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ABSTRACT 

 Indiana is the leading state of cover crop adoption within the Upper Mississippi River Basin. 

However, since 2015 the cover crop adoption has slowed to a plateau. In order to regain the 

previous momentum, there must be an increased understanding of the spatiotemporal dynamics of 

cover crop adoption on the county and watershed scale. Currently, the cover crop adoption is 

monitored annually through a driving transect survey method that investigates only 8.5% of the 

watershed and extrapolates to the entire county. However, the observations made by the driving 

transect survey can merely cover limited fields and is time-consuming. In addition, the driving 

transect survey did not provide comparative analysis like farmer’s tendencies and cover crop 

tenure among consecutive years. Therefore, we developed a rapid cover crop survey method by 

using remote sensing technology. Our rapid cover crop survey used processed NDVI map to 

estimate cover crop adoption. The fundamental objectives of this research are: (1) evaluating the 

accuracy of the rapid cover crop survey method relative to the driving transect data and 

determining the best cut-off value (COV) of Normalized Difference Vegetation Index (NDVI); (2) 

performing a hindcasting analysis of cover crop adoption within the Big Pine Creek Watersheds 

within the period of 2014-2018 by employing a rapid cover crop survey remote sensing techniques; 

(3) accessing cover crop adoption management tendencies of farmers within the Big Pine 

Watersheds, and (4) determining the cover crop adoption tenure of farmers within the Big Pine 

Creek watersheds between 2014 and 2018. The cover crop management tendency represents the 

farmers’ preference on cash crop rotation method after harvesting cover crops, and the cover crop 

adoption tenure means that how often farmers adopt cover crops in a specific field in the research 

period. 

The results of this research demonstrated that relative to the conventional driving transect, 

remote sensing is a feasible method to successfully detect cover crop adoption on a county and 

watershed scale. Over a 4-year period (2015-2018), Producer’s Accuracy (PA) under the best COV, 

which represented how much vegetation-covered field recorded in transect data that can be 

captured in the processed NDVI map, was 89.02%. This PA value was relatively high compared 

with previous spatial crop classification research. The rapid remote sensing method also provided 

individual field locations of cover crop adoption over time within the entire watershed, compared 

to the driving transect that only gives extrapolated average of adoption. The hindcasting analysis 
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of cover crop adoption revealed a 74% increase in cover crop acreage in the watershed from 2014 

to 2018, which equated to a 0.71% increase in land receiving cover crops among all cultivated land 

annually. The evaluation of farmer cover crop adoption tendencies demonstrated that over a 4-year 

period, cover crop adoption going into corn was 19.7% greater on average relative to before 

soybean. Another key finding was that the level of cover crop adoption annually in the watershed 

was heavily influenced by the cash crop rotation. The cover crop tenure analysis demonstrated that 

agricultural fields of greater cover crop tenure represented the smallest portion of the cultivated 

land in the watershed, where 84.2% of the watershed was void of cover crop adoption and field 

that received cover crops for more than 4 consecutive years represented only 1% of cultivated land. 

 To conclude, we are confident that the rapid cover crop survey method could replace the 

traditional driving transect survey. Our findings suggest that rapid assessment methods of cover 

crop adoption involving processed NDVI map could help advance the effectiveness, speed, and 

accuracy of cover crop adoption and assessment in the state of Indiana and the entire Mississippi 

River Basin region. 
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  LITERATURE REVIEW 

1.1 Environmental impact of nutrient loss 

1.1.1 Gulf of Mexico 

The inner- to mid-continental shelf (depth of 5 to 60 m) of the northern Gulf of Mexico is the 

second largest zone of coastal hypoxia in the world (Rabalais and Turner, 2001a; Bosesch and 

Rabalais, 1991). Hypoxia occurs when the concentration of dissolved oxygen is less than 2 mg/L 

and the low oxygen concentration leads to the failure to capture fish, shrimp and crabs in bottom-

dragging trawls (Burkart and James, 1999; Renaud, 1986). Moreover, the prolonged period of low 

oxygen level diminished the benthic biodiversity and altered the way ecosystem functions 

(Rabalais and Turner, 2001a,b). In 2019, the hypoxia zone in the Gulf of Mexico is 18,006 square 

kilometers, the 8th largest ever measured since 1985 (NOAA). Hypoxia is one of the symptoms of 

eutrophication, defined as an increasing rate of production and accumulation of carbon in aquatic 

systems (Nixon, 1995). Eutrophication frequently occurs as a consequence of an increase in the 

influx of nutrient into the waterbody, especially in the forms of nitrogen and phosphorus. The 

enriched water in turn led to N-limited phytoplankton blooms, particularly diatoms (Burkart and 

James, 1999). As a result, the increased deposition of organic matter results in hypoxic and anoxic 

conditions in near-bottom environments (Rabalais et al.,1994). There was 80% of the total 

freshwater input of the Gulf of Mexico discharged from the Mississippi and Atchafalaya River 

(Dunn, 1996). These two rivers also discharged estimated 90% of total nitrogen flux annually to 

the Gulf of Mexico (Dunn, 1996).                             

1.1.2 Agricultural-Nitrogen Contributions to Hypoxia in the Gulf of Mexico 

 Agricultural sources of nitrogen and phosphorus dominated inputs from the Mississippi 

river to the Gulf of Mexico (Burkart and James, 1999; Goolsby et al. 2001; Howarth et al. 1995; 

Nixon, 1995). Burkart and James (1999) suggested the major agricultural sources of nitrogen 

included inorganic fertilizer, manure, and atmospheric deposition, while the agricultural nitrogen 

losses are chiefly attributed to crop harvest, losses to the atmosphere through volatilization of 

manure and inorganic fertilizer, plant senescence, and denitrification of soil NO3. Residual 

nitrogen is thus defined by subtracting losses from sources, which has the potential for leaching, 
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run-off, or being stored in organic and inorganic forms. The region with maximum residual 

nitrogen (58-129kg ha-1) is the Upper Mississippi River Basin (Burkart and James, 1999). Goolsby 

pointed out, in his research about nitrogen input to the Gulf of Mexico, that the fertilizer application 

from 1950s to 1980s led to a significant increase in nitrogen input into the Mississippi River 

drainage basin. This is particularly true for Upper Mississippi River basin, which generates about 

19% of the flow but 43% of the nitrate load to the Mississippi River basin. Iowa and Illinois have 

the most intensive corn-soybean crop and contribute 16% and 19% of the nitrate, respectively 

(Goolsby et al. 1999, 2001). Additionally, Iowa and Illinois have the most productive soil and the 

greatest amount of nitrogen fertilizer used (Keeney, 2002).                    

1.1.3 Nutrient Reduction Strategy 

 In order to control the nitrogen load in the waterbody, the Mississippi River/Gulf of Mexico 

Hypoxia Task Force (HTF) implemented the 2008 Action Plan as a national strategy to reduce, 

mitigate and control hypoxia zone in the Gulf of Mexico and to improve water quality in the 

Mississippi River basin. The 2008 Action Plan required twelve major states on the Mississippi 

River basin to develop a Nutrient Reduction Strategy (NRS) in alignment with their own 

conservation needs. The HTF also provided a framework encompassing eight recommended 

measures such as prioritizing watersheds by estimating N and P loadings and identifying 

watersheds and sub-watersheds that proved chief sources of loads, setting nutrient load reduction 

goal, reporting implementation activities annually and nutrient load reduction biannually for 

managing nitrogen and phosphorus pollution in the 2011 EPA memo (Stoner, 2011).  

 Currently, the numeric thresholds for total phosphorus and nitrate + nitrite provided by 

Indiana State Nutrient Reduction Strategy are 0.3 mg L-1 and 10 mg L-1 respectively. To meet this 

water quality requirement, the Indiana Nutrient Reduction Strategy suggested several agricultural 

practices for farmers such as applying fertilizer at a proper rate and proper time, planting cover 

crops, increasing perennials in the cropping system, and adopting conservation tillage practices 

like no-till, strip-till, ridge till, and mulch till (Indiana State Nutrient Reduction Strategy, 2016).                 

 Cover crop as one suggested conservation practice listed on the Nutrient Reduction 

Strategy is widely accepted by farmers in Indiana. According to a recent survey carried out by 

Indiana State Department of Agriculture, farmers planted over 400,000 ha of cover crops in 2018 
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and it was estimated that 1.4 million tons of nitrogen and 0.7 million tons of phosphorus were kept 

out of Indiana’s waterways (ISDA,2019).      

