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ABSTRACT

Li, Zongwei M.S., Purdue University, August 2020. Autoregressive Tensor Decom-
position for NYC Taxi Data Analysis. Major Professor: Jin Soung Yoo Associate
Professor.

Cities have adopted evolving urban digitization strategies, and most of those in-

creasingly focus on data, especially in the field of public transportation. Transporta-

tion data have intuitively spatial and temporal characteristics, for they are often

described with when and where the trips occur. Since a trip is often described with

many attributes, the transportation data can be presented with a tensor, a container

which can house data in N -dimensions. Unlike a traditional data frame, which only

has column variables, tensor is intuitively more straightforward to explore spatio-

temporal data-sets, which makes those attributes more easily interpreted. However,

it requires unique techniques to extract useful and relatively correct information in

attributes highly correlated with each other. This work presents a mixed model con-

sisting of tensor decomposition combined with seasonal vector autoregression in time

to find latent patterns within historical taxi data classified by types of taxis, pick-

up and drop-off times of services in NYC, so that it can help predict the place and

time where taxis are demanded. We validated the proposed approach using the ex-

periment evaluation with real NYC tax data. The proposed method shows the best

prediction among alternative models without geographical inference, and captures

the daily patterns of taxi demands for business and entertainment needs.
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1. INTRODUCTION

Tensors are generalizations of matrices, which can be more than two dimensions.

Thus, tensors can represent a data set whose responder has more than three pre-

dictors. In particular, a responder is a cell or entry of the tensor, which normally

represents what we want to predict. Predictors are the “coordinates” of this specific

entry, normally representing features, in which case has a number of more than three.

It has always been an interesting topic whether methods used to find latent informa-

tion hidden behind a specific matrix can be applied to a tensor as well, considering

that tensors are generalizations of matrices. Among them, how to decompose a ten-

sor so that some hidden patterns or information can be revealed is one of the most

explored of all.

Historically, tensor and its decomposition were first introduced in the psychometric

community [1] in 1927, but it was not until around the late 20th century that it caught

computer scientists’ attention [2], and then gained its popularity in machine learning

[3]. Many tensor decompositions are inspired from matrix decompositions [1, 4–6].

One of them that is frequently used in machine learning is rank decomposition, which

is originated from matrix rank decomposition based on Spearman’s Hypothesis [7]. In

his hypothesis, Spearman states that if a matrix M that is a data-set can be factorized

into the following pattern:

M = ABᵀ

where M ∈ Rn×m, A ∈ Rn×r, B ∈ Rm×r (1.0.1)

then intuitively the data-set M can be explained by r different hidden factors, which

are encoded in the matrices A and Bᵀ. For example, in his original experiment, he

tried to find out latent patterns behind test results from multiple students. He chose

the number of latent factors r to be two, representing educative and reproductive
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capabilities to see whether those results could be explained. This meant the data-set

M would be able to be decomposed into two small matrices A and B as shown in

Figure 1.0.1. As implied, in practice the latent variable r is normally pre-defined by

Fig. 1.0.1. Spearman’s Hypothesis

user, and M cannot always be factorized into this pattern. This yields to a variation

of the method by finding the “closest” matrix that fits the pattern, for error tolerance

can be introduced in the real data-set M . Therefore, the mission is to find the M∗:

M∗ = min
M̂∈Rn×m

∥∥∥M − M̂∥∥∥
subject to M̂ = ABᵀ, A ∈ Rn×r, B ∈ Rm×r (1.0.2)

However, unfortunately this decomposition of matrix is not unique, since we can

always insert a rotation matrix R ∈ Rr×r between A and B, and construct new A

and B as shown below.

M = ABᵀ = AR−1RBᵀ =
(
AR−1

)
(BRᵀ)ᵀ

= ÃB̃ᵀ (1.0.3)

Therefore, in order to get a unique decomposition, there are always stringent con-

ditions. Even though, this method can still be applied to tensors with more than

two dimensions but not directly since the product of tensors needs to be defined,

and what is more interesting is that when it comes to tensor with more than two

dimensions, decomposition is largely unique with much milder restrictions [3]. Like
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matrix decomposition, which can reveal latent factors through lower rank matrices,

tensor decomposition can also uncover underlying low-dimensional structures, which

can be applied to tackle typical machine learning problems, such as feature reduction

and pattern recognition.

One of common usages of tensors is in the field of spatio-temporal data-sets,

which are aimed to manage both space and time information. There have been a

lot of applications recently, including spatial statistics [8] and economics [9], remote

sensing [10], public health [11] and so on. One of the reasons using tensors is that we

can operate decomposition on a spatial and temporal data-set, since it allows multiple

dimensions, and after the decomposition, the latent models generated can potentially

predict future data or other data from unknown geographical information. [12]

In this paper, we will explore the famous data-set from NYC Taxi and Limousine

Commission [13], where contains trip records of two kinds of taxis: yellow and green

including when and where a specific taxi picks up and drops off passengers. Our

goal is to forecast future demand of taxis in each location based on the history data.

Since the data itself is highly correlated internally, it is not wise to analyze each type

of taxis separately: we have to analyze it as a whole. Therefore, apart from the

temporal and spatial dimensions, we need one additional dimension to describe the

type of services: this motivates us to deal with data in a tensor format.

To analyze NYC Taxi Data, first, we will log the time and location of pick-ups

and drop-offs of two different taxis in a 30-minute window, and then merge them

into a tensor with three dimensions: timestamp, location and types of service. In

order to reveal latent factors, we will employ Canonical Polyadic Decomposition on

this tensor, which will break down the tensor into three components: one for each

dimension. Considering that we are going to forecast future demands, we will try to

extend the component of time window by using Vector Autoregression with seasonal

variables. Finally, we can recover the original tensor by using n-mode product, which

will immediately give us the prediction we need.



