
I-BOT: INTERFERENCE BASED ORCHESTRATION OF TASKS FOR

DYNAMIC UNMANAGED EDGE COMPUTING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Shikhar Suryavansh

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Prof. Saurabh Bagchi, Co-Chair

School of Electrical and Computer Engineering

Prof. Mung Chiang, Co-Chair

School of Electrical and Computer Engineering

Prof. Xiaojun Lin

School of Electrical and Computer Engineering

Prof. Somali Chaterji

Agricultural and Biological Engineering

Approved by:

Dr. Dimitrios Peroulis, Head of the Graduate Program

School of Electrical and Computer Engineering

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Prof. Saurabh Bagchi

for providing me with this research opportunity. His guidance and insights substan-

tially enriched my research journey at Purdue University. Without his continuous

support and encouragement, the goal of this project would not have been realized. I

also cherish the friendly chats we had that helped me gain a unique perspective on

the life in academia and the industry.

I would like to extend my sincere thanks to my co-advisor, Prof. Mung Chiang

for providing valuable feedback throughout the course of this project. The meetings

and conversations with him played an important role in thinking outside the box and

coming up with innovative ideas.

I am also grateful to the other members of my advisory committee, Prof. Xiaojun

Lin and Prof. Somali Chaterji for providing valuable inputs and help throughout

my graduate study. My heartfelt thanks to all the members of ECE graduate office,

especially Matt Golden who was always there for any help and clarification during my

Master’s program. Also, I would like to acknowledge the financial support provided

by NSF that funded this project.

I wish to thank my fellow labmates at DCSL: Heng Zhang, Atul Sharma, Ran Xu

and Manish Nagraj, for the stimulating discussions and advice which helped me in

shaping my ideas better. Also, I would like to thank my friends at Purdue University:

Ajinkya Mulay, Chandan Bothra, Poorva Parande, Rujuta Barve and Yash Gugale,

for always being there for me and making this journey fun and enjoyable.

Last, but not the least, I would like to thank my parents and my brother for

always being my support system and constantly motivating me. This journey would

not have been possible without them.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

2 PERFORMANCE EVALUATION OF EDGE COMPUTING MODELS . . . 7

2.1 Methodology . 7

2.1.1 Edge Computing Models . 7

2.1.2 EdgeCloudSim . 8

2.1.3 Performance Metrics . 9

2.2 Comparison of Exclusive Mobile, Edge and Cloud Models in Ideal Con-
ditions . 9

2.3 Need for Hybrid Models . 11

2.3.1 Unsuitability of Cloud . 11

2.3.2 Unsuitability of Edge . 12

2.4 Performance of Hybrid Models . 13

2.4.1 Edge & Cloud Hybrid . 13

2.4.2 Mobile & Edge Hybrid . 14

3 MOTIVATION AND CHALLENGES IN UNMANAGED EDGE COMPUT-
ING . 16

3.0.1 Motivating Example . 16

3.0.2 Challenges and Responses . 17

4 SYSTEM OVERVIEW . 20

5 DESIGN . 22

5.1 Application Structure . 22

v

Page

5.2 Pairwise Incremental Service Time Plots 22

5.3 Interference Profiling: Adding a New Unmanaged Edge Device 25

5.4 UED Availability Prediction . 26

5.5 Orchestration Scheme . 27

5.6 Online Readjustment . 29

5.7 Unmanaged Edge Device Exit . 30

6 EVALUATION . 31

6.1 Feasibility of Unmanaged Edge: A Survey 31

6.2 Real-World Experiment . 32

6.3 Simulation Setting . 33

6.4 Evaluation of the Orchestration Schemes 35

6.5 Evaluation with Online Heterogeneity 37

6.6 Evaluation of Bandwidth Overhead . 39

6.7 Evaluation with Different Types of Application 40

6.8 Evaluation of Orchestration Overhead 40

6.9 Evaluation of Fairness . 41

6.10 Micro Evaluations . 42

6.11 Theoretical Analysis . 43

7 DISCUSSION . 45

8 RELATED WORK . 46

9 CONCLUSION . 48

REFERENCES . 49

A APPENDIX . 54

A.1 Theoretical Analysis . 54

vi

LIST OF TABLES

Table Page

5.1 Symbols and their definitions. 23

6.1 Average service time of tasks for different application types 33

vii

LIST OF FIGURES

Figure Page

1.1 User-Edge-Cloud continuum . 3

1.2 System Overview . 5

2.1 Models in Edge Computing: T1 (Mobile only), T2 (Edge only), T3 (Cloud
only), T4 (Edge & Cloud hybrid) and T5 (Mobile & Edge hybrid) 8

2.2 Comparison of service time of tasks in exclusive Mobile, Edge and Cloud
models in ideal conditions . 8

2.3 Comparison of percentage of failed tasks in exclusive Mobile, Edge and
Cloud models in ideal conditions . 8

2.4 Impact of reduction in WAN bandwidth on Cloud performance 12

2.5 Impact of increase in cost on Cloud performance 12

2.6 Impact of failure of edge servers on Edge performance 12

2.7 Impact of varying capacity on Edge performance 14

2.8 Comparison of Edge & Cloud hybrid model with Cloud model 14

2.9 Comparison of Mobile & Edge hybrid model with Edge model 14

4.1 System Timeline . 21

5.1 Experimental validation for computing the expected service time of a new
incoming task using Eq. (5.1); j and k are the number of tasks of T1 and
T2 already running on the UED respectively 24

5.2 Pairwise incremental service time matrix A; Q is the total number of UEDs
and N is the total number of different types of tasks in each application
instance . 25

6.2 Comparison of running average service time for different orchestration schemes36

6.6 Evaluation with different types of application 41

6.7 Evaluation of the orchestration overhead 41

6.8 Evaluation of fairness . 41

6.10 Comparison of analytical and simulation results 44

viii

A.1 The Markov chain representing the system 57

ix

ABSTRACT

Suryavansh, Shikhar MS, Purdue University, August 2020. I-BOT: Interference Based
Orchestration of Tasks for Dynamic Unmanaged Edge Computing. Major Professor:
Saurabh Bagchi.

The increasing cost of cloud services and the need for decentralization of servers

has led to a rise of interest in edge computing. In recent years, edge computing

has become a popular choice for latency-sensitive applications like facial recognition

and augmented reality because it is closer to the end users compared to the cloud.

However, the presence of multiple edge servers adversely affects the reliability due

to difficulty in maintenance of heterogeneous servers. In this thesis, we first evalu-

ate the performance of various server configuration models in edge computing using

EdgeCloudSim, a popular simulator for edge computing. The performance is evalu-

ated in terms of service time and percentage of failed tasks for an Augmented Reality

application. We evaluated the performance of the following edge computing models,

Exclusive: Mobile only, Edge only, Cloud only; and Hybrid: Edge & Cloud hybrid

with load-balancing on the Edge, and Mobile & Edge hybrid. We analyzed the impact

of variation of different parameters such as WAN bandwidth, cost of cloud resources,

heterogeneity of edge servers, etc., on the performance of the edge computing mod-

els. We show that due to variation in the above parameters, the exclusive models

are not sufficient for computational requirements and there is a need for hybrid edge

computing models.

Next, we introduce a novel edge computing model called unmanaged edge com-

puting and propose an orchestration scheme in this scenario. Although infrastructure

providers are working toward creating managed edge networks, personal devices such

as laptops, desktops, and tablets, which are widely available and are underutilized,

x

can also be used as potential edge devices. We call such devices Unmanaged Edge

Devices (UEDs). Scheduling application tasks on such an unmanaged edge system is

not straightforward because of three fundamental reasons—heterogeneity in the com-

putational capacity of the UEDs, uncertainty in the availability of the UEDs (due

to the devices leaving the system), and interference among multiple tasks sharing a

UED. In this work, we present I-BOT, an interference-based orchestration scheme

for latency-sensitive tasks on an Unmanaged Edge Platform (UEP). It minimizes

the completion time of applications and is bandwidth efficient. I-BOT brings forth

three innovations. First, it profiles and predicts the interference patterns of the tasks

to make scheduling decisions. Second, it uses a feedback mechanism to adjust for

changes in the computational capacity of the UEDs and a prediction mechanism to

handle their sporadic exits, both of which are fundamental characteristics of a UEP.

Third, it accounts for input dependence of tasks in its scheduling decision (such as,

two tasks requiring the same input data). To demonstrate the effectiveness of I-BOT,

we run real-world unit experiments on UEDs to collect data to drive our simulations.

We then run end-to-end simulations with applications representing autonomous driv-

ing, composed of multiple tasks. We compare to two basic baselines (random and

round-robin) and two state-of-the-arts, Lavea [SEC-2017] and Petrel [MSN-2018] for

scheduling these applications on varying-sized UEPs. Compared to these baselines,

I-BOT significantly reduces the average service time of application tasks. This re-

duction is more pronounced in dynamic heterogeneous environments, which would be

the case in a UEP.

1

1. INTRODUCTION

A lot of service providers host their applications on the cloud because of the benefits

of reliability, scalability and cost-effectiveness. According to a recent survey [1],

90% of the companies are hosted on the cloud. However, with an increase in the

number of latency-sensitive applications like artificial intelligence, cloud gaming, and

augmented reality, there has been a rising interest in edge computing [2]. Cloud being

far from the end users is unable to support the stringent latency requirements of such

applications. In the case of edge computing, computational resources are placed

closer to the end users, thereby reducing latency. Although hosting applications on

the edge is attractive, edge computing adds several challenges for service providers

that are distinct from cloud computing. The computational resources on the edge

are heterogeneous and may not be as powerful or dependable as the cloud computing

servers. Also, the available edge resources are at varying geographical distances from

the users and the closest resource may not always provide the optimal service time

for the applications. Therefore, when multiple users simultaneously send requests

pertaining to different applications in an edge computing scenario, selecting the “best”

edge device to serve the requests is non-trivial.

In our work, we first investigate the performance and scalability of various existing

edge computing models. In particular, we consider five computing models: three

exclusive models: Mobile only, Edge only, Cloud only and two hybrid models: Edge

& Cloud hybrid with load-balancing on the Edge, and Mobile & Edge hybrid. We

use EdgeCloudSim [3], an open source simulator for edge computing with possibilities

to conduct experiments based on both computational and networking resources. We

focus on an Augmented Reality application in EdgeCloudSim and consider the impact

of the variation of the following parameters:

2

• WAN and WLAN bandwidth: These help in controlling the rate of data transfer

from the client to the servers, either edge or cloud.

• Number of edge servers: It is used to simulate edge failures. As the edge servers

are not as robust as the cloud, a lot of failures can occur leading to a reduction

in the number of available edge servers.

• Number of cloud hosts: We have used the number of cloud hosts to simulate

varying cost of cloud resources under the assumption that if the cloud becomes

expensive, the number of affordable cloud hosts would come down.

• Capacity of edge servers: To simulate the heterogeneity in edge servers, we have

used edge servers with varying capacity in terms of MIPS (Million Instructions

Per Second) rating.

• Number of mobile clients: We evaluate the performance of the models as the

number of mobile clients increases thereby putting more load on the network.

We found that the exclusive cloud model is the optimal choice under ideal condi-

tions. However, a high variation in the parameters in the real world could result in

constrained conditions such as low WAN bandwidth, high edge server failures, etc.

In such scenarios, the exclusive models become unsuitable and we see that the hybrid

models perform better.

We then introduce the concept of “unmanaged edge”. Terms such as “cloudlets” [4,

5], “micro data centers” [6,7], and “fog” [8,9] have been used in the literature to refer

to small, edge-located data centers. These cloudlets are managed by infrastructure

providers such as Amazon [10], Cisco [11], and Google [12]. However, with an increas-

ing interest in executing latency-critical applications on the edge, and the personal

devices such as laptops/desktops/tablets becoming more powerful than ever, there is

a scope of utilizing these devices as potential edge “servers”. We call such devices

“Unmanaged Edge Devices” (UEDs). This can be thought of as moving a step

closer to the end users in the user-edge-cloud continuum (shown in Figure 1.1). A

possible scenario where unmanaged edge can be useful is in real-time road traffic ana-

3

Fig. 1.1.: User-Edge-Cloud continuum

lytics using the video feed from traffic signal cameras. This involves significant video

processing in real time to detect events like road accidents, traffic congestion, over-

speeding, etc. Since this application is highly latency sensitive, using cloud for the

processing would not suffice. In this scenario, the unmanaged edge devices available

in the vicinity can be utilized.

