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ABSTRACT

Campos, Juan Alfonso Ph.D., Purdue University, August 2020. Generalized Homog-
enization Theory and its Application to Porous Rechargeable Lithium-ion Batteries.
Major Professor: R. Edwin Garćıa.

A thermodynamically consistent coarsed-grained phase field model was devel-

oped to find the conditions under which a heterogeneous porous electrode can be

treated as homogeneous in the description of Li-ions in rechargeable batteries. Four

regimes of behavior under which the transport phenomena can be homogenized to

describe porous LIBs were identified: regime (a), where the model is inaccurate, for

physically accessible particle packings of aspect ratios smaller than c/a = 0.5 and

electrode porosities between 0.34 to 0.45; regime (b), where the model is valid, for

particles of aspect ratios greater than c/a = 0.7 and electrode porosities greater than

0.35; regime (c), where the model is valid, but the microstructures are physically in-

accessible, and correspond to particles with aspect ratios greater than c/a = 0.7 and

electrode porosities smaller than 0.34; and regime (d), where the model is invalid and

the porous microstructures are physically inaccessible, and correspond to particles

with aspect ratios smaller than c/a = 1 and electrode porosities smaller than 0.34.

The developed formulation was applied to the graphite|LixNi1/3Mn1/3Co1/3O2

system to analyze the effect of microstructure and coarsed-grained long-range chemo-

mechanical effects on the electrochemical behavior. Specifically, quantifiable lithium

distribution populations in the cathode, as a result of long range interactions of the

diffuse interface, charge effects and mechanical stresses were identified: i) diffusion

limited population due to negligible composition gradients, ii) stress-induced popula-

tion as a result of chemically-induced stresses, and iii) lithiation-induced population,

as a consequence of the electrochemical potential gradients.
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1. INTRODUCTION

1.1 Energy Storage Technology Applications

Traditional energy extraction from fossil fuels generates waste heat and emis-

sions that pollutes and warms up the environment. Renewable energy sources such

as water, wind, and sunlight could overcome the world’s energy demand without

delivering waste heat and operating under low emissions, by powering all produc-

tive sectors with secondary energy sources like electricity, [1]. However, weather

conditions could impede electricity generation from renewable sources and cause an

intermittent supply. Thus, once that primary renewable energy sources are converted

into electricity and the electrical demand is covered, the remnant electricity has to be

stored. Electricity-based sustainable world will require the conversion of electricity

into chemical energy, which can be reserved for later use.

Electronic devices and electric cars are rated and valued according to their

battery support performance, [2]. Computer clusters and security systems are as

reliable as their energy storage backups. However, current storage technology cannot

parallel the rate of progress of computer technology, [3]. Therefore, energy storage

systems and in particular rechargeable batteries are fundamental for the environment

protection, the economic growth and the technological development.

1.2 Rechargeable Battery Fundamentals

A rechargeable battery consists of two electrodes, anode and cathode, one in-

termediate membrane separator, and two current collectors, all immersed in ionic
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conductive liquid (electrolyte), [4–11]. The electrodes are subjected to reversible re-

actions:

anode : SzA
 zS+ + A + ze−

cathode : SzC
 zS+ + C + ze−
(1.1)

where S, is the element providing the ions, A, stands for the chemistry in the negative

electrode, and C is the chemistry at the positive electrode. This ensemble is called

a dual insertion cell or ‘rocking chair’ [6, 9, 10], in reference to the back and fort

movement of ions between cathode and anode as depicted in Figure 1.1.

Figure 1.1. Schematic of charged ions trajectories during cell discharge.
The opposite flow occur while charging. The scheme also shows the basic
elements of the dual insertion cell. Taken from Ref. [12].

Atoms are deintercalated from the interstitial sites at the host material in the

electrode, turned into a positive charged ion (cation), and directed to the opposite

electrode through the electrolyte to find a new host, driven by the gradient in free

energy. In the context of rechargeable battery systems, the driving force is the electro-

chemical potential gradient. The released electrons are carried through the external

circuit, following the lowest electrical resistive path between the current collectors,
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driven by the electrical potential gradient. Electrons are also identified as negative

charged ions (anions).