4

We conducted the experimental evaluation of the proposed approach. The experi-

mental result shows that the outcome produced by our model is the best among classic

models [14–16] which have already applied on NYC Taxi Data-set except DAR [12],

which uses geographical inference. Since the data-set shows periodicity through time,

by adding seasonal variables to Vector Autoregression model, our mixed model could

capture daily pattern of taxi demands, and successfully inferred business and enter-

tainment needs of taxis.

To illustrate, the paper will be laid out in the following sections: Section II intro-

duces some basic definitions and notations for tensors; Section III further discusses

about related works both in the field of tensor and applications on spatio-temporal

data; Section IV illustrates our model concerning Canonical Polyadic Decomposition

(CPD) and vector autoregression (VAR), which will be applied to NYC Taxi Data

Section V is our case study on a NYC taxi data-set to evaluate the approach we

propose; Section VI concludes this work and discusses about future work and some

related topics explored.
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2. INTRODUCTION TO TENSORS

Tensor can be thought of as multi-way collections of numbers, which typically

comes from a field (like R). For example, a tensor with three dimensions can be

treated as a stack of multiple matrices of the same size. To begin with, we need to

clarify some definitions and notations of tensors, since there have been so far multiple

different notations in the field of tensor. We will borrow most of our notations from

Rabanser et al. [17].

Definition 2.0.1 (Tensor Order) The order of a tensor is the number of its di-

mension. A N th-order tensor is denoted as X ∈ RI1×I2×···×IN where In denotes the

number of elements in this specific dimension.

In the simplest high-dimensional case, such a tensor would be a three-dimensional

array, which can be thought of as a data cube. We will predominately use third-order

tensors in this paper. However, most of notations can be naturally extended into

higher dimensional.

Definition 2.0.2 (Fibers and Slices) Fibers of a tensor are defined by fixing all

but one index, while slices are defined by fixing one index.

For example, in a third-order tensor X , fibers are x:jk, xi:k, xij:, and slices are

x::k, x:j:, xi::. Figures 2.0.1 and 2.0.2 show the graphical examples of fibers and slides

for a third-order tensor.

We need to define tensor product to generalize the idea of matrix decomposition.

There are multiple types of tensor products, such as Kronecker product, Khatri-

Rao product [18], Hadamard product, n-mode product, etc. We will only mention

Kronecker product and n-mode product in this paper, since this is what we will use

later.
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Fig. 2.0.1. Fibers of Third-Order Tensor

Fig. 2.0.2. Slices of Third-Order Tensor

Definition 2.0.3 (Kronecker Product) The Kronecker product between two arbi-

trary matrices A ∈ RI×J and B ∈ RK×L is defined as

A⊗B =


a11B a12B · · · a1JB

a21B a22B · · · a2JB
...

...
. . .

...

aI1B aI2B · · · aIJB


IK×JL

(2.0.1)

This yields that A⊗B ∈ RIK×JL.

Let us give an example to illustrate the idea. Say A =

 1 −1 0

−2 1 1

 ∈ R2×3 and

B =

3

1

 ∈ R2×1, then according to the definition, we can compute their Kronecker

product as follows:
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A⊗B =


1×

3

1

 −1×

3

1

 0×

3

1


−2×

3

1

 1×

3

1

 1×

3

1



 =


3 −3 0

1 −1 0

−6 3 3

−1 1 1

 ∈ R4×3 (2.0.2)

If we generalize the definition of Kronecker Product on the field R to an abstract

vector space, then we can define tensor product, where is still denoted as ⊗.

Definition 2.0.4 (Tensor Product) Considering two vector spaces V and W on

a field K, tensor product is a bi-linear mapping V ×W → V ⊗W , and no other

restriction is imposed.

If each of the two vector spaces is finite and has a basis, say {ei}mi=1 and {f j}nj=1,

then ∀v ∈ V and ∀w ∈W can be represented as

v =
m∑
i=1

vie
i,w =

n∑
j=1

wjf
j (2.0.3)

Thus by definition of tensor product, we can explicitly write out the expression of

v ⊗w.

v ⊗w =
m∑
i=1

n∑
j=1

(viwj)
(
ei ⊗ f j

)
=

m∑
i=1

n∑
j=1

(viwj) gij (2.0.4)

The above is exactly how Kronecker product is computed. This is the exact reason

why they are using the same notation ⊗. What’s more, this also tells us the structure

of product space, of which dimension is product of those of the two vector spaces:

dim (V ⊗W ) = dimV × dimW (2.0.5)

A n-mode product basically is a tensor multiplying with a matrix along with one

specific dimension, which is the n-th dimension.

Definition 2.0.5 (n-mode Product) The n-mode product ×n of a tensor X ∈

RI1×I2×···×IN and a matrix M ∈ RJ×In is defined as

(X ×n M)i1i2...in−1jin+1...iN =
In∑

in=1

xi1...in...iNmjin (2.0.6)

This yields that X ×n M ∈ RI1×···×In−1×J×In+1×···×IN .
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Based on the definition, we can observe that n-mode product is actually to let M act

on each fiber of the n-th dimension by matrix multiplication. Let us see an example.

Suppose X =

1 0 −1

2 −1 0

 ,
−1 2 1

3 0 1

 ∈ R2×2×3 and M =


1 0

0 −2

−1 1

 ∈
R3×2. Then the 2-mode product of X and M can be computed as follows.

X ×2 M =

M ×
1

2

 M ×

 0

−1

 M ×

−1

0

 ,
M ×

−1

3

 M ×

2

0

 M ×

1

1



=




1 0 −1

−4 2 0

1 −1 1

 ,

−1 2 1

−6 0 −2

4 −2 0


 ∈ R2×3×3 (2.0.7)
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3. RELATED WORK

There is quite a lot of work having been done on tensor decomposition [2,19–21].

