the 

representations and two Systems may provide different models of the same mechanisms of 

cognition.  Bruner’s obviously has three components, while dual process theory has two.  More 
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importantly, they capture different perspectives on cognition yet describe significant overlap.  

Enactive representations are the easiest to deal with as they seem to fall entirely within System 1– 

they are implicit, govern action, and represent the sum of experience, but not episodic memories. 

Enactive representation is based, it seems, upon a learning of response and 
forms of habituation. (Bruner, 1966c, p. 11) 

Enactive representations seem to describe the same phenomena captured within System 1. 

Symbolic representations are more challenging to dissect.  Bruner described the acquisition of 

syntax and semantics in children as implicit and unconscious (fitting into System 1), yet also says 

symbolic representations enable higher forms of conscious thought (a hallmark of System 2).  

Likewise, iconic representations seem to offer both implicit and explicit benefits that seem to span 

the two systems, so each requires more analysis to place in the context of dual process theory 

properly. 

One aspect that Bruner described of iconic representations is the metacognitive function of 

recognizing patterns in experience.  Section 4.2.2.1 described Berry and Broadbent’s (1988) study 

where participants were better at learning to control a sugar factory implicitly, and that experience 

alone did little to improve their conscious understanding of the rules.  Pattern matching alone 

seems to be a function of enactive representations/System 1 but Bruner described a metacognitive 

aspect to the formation of iconic representations that seems to transcend the two Systems.  If iconic 

representations support active deliberation, thus must reside within System 2.  Can iconic 

representations learn directly from enactive representations rooted in experiences?  Bruner (1966a) 

seems to have leaned towards the conscious discovery of abstractions in using phrases such as 

“represent the world to himself” (p. 21).  He also focused much of his research around tracking 

the perceptual attention of a child (a task that requires the conscious attention of System 2).  He 

noted, when discussing iconic representations that 

Affective and motivational factors affect imagery and perceptual organization 
strikingly, particularly when impoverished stimulus materials is used and 
linguistic categorization rendered ambiguous.  (Bruner, 1976b) 

Dual process theory includes little discussion on affect and motivation, yet Bruner noted their 

impact on iconic processing.  By noting that ‘non-cognitive’ factors impact perception and 

imagery (iconic), he seems to be reinforcing the conscious nature of iconic representations 
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implying they are an aspect of System 2 32 .  Before finalizing the intersection of iconic 

representations and dual process theory, Bruner’s model presents one more wrinkle. 

While Bruner (1976b) occasionally discussed intuition directly, he admitted the need to 

clarify its nature.  Perhaps he saw intuition as playing some role in his representations, but he did 

not say so explicitly.  A scant few years after introducing his three representations, he dedicated a 

chapter to the importance of intuition.  It seems that any iconic or symbolic representation that is 

frequently invoked could become automated.  Piaget noted that schemas build by combining 

smaller actions into larger ones (e.g., grabbing a racket combined with swinging it translates into 

playing tennis), but Bruner never indicated a lifecycle for his representations.  Iconic 

representations may fill a temporary need for conscious cognition and are either forgotten in time 

or if encountered repeatedly become enactive representations.  Some iconic representations may 

originate to aid System 2 manage knowledge yet gradually become a System 1 process if used 

regularly.   

Bruner’s work contains one more moment of synchronicity (or coincidence) with dual 

process theory to consider.  Vygotsky proposed the concept of inner speech as the driver of logical 

thinking, but Bruner disagreed.  Bruner proposed iconic representations and imagery as the inner 

model of conscious reasoning.  In rejecting inner speech, Bruner separated language and logic, and 

neuroscience may offer some support to his assertion.  One study analyzed fMRI scans and 

determined that people have a hard time thinking purely in language (Amit, Hoeflin, Hamzah, & 

Fedorenko, 2017).  They concluded that “people tend to generate visual images of what they think 

about verbally” (p. 29).  Bruner’s description of imagery might be not just a useful metaphor, but 

an apt description of how our mind considers concepts and language. 

 The evidence from Bruner’s writing hints that his representations, if not aligned with dual 

process theory, do not conflict with it.  TAMP revisits Bruner’s representations not only through 

the lens of dual process theory but also using innovations from neuroscience about the nature of 

memory to understand the differences between each representation better and their alignment with 

dual process theory.  Bruner’s model provides a solid foundation of concepts from which to 

 
32 Kahneman used the example that providing students with blurry test papers made it less likely to make mistakes 
(Frederick, 2005).  The blurry pages presumedly caused the students to engage System 2 more than the students who 
received clearly legible papers and reduced the number of errors they made. 
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reconsider how people think and learn as well as a well-conceived model for describing complex 

aspects of cognition that combine action and logic. 

6.3.4 Next steps 

 Even simple examples of using Bruner’s representations in programming leaves a lot to 

unpack about how we learn and teach programming. 

 If enactive experiences are difficult to create and even then, may not transfer, how do we 

create these vital representations? 

 What is the use/value of ‘simplified’ representations such as pseudocode, flowcharts, or 

activities/languages that reduce the need to master syntax? 

 The examples thus far have focused on the notional machine level of code, but what 

about higher-level algorithms and design patterns? 

 How do Bruner’s theories change the pedagogical approach to instruction? 

 How can we better measure progress in learners? 

Hopefully, this list is just the start of bigger questions that Bruner’s ideas, as well as those of Piaget 

and Vygotsky, inspired.  The goal of reviewing the learning theories was to expand not only how 

dual process theory challenges traditional assumptions of learning, but also to see how to further 

the methods currently in use. 
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 THE THEORY OF APPLIED MIND OF PROGRAMMING 

7.1 An Advance Organizer for building TAMP 

 TAMP provides researchers and educators with new perspectives on computing education 

grounded in the well-established literature on cognition and learning.  As a ‘theory of mind’ TAMP 

creates a model of cognitive function that provides disciplinary educators with the same guidance 

that a notional machine provides programmers.  A notional machine portrays the inner workings 

of a computer.  TAMP builds upon existing theory to do the same for cognition.  Instructors cannot 

reasonably cover every possible feature and use of a computer language in a single notional 

machine.  Likewise, this dissertation introduced a small slice of what TAMP might become.  This 

chapter tackles a relatively narrow slice of programming cognition, but Section 9.1 highlights some 

of the possible future content of TAMP.  Before jumping into the construction and justification for 

TAMP, it is worth taking a moment to summarize what this dissertation has stabled and where it 

is going (see Figure 7.1) as an advance organizer (Ausubel, 1960) for the question “What is 

TAMP?”   

 

Figure 7.1 A model of TAMP’s scope within this dissertation. 

 The inception of TAMP begins with dual process theory and its new perspective on how 

people think.  Chapter 4 argued that dual process theory provides a powerful model that might 

explain many elusive aspects of expert cognition (see Section 2.3.3).  Chapter 5 demonstrated dual 

process theory’s power in reinterpreting influential computing education research by finding 

additional insights and explaining areas that may have been previously unclear.  Dual process 

theory provides a powerful abstraction that lives between the models of traditional learning theory 
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and the detailed findings from neuroscience.  The last half-century has seen major advances in our 

understanding of the brain, which has dramatic impacts on theories of learning 33  but often 

describes neural mechanics at too low of a level to be useful in the classroom.  Dual process theory 

provides disciplinary educators with accessible constructs (System 1 and 2) for understanding the 

cognition of decision making.  Grounding TAMP’s ‘theory of mind’ in dual process theory 

provides a bridge between traditional learning theories and the evolving model of cognition 

emerging from the cognitive sciences. 

 While dual process theory provides vital insights to cognition, its focus is not learning.  

Understanding how experts think is useful but TAMP also seeks to provide guidance towards 

educating novices.  Chapter 6 revisited a century of research into educational psychology by 

revisiting three of the most influential theorist in Piaget, Vygotsky, and Bruner.  When viewed 

through the lens of dual process theory, these theorists foreshadowed the role of tacit knowledge 

and skills that dual process theory describes within System 1.  TAMP utilizes Jerome Bruner’s 

representations as a model of knowledge that, of the available learning theories, best aligns with 

dual process theory.  Bruner’s three representations seem to encapsulate many aspects of dual 

process theory.  His enactive representations describe the same phenomena modeled within System 

1.  The split between symbolic and iconic representation provides a model to describe the interplay 

between the two Systems of dual process theory and, as Section 7.3 will consider, possibly models 

the differences between episodic and semantic memories.  TAMP refines Bruner’s representations 

with new insights from neuroscience to operationalize his constructs within computing education. 

 The heart of this dissertation’s contribution to TAMP is the Applied Notional Machine 

(ANM).  While many computing education researchers stress the importance for students to create 

mental models of the notional machine, there is little guidance as to what those models look like.  

The ANM looks to define the mental models that programmers form in response to exposure to a 

notional machine.  The ANM is, in essence, a ‘cognitive notional machine’ for computing 

educators to use in understanding students’ mental models of the functional aspects of 

programming.  The ANM places the knowledge portrayed by a traditional notional machine within 

Bruner’s representations.  At a high level, programmers acquire facts about programming 

(symbolic), tacit knowledge and skills (enactive), and information used in problem-solving 

 
33 This chapter uses the biology of memory and learning to support TAMP’s suggested new conventions that help to 
clarify Bruner’s representations! 
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(iconic).  Section 7.5 defines the ANM as a new theoretical construct within computing education.  

The ANM looks to serve as a framework for modeling and measuring learning by building upon 

the insights from Bruner, dual process theory, and the neuroscience of prospection.  The chapter 

then builds upon the ANM to propose specific mental constructs of programming knowledge.  

These new constructs lead to two propositions: how programmers read and comprehend code and 

how they use knowledge and experience when designing.  These two propositions demonstrate the 

ANM in action and provide the theoretical building blocks that Chapter 8 uses in revisiting existing 

studies on how programming students struggle to design and write code from scratch. 

 TAMP organizes the bodies of knowledge from dual process theory, neuroscience, and 

learning theory that culminates in a set of new disciplinary constructs and propositions within 

computing education.  Chapters 3-6 established that existing theory offered useful insights to 

computing education and was complementary to a cohesive model of cognition and learning.  This 

chapter builds upon these theories to provide a modern view of Bruner’s representation as applied 

to computing education.  By the end of Chapter 8, this dissertation provides researchers and 

educators with a new set of internally validated constructs from which to conduct additional 

research.  Chapter 9 then considers additional aspects of a full ‘theory of mind’ that were out of 

scope for this dissertation, as well as future empirical research to add to the evidence provided via 

rhetorical argument and reinterpretation.   

7.2 Defining TAMP 

Rene Descartes, among others, may have accidentally confounded the work of generations 

of educators by promoting the supremacy of human reasoning and overlooking the vital role of 

intuition34.  Dual process theory does not dispute human rationality but suggests a different internal 

process by which people come to decisions.  For example, by revisiting influential research in 

computing education, TAMP offers an alternative, if not richer, explanation of phenomena such 

as fragile knowledge (T. Lowe, 2019) or movers/stoppers (D. N. Perkins et al., 1986).  Even when 

educators and researchers know about dual process theory – I have met dozens of educators over 

the past year who have read Kahneman’s (2011) bestseller – they may not see how to put its tenets 

into practice within computational education.  This chapter attempts to demonstrate how dual 

 
34 And emotions, but ‘non-cognitive’ factors fell out of the scope of this dissertation. 
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process theory impacts programming cognition yet doing so requires illustrating the interplay 

between intuition and reason, for which Bruner’s representations may offer guidance.   

In revisiting educational and developmental theory, I try to establish the foundations behind 

many of the modern pedagogical approaches and blend traditional models of learning with dual 

process theory.  Piaget, Vygotsky, and Bruner stand the test of time because of the quality of their 

research and insights, and their theories are enhanced and possibly improved when considered 

through the lens of dual process theory.  Where dual process theory describes how people think, 

learning theory focuses on the acquisition of knowledge and skills, making a natural pairing.  

Piaget described how we learn from actions and their influence on conscious reasoning.  Vygotsky 

considered how social interactions influence our learning and thinking.  Bruner combined these 

two aspects of learning in his mental representations.  TAMP not only seeks to refine existing 

learning theory with dual process theory and findings from neuroscience but also to help transfer 

abstract ideas about learning and cognition into programming education practice.  

7.2.1 Scope 

 This chapter builds upon dual process theory and Bruner’s representations to propose a 

model of how the mind stores and uses knowledge when programming.  Early in my process, I 

imagined TAMP as a model of a programmer’s mental activity during each task of the 

development process. Such a list might include, 

 Reading code 

 Tracing code 

 Writing code (from a guide) 

 Analyzing needs (writing requirements) 

 Design (but not writing code) 

 Creating tests 

 Debugging 

 Refactoring (rewriting code to improve the design) 

The challenge with modeling every single activity on such an exhaustive list is one of variation 

across individuals.  While I believe there are common memory structures (as encapsulated with 

Bruner’s representations) and mechanisms (System 1 and 2), it is unlikely that all experts follow 
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exactly the same mental processes.  As we will see in Section 8.1, expert designers share 

characteristics in their thinking, but they still follow individualized processes. 

If educational researchers cannot proscribe universal pathways to becoming a programmer, 

is the secret to training novices personalized curricula?  Individualized learning is a laudable goal, 

yet current attempts are too often cumbersome and perhaps ineffective.  Piaget and Vygotsky each 

advocated that educators could help students by identifying their needs and customizing their 

education.  Teaching at scale, however, makes such a prospect daunting.  Perhaps one day, 

intelligent educational systems can diagnose a learner’s troubles and guide them.  I stand with 

Bruner (1966c) who warned educators to “prevent oneself from becoming a perennial source of 

information” and promote the student’s “ability to take over the role of being his own corrector” 

(p. 70).  The heart of constructivist educational philosophy states that individuals build knowledge 

through experience, rather than instruction.  Educators help most when they present students with 

the right experiences at the right times, but even better when they teach students to seek educative 

experiences.  Rather than providing a handbook for diagnosing student struggles, TAMP defines 

the concepts and practices needed by competent programmers and suggests the types of 

experiences useful in building such knowledge.   

Rather than attempting an exact roadmap for how every programmer thinks, TAMP seeks 

to model the types of memories and the mechanisms of cognition that support programming 

behaviors.  Within this chapter, I will occasionally use my professional experiences as examples 

of the theoretical constructs of TAMP in action.  I do not expect they match yours, or they are even 

prototypical, but they attempt to illustrate the concepts being discussed.  These experiences may 

resonate or vary drastically with other programmers; the goal is not to model how intuition drives 

all programmers.  These examples demonstrate intuition in action as a vital part of cognition in 

addition to less story-driven empirical data.  Chapter 8 revisits empirical evidence for the purpose 

of validation.  My goal at this stage of defining TAMP is not to capture every mental activity of 

programming.  Instead, I aim to refine existing ideas about how programmers think using TAMP’s 

newly proposed theoretical constructs. 

In modeling design thinking, TAMP captures how knowledge about and skills in 

programming transfer to solving problems.  Design tasks encompass the “Whole Game” of 

programming, a phrase Perkins (2010) coined to describe one of his principles of teaching.  Playing 

the whole game gets to the heart of using knowledge to find and solve problems.  Perkins believed 
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his schoolwork in math and artificial intelligence transformed him into a strong problem solver 

but left him undertrained as a problem finder.   

Problem finding concerns figuring out what the problems are in the first place.  
It also involves coming to good formulations of problems that make them 
approachable.  Often it also involves redefining a problem halfway through 
trying to solve it, out of the suspicion that one may not be working on quite the 
right problem. (p. 26) 

Perkins' description of problem finding seems similar to the early stages of programming – clearly 

defining the problem, deriving promising solutions, and iterating when they prove unsatisfactory.  

The computing education literature from Chapter 2 seems to reflect the dichotomy Perkins 

described during his time as a student.  Students know a lot about programming, but too many 

remain unable to apply that knowledge to solving complex problems.  TAMP seeks to connect the 

skills we teach knowledge to the ways that experts seem to apply that knowledge. 

7.2.2 A look back at theory building 

Theorists often write at length about their ideas, yet in a way that was far from methodical, 

and at times, feels quite underdefined.  Piaget, Vygotsky, and Bruner primarily employed 

rhetorical arguments that compared their observations with contemporaries (often each other) 

while building their theories.  They laced their discussions with loosely described empirical studies, 

yet often their new propositions remained ambiguous without explicitly defining the underlying 

constructs.  Piaget never seemed to pinpoint when the mind moves from assimilating to 

accommodating.  Vygotsky neglected to provide measures for the zone of proximal development.  

Bruner often described but provided few examples of iconic representations.  Despite the 

disconnect between a proposition and its measurable observation their work has proved significant 

in educational research.  Piaget, Vygotsky, and Bruner may not have seen their writings as defining 

new theories, but since that is the aim of this dissertation, it would be at best shortsighted and, at 

worst hypocritical to ignore my critiques of their approach. Before defining TAMP, it seems useful 

to revisit the theoretical building blocks discussed in Chapter 3. 

The methodology of Chapter 3 does not set out to ‘prove’ a theory so much as document 

its foundation, assumptions, arguments, and content.  Having reached this point in my argument, 

you might agree that theory building often leverages intuitive leaps followed by reasoned argument.  
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Formal theory (as opposed to the substantive theory from Section 3.1) rarely forms solely out of 

data since its very nature requires defining abstractions that theorists capture from the 

generalizations they see in data.  The same cognitive models from dual process theory I am 

applying to programmers seem to apply to theorists!  The process of theory-building should be 

transparent and the outcomes actionable.  The resulting theory should explain the relationships 

between what we measure and things we cannot directly observe.  The process defined in Chapter 

3 promotes those connections by establishing the building blocks of a well-defined theory. 

 Concepts – related to perceptions 

 Constructs – abstractions build upon concepts 

 Propositions – formal assertions grounded in constructs 

Researchers and practitioners can use theory more consistently and effectively when propositions 

utilize well-defined constructs that tie to established concepts.   

Table 7.1. Theoretical propositions from the major theories 
Theory Key Proposition(s) 

Piaget Children progress through four stages of cognitive development that 
measure their increasing ability to work with abstractions. 
Learning occurs through the process of assimilation and accommodation 

Vygotsky Reasoning matures through the internalization of inner speech. 
Assessments tend to measure only the actual level of development, but a 
more knowledgeable other can measure the extent of the ZPD explaining 
why some people progress faster than others despite showing equal 
abilities 

Bruner Experience forms enactive representations which may develop into 
iconic representation through conscious generalizations 
Symbolic representations provide external direction for redefining 
experience based on shared knowledge 
People can learn from symbolic representations, but without experience, 
such learning risks hampering problem-solving abilities 

Dual Process Theory Cognition includes two mechanisms of reasoning that support each other 
in thinking and learning 
System 1 is fast to act, takes little effort, and is slow to learn 
System 2 encompasses conscious deliberations, is effortful, and primary 
handles novel tasks 
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In many ways, these three building blocks of theory mirror Bruner’s representations.  Concepts 

(and enactive representations) model things we directly observe.  Constructs (and iconic 

representations) combine observations into generalizations, perhaps with narrow applicability.  

Propositions (and symbolic representations) share knowledge with others.  Bruner suggested that 

people are best at applying knowledge when they integrate all three types of representations.  In 

the same sense, a theory is most effective when its users can align theoretical propositions with 

their underlying construct and concepts, as Silver (1983) suggested.  It seems incumbent on the 

theorist to explicitly elucidate their propositions with these key building blocks.  The foundation 

of TAMP identifies, occasionally refines, and then leverages time-tested building blocks from 

existing theories.  Classical theorists may not have explicitly described concepts, constructs, and 

propositions, but they are often identifiable.   

Table 7.1 captures my summary of key propositions from each theory as they relate to 

TAMP as a summary of Chapters 4 and 6.  Table 7.2 highlights important constructs from the 

major theories underlying TAMP.  TAMP benefits from the decades of research into these 

constructs and their underlying concepts.  Using familiar concepts also provides a bridge into 

existing computational education literature grounded in Piaget and Vygotsky’s theories. 

Table 7.2. Identifiable constructs from the existing theories 
Theory Key Constructs 
Piaget Operational Thinking, Schema, Décalages 
Vygotsky Inner Speech, Zone of Proximal Development 
Bruner Enactive, Iconic, and Symbolic Representation 
Dual Process Theory System 1 and System 2 

Accepting a theory does not require agreement on every proposition, so much as 

understanding the theorist’s viewpoint and when their underlying constructs apply.  Piaget, 

Vygotsky, and Bruner agreed on and utilized may of each other’s propositions.  Their 

disagreements on a few propositions may even have stemmed more from how they defined 

concepts.  For example, Piaget believed the increase in operational thinking (construct) leads to 

the fading of egocentric speech marking the start of socialized speech with others.  Vygotsky 

thought egocentric speech faded into inner speech (construct) because of socialization with others.  

Piaget and Vygotsky never reconciled the nature of egocentric speech (concept), leading to 
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opposing propositions on the role of language in cognition.  The separation in distance and 

language between the two, not to mentions Vygotsky’s untimely death, meant their writings never 

overlapped, and they never reconciled potential differences.  Perhaps had they had time to 

reconcile the cognition behind speech (the concepts tied to these constructs), they may have 

reconciled other differences in their theories. 

Modern theorists might reconcile some conflicts between theories by redressing the 

underlying constructs and concepts.  Bruner, having studied both Piaget and Vygotsky, suggested 

that speech and thought are not always the same.  We can now reconsider egocentric speech in 

light of dual process theory.  People may mutter aloud without being aware they are doing so 

because System 1 automates a good portion of our language abilities.  In many ways, operational 

thinking and inner speech describe the same mental processes (System 2). However, the competing 

interpretations of the observable concept (egocentric speech) as being the same construct (System 

1 versus System 2 ‘speaking’) led to seemingly conflicting propositions.  Unfortunately, without 

clear definitions of the concepts and constructs, we are left to speculate at the differences in 

Piaget’s and Vygotsky’s observations.  In building TAMP, I intend to provide greater transparency 

to the construction of my propositions.  Over time, few, or none of the propositions I make in this 

first iteration of TAMP may survive.  Perhaps, though, the constructs and related concepts will 

assist in the development of better computing education theory. 

7.3 Neuroscience, theory, and struggling programmers 

Neuroscientists and cognitive scientists start from different places to investigate how we 

think.  Neuroscientists provide an increasingly refined look at the brain’s mechanics but primarily 

study simple behaviors in participants (often animals).  Simple tasks like memorizing lists of data, 

however, are too removed from complex decision making to provide grander insights into creative 

thinking.  Cognitive scientists study more complex behaviors like decision making, but their 

interpretations are sometimes inconsistent with the brain’s mechanics, like Piaget’s assertion that 

formal operational thinking, once acquired, is a level of development that can transcend any mental 

activity.  TAMP has the advantage of using insights from both fields to triangulate its new 

theoretical constructs.   
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This section starts with the presumption that while our brain is complex and multipart, 

biology probably shares common mechanisms of thinking and learning.  For example, a different 

region of the brain may be dominant when learning to read than when learning to count, but the 

mechanics of learning remain consistent across content.  Neuroscientists describe two distinct 

types of memory, declarative and nondeclarative, that mirror the descriptions of System 2 and 

System 1.  They further break down declarative memories into semantic (facts) and episodic 

(recalling events).  Bridging a few gaps between learning theory and the underlying neuroscience 

may explain why students are both promising learners yet fail to apply their learning to complex 

tasks like programming.  This section looks to connect Bruner’s representations to the brain’s 

memory structures and, as a result connect his constructs to underlying concepts from neuroscience. 

7.3.1 Declarative and nondeclarative memory 

 Bruner, dual process theory, and neuroscience each distinguish knowledge into at least 

two different categories.  Bruner separated how we implicitly learn through action (enactive) from 

that which we retain through conscious effort (iconic, and with a few caveats, symbolic).  Dual 

process theory similarly separates knowledge into implicit action within System 1 and explicit 

facts within System 2.  Neuroscience also seems to confirm this divide at the lowest level within 

declarative and nondeclarative memory systems. 

What we now call nondeclarative memory includes a large family of different 
memory abilities sharing one feature in particular.  In each case, memory is 
reflected in performance – how we do something.  This kind of memory 
includes various motor and perceptual skills, habits, and emotional learning, as 
well as elementary reflexive forms of learning such as habituation, sensitization 
and classical and operant conditioning.  Thus, nondeclarative memory typically 
involves knowledge that is reflexive rather than reflective in nature.  (Squire & 
Kandel, 2003, p. 24) 

Squire and Kandel’s description of nondeclarative memory seems to align the functioning of 

System 1 and enactive representations.   They even mentioned Bruner’s influence on framing the 

difference in declarative and nondeclarative memories. 

Some years later, the psychologist Jerome Bruner, one of the fathers of the 
cognitive revolution, called ‘knowing how’ a memory without record. (p. 14, 
emphasis added) 
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Squire and Kandel’s invocation of Bruner helps to establish a link between the phenomena 

modeled in nondeclarative memories, System 1, and enactive representations.  Nondeclarative 

memories allow us to pedal away even after years without riding a bike.  They prompt the carpenter 

to square a deck by measuring 3, 4, and 5 feet around a triangle, without needing to recall the 

Pythagorean Theorem.  Our conscious mind neither has nor needs awareness of the information 

stored within nondeclarative memories to take advantage of trained behaviors.  It seems that 

Bruner noted the implicit behaviors that neuroscientists eventually cataloged into the mechanics 

of tacit memories, and dual process theory operationalized into a model of cognition.  

Our conscious reasoning relies on declarative memories to recall facts, details, and stories.  

Squire and Kandel continued to invoke Bruner in describing declarative memory, which “he called 

‘knowing that’ a memory with record” (p. 15, emphasis added).  Declarative memories form 

comparatively quickly, sometimes instantly, yet may not last long unless used frequently.  

Declarative memory is not the same as short-term memory.  Short-term memories last a few 

seconds or possibly a few minutes if the thinker maintains concentration.  The brain retains 

declarative memories for days, weeks, months or possibly longer so long as they remain in use.  

Declarative memories, however, will fade in detail or entirely if left unused.  Students who seem 

to thrive in one class only to forget what they learned by the next class were likely successfully 

cramming knowledge into declarative memory only to see it fade when unused.  System 2 excels 

at incorporating new information (which some are better at than others).  Our brain will forget 

information that goes unused in both types of memory, but declarative especially. 

The mechanics of memory suggest that learners must repeatedly practice over time if they 

wish to retain knowledge, but such practice must also account for both knowing how and knowing 

that.  Memorizing facts and processes (knowing that) does not always transfer to knowing how.  

At the same time, if instructors only provide activities that emphasize skills (nondeclarative 

memories) students may learn how does not translate to conscious knowing that.   

Moreover, even though you successfully perform the tasks encoded in 
nondeclarative memory, the encoded information will not enter your 
consciousness.  Once stored in nondeclarative memory, this unconscious never 
becomes conscious. (Squire & Kandel, 2003, p. 24 Emphasis theirs) 

Our brains can perform complex mental activities without ever learning explicit rules (Section 

4.2.2).  Young children learn to speak grammatically correct (if not perfectly) long before their 
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first (or any) formal English lesson.  Even when a teacher starts by teaching rules, declarative 

memories of a rule may fade as nondeclarative memories form and take over processing the rule.  

Squire and Kandel essentially are saying that as knowing how emerges during formal education, 

knowing that may fade without reinforcement.   

Programming students typically acquire the rules of syntax and semantics first to support 

early efforts to trace or write code.  Squire and Kandel imply they may forget the details of these 

rules as their mental model of the notional machine matures 35 .  For example, programming 

students may know how to prevent compiler errors by adding exception handling logic, yet forget 

the concepts involved in exceptions.  I have seen students do exactly this to make their code 

compile, inadvertently suppress vital failures in their code, and wonder why its logic does not work 

as expected.  These students procedurally add error handling logic because the compiler requires 

it, but do not consider its ramifications, despite dedicated instruction on the handling of exceptions.  

They seem to fail to integrate information about exceptions with the procedure of handling errors.  

Instructors should plan their curriculum to revisit activities that encourage both declarative and 

nondeclarative memories if they want students who both know how and know that. 

7.3.1.1 Knowing how and knowing that in computing education  

 Educational activities in computing often focus on either knowing how or knowing that.  

For instance, studies into tracing (as described in Section 5.2.2) investigated knowing how a 

programming language works.  To measure knowing that educators use “explain code in plain 

English” tasks (Bayman & Mayer, 1983; Lister et al., 2009; Lopez et al., 2008; Whalley et al., 

2006).  Where tracing requires the mental execution of code, a programmer can do this implicitly 

without considering the code’s purpose.  Explaining purpose typically requires reflection on how 

the various language constructs, algorithms, and data structures integrate to solve a problem (at 

least if the code does not fall into a familiar pattern).  The two activities seem similar but may not 

leverage the same types of memories to complete.  Lister, Fidge, and Teague (2009) investigated 

the relationship between a student’s competence in tracing, explaining, and writing code to see if 

 
35 Section 5.2.2 suggested that novices memorize rules to cope with early tracing tasks, and Section 7.4.2.2 provides 
an example of a case where many experts -  including myself - might forget a rule that seems like a fair test question.  
The segmentation of memory further confirms Section 5.2.1’s assertion that fragile knowledge may result from the 
many ways our minds capture the same information. 
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a hierarchy, and thus order, exists for developing these skills.  They saw statistically significant 

relationships between students’ abilities in each area, yet, 

Our data does not support the idea of a strict hierarchy; where the ability to trace 
iterative code would precede any ability to explain code, and where the 
development of both tracing and explaining would precede any ability to write 
code. (p. 164) 

Lister et al. find that tracing, explaining, and writing code develop independently in students.  

Some could trace code, yet not explain it while others could explain code yet struggled to trace it 

(Lister et al. speculated that they were shrewd guessers).  One student even wrote code more 

effectively than either tracing or explaining.  A Cartesian viewpoint – that people must recall 

information about a subject orderly (i.e., all, or nothing) – makes their findings quite confusing.  

How can students explain things they cannot trace or vice versa if they use the same stores of 

knowledge?  In Bruner’s terms, many educators may conflate knowing how without knowing that.  

The division of knowing described in each of the three models – Bruner, dual process theory, and 

neuroscience – perfectly explains why students can independently function across these three tasks, 

but what does it take to build the required knowledge equally?   

A group of computing education researchers (Margulieux, Catrambone, & Guzdial, 2013; 

Margulieux, Morrison, & Decker, 2019; Morrison, Decker, & Margulieux, 2016) have studied the 

cognitive load theory-based subgoal labeling within computing education. Subgoal labeling 

activities are created to explicitly identify the purpose of code and the choices made to solve the 

problem.  While CLT recommends managing the load on short-term memory, subgoal labels seem 

to help by focusing attention on evaluating the design. 

Subgoal learning explicitly teaches students the subgoals, or functional pieces, 
of a problem-solving procedure. For example, to solve a problem with a loop, 
students must define and initialize variables, so defining and initializing 
variables is a subgoal of solving a problem with a loop.  (Margulieux et al., 
2019, p. 548) 

When instructors add (or ask students to add) subgoals, student attention moves from syntax and 

execution to intent.  Margulieux et al.’s subgoal example described the purpose of variables within 

a loop, which shifts the student’s attention from the mechanics of the loop construct to the 

designer’s choice to use a loop to solve the problem.  Identifying subgoals forces the novice to tap 

into knowing that memories that may go unused while tracing.  Subgoal labeling activities help 
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new programmers to attend to different aspects of the problem, thus exercise different types of 

memories that are equally important in programming. 

Subgoal labeling seems to present a focused pedagogy that fits in well with the two types 

of knowledge each of the foundational theories of TAMP describe.  Ironically, it seems that 

without tasks like subgoal labeling, instructors expect students to acquire knowledge about the 

purpose of algorithms implicitly; a type of knowledge that seems to be more useful in conscious 

(explicit) reasoning.  Equally ironic, the explicit instruction on the rules of coding constructs does 

little to support the implicit (nondeclarative) knowledge required to trace code quickly and 

effectively.  The diversity of pedagogical interventions in computing education hints at a tacit 

understanding that educators must build various types of knowledge in their students.  Research 

like Lister et al.’s shows that these stores of information may not automatically lead to success in 

all aspects of programming.  Bruner hinted, though, that the formation of iconic representations is 

critical towards problem-solving.  

7.3.1.2 Declarative memory and iconic representations 

 A programmer designs and writes code to solve a problem, which Bruner suggests is easiest 

when they have a combination of knowing how and knowing that.  Squire and Kandel’s (2003) 

description of declarative memory suggests synergy with Bruner’s iconic representations. 

Declarative memory is well adapted for forming conjunctions (or associations) 
between two arbitrarily different stimuli. (p. 99) 

Iconic representations blend experiences (stimuli) while generalizing from multiple experiences 

(forming conjunctions).  When designing, programmers need to reverse the process of explaining 

code, starting with a purpose, and then creating code.  Iconic representations, rooted in declarative 

memory, offer the flexibility to restructure memories of the beneficial uses of coding constructs to 

fit the current need presented by a problem. 

declarative memory is designed to represent objects and events in the external 
world and the relationships between them.  A key feature of declarative memory 
is that the resulting representation is flexible. (p. 99) 

Bruner’s iconic representations seem to model at least some aspect of declarative memories, given 

their flexible integration of various facts and experiences. 
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Squire and Kandel noted that some declarative memories form quickly (e.g., pairing a face 

and a name of a memorable person) where others require time and practice.  Likewise, expert 

programmers often suggest solutions with little deliberation to some problems yet require time to 

consider others.  Iconic representations provide a model for the fast and slow activation of 

memories.  It is easier to solve familiar problems because our mind merely connects new 

information to past solutions (think Piaget’s description of an expert’s schema).  When we 

encounter a novel problem, it takes longer to think of a reasonable solution because we must invent 

one.   

Think about how much easier it is to remember copious details about your loved ones (e.g., 

their favorite color, birthday, last dental appointment) than it is to attach a name to a new face.  

The mind must pair two new and unrelated facts, as opposed to adding one new fact to well-learned 

information.  The more we use the information, the stronger the neural pathways become, and the 

same information activates in many ways.  A new face and a new name begin as unrelated symbolic 

representations if they make it beyond short-term memory.  People use many tricks to help promote 

transitioning new information into memory, the simplest of which is repeating a person’s name 

frequently.  The same is likely true when a programmer encounters a problem unlike any they have 

previously seen.  They can derive a promising solution, but it will require focus and attention.  

Experts learn – and innovate – faster since they can connect bits of new information to their past 

exploits rather than being forced to create and connect all new memories. 

 Iconic representations are more than mere repositories of facts available for problem-

solving.  Problem-solvers need to organize facts in some meaningful way.  Programmers imagine 

designs by organizing facts about the problem domain within the capabilities of the programming 

language.  Programmers must then imagine how the combination of language constructs and 

databases and third-party code libraries will behave when executed – facts in action.  Squire and 

Kandel distinguished two types of declarative memories that seem to relate to this distinction; 

semantic memories describe “memory for facts” where episodic memory capture “memory for 

particular times and places” (p. 106).  These two types of memories describe very different 

experiences.  For example, it is one thing to remember how someone describes a roller coaster ride; 

it is entirely different to remember riding on one.  Both are conscious experiences, but episodic 

memories seem to contain an implicit construction that transcends our consciousness.  Our mind 
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consciously recalls episodic memories, but as more than a series of facts.  We will see in the next 

section they are constructed in interesting ways. 

Semantic memory is a bit paradoxical to model within dual process theory.  We use facts 

in our conscious deliberations yet acquire and retrieve many of these facts implicitly (i.e., we forget 

where we acquired them).  Squire and Kandel hint that semantic knowledge may form without 

effort by System 2. 

Semantic knowledge is thought to accumulate in cortical storage sites simply as 
a consequence of experience (p. 106) 

Semantic knowledge is only useful to our conscious deliberations (System 2), yet we acquire facts 

tacitly (System 1)?  The same tacit acquisition seems to be true of symbolic representations.  For 

example, toddlers learn to speak without consciously memorizing words.  Language impacts how 

we think, perhaps not to the extent Vygotsky suggested, even when most language ‘instruction’ 

comes as informal corrections (e.g., “it’s taken not tooken”).  Vygotsky noted the importance of 

culture, as expressed in language, on our development, yet culture is rarely explicitly described.  

Similarly, Piaget’s notion of the schema also seems to capture the implicit acquisition of facts.  He 

reasoned that experts remember more because of their superior ability to restructure their schema 

logically, yet do experts consciously decide where best to ‘store’ a fact?  Bruner’s iconic 

representation provides a simpler model: people with a large base of experience (enactive) acquire 

facts (symbolic) easier because they are easier to associate with existing ideas (iconic).  Bruner’s 

set of representations may not help describe how we form memories, but how we recall them. 

 Episodic memories associate various facts with additional details about times and places 

to form stories.  Squire and Kandel described research on the differences in brain activity when 

people recall episodic versus semantic memories.  Episodic memories activate the regions that 

store semantic memories but also the medial temporal lobe (MTL).  The MTL includes the 

hippocampus – spatial memories and is critical to forming long term memories – and the amygdala, 

which manages emotions.  The hippocampus and amygdala connect and blend memories 

throughout the brain and span cognitive and ‘non-cognitive’ activity.  Our brain does not catalog 

episodic memories in a special area of the brain, like shelves of video recordings.  Rather the MTL 

serves a vital role in constructing episodic memories from the various regions where memories of 

facts, sensation, and emotions reside – literally constructing knowledge.  Educators do not seem 

to consider a significant difference between semantic and episodic memories, but they may hold 
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the key to understanding problem-solving.  Bruner’s iconic representation seems to describe a 

similar if not the same phenomenon in describing the construction of knowledge. 

7.3.2 Prospection: the expert’s secret weapon? 

Researchers have frequently referred to the undefinable something that experts take years 

to develop and is often chalked up to intuition (see Section 2.3.3).  We may never capture exactly 

how every expert think but the theories of cognition and learning, as well as findings reported by 

neuroscientists, may help make shrewd educated guesses.  Neuroscientists describe prospection as 

a model for how people plan `by manipulating episodic and semantic memories.  Understanding 

the mechanics of prospection may provide insights into how programmers think when they plan 

their code while designing. 

7.3.2.1 The differences in expert and novice thinking 

We often marvel at an expert’s uncanny ability to string together seemingly unconnected 

ideas to imagine creative solutions to pressing problems.  It is not just that experts are faster and 

more accurate than the rest of us, but they seem to see deeper into problems and quickly leap to 

conclusions.  Fix, Wiedenbeck, and Scholtz (1993) studied the different mental representations 

that novices and experts form when reading and analyzing code.  They gave a group of ‘novices’ 

(just completed their first course) and ‘experts’ (with an average of 7 years of professional 

experience) fifteen minutes to review a small program (~130 lines of code) before taking the code 

back and asking questions about its structure.  They predicted that the expert’s superior ability to 

make mental representations would make them better at answering a variety of questions about the 

program. 

We propose that an expert’s mental representation exhibits five abstract 
characteristics, which are generally absent in novice representations  
1. It is hierarchical and multi-layered;  
2. It contains explicit mappings between the layers;  
3. It is founded on the recognition of basic patterns;  
4. It is well connected internally;  
5. It is well grounded in the program text. (p. 74) 
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Fix, Wiedenbeck, and Scholtz extracted these properties of expert memories from computing 

education literature.  The questions they asked their participants specifically queried each of these 

areas, as described in Table 7.3.   

Table 7.3 Expert and novice performance on various remembering tasks from 
(Wiedenbeck, Fix, & Scholtz, 1993) 

Characteristic Task Novices % Experts % 
Hierarchical Recall the names of procedures 41 61 
 Recall the network of procedure calls 49 86 
Explicit mapping Goal of the entire program 79 88 
 The goal of individual procedures 40 74 
 Methods of individual procedures 21 73 
Patterns Explain simple code segments 93 100 
 Explain complex code segments 43 93 
Well connected Recall important variables 56 69 
 Recall the flow of data through variables 20 51 
Well grounded Physical location of code constructs 91 93 
 Name the program units given an outline 74 98 
 Name the procedure in which a variable occurs 17 56 

Bold shows a statistically significant difference 

Novice and experts performed roughly the same on tasks that only required memorization 

or basic analysis.  Experts outstripped novices – rather dramatically at times – on tasks that 

required either additional knowledge or merely deeper analysis of the code.  Remember, each 

participant answered the questions from memory.  Experts not only acquired more information 

while reading the code, but they also formed robust mental representations of code they read (not 

executed) for only 15 minutes.  Fix, Wiedenbeck, and Scholtz created a methodology with the 

power to dissect the mental representations of programmers at various levels, which TAMP can 

explain even further. 

Of the five characteristics Fix, Wiedenbeck, and Scholtz proposed to differentiate novices 

and experts, the third that is probably the most telling.  Pattern recognition in experts is driven by 

nondeclarative memory and System 1 (remember the discussion of Chess masters in Sections 2.3.3 

and 4.2.1.1).  TAMP suggests that experts are not consciously searching for patterns, but like chess 

masters, they spring to mind and reduce the demands on short-term memory.  Experts formed 

richer iconic representations of the code’s design because their enactive representations (built over 

many years) helped to spot patterns in the code.  By contrast, most everything in the code was new 
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to the novices, and thus, they remembered less – primarily surface details.  TAMP suggests patterns 

are not a characteristic, rather the characteristic that distinguishes expertise.  Computing education 

literature has its own example of Chase and Simon’s study (1973). 

Soloway and Ehrlich (1984) presented evidence that experienced programmers’ 
comprehension was disrupted by programs that were written in an unplan-like 
way, thus supporting the idea that plan recognition must occur in 
comprehension. (Wiedenbeck et al., 1993, p. 75) 

Fix et al. added to Soloway and Ehrlich’s (1984) previous study that itself reinforced the 

similarities between chess masters and experienced programmers.  When code follows familiar 

patterns, Soloway and Ehrlich’s (1984) noted the experts performed better than when the code was 

nonconforming to coding standards.  The experts in Fix et al.’s study similarly recalled 

significantly more information about the code on questions that utilized patterns (e.g., the structure 

of the code) but about the same as novices on unstructured or mere memorization tasks (e.g., the 

names or physical location of things in the code).  Their study reinforces the connection between 

the way programmers think and the neuroscience that underlies dual process theory.  If the mental 

mechanics of programming indeed align those described in neuroscience, perhaps neuroscience 

can also hint at why novices struggle when they have yet developed the nondeclarative memories 

that drive such tasks as pattern matching within code.  

7.3.2.2 Understanding breakdowns in complex cognitive systems 

 One strategy that neuroscientists sometimes use to understand the areas of the brain 

that support specific mental activities (e.g., vision, language, emotions) is to compare uninjured 

people’s behavior and abilities to those who have suffered injuries or sickness in different regions 

of their brain.  If a person suddenly loses the ability to form new long-term memories, as we saw 

with Henry Molaison in Section 4.1, the damaged area of the brain likely plays some role in that 

mental activity.  Seeking expert programmers that suffered brain lesions seems like a slow and 

rather sad way of conducting such a study.  An analogous approach is using reports from 

neuroscience on how the loss of brain function impacts reasoning and compare with the 

deficiencies that novices seem to exhibit compared to experts. 
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Premise 1: Stories about individuals who lost knowledge or abilities due to brain lesions may 
indicate the functioning of that region of the brain.  
Premise 2: If a region of the brain is untrained, a novice might exhibit a similar lack of 
knowledge or ability compared to an expert as to those who suffered lesions to that area of the 
brain compared to a person with an undamaged brain. 
Conclusion: We can theorize the type of the missing knowledge an untrained or undertrained 
people lacks based on the types of struggles they exhibit. 

This section explores this proposition by considering how the brain processes language and what 

happens when key language centers of the brain suffer damage or go untrained. 

Exploring when our language abilities go wrong 

 Speaking, writing, or using signs to express language utilizes several areas of our brain 

beyond our conscious reasoning.  Most language production is implicit, and as such, damage to 

one of the affected areas can have startling effects.  For instance, when damage occurs in Broca’s 

area of the brain, people understand but can no longer produce coherent language through speech, 

writing, or even sign language.  For example, one such sufferer described the plot of Disney’s 

Cinderella. 

Cinderella… poor… um ‘dopted her…scrubbed floor, um, tidy…poor, 
um…’dopted…Si-sisters and mother… ball. Ball, prince um, shoe. (Eagleman 
& Downar, 2016, p. 340) 

The speaker clearly knew the story of Cinderella but seemed unable to organize their words into 

proper sentences.  The participants described the essence of the story, but with no sense of grammar.  

Broca’s area aids in the transformation of ideas into proper sentences, but not comprehension so 

sufferers can understand others (except perhaps when the message includes complex grammar) 

and are aware of their own difficulties in communicating.  Broca patients are often frustrated by 

their sudden impairment.   

Another area of the brain also impacts language, but in a very different way. Patients 

suffering damage to Wernicke’s area struggle to comprehend language.  They cannot understand 

spoken or read, even if they are speaking, as demonstrated in Figure 7.2. 

Examiner: is your name Brown? 
Patient: Oh mistress triangland while listen you walking well things things this 
for for thee. 
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Examiner: Okay, just say “yes” or “no.” Okay, is your name Brown? 
Patient: What it is here, then let me see.  I just don’t know. No I’m not going to 
an eat sigh no.  

Figure 7.2. An example of Wernicke's aphasia, from (Eagleman & Downar, 2016, p. 342) 

Whereas Broca patient chooses appropriate, if ungrammatical, words, the Wernicke patient utters 

somewhat grammatical nonsense.  Damage to Wernicke’s area corrupts the meaning of language 

from any source (e.g., spoke, written, signed), including oneself.  Unable to comprehend their own 

communications, they are unaware of their malady, if perhaps a bit confused at times that people 

do not understand their words. 

 The afflictions of Broca and Wernicke patients tell us much about how the brain segments 

memory and skill.  The consumption and production of language occur in very separate regions of 

the brain also, counter to Vygotsky’s theory, separated from the rest of our reasoning.  The 

struggles of novice programmers may follow similar patterns.  Some students write extensive code 

that has no hope of compiling (they are unaware they are producing syntactic nonsense).  Other 

write compiled and even runnable code that bears little resembles the desired goal (it works but 

does not solve the problem).  Still others are so aware of their struggles with syntax they produce 

nothing at all.  Our brain compartmentalizes even seemingly related skills that may not function 

as desired until the entire network is working properly.   

Since the brains of novice programmers are presumedly undertrained rather than damaged, 

it would be helpful to see the impact of the lack of education and experience.  We can see the 

impact of an undertrained language center by revisiting the impact of the tragic isolation and under-

stimulation that Genie (see Section 4.2.2.1) and other such ‘feral children’ suffered. 

The fact that Genie is able to understand all these questions shows a more 
developed cognitive ability than is found in children whose grammars are more 
highly developed, but whose cognitive age is below hers.  (Curtiss et al., 1974, 
p. 541) 

Like Broca’s patients, Genie could understand questions, but could not reply in grammatical 

statements.  It seems without the years of practicing speech with others, her ability to speak 

mirrored that of those with brain lesions in that critical area.  Comparing Genie to younger children 

who received the interactions she was so cruelly denied shows they were able to use grammar 

better even when they were not as adept at other cognitive tasks.  Genie’s sad case shows that a 
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lack of training can have the same impacts that we see in people with brain damage, not to mention 

the importance of practice in some aspects of learning. 

After years of patient training, Genie’s language improved (Curtiss et al., 1974), but the 

delay in acquiring language only underscores the importance of System 1 in many critical tasks 

we may otherwise consider part of conscious reasoning.  No amount of intellect, or patience, or 

determination can overcome some deficits within System 1.  Experts (and for some basic tasks, 

everyone) do things faster and need to dedicate less effort and attention because of their rich store 

of enactive representations.  How can unconscious, nondeclarative memories help in simple tasks 

like remembering code or complex tasks like designing new code? 

The various theoretical building blocks discussed so far hint at the role of tacit knowledge 

in complex cognition, yet individually may not provide a complete picture.  Dual process theory 

describes the role of priming in providing System 2 with relevant memories to use in problem 

solving.  Bruner’s representations offer a model for how the mind organizes knowledge during 

problem-solving, but the mechanics of iconic representations remain somewhat abstract.  One 

somewhat obscure theory from neuroscience, prospection, may provide a model to describe the 

mechanics behind iconic representations and the various types of memory involved in planning. 

7.3.2.3 Understanding prospection 

Neuroscientists tell us our episodic memories are not only recreated each time we recall 

the past, but the same mechanism applies when we think of future events.  When reminiscing, our 

mind assembles facts, places, and, most importantly, the timeline of the events into a story of the 

past.  Tulving (2005) proposed that the same mechanics apply to imagine potential futures.  

Prospection, or “remembering the future” (Eagleman & Downar, 2016, p. 282), informs our plans 

based on our past experiences.   Semantic and episodic memories, being declarative, share many 

traits: quickly adding new information, consciously recall information and conscious reasoning 

but, 

It is important to note that neither semantic nor episodic memory as defined here 
depends on language or any other symbol system for its operations, although 
both systems in humans can greatly benefit from language.  (Tulving, 2005, p. 
12) 
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Tulving supports Vygotsky’s assertion that language improves how our brain operates but perhaps 

not as Vygotsky intended.  We do not ‘need’ language to form memories, but it helps in revisiting 

them.  Our mind uses language as a conduit for sharing information, but not as ‘inner speech’ to 

mediate our memory.  Bruner’s separation of language (symbolic) and action (semantic) offers a 

better model for describing expertise.  In programming, we can see the same disconnect between 

language and action in teaching students to trace, explain, and write code.  Tracing requires little 

or no planning (prospection), as the programmer can navigate the code one line at a time.  

Explaining requires enough prospection to connect the translate the semantic meaning of the 

code’s language constructs with imagined execution (or in making sense of observed executions 

of the code).  Designing/writing code requires not just a connection between purpose and the 

appropriate language constructs, but the mental simulation of the constructs in action to 

propose/predict the desired effect.  It seems a deficiency in any area of programming knowledge 

results in an inability to produce novel solutions in code. 