Our Solution: I-BOT

In this thesis, we present I-BOT, Interference-Based Orchestration of Tasks, for

unmanaged edge computing. I-BOT optimizes the service time and the bandwidth

utilization of complex applications with multiple tasks that are to be offloaded to

the UEDs. We focus on task orchestration in an unmanaged edge because of the

following reasons. First, managed edge devices are not yet widespread and obviously

such infrastructure deployment requires significant cost and efforts to make them

ubiquitous. Second, almost everyone today has powerful computing devices which

are rarely utilized to their capacity. We propose using these existing underutilized

resources instead of investing heavily in the infrastructure for managed edge. We

4

verified the feasibility of unmanaged edge through a user survey (Figure 6.1) in which

86.4% of the participants indicated their willingness to participate in unmanaged edge

computing (under one of four proposed incentive schemes).

There has been a significant amount of work [13–17] on scheduling tasks in a

managed edge computing platform. However, since the unmanaged edge devices are

not supervised by a particular entity, scheduling tasks to minimize latency in this

scenario poses some unique challenges. These include substantial heterogeneity in

computational capacity of the UEDs and task interference patterns among co-located

tasks on one device, as well as runtime variations in the usable capacity of the edge

devices. Also, the UEDs may only be available sporadically and have unpredictable

churn. The existing scheduling schemes do not holistically consider all of these unique

challenges and hence are not sufficient for task orchestration in an unmanaged set-

ting. Also, many existing works [18–21] utilize the monitoring information provided

by the edge devices such as CPU usage, frequency, memory usage, etc. to make de-

cisions regarding which edge device a particular task should be offloaded to. In the

case of unmanaged edge, this information may not be readily available due to privacy

concerns by the owner of the device, the performance perturbation to collect such

monitoring data, and the network cost of conveying that data. Even if it is available,

with the amount of added dynamism and heterogeneity introduced by unmanaged

edge, the information quickly becomes stale and making decision based on such in-

formation may not work. For example, a more powerful laptop may execute a task

faster than a less powerful tablet, even if the current CPU usage is much higher for

the laptop. A geographically closer computationally less powerful tablet may execute

a task faster than a geographically farther more powerful laptop. Additionally, if we

factor in the interference caused by co-located applications on a particular unman-

aged edge device, decision making based on monitoring individual edge devices may

be inaccurate or unscalable. I-BOT overcomes these challenges and minimizes the

service time and bandwidth overhead of tasks in the unmanaged edge scenario.

5

Fig. 1.2.: System Overview

Figure 1.2 presents an overview of the main components of I-BOT. Each applica-

tion instance from an end user consists of N tasks, some of which are dependent in

that they may require the same input data for execution. Application instances are

sent to our orchestrator (I-BOT) which schedules the tasks to the available heteroge-

neous UEDs. The orchestration scheme includes interference profiling of the available

UEDs, selecting the optimal UEDs for the execution of tasks based on this profiling

information and input parameters (such as the number of tasks running on the UEDs

computed based on the number of tasks sent and responses received by the orches-

trator), adjusting for the online heterogeneity based on the feedback and an efficient

mechanism for UED exit1. The UEDs are selected to minimize the service time of the

tasks and reduce the bandwidth overhead. Bandwidth overhead can occur if tasks

that require the same input data are sent to different UEDs, especially if the input

data is huge. I-BOT does not require any monitoring information from the UEDs.

In our evaluation, we compare I-BOT to two intuitive baselines (random and

round-robin assignment of tasks) and two state-of-the-art solutions, LAVEA [14] and

Petrel [13]. Compared to the existing schemes, I-BOT significantly reduces the aver-

1For simplicity of exposition, we describe the orchestrator as if it is centralized. In practice, standard
fault-tolerance replication techniques can be used to make it distributed and fault-tolerant [22,23].

6

age service time of application instances by at least 61% (Figure 6.2). The reduction

in average service time is more significant in the presence of online heterogeneities

such as variation in the computational capability of UEDs (Figure 6.3) or sporadic

availability of UEDs (Figure 6.4). At the same time, the bandwidth overhead for

I-BOT is at least 56% lower than that of the other schemes (Figure 6.5).

Contributions: Our contributions in this paper can be summarized as follows.

1. We present I-BOT, an interference-based dynamic task orchestration scheme to

execute user applications consisting of multiple tasks in a heterogeneous unman-

aged Edge computing environment. I-BOT optimizes for latency and bandwidth

overhead in a configurable manner.

2. Our proposed orchestration scheme takes into consideration the heterogeneity in

interference patterns across multiple UEDs, the sporadic availability of UEDs,

and the runtime variations in their computational capacity due to co-located ap-

plications. It does not require any monitoring information from the UEDs.

3. We perform extensive simulations and real-world evaluations to demonstrate the

effectiveness of I-BOT over four baseline solutions.

The rest of the thesis is organized as follows: Section 2 provides the performance

evaluation of various existing edge computing models. Section 3 presents the mo-

tivation for unmanaged edge computing and the main challenges involved in task

orchestration in this scenario. Section 4 provides a high-level overview of the system

components. Section 5 presents the design of the proposed orchestration scheme and

Section 6 the evaluation results. Section 7 elaborates on extensions to our work.

Finally, Section 8 discusses related work and Section 9 concludes the thesis.

7

2. PERFORMANCE EVALUATION OF EDGE

COMPUTING MODELS

2.1 Methodology

In this section, we describe the different existing edge computing models and

provide details about EdgeCloudSim, the simulator used for our simulations. We also

describe the performance metrics used for comparison of the models.

2.1.1 Edge Computing Models

The current Mobile-Cloud computing model is a two-tier architecture. Edge com-

puting augments this model by providing a third tier. Figure 2.1 presents five types of

computing models possible with edge computing. As an extension of EdgeCloudSim,

we focus on these models: T1 (Mobile only), T2 (Edge only) and T3 (Cloud only)

are the exclusive models where the computation takes place only on the Mobile, Edge

or Cloud servers respectively. With the increase in computing capacity of mobile

devices, a large number of applications can be run on the mobile device itself (T1).

However, applications such as Augmented Reality, Computer Vision, etc. implement

high computational features such as scene understanding, object recognition and ob-

ject classification [24]. Hence, there is a need to communicate with a Cloud (or

Edge) to satisfy the higher computational demands. The performance of a particular

exclusive model may vary a lot with the network conditions and other parameters.

Therefore, we consider two hybrid models as well: T4 and T5. In T4, the Edge &

Cloud hybrid model, the edge servers can also offload tasks to the Cloud, whenever

required. T4 which is built on top of T2 offers more flexibility by load-balancing

jobs among multiple edge servers and the cloud server. Finally we consider a Mo-

8

Fig. 2.1.: Models in Edge
Computing: T1 (Mobile
only), T2 (Edge only), T3
(Cloud only), T4 (Edge &
Cloud hybrid) and T5 (Mo-
bile & Edge hybrid)

Fig. 2.2.: Comparison of
service time of tasks in ex-
clusive Mobile, Edge and
Cloud models in ideal con-
ditions

Fig. 2.3.: Comparison of
percentage of failed tasks
in exclusive Mobile, Edge
and Cloud models in ideal
conditions

bile & Edge hybrid model T5 consisting of mobile devices and edge servers, shifting

the paradigm from Mobile-Cloud model to Mobile-Edge model. It illustrates how a

balance between computation at mobile devices and edge servers could yield better

service time and less failure of tasks.

2.1.2 EdgeCloudSim

To simulate the edge computing models, control the parameters and evaluate

the performance metrics, we need a simulator which can handle the network delays,

manage the location of edge and mobile devices, provide a utilization model for Edge

Virtual Machines (VMs) and an orchestrator to distribute the incoming tasks.

EdgeCloudSim [3] is a recent simulator which provides these features and has been

designed for performance evaluation of edge computing systems. EdgeCloudSim is

based on CloudSim [25], which is a mature cloud computing simulation framework.

9

2.1.3 Performance Metrics

We have used service time as one of the performance metrics for comparison

of various models. Service time refers to the total time from the initiation of an

application request by the client to the time application request is completed. It

includes both the network delay and the execution time.

We shall see that Edge Computing has its benefits but also introduces more failure

modes into current computing framework. Since we are interested in how edge servers

impact the performance, we will mainly focus on the additional failure modes brought

by edge computing and look at the percentage of failed tasks as another metric for

the comparison of the models. The tasks can fail due to lack of VM capacity or poor

network bandwidth. If the VM utilization is too high, new tasks cannot be accepted

leading to failures. Due to limited network capacity, tasks may be dropped if too

many clients connect to the same access point leading to failures.

2.2 Comparison of Exclusive Mobile, Edge and Cloud Models in Ideal

Conditions

In this section we compare the performance of exclusive Mobile, Edge and Cloud

configuration models considering ideal conditions. We focus on the Augmented Re-

ality application and observe the service time and percentage of failed tasks metrics.

Based on [3], we have chosen values of the parameters under ideal conditions as: WAN

bandwidth = 15 Mbps, WLAN bandwidth = 200 Mbps, No. of edge devices = 14,

No. of cloud hosts = 4, Capacity of edge devices = 4,000 MIPS, to understand the

default performance of the models.

The cloud hosts run on a single data center and each host contains four cloud

VMs. The capacity of each cloud VM is 10,000 MIPS which is significantly higher

compared to the capacity of edge servers. To obtain the plots, we varied the number

of mobile devices from 100 to 600, in intervals of 100. Figure 2.2 shows the obtained

service time plot.

10

From Figure 2.2, we can see that under ideal conditions, Cloud outperforms Edge

and Mobile by a huge margin. Cloud performs the task in a little less than 1 second

compared to Mobile which takes almost 10 seconds. Moreover, the time taken remains

constant for Mobile and Cloud irrespective of the number of mobile devices. This is

because under ideal conditions Cloud has abundant computational resources to handle

600 mobile clients simultaneously. For the exclusive Mobile model, the time remains

constant because an increase in the number of mobile devices increases both the

count of tasks and the number of mobile servers at the same rate. In the case of the

exclusive Edge model, we see an increase in the service time from 2 to 4 seconds as

the number of mobile devices increases. This is because the edge devices are limited

in number and do not have as high resources as the Cloud. Therefore, an increase in

the number of mobile clients results in exhaustion of resources and hence, an increase

in the service time for the exclusive Edge model.

A similar trend is observed for the percentage of failed tasks as shown in Figure 2.3.

The percentage of failed tasks in exclusive Cloud and Edge models is much lower

compared to that in the Mobile model under ideal conditions. It is because the Edge

and Cloud have sufficient computational capacity whereas the mobile has limited

capacity and will not be able to handle multiple simultaneous task requests.

These results show that for ideal values of the parameters, cloud computation

becomes an obvious choice. However, in the real world, there is a persistent variation

in the parameters which cannot be ignored. For example, the WAN bandwidth may

vary drastically from 1 Mbps to 17 Mbps [26]. Such variations in the parameters can

result in a degradation in the performance of the Cloud (or Edge) thereby creating a

need for better models. In Section 2.3, we focus on such variations in the parameters

which create a need for better hybrid models.

11

2.3 Need for Hybrid Models

In this section, we explore the performance of the exclusive Mobile, Edge and

Cloud models under constrained conditions and explain the need for hybrid models

to facilitate good performance in terms of service time and percentage of failed tasks.

As evident from Figure 2.2 and Figure 2.3, Cloud performs the best under normal

conditions. However, we need to look at the hybrid models (different combinations

of Mobile, Edge and Cloud) because of the dynamic changes in the network and the

possibilities of failures.

The exclusive Mobile model is independent of the network conditions or the other

parameters of interest to us. However, both Edge and Cloud models are susceptible

to a change in the parameters. We show that the performance of both Edge and

Cloud can degrade and they may become unsuitable under certain conditions.

2.3.1 Unsuitability of Cloud

In this section, we look at the variation of WAN bandwidth and cost of Cloud to

understand the degradation in the performance of Cloud.

Due to reduction in WAN bandwidth: A reduction in WAN bandwidth leads

to an increase in transmission delay which is critical in applications with high data

transfer such as Augmented Reality. Figure 2.4 shows the service time curves for

Cloud under different WAN bandwidth (1, 5, 10 and 15 Mbps) conditions, along with

the curves for Edge and Mobile. When WAN bandwidth becomes very low (1 Mbps),

the service time for Cloud is much higher than that for Edge. A similar degradation

was also observed in terms of the percentage of failed tasks.