The most commonly used one is Canonical Polyadic Decomposition [1] as the proto-

type method of decomposition, a generalized version of Singular Value Decomposition

(SVD) [22] which is deployed on matrices. To predict, we will also need to use Vector

Autoregression model to forecast temporal component.

3.1 Tensor Decomposition: Canonical Polyadic Decomposition (CPD)

In tensor analysis, the most widely used tensor decompositions are Canonical

Polyadic Decomposition (CPD) [1] and Turker decomposition [4]. They are both

inspired by the idea of matrix decomposition, more specifically Singular Value De-

composition (SVD) [22].

Definition 3.1.1 (Singular Value Decomposition (SVD)) For a m× n matrix

A in a field K, it can be always decomposed into the following form:

A = UΣV ᵀ (3.1.1)

where U is an m × m unitary matrix (UUᵀ = Im), V is an n × n unitary matrix

(V V ᵀ = In) and Σ is an m× n diagonal matrix, where only some of diagonal entries

are not zero and the number of these entries are exactly the rank of A. Also those

non-zero values are called the singular values of A, which are given by A~v = σ~u,

where ~v ∈ Kn and ~u ∈ Km.

In tensor version, typical matrix product in (3.1.1) is replaced by n-mode prod-

uct. It is usually advised to use CPD for latent parameter estimation and Tucker for

subspace estimation, compression, and dimension reduction. CPD, short for Canon-

ical Polyadic Decomposition, gives us a tool to “simplify” a complicated tensor, by
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revealing hidden information in tensors. Also after decomposing, the tensor will be

broken down into multiple matrices or vectors, which is much easier to interpret.

CPD is also called tensor rank decomposition, because it factorizes a tensor by its

rank. In order to demonstrate the idea of it below, we need to give the definition of

tensor rank. To begin with, we will introduce the idea of simple tensor.

Definition 3.1.2 (Simple Tensor) For a tensor X ∈ RI1×I2×···×IN , X is called sim-

ple, if X ∈ RI1 ⊗ RI2 ⊗ · · · ⊗ RIN where ⊗ is denoted tensor product, which means

there exist N vectors
{
xk ∈ RIk

}N
k=1

, such that X = x1 ⊗ x2 ⊗ · · · ⊗ xN .

This will allow us to define tensor rank.

Definition 3.1.3 (Tensor Rank) For a tensor X ∈ RI1×I2×···×IN , if X = 0, then

rank(X ) = 0; if X is simple, then rank(X ) = 1. Otherwise, rank(X ) = r is the

smallest integer such that there exist r simple tensors {Bi}ri=1 such that X =
∑r

i=1 Bi.

Now we can talk about Canonical Polyadic Decomposition (CPD). For a nth-order

tensor X with a rank of r, the Canonical Polyadic Decomposition of X is defined as

X =
R∑
i=1

λiBi (3.1.2)

where R > r and every Bi is a simple tensor with rank 1. It can be easily observed

that when R = r, the form is exactly the same as that which we define tensor rank

by, and it is called minimal CPD or tensor rank decomposition. The key concept of

rank decomposition is to express a tensor as the sum of a finite number of rank-one

tensor. Figure 3.1.1 illustrates the conception of CPD on a third-order tensor X .

As we mentioned previously, matrix decomposition is mostly non-unique. This

is the reason why U and V in SVD have to be unitary to guarantee the uniqueness

of SVD. CPD, on the other hand, is often unique, under the definition of tensor

decomposition uniqueness that in (3.1.2), Bi is the only possible combination with

scaling and permutation allowed [23]. This uniqueness helps greatly to tackle machine

learning problems, since it will be much easier to implement.
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Fig. 3.1.1. Canonical Polyadic Decomposition (CPD)

There is no exact algorithm to determine tensor rank, since it is NP-complete [24].

However, there are several approximation algorithms to compute CP decomposition

on a given tensor X , such as Jennrich’s Algorithm [25] and Alternative Least Square

Algorithm (ALS) [23, 26]. Normally, ALS is more widely used, since Jennrich’s Al-

gorithm only uses slices of tensor instead of the full tensor and requires stricter re-

strictions on factor matrices [27]. Unlike Jennrich’s, ALS Algorithm will fix all but

one factor matrix and optimize it, and then repeat the procedure till it is convergent.

In this paper, we will try to use this algorithm to find hidden information of the

original tensor X . One more thing worth noting is that the coefficient λi is normally

neglected, since it can be merged into Bi without any side effects.

3.2 Vector Autoregression (VAR)

Based on the fact that the data-set is temporal, we need to use autoregression

which is the time-series version of regression to forecast the future demand of taxis

in New York City.

Temporal data has an important feature, that is, there is a high relation between

data points, more specifically one data point depends on previous data points in term

of time. Classical regression is insufficient to discover interesting trends because of

that. Therefore, first of all, let us introduce the idea of ARMA(p, q) model [28], which

is explained below:
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Definition 3.2.1 (ARMA(p, q) Model) For a time series {xt}, the ARMA(p, q)

model is defined as

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q

=

(
α +

p∑
i=1

φixt−i

)
︸ ︷︷ ︸

AR Model

+

(
wt +

q∑
j=1

θjwt−j

)
︸ ︷︷ ︸

MA Model

(3.2.1)

where p and q are the autogressive and the moving average orders, respectively. {wt}

is a Gaussian white noise series with mean zero and variance σ2
w. If {xt} has a

nonzero mean µ, then α = µ (1−
∑p

i=1 φi) 6= 0.

To make the model valid, you have to check if the time series itself is causal and

invertible, which means the model itself cannot predict based on the future data

points and also unique. To address it, we have define to two polynomials:

Definition 3.2.2 (AR and MA Polynomials) The AR polynomial φ(z) and MA

polynomial θ(z) are defined as follows:

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p, φp 6= 0 (3.2.2)

θ(z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q, θq 6= 0 (3.2.3)

The causality and invertibility of ARMA(p, q) Model are based on the roots of both

AR polynomial φ(z) and MA polynomial θ(z): the zeros of both polynomials have

to lie outside the unit circle |z| > 1 on the complex plane, when φ(z) and θ(z) are

treated as complex polynomials.