The membrane between electrodes is meant to be electronically insulating,

meanwhile acting as a porous barrier that allows the transport of cations. This ionic

permeable membrane is commonly made of polymer and is also soaked in electrolyte

of high ionic conductivity. Different mixtures of lithium salts and solvents are used to

tailor the electrical conductivity of the electrolyte. Thus, the conductive salt concen-

tration has an impact on the kinetics of battery. In the separator, transport of ions

occur through the electrolyte between available sites in the polymer lattice [4, 8–11],

by a reaction of the form: S+ + Θ 
 S − Θ + e−, where Θ represent the polymer

chain. A summary of common materials used in commercially available rechargeable

batteries are listed in table 1.1.

Table 1.1.: Typical materials for rechargeable battery components, [10].

Collector Electrode Electrolyte Separator

Salt Solvent

Cu Li LiPF6 EC: ethylene carbonate Polyethylene

Al LiC6 KOH DMC: dimethyl carbonate Polypropylene

LiFePO4 LiClO4 DEC: diethyl carbonate Polycarbonate

LiMn2O4 LiTFSI PEO: polyethylene oxide

Li4Ti5O12 AsF6 C3H6O2: methyl acetate

LiCoO2 H2O

† Not an exhaustive list.

1.3 Transport Properties in Porous Electrodes

The interface area between the solid active particles and the conductive elec-

trolyte plays an essential role in the performance of the battery, because a high surface

induces a high reactivity and consequently an increased flux of ions. Pores in the elec-
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trodes provide additional surface at the expense of a fraction of solid active material.

Additional reactive interface is created if those pores infiltrated with electrolyte are

interconnected, so that pathways for high ionic-conductivity allow the transport of

cations within the electrode. However, a porous electrode represents a disconnected

media for electrons. So, electronic conductive additives such as graphite flakes or

carbon needles are dispersed in the electrolyte to create the conductive paths for the

anions, [12]. In order to put together solid active particles and fillers as a composite,

a polymer such as polyvinylidene fluoride (PVDF) is incorporated to act as binder.

Any constituent of the porous electrode is integrated at the expense of a volume frac-

tion of solid active material. Figure 1.2 show the break down of electrode constituents

in a percentage basis.

Figure 1.2. Break-down of the multiple phases conforming the compos-
ite porous electrode. Volume fraction of the electrolyte in commercially
available cathode materials is the range of 30 - 40%. Taken from Ref. [13].

The total interfacial area of a porous electrode is a function of shape and size of

the particles of active materials. To calculate an approximate area, two assumptions

are usually put in practice: monodispersed distribution of particle size and spherical

morphology. The area per unit volume or reactive area density is A =
(S×εs

rp

)
, where
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εs =
Ωelectrolyte−Ωfillers−Ωbinder

Ωtotal
, is the volume fraction of the active material, S is the shape

factor which corresponds to perfect spheres when S = 3, and rp is the particle radius.

Physical properties such as electrical conductivity and diffusivity are obtained

experimentally. Although, in the context of porous electrodes, measurements of these

properties differ from point to point due to the obstacles imposed to transport of

ions. In a porous media, the effects of porosity and tortuosity over a property value

have to be considered. The tortuosity is the ratio of actual travel path of ions, `,

to the length of the through-thickness electrode, L, τ = `
L
. Porosity and tortuosity

are related by an empirical relation found by Bruggeman, where α is known as the

Bruggeman exponent τ = 1
εα

, [15].

1.4 Overview of the Thesis

A thermodynamically consistent phase field model, based on the contributions

to the free energy of the system, is proposed to understand the effects of the complex

electrochemical and chemomechanical processes carried through the operation of the

battery. In this work, computational models are the keystone for research and one of

the intended outcomes. The phase field framework is coarsed-grained with rigorous

mathematical techniques in an effort to control the overall investment on computa-

tional resources without loosing insight on the phenomena. Chapter 2 introduces the

phase field coarsed-grained approach, and the mathematical derivation that allows to

assess the validity of the continuum approximation, based on the transport limitations

imposed by the electrode microstructure. Specifically, a set of classical Newman-type