 Benedict Du Boulay (1986) proposed a division between syntax and execution in learning 

programming languages quite some time ago, as discussed in Chapter 2.  He listed developing a 

notional machine separate from learning the syntax and semantics of a language, saying, “The 

semantics may be viewed as an elaboration of the properties and behavior of the notional machine” 

(p. 57).  Du Boulay seems to agree that enactive representations support the formation of symbolic 

representations better than the other way around.  His 1986 article is a bit of a departure from the 

introduction of the notional machine five years prior, where he suggested that lecturing about the 

language was a way to initiate the notional machine.  Learning syntax and semantics alone do not 

form the notional machine, rather they grow in parallel, perhaps supporting each other.  Building 

a notional machine is only part of becoming a programmer. 

If you remember the discussion from Section 2.1.2, Du Boulay’s list did not stop with the 

notional machine; he also added the need to learn patterns and pragmatics.  Pragmatics consisted 

of the tools and processes of writing code, but more important to this discussion is the idea of 

“standard structures, cliches or plans that can be used to achieve small-scale goals” (p. 58).  

Episodic memories do not merely organize facts but include a structure to the story.  When the 

story has a familiar structure – follows a familiar pattern – then it is easier to remember as we saw 

with chess masters and expert programmers.  Patterns seem to be echoes of past code projected 
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into future designs, and if the mechanics of prospection apply to design as to planning, form the 

foundation of problem-solving. 

An example of prospection gone awry 

 To understand the value of prospection, it is helpful to understand what it looks like when 

it is lost.  Tulving (2005) told the story of a young man, K.C., who received a traumatic head injury 

in a motorcycle accident.  K.C.’s cognition was generally unimpaired except for his episodic 

memories.   

His thinking is clear, his intelligence is normal; language is normal, he can read 
and write; he has no problem recognizing objects and naming them; his imagery 
is normal (he can close his eyes and give an accurate visual description of the 
CN Tower, Toronto’s famous landmark); his knowledge of mathematics, 
history, geography, and other school subjects is about the same as that of others 
at his educational level; he can define and tell the difference between stalagmites 
and stalactites; he knows that 007 and James Bond are one and the same person; 
he can play the organ, chess, and various card games; his social manners are 
exemplary; and he possesses a quiet sense of humor. (p. 23) 

K.C.’s accident left him unable to form episodic memories.  He could tell you facts about his past 

(semantic memories) – when he was born or recognize the house he grew up in – but could not tell 

a single story (episodic memory) that occurred within that home.  The damage only seemed to 

impact his episodic recall until realizing he could no longer use facts and general reasoning to 

make plans. 

When he is asked to describe the state of his mind when he thinks about his 
future, whether the next 15 minutes or the next year, he again says that it is 
“blank.” Indeed, when asked to compare the two kinds of blankness, one of the 
past and the other of the future, he says that they are “the same kind of 
blankness” (p. 26) 

Trying to remember past or plan future events evoked the same feeling for K.C.  He could function 

normally except for any task requiring forethought.   

He probably also could, if necessary, walk to the supermarket, and (if he has 
written down what he needs, if he has not forgotten that he has the list in his 
pocket, and if he has not forgotten to take money with him), he could fill the 
basket and walk back home. (p. 29) 
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K.C. could function in the moment and conduct procedural tasks but could not place himself in a 

future scenario and plan accordingly.  Prospection relies not just on facts, but on ordering and 

traversing facts in a useful manner.   

Like Henry Molaison, K.C. suffered damage to his hippocampal region.  Looking at other 

patients, a group of researchers systematically tested how hippocampal damage impacts the brain’s 

ability to imagine new experiences (Hassabis, Kumaran, Vann, & Maguire, 2007).  They compared 

five amnesiac patients with ten control subjects asking them to describe in rich details exotic yet 

familiar locations, such as a sandy beach or busy museum.  Four of the five amnesiac participants36 

described their imagined locales with little detail beyond semantic cues. 

As for seeing I can’t really, apart from just sky.  I can hear the sound of seagulls 
and the sea… um… I can feel the grains of sand between my fingers… um… I 
can hear on of the ship’s hooters (p. 1727) 

The content that this amnesiac participant includes is like that of the control group but without 

traversing the imagined world.  Both groups describe the sights and sounds from a beach, but the 

example from the control group actively navigates through those experiences.  Hassabis et al. 

confirmed that the amnesiac participant’s deficiency was not due to any short-term memory loss; 

they did not forget the task as is common in hippocampal lesions.  They remained focused without 

reminders of their goal.  The example above shows that they seem to remember relevant details 

but could not construct a meaningful story37. 

 Tulving (2005) makes it clear that episodic memories (in people and the animal kingdom) 

are not essential to survival, and creatures can even thrive using semantic memories alone.   

Semantic memory also allows an individual to construct possible future worlds, 
but since it is lacking autonoetic38 capability, it would not allow the individual to 
mentally travel into his own personal future. (p. 19) 

 
36 The fifth patient scored well on the exercise, seemingly because of the comparatively limited damage to their 
hippocampus.  This individual still retained the ability to produce some semantic memories and thus seemed to retain 
the ability to imagine rich experiences. 
37 Remember this story when considering the novice programmers in Section 8.2 who write code with no meaningful 
purpose or overall design.  They have semantic memories about coding but struggle to connect these facts to produce 
a solution to a seemingly familiar problem. 
38 Autonoetic at a minimum refers to a person’s awareness of their existence within time.  Tulving (2005) said that 
only humans are autonoetic and thus can make rich future plans.   
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K.C. did not require episodic memories to go about his daily tasks, perform mathematical 

operations, or even create strategies in chess or card games.  What he and other people with 

similarly afflicted brains cannot do is create or visit imaginary worlds.   

There is no need whatsoever for any temporal marker to be attached to and 
retained about the learned facts of the world. The facts can be put to good use by 
the owner of a semantic memory system regardless of whether episodic memory 
is functional or not. (p. 19) 

People use facts when considering the here and now, but the facts alone are insufficient for 

planning.  The amnesiacs in Hassabis et al.’s (2007) study started to form an imagined world but 

struggled to connect the facts across time.  It seems that rational thinking alone is not enough for 

planning.  Performing an immediate mental task is different from planning for the same task in the 

future – ironically, the heart of a programmer’s work, automating future tasks.  If people like K.C. 

can function ‘normally’ in the present, what do they lose after damage to the hippocampus? 

The hippocampus, prospection, and iconic representations 

Animal testing can help shed light on the role of the hippocampus in learning.  Squire (1984) 

researched animals’ ability to transfer knowledge between tasks. 

Subsequent transfer tests then demonstrate that normal animals and the animals 
with damage to the hippocampal system have acquired different kinds of 
knowledge. The normal animals have acquired a flexible representation that can 
be expressed in new ways. (p. 237) 

Animals who acquire both declarative and nondeclarative memories become more flexible 

problem-solvers than those whose damaged hippocampus prevents the formation of declarative 

memories.  Squire noted that animals form nondeclarative memories slower when they cannot 

form declarative memories.  System 2 enhances the development of System 1, presumedly through 

conscious feedback based on quickly learned corrections39.  Squire’s work with animals reinforces 

the importance of combining Bruner’s representations with dual process theory.   Bruner modeled 

this ‘missing link’ as iconic representations that blend symbolic (semantic) and enactive 

(nondeclarative) knowledge.  To answer the question posed at the end of the last paragraph – what 

 
39 As an example, I might learn to throw a frisbee with enough trial and error but remembering the advice my coach 
gave me speeds up the corrections I need to make in my body positioning and movements. 
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is lost when the hippocampus is damaged may be the ability to navigate iconic representations 

through imaginary scenarios. 

 Prospection may relate to how programmers design software.  Prospection’s role in design 

is compelling but entirely theoretical at this point.  I find prospection useful and promising for two 

reasons.  First, stories like K.C.’s seem very similar to the struggles of advanced novices.  K.C 

displayed procedural abilities equal to most people yet struggled to organize these skills in 

preparing for future events.  Some novice programmers show promise in all areas of learning to 

program up to the point where they must write original code.  Chapter 8 will introduce examples 

where some students perform well when properly supported, while others seem to crumble without 

support.  Second, even if the model is merely analogous (does not use the precise regions of the 

hippocampus), the mechanics of prospection may still apply to how another region of the brain 

assembles and navigates knowledge for creative planning.  TAMP does not seek or need an exact 

map of the brain regions involved in programming, so long as the theoretical constructs align with 

the mechanics of the brain’s functioning.  If TAMP captures the general way expert thinks and the 

mechanics that describe such thinking, it may be possible to pair the ‘symptoms’ of novice 

struggles with the types of mental representations that they need to develop and the types of activity 

that would be the most beneficial.   

7.4 Contextualizing Bruner’s representations within TAMP 

 Bruner’s representations and dual process theory describe the mind at different levels of 

abstraction but seem to agree on the underlying mechanics.  Enactive representations model the 

memories used by implicit and automatic System 1.  System 2 calls upon iconic representations 

that blend reflections on experiences and integrate with formal learning.  Symbolic representations 

are enigmatic since they reside within each System at different points in time given practice.  A 

person first encounters symbolic knowledge from an authoritative source outside their personal 

experience.  Symbolic knowledge is the information that comes from external sources (e.g., books, 

lectures, etc.) that forms the basis of symbolic representations.  Each person acquires and retains 

symbolic knowledge quite differently from the next.  Bruner and Vygotsky noted that people 

acquire symbolic systems more quickly when they already understand the concepts.  Section 7.3.1 

noted that declarative memories fade when replaced with nondeclarative skills if the facts are no 
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longer useful.  While skill alone may be sufficient for some tasks (e.g., tracing), the model of 

prospection as a guide for design thinking suggests that retaining some declarative memory may 

be essential to planning.  Bruner suggested that his iconic representations modeled such mental 

problem-solving, yet his distinctions between iconic and symbolic representations are not always 

clear. 

 This section looks to provide refined and perhaps enhanced definitions of Bruner’s 

representations grounded in dual process theory and relevant findings from neuroscience.  At this 

point, it may be fair to classify TAMP as a neo-Brunerian theory.  I intend to align with the spirit 

and description of Bruner’s representations rather than imagine new constructs.  I prefer to reuse 

– repurpose, refine, enhance, or whatever word seems most apt – as Bruner's constructs provide a 

strong body of literature from which TAMP can expound.  If my ideas prove incompatible with 

Bruner’s (but valid), future authors should assign new names, but I prefer to reconcile nuances and 

discrepancies rather than avoid them for now.  Table 7.4 offers a summary of how this section 

revisits Bruner’s representations and ties each to concepts from neuroscience and dual process 

theory. 
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Table 7.4. Overview of how TAMP revisits Bruner’s representations 

Representation TAMP ‘differences’ 

Enactive TAMP changes nothing from Bruner’s original definition of enactive 
representations.  It reinforces Bruner’s description by tying enactive 
representations to the neuroscience of nondeclarative memories and the 
characteristics of System 1.   

Iconic TAMP seeks to clarify ‘iconic as imagery’ to reinforce the important role 
iconic representations play in learning and problem-solving.  Bruner hinted 
at but never clarified why iconic representations are essential.  TAMP ties 
Bruner’s main role for iconic representations – the intermediary between 
other representations – to the neuroscience concepts of episodic memory 
and prospection.  Prospection, the brain’s ability to manipulate memories 
to plan for the future, uses the same mechanism as recollection, only to plan 
rather than remember past events.  Iconic representations within TAMP still 
serve the roles Bruner described. However, by adding prospection, 
researchers might discover new ways of measuring different types of 
learning and how they contribute to problem-solving. 

Symbolic TAMP directly tackles the dual nature of symbolic representations: 1) 
understanding a new system of symbols and 2) acquiring the knowledge 
those symbols offer.  TAMP distinguishes the liminal stages of acquiring 
mastery over a system of symbols.  At first, a person may work to 
understand a new system of symbols by forming symbolic representations 
(i.e., facts about syntax and grammar).  Given time, this knowledge 
becomes implicit within enactive representation, and working within a 
system of symbols becomes automatic (which is the primary pathway by 
which children acquire language).  To truly master a system of symbols 
requires a person to develop enactive representations for reading and some 
tasks producing symbols. 
 
Bruner’s notion of symbolic representations are essential since they model 
‘external’ information that people socially acquire.  What remains beyond 
a system of symbols is a set of facts that seem to align with the concept of 
semantic memories from neuroscience.  TAMP uses Bruner’s split between 
iconic and symbolic representations to provide a model of cognition and 
learning that encapsulates neuroscience’s division between semantic and 
episodic memories. Adding the mechanics of memory reinforces and helps 
to explain the transient nature of knowledge between representations. 

7.4.1 TAMP and Bruner’s representations 

This section revisits Bruner’s representations to refine their meaning and scope using dual 

process theory and insights from neuroscience.  The following three propositions, in logic book 
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form, encapsulate the expanded definition of enactive, iconic, and symbolic as well as providing 

an advanced organizer for the rest of this section.   

Enactive Representations 

Premise 1: The descriptions of enactive representations, System 1 processes, and nondeclarative 
memory all match at a level of abstraction useful for TAMP 
Premise 2:  Enactive representations describe specific content (e.g., a habit, skill, perception) 
stored in nondeclarative memory 
Premise 3: Enactive representations are the memories formed in and used by System 1 
Conclusion: Enactive representations, System 1, and nondeclarative memory are all 
synonymous within TAMP 

 

Symbolic Representations 

Premise 1: Symbolic representation model data with ‘truth’ from some other source and 
sometimes a new set of symbols with which to share knowledge. 
Premise 2: Symbolic systems contain knowledge that eventually fits into both semantic (e.g., π 
= 3.1459) and nondeclarative memories (e.g., basic addition). 
Premise 3: Symbolic representations only contain ‘static’ knowledge, such as facts or the steps 
in a procedure. 
Conclusion: Acquiring symbolic representations includes nondeclarative memories (e.g., 
grammar, processing of symbols), and semantic memories.  Complete semantic representations 
(i.e., masterful learning) spans both System 1 and System 2. 

 

Iconic Representations 

Premise 1: Bruner described the conscious uses of iconic representations thus they model 
declarative memories 
Premise 2: Iconic representations support other types of learning: generalizing experiences and 
integrating experience with facts 
Premise 3: Since iconic representations blend experiences and symbolic facts, they model 
episodic or some equivalent structure 
Premise 4: Bruner places iconic representations as key to problem-solving, requiring the mental 
manipulation of concepts in novel ways 
Conclusion: Iconic representations model the mechanisms of recall described in prospection, 
making them essential for many types of problem-solving. 

7.4.2 The duality of symbolic representations 

 Chapter 4 suggested that symbolic representations are a special type of learning rather than 

a third mechanism of cognition missed in dual process theory.  On the one hand, distilling symbolic 
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representations into only System 2 processes would provide a clean mapping between Bruner and 

dual process theory: System 1 = enactive and System 2 = iconic + symbolic.  On the other hand, 

eliminating symbolic representations from our lexicon overlooks a crucial distinction between 

semantic and episodic memories.  TAMP proposes a few refinements to symbolic representations 

based on the transient nature of learning and the duality of our memories.  The first refinement is 

epistemological.   

7.4.2.1 Knowing how to use symbols and knowing that they mean something important 

TAMP models the ‘fluency’ aspect of symbolic representations as transitioning of 

knowledge from symbolic to enactive representations.  The first time a novice sees source code, 

they likely do not comprehend its meaning or possibly get the wrong idea what it means (based on 

what the words mean in English, not the programming language).  By recalling instruction and 

interrogating reference materials, they reason out the meaning of constructs much the same way 

we might decrypt a secret message with a simple cipher.  The process relies on System 2 and 

growing declarative memories, and many students quickly develop some level of automaticity at 

the same time40.  In short order, a novice ideally has enough practice to develop the intuitive feel 

for code that Boulay called the notional machine.  By the end of their first year or two of coding, 

a programmer should develop strong enactive representations of code that unlock automaticity in 

reading, tracing, and even writing code.  The important distinction in this process: novices use 

different cognitive processes for the same programming tasks over time.  TAMP suggests not only 

why but how this transition might manifest itself in their performance. 

The evidence of this transition appears regularly in anecdotal stories and empirical research.  

The simplest example is when a student answers conceptual questions well on the first exam only 

to forget the answers on the final exam.  Their forgetting can partially be attributed to the nature 

of declarative memory (unused knowledge fades), but all the more confusing when the 

programming student forgets the semantics of a construct they use perfectly in their coding.  

Perkins and Martin (1985) likely observed a similar transition in some types of fragile knowledge.  

 
40 Even up to the point of writing this, I am struggling if it is more accurate to consider this mix of facts and action 
(the student is presumedly tracing, writing, or otherwise working with code in action) as an iconic representation, but 
I believe that keeping the name of symbolic for this stage helps to differentiate learning about the language and 
learning of design.  The mental process is probably more fairly considered iconic, per the definition given in Section 
7.4.3, but for convenience/clarity sake I think it is worth preserving the idea of a symbolic representation. 
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Their protocol had researchers start with a prompt that helped a good percentage of students with 

little more than context clues.  When the researcher’s hint instill action, it triggered a dormant 

enactive representation that had not recognized its relevance to that problem.  Students who 

required a hint lacked enactive representations, but the hint activated the associated symbolic 

representations and allowed System 2 to tackle the problem.  These examples provide early 

evidence not only of Bruner’s representations in action but their connection to neuroscience 

principles and computing education.   

If the automaticity aspects of symbolic representations (e.g., syntax, grammar) with 

practice transition to enactive representations, then symbolic representations are easier to model.  

TAMP simplifies the role of symbolic representations to simply containing facts (semantic 

memories).  Bruner’s model intertwined the processing of symbols with the facts those symbols 

represent.  His enactive representations describe automatic processing, but like many before him, 

he does not distinguish between the conscious and automatic processing of language that Brocha 

and Wernicke patients so easily demonstrate.  A loss in language processing is not a loss in 

reasoning or knowledge.  A person with Brocha’s aphasia is aware of and unable to correct their 

speech.  Wernicke sufferers function normally outside the inability to express their ideas.  Not 

understanding a new system of symbols (e.g., programming syntax) will hamper early learning, 

but as we see in programming, mastering basic coding skills alone does not make a full 

programmer.  The interesting aspect of symbolic representations, as Bruner described them, is not 

a new notation so much as their externality.  They are knowledge devoid of or in conflict with 

personal experience.   

Imagine sitting down to lunch with your local priest at a café in Frombork, Poland.  It is a 

warm summer afternoon in 1515 after a harsh winter that saw the Thames freeze and terrible 

flooding in Krakow.  Over a glass of wine, your dining partner reveals that the Sun you are 

enjoying is not, in fact, moving across the sky.  The Earth is instead rotating as it circles the Sun.  

You say, “Nicolaus, am I not to trust my own eyes?”  He tells you that he has been observing the 

heavens, and his observations and calculations tell him it must be so!  Father Copernicus is 

attempting to alter the way your enactive representations describe the world by providing you with 

the conclusions of his observations and deliberations.   

Copernicus did not need a new system of symbols to construct or even to share his idea.  

The symbols of mathematics helped to derive his evidence, and conventional language is sufficient 
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to convey the idea of a rotating Earth.  What makes the heliocentric view challenging is its 

dissonance with lived experience.  Hundreds of years later, a small group of the population still 

debates the shape of the Earth and rejects symbolic knowledge over their own experience.  Our 

decision making does not always give equal weight to facts and use them evenly in our 

deliberations (even when we trust them).  A person may remember something but never put it to 

use in their decision making.  For example, knowing the calorie count of your favorite take-out 

meal does not help unless you choose to order a healthier option.  At the same time, certain types 

of knowledge may not influence decision making even when it should.  Is it important that a 

programmer remembers the number of bytes assigned to various integer and floating-point data 

types?  For the most part, my choice of data types is dictated by habit (and convenience) rather 

than a careful analysis of the memory and throughput needs.  Like most questions of this nature, 

the answer depends on the circumstances.  TAMP suggests that merely remembering such facts 

may not always improve a fledgling programmer’s decision making.  Symbolic representations are 

distinct from other types of knowing because they are ‘external’ and may not influence reasoning 

by simply being remembered via decontextualized memorization. 

Piaget proposed that we learn through assimilation and accommodation, yet his 

differentiation between these processes was hazy at best.  Assimilation occurs gradually as each 

new experience refines our mental model of the world, yet the confirmation bias (Kahneman, 2011; 

Nickerson, 1998) makes us equally likely to ignore outliers and prefer cases that support our 

perspective.  Symbolic knowledge alone, even if remembered, may not change our thinking.  

Major shifts in reasoning require accommodation, an abrupt shift to our schema that occurs only 

when our internal model of the world no longer reflects our experience.  Symbolic knowledge 

might offer a reason for our mind to enact such an abrupt shift, but only if the person dedicates 

System 2 to curbing System 1’s automatic response.  They must work through the dissonance that 

Piaget called disequilibrium when Systems 1 and 2 disagree.  Assimilation and accommodation 

are apt descriptions of the learning process but do not account for a learner’s “resistance” to new 

information.  Reimagining Piaget’s model with the other theoretical constructs within TAMP 

provides a clearer picture of this transition.  Accommodation is most likely to occur when either 

the individual dedicates to changing their enactive representations to accommodate conflicting 

symbolic representations, or after enough examples that enactive representations begin to shift 

tacitly. 
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7.4.2.2 Transient states of knowledge in learning to program 

If it were not enough that experts may possess ‘more’ and ‘different kinds’ of knowledge 

than novices, we now know they also store knowledge differently.  The unexpected speed 

Wiedenbeck (1985) observed in experts comes from their store of enactive representations 

powering their System 1.  Years of practice may also expand the breadth (i.e., transferability) of 

such skills, but semantic memories might fade if they are not relevant to daily activities.  Thus, 

experts quite literally forget more about a subject than many novices might know.  Early in my 

career I worked extensively on the Ada programming language, even writing papers analyzing and 

proposing extensions to the language (T. Lowe, 1999a, 1999b).  When I first start to learn Java, I 

had a hard time learning its conventions (especially camel case), yet as I write this, I could not 

write a simple program without extensive research.  I can remember arcane details (semantic 

memories) of Java because of my roles as an instructor and developer for two decades, but without 

seeing Ada code I cannot recall even the symbols that indicate a comment.  The average 

practitioner – and even most exceptional ones – have little need for encyclopedic memories that 

mostly go unused, so our brain focuses on what we see the most.   

The ideal state of knowing is the combination of knowing that and knowing how the 

problem-solving at hand requires.  I believe that I, and likely other educators, remember arcane 

rules about programming languages more readily than others because teaching forces me to deal 

with rules of syntax and semantics.  There are plenty of areas of programming that I have not 

taught and thus have less ability to explain than I do in performing.  This section includes an 

example of a recent time where I ‘forgot’ useful programming knowledge for a bit, before 

considering how knowledge might transition between mental representations as novices learn. 

A tricky test question 

Programming offers an excellent example of the way knowledge shifts from declarative to 

nondeclarative memory, the split between symbolic and enactive representations.  Section 5.2.2 

suggested that inexperienced programmers rely on System 2 when tracing until enactive 

representations take over the mundane tasks of mental execution.  Squire and Kandel (2003) 

remind us that a side effect of transitioning knowledge to nondeclarative memory is sometimes the 

fading of unpracticed details.  Given that warning, answer the following question. 
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double area; 
double volume; 
double length = 2; 
double PENTAGON = 6.88; 
volume = 1 / 4 * PENTAGON * pow(length, 3); 
printf("Volume: %.1lf\n", volume); 

Which of the following is the first line of output generated by the program above? 
A) Volume: 13.8 
B) Volume: 13.7 
C) Volume: 0.0 
D) None of the above. 

Figure 7.3. A tricky programming question that tests very specific semantic knowledge that is 
potentially at odds with System 1 

The question in Figure 7.3 asks the student to predict the output of the code, which seems 

to be computing the volume of a pentagon.  I encountered this question when a student in my 

Matlab class asked if I could help them understand why they missed this question in their C class.  

The answer key said the correct answer was C, which was not my intuitive answer.  My attention 

immediately turned to the expression “%.1lf”, which I first took as eleven-f, but is actually “1LF”.  

Since Java and Matlab use f for float, not lf (long float) when printing out floating-point numbers, 

the unusual syntax caught my attention, but I knew the printf statement should only format and 

print the value, not force it to be zero41.  I was a bit stumped.  Since the printing is an unlikely 

culprit, I calculated the volume using the following steps: 

volume = 1 / 4 * 6.88 * pow(2, 3); 
volume = 1 / 4 * 6.88 * 8; 
volume = 6.88 * 2; 
volume = 13.76; 

Insert the values 
Compute the power* 
Simplify the easy expression 
Do the hard math 

 * I think I did the pow first because I do not use this regularly, so I had to attend to the unusual 
operation first and get it out of the way before I had to remember other computations 

The student and I agreed, for the moment, the correct answer should be A or B since the question 

seems to test knowledge about rounding, but the key said the answer was C.  Did you catch my 

error in tracing the code?   

 
41 Notice, my System 1 was drawn to the syntax that did not match what I expected.  In considering the rules of printing 
text System 2 guessed that this unfamiliar syntax was not the likely cause of the program printing zero, but this 
example seems even further proof of System 1’s influence in how ‘experts’ read code. 
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The instructors designed a problem that requires perfect mastery of data types and the order 

of operations, which are at odds with mathematical intuition.  My System 1 primed System 2 with 

the skills required for a math problem, so my lazy System 2 simplified the task by reducing the 8 

and ¼ to 2.  The problem could not be about rounding since the answer key insisted the correct 

answer was 0.0.  My mind thrashed through possible explanations until the “ah-ha” moment struck.  

Unlike the poor students taking the exam, I had the advantage of knowing the answer and could 

activate the requisite (dusty) memories.  The correct trace of the code, attending to order of 

precedence should have been 

volume = 1 / 4 * 6.88 * pow(2, 3);42 

volume = 0 * 6.88 * pow(2, 3); 

The semantics of C places division and multiplication at equal precedence and processes the 

operations from left to right.  The 1 and 4 are both integer literals43, and thus when divided, the 

result of ¼ is rounded to zero.  Did my 25+ years of programming knowledge suddenly become 

fragile? 

 The pentagon question is particularly tricky as it potentially triggers competing knowledge 

bases (math versus programming).  System 1 offers quick answers to the math problem, made all 

the more seductive under the pressure of a timed test.  A student would need to have operated like 

the computer, procedurally working through each operation, to have a chance.  In many ways, 

advanced novices have a better shot at correctly answering this question than even experts.  

Attentive students may have picked up on a hint to study the semantic rules of operator precedence 

and integer literals in preparing for the test.  Students who have yet to develop or still distrust their 

intuition may consider the problem more carefully.  My knowledge was hardly fragile, just 

obscured by the context and presentation; within a minute, I activated the proper semantic 

memories (neuroscience) of the C language’s semantics (computer science).  Cartesian models of 

cognition (see Section 4.1) place the blame on students for questions that prey on the natural 

process of learning.   

The pentagon question is not exactly unreasonable, but perhaps unfair through the lens of 

TAMP.  The author of the question probably felt that giving away too much would make the 

 
42 I cannot remember if the function call would happen first, and I don’t have a C compiler handy.  Perhaps the power 
call would happen first, but the point is trivial, yet I do want to acknowledge a potential oversight for those who are 
quite detail oriented.  You have a wonderfully trained System 1 or 2. 
43 A literal is a data values typed directly into code (e.g., 1, 3.14, “Hello”) 
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question trivial that for an expert it probably would.  I do not believe it would do so for most 

novices.  This question is particularly unfair because of the similarity to computations in math.  

The problem even fooled me as an ‘expert’ who has regularly made similar mistakes.  More 

importantly, what is the purpose of testing such specific knowledge?  The question was on a 

‘paper-and-pencil’ test, but given a compiler and runtime environment, the mistake would be 

instantly visible.  It may take a few minutes to correct the mistake, but ironically the problem 

already violates a coding standard – avoid magic numbers (i.e., hard-coded numbers without 

context).  An effort to create a testable idea created a problem that both tricks System 1 and 

probably does not test knowledge that is important to experts while designing code.  Chapter 9 

will consider other such pedagogical implications, but for now, it serves as a reminder that during 

the learning process, knowledge transitions between memory structures as TAMP describes using 

Bruner’s representations. 

Changing mental representation while learning basic coding skills 

 Bruner’s representations help us to model the transient nature of programming knowledge 

as students mature.  For example, a novice may follow a learning process similar to Figure 7.4, 

which annotates the different stages of mental representations.

 

Figure 7.4. The mental representations created when learning a language 
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The hypothetical learning path in Figure 7.4 uses common pedagogical activities from Chapter 2 

as a prototypical curriculum.  Students completing each activity would likely form the annotated 

mental representation.  The dotted lines show how different mental representations interact, for the 

most part, the ‘higher’ ones helping to form the ‘lower’ ones. 

Traditional lectures, live or recorded, provide students with knowledge (e.g., the rules of 

syntax and semantics) that form Symbolic representations of code.  Students retain these facts (e.g., 

operator precedence, how integers work) in semantic memory.  Many instructors include worked 

examples portraying a computer simulating or an expert tracing the code.  The tangible results of 

the execution form a new symbolic representation– log files, text on a screen, or for tracing, 

sketches whether ad hoc or using structures like tracing tables.   As code executes, students must 

also acquire Symbolic representations of output to make sense of the results 44 .  Just like a 

programming language has a syntax, the output of programs presents some set of symbols for 

describing the results of program execution.  Unlike a programming language, the symbolic output 

of a programming language might change based on the author of the code, which means that 

connecting the results of the code with the language constructs can become a dynamic target if the 

code does not follow consistent standards for how it outputs information. 

To understand the nuance of coding constructs, students must learn to distinguish the 

nuances within the results.  In addition to learning the language, they must learn to parse the output 

presented from a program.  When learning the piano, a student learns to associate the pressing of 

the proper key with hearing the desired sound.  The feedback is instantaneous, particularly in 

familiar songs since our mind easily connects the motion of our fingers and the right or wrong note.  

Programming languages cannot provide such instantaneous feedback.  Programming students must 

associate the code they wrote a while ago with a flood of random output.  Blending the results of 

action with the original intent requires an additional memory structure, an Iconic representation 

of execution.  If a student takes the time to reflect on the code and the execution, they can begin to 

 
44 .  Many instructors use examples grounded domains they assume are familiar to students, hoping to minimize 
additional explanation.  General familiarity with the domain may make it easier to decipher a new symbolic 
representation, but unless the output is some universal notation, the results are still symbolic.  The possible exception 
to symbolic results is perhaps some intuitive behavior exhibited by graphics, robotics, or some other medium where 
code commands translate into familiar action.  Even a seemingly intuitive simulation may still need further processing 
by the novice.  Unless a program perfectly mimics a familiar experience, it risks breeding misconceptions when the 
simulation and real-world experience do not match.  Instructors are safer in assuming that any execution results are as 
new and unfamiliar as the programming language itself. 
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see how a code construct influences the output.  Passively watching another do this only engages 

System 2 so much in evaluating these connections, though, so instructors use tracing problems to 

ensure active participation. 

A student needs more than a single example to illustrate the full extent of any topic, 

particularly a robust and nuanced programming construct.  For example, novices probably need to 

see if statements with and without an else branch to begin to appreciate the full construct, and even 

then, are unlikely to grasp its full potential.  Instructors create various examples designed to 

highlight aspects of a language construct45.  Working through multiple examples, students form an 

Iconic representation of language constructs by considering the different ways each algorithm 

includes the language constructs.  For example, one algorithm uses a for loop to search for a 

value in an array, the next algorithm uses the for loop to sort values, and a third sorts the values 

in reverse order.  To compare these various uses of the for loop, the student must form an iconic 

representation of each variation of the for loop in each algorithm.  Active comparison can yield 

awareness of variances in how the construct works, yet this is not the only way we learn (remember 

the sugar factor of Section 4.2.2.1).  Just as often, students implicitly start knowing how the 

language works since System 1 forms Enactive representations of code constructs regardless if we 

consciously consider algorithms or not.  It is at this stage that knowledge starts to divide into 

unequal enactive and symbolic representations. 

Most students are not lazy, but like System 2, they follow the easiest path to the goal.  

System 2 demands quite a bit more energy than System 1, and evolution prefers to avoid 

unnecessary expenditure of resources.  We do not run everywhere we go because it burns more 

calories than walking, so neither do we deploy our full brainpower unless the need is urgent.  As 

soon as a student can trace and even write code using System 1, they are less likely to be reflective.  

When instructors assign students additional tracing practice once enactive representations form, 

they will likely acquire little additional information beyond the answers unless the student is 

notably disciplined.  The more System 1 engages the less information about the process gets into 

consciousness.  The student will only consider the semantic knowledge that System 1 has 

automated within an enactive representation if the student deliberately choices to.  When 

 
45 The desire to highlight a specific feature often leads to example code that does not mean anything, but exercises the 
feature precisely as intended (see the xor example in Section 7.6.2.2).  Such examples are helpful in the instant but 
may present further complications in transferring that knowledge to ‘real’ programs as discussed later. 
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instructors include tasks such as subgoal labeling, code reviews, peer programming, or tests of 

conceptual knowledge, students must reengage System 2 and focus on the other types of 

knowledge programmers need.  Students who neglect metacognitive reflection while learning to 

code may develop strong tracing skills yet struggle to explain code or write code to solve 

unfamiliar problems. 

Section 7.6 elaborates on the learning process started in Figure 7.4, but for now, it previews 

how the mental representations describe learning.  A programmer needs activities that promote the 

development of enactive and symbolic representations.  Lister, Fidge, and Teague (2009) 

investigated the relationships between tracing and explaining, as described here, but also writing 

code.  Figure 7.4 demonstrates the path students take in knowing how to read, execute, and perhaps 

even write basic code.  It also provides a path taken in knowing that an algorithm performs a 

specific functionality.  I believe that writing original code beyond following a familiar example 

depends upon the third representation that had little attention here, iconic.   

7.4.3 Refining the iconic representation 

Bruner included the iconic representation as a bridge between formal and informal learning, 

which in my mind, bridges many of the gaps between the constructivist ways of knowing Piaget 

and Vygotsky captured.  As discussed in Section 6.3.2.2, Bruner's language of 'iconic as imagery' 

sometimes overshadows his definition of iconic as an intermingling of interaction and experience 

that becomes critical in advanced problem-solving.  The 'reduction' of iconic representations to 

mere pictures devalues not only the critical mental role iconic representations play but perhaps 

also the applicability of Bruner's constructs overall.  Iconic representations seem to be at the heart 

of both how experts tackle complex tasks and how people become experts.  Experts use iconic 

representations to assemble and manipulate new information with recalled facts as the mental 

workspace of problem-solving.  Students need iconic representations as an intermediate workspace 

for remembering and using new ideas as they practice.  While Bruner consistently described iconic 

representations across his works, he sadly did not expand on that description far enough to offer a 

rich construct with associated concepts.  This section looks to refine iconic representations with 

additional details making the role and use of iconic representations with TAMP more tangible than 

'personalized imagery'.   



 

 

197 
 

At this point, TAMP may be expanding the scope of or even redefining iconic 

representations.  The hope is to stay within the spirit of Bruner's original descriptions while 

integrating concepts from neuroscience that seem to support the role of iconic representations as a 

critical linkage between various types of knowledge. 

7.4.3.1 Iconic representations and ‘experts’ 

Bruner described iconic representations as both a place where we integrate knowledge, but 

also the place where we use memory to solve problems. Bruner's detailed description of iconic 

representations suggested significantly more nuance than his "iconic as imagery" summary.  Iconic 

imagery distinguishes the hazy space between concrete enactive experiences and associated 

socially constructed syntax and semantics of symbolic systems.  As students are learning, their 

iconic image probably differs from the symbolic, but by the time they master the concept, the 

iconic and symbolic are for all intents and purposes aligned.  A new coder might substitute English 

when they are unsure of the proper syntax from the programming language, but an expert 

programmer seems to think in code.  If experts eventually align their iconic imagery to the 

symbolic, why is forming iconic representations critical in problem-solving?   

Iconic representations are useful as a middle ground for forming and manipulating concepts.  

The next section details the use of iconic representations in learning, but iconic representations 

also allow flexible thinking beyond instinctive/intuitive behavior.  Nondeclarative (enactive) 

memories provide fast and efficient processing (System 1), but the brains of more evolved 

creatures use declarative memories (System 2) to alter automatic responses based on new 

information and changing circumstances.  I might drive the same route to work without thinking 

every day but take a different path when the weather is bad46.  System 2 needs a place to store 

recently gathered facts, add in existing knowledge, rearrange plans, and retain such plans, which 

Bruner identified as iconic.   TAMP looks to improve on his vague assertions by applying the 'new' 

information discussed in Section 7.3 from neuroscience. 

 

 
46 Assuming I stay focused!  Otherwise, I berate myself when System 1 took me the usual path cluttered with weather 
related traffic! 
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Iconic representations and memory structures 

Bruner’s description of iconic representations seems to align with declarative memory – 

specifically the mechanics of prospection47.  The following example to considers the nature of 

iconic representations.  An instructor asks a brand-new programmer to explain the functionality of 

some code containing a loop.  The novice must lookup (short-term memories) or recall (semantic 

memories) facts about a loop and any additional language constructs to determine its function.  In 

children, Bruner described the perceptual aspects of iconic representations, which would seem to 

indicate aspects of short-term memory.  The ephemeral nature of short-term memories poses a 

problem for iconic representations.  When we turn our attention away from something in our short-

term memory for more than a few moments, we risk forgetting it.  If iconic representations were 

subject to forgetfulness Bruner would seemingly have captured it.  Short-term memory may act as 

a scaffold to fill in missing knowledge temporarily, but only in very simple problems.  Iconic 

representations seem to describe more lasting memories. 

Iconic representations cannot merely be semantic memories.  Semantic memories provide 

facts without context or even association with a time or place like episodic memories.  A skilled 

programmer can describe the operations of a loop independent of possible algorithms that use 

loops, where a novice may need to discuss a loop based on an example.  Bruner noted that iconic 

representations form to generalize from enactive or integrate with symbolic representations.  Early 

on, a novice programmer integrates facts about loops and other language constructs to consider its 

behavior.  Many novices need to see code in action to determine its intended purpose (Bednarik & 

Tukiainen, 2008) and use the execution results to mature an iconic representation of the code’s 

behavior.  As discussed more in Section 7.5, Bednarik and Tukianien noted that experts use the 

code alone to explain its purpose.  Iconic representations form to combine new information, some 

enactive and some symbolic, and derive new meaning.  Bednarik and Tukianien’s data seem to 

indicate that with practice, experts can simplify or even skip the need to build certain types of 

iconic representations.  Iconic representations, therefore, do not seem to be merely a collection of 

facts in semantic memory.   

 
47 Whether iconic representations model the activity of the medial temporal lobe is not critical to this discussion.  It 
may be that the MTL is where most or all creative problem solving occurs but TAMP is seeking a higher level of 
abstraction in modeling cognition. 
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 Bruner’s later descriptions of the roles of iconic representation seems to relate more to 

episodic memory and the mechanics of prospection.  Prospection/recollection assemble and 

organize knowledge from various regions of the brain as required for problem-solving.  To explain 

code, a programmer reads and considers the presented code.  The novice may build their iconic 

representation using one or more traces, where the expert has more tools in their box.  The expert 

may see a pattern in the code (e.g., this loop is searching a list for an item) and leap to an answer.  

They may need to integrate several such intuitive leaps but can do so with little need for tracing 

(or the tracing is virtually instantaneous thanks to their robust notional machine).  Experts either 

answer more quickly than novices or can handle significantly more complexity because of their 

experience.  As novices repeat exercises in tracing and explain code, among other activities, they 

may automate activities (form enactive representation) that previously used iconic representations 

and move closer to becoming an expert.   

Aligning iconic representations with prospection not only seems to fit but helps provide a 

better definition of the representation Bruner called critical to problem-solving.  In early 

descriptions of iconic representations, Bruner evokes the idea of personalized imagery.  He noted 

that iconic representations grow out of enactive representations.  Iconic representations help to 

blend symbolic representations with enactive.  Prospection is the reconstruction of personal 

experience and semantic memories into an imagined world.  Some tasks only require semantic 

memories.  Ss Section 7.3.2.3 discussed, K.C. could perform many daily tasks using semantic 

memory (symbolic representations) but struggled when asked to plan.  K.C.’s circumstances seem 

to mirror what Bruner (1966c) said about iconic representations. 

For when the learner has a well-developed symbolic system, it may be possible 
to by-pass the {enactive and iconic} stages. But one does so with the risk that 
the learner may not possess the imagery to fall back on when his symbolic 
transformations fail to achieve a goal in problem solving. (p. 49) 

I use this quotation from Bruner frequently because it seems critical to understanding why novices 

struggle to write code from scratch.  Programmers do not solve problems with code by learning 

facts about programming languages alone.  Symbolic representations can help in some 

programming activities, but according to Bruner, they may not be enough to solve complex 

problems. 
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Prospection is a natural fit for describing design cognition.  Designers do not exactly time-

travel, yet at the same time, time to the mind is merely navigating a model of the world in some 

sequence.  Software design seems particularly well aligned to a 'time-travel' model as the primary 

goal of software design is defining a sequential order of rules in achieving a prospective task.  

Designers do more than merely stringing together rules; they must navigate the flow of data and 

control through those rules in much the same way as we tell stories.  The amnesiac patients from 

Hassabis et al. 's (2007) study were able to recall, and to some degree, string together facts in their 

stories, but could not do so in a way that bound these facts into a cohesive narrative.  Tulving 

(2005) pointed out that people (and animals) solve many problems using semantic memories alone, 

but only certain types of problems.  It may be that novices, still undertrained in key areas of 

programming knowledge, solve problems that demand only semantic memories until they learn 

enough to apply prospection properly. 

Iconic representations in programming 

Novices can accomplish many basic programming tasks by following a procedure or 

mimicking a pattern.  For example, I see many students48 cobble together a seemingly complex 

program by copying and making small changes to existing code.  The following code demonstrates 

the absolute minimum example for receiving user inputs from a command line in Java. 

Scanner in = new Scanner(System.in); 
System.out.println("Where are you going?"); 
String destination = in.nextLine(); 

The helper to retrieve inputs 
Display a prompt to the user 
Retrieve the user’s response 

Retrieving additional inputs is as simple as copying the last two lines and changing the prompt and 

the variable name.  Even this simple task can confound abject novices, but with a little guidance49, 

almost anyone can build a simple user interface. Building a user interface demands little 

forethought since the programmer can incrementally add code and test each step.  Slightly more 

advanced students can even implement basic validation rules for inputs (e.g., ensuring the user 

 
48 And more than a few professional programmers 
49 If left to their own devices, many struggle to mimic another.  Vygotsky noted that mimicry is not trivial.  A person 
cannot mimic work unless it is within their ZPD, so an inability to replicate example code is a useful test of basic 
proficiency in coding. 
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provides any input; it is a number; it is greater than zero).  Validation requires slightly more 

advanced logic, and language constructs (e.g., decisions, loops, exception handling), but the 

process of validating a single field is something that can be described by a procedure.  If a task can 

be completed by following a predefined plan, that plan can be memorized and become a symbolic 

representation (possibly automated in time).  Where students truly begin to struggle is the logic to 

ensure all required inputs are valid and planning how to organize and what to do with the results.   

Some seemingly simple tasks are actually quite difficult without a robust iconic 

representation.  For example, not all knowledge about programming easily transfers to new 

programming languages.  Post Y2K, I spent a few years teaching Java to Cobol programmers.  

Some of these people had decades of programming experience and high-paying jobs, but they 

struggled with certain aspects of Java, particularly object-oriented concepts.  They understood how 

computers and programming languages worked, how to define and test code, but just like my 

brand-new programmers, they struggled to define simple Classes 50 . Object-oriented design 

required a new mix of knowledge for even experienced programmers.  Cobol experience did not 

transfer to the 'new world' of objects, which slightly alters the basic programming paradigms of 

early programming languages.  When focusing on familiar constructs (e.g., decisions, loops), my 

Cobol programmers were far superior to students learning their first language. However, when it 

came to object-oriented aspects of Java, many struggled even more. 

Experts are ‘better’ at designing because they have an alchemical blend of declarative and 

nondeclarative memories that allow mental navigation of their proposed design.  Brand new 

programmers seem to struggle to design new solutions when they lack a procedure to follow or 

example to emulate.  Experts hold an advantage over novices because they have internalized a 

catalog of examples but seem to struggle when the problem falls outside of that catalog.  Many of 

my students over the years expose their experience in coding other languages than what I am 

teaching by writing code that “looks like” the style of the other language.  Maybe the naming 

conventions, capitalization, or punctuation are slightly different.  Even when working in a new 

language, System 1 has habits that take time to change.  My Cobol programmers exhibited the 

same ‘misalignment’ in their designs when they built structured solutions in an object-oriented 

 
50 For reader not familiar with object-oriented design, a Class provides a model of a real-world entity within software 
design.  For instance, an Automobile class might store data like make, model, year, and color.  Part of object-oriented 
design is translating real world attributes into variables (also called attributes) within the class. 
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language.  Their intuition influenced their designs significantly more than the rules and best 

practices (symbolic representations) I was teaching. 

Fix, Wiedenbeck, and Scholtz (1993) provided evidence of prospection at work in their 

tests of expert and novice memories about code (Section 7.3.2.1).  Since recollection and 

prospection use the same mental mechanics, the same advantages experts hold when designing 

software likely apply when remembering the details of briefly reviewed code.  Fix, Wiedenbeck, 

and Scholtz showed that experts were significantly better at breaking down and remembering 

details of a design than novices.  The expert's advantage was not merely knowing more about 

programming in general; they even recalled "information readily available in the program, yet 

novices [did] not extract it" (p. 78).  Experts gleaned more information as they read the code and 

then reconstructed the details.  Several of the study’s questions relied on decomposing, analyzing, 

and then reconstruing a mental model of the presented code.  The experts did better on this despite 

concerns that the task might be unnatural. 

A few of them commented that in studying a program they normally had a 
concrete objective in mind, such as finding a bug or determining the effects of a 
potential modification.  In this case they were on a fishing expedition and, as a 
result, were not sure where to focus their efforts. (p. 78) 

The experts did not know what the questions would ask yet managed to extract and recall more in 

their iconic representations.  Their experience did not foretell the types of question they were 

expected to answer, they simply gathered the information that seemed pertinent.   

 The advantage the experts demonstrated with not merely knowing more about the language 

but a different type of information.  On the tasks that merely required semantic memory (e.g., 

names and places of things) the experts and novices recalled the same amount of information.  The 

experts’ prowess over novices in design is unsurprising, yet the sizable advantage even when 

performing an ‘unnatural’ task such as memorizing code for a few minutes before answering a few 

questions.  The data that Fix, Wiedenbeck, and Scholtz gathered showed the power of patterns in 

recollection.  Since recollection and prospection share the same underlying mechanics, it stands to 

reason that patterns are equally important in design. 

Prospection arranges implicit (enactive) and explicit (symbolic) knowledge within iconic 

representations to solve complex problems.  Prospection seems to be a process that also transcends 

Systems 1 and 2.  We consciously recall the past or plan for the future, but the systematic errors 
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that occur in constructing memories are hardly conscious (e.g., confirmation bias or the ‘feeling 

of knowing’).  We do not choose to distort the past or overlook future threats.  Cognitive biases 

play a role in both the recollection and planning performed in episodic memory, so prospection 

provides a useful model of the interplay between the two Systems during creative tasks.  Adding 

the discoveries about episodic memory and proscription to the definition of iconic provides even 

more definition to these vital but under-defined mental constructs. 

Bruner believed that students benefit from developing iconic representations, which 

becomes easier to understand after considering how experts think.  Experts' minds are swirling 

with facts, intuition, plans, and rules stored across the brain.  Bruner's representations capture these 

abstractions but perhaps fell short in explaining what exactly was special about the iconic, 

particularly in comparison with symbolic representations.  Episodic memory and prospection add 

to the existing constructs available to TAMP that further define the inner workings of iconic 

representations.  Iconic representations are 

 Constructed – formed from new and existing knowledge selected by perceptual 
bias and priming from System 1 

 Easily modified – the mind can flexibly alter knowledge to imagine 
unexperienced futures and solve new types of problems 

 Transient – they will fade if not used repeatedly, at which time they may 
transition to enactive, symbolic, or persist as iconic if the story matters 

Iconic representations are not just useful for experts, though they also enhance learning. 

7.4.3.2 Iconic representations in learners 

While not every learner needs to become an expert in every subject, instructors may still 

choose to include pedagogy to build iconic representations since they help in the quality and speed 

of learning itself.  Iconic representations support the development of both knowing how and 

knowing that.  If you remember from Section 7.3.1, Squire (1984) reported that the hippocampus 

improves nondeclarative learning.  For example, many immigrant children acquire their new 

language by watching local TV, but the quality and speed improve with formal feedback.  Iconic 

representations are even more important when trying to ‘break a habit’ to change an enactive 

representation to align with new symbolic knowledge.  Any programmer who adopts a new 

language must break some habits of syntax to conform to the new language (e.g., do I use //, %, 

#, *, !,  REM, -- or something else to comment code).  Iconic representations help to recognize 
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when enactive behaviors need altering and help to curb the behavior until System 1 adopts the 

desired response.   

Many educational traditions have noted the risks of teaching procedures for solving one 

type of problem and expecting people to become flexible problem-solvers.  The behaviorist 

movement showed that instructors could shape behavior, even in humans, using appropriate 

reinforcements (Skinner, 1965).  Reinforcement learning can be effective but often is often shallow.   

Reinforcement alone leads to connections of stimuli and behavior that Skinner called 

“superstitious” (p. 85).  The same type of learning is possible when forming symbolic 

representations when learners do not understand the significance of the concepts.  For example, 

people in the middle ages discovered the health benefits of garlic in preventing illness, but the 

general masses adopted the practice for an entirely different reason.  The concept of a microbial 

infection was too abstract for the science of the day, so many ate garlic to stave off vampires 

instead (American Society for Microbiology, 2011).  In Bruner’s terms, a person must connect 

facts stored in symbolic representations (garlic promotes health) with an unrelated experience 

(getting sick).  Making such a connection typically requires an iconic representation.  Images of a 

fanged nemesis are seemingly easier to conjure than future unseen maladies for the layperson. 