The above is the case in one dimension. However, as for in our case, each xt has

become a vector xt. For simplicity, we are only going to use the vector version of AR

Model in the following sections as VAR(p) Model [29].

Definition 3.2.3 (VAR(p) Model) For a multivariate time series {xt} in d di-

mensions, the VAR(p) model is defined as

xt = φ0 +

p∑
i=1

φixt−i + at (3.2.4)
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where φ0 is a d-dimension constant vector, whereas {φi}
p
i=1 are all d × d matrices,

and at is a white noise at time t with mean zero and covariance matrix Σa.

The model is similar to the one-dimensional case. However, in terms of causality, it

becomes a little bit different. Indeed, if we treat every xt as d independent components

xit, then we can, of course, define causality on each xit. But if these d series have

influence on each other, it is hard to define a universal causality. Therefore, we

introduce Granger’s Causality [30]. In this framework, we focus on the relations

between components within {xt}, where xt = (x1t, x2t, · · · , xdt). We say that xit

causes xjt if and only if the prediction or forecast of xjt within xit is more accurate

than without, which means that xit has “influence” on xjt, which lead to at least one

φk,ji 6= 0 in φk for k = 0, 1, 2, · · · , p. Therefore, we can define more generally.

Definition 3.2.4 (Granger’s Causality) For a VAR(p) model {xt}, where xt =

(x1t, x2t, · · · , xdt) and xt = φ0+
∑p

i=1φixt−i+at, we say xit causes xjt, if there exists

at least one φk,ji 6= 0 in φk for k = 0, 1, 2, · · · , p.

3.3 Tensor Applications in Machine Learning

There have been a lot of works using tensor techniques to tackle machine learning

problems, especially in data with temporal component and multi-relational data.

Whenever the data-set can be represented into matrix, tensors can always provide a

intuitive and straightforward way to model temporal component by spreading it as

additional axis, making the original data-set a stack of facet data. This will allow the

model to capture latent patterns in temporal manner, which is extremely helpful in

recommendation systems [31–33], spotting anomalies [34] and etc. Also, tensors can

be naturally applied to a streaming data, without dealing with infinite time [35].

Since tensors can be of any dimensions, it can also naturally be applied to multi-

relational data. This enables us to find inter-dependencies simultaneously. For in-

stance, it is very useful when it comes to statistical relational learning [36–38]. One

prominent application in multi-relational data is knowledge graph network, which
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stores information about relationships in the real world. Detecting hidden relations

is the main issue, which tensor decomposition has shown state-of-the-art performance

in both quality and efficiency [39,40].

3.4 Previous Work on Spatio-temporal Data

Spatio-temporal data is a data-set with spatial and temporal components which

have spatial attributes such as latitude and longitude and a temporal attribute. It

becomes increasingly important these days when it comes to forecast future trends,

especially in urban data, such as New York City taxi data [13]. Therefore, a lot

of research works have been done on this kind of data. There are two main ways

to train the data: one is using classical regression method, and the other is using

neural network, mainly Recurrent Neural Network (RNN) [41,42], since data contain

temporal component. However, in this paper, we will focus on the former one, based

on the reason that RNN is notoriously hard to train [43], which requires more data

than classical methods, and also the outcome is not easy to interpret, since neural

network itself is a black box. In terms of classical methods, typically Gaussian Process

(GP) [14] and vector autoregression (VAR) are commonly used [44]. In terms of GP,

it always assumes the output abides by Gaussian Process, where the key problem

tackles a covariance matrix, which however demands a very expensive time cost.

More recently, Bahadori et al. [15] have proposed a fast multivariate spatio-temporal

analysis method (FMST), and Yu et al. [16] have developed a temporal regularized

matrix factorization (TRMF) to figure out latent information behind the data-set

as matrix format, but both of methods include only temporal component without

considering spatial problems, since they both only use matrix decomposition in their

methods. On the other hand, Qian et al [45] focused on spatial variation but not

the forecasting. Takeuchi et al. [12] used tensor decomposition and DAR model, but

they mainly focused on DAR model, which is directed autoregression by splitting the
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2π angle at each location into multiple discrete directions, and trying to find out

geographical dependence between adjacent locations.
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4. METHODOLOGY

In this section, we will discuss about how to decompose a tensor which has tem-

poral and spatial dimensions and predict data within the tensor along the temporal

dimension. The whole idea is mostly inspired by the idea from Takeuchi et al. [12]

who also use tensor decomposition and regression to find patterns in New York City

Taxi Data but unfortunately has ignored the seasonality of the data-set.

We formulate our problem in the purpose of forecasting future needs of taxis

in each designated location as follows. Given a spatio-temporal data-set of NYC

taxi data [13] which consists of every taxi trip log including pick-up time, drop-

off time, pick-up location, drop-off location and some parameters concerning tensor

decomposition, our goal is to learn periodic patterns of taxi needs in each designated

location by building a tensor model and then use this learned model to predict future

trends in each taxi zone.

For a typical spatio-temporal data-set, for example, geographical and dynamic

data with locations and timestamps, it is very common to be represented by multiple

dimensions: time, space and other features. This is also true for the NYC taxi

data-set, which indicates it is a third-order tensor data-set. For generalization, we

define the data-set to be explored as X ∈ RF×T×L, where F represents features, T

represents timestamps, L represents locations, and also xijk ∈ X data points. The

purpose of tensor decomposition is based on the idea of Spearmann’s Hypothesis [7]

in the condition of matrices.