model definitions of the mass and charge transport equations subjected to diffusion,

electromigration and intercalation reaction are derived. For the first time, an ex-

perimental microstructural guideline to tailor the secondary active material particles

and the electrode porosity to achieve the conditions of validity of the model is in-

troduced. In addition, microstructural analyses on the validity and limitations of

coarsed-grained models for commercially and experimentally available electrodes are

provided. Chapter 3 makes use of the phase field framework to introduce the con-
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tributions of the gradient energy and the mechanical stresses in the battery system,

to derive a set of coarsed-grained mass and charge transport equations. The derived

equations are applied to a commercially available chemistry, LixNi1/3Mn1/3Co1/3O2

(NMC), and the long range kinetic implications of the additional contributions are

reported. Specifically, the overall effect on the macroscopic cell potential and lo-

calized effects on position dependent concentration fields of the solid and electrolyte

phases. Finally, Chapter 4 presents the future challenges to better and reliably design

rechargeable batteries and the opportunities that powerful tools, like those developed

in this work, have open to realistically and faithfully engineer the next generation of

rechargeable batteries.
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2. MICROSTRUCTURAL LIMITS AND EXTENSIONS OF POROUS

ELECTRODE THEORY

A version of this chapter is currently in preparation for journal publication as : J.A.

Campos, I. Battiato, and R.E. Garćıa. “Microstructural Limits and Extensions of

Porous Electrode Theory.”

2.1 Introduction

Since its initial commercialization in 1991 [16], the energy density of lithium-

ion batteries (LIBs) has increased yearly at a rate of 5 - 10% [2], to fulfill the ever-

going expectation of longer-lasting electrical power, and has lead to improvements

in energy density to more than double in the last two decades [2, 17–19], while its

cost decreased by a factor of ten [2, 17, 20]. LIBs currently power a great part of

the market of portable devices, 63% [3], while most recently batteries started to be

incorporated in the transportation and electrical-grid markets [2,17–22]. Worldwide,

current battery systems are capable to store only 0.02% [23] of the total electrical

energy. In order to support the use of intermittent renewable energy sources, or

electrically-based transportation, important technological and scientific strides have

to occur in the present decade.

The underlying electrochemical processes occurring in rechargeable batteries are

a scaled-up, macroscopic, measurable quantities, that are a result of the underlying

rechargeable battery microstructural design. Fundamental transport phenomena such

as diffusion, electromigration, and reaction have been successfully implemented in

porous electrode models through volume-averaged [5,7,8,10,14,24–30], and upscaled-

homogenized [31–34] methodologies. Their use and applicability in LIB design is
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limited by their physical and numerical complexity, and the overall investment on

computational and human resources required to better understand or design the de-

vice.

Porous electrode theory models developed by a large, well established commu-

nity, e.g ., [5,7,8,10,24], offers a unified, well-thoughtout mean-field approach, where

the electrochemically active material phase, processed in granular form, is modeled

as perfectly spherical particles, as a step to describe the averaged properties of a rep-

resentative volume. These models are quite robust and require low computational re-

sources [10,14,27–30]. However, particle-to-particle interactions are not well captured

and represent a limitation of the model [35–40]. A representative volume is defined

large enough to include every phase, but small enough to assume homogeneity and de-

scribe the material as a continuum [5,7,8,10,24]. Here, any scalar, vectorial, or tenso-

rial quantity, B, is averaged over a local representative volume, Ωi, as Bi ≡ 1
Ω

∫
Ωi

BidΩ

and related to the intrinsic volume average through the relation Bi = εi〈B〉i. The

intrinsic volume average is defined as 〈B〉i ≡ 1
Ωi

∫
Ω

BidΩ, for i = {solid, electrolyte}.
Other quantities such as the average of the gradient ∇Bi = ∇Bi + 1

Ω

∫
S

Bin̂SdS, the

average of the divergence∇ · ~Bi = ∇·~Bi+
1
Ω

∫
S
~Bi ·n̂SdS, and the generalized transport

theorem d
dt

∫
V

BdV =
∫

Ω
∂B
∂T

dΩ +
∫

S
B~v · n̂dS, enable to define the averaged continuity

equations:
∂ci
∂t

+∇ · ~Ni = Rls

∇ ·~Ii = Rls

(2.1)