1.2 Cover Crops 

1.2.1 Cover Crops and Benefit 

 Cover crops are the types of vegetation planted in cropping systems for a short time to 

cover the bare soil so as to reduce soil erosion, improve soil health, and reduce weeds and pests 

(Kessavalou & Walters, 1997; Snapp et al., 2005b; Hartwig & Ammon, 2002). The primary benefit 

of cover crop is the reduction of soil water erosion, thus preventing soil nutrient loss and improving 

soil productivity (Hartwig 1988; Reeves, 1994). Cover crops could keep bare soil from detachment 

when rainfall occur and slow down the surface runoff (Renard, 1997; Hall et al. 1984). Moreover, 

the roots of cover crops could break compacted soil and provide space for water infiltration, 

thereby minimizing soil surface runoff and soil water erosion as well. The residue of cover crops 

could improve soil fertility and reinforce soil structure by adding organic matter and aggregates to 

the soil (Hartwig & Ammon, 2002). Legume cover crops can help fix nitrogen from the atmosphere 

into ammonia and therefore reduce both the demand for nitrogen fertilizer and potential nutrient 

loss to the adjacent waterbody (Hall et al. 1984). Furthermore, cover crops could help keep weeds 

in the fields in check: the high-density planting of cover crops can compete directly with weed for 

space and living resources and some cover crop species can produce chemical substance such as 

phenolic acids, glucosinolates, and coumarins to restrain the germination or growth of weeds 

(Creamer et. al, 1996; Dabney et al., 2001). Last but not least, cover crop’s pollen and nectar could 

provide food for predatory mites and parasitic wasps, both important for biological control of 

insect pests. Cover crops also can provide good habitat for beneficial insects like spiders, and these 

general insect feeders help decrease pest populations (Dabney et al., 2001; Lal et al., 1991).                     

1.2.2 Winter Cover Crops and Management 

 In terms of growing season, cover crops can be categorized into either summer cover crop 

or winter cover crop, the latter being the most widely adopted in the Midwest Corn Belt states. 

Winter cover crops are planted after harvesting cash crop and before seeding next crop in the 

following spring for scavenging nutrients (especially nitrogen) left over from a previous crop 
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(Magdoff and Es, 2010; and Moncada and Sheaffer, 2011). There are two main categories of winter 

cover crop, depending on their tolerance for low temperature: winter-killed cover crops and winter-

hardy cover crops. The winter-killed cover crops are species that cannot survive through winter 

such as oats, radish, and certain clovers (Moncada and Sheaffer, 2011). In the upper Midwest, due 

to the short potential growing period for winter-killed cover crops in soybean-corn rotation, 

researchers suggested overseeding winter-killed cover crops into soybean in mid-August to 

establish enough biomass (Johnson et al., 1998). The winter-hardy cover crops are species that can 

survive in the cold winter and continue their growth in next spring. In Indiana, the most common 

winter-hardy cover crop is cereal rye, a type of vegetation that can be planted later in the fall than 

most other cover crop species because it can geminate and establish quickly to cope with the cold 

winter in the upper Midwest (Magdoff and Es, 2010).  

There are two common planting methods for winter cover crops. One is drill seeding, a method 

that is commonly used after cash crop harvest. The drill seeding can provide the most uniform seed 

distribution and better seed-soil contact for establishment. However, the harvest time of cash crop 

can influence the drilling time and lead to insufficient amount of time required for establishment. 

The other is aerial seeding/broadcast seeding, a method that can plant cover crops into standing 

corn or soybean to help establish biomass earlier. However, this method needs higher seeding rate 

than drill seeding due to its uneven seed distribution and lower establishment (Licht, 2019; 

Moncada and Sheaffer, 2011; Clark, 2007).  

 All winter cover crops will eventually be terminated before or during soil preparation for 

the next cash crop planting in spring. For winter-hardy cover crops, the termination methods could 

be herbicides (for cereal rye and hairy vetch), rolling/crimping (for full bloom hairy vetch, barley, 

triticale, or milk/dough stage cereal rye), and tillage (Anderson et al., 2006).                    

1.3 Normalized Difference Vegetation Index (NDVI) 

 The Normalized Difference Vegetation Index (NDVI), as the most commonly used index 

to estimate the density of green vegetation, is a dimensionless index of that describe the difference 

between visible and near-infrared reflectance of vegetation cover (Schinasi, Benmarhnia, and De 

Roos, 2018). The NDVI is calculated as a ratio of red band (610 to 680 nm) and near-infrared band 

(780 to 890 nm): NDVI = [NIR – RED]/[NIR + RED] (Tucker, 1979). The NDVI ranged from -1 

to 1. Areas of barren rock, soil, or snow usually show NDVI values less than zero. Sparse 
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vegetation such as shrubs and grasslands or senescing crops may have NDVI values in the range 

of 0.2 to 0.5. Dense vegetation such as that found in temperate and tropical forests or crops at their 

peak growth stage often show NDVI values in the range of 0.6 to 0.9. Researchers can roughly 

estimate vegetation type, amount, and condition by transforming raw satellite raster image into 

NDVI values (Brown, USGS). 

  Researchers also use NDVI to estimate cover crop adoption. Hively et al. (2009) applied 

NDVI obtained from SPOT 5 satellite images to estimate cover crop biomass for fields with larger 

than 210 kg ha-1 of vegetation. Their research indicated that NDVI successfully reflected both the 

amount of green vegetative ground cover and cover crop residue on the surveyed fields in a fallow 

season.              
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 EVALUATING REMOTE SENSING TECHNIQUES TO 
RAPIDLY ESTIMATE WINTER COVER CROP ADOPTION IN THE BIG 

PINE WATERSHED, INDIANA 

2.1 Introduction 

Cover cropping, as an in-field conservation practice, has become increasingly relevant to 

farmers in the Upper Mississippi River Basin. In fact, within the last ten years, cover crop adoption 

has drastically increased by ~972% within the region (CTIC Cover Crop Survey 2012 and CTIC 

Cover Crop Survey 2017). The literature has documented many ecosystem services of cover crops 

that could explain the surge in farmer adoption, such as reduced soil erosion, increased soil health 

and organic matter (Strock et al., 2004). Additionally, with the contribution of nitrogen (N) from 

the Upper Mississippi River Basin (UMRB) to the hypoxic zone of the Gulf of Mexico continuing 

to be an issue of environmental sustainability for row crop agriculture (Mcconnaughey, 2013), N 

scavenging by cover crops has become highly relevant ecosystem service landscapes with a dense 

distribution of subsurface drainage. Due to the severity of the nitrogen loading issue, many Corn 

Belt states were required by the United States Environmental Protection Agency Gulf of Mexico 

Hypoxia Task Force to develop a Nutrient Loss Reduction Strategy (NLRS) to reduce N and P 

loading by 45% by 2050. Most of those Nutrient Loss Reduction Strategies (OH, MN, IA, and IL) 

identify cover cropping as the most effective in-field conservation strategy that can be adopted on 

a large scale to achieve the non-point nutrient loss reduction goals (Anderson, 2016; Illinois 

nutrient reduction strategy, 2015; Iowa nutrient reduction strategy, 2012; Ohio nutrient reduction 

strategy, 2015). Several studies across the UMRB have demonstrated that cereal rye has the 

capacity to reduce N losses via tile drainage by 30-50% (Dinnes, 2002; Kaspar, 2007; Kladivko, 

1999; Roth, 2017). 

Cover cropping as a conservation practice among farmers is either voluntarily adopted, or 

incentivized through several federal, state, and private industry cost-sharing programs in Indiana 

within agricultural watersheds. These programs provide farmers with financial assistance on a per-

acre basis that typically lasts for 2-3 years (Clean Water Act Section 319 Agricultural Guidance 

for Indiana). Currently, farmers engaged in cover cropping in either case are monitored biannually 

through a driving survey method. NRCS members drive along the designated route, guided by 

georeferenced sampling points, where they determine the presence of cover crops. Results from 



 

17 

the transect are then analyzed and extrapolated to the entire county. This driving transect occurs 

in the fall of the year before the first frost and the spring, approximately three weeks before regular 

cash crop planting. Results released by the driving survey indicate that in the initial years, cover 

crop adoption was linearly increased. However, within the last seven years, transect results indicate 

that cover crop adoption has significantly slowed from a rate of approximately 101,120 ha/year 

(2011-2015) to -20,230 ha/year (2015-2018), resulting in a plateau in adoption at ~404,700 ha/year 

(at 2018) (ISDA, Cover Crop and Tillage Transect Data 2018). Currently, the state of Indiana has 

the largest total area of agriculture land that receives cover crops among states in the UMRB. Thus, 

a cover crop adoption plateau in Indiana is indicative of other states in the UMRB. This plateau is 

problematic because current cover crop adoption levels are drastically lower than what is needed 

to significantly decrease N's export from Indiana to the Gulf of Mexico. 