Therefore, X should be decomposed into K latent components for each dimension,

which means that n-th dimension is a matrix having order of In ×K. For instance,
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a data-set X ∈ RF×T×L can be interpreted as three matrices M (1) ∈ RF×K ,M (2) ∈

RT×K ,M (3) ∈ RL×K with a unit diagonal tensor M (0) ∈ RK×K×K , meaning

(
m(0)

)
k1,k2,k3

=

 1 if k1 = k2 = k3

0 otherwise
(4.0.1)

where m
(0)
k1k2k3

is the element of M (0) at the entry k1, k2, k3. For clarification, in

the following demonstration, m
(i)
k1k2k3

always means the element of M (i) at the entry

k1, k2, k3.

By using the previously defined n-mode product, we can design the following loss

function for tensor decomposition:

loss =
∥∥X −M (0) ×1 M

(1) ×2 M
(2) ×3 M

(3)
∥∥+

3∑
i=1

λigi(M
(i)) (4.0.2)

which we need to minimize, and the last sigma is the regularization to restrict the

choosing of matrices. In order to get familiar with n-mode product, we will prove the

following result.

Proposition 4.0.1 M (0) ×1 M
(1) ×2 M

(2) ×3 M
(3) is a 3rd-order tensor in RF×T×K,

and we have

(
M (0) ×1 M

(1) ×2 M
(2) ×3 M

(3)
)
f,t,l

=
K∑

k1,k2,k3=1

m
(0)
k1k2k3

m
(1)
fk1
m

(2)
tk2
m

(3)
lk3

(4.0.3)

=
K∑
k=1

m
(1)
fkm

(2)
tk m

(3)
lk (4.0.4)

where k1, k2, k3 = 1, 2, 3, · · · , K.

Proof Since M (0) ∈ RK3
,M (1) ∈ RF×K , then by definition of 1-mode product,

M (0) ×1 M
(1) ∈ RF×K×K . For the same reason, M (0) ×1 M

(1) ×2 M
(2) ∈ RF×T×K .
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Therefore, M (0)×1M
(1)×2M

(2)×3M
(3) ∈ RF×T×L. Now we will see how to compute

the product.

L.S. =
K∑

k3=1

(
M (0) ×1 M

(1) ×2 M
(2)
)
ptk3

m
(3)
lk3

=
K∑

k3=1

(
K∑

k2=1

(
M (0) ×1 M

(1)
)
pk2k3

m
(2)
tk2

)
m

(3)
lk3

=
K∑

k3=1

(
K∑

k2=1

(
K∑

k1=1

m
(0)
k1k2k3

m
(1)
fk1

)
m

(2)
tk2

)
m

(3)
lk3

=
K∑

k1,k2,k3=1

m
(0)
k1k2k3

m
(1)
fk1
m

(2)
tk2
m

(3)
lk3

= (4.0.3) (4.0.5)

Based on the definition of M (0) in (4.0.1), we can further simply the expression

(4.0.5), since the terms in summation are all zeros except when k1 = k2 = k3

(4.0.5) =
K∑

k1,k2,k3=1

m
(0)
k1k2k3

m
(1)
fk1
m

(2)
tk2
m

(3)
lk3

=
K∑
k=1

m
(1)
fkm

(2)
tk m

(3)
lk = (4.0.4) (4.0.6)

The proposition (4.0.1) gives us an insight about how CPD works. The rank K, which

is a latent factor, becomes the column number of matrix in each axis, and the matrix

in each axis corresponds to information concerning that specific dimension.

Since right now, the data-set has been decomposed or interpreted into three ma-

trices as M (1) ∈ RF×K ,M (2) ∈ RT×K ,M (3) ∈ RL×K , we can build our prediction

based on this tensor decomposition to forecast future demands of taxis in NYC.

Considering our objective in this paper is to forecast future demands of taxis in

New York City, therefore the rest of axes: locations and features should remain the

same, since in a short time, features and locations will not change too much. This

indicates that we only need to predict the axis of time M (2) ∈ RT×K . More precisely,

we will be needed to count every taxi service in every location in New York City,
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where will be later the numbers in entries of tensor. Since the count is non-negative

by all means, thus it is wise to assume those factor matrices we will be getting are

non-negative in all entries. This yields that we can define our penalty functions as

indicator functions 1R−(·) [46].

gi(M
(i)) =

∑
j,k

1R−(m
(i)
j,k) (4.0.7)

where

1R−(x) =

 1 if x ∈ R−
0 if x /∈ R−

(4.0.8)

Moreover, we want to make sure it is impossible to take negative entries in factor

matrices, which leads to define all the coefficients λi = +∞, which indicates that the

whole regularization is actually a characteristic function χR−(·) [47]:

χR−(x) =

 +∞ if x ∈ R−
0 if x /∈ R−

(4.0.9)

Thus, the loss function can be rewritten as

loss =
∥∥X −M (0) ×1 M

(1) ×2 M
(2) ×3 M

(3)
∥∥+

3∑
i=1

χR−(M (i)) (4.0.10)

Based on the discussion in previous sections, we will use ALS algorithm to find

these factor matrices. Algorithm (1) shows how it works.

After factorization, we can operate on prediction. Since M (2) represents temporal

factors, we need to “extend” our M (2) by having more timestamps. It can be assumed

that the near future should be developed by data from the past. This brings vector

autoregression model (VAR) into place. In our case, the time series {xt} is defined

as

xt =


m

(2)
1t

m
(2)
2t

...

m
(2)
kt

 (4.0.11)



20

Algorithm 1 ALS Algorithm

1: procedure CPD-ALS(X , K)

2: Initialize M (1) ∈ RF×K
+ ,M (2) ∈ RT×K

+ ,M (3) ∈ RL×K
+ // Non-negative factor

matrices

3: repeat

4: for i = 1, 2, 3 do

5: Optimize non-negative M (i) while the rest fixed // By using method

in [48]

6: end for

7: until loss function 4.0.10 stops to improve

8: return M (1),M (2),M (3)

9: end procedure
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Thus, M (2) can be broken down as a k-dimensional time series; note that in order to

explain better, M (2) has been transposed, and M
(2)
pred is the prediction based on VAR

model. [
M (2) |M (2)

pred

]ᵀ
= (x1,x2, · · · ,xt | xt+1,xt+2 · · · ) (4.0.12)

However, since the daily taxi data is largely following a pattern every day, which

means there should be a frequency of 24 hours within the factor matrix. By adding

seasonal adjustment [49], we can make the VAR model more reasonable. Given that

thought and the seasonal period p, then we can add a seasonal dummy variable sd

into the model we previously present, where

sdt = cs,where s = t mod p (4.0.13)

In this expression, c will be a K × 1 constant vector, no matter how t changes.