Competent programmers need to master knowledge for use in problem-solving, not rely on 

memorizing procedures that might lead to superstition.  Pea (1986) may have documented one 

form of programming superstition in defining the superbug.  If novices believe the computer knows 

more about their program than they do, it follows that they may come to think they are solving a 

puzzle rather than creating their program’s failures through their missteps.  Perkins et al. (1986) 

noted several cases of students abandoning their code to start the same program from scratch rather 

than understanding their mistakes.  TAMP might suggest these students are not developing am 

iconic representation of their plan, rather following some symbolic procedure that they hopefully 

‘get right’ on their next attempt.  When the resulting code does not work, the novice has no mental 

representation of what happened to consider in troubleshooting.  The way some novices mimic 

plans is the same way I bake.  So long as the recipe is foolproof and I attend to details, my results 

are acceptable.  If any stage goes wrong, I hope to have a tasty if unpresentable mess, as I have no 

idea of the purpose of the ingredients, the dynamics of temperature and humidity, or any of the 
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chemistry of baking 51 .  For me to become a better baker, or perhaps more importantly for 

programming students to become strong problem-solvers, requires a strong understanding of the 

concepts beyond blindly following instructions. 

Vygotsky (1962) believed that learning any language required a person first to understand 

the concepts before they begin to understand their significance in language. 

a concept is more than the sum of certain associative bonds formed by memory, 
more than mere mental habit; it is a complex and genuine act of thought that 
cannot be taught by drilling but can be accomplished only when the child’s 
mental development itself has reached the requisite level.  At any age, a concept 
embodied in a word represents an act of generalization. (p. 82-3) 

Vygotsky could be describing the role of iconic representations in this passage.  Enactive 

representations (“mere mental habit”) alone are not enough to form a concept.  Iconic 

representations form out of a “genuine act of thought” that requires some level of “mental 

development.”52  Bruner and Vygotsky agreed that mastering a language requires a mix of habits 

(enactive), concepts (iconic), and words (symbolic).  Computing educators are stuck with the 

challenge – how can a student form concepts about a language without connecting symbols and 

their resulting action?  Vygotsky’s warning suggests that neither learning syntax and semantics 

nor a strong notional machine alone is enough to help novices understand programming concepts.  

When instructors focus on piecemeal education, students never progress past mimicry to 

independently perform complex tasks.  Vygotsky (1978) noted that in Montessori schools, children 

learned to write proficiently, but only when the instructor provided the content of the message.  He 

feared that merely learning the mechanical skill of writing “will not be manifest in [a child’s] 

writing and [the child’s] budding personality will not grow” (p. 117).  A child copying down 

messages exercises manual dexterity, spelling, and punctuation, but not in the composition of 

original ideas.  Children go through the act of writing and may even stretch to mimicking new 

messages as their teachers demonstrated, but this is a far departure from creative storytelling.  

Similar stories abound in computing education literature, and Chapter 8 will revisit three such 

studies in detail. 

 
51 I am doing my best to learn from cooking shows, but they tend to be heavy on drama or polite British laypeople 
rather than lessons on food science.  
52  This passage by Vygotsky also seems to support the supposition that System 1 forms the core of mental 
development.  If mental development is grounded in “mental habit” formed by “drilling”, he seems to be describing 
the way System 1 learns.  
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7.4.3.3 The revised iconic representation 

The iconic representation is the most confounding theoretical construct.  I believe it is the 

most critical in defining expert thinking and the largest gap in programming pedagogy, yet it is 

also the hardest to influence and measure.  Iconic representations by their nature are individualized.  

Bruner described iconic representations as imagery, yet it seems clear that iconic imagery, like all 

revolutionary art, makes more sense to the artist than the audience.  We each can overlay art with 

our own meanings, but our interpretation is equally iconic, blending our experience with the 

symbols of another.  Instructors can nurture a student’s iconic space, but imposing imagery (e.g., 

flowcharts, diagrams, trace tables) cannot replace the need of students to create and, in turn, blend 

experience with programming content.  Over time, a learner will use code, diagrams, or other such 

symbols inherently53, but until such a time, it is challenging to ‘measure’ the quality of iconic 

representations.  Imagine being asked to interpret the “word salad” produced by those with 

Wernicke's aphasia (Figure 7.2).  Even if a machine could learn to map between the random words 

a Wernicke patient utters and their intended meaning, the algorithm would work only for that 

person.  It may, likewise, be impossible for instructors to pinpoint faults in a student’s iconic 

representation.  So, what is there to do about the theoretical construct that is iconic? 

Within the scope of TAMP, I am refining the definition of an iconic representation starting 

with Bruner’s core ideas.  Bruner’s evocation of imagery as iconic is useful, but misleading.  I 

believe that when Bruner referred to imagery, he meant more in the sense of art than diagramming.  

The imagery of art typically requires interpretation by the observer, rather than conveying a clear 

meaning.  Iconic representations are in the space of poetry and improv, not that of textbooks and 

diagrams (which the creators intend to be symbolic).  In programming, iconic representations are, 

like the notional machine, abstractions of the design – a plan for or summary of what the code 

does.  Iconic representations deal in patterns, often inspired by experience as governed by the 

concepts of prospection (see Section 7.3.2).  They are slightly hazy, but less so, the closer the 

current problem is to past examples.  For programmers, the process of coding and even more so, 

debugging, refines an iconic representation.  Sometimes the debugging process begins with 

overcoming the iconic representation’s understanding of how code should be working with the 

actual execution of what is happening.  Iconic representations are inevitably short-lived compared 

 
53 I believe I think in UML and Java code, but perhaps my System 1 is just so automatic at translating them I no longer 
notice any difference. 
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to other representations of knowledge, as are unused episodic memories.  If used frequently enough, 

the shadow of past designs will live on as inspiration for future designs (enactive), but most of the 

details will fade with time. 

Theoretical constructs are ‘better’ when they link to measurable concepts.  Constructs 

without concepts are difficult to quantify as they have no clear measure.  As it stands, 

measurements of iconic representations are binary: a person who shows alignment in problem-

solving is mature or immature otherwise.  It seems difficult to create a middle ground when 

progress may be equally individualized.  It may not be important to ‘measure’ the state of the 

iconic reasoning if researchers and educators can measure the impact of pedagogical interventions 

as a proxy.  For example, if educators can identify what types of tasks, like coding user interfaces, 

require only memorizing procedures and which require true manipulation of concepts, they can 

sequence questions to promote different types of learning.  Rather than, for example, dissecting 

the exact biology and chemistry of weight loss, it may be useful in the meantime to find habits and 

activities that best promote a healthy lifecycle.  The first task of researchers may be to identify 

such useful pedagogical activities. 

Instructors can create better curricula to grow iconic representations, but students can also 

benefit from understanding the learning process.  Bruner (1966c) advocated one of the best things 

an instructor can do is get out of the way. 

Perhaps the greatest problem one has in an experiment of this sort is to keep out 
of the way, to prevent oneself from becoming a perennial source of information, 
interfering with the child’s ability to take over the role of being his own 
corrector. (p. 70) 

Students may benefit from understanding the nature of their struggles and have some idea what 

how expertise looks in action.  Often students feel betrayed when they succeed on every homework 

problem only to fail miserably on tests that suddenly shift to ‘transfer problems’ that require iconic 

manipulation54.  Iconic manipulation is the conscious restructuring of knowledge in memory.  

Bruner described people using iconic representations to generalize from experience, for example, 

but TAMP suggests that the same process might be used in problem-solving.  Iconic manipulation 

is required when System 1 is unable to offer direct priming to aid in problem-solving.  The problem 

 
54 There are many reasons and types of questions that can throw students for a loop, but questions that demand iconic 
manipulation are perhaps more prone to expert blind spots, since experts spot patterns implicitly where students may 
rely on procedure. 
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statement may not have prompted any enactive representation or, possibly worse, triggered an 

inappropriate one.  Without useful priming, System 2 must consciously attempt to recall useful 

information and organize that knowledge within an iconic representation in a ‘brute force’ manner.  

System 2 must determine what primed knowledge is not useful, and hopefully trigger useful 

information that was not primed.  An expert might consider this process ‘brainstorming’ and while 

perhaps demanding, it can be productive because of their extensive System 1 automation.  Novices 

may find this process overwhelming and possibly even futile if they cannot remember enough 

information or cannot associate what they know as applicable to the problem.   

I regret that despite the preponderance of data suggesting the presence and value of iconic 

representations thus far and still forthcoming in this chapter, I still have no concrete concepts to 

suggest are useful for measuring iconic representations.  My proposals linking prospection to 

iconic representations feel supported, yet still lack direct measures.  To some degree, the inability 

to directly describe iconic representations is frustrating, yet the iconic representation construct may 

simply rely on measures of enactive and symbolic representations.  For example, the 

‘memorization’ task used by Fix, Wiedenbeck, and Scholtz (1993) could measure the ability of a 

programmer to detect patterns in the design, and thus form richer iconic representations than 

novices who have not formed such patterns.  Fix et al.’s test, combined with a think-aloud protocol, 

could measures the influence of System 1 (automatic pattern matching) and System 2 (conscious 

deliberations) but may not say much about how that knowledge translates to new designs, only the 

reconstruction of memories.  In the meantime, the refined definition of iconic representations in 

this section, hopefully, inspires further study into this type of thinking, and the concepts and 

associated measures may emerge in time. 

7.5 The Applied Notional Machine as a core construct of TAMP 

The notional machine provides a powerful construct modeling the core knowledge of 

programming – the language in action.  Computing educators often use the notional machine as a 

buzzword for knowledge that a programmer, and possibly anyone who wants to work with 

computers, must acquire.  Under a model of cognition that assumes our mind universally applies 

what we learn, a mental model of the notional machine may seem sufficient as an abstract concept.  

The challenge of making practical use of the notional machine as a pedagogical tool is the inability 
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to align the various uses (e.g., tracing, explaining, or writing code to start) with the types of 

knowledge and ways of knowing identified within dual process theory and Bruner’s 

representations.  Accepting dual process theory and Bruner’s model of knowledge demands a 

notional machine that accounts for these views.  Rather than abandoning the notional machine, 

TAMP seeks to expand the initial literature and research into the Applied Notional Machine. 

7.5.1 The notional machine as a theoretical construct 

The notional machine provides computing education researchers and educators with a 

useful description for a mental model of a programming language.  Du Boulay et al. (1981) first 

introduced the notional machine as a guide to creating to pedagogy, yet despite the many ways 

literature references the notional machine through the years, its impact seems rather limited.  Du 

Boulay et al. provided a highly descriptive name, but it seems too abstract to provide meaningful 

direction to research and pedagogy as it stands.  First and foremost, how does a programmer exhibit 

a strong notional machine?  Reading? Tracing? Explaining? Writing? The notional machine 

seemingly should contribute to all of these and more, yet the notional machine seems to be more 

than the sum of these parts.  From a theoretical standpoint, the notional machine is a theoretical 

construct without clearly identified theoretical concepts. 

7.5.1.1 Managing the inflating definition of the notional machine 

Premise 1: A programmer must implicitly read, write, and execute code 
Premise 2: A programmer must know the syntax and semantics of the programming language 
and its runtime environment 
Premise 3: The notional machine from one language supports the formation of notional 
machines of functionally similar parts in other languages 
Premise 4: The notional machine supports design activities, but indirectly 
Conclusion: The notional machine must include enactive and symbolic representations that 
contribute to iconic representations of design. 

The unclear boundaries of the notional machine have led to an expansion of its role and 

value over the years, without a clear link as to why.  For example, Sorva (2013) summarized the 

notional machine: 
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—is an idealized abstraction of computer hardware and other aspects of the 
runtime environment of programs;  
—serves the purpose of understanding what happens during program execution; 
—is associated with one or more programming paradigms or languages, and 
possibly with a particular programming environment;  
—enables the semantics of program code written in those paradigms or 
languages (or subsets thereof) to be described;  
—gives a particular perspective to the execution of programs; and  
—correctly reflects what programs do when executed. (p. 8:3, emphasis added) 

Sorva’s description includes several italicized words to highlights possible implications of 

otherwise semantic knowledge.  Sorva used the word understanding rather than predicting, tracing, 

or other functional aspects of running code.  It implies the notional machine must help 

comprehension – explaining – as well as execution.  Understanding, a function of System 2, 

requires a different type of support from System 1 than mere automation of execution, at least if it 

is to act as the intuition noted in the literature (see Section 2.3.2).  The authors who wrote about 

intuition did not describe experts gradually coming to understand the code by considering the 

output of the execution; experts leap to seemingly instant understanding of simple and sometimes 

more complex designs.  Such intuitive leaps do not seem to be the province of any mental model 

of the notional machine as traditionally defined.  If the notional machine is foundational to so many 

aspects of programming, a more refined and measurable notional machine might make it easier to 

apply in research and the classroom. 

Researchers have attempted to measure a programmer’s notional machine using several 

approaches.  Ma et al. (2011) used a multiple-choice test to measure the consistency of students’ 

mental modes.  Several studies used tracing as a measure of the notional machine (Cunningham et 

al., 2017; Lister et al., 2004).  Lopez et al. (2008), followed by Lister et al. (2009), measured 

tracing, explaining, and writing code without finding a clear hierarchy to these skills55.  When 

students are reasonable tracers, yet cannot write code, what does this say about their notional 

machine?  When they write code, but cannot explain it?  More often than not, authors invoke the 

notional machine without any connection to their methods (e.g., data to collect and analyze to 

describe student learning)56.  TAMP suggests that conceptual knowledge and tracing skills barely 

scratch the surface of the breadth of knowing that or knowing how required to program, and even 

 
55 They never explicitly mention the notional machine, but it seems reasonable to include their findings 
56 I won’t call out any authors by citing them, but you know who you are!   
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mastering these two does not mean their skills will transfer when needed.  As it stands, the notional 

machine seems to serve more as a useful goal than a working theoretical construct.    

7.5.1.2 A basic redefinition for the traditional elements of the notional machine 

The notional machine, as described in the literature, seems to contain knowledge that falls 

under symbolic and enactive representations within the mind of an experienced programmer.  In 

introducing the notional machine, Du Boulay et al. (1981) 

emphasized the need to ‘see’ within the black box that is a 

computer to understand its operation.  He, and others noted in 

Section 2.1.2, implied that a programmer must eventually 

develop a conscious understanding of the rules of the language 

as well as automating the processes required to mentally 

predicting code execution.  Figure 7.5 splits the notional machine 

by distributing syntax and semantics to a symbolic representation 

and their operational execution to an enactive representation.  The shift to Bruner’s representation 

distinguishes the way a novice must learn information and reinforces the multiple ways of 

‘knowing’.  It is not enough to remember the rules, as programmers must use them in practice 

fluidly.  As many computing education researchers noted, students need to develop an intuition to 

match their knowledge, which can be captured by redefining the notional machine as part symbolic 

and part enactive.  

Measuring symbolic aspects of the notional machine 

The easiest, and perhaps least useful, aspect of the notional machine is acquiring facts about 

the language (e.g., rules of syntax/semantics).  Conceptual knowledge tests often rely on multiple-

choice questions to explore how well the students remember semantic details, often disguised 

within problems like we saw in Section 7.4.2.2 (the pentagon).  Educators should use conceptual 

knowledge tests to assess knowing that questions about details of the programming language, 

environment, tools, or process, but with the caveat that they do lead many students to skills in 

writing code.  We have seen many examples where proficiency in tracing and explaining do not 

Figure 7.5. The notional 
machine in terms of Bruner 
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predict success in writing code, and these at least put knowledge into action.  Merely knowing 

about programming concepts does not assure students will successfully write code later.   

For those who insist upon or have no choice in using such conceptual knowledge tests, 

TAMP offers further advice.  Because experts possess broader experience, questions whose 

answers seem obvious are often not to your students or even your teaching assistants.  Since our 

first impression of a question comes from System 1, a student can easily take a ‘distracting’ answer 

(to use Lister et al.’s term) and overlook seemingly obvious rules.  We have seen examples of this 

from Perkins (2010) – the tower and hole problems – and in the analysis of the fill-in-the-blank 

problem from Lister et al. (2004).  Instructors often fear to ‘give away’ a question by showing an 

example that is too similar, but TAMP suggest that without varied practice, System 1 may not 

activate the appropriate information.  Ironically, timed tests may be a better determination of 

System 1 maturity, but only if a.) the students understand that the test seeks to challenges their 

automaticity, b.) they are given ample practice problems, and c.) the test questions are reflective 

of the training 57 .  The next section considers more on timed tests as a test of enactive 

representations. 

Measuring enactive aspects of the notional machine 

Enactive representations of mental abilities are particularly hard to measure as System 2 

can often compensate when System 1 is undertrained.  It can be difficult to distinguish between a 

talented and disciplined performance versus a well-trained and automatic one by results alone.  If 

you want to test an archer, you have them shoot many arrows in a narrow span of time.  An amateur 

may get lucky on a few shots, but over time, the practice put in by a professional will show.  For 

some tasks, consistent performance is a good sign of strong abilities.  Testing mental abilities is a 

bit tougher.  Instructors often add tracing questions to assess practical, rather than memorized, 

abilities that conceptual tests assess, but tracing examples do not always test enactive maturity in 

the way expected.   The pentagon question from Section 7.4.3.2 shows that good students (and 

‘experts’ like me) can fall into a trap because of their familiarity with similar problems and 

overlooking a rather mundane detail58.  Questions like the pentagon question essentially risks 

 
57 Ironically, b and c are also requirements of training an artificial neural network! 
58 If graduates of your program really need to mentally execute code with perfect order of operations, the question is 
fair.  Otherwise, it falls very short of my “solve in 30-seconds with a computer” rule. 
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making “Type I” errors, penalizing students who are otherwise on the right track in automating 

their programming skills.  The bigger problem with tracing questions are “Type II” errors, students 

who seem on track, but are not. 

If a student’s final answer does not establish the quality of their enactive representations, 

then educators need some other measure.  The first impulse might be to use timed tests as a means 

of ensuring students are operating primarily within System 1.  Timed tests certainly distinguish 

students who have achieved automaticity but come with other concerns.  For example, I took an 

introductory robotics course that required extensive use of vector algebra and trigonometric 

identities.  In the first week or two, my System 2 spent most of its effort deciphering all I had 

forgotten about the symbols and rules of trigonometry.  I managed to automate enough of the rules 

to survive the initial test 59  but struggled through the entire course to automate the required 

algebraic manipulations involving vectors.  It was not that I did not put in the time; I spent 8 hours 

practicing a single homework problem spanning 16 pages of algebraic manipulations.  I suffered 

from both a lack of recent experience (I would have thrived 20 years go) and too few examples to 

use for practice.  I feel as though I understood the concepts well, though.  I started every problem 

and only failed to complete ones due to time limitations.  My saving grace was work ethic, a desire 

to be there, and the awareness that I was not in a position that was reasonable to succeed in the 

assigned task.   My educational background perfectly qualified my participation in the class, but 

my skillset was too rusty, and my System 1 too decayed to perform the tasks as presented.  The 

timing proved that my System 1 was not fit to complete vector algebra at the level expected for 

the class, which had nothing to do with the professional application of robotics. 

Timed tests in programming are more reasonable, as we expect students to be fast and 

effective programmers, but they ignore other factors.  Programming students are often in their first 

year of college.  Some are not sure whether they belong.  Most, I propose, believe that knowledge 

is knowledge, and not performing well on a timed test reflects their inherent ability, not their work 

ethic in practicing.  Some students suffer from test anxiety, must juggle other academic and non-

academic priorities, and may not enter class with the same System 1 advantages (ignoring inherent 

abilities) as others.  Timed tests, particularly when only offered a single time, risk sending the 

wrong message.  They can be useful when instructors clearly tell students they are expected to 

 
59 I probably remember none of it now, more than a year later. 



 

 

214 
 

automate specific behaviors, have ample opportunities to practice, and have a growth mindset to 

learning.  I fully intend to include such assessments as part of the class but done in a primarily 

formative way, allowing the student numerous attempts and most of the term to eventually 

complete.  Timing is one way to measure enactive abilities, but not one with much feedback for 

intermediate growth. 

Section 5.2.2 proposed that the exemplar student whose work Lister et al. (2004) featured 

was still operating primarily from System 2, also suggesting that sketching/doodling offers an 

interesting measure of the maturity of System 1.  I suggested that when the student used redundant 

sketches, it was a sign that their System 2 needed extra support navigating through various levels 

of unautomated language constructs.  Moreover, once System 1 matures, their need to sketch will 

diminish, possibly to zero.  Instructors from several disciplines sometimes ask their students to 

“show their work” and may even take away points unless they do, since showing one's work is a 

sign of mental maturity (and a way to track mistakes).  TAMP suggests that neglecting to show 

work is caused by System 2’s laziness, and a powerful and well-trained System 1. 

When teachers require students to show their work, they are placing a burden on any 

student who primarily relies on System 1.  When System 1 provides answer, there is no work to 

show.  System 2 does not know how System 1 answered.  To show work requires the student to 

ignore the answer they ‘know’ is correct (System 1) and recall the procedure that may have at least 

partially faded from memory.  Ironically, identifying errors in the documented work will only 

correct errors if the student retrains System 1 (with sufficient practice on similar problems) or 

System 2 regularly intervenes to correct System 1.  When students push back against showing their 

work they do so because countermanding System 1 is effortful and may induce an emotional 

response (Naccache et al., 2005).  While it may be helpful when instructors can identify student 

mistakes, correcting the mistakes is not as simple as providing such feedback. 

Tracing is just one of many types of enactive knowledge programmers must mature.  Strong 

programmers can write code producing relatively few syntax errors.  When their code results in a 

compiler error, they use enactive representations of error messages to redirect their next actions 

towards quick fixes (e.g., add a semi-colon, set an uninitialized variable in the else statement).  

When their code results in a runtime error, System 1 suggests where to look first (e.g., array index 

out of bounds means check the bounds of the loop).  Many studies have captured student actions 



 

 

215 
 

at the compiler, runtime, or even keystroke level.  Such data is not useful for summative assessment 

but can provide formative feedback on progress, particularly to researchers.   

7.5.1.3 The state of the notional machine 

At this stage in TAMP’s creation, I feel confident suggesting the theoretical constructs and 

hinting at useful concepts that might provide insights to forming mental representations of notional 

machines.  The notional machine as traditionally defined is very useful in teaching coding but may 

be confusing in modeling other aspects of programming, particularly design.  While symbolic and 

enactive representations aid in creativity and understanding, it is the iconic representation that 

drives such activities.  To fully understand how programmers read and write code, it is helpful to 

include iconic representations. 

7.5.2 The Applied Notional Machine 

 The Applied Notional Machine (ANM) further expands the ‘refined’ notional machine 

using iconic representations to capture a programmer’s mental models that captures design60.  As 

traditionally defined, the notional machine models the language and its execution yet does not 

address design.  Sorva’s (2013) list (see 7.5.1.1) implies that the notional machine contributes to 

algorithmic comprehension by stating it “correctly reflects what programs do when executed” (p. 

8:3).  Sorva, like many others, asserts that programmers deduce the purpose of code using the 

notional machine’s repository of semantic rules or mental execution.  Building on the refined 

model of the iconic representation, TAMP suggests a third possibility. 

 Computing education literature provides several examples of novices and experts 

explaining code, as discussed throughout this chapter and Chapter 2.  Bednarik and Tukiainen 

(2008) presented code samples to students and experts within a visualization tool that simulated 

code execution.  The students used the tool quite significantly to aid in comprehending the code, 

where the experts generally used it a single time, and one not at all.  The students needed to see 

the code in action to make sense of its purpose, while the experts could determine its purpose from 

 
60 The concept behind the ANM, separating design and language, could apply without the revamped notional machine 
using Bruner’s representations.  Sorva (2013) seems to be adding some of these elements to the notional machine 
already, but such additions seem to clutter rather than clarify the notional machine as a construct.  It is reasonable to 
adopt the ANM without adopting the full scope of Bruner’s representations.  
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reading alone.  The novices relied on executing code, where the experts seemed to watch the 

visualization to confirm their guess.  Are experts better at remembering the rules?  Wiedenbeck 

(1985) saw they were slightly better and faster, but later Fix, Wiedenbeck, and Scholtz (1993) 

asserted that one major difference was that “knowledge of recurring patterns may be deficient 

among novices and need to be built up through study and practice” (p. 78).  A full mental model 

of how programmers think requires a theoretical construct describing the resulting abstraction, 

algorithm, or other higher-level plans that translate into design.  Iconic representations are perfect 

vessels for describing the way our mind constructs and manipulates knowledge. 

7.5.2.1 Defining the Applied Notional Machine (ANM) 

 The Applied Notional Machine (ANM) wraps the existing notional machine within its 

context, design.  As described in Section 7.3.2.1 and 2.2.2.2, an expert easily and consciously 

distinguishes design from code.  When presented with a code sample, they quickly form an iconic 

mental image to remember the details of the algorithm61.  To the novice, investigating the details 

of a code sample may be like finding a specific zebra in a meandering herd – it is difficult to do 

when all zebras look alike.  Their first experience with code relies on the actions they take and the 

results they perceive.  The astute student may be able 

to use System 2 to integrate examples and details from 

the lecture, but this learning strategy likely works only 

on simple examples for easily observable rules.  Fix, 

Wiedenbeck, and Scholtz (1993) described the 

difficulties novices had in processing, much less 

remembering the structure of design out of code.  The 

iconic representation adds a construct to represent 

design knowledge apart from the notional machine and 

offers insights into why experts are better at using this 

knowledge than novices. 

 
61 To be clear, at this stage the algorithm/design are merely as represented in written code for a specific problem.  The 
notion of algorithmic/design patterns is another important mental representation, but the ANM is not intended as a 
construct to capture the nuance of design at this stage.  Briefly, it is worth saying that a design pattern begins as an 
iconic representation capturing frequently used approaches to solving problems. 

Figure 7.6. The Applied Notional Machine 
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 The Applied Notional Machine models the representations that form in a programmer’s 

mind.  Figure 7.6 shows the iconic representation as a holder of the algorithm/design apart from 

the notional machine.  An expert’s mature notional machine gives them conscious access to the 

rules (symbolic) and automatic execution of basic code constructs (enactive) in support of their 

mental work with algorithms and design.  The iconic representation holds abstractions about the 

purpose and goals of code (data and functionality) beginning as rough approximations and 

maturing over time as the programmer works with the code.   

 The ANM offers a look at expert thinking that explains why experts are not infallible when 

tracing code or other simple tasks.  Iconic representations are not exact models of the world, rather 

the gist of what we perceived.  Reading code into memory line-by-line is no less difficult than 

memorizing a book, so the natural tendency is to summarize.  Even in writing code, an expert 

thinks more in phrases than exact words, as can be evidenced in Youngs’ (1974) study mentioned 

in Chapter 2.  He compared the mistakes made by experts and novices, noticing they averaged the 

same number of mistakes on their first runs. 

It is surprising that experience is not evident from the number of first pass bugs. 
Since differences in experience level are not obvious from the number of errors 
on the first run, it is natural to ask what happens after the first run. (p. 366) 

Experts made a similar number of errors because while they are less likely to make beginner errors, 

they are still building the program from generalities.  After the first execution, the feedback from 

the computer starkly portrays each disconnect between intent and the produced code, which the 

experts were better at correcting.  The expert’s mature notional machine means the source of errors 

stems more often in erroneous logic than a misuse of the construct.  The novice must consider if 

the source of the error is their plan or mistyped code, where and expert System 1 will likely spot 

typos or misapplied pattern instantly once the computer highlights the error.  The more experience 

a programmer has, or the more familiar the problem, the more refined the initial iconic 

representation will match the resulting code and execution.  The main advantage the expert holds 

it the ability to focus on the design since they have greater confidence in their understanding of 

the language. 
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7.5.2.2 Using the ANM to interpret error messages 

New programmers hit their first major obstacle when trying to understand and correct 

errors produced by the tools (e.g., compiler, interpreter, runtime).  Even when merely mimicking 

an example, novices often mistype code leading to compiler errors, or once those are corrected, 

runtime errors, long before they need to tackle functional bugs.   

One of the many challenges novice programmers face from the start are 
notoriously cryptic compiler error messages, and there is published evidence on 
these difficulties since at least as early as 1965.  (Denny, Becker, Craig, Wilson, 
& Banaszkiewicz, 2019) 

Denny et al. noted that one branch of research seeks to simplify error messages, so it seems that 

modeling how programmers process errors might provide insights into not only how novices 

struggle but perhaps how to head off such struggles (or if that is even possible).  Error messages 

are an interesting special case in learning.  The tools provide the programmer with immediate 

feedback on their mistakes, but that feedback is sometimes incomprehensible.  The underlying 

theoretical constructs of TAMP may illuminate the cognitive quandary novices experience in 

trying to decipher error messages.  Figure 7.7 proposes a process that programmers might use to 

reconcile error messages, beginning when a programmer encounters an error62. 

 
62 It may be easier think in terms of compiler errors when reading Figure 7.7, but the same process applies to runtime 
errors.  The algorithm does not influence compiler errors removing the specter of functional issues, test cases, and 
other aspects. 
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Figure 7.7. A programmer’s mental process for reconciling error messages 

Under TAMP, a programmer has three sources of knowledge for fixing an error.  When 

error messages are immediately familiar (Path 1), System 1 prompts the required fix, if not 

completes the fix without diverting attention (e.g., fixing a missing semi-colons).  Experienced 

programmers often intuitively fix errors, sometimes without considering the content of the error 

message or its significance.  As Skinner (1965) proposed, sometimes we associate stimuli to action 

with no comprehension forming “superstitious” behaviors.  For example, some of my struggling 

students will restart their code from scratch, performing the exact steps they took the first time, 

hoping that this time the compiler error does not appear.  Their problem-solving approach is the 

equivalent of the cliché “have you tried turning it off and on again?”  Experts are hardly better, as 

I am often at a loss to explain compiler error messages.  I know exactly what to do, but I am not 

always sure, even as an instructor, how to decipher their wording.  Path 1 suggests an important 

new category of enactive representations formed around strategies for identifying and repairing 

errors. 
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 If the error is new to the programmer or System 1 offers no hints, the content of the message 

becomes important.  The programmer might study the error message to see the nature of the error, 

which itself might trigger Path 2 if some part of the error message sparks an enactive representation 

(e.g., the word “exception” reminds the programmer to add an exception handler).  Without further 

inspiration, System 2 parses the error message and seeks guidance in symbolic representations 

(e.g., what do I know about exceptions?), which again might spark an “Aha!” moment (System 1, 

based on some other association) or System 2 chooses a potential fix based on the remembered 

syntax/semantic rules.  If they cannot remember anything helpful, the programmer can seek 

external sources of information63.   

When a novice is unable to recall helpful corrections, programmers turn to external sources 

of information.  New sources of information help programmers (Path 3) by either 

 Something in the information source triggers System 1 to try something else 

 Something in the materials activates some to-this-point inactive symbolic representation 

that System 2 integrates into its problem solving 

 System 2 integrates new knowledge from the source into existing knowledge, forming an 

iconic representation to juggle the sources of information 

That fix may come when the new stimulus sparks another “aha” moment from System 1 or when 

the new information suggests a potential fix64.  If the programmer is not finding what they need, 

they might need to refine their search (Path 4) or give up (becoming a stopper).  Experts are less 

likely to stop since within their prowess lies a secret – they are also better at seeking and processing 

resources that may help. 

Experts are also much better at retrieving information than novices.  Experts know the best 

resources, how to navigate those resources, keywords that narrow results in search engines, and a 

sense of how much to trust resulting sources.  How did they build such skills?  Experience!  For 

example, when I was learning the newly released Ada 95 language, the only available resource 

was a several-inch-thick reference manual.  Language designers write language reference manuals 

 
63 Some novices may stop at this point or may even have stopped when inspiration fails to guide their action.  These 
lines are not shown to manage the complexity of the diagram. 
64 The new information is iconic since the programmer may or may not remember what they discover in their research.  
I can’t say how many times I have looked up some bit of trivia about programming only to forget the solution when I 
encounter the error again.  System 1 provides that déjà vu feeling of familiarity but not the answer without practice.  
The quicker the fix the more likely an iconic representation with the new information will fade. 
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for programmers making tools more than programmers using the language.  To support my team, 

I needed to become a student of language design, but thankfully search engines have displaced the 

language reference manual for most problems.  These days I am teaching Matlab, so when I hit an 

error, I copy the error message into a search engine.  The results are rarely a conceptual explanation 

of the mistake, more likely a similar error on a discussion board with a reply containing instruction 

of what to change65.  The strongest programmers I have worked with rarely read reference manuals; 

they code through a combination of examples and searching errors. 

As tech-savvy as students have become, many are unaware of the basic triage strategy: 

Google the error message.  Even when they think of searching, they are often unsure of what to 

search on or what to make of the results.  Unless the search results jump directly to the required 

answer, the novice must enact some level of interpretation.   Search results present another set of 

symbols a novice must integrate into their mental model of the problem.  Experts develop a filter 

for which content is promising versus what is superfluous.  To some degree, they know what they 

are looking for.  By this stage of searching for fixes to errors, novices may no longer be confident 

they initially chose the correct strategy.  If they are unsure of the goal, made a mistake, don’t 

understand what the error message means, found information but still struggle to understand the 

‘fix’, it should be little wonder that new programmers are likely to stop. 

7.5.2.3 Revisiting Movers and Stoppers under the ANM 

By watching young programmers, Perkins et al. (1986) captured not just their mistakes, 

but their process and coding behaviors.  As introduced in Section 5.2.1, the researchers noticed 

that when students encountered adversity, they tended to keep going (movers) or quit (stoppers).  

Stoppers draw a great deal of interest – they can’t learn if they stop – but Perkins et al. noted that 

students who ‘move’ to a new solution before understanding the current problem (extreme movers) 

struggled to make progress as well. 

If stoppers illustrate the powerful influence of negative affect on students 
learning to program, certain movers in a different way show such an influence 

 
65 The helpful online resources seem to break into knowing how (support forums) and knowing that (reference 
manuals)!  The popularity and usefulness of online resources reflects the way programmers think about error messages.  
It is quicker and easier to search for similar errors than to scan the reference manual, just like the brain saves energy 
by listing to System 1 priming rather than using System 2 to search for specific facts. 
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too. An extreme mover is also, in his own way, disengaging from the problem. 
(p. 42) 

The stoppers and extreme movers seemed to have a great deal in common.  Perkins at al. hint at 

‘non-cognitive’ factors for these students.  Movers seem immune to failure, where stoppers are 

often described as frustrated.  Computing literature describes programming as instilling fear in 

student (Eckerdal et al., 2007; Kort, Reilly, & Picard, 2001; Shneiderman, 1977) for various 

reasons but TAMP suggest that some of the emotions programmers experience may be the results 

of cognitive gaps in learning as much as ‘non-cognitive’ factors. 

Extreme movers and stoppers have one cognitive trait in common: they halt 66  an 

unproductive investigation by System 2.  The difference is where they go next.  The characteristic 

that distinguishes movers and stoppers is not random, but their response to adversity.  Figure 7.7 

describes a likely source of adversity, error messages, and possible paths novices can follow.  

Novices become stoppers when System 1 remains quiet, the error message is meaningless, and 

they are unsure how to query their resources67.  Regular movers (the smaller set of novices in the 

middle) make progress using their resources and “tinkering” with code.  Ignoring the action and 

looking at their behavior, extreme movers seem just a different type of stopper.   

Instead of dealing with mistakes and the information they might yield, the 
extreme mover seeks to avoid them by moving on. (p. 44) 

Judged on activity alone, extreme movers and stoppers appear at the opposite ends of the spectrum.  

Evaluated through the lens of TAMP, however, the cognitive activity leading up to this choice 

seems very similar.   

 Following Perkins et al.’s story of one student, Tom, helps to show how the names 

“extreme movers” and “stoppers” might describe the same gaps in knowledge. 

Tom was quick to point out that he had had no programming experience prior to 
this course, and that he didn’t really know what he was doing. He said that the 
other students around him knew a lot more than he did (p. 43) 

Tom’s background afforded little intuition for the subject or confidence in his abilities, but Tom 

at least took a shot.  When Tom allegedly “stopped”, he did not quit programming but moved on 

 
66 Sometimes preemptively 
67 Remember, in Perkins et al.’s study a researcher sat with the student all the time available for prompts, hints, or 
deeper help, yet they still stopped.  If novices can stop, ignoring the dedicated expert sitting next to them, how do they 
manage when they are alone? 
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to the next problem since he had no new ideas for the current problem.  Moving on to the next 

problem seems less defeatist than pragmatic.  Figure 7.7 suggests that stoppers may simply exhaust 

their enactive representations quicker than extreme movers who seem to have an abundance of 

intuitive strategies. 

Extreme movers, however, move too fast, trying to repair code in ways that, 
with a moment’s reflection, clearly will not work. This approach sometimes 
leads students to abandon prematurely quite promising ideas because they don’t 
work the first time. Moreover, the extreme mover often does not appear to draw 
any lessons from ideas that do not work. There is no sense of “homing in” on a 
solution. Indeed, the student may even go round in circles, retrying approaches 
that have already proven unworkable. (p. 42, emphasis added) 

Extreme movers seem to be full of ideas but spend no time planning or analyzing.  They seem to 

be creatures of System 1, activating various symbolic representations without engaging System 2 

and forming iconic representations to organize and learn from their attempts.  Stoppers quickly 

become movers when activating the proper symbolic representations.  In one example, Tom was 

about to move to the next problem when the researcher pressed him to analyze his error.  With 

minimal guidance, Tom discerned not only the nature of the error but a successful solution.  The 

researcher was able to trigger the required information in Tom’s memory to solve the problem. 

 The ANM offers an alternative explanation of why students simultaneous ‘know’ and yet 

fail to apply knowledge.  Tom’s first trek through Figure 7.7 prematurely stopped when he did not 

reach out for help.  The researcher helped Tom by re-engaging his System 2 when asking “what 

he thought the error message meant” (p. 43).  Tom may not have considered the content of the 

error before this question.  The error message’s strange words, subscript out of range, 

probably meant little to Tom.  The error message was not familiar, and Tom did not have the 

experience to guide action.  The researcher’s question helped System 2 persist beyond Tom’s 

presumedly missing ‘feeling of knowing’.  Once reengaged, System 2 could recall the rules of 

subscripts and ranges in arrays and connect the error message with the problematic doe.  Perkins 

et al. described System 2’s influence. 

When pressed for an answer, Tom thought for a little while, and then said that 
maybe the number in the parentheses needed to be smaller. (p. 43) 
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Tom’s System 2 – taking time to think for a while – combined facts about arrays with the symbolic 

error message to work out a solution.  What stoppers and extreme movers seem to lack is a 

contributing iconic representation. 

 Bruner says problem-solving from symbolic representations alone is difficult, as Tom’s 

story shows.  We cannot know how Tom’s teacher introduced arrays, but I am guessing if he/she 

used the word subscript, Tom had yet to adopt it68.  Without recognizing the word, Tom may 

not have recognized the error was associated with his array.  He did not independently associate 

the word range or that being out of range has to do with arrays.  I believe that Tom never formed 

a meaningful iconic representation since “he encountered a bug when running a program that he 

had copied from the text” (p. 43).  He did not design the code; he merely was responding to the 

results69 and had neither the enactive representation nor the start of an iconic to use in problem-

solving.  Experts seem to naturally build iconic representations (Fix et al., 1993), where many 

novices seem unable to do so unless guided. 

7.5.2.4 Defining the contents of the ANM 

 A ‘three-part’ ANM is a useful but significant simplification.  At first, it was enough to 

introduce a notional machine combining semantic (symbolic) and non-declarative (enactive) 

memories.  Bruner’s representations provide an epistemological slant to the notional machine but 

do not describe the specific content a programmer must know.  Educators might be thinking, what 

about variables, data types, operators, decision structures, loops, recursion or the other topics that 

seem to trip students’ progress.  These are logical next steps for research and the classroom, but at 

this stage of theory construction there are still important intermediate layers within the ANM to 

capture. 

The content of the notional machine 

 
68 The more common term is index or indices rather than subscript in most languages.  It is possible that BASIC 
instructions used the term subscript more, but Tom described the subscript as “the number in the parentheses” (p. 43) 
seeming to indicate he had not adopted this specific term. 
69 Just today I helped a First-Year college student who could not understand why “line 43”, which was blank, produced 
an error.  He identified “line 43” but overlooked that the error said “line 43” was in a different file.  Even worse, 
runtime errors in Matlab appear with hyperlinks to jump to the erroneous code, but he had yet to learn that feature.  
He also neglected to engage System 2 to analyze the message, jumping straight to an external resource (me). 
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The discussion in Section 7.5.2.2 on error messages shows that programmers develop 

different aspects of knowledge as well.  Educators tend to think of their subjects in terms of major 

functional groups (such as Figure 7.11), which researchers sometimes capture as Concept 

Inventories (Taylor et al., 2020).  Some Concept Inventories focus primarily on core concepts 

(Wittie, Kurdia, & Huggard, 2017) while others capture both core concepts and how those concepts 

are used in various tasks (K. Goldman et al., 2008; Herman, Loui, & Zilles, 2010).  Concept 

Inventories help to centralize the knowledge about a subject but TAMP suggests they are not 

representative of how our mind organizes such knowledge.  Neuroscientists seem to indicate our 

mind organizes knowledge around its function areas (e.g., sight, sound, language).  System 1 uses 

such knowledge implicitly, or the medial temporal lobe gathers knowledge for conscious 

consideration, as discussed in Section 7.3.2.  Concept Inventories may be useful in organizing the 

desired end goal of learning, but perhaps are less informative to the stages of learning.   

The ANM does not invalidate or even challenge the traditional ways of describing content,  

such as Concept Inventories, rather it looks to capture how we organize information within the 

various types of memory as modeled using Bruner’s representations.  Bruner’s representations 

segment the same content Concept Inventories capture, slicing the concept into a matrix of their 

epistemological roots.  For instance, a programmer’s knowledge of variables contains an enactive 

representations writing the syntax and properly naming variables, iconic representations that 

define the purpose of the variable  in the algorithm, and symbolic representations that hold facts 

about the various data types.  Figure 7.8 provides high-level categories of the types of knowledge 

each representation contains within the ANM70. 

 
70 In theory, a researcher could create a matrix that combines a concept inventory as rows and Bruner’s representations 
as columns to identify the specific content that is enactive, iconic, and symbolic.  While Section 7.6 provides an 
example for reading and designing, it feels premature to undertake a comprehensive list before additional research 
confirms and refines the ANM. 
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Figure 7.8. The different types of knowledge within the Applied Notional Machine 

Du Boulay (1986) split syntactic and semantic knowledge (symbolic) from the notional 

machine (presumedly, the enactive portion), supporting the same divide in the ANM.  The ANM 

goes further in noting that even syntax and semantic have symbolic and enactive portions.  Du 

Boulay was ‘on the right track’ in noting that the difference between knowing how and knowing 

that, yet that difference may be difficult to perceive without theory to explain why it is important.  

A recontextualizing notional machine, including enactive and symbolic segments, can encompass 

many additional types of programming knowledge, like error messages.  The last section’s 

discussion of Tom highlighted the importance of familiarity with error messages and their 

corrections in addition to the rules when coding.  Researchers and educators can use the expanded 

categories of knowledge in Figure 7.8 offers to improve models of learning. 

 One of the challenges in conducting researches with novices is the inability to measure a 

programmer’s notional machine with any precision71.  Researchers often measure programming 

abilities as a black box; students can or cannot trace, explain, or write code, for example.  A binary 

measurement of students can/cannot perform certain tasks may miss the learning that students are 

achieving.  For example, McCracken et al.’s (2001) test to write a calculator suggested that most 

students were not learning enough.  The measures of learning used by Lister et al. (2004) showed 

that students were learning, but as Lopez et al. (2008) reported, piecemeal progress does not seem 

to predict inevitable success.  The notional machine would seem to be a valuable measure of 

learning.  The notional machine, as a loosely defined theoretical construct, does not include 

underlying theoretical concepts and thus perhaps has not helped to informed research in this way.   

 
71 This very problem is why I started TAMP! 
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Many computing education researchers struggle to identify useful measures of learning and 

consequently report confounding or conflicting results.  The ‘best’ data seems to come from studies 

that create new tests for the explicit purpose of research, but every classroom already has a 

preponderance of data available in the form of course grades.  Course grades as a whole (e.g., GPA) 

are imprecise since students may lose points to absences/tardies or late penalties, and benefit from 

points unrelated to individual programming skills (e.g., completing surveys, team assignments, 

extra credit).  Students who struggle on tests may show strong homework scores because they had 

help that overshadows their level of competence, and students who otherwise can program well 

may test badly due to ‘non-cognitive’ factors.  Studies using course grades should take care to 

carefully identify which graded activities pinpoint the desired learning outcomes (as an example, 

see (T. A. Lowe & Brophy, 2017)).  Many computing education researchers avoid grades entirely 

and use student perceptions of pedagogy as a measure of the learning outcomes.  Student 

perceptions are a valuable qualitative contribution to a study72 , but perceptions of learning may 

not reliably reflect actual learning.  Students may report they learned a great deal because a 

pedagogy builds a strong ‘feeling of knowing’ but no demonstrated skill.  Students might feel they 

learned little because the effort required to correct a System 1 error (and the associated Stroop 

effect (Eagleman & Downar, 2016; Kahneman, 1973)) left them uncomfortable despite learning 

critical lessons.  Any of these measures – targeted grades or student feedback – can contribute to 

research but will do so better when guided by theory. 

The ANM seeks to provide better measures of learning since it builds upon concepts and 

constructs that already exist in theory.  When a researcher seeks to understand the impacts of 

pedagogical interventions, it is helpful to have an accurate measure that includes intermediate 

stages of learning.  As an analogy, we want to know how much weight a dieter loses, not just 

measure if they fit into their target size.  As Chapter 8 will discuss further, McCracken et al. (2001) 

attempted to refine their ‘all or nothing’ measure of success by rating the degree to which students 

completed their assignments, but the rating system was at best unclear and difficult to replicate.  

Revisiting the notional machine’s definition allows for finer measurements of learning by not only 

identifying the content, but the type of memories students should form.  The ANM goes one step 

 
72 Single-subject studies often require the collection of such qualitative feedback to ensure the intervention is not just 
effective, but also ethical and holistically beneficial to participants (Kennedy, 2005).  
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further by proposing a model of how these granular skills combine to create an integrated set of 

skills needed for solving problems in programming. 

First the ANM helps identify what traditional assessments of programming abilities 

actually measure.  The disconnect between tests of tracing, explaining, and writing (among other 

skills) does not mean that any of the assessment methods are invalid, but it is a mistake to assume 

any test measures the entirety of the notional machine.  Given the epistemology suggested by dual 

process theory, the full maturity of a programmer’s notional machine requires several types of tests.  

 Tests of conceptual knowledge typically measure symbolic knowledge73 

 Tracing can assess enactive knowledge, if measuring the process, not just the results  

 Tests that have programmers write code require careful consideration 

o Can the programmer solve a problem using symbolic knowledge alone (e.g., 

memorize a procedure)? 

o Does the problem follow a pattern that students have seen before?  

o Is the problem requiring creative problem-solving? 

Researchers should apply the theory within TAMP to evaluate the nature of the test and the portion 

of the ANM being measured.  TAMP also suggests new ways of analyzing data.  For instance, the 

number of errors novices produce may be less important than how quickly they fix those errors – 

remember Youngs (1974) reported that experts produced a similar number of errors as novices but 

fixed them faster.  The ANM serves as a theoretical tool for not only dissecting coding behaviors 

but also reconstructing how each behavior fits into the larger picture of becoming a programmer.  

One of the limitations of the original notional machine within research was its inability to explain 

the various ways novices struggle. 

Content of the ANM 

 Sorva (2013) expanded the notional machine beyond a mental model that helps execute 

code into an engine that aids with comprehension.  Ironically, Sorva’s expansion of the notional 

 
73 Testing conceptual knowledge is challenging as even within conceptual change theory there is not a consensus 
definition of a concept.  What I mean here is test that talk about concepts, not apply them.  Tests such as short-answer 
or multiple choice.  Certainly, practitioners apply concepts in many ways – programmers certainly portray conceptual 
knowledge when they are building software – but the point of this is to test developing understanding of concepts.  In 
that sense, conceptual knowledge, knowing that, more likely falls into symbolic representations, where ‘true’ 
conceptual understanding likely requires a combination of all three representations. 
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machine may exhibit a superbug (Pea, 1986) about the brain.  Sorva started with the following 

definition 

A notional machine is a characterization of the computer in its role as executor 
of programs in a particular language or a set of related languages. (8:2) 

Neither memorizing nor executing programs guarantees comprehension any more than millions of 

high schoolers memorizing soliloquies from Shakespeare means they can explain the nuance of 

the bard’s words.  Sorva suggests that the notional machine should be an explicit objective of 

teaching, yet teaching the notional machine as traditionally defined only tackles certain types of 

knowledge.  Sorva’s expanded the hopes of what the notional machine provides without explaining 

how.  I believe the notional machine helps but is only part of that expansion.  Intuition and facts 

only go so far in problem-solving, hence the ANM, which includes the iconic representations that 

Bruner believed were critical.   

 Iconic representations are vital in blending experience with facts to solve complex 

problems.  The iconic representations of the ANM (Figure 7.8) describe transitional information a  

programmer currently needs (e.g., the algorithm under design, the test case being debugged).  

Brand new programmers need iconic representations to manage ‘new’ programming constructs74.  

Before a programmer intuitively understands, for instance, the initialization, advancement, and 

conditional testing of a for loop, their mind needs someplace to store and integrate each of these 

rules75.  Iconic representations allow System 2 to solve problems until enactive representations 

form to speed up and automate programming thinking.   

 Experts and novices alike need iconic representations to model the assumed behavior of 

code, either of their own or someone else’s design.  Iconic representations help in modeling 

algorithms (or higher-level designs) when programmers are debugging, modifying, or constructing 

new code76.  When novices try to explain code by interpreting execution results, they need iconic 

representations to blend language knowledge with observations about each successive run.  