The advancement of cover crop adoption beyond the current plateau will require a more robust, 

spatially and temporally integrated rapid analysis of cover crop adoption rates across the state. 

Currently, the driving transect provides the state with an annual view of cover crop adoption, which 

has limited utility to conservation programs that foster cover crop adoption through watershed and 

county education, engagement, and program facilitation. The driving transect method provides a 

county estimation of cover crop adoption by examining a small sector of the total agricultural acres. 

However, it does not provide other critical portions of information that could be vital to 

understanding the pattern and trends of adoption such as the location of adoption in the county, 

the tendencies of farmers (the method of adoption preferred by farmers), the tenure (how often 

farmers adopt in a specific field) and the location of adopting farmers. Rapid spatial and temporal 

assessments of such critical variables of cover crop adoption could advance and deepen the current 

understanding of voluntary and incentivized cover crop adoption. Moreover, rapid spatial and 

temporal assessments can be critical indicators for directing and targeting conservation adoption 

resources, such as conservation program funds, education and extension, and federal and state 

conservation program directors' time and effort. The integration of remote sensing could be a 

sounder solution that is poised to replace the conventional method of assessing cover crop adoption. 

A survey of literatures reveals that remote sensing has been used to identify surface vegetation 

in agricultural land (Ichikawa et al., 2018, Kussul et al., 2017; Reed et al., 1994). In 2009, the 

National Agricultural Statistics Service (NASS) of the US Department of Agriculture (USDA) 

built a Crop Data Layer Program (CDL Program), a raster-formatted, georeferenced, crop-specific 
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land cover map that allows researchers to distinguish agricultural vegetative cover types from the 

satellite. Hively (2015) demonstrated how remote sensing monitors cover crop adoption in 

southeastern Pennsylvania by combining satellite imagery, CDL, and collected ground truth data. 

Their research indicated that remote sensing indices successfully detected both the amount of green 

vegetative ground cover and cover crop residue on the surveyed fields in a fallow season. Moreover, 

by analyzing the satellite imagery from 2010 to 2013 in four counties in Pennsylvania, their 

research demonstrated a consistently increasing winter cover crop adoption for all four counties. 

Wang (2019) also used CDL as a "Crop Mask" in selecting ground truth sample sites when 

mapping cover crop in southeastern Michigan with satellite imagery. The above studies have 

demonstrated that satellite imagery can be used to quantify differences in vegetative cover in 

agricultural ecosystems and to detect cover crop adoption over time. However, there is a need to 

develop a hindcasting method for a large-scale watershed that investigates field-specific variables 

such as farmers' cover crop adoption tendency and tenure. The former refers to farmers' decision 

for the two-year cash crop rotation that includes winter cover crop in the middle, while the latter 

is defined as the number of year years for each field to adopt cover crops throughout the period of 

research (2014-2018). Although Hively (2015) mentioned the use of CDL to locate the summer 

cash crop field, especially corn, before winter cover crop, no published article to date uses a 

hindcasting analysis of cover crop adoption to quantify farmers' tendencies in their integration of 

cover crops. Besides, no published articles used the cover crop adoption hindcast result to analyze 

the tenure of cover crop adoption of an individual farmer. Upon analysis of the tendency and tenure 

above, it is necessary to give a multi-ear analysis. 

This research seeks to quantify field-specific tendencies and tenure of all the adoption in a 

watershed in an effort to increase the utility of cover crop survey. Therefore, the objectives of this 

research are (1) evaluating accuracy of the rapid cover crop survey method with driving transect 

data and determine the best cut-off NDVI value to discern differences between bare soil and 

vegetation, (2) performing a hindcasting analysis of cover crop adoption within the Big Pine Creek 

Watersheds within the years of 2014-2018 by employing rapid cover crop survey, (3) accessing 

cover crop adoption management tendencies of farmers within the Big Pine Watersheds, (4) 

determining the cover crop adoption tenure of farmers within the Big Pine Creek and Mud Pine 

Creek watersheds for the years of 2014-2018. 
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2.2 Materials and Methods 

2.2.1 Study Area 

The research site is the Big Pine watershed, which is located in west-central Indiana and 

composed of two ten-digit Hydrologic Unit Codes (HUC): Mud Pine Creek (0512010803) and 

Bing Pine Creek (0512010804) (Figure 2.1). The watershed is principally located in Benton and 

Warren County and includes small portions of Tippecanoe and White County, Indiana (Big Pine 

Creek Watershed Management Plan). The Mud Pine Creek and Big Pine Creek cover 84,866ha 

and 59,816 ha of area, respectively. On average, the yearly precipitation is 81 cm. The Big Pine 

watershed has a relatively flat topography: the lowest point is a flat deposit plain at the very 

southern end of the watershed, while the highest ground is found in Benton County along the 

watershed boundary (McBeth, 1899). The bedrock of the watershed region - consisting primarily 

of limestone, siltstone, and shale is covered with unconsolidated drift deposits comprising chiefly 

dense clay and sand measuring from a few inches to over 400 feet thick (Rosenshein, 1958). Thus, 

water often runs off the outer soil rapidly, making percolation a prolonged process. There are over 

100 different types of soil in the Big Pine watershed area: highly erodible soil accounts for 4% of 

the watershed while potentially highly erodible soil is found in 29% of total watershed area, 

covering 60828 acres (The Nature Conservancy, 2015). In the Big Pine watershed, 83.4% of land 

has been used for cultivation, and the primary crop types are corn and soybean (IDEM: Big Pine 

Creek WMP). Tile drains are commonly adopted in the area, allowing water to flow down more 

quickly, but it also inevitably led to more severe flood in downstream areas, loss of nutrients, and 

soil erosion. The National Agricultural Statistics Survey (NASS) estimates that 7,153 tons of 

nitrogen and 3,538 tons of phosphorus are applied as fertilizer annually in the Big Pine watershed 

(NASS, 2007). More staggeringly, over 100 tons of pesticide and herbicide are applied every year 

in this watershed (NASS 2006). The surface runoff and tile drainage can bring those chemicals 

into adjacent water bodies, most likely the Mississippi River and thus causing aggravating 

eutrophication in the Gulf of Mexico. 

2.2.2 Transect Data 

Transect data for the fall of 2014, 2015, 2016, 2017, and 2018 were provided by Natural 

Resources Conservation Service (NRCS). The data were generated by cover crop transect surveys 
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of a collaborative state effort led by NRCS, Indiana State Department of Agriculture (ISDA). The 

transect data were collected in the spring and fall of each year and composed of a point shapefile 

that contained the georeferenced sampling points, the transect route, and the results of the transect 

survey. There were 201 transect points of three counties involved in the Big Pine Watershed. For 

each point, the field information (previous crop, cover crop existence, cover crop quality) on the 

side of the transect point were added to the attribute table of the field boundary shapefile. This 

information will help determine best cut-off NDVI value and evaluate the NDVI map's accuracy 

as reference data later. In this research, we only used fall transect data because the spring satellite 

images have more weeds, a fact that could affect identification of the winter cover crop. 

2.2.3 Satellite Images 

We based our research on remote sensing data resources gathered from Landsat-7, RapidEye 

Ortho, and PlanetScope Ortho Tiles. The Landsat-7 (30-meter resolution) images were acquired 

from EarthExplorer (https://earthexplorer.usgs.gov/); the RapidEye Ortho (5-meter resolution) and 

PlanetScope Ortho Tiles (3.125-meter resolution) images were acquired from Planet 

(https://www.planet.com/). The Big Pine watershed was covered by three Landsat-7 images, seven 

RapidEye images, and nine PlanetScope images (Table 2.1). In this research, we attempted to 

choose the satellite images from the closest date to the fall transect survey. Satellite images were 

limited by the availability of the public resources and the image quality (cloud cover). 

2.2.4 Crop Data Layer and Land Parcels Layer 

The Crop Data Layer (CDL) is a raster, georeferenced, crop-specific land cover data layer 

acquired from the United States Department of Agriculture National Agricultural Statistics Service 

(USDA NASS) (https://nassgeodata.gmu.edu/CropScape/). In this research, we used CDL for 

Benton, White, and Warren County in 2014, 2015, 2016, 2017, and 2018 to classify the cash crop 

in agricultural fields of the Big Pine Watershed. Due to the ambiguous boundary of the CDL raster 

layer, we adopted Land Parcels Layer (LPL) from Indiana Geographic Information Office (IGIO). 