Due to increase in the cost of the Cloud: The cost of the Cloud is an important

factor because with the high prices of cloud computation not everyone can afford

extensive cloud resources. We have simulated the cost of Cloud by varying the number

of cloud hosts (1, 2, 3 and 4) with the assumption that if Cloud is cheap, one can

12

Fig. 2.4.: Impact of reduc-
tion in WAN bandwidth on
Cloud performance

Fig. 2.5.: Impact of in-
crease in cost on Cloud per-
formance

Fig. 2.6.: Impact of fail-
ure of edge servers on Edge
performance

afford 4 cloud hosts. However, as the cost increases, the number of affordable cloud

hosts comes down.

Figure 2.5 shows the service time curves for Cloud as the cost varies along with

the curves for Edge and Mobile. As Cloud becomes very expensive (1 cloud host),

with a rise in the number of mobile devices, service time for Cloud becomes worse

than Edge due to limited computational resources. A similar trend is also observed

for the percentage of failed tasks.

2.3.2 Unsuitability of Edge

In this section, we study the unsuitability of Edge due to failure of edge servers

and heterogeneity in edge servers.

Due to failure of edge servers: There are Edge devices which are commercially

deployed, such as AWS IoT Greengrass [27] which extends AWS to Edge devices so

that they can act locally on the data they generate while using the cloud for man-

agement. Such deployments, though more reliable, are expensive and not commonly

used [28]. In general, the Edge devices are not as well maintained as the centralized

cloud servers and are more prone to failures [29]. Hence, the availability of the edge

servers can fluctuate drastically. A reduction in the number of available Edge servers

13

due to failures would result in a computational overload on the functional servers and

hence a degradation in the performance. Figure 2.6 shows that an increase in the

number of edge failures results in a higher percentage of failed tasks as the number of

mobile devices increases. Similarly, the service time for Edge becomes too high with

an increase in Edge failures.

Due to heterogeneity in edge servers: A major aspect where edge computing

differs from cloud computing is the heterogeneity in edge servers. The computational

resources of edge servers may vary from high capacity to low. This makes it difficult

to manage the execution of computationally intensive tasks on the Edge. Figure 2.7

shows the plot of the service time for edge servers with varying MIPS rating (from

1000 to 4000). As evident from Figure 2.7, with a reduction in the capacity of the

edge servers, the service time of the tasks increases. As the capacity becomes lower

than the capacity of Mobile, the service time on Edge can even become worse than

the service time on Mobile.

2.4 Performance of Hybrid Models

We showed in Section 2.3 that the performance of both Cloud and Edge depends

upon the variation of the parameters. Hence, relying on just the exclusive models

is not suitable. We need hybrid models which can perform reliably under a variety

of constraints. We perform the evaluation of the following hybrid models: Edge &

Cloud hybrid and Mobile & Edge hybrid.

2.4.1 Edge & Cloud Hybrid

We observed that under the constrained conditions in Section 2.3.1 (WAN band-

width = 1, cloud hosts = 1), the Cloud becomes unsuitable. Figure 2.8 compares the

service time of the Edge & Cloud hybrid model with the Cloud model under such

conditions.

14

Fig. 2.7.: Impact of vary-
ing capacity on Edge per-
formance

Fig. 2.8.: Comparison
of Edge & Cloud hybrid
model with Cloud model

Fig. 2.9.: Comparison of
Mobile & Edge hybrid
model with Edge model

We see that the Edge & Cloud hybrid model performs better than the Cloud

model in terms of the service time. This is because under the constrained conditions,

the hybrid model balances the load across the Edge servers and uses Cloud only after

the Edge capacity is exhausted which offsets the unsuitability of the Cloud. A similar

improvement in performance is also observed for the percentage of failed tasks.

2.4.2 Mobile & Edge Hybrid

The Mobile & Edge hybrid model uses a combination of mobile and edge servers.

If the computational resources of the mobile client are not sufficient for the tasks,

the tasks are orchestrated to the edge servers. This is useful if the mobile device

is not resource rich or is already running many demanding applications. Figure 2.9

compares the percentage of failed tasks in the Mobile & Edge hybrid model with the

Edge model under the constrained conditions observed in Section 2.3.2 (Edge devices

= 3, Edge MIPS = 1,000).

Under the constrained conditions, the percentage of failed tasks in the Mobile &

Edge hybrid model are close to nil compared to the high percentage of failures in

the exclusive Edge model as the number of mobile devices increases. It is because

the tasks are first executed on the mobile device until the computational limit is hit,

15

upon which the tasks are directed to the edge servers. Thus, the mobile device and

edge servers in the hybrid model receive less traffic compared to the exclusive models

leading to lower percentage of failed tasks. We also observed that when the number

of mobile clients is high (greater than 500), the hybrid model performs better than

the exclusive Edge model in terms of the service time as well.

16

3. MOTIVATION AND CHALLENGES IN UNMANAGED

EDGE COMPUTING

In this section, we consider a motivating example for the unmanaged edge computing

scenario and look at the unique challenges introduced by the unmanaged edge.

3.0.1 Motivating Example

Consider a typical application from the domain of autonomous self-driving cars [30].

It has the tasks listed below and we use this application in our evaluation (one of

three).

(a) Driver state detection using face camera

(b) Driver body position using driver cabin camera

(c) Driving scene perception using a forward-facing camera

(d) Vehicle state analysis using instrument cluster camera

Task (c) can further consist of multiple tasks like pedestrian detection, obstacle

detection, traffic signs analysis, etc. All these tasks would operate on the same input

data, i.e. the feed from the forward-facing camera. In this work, we focus on how

to offload user requests pertaining to the latency-sensitive applications (such as the

example above), in a heterogeneous unmanaged edge computing scenario. We aim at

minimizing latency while providing a configuration parameter that determines how

bandwidth conserving the allocation of tasks to UEDs is.

17

(a) Computational and geographical hetero-
geneity

(b) Heterogeneity in interference pattern

Fig. 3.1.: Challenges in unmanaged edge orchestration

3.0.2 Challenges and Responses

The notion of unmanaged edge introduces a set of unique challenges unseen in

traditional edge computing. Following are the main challenges involved in the orches-

tration of tasks in an unmanaged edge scenario and a brief statement about how we

handle each challenge.

Substantial heterogeneity in computational capacity and geographical dis-

tance of edge devices: The edge devices, which are personal laptops, tablets,

desktops, etc., in our case, consist of heterogeneous hardware and hence, the per-

formance of a task varies significantly on different edge devices. Also, different edge

devices are at different geographical distances from the orchestrator. Consequently,

the network delay also varies. Figure 3.1a shows the average service time (average

network delay + average computation time) of executing an image classification task

on four heterogeneous edge devices at varying distances from the orchestrator in a

production setting. The four UEDs are Samsung Galaxy Tab S4-2018 (UED1), Dell

Inspiron 15R-2013 (UED2), Macbook Pro-2018 (UED3) and iMac-2017 (UED4).

Note the huge disparity between the average network delay (max-min ratio 6:1) due

to geographical heterogeneity and the average computation time (max:min ratio 4:1)

due to computational heterogeneity among the UEDs.

18

Heterogeneity in task interference pattern: Different tasks, when running on

the same edge device, may interfere with each other affecting their service time.

There is a heterogeneity in the interference experienced by different types of tasks

on a UED. For instance, Figure 3.1b considers task T1, an image segmentation task,

which is simpler compared to T2, an image classification task. It shows the difference

between the interference of tasks of type T1 on T2
(
f21(T2, kT1)UED1

)
and T2 on T1

(
f12(T1, kT2)UED1

)
on UED1. The interference is quantified using fij(Ti, kTj)UEDp

which gives the execution time of a new task of type Ti on UEDp, given that k

tasks of type Tj are already running on the UED. It can be seen from the figure that

there is a high interference of T1 on T2 but almost negligible interference of T2 on

T1. Not only do different types of tasks interfere differently on the same device, but

also there is variation in interference pattern across multiple devices. Figure 3.1b

shows the comparison between the interference of T1 on T2 on two different UEDs
(
f21(T2, kT1)UED1 and f21(T2, kT1)UED2

)
. The interference of T1 on T2 is higher on

UED2 than that on UED1. Thus, interference depends on the ordered pair of tasks

and also the UED. I-BOT performs a novel interference profiling of the UEDs to

handle this heterogeneity in interference pattern (Section 5.3).

Online variations in the usable capacity of an edge device: Depending upon

the personal applications that the owner is running on a UED, the amount of re-

sources available for edge services will vary. To prevent a slowdown of the UED, we

need to reduce the usage of the device if the owner starts running a computationally

demanding personal application. I-BOT handles this using online readjustment based

on a feedback mechanism (Section 5.6).

Lack of monitoring information from edge devices: Most of the current edge

orchestration schemes [18–21] utilize monitoring information, such as CPU usage,

frequency, memory consumption, etc., from the edge devices to make offloading deci-

sions. However, we do not use any such information because of the following reasons:

1. As the edge devices in our case are not managed by a single entity, the moni-

toring information may not be readily available. Also, the owners of the devices

19

may be privacy sensitive about sharing such information with a third party.

Note that they have signed up to contribute some compute resources to the

unmanaged edge platform, but that can rarely be interpreted to mean that the

device owners want the usage on their devices to be monitored.

2. Monitoring a large number of edge devices with the level of frequency needed to

be useful would result in a huge overhead. The devices would have to transmit

monitoring information continuously as their usable capacity is susceptible to

variations, due to co-located applications starting up and other factors that do

not occur at a set frequency.

In I-BOT, the orchestrator learns from external observation and predicts the ser-

vice time of tasks without using any monitoring information from the edge devices

(Section 5.5).

Sporadic availability of unmanaged edge devices: Unlike the traditional servers

in a managed edge setting which are always available, the availability of an unmanaged

edge device would depend upon the owner of that device. Hence, we cannot rely on

the device being available for computation all the time. Depending upon the work

pattern of the owner of a device, it may be available intermittently at different times

of the day. Based on the history of the availability of UEDs, we predict their future

availability and use it in our orchestration scheme (Section 5.4).

20

4. SYSTEM OVERVIEW

In this section, we present a high level overview of the main components of I-BOT.

Figure 4.1 shows the timeline exhibiting the steps involved in adding a new UED to the

system, orchestrating tasks to the available UEDs, performing online readjustment

and gracefully removing a UED when it wishes to exit the system. As shown in

Figure 4.1, when a new UED enters the system, our orchestrator profiles it using our

novel interference-based profiling method (Section 5.3) and adds it to the UED profile

database which stores the profiling information of all the added UEDs. This method of

profiling handles the heterogeneity in the computational capabilities and interference

patterns among the UEDs. When an application instance (consisting of N different

tasks) from an end user arrives at the orchestrator, the orchestrator first predicts

which UEDs would be available throughout the execution of the application instance.

It then updates the available UED set to include only those UEDs which have a high

probability of not leaving the system. This handles the sporadic availability of the

UEDs, an inherent characteristic of unmanaged edge computing systems. An initial

schedule for the N tasks is then determined using the UED profile database and the

data structure containing the number of tasks of different types already running on

the available UEDs. This data structure is updated by the orchestrator whenever it

sends a new task to a UED or receives an execution result from a UED. The initial

schedule is a many-to-one mapping of the N tasks to the available UEDs, aimed

at minimizing the service time of the tasks. Next, I-BOT updates the schedule to

reduce the bandwidth overhead at the cost of a slight increase in the service time

by trying to schedule the tasks that require the same input data on the same UED.

I-BOT includes a bandwidth overhead control parameter that manages this trade-

off. The tasks are then sent to the selected UEDs. Upon receiving the execution

results, the orchestrator sends them back to the end user. It then updates the UED

21

Fig. 4.1.: System Timeline

profile database based on the error between the estimated and actual service time

of the tasks on the selected UEDs. The error in the estimation of the service time

can occur because of inaccurate profiling of a UED or online heterogeneity such as

a variation in the available capacity of a UED. Updating the UED profile based on

the feedback error handles such heterogeneities. In the event that a UED wishes to

exit the system, its profiling information is saved by I-BOT so that re-profiling is not

required whenever the UED re-enters the system.

22

5. DESIGN

The system consists of our orchestrator running on a managed edge device that can

offload tasks to multiple UEDs connected to it, as shown in Figure 1.2. The managed

edge device is controlled by an infrastructure provider and can be a wireless access

point, switch, low to mid range servers installed at the cellular base stations, etc.