 
74 Or at least new to them. 
75  Iconic representations are ‘one level higher’ than short-term memories.  If a student remembers little about 
programming constructs, they may need to look up information and juggle facts in short-term memory.  Students at 
this stage are still forming rudimentary knowledge and thus likely have little support from iconic representations, since 
they also have few symbolic and probably no enactive representations. 
76 Some novices may use iconic representations in tracing as well, but most do not seem to do so.  Tracing uses short-
term memory primarily and does not demand understanding or even remembering more than a few lines at a time, 
thus making iconic representations optional. 
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Likewise, comparing the use of language constructs across various algorithms helps distinguish a 

construct’s functionality from its role in that implementation.  Novices use iconic representation 

to consciously identify patterns (across languages, design, algorithmic, testing, or otherwise).  If a 

pattern appears frequently enough (e.g., several problems require searching for an item in a list) 

System 1 will implicitly identify such patterns as enactive representations, as portrayed in the 

Enactive (pragmatics) portion of the ANM in Figure 7.8.  These pragmatics represent aspects of 

programming that are critical in expect programmers but may be implicit in traditional curriculum.  

They are not aspects of the programming language or the tools, but strategies, patterns, and other 

such tacit knowledge.   

 Iconic representations provide the workbench for forging mental models of design, existing 

or newly created.  As discussed in Section 7.5.2, experience changes the way programmers use 

iconic representations.  Experts tend to derive meaning directly by reading code where novices 

often need to see code running (generalizing from ‘code in action’ iconic representations).  Some 

of the experts interviewed by Fix, Wiedenbeck, and Scholtz (1993) complained that they lacked 

“a concrete objective in mind, such as finding a bug or determining the effects of a potential 

modification” (p. 78), hinting that many experts focus their iconic representations with some 

particular goal.  Experts likely create multiple iconic representations of the same design with a 

different purpose.  After all, they create multiple diagrams to describe different aspects of design 

(e.g., class diagrams, activity diagrams, state diagrams, and multiple copies of each for different 

use cases).  Educators and researchers must apply the constructs of the ANM to describe their 

circumstances. 

Beyond coding, the ANM includes other mental representations critical to programming, 

such as those needed for testing.  Test cases pair inputs with expected output to ensure the desired 

behavior.  Anyone involved in testing software uses iconic representations to connect facts about 

the requirements, specifics of the test scenario, and knowledge of the design to fully understand a 

test case.  A programmer also needs to understand the connection between a test case and their 

code.  Executing a test case might only require symbolic knowledge, much like many tracing tasks, 

but truly understanding the purpose of and building test cases requires juggling many types of 

knowledge.  Iconic representations are vital to many types of programming knowledge but none 

more so than debugging.  When tests fail, the programmer must now juggle what they planned to 

happen (the code they wrote or how they understand existing code), with the planned behavior 
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elicited by the test case, with the results of execution.  Debuggers often must recheck every 

assumption, implicit or explicit, and validate every source of knowledge.  Experts debug more 

effectively than novices, who sometimes struggle to debug at all.  The ANM offers a model of the 

experience and skills that, yet again, experts possess, and novices struggle to replicate. 

Many of the advantages that experts demonstrate come from ‘automated’ iconic 

representations.  Each time a programmer searches an error message, explains, modifies, or debugs 

an algorithm, or creates a test case, they build strategies for similar attempts in the future.  Often 

these strategies become implicit, called upon when needed without conscious consideration, shown 

in Figure 7.8 as pragmatics (enactive).  These are the cases when experts can’t explain how they 

do what they do.  An expert’s repository of patterns helps to explain by just reading code or jump 

directly from a problem statement to writing code.  You can see evidence of the implicit nature of 

such patterns when a programmer changes language.  Beyond the differences in style between two 

languages (e.g., firstName versus first_name), the preferred constructs and even 

algorithmic approach may vary between languages.  For example, I typically forget that Matlab 

allows complex operations within matrices without requiring loops.  Pragmatics drive many of the 

decisions programmers make and explain why two experts with the same training produce very 

different results. 

The ANM provides a set of theoretical constructs that researchers and educators can use 

for describing how programmers think and learn.  Bruner’s representations provide a useful 

abstraction that combines the brain’s memory systems (nondeclarative, semantic, and episodic) 

and mechanisms of cognition (System 1 and 2).  So far, this chapter has revisited these ideas and 

combined them into the theory that is TAMP, but I would be a hypocrite if I left you with a ‘set of 

rules’ alone.  The rest of this section provides two examples of how TAMP supports building 

theoretical frameworks that model cognition. 

7.6 Applying the ANM 

TAMP provides theoretical constructs designed to describe the ways programmers think, 

not intended to exclude possible relevance into other disciplines, but the validation data primarily 

comes out of computing education studies.  Before returning to ‘hard’ studies of novice 

programmers, it is worth a minor departure into literacy.  Applying TAMP briefly to an example 
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outside computing may demonstrate the use of these theoretical constructs.  As we dive deeper 

into specific applications of TAMP, it gets easier to lose the forest for the trees over concerns about 

my technical description or bias towards/against a specific study.  The classification of 

programming skills into enactive, iconic, and symbolic representations seems to hold value even 

if you disagree with the way I describe their application to some language construct or design 

practice.  This section starts by modeling the web of skills involved in traditional literacy.  

Additionally, I believe that literacy education is a powerful analog, if not a literal example, for 

how novices may come to adopt programming languages, so an example about literacy may 

provide insights that translate back to programming.   

After applying TAMP to literacy, this section compares the way experts and novices read 

code within the theoretical constructs of the ANM.  Learning to read code is a common entry point 

for novices yet looking at the way experts read code shows how large a gap novices face in learning 

to even understand an existing program.  From there, I jump to the most integrated skill of the 

programmer, design.  When I say design, I mean to encompass the entire programming processes 

starting with a problem statement to the point the programmer feels they have completed their 

program.  Modeling design cognition briefly touches on a slew of intermediary programming 

abilities but does not look to capture every aspect of programming.  This work only provides a 

prototype of TAMP's potential, not a canonical model of how programmers think77.  Section 9.1 

will explain further why I feel it important not to deliver a strongly stated model of cognition, but 

instead the foundations for flexible theoretical constructs that might advance research and teaching 

practices instead. 

7.6.1 A web of skills – The example of literacy 

 The Applied Notional Machine provides a language for dissecting the mental activities of 

programming, but an analogous example may help demonstrate how TAMP models cognition.  

Most people are familiar with the process of learning to read from their own experience or better 

yet in helping a child.  Since Piaget, Vygotsky, and Bruner each discussed literacy education, 

Chapter 6 also offers several examples of children learning to read and write for comparison.  

 
77 The “Theory of Applied Mind of Programming” may oversell the current state a bit, but a more confident and 
comprehensive model is a goal once empirical research starts to emerge to prove some of the assertions made here. 
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While my descriptions of literacy pedagogy will occasionally be woefully naïve, the intent is to 

focus on the cognitive aspects of developing literacy as a programming neutral introduction to 

TAMP.  By avoiding programming dogma, I hope to provide an example that demonstrates the 

theory without requiring complete agreement on issues within computing education.  Literacy also 

provides a topic that heavily relies on new symbolic representations where students must both 

learn mechanical (reading and writing) and creative (composition) use of the symbols. 

 A person typically learns to read after becoming fluent in their native language.  To some 

degree, literacy focuses on adopting just the symbolic pieces of a symbolic representation, not 

necessarily new ideas.  Eventually, becoming literate opens a person to new worlds of independent 

thoughts and ideas, but the ubiquitous books of childhood like “Brown Bear, Brown Bear” (Martin 

& Carle, 1996) or “Hop on Pop” (Seuss, 1963) hardly expand a reader’s horizons.  The writing in 

such books chooses familiar words and concepts to encourage connections between familiar ideas 

and the written word.  Books for early readers intentionally build upon existing knowledge, 

allowing the reader to focus solely on the system of symbols.  Figure 7.9 presents a network of 

skills and their associated representations of early literacy. 

 

Figure 7.9. Using TAMP’s constructs to describe the web of reading skills 
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A quick note before discussing Figure 7.9:   
This section includes the analysis of several mental activities using the constructs of the ANM.  
The dissection of skills (in this case, learning to read) follows the example of Kurt Fischer’s 
neo-Piagetian theory (Fischer & Bidell, 2007; Morra et al., 2008).  Fischer described cognition 
as a network of interrelated skills that develop at different rates.  Fischer’s web of skills opens 
the possibility that Piaget’s décalages occur due to unequally developed skills rather than the 
improper transfer of general cognitive abilities.  The breakdown of skills is focused on mental 
activities, though, not the context of the domain.   
 
TAMP further contextualizes Fischer’s web of skills by using Bruner’s representations 
(enactive, iconic, and symbolic) as labeled within the individual or a group of skills.  Diagrams 
like Figure 7.9 also use different styles of arrows to identify when information is exchanged via 
System 1 or 2.  System 1 only delivers information or perform an unconscious action, where 
System 2 can exchange knowledge between enactive or symbolic representations. 
 
Generally speaking, it is easier to create separate diagrams for novices (e.g., Figure 7.9) and 
experts (e.g., Figure 7.10).  The bad news is in the difficulty of creating a single diagram 
because experts may have mental structures novices lack and stop using structures novices rely 
upon.  The good news is by drawing two diagrams it is easier to identify the types of knowledge 
novices must develop and equally importantly, the ‘way of knowing’. 

 A person can leverage existing knowledge, and better yet automated knowledge, when 

learning to read.  When a reader knows the words used in a book, their trained System 1 can 

support and self-correct System 2 as it goes about reading. 

1. Beginning readers need to recognize letters and their associated sounds.  System 2 must 

attend to each letter and remember its sound until practiced enough for System 1 to do so 

automatically78. 

2. Recognizing letters helps to sound out words.  Readers often vocalize unfamiliar words, 

attempting alternative pronunciations until recognition floods in from System 1.  When 

System 1 hears a familiar word, it provides System 2 with its meaning and the thrill, or 

relief, of recognition79.  Instant recognition is one of the goals of some branches of 

phonic education, where students are taught rules of letter combinations to help sound out 

words (Ehri, Nunes, Stahl, & Willows, 2001). 

 
78 Growing automaticity is the likely reason nearly every early elementary classroom is decorated in the alphabet.  
Merely recognizing the letters, though, does not cover all the phonetic combinations of letters required for reading, 
though, and English is notorious for varying the phonetic rules of spelling! 
79 Once again, System 1 will mature to automatically recognize frequent words like it once did for letters.   
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3. Each word adds to the growing meaning of the sentence at hand.  Each word recognized 

in the sentence provides context for the next80.  The context again helps System 1 predict 

candidates for the next word and further enhances the recognition process when 

combined with step 2.  A long sentence risks overloading short-term memory and 

forgetting the context before recognizing the next word81.   

Early reading leans heavily on System 2, which is visible in the pauses, considerations, and focused 

effort required of even adults learning to read.  Memorizing the alphabet does not make a person 

a ubiquitously perfect reader.  Ehri et al. (2001) reported that systematic phonics instruction helps 

children read better than non-systematic or other approaches.  What we consider ‘true’ literacy 

occurs when System 1 takes over the task, and we read effortlessly, but reaching that point requires 

a combination of System 2 and support from other related System 1 skills.  Figure 7.9 presents the 

network of skills for a novice reader, but the representations look different in proficient readers. 

 The minds of proficient readers have automated and combined rudimentary skills.  They 

read most words implicitly and only barely slow down or struggle with unfamiliar words.  The 

feedback loop for speaking words aloud internalizes such that they can mentally sound out words.  

Once freed of the need to support every minuscule step of reading, System 2 can turn its attention 

to comprehension.  Figure 7.10 provides a web of skills for a proficient reader.   

 

Figure 7.10. A breakdown of the skills of a literate person 

 
80 Context clues are also a strategy taught by phonics education (Ehri et al., 2001). 
81 This is the reason children books use easy words and are so short!  Each time they struggle to recognize the next 
word they risk forgetting one or more of the previously read words.   



 

 

236 
 

With practice, a proficient reader automates the mechanical parts of reading.  System 1 drives the 

reading process using a wide array of enactive representations that recognize familiar words and 

even phrases directly from the page.  Some readers practice until they achieve daunting speed and 

comprehension, training their minds to process larger chucks or entire sentences.  The main 

challenge when speed reading is comprehension.  System 1 will continue to scan words with or 

without System 2’s attention.  I am a very fast reader, but my automaticity does not always yield 

comprehension.  If I read something compelling, get tired, or bored my eyes continue to the bottom 

of a page or even the next page before I realize I don’t know what the author said.  My System 1 

did not stop reading; my System 2 stopped listening.  I know my System 1 kept working because 

when I reread the passage – this time, doubling down on attending to the page –words and phrases 

are familiar but not their content.  Like reading to a child, System 1 (mom or dad) keeps going 

long after System 2 (the distracted child) has turned its attention elsewhere.  Connecting literacy 

to programming, novices who become proficient at tracing (largely System 1) may not attend to 

the details of the algorithm.  Activities that promote automaticity within the notional machine may 

not yield equal benefits in promoting comprehension. 

  The mind’s transition from illiterate to literate is not just about adding new knowledge but 

adding the knowledge in the right way.  The layouts of Figure 7.9 and Figure 7.10 highlight the 

diminishing of some representations and the emergence of others.  Learning to read is a rite of 

passage for many people that highlights the differences in novice and expert cognition.  Advanced 

readers still have the option to ‘sound out’ words, but the need to do so diminishes with the 

internalization of other skills.  In programming, experts occasionally use paper and pencil to trace 

code, but only need to do so for extremely complicated code82.  Where beginning readers struggle 

to parse a word, advanced readers comprehend several at once.  Expert programmers comprehend 

the purpose of code with a glance that many novices struggle to explain code even with the help 

of visualizations.  Experts are not merely better at basic skills; their mind use entirely different 

cognitive mechanisms than novices. 

The example of literacy offers an interesting parallel for learning to program and perhaps 

puts into context how challenging learning to program can be.  System 1 helps new readers predict 

upcoming words from context or recognize the sounds of words when sounded out.  However, 

 
82 And unusual circumstances, because log files are much more reliable. 
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System 1 often misleads programmers because of interactions with smart devices or who anticipate 

the behaviors of code constructs based on the meaning of the repurposed word from English (see 

Section 2.2.2.1).  Like reading, developing automaticity for the system of symbols is a small 

fraction of the benefits and requirements of reading or programming.  The parallels between 

literacy and programming literacy seem both analogous and possibly literal with further research.  

For now, this section’s goal was to present examples of how TAMP models and contrasts the 

thinking of experts and novices to demonstrate the gaps novices face in becoming experts. 

7.6.2 Programming ‘literacy’ 

 One of the first skills a new programmer learns is to read code.  New programmers are 

presumedly literate in their native language (though may or may not know English, which most 

programming languages use for their keywords), and the number of words they must learn within 

the ‘vocabulary’ of a programming language is generally quite limited.   Where most spoken 

languages contain hundreds of thousands of words, programming languages have a few dozen 

keywords, and novices only typically need another few dozen build-in operations (e.g., operators, 

input/output, advanced math functions, graphics commands).   Foreign language students probably 

memorize more vocabulary words in the first few weeks than a programmer uses in their entire 

career.  What makes programming challenging is not memorization of syntax or even semantics 

(symbolic), it is the lack of underlying experience (enactive) about the concepts at work.   

Even considering the complexity involved in computing, the major concepts covered in 

early programming classes are quite limited compared with the range of subjects covered in 

literacy (e.g., colloquialisms, cultural allusions, business terms, scientific terms).  Like authors of 

children’s literature, programming instructors typically try to use familiar problems83 that allow 

students to focus on language concepts.  Figure 7.11 provides a very rough example of the types 

of concepts and relationships that often drives programming pedagogy.   

The complexity in Figure 7.11 is not in the number of concepts, nor in any single concept, 

but in their interconnectivity, particularly when lacking any connection to experiences.  Like 

spoken languages, a learner can only go so far by memorizing word meanings.  Communication 

requires a sense of grammar and nuance to word choice.  Likewise, teaching programming 

 
83 They hope at least that students are familiar with, but many times are not, as we will see in Chapter 8. 
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concepts independent of each other risks building skills in novices that are disconnected from each 

other.  The organization of Figure 7.11 mirrors the language manuals (and traditional textbooks), 

yet we do not learn a foreign language from a dictionary.  Section 7.3.2.2 showed that the brain 

processes language using several specialized regions that do exactly not match any logical content 

structure84.  Children do not study the structure of language until much later in schooling, long 

after developing basic competency in using language.  Why do we teach programming so much 

differently than we promote literacy? 

 

Figure 7.11. A network of skills devoid of the mechanics of cognition 

When it comes to the act of learning to program, experts may indeed have forgotten much 

of the process they took to become a programmer. Squire and Kandel (2003) told us that the 

formation of nondeclarative memory often comes at the cost of forgetting.  As System 1 matures, 

we forget why we structure knowledge as we do, or just as often, System 2 creates structures that 

‘feel right’ but are disconnected from System 1 operations.  Organizing materials according to the 

inherent conceptual structure, like Figure 7.11, provides a logical organization for experienced 

programmers.  Instructors want to help students, so they devise logical dependencies and ensure 

students learn their lessons in that logical order.   

How can a novice understand a decision if they don’t understand operators?  Oh, 
and variables.  But to understand operators and variables, you must understand 

 
84 Our brain does not have verb, noun, and adjective regions per se.  Some research shows that people with aphasia 
may have a tougher time with verbs, but not because a specific ‘repository of verbs’ is damaged, but because verbs 
require complex relationships and actions (Alyahya, Halai, Conroy, & Lambon Ralph, 2018). 
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data types.  And to test any of this code, you have to understand the main 
method/function/procedure, so the first activity should be “Hello World”   

Breaking content down into orderly concepts feels logical, and after all, most programming 

students are academically strong and often high school graduates or older.  By this point, they are 

clearly operational thinkers, as Piaget suggested!  It seems respectful to teach them like 

professionals, yet such an attitude forgets what it was like to think like a novice.  Novices struggle 

even to read a programming language because their minds process information differently than 

experts.  Modeling how experts think in comparison to novices helps to explain why traditional 

modes of instruction may miss many students. 

7.6.2.1 Experts and reading code 

An expert’s System 1 is so powerful that they often can’t distinguish exactly how their 

mind works.  When researchers ask experts what they were thinking (i.e., think-aloud protocols), 

their answer is constructed in episodic memory.  Since the work of System 1 never reaches 

conscious thought, experts often say they don’t know how they know.  When experts explain their 

thinking, it could be accurate, or it could be System 2 manufacturing a story to explain System 1’s 

reaction (Kahneman, 2011).  Unless an expert is aware of dual process theory or one of its 

counterparts, they may not distinguish knowing how from knowing that, and System 2 is happy to 

construct a seeming logical (but possibly untrue) story.  As discussed in Section 2.3.3, intuition 

has been an underlying theme in much of computing education research, but using TAMP, we can 

begin to identify how by inferring mental activity using what we know about the brain.  Figure 

7.12 suggests how experts may use intuition when reading code. 

 

Figure 7.12. How experts read code under the ANM 
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Experts rely on enactive representations to provide instant recognition allowing them to 

focus on the task at hand 85 .  Figure 7.12 includes two main pathways (understanding the 

structure/purpose or mental execution) that support the several plausible reasons experts are 

reading code (e.g., debugging, planning changes, reviews).  As Fix, Wiedenbeck, and Scholtz 

(1993) noted, experts tend to approach reading code with a purpose (the reason some were 

confused when asked to study code with the only purpose of remembering).  That purpose directs 

System 1 in gathering the desired knowledge using enactive representations that relate to similar 

experiences.   

Like a strong reader, experienced programmers seem to understand code more profoundly 

than novices reading the same page.  A glance might provide the framework of an algorithm, 

design, or even execution results from code.  When experts encounter something unfamiliar, they 

can turn to a deep repository of symbolic knowledge, yet do so in a targeted way, since System 1 

activates the most promising facts for System 2’s consideration.  Even when they must seek more 

information on different aspects of programming, experienced programmers hold an advantage 

over novices.  The expert’s System 1 helps to ignore unrelated facts and direct their search to the 

most promising sources and relevant results.    

7.6.2.2 Novices and reading code 

 Ironically, novices probably read code using the exact methods experts expect, toiling from 

concept to concept, rule to rule, their System 2 trying to hammer out meaning.  Unlike new readers, 

new programmers have little, no, or worse, misleading intuition for what to expect from the code.  

Where a new reader can sound out words and gain helpful feedback from System 1, novice 

programmers have no internal source of reliable feedback.  The feedback they receive is primarily 

symbolic (e.g., log files, error messages, tracing tables), adding further burden to System 2 to 

process the meaning of the output and connect the results with the code.  In summary, for many 

first-time programmers, they are asked to 

1. Look at mysterious symbols that are both recognizable and foreign 

 
85 This is why experts are often annoyed by badly formatted code.  When code fails to conform to standards, System 
2 must engage more frequently.  By following standards, at least when the code is indeed routine, later readers can 
spend less effort when reading.  By the same token, when something needs to stand out, the best way to ensure people 
attend to special cases is to intentionally break standards.  Standards are not always helpful! 
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2. Connect these ‘magic words’ with unseen consequences  

3. Mentally recreate the steps of an algorithm precisely, where any tiny miscalculation can 

be disastrous 

4. And along the way make sense of what it all means 

Much like the experts, the purpose of reading code is not always clear to the novice.  Example 

problems sometimes are familiar, but just as often they are baffling (e.g., What exactly does the 

formula, A | B & ~(xor(A, B)) == B, mean?).  Du Boulay (1986) noted the importance 

of showing novices programming’s “orientation” (i.e., the value it provides).  People learn to read 

for entertainment and knowledge, but tracing and explaining code seems to serve little purpose 

beyond learning syntax and semantics 86 .  Learning to read or program are each cognitively 

demanding, yet even the most illiterate person has innate advantages and motivators that may not 

be as clear to novice programmers.  It is interesting to compare the mental representations of a 

novice programmer (Figure 7.13) not only to those of an expert (Figure 7.12) but to that of a novice 

reader (Figure 7.9). 

As within the mind of a new reader, System 2 must recognize each programming language 

construct (word) and how the algorithm emerges from the surrounding constructs 

(phrases/sentences).  Unlike a new reader, System 1 does nothing to validate the resulting structure.  

Instructors mostly ask novices to read code either for tracing or explaining its purpose87.  Unlike 

experts, novices must rely on System 2 until System 1 is mature enough to take over and are 

probably better served double-checking System 1 for quite some time.  Tracing at least limits the 

scope of what must be remembered down to a few lines of code.  When the problem is familiar, 

novices can use sketching to take notes on the values of variables to alleviate cognitive load.  

Explaining code may not have such advantages.  As Fix, Wiedenbeck, and Scholtz (1993) reported, 

novices are similar to experts in explaining simple patterns of code that require little to remember, 

but show significant differences explain complicated patterns.  With fledgling symbolic and 

 
86 Not to say these are not important, but they hardly feel productive for new students.  As I think about it, I never saw 
or considered using tracing exercises with experienced coders learning a second language.  Either I missed out on a 
useful pedagogy or these tasks are only good for first-time programmers? 
87 It is worth noting, many instructors provide worked examples or the equivalent to students, essentially acting as a 
More Knowledgeable Other (MKO).  I believe that watching an MKO perform the tasks helps to form enactive 
representations, but not nearly a much as actively participating.  Thus, examples help to establish familiarity that might 
primes the appropriate symbolic memories when needed, but true enactive representations require interactive 
experience. 
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insignificant enactive representations, novices seem to struggle to form the vital iconic 

representations required to understand, much less manipulate complex code.  Experts do not 

merely know more than experts; they call upon mental mechanisms and different ways of knowing 

than novices.   

 

Figure 7.13. The representations a novice requires to comprehend code. 

7.6.2.3 Comparing how novices and experts read code 

 While the models of expert and novice cognition during reading are inspired by TAMP, 

computing education offers several studies that support such comparisons (Bednarik & Tukiainen, 

2006; Brooks, 1983; Fix et al., 1993; Floyd, Santander, & Weimer, 2017; Wiedenbeck, 1985).  In 

one such study, Bednarik and Tukiainen (2006) used eye-tracking technology to compare the 

visual focus of experts and novice during a code comprehension task.  Participants evaluated three 

short code segments within a code visualization tool that could sketch each step of the code’s 

execution.  As Figure 7.12 predicts, experts' eyes focused on the code, and only after reading the 

code turned to the visualization.   

In our experiment, more experienced participants read the code first, created a 
model and hypotheses, and then confirmed their hypotheses by (usually) only 
one run of the animation. (p. 130) 

Experts glean most of the useful information they need from System 1 and fill iconic 

representations as needed.  The visualization, as the authors suggest, serves as System 2’s 

confirmation of a job well done.   

 Bednarik and Tukiainen’s novices took a radically different approach according to the eye-

tracking data.  Novices “did not read the code at the beginning, but instead animated the program 
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several times and let the tool to visually explain the execution” (p. 130).  Given the option, the 

novices in this study avoided engaging with the source code until after they developed an intuitive 

feeling for what the program did from the visualization tool.  For the novice, watching the 

visualization is easier than engaging with the unfamiliar code.  For the expert, reading the code is 

not only familiar and easy but probably more so than deciphering the unfamiliar visualization 

tool88.  Each group of participants seemed to embrace the tools that required the least of System 2 

– novices built iconic representations by watching the execution to help understand the code, where 

the experts’ System 1 jumpstarted iconic representations, which helped experts validate their 

model and make it easier to understand the visualization.   

 Unfortunately, Bednarik and Tukiainen’s protocol did not verify the participants’ 

comprehension.  We know neither the quality or when in the sequence, each group finalized their 

model of the code’s purpose89, only where they focused their eyes and for how long.  TAMP would 

predict the same outcomes that Fix, Wiedenbeck, and Scholtz (Fix et al., 1993) reported with 

novices only remembering surface details in comparison to experts.  The visualization tool may 

actually overly focus on algorithmic methods and overload a novice’s ability to generalize 

structure design details that better explain a code’s purpose.  Experts begin to populate iconic 

representations of design as they read, where novices would need to consciously turn System 2 

away from line-by-line traces to determine the purpose of each subprogram and their duties and 

sequence within the full program.  Since novices spend most of their time considering low-level 

language constructs, they also have yet to develop the habits of mind to consider questions of 

design. 

7.6.2.4 Design documents and reading code 

When design documents exist, experts likely benefit from reading them more than novices.  

Figure 7.12 includes an additional source of information, the design documentation, which is not 

included in Figure 7.13.  I debated whether to include design as a source of information for experts, 

deciding to include it as it may spark further research in this area.  Based on theory and anecdotal 

 
88 Bednarik and Tukiainen noted that the experts had little experience with the tool, but seemingly no less experience 
than the novices.  Novices still chose to engage with the tool.  I would guess this is because all things being equal, at 
least the tool was dynamic where only System 2 can decipher static code. 
89 The study also used graduate students as ‘experienced’ programmers.  Not to impugn the expertise of graduate 
students, but it would be interesting to study full-time industry programmers whose primary duty is programming. 
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experience, I would guess that most programmers only selectively read design documents.  I have 

heard (and said) that design documents are not to be trusted when the source code is available since 

they are usually poorly maintained, and it is just as easy to read the code.  TAMP contends that 

since experts look to minimize the efforts of System 2, reading code not only offers the most 

accurate model but removes the task of reconciling iconic representations of the design and code.  

If the design says one thing and the code another, the code is obviously right, so why spend the 

time to determine if the design is accurate at all90?   

One subtler point TAMP suggests is experience makes designers more comfortable in 

reading/producing design documentation.  Since I spent years teaching object-oriented analysis 

and design, I feel equally fluent in UML and source code, but I can produce diagrams in 15 minutes 

that my peers claim would take them hours.  Novices, on the other hand, likely have significantly 

less experience dealing with the alternative symbolic representations of design.  While UML, for 

example, is less syntactically finnicky than source code, students not only spend less time building 

UML than they do code, and the feedback on the quality of design is less tangible.  Designs do not 

provide any direct feedback – they neither execute or give error messages – so student must rely 

entirely on feedback from others or build the proposed design in code.  Teaching design may feel 

simpler because of its iconic nature (use of summary pictures), but standardized design notations 

are still symbolic representations.  As Bruner noted, it is easier to learn symbolic representations 

when the learner already understands the concepts the symbols represent.  In my experience, 

novices eschew design (and even comments) and prefer coding as to minimize the number of 

different representations they must manage.  The rule of thumb about design might be 

programmers choose to document whatever minimizes System 2’s workload by relying on the task 

System 1 performs best. 

If experts are occasionally reluctant to engage in design documents, novices probably find 

little use in them when reading code.  Unless they can read design documents/diagrams fluently, 

design documents add yet another symbolic notation that novices must reconcile.  Cognitive load 

theory (Plass et al., 2010) warns against presenting students with multi-modal data in the same 

learning experience, as discussed in Section 2.2.3.  TAMP explains this overloading as an 

additional burden to System 2, requiring the mind to juggle new symbolic representations within 

 
90 This is another argument why many programmers prefer not to document long-term designs.   



 

 

245 
 

existing iconic representations.  Until novices are confident in code, design, execution results, 

tracing tables, or whatever other sources of information they may have about a program, they may 

waste effort in determining if these various sources of knowledge agree, and if not, which is in 

error.  TAMP suggests that teaching novices design notations may not make it easier to learn to 

program.  While design notations typically use imagery, they are not iconic since the generalization 

comes externally rather than from the novice’s experience.  Learning design as an easier-to-learn 

symbolic system does not circumvent the need to create – and may distract from – creating 

interconnected enactive, iconic, and symbolic representations. 

7.6.2.5 A brief look at how to improve pedagogy 

Novices cannot become expert programmers merely by collecting knowledge.  Even 

looking at the simple task of reading code, novices (Figure 7.13) do not become experts (Figure 

7.12) through a linear path.  Thinking like an expert requires building many enactive 

representations of code through deliberate and varied practice, as well as the habits of mind within 

Figure 7.8’s pragmatics.  Chapter 9 considers the pedagogical ramifications of TAMP in more 

detail, but before leaving the example of reading code, it is worth considering a few of the common 

pedagogies that novices see in these early stages of learning to program.   

Asking novices to trace code is an easier method of maturing the notional machine than 

the network of skills required to write code.  The most common tracing task presents a novice with 

inputs to a sample of code, asking them to determine the output.  Unless specific technology drives 

the tracing tasks, the novice does not receive definitive feedback until the end of the process91.  

Waiting until the end means any misstep is up to several minutes (hour or days, if relying on 

grading) in the past.  Even then, unless the tool/grader identifies the misstep, the student can only 

identify their mistake by tracing their incorrect tracing to find the error in their thinking.  They 

must essentially debug their notional machine.  If they kept meticulous notes, they might be able 

to revisit each step, or more likely trace a second time and compare the two attempts.  The novice 

might find a silly mistake on the second (or third, or fourth) trace, yet such mistakes are not 

 
91 The novice would need to be intimately familiar with the process realized in code to gain the same benefit as 
sounding out words.  If the novice must split their attention between predicting each intermediate step of the process 
and the code that automates the process, they risk overloading System 2 or confounding their tracing with what “the 
code should be doing” according to their understanding of the problem. 
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misconceptions merely human errors that computers would not make92.  Without the help of a 

more knowledgeable other, novices essentially must backward propagate from the correct answer 

until they find their error – the mirror image of the process they are learning.  Backward 

propagation is quick within a GPU-driven machine learning algorithm (and System 1) but quite 

effortful on traditional processors (and System 2). 

More likely than working backward, students will repeatedly start over from scratch or just 

move to the next problem, as Perkins et al. (1986) observed.  Starting over is more natural than 

reverse-engineering a mistake as System 2 can restart its ritual, varying its execution (much like a 

decision tree) in the hope it eventually leads to the correct answer93.  Even if the novice identifies 

their error in this manner, it may not help mature System 1, which does not learn explicitly.  System 

1 is just as likely to pick up bad habits from all the failed attempts as it is to recognize the proper 

approach from the single successful instance – possibly explaining why novices often continue to 

make the same mistakes even after learning the correction. 

In dissecting tracing, I am not looking to call its efficacy into question, so much as explain 

why some students do not seem to learn by tracing.  I do believe there is a better option than tracing, 

as introduced in Chapter 2, but I am not saying that tracing exercises are either harmful or futile, 

merely limited.  Reading instructors assign short, simple, familiar books not solely because they 

tie to experience, but because they lend to deliberate practice.  Programming instructors should 

consider similar heuristics in choosing tracing tasks.  Creating complex examples that engage and 

challenge students may accidentally encourage either ‘the wrong practice’ or shortcutting to the 

‘right’ answer by any means possible, thereby skipping the practice entirely.   

 Tracing is not the only highly useful pedagogy with potential drawbacks94.  Through the 

lens of TAMP, many pedagogical innovations serve to scaffold a novice’s fledgling System 1.  

Parson’s problems (Section 2.3.1) divide code into meaningful ‘chunks’ that the novice order into 

an algorithm.  Parsons problems straddle the line between “explain in plain English” and tracing 

tasks.   They encourage considering the purpose of chunks of code, yet unless carefully designed 

are solvable from context clues, a basic understanding of semantics, or even trial-and-error rather 

 
92 The point of tracing is not to pit human mental execution against that of the computer, but to promote familiarity 
with the language.  Simple mistakes only matter when the programmer writes them, and then the important test is can 
they debug such mistakes.     
93 Assuming the novices understands the points in the code they have a choice in execution! 
94 Instructors must often select less-than-ideal pedagogy.  Knowing its strengths and weakness helps to emphasize 
what is good and avoid the pieces that are miseducative, to use Dewey’s (1938) term. 
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than demanding comprehension.  If too simple, Parson’s problems become trivial.  If too involved, 

they could either be fruitlessly difficult or allow students to ignore the algorithm and focus on the 

few syntactically legal combinations.  It seems Parson’s problems must fall into the ‘goldilocks 

zone’ of being just right and require instructors to take care when creating. 

Subgoal labeling (see Section 7.3.1.1) challenges novices to add purposeful labels to 

worked examples to emphasize the purpose of code.  Subgoal labeling lessons typically start by 

watching an experienced programmer complete some task while adding subgoal labels as they 

work or reviewing code just to add labels.  Adding subgoal labels draws attention to elements of 

design, and particularly for advanced novices, provides a reason to attend to a demonstration that 

otherwise covers basic concepts they already understand (possibly countering some of the expert 

reversal effect).  True novices may not have the System 2 bandwidth to attend to both the basics 

and the design elements, though.  A major limitation of subgoal videos is the students are 

inherently passive.  Assigning labeling tasks results in similar problems where the feedback comes 

from an external source and may be either temporally detached or only useful after further analysis.   

Learning to read code is significantly tougher than memorizing syntax and semantics, in 

many ways, more akin to learning a first language than a second.  Students who fully embrace 

metacognitive reflection while completing any of these pedagogical interventions will likely excel 

but possessing such study habits likely makes a strong student under any pedagogy.  The goal of 

TAMP is not to draw any pedagogy into question, but to emphasize when and how teaching 

practices help students as well as identifying gaps in what each pedagogical intervention promotes 

(i.e., types of knowledge from Figure 7.8).  Only further research, as described in Chapter 9, can 

definitively show where TAMP is accurate and how students benefit from any teaching practice. 

7.6.3 Applying the ANM - Design 

 Reading code is a starting point, but beyond that, it is not clear that instructors can create 

an ‘optimal’ path to teach programming.  Is iteration or recursion a ‘more natural’ way of applying 

logic?  It depends on the language, problem, and background of the student.  Should we teach 

arrays before loops?  Putting arrays first would provide better examples for using loops, but how 

then do we demonstrate the proper way to use arrays?  Such questions miss the inherent 

interconnectivity of the subject, and more importantly, the way we think.  Humans rarely construct 
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knowledge, outside formal education, in such orderly concepts.  Most of what we learn outside the 

classroom starts from messy interconnected ideas that we eventually learn to disassemble.  Did 

you learn to play baseball or hopscotch by sitting down to a structured lecture on the rules95?  The 

piecemeal approach has its merits but also fails an embarrassingly large number of students. 

Computing education is full of stories where students show an understanding of individual 

concepts yet fail to pull them together to design, write, test, and debug programs.   

Careful retesting revealed that syntactical knowledge was not the problem. 
Students who did well on multiple choice tests could successfully “hand trace” 
syntactically correct code, spot syntax errors in incorrect code, and successfully 
implement a detailed algorithm given in simple English. The difficulty was the 
inability to form the algorithm in the first place. (Beaubouef & Mason, 2005, p. 
104) 

Beaubouef and Mason told a sad tale where, despite demonstrating learning, student are not 

seemingly translating what they learn to make it past the early stages of learning to code. 

At our university, there are over four hundred declared majors in Computer 
Science. Each semester, however, only about fifteen to twenty students graduate 
in this field. (p. 103) 

TAMP has many potential uses, many of which are refining how we currently teach and research 

programming practices, but it also has the potential to rethink how we train new programmers.   

 Revolutionary ideas still need some level of grounding in evidence.  Rather than proselytize 

a new curriculum based on anecdotal faith, I sought to understand how people learn, leading to 

how people think, that in turn led to a gap in the theory that drives how we measure learning in 

new programmers.  Two years and four-hundred-odd pages later, I have a few answers, many more 

hypotheses, lots of data from the literature, but no definitive proof.  I know what I would do if I 

were to start a programming class from scratch, but I am not ready to pronounce it superior or even 

replicable.  The missing link, which anyone who teaches software engineering should know, is 

defining the desired end goal.  Despite all of the literature reviewed in Section 2.1 describing what 

we want programmers to learn after their first year or so, I am not sure we have a high-level (and 

certainly not a low-level) understanding of what that means to be a programmer.  Rather than using 

a distinct list of skills, assessing when a person becomes a programmer is like United States 

 
95 I am still not clear about the rules of hopscotch, though I am an encyclopedia of baseball rules and I never played 
in a single formal league or read the rules until I volunteered as an umpire a few years ago. 
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Supreme Court Justice Potter Stewart’s famous phrase, “I know it when I see it” (Lattman, 2007).  

So long as companies are glad to hire our graduates, we may not be failing as a profession, but we 

may be failing capable students, but we may not understand how to promote these unnamable 

skills.   

 The purpose of this section is to create a strawman description of the mental structures 

required to be a competent programmer, specifically design96.  Software design is not just a vexing 

aspect of programming for many students, but conveniently it also models most mental activities 

programmers use in other aspects of solving problems.  This section starts by revisiting the 

essential role iconic representations play in design and establishing a scope a definition for what I 

mean by software design.  Intuition plays a strong and generally intangible role in design but 

TAMP provides the tools for modeling the role of intuition in expert thinking. 

7.6.3.1 The importance of iconic representations in design 

Strong designers need a robust and integrated skillset.  Bruner (1966c) claimed that 

knowing about a subject is not always enough to solve complex problems, so building strong iconic 

representations is critical. 

For when the learner has a well-developed symbolic system, it may be possible 
to by-pass the {enactive and iconic} stages. But one does so with the risk that 
the learner may not possess the imagery to fall back on when his symbolic 
transformations fail to achieve a goal in problem solving.  (p. 49) 

I keep returning to this Bruner quote because it seems to get at the heart of what confounds novice 

programmers.  They have a wealth of information but stored in a way that makes it inaccessible 

when most needed, and it is not their fault.  Students, being human, are victims of our shared 

cognitive architecture that prefers to preserve the hard work only when required (i.e., System 2 is 

lazy).  Students may take the path of least resistance because they are young and foolish, or because 

System 2 is generally lazy.  Bruner suggests it is up to instructors to build curricula that encourage 

all three types of representations.   

 
96 By defining the end goal of the ideal programming skillset, it is possible to work backward to rethink the best path 
in teaching programmers.  A new curriculum would likely preserve of many current and past practices, but perhaps 
not in their current or past form.  In choosing design, I am not looking to describe any specific degree program or full 
skillset, merely a person who can take a problem and code a solution, as will be detailed more in a bit. 
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 Bruner seemed to indicate students who learn facts they cannot connect to experience are 

less flexible thinkers.  His discussion after the quote above turns to the instructor's choices within 

the order of instruction.   

Exploration of alternatives will necessarily be affected by the sequence in which 
materials will be learned become available to learners.  When the learner should 
be encouraged to explore alternatives widely and when he should be encouraged 
to concentrate on the implications of a single alternative hypothesis is an 
empirical question (p. 49) 

The way an instructor chooses to present information influences how students later make decisions.  

Bruner’s pedagogical discussion mirrors that of Perkins et al.’s (1986) stoppers and extreme 

movers.  How do we encourage stoppers to consider alternate options rather than giving up on a 

single failed attempt?  Can we convince an extreme mover to slow down and explore a problem 

more thoroughly?  Designers need to decide when to evaluate and when to move on from a failing 

design.  Bruner does not provide clear-cut guidance but does place the iconic representation at the 

heart of such reasoning.  If iconic representations are critical to flexible problem-solving, and 

flexible problem-solving is key to design, it follows that iconic representations are key to design.  

This section explores what roles iconic representations play in the cognition of programmers while 

designing. 

7.6.3.2 What is design  

Before diving into the mental representations of design, it is important to capture what I mean 

when saying design.  The traditional software development lifecycle (SDLC) includes phases such 

as requirements, design, code, and test, occurring either as sequential activities (a.k.a. the waterfall 

approach) or with some iteration between the stages.  Through the eyes of the SDLC, design is an 

isolated and distinct activity that happens somewhere after defining the problem and before writing 

code, possibly incrementally.  Some programmers hold the extreme view: programmers shall write 

no code until completing the design97.  Completing design prior to coding seems to have stemmed 

from manufacturing where the cost of raw materials and production time are sizable investments 

 
97 On one such project, a manager chastened my choice to reverse-engineer UML diagrams from code rather than 
using the slow click and drag interface. Writing an incomplete framework of code to produce diagrams more quickly 
was “cheating the process” in their eyes – certainly, an extreme view, but one that follows the waterfall process quite 
literally.  It seems very few companies follow this approach these days, but the waterfall ideas still linger. 
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compared to the cost of mental planning but made their way into early software processes.  In time, 

software engineers proposed new methodologies, such as Extreme programming or Agile, that 

embrace incremental design.  Processes like Agile do not eliminate the design phase but allow the 

design to emerge incrementally, and some projects choose limited (or no) formal documentation.  

Even iterative projects still hold a limited view of design compared to what I am proposing.   

 The traditional view of design is unhelpful in modeling cognition since design choices are 

omnipresent and never-ending for programmers.  While programmers make major decisions in the 

timeframe dedicated to ‘design’, they continue to make equally impactful, if smaller decisions 

until the product is delivered.  Rather than hashing out whether the cognitive activity of design 

extends beyond a specific time period, I am embracing the description of design proposed by Socha 

and Walter (2006).  They argue that software design is different from design in other fields, and 

the true artifact from software design is the delivered source code.   

Socha and Walter stress the need for flexible thinking and responsive engineering when 

building software products.  Software developers are not even designing a digital product so much 

as they are defining a complex adaptive system (CAS) that includes software but also encompasses 

some human process(es).  Unlike physical systems, they suggest code has essentially no production 

or delivery costs, allowing for nearly instant feedback from users in a way that may take months 

or years in other products.   

As current development systems make it easy to start generating code (or is it 
design?), the software developer tends to jump in and start producing something 
without incorporating any explicit design methodology. Furthermore, the value 
of an up-front design is less compelling if CAS theory implies that we cannot 
understand what the design will produce until we execute the design. (p. 543) 

The tools of programming allow us to skip traditional levels of abstraction (e.g., sketches) since 

such abstractions are less useful in determining the inevitable quality of the product.  Since part of 

the measurement of the quality of a software product is the interactions between humans and the 

system, it is difficult to predict before finishing code.  The sociotechnical feedback is critical to 

the long-term design than that of the predefined structure of code.  Socha and Walter certainly 

extend design well beyond planning the efficiency of memory and throughput or even writing code 

that is easily maintained.  Design, by their definition, encompasses all aspects from problem 

definition through verification and validation. 
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 Even if you disagree with Socha and Walter, the expanded view of design is helpful when 

talking about how programmers think.  Especially if you advocate that programmers should 

conceive much or all their intent before starting to code, it is vital to promote design thinking apart 

from coding.  The design of software must consider not only the requirements and underlying 

technology, but the design’s testability, maintainability, and ease of troubleshooting. Design 

always must account for the full SDLC lifecycle.  Regardless of how and when a programmer 

completes their design, the mental constructs I am proposing remain the same.   

7.6.3.3 The role of intuition in design 

System 1’s contribution to programming is not limited to automating the notional machine 

but plays a vital role in all aspects of thinking, including design.  Remembering the alternative 

name for System 1, The Autonomous Set of Systems (TASS), helps to frame design as a sequence 

of many types of tacit knowledge.  Before capturing the specific types of enactive representations 

(i.e., TASS processes) within the mind of a trained programmer, it is helpful to remember how we 

form and use intuition. 

Different types of intuition 

 The way expert programmers think is far from homogeneous, and the body of knowledge 

that is computing is far from monolithic.  Fix, Wiedenbeck, and Scholtz (1993) noted that experts 

“are not distinguished from a novice along a single dimension or just a couple of dimensions” (p. 

78).  Expert thinking uses different sources of knowledge and analysis techniques than novices, 

but instructors typically do not teach these sources explicitly. 

The results suggest that a number of skills contribute to the formation of the 
mental representation, for example, skill at recognizing basic recurring patterns, 
skill at understanding the particular structure inherent in a program text, skill at 
recognizing the links tying the separate program modules together, etc. (p. 78, 
emphasis added) 

The specific skills Fix, Wiedenbeck, and Scholtz pointed out in their summary all seem to be 

behaviors of System 1.  Pattern recognition, perceptually grouping text, intuitively associating 

links are not only attributable to System 1, but the speed at which experts perform these tasks hint 

at automaticity.  Wiedenbeck (1985) demonstrated the superior speed that experts demonstrate in 



 

 

253 
 

the similar task of recognizing syntax errors (identifying non-conforming patterns) in an earlier 

study.  Fix, Wiedenbeck, and Scholtz (1993) suggested that experts had an easier time with some 

questions because they know more about programming, thought TAMP suggests much of their 

additional knowledge was actually nondeclarative and contributed to their perceptual advantages 

as well.  Several of the questions that novices struggled to answer were “based on information 

readily available in the program, yet novices do not extract it,” presumedly because novices “are 

using a different program comprehension strategy than experts” (p. 78).  TAMP suggests that 

experts are not using an explicit strategy of comprehension, rather they are implicitly better at 

filtering and organizing the information they are perceiving.   

 Chase and Simon (1973) captured the perceptual advantages chess experts hold over 

novices (see Section 4.2.1.1).  Chess pieces, like coding constructs, have symbolic and semantic 

meaning.  Each piece represents its allowed moves – the ‘castle’/rook can move any number of 

spaces vertically or horizontally where the ‘horse’/knight moves in its funny L-shaped motion.  

New chess players must internalize the allowed motion of each piece, yet knowing the legal moves 

does little to suggest fruitful strategies any more than memorizing if-else semantics does not 

ensure problem-solving with code.  Playing a strong game of chess requires knowledge beyond 

the rules of the game, it requires developing a sense of strategy. 

 Strategy in chess revolves around creating advantageous board positions.  My favorite 

tactic was always positioning knights to simultaneously imperil two valuable pieces creating what 

is commonly called a ‘fork’ – the opponent must choose which pieces to lose.  Finding and 

avoiding forks requires novices to carefully analyze the board seeking/avoiding the spaces a knight 

could introduce a fork.  As a youth, I spent hours poring over books on chess puzzles that presented 

such opportunities/threats, such as shown in Figure 7.14.  The typical chess puzzle shows a mid-

game board position, declaring the desired outcome in some number of moves (e.g., checkmate in 

3 moves).  At first, I poured over each piece and the possible moves (also having to imagine the 

opponent's potential responses) using System 2 to construct potential board positions (iconic 

representations that rely on my enactive knowledge of how pieces move).  In time, the puzzles 

became easier as I began to recognize the most desirable/threatening board positions.  Novices 

learn quicker using chess puzzles over just playing games from the start because the puzzles 

narrow attention to finding strategic positioning.  Nearly half a century ago, Chase and Simon 

(1973) captured the main advantage of chess masters, a library of familiar board positions, which 
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we can now say resides within System 1.  Not only does System 1 recognize configurations of 

pieces, but it offers a desirability measure that helps direct strategy.  A glance provides a chess 

master with a sense of threats and opportunities.  The experts in Fix, Wiedenbeck, and Scholtz’s 

study also seemed better at identifying and remembering patterns they saw in code.  

 

Figure 7.14 An example of three steps in a chess puzzle, including possible positions of a knight 

If intuition is a vital source of strategy in chess, it stands to reason that experts in other 

fields garner similar benefits from intuition.  System 1 seems to provide experts with two distinct 

advantages: procedural automation and perceptual filtering/pattern recognition.  System 1 

internalizes the rules of the game (e.g., chess moves or semantics of language constructs) within 

enactive representations, sometimes overlooking or forgetting the conscious rules along the way.  

Such procedural automation offers programmers speed and accuracy within their notional machine 

and tasks that require mental execution (e.g., tracing, some aspects of debugging).  Design, in the 

sense described in Section 7.6.3.2, requires programmers to go much further than selecting 

individual lines of code, they need strategies.  Experts seem to call upon a repository of patterns 

and strategies that novices struggle to recreate within System 2 alone.  One of the major gaps 

between novices and experts that pedagogy must tackle is how to encourage the formation of the 

types of knowledge to support strategic thinking. 

Building intuitive strategies 

Within Bruner’s three representations lies a hint at how inspiration and logic combine in a 

designer's mind.  TAMP’s refined definition of the mechanics of iconic representations offers 

explanations of how intuition influences and supports reasoning during creative planning.  The 
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challenge to educators is capturing how such knowledge forms.  System 1 internalize procedures 

and automates how we communicate with others.  Take, for example, the implicit acquisition of 

grammar.  Compare the following two statements.   

rectangular green old French silver lovely little whittling knife (mine) 
    versus 
lovely little old rectangular green French silver whittling knife (M. Anderson, 
2016) 

Was one line easier to read/comprehend than the other?  Did you know that a grammatical rule 

governs the ordering of adjectives98?  Do you think of the rule any time you choose multiple 

adjectives?  Common advice to aspiring writers is to read more.  In reading more, we train our 

System 1 to recognize patterns, and as such, become more likely to produce similar patterns in our 

writing.   