Here, ci is the concentration of ions, t is time, ~Ii is the averaged electric current

density, Rls is the Butler-Volmer relation and i defines the ith component. T is

temperature, S corresponds to the closed bounding surface, Ω represents the spatial

region of interest, and εi is the volume fraction of the ith phase. In a concentrated

solution, ~Ni = −ν+〈Di〉 (1 + H∗i )∇εi〈ci〉+
t∗+

z+F ii is the average molar mass flux vector,

where t∗+ is the transference number, z+ the ionic charge of the cations [24], and

(1 + H∗i ) = 1/τ is the tortuosity, as introduced by Bruggeman [15].
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For porous electrodes, the averaged electrical conductivity and lithium diffusiv-

ity are defined as:

〈σ〉 =
εiσ0

τ
, and 〈D〉 =

εiD0

τ
(2.2)

Porosity and tortuosity are related through the expression τ = 1
εαi

, [15]. The mi-

crostructural tortuosity is a function of statistical contributions from a representative

particle geometry: 〈α〉 = p + 2pS + 3L(p - 2pS + 2L-2)
6L(1 - L)

, where p is the particle size polydis-

persity, L is the depolarization factor, and S is the microstructural order parameter,

as described by Garćıa, [41].

Lai and Ciucci derived a volume-averaged model, by using generalized Poison-

Nernst-Planck equations and proposed an interfacial charge transfer equation, where

the transfer coefficients depend on electric current and galvanic potential terms [42,

43]. In a follow-up paper, the same authors developed a phase transforming model

where the time-dependent motion of the phase boundary was phenomenologically

captured [44]. Bazant and collaborators extended Newman’s porous electrode theory

model to account for phase transforming materials and captured the intercalation

kinetics of LiFePO4 (LFP), [25, 26]. The model predicted the occurrence of voltage

spikes due to the discrete filling fraction of lithium in the particles, and demonstrated

the spinodal decomposition of lithium in LFP.

In contrast, upscaled-homogenized models define an homogenized property as

one that converges to its averaged value, upon applying a multiscale expansion, and

have been suitable to be modeled as a periodic structure, [45]. Any variable originally

defined as Bξ(x, t) is recast as a function of all spatial and temporal scales, Bξ(x, t)→
B(x, y, t, t

R
, t

Me
, t

Ms
), and expanded into powers series: B =

∑∞
n=0 ξ

n Bn(x, y, t, t
R
, t

Me
, t

Ms
),

where the scalar ξ is the ratio of the particle size to the electrode thickness
(

2rp
L

)
.

The expansion, based on the scalar ξ � 1, is carried up to O(ξ2), [45–49].

Lai and coworkers [31] developed an upscaled-homogenized model by starting

from the Poison-Nernst-Planck equation, whose scales were not fully decoupled by

suggesting that diffusion is highly non-linear. Therefore, macroscale equations were

set for the solid phase and coupled to spatially-resolved equations on the electrolyte.
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Golmon and coworkers applied successfully the upscaling-homogenizing technique in

porous electrode models to lower the computational burden [32], and reported that

the fields of a small spatially-resolved domain are passed up to the coarse-grained

model for a second iteration. Battiato and coworkers introduced a method to identify

the validity of Newman-type models by considering the chemistry only, [34]. They

suggested that the continuum approximation is valid as long as the separation of

scales is enforced. This was found to be true when diffusion is dominant (shorter time

scale) as compared with other transport process contributions. This was quantified

by Péclet and Damköhler numbers: Pei =
RTσ∗T

(ziF)2D∗i cmax
and Dai = Lk

D∗i
, i = {electrolyte,

solid}. Diffusion dominates when the constraints: (a) ξ � 1, (b) Da < 1, (c) Pe < 1,

and (d) Da < Pe are enforced.

Table 2.1 summarizes a comparison between the analytical form of the equation

terms corresponding to mass accumulation, diffusion, electromigration and reaction

processes, as emphasized by each methodology.
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Table 2.1.: Summary of relations between spatially-resolved, volume-averaged and
upscaled-homogenized terms. Relations used to develop different coarse-grained rep-
resentations are also highlighted, noting that the upscaling process requires specific
relations in addition to the averaging technique.