The end users send application instances to the managed edge device acting as the

orchestrator. The orchestrator serves the instances in the order in which they arrive.

Our goal is to minimize the total service time of all the tasks in the application

instances while reducing the bandwidth overhead. The symbols used in this thesis

and their definitions are summarized in Table 5.1.

5.1 Application Structure

Each application instance consists of N tasks, some of which may require the same

input data to execute. The structure of a typical application instance is shown in

Figure 1.2. It is more bandwidth efficient to send the tasks that require the same

input data to the same UED. In our current implementation, we use a linear chain

of tasks, though this can be extended to a DAG of tasks with no conceptual novelty

(but some engineering effort), as discussed in Section 7.

5.2 Pairwise Incremental Service Time Plots

We define pairwise incremental service time plots fij(Ti, kTj)p to characterize the

execution time of a new task of type Ti on UEDp, given that k tasks of type Tj

are already running on the UED. This captures the heterogeneity in the interference

caused by the tasks. Examples of such plots can be seen in Figures 3.1b and 5.1.

23

Table 5.1.: Symbols and their definitions.

i, j ∈ [1 : N] ; p ∈ [1 : N]

Symbol Definition

T = {T1, T2, ..., TN} N different types of tasks for a given application
instance

UED =
{UED1, UED2, ..., UEDQ} Q is the total number of UEDs

fij(Ti, kTj)p = mij ∗ k + cij
=< mij, cij >p

Pairwise incremental service time plots on UEDp

characterized by slope mij and y-intercept cij

A = [< mij, cij >p]
Pairwise incremental service time matrix (each

row corresponds to a different UED; Figure 5.2)

Z = [zpi]
(Task count matrix) Number of tasks of type Ti

currently running on UEDp

STexp(Ti)p
Expected service time of a task of type Ti on

UEDp

STactual(Ti)p Actual service time of a task of type Ti on UEDp

R(t)p

Probability that UEDp is available continuously
between the current time and t time units in the

future

Hyper-parameters:
(i) δ (ii) β (iii) γ

(i) δ controls the amount of readjustment
performed online (ii) β controls the amount of
reduction in the bandwidth overhead (iii) γ is

minimum threshold for a UED availability for it to
be used

We observed that these plots are always straight lines but with varying slopes and

y-intercepts due to the task interference and heterogeneity in interference patterns,

as elaborated in Section 3.0.2. On a given UED, for a new task Ti, we can plot N

pairwise incremental service time plots, one for interference with every other type

of task (including Ti). Hence, N2 such plots exist for every UED and we need to

store only N2 pairs of m and c values to characterize all the plots for that UED. We

compute the expected service time of any new incoming task Ti on UEDp, which has

α1, α2, · · · , αN tasks of each type already running using the following equation:

24

fi,(1,2,··· ,N)

(
Ti, (α1T1, · · · , αiTi, · · · , αNTN)

)
= fi1(Ti, α1T1)+

· · ·+ fii(Ti, αiTi) + · · ·+ fiN(Ti, αNTN). (5.1)

This assumes that the interference patterns are independent and additive. We ver-

ify this experimentally as can be seen in Figure 5.1. The figure shows that the curve

obtained by adding f21(T2, jT1) and f22(T2, kT2) is very similar to f2,(1,2)(T2, (jT1, kT2)).

We define a pairwise incremental service time matrix A, each row of which contains

the N2 pairs of m and c values for a particular UED. See Figure 5.2 for the structure

of matrix A. The element < mij, cij >p means that if we want to schedule a new task

of type Ti while k instances of task Tj are running on a UEDp, the service time of

this task Ti will be estimated as mij ∗ k + cij. We also define a task count matrix

Z, each row of which contains the number of tasks of all the different types currently

running on a particular UED. Since the orchestrator sends the tasks and receives the

execution results from the UEDs, it keeps updating the matrix Z, whenever needed.

Fig. 5.1.: Experimental validation for computing the expected service time of a new
incoming task using Eq. (5.1); j and k are the number of tasks of T1 and T2 already
running on the UED respectively

25

AQ,N2 =

< m11, c11 >1 · · · < mij, cij >1 · · · < mNN , cNN >1

< m11, c11 >2 · · · < mij, cij >2 · · · < mNN , cNN >2
...

...
...

...
...

< m11, c11 >p · · · < mij, cij >p · · · < mNN , cNN >p
...

...
...

...
...

< m11, c11 >Q · · · < mij, cij >Q · · · < mNN , cNN >Q

Fig. 5.2.: Pairwise incremental service time matrix A; Q is the total number of UEDs
and N is the total number of different types of tasks in each application instance

Note that, in practice, the application instances arriving at the orchestrator will not

be of the same application type. The application instances can be of different types,

each consisting of a different set of tasks. At the orchestrator, there will be a separate

matrix A for each application type. However, for ease of exposition, we will present

our algorithms as if all application instances that arrive belong to a single type of

application consisting of N tasks.

5.3 Interference Profiling: Adding a New Unmanaged Edge Device

Adding a new UED to the system requires obtaining all the N2 pairs of m and c

values for the UED and adding them as a new row to matrix A (Figure 5.2). One way

to obtain the N2 pairs is to recreate all the required pairwise interference patterns

by actually running tasks on the UED. Since each pairwise interference pattern is

a straight line, the m and c values for that pattern can be obtained by extracting

any two points on the plot. However, this method of profiling a new UED is not

desirable for large N since it would require a lot of time and resources to obtain all

N2 pairs. For some UEDs, the amount of time needed to profile may be in the order

of several minutes. Also, since the availability of UEDs in the unmanaged setting is

sporadic, spending a lot of time in profiling a UED would be inefficient if the UED is

not available for long.

To quickly profile a new UED, we use a technique similar to [31], which relies on

Singular Value Decomposition (SVD) and PQ reconstruction. This technique is based

26

on the algorithm Netflix uses to provide movie recommendations to new users who

have only rated a handful of movies. The idea is to find similarities between the new

user and the existing users who have rated a lot of movies. We profile the first few

UEDs by actually obtaining all the N2 pairs. Thereafter, for every new UED, we get

as many pairs as possible within a fixed time bound (1 minute in our experiments and

configurable) and estimate the missing pairs using SVD and PQ-reconstruction. The

time complexity of SVD and PQ-reconstruction is linear in N and, in practice, only

takes a few milliseconds even for a large N (∼ 30). Hence, this scheme is much quicker

than obtaining all the N2 pairs. The inaccuracies in the estimation are handled by

online readjustment (Section 5.6).

5.4 UED Availability Prediction

One of the challenges in unmanaged edge computing is the sporadic availability of

the UEDs (Section 3.0.2). UEDs may enter or exit the system without prior notice.

If a task is scheduled on a UED which is unavailable, or which exits the system before

task completion, it would be required to reschedule the task thereby increasing the

task completion time. I-BOT predicts the availability of the UEDs and schedules

tasks on a UED only if there is a high probability of it being available throughout

the task completion. We utilize a semi-Markov Process (SMP) model, similar to

[32], to predict the reliability R of a UED. This is the probability of the UED being

available throughout a future time window. In an SMP model, the next transition

not only depends on the current state (as would happen for a pure Markov model)

but also on how long the system has stayed at this state. We observed that the

availability pattern of a UED is comparable in the most recent days. Hence, using

the availability history of a UED on previous days, we calculate the parameters of

the SMP to evaluate R(t), the probability that the UED is available continuously

between the current time and t time units in the future. Tasks are scheduled on a

27

UED only if the probability of it being available throughout the time that it takes to

complete the most demanding task in the application is greater than a threshold γ.

5.5 Orchestration Scheme

The orchestration algorithm, the largest part of I-BOT, is shown in Algorithm 1.

The algorithm consists of four segments: UED availability prediction, minimum ser-

vice time scheduling, reduction in the bandwidth overhead, and online readjustment.

When a new application instance arrives, we first predict the probability of each UED

being available throughout the execution of the application instance. The UEDs for

which this probability is lower than a threshold γ are dropped out of the scheduling

for the current application instance. The orchestrator maintains a count (in matrix

Z) of the number of tasks of different types currently running on the available UEDs.

The orchestrator uses this count and the pairwise incremental service time matrix A

to predict the service time of the tasks on every available UED and create an initial

mapping between the tasks and the UEDs. This mapping assigns each task to a UED

on which the expected service time for the task is minimum under the current state

of other tasks running on each UED. Predicting the service time of a task involves

extracting the corresponding entries from the A matrix and using Eq. 5.1.

Next, the orchestrator tries to reduce the bandwidth overhead by making modifi-

cations to the initial schedule. For every group of tasks that require the same input

data but are scheduled on different UEDs, the orchestrator tries to schedule them on

the same UED to reduce the bandwidth overhead. A change in the assigned UED

for a task is made only if the relative increase in its service time due to the change

is less than a threshold β, which is the bandwidth overhead control parameter. It

decides the trade-off between the bandwidth overhead and the average service time.

If β is higher, I-BOT becomes more bandwidth conserving at the expense of higher

service time. Finally, the tasks are sent and executed by the assigned UEDs. Upon

receiving the execution result, the orchestrator computes the actual service time for

28

Algorithm 1: Main Orchestrator

1 Input: A new application instance T
2 Initialization: UED, A and Z
3 Let tmax be the maximum time to execute the most computationally intensive task on the

devices in UED
4 // UED availability prediction

5 for UEDp ∈ UED do
6 Compute Rp(tmax) using semi-Markov Process (SMP)
7 if Rp(tmax) ≤ γ then
8 Remove UEDp from UED
9 end

10 end
11 // Minimum service time scheduling

12 for Ti ∈ T do
13 for UEDp ∈ UED do
14 STexp(Ti)p = GetExpectedServiceT ime(i, p) ;
15 end

16 STmin
exp [i] = min

p

(
STexp(Ti)p

)
;

17 UEDsel[i] = argmin
p

(
STexp(Ti)p

)
;

18 end
19 // Reduction in bandwidth overhead

20 Let K = [k1, k2, ...kR] be a group of tasks which require the same input data
21 for every K do
22 ued1 = UEDsel[k1] ;
23 for j = 2, ..., R do
24 uedj = UEDsel[kj];
25 if uedj 6= ued1 then
26 STmin = STmin

exp [kj];

27 ST1 = GetExpectedServiceT ime(kj , ued1);

28 if ST1−STmin

STmin
≤ β then

29 UEDsel[kj] = ued1;
30 end

31 end

32 end

33 end
34 // Online readjustment

35 for Ti ∈ T do
36 p = UEDsel[i] ;
37 Schedule task Ti on UEDp and compute the actual service time STactual(Ti)p
38 STexp(Ti)p = STmin

exp [i];

39 if

∣∣STexp(Ti)p−STactual(Ti)p

∣∣
STactual(Ti)p

> δ then

40 PerformGradientDescent
(
i, p, STexp(Ti)p,

41 STactual(Ti)p
)

;

42 end

43 end

29

each task. If the difference between estimated and actual service times for a task

is greater than an error threshold (δ), then the orchestrator updates A as described

(Section 5.6). For Q total number of UEDs and N tasks in each application instance,

the time complexity of our orchestration scheme is O(NQ). Hence, our scheme can

easily scale up without significant overheads.

5.6 Online Readjustment

Online readjustment of the pth row of matrix A is needed when there is a large

difference (greater than δ) between the expected and the actual service time of a task

Ti on UEDp. This difference arises if there is an inaccuracy in the N incremental

service time pairs < m, c > corresponding to Ti in the pth row of A. Following are

the main reasons for the inaccuracy:

Imperfect information: As described in Section 5.3, most of the < m, c > pairs in

the row added for a UED are computed using SVD and PQ reconstruction and may

not be completely accurate.

Online variation: Even if all the < m, c > pairs are correctly profiled initially,

the true values may change over time if the owner of the UED starts using a larger

portion of the device’s compute capability for his/her personal applications. This will

result in a change in the pairwise incremental service time plots, thereby changing

the < m, c > values.