Merely reading about grammatical rules only changes habits when System 2 has the 

bandwidth to monitor the parameters of such rules.  I can attest to this personally, as the sections 

of this work that needed the most editing were also the most creative.  It was easier to easier avoid 

or at least catch my habitual mistakes when writing sections that simply summarized familiar ideas 

that required little planning.  System 2 can use symbolic representations to curb our behavior 

(enactive), but only when our planning (iconic) is not all-consuming.  Similarly, expert 

programmers, having automated much more than novices, can learn faster, as is commonly noted 

when programmers learn multiple languages.  Expert coders who are also educators may 

underestimate the learning curve novices face since they are more likely to remember learning a 

second or third language, that was much easier than learning their first. 

 If System 1 drives how we translate ideas into words, it seems reasonable that mechanisms 

govern our creative expression in coding.  The adage “think before you speak” seems to be an apt 

description of how we communicate.  We often choose words implicitly and only recognize just 

before (a pause), during (a stutter or typo), or after (a restatement or edit) does System 2 step in to 

alter what we communicate.  System 2 monitors rather than drives many of our expressions99.  It 

seems much of our decision making happens in a similar manner.  Damasio (2006) suggested that 

 
98 According to Anderson (2016) the explicit order is “opinion-size-age-shape-color-origin-material-purpose” 
99 Remember the discussion of Wernicke patients in Section 7.3.2.2 who thought they were communicating could not 
understand themselves or others. 
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our unconscious mind preselects good ideas (and discards bad ones100).  It seems Damasio’s 

preselection is a byproduct of System 1 jumpstarting System 2 by priming important associated 

memories to the current train of thought/perception. 

 Designs (and memories) rarely spring to mind fully formed but rather are constructed.  We 

may rehearse a future conversation using memories of similar conversations (e.g., what will my 

committee ask me in my defense?  Let me think about what other audiences have asked me!).  I 

believe, as discussed in Section 7.3.2, the mechanisms of prospection are useful in describing the 

mental activity in design, and enactive representations are critical.  Not only does System 1 

enhance the mental simulation of prospective designs, but as described in Section 7.6.3.4, it stores 

patterns of design that inspire designs.  Why do some excellent programmers choose loops while 

others choose recursion?  While they may have wonderful justifications for their choices, the 

answer probably is just as much habit.  They may have had a professor or manager or programming 

language who encouraged/demanded one over the other.  Why did my coworkers insist that debit 

cards were impossible to integrate (section 4.2.1.2)?  I believe it was too much time working on 

the same types of problems that influenced their thinking (they understood perfectly once the 

inspiration hit).  TAMP suggests that intuition (System 1) may be equally critical as strong 

analytical and planning skills in creating strong designers, but identifying the type of intuition, the 

specific repositories of enactive knowledge, that is important in preparing novices.   

7.6.3.4 Mental representations of design 

The constructs within TAMP describe expert knowledge and thinking as more than a 

mysterious black box.  So far, important propositions include: 

 Iconic representations capture the ‘here and now’ of conscious design reasoning 

 Enactive representations describe tacit knowledge acquired through experience  

 Symbolic representations incorporate ‘new’ information from external sources 

 System 1 explains the mechanics of inspiration and fast processing 

 
100 It seems more reasonable that the ‘quality’ of thoughts is irrelevant to System 1.  Like an artificial neural network, 
the inputs (perceptions) results in an output (priming thoughts) that at best come with some strength of confidence 
(feeling of knowing).  It seems unlikely we are subconsciously cycling through options and weighing them, but rather 
the slow training of System 1 has done that already.  Multiple options that come to mind do so when our System 2 
seeks alternatives because it is dissatisfied with the first prime, and in doing so changes the inputs to result in a different 
idea (or not).   
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 System 2 drives deliberation and makes decisions in novel circumstances 

Given these five constructs and their value propositions, the next stage in building TAMP is 

looking at the cognitive activities of programming.  It is important to note that I will not tackle 

programming at its lowest level at this time.  Dissecting the pieces of language constructs (e.g., 

if, else, and else if) does little to illuminate the mental representations of experts like 

drawing a diagram aids little in tying your shoes.  Most adept shoe-tyers only consider the act of 

tying their shoes (writing code), checking if their shoe is tied well (reading code), and dealing with 

unfortunate knots (debugging).  They have little need for ‘knot theory’ so long as they have a way 

to keep their shoes on their feet.  Rather than dictate the “right way” to teach each concept, I will 

consider the abstract categories of knowledge and thinking that goes into design101.   

Figure 7.15 describes the mental representations at such a level of abstraction used by an 

experienced programmer while designing.    

 
101 I am not diminishing the need to find ways to teach novices basic concepts, merely that they are unrelated to design 
cognition.  Without enactive representations of code, novices have little chance of tackling complex design tasks 
anyway, so they are a precursor skill, but far from the only one. 
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Table 7.5 provides a brief definition and identifiable traits of the elements from Figure 7.15. 

 

Figure 7.15. The mental representations of design 
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Table 7.5. Descriptions of the elements from Figure 7.15 

Diagram element Description 

Problem Statement Any source of details about the current programming task such as written 
documents or communications directly with stakeholders.   

Symbolic 
representation of 
design 

Any new facts, processes, rules, or other information that is new to the 
programmer from an external source.  Such knowledge initially resides 
in semantic memory and would quickly fade if left unused. 

Research domain Seeking further knowledge about the domain typically by forming initial 
questions and follow-ups.  The act of forming questions may inspire 
updates through System 1 or 2. 

Experiential 
repository 

The collective set of enactive representations that remember larger 
programming patterns.  For example, common algorithms, architectural 
patterns, or testing approaches that transcend individual projects. 

Inspire Design An enactive repository of patterns of design formed primarily through 
repeated exposure of similar iconic representations of design.  System 1 
primes System 2 on future problem statements with these patterns.  

Note: Building this repository may require active consideration of 
code, more than simply reading code.  Whether merely coding an 
algorithm (someone else provided) without metacognitively 
considering the pattern provides sufficient growth is unclear.   

Inspire Test Similar to Inspire Design patterns, enactive representations form inspiring 
patterns of testing, the same in every way but content. 

Iconic 
representations of 
design 

The pattern of episodic memories formed by the mechanics of 
prospection (rather than recollection).  These are mid-term memories that 
may only last the duration of the project and would fade over time.  
Themes across projects or profound strategies may make it into the 
experiential repository. 

macro-Purpose The mental model of the overarching solution, dealing in abstractions that 
group micro-Purpose design choices into higher functionality.  The model 
most often originates as a vague ‘outline’ proposed by the enactive 
repository but is refined through System 2 deliberations and System 1 
feedback when completing other mental activities. 

 Continued on next page 
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Table 7.5 - continued from previous page 

Diagram element Description 

micro-Purpose The mental model of algorithms relating directly to lines of code and their 
purpose.  The rules of creating and refining micro- and macro-Purpose 
iconic representations are the same.  

Note: An expert’s System 1 has matured to the point they read 
functionality and purpose from code simultaneously in most instances.  
Novices may read code in such a manner that they construct functional 
details without divining any of the purpose.  In novices, the micro-
Purpose most likely is accompanied by a functional model of the code 
built upon instances of Mental execution.  For unusual or novel code, 
experts may use this same capability, but so infrequently, it is not worth 
adding to an already busy diagram. 

Test Cases A mental model of the plans for testing, similar in all ways to micro- and 
macro-Purpose representations except for content.   

Note: It may be that testing planning is a separate variant from test 
cases, but again it is not portrayed here for simplicity’s sake. 

Mental execution The storage repository of the mental prediction of code execution as 
performed by the notional machine, storing variables, and perhaps 
including presumed intent.  Updating this mental model seems to be a key 
aspect of debugging, as the programmer attempts to reconcile their 
assumed code execution with the actual Execution Results. 

Enactive 
representations of 
design 

The enactive representations that support the reading and ‘writing’ of 
design notations.  For example, fluency with flowcharts or UML would 
depend on these constructs. 

Read design An acquired familiarity allowing System 1 to generate (or update) iconic 
representations of design from merely looking over Design Artifacts.  A 
programmer must acquire each alternative symbolic form of design 
through repetition, otherwise reading design adds to the burden of System 
2. 

Note: Experienced programmers can learn new design notations faster 
since they ‘know what they are looking for’ managing the burden 
placed on System 2.  Novices may undergo significant burden when 
lacking enactive representations of design. 

Capture design The automated mental habits and muscle memories for transforming 
iconic representations of design into Design Artifacts.  Each symbolic 
variant of design and the skills of its creation must be individually 
practiced and learned to form these enactive representations.  For instance, 
writing pseudocode does not build flowcharting abilities, and drawing 
flowcharts by hand does not generate fluency in using a computer drawing 
tool. 

 Continued on next page 
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Table 7.5 - continued from previous page 

Diagram element Description 

Design Artifacts The various ways intermediate symbolic representations of design can be 
captured in software, whether using text, diagrams, or other shared 
notations. 

Note: These are only describing shared notations.  A rough sketch by 
an expert or novice that is of their own devising is a literal incarnation 
of an iconic representation.  Enactive representations of design are only 
required when interacting with someone else’s design format. 

Enactive 
representations of 
code 

The enactive representations that support automaticity in each 
programming language.   

Read code Like Read design, System 1’s ability to transform code into meaning 
instantly and effortlessly.  Experts can focus on functional implications at 
the same time as they derive purpose from code, but novices typically 
begin with the former.   

Write code The automatic transition from intent to the creation of code, but through 
the trained habits including the tools.  Thus, a programmer’s robustness at 
writing code may vary depending on their toolset (e.g., IDE’s code 
generation abilities).   

Interpret error 
messages 

A repository of actions, a possibly but not certainly explanations, 
associated with the occurrence of error messages.  For instance, a compiler 
error may drive System 1 to add a semi-colon.  Some errors may drive 
action without ever processing the contents of the message itself, or 
without the programmer understanding why the change matters, only that 
it needed changing. 

Code The whole point of this entire exercise, the files that contain the precious 
lines of code.   

Running program The runtime environment and its associated inputs/outputs and behaviors.  
A programmer may need to understand very little about the running 
program’s environment or a great deal depending on the nature of the 
problem, the language, and the level of debugging required.   

Execution results Any perceivable way a programmer can see the next effect of the code in 
action.  Execution results may be active, like user interfaces or debugging, 
or entirely passive like updates to files or databases.   

Note: Dual process theory suggests most of the review of execution 
results may occur in System 1, as lazy System 2 presumes the Mental 
execution matches the actual results.  Like Interpret error messages, a 
developer may build enactive representations recognizing unexpected 
results, but forming these is likely context specific.  Experts may 
instead form habits of mind to double-check their assumptions, making 
them better debuggers. 
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The mental activity in the early stages of ‘traditional’ design 

Dual process theory indicates that most of what we perceive comes to us filtered through 

System 1.  Imagine you are an expert reading the problem statement from a new project.  A 

question that pops to mind – System 1 triggered that question.  A nagging feeling tells you that 

something is missing – System 1 is not seeing something it expects.  You spot the perfect solution 

and are itching to start coding – System 1 has seen this problem before, and System 2 is ready to 

act.  Design researchers have noted  that  expert designers generally leap to and refine an approach 

rather than deliberating over various possibilities (Adams, Turns, & Atman, 2003; Atman, Chimka, 

Bursic, & Nachtmann, 1999).  Long before System 2 processes the full implications of a problem 

statement, System 1 is spotting relevant information, finding holes in familiar patterns, and 

invoking strategies that might help solve the problem.  The Experiential repository from Figure 

7.15 ‘preloads’ an Iconic representation of design with a plan based on experience.  The model of 

prospection suggests that System 1 activates semantic memories of past designs that System 2, in 

turn, navigates possibly prompting further research of the problem.  Each new source of 

information adds to the Symbolic design or may spark further inspiration.  TAMP suggests that 

early design cognition is less deliberative than reactive to a flood of inspiration coming out of 

System 1. 

Once a problem moves beyond abstract patterns, System 2 works to acquire details of the 

problem at hand.  Iconic representations of design capture semantic memories of the solution-

under-construction.  The more familiar a programmer is with the domain, technology, 

implementation strategy, the less need they will have in documenting their design.  Programmers 

who are newer to certain elements may need support in offloading details to either design 

documents or, in some cases, directly to code.  In many situations, programmers are expected to 

produce design documents either as a part of the development process or for posterity's sake.  Many 

programmers become fluent in design notations (e.g., UML, flowcharts).  Figure 7.15 presumes 

that most expert programmers possess some enactive representations of design, allowing the 

programmer to read and create design notations with little effort.  While some believe the value of 

formal design notation may be overhead, TAMP suggests they can add value when strategically 

used. 

One of the reasons to teach formal design notations is to speed up and improve the quality 

of communications between people.  Design notations, like language, attach certain significance 
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to its symbols.  When each party understands the implications of the design symbols, it improves 

the quality of communication.  Before mastering a symbolic representation of design, each 

‘speaker’ delivers their iconic imagery in its native form.  The ‘listener’ then interprets that image 

through their own, rather than the socially constructed interpretation.  Without a shared ‘language’ 

of design, two collaborators are essentially playing Pictionary.  One person attempts to share an 

abstract idea through a picture the other must interpret.  Just like Pictionary, the communication 

would be instantaneous using words, but the task is difficult (and presumedly entertaining) by 

taking away the shared system of symbols.  Design notations encapsulate nuanced significance 

into their system of symbols (e.g., a diamond means a decision or an open triangle as an arrowhead 

means inheritance)102.   

When a programmer implicitly masters a symbolic system, they blend iconic thought and 

imagery with the socially ‘approved’ set of symbols.  Their Iconic representations of design 

translate seamlessly to the page because their early – organically created – imagery has integrated 

with or adopted that of the design notation (e.g., I now “think” in UML when designing).  When 

two parties each internalize symbolic notations, their communications are less hampered with 

noisy communications as they spend less time and effort sharing ideas.  Even when working 

independently on complex projects, the designer can refresh their iconic memories from the page.  

As mentioned earlier, it is just as common for programmers to skip design and jump into coding, 

which has many cognitive benefits over design, as TAMP can explain.  

Cognitive reasons for design versus direct coding 

Explaining a programmer’s tendency to skip formal design presents an early test as to how 

well TAMP explains their cognition.  Developers have probably rebelled against the “waterfall 

model” for software development103 nearly as long as it has been prescribed.   

The problems with[in] one phase [of the waterfall model] are never solved 
completely during that phase and in fact many problems regarding a particular 
phase arise after the phase is signed off, this result in badly structured system. 
(Balaji, 2012, p. 27) 

 
102 It is the nuance that also makes learning design notations difficult.  If the novice does not understand the nuance 
of the concept (e.g., inheritance’s function and value in design), they are likely to miss its significance in the notation. 
103 Write all the requirements before designing before coding, etc. 
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It is challenging, if not impossible, to perfect each stage of a project without feedback from later 

stages.  As stakeholders learn more about what is possible, they see valuable additions to the 

planned functionality.  Building some of the code provides valuable insights to programmers on 

improvements to the design (see Section7.6.3.2).  The open-ended potential of software makes 

predicting any aspect of a project challenging, so “several methodologies recognized the critical 

role of iterations in creating effective designs” (Thummadi, Shiv, & Lyytinen, 2011, p. 68).  

Software engineering accommodates for linear and cyclical models of design, yet the relationship 

between ‘design’ (the planning stage) and code states is still sometimes contentious.  

 Conventional wisdom tells new programmers to dedicate time to planning their code before 

writing.  Would-be mentors evoke the carpentry adage “measure twice, cut once” to remind 

novices of the value of planning, lest waste time in producing an inferior product.  Some literature 

suggests that without creating preliminary designs, programmers risk making mistakes (Segue 

Technologies, 2013) or adding to technical debt (Montesi, 2015).  Buna (2018) created a list 

warning new programmers against “writing code without planning” just before telling them it is 

equally bad when “planning too much before writing code.”  Adam Morse (2017) offered the 

sardonic tweet, 

In carpentry you measure twice and cut once. In software development you 
never measure and make cuts until you run out of time. 

Presumedly, Morse was critiquing software engineering’s lack of discipline and ability to predict 

quality.  The consensus seems to be that some preplanning is required, yet how much is the right 

amount seems debatable.   

Moving from anecdotal advice to empirical studies, Ji and Sedano (2011) compared the 

productively of 50 student project teams working under either a waterfall or Extreme Programming 

(a variant of an Agile) process. 

Waterfall teams spent more time creating high ceremony documents where as 
Extreme Programming teams spent more time writing code and documenting 
their design in their code. Surprisingly, the amount of code and features 
completed were roughly the same for both methods suggesting that on a three 
month project with three to four developers it doesn't matter the method used. 
(p. 486) 

The process imposed on the student teams' designs did not seem to influence their overall outcomes.  

Ji and Sedano do not report on quality measures (e.g., bugs, adherence to standards, non-functional 
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aspect of maintenance); left unreported, it may be fair to assume they were similar, as any 

difference would have been an interesting finding104.  From a productivity standpoint, the students 

produced similar functionality that presumedly worked in equal measure, but it is interesting to 

note that neither jumping to code nor attending to preliminary design seemed to change the scope 

of projects105.  The amount of formal design did not seem to increase either the bugs, or did it 

decrease the productivity in relatively novice teams.  Why is it some programmers insist that design 

is a distinct precursor step to producing quality code, yet many others show equal productivity 

with minimal or no formal design?   

The perceived value of design may have a lot to do with individual preference that TAMP 

might explain, starting with the very nature of cognition.  Kahneman (2011) described System 2 

as lazy, always happy to allow System 1 to drive where possible.  When a programmer has strong 

Enactive representations of design, the task of documenting design is less cumbersome, and they 

may be less resistant.  The more System 2 must intercede when documenting the design, the less 

likely a programmer will find designing helpful.  System 2’s laziness may play into capturing 

design in another pragmatic way.  How willing are you to start a job you know you may have to 

redo?  A designer who is highly confident in their designs – either because they deserve to be, or 

because they are oblivious to the design’s holes – may be more willing to document their 

presumedly solid plan than a designer who sees potential flaws.  Programmers may choose to jump 

directly into code to shortcut the arduous deliberative process of comparing design options entirely 

in one’s head.  Jumping to code offers improved feedback and may take the same effort as invoking 

the notional machine to predict the outcome of a specific design. 

 Preliminary design documents offer limited avenues of feedback to a programmer when 

they are building new systems.  Jumping to code offers programmer feedback from the compiler 

(e.g., does the library contain my presumed feature), the runtime (e.g., does my algorithm produce 

my expected results), the coding process itself (e.g., did my decomposition work out as expected), 

not to mention the potential for actual user testing and feedback.  By comparison, design 

documents do little to help a programmer help themselves.  Occasionally the process of 

 
104 It would be interesting to review the quality of the resulting design but TAMP might predict that the quality would 
be similar for reasons about to be explored. 
105 Again, the authors do not report projects becoming ‘bigger or smaller’ deliverables, nor the amount of time students 
put into the projects.  There is an adage in industry that a deliverable always takes a long as its estimate, meaning that 
even if a product could be delivered faster the team tends to continue to iterate until they run out of time.  Thus, the 
agile teams may have completed the same amount in less time or as reported, did the same amount.   
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documenting a design will prompt a new insight (System 1) into a flaw (e.g., “Oh, I need an index 

in this database table!”).  A disciplined programmer can engage System 2 to review their design 

for defects or even mentally simulate their designs planned execution.  That developer needs to be 

particularly disciplined, though, to overcome the confirmation bias and other such systemic biases 

in our thinking (Kahneman, 2011).  Dual process theory suggests such a task is at least demanding, 

if not futile.   

 When a programmer reviews their own design, they must ‘tune out’ the same experience 

System 1 suggested to create the design.  System 2 must consider if every assertion, abstraction, 

and assumption hold and do so independently from the same enactive representations that hold the 

assertions, abstractions, or assumptions.  For example, if System 1 assured me when I created a 

design that my database automatically encrypts passwords, I must recognize and double-check that 

and every other assumption.  Not only is such a review mentally taxing, but likely uncomfortable.  

The Stroop effect (Eagleman & Downar, 2016; Kahneman, 1973) – which seems to occur in dual 

process theory terms, when System 1 and System 2 are at odds – produces an emotional response 

making the self-reviews strenuous and uncomfortable.  Documenting design provides a helpful 

medium for supporting the memory and focus of System 2 but may not provide an individual with 

insight into the quality of the design. 

 Seeking input from others pay provide a “second set of eyes,” but their feedback may come 

from intuition as much as reasoning.  I have been in many reviews where a different perspective 

offered valuable insights and many more where they were just another opinion.  Purposefully 

deliberating through the logic of a proposed solution is hard work!  Design documents intentionally 

describe abstractions of the inevitable code, or why not just write the code.  Such abstractions may 

highlight certain design flaws (e.g., excessive coupling) yet hide others (e.g., lack of reuse).  

Pressman (2010) described design reviews where reviewers are “asked to read [the design] looking 

for errors, omissions, or ambiguity” (p. 220).  Heuristics often guide the assessment of design, 

which, by their nature, are subjective and often intuitive.  Design processes attempt to prompt 
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reviewers by providing checklists106, but in my experience, design reviews tend to dwell on 

functional implementations107 over the non-functional questions of code quality.   

Assuming reviewers can provide useful feedback, such feedback is still only reflective of 

the programmer’s produced symbolic, not their iconic representation.  The design may not fully 

represent the coder’s tacit knowledge that will inform the final implementation.  If design 

originates in System 1, even the designer is blind to its rationale.  Designers often overlook, cannot 

explain, or fabricate stories justifying an unknowable decision (even if it is a good rationale).  In a 

nutshell, design documents tell only part of the story at best.  The documentation itself is filtered 

through the programmer’s fluency with the symbolic medium.  It describes abstractions that may 

or may not have common meanings.  The feedback may or may not yield the desired changes 

within the designer.  I am not advocating that reviews are pointless, so much that they are limited 

to certain types of feedback in proportion to the skills of the participants and the time dedicated to 

the creation process.  

 My analysis of design through the lens of TAMP should not undercut the value of design 

or dissuade its use.  Rather it should serve as a guide to embracing the effective aspects of design 

and possibly letting go of traditional yet probably mythical benefits.  Perhaps embracing iterative 

approaches, dealing with upfront uncertainty yields better understanding, can yield similar benefits.  

In discussing the conflict that is design-versus-code, I hoped to capture reasons on both sides.  

Advocates of design can point to specific benefits but may be overstating others.  Naysayers might 

be right about design’s limited benefits, yet also may be avoiding a task in which they are 

undertrained.  In the spirit of Socha and Walter (2004), Figure 7.15 does not stop with the design 

but continues to discuss the implementation, testing, and even debugging of code.  It may be 

impossible to train a programmer without equally addressing all these aspects of cognition. 

 

 
106 Another important, but perhaps tangential point, checklists probably do more to stimulate System 1 than encourage 
deeper System 2 analysis.  The checklist may focus attention on certain types of errors, but detecting such errors still 
often relies on System 1 experiences.  The type of design novice programmers focus on often is limited to basic 
algorithm design which benefit significantly less from design representations. 
107 Which are just as easily corrected through testing.  Yes, catching a functional error at the design phase provides 
earlier feedback, but the same impact is achieved through Agile sprints with less total effort as design reviews are 
expensive in time. 
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Designing code – the whole game 

The mental representations of design are important through the process of developing code.  

Even when a programmer dedicates the time to fully fleshing out their design plan, their resulting 

mental model must guide their actions when writing, testing, and debugging code.  The act of 

writing, testing, and debugging exposes flaws in the Iconic representation of design, as well as 

suggesting improvements.  Perhaps the most challenging aspect of debugging is seeing past the 

flaws in our own mental model.  Many a coder has a story about the bug that hid behind a rock-

solid assumption that turned out to be wrong.  As an example, let me share a humbling experience 

I had when my wife announced our brand-new vacuum cleaner was not working. 

My debugging process started when my wife announced that our brand-new vacuum 

cleaner was not turning on.  I was mildly against purchasing a new vacuum as my 15-year-old 

Kirby had served me well, but the Kirby’s bulky frame made it heavy to lug around, so I accepted 

a less-costly model that would meet our daily needs.   I presumed it came with a shoddy connection 

in the wiring since it was “clearly an inferior brand.”  Within twenty minutes, I disassembled the 

unit, carefully cataloging its design in my head as I worked until I exposed the switch in question.  

Using my trusty voltmeter, I checked if power was reaching the switch, the first in the sequence 

of electronic parts from the cord.   My years as a software developer taught me to double-check 

every assumption.  I plugged the vacuum in and found no voltage.  I checked the cord for any cuts 

or kinks but being new every part was pristine.   

The problem, as it turned out, did not lie in the vacuum at all.  Hearing the vacuum would 

not turn on, my System 1 blamed the brand-new device I did really want to buy (fear of buyer’s 

remorse influencing my logic).  As a trained electrical engineer, my System 1 suggested a detailed 

iconic representation of the inner workings of such machines and a plan to find and repair a loose 

connection or demand a replacement for a faulty part.  As I disassembled each piece, my System 

2 added to the mental model of the circuit diagram, enriching my confidence in how well I 

understood the engineering of the vacuum.  It was not until I hit a data point that undeniably put 

my mental model at odds with the physical could I see past the simple assumption I had made – 

the vacuum did not fail to turn on, it suddenly stopped working because it tripped the circuit 

breaker in the kitchen.  The vacuum was fine; the power went out. 

Expert programmers seemingly are much better at forming and manipulating mental 

models than novices.  My iconic representation of the vacuum formed quickly, calling on semantic 
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memories of rules of circuits and voltages and adding new symbolic knowledge as I took the 

machine apart.  I even manipulated the model to create a methodical sequence of testing, which 20 

minutes later (plus another 20 to put it back together again) resulted in a successful repair after I 

reset the circuit breaker.  My analytical skills had served me well, but if I were an electrician, not 

a software engineer trained as an electrical engineer, I probably would have thought to check the 

power supply first.  Our mental models guide our work as programmers, just the same.  Whether 

you agree with Socha and Walter, it is hard to argue that a program’s design, especially how we 

mentally model that design, is subject to change until the programmer delivers the code.   

My experience in coding, and it seems in some of the literature discussed earlier in this 

chapter, indicates that intuition guides experts as much as reasoning in design.  A designer never 

really starts tabula rasa because their experience suggests a starting point.  Novices who start 

without any inspiration seem to make little or no progress at all (think stoppers).  Just as often, 

though, programmers start within an existing system.  We saw in Section 7.6.2.1 that even here 

experts use their Experiential repository and skills in reading code developed within Enactive 

representations of code to make intuitive leaps about what the code does and extract details that 

novices miss.  Whether we are creating new designs or constructing mental models from existing 

designs, the memory stores described in Figure 7.15 are the same.  What varies is how our mind 

‘time-travels’ through them. 

By framing design cognition using the rules of prospection, TAMP explains differences between 

experts, but also why novices struggle to design.  Recollection (prospections partner) is more than 

the direct retrieval of facts; stress, personal biases, or other factors can systematically alter episodic 

recall (Harari, 1995).  Since they share the same mechanisms, then planning would also vary based 

on not only personal factors, but perhaps the designer’s state of mind.  Programmers often create 

radically different designs despite using identical toolsets for the same problem108.  While Table 

7.6 goes through a detailed example of how intuition might drive experts to different solutions, 

empirical evidence of how design varies lies within the application of academic honesty policies.   

Many instructors and schools use tools to compare student coding assignments and assess 

if they may be copying their answers rather than producing their own code.  At one point, Stanford 

 
108 Consider that the core instruction set of a processor has changed little, particularly relative to the virtual machines 
common in modern software, yet Computer Scientists keep generating new programming languages.  Either each new 
language comes out of a new set of priorities (experiences) of the designer, or we should stop teaching language design 
as a course that encourages Computer Science students to recreate the wheel! 
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University saw an average of 37% of all academic honesty issues from the CS department, with 

some years, the number exceeding half (Roberts, 2002).  If the semantics of programming 

constructs were the primary driver of design, student submissions would be so similar as to make 

academic honesty nearly impossible to detect.  One tool used to detect plagiarism assumes that 

“programs of a few hundred lines, anything over 50% mutual overlap is a near-certain indication 

of plagiarism” (Bowyer & Hall, 1999, p. 2).  Unlike plagiarism tools for essays, code tools use 

underlying programming constructs so that merely changing the names of variables cannot fool 

the tool.  Since most early programming assignments use few constructs, have highly constrained 

expectations, and are less than a “few hundred lines,” it seems that students create solutions that 

are highly unique using logic other than merely translating from well-memorized rules.  Design is 

not purely rational and draws from many different types of knowledge and experience.  

An example of designers in action 

Despite all the complexity within Figure 7.15, it remains a simplification of everything 

stored within the mind of a programmer.  The Inspire Design representations within the 

Experiential repository could be split into technical (e.g., exemplar uses of constructs, general 

algorithms) and domain (e.g., the rules of banking, insurance, avionics) knowledge.  As discussed 

in Section 7.6.3.3, programmers take their design inspiration not only from the language and their 

experience in algorithms but also from the paradigms of the industry in which they work.  What a 

designer chooses is not just influenced by examples of success, but also by counterexamples of 

times they struggled or failed.  In the early 2000s, I worked with a manager who insisted that 

configurable software would never work – he suffered through a miserable project when computers 

of that day were as powerful as modern calculators.  He battled against my design until his concerns 

proved moot when my prototype was successfully performance tested109.  He held such a strong 

bias, he willfully overlooked advances in computing (see Moore’s law) or even waiting for the 

evidence before forming his final opinion.  He preferred ‘safer’ design options that took 

significantly more time and effort to implement and maintain.  To be fair, my insistence was 

equally driven by intuition - I didn’t want to build a bunch of repetitive, boring code!  The 

 
109 His prior experience saw early Java web application struggle to manage a few dozen concurrent users.  I forget the 
exact numbers, but the performance test handled several hundred or more concurrent users – on my work laptop. 
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difference between our initial choices was not reasoned, but intuitive based on his past struggles 

versus my, perhaps naïve, success. 

Eckerdal and Berglund (2005) reported that students believed they needed to think differently as 

a programmer.  From the outside, watching a programmer work might seem foreign and 

mysterious, but is that any less so than a masterful artist, lawyer, teacher, or parent?  TAMP 

suggests that programmers do not change into different ways of thinking (i.e., algorithms) but 

rather simply have different memories to draw from (i.e., internal state variables).  Figure 7.15 

defines the different mental repositories that each programmer could draw from when solving a 

programming problem.  To demonstrate how the same cognitive mechanisms can result in different 

results, Table 7.6 compares three programmers – two experienced programmers with different 

backgrounds and an advanced, but struggling novice110.  One of the experienced programmer’s 

primary experience has been in writing database scripts (i.e., the DB Expert), where the other’s 

experience is more in Java (i.e., the Java Expert).  The three programmers receive the task: 

Compute the total amount due to each provider for today’s claims.  For instance, 
if Dr. Smith submitted three claims for $50, $25, and $100, the result would 
show $175 for Dr. Smith among all the other providers that day. 

I have created the scenarios in Table 7.6 based on prototypical developers I have worked with and 

taught solving different problems.  The point is to illustrate the mental structures from  

Figure 7.15, not imply a literal outcome.  

 

 

 

 

 

 

 

 

 

 
110 Our advanced novice has competency in much of the language mechanics but has little design experience. They 
could, given a flowchart, readily construct and test a solution. 
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Table 7.6. Working through the cognitive mechanisms of a sample design process 

Step Cognitive mechanism 
Consider the Problem Statement 
Both System 1 reads the problem statement using native language processes 
Experts While reading, System 1 primes System 2 with an impression of the problem and 

‘initializes’ iconic representations of design with hints towards design approaches. 
Novice System 1 may offer rough connections but probably at the level of language constructs 

(e.g., use a loop) rather than algorithms or design. 
Consider the design 
DB 
Expert 

System 1 suggests retrieving claim data using a “group by” query111 into a database.  
If the expert is familiar with the existing system design, the details of the query (table 
and column names) spring to mind, else they research these details. 

Java 
Expert 

System 1 suggests organizing claims in a Map structure112.  If new to the system, they 
look up how to retrieve the claims data, else their System 1 already knows how. 

Novice System 1 hinted that a loop might be involved, but first, the novice needs to research 
how to get access to the claims.  Are they passed in as a parameter?  Does the user 
input them on a screen?  What do I remember about loading things from files?  Even 
if the novice is taking a database class, their experience may trigger lessons from their 
coding classes, rather than the intended database practice. 

Research domain 
Experts Lookup domain details or double-check their intuitive design as needed. 
Novice With so many gaps in the domain and technical understanding, it may be difficult to 

know where to start.  Are the details of a claim most important, or should I start 
capturing the technical details for retrieving the data?  They may start writing code to 
capture what they ‘know’ without a master plan or hint at a master plan to fill in with 
the details they will look up in a minute. 

Document the findings of the query 
 The next step varies depending on the programmer’s ‘feeling of knowing’  
Experts o Feel supremely confident in knowing they chosen the ‘right’ algorithm, they 

either sketch out a quick design or jump into code.  When coding starts, they 
quickly breeze from one step to the next, tackling issues as they arise. 

o Confident about the approach, but unsure about the details, they document some 
aspects yet want to validate others.  Jumping into code, they write basic code for 
any easy prerequisite tasks (e.g., loading the data) focusing on the unknowns 
(e.g., the exact format of the data, the system performance).  Once settling any 
concerns, they complete their design and/or fill in the parts of the solution they 
skipped over in their prototype. 

 Continued on next page 
  

 
111 For those not familiar, the group by statement, as the name implies, would return a list of claims ordered by the 
provider (e.g., the first five claims are for Dr. Smith, the next 3 are for Dr. Shah, and so on). 
112 Maps allow quick sorting of data under a key.  In this case, using the provider as the key would quickly sort the 
claims by the provider making the rest of the algorithm quite simple. 
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Table 7.6 – continued from previous page 
Step Cognitive mechanism 
Novice o They feel confident about a piece of the whole solution, so they write code for 

that part of their design hoping to tackle other areas once they finish, such as 
 A loop to cycle through the claims 
 A query to load the claims 
 A data structure to organize claims by the provider 

They write code but introduce compiler errors they can’t fix, so they attempt to 
code the next ideas.  That code ends up with several more unreconciled compiler 
errors before they try again until running out of time. 

o They are unsure about the problem or solution, but they know they need to load 
the data.  They recognize they need to make a query, but don’t remember how to 
do so right now.  They turn instead to the loop they know must be there before 
realizing they are not sure how to start any of these pieces.  After some time, they 
have a few ideas but have not started to write any code.   

 The primary experience our experts bring influences their different but equally viable 

approaches.  The scenario in Table 7.6 is fictionalized, but not imaginary.  I was the ‘Java 

expert’ a decade ago, joining a team of coders who spent most of their time working in 

databases.  The story of the novice summarizes observations in the literature, Perkins et al. 

(1986) and stories seen across the three studies discussed in the next chapter.  The three 

alternative paths towards design demonstrate how the mental constructs of Figure 7.15 influence 

design.  It seems rare that a programmer mentally weighs each option – would it be more 

efficient to let the database order my claims or to manage that in the distributed client – much 

less writing the code to test each.  More likely, experience drives their preference. 

 If intuition drives expert thinking during design, then how do novices compensate (or in  

Table 7.6, not) when lacking experience?  As discussed in Chapter 2, some computing education 

researchers talk about a bimodality in students, where some thrive while many more struggle.  

TAMP suggests that thriving is much less common because fewer novices will have repositories 

of experience to draw from.  It also suggests that bimodality may be overstated and more of a 

problem in the question than the students.   

when [students] give wrong answers it is not so often that they are wrong as they 
are answering another question, and the job is to find out what question they are 
in fact answering (Bruner, 1966c, p. 4) 

Bruner did not know about System 1 but could see that students answered with something in their 

realm of experience; it just may not have matched the question.  Experienced programmers also 

encounter gaps in their knowledge and use System 2 to seek information but are better at adding 
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to their iconic representations since they can add new facts to already strongly associated 

knowledge (enactive and symbolic).   

 Human memory is much like data stored within a database.  Information is most useful 

when it is easily associated and searchable.  Database designers go to great lengths to ensure data 

in one table is accurately associated with data in another table.  Without well-planned connections, 

the system could spend all its resources searching between tables for potential associations, 

without confidence that any results are unique or accurate (e.g., I found an address for this person, 

but is it the same person?  Is it their only address?).  Instructors have become very effective at 

filling student’s heads with important information, but it seems novice programmers have 

difficulty in accessing the right knowledge and putting it to work when needed.  Experts have had 

time to create associations between problems and code-based solutions, that may be possible to 

foster in novices, but perhaps not formally.  System 1 implicitly acts as the vital link between 

abstract knowledge but only can do so when given time and varied experiences.   

Before leaping to applications of TAMP, though, the next step is to offer empirical 

evidence of the assertions of this chapter.  While much of this chapter leverages my anecdotal 

stories and observations to explain TAMP, the underlying theoretical constructs are rooted in 

existing theory supported by data.  To test if my assertions stand up, I revisit several studies of 

design and programming in the next chapter, offering an alternative analysis using the theoretical 

constructs of TAMP. 
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 VALIDATING TAMP - REVISITING EMPIRICAL STUDIES OF 
DESIGN AND PROGRAMMING 

Computing and Engineering Education researchers have long studied the process of design.  

While my focus is on how novices learn to program, two related studies (Atman et al., 2007, 1999) 

from Engineering Education are useful in evaluating the model of cognition for designers at 

various levels of expertise.  These studies help to establish the general plausibility of TAMP’s 

model of design cognition, even if they are not centered around aspects of computation.  Returning 

to programming, this chapter next revisits the pivotal study by McCracken et al. (2001) that 

influenced much of the last two decades of computing education research.  They reported that 

instructors expected far too much from their students, particularly in their ability to apply coding 

knowledge to design, but never really explained why.  Since McCracken et al.’s work was  so 

influential to the formation of TAMP, this chapter finishes by reinterpreting a follow-up study on 

writing code (McCartney, Boustedt, Eckerdal, Sanders, & Zander, 2013) as a form of discriminant 

sampling.  Juxtaposing the difference between these studies offers not only an interesting look at 

how novices approach software design but also at the rich explanation TAMP offers in considering 

computational education research. 

8.1 Comparing the design activities of experts and novices – The playground activity 

 Two studies (Atman et al., 2007, 1999) offer empirical data capturing different behaviors 

amongst engineers at various levels of expertise.  By observing how novices, advanced novices, 

and professional engineers tackle the design of a playground (meeting a set of criteria), the 

researchers captured differences in the way each group thinks on average and characteristics that 

separate the more successful designers.  While these studies investigate general design without 

any programming, the engineering design process they described is quite similar to the software 

development lifecycle taught to most programming students and stands as at least an analog if not 

the same type of problem-solving. 
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8.1.1.1 The early stages of design expertise 

The playground task offers an interesting testbed for capturing pure design processes as it 

largely eliminates advantages of domain experience and even technical prowess.  It is possible that 

some disciplines may provide advanced knowledge that aid in playground design, but it seems 

unlikely to help in the type of criteria the researchers measured.  More likely, all participants 

entered with merely personal experience with playground rather than having specific benefits from 

formal learning.  The main difference between the studied groups was time and experience rather 

than ‘knowing more’ about the challenge.  The playground task, therefore, seems to have created 

a test that measures the habits of mind that participants used in following an engineering design 

process113, and thus design thinking, in problem-solving.   

In the first of these studies, the researchers compared the design behaviors of seniors and 

freshmen engineering students (Atman et al., 1999).  Among many findings, they reported, 

We expected the seniors to have more transitions between design steps than the 
freshmen. We found that seniors did have both a higher number of transitions 
between design steps and a higher number of transitions per minute. Transition 
behavior was related to playground quality for both groups, although the 
relationship was stronger for the freshmen. (p. 150) 

Atman et al. predicted that the seniors, as experienced engineers, would iterate between the steps 

of the engineering design process (unlike the waterfall model) more often than freshmen.  They 

saw that the more the participants’ thinking jumped between the mental activity of design, the 

better the results, particularly for freshmen.  Seniors averaged more time overall working on their 

playground designs and, during that process, asked for more information across a broader set of 

categories than freshmen.  Freshman, particularly the less successful ones, tended to lock in on 

each task and stick with it for longer durations.  

 One of the study’s goals was suggesting additions to the engineering curriculum to 

improve design thinking. 

These results suggest that students need experiences to encourage them to iterate 
through all the steps in the design process, develop multiple alternatives and 
gather information. (p. 152, emphasis added) 

 
113  The researchers defined their engineering design process to include problem definition, gather information, 
generate ideas, modeling, feasibility, evaluation, decision, and communication.   
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Not only, as we will see, does the data reported by Atman et al. align with TAMP’s model of 

cognition, but their conclusion also aligns with TAMP’s call for the need to develop intuition 

though experience.  Atman et al. suggested that students need activities that expand their 

experience and TAMP explains why. 

 The frequent cycling between gathering, planning, doing, and evaluating seems to match 

the cognitive model of Figure 7.15.  Experts frequently cycle between finding, using, and 

validating information because System 1 frequently directs System 2 to follow what experience 

suggests is the most promising next step.  Atman et al. included charts of behavior that showed the 

freshmen and low scoring seniors were more likely to spend long blocks working through the same 

activities uninterrupted.  TAMP suggests the plodding deliberations occur when System 2 must 

focus on the current train of thought, whereas System 1 enables the rapid cycling between 

modeling, gathering information, generating ideas and the other steps of the engineering design 

process by automating the work within these steps as well as inspiring the need to jump to another 

task.  While it is possible that experts jump between tasks following reasoned thinking alone, it 

seems that such leaps might overload short-term memory.  System 1 as a driver provides a simpler 

explanation for the almost frenetic hopping between activities while explaining the intuitive 

advantages that experts seem to hold over novices.   

Seniors spent more time on every step of design except for two, generating alternatives 

and defining the problem.  Atman et al. predicted that experienced seniors would spend more time 

producing and weighing alternatives, but in the end, they did so less frequently than the 

inexperienced freshmen.  Similarly, Atman et al. found that “those subjects who spent a large 

proportion of their time defining the problem did not produce quality designs” (p. 142).  It would 

seem that those who could define the problem quickly ended up with better-rated solutions.  If 

designing playgrounds mirrors the cognition suggested by TAMP, the high-performing seniors’ 

Experiential Repository inspired their design, and they may not have needed to consider many 

alternatives.  The three or more years of schooling that seniors had over the freshman meant their 

System 1 had more experiences from which to draw.  The seniors’ Experiential Repository allowed 

them to both process the problem statement and generate the foundation of their design faster than 

the freshmen.  TAMP explains why Atman et al.’s prediction about seniors taking more time on 

alternatives went astray.  System 1 was not just visible in helping seniors tackle certain tasks 
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quickly but may show its presence when seniors spend more time constructing their prototype 

playground. 

 The seniors spent nearly twice as much time constructing a prototype of their playground 

than the freshmen.  The behavior of seniors may mirror TAMP’s reasoning why experienced 

programmers prefer to ‘jump to code’ (Section 7.6.3.2).  The playground problem is a bit different 

than code.  Even a basic coded application results in a working solution, while the playground 

prototype was, at best, a physical representation of the plan that still required imagination to 

operationalize.  A programmer can test the execution of their design after writing code.  The 

prototypes still required the designer to imagine how children would play.  The extra mental effort 

(and limited realistic feedback) might explain why seniors spent more time on their prototypes, 

yet both groups spent relatively little time.  The seniors averaged 5.6 minutes (5%) versus the 

freshmen’s 3 minutes (3.1%) to create their prototype despite taking anywhere from 45 minutes to 

more than 2 hours to complete the full project.  The realization of the plan was far from a pressing 

concern of both groups based on the relative effort compared to other aspects of the process, yet 

the seniors still dedicated more time to this phase.  The fact that seniors spent more time on the 

prototype seems to indicate they found it valuable in a way that the freshmen did not.  TAMP 

suggests that part of the reason might be that seniors not only seek the feedback that a prototype 

gives, but they probably have more resources available in their System 2 to simulate the prototype 

in action.  Their more experienced System 1 seems to not only speed up certain activities around 

making complex decisions but also to free up cognitive resources that allowed the seniors to glean 

more from their prototype and perhaps justified dedicating more time to working with it. 

8.1.1.2 Expanding design habits to professionals and programming 

 Comparing seniors and freshmen bookends the influence of formal education on training 

engineers, but hardly captures the breadth of experience of professional engineers.  A later 

replication of the playground study (Atman et al., 2007) added industry professionals as a 

comparison group.   

There is a strong result in the literature that experts do not typically consider a 
number of alternative solutions and choose among them – rather they tend to 
choose one major idea and make modifications to that idea or consider a small 
number of ideas. (p. 374) 
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Design literature seems to reinforce the earlier report that seniors spent less time considering 

alternatives114.  In their first study, Atman et al. (1999) expected seniors would discuss more 

playground objects (e.g., swings, slides, etc.) than freshmen, yet they averaged about the same.  

Given this data, the second team of researchers (Atman et al., 2007) hypothesized that the 

playground objects equated to the number of design alternatives. 

Because we considered the number of objects to be a surrogate for the number 
of alternative solutions, we predicted that the experts would consider fewer 
objects than the students. However, we found the exact opposite in our data. The 
experts worked with almost twice as many objects while designing than the 
students did. (p. 374) 

I believe the misattribution of objects as design alternatives is the same false equivalency 

that language constructs drive algorithmic design.  The function of a slide or swing set does not 

influence the overall planning of a park any more than the semantics of a for loop or if statement 

drives the contents of an algorithm.  TAMP suggests that System 1’s experiential repository 

inspired design choices rather than System 2 processing a set of rules for playground design or 

consider the function of playground equipment.  Atman et al.’s professional engineers each formed 

an Iconic representation of playground design based on their experiences with playgrounds and 

values as a designer (e.g., cost, aesthetics, function).  Given a general layout, they could then 

explore objects to see which fit their vision.  For example, my inspiration for a busy park would 

be managing the flow of activity.  I want kids to move from one park apparatus to the next 

throughout the park rather than bottlenecking in certain areas.  In doing so, I might consider and 

place each of the slides, swings, and other such equipment to see how it facilitates or blocks my 

desired flow.  I am not considering alternative designs, so much as taking advantage of my master 

plan (inspired by System 1).  The priority and heuristics that System 1 suggests leave a designer 

free to consider the best implementation choices for that plan.   

As in computing education research (D. N. Perkins et al., 1986), Atman et al. (1999) found 

stoppers amongst their participants.  In building a playground, none of the participants needed to 

master any diagramming technique or ‘programming language’; they could speak and draw as they 

wished.  The only restriction on their final design was to use locally available materials.  It seems 

 
114 And reinforces TAMP’s assertion that System 1 inspires design that experts then refine using System 2! 
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First-Year students should be familiar with playgrounds and their standard building materials 

enough to produce even a subpar design, yet  

Apparently, some of the freshman subjects seemed to ‘get stuck’ defining the 
problem and did not progress further into the design process steps. (p. 150) 

Atman et al. do not elaborate further on the resulting design or process of the ‘stuck’ students yet 

TAMP suggests why early design can be so difficult.  Freshmen designers seem to become ‘stuck’ 

when the problem statement does not evoke an intuitive solution.  With no inspiration from System 

1, their iconic representations are left bare.  Prospection suggests that planning leverages memory.  

System 1 might trigger the required memories when reading the problem statement or at some later 

point during System 2 deliberations (similar to Figure 7.7).  Without some initial memories in 

place, the future is as blank as K.C.’s and his damaged hippocampus (Section 7.3.2.3).   

On reflection, perhaps it should be of little surprise that lacking intuition about playgrounds 

novices would be more likely to stop since the problem has no symbolic rules to guide action.  

TAMP suggests that many programmers make progress because they memorize procedures for 

solving recognizable problems rather than using creative problem-solving skills.  Programmers at 

least can add a for loop or if statement to fill the space and seek inspiration.  While it might 

seem obvious that everyone has played on a playground, using a playground does not mean a 

person has considered their creation.  A child might design a playground by whimsy, randomly 

placing playground objects perfectly happy to ignore the design task’s criteria.  The freshmen 

designers who stopped were likely hyperaware of the success criteria and froze.  The effort 

required to decipher the rules without the support of inspiration (System 1) overwhelmed their 

ability to make any meaningful progress.  Sime and Arblaster (1977) noted that beginning 

programmers were unsure “what the computer will do if they get the program wrong” (p. 207).  

Sime and Arblaster’s participants did not understand what the computer would do with a badly 

coded conditional structure and it caused them to be “unsettled” (p. 207).  It stands to reason that 

fearing to make a mistake, some novices prefer inaction. 

8.1.1.3 How designer think about the design process 

 In addition to analyzing the participants at work, Atman et al. (1999) captured reflections 

on their experience with designing the playground.  At the end of the experiment, Atman et al. 
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showed the students a “prescribed design process” and asked them to reflect on their approach.  

The freshmen tended to agree the presented process seemed correct, despite not following the 

process as described. 

One freshman said of her design process, ‘I did it backwards’, referring to the 
fact that the design was accomplished before the necessary resources and 
information were gathered. (p. 148).   

This participant seemed to think she needed to follow the steps in a specific order.  Her System 1 

seemingly jumped to the ‘design work’ rather than explicitly following the early phases of the 

engineering design process.  Another student claimed, “that she went back and forth between the 

steps of the process” (p. 148).  It seems that her thought patterns were desirable rather than 

problematic as they reflected those of successful designers.  The freshmen seemed to believe the 

engineering design process was correct and their behaviors had yet to conform to its strictures, but 

the seniors were less accommodating.   

The Seniors' comments took a very different tenor, noting the proposed engineering design 

process was complicated and difficult to follow.   