The LPL is a polygon layer that has a sharp boundary for all land parcels in Indiana. 

https://earthexplorer.usgs.gov/
https://nassgeodata.gmu.edu/CropScape/
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2.2.5 Boundary Acquisition 

The Land Parcels layer (LPL) provided boundaries for each agricultural field (Figure 2.2). 

However, the area defined as an agricultural field in the Land Parcels shapefile did not match the 

actual land cover. From the satellite view, the southern end of Big Pine watershed extends to forests 

along the river, which was defined by Land Parcels as agricultural fields (Figure 2.3). The CDL 

maps provided better field classification with an ambiguous boundary and lots of undefined pixels 

(Figure 2.4). By processing the Zonal Statistics Tool in ArcGIS Pro of CDL and Land Parcels, 

each field was reclassified according to the category that had the majority of pixels within the 

boundary (Figure 2.5). To facilitate counting of various crop fields, we employed Zonal Statistics 

as Table tool to combine the information of raster file and polygon file, which was in turn exported 

to an Excel table. The Spatial Join tool is then used to add the grid information back to the boundary 

shapefile.  

2.2.6 Raster Map of Normalized Difference Vegetation Index 

We used the Red and Near-infrared (NIR) bands from surface reflectance of Landsat 7 (band 

3 and band 5) and RapidEye Ortho Tile (band 3 and band 5) images to calculate the Normalized 

Difference Vegetation Index (NDVI; Gelder et al. 2009): NDVI = [NIR – RED]/[NIR + RED]. 

We covered the field boundary layer and transect point shapefile on the NDVI map to check 

whether the NDVI map visually matched the ground truth (Figure 2.6). In computing the area of 

winter vegetation-covered fields, it is necessary to divide the NDVI map into soil and vegetation. 

Therefore, the cut-off NDVI value was critical for the NDVI map reclassification. The analysis of 

multiple evaluation methods of binary classification helped determine the best cut-off NDVI value. 

2.2.7 Evaluation Methods of Binary Classification 

In this research, each polygon on the side of the transect point was extracted and labeled either 

left or right based on the direction of the transect route. There was a total of 322 polygons in the 

shapefile used for calculations of accuracy; each polygon has all the information, including 

previous crop and winter cover crop existence from transect data each year. This research used 

these 322 polygons as reference data and built an Accuracy Matrix with a processed NDVI map 

(Table 2.2). In the Accuracy Matrix, (a) represents the number of polygons that meet the following 
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conditions: 1) they were, as observed by transect survey, covered with either cover crop ,winter 

crop or hay in that field, and 2) over 50% of the area in that polygon was covered by vegetation 

pixels and defined by processed NDVI map as winter vegetation fields; (b) represents polygons 

where transect survey did successfully observe vegetation in that field, but NDVI map did not 

capture enough vegetation pixel in that field, and the same determination method is applied for 

soil as well, (c) represents polygons where transect survey did not record winter vegetation in that 

field, were nonetheless defined by NDVI as winter vegetation; (d) represents polygons where both 

transect survey and NDVI map failed to observe vegetation in that field. The Overall Accuracy 

(OA) was computed by dividing the total correct polygons (a) + (d) by the total (a) + (b) + (c) + 

(d) polygons in the matrix (Table 2.3). The Producer's Accuracy (PA) measured omission error by 

dividing the total number of the correct polygons in a category by the total number of polygons of 

that category. In this case, PA of vegetation was equal to (a)/(a+b), and PA of soil was equal to 

(d)/(d+c), indicating how much vegetation-covered field recorded in transect data can be captured 

in the NDVI map. The User's Accuracy (UA) measured the commission error by dividing the total 

number of correct polygons in a category by the total number of polygons classified in that 

category (Story and Congalton, 1986). In this case, UA of vegetation was equal to (a)/(a+c), and 

UA of soil was equal to (d)/(d+b), yielding results that indicated how much vegetation-covered 

fields determined by the NDVI map had been recorded in transect data. In this research, we focused 

on the PA of vegetation because PA is interested in how accurate a vegetation-covered area on the 

ground can be captured by the map. UA may also be biased when weed on the ground was captured 

by the satellite but was not recorded as a winter crop in transect data. 

According to the transect data, the ratio of the area of winter vegetation-covered fields to bare 

soil fields was almost 1:30. When the dataset is unbalanced (the sample size in one category is 

much larger than that in another category), the accuracy will provide an over-optimistic estimation 

of the majority class (Chicco,2020). Due to the negative imbalance of the transect dataset, 

Precision, Recall, F score, and Matthews Correlation Coefficient were introduced to evaluate the 

test accuracy (Table 2.4). 

In the statistical analysis of binary classification, there are four combinations of test outcomes 

and actual conditions (Table 2.5): True Positive (TP): both test result and the actual condition are 

positive; True Negative (TN): both test result and the actual condition are negative; False Negative 
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(FN): test result is negative but actual condition is positive, and False Positive (FP): test result is 

positive but actual condition is negative. In this research, TP, FN, FP, TN correspond to (a), (b), 

(c), (d) in Table 2.2, respectively. 

Recall (also called hit rate or true positive rate) is the fraction of the correctly classified 

positives (TP) in the total condition positive count (TP + FN). Precision (also called positive 

predictive value) is the fraction of the correctly classified positives (TP) in the total test positive 

count (TP + FP) (Olson and Delen, 2008). In this research, Recall is equivalent to Producer's 

Accuracy, and Precision is synonymous with User's Accuracy. F-score is the harmonic mean of 

Precision and Recall (Chinchor,1992), an attribute that helps balance Recall and Precision. The F-

score ranges from 0 to 1, where 1 represents the perfect accuracy with no error. Matthews 

Correlation Coefficient (MCC) is another binary test evaluation method for the unbalanced dataset 

(Matthews, 1975), which considers true and false positives and negatives and is generally regarded 

as a balanced measure (Boughorbel, 2017). MCC returns a value between -1 to +1; the higher the 

MCC value, the more accurate the binary classification is. 

2.2.8 Cut-off NDVI Value 

Cut-off NDVI value was the threshold that divides all pixels from the NDVI map into two 

categories: soil and vegetation. Pixels whose value is larger than cut-off NDVI value were 

classified as winter vegetation pixels, while the rest were classified as soil pixels. We defined a 

polygon as a winter vegetation-covered polygon if more than 50% of pixels inside that polygon 

were vegetation pixels. After producing NDVI map for the Big Pine Watershed agricultural fields, 

we developed a python program to determine the cut-off value under the highest producer accuracy 

scenario. First, a range of NDVI values of each year were fed into the program. For instance, the 

NDVI value in 2015 ranged from 0.00 to 0.15, with an interval of 0.01. The NDVI range varies in 

each year. The program will pick one value as a cut-off value each time determine whether a field 

inside a polygon has winter vegetation, and then compare the reference (transect) data of that 

polygon and build up the accuracy matrix. In the end, the program will compute the highest 

producer accuracy of both vegetation and soil and produce their corresponding cut-off NDVI 

values.  
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2.2.9 Reclassification and Spatial Join 

This step applied cut-off value determined by the python program on the whole watershed 

NDVI map. First, we used the Reclassification tool in ArcGIS Pro, and the cut-off value divided 

all the pixels of the watershed map into either soil or vegetation category. Raster to Point Tool was 

then used to transfer vegetation pixels into point shapefile. Each point represents one vegetation 

pixel. For each field polygon, Spatial Join Tool can help count total vegetation pixels in an 

individual polygon. Polygons which has over 50% vegetation points will be treated as vegetation 

field in winter. In this way, it helped eliminate waterway grass or other noises. In the end, we 

exported polygon attribute table (including previous and post cash crop information from the CDL, 

winter vegetation information from the reclassified NDVI map and its area) as an Excel file to 

calculate the adoption of winter cover crop, cover crop adoption management tendencies and cover 

crop adoption tenures. 

2.3 2.3 Results and Discussion 

2.3.1 Determination of the Best Cut-off Value  

The immediate and primary objective was to evaluate the rapid cover crop survey method as 

a better alternative to the driving transect to estimate cover crop adoption on a watershed scale. 