Algorithm 2: PerformGradientDescent(i, p, STexp, STactual)

1 Input: i, p, STexp, STactual
2 M = [< mij >p] ;
3 C = [< mij >p] ; j ∈ 1, 2, ..., N

// M and C extracted from pth row of A
4 X = TaskCountUEDp = Z[p, :] = [Zpj]; j ∈ 1, 2, ..., N

// pth row of Z
5 Mnew, Cnew = GradientDescent(M,C,X, STactual, STexp);
6 Update A with Mnew and Cnew;

30

Therefore, we need to make online adjustments to the matrix A. For this, we use

gradient descent as described in Algorithm 2. For a task Ti scheduled on UEDp, if

the difference between the expected and the actual service time exceeds δ, gradient

descent is performed to minimize the error between the expected and actual service

time and obtain the new values of < m, c > for task Ti on UEDp.

5.7 Unmanaged Edge Device Exit

A UED may leave the system if there is a sudden unexpected crash or if the owner

of the UED exits the system. Not much can be done in the case of an unexpected

crash. However, in the other case, we perform an additional step for a graceful exit

which can save us from re-profiling the UED if it re-joins the system in the future.

When the owner of the UEDp wants to exit the system, the information corresponding

to the UED stored in the pth row of the A matrix is saved by the system. The row can

then be removed from A in the orchestrator. Later, if the UED rejoins the system, its

profiling information can be loaded to the orchestrator during the entry phase which

significantly reduces the time needed to profile the UED on the system.

31

6. EVALUATION

In this section, we first present the major findings from a survey conducted to un-

derstand the feasibility of unmanaged edge computing. Then, we provide details

about the real-world experiments and how we used them to drive our simulations.

We compared the service time obtained by I-BOT with two baseline schemes and two

state-of-the-arts for a latency sensitive application. The aim was to evaluate whether

our scheme reduces the average service time of the application without a considerable

increase in the bandwidth and the orchestration overhead. We then performed a set

of micro experiments to evaluate the effect of various control parameters. We then

show that our solution works for two other applications, of light and medium load

compared to the autonomous driving one introduced earlier.

6.1 Feasibility of Unmanaged Edge: A Survey

We surveyed 110 participants — from USA and India engaged in diverse fields

such as educators, software professionals, students, engineering professionals, etc. —

to understand the feasibility of unmanaged edge computing. 86.4% of the participants

indicated their willingness to provide their computing devices (e.g. laptops, desktops,

tablets, etc.) as UEDs under one of four proposed incentive models. Only 13.6% of the

participants were not interested primarily because of privacy and security concerns.

The major takeaways from the survey are the following, as shown in Figure 6.1:

Preferred incentive model: As expected, the majority (40.9%) of the participants

were willing to contribute their devices for edge computing if they received a pay-

ment proportional to the computational resources of their devices used, as shown in

Figure 6.1a. Daily fixed payment (20%) and the ability to use other Edge devices for

their applications (16.4%) were second and third most popular choices respectively.

32

(a) Preferred incentive model
(b) Percentage of CPU re-
sources willing to share

(c) Device usage (1: Low us-
age, 10: Very high usage)

Fig. 6.1.: User survey results (Number of participants = 110)

Percentage of CPU resources willing to share: Most of the participants were

willing to share between 0 − 40% of the CPU resources of their devices, as shown

in Figure 6.1b. It is interesting to note that for tablets, more people were willing

to share 20 − 40% resources as compared to laptop owners who mostly showed a

willingness to share 0 − 20% resources. This result indicates that people do not use

the computational resources of tablets as extensively as laptops and are willing to

share more resources of their tablets.

Device usage and tolerable slowdown: As shown in Figure 6.1c, we obtained

a double Gaussian device usage pattern with peaks at 90% and 30% of usage indi-

cating that most people either use their devices very heavily (video editing, running

sophisticated software, etc.) or use them only for minor purposes such as browsing,

reading, etc. The average usage across all users was 50.9%, thereby supporting our

claim that a lot of devices are not utilized to their capacity. The majority of the

people indicated that they could tolerate around 30% slowdown of their devices.

6.2 Real-World Experiment

The purpose of this experiment was to ensure that our simulations (described

later) are based on real-world application and device data. We performed exper-

iments with 3 different application types: a light-weight, a medium, and a heavy

33

Table 6.1.: Average service time of tasks for different application types

Application Type

Light Medium Heavy

color detection
0.06s

image segmentation
0.12s

edge detection
0.17s

kernel filtering
0.22s

contour detection
0.25s

feature transformation
0.35s

driver state detection 0.39s
driver body position 0.45s
vehicle state analysis 0.43s
pedestrian detection 0.57s
obstacle detection 0.60s
traffic sign analysis 0.41s

application. The tasks in each application type and their average service time on

a typical UED (the Macbook Pro one in our testbed) are given in Table 6.1. For

instance, the heavy application is the autonomous self-driving car application as de-

scribed in Section 3.0.1. This application consists of 6 tasks, 3 of which require the

same input data. We obtained the incremental service time curves on 15 heteroge-

neous UEDs (laptops, desktops and tablets) by running actual application instances

on the UEDs. For example, the incremental service time curves shown in Figures 3.1b

and 5.1 were obtained by running real tasks on actual UEDs. We used this data

to drive the simulations to ensure that our simulation results are representative of

reality.

6.3 Simulation Setting

Our simulator, built in Python, considers Poisson arrival of application instances

with rate λ. Unless otherwise mentioned, we performed simulations with 500 arrivals

of the heavy application instances and set the default values of our hyperparameters

for the experiments to λ = 3 arrivals/s, δ = 0.10, β = 0.15, and γ = 0.85. For

every arrival, the orchestrator needs to schedule the 6 tasks among the 15 available

UEDs. We also provide a comparison for different application types in Section 6.7.

We compared our scheme with the following orchestration schemes:

34

LAVEA: Proposed in [14], LAVEA is a system that offloads computation to edge

devices, to minimize the service time for low-latency video analytics tasks. They

propose multiple task placement schemes for collaborative edge computation. We

compare with their Shortest Queue Length First (SQLF) scheme, which performed

the best among their task placement schemes in our evaluations. It tries to balance

the total number of tasks running on each edge device.

Petrel: Proposed in [13], Petrel is a distributed task scheduling framework for edge,

which employs the strategy of “the power of two choices” [33]. In this scheme, two

of the available edge devices are randomly selected and the task is sent to the one

with lower expected service time. They compute the expected service time using the

processor speed of the available UEDs.

Round Robin: In this scheme, the tasks of an application instance are sent to the

available UEDs one after the other, i.e., the first task is sent to UED1, the second

to UED2, and so on.

Random: This is the most basic scheme in which each task of an application instance

is sent to a randomly chosen UED.

We evaluated two versions of our scheme:

I-BOT-PI: This stands for I-BOT-Perfect-Information. In this scheme, all the

UEDs are correctly profiled by obtaining the N2 (36) pairs of m and c values for

every UED. As mentioned in Section 5.3, this may not be desirable in the real-world

because of high initialization time and sporadic availability of UEDs. This can be

considered as the ideal case with lowest service time against which we compare the

other schemes.

I-BOT-I2: This stands for I-BOT-Imperfect-Information. In this scheme, we use

SVD and PQ reconstruction to create the incremental service time matrix A (Sec-

tion 5.3). This profiling is faster and realistic, but the incremental service time matrix

so obtained may have inaccuracies, which are handled using online readjustment.

In our evaluation, we used the following performance metrics:

35

Service Time: For an application instance scheduled by the orchestrator, we define

service time as the average completion time of the different tasks in the application

instance. We define average service time (service time averaged over all the instances)

and running average service time (service time averaged over a moving window of 50

instances). For experiments in which there is a high fluctuation in the service time of

application instances, plotting individual service time hinders visualization. We use

running average service time for such experiments.

Orchestration Overhead: We define orchestration overhead for an application

instance as the total amount of time spent by the orchestration scheme to decide

where to schedule the instance. The average over all the application instances is

defined as the average orchestration overhead.

Bandwidth Overhead: We define bandwidth overhead for an application instance

as the percentage of tasks that require the same input data but are sent to different

UEDs. The average over all the application instances is defined as the average

bandwidth overhead.

6.4 Evaluation of the Orchestration Schemes

In this experiment, we compare the running average service time obtained by

different orchestration schemes for 500 application instances arriving at rate λ = 3

instances/sec. It can be observed from Figure 6.2 that the service time for our schemes

is significantly lower than that for the others. Note that, as mentioned earlier, I-BOT-

I2 would require online readjustment. To show the impact of online readjustment, we

have used online readjustment only in the right half of Figure 6.2 (from application

instance 250 onwards). For the left half, i.e, without online readjustment, the aver-

age service time for I-BOT-PI and I-BOT-I2 are 0.39s and 0.72s respectively. This is

61.39% and 28.71% lower than the next best scheme LAVEA for which the average

service time is 1.01s. Our performance is better because our schemes take into con-

sideration the different interference patterns of tasks across the UEDs, which is not

36

Fig. 6.2.: Comparison of running average service time for different orchestration
schemes

considered by the others. For instance, consider two UEDs (UED1 and UED2) such

that there is a high interference between tasks of type T1 and T2 on UED1 and low

interference on UED2. In this scenario, our schemes will refrain from concurrently

scheduling tasks of type T1 and T2 on UED1. LAVEA, on the other hand, would

try to equalize the number of tasks of T1 and T2 running on the two UEDs thereby

resulting in increased interference on UED1 and a high service time.

Comparing our schemes with each other, I-BOT-I2 has inaccuracies in correctly

estimating the amount of interference and hence has a higher service time than I-

BOT-PI. For I-BOT-I2, looking at the left and right halves of the figure, we see that

it starts with a high average service time but slowly converges to the ideal case. The

online readjustment helps not only in alleviating the inaccuracies because of imperfect

information but also handles online heterogeneties like variation in the computational

capacity and sporadic availability of UEDs. These were not considered in Figure 6.2.

We present the evaluation with these heterogeneities involved next. The incremental

service time matrix constructed by I-BOT-I2 has an average distance of 0.85 from

37

the true matrix, distance being computed as the Frobenius norm. For a matrix with

values in the range (0.1, 0.6), this can be taken to be a medium level of error.

6.5 Evaluation with Online Heterogeneity

Online heterogeneity happens due to change in the availability of devices online

such as if the owner of a particular UED starts/stops running her personal applica-

tions resulting in a change in the available computation capacity of the UED or if a

UED enters/exits the system.

Impact of co-located applications on the UEDs: Our scheme handles the change

in computation capacity of UEDs by continuously updating the incremental service

time matrix based on the feedback as explained in Section 5.6. Figure 6.3a shows the

comparison of the running average service time for the orchestration schemes with

computation capacity of the UEDs varying for 10% of the scheduled tasks. The

spikes in the running average service time occur when the available capacity of one or

more UEDs suddenly reduces. It is evident from Figure 6.3a that the impact of this

variation is the least on our schemes. For other schemes, there is a higher increase

(a) Experiment with variation in computa-
tion capacity affecting 10% of the tasks

(b) Impact of changing variation in the com-
putation capacity

Fig. 6.3.: Impact of variation in the computation capacity of the UEDs on the service
time

38

in the service time. The average service time increases by 18.81% and 26.05% for

LAVEA and Petrel respectively. On the other hand, the increase is only 7.14% and

9.12% for I-BOT-PI and I-BOT-I2 respectively. Also, as the amount of variation in

the computation capacity increases, a higher percentage of tasks are affected. With

this increase in the percentage of affected tasks, the rate of increase in the average

service time is much lower for our schemes compared to the others, as shown in

Figure 6.3b. We have not shown comparison with round robin and random schemes

here because the impact is significantly higher on those schemes.

Impact of churn of UEDs: In Figure 6.4, we show the impact of sporadic avail-

ability of UEDs when one or more UEDs abruptly enter/exit the system. Greater

the churn of the UEDs, higher would be the percentage of tasks affected. Using the

availability history of a UED, we predict the probability of the UED being available

throughout the task completion. A task is scheduled on a UED only if this prob-

ability exceeds the threshold γ. We have used service time for individual instances

instead of a running average in this experiment because it better captures the impact

of sporadic availability of UEDs. In the left half of Figure 6.4a (upto instance 250),

all the UEDs are available throughout, whereas in the right half one or more UEDs

(a) Experiment with churn affecting 10% of
the tasks

(b) Impact of changing amount of churn of
the UEDs

Fig. 6.4.: Impact of sporadic availability of the UEDs on the service time

39

frequently enter/exit the system resulting in 10% of the tasks being affected due to

the churn. The spike in service time occurs when one or more tasks of an application

instance are scheduled on a UED which is unavailable or which exits the system

before the task completion. Since our schemes predict the availability before task

scheduling, the spikes are less frequent and shorter compared to the others. The in-

crease in average service time for our schemes with perfect and imperfect information

is 5.12% and 7.41% respectively compared to a significantly higher increase of 25.74%

and 31.09% for LAVEA and Petrel respectively. In Figure 6.4b, we show the impact

of variation in the churn on the average service time. As the churn increases, a higher

percentage of tasks are affected. For our schemes, the average service time increases

negligibly with an increase in the churn. However, there is a significant increase in

the service time for the two other schemes.