In general, the subjects felt that this process was not followed step by step, 
rather that many steps were skipped or completed in their heads, for example a 
subject said, ‘it’s all repetitive’. Other comments on the design process included 
‘this is the ideal if you have time’, ‘limits creativity’, and ‘some of this stuff is 
common sense’. There were seniors who agreed that this is a ‘good 
methodology’ and that this process is a ‘good general out- line’. (p. 149) 

Each of these statements seems to point to the implicit nature of design thinking.  A ‘waterfall’ 

process may only be possible when a designer is working with a familiar problem and knows what 

information to gather at the start – something only an expert with a relevant Experiential 

Repository can likely accomplish.  Atman et al. implied that the more natural and desired state is 

jumping back and forth, which seems to follow System 1 impulses.  Some freshmen did cycle 

between design steps115 but were not confident enough to disagree with the process provided by 

the researchers.  The seniors, on the other hand, held little back in coming to the defense of their 

thinking.  Even when recognized the value of the steps, many rejected the presented ordering and 

the strictures imposed by such a process.  It seems unlikely that seniors are consciously choosing 

 
115 It is not entirely clear how well the participants knew the steps of the engineering design process before the study 
or perhaps encountered the steps during or even after the playground activity. 
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to cycle between the prescribed steps of the engineering design process when they rebel against 

the ‘natural’ ordering. 

8.1.1.4 Takeaway from the playground 

 Atman led to studies that show the trajectory of how designers think from early in their 

formal education through professional practice.  Participants within each group show tendencies 

to follow intuition in their design process.  Lower performing designers tend to jump to modeling 

and spend most of their time working towards a solution.  Designers with higher scoring solutions 

tended to cycle between mental activities, gathering more information both from external sources 

and assessments of their own work.  TAMP suggests that experience not only lends speed to 

individual tasks but also prompts moments of inspiration that lead to the rapid cycling observed in 

seniors and professional designers.  Revisiting these two studies provides a challenge that largely 

removes domain knowledge and technical expertise from how experts think.  It demonstrates that 

other habits of mind (outside of learning a programming language) might contribute to the 

seemingly bimodal performance distribution when students are asked to write code. 

8.2 The rise and fall of coding assessments –McCracken et al. (2001) 

McCracken et al. (2001) gathered an international group of researchers and created an 

assessment of basic coding skills that also served as a baseline of what instructors expect 

students to learn after their first programming course(s).  They evaluated new programmers’ 

ability to take a problem from concept to solution by having participants construct a calculator, 

including a basic command-line interface.  A calculator was presumedly familiar and tested the 

students’ grasp on basic operations, mathematical expressions, looping and decisions, and 

fundamental data structures.  The test included three variants of input notation for the calculator: 

Reverse Polish Notation (RPN)116, infix notation117, and infix with parentheses for precedence.  

The team believed that the RPN notation was the easiest variant118 with the next two variants 

progressively more difficult.  Most participants only completed one variant of the calculator, but 

 
116 Reverse Polish Notation (a.k.a. post fix) places operators after numbers, so “2 2 +” is equivalent to “2 + 2” in infix 
notation.  More involved examples become complex quickly as 15 / (7 - (2 + 2)) would be written as “15 7 2 2 + - /” 
117 The ‘typical’ mathematic notation of 2 + 2 
118 The RPN calculator can leverage the data structure known as a stack, which reduces the amount of code required. 
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the final report noted that each variant proved difficult, with students performing lower on the 

RPN than the infix calculator.  Beyond missing their guess on which problem was most difficult, 

McCracken et al. profoundly overestimated the abilities of novices, starting with the assumptions 

about the ‘simple’ nature of the problem. 

8.2.1 The reason calculators are not all that familiar 

The major finding from McCracken et al. (2001) may be how abysmally the research team 

underestimated the difficulty of the problem for their students.  To measure performance, the 

researchers rated the students’ code across several categories totaling a possible 110 points, 

including 

 Execution (30 points) – writing code that compiled or ran without runtime errors, even if 

it accomplished nothing else 

 Style (10 points) – writing code that followed standard conventions of the language 

 Verification (60 points) – implemented desired functionality by passing test cases 

 Validation (10 points) – conformed to the RPN or infix input format 

The average score across all schools and all countries was a mere 22.9, meaning that a significant 

number of students did not manage to write code that either fully compiled or ran without errors.  

Perhaps the abysmally low score was not all bad? 

Though the scores are uniformly low, as a percentage of possible scores, 
students did best on the execution component (implying that, overall, they wrote 
programs that compiled and ran) and the style component (implying that the 
source code looked good). The lowest component scores were on the 
verification and validation components. (p. 129) 

McCracken et al. presented data that is difficult to reconcile between the stated statistics and point 

totals119, but students seemingly accumulated just half the points on Style120, and roughly 3% of 

possible Verification and Validation points.  Reverse-engineering their numbers, if just half the 

students managed just 25/30 for their execution score, the remaining students’ average drops to 

 
119 They broke their scores into four categories (McCracken et al., 2001, p. 130 Table 3), but the sub-scores do not 
add up to the average they reported.  If we presume the reported Execution scores are a typo and the summary is 
correct in stating the execution was the highest category, we can add the missing points to Execution which makes the 
average execution score 16.6 out of 30 or 55% of possible points.   
120 Style points were optional as not all schools taught or assessed style 
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less than 15/110!  By any standard, a good percentage of the students in this study struggled to 

produce anything that resembled a working calculator.  McCracken et al. reported a “bi-modal” (p. 

129) distribution to their data, but it seems like the numbers indicate it was far from an even split 

of participants.  A narrow few may have scored well, but overall, most students struggled. 

8.2.1.1 Programming performance 

Even when students wrote running code, they struggled to meet all the demands of the 

problem challenging the assertion of bimodality.  McCracken et al.’s charts show only 20% of the 

students scored above-average on the RPN calculator, where only 40% exceeded the average for 

the infix calculator.  Those who scored better did not distinctly cluster at the top, their scores spread 

through the possible range with the ‘best’ RPN scores reaching 80/110 and the infix nearing 100.  

Many more students definitively struggled, but to say that students either thrived or thrashed does 

not seem evident in the data; most students struggled to build a reasonable facsimile of a calculator, 

some just struggled to more profoundly. 

 Diving into the categories of code and the scores makes the results even more disturbing.  

If the Execution category held 30 points for merely writing compiling code that runs, a wide 

majority of students may or may not have scored even half of these points121.  Far too many 

students could not even produce code that compiled and ran without error.  It is not clear if a 

student needed a perfect execution score in order to pass any test cases (e.g., their code must 

compile, but what if it created runtime errors only with certain inputs?).  If a perfect score in 

execution was required, only one in nine students who attempted the RPN problem or one in three 

students who tackled the infix problem had a shot of passing the simplest of tests.  While some of 

the criteria provided by McCracken et al. were unclear, other elements seemed fairly 

straightforward; for example, the following Validation item was worth 10 points. 

The program should terminate correctly (i.e., entering the quit command should 
terminate the program). (p. 138) 

Compared to other requirements (e.g., “The program should react properly to erroneous inputs” 

(p. 138)), the quit command is clear, requires just a few lines of code, and could easily be one of 

the first features implemented.  A student could theoretically earn a minimum of 40 points by 

 
121 See footnote 119 
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writing a program that did nothing but quit (50 if they did so with perfect style)!  The average 

score was less than half of that.  Later literature has since confirmed that students are learning 

during their courses (see Chapter 2), and they are not strategically earning points in the most 

rational manner. 

McCracken et al. saw the stoppers just as Atman et al. (1999) and Perkins et al. (1986), 

which seems surprising.  Atman et al. presented a task that required little expertise, but also 

provided no obvious training.  Perkins et al. worked with students who had some training, but they 

were pre-college learners and not enrolled in a specific course.  McCracken et al. worked with 

students within a collegiate level course focused on the skills tested yet given more than an hour 

to work on their calculator, many failed to turn in any code and many more provided code without 

any meaningful plan or approach.   

8.2.1.2 Design performance 

Given a problem that ‘should be’ familiar (the calculator), the best efforts of too many 

students failed to produce working code or even promising solutions given more time.  Since the 

scores on the overall evaluation were so low, McCracken et al. created an alternative measure that 

did not require working code.  A subgroup of the researchers conducted an additional qualitative 

analysis, the “Degree of Closeness (DoC) score, a five-point scale that rates how close a student’s 

program is to being a working solution” (p. 129).  A perfect score of 5 means the program either 

worked or would have if the student had more time.  Each lower score represented something 

“farther away” from the goal122.  McCracken et al. reported the DoC per school, but Table 8.1 

summarizes the scores of all students.  The majority of students struggled to code a working 

solution, but the DoC score indicates that they even struggled to conceive of a promising approach.  

Being ‘familiar’ with a calculator only aided 16% of the students to even come close to a promising 

design (5 or 4).  The researchers categorized the rest (84%) as “Close but far away” (p. 139) or 

 
122 McCracken et al. reported the average DoC was 2.3, but this statistic is essentially meaningless beyond saying that 
most of the students were a long way off from a useful solution.  My concern with statistical analysis of the DoC lies 
in is interpretive nature – the difference between a score of 5 and 4 cannot be proportional to the difference between 
a score of 4 and 3.  Even with perfect interrater reliability, the vague descriptions not rooted in the problem structure 
make this measure non-replicable.  That being said, their analysis of these categories seems trustworthy enough given 
the small group of researchers analyzing the data, so while non-replicable, the general approach is reasonable enough 
to trust their qualitative interpretations. 
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worse.  More than a third of all students were “Not even close” (p. 139), scoring DoC 1.  The DoC 

analysis provides another fascinating look at student accomplishments or lack thereof.   

Table 8.1.  The DoC spread from McCracken et al. (2001) 
 Degree of Closeness (n = 217) 

 5 4 3 2 1 
Percentage (%) 6 10 25 25 35 

Count 12 22 54 54 75 

 Where the general evaluation score (the 110 points) captures the student’s full skillset, the 

DoC score focuses primarily on their design.  The researchers overlooked any errors in the code 

looking instead for a kernel of promising design.  They overlooked runtime and even compiler 

errors to see if the student showed either a potential high-level design or elements within their low-

level design that might help solve the problem.  Those students scoring 4 or 5 seemed to have a 

strong notion of how to solve the problem and only lacked time.  Those scoring 2 or 3 understood 

the problem but were a long way from turning their basic plan into code.  Very few students (16%) 

combined coding knowledge and design sense in a way they might have finished the project.  Half 

of the students produced some semblance of a plan but seemingly did not get far in blending 

language skills with their design.  The DoC 1 students (35%) neither lacked even a basic sense of 

the problem.  McCracken et al. further analyzed the most struggling students (DoC 1) by 

categorizing their designs into three types. 

 Type 1 – wrote no code 

 Type 2 – wrote code, but without any larger plan that would be fruitful 

 Type 3 – Had a plan that did not translate into working code, that either  

o Type A – held a promising approach 

o Type B – used an approach not likely to succeed 

McCracken et al. interviewed a subset of students and compared the high scoring students (DoC 4 

or 5) and the plurality that scored DoC 1.  The next section revisits their analysis through the lens 

of TAMP to explain why these students struggled to make any progress. 
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8.2.2 Revisiting the lessons of McCracken et al. 

McCracken et al. (2001) assumed that students near the end of their first year of learning 

to program should be able to build a familiar application, a calculator.  They believed students 

should be capable of the following, 

1. Abstract the problem from its description  
2. Generate sub-problems  
3. Transform sub-problems into sub-solutions  
4. Re-compose the sub-solutions into a working program 
5. Evaluate and iterate (p. 126) 

McCracken et al.’s list of expectations for programmers seems to cover the entire design lifecycle 

described for experts in Figure 7.15123.  The selected domain for the problem (basic math) may be 

less demanding than many potential challenges, but the researchers still expected quite a bit of 

creative problem-solving.  If their goal were to confirm either their assumption of what students 

can do or create an assessment that measures their expected skills, then the study would have been 

highly disappointing.  McCracken et al. provided a set of rich data describing how novices struggle 

when trying to bring their learned skillset to bear on typical programming tasks.  This section uses 

TAMP to explain why novices fall short, starting with the students who struggled the most. 

8.2.2.1 Understanding why students struggled to get started 

Many of the lowest-performing students (DoC 1) struggled to translate the problem description for 

the calculator into any meaningful progress.  McCracken et al. split these students further into 

three Types (1-3) based on their progress.  Since Type 1 students produced no code, they could 

easily be classified as stoppers.  It seems unfathomable that after that much time, some students 

could fail to produce at least some code, so it begs for an explanation.  Type 2 and 3 students made 

some progress, yet it still seems strange.  After all, how many college students are unfamiliar with 

calculators, much less basic math.  Why couldn’t they produce even the simplest calculation in an 

hour?  TAMP provides tools to peel away not just our expert blind spots to see the complexity of 

the problem but also our Cartesian bias that if we just think logically, we can at least make progress.   

 
123 If in a highly procedural way of thinking.  I am not sure expects consciously design in terms of “generating sub-
problems” and “re-composing” them, but from a distance this may be what the process looks like? 
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Stoppers 

McCracken et al. (2001) included interview data across a subset of students, including 

insights into some of the more struggling students.  Type 1 students, those who produced no code, 

complained about several factors seemingly unrelated to the calculator problem. 

They blamed the amount of time available to solve the problem, their 
unfamiliarity with the computers in the lab, their lack of Java knowledge, and 
other external factors. None of the Type 1 students mentioned factors related to 
the process of solving the exercise. (p. 131) 

On the surface, it would be easy to dismiss these complaints as excuses from students who did not 

study or were simply unfit.  Consider, though, that most of these students did not receive a grade 

on their calculator124, and the study does not report financial compensation to incentivize students.  

For most, there was no penalty in submitting blank work.  Why would the ungraded students 

choose to linger in an unfamiliar computer lab for an hour, produce nothing, and not complain that 

the problem was unreasonable?  It seems easier to blame the test as being unfair rather than to 

blame themselves or external conditions.  Perhaps they did not think the calculator was strange or 

difficult, merely that they could not find a place to start their work and blamed true, but unrelated 

factors.   

 TAMP’s model suggests that Type 1 students did not start because they had no inspiration 

where to begin.  Knowing how to use a calculator does not mean you understand how to build one.  

Type 1 students likely had little to no Experiential repository to inspire even fledgling Iconic 

representations of design.  It is very notable that the students did not complain about the calculator 

being too difficult.  Kahneman (1993) proposed that people remember experiences based on either 

the biggest extreme or what happens at the end.  They could have complained about the strange 

RPN notation, the difficulty in validating user input, the confusing data structures, but instead, 

they complained about seeming trivialities.  Consider the Type 1 students’ complaints.  Many took 

the test on ‘unfamiliar’ computers 125 .  They complained about the room being cold.  They 

considered their knowledge of the language to be insufficient.  Their complaints seem to imply 

 
124 We do not know exactly how many Type 1 students the researchers found.  Of the 217 submissions in the study, 
75 were ranked at DoC 1, and of these only 15 came from a school who graded their work.  We do not know of these 
15 how many did not turn in code, and if they were 15 individuals or as few as 5 (this school had students submit all 
three problems).  This school had the lowest percentage of DoC 1 submissions, though. 
125 It would be interesting to know what was unfamiliar.  Java as a language is platform independent and even C++ 
typically has somewhat universal tools.  Were the tools strange, the keyboards, the lack of their own references?   
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that they did not deliberate much on the problem.  Without sufficient inspiration from System 1, 

the rest of their knowledge became inert.  Figure 8.1 modifies the mental representations of an 

expert to note what is likely missing for Type 1 students, resulting in their floundering. 

 

Figure 8.1. Revisiting design representations for Type 1 students from McCracken et al.  

Type 1 students likely were missing most or all the essential enactive representations.  The 

specific complaint, “their lack of Java knowledge” (p. 131), hints at their fragile knowledge. There 

is a lot we cannot know about this student.  They could have been failing every aspect of the class, 

but it would seem the instructor/researcher would qualify such feedback.  We cannot know how 

the instructor provided content, but it seems reasonable to expect the student saw enough 

prerequisite structures (e.g., basic math, decisions, loops, input/output) to start some coding.  Is it 

easier to believe this student learned nothing, or that they could not activate the needed knowledge 

when called upon?  TAMP suggests that Type 1 students may have survived the course to that 

point using symbolic knowledge and a combination of mimicry and rote imitation, but they could 

not tackle the calculator problem since it requires iconic representations grounded in enactive 

knowledge. 

When Type 1 students read the problem statement, System 1 remained quiet on the domain, 

algorithms, and matters of coding, leaving any progress up to System 2.  The problem statement 

did not trigger any memories about input and output, loops, stacks, or even basic addition and 

subtraction.  Now sitting in an unfamiliar lab, without their books, internet bookmarks, a network 

of peers, or any of the familiar scaffolds, their System 2 froze.  When stoppers faced such a 

dilemma, they chose to move to the next problem (D. N. Perkins et al., 1986).  With only the 
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calculator problem to solve, Type 1 students moved on to consider environmental problems.  Their 

attention turned to frustration at how little they remembered, annoyance at the strange computer, 

discomfort with the temperature, or other ideas unrelated to a calculator.  System 1 seems essential 

to at least activate associate semantic knowledge with the current need. 

To be fair, I am doing a lot of speculation given a few scant bits of data (Type 1 students 

did not write code, yet they also did not complain about the problem).  It would be interesting to 

know how well the Type 1 students performed on other aspects of their coursework.  Were they 

failing?  Could they trace code?  Could they explain code?  Could they write code if given some a 

design (e.g., code this flowchart)?  Research such as Lopez et al. (2008) suggests that some of the 

Type 1 students might be able to do any or all of the tasks above and still struggle to write code 

like the calculator problem.  TAMP explains such anomalies using the different types of memories 

we form, as well as the need to associate memories within iconic representations to enable creative 

design intentionally.   

Starters, but far from finishers 

The remainder of the students who scored DoC 1 must know more than the Type 1 students, 

but what exactly allowed them to start yet make very little progress?   The Type 2 and 3 students 

received little overall attention in the report, but what McCracken et al. provided reinforces the 

model in Figure 7.15.  McCracken et al. (2001) summarized Type 2 students saying, “they first 

did what they knew how to do, deferring the tasks about which they were uncertain, but were then 

unable to proceed beyond that point” (p. 131).  Unlike the Type 1 students who had no starting 

point, Type 2 students received some hint from System 1.  Rather than coming from their 

Experiential repository, Type 2 students likely relied on some Enactive representations of code to 

trigger, which triggered learned processes for assembling some specific piece of code.  Perhaps 

they wrote a basic command-line interface or a module to manage basic math.  It could be they 

built several such models jumping, like extreme movers, to the next task when they could no longer 

make progress on the current one.  Without inspiration from their Experiential repository, though, 

they never seemed to form an Iconic representation of design from which to organize their pieces.  

They had enough experience to remember bits of code, but not enough to creatively assemble an 

application. 
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The Type 3 students seemed to be a little more advanced than the Type 2.  They “apparently 

understood what they needed to do and appeared to have a general structure for a solution” (p. 

131).  The Type 3 student received some inspiration from their Experiential repository to provide 

direction for a solution.  The inspiration may have been helpful (Type 3a) or set them off in the 

wrong direction (Type 3b), but it helped form a rudimentary Iconic representation of design.  

Beyond a general framework, Type 2 students seemed either less competent with code than their 

Type 3 counterparts, as they seemed to lack the inspiration telling how to translate their overall 

plans into code.  It could be that Type 3 students relied on the resources they no longer had 

available (e.g., books, examples, peers).  They solved problems symbolically, and thus struggled 

without the external resources that scaffolded their immature System 1.   

The inclusion of Type 3b students strengthen the hypothesis that the experiential 

repository is critical to design.  If we consider the playground project, students could work for an 

hour and receive no feedback on the quality of their design.  Even without books and examples, a 

student can presumedly know when a calculator is not working.   Type 3b students, though, 

continued to work for an hour towards an approach that was not likely to work.  Even if they did 

not engage System 2 to review their plan, possibly recognizing and abandoning an incorrect 

approach, they wrote code, conducted tests, and edited code.  It may be beyond my expert blind 

spot to imagine their work process without seeing the results.  I would probably start with a very 

simple problem, 2 + 2 = 4, and code until this sample would work.  The Type 3b student’s 

inability to recognize a poor approach could also be exacerbated by deficiencies in the other half 

of the Experiential repository, Inspiring test (see Figure 8.1).  Rather than working from a 

logically simple test case, the Type 3b student may continue to follow the poor framing from the 

design half of their Experiential repository.  Since test cases are typically implicit within 

programming classes, it may be that many students are also unable to think of tests when needed, 

which is the focus of the third study in this section. 

What makes some students successful? 

System 1 may be critical in getting programmers started, but System 2 is still the workhorse 

of problem-solving.  McCracken et al. further investigated three students who scored DoC 5 and 

of the three, only one rated the problem as easy, the other two marking it as difficult and hard.  
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None of the DoC 1 students thought the problem easy, yet only four out of twenty-five ranked it 

as impossible, the others also said it was difficult or hard.  Unlike the low scoring students who 

did not mention the problem, the high scoring students talked about their experience solving the 

problem. 

Many of these explanations illuminated particular aspects of the design phase or 
particularly challenging sub-problems. Examples of comments made by such 
students were “Simple errors got the best of me” (problem difficulty rated as 
difficult), “Could not solve for error case” (problem difficulty rated as hard), and 
“Implementation is wrong but easy” (problem difficulty rated as easy). (p. 131-
132) 

Students who scored DoC 5 not only derived a plan and wrote significant amounts of code but 

could speak to their struggles while working.  Rather than external factors, they remembered the 

work that caused the most deliberation (e.g., frequent simple errors, error cases).  It would seem 

that the students who scored DoC 1 would have experienced very little cognitive load, while those 

scoring DoC 5 spent the most time engaged in complex reasoning.   

The students who scored DoC 5 might simply have been exceptional, yet even assuming 

individual brilliance seems to support TAMP’s model.  The nature of the stronger student’s 

advantage can take several forms – inherent abilities (fluid intelligence within System 2), prior 

learning (enactive representations), or being a better learner (iconic representations, see Section 

7.4.3.2).  Is inherent ability important to programming success?  A stronger System 2 would 

naturally support the rational thinking required in many aspects of programming.  I believe this 

argument is fairly easy to supplant.  To put it kindly, not every strong programmer is universally 

brilliant, and everyone who is brilliant is not a good programmer.  Brilliance may increase the rate 

of learning, yet remember, only one DoC 5 student considered the problem easy, and they believed 

they had the implementation wrong.  What seems more likely is gifted students learn quickly, 

giving them more time to work on additional examples, further adding to their seeming intellectual 

prowess.  I believe that providing focused experiences can help ‘everyone else’ learn to program, 

but more importantly, instructors should believe in the potential of their students. 

A better explanation for high-performing novices is the advantages of prior learning rather 

than inherent abilities.  Pre-college programming experiences provide early access to 

programming knowledge, but within a few weeks, most college courses cover the expanse of high 

school courses.  Students who arrive with no experience sometimes overtake students who have 
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taken classes.  It is not the facts that make prior learning useful, but the experience, at least when 

it is relevant and accurate.  Students who either received poor teaching or possibly overconfident 

students and neglect to practice might fall behind peers who are starting without any prior 

experience.  McCracken et al.’s study provides an excellent counter-example of semantic 

knowledge in programming.  I must assume the four instructors believed their students received 

instruction on all the basic language constructs required to build a calculator, yet 84% of the 

students were nowhere close to a solution. If the students generally knew enough about the 

language to succeed and did not, then perhaps knowledge about the language is much less 

important than knowledge about the problem, as we will see in a minute. 

A third explanation suggests that the students who excel are better learners than the rest of 

the students.  Answering this argument necessitates defining what is meant by ‘better’ (i.e., better 

at memorizing information, answering questions, completing timely homework, creatively solving 

problems).  The nature of McCracken et al.’s study implies that programmers need to be problem 

solvers.  Better learning in that sense would mean better at creating, manipulating, and maturing 

iconic representations.  Building iconic representations requires a combination of experience and 

symbolic knowledge, so students with more fluid intelligence and prior learning hold an advantage 

here as well.  Iconic representations are not formed merely by being clever or experienced, though; 

they require conscious reflection on the use of knowledge.  Some students may naturally form the 

required iconic representations, but it is possible for instructors to promote the formation of iconic 

representations through select pedagogy (see Chapter 9). 

TAMP provides a model of cognition that explains how any person can learn to program.  

Hidden within the rest of the data provided by McCracken et al. is evidence supporting not only 

TAMP’s model of expert programmers when designing (Figure 7.15) but also the analysis above.  

To fully appreciate the role of the experiential repository in design, it is helpful to understand why 

the calculator task is not as easy as presumed.  McCracken et al., presumedly believed that students 

could quickly grasp the task of building a calculator, given that calculators are ubiquitous devices 

with simple mathematical operations.  Ironically, Du Boulay et al. (1981) used the example of a 

calculator to note how even simple devices have deceptively complex inner workings.  

For instance the manuals accompanying certain makes of pocket calculator make 
no attempt to explain the reason why given sequences of button presses carry 
out the given computations. The user must follow the manual's instructions 
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blindly because it is difficult for him to imagine what kind of underlying 
machine could be inside that demands these particular sequences of presses. 
During the course of a calculation, he has to guess the current state of the device 
using his recollection of what buttons he has pressed since the device's previous 
recognizable state (e.g. all registers cleared) because the device gives little or no 
external indications of its internal state. (p. 238, emphasis added) 

Being familiar with using a calculator provides no insights into strategies for building one.  The 

user of the calculator is only concerned with their actions, not the logic within.  If the logic of a 

calculator were not enough, knowing addition and subtraction does not explain Reverse Polish 

notation when most (all?) pre-college math uses infix notation.  McCracken et al. learned a 

valuable lesson in tacit knowledge when students scored better on the infix problem than the 

presumed-easier RPN problem.  Familiarity is very helpful in problem-solving, but only when 

accompanied by deeper knowledge.  A few students who recognized that stacks might simplify 

the RPN calculator noted that they were not “good with stacks/queues” (p. 133).  Students need 

deeply associated knowledge that only comes through deliberate practice. 

 The hidden proof within McCracken et al.’s study came from one ambitious instructor’s 

use of the calculator problem as a formal assessment.  The students of School V, as anonymized 

in the study, scored on average 3-4 times as many points as the other schools.  The report offered 

two reasons why this may be so. 

(1) The School V instructor had given the students an example to study, which 
was a complete answer to a similar problem, and (2) All students were required 
to take the exercise, which was given as an examination. (p. 132, emphasis 
added) 

School V students had both the extrinsic motivator of a grade but, more importantly, had seen a 
similar problem before taking the test.  While receiving a grade may incentivize students to not 

give up on a test, TAMP suggests the example went further in promoting success.  School V held 
an advantage over the other schools, but it does not seem to be universal across all students.   

Table 8.2 shows that while School V’s averages were much higher than all participants, so are the 

standard deviations.  School V still had a significant number of struggling students (44% received 

DoC 1 or 2).  The instructor at School V provided a notable advantage to their students by 

providing an example, but that example only helped to a degree. 
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Table 8.2. General evaluation scores for all schools (McCracken et al., 2001, p. 130) 
School Average Standard 

Deviation 
Interface type 

S (n=73) 14 18.6 RPN 
T (n=21) 12 16.3 RPN 
U (n=47) 8.9 11.4 Infix 
V (n=23) 48.7 25.7 RPN 
V (n=30) 47.8 29.1 Infix 
V (n=23) 30.9 20.9 Infix with parentheses 

TAMP explains why the participants at school V performed significantly better than their 

peers (or at least did not struggle as badly).  The similar example inspired how to tackle the 

calculator problem.  It is important to note that School V students still performed relatively terrible 

scoring less than half of the available points.  Seeing a similar example did not make the problem 

easy; it merely gave them a place to start.  As demonstrated in Fix, Wiedenbeck, and Scholtz’s 

study, novices are unlikely to memorize an entire solution, but they might remember where to start.  

The students from School V who internalized the example probably already developed a useful set 

of enactive representations within their Experiential repository that took them further than many 

of the rest, but nobody aced the exercise.  Those with little experience might only have recalled 

surface details of the example within their semantic (symbolic) memory. 

School V’s students all benefitted from the preceding example, but how much depended 

on the maturity of their representations from Figure 7.15.  The calculator problem required much 

more than a hint at a solution.  Memorized processes could not help anyone solve the entire 

problem, so the quality of the solution varied based on each individual's maturity.  School V’s 

instructor enhanced his/her student’s ZPD in several possible ways. 

 Students with a weak System 1 received a hint about where to begin and a general 

structure based on a similar example.  The example essentially scaffolded their 

Experiential repository preventing them from being a stopper and reducing the DoC 1 

students (20% for School V versus 34-70% in other schools) 

 Students with some System 1 support internalized the example and made significantly 

more progress.  Even if their gaps in Enactive representations of code, Inspire Testing, or 

other gaps in knowledge did not result in a high general evaluation score, 32% of School 

V students scored a DoC 4 or 5, compared with 0-11% at other schools.  
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The fact that not all students equally benefitted at School V implies either a wide variance in study 

habits or, like TAMP suggests, our mind has several repositories of knowledge that build upon 

existing knowledge and skills.   

If the full dataset from 2001 were available, it would be interesting to compare the maturity 

of the solutions across schools and students.  TAMP might predict that the School V students 

produced more promising structures (e.g., more likely to include stacks for Problem 1126).  They 

probably were better at starting their user interfaces, but this may not have translated to error 

handling, which is a detailed procedural task that would be difficult to master from just one more 

example.  TAMP suggests that unless the other example was some version of a calculator, the 

general evaluation scores remained low because School V students did not have any advantage in 

imagining useful test cases.  Perhaps a future study can reanalyze the original data or attempt to 

reproduce the original.  In the meantime, the next study already tested a modified calculator 

program with compelling results. 

8.3 Simplifying the calculator problem – McCartney et al. (2013) 

McCartney, Boustedt, Eckerdal, Sanders, and Zander (2013) wanted to address some of 

the concerns in the original study by McCracken et al. and see if the calculator test could become 

a useful assessment after a few targeted improvements such as, 

 Simplifying the problem description – focus on the infix calculator, remove extraneous 

verbiage from requirements (especially ‘implicit’ content) and add more examples 

 Provide support code as scaffolding – Students received a startup framework including a 

helper to read and parse user inputs (e.g., is the next input a number, operator, or quit 

command) 

 Allow students to use resources – Allow students to use books or online references in 

completing the problem since it “seems reasonable to be able to look up the syntax of 

programming structures (switch e.g.) that students have litte [sic] experience with” (p. 

93) 

 
126 Note that school V scored slightly higher on problem 1 despite the other schools generally scoring better on problem 
2 
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Their stated goals included removing “troublesome knowledge” from the problem description, 

limiting cognitive load, and providing a familiar environment.  The changes helped to improve 

student performance but only to a limited degree.  TAMP helps explain what helped and why some 

students continued to struggle. 

8.3.1 A marked improvement 

 The participants within McCartney et al.’s study had several advantages that contributed 

to their improved performance over the original study.  In addition to the changes the researchers 

made to the problem, the researchers provided more details on their participants’ demographics.  

The participants likely held more experienced than many of those taking McCracken et al.’s test 

since this was at least their second programming course as well as programming language.  The 

combination of more experienced students taking a ‘simpler’ test showed marked improvements. 

Eighty-five percent of the students made real progress, but just 20 percent had 
complete solutions, which indicates that the problem is not too simple for the 
amount of time and the students’ capabilities. (p. 96) 

It is difficult to quantify what McCartney et al. mean by “real progress”, but it seems to be quite a 

flip from the prior study where 84% of the participants were “close but far away” or worse.  

McCartney et al. did not attempt to recreate the vague DoC but did use the same 110-point general 

evaluation scoring system.  Their students averaged 68.2, triple the 22.9 of the earlier study127, but 

still far from masterful.  Table 8.3 presents a comparison of the performance per category in each 

study. 

Table 8.3. Comparing the categorical performance of students between 
McCartney et al. (2013) and McCracken et al. (2001) 

Category (max) McCracken et al. McCartney et al. Improvement 
Execution (30) 7.2* 29.3 +22.1 
Verification (60) 1.6 25.8 +24.2 
Validation (10) 0.3 8.1** +7.8 
Style (10) 4.6 5.03 +0.4 

* As noted in the prior section, this number might be low (possibly 16.6) 
** The study does not specify the Validation score, so this number  

is computed from the other categories and the reported average  

 
127 The average for the infix notation problem was 24.1, the only problem McCartney et al. set. 
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The students in the second study proved much better at producing useful code with a nearly 

flawless Execution score.  It logically follows that when students establish a working program, 

they are more likely to pass tests, resulting in a leap in Verification and Validation128 scores.  

McCartney et al.’s student passed roughly half of the test cases for basic functionality and a third 

for advanced features, but interestingly less than a third of the submissions seemed to include the 

quit feature.  The results remove any impression of ‘bimodality’ and produce scores across a more 

traditional range of student performance. 

McCartney et al. seemingly produce a more achievable assessment than McCracken et al., 

but do not capture all the reasons why.  They attributed student success to 

First, they were working in a familiar context… 
Second, the students’ cognitive load was significantly reduced… 
Third, some elements of the [McCracken et al. study] that may have involved 
troublesome knowledge were eliminated. (p. 96) 

McCartney et al. overlooked the advantage their students held in this being their second 

programming experience and within an additional language.  They also only attributed the code 

they provided as helping to manage cognitive load.  By choosing the infix notation, they provided 

an example that was more familiar to students, but is an unfamiliar problem truly troublesome?  

Leaving the training wheels on a bicycle avoids troublesome crashes, but then has the rider truly 

learned to ride a bike?  I do not wish to dispute the analysis by McCartney et al. so much as I hope 

to refine their observations with more detailed explanations.  Their analysis is fair at the level of 

abstraction used but sheds little light on how to prepare students, not just assess them fairly.   

8.3.2 Helping novices think like experts 

 The theoretical constructs of TAMP provide the tools needed for explaining the various 

changes McCartney et al. made.  Specifically, their modified testing protocol provided scaffolding 

for the enactive representations that aid in design and coding, as shown in Figure 8.2.   

 
128 The higher Validation score could have been the result of a more generous scoring rubric.  McCracken et al. did 
not provide much details on how they scored this, so McCartney et al. might have used different criteria.  This analysis 
ignores Validation since it is so ill defined, but it is worth noting since the ‘extra’ points amount to a third of the 
average score of McCracken et al.’s students. 
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Figure 8.2. The likely mental representation of McCartney et al.’s students 

The three main support structures helped make the student’s thinking act more like an expert’s by 

providing a supplement for their still-maturing System 1.   

 Input/output helper – McCartney et al. provided this helper since the class had 

previously covered input/output in the console.  Scaffolding low-level user input would 

typically just help Enactive representations of code, but this helper did much more. First 

and foremost, it provided a model of the problem.  The researchers told students, through 

the interface, they needed to care about numbers, operators, and quit commands.  

Students did not need to derive this vital information from the problem description nor 

plan algorithms to parse text into variables usable by the calculator.  In short, the helper 

code provides much of the information that would otherwise come from the Experiential 

repository, indeed reducing cognitive load, unless the students would have stopped. 

 Execution examples – Providing extra examples reduced the need to imagine test cases 

from the problem description alone, providing inspiration that otherwise must come from 

the student’s Experiential repository. 

 Language reference materials – Providing access to language reference materials it 

removes the need for System 1 to prime System 2 with relevant facts about language 

structures.  When students are unsure how to write code or the meaning of an error, they 

can fully use System 2 to search for answers. 
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The aids to students were well designed, supporting the exact areas novices are at a disadvantage 

because of their lack of experience. 

The students from McCartney et al.’s study did not struggle with basic coding in the way 

that McCracken et al.’s students did.  Of the forty students who took the test with the scaffolding, 

thirty-two produced code that ran without errors and passed at least one of the test cases (80%);  a 

feat that less than 20% of McCracken’s students seemed to do129.  Only one of McCartney et al.’s 

students (3%) submitted code with compiler errors.  TAMP suggests that the new batch of students 

were probably more successful in writing runnable code due to their prior experience.  Coming 

into their second or more experience in programming, these students would have formed at least a 

semblance of a notional machine in their prior language (Matlab or Schema).  The additional 

practice, possibly combined with a reflective comparison between the two languages130, provided 

richer Enactive representations of code than true novices on their first language.  The first 

advantage provided by McCartney et al. was selecting experienced students. 

The one student who struggled to produce a working program may be the outlier who 

proves the importance of experience in programming.  The students were given 75 minutes to build 

their calculator and had access to reference materials.  Seventy-five minutes would seem plenty 

of time to at least ensure compiling code, and I expect most experienced programmers are like me 

in obsessively fixing compiler errors the instant they appear131.  Whether the 39 other students 

used reference materials or coded entirely independently, most had enough experience to not only 

complete compiling but also at least partially working functionality.  The outlying student had 

plenty of time to produce a rudimentary application even if it did little as a calculator.  Their 

erroneous submission implies the not only did not master basic syntax but also did not develop the 

processes by which to correct their problems using reference.  If researchers someday chose to 

conduct a similar study, it would be interesting to track how students use reference materials in 

correlation to their results.  TAMP suggests that successful students would rarely look at core 

 
129 I am inferring from the number of students who scored 40 or above.  To pass a test case they must have scored 
most of the execution points, some of the style points and then some of the verification/validation points, so 40 seems 
a conservative number. 
130 I have considered, not yet strongly, the role in learning multiple languages in maturing the notional machine.  I 
have many thoughts and will write more in the future, but for now I will say that there are risks and benefits for 
teaching multiple languages simultaneously, but adding a second language after significant instruction in the first 
seems not to harm students, though it may risk slowing down other areas of maturation. 
131 I am so bothered by underlined red text I also must immediately address any spelling or grammatical errors my 
editor points out! 
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syntax/semantic information and rather focus on entirely new information (e.g., some construct 

they have not used before or error messages they may not have encountered).  It may be that the 

struggling student also found little help from reference manuals as System 1 must drive the 

syntactic part of writing code to make any substantive progress when the task also demands 

creativity. 

 The main advantage McCartney et al. provided was a promising start to the problem.  The 

same experience that helped students write error-free code would have helped in design, but the 

helper code and additional examples provided a foundation from which students could build.  As 

an analogy, McCartney et al. presented a jigsaw puzzle and provided a picture of the goal and 

completed the outside edges as a guide.  If you have never worked a jigsaw puzzle, completing the 

outside makes the entire puzzle significantly easier as it provides a starting point and bounds the 

effort, literally in this case as well.  Many children do not intuitively realize that the flat pieces of 

the puzzle indicate a border, just like it seems many of the programmers in McCracken et al.’s 

study could not find a reasonable starting point.  McCracken et al.’s original problem not only 

failed to provide a clear border to students; it may have resembled a borderless puzzle that has no 

straight edges!  By supplying the input helper, McCartney et al. directed their students where to 

start the problem132 plus strong context clues on how to proceed.   

 TAMP suggests that the Experiential repository acts as the border of a jigsaw puzzle for 

jumpstarting design cognition.  System 1 primes the programmer’s Iconic representation of design 

with a promising design approach inspired by their abstracted/amalgamated experiences.  Without 

such inspiration and lacking any scaffolding, many McCracken et al.’s students struggled to find 

a promising (or any) start.  It might seem that novices are unable to apply knowledge of the 

programming language logically to derive a solution.  Experts, however, also seem to start from 

one big idea and then logically consider their alternatives.  Atman et al.’s (2007) asserted that 

experts pick an approach and iterate from that core idea.  The input/output helper scaffolded the 

design process by modeling key aspects of the problem in code.  The problem description included 

example code calling the helper and an example of the output from a running program (Figure 8.3).  

On top of that, the output of the example demonstrated three possible test cases.  McCracken et 

 
132 Not only is it helpful to attend to the user interface as a framework for the problem, the framework is new and has 
a lot of text to read as part of the problem statement.  The included information, as mentioned helps to outline not only 
the user interface aspects of the problem but also the structure of the data and provides a model of the application’s 
core actions.   
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al.’s test required students to imagine the entire solution based on a rough description 133 .  

McCartney et al. provided most of the analysis work and the start to a high-level design, essentially 

allowing students to mimic the example and fill in the algorithmic gaps alone. 

 

Figure 8.3. The example provided to students for the calculator program (McCartney et 
al., 2013, p. 98) 

 McCartney et al. asked students to perform a fundamentally different skill than McCracken 

et al.  While McCracken et al. probably felt they specified the problem well, it still left students 

with a gap of where to start.  By providing the helper (where to start) and the example flow, 

students were not required to imagine a  high-level design so much as to mimic the provided 

interface (Figure 8.3).  Vygotsky believed that mimicry was a way of determining a student's skills 

and that students cannot mimic work outside of their ZPD.   McCartney et al.’s students did not 

need a vast or even targeted Experiential repository since the helper primed their Iconic 

representations of design, acting as a more knowledgeable other.  The example in Figure 8.3 

removed the need for already possessing similar experiences (Experiential repository) or for 

planning an imaginative high-level design to solve the human interactions.  Instead, the problem 

became one of realizing the algorithms hinted at by the provided resources. 

8.3.3 Helping novices test like experts, to a degree 

 The refinements provided by McCartney et al. also served to aid the quality of student 

testing, when directly addressed.  The researchers described tests the students passed (or not), that 

 
133 Presumedly the description was rough, as McCracken et al. did not share the exact description provided to students 
and McCartney et al. thought it helpful to rewrite the description with examples. 
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seem to correlate with the examples provided (or not).  McCracken et al.’s students averaged 1.6 

Verification points out of 60134, meaning most failed to pass a single test.  With the provided 

scaffolding, 32 of the 40 students passed at least one basic computation test (a.k.a. benchmarks).  

McCartney et al. provided code samples for calling the helper, which helped to get students started.  

The samples provided little guidance to solving the most basic computation, yet half of the new 

batch of students correctly implemented all the basic computation tests, and only one in five failed 

to pass any test (only 16% of McCracken et al.’s students had promising, yet not all working 

solutions!).  The example not only served to guide the design, but it also provided three specific 

test cases, which by no coincidence are the ones that students were most successful in completing.  

 The students’ success changed dramatically for test cases that lacked an explicit example.  

As strongly as students performed on the benchmark test cases, they struggled with the rest.  

McCartney et al.’s (2013) choice of what to trim from the problem description provided an 

excellent example of how intuition seems do drive design and testing.   

We omitted some requirements that we hoped did not need to be explicitly 
mentioned, such as error-checking. (p. 93, emphasis added) 

The researchers assumed that the advanced novices would automatically add logic to handle poor 

inputs as part of their program yet,  

Only 7 of the 32 programs that could handle any of the benchmarks could 
handle any of the erroneous inputs – the other 25 either crashed or printed an 
erroneous result. It should be noted that the task description did not mention 
dealing with erroneous inputs. (p. 94)  

McCartney et al. perhaps exposed an expert blind spot when expecting that students would 

automatically test for invalid inputs.  They perhaps assumed that students would remember the 

importance of input validation based on prior instruction and perhaps practice problems. 

 By omitting both a requirement to validate inputs and examples of bad inputs, the 

researchers relied on the students to remember the importance of validation and how to implement 

it.  The students were allowed resources, so they may have had access to notes, previous examples, 

or could have searched for examples on the internet.  Students did not need to check for any random 

user input since the helper code already parsed input text.  Their only responsibility was to order 

 
134 Unfortunately, there is no further breakdown.  It would be valuable to know the averages for students who wrote 
working code, as this seeming is a prerequisite to passing any test cases. 
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numbers and operators properly.  They likely did not add such code because they never thought to; 

they received no inspiration from their Experiential repository.  The seven students who included 

input validation could have done so by accident or habit.  A few may have accidentally entered an 

erroneous input (e.g., “2 ++ 2”) and then fixed the resulting failure.  A few may have had enough 

experience to include invalid inputs as part of their design or test cases.  McCartney et al.’s 

assumption that students would automatically include error handling in their code seemed overly 

optimistic in retrospect.  Given that the researchers created the helper to compensate for the 

students’ lack of experience in building user interfaces, TAMP would suggest they naturally had 

no experience in validating user inputs, and most would have never thought to do so. 

 The quit feature offers a paradoxical test case.  The problem description included quitting 

in the general flow of the program (Figure 8.3), yet less than one-third of the students included a 

quit option.  If the students used the example from Figure 8.3 methodically, they would probably 

have thought to include the quit feature.  At the very least, most students did not return to the 

example after working out the basic computation features to catch the quit option.  The missing 

quit option means they also did not carefully read or return to the description of the helper code, 

as that also included a command for quitting.  Two-thirds of the students entirely overlooked two 

places where the problem statement mentioned the quit command, plus ignored the simple question, 

“how do I stop this application?” every time they tested.  The lack of quit features in so many 

calculators implies that novice design and testing processes were far from methodical.  As with 

validation, the students who included quitting most likely were those who did so out of habit or 

were frustrated by continually having to abruptly exit the program and had the System 2 bandwidth 

to modify their design.  Every student who passed any test (32 of them) must have seen the need 

for quitting but did not add this feature (~19 of them).   

 The missing quit feature seems to reinforce the role of intuition in programming.  The 

students cannot be unaware of the quit feature (from the example and the practical need to end the 

program), so this is not even a case of intuitively needed to know that quitting was important.  

What students lacked was both an intuitive strategy of when and how to quit.  Remember, 

McCartney et al. included the input/output helper because the students had little or no experience 

in command-line applications.  They had not seen many (or any) algorithms that described how to 

manage user inputs.  When left to System 2 to include this basic feature in their design, two in 



 

 

305 
 

three students forgot about it, not just at first, but over 75 minutes of coding and testing135.  I say 

‘habitual’ because the paper fails to mention student questions during the test, so they must have 

learned to kill failed programs in previous assignments and did so without needing to be instructed.  

The quit feature both demonstrates the benefit of building an Experiential repository in novices – 

guiding design – but also how easily programmers can overlook obvious needs – giving users a 

way to exit their calculator – due to habit. 

8.3.4 What we can learn about scaffolding 

The updated assessment McCartney et al. added well-designed scaffolding to supplement 

gaps in what students have learned about problem-solving.  A remarkable number of McCracken 

et al.’s students showed little or no promising work.  McCartney et al. provided scaffolding – 

helper code, testable examples, and external resources – that helped students performed better, but 

only in very specific and explainable ways.  The areas left unaddressed showed little or no 

improvement beyond the aid already provided.  The students who continued to struggle helped 

illustrate the different types of knowledge novices must acquire to become experts.  By providing 

a starting point (the helper code) and a user experience to mimic (Figure 8.3), McCartney et al. 

created an assessment that better aligned to the maturity of their students.  Most of their students 

could write algorithms given specific guidelines.  Very few included additional features that are 

implicit to experts.  Scaffolding might support gaps in student knowledge but does not increase 

the transfer of knowledge beyond its explicit intent. 

McCartney et al. also provided a dataset that highlights the different stages of novice 

thinking when programming.  McCracken et al.’s assessment tested a very large black box – build 

a calculator using these few rules to guide you.   McCartney et al. provided a focused assignment 

within a much smaller box – using this input/output code, and this example of what the interface 

should look like, build a calculator.  Not only did all but one of their students build working code136, 

but they passed many of the basic test cases.  The test cases they failed to pass speaks to the 

 
135 I struggle to determine how they tested their code without this becoming an annoyance.  My only guess is they 
habitual used the ‘kill’ command from their tool to stop each execution?  Their testing process is a microcosm for how 
easily our System 2 will focus on one problem to the exclusion of others (i.e., “how annoying is it that I can’t quit my 
application easily!  Maybe I should fix that?”) 
136 Which I think is equally attributable to this being their second class, but the scaffolding helped to avoid locking 
down System 2 with confusion. 
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importance of testing in the design process.  It seems novices do not design for features they cannot 

imagine testing.  The tests that had examples went well, outside usual hurdles in solving logic, but 

the ones without examples often went unaddressed.  Most students even forgot to complete the 

quit feature – that appeared in the example and had an explicit command in the helper.  The 

guidance added by McCartney et al. led students to more complete solutions, yet most still 

struggled to provide robust and error-free functionality beyond the explicit expectations. 

8.4 Takeaways from McCracken and McCartney 

 The assessment created by McCracken et al. (2001) and refined by McCartney et al. (2013), 

redefined what instructors and researchers might expect from students given the current state of 

pedagogy.  While innumerable uncontrollable factors impact each of the studies, the trend indicates 

that students perform better when the tasks are scaled and scaffolded appropriately.  The hopeful 

good news: students are learning to code and can do so in the right circumstances.  The undeniable 

bad news: at the end of their initial programming experience, far too many students lack the broad 

range of the skills required to be an independent programmer.  McCracken et al.’s list of skills in 

2001 matched that of computational education literature preceding it (see Chapter 2).  It seems in 

the decade that followed the expectations of at least these researchers diminished for programmers 

reaching the end of their first programming courses.  If CS1 does not provide students with the full 

skillset of a programmer, what course in the curriculum will pick up the gap in design and testing 

left when removing the scaffolding?  TAMP strives to understand and better yet explain the gap, 

and possibly suggest improved pedagogy.   

TAMP suggests that, above all, varied and deliberate practice is the key ingredient needed 

to help programmers mature.  The three studies seem to show exactly how far conventional 

computing pedagogy can take an aspiring programmer.  Programmers need a combination of facts 

and experiences to become creative problem-solvers.  Computing majors will eventually see 

enough coursework to promote the various types of intuition that Figure 7.15 describes, but too 

many programmers do not persist until reaching that point137.  I believe it is possible to include 

pedagogy that promotes intuition earlier in the curriculum.  A curriculum that is cognizant of the 

 
137  And non-majors may not encounter another programming opportunity until after their declarative memories 
degrade. 
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value of intuition also has the effect of not only reducing cognitive load but also mitigating some 

of the adverse ‘non-cognitive’ factors (e.g., imposter syndrome).  The high dropout rates of 

computer science students (Flinders, 2019) suggests that too many leave the discipline long before 

they could mature System 1 in the ways of programming, thus long before they start to understand 

and feel confident in the subject.  The three main studies of this chapter seem to indicate that even 

those who succeed seem less ready than desired.  These three studies described where students are 

learning but show how much further they have to go to be strong programmers.  TAMP offers an 

alternative perspective of what ‘being a programmer’ means that may inspire new understandings 

and innovations to help students succeed. 
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 APPLYING TAMP 

 This chapter considers the implications of TAMP for two purposes: to illustrate TAMP’s 

efficacy as a guide for researcher and educators (validation of the theory) and offer examples of it 

in use (training on the use of theory).  Readers who wish to move beyond abstract constructs and 

propositions may benefit from examples of TAMP applied to research and teaching practice.  Each 

example in this chapter seeks to plant a seed for thinking differently about how people think and 

learn computing.  The discussion in this chapter is not exhaustive, nor is it intended to be.  I 

sincerely hope that others will find new and creative uses of TAMP and their work will expose the 

cognitive biases that I cannot currently see beyond.   