Spatially-resolved Averaged Upscaled-homogenized

∂ce
∂t

εi
∂〈ce〉
∂t

εi
∂〈ĉe〉
∂t̂

Dece
2RT
∇2
xce

ce
2RT
〈De〉∇2

x〈ce〉 ĉe
2RT
〈D̂e〉∇̂2

x〈ĉe〉
ziFDece

2RT
∇2
xφe

〈σe〉
ziF t+∇

2
x〈φe〉 Peet+〈σ̂e〉∇̂2

x〈φ̂e〉
k

ziF ĵBV
εikA
ziF ĵBV

εiDaeA
ξ

ĵ
BV

d
dt

∫
Ω

BdΩ =
∫

Ω
∂B
∂T

dΩ +
∫

S
B~v · n̂dS

∇ · ~Bi = ∇ · ~Bi + 1
Ω

∫
S
~Bi · n̂SdS

∇Bi = ∇Bi + 1
Ω

∫
S

Bin̂SdS

Bi ≡ 1
Ω

∫
Ωi

BidΩ

Bi = εi〈B〉i

Summary of relations

used to develop volume-

averaged equations.

Summary of relations

used to develop upscaled-

homogenized equations in

addition to the relations also

used to volume-averaged

transport equations.

B(x, t)→ B(x, y, t, t
R
, t

Me
, t

Ms
)

ξ = 2rp
L

y = ξ−1x

B =
∑∞

n=0 ξ
n Bn(x, y, t, t

R
, t

Me
, t

Ms
)

∇̂y ·
(
I + ∇̂yχ

)
= 0

n̂ ·
(
I + ∇̂yχ

)
= 0

The characteristic time of any ionic transport process at the microscopic level

is affected by the tortuosity, the reactive area density, and any additional reversible

and irreversible physical mechanisms not considered by the classical definition of the

macroscale dimensionless numbers. In this context, a modeling methodology based on

microstructural criteria that allows to scale-up the different multiphysical aspects of

porous LIBs, while providing practical guidelines to determine the extent of validity
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of the models, is missing. In this paper, a mathematical framework derived from a

phase field formulation was developed to allow the incorporation of additional phys-

ical contributions that affect the validity guidelines. The microstructural analysis,

validity and limitations of Newman-type models for commercially and experimen-

tally available electrodes are also provided.

2.2 Theoretical Framework

Define the Gibbs free energy of a material system subjected to chemical, elastic,

and electric driving forces as [51–57]:

G[{ci}, ρ, uj; T◦] =

∫

Ω

(
g({ci}; T◦) +

N−1∑

i=1

Ki
2
|∇ci|2 +

1

2

↔
σ · ↔ε e + ρφ

)
dΩ

+

∫

Ω

λ(~x)

(
ρ−

N∑

i=1

Fzici
)

dΩ

(2.3)

where {ci} = {c1, . . . , cN}, is the set of the concentrations of N electrically charged

species, uj is the jth component of the mechanical displacement vector,
↔
σ is the

mechanical stress tensor,
↔
ε e is the elastic strain tensor, εkl = 1

2

(
∂uk
∂xl

+ ∂ul
∂xk

)
describes

the relation of geometrical strain and displacement, ρ is the electric charge density, T◦

is the temperature, Ki is the interfacial gradient energy penalty of the ith species, Ω

is the volume of the phase in consideration, zi is the charge valence of the ith species,

F is Faraday’s constant, and λ(~x) is a spatially varying Lagrange multiplier, [58].