6.6 Evaluation of Bandwidth Overhead

The design of our orchestration scheme uses the parameter β that controls the

trade off between the average service time and the average bandwidth overhead. In the

absence of this design parameter, (i.e., for β = 0), the average bandwidth overhead for

(a) Average bandwidth overhead (b) Average service time

Fig. 6.5.: Comparison of average bandwidth overhead and average service time for
the orchestration schemes (β = 0.15 for our schemes)

40

our scheme with perfect and imperfect information is 82% and 85% respectively (100%

means all tasks needing same input data are scheduled on different UEDs). This is

comparable to the average bandwidth overhead of the other schemes. However, upon

increasing β, there is a considerable reduction in the average bandwidth overhead of

our schemes without a significant increase in the average service time. Figure 6.5

shows a comparison of the average bandwidth overhead and average service time of

the orchestration schemes for β = 0.15. The average bandwidth overhead for I-BOT-

PI and I-BOT-I2 reduces to 28.60% and 30.80% respectively, which is much lower

than the other schemes. Meanwhile, the average service times for our two schemes

do not increase much and are still lower than the others.

6.7 Evaluation with Different Types of Application

Figure 6.6 shows a comparison of the average service time obtained by the or-

chestration schemes for 500 instances each of the three different application types:

light-weight, medium, and heavy (Table 6.1). It is evident from Figure 6.6 that there

is an advantage in using our orchestration scheme for all the types of applications.

Moreover, this advantage is more pronounced for the heavy application as the tasks

involved in such an application have a higher interference with each other and I-BOT

schedules the tasks respecting the interference dependencies while the others do not.

Most of the latency-sensitive applications that require edge computing belong to this

category as they are computationally intensive.

6.8 Evaluation of Orchestration Overhead

Here we compare the average orchestration overhead of the schemes as we vary

the total number of UEDs. For a given number of UEDs, as the stream of applica-

tion instances arrive, we measure the amount of time spent in making the scheduling

decisions for every instance and report the average value over 500 instances. From Fig-

ure 6.7, we can observe that the average orchestration overhead for both our schemes

41

Fig. 6.6.: Evaluation with
different types of applica-
tion

Fig. 6.7.: Evaluation of the
orchestration overhead

Fig. 6.8.: Evaluation of
fairness

is higher than that for the others. However, it is still negligible given the benefits

in terms of the reduction in service time. For instance, the average orchestration

overhead of I-BOT-I2 is only 1.4ms in the presence of 96 UEDs. This accounts for

only 0.19% of the average service time of the application instances. Comparing our

two variants, the average orchestration overhead is higher for I-BOT-I2 because of

the extra time spent to correct for the inaccuracies due to imperfect information.

6.9 Evaluation of Fairness

In the context of unmanaged edge computing, fairness, defined as balancing the

task assignment among multiple UEDs, would result in a higher service time because

of the substantial heterogeneity among the UEDs. We use Gini coefficient to quan-

tify fairness — a value of 0 represents perfect equality whereas 1 represents perfect

inequality. Figure 6.8 shows a comparison of the Gini coefficient for I-BOT-I2, Petrel,

and LAVEA for the 3 different application types. As expected, the Gini coefficient

is higher for our schemes compared to the others implying a higher inequality in the

task distribution among the UEDs. For Petrel, the Gini coefficient is higher than

LAVEA, and for round robin, it is equal to 0 as the tasks are perfectly balanced.

We argue that this disparity in task allotment is necessary for the required improve-

ment in service time because the more powerful UEDs are capable of executing more

co-located tasks.

42

(a) Impact of varying arrival
rate (λ) on average service
time

(b) Impact of δ on orches-
tration overhead and average
service time of tasks

(c) Impact of β on bandwidth
overhead and average service
time of tasks

Fig. 6.9.: Micro evaluations

6.10 Micro Evaluations

In this section, we evaluate the impact of varying the parameters of our proposed

scheme — application instance arrival rate (λ), readjustment control parameter (δ),

and bandwidth overhead control parameter (β). The results are presented in Fig-

ure 6.9.

Impact of varying arrival rate (λ) of application instances: For a fixed number

of UEDs, an increase in the arrival rate (λ) of application instances would ultimately

make the system unstable for all the orchestration schemes. However, as shown in

Figure 6.9a, this instability occurs in our schemes for a higher value of λ compared to

the others, i.e, our schemes can maintain acceptable service time for a higher arrival

rate than the other schemes. Also, before the instability sets in, our schemes have

lower service time than the others. It is interesting to note that even in the unstable

region, the service time for our schemes is lower.

Impact of varying readjustment control parameter (δ): Figure 6.9b shows this

evaluation. A low value of δ implies that gradient descent based online readjustment

would be invoked more frequently. Thus there is a higher chance of readjusting to the

true matrix A, resulting in a lower average service time. However, more readjustment

also means a higher orchestration overhead. As δ increases, the average service time

curve is flat in the beginning and then increases (for δ > 0.1). This is because while

43

it is true that the amount of readjustment is lower for δ = 0.1 compared to that for

δ = 0, it is still sufficient to correct for the online heterogeneities.

Impact of varying bandwidth overhead control parameter (β): As β in-

creases, the probability of tasks with the same input data being scheduled on the

same UED also increases. This results in a reduction in bandwidth overhead as

shown in Figure 6.9c. This reduction in the bandwidth overhead comes at the cost of

an increase in the service time. However, the increase in the service time is not very

significant. For instance, increasing β from 0 to 0.15 reduces bandwidth overhead by

61% whereas the average service time increases only by 10.3%.

6.11 Theoretical Analysis

We present the theoretical analysis of our solution under the following simplifying

assumptions. First, we assume that the UEDs are homogeneous and a task of type k

has exponentially distributed processing rate µk for k = [1 : N], where 1
Q

∑N
k=1 λ/µk <

1 for irreducible and stable (i.e. positive recurrent) Markov chain. Moreover, we

assume that tasks of type 1 to N are dispatched to the chosen UED’s queue in order.

Queue state for UEDq, q = [1 : Q], is then defined by φn = {(0)}∪{(t1, t2, . . . , tn)|n ≥
1}, where ti is the type of the ith task in the (type independent) FIFO order (t1 is

the type of a task being served) and (0) represents the empty system. The processed

rate is then determined by the type of a task being served and uniquely determined

by queue length i as follows: d i
N
eN − i + 1. Refer Appendix A.1 for proof of the

results shown below.

Lemma 1 Under our proposed solution, the transition rates qi,j(π) given distribution

π for j 6= i is given by

qi,j(π) =

µd i
N
eN−i+1 if j = i− 1,

1−(Q−1)
∑i−1

l=0 πl

1+(Q−1)
∑i

l=0 πl
if j = i+N , i < τπ,

0, otherwise,

44

where τπ = min{j :
∑j−1

l=0 πl ≥ 1
Q−1} and πl denotes the stationary distribution of

UED queue, i.e., the probability that the queue size is l at a UED.

Intuitively, τπ indicates the queue length so that the probability that a UED with

queue size i(≥ τπ) receives N tasks is 0. Based on Lemma 1, we can calculate the sta-

tionary distribution of the queue length of a single UED numerically by finding π̂ that

satisfies the global balance equation. The expected service time TQ(λ, µ1, · · · , µN) of

an application instance that is dispatched to Q UEDs is then

N−1∑

r=0

∞∑

i=1

bi− 1

N
c

N∑

l=1

1

µl
+ 1d i

N
eN−i+1−r≥1

N−r∑

m=d i
N
eN−i+1−r

1

µm
+

1d i
N
eN−i+1−r<1

d i
N
eN−i+1−r+N∑

m=N−r

1

µm

 ·

(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q

 .

We compare the expected service times from analysis and simulations, as shown

in Figure 6.10, where N = 2, Q = 3, λ = [1 : 20], µ1 = 10, and µ2 = 30. It

demonstrates that the analytical result serves as a worst case upper bound for the

service time as it assumes serial processing, while in reality multiple tasks can be

concurrently processed. The worst case will occur in practice if each task is intensive

enough to occupy the entire UED. The divergence between analytical and simulation

results increases as the load increases, in which case the simulation allows for more

parallel processing.

Fig. 6.10.: Comparison of analytical and simulation results

45

7. DISCUSSION

In this section, we present extensions of I-BOT needed to handle some important

cases. First, we have only considered one form of dependency among the tasks — same

input data requirements for certain tasks. In practice, however, the tasks can also have

control dependency, which is often represented by a directed acyclic graph (DAG) of

tasks. Our algorithm can conceptually be easily combined with scheduling algorithms

that operate over DAGs; there is significant work in the context of conventional

computing systems [34,35] and some emerging work in the context of edge computing

systems [36]. Second, the linearity in the task interference plots may not hold if the

number of tasks running on a UED is large enough to cause a discontinuous change.

This is a common occurrence with mapping of resource availability to performance

metrics (such as, latency) [37], say if the working set of the program spills over from

one level of cache into a lower (and higher latency) level of cache. In this case, in

I-BOT, a higher-order characterization of the interference plots would be needed (say,

quadratic or piece-wise linear) and failure of tasks must also be considered. Next, for

simplicity, we fix the order in which the tasks belonging to an application instance

are considered for offloading, namely, the same order in which they are enumerated

in the application description. This is akin to greedy scheduling with respect to task

order and a more optimal scheduling can happen if we use non-local information, such

as, through dynamic programming.

46

8. RELATED WORK

In this section we contrast our work with the other efforts in the field of task scheduling

in heterogeneous edge computing systems.

Low latency edge scheduling: Petrel [13] and LAVEA [14] propose orchestration

schemes aimed at minimizing the service time in a multi-edge collaborative environ-

ment. We have shown that I-BOT outperforms these schemes in terms of the service

time and bandwidth overhead in a heterogeneous unmanaged edge computing setting.

MSGA [15] jointly studies the task and network flow scheduling and uses a multi-

stage greedy algorithm to minimize the completion time of the application. In [17],

a gateway-based edge computing service model has been proposed to reduce the la-

tency of data transmission and the network bandwidth. Low latency task scheduling

schemes for edge have also been proposed in [38–40]. However, all of these works

are in the context of managed edge and do not consider the unique challenges intro-

duced by unmanaged edge, such as the lack of monitoring information, heterogeneity,

and unexpected entry-exits. One exception to this is CoGTA [41], which considers

scheduling of delay-sensitive social sensing tasks on a heterogeneous unmanaged edge.

However, its main focus is on devices that are not trusted and therefore it formulates a

game-theoretic technique to perform the task allocation. Its performance in a benign

setting like ours is likely to be sub-optimal.

Availability and Interference based edge scheduling: There have been a few

efforts that take into account the availability and interference while devising strategies

for task scheduling on the edge. An overhead-optimizing task scheduling strategy has

been proposed in [18] for ad-hoc based edge computing nodes formed by a group

of mobile devices. [19] proposes a score based edge service scheduling algorithm that

evaluates network, compute, and reliability capabilities of edge nodes. However, these

works rely on sharing monitoring information which can be a huge overhead in highly

47

dynamic environments. Also, the time and energy consumption models are theoretical

and have not been tested on real systems. INDICES [42] proposes a performance-

aware scheme for migrating services from cloud to edge while taking into account

the interference caused by co-located applications. However, this is geared towards

service migration and not task scheduling. Also, it does not consider the impact of

online variations in the availability and compute capabilities of edge devices.

Energy efficient edge scheduling: A lot of existing works [43–46] utilize dynamic

voltage-frequency scaling (DVFS), which is an attractive method for reducing energy

consumption in heterogeneous computing systems. ESTS [47] deals with the prob-

lem of scheduling a group of tasks, optimizing both the schedule length and energy

consumption. They formulate the problem as a joint linear programming problem

and propose a heuristic algorithm to solve it. In [48], a computational offloading

framework has been proposed which minimizes the total energy consumption and

execution latency by coupling task allocation decisions and frequency scaling. The

paper [16] also performs joint optimization of energy and latency through a rigorously

formulated and solved mixed integer nonlinear problem (MINLP) for computation of-

floading and resource allocation. However, the execution models used in these works

do not consider the impact of online heterogeneties in the computation capacity or

the effect of interference.