The structure of this chapter is much like episodic memory – retrospective and prospective.  

Within this dissertation, I have revisited numerous studies and pedagogical interventions, some in 

quite some depth.  I used the data from these studies combined with new ideas from theory to 

reconstruct new interpretations.  Like prospection, TAMP can guide future studies and innovations 

to pedagogy.  Before looking at applications of TAMP, a summary of the last three hundred pages 

of discovery may help understand the scope of what TAMP is and can be.   

9.1 What is TAMP? 

TAMP models the cognitive activities of programmers to capture the types of knowledge 

that experts acquire and how they use that knowledge in their thinking.  This dissertation validated 

the plausibility of the included theories as applied to computing education but captures a small 

slice of what TAMP could become.  The contributions this dissertation makes to the theory of 

computing education include: 

 Established the value of dual process theory as an alternate model of cognition 
 Proposed Bruner’s representations as a model for capturing the various types of 

knowledge and different ‘ways of knowing’ programming concepts 
 Defined the Applied Notional Machine (ANM) as a computing education-based 

theoretical construct for how programmers store and apply knowledge 
 In revisiting past studies, 

o Offered alternative interpretations of fragile knowledge and explanations of 
novice performance on tracing tasks 

o Illustrated why novices struggle to complete open-ended coding assignments 
and how selected scaffolding supports gaps in design knowledge 
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Before considering the possible uses of TAMP, this section summarizes each of these contributions 

and the possible future areas into which TAMP can grow. 

The foundation of TAMP lies upon the two cognitive mechanisms described by dual 

process theory: the conscious reasoning of System 2, which relies heavily upon the tacit knowledge 

and skills of System 1.  The intuition and habits of System 1 drive much of our daily activity.  

System 2’s primary function is tackling novel problems, but even here, intuition plays a role in 

problem-solving.  System 1 primes our deliberations within System 2 by providing information it 

finds relevant from experience and offering support via automated skills.  Within computing 

education, dual process theory further explains such notions as fragile knowledge (Section 5.2.1).  

Dual process theory suggests, for example, that Perkins and Martin (1985) were able to trigger 

fragile knowledge by stimulating System 1 in new ways since priming is a major factor in System 

2.  Similarly, dual process theory helped to explain the presence or absence of sketching during 

tracing activities.  Sketching aids System 2 by helping it manage short-term memories, but the 

need for this diminishes as new programmers automate the mental execution of language 

constructs.  Furthermore, revisiting Lister et al.’s (2004) analysis (Section 5.2.2) indicated that 

intuition may drive design decisions, as students chose familiar, yet incorrect answers that are 

easily disproven after a confirmatory trace.  These examples provided initial evidence that dual 

process theory offers new insights to computing education. 

Having validated dual process theory, TAMP established the representations of Jerome 

Bruner as a model of memory and learning.  Bruner defined three types of mental representations, 

enactive, iconic, and symbolic that TAMP links to different aspects of dual process theory.  

Enactive representations and System 1 both model the same memory structures and cognitive 

processing.  Enactive representations form implicitly, though we can curb our intuition and habits 

with deliberate intent, often based upon external sources of knowledge.  Bruner modeled our 

memories of external information within symbolic representations, which TAMP equates to 

semantic memories, the memories of fact.  Symbolic representations sometimes stem from specific 

systems of symbols, like mathematical formulas or a programming language.  TAMP suggests that 

fluency with new systems of symbols also requires the support of enactive representations.  

Enactive and symbolic memories do not always form at the same time, though (e.g., we learn to 

speak grammatically without needing to learn the rules of grammar).  These two types of 

knowledge influence each other but, like dual process theory, have complex interactions. 
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Bruner’s theory models the interaction between implicit and explicit knowledge in his 

iconic representations.  Iconic representations are the bridge between enactive and symbolic 

representations.  TAMP clarifies the nature and role of iconic representations beyond the 

oversimplification as mere imagery, expanding upon Bruner’s hint that they are vital in problem-

solving.  TAMP suggests that iconic representations resemble episodic memories, which associate 

various types of knowledge and allow for future planning (i.e., prospection).  TAMP blends the 

mechanics of prospection with iconic representations as an aid in problem-solving.  This refined 

set of Bruner’s definitions provides theoretical building blocks for describing the way our mind 

organizes information and experience and serves as the foundation for describing programming 

knowledge. 

The Applied Notional Machine builds upon Bruner’s refined representations to reenvision 

a longstanding theoretical construct in computing education.  The notional machine is a useful 

construct for describing programming knowledge but provided no model of cognition or learning.  

The Applied Notional Machine reorganizes the concepts of the notional machine within symbolic, 

iconic, and enactive representations.  Symbolic representations hold a programmer’s consciously 

learned rules of syntax and semantic rules (i.e., knowing that), where the automatic ability to read, 

write, or predict the execution of code (i.e., knowing how) forms within enactive representations.  

These two representations capture the knowledge traditionally provided by instruction and notional 

machines, but the ANM adds to the mix a mental model of design knowledge within an iconic 

representation.  The iconic portion of the ANM models the use of a programming language to 

solve problems.  It encapsulates several vital categories of knowledge identified in computing 

education literature that experts acquire with experience (Section 2.3.3) and often automate.  

Exceptional programmers develop rich mental libraries of design patterns, sample test cases, tips 

for handling errors, methods of researching information, debugging strategies, and other such 

pragmatic items outside the typical scope of programming classes.  The ANM provides a structure 

for modeling the various types of knowledge a programmer must learn and, using existing theory, 

helps define how our mind acquires and uses such information. 

The Applied Notional Machine is the most significant contribution from this work and 

offers a central construct for the evolution of TAMP.  Figure 9.1 includes existing and possible 

future elements of TAMP: concepts, constructs, and propositions.  Using dual process theory, 
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neuroscience research, and Bruner’s representations, TAMP defined an ‘updated’ representation 

model based on the work of Bruner.  The ANM leverages this model as well as measurable 

observations from computing education that theory suggests.  For example, dual process theory 

suggests that measuring a programmer’s speed in complete tasks (e.g., writing syntax, tracing, 

fixing errors) may indicate the mechanism of cognition at play.  Likewise, the presence and nature 

of sketching, combined with the level of their success, may hint at how a programmer is using 

System 1 or 2 during tracing.  Using the basic building blocks of the ANM, this work proposed 

models of expert thinking during code comprehension and design (Section 7.6). 

 

Figure 9.1 The contents of TAMP, current and proposed 

TAMP, as a theory of mind, should someday move beyond select aspects of expert 

cognition and include ‘non-cognitive’ factors and perhaps intermediate stages of learning.  The 

major effort of this dissertation was establishing the underlying theory, its applicability to 

computing education, and the ANM as an example of a discipline-based theoretical construct.  This 

limited scope is useful for describing expert cognition as captured in the literature and hinting at 

the nature of novice struggles, particularly where they relate to the functioning of System 1.  The 

limitation of this approach is the inability to dive deeper than the existing data (and time).  New 

sources of data can help theorists add to TAMP on such topics as how ‘non-cognitive’ factors 
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influence novice programmers, how programmers work and learn collaboratively, and, hopefully, 

many other aspects of computing education over time. 

This chapter suggests both future research and possible changes to pedagogy, but only 

through theoretical speculation, and with the gaping hole that the model only covers one aspect of 

cognition.  Including self-confidence, motivations, identities, emotions, and other aspects of 

cognition adds a richer picture to not just how programmers work, but how they learn.  I was 

slightly crestfallen to admit that my revisit of Vygotsky’s Zone of Proximal Development was out 

of scope for this incarnation of TAMP, as such improved tools could prove useful in the formation 

of future learning activities.  Vygotsky’s work might help to define how programmers learn from 

each other, adding to practices such as pair programming (Cockburn & Williams, 2001) or theories 

such as cognitive apprenticeship (Brown, Collins, & Duguid, 1989).  This dissertation sets the 

stage, but far from completes my vision of TAMP.  The core of TAMP at this point may be the 

ANM – and the underlying arguments for its formation – with a few propositions that still require 

further empirical testing.  TAMP as a theory will be more effective with continued study of all 

aspects of cognition and the open-mindedness to add to, change, or remove the elements as 

proposed in this work. 

9.2 Research implications 

 My original motivation to create TAMP was as a stopgap to fill holes in the research I 

hoped to conduct.  I was taking a course in single-subject design methods, which generally avoids 

statistical analysis, preferring visibly apparent shifts in behavior/data as an indication of 

effectiveness (Kennedy, 2005).  Single-subject researchers hope to establish causality by 

presenting irrefutable changes in behavior with and without some intervention.  TAMP started as 

a search through literature to find appropriate measures, which did not seem to be available.  The 

general measures of progress in much of computing education literature are either course grades 

(broad and imprecise) or student satisfaction (not a direct measure of learning at all!).  Even when 

studies use data other than course results, the measures tend to rely on some level of success (e.g., 

the number of test cases passed, conceptual questions answered correctly, successful traces).  I 

now believe the lack of specificity of the measurements led many researchers to conclusions of 

bimodal distributions, rather than a mysterious ‘threshold concept’ (Eckerdal et al., 2007; Meyer 
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& Land, 2003; Rountree et al., 2013; Sorva, 2013).  I did not know it at the time, but what I was 

missing was a clear connection between the theoretical construct of “learning to program” and 

behavioral measures of programmers in action.  While TAMP suggests a hierarchy of propositions, 

constructs, and concepts (primarily borrowed from existing theory), it just suggests them until 

future research offers confirmation, refinement, or refutation. 

9.2.1 Lessons to learn from revisiting existing research paradigms under TAMP 

9.2.1.1 Design thinking and writing code 

 It seems the easiest to start where we left off, the studies of design from Chapter 8.  

Revisiting the studies using TAMP as an alternative theoretical framework provided additional 

insights into the student outcomes and satisfying explanations for their behaviors.   

 McCracken et al. (2001) 

o Students struggled because of a lack of design experience as much as gaps in 

programming knowledge. 

o The researchers assumed too much transfer of knowledge in students; particularly 

 Knowing how to use a calculator helps in designing its functionality 

 Learning about stacks simplifies the implementation of the unusual RPN 

 McCartney et al. (2013) 

o The scaffolding guided the initial design supporting or replacing missing design 

experiences or transfer knowledge. 

o Researchers assumed novices would implicitly add features that were obvious to 

experts (e.g., validation) which only happens in rare cases 

A common theme from these three reinterpretations is the role of intuition and the divisions in 

programming knowledge that computing education does not typically capture (e.g., notional 

machine).   

TAMP suggests that experts develop a series of implicit memories (enactive) as well as 

traditional semantic knowledge about programming.  Much of the thinking of experts, and the 

more successful student in the three studies, is driven by intuition refined by reason in iconic 

representations.  Iconic representations not only help expert thinking but expert learning as well.  

When programmers form mature iconic representations that help them solve problems, they also 
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benefit from mature schemas to use Piaget’s term.  It is not that experts have better memories than 

novices, but that it is easier to recall facts when they are tightly associated with existing knowledge.  

The three studies above neglected to include any theory of learning to describe their methodology 

or findings.  While their data is compelling, and their analysis is not entirely off-base, the lack of 

theory opened the door for misinterpretation and perhaps lowered expectations too far of what 

novices should learn in their first year. 

Recommendation – When a study asks participants top write code, the scope of the coding task 
should align with the type of knowledge under testing.  TAMP suggests that programmers have 
different repositories of knowledge (e.g., language, design, domain, testing) that may or may 
not transfer depending on how researchers present the problem.  Too little scaffolding and some 
students will not know where to start.  Too much scaffolding and the task may not exercise the 
types of skills under investigation.  Establishing a cognitive model of the study’s targeted skillset 
– possibly using TAMP’s constructs – helps to establish relationships between areas of 
knowledge and skill, and hint at pedagogical interventions. 

9.2.1.2 Tracing as a precursor 

 The ‘all or nothing’ outcomes seemingly reported by McCracken et al. led Lister et al. 

(2004) to develop an intermediate measure of programming skills.  As described in Section 4.2.2.2, 

they created a multiple-choice test consisting mainly of tracing and a few fill-in-the-blank code 

questions.  Their study thankfully demonstrated that efforts to teach programming were not in vain.  

Beyond answering questions about language constructs that might require memorization alone, 

they proved that most students could read and mentally execute code. However, many still 

struggled in design-type tasks, as simple as selecting the appropriate line from a choice of 4 options.  

Using dual process theory as a guide, I proposed that immature/faulty intuition was also to blame 

for the divide between mental execution and design (see also (T. Lowe, 2019)).  My 

reinterpretation, which did not yet include Bruner’s representations, already hinted at different 

repositories of knowledge that guide tracing and design.  The measures Lister et al. used to describe 

even tracing seemed misleading. 

 Lister et al. presented a case study on tracing that seemed to imply that strong sketching 

was a sign of maturity in novices.  My interpretation suggests that tracing is a sign of progress, but 

not maturity.  System 1 simply cannot take advantage of sketching as it provides answers without 

conscious deliberation.  When a novice sketches to aid in their mental execution, it is a likely sign 

they are relying on System 2 for some level of tracing.  Sketching provides a tricky measure as 
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well because it is most likely iconic, specific to that individual.  Unless a student has dedicated a 

great deal of time to learning a specific tracing protocol (symbolic representation), their traces are 

a hint to their mental process but may not consistently match others.  Therefore, mastering tracing 

in a conventional sense (e.g., using trace tables) may only demonstrate symbolic learning, not the 

formation of iconic representations vital to problem solving.  Tracing may have little value during 

a formal assessment (particularly formative), yet still can inform research and support student 

learning. 

 Researchers and educators might use tracing behaviors as an indicator of the maturity of 

Enactive representations of code.  TAMP suggests the amount of sketching that novices exhibit 

might resemble a normal curve.  At first, novices are less likely to sketch as they are not sure what 

to write down as they lack any notional machine.  Sketching grows as students engage System 2 

and start to build their own iconic representations of code in action.  As their notional machine 

transitions into enactive representations, their need to sketch ebbs away.  The amount of tracing 

seems to measure the maturity of their notional machine.  The exemplar student from Lister et al. 

(Figure 5.2) showed a lower degree of maturity, as can be seen by the amount of redundant tracing 

within constructs.  The redundant traces within triangles 5 and 6 show the student was not yet 

amalgamating the automation of individual constructs but needing to double-check their work at 

each intermediate step.   An advanced novice might trace each iteration of a loop, for example, but 

not the intermediate steps.  When novices ‘naturally’ advance to the use of a tracing table – as 

opposed to being drilled into using one – they may have reached the penultimate stage before fully 

automating most mental execution.  The sketching patterns of novice might be a useful data point 

for researchers to measure intermediate learning and for educators to suggest additional practice. 

 Lister (2016) seems to have based much of his neo-Piagetian theory on tracing as a 

precursor to other programming skills.  Lister, along with Teague (2014), described programmer 

maturity in terms of Piaget’s developmental stages, yet TAMP suggests that a linear progression 

is too simple of a model.  Lister and Teague’s model sees programmers progress from struggling 

to competent tracers to writing code to expert reasoning in code (Section 2.1.3).  While their 

description may be accurate at an abstract level, it neither is supported by some of the underlying 

research, nor does it provide theory to guide pedagogy.  For example, their neo-Piagetian theory 

offers little explanation for the tenuous correlations between tracing, explaining, and writing code 

that Lopez et al. (2008) reported.  Lopez et al. found some statistical significance countered with 



 

 

316 
 

a good number of outliers.  Strong students indeed develop a network of skills, but none of these 

studies link what students do know (concepts/tracing/explaining) to what they are unable to do 

(design and write code).   

 

 

Recommendation – Skills such as tracing are an integral part of a programmer’s full skillset, 
particularly around Enactive representations of code within the notional machine.  Measuring 
these skills is not merely about successfully predicting the outcomes of tracing code, but how 
that tracing occurs.  Sketching provides a useful indication of maturity but TAMP suggests 
sketching will fade as System 1 matures.  Researchers might find useful measures by 
qualitatively coding the presence, context, and quality of sketching during traces.  Likewise, 
further research seems valuable in the relationships between explaining, tracing, and writing 
code using the concept of an Iconic representation of design as an explanatory factor.  TAMP 
may offer insights that link the various types of knowledge used in programming skills. 

9.2.2 Future research 

 The reinterpretations studies completed within this work offer strong evidence for the 

internal validity of the propositions offered by TAMP.  While I was certainly aware of a few of 

the studies early in the process of building TAMP, some of the most compelling studies I did not 

discover or engage in until much later in the process.  I encountered the two articles on the same 

study led by David Perkins (D. Perkins & Martin, 1985; D. N. Perkins et al., 1986) as well as 

McCracken et al. (2001) quite early in my preparations.  I only found McCartney et al. (2013) and 

Fix, Wiedenbeck, and Scholtz (1993) when writing Chapter 8, reserving the discussions of these 

two studies as actual discriminant sampling138.  The process defined in Chapter 3 remains valid, in 

so far as any few sets of data validate a theory in its infancy.  The advantage of using existing data 

means that the methodology remains uninfluenced by the hypotheses.  However, the disadvantage 

remains that much of the data is second-hand and can only validate the aspects of TAMP included 

in their data.  The final stage of building TAMP will extend beyond this dissertation but can be 

proposed by considering future research that may come from the current definition of TAMP. 

 
138 If you do not recall the concept of discriminant sampling, it involves revisiting some portion of the data after 
constructing a theory.  See Section 3.2.3 for more details.  
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9.2.2.1 Revisiting prior studies, with a twist of TAMP 

 One avenue of research to help in confirming TAMP’s propositions is revisiting, some of 

the reinterpreted studies to collect missing data or otherwise confirm similar predictions.  TAMP 

has the benefit not just of a new theory of mind, but also hindsight to see what data would have 

been helpful in further validating theoretical assertions.  The next several pages highlight a few of 

the most influential studies within this work and tweaks to the methodology or analysis within 

each.  I am not looking to offer an exact methodology, but merely advice or suggestions of what 

may be interesting twists on replication or similar research and their relationship to TAMP.  By no 

means does the mean any study needs to select TAMP as a driving theoretical framework139, but 

using the suggested tweaks might lead to data or findings that not only support TAMP but aid in 

explaining how experts and novices think and learn. 

  

 
139 Though it would be nice, and I would be glad to assist! 
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Fragile knowledge and Movers/Stoppers – Section 5.2.1 
(D. Perkins & Martin, 1985; D. N. Perkins et al., 1986) 

Methodology 

The researchers created a highly effective protocol that provided detailed descriptions of novice 
struggles and successes.  The prompt/hint/provide protocol was particularly effective at evoking 
inert knowledge (new triggers for System 1), and the commitment to one-on-one interactions 
between researcher and participant allows for maximum control and follow-up.  If replicated 
today, it would be interesting to use screen-capture and video to garner even more information 
from the novice’s programming process.   
 
One advantage of replicating the study would be more control and understanding of the 
pedagogy and its relation to the assessment used in the study.  The original articles provided 
few details on how students learned to program.  Since TAMP suggests that examples are 
essential to building an Experiential repository of design ideas, the study should include coding 
assignments that are both familiar and those that require transfer.  The two categories could help 
differentiate when and why novices become movers/stopper, and when they need further 
prompting or more involved hints. 

Analysis 

A new set of data allows for a robust exploration of the role of intuition in novice thinking.  
Performing a new analysis might allow for confirmation of TAMPS’s theoretical constructs that 
separate coding language knowledge from design knowledge.  By controlling both the pedagogy 
and assessment, the analysis can determine the importance of frequency in recollection.  For 
instance, things that show up frequently and with variety in the pedagogy should require fewer 
prompts and hints than things that mentioned only once and particularly without any examples. 
 
Adding video and screen capture of the student at work to the protocol would allow for 
comparative qualitative analysis across students and within successive work sessions.  The 
scope of this study allows, within reason, a wide array of investigations since the researcher can 
solicit the participant to think aloud and compare their commentary to the actions they take 
while working.   
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Tracing as a pedagogy – Section 5.2.2 
(Cunningham et al., 2017; Lister et al., 2004; Lopez et al., 2008; Xie et al., 2018) 

Methodology 

Tracing studies is one of the richest areas for reinterpretation data, but a few tweaks could 
reinforce the analysis already conducted.   
 
The ‘standard’ methodology for tracing is asking participants to answer multiple-choice 
questions that require some level of tracing, and perhaps other questions of conceptual 
knowledge or completing missing code.  Some improvements in more recent studies included 
capturing formal training on sketching techniques (which students tended to ignore) and even 
timing information on how quickly students complete each task.   
 
A new study on tracing may seek to investigate the iconic versus symbolic relationship of 
sketching by comparing formal techniques of sketching and whether they impact design, not 
tracing abilities (e.g., are they the ‘right kind’ of iconic representations, or merely encouraging 
symbolic/procedural learning).  Another variation might be to test tracing longitudinally (a few 
weeks at most should do) to see how sketching ebbs and flows and the notation changes over 
time.  If sketching while tracing aligns with TAMP’s model, sketching should mirror egocentric 
speech (Ginsburg & Opper, 1988; Piaget, 1995; Vygotsky, 1986) and internalize with growing 
expertise.  

Analysis 

As described earlier, a tracing study should consider sketching as a continuum, not a fixed target.  
Further analysis might confirm the proposition that certain types of questions are not answered 
by tracing, but instead by Experiential repositories of design.  
 
One possible variation within the study could be to require or ban the use of notes/sketches 
during tracing on alternating problems.  Encouraging or discouraging sketching, possibly 
including a think-aloud protocol to capture the participant’s feelings and thoughts while 
sketching, might hint at the cognition at play (e.g., Is the sketch annoying?, Does it slow down 
the work?  Is the student frustrated they cannot sketch?).  By requiring sketching, the researchers 
can elicit a range of tracing outcomes – from rough, partial, incorrect scrawls, robust use of step-
by-step tracing strategies, and minimalistic, impatient, and perfectly accurate notes.   
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Design and coding assessments – Chapter 8 
(McCartney et al., 2013; McCracken, 2001) 

Methodology 

The point of a generalized assessment is to compare students across different pedagogical 
traditions to ensure they share a standard set of skills.  The nuisance variable across the three 
studies from Chapter 8 seems to be an unclear picture if the different schools within the studies 
are even remotely equivalent.  While it was clear that there is room to improve in each of the 
studies, it is not clear how much of the differences might transfer between school.  While 
someday I would hope to attempt a study like this, I believe TAMP is still years away from 
suggesting a universal assessment.  For others who may have such a pending study, I will offer 
a few insights for what I would do given the current state of TAMP. 
 
Researchers should baseline the skillset across multiple tests, possibly including conceptual 
knowledge, tracing, explaining, and other such necessary skills.  Creating such an inventory of 
skills across diverse populations helps measure both the impact of demographic differences 
across participants as well as confirming other research on the role (or lack therein) of other 
skills in designing and writing code. 
 
As noted before, the researchers should establish a cognitive model of the expected skills a 
student should demonstrate, and which ones are intentionally scaffolded. 

Analysis 

One of the limitations of such extensive studies is the all-or-nothing nature of the data.  It is 
difficult to track each student's progress and workflow, but perhaps the study could use 
automation to capture progress at different intervals (e.g., every 15 minutes) to see how students 
progress at different rates.  Capturing timed snapshots would also lend to the analysis of 
how/when students change their minds or abandon work and come back to it, hinting at the role 
of intuition versus deliberation. 
 
It also seems that large coding tasks might benefit from multiple data points of the same cohort 
to track how their thinking changes, how they respond to problems of various difficulty, or 
reduced levels of scaffolding.  It seems as well that detailed analysis of each subgroup within 
the participating schools in comparison to the others, as well as the total population, may provide 
insights into localized phenomenon due to pedagogical choices, prior experience, or other 
potential nuisance variables.   
 
The greatest challenge in such studies is telling a useful story with the numerous uncontrolled 
variables.  The original McCracken et al. study seemed to indicate they were attempting to 
validate a shared assessment 140.   While large-scale, multi-national, multi-institutional studies 
are compelling; they also are resource-intensive and difficult to control. 

 
140 An impression seemingly shared by McCartney et al. (2013) 
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9.2.3 Studies to validate specific propositions within TAMP 

 Beyond new twists on existing studies, TAMP proposes a few new ideas out of theory 

alone.  These ideas are less critical toward practical computing education research and practice but 

may have thought-provoking ramifications to models of thinking or education in general.  I am 

purposefully only providing basic descriptions of these ideas since they are less practical for most 

readers and not a vital part of TAMP’s validity overall.   

9.2.3.1 The expanded definition of iconic representations 

 In formulating TAMP, I expanded quite a bit on Bruner’s representations, none more so 

than the iconic.  While I feel I stayed within the spirit of Bruner’s description of the iconic space, 

I also combine concepts from neuroscience, prospection specifically, into the mechanics and 

purpose of iconic representations.  Much as Houde et al. (2015; 2011) and Siegmund et al. (2014) 

used fMRI to consider how more complex tasks map to different regions of the brain, it would be 

interesting to see the role of the hippocampus and other brain structures in more complicated 

programming tasks like design.  Research using fMRI has many restrictions and is expensive.  

Participants often must remain entirely still, and tasks must fit into short time windows.  It is 

questionable if knowing the topology of the brain during design would even add to the model141.  

The neuroscience of programming may be years or decades off, and in the meantime, it seems less 

useful than other more practical studies. 

 Researchers may uncover the role of iconic representations in design might using more 

conventional means.  For example, a study might separate participants into groups that will 

inevitably take the same design and coding assessment, but each group receives a different 

preliminary intervention.  The control group, for instance, might receive a lecture on the use of 

stacks.  A second group might receive a demonstration of using stacks to solve a similar problem.  

A third group might receive several examples of solving problems using various data structures 

over several days, occasionally repeating each.  The assessment would come after a week of other 

forms of instruction to allow knowledge to move out of recent memory, but perhaps a fourth group 

receives some prompt just before the test.  The analysis would compare each group's performance 

 
141 Perhaps discovering that the hippocampus is not very active during design could kill my hypothesis, but that seems 
unlikely as designers need to remember things after all. 
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on a task, like the RPN calculator, that requires stacks.  Which groups think to use stacks?  Which 

groups can remember enough to implement code successfully?   

The nature of the iconic representation hints that students with more practice and time to 

construct enactive representations, and those with recent reminders to guide in place of System 1 

should perform better than those who saw information one time or merely learned semantic 

knowledge.  If possible, the study could track the time students spend on each phase of their project, 

much as Atman et al. (1999) did in tracking engineering design.  TAMP would predict that students 

exposed to similar designs would jump to a promising design more quickly (e.g., they would 

choose stacks right away), and thus progress to working on the detailed design elements and coding.  

Educational researchers from other disciplines could also consider the role of iconic 

representations within their fields.  While computing education demands a higher level of problem-

solving than many fields (Socha & Walter, 2006), it does not have a monopoly on challenging 

problems. 

9.3 Pedagogical Implications 

 While my studies have created a deep passion for research, my heart began and remained 

in the classroom, making educational research a wonderful crossover.  Researchers should know 

the value of theory, but educators can find equal benefits when theory (supported by research) 

informs every aspect of their classroom practice.  I believe it is not sufficient for instructors merely 

to adopt a theory-based curriculum.  While a well-constructed curriculum is better than an 

anecdotal amalgamation of tradition, the most effective teaching needs to understand learning in 

every interaction.  Particularly in post-secondary computing education, the best curriculum adapts 

to the identity of the school and degree program.  As stated earlier, one of the reasons I am not 

proposing TAMP as a canonical theoretical framework or programming curriculum is because I 

cannot know the needs of every programming student.  Even the mental model from Section 

7.6.3.4 does not represent every possible type of programming expert, but merely the typical 

Software Engineer/Computer Scientist that best aligns with my experiences.  In the age of 

specialization (e.g., Human-Computer Interface developers, System Administrators, Database 

Administrators, Data Engineers), technology-adjunct workers (e.g., Computing Educators, 

Business Analyst, Data Scientists) as well as non-computing professionals who need to 
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occasionally program (e.g., Engineers, Mathematicians, Scientists, Economists), it is up to each 

researcher or educator to transmogrify TAMP to fit their needs.  What TAMP can do is expand 

upon existing and propose new pedagogy. 

A Note on Granularity 

 The pedagogical descriptions within this work balance must between being specific 
enough to illustrate the theory and its applications, yet abstract enough to leave room for 
interpretation and study.  Imagine a study using a TAMP-driven pedagogy that demonstrates 
overwhelming success; every student thrives, masters the assigned tasks, and becomes an 
independent learner.  Despite seemingly incontrovertible proof, the next application might show 
lesser benefits or none at all.  Perhaps the next students lack some critical prerequisites.  Maybe 
they are less motivated.  Any number of nuisance variables could derail the promising 
pedagogical intervention, but any analysis might miss the point: did the students need that 
information in that manner?  Were they genuinely read to tackle material at the same level?  
Piaget, Vygotsky, and to a lesser degree, Bruner advocated for the role of an intelligent mentor 
to guide and customize learning.  TAMP does not replace the need to understand and cater to 
the specific audience of students.   

 TAMP is a theory, not a pedagogy.  TAMP intends to inform, not make choices.  
Prescribing content, modes, or sequences of instruction or assessment would transition TAMP 
from the realm of theory into a theoretical framework, if not curriculum.  At times it is easier to 
“just tell me what to do!”  Within programming, code is not always reusable, so we create 
patterns for solving problems or even design principles that guide the problem-solving approach.  
TAMP sets principles for designing programming education, which in turn may inspire patterns 
or specific exercises.  These are offshoots of TAMP, however, as much as the spiral curriculum 
is an offshoot of Bruner’s core theory.  Ignoring the theoretical foundations and tenants that 
guide instructional design risks creating instructors that are as less capable of improvising in the 
classroom, just like the novice coders captured in the literature who are unable to design for new 
types of problems. 

9.3.1 Choosing content and assessments 

 The most critical decisions made in education happen long before a student signs up for a 

course or even before a school offers a course – the selected content.  Even when an instructor 

inherits a course with a catalog description that was outdated a decade ago, they still choose what 

topics deserve emphasis and which become footnotes.  Wiggins and McTighe (2005) advocated 

for what they call ‘backward design’ – curriculum designers begin by identifying the desired 

results then choose assessment methods before finally considering pedagogy.  Identifying the 
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desired results provides a razor to help prioritize what is critical for students rather than the 

convenient content and order found in traditional textbooks.  Instructors should as, 

What should students know, understand, and be able to do?  What is worthy of 
understanding?  What enduring understandings are desired? (p. 17) 

Wiggins and McTighe asked much more than what a course should cover, but what will students 

remember long after the end of a class.  They referred to “enduring understandings,” which they 

define as “big ideas, that have lasting value beyond the classroom” (p. 342).  TAMP helps to define 

the epistemology of content choices within Wiggins and McTighe’s questions. 

Note: The rest of this section changes the phrase “enduring understanding” to enduring 
outcomes.  Authors use the word ‘understanding’ in so many contexts that it can be confusing.  
Is understanding merely conceptual knowledge or applied?  Do I really need to understand why 
programmers follow a specific coding style? Is adhering to style sufficient?  Enduring outcomes 
encompass any type of educational goals across System 1 and 2 or all three of Bruner’s 
representations.  While the name is changing, the intent remains the same. 

 Instructors not only need to define what a student should learn but also their expected 

proficiency and use for their learning.  Students may not remember every topic that a course covers, 

so an instructor must choose what things are the most important, and what will students need to 

do with that information?  Wiggins and McTighe hint at an epistemological divide between 

knowing that and knowing how that helps distinguish between “understand” and “able to do.”  A 

programmer should remember the rules of the language and write code, but Wiggins and McTighe 

expect more from students than a shallow remembering.  It is one thing to ask a student to ‘be able 

to program’ by the end of the term, but will they retain their newfound skills over the summer?  A 

year later?  Well into their professional career?  Beyond developing long-lasting knowledge, 

Wiggins and McTighe expect also expected enduring outcomes to transfer to new situations.  A 

programmer’s skills mean little if they cannot code solutions for new types of problems than what 

they saw in the classroom.  Wiggins and McTighe placed high expectations on instructors and 

students: learning is not enduring unless students can recall knowledge years later and apply it to 

solve never-before-seen problems.   

 TAMP suggests that the goal of creating enduring outcomes is much trickier than it seems.  

Test results may indicate what a student knows today, but that knowledge risks fading over time, 
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depending on the type of memories formed.  Perhaps educators have accepted forgetting too 

quickly?  While forgetting unused details is inevitable, but perhaps redirecting effort towards 

building System 1 expertise, which is less ephemeral, can provide students with truly enduring 

outcomes?  The procedural expertise of System 1 may last longer than crammed semantic 

memories within System 2, but System 1 is only as flexible as its training.  Wiggins and McTighe 

explicitly warn against summative testing as a measure of enduring outcomes.  They allow for a 

generous breadth of assessments over time as evidence of student learning, not merely a final 

project or exam.  Ensuring students achieve enduring outcomes does not mean that instructors 

must write better tests or only use ‘authentic’ assessments.  Each form of assessment adds to a 

patchwork of feedback, but adding multiple assessments creates a new problem: modeling how 

various data points contribute to the desired outcomes. 

Theories such as TAMP help educators select meaningful assessments and amalgamate 

their results.  It is difficult to predict from a single assessment, just how knowledge will endure.  

Vygotsky defined the Zone of Proximal Development to capture the difference between what a 

student demonstrates unaided and what they can do with support.  Measuring enduring outcomes 

seems to be the reverse process.  A student likely has the most support (the freshest memories) 

during the test before they fade if left unused for the rest of the class and beyond.  Not only must 

an instructor find valid tests in the ‘here and now’ of the course, to promote enduring outcomes, 

but they must also consider if the learner is building knowledge in the ‘right way’ to become 

enduring. 

 TAMP does not solve the puzzle of making learning enduring, but it helps to understand 

how a curriculum promotes or risks falling short of the ‘right type’ of learning.  The theoretical 

constructs of TAMP suggest what enduring knowledge looks like in experts.  Experts need 

enactive representations to capture long-term knowing how and iconic representations to make 

such knowledge flexible.  Understanding the memory structures involved in creating lasting 

learning may help hint at assessments to test the types of knowledge that last.  For instance, 

nondeclarative memories (enactive/System 1) not only fade slower than declarative but also 

provide faster results.  Cunningham et al. (2017) noted that students who sketched while tracing 

were generally more accurate but slower than their peers.  A traditional evaluation might conclude 

that these students have mastered tracing, but only when students are accurate and quick have they 
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formed skills that are also enduring.  Educators can add elements to existing tests, as well as create 

new assessments if they understand the characteristics, not just the content of enduring knowledge. 

 The backward design approach presented by Wiggins and McTighe helps instructors to 

prioritize learning and ensure students are moving towards the desired skills.  Defining the 

enduring outcomes of a course acts as a compass for assessment and pedagogy.  TAMP exposes 

the complexity in attempting to build enduring knowledge – both lasting and flexible.  System 2 

learns quickly but readily forgets when left unused.  System 1 matures through deliberate practice 

that tight schedules do not easily accommodate.  However, when enough enactive representations 

form, a student can then build the mature iconic representations that are essential to problem-

solving.  Students cannot acquire most enduring outcomes in a few weeks over a handful of 

assignments, so educators must create curricula that revisit critical content and vary how it is 

encountered and used. 

 Computing education seems to have already begun to shift towards mastering less in the 

same amount of time.  For example Utting et al. (2013) comprised of many of the same original 

researchers yet the expectations of what students could accomplish are minimalistic compared to 

McCracken et al. (2001).  The shift is not merely generational as the two teams shared five 

common members, including the two lead authors.  While assessment is an important aspect of 

education, it is not the only means of achieving enduring outcomes, merely measuring them.  It 

may be reasonable to encourage the habits of mind that eventually might yield enduring knowledge 

by carefully selecting and ordering activities within pedagogy.  Chapter 2 presented a variety of 

creative pedagogical interventions that present information in new ways and activities that test 

targeted skills (discussed further in Section 2.3).  Before considering specific methods of teaching 

or testing skills, I will offer a few propositions for choosing content and assessments based on the 

TAMP and its underlying theories. 

9.3.1.1 Lowe’s Laws of Enduring Outcomes (LLEO) 

 Every class likely forms some enduring outcome for its subject matter; it may not be the 

outcome the instructor planned or desired.  In all humility, I submit Lowe’s Law of Enduring 

Outcomes: what sticks with students is what they practice most (even if that was not what you 

meant for them to learn).  Students will always form a lasting impression of a topic since System 
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1 implicitly learns from any repeated activity.  They may acquire the instructor’s desired knowing 

how or just as easily form a misconception or distaste for the materials.  When we encounter routine 

tasks, our mind prefers the path of least resistance.  As Lopez et al. (2008) observed, good tracers 

do not always become good explainers or writers and vice versa.  The goal of tracing is predicting 

the output and TAMP shows that novices lack the mental support to determine its purpose 

simultaneously.  Students are not any lazier than the rest of humanity, as it is in our nature to 

minimize the precious resource that is System 2.  If instructors want students to develop flexible 

(i.e., transferrable) knowledge, the curriculum must encourage both repetition and variation.  If 

students need to improve design skills, instructors must create activities that focus on design (e.g., 

subgoal labeling).  When instruction is not explicit about its goals and desired outcomes, students 

find their own meaning.  As an example, McCracken et al.’s (2001) students believed coding is all 

about learning the language since that is what they spent most of their time struggling.  Instructors 

should be intentional in defining what expertise looks like and share that knowledge with students. 

 Instructors have several ways of satisfying LLEO.  The most obvious is carefully plan 

instruction to focus on the desired activities.  If you want strong tracers, have them trace a lot.  If 

you want well-rounded programmers, they will need to engage in a variety of activities regularly.  

Students may also benefit when given the opportunity to be metacognitive about their learning 

rather than blindly working through activities.  A fictionalized example of decontextualized skill 

development appears in the movie The Karate Kid (“The Karate Kid,” 1984).  In the story, Daniel 

asks Mr. Miyagi to teach Karate.  Mr. Miyagi agrees, then tasking Daniel with several chores, 

including waxing cars, sanding floors, and painting fences offering occasional hints on how to 

perform each task properly.  Eventually, Daniel rebels against the seeming busywork demanding 

to know when he will start to learn Karate.  Mr. Miyagi asks Daniel to demonstrate the motions 

learned during each repetitive tasks and attacks Daniel with various punches and kicks, each of 

which Daniel deflects using the motions learned while at work.  Mr. Miyagi set Daniel with a 

fruitful pedagogy for developing implicit skills, literal muscle memories, required for Karate.   

Daniel chaffed because he could not see the connection between the pedagogy and his goals.  Had 

Mr. Miyagi made the simple connection between waxing and Karate, not only Daniel’s attitude 

but also the quality of his practice may have improved. 

 Instructors should consider LLEO when designing courses.  What will students spend most 

of their time doing, and will that contribute to the desired enduring outcomes?  As an electrical 
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engineering major, I spent significantly more time in computer science courses building user 

interfaces than I did the content for that class.  When students spend most of their time struggling 

with syntax, they naturally infer the important content must be mastering the language.  The rest 

of this section discusses new and alternative pedagogical interventions that help to move beyond 

the mastery of syntax and semantics by providing scaffolding to tackle other aspects of 

programming.  Scaffolding not only helps students to practice skills they might otherwise be 

prepared to perform, but it also helps to focus their attention on how their integrated skillset will 

function.  Offering students the full picture of skills, and how each activity contributes to the 

desired skillset should also instill more flexible knowledge and skills.  Instructors can use TAMP 

to fill in gaps where they are not entirely sure what activities provide, only that they are useful 

(and perhaps reasons to abandon some traditions).   

9.3.1.2 Flood and Wade Curriculum 

To help instructors promote flexible problem-solvers, TAMP suggests students must first 

automate precursor skills and tie skills to key concepts (i.e., build enactive then iconic 

representations).  Training System 1 and then expanding it to support flexible thinking takes much 

more time than introductory courses usually set aside in the schedule.  Often courses attempt to 

cover one major idea each week on a cattle-drive through the language constructs (e.g., week 1- 

variables and operators, week 2- decisions, week-3 loops).  Slowing down the pace of teaching 

risks not covering all the syllabus and losing the advanced students to boredom.  The ordering of 

the content feels important.  A student needs to understand one construct before having a hope of 

understanding the next, right?  How can a programmer understand loops without a firm grasp on 

decisions, or operators, or data types?  TAMP questions the traditional assumptions of the logical 

progression of acquiring programming concepts. 

The traditional schedule of teaching programming not only disenfranchises many 

struggling students but spoils the opportunity to create enduring skills.  People do not become 

literate by practicing nouns before adjectives before verbs before adverbs; in fact, they tend to read 

long before they study grammatical structuring.  Reading assignments begin using a limited 

vocabulary in stories and typically include concrete ideas that are familiar to the reader.  They do 

not create segmented sentences that are devoid of any story.  The story not only makes reading 
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compelling but, as Vygotsky (1962, 1978) described, expands our reasoning beyond merely a new 

form of communication 142 .  I believe that programmers, like young readers, can acquire 

programming languages more holistically.  I perhaps am a mirror image of what Lister (2016) 

proposed (see Section 2.3.2); rather than advancing phonics, I suggest immersion. 

Immersing novices in a programming curriculum means putting them in the middle of big 

challenges and letting them come to the knowledge they need to solve them.  The traditional 

approaches often attempt to push a solution long before students understand the problem, which is 

effective for knowing how, but perhaps not for promoting flexible problem-solving.  The goal of 

immersion is to introduce the big picture of programming and acquire the supporting skills over 

time143.  TAMP suggests that contextualizing knowledge within problems promotes enactive 

representations.  Otherwise random fact, therefore, more likely tied to experience through iconic 

representations that rely on enactive representations.  Traditional programming education 

epitomizes the ‘symbolic-first’ approach Bruner described (Section 6.3.3.1), where novices learn 

primarily through symbolic means.  The first exposure to many programming constructs is through 

lectures and carefully constructed examples with little resemblance to real-world problems.  

Novice programmers seem to suffer the same consequence Bruner described, an inability to use 

programming knowledge to solve problems (Chapter 8).   

The curricular pattern I propose to realize immersion is flood and wade.  Rather than 

presenting an orderly curriculum tied to specific timelines, the flood and wade approach includes 

concepts that novices are not prepared to understand fully but will come to in time.  A flood and 

wade course would still utilize traditional lectures and activities (including ‘phonics’ training), but 

these materials would be secondary rather than driving learning.  For example, instead of starting 

with a “Hello World” problem, a flood and wade course might start with debugging a complex 

system with a familiar and relatively simple behavior.  The first example code may contain loops, 

decisions, and calculations, but scaffolded in such a way that students can focus on the problem at 

hand rather than understanding the nuance of the code.  Think of it as the opening of a movie.  The 

director does not need to explicitly introduce each character and plot device if they carefully guide 

the viewer’s attention.  The viewer picks up on key ideas based on context and adds important 

 
142 While I would love to expand on the analogous and perhaps in some cases literal connections between learning to 
program and second-language acquisition, that sadly must defer to a future publication.  
143 One approach for building an immersion curriculum revolves around the pedagogical innovation introduced in 
Section 9.3.3.2 called Debugging-first.   
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details to their growing understanding of the story.  A flood and wade curriculum floods students 

with complex, interrelated ideas before allowing them to wade through the details in a controlled 

manner. 

I could, and hopefully will someday write at length about the nuance and details of a 

curriculum based on flood and wade.  For this work, the goal is not to introduce unproven 

suggestions but to offer examples of how theory can support radical ideas about learning.  The 

flood and wade approach seems risky by conventional wisdom.  What if students succumb to the 

complexity and flood and drown instead?  A glib answer might be “they already do,” but a simple 

look at how Bruner models learning, as described above, supports at least giving flood and wade 

an experimentally controlled trial.  One objection to flood and wade from instructors might be the 

cost of spending more time on basic concepts.  Instructors may need to scale the number of 

objectives within a course to allow time and practice.  Based on TAMP, I would predict that 

students who build strong foundations in programming may acquire additional knowledge much 

quicker.  Since flood and wade associates experience and knowledge, students who form mature 

iconic representations should also become more effective learners.  It may be that course can cover 

the same amount of materials as before, but with the ‘advanced’ materials compressed into the 

waning weeks since students once struggling students gain the advantages of their more 

experienced peers. 

9.3.1.3 Save the least for last 

I have one last suggestion to propose before leaving content and assessment.  Any content 

introduced in the final quarter of the course’s schedule should not introduce any of the enduring 

outcomes.  It is unlikely a few weeks or even a month is sufficient time to make learning enduring.  

A month may be enough time to automate some behaviors, but probably not enough to also create 

transferrable skills.  The last quarter of a class should probably remain reserved for encouraging 

transfer.  Early programmers in particular, need time to develop enactive representations, see a 

variety of examples, and learn the ways of tools and processes.  The final weeks of introductory 

programming classes may best serve students by revisiting the core concepts only applied to 

complex, open-ended problem solving, such as McCracken et al. (2001) initially expected from 

their participants.  It may be reasonable to add new knowledge upon an earlier enduring knowledge 
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(iconic representations aid learning after all).  However, new content also requires time and 

repetition to become enduring and thus should not be any of the primary objectives of the course.   

9.3.2 Revisiting pedagogical innovations in computing education 

 Chapter 2 introduced several ideas from computing education literature, most grounded in 

some theoretical tradition or empirical study.  The analysis of teaching methods in this section 

does not seek to set some activities above others or dissuade the use of any technique.  There 

remains a time and place for nearly all things.  Section 2.2.2.2 noted that despite the eventual 

banishment of goto statements from most programming languages, the construct once had vocal 

supporters.  If even the pariah that is the goto statement can invoke such passion, there is probably 

a time and place for most teaching practices.  TAMP provides tools for discovering the advantages 

and limitations of any teaching methods.  Table 9.1 covers traditional computing education 

pedagogies and their associated pros and cons along with the types of Bruner’s representations 

they might promote. 

Educators have a wide variety of well-documented pedagogical interventions from which 

to choose.  Table 9.1 provides some guidance of when these interventions are helpful and at which 

point, they may not add to the type of knowledge students need.  Students likely need a mix of 

existing activities, and perhaps new interventions like those introduced in the next section to build 

the various types of knowledge described in Section 7.6.3.4. 
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Table 9.1 Pros and Cons of common computing education pedagogies 

Intervention Pros Cons 

Conceptual 
Knowledge 
Tests 
(symbolic) 

Usually given as multiple-choice, 
fill-in-the-blank, short-answer, or 
other formats that allow auto-
grading, such tests put little demand 
on instructors while providing 
instant feedback to students on their 
semantic understanding of 
programming language concepts 

They generally test symbolic 
knowledge, which has few benefits in 
many early programming tasks.  They 
may misrepresent progress by 1.) 
giving false confidence to people who 
only know that but cannot apply 
knowledge or 2.) punishing people 
who know how but did not study 
‘arcane’ details 

Parson 
Problems 
(iconic) 

A very achievable exercise that 
requires little syntactic mastery and 
focuses on the structure and flow of 
code.  A friendly introduction to 
early concepts that might highlight 
design patterns and groups code in 
‘explainable chunks’ 

They require examples that facilitate 
‘chunking’ and not obvious to 
reassemble.  There is no guarantee the 
novice will attend to patterns or 
purpose if they can solve the problem 
procedurally (e.g., syntax clues).  They 
seem to provide a valuable early tool 
but for a very narrow window of time 

Worked 
Examples 
(enactive/ 
symbolic) 

When well-constructed, they provide 
a type of MKO that the novice can 
control and revisit as they will.  
Inexperienced novices can build 
early skills by mimicking the desired 
skills using the example as a helpful 
guide to inform their mistakes 
without the need of a live expert 

They can devolve into a passive 
spectator event that engenders 
familiarity but not genuine skills.  
They also require a specific focus for 
learners at a specific stage.  Once the 
learner moves beyond that stage 
(internalizes the content into System 
1), they will find little value from 
watching worked examples144. 

Subgoal 
Labeling 
(enactive/ 
symbolic) 

These shift the focus from 
procedural coding issues to 
investigate questions of design and 
patterns.  They seem effective at 
encouraging the explanation of code 
but may or may not result in 
maturing the programmer’s 
Experiential repository. 

It seems unlikely novices can attend to 
both procedural (learning to code) and 
subgoals (reflection on design) in the 
same worked example on the same 
viewing.  Subgoals provide a reason 
for later viewings, but students may 
benefit from separate videos. 

  Continued on next page 
  

 
144 This relates to the expert reversal effect discussed in Cognitive Load Theory (Plass et al., 2010) 
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Table 9.1 – continued from previous page 
Intervention Pros Cons 

Tracing 
(enactive) 

Tracing provides a direct method of 
measuring and maturing the notional 
machine.  Repeated tracing ensures 
automation and may add to the 
Experiential repository after most 
language constructs become 
automated and attention can turn to 
the design of algorithms 

Tracing, as typically presented, is 
inherently unnatural and inauthentic.  
Experts do not trace without the aid 
of a computer very often. Hence, 
tracing does little to build familiarity 
with code during actual execution 
and the symbolic representations of 
code output. 

Explain in 
plain English 
(enactive/ 
iconic) 

Explaining returns the focus of code 
to metacognitive reflection on the 
purpose of code constructs and the 
design for achieving specific goals.  
They likely promote some level of 
iconic representations and, when 
carefully planned, can introduce 
patterns 

It is not clear how novices first come 
to explain code.  Experts do so 
implicitly, but novice often must 
mentally execute code to find 
meaning.  Do novices need to be 
proficient tracers and imagine useful 
inputs (i.e., good testers) before 
learning to explain? 