Therefore, the model can be inferred as below:

xt = φ0 +

p∑
i=1

φixt−i + sdt + at (4.0.14)

This implies that xp and xt−p should have the same seasonal dummy variable: this

is exactly what we need.

After the prediction, we can recover the cube of three dimensions by using the

same factor matrices M (1) and M (3) with the new prediction of M
(2)
pred. Figure 4.0.1

illustrates how the model pipeline is built, in which F represents feature component,

L locations, T time and K represents latent factors.
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Fig. 4.0.1. Model Pipeline
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5. CASE STUDY

We conducted a case study with NYC Taxi and Commission data [13] to predict

the number of pickups and drop-offs in the designated zones.

5.1 Data Description

There are two types of taxis in New York City: yellow and green. Yellow taxis are

those taxis which are traditionally hailed in every part of New York City, while green

taxis are only available in all areas except Mid-town, Manhattan and airports. To

train the model, we selected trips of yellow taxis and green taxis during the second

seven days of November 2019 as training set and forecast the following two days to

evaluate the model we built. The number of training records is 3,534,248 and the

number of test records is 1,096,253. The attributes of trip records include pick-up

and drop-off times, pick-up and drop-off locations, trip distances, itemized fares, rate

types, payment types, and driver-reported passenger counts.

5.2 Data Exploration

To get more familiar with the experiment data, we first explored the data-set

manually using data visualization. The area of New York City have been divided

into 265 zones, and pick-up and drop-off locations are designated by those indices.

Also, the geographical information of each zone is stored in a ShapeFile directory.

By loading these data, we had the maps of zones and boroughs of New York City as

shown in Figure 5.2.1.

Furthermore, we loaded the data of taxis from November 2019 to December 2019

to see which zones were the most popular by grouping all the zones.
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Fig. 5.2.1. Boroughs and zones of NYC through shapefile

Fig. 5.2.2. Popular zones in NYC

As shown in Figure 5.2.2, the most popular areas are mostly in downtown and

Manhattan. There are two exceptions, which are in the right bottom and the right

top of the map. These two zones represent JFK International Airport and LaGuardia

International Airport, which makes perfect sense. The rest of areas are mainly white

gray, meaning there are much fewer street-hails for taxis, compared with those above.
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To forecast future daily demand of taxis, it is wise to take a look at the daily pat-

tern of taxis. We divided taxi trips into two groups based on their distance (threshold

we chose here is 30 miles), and counted the trips in a hourly basis. Figure 5.2.3 shows

Fig. 5.2.3. Daily Patterns of Pick-up and Drop-off time of Taxi Trips

that long trips and short trips are largely following the same pattern. The peak hours

are both around 17:00 to 21:00, when people go back to home or maybe hang out

with friends.
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5.3 Data Pre-processing

Based on what we had learned in data exploration, we used zone ID’s as spa-

tial dimension, timestamps as temporal dimension and other features as the third

dimension. These constructed a third-order tensor. Each entry of tensor indicated

the corresponding counts given certain time, location and features. For discretion in

time, we counted taxi trips on a half-hour basis, which is not too small or too big.

Since taxi trips were counted without considering more details about trips them-

selves, there were only a few columns within the data-set that were used: pickup

time, drop-off time and location ID’s for each. These four features later formed four

columns in the third dimension of tensor. After selecting these columns, the data-set

looked like Table 5.3.1. All the original data-sets was first transformed into this.

Table 5.3.1.
An example of processed after selecting columns

index pickup datetime dropoff datetime PULocationID DOLocationID

0 2019-11-01 0:25:27 2019-11-01 0:33:52 74 263

1 2019-11-01 0:39:13 2019-11-01 0:46:38 75 74

2 2019-11-01 0:55:35 2019-11-01 1:00:29 75 74

3 · · · · · · · · · · · ·

After selecting the features, we pre-processed our data-set from there to build our

tensor. Figure 5.3.1 shows how we converted the pre-processed table into a tensor that

we needed to further explore for CPD. It is worthwhile to note that in the procedure

of “Turn into spreadsheet”, we converted location ID into new variables for every

feature (pick-up yellow, drop-off yellow, pick-up green, drop-off green), which means

there were 265 columns responsible for each taxi zone: this is how we created the

spatial dimension as an example in Table 5.3.2. Therefore, we had four spreadsheets

concerning each feature, which would later be stacked together into a tensor.
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Load data

Change into uniform column names

Clean invalid timestamps

Create time window

Split into “pickup” and “dropoff”

Group by and count for each window and location

Add missing locations

Turn into spreadsheet (Table 5.3.2)

Stack into tensor

Trim datetime into half-hour

Further Tensor Operations...

Two tables

Fig. 5.3.1. Pre-processing Pipeline
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After pre-processing the data-set, we had a tensor containing all the trip counts

concerning each time window, each location and each feature. Since we used 30

minutes as time window, therefore the tensor X was a third-order tensor with 4 ×

336× 265 entries.