The very first step was to determine the NDVI cut-off value to confidently discern the difference 

between vegetative cover and soil within the cropping system for each year of the study. In 

determining the best cut-off value (COV), we computed all the indices (PA, UA, F-score, MCC) 

of each COV in a specific NDVI range for each year. Through a developed program script, we 

divided all pixels of the polygons along the transect route into vegetation or soil category to 

determine whether a field is covered with winter vegetation or bare soil. The next step was to 

determine whether the field category (vegetation or soil) classified by the processed NDVI map 

was the same as that recorded in the transect data. The program's final output included a matrix 

shown in Table 2.4 and the result of those indices. Additionally, we found that the PA (how much 

vegetation-covered field recorded in Transect data can be captured by the NDVI map) and UA 

(how much vegetation-covered field determined by the NDVI map had been recorded in Transect 

data) were critical variables to be taken into consideration when optimizing COV along with the 

F and MCC values (indices to evaluate binary test). In the year of 2015, although the F-score and 
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MCC were the same under the NDVI value 0.00, 0.01, 0.02, 0.03, we determined that 0.00 was 

the best COV due to its higher PA. The COV for the duration of the research ranged from -0.01 to 

0.24 over the years from 2014 to 2018 (Table 2.6). The COV varied across different years due to 

the difference in the satellite product, and the date of satellite image was acquired. 

The transect validation dataset was negatively unbalanced. The total number of validation 

fields for 2014 to 2018 was 319, 324, 324, 322, 316 respectively. In the transect dataset, the cover 

crop fields were less than 10% of the entire validation fields, and 90% of those fields were recorded 

as bare soil. The rapid cover crop survey method accurately distinguished bare soil from vegetation 

95-97% of the time, compared to the transect ground-truthing data (Table 2.7). 

The F-score and Matthews Correlation Coefficient were also used to evaluate the accuracy of 

the rapid cover crop survey method due to the negatively unbalanced dataset. The F-score and 

MCC quantified the ability of the COV to discern the difference between soil and vegetation. 

Among selected COV values, the F and MCC values ranged from 0.48 to 0.81, and from 2015 to 

2018, the average F-score and MCC values were 0.72. The lowest F and MCC scores were 

observed in 2014 and could be attributed to a low-resolution satellite image and a substantial time 

lag between available satellite images and the date of transect survey. 

In the previous literature, researchers also used accuracy and F-score to evaluate their 

processed satellite images for larger-area cropland (Elodie, 2013). Elodie selected Central and 

Southern Mali (a land-locked country located in West Africa) covered by three 3,600 ha, 2.5-m 

resolution SPOT images as the focus of research. In these three areas, a total of 980 GPS waypoints 

were registered as the validation site of the ground data, and each waypoint was transformed into 

a 1 km × 1 km polygon with a center labeled by a land-use class ("crop" or "non-crop"). The result 

of cropland detection with ground data were: PA = 0.742, UA = 0.796, and F-score = 0.724. 

Moreover, the author pointed out that the method had proven satisfactory.   

2.3.2 Quantification of Rapid Cover Crop Assessment Accuracy 

PA values ranged from 35.71% to 93.75%, and the range of UA was from 42.86% to 72.22%. 

The average PA and UA from 2015 to 2018 were 89.02% and 60.52% respectively. For the 

Producer's Accuracy, the growing conditions of cover crop could contribute to the loss of accuracy. 

For instance, some fields were recorded as cover crops in the transect data, but the cover crop in 

those fields was not mature enough to be captured by the processed NDVI map. For User's 
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Accuracy, the weed area could contribute to the loss of accuracy since the fields identified as 

vegetation in the processed NDVI map represented all winter vegetation including weed. However, 

the transect data only recorded cover crops, alfalfa, and winter wheat. 

The results in Table 2.6 showed that the processed NDVI map of the year 2015 and 2016 made 

the most accurate predictions of winter vegetation. For the years 2017 and 2018, the low UA may 

be caused by two factors. The first factor might be that the weed area increased in 2017 and 2018. 

The increased weed area gave rise to the fields that the NDVI map identified as vegetation but that 

failed to be recorded by the transect survey as winter crops increased. In table 2.3 of, UA equals 

a/(a+c); when c increased, the UA decreased. The second factor could lie in the underestimation 

of the best COV, which means the real COV for 2017 and 2018 should be on the right side of the 

dash line in Figure 2.7. In this scenario, the final estimation of the entire watershed winter 

vegetation area might be overestimated. 

The previous study on inventorying cover crop adoptions in Carolina's Graduate Dissertation 

focused on East-Central Iowa that occupied 245, 463 hectares (Carolina, 2016). The research of 

cover crop adoption in Iowa also used satellite image and CDL as sources; however, the ground 

truth was provided by seed dealers. The major difference was that they set a fixed cut-off NDVI 

value to differentiate cover crop from non-cover crop fields. Our research had more flexible NDVI 

cut-off values depending on different satellite images. The PA and UA for the cover crop identified 

in Iowa was 76.92% and 71.43% respectively. Comparing the PA and UA with our results, we had 

a higher PA (89.02%) and a lower UA (60.52%), meaning that our processed NDVI map could be 

more accurate for capturing the winter vegetation on the ground, but the transect survey data as 

ground truth reference limited us for a higher UA.     

In the early stage of this research, we only calculated the PA, UA, and OA; the evaluation 

dataset was based on 201 transect points. The preliminary accuracy test result showed that the 

Overall Accuracy was heavily influenced by a large amount of soil transect points. After adopting 

the Python program to help compute the indices for each COV and changing the evaluation dataset 

from 201 transect points to 322 polygons on the side of the transect points, the new average PA of 

2015-2018 was drastically improved, from 75.44% to 89.02%. The implication of this observation 

means that our new practice was more specific for evaluating cover crop adoption.     
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2.3.3 Historical Cover Crop Adoption 

Using a rapid cover crop survey method to perform a hindcasting analysis of cover crop 

adoption within the Big Pine Watershed for 2014-2018 was the second objective of this study. The 

result for objective one provided the best cut-off value for the processed NDVI map. In objective 

two, we applied the best cut-off value from the transect route to the entire watershed. The green 

area showed the winter vegetation processed by the satellite images for each year (Figure 2.8).  

By comparing the processed NDVI maps to the original Transect Survey data saved in the 

Excel file, we found that these maps, with a better visual effect, provided the detailed location of 

each winter vegetated fields for NRCS. Further, compared to limited fields of transect survey 

observed as shown in Figure 2.9 (322 fields of transect survey out of 2,483 total fields within the 

Big Pine Watershed), processed NDVI maps could offer a macroscopic view of all 2,483 fields of 

the entire watershed. In the transect survey, the ratio of winter vegetation fields (including cover 

crop, winter wheat, and hay) to total transect fields lay within the range of 4.1%~5.5%. However, 

in our research, the ratio of winter vegetation fields to total watershed fields ranged from 5% to 

9%. Thus, the transect survey, merely based on 12,278 ha, might have underestimated the cover 

crop acreage in the watershed due to its inability to capture the cover crop fields outside the transect 

route (Figure 2.9).  

To quantify the cover crop adoption, we exported the contribute table of the entire watershed 

field boundary to Excel files. The Excel files included the percentage of vegetation pixel in a 

polygon, previous and post cash crop and polygon area. The result of the field area based on its 

winter vegetation condition and previous cash crop was displayed in Table 2.8. The cover crop 

area ranged from 3,053 to 5,444 ha, while the range of total winter vegetation was from 3,607 to 

6,478 ha, and the ratio of the total winter vegetation area to the cultivated crop area of the entire 

watershed was from 5.1% to 9.18%. The average area of cover crop adoption was 4,295 ha for 

each year. Among all types of winter vegetation, cover crop adoption increased by around 2,230 

ha (~73% increased), and alfalfa area increased by 639 ha (~666% increased). By contrast, winter 

wheat decreased by 198 ha (~45% decreased). The ratio of overall winter vegetation to total 

cultivated crops land area within the Big Pine Watershed increased from 5.1% to 8.9% (around 

0.76% increased each year). 