Writing code– 
scaffolded 
(enactive) 

Scaffolded coding activities limit the 
decisions novices must make and 
provide focus on the specific content.  
Novices learn to deal with syntax, 
errors, and algorithms in small doses 
while engaging in an otherwise 
authentic activity. 

Narrow-focused coding does not 
always translate to reflection on 
design or yield experimentation.  Too 
often, the activity comes down to 
‘getting the answer’ by the best 
available procedural technique.  
Success may not scale up to more 
complex coding activities. 

Writing code– 
open-ended 
(enactive/ 
iconic) 

Writing opened-ended code 
demonstrates the full skillset of a 
programmer, going from concept to 
implementation.  Prepared 
programmers engage in challenging 
and fulfilling tasks scaled to specific 
complexity and accessible domains. 

Very few novices seem ready to 
engage in problems of any 
complexity, even towards the end of 
their first class(es) in programming.  
Coding is particularly complex when 
requiring the transfer of ideas rather 
than a variant on a familiar problem.   

Pair 
Programming 
(enactive/ 
iconic/ 
symbolic) 

Working with a partner seems to 
increase satisfaction and retention, as 
well as perhaps success across the 
pair.  When instructors insist on a 
formal rotation schedule, it also can 
ensure each partner spends time 
coding and reflecting on the shared 
project. 

The learning outcomes beyond the 
assigned projects while paired are 
debatable.  It is unclear if novices can 
reasonably act as an MKO to other 
novices and focus on appropriate 
learning over completing the work. 
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9.3.3 New pedagogical interventions inspired by TAMP 

The expert model of cognition from Figure 7.15 presents the pedagogical challenge of how 

to help students develop implicit knowledge explicitly.  I am not implying that everything a person 

learns requires explicit pedagogy, merely that identifying when and how a novice acquires the 

implicit skills that expert demonstrate helps to plan curricula.  Instead of frustrating students with 

tasks that require knowledge they are unlikely to possess145, instructors can prepare educational 

scaffolding.  For instance, novices must learn to reverse engineer and work within existing systems 

of code, yet most early programming activities begin with little or no code.  Many computing 

educators create projects working within open source systems to provide authentic projects from 

the professional world that also forces students to practice how they read, research, and plan work 

using existing code.  This section lays out a few informal pedagogical approaches that promote 

specific types of knowledge that TAMP identifies in experts that pedagogy often overlooks. 

9.3.3.1 Back to Basics 

Educators want to treat their students with respect, but sometimes assuming competency can 

leave otherwise talented people at a disadvantage.  The year I turned forty, I joined an Ultimate 

(frisbee) Grand-Master’s club team, with forty being the minimum age.  We had a solid group of 

20 to 30 players, some of us who had played for decades. Our early practices were occasionally 

frustrating and unproductive as it took longer to go through basic drills and in correcting 

fundamental plays due to miscommunications.  At the same time, I was coaching a high-school 

team working with first-time players of the niche sport, so I volunteered to demonstrate some basic 

drills.  Returning to basics shattered the misconception that because we were all grown men, we 

were not all experienced players at an organized level.  Many played for fun, but never formally 

practiced in a team setting.  By returning to basic, we established a baseline of vocabulary and 

concepts that made the rest of our training efforts drastically more productive.  Our early practices 

floundered from the assumption that everyone ‘spoke the same language’ and ‘knew the main 

ideas’.  Teaching basics felt disrespectful, yet once we committed to doing so, we realized that 

even experienced players did not always share the same perspective.  Establishing basic ideas and 

 
145 Various examples might include how to use the tools, read and respond to errors, test a system, or debug code.  All 
tasks that are essential for even basic applications but often receive little explicit instruction. 
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practicing them until routine helped remove some of the tension, promote inclusion, and secured 

a birth in the National Championships, but that is another story. 

Section 7.6.3.4 identified several types of intuitive knowledge that do not seem to map 

directly to traditional pedagogy, but perhaps should.  Sometimes novices need resources, though 

probably not lectures, to acquire vocabulary and concepts that experts take for granted.  For 

instance, TAMP suggests that experience inspires design, high and low, more than logic, but where 

do students acquire these patterns?  Even new coders often follow examples in writing new code, 

but they may not recognize the significance of what they are mimicking.  They may not even 

connect the formal language describing their actions to the result.  When helping a student, I might 

say something like “create another variable to store the total sales”, expecting them to produce 

code as follows. 

double totalSales = 0; 

Some struggling novices cannot follow through on my seemingly simple request.  For these 

students, I need to guide them through each word, if not character, to make the connections needed 

to repair their code.  These students bring partially working code, so it seems unusual that a student 

could produce dozens of lines of code without recognizing the significance of each line.  Vygotsky 

noted the same within literacy; people use words without a firm grasp of their meaning.  TAMP 

suggests that the mimicking an example (as helpful as it may be in promoting System 1) may not 

translate into a novice understanding of the significance of the actions they take. 

 Instructors need some activity to link coding tasks where students follow a procedure with 

that procedure’s description and purpose.  As rudimentary as it may sound, some novices may 

benefit from a worksheet full of commands like “build a variable that…” or “define a loop that…” 

perhaps requiring only a single line of code as an answer.  Simple activities like these provide 

variation and repetition in a very low-stakes activity.  Students can see several examples of a 

construct in use and link that pattern of coding with a specific vocabulary.  While many students 

will pick up such knowledge without guidance, many more will benefit from a conscious effort to 

acquire the new lexicon and achieve small victories.  The same approach scales-up to basic 

algorithmic patterns, then complex design patterns. 

 Other aspects of programming also benefit from explicit attention.  Error messages, for 

example, are often ignored by formal pedagogy, but learning to recognize and to react to errors 
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helps students to respond like experts.  The same goes for tool usage, debugging strategies, 

programing style, sketching (while tracing), flowcharts/pseudocode, or any number of pragmatic 

items that experts take for granted.  Instructors might choose a different approach for each topic, 

as a lecture on error messages would be arduous to create, much less attend.  Instructors can instead 

weave such topics into other pedagogies (e.g., intentionally make mistakes during worked 

examples) or simply ensure you always practice what you would otherwise preach.  If you want 

students to use meaningful variable names, then never show examples that use badly named 

variables like a, b, or val.  If students must add comments146, then every delivered code should 

contain examples and demonstrations must include comments.  Students emulate what they see 

more than what they are told.  Most importantly, it is risky ever to assume anything about 

programming is intuitive.  The Unified Modeling Language (UML) is named unified because three 

programmers came up with different representations for the same ideas and agreed to merge their 

notations into a single system.  If experts do not find each other’s notations intuitive, why would 

an untrained novice? 

 This section reminds us that programming professionals have expert blind spots and how 

such blind spots might inadvertently impact learners.  Some concepts from TAMP are quite easy 

to teach yet just as easily overlooked.  Others are obviously important, but that does not make them 

easy to teach.  TAMP serves as a reminder that much of what experts do is subconscious but no 

less vital for being intuitive.  Eckerdal and Berglund (2005) noted that students believe that experts 

think differently than they do.  Experts do seem to change the meanings of words, pull vital 

information from seeming gibberish, work at blinding speeds, and ask questions that are, at first,  

incomprehensible.  Experts may not think differently, but without guidance, it may be difficult for 

novices to connect their experience with the new and strange task of programming.  Educators can 

show respect to novices by sharing ideas that may seem basic, yet establish a bridge of 

understanding and a path to success. 

 
146 And as a side note, I am not sure why this is such a pressing issue.  Comments are helpful but rarely essential when 
code is well written.  Meaningful naming strategies, proper use of data types, and a preference for straight-forward 
algorithms makes comments redundant in most cases.  A better lesson is to add comments to the unusual.  Comments 
should be the exception when the source code simply cannot reflect the behavior/intent.  Commenting rationale should 
occur because of extraordinary circumstances, not relatively obvious reasons.  When everything is commented, it is 
difficult to pick out the important comments to attend to.  (I also want to point out the irony of talking about comments 
in a footnote, which is essentially the ‘comment’ section of a paper) 
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9.3.3.2 Debugging-first 

While many novices seem to learn basic coding skills, the highest hurdle they face in 

becoming a programmer seems to be problem-solving.  One consistent theme from computing 

education literature is that many new programmers are learning concepts and even producing code 

in controlled circumstances but are unable to translate their learning into building creative 

solutions.  TAMP suggests the gap between experts and novices might revolve around their ability 

to form mature iconic representations, which in turn seems to rely on the robustness of their 

Experiential repository.  Phrasing that another way, System 2 functions better when System 1 

primes relevant memories that support prospection.  Unfortunately, few early programming 

pedagogies are successful in promoting the types of experiences or learning for many learners. 

Instructors may not expect novices to design from scratch early in their education, but other 

programming activities also require the formation of the same iconic representations, particularly 

debugging.  Successful debugging, at least for certain types of problems, demands the programmer 

develop a strong sense of the design.  In practicing debugging, a novice gains experience from 

existing code that they will need in writing new code later, specifically their Experiential 

repository, but also a sense of the types of problems that arise when coding and strategies to find 

and repair errors.  Perkins et al. (1986) noted that many novices jump from one idea to another or 

stop when they encounter an error.  TAMP suggests these students derail because their System 1 

is unable to inspire a fruitful next step.  As Perkins et al. demonstrated, sometimes, a novice can 

recover with a little redirection, but only if they can connect the error message with the semantics 

of the language construct.  Debugging-first looks to tackle debugging by building experience 

through preplanned errors directly.  Just like traditional worked examples seek to teach the process 

of writing code, Debugging-first utilizes the same pedagogy only focused on debugging.  Through 

a series of Debugging-first examples and activities, novices will acquire experience both in 

handling errors at the language level and identifying problems in the design.   

When an error falls outside of their experience, experts are better than novices at ‘brute force’ 

methods of analysis as well.  The same experience that makes them faster at mentally executing 

code will make them better at parsing errors and finding bugs using symbolic outputs (e.g., 

debuggers, log files).  Where a novice must attend to the format and search for the content within 

a program’s output, most experts will effortlessly add that knowledge to their iconic Mental 

execution representation (from Figure 7.15), at least when the output is familiar.  Experience shows 
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experts better strategies for debugging, most of which are so tacit that we have yet to see a 

definitive textbook on debugging.  It may be that the best (only?) way to get better at debugging 

is by doing it. 

The Debugging-first” pedagogy provides an additional tool to those already in use by 

computing educators.  It is neither first-and-only nor even first-instead-of other teaching methods, 

but it does represent a shift in mindset.  Lister stated his preference for a bottom-up ‘phonics 

approach’ (Section 2.3.2), where Debugging-first proposes a top-down approach that is more 

expansive and directive than the reduced-syntax approaches of block-based languages.  Students 

do not merely need scaffolding to defer (or hide) complex ideas and intricate symbols (syntax).  

Such approaches may help System 2 but do little to train System 1.  Debugging-first pedagogy 

looks expose novices to the ‘real’ complexities of coding while bridging specific gaps between 

existing pedagogy.  Debugging-first promotes the exposure to habits of mind (e.g., design, testing, 

debugging) that instructors seem to reserve for very late in the curriculum.  Since Debugging-first 

is a top-down approach, instructors should buttress with traditional bottom-up pedagogies.  

Debugging-first is not a super-pedagogy, all things for all people, but I believe it offers a scaffolded 

way to engage in the types of thinking that often are difficult to promote and measure.  

Gaps in pedagogy that Debugging-first addresses 

Literature’s ‘big three’ triumvirate of skills that novices first learn include tracing, explaining, 

and writing code.  Tracing and explaining represent two distinct aspects of reading code, one for 

execution (knowing how) the other for understanding (knowing that).  Writing code requires both 

types of knowledge, but as Lopez et al. (2008) reported, writing code seems to require something 

more than just these two.  TAMP suggests that novices who write code must combine the two 

types of knowledge (using iconic representations) but also acquire other types of information 

within the Experiential repository.  While the traditional pedagogies for tracing and explaining 

enhance certain types of knowing, they cannot provide the types of experiences to support certain 

types of problem-solving. 

Tracing code provides an accessible teaching method for promoting the essential enactive 

representations within the notional machine.  Students can still succeed in tracing code with a 

tenuous grasp on the syntax (i.e., enough to read but not enough to write).  Tracing provides code 
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and inputs, reducing the load on System 2 to merely focusing on producing the output.  Tracing 

does not require the programmer to understand the purpose of code, though, hence the need to 

assign students explaining tasks.  Tracing reinforces the connection between code and its execution, 

but little else at first.  Figure 9.2 shows the relationships created by the ‘big three’ skills.  Writing 

tasks demand the translation of a problem statement into code, where tracing tasks provide code 

seeking its execution results.  Explaining tasks work differently for experts and novices.  Experts 

explain the purpose of an algorithm from the code directly (the dotted line), where novices tend to 

consider the execution results (see Section 7.5.2). 

 

Figure 9.2 The pedagogical relationships between the ‘big three’ skills, tracing, explaining and 
writing 

At a curricular level, Figure 9.2 looks perfect.  Each skill feeds into and supports the next.  

By teaching tracing, the novice has the skills to find the execution results that support explaining 

code – which in time experts automate.  Descartes or Piaget might suggest that if a person can 

explain the purpose of code, then they can turn that knowledge around to write code given the 

purpose.  TAMP suggests otherwise since such a leap requires quite a bit of transfer, confounded 

by the disconnected feedback students receive from these three tasks. 

The feedback that students receive from each of the ‘big three’ tasks has flaws in either the 

timeliness or robustness of feedback.  For instance, if an instructor takes the time to automate 

tracing exercises, tracing tasks can provide instant feedback (e.g., did the student’s trace arrive at 

the correct result) but with no robustness.  It is helpful to the student to know if they were correct 

or not immediately, but even seeing the correct result of the trace does not necessarily pinpoint the 

flawed step during their mental execution of the code.  The student still must investigate their own 

flawed thinking to find their mistake(s).   
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Consider what a novice must do to find their error.  At best, the learner used some form of 

sketching where they can review their work, tracing step-by-step through the original trace and the 

second attempt with System 2 looking for discrepancies.  If the second trace produces a different 

result on a step, they found the correct answer, but did they discover their problem?  If the mistake 

was made by System 2, then perhaps they can ‘correct’ their flawed semantic memory.  If System 

1 was in error, then the ‘fix’ will take time and practice.  It seems novices must debug their thinking 

about programming before they have learned to debug at all!  Most students only really care about 

‘right’ and ‘wrong’ answers and are unlikely to consider the epistemology of their mistake.  More 

likely, novices will restart tracing until they arrive at the right answer, the learning equivalent of 

tinkering.  Tracing is very useful in promoting the notional machine, but only when the practice is 

accurate, and it tends to focus only on enactive representations of code. 

 The feedback provided to students during tasks to explain code is either delayed and 

detailed or immediate and abstract.  Like tracing, the instructor could automate the feedback where 

the student received an exemplar explanation when they submit their answer, but then the student 

must decide the quality of their explanation in comparison.  It seems unlikely a student who 

provided a vague description would learn much by analyzing an example alone.  Perhaps they will 

recognize deficiencies in their explanations, yet just as likely, they will not recognize nuances.  

MKOs (e.g., peers, instructors, T.A.s) provide better feedback, but this likely happens 

asynchronously.  The MKO can only guess where the novice went wrong and thus focuses on 

flaws in the provided explanation.  Even if the MKO knows enough to determine the mental error 

(something TAMP would help with), the feedback assumes the student will remember the code 

(much less the result of their mental execution).  It seems that the best explaining exercises are 

‘real-time’ rather than graded, giving the richest feedback in the timeliest manner. 

Writing code offers the most disconnected feedback of the three.  The compiler and runtime 

system provides immediate feedback (mostly error messages) when writing code, but many 

novices struggle to connect such feedback with their actions.  Compilers cannot point to design 

flaws either.  The quick modes of feedback seem to focus on a limited set of a programmer’s skills 

and still neglects to integrate concepts.  Novices must connect the symptom (error message) with 

the cause (e.g., a mistake in coding, bad design, bad test, misunderstood problem).  Nothing from 

tracing or explaining connects error messages with solutions to such problems.  Until a novice gets 

past basic errors, they have no feedback on if their design and code solve the problem.  
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Determining if the solution is appropriate is the realm of testing, which none of the ‘big three’ 

explicitly covers.  Novices will test until their best impression of the problem statement is satisfied 

but may later find out that their interpretation was poor.  Providing novices with automated tests 

seems to provide a great deal of scaffolding, but it limits the types of problems that novices will 

tackle.  Again, the novice must wait for some of the most important feedback (is the design 

appropriate for the problems statement) until after an MKO can look at their finished work.  By 

the time they get this feedback, their memories of their working time are fading from memory. 

 Even if a programmer has mastered tracing, explaining, and writing code when scaffolded, 

they may still have gaps in testing.  Tracing tasks typically provide inputs, so the novice never 

needs to consider test data.  Explaining tasks tend to focus on smaller algorithms with easy to 

abstract inputs (e.g., a list of numbers).  Most importantly, these tasks start with the assumption 

that the code is flawless.  Any input is as good as the next, as finding faults is not part of the 

expectations.  When should a novice programmer start to understand and what pedagogies teach 

the principles of testing?   

 The final gap, in not only the ‘big three’ activities but possibly all typical programming 

pedagogies, is debugging.  It may be that some students are better debuggers as they are naturally 

stronger students who naturally think reflectively.  For those that are less reflective, where do they 

learn to debug?  To put it in TAMP’s terms: 

 Tracing builds Enactive representations of code.   

 Explaining tasks link code with its purpose, another enactive representation in the 

Experiential repository147. 

 Explaining code may provide habits of mind that help to break down existing code, more 

than forming memories that later inspire new designs. 

Debugging requires careful comparisons of results and several mental representations, yet our 

mind sometimes works against us (e.g., the confirmation bias).  What experts ‘learn’ about 

debugging is practical and intuitive strategies for challenging their expectations.  For example, 

how do I use the debugger to see the successive values of variables?  What area of the design 

 
147 These enactive representations are not shown in Figure 7.15.  As shown in Figure 9.2, experts read code which 
inspires explanations, the equal and opposite of Inspire design that ‘sees’ problem statements and inspires design.  
These two types of enactive representation may build in parallel, but our mind probably does not create a design 
pattern for solving problems based on a single explanation formed by reading code. 
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should I focus on analyzing?  What parts can I ignore?  So many of these decisions apply general 

strategies to the details of the problem, so intuition (like in design) seems to play a major role. 

 When it comes time for novices to write code, the experience they have developed while 

tracing and explaining help, but not enough for too many.  Even if the students have a burgeoning 

Experiential repository, they may not have the habits of mind to realize their design in code.  Even 

the best programmers make small errors that they find and fix when debugging.  More than 

anything, debugging skills determine the success of a programmer148.  Debugging is also the 

ultimate expression of programming prospection.  Debugging requires a programmer to compare 

an Iconic representation of design with the execution results, the code, the test case, and perhaps 

even the problem statement.  Debugging often means moving past our own confirmation bias.  We 

expect our design solves the problem as intended.  We expect the code we wrote to match our 

intended mental model of design.  We expect the program to behave as our design predicted.  

Peeling apart the actual execution results from the anticipated plan requires mental discipline with 

the aid of debugging habits of mind. 

 This section has identified several critical gaps in learning beyond the focus of common 

programming pedagogies.  Tracing supports the development of the notional machine, particularly 

the enactive portion, and explaining builds certain levels of design knowledge, but even experts 

seem to seek a greater purpose in such activities (Fix et al., 1993).  Neither seems to demonstrate 

the connection between a problem statement and the resulting design.  Most importantly, neither 

tracing or explaining demands that students practice building or manipulating Iconic 

representations of design.  Students need practice in identifying flaws in their mental models and 

forming habits of mind that help them while debugging.  The lack of explicit instruction on testing 

also seems to limit how well some students perform when writing code.   

The greatest advantage of Debugging-first is ensuring that novices experience the 

integrated mix of skills required to build software.  Debugging-first does not replace the need to 

focus on specific skills, but it offers an integrative programming pedagogy.  While athletic coaches 

run drills that focus on specific fundamentals and band directors split the full ensemble into 

instrumental groups to focus on specific sections of a song, at some point in each practice session, 

they reassemble the group to work together.  Programming educators have devised many clever 

 
148 Remember Lister (2016) placed debugging at the formal operational level of thinking, the top of his model. 
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and effective pedagogical interventions, but few that focus on more than the breadth of integrated 

programming skills.  No single skill seems to be the missing link to producing successful 

programmers since programmers not only need a variety of skills, but they need a mix of enactive, 

iconic, and symbolic representations to support them.  TAMP suggests that there are some aspects 

of design work that are not covered by the existing curriculum, and possibly novices only acquire 

through experience.  Debugging-first looks to fill the gap, at least partially, in existing pedagogy 

to provide students with experiences that focus on skills and knowledge not already covered by 

other activities. 

The precepts of Debugging-first 

Debugging-first places novice programmers into the toughest part of the programming 

process yet provides scaffolding to support their participation.  How can novices who know nearly 

nothing about programming start with one of the most difficult processes?  They cannot, but they 

can go through a similar, scaffolded experience.  Drivers education instructors often use a 

scaffolded driving experience to provide an early driving experience.  My high school had a 

classroom equipped with about twenty simulators, including steering wheels and pedals.  Before 

we jumped into a real car, we ‘drove’ the simulator149.  Long before I took this class, my uncle put 

me behind the wheel in a large empty parking lot.  Each of these experiences provided a different 

form of scaffolding.  In the simulator, I could focus on the rules of the road and detect hazards.  

The artificial vehicle removed the risk of a bad decision turning damaging or lethal.  My uncle’s 

chaperoned drive around the parking lot provided familiarity with the vehicle and its controls.   

While the driver's education class also included memorizations of vehicular laws and other 

facts, the truly authentic (but still scaffolded) experiences included the vital perceptual cues that a 

new driver needs.  Students need to use the pedals and steering wheel to acquire the muscle-

memory and reduce anxiety.  Students equally need to train their senses to watch for signs, listen 

for horns, feel the road, and respond accordingly.  Driving instructors would be negligent if they 

did not put this all together to ensure the student applies the breaks promptly when seeing a red 

octagon and then comes to a complete stop before the crosswalk.  While System 2 will (literally) 

 
149 The simulator experience used a reel-to-reel projector and included electronics to monitor our actions.  Imagine the 
potential students have today with electronics! 
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drive some of these early actions, developing a mature set of driving skills in System 1 produces 

the safest drivers.  While few tasks in programming are as time sensitive as driving, it seems many 

novices experience similar feelings of anxiety that engendering familiarly with programming may 

help manage.  I think driver’s education is an interesting example since putting sixteen-year-olds 

behind the wheel of a very large, expensive, and potentially dangerous vehicles occurs rather 

quickly in the driver’s education curriculum and seems to be the only truly effective way of 

learning highly complex, yet intuitive activities. 

Largely intellectual endeavors seem to forget the role of implicit learning when symbolic 

knowledge is readily available.  Perhaps this is the bias of experts, who readily learn from books 

due to their robust System 1150.  Ironically, it seems that many children learn to read quite implicitly 

from an early age. 

The single most important activity for building the knowledge required for 
eventual success in reading is reading aloud to children. This is especially so 
during the preschool years. The benefits are greatest when the child is an active 
participant, engaging in discussions about stories, learning to identify letters and 
words, and talking about the meanings of words. (R. C. Anderson & et al., 1985, 
p. 23 emphasis added) 

Parents generally read to kids without first lecturing them on the syntax and semantic of the English 

language.  Somehow the mere act of being read to, even when the child may not be processing the 

words on the page, helps their later learning.  System 1 provides a perfect model for this type of 

learning.  Preschool children are not reading in any meaningful way, but they still can be active 

participants in forming the habits of mind that make a good reader.  Debugging-first seeks likewise 

to make novices active participants in the mental activities involved in debugging.   

Testing actually comes first 

 Were an instructor to ask novices to fix defects as an initial activity, it would be ridiculous, 

but Debugging-first offers a surprisingly accessible starting point for learning about programming.  

Think of the standard “Hello World” activity, whose only goal is to write a line of text to the screen.  

In the days before every student held a computer in their pocket, making the screen change in even 

this small way was thrilling.  Even then, “Hello World” demonstrated the bare minimum of 

 
150 For their area of expertise of course 
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creating a working program yet does little to portray the significance of programming.  What 

exactly can a student do, having now presented static text on a screen?  The procedural task of 

managing the tools and compiler is important and tricky, but far from compelling outside those 

rare individuals already compelled to write code.  The minefield of potential errors within the basic 

“Hello World” program can become insurmountable for new programmers since even a 

miscapitalized letter or misplaced punctuation risks failure.  Until students understand that 

programming is rife with small failures, even small setbacks may shatter a fragile “programmer 

identity”.  Debugging-first tackles failure head-on by showing that even experts make mistakes.  

Debugging-first is a bit of a misnomer since the new programmer’s first contact is actually with 

testing! 

 Even the most technophobic student can achieve early success through testing.  Using 

programs is so ubiquitous in modern society that starting with testing may seem dull but starting 

with testing offers several benefits.  First, the novice must attend to the details of the problem space 

before considering code.  Testing establishes the “orientation” (Du Boulay, 1986) by portraying 

the types of problems that programming can solve.  Through carefully written instructions or even 

better a video, an instructor can guide their students through the initial “happy path” testing151 to 

demonstrate the program.  Testing provides a guided tour of a program’s features to establish 

familiarity before introducing intricate and obscure features/test cases.  Before the novice sees a 

line of code, they have a sense of what the code does. 

 Introducing testing to students not only sets up the upcoming coding activities but 

demonstrates testing strategies and patterns.  For example, Section 8.3 noted that McCartney et 

al.’s (2013) students generally forgot to validate user inputs.  Debugging-first supports building 

such habits of mind by demonstrating the need to test inputs early and often.  When pedagogy 

includes input validation is part of the ritual from day one, instructors can spend less time ensuring 

novices know that validation is important since they know how to consider invalid inputs as part 

of their habit.  Students who appreciate the need to check for good and bad inputs and do so by 

habit will likely be less confused and more willing to learn how to write validation logic.  A lecture 

on validation seems decontextualized and abstract by comparison.  Validation logic is too difficult 

 
151 Happy path testing typically refers to the basic functionality when the user provides valid inputs and induces no 
special cases of the logic.  Happy path scenarios offer the core benefits of a software system. 
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for the newest students and does not get at the essence of debugging, but instructors can seed 

Debugging-first exercises with purposeful defects. 

Before turning to examples of Debugging-first activities, it is important to capture the 

intrinsically motivating nature of these challenges.  Tracing, for all its value in maturing the 

notional machine, is artificial workflow.  I recently helped proctor a test that asked students to 

trace several problems.  At the start of the testing period, I quickly ‘took the test’ to make sure the 

problems were fresh in my mind if I were called upon to answer any student questions.  I was 

instantly annoyed by the concentration required for each tracing question152.  In my decades of 

coding, the only times I ever trace code is when the output disagrees with my expectations, and I 

am at a loss to figure out why.  The only time I trace is when debugging.  It is little wonder that 

novices eschew sketching or why stronger programmers perform poorly on some tracing questions 

– they are arduous and prone to mistakes when System 2 does not put forth the required effort153.  

Testing sidesteps the ‘academic’ nature of tracing tasks and instead presents an authentic puzzle 

task: fixing bugs. 

Debugging tasks 

 Once a student develops an intuition for the subject domain through testing a program, the 

instructor can induce a purposefully selected defect to start the foray into debugging.  Unlike 

tracing, debugging task tells the students the desired answer and asks them to find the problem, 

most likely by tracing.  The intuition for how the program should work, plus the familiarity with 

inputs and expected outputs, provides a different type of scaffolding to tracing tasks.  Traditional 

tracing tasks have no safeguards when System 1 leaps to incorrect (and sometimes confident) 

solutions.  Even as an ‘expert’, I did not realize my mistakes on the proctored test until the next 

day.  Debugging-first provides the same support as tracing, the same immediate feedback without 

the need for automation, but encourages the formation of an Iconic representation of design since 

an answer to the trace is not the primary goal. 

 
152 It was difficult to concentrate in a room with 1800+ people using pencil to capture their answers atop little trays on 
their lap.  And remember, I have quite a strong notional machine with way better automation than most students.  It 
was all the more annoying since it took longer to work out the answers in my  head than it would have to type the code 
into a computer, which is how I would have confirmed my answer as an instructor or professional.   
153 I selected the wrong answer on at least one if not two of the test questions! 
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 Debugging-first places the construction of mental models at the forefront over other skills.  

It is not only possible but much easier for novices to trace by routine.  After all, the computer does 

not look ahead to determine the purpose of code, so why should the novices when their goal is 

simply to finish the tracing task at hand?  If the question asks for the results of the trace, the best 

path is to focus their entire mind on accurate mental execution.  If your English teacher asks you 

to read a Shakespearian sonnet aloud, do you focus on the structure and meaning of the words or 

merely on recitation?  It will not matter if you understand the deeper meaning if you stumble 

through the reading and look the fool. 

Adding debugging to the task makes the novice use tracing as a way of gaining meaning, 

much like an explaining task, yet more demanding.  Explaining code, while perhaps more authentic 

than tracing, requires little precision.  Getting the general gist of a program from its output does 

not mean the novice focuses on nuanced aspects of language constructs or algorithms.  Debugging-

first combines the precision of tracing with the larger picture of explaining.  The novice must 

reconcile the test case with the resulting execution and identify where the code goes astray from 

its intended purpose.  The best part, the answer is built into the question, and the question naturally 

draws focus to a specific misconception or highlight language features.  Rather than guess at the 

‘correct result’ or ‘actual purpose’ of the code, Debugging-first provides both.  The student still 

needs to investigate their behavior, but the instructor provided examples of this procedure as part 

of introductory worked examples on debugging! 

 Novices engage the greatest breadth of mental representations when debugging, so 

Debugging-first requires the most scaffolding.  Figure 9.3 presents the major mental 

representations that a programmer might need when 

debugging a problem.  The test case defines the 

context for errors and demonstrates how code 

becomes erroneous when it violates the problem 

statement.  As just described, debugging reinforces 

the formation of mental models of the design, at 

least at the algorithmic level, if not the program’s 

architecture.  It is at this point that debugging and 

tracing meet, working through the code using the 

programmer’s notional machine.  Where tracing 
Figure 9.3 The mental representations of 

Debugging-first, from (A. A. Lowe, 2019) 
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may or may not encourage conscious consideration of design, debugging demands it.  Debugging-

first only works when problems are scale to the ability of the learner, as discussed in the next 

section. 

 Instructors can use Debugging-first activities as a more effective pedagogy for mitigating 

misconceptions.  While it likely takes more work to build systems rather than individual algorithms, 

seeding misconceptions within authentic problems provides twofold benefits.  First, rather than 

playing into misconceptions to trick and thus frustrate students by preying on common ‘wrong 

answers’, debugging provides experiences that help to reshape System 1.  Piaget might say that 

Debugging-first creates disequilibration (and I would say in a friendlier manner).  Where a tracing 

example that includes a misconception is a trick played by the instructor, a program that exposes 

a misconception as a defect is a problem to solve.  The novice engages System 2 to diagnose the 

misconception (at least in the program, possibly in their own thinking), and then the repair effort 

serves to redirect System 1 with new experiences.  As noted above, until the test case passes, they 

know their job is incomplete.   

I proposed a Debugging-first example that preys on a misconception involving the order 

of operations (A. A. Lowe, 2019).  Students sometimes forget that code executes in sequence, and 

the order of operations is important.  The misconception appears when they assume that when a 

program assigns a variable to another variable, rather than sharing values at that moment, the two 

variables remained synchronized forever.  The example in Figure 9.4 exposes this misconception 

by incorrectly ordering the swapping of two variables.  The code should swap the owners of a 

vehicle but, as written, makes one party the owner of both vehicles.  The novice would have a 

good understanding of the program by completing test cases creating vehicles and owners.  By 

establishing a clear and present issue in the swapping behavior, the Debugging-first task scaffolds 

the Test Case, Problem Statement, and Application Design from Figure 9.3.  For the newest 

programmers, the Debugging-first task could even narrow the focus down to a few lines of code, 

scaffolding the need to understand most of the coding constructs.  The example in Figure 9.4 can 

focus on variables, assignments, and the order of operations154.  Like parents or teachers support 

 
154 Note that I am liberally mixing traditional assignments (=) with object-oriented getters and setters.  This is 
intentional as I believe the concepts are conceptually interchangeable.  Since the equal operator has a preexisting 
meaning in math, it may be that setters are less likely to invoke this specific bug.  I am merely speculating here, and 
empirical research is needed to confirm my hunch. 



 

 

349 
 

preschoolers when reading, Debugging-first places novices within the ‘story’ of debugging and 

focuses their attention on the lesson at hand.   

 

Figure 9.4 An example of a Debugging-first defect modified from (A. A. Lowe, 2019) 

Scaffolding students 

Like many other early educational activities, the key to Debugging-first is proper 

scaffolding.  The sample code from Figure 9.4 includes more constructs and complicated logic 

than the traditional examples a novice would encounter until several weeks into their education.  

The example includes a method, decision logic and nested decisions, Classes and objects, and then 

hidden within that is the incorrect use of the temporary variable.  It feels that giving such an 

example to students too early would just confuse them more than helping them, right?  I believe 

that theory and experiences from language acquisition literature say otherwise. 

Stephen Krashen has worked extensively on language acquisition, including publishing 

multiple editions of a book on how to teach second language acquisition.  While I hope to 

eventually write in much greater depth about how his work might inform programming pedagogy, 

for now, one idea stands out. 
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Language acquisition does not require extensive use of conscious grammatical 
rules, and does not require tedious drill. It does not occur overnight, however. 
Real language acquisition develops slowly, and speaking skills emerge 
significantly later than listening skills, even when conditions are perfect. The 
best methods are therefore those that supply "comprehensible input" in low 
anxiety situations, containing messages that students really want to hear. These 
methods do not force early production in the second language, but allow 
students to produce when they are "ready", recognizing that improvement comes 
from supplying communicative and comprehensible input, and not from forcing 
and correcting production. (Krashen, 2009, p. 11) 

Krashen suggested that instructors teaching a second language should not force students to speak 

or write in that language for an extended period, perhaps months.  Learners need time to absorb 

and be comfortable with the new language.   He suggests that when instructors push too quickly, 

they risk damaging the student’s confidence (‘feeling of knowing’), causing them to regress.  Most 

importantly, he seems to describe the implicit acquisition of a language over time yet eschews 

drills over naturalistic communications.  Krashen never talks about dual process theory or Bruner, 

but I believe that his ideas are supported well by TAMP, though I will not take the time to elaborate 

further here.  His research supports his suggestions within second language acquisition, but much 

of what he describes mirrors students learning a programming language.  How can computing 

educators apply his advice? 

 Through the lens of traditional pedagogies and models of cognition, Krashen’s advice 

seems unachievable, but Debugging-first attempts to emulate certain aspects.  A foreign language 

instructor can speak with students, show them videos, or have them read texts in their new language, 

and allow students to respond in their native tongue.  Programming instructors could try the same 

approach, but programming demands much more than comprehension, and it is unlikely that 

students will have months to become comfortable with reading code.  On the one hand, people 

start a second language using general conversation, where programmers must learn the language 

to solve problems.  On the other hand, programming languages have a dramatically small 

vocabulary and vastly simpler grammar than spoken languages.  A programmer may not need 

months if the tasks they are asked to perform build confidence and leverage appropriate scaffolding.  

Debugging-first offers a pedagogy where students engage deeply with a programming language, 

yet have little to produce to do so, at least at first. 

 The first week of Debugging-first may simply revolve around tiny errors that students need 

merely to identify.  Simply identifying the line of code in error is a fairly low-cost attempt and 
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engages the novice with reading code and considering its meaning.  Even for the most grade-

conscious student, coming up with the ‘right answer’ is secondary to the process.  Guessing which 

of the handful of lines is in error is so easily accomplished by trial and error that it seems silly that 

a student would obsess at finding the correct answer over engaging with the process of 

understanding the code (as too often happens in other activities).   

The earliest activities should focus on building habits of mind and Enactive representations 

of code.  Worked examples can guide students through using the debugger and practicing tracing.  

As Vygotsky suggested, mimicry not only becomes a pedagogical tool but an early warning sign 

since students who are not putting in the work will not be able even to mimic later steps.  Experts 

should also guide novices through reading log files, dissecting lines of code (e.g., this is the data 

type; this is the variable name) and connecting such ideas to traditional lectures (which are still 

important for forming symbolic representations).  Once the Debugging-first exercises instill the 

concepts of tracing, explaining, and habits of mind for strategically accomplishing such tasks, the 

instructor can trust traditional pedagogies can provide additional practice but the students will have 

a foundation for integrating new information. 

The values of Debugging-first 

Debugging-first is an alternative means of promoting the same skills and concepts from 

other aspects of computing pedagogy.  The main difference is perspective; Debugging-first 

presents concepts as they relate to larger problems, rather than presenting a programming language 

in an ‘orderly’ series of progressively more complex ideas.  The traditional bottom-up approach 

first provides the facts about programming (e.g., language syntax and semantics, tools) and builds 

towards putting those ideas to use.  It works for many students, but far fewer than we would hope. 

Worse, the literature indicates that many students never integrate their fundamental skills to 

become independent problem-solvers even by the completion of their first programming class(es).  

TAMP suggests that the issue is not one of better pedagogy, but a different kind.  Debugging-first 

looks to address gaps that the bottom-up pedagogy cannot hope to cover.  The problem with a 

bottom-up approach, like in driving a car, is the need to build intuitive responses to open-ended 

environments.  Intuition is too important, needs all-encompassing experiences, and takes too long 

in forming to wait until the facts are all securely memorized.   
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Instructors can introduce authentic experiences but need to do so in a manner that is 

achievable and promotes the right type of skills.  One important goal of Debugging-first is to 

promote confidence, not to provide another confusing activity.  To help guide educators as they 

attempt Debugging-first, the critical precepts of include: 

 Ensure that students have self-regulating feedback – Debugging-first starts with testing to 

provide students a sense of ‘right’ and ‘wrong’ about the problem space and instill habits 

for creating good tests.  Debugging ensures that students come to know when they have a 

good answer, rather than guessing and seeking external validation. 

 Create engaging activities – Students will persevere longer when the required mental 

effort directly benefits the outcome.  Debugging provides authentic and intrinsically 

motivating tasks that no one can claim is for learning alone and engages the desired 

mental representations. 

 Promote habits of mind – Experts rely on intuition that includes not just domain 

knowledge but habits that inspire the right action at the right time.  Instructors should 

demonstrate expert habits and put students in situations where they mimic such behaviors 

to develop the ‘different way of thinking’ that programmers allegedly exhibit. 

Practical considerations of Debugging-first 

 Debugging-first neither replaces nor diminishes the need for other types of pedagogy.  

While it may provide a different perspective and different types of knowledge, the approach may 

have a few downsides.  My first concern is the initial burden on instructors to build authentic and 

robust programs that fulfill all the Debugging-first precepts.  In the early stages of programming 

and perhaps specific advanced topics (e.g., parallel processing), the end-to-end conceptual 

approach fills gaps in a novice’s experience.  Once the novice forms the desired habits of mind, 

becomes familiar with the programming tools, and learns to interpret symbolic forms of output, 

the need for the robust and contextualized systems may diminish.  Programmers still need frequent 

and targeted practice to build a powerful System 1, but existing pedagogies can supplement the 

heavy-weight pedagogy of Debugging-first to do so.  Focused examples are still important for 

managing the instructor and student workload, but Debugging-first adds a strategy for integrating 
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their skillsets and covering some of the gaps that TAMP suggests exists between experts and 

novices.   

 Instructors should also weigh if “first” is the best plan.  If I were to start a course today, I 

would introduce Debugging-first activities as a replacement for “Hello World”.  As an advocate 

of flipped classrooms, I would also hedge my bet with at-home videos covering more traditional 

descriptions of programing concepts.  I have plenty of faith in the implicit acquisition of knowledge, 

but literature and theory also suggest that a little help from System 2 improves the speed of System 

1 learning.  Early introduction of Debugging-first activities also has ‘non-cognitive’ benefits.  

Debugging-first embodies Krashen’s (2009) advice to “supply ‘comprehensible input’ in low 

anxiety situations, containing messages that students really want to hear” (p. 11).  If a single 

pedagogy can instill confidence and enhance learning, it seems a good place to start. 

 Finally, Debugging-first as an experientially driven pedagogy may compensate for some 

of the gaps TAMP has yet to uncover.  The model in Section 7.6.3.4 likely does not identify a 

perfect model of expert cognition, merely capturing anecdotal and empirical observations on the 

differences between experts and novices.  While having a perfect model of expert knowledge may 

be interesting, a reliable system for teaching programming is preferable for instructors and novices 

alike.  Debugging-first places students in situations where they begin to emulate expert-like 

thinking without already possessing all the skills of an expert and perhaps acquire unidentified 

types of knowledge.  It is no more incumbent that we understand how novices become experts than 

it is that we understand how machine learning algorithms solve problems.  Since expertise, like 

machine learning, seems to happen within a black box, we may only ever guess at the exact 

knowledge and the heuristics involved in creative pursuits like design.  TAMP’s model of expert 

cognition is useful for describing traditional pedagogies but fostering experiences with timely and 

meaningful feedback that teach the same lessons seems equally acceptable. 

 The most practical statement I can make about Debugging-first: at this point, it is an 

interesting pedagogy that needs empirical study.  Given the evidence of TAMP and the two years 

I have spent considering Debugging-first, I am confident enough to test it with students, but not 

enough to suggest others jump to wholesale adoption.  One of the first studies I hope to conduct is 

observing the impact Debugging-first has on individuals under a single-subject controlled 

methodology.  Large group studies at this stage risk losing the nuance of the pedagogy amongst 

the statistical averages of the general population.  What Debugging-first  (and honestly, many of 
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the computing pedagogies) need is an impact analysis based on individual case studies similar to 

those by Perkin et al. (1985; 1986).  Looking at how individuals struggle or thrive within the 

different ways of knowing may provide insights into how students receive each teaching method. 

Summarizing Debugging-first 

 Debugging-first has lingered in the back of my mind through most of the creation of TAMP.  

More than twenty years ago, I attempted to create a lesson to teach debugging.  The best I could 

achieve was a milquetoast list of heuristics and tips that were difficult to explain, so I am sure were 

impossible to internalize.  Having completed TAMP, I am leaning towards the idea that there are 

just some things that students can only learn by doing.  Debugging-first may be revolutionary, a 

passing fad, or never make it past this page, but its success is not the point155.  Debugging-first 

demonstrates how theory can inform innovative pedagogy and can help us reconsider existing 

teaching practices.  TAMP provides guidance not just for creating teaching activities but also in 

what to look for and how to measure student responses to ensure the ‘right types’ of learning.   

9.4 A final bit of advice from Jerome Bruner 

The greatest advantage of creating a theory about thinking and learning is the opportunity to 

read extensively about the practice of teaching.  Like so many professions, teachers are effective 

in many ways for many reasons.  Teaching is much like engineering in that educators have an 

open-ended problem (make people smarter) with limited resources (primarily time and attention), 

and you produce better results when using science as a guide.  This work has presented many 

scientific works from a variety of fields that I hope helps to guide your practice.  Engineering and 

teaching may be better when grounded in science, but the results stem from individuals creatively 

applying their experiences.  It is up to you to make of students what you will.  In closing, I wanted 

to share with you some of the inspirational ideas from my favorite educational theorist, Jerome 

Bruner. 

Bruner reminds us that students learn best when education is stimulating and fun.  Instructors 

need to properly prepare students to take full advantage of playfulness and exploration or risk 

alienating students to their subject. 

 
155 But I do believe it has potential! 
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Curiosity, it has been persuasively argued, is a response to uncertainty and 
ambiguity.  A cut-and-dried routine task provides little exploration; one that is 
too uncertain may arouse confusion and anxiety, with the effect of reducing 
exploration. (Bruner, 1966c, p. 43) 

According to Bruner, the classroom should be a mix of the routine and the unusual.  Instructors 

walk a fine line between enticing and disenfranchising students in the activities they present.  

Programming requires a bit of the “cut-and-dried routine” yet also has amazing potential to inspire.  

The instructor’s most critical role may be choosing content and assessments that build not only 

skills but also confidence and curiosity. 

Yet it seems likely that effective intuitive thinking is fostered by the 
development of self-confidence and courage in the student. (Bruner, 1976a, p. 
65) 

Once again, it seems that Bruner spotted the value of intuition in learning and reinforces the 

connection between cognitive and ‘non-cognitive’ factors.  TAMP suggested that intuition 

(System 1) links to confidence (‘feeling of knowing’), and here Bruner proposes the reverse is true 

as well.  Confidence fosters intuition when System 2 trusts System 1, and intuition fosters 

confidence.   

 Students may not become confident when they rely too much on their instructor for 

feedback and validation.  Bruner mentioned multiple times in various works the need for the 

instructor to step back and encourage students to become self-reliant. 

The tutor must correct the learner in a fashion that eventually makes it possible 
for the learner to take over the corrective function himself.  Otherwise the result 
of instruction is to create a form of mastery that is contingent upon the perpetual 
presence of a teacher. (Bruner, 1966c, p. 53) 

Instructors generally do not intend to make students dependent on external sources of feedback, 

but the nature of many programming activities provides no other alternative.  So long as we provide 

feedback based on ‘correct answers’ and guard those answers preciously, we send the wrong 

message about programming.  Programming is not about arriving at specific answers – there rarely 

exists a single perfect answer – it is about the quality of the process used to derive an answer.  

Instructors should focus on opportunities for growth via rich feedback in early programming 

courses, rather than protecting against violations of academic honesty.  TAMP does not provide 

easy answers but offers alternative tools to measure if students are learning the desired lessons 
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(and retaining those lessons in the right type of memory).  Accepting Bruner’s challenge to make 

self-reliant students means rethinking teaching from the ground up. 

 Bruner stressed the importance of individualization combined with agency in learning.  

Piaget and Vygotsky each promoted the value of a tutor, or more knowledgeable other, but Bruner 

suggested that learners need to regulate their learning. 

Earlier we asserted, rather off-handedly, that no single ideal sequence exists for 
any group of children.  The conclusion to be drawn from that assertion is not 
that it is impossible to put together a curriculum that would satisfy a group of 
children or a cross-section of children.  Rather it is that if a curriculum is to be 
effective in the classroom it must contain different ways of activating children, 
different ways of presenting sequences, different opportunities for some children 
to “skip” parts while others work their way through, different ways of putting 
things.  A curriculum, in short, must contain many tracks leading to the same 
general goal. (Bruner, 1966c, p. 71) 

Bruner suggested that instruction should “must contain different ways of activating”, which I like 

to think of as educational degeneracy, in the same sense as to how DNA enables traits in living 

creatures.  The variety of life on our planet relies on the degeneracy of DNA.  Our DNA contains 

redundancies that place traits across multiple genes, so they appear even when part of our genetic 

code is damaged.  Bruner suggested that students also need multiple channels from which to 

acquire ideas.  The notion of educational degeneracy suggests that giving learners many ways to 

encounter a topic will strengthen not only their chance of understanding, but the transferability of 

that knowledge given the variety of learning opportunities.  Educators and researchers should 

breathe a sigh of relief that we do not need to forge the perfect curriculum but merely create diverse 

“tracks” that gives students multiple examples, modes, and opportunities to learn.  Instructors who 

use degenerate pedagogies provide options to a diverse body of students as well as allow their 

desires and creativity to evolve just like living beings.  The hardest task educators face is not 

uncovering any specific secrets or thresholds within a particular discipline but teaching students 

to think and learn. 

 Bruner taught many subjects across many institutions across a staggeringly long career as 

a professor – psychology, education, and even the law – but wrote about the most important value 

he gave to students. 

I have often thought that I would do more for my students by teaching them to 
write and think in English than teaching them my own subject.  It is not so much 
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that I value discourse to others that is right and clear and graceful – be it spoken 
or written – as that practice in such discourse is the only way of assuring that 
one says things right and courteously and powerfully to oneself.  For it is 
extraordinarily difficult to state foolishness clearly without exposing it for what 
it is – whether you recognize it yourself or have the favor done you.  So let me 
explore, then, what is involved in the relation between language and thinking, or 
, better, between writing and thinking.  Or perhaps it would be better to speak of 
how the use of language affects the use of mind.  (Bruner, 1966c, p. 102) 

Bruner promoted clear thinking and problem-solving by teaching students to express themselves 

clearly.  The same clear thinking seems a vital skill for building in programmers.  More than 

anything else, a programmer’s main responsibility is clearly expressing rules and behaviors to an 

unfeeling, unknowing, and uncaring automaton who will do great or terrible deeds as commanded.  

To solve complex problems, programmers must be effective learners.  Knowing about 

programming is only the first step; a programmer must also learn the problem space well enough 

to teach a computer to automate the rules of the domain.  Every programmer essentially becomes 

an itinerant teacher, moving from one problem to the next, creating literally codified lessons for 

an obedient yet mindless pupil.  Programming a computer requires so much more than coding 

knowledge that it should probably be shocking that so many students succeed in such a short period 

of instruction.  Like Bruner, I believe the most important lesson a programmer can learn is how to 

learn and validate their learning. 

 TAMP proposes a model of thinking and learning that likely applies to many disciplines 

and possibly brains in general but focuses on longstanding questions from computing education 

literature.  This dissertation may have opened more questions than it answered by exposing gaps 

in traditional views of thinking and learning.  TAMP started as a way of answering a simple 

question “how do I measure if struggling programmers are learning anything?”  Pulling at that 

thread unraveled the epistemological question, “what does it mean to learn programming?”  The 

pursuit of the epistemology of programming spans hundreds of pages and culminates in a theory 

rather than a simple answer.  If you still want ‘just’ an answer, I challenge you with Bruner’s words 

from this chapter and Paula Silver’s from Chapter 3 about the nature of theory.  My goal is not to 

tell you how to research or teach, but to give you the experiences that help you discover what you 

think the best way to create programming experiences that shape your students. 
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