Volunteer or opportunistic computing: In a completely different context, under

the moniker “volunteer computing”, a slew of works designed solutions to utilize

under-utilized compute nodes (such as, on a university campus) or mobile devices to

run large-scale parallel applications. An example of the former is HTCondor [49] and

an example of the latter is Femtocloud [50]. Our design borrows some features from

Femtocloud (identifying devices with spare capacity and some stability); however,

Femtocloud did not have to deal with the majority of the challenges that we solve here

(great heterogeneity from a compute, network, and application standpoint, unknown

tasks, runtime variations due to interference).

48

9. CONCLUSION

In this thesis, we compared the performance of various edge computing models based

on parameters such as network bandwidth, computational capacity, etc. We catego-

rized the models as Exclusive and Hybrid depending upon the combination of Mobile,

Edge and Cloud servers. We observed that under varying parameters the optimal

choice of model can change. As we move from the ideal conditions in which exclusive

Cloud model seems to be the obvious choice to scenarios with limited resources, we

observe that the hybrid models perform better. We then introduced unmanaged edge

computing model and presented a novel Interference Based Orchestration of Tasks

(I-BOT) for this model that utilizes personal devices as edge nodes for task execution.

We identified three new challenges in orchestrating application tasks in the unman-

aged edge scenario, due to which prior edge schedulers fail — heterogeneity in devices,

runtime variation in available compute capacity, and sporadic availability of devices.

We introduced three design innovations in I-BOT to handle these challenges and thus

minimize the service time and bandwidth overhead of latency-sensitive applications.

We extensively evaluated our system using real-world experiments and simulations.

Results show that compared to existing approaches (two intuitive baselines and two

state-of-the-art ones, LAVEA and Petrel), I-BOT significantly reduces average service

time and bandwidth overhead of applications by at least 61% and 56% respectively.

We also demonstrated that in the presence of online variability, which is an inherent

characteristic of unmanaged systems, the reduction in service time and bandwidth

overhead due to I-BOT is more prominent.

REFERENCES

49

REFERENCES

[1] eukhost, “New statistics: Show the advance of cloud computing,”
https://www.eukhost.com/blog/webhosting/new-statistics-show-the-advance-
of-cloud-computing/, 2020, accessed: 2020-06-28.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,
no. 1, pp. 30–39, Jan 2017.

[3] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment for per-
formance evaluation of edge computing systems,” in 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 39–44.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp.
14–23, Oct. 2009. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2009.82

[5] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: bringing the
cloud to the mobile user,” in 3rd ACM Workshop on Mobile Cloud Comput-
ing and Services, Proceedings. Ghent University, Department of Information
technology, 2012, pp. 29–35.

[6] M. Aazam and E. Huh, “Fog computing micro datacenter based dynamic re-
source estimation and pricing model for iot,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications, 2015, pp.
687–694.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, p. 68–73, Dec. 2009. [Online]. Available:
https://doi-org.ezproxy.lib.purdue.edu/10.1145/1496091.1496103

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 13–16. [Online]. Available:
https://doi-org.ezproxy.lib.purdue.edu/10.1145/2342509.2342513

[9] M. Aazam and E. Huh, “Fog computing and smart gateway based communication
for cloud of things,” in 2014 International Conference on Future Internet of
Things and Cloud, 2014, pp. 464–470.

[10] “Amazon: Lambda@edge,” https://aws.amazon.com/lambda/edge/, 2020, ac-
cessed: 2020-06-28.

[11] “Cisco: Establishing the edge,” https://www.cisco.com/c/en/us/solutions/service-
provider/edge-computing/establishing-the-edge.html, 2020, accessed: 2020-06-
28.

50

[12] “Google: Edge network,” https://peering.google.com/#/, 2020, accessed: 2020-
06-28.

[13] L. Lin, P. Li, J. Xiong, and M. Lin, “Distributed and application-aware task
scheduling in edge-clouds,” in 2018 14th International Conference on Mobile
Ad-Hoc and Sensor Networks (MSN), 2018, pp. 165–170.

[14] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware
video analytics on edge computing platform,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ser. SEC ’17. New York,
NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3132211.3134459

[15] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low la-
tency in collaborative edge computing,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 3512–3524, 2019.

[16] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and B. Hu,
“Energy-latency tradeoff for energy-aware offloading in mobile edge computing
networks,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2633–2645, 2017.

[17] C.-W. Tseng, F.-H. Tseng, Y.-T. Yang, C.-C. Liu, and L.-D. Chou, “Task
scheduling for edge computing with agile vnfs on-demand service model toward
5g and beyond,” Wireless Communications and Mobile Computing, vol. 2018, p.
7802797, Jul 2018. [Online]. Available: https://doi.org/10.1155/2018/7802797

[18] L. Tianze, W. Muqing, Z. Min, and L. Wenxing, “An overhead-optimizing task
scheduling strategy for ad-hoc based mobile edge computing,” IEEE Access,
vol. 5, pp. 5609–5622, 2017.

[19] A. Aral, I. Brandic, R. B. Uriarte, R. De Nicola, and V. Scoca, “Addressing
application latency requirements through edge scheduling,” Journal of Grid
Computing, vol. 17, no. 4, pp. 677–698, Dec 2019. [Online]. Available:
https://doi.org/10.1007/s10723-019-09493-z

[20] A. J. Page and T. J. Naughton, “Dynamic task scheduling using genetic algo-
rithms for heterogeneous distributed computing,” in 19th IEEE International
Parallel and Distributed Processing Symposium, 2005, pp. 8 pp.–.

[21] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware resource
allocation for edge computing,” in 2017 IEEE International Conference on Edge
Computing (EDGE), 2017, pp. 47–54.

[22] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An approach
to designing fault-tolerant computing systems,” ACM Trans. Comput. Syst.,
vol. 1, no. 3, p. 222–238, Aug. 1983. [Online]. Available: https://doi-
org.ezproxy.lib.purdue.edu/10.1145/357369.357371

[23] F. B. Schneider and Lidong Zhou, “Implementing trustworthy services using
replicated state machines,” IEEE Security & Privacy, vol. 3, no. 5, pp. 34–43,
2005.

51

[24] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and
S. Bagchi, “Videochef: Efficient approximation for streaming video processing
pipelines,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18). Boston, MA: USENIX Association, 2018, pp. 43–56. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/xu-ran

[25] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, “Cloudsim: A
novel framework for modeling and simulation of cloud computing infrastructures
and services,” CoRR, vol. abs/0903.2525, 2009.

[26] M. T. Diallo, F. Fieau, and J. Hennequin, “Impacts of video quality of experience
on user engagement in a live event,” in 2014 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), July 2014, pp. 1–7.

[27] “Aws iot greengrass,” https://aws.amazon.com/greengrass/.

[28] “Aws iot greengrass usage,” https://discovery.hgdata.com/product/aws-iot-
greengrass.

[29] P. Wood, H. Zhang, M. Siddiqui, and S. Bagchi, “Dependability in
edge computing,” CoRR, vol. abs/1710.11222, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11222

[30] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik, J. Terwilliger,
A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman, A. Mehler, A. Sipperley,
A. Pettinato, B. D. Seppelt, L. Angell, B. Mehler, and B. Reimer, “Mit ad-
vanced vehicle technology study: Large-scale naturalistic driving study of driver
behavior and interaction with automation,” IEEE Access, vol. 7, pp. 102 021–
102 038, 2019.

[31] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 77–88. [Online]. Available: https://doi-
org.ezproxy.lib.purdue.edu/10.1145/2451116.2451125

[32] Xiaojuan Ren, Seyong Lee, R. Eigenmann, and S. Bagchi, “Resource availability
prediction in fine-grained cycle sharing systems,” in 2006 15th IEEE Interna-
tional Conference on High Performance Distributed Computing, 2006, pp. 93–
104.

[33] M. Mitzenmacher, “The power of two choices in randomized load balancing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp.
1094–1104, 2001.

[34] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling on heteroge-
neous systems,” in 18th International Parallel and Distributed Processing Sym-
posium. IEEE, 2004, p. 111.

[35] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra,
“Dague: A generic distributed dag engine for high performance computing,”
Parallel Computing, vol. 38, no. 1-2, pp. 37–51, 2012.

52

[36] S. Khare, H. Sun, J. Gascon-Samson, K. Zhang, A. Gokhale, Y. Barve, A. Bhat-
tacharjee, and X. Koutsoukos, “Linearize, predict and place: minimizing the
makespan for edge-based stream processing of directed acyclic graphs,” in Pro-
ceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 1–14.

[37] B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,” Synthesis
Lectures on Computer Architecture, vol. 9, no. 1, pp. 1–67, 2014.

[38] S. Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A task
scheduling strategy in edge-cloud collaborative scenario based on deadline,”
Scientific Programming, vol. 2020, p. 3967847, Mar 2020. [Online]. Available:
https://doi.org/10.1155/2020/3967847

[39] J. Han and D. Wang, “Edge scheduling algorithms in parallel and distributed
systems,” in 2006 International Conference on Parallel Processing (ICPP’06),
2006, pp. 147–154.

[40] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to share:
Joint service placement and request scheduling in edge clouds with sharable
and non-sharable resources,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 2018, pp. 365–375.

[41] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang, “Cooperative-
competitive task allocation in edge computing for delay-sensitive social sensing,”
in 2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
243–259.

[42] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale, “In-
dices: Exploiting edge resources for performance-aware cloud-hosted services,” in
2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC),
2017, pp. 75–80.

[43] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey
of energy-cognizant scheduling techniques,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 7, pp. 1447–1464, 2013.

[44] D. Li and J. Wu, “Energy-aware scheduling for frame-based tasks on hetero-
geneous multiprocessor platforms,” in 2012 41st International Conference on
Parallel Processing, 2012, pp. 430–439.

[45] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some obser-
vations on optimal frequency selection in dvfs-based energy con-
sumption minimization,” Journal of Parallel and Distributed Comput-
ing, vol. 71, no. 8, pp. 1154 – 1164, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731511000165

[46] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, “Emprical study on
reducing energy of parallel programs using slack reclamation by dvfs in a power-
scalable high performance cluster,” in 2006 IEEE International Conference on
Cluster Computing, 2006, pp. 1–10.

[47] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling on het-
erogeneous computing systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 11, pp. 2867–2876, 2014.

53

[48] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile edge
computing: Task allocation and computational frequency scaling,” IEEE Trans-
actions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[49] D. H. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A worldwide
flock of condors: Load sharing among workstation clusters,” Future Generation
Computer Systems, vol. 12, no. 1, pp. 53–65, 1996.

[50] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds: Lever-
aging mobile devices to provide cloud service at the edge,” in 2015 IEEE 8th
international conference on cloud computing. IEEE, 2015, pp. 9–16.

APPENDIX

54

A. APPENDIX

A.1 Theoretical Analysis

We present the theoretical analysis of our solution under the following simplifying

assumptions. First, we assume that the UEDs are homogeneous and a task of type k

has exponentially distributed processing rate µk for k = [1 : N], where 1
Q

∑N
k=1 λ/µk <

1. We further assume that tasks of type 1 to N are dispatched to the chosen UED’s

queue in order. Queue state for UEDq, q = [1 : Q], is then defined by

φn = {(0)} ∪ {(t1, t2, . . . , tn)|n ≥ 1},

where ti is the type of the ith task in the (type independent) FIFO order (t1 is

the type of a task being served) and (0) represents the empty system. Under these

assumptions, queue length determines the expected service time. Specifically, the

expected service time for all tasks in UED is a monotonically increasing function of

the UED queue length.

The evolution of the system over φn is an irreducible Markov chain. Using the

Lyapunov theorem, it can be verified that the Markov chain is positive recurrent, and

thereby has a unique stationary distribution. Let π(t1, t2, . . . , ti) denote the station-

ary distribution of UEDq, i.e., the probability that the queue state is (t1, t2, . . . , ti)

at UEDq. Here, the index q is ignored because the stationary distributions are iden-

tical across UEDs. We have
∑

i iπ(t1, t2, . . . , ti) =
∑

i iπ(φi) =
∑

i iπi < c, where a

constant c > 0.