According to Table 2.8, it was found that although the cover crop increased from 2014 to 2018, 

it was far from a linear incline, in fact cover crop adoption plateaued since 2017. Moreover, the 
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discussion for objective one pointed out that the adoption of 2017 and 2018 might be overestimated, 

a fact that warrants careful consideration. We compared our research to the transect data, and the 

result was shown in Figure 2.8. The transect survey was county-based, so we only had an estimated 

cover crop area for Benton and Warren County as reference, in which the area of the Big Pine 

Watershed accounted for around 45% of the total area of Benton and Warren County. As is 

illustrated by Figure 2.8, the transect survey predicted a downward trend of cover crop adoption 

from 2015 to 2018. Particularly in 2016, the cover crop adoption for Warren County unexpectedly 

dropped by over 50% from 2015. The transect data also revealed that the ratio of cover crop fields 

to total observed fields decreased drastically: in 2015 the ratio was 23 out of 502 fields, but by 

2016, the ratio declined to 5 out of 448 fields. Such decrease suggested that the estimated cover 

crop adoption provided by the NRCS relied heavily on the transect driving survey, which only 

investigates 8.5% of the actual cultivated land. In contrast, our study showed an increasing trend 

in the southern watershed (in Warren County) from 2014 to 2018, registering the maximum value 

of adoption in the Big Pine Watershed in 2017. Alfalfa increased by about 666%, whereas winter 

wheat decreased by 45% from 2014 to 2018, a result that corroborated the fact provided by NRCS 

that the livestock industry rose in the Big Pine Watershed, and some winter wheat farmers moved 

out of the watershed.  

According to the Big Pine Creek Watershed Implementation (Contract# 19223) of Indiana 

Department of Environmental Management, the Big Pine Creek Watershed promoted a cost-

sharing program to implement best management practices such as cover crops and conservation 

tillage since 2016. At the beginning of the implementation phase in 2015 fall, the NRCS had 

directly funded approximately 25,800 acres (10,440 ha) of cover crops. The funding project 

mentioned that "the partnership's goal is to deliver an additional 8,000 acre (3,237 ha) of cover 

crops, 10,100 acres (4,087 ha) of nutrient management and 4,850 acres (1,963 ha) of Conservation 

Stewardship Program enhancements." Yet, the recent cover crop adoption did not meet the funding 

goal. Comparing to the traditional driving transect survey, our rapid cover crop survey method can 

avoid driving around the county and thus reduced the cost on labors and transportations.        

2.3.4 Crop Rotation Tendencies 

The third objective of this study was to assess cover crop adoption and crop rotation 

management preferences of farmers within the Big Pine Watersheds. In the previous step, we 
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defined cover crop fields in alignment with the previous cash crop classified by the CDL. For each 

winter cover crop field defined in Table 2.8, the previous cash crop was either corn or soybean; 

and post cash crop was corn or soybean or winter wheat. We combined both previous and post 

cash crops for each cover crop field and divided all cover crop fields into six categories (Table 2.9 

and Figure 2.11). We decided to focus on the two dominant crop rotations: Corn-Soybean and 

Soybean-Corn, because the average area of Corn-Soybean rotation occupied 46.20% and the 

average area of Soybean-Corn rotation area occupied 44.30% of the total area of all crop rotations. 

The cover crop adoption area in Corn-Soybean rotation for 2014, 2015, 2016, and 2017 was 638, 

1,797, 1,008, and 1,915 ha, respectively. The cover crop adoption area in the Soybean-Corn 

rotation for 2014, 2015, 2016, and 2017 was 1,561, 1038, 1,793, and 2,019, respectively. To 

establish an association between crop rotation preference and cover crops observed, we calculated 

the percentage of cover crop adoption in each crop rotation category. This would reveal whether 

there is a preference for a given rotation. The area of cover crop adoption in Corn-Soybean rotation 

as a percentage of the total area of Corn-Soybean rotation in the Big Pine Watershed for 2014, 

2015, 2016, and 2017 were 2.14, 5.59, 3.30, and 5.70%, respectively, while the figure for Soybean-

Corn rotation in 2014, 2015, 2016, and 2017 were 5.11, 3.48, 5.83, and 6.75%, respectively. 

We found that both the area and percentage of cover crop adoption was higher in the Soybean-

Corn rotation in the year of 2014, 2016, and 2017. In the literature, cover crop experts suggested 

planting cereal rye into corn stalks and planting soybean into the dying or dead cereal rye after 

terminating the cereal rye in spring (Kladivko, 2015). However, in this research, the Corn-CC-

Soybean rotation only exceeded the Soybean-CC-Corn rotation in 2015. We tracked the transect 

data and found that the percentages of cereal rye fields to total cover crop fields within the Big 

Pine Watershed for 2014, 2015, 2016, and 2017 were 9.09, 72.73, 37.50, and 77.78%, respectively. 

The percentage of cereal rye fields to total cover crop fields matched that of the Corn-CC-Soybean 

rotation to Corn-Soybean rotation, a fact that suggested that the cash crop rotation could drive 

cover crop species selection. Moreover, although the cover crop adoption was higher in the 

Soybean-Corn rotation, the cover crop might not be cereal rye. 

When comparing our research with the transect survey data (ISDA Cover Crop and Tillage 

Transect Data), we found that the ISDA estimated cover crop adoption distribution in various cash 

crops based on the entire county's transect road survey. In the ISDA final report of Living Covers, 

they developed maps of the estimated living overs planted in all crops, in Corn, in Small Grains, 
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in Soybean, and in Specialty Crops of each year. Each living covers map only included the 

boundary of each county and a number representing area of living covers under the name of that 

county in each year. Table 2.11 showed the estimated cover crop adoption after corn and soybean 

for Benton and Warren County from 2014-2017 was acquired from ISDA Living Cover maps. 

There was no clear pattern of the preference of cover crop adoption in crop rotation management. 

As discussed before, the estimated area of cover crop adoption was based on the limited 

observation of the transect road survey. Moreover, the ISDA did not provide any continuous data 

about the cover crop field's post cash crop. In contrast, our methodology allowed us to focused on 

each field in the Big Pine Watershed, specifically relative to only the field in the transect area. 

Therefore for each field, we can identify winter cover crop existence, previous and post cash crop 

and could more detailed information of farmer cover crop tendencies on a whole watershed scale 

with greater accuracy 

2.3.5 Cover Crop Adoption Tenure 

Determining the cover crop adoption tenure of fields within the Big Pine Watershed was the 

last objective of this research. After compositing all processed NDVI maps from 2014 to 2018, we 

developed a raster map that demonstrates the tenure of the winter vegetation (Figure 2.12). On the 

winter vegetation tenure map, different colors represented different tenure lengths for each field. 

The first category was the field with no winter vegetation cover from 2014 to 2018, and the 

following categories were fields with one-year, two-year, three-year, four-year, and five-year 

winter vegetation adoption. We summarized each category's total area and its percentage to the 

total cultivated crop area of the Big Pine Watershed (Table 2.12) and found that as cover crop 

tenure increased the total area of cover crop adoption decreased in the watershed.  

The largest transparent area on the tenure map was the fields with no winter vegetation cover 

in the 5-year range, which occupied 84.18% (59,612 ha) of the total cultivated area of the Big Pine 

Watershed. Among all other five categories on the tenure map, the green area, representing fields 

covered with winter vegetation for only one year, occupied over 52.7% (5,906 ha); the blue area, 

representing fields covered with winter vegetation for two years, occupied around 30% (3,304 ha); 

the purple area, representing fields covered with winter vegetation for three years, occupied 11.3% 

(1,263 ha); the orange and dark red area, representing fields that continuously adopted winter 

vegetation more than four years, only occupied 6.5% (732 ha) area. Although over half of the 
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winter vegetation-covered fields adopted winter vegetation for only one year, this did not imply 

that half of the farmers who adopted cover crops only had one-year cover cropping experience, it 

is possible that each farmer had more than one field and farmers may adjust the cover crop adoption 

in line with their crop rotation plan and chose to plant cover crops in different fields for different 

years. The blue area on the tenure map, which represented the field that adopted winter vegetation 

for any two years in the five-year range, occupied an area of 3,304 ha. The two-year continuous 

adoption, fields that adopted winter vegetation for two consecutive years (e.g., 2014 and 2015, 

2015 and 2016), occupied an area of 1,668 ha. The purple area in the tenure map, which 

represented the field that adopted winter vegetation for any three years in the five-year range, 

occupied an area of 1,263 ha. The three-year continuous adoption, fields that adopted winter 

vegetation for three consecutive years (e.g., 2014, 2015, and 2016; 2015, 2016 and 2017), occupied 

an area of 600 ha. The percentage of the area of two-year continuous adoption to the two-year 

adoption and three-year continuous adoption to three-year adoption was 50.5 and 47.5%, 

respectively. This data showed that farmers indicated no preference for either adoption of winter 

vegetation continuously or adoption of winter vegetation in alternate years in a field. According to 

Figure 2.12, all the long-time winter vegetation adoption fields were concentrated in the mid-south 

of the Big Pine Watershed. We tracked the CDL and found that over 90% of the five-year winter 

vegetation-covered fields were labeled as Alfalfa or Other Hay/Non-Alfalfa. 