Table 5.3.2.
An example of spreadsheet for pick-up data from yellow taxi

PPPPPPPPPPPPPP
Time

Location
0 1 2 3 · · · 264

2019-11-01 0:00 0 0 0 35 · · · 1

2019-11-01 0:30 0 0 0 29 · · · 2

2019-11-01 1:00 0 0 0 20 · · · 5

· · · · · · · · · · · · · · · · · · · · ·

5.4 Experiment Setting

The latent factor K we chose in the model for CPD was 2, since in theory, this

factor should represent the rank of tensor X , which should be no greater than the

number in each dimension. This means K 6 4, but for CPD, a much less K should

be chosen. That is why we chose K = 2.

In our implementation, we used Google Colaboratory platform [50] for tensor anal-

ysis and all other operations including vector autoregression. It provides free GPU

resources to enhance performance throughout the analysis. For programming lan-

guage, we used Python3 for all operations concerning tensors and pre-processing, and

R to deploy Vector Autoregression (VAR), since time series is much better handled

in R.
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5.5 Evaluation Metrics

When building a VAR model, the lag parameter p needs to be determined. Here

we compared the four estimators of Akiake Information Criterion (AIC) [51,52], Han-

nan–Quinn Information Criterion (HQ) [53], Schwarz Information Criterion (SIC) [54]

and Final Prediction Error (FPE) [55, 56] to determine p. The less all the four esti-

mators are, the better the model fits.

After building the model, we evaluated it. Suppose the predicted tensor is X̂ ∈

RF×T̃×L and the ground truth tensor is X ∈ RF×T̃×L, which shows real counts of taxi

trips in the following two days. Then we used relative error (RE) [57] to determine

whether the model was good or not.

RE =

∑
f,t̂,l

|x̂f,t̂,l − xf,t̂,l|∑
f,t̂,l

xf,t̂,l
(5.5.1)

5.6 Building Model

After implementing CPD with K = 2, we had three matrices M (1),M (2),M (3)

representing factors of features, time and locations, respectively. Later on, we dealt

with temporal factor matrix M (2) ∈ R336×2. The graph below shows two temporal

factors as time series format. From Figure 5.6.1, we could find an apparent daily

pattern within each factor. Note that the beginning day of the training period was

November 8th, 2019, which was Friday. Hence interestingly, f1, which is the first tem-

poral factor, explained some hidden information concerning business work, since there

were peaks repeating on daytime every weekday, and also lower peaks on weekends,

whereas f2 somehow explained demand for entertainment and nightlife of people,

since the highest peaks were on Friday night and Saturday night and much lower but

still significant spikes on every evening.

To predict future demands, we forecast the temporal matrix. Since the repeating

pattern was daily based, thus the length of seasonal dummy variables we chose was
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Fig. 5.6.1. Temporal Factor Matrix in Time Series Format

48. (Time window is half an hour.) We got the following result in Table 5.6.1: Since

all the four estimators are smaller the better, we used p = 7 for our lag parameter.

Thus the VAR model we used was VAR(7) with seasonal dummy variable 48. Figure

5.6.2 shows the forecasting result, and seasonal coefficients are shown in Figure 5.6.3.

From seasonal coefficients shown, we observed that those of both temporal factors

had a spike (only concerned absolute values) around 8:00 - 9:00 in the morning, also

f1 had a mild peak in early evenings while f2 had the same but at late nights, which

accorded with our previous observation that f1 explained business information while

f2 explained entertainment information. From the predictions of temporal factors,

we could clearly see that by using VAR model with seasonal variables, it could learn

the daily pattern. Finally we transformed all factor matrices into a predicted tensor

by using the same n-mode product we had used before to employ CPD.
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Table 5.6.1.
VAR Model Selection

p 1 2 3 4

AIC(p) −2.106932e + 01 −2.163369e + 01 −2.169418e + 01 −2.168991e + 01

HQ(p) −2.060576e + 01 −2.115159e + 01 −2.119354e + 01 −2.117073e + 01

SIC(p) −1.990769e + 01 −2.042560e + 01 −2.043963e + 01 −2.038889e + 01

FPE(p) 7.109373e− 10 4.045714e− 10 3.810760e− 10 3.829823e− 10

p 5 6 7 8

AIC(p) −2.171945e + 01 −2.177926e + 01 −2.188674e + 01 −2.187454e + 01

HQ(p) −2.118172e + 01 −2.122299e + 01 −2.131193e + 01 −2.128119e + 01

SIC(p) −2.037196e + 01 −2.038531e + 01 −2.044632e + 01 −2.038766e + 01

FPE(p) 3.721245e− 10 3.508108e− 10 3.153430e − 10 3.195172e− 10

p 9 10

AIC(p) −2.186388e + 01 −2.188162e + 01

HQ(p) −2.125198e + 01 −2.125118e + 01

SIC(p) −2.033053e + 01 −2.030181e + 01

FPE(p) 3.232707e− 10 3.179289e− 10

5.7 Experiment Results

Results in Key Zones In order to evaluation our model, we first chose some key

zones in New York City and computed their relative errors. The list of key Zones

is shown as Table 5.7.1. After recovering the tensor, we could finally evaluate our

model as shown in Figure 5.7.1. From the figure, we can observe that for those key

zones, the relative errors are generally small. However, there are some outliers on the

top part of the graph: all are bigger than 1. Since they were computed as relative

errors, this implied that the scopes of error in these zones were even bigger than

those of original data. This seemed unacceptable, but further investigation told us

that those zones all had extreme low demands of taxis: the suburb area of NYC. It
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Fig. 5.6.2. Forecast of Temporal Factors

was because the scopes of data were too small that made relative errors meaningless

and also the predictions. Figure 5.7.2 shows how one of those zones having the most

demands of taxis is predicted. Note that Upper Eastside N. is in Manhattan, where

a lot of business occurs. From the graph, we find out that green taxis are much

worse predicted than the yellow ones, which is understandable, since green taxis are

not allowed in this area, yielding that the scope of data is too small, which leads

to the meaninglessness of prediction. On the other hand, both pick-up and drop-off

predictions of yellow taxis capture the daily pattern and are well fit.