Consider the queue evolution of one UED in the system. At steady state, each

queue forms an independent Markov chain, as described in the following lemma:

55

Lemma 2 Under our proposed solution, the transition rates qi,j(π) given distribution

π for j 6= i is given by

qi,j(π) =

µd i
N
eN−i+1 if j = i− 1,

1−(Q−1)
∑i−1

l=0 πl

1+(Q−1)
∑i

l=0 πl
if j = i+N , i < τπ,

0, otherwise,

where τπ = min{j :
∑j−1

l=0 πl ≥ 1
Q−1} and πl denotes the stationary distribution of

UED queue, i.e., the probability that the queue size is l at a UED.

Proof The transition rates will be determined by our solution used to dispatch tasks

to UEDs. We will derive the transition rates for our strategy. First, the down-crossing

transition rate from state i to state i− 1 is

qi,i−1 = µt1

= µd i
N
eN−i+1

because the processing time of a task of type t1 is exponentially distributed with

mean µt1 and the type of a task being served is uniquely determined by queue length

i as d i
N
eN − i+ 1 due to our dispatch strategy.

Second, the up-crossing transition rate from state i to state j for j > i is

qi,j = λ
∑

η

P(η) · P(j|η, i),

where η is a (Q− 1) vector that denotes the queue lengths of the other Q− 1 UEDs;

thus,

P(η) =

Q−1∏

q=1

πηq

and P(j|η, i) is the probability that a UED’s queue length becomes j when the UED

is in state i and the states of the other Q− 1 UEDs are η.

56

Assume ties are broken uniformly at random. If
∑Q−1

q=1 1ηq≤i−1 ≥ 1, then

P(j|η, i) =

1 if j = i,

0 if j 6= i

because the tasks will be dispatched to UEDs, original queue lengths of which are

smaller than i. On the other hand, if
∑Q−1

q=1 1ηq≤i−1 < 1, then the UED with queue

length i will receive N tasks, and P(j|η, i) = 1 for j = i+N .

WLOS, we assume UEDQ has queue size i. Given any j ≥ 0, we define Tj =
∑Q−1

q=1 1ηq=j, which is the number of UEDs with queue length j excluding UEDQ. Tj

is then the sum of Q− 1 i.i.d. Bernoulli r.v.’s with mean πj; thus, ETj = (Q− 1)πj.

Now, the probability that UEDQ receives N tasks is given by

E

(
1−∑i−1

j=0 Tj

1 +
∑i

j=0 Tj

)+

,

which, at steady state, can be approximated by

(
1− (Q− 1)

∑i−1
j=0 πj

1 + (Q− 1)
∑i

j=0 πj

)+

because Tj converges to (Q−1)πj in distribution and the term inside the expectation

is bounded and continuous in terms of Tj. This concludes the proof.

According to Lemma 2, the queue length dynamic of a single UED can be represented

by the Markov chain in Figure A.1. Intuitively, τπ indicates the queue length so that

the probability that a UED with queue size i(≥ τπ) receives N tasks is 0. Based on

Lemma 2, we can calculate the stationary distribution of the queue length of a single

UED numerically by finding π̂ that satisfies the global balance equation.

57

0 𝜏π 𝜏π+1 N+1N.
𝜇! 𝜇"

1 𝜏π-1
𝜇" l⌧⇡

N

m
N � ⌧⇡ + 1

<latexit sha1_base64="a0Fbqywv0BOh8MHDMSstlEPoh7U=">AAACQXicbVDLSgMxFM34rPVVdekmWARBLDNS8LEquHElCrYWmlIy6Z02mHmQ3BHKML/mxj9w596NC0XcujHTduHrQMjhnHPJzfETJQ267pMzMzs3v7BYWiovr6yurVc2NlsmTrWApohVrNs+N6BkBE2UqKCdaOChr+DGvz0r/Js70EbG0TWOEuiGfBDJQAqOVupV2kxBgEwJkCpjgeYiY8jTXsb8WPXNKLQXZYnM8+wiz5mWgyEyXaTpBT2g/2fpPvV6lapbc8egf4k3JVUyxWWv8sj6sUhDiFAobkzHcxPsZlyjFAryMksNJFzc8gF0LI14CKabjRvI6a5V+jSItT0R0rH6fSLjoSkWtMmQ49D89grxP6+TYnDczWSUpAiRmDwUpIpiTIs6aV9qEKhGlnChpd2ViiG3NaItvWxL8H5/+S9pHda8eu3kql5tnE7rKJFtskP2iEeOSIOck0vSJILck2fySt6cB+fFeXc+JtEZZzqzRX7A+fwCf/ux3w==</latexit>

⇠
⌧⇡ � 1

N

⇡
N � ⌧⇡ + 2

<latexit sha1_base64="i/aLY1PeYn20mOPw6Jkao95+dyE=">AAACQ3icbVDLSgMxFM34tr6qLt0EiyBIy0wRfKwEN65EwWqxKSWT3mlDMw+SO0IZ5t/c+APu/AE3LhRxK5ipXfjogZDDOeeSm+MnShp03Sdnanpmdm5+YbG0tLyyulZe37g2caoFNESsYt30uQElI2igRAXNRAMPfQU3/uC08G/uQBsZR1c4TKAd8l4kAyk4WqlTvmUKAmRKgFQZCzQXGUOedjLmx6prhqG9KEtkXvXy7DzPmZa9PjJd5Ok5rdLJabpH651yxa25I9D/xBuTChnjolN+ZN1YpCFEKBQ3puW5CbYzrlEKBXmJpQYSLga8By1LIx6CaWejDnK6Y5UuDWJtT4R0pP6cyHhoigVtMuTYN3+9QpzktVIMDtuZjJIUIRLfDwWpohjTolDalRoEqqElXGhpd6Wiz22RaGsv2RK8v1/+T67rNW+/dnS5Xzk5HtexQLbINtklHjkgJ+SMXJAGEeSePJNX8uY8OC/Ou/PxHZ1yxjOb5Beczy+NtbJS</latexit>

⇠
⌧⇡ + 1

N

⇡
N � ⌧⇡

<latexit sha1_base64="dsiEeT7MLzKwSORq51Nz381Hx9Y=">AAACP3icbVA9SwNBEN3zM8avqKXNYhAEMdxJwI8qYGMlCiYK2RD2NnPJ4t4Hu3NCOO6f2fgX7GxtLBSxtXMvSaHRgWUf771hZp6fKGnQdZ+dmdm5+YXF0lJ5eWV1bb2ysdkycaoFNEWsYn3rcwNKRtBEiQpuEw089BXc+HdnhX5zD9rIOLrGYQKdkPcjGUjB0VLdSospCJApAVJlLNBcZAx52s2YH6ueGYb2oyyR+b6XZxd5zrTsD5Dpwk8v6AH9392tVN2aOyr6F3gTUCWTuuxWnlgvFmkIEQrFjWl7boKdjGuUQkFeZqmBhIs73oe2hREPwXSy0f053bVMjwaxti9COmJ/dmQ8NMVy1hlyHJhprSD/09opBsedTEZJihCJ8aAgVRRjWoRJe1KDQDW0gAst7a5UDLgNEW3kZRuCN33yX9A6rHn12slVvdo4ncRRIttkh+wRjxyRBjknl6RJBHkgL+SNvDuPzqvz4XyOrTPOpGeL/Crn6xt+o7GL</latexit>

1

1 + (Q � 1)⇡0

<latexit sha1_base64="o+VjRVac80SN2+Gm+Ho8yGYFYMg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBFLRgo+VgU3LluwD2hCmEwn7dDJJMxMhBKy8VfcuFDErZ/hzr9x+lho64ELh3Pu5d57goQzpR3n2yqsrK6tbxQ3S1vbO7t79v5BW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB6G7idx6pVCwWD3qcUC/CA8FCRrA2km8fuaHEJEN5hs4rzQt0Bt2E+U7u22Wn6kwBlwmakzKYo+HbX24/JmlEhSYcK9VDTqK9DEvNCKd5yU0VTTAZ4QHtGSpwRJWXTR/I4alR+jCMpSmh4VT9PZHhSKlxFJjOCOuhWvQm4n9eL9XhtZcxkaSaCjJbFKYc6hhO0oB9JinRfGwIJpKZWyEZYpOINpmVTAho8eVl0r6solr1plkr12/ncRTBMTgBFYDAFaiDe9AALUBADp7BK3iznqwX6936mLUWrPnMIfgD6/MHUFyU7g==</latexit>

1 � (Q � 1)⇡0

1 + (Q � 1)(⇡0 + ⇡1)

<latexit sha1_base64="j7/6v9Kf4WOG/OBCGhjHIbv989E=">AAACE3icbVDLSgMxFM3UV62vqks3wSK0lpaJFHysCm5ctmAf0BmGTJppQzMPkoxQhv6DG3/FjQtF3Lpx59+YTmehrQcSzj3nXpJ73IgzqUzz28itrW9sbuW3Czu7e/sHxcOjrgxjQWiHhDwUfRdLyllAO4opTvuRoNh3Oe25k9u533ugQrIwuFfTiNo+HgXMYwQrLTnFc8sTmCSoVm7XUMWKmGPOElRNK1hO6+r8RpWZUyyZdTMFXCUoIyWQoeUUv6xhSGKfBopwLOUAmZGyEywUI5zOClYsaYTJBI/oQNMA+1TaSbrTDJ5pZQi9UOgTKJiqvycS7Es59V3d6WM1lsveXPzPG8TKu7ITFkSxogFZPOTFHKoQzgOCQyYoUXyqCSaC6b9CMsY6JKVjLOgQ0PLKq6R7UUeN+nW7UWreZHHkwQk4BWWAwCVogjvQAh1AwCN4Bq/gzXgyXox342PRmjOymWPwB8bnD6UGmt4=</latexit>

1 � (Q � 1)
P⌧⇡�2

l=0 ⇡l

1 + (Q � 1)
P⌧⇡�1

l=0 ⇡l

<latexit sha1_base64="HwlIB+LXjJhej8xrPB0MXoKHXzQ=">AAACXHicjVFbS8MwGE3r1F2cTgVffAkOYSIb7Rh4AWHgi48buAustaRpOsPSC0kqjNI/6dte/CuabhN088EPwnc45zvky4kbMyqkYSw0faewu7dfLJUrB9XDo9rxyVBECcdkgCMW8bGLBGE0JANJJSPjmBMUuIyM3Nljro/eCBc0Cp/lPCZ2gKYh9SlGUlFOTVg+Rzg1YRM2+k3zCloiCZyUPRjZS2pJlDip5UbME/NANWjFNGu2s7w7LFO26//bzG+bU6sbLWNZcBuYa1AH6+o5tXfLi3ASkFBihoSYmEYs7RRxSTEjWdlKBIkRnqEpmSgYooAIO12Gk8FLxXjQj7g6oYRL9qcjRYHI11STAZKvYlPLyb+0SSL9WzulYZxIEuLVRX7CoIxgnjT0KCdYsrkCCHOqdoX4Fam0pfqPsgrB3HzyNhi2W2anddfv1Lv36ziK4BxcgAYwwQ3ogifQAwOAwQJ8akWtpH3oBb2iV1ejurb2nIJfpZ99Ae2Gs8o=</latexit>

Fig. A.1.: The Markov chain representing the system

Lemma 3 The expected service time TQ(λ, µ1, · · · , µN) of an application instance

that is dispatched to Q UEDs is given by

N−1∑

r=0

∞∑

i=1

bi− 1

N
c

N∑

l=1

1

µl
+ 1d i

N
eN−i+1−r≥1

N−r∑

m=d i
N
eN−i+1−r

1

µm
+

1d i
N
eN−i+1−r<1

d i
N
eN−i+1−r+N∑

m=N−r

1

µm

 ·

(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q

 .

Proof Task of typeN becomes the ith task in the queue with probability
(∑∞

j=i−1 πj(t)
)Q

−
(∑∞

j=i πj(t)
)Q

. Thus, the expected time a task spends in the system under our

dispatch solution is

∞∑

i=1

bi− 1

N
c

N∑

l=1

1

µl
+

N∑

m=d i
N
eN−i+1

1

µm

 ·

(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q

 .

For other type N − r of a task, the cyclic structure in queue should be taken into

account and there by changes an expression for the summation
∑N

m=d i
N
eN−i+1

1
µm

,

which leads to the desired result.