The farmers' decision on the cover crop tenure may be affected by the cost-sharing program 

or their crop rotation plan. In the CTIC Cover Crop Survey Annual Report, among farmers who 

had cover cropping experience, 37% (588 farmers) had used cover crops for three years or less, 

while the remaining 63% (1,007 farmers) had used cover crops for four years or more (CTIC, 

2017). In our research, until the year of 2018, the dominant cover cropping experience was less 

than three years, this could be attributed to the NRCS established soil conservation strategy and 

started the cost-sharing program in the fall of 2015. For future research, we plan to perform a 

cluster analysis of cover crop adoption along the dimension of space. For instance, we can sample 

several fields with long adoption tenure on the map. By analyzing cover crop adoption in the 

following years of sample fields and their neighbors, we may ascertain whether fields with 

extended cover crop adoption tenure can influence adjacent fields and measure the relationship 

between influence and cover cropping tenure. Assuming that those fields with extended cover 
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cropping adoption tenure have a positive influence on adjacent fields, the NRCS could develop 

more appropriate crop promotion strategies and save costs. 

2.4 Conclusion 

The results of this research demonstrated that remote sensing can be used to successfully 

detect cover crops in agricultural fields, with an average PA of 89.02% from 2015 to 2018. Overall, 

the area of cover crop adoption increased within the Big Pine Watershed from 3,607 ha to 6,280 

ha from 2014 through 2018. The rapid remote sensing method we used in this research was feasible 

to estimate the area of cover crop adoption and provided the specific location of each winter cover 

crop field of the entire watershed. However, we found that the recent cover crop adoption seemed 

to plateau since 2017 and cannot meet the need for the soil water conservation of the Big Pine 

Watershed. We researched farmers’ crop rotation management preference after the cover crop 

adoption and the cover crop tenure for each field. Our research showed that more cover crop 

adoption was observed in the Soybean-Corn rotation, and our result of cover crop adoption in the 

Corn-Soybean rotation shared the same pattern as the percentage of cereal rye adoption to the total 

cover crop adoption. The result of cover crop tenure showed that over 50% of fields only adopted 

cover crops for one year, and over 90% of fields adopted cover crops for less than three years. 

Given all results above, we can confidently conclude that our rapid cover crop survey method 

could replace the traditional transect road survey. Furthermore, the rapid cover crop survey has the 

potential to provide greater field specific spatiotemporal details on cover crop adoption to 

watershed conservation managers that could help break the current plateaued trend of cover crop 

adoption in the region and the state. Our evaluation of the rapid cover crop survey method 

demonstrates that potential advantages of the method are: identifying the actual location of cover 

crop adoption in the county or watershed, quantification of the cover crop adoption  tendencies 

and tenure on a field specific basis, and a rapid and accurate quantification of cover crop adoption 

over time on a county or watershed scale. Rapid spatiotemporal assessments of such critical 

variables of cover crop adoption could advance and deepen the current understanding of voluntary 

and incentivized cover crop adoption and could more effectively direct and target conservation 

adoption resources, such as conservation program funds, education and extension, and federal and 

state conservation program directors' time and effort. Our findings suggest that rapid assessment 

methods of cover crop adoption involving processed NDVI map could help advance cover crop 
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adoption and assessment in the state of Indiana and the entire Mississippi River Basin region of 

the eastern corn belt. 
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Table 2.1. Acquisition details for satellite images 
Satellite Resolution Tile Code/Raster ID Dates 

 
Landsat-7 

 
30 m 

path: 21 row: 8  
December 29, 2014 

 
path: 21 row: 9 
path: 22 row: 8 

 
 
 

RapidEye 
Analytic Ortho 

Tiles 

 
 
 

5 m 

UTM Zone 16 row: 576 column: 13  
 

November 15, 2015 
November 20, 2016 
November 24, 2017 

UTM Zone 16 row: 576 column: 14 
UTM Zone 16 row: 577 column: 13 
UTM Zone 16 row: 577 column: 14 
UTM Zone 16 row: 578 column: 13 
UTM Zone 16 row: 578 column: 14 
UTM Zone 16 row: 578 column: 15 

 
 
 
 

PlanetScope 
Ortho Tiles 

 
 
 
 

3.125 m 

1835006_1657613_2018-11-10_1003  
 
 
 

November 10, 2018 

1835006_1657614_2018-11-10_1003 
1835006_1657713_2018-11-10_1003 
1835006_1657714_2018-11-10_1003 
1835006_1657813_2018-11-10_1003 
1835006_1657814_2018-11-10_1003 
1835006_1657713_2018-11-10_1001 
1835006_1657813_2018-11-10_1001 
1835006_1657814_2018-11-10_101f 

 

Table 2.2 Accuracy matrix of the NDVI map. 
 

 

Table 2.3 Accuracy calculation formula. 
 Producer’s Accuracy User’s Accuracy Overall Accuracy 

Vegetation a/(a+b) a/(a+c) a+d/(a+b+c+d) 

Soil d/(d+c) d/(d+b) 

 

 

 

  Reference (transect data) 

  Vegetation Soil 

NDVI 
Map 

Vegetation Accurate (a) Potential Weeds (c) 

Soil Error (b) Accurate (d) 
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Table 2.4 Evaluation methods of binary test. 
Recall 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

F-score 2 ×
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

Matthews Correlation Coefficient 𝑇𝑇𝑇𝑇 × 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

 

Table 2.5 Contingency table of binary classification. 
 

 
 

 

 

Table 2.6 Cut-off NDVI Value (COV), Producer’s Accuracy (PA), User’s Accuracy (UA), F 
score, and Matthews Correlation Coefficient (MCC) of the vegetation field verified by processed 

NDVI map through 2014 to 2018 
Year  COV PA (%) UA (%)    F MCC 

2014 0.24 35.71 71.43 0.48 0.45 
2015 0.00 86.67 72.22 0.81 0.78 
2016 0.14 93.75 71.43 0.81 0.81 
2017 0.01 83.33 55.56 0.67 0.66 
2018 -0.01 92.31 42.86 0.59 0.61 
Average 
Standard Error 

 78.35 
±10.83 

 62.7 
±5.86 

0.67 
±0.06 

0.68 
±0.06 

 

 

 

 

  Condition positive Condition negative 

Test outcome positive True Positive (TP) False Positive (FP) 

Test outcome negative False Negative (FN) True Negative (TN) 
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Table 2.7 The filed (polygon) numbers in each category mentioned in Table 2 of Method Chapter 
of processed NDVI map from 2015 to 2018. MVRV, MSRV, MVRS, MSRS represents (a), (b), 
(c), (d) in Table 2.2 respectively. TP, FN, FP, TN represents True Positive, False Negative, False 

Positive, True Negative, respectively. The percentage of fields correctly classified represented 
the ratio of fields that identified into the same category by both processed NDVI map and 

reference data to total fields.         
Year MVRV(TP) MSRV(FN) MVRS(FP) MSRS(TN) Total Fields % fields correctly 

classified 
2014 5 9 7 298 319 94.98 
2015 13 2 5 304 324 97.84 
2016 15 1 6 302 324 97.84 
2017 15 3 12 292 322 95.34 
2018 12 1 16 287 316 94.62 

 

Table 2.8 Winter vegetation distribution of the Big Pine Watershed in each year (unit: ha).  
 Cover Crops 

(corn and sb) 
Alfalfa Winter 

Wheat 
Others 
(non-grass) 

total Ratio to the area of 
cultivated crops 

2014 3,053 96 443 16 3,607 5.10% 
2015 4,027 450 377  4,854 6.88% 
2016 3,670 460 114 17 4,261 6.04% 
2017 5,444 863 171  6,478 9.18% 
2018 5,283 735 245 16 6,280 8.90% 
Average 
Standard Error 

4295 
±464 

521 
±133 

270 
±62 

10 
±4 

5096 
±561 

7.22% 
±0.80% 

 

Table 2.9 Farmers' Tendencies on cover crop adoption management in the Big Pine Watershed 
from 2014 to 2017 (unit: Ha), the format of the Farmers’ Tendencies column was previous cash 

crop-cover crop-post cash crop. 
Farmers’ Tendencies 2014 2015 2016 2017 

Corn-CC-Corn 248 161  170 148 

Corn-CC-Soybean 638 1797  1,008 1,915 

Corn-CC-Winter Wheat 290 262  155 72 

Soybean-CC-Corn 1,561 1038  1,793 2,019 

Soybean-CC-Soybean 153 136  57 304 

Soybean-CC-Winter Wheat 138 492  576 391 
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Table 2.10 The area of different crop rotation in the Big Pine Watershed from 2014 to 2017 
(unit: Ha).  