It seems that the model works well in the central business district, but the pre-

diction of the airport is slightly worse as shown in Figure 5.7.3. The main reason is

because the daily pattern at the airport is very different from other places: there are

no two factors concerning business and entertainment as mentioned early, and there
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Fig. 5.6.3. Seasonal Coefficients

are literally no street-hails at the airport, which is very different from how things

work in Manhattan.

Comparison with other models We compared our proposed model with other

models that were used in New York Taxi Data, such Gaussian Process [14], FMST [15],

TRMF [16] and DAR [12] by relative errors. The previous three models have been

tested systematically and reviewed by Takeuchi et al. Only Takeuchi et al. use tensor

methods, while the rest focus on matrix methods. Table 5.7.2 shows the testing results

concerning RE. In the table, it is obvious to see that except DAR model, our proposed

model records the best behavior concerning relative error. This gives us some insights

that tensor methods, especially tensor decomposition, work much better than other

methods, when it comes to spatio-temporal data, since the data naturally are better

displayed in tensor. Therefore, it is reasonable that tensor methods are more capable
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Table 5.7.1.
List of Key Zones

ID Zone Name

47 Clinton East

99 Garment District

131 JFK International Airport

137 LaGuardia International Airport

185 Penn Station

235 Upper Eastside North

236 Upper Eastside South

260 Midtown Center
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Total Error=3.483e−01

(4, 1.816)

(22, 2.005)
(43, 2.097)

(47, 0.238)

(57, 2.094)

(95, 1.936)

(99, 0.224)

(117, 1.834)

(131, 0.578)
(137, 0.633)

(185, 0.218)

(203, 2.431)

(205, 1.950)

(233, 0.208)(235, 0.193)(236, 0.173)

(244, 1.943)(250, 1.980)

(260, 0.382)

Dis ribu ion of Rela ive Error

Fig. 5.7.1. Relative Error for Each Zone

of capturing latent inter-dependencies. However, our model performances not as well

as DAR model. The main reason behind it is perhaps in our model did not apply



35

0 100 200 300 400
Time

0

1

2

3

4

5

6

De
m
an

d

Green Pickup at Upper Eastside N.
truth
prediction

0 100 200 300 400
Time

0

100

200

300

400

500

De
m
an

d

Yellow Pickup at Upper Eastside N.
truth
prediction

0 100 200 300 400
Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

De
m
an

d

Green Dropoff at Upper Eastside N.
truth
prediction

0 100 200 300 400
Time

0

100

200

300

400

500

De
m
an

d

Yellow Dropoff at Upper Eastside N.
truth
prediction

Fig. 5.7.2. Taxi Prediction at Upper Eastside N.
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Fig. 5.7.3. Taxi Prediction at JFK Airport

geographical correlation explicitly as DAR model does: we only implicitly learned

the spatial dependency during tensor decomposition. When we imposed CPD on the
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Table 5.7.2.
Comparison of Different Models

Model GP FMST TRMF DAR Our Model

Relative Error 1.683 0.653 0.350 0.312 0.348

tensor, overlooking this correlation might have some impact on the model, which led

to worse performance.

Causality As we mentioned before, the two temporal factors represent two different

kinds of information: business and entertainment. It seems that they are not corre-

lated with each other. To validate that, we employed F-type Granger-causality [30]

test and Wald-type test [58] to see if p-value is significant. The result is shown in

Table 5.7.3. It is clearly to see all the p-values are not significant, which means that

Table 5.7.3.
Causality Test

H0: There is no Granger-cause.

p-value f1 versus f2 f2 versus f1

Granger Test 2.354e− 04 4.770e− 07

Wald Test 1.623e− 05 1.623e− 05

the hypothesis H0 is refused, meaning there is no Granger-cause between these two

temporal factors. This implies that they are not correlated and it is possible to predict

them separately as uni-variate time series.
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6. CONCLUSION

In this paper, we proposed a combined model consisting of CPD and VAR Model

with seasonal variables to find latent daily patterns of taxi demands in each taxi

zone within NYC Taxi Data, and therefore used that information to forecast future

demands of taxis. The result produced by the proposed model is the best among

previous models except DAR, which uses geographical inference. Our model compared

with other models is more straightforward. We believe that by introducing seasonal

variables can help improve results, especially in temporally periodic data-set of large

scale like NYC Taxi Data-set.

For our model, there is still a lot of work that is worth exploring in the future.

First of all, we have not considered geographical inference in our model, which is a

potential way to improve our model, given the smaller relative error in DAR model.

Secondly, because taxis are mainly served in the areas having dense population, it is

potentially not wise to include those suburban zones where taxis are rare. Perhaps it is

better to exclude those zones, and also predictions in those areas should not be trusted

due to limited scopes of data. Furthermore, VAR model is a simplified version of a

more complicated model VARMA model, which introduces moving average of white

noises. This will be interesting to try out. Last but not least, in our model, there

are typically two models: CPD and VAR. To achieve the pipeline, we estimated the

two models separately, that is, we chose the best estimation of the first, and then

based on this estimation, we optimized the next. This would potentially lead to the

problem of local optimum. It may be better to estimate two models together, and

then forecast, which potentially needs global optima of all parameters. This could be a

very interesting problem to dig into: how to combine two models together to produce

a globally optimal outcome. It will definitely need more theoretical deductions, which

still remains open.
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[17] S. Rabanser, O. Shchur, and S. Günnemann, “Introduction to tensor de-
compositions and their applications in machine learning,” arXiv preprint
arXiv:1711.10781, 2017.

[18] C. Khatri and C. R. Rao, “Solutions to some functional equations and their ap-
plications to characterization of probability distributions,” Sankhyā: The Indian
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