Crop Rotation Area 2014 2015 2016 2017 

Corn-Corn 6580 5584  4709 2672 

Corn-Soybean 29866 32170  30584 33602 

Corn-Winter Wheat 290 262  155 72 

Soybean-Corn 30528 29841  30774 29903 

Soybean-Soybean 589 631  1263 1249 

Soybean-Winter Wheat 353 544  576 444 

 

Table 2.11 The estimated cover crop area planted after corn and soybean in the ISDA final report 
of Living Covers for Benton and Warren County from 2014-2017(unit: Ha). 

 2014 2015 2016 2017 

 corn sb corn sb corn sb corn sb 

Benton 1548  2082  2580  2499  3464  2681  2002  2645  

Warren 2936  1169  2569  2045  1070  1155  678  1236  

total 4484  3251  5149  4544  4535  3836  2681  3881  

 

Table 2.12 Winter vegetation tenure area and its percentage to the total cultivated area of the Big 
Pine Watershed. 

Tenure Area 

(unit: ha) 

Percentage to the area of 
cultivated crops 

No winter vegetation cover 59,612 84.18% 

One-year vegetation 5,906 8.34% 

Two-year vegetation 3,304 4.67% 

Three-year vegetation 1,263 1.78% 

Four-year vegetation 439 0.62% 

Five-year vegetation 293 0.41% 
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Figure 2.1 The Big Pine Watershed contains the Mud Pine Creek and Big Pine Creek. 
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Figure 2.2 Agricultural fields of Big Pine watershed clipped from the Land Parcels Layer. 
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Figure 2.3 Cover the Land Parcels layer on the satellite view Basemap in ArcGIS Pro, all the 
boundaries defined as agricultural fields in LPL while most of the boundaries in the southern end 

of the watershed are not actual agricultural fields (forest). 
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Figure 2.4 Crop Data Layer for Big Pine watershed in 2017, the fuzzy boundary of raster layer 
made it hard to count the agricultural fields. 
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Figure 2.5 Zonal Statistics of 2017 Crop Data Layer and Land Parcel. 
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Figure 2.6 NDVI map of Big Pine watershed in 11.20.2016 with transect points and field 
boundaries. Green area represents winter vegetation, red area represents bare soil. 
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Figure 2.7 Producer's Accuracy, User's Accuracy, F-score, and Matthews Correlation Coefficient (MCC) of various Cut-off NDVI 
values from 2015 to 2018. 
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Figure 2.7 continued 
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Figure 2.8 Winter vegetation distribution through 2014-2018. The green area was the distribution of winter vegetation processed by 
the satellite images for each year.

2016 

2017 

2014 2015 

2018 
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Figure 2.9 Processed NDVI map for 2016, the green area is the winter vegetation detected 
from the satellite image. Black polygon represents the fields observed in the transect survey. 
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Figure 2.10 The cover crop area for the Benton and Warren County estimated by the transect 
survey (blue and red dash-line) and the cover crop area for the Big Pine Watershed estimated by 
the processed NDVI map (green line). The black line is the total estimated cover crop area for 

Benton and Warren County. 
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Figure 2.11 Histogram of Farmers’ Tendencies on cover crop adoption management in the Big 
Pine Watershed from 2014 to 2017, the format of six categories of Farmers’ Tendencies was 

previous cash crop-cover crop-post cash crop. 
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Figure 2.12 Winter vegetation tenure in the Big Pine Watershed from 2014 to 2018. Different 
colored fields represent different winter vegetation tenure length in that field. 
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APPENDIX  

Python code for computing best COV and accuracy values for 2015 
[2015-1] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['15'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(-0.01, 0.00, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2015_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2015_type'] == 'V': 
                    vs += 1 
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                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2015-2] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['15'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.01, 0.02, 0.01) 
 
for year in years: 
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    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2015_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2015_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
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    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2015-3] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['15'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.07, 0.09, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
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                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
[2015-4] 
out_file.write(out_line) 
out_file.close() 
 
import geopandas as gpd 
import numpy as np 
years = ['15'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
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ndvi_l = np.arange(0.1, 0.12, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
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    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2015-5] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['15'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.13, 0.15, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
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                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
 
 
Python code for computing best COV and accuracy values for 2016 
[2016-1] 
import geopandas as gpd 
import numpy as np 
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years = ['16'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.05, 0.09, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
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    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
 
[2016-2] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['16'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
ndvi_l = np.arange(0.1, 0.14, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
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        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
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[2016-3] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['16'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.15, 0.19, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
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        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2016-4] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['16'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.2, 0.24, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
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    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
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    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
 
import geopandas as gpd 
import numpy as np 
 
[2016-5] 
years = ['16'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.25, 0.28, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
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                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
 
 
Python code for computing best COV and accuracy values for 2017 
[2017-1] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['17'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
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ndvi_l = np.arange(-0.02, 0, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
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    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2017-2] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['17'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange( 0.01, 0.02, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
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            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2017-3] 
import geopandas as gpd 
import numpy as np 
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years = ['17'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.03, 0.05, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 



 

76 

    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2017-4] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['17'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.06, 0.08, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
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        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
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[2017-5] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['17'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.09, 0.11, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
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        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
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Python code for computing best COV and accuracy values for 2018 
[2018-1] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['18'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.18, 0.19, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
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        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2018-2] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['18'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.2, 0.21, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
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    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
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    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2018-3] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['18'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.22, 0.23, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
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                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
[2018-4] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['18'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.24, 0.25, 0.01) 
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for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 



 

86 

    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
 
 
[2018-5] 
import geopandas as gpd 
import numpy as np 
 
 
years = ['18'] 
poly = gpd.GeoDataFrame.from_file('field_poly/transect_area_type.shp') 
out_file = open('optimal_NDVI.csv', 'w') 
out_line = '' 
 
ndvi_l = np.arange(0.26, 0.27, 0.01) 
 
for year in years: 
    ndvi = gpd.read_file('NDVI/NDVI_' + year + 'p.shp') 
 
    fuse_matrix = [] 
    j = 0 
    for ndvi_t in ndvi_l: 
        vv = 0 
        ss = 0 
        vs = 0 
        sv = 0 
        for i in range(len(poly.geometry)): 
            print(i) 
            polygon = poly.geometry[i] 
            subset = ndvi[ndvi.within(polygon)] 
            if sum(subset['grid_code'] > ndvi_t) / (len(subset['grid_code'])+1) > 0.5: 
                if poly.loc[i, '2014_type'] == 'V': 
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                    vv += 1 
                else: 
                    sv += 1 
                    print('sv point:' + str(i)) 
            else: 
                if poly.loc[i, '2014_type'] == 'V': 
                    vs += 1 
                    print('vs point:' + str(i)) 
                else: 
                    ss += 1 
        fuse_matrix.append([vv, vs, sv, ss]) 
        print('Now processing: {}\r'.format(str(j))) 
        j += 1 
 
    fuse_matrix = np.array(fuse_matrix) 
    loss = fuse_matrix[:, 3] / (fuse_matrix[:, 2] + fuse_matrix[:, 3]) + fuse_matrix[:, 0] / 
(fuse_matrix[:, 0] + fuse_matrix[:, 1]) 
    final_matrix = fuse_matrix[loss.argmax()] 
    print('Optimal NDVI and fuse matrix of ' + year) 
    print('Optimal NDVI: ' + str(ndvi_l[loss.argmax()])) 
    print('PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1]))) 
    print('PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3]))) 
    print('Fuse Matrix: ' + str(final_matrix)) 
    out_line += 'Optimal NDVI and fuse matrix of ' + year + '\n' 
    out_line += '   Optimal NDVI: ' + str(ndvi_l[loss.argmax()]) + '\n' 
    out_line += '   PA_Veg: ' + str(final_matrix[0] / (final_matrix[0] + final_matrix[1])) + '\n' 
    out_line += '   PA_Soil: ' + str(final_matrix[3] / (final_matrix[2] + final_matrix[3])) + '\n' 
    out_line += '   [vv, vs, sv, ss] \n' 
    out_line += '   Fuse Matrix: ' + str(final_matrix) + '\n' 
 
out_file.write(out_line) 
out_file.close() 
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