The resultant variational derivatives are [51,52,54,55]:

δG

δci
=
∂g

∂ci
−Ki∇2ci + λFzi +

1

2

∂

∂ci

(
↔
σ · ↔ε e

)

δG

δρ
= φ− λ

δG

δuj
= ∇ ·←→σ = ~0

(2.4)
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Equation set 2.4 constitutes the electrochemomechanical driving force for transport

and phase transformations, through the set of coupled Cahn-Hilliard equations:

∂ci
∂t

=∇ ·Mi∇
(
δG

δci

)
= ∇ ·Mi∇

(
∂g

∂ci
−Ki∇2ci +

1

2

∂

∂ci

(
↔
σ · ↔ε e

))
+∇ ·MiFzi∇λ

∂ρ

∂t
=∇ ·Mρ∇

(
δG

δρ

)
= ∇ ·Mρ∇φ−∇ ·Mρ∇λ

(2.5)

where λ(~x) =
Mρφ−

∑N
i=1 ziFMi

(
∂g
∂ci
−Ki∇2ci+

1
2
∂
∂ci

(
↔
σ ·↔ε e

))
+ψ(~x)

Mρ+
∑N
i=1(ziF)2Mi

, and ψ(~x) is a solution to the

Laplace equation (∇2ψ = 0) that will vanish when substituted in equation set 2.5,

in agreement with several authors [51, 58, 59]. Mi = Dici/RT, Mρ =
∑N

i=1 (ziF)2Mi,

while σT = σ1 + ...+ σN, and Mρ/2 = σT , [60].

By substituting:

∂ci
∂t

=∇x ·
[

Dici(2− ti)
2RT

(
∂2g

∂c2
i

∇xci −Ki∇3
xci −

∂ε
Che

∂ci
∇xσ − σ

∂2ε
Che

∂c2
i

∇xci

)
+
ziFDici

2RT
∇xφ

+
N∑

j=1,i 6=j

Mij

2

(
∂2g

∂c2
j

∇xcj −Kj∇3
xcj −

∂ε
Che

∂cj
∇xσ − σ

∂2ε
Che

∂c2
j

∇xcj

)]

∂ρ

∂t
=∇x ·

[
σT∇xφ+

N∑

i=1

ziFDici
2RT

(
∂2g

∂c2
i

∇xci −Ki∇3
xci −

∂ε
Che

∂ci
∇xσ − σ

∂2ε
Che

∂c2
i

∇xci

)]

(2.6)

For an intercalating material, strain is imposed on the lattice as a result of the inter-

stitially dissolved lithium [43,44,57,61–63]. The inhomogeneous distribution of solute,

results in compositionally-induced stresses. Here, the total (or geometrical) strain,
↔
ε
T

, is the sum of elastic,
↔
ε e, and the chemical strain,

↔
ε
Che

, [64–70];
↔
ε
T

=
↔
ε e +

↔
ε

Che
.

The stress tensor and the elastic strain are related via Hooke’s law,
↔
σ =

↔
C · ↔ε e.
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In agreement with Newman et al. [65–67], the Butler-Volmer relation corre-

sponds to:

jBV = kcαce (cmax−cs)αcc(1−αc)
s exp

(
−

↔
σ · ↔ε e

4RTcmax

)(
exp

(
αcF
2RT

η

)
− exp

(
−(1− αc)F

2RT
η

))

(2.7)

where the local surface overpotential: η =
(
φs − φe − jBVFRf − 1

2

↔
σ ·↔ε e
Fcmax

)
. The ex-

ponent, αc, is the transfer coefficient, k is the reaction rate constant, and Rf is the

interfacial resistance, also known as ‘film-contact-resistance’.

Define:

ĉ = c
cmax

, x̂ = x
L
, φ̂ = zFφ

2RT
, ρ̂ = ρ

zFc , D̂ = D
D∗

σ̂ = σ
σ∗
, K̂ = K

K∗ , M̂ = M
M∗
, M̂ρ = Mρ

M∗ρ
, t̂ = t

t
De

∇ = ∇̂
L
, ∂

∂c
= 1

cmax

∂
∂ĉ
, ∂

∂c2
= 1

c2max

∂
∂ĉ2
, ∂

∂t
= 1

t
De

∂
∂t̂

∂
∂x

= 1
L
∂
∂x̂
, ∂2

∂x2 = 1
L2

∂2

∂x̂2 ,
∂3

∂x3 = 1
L3

∂3

∂x̂3

(2.8)

which upon substitution into equation set 2.6, results in the following:

∂ĉ

∂t̂
=∇̂x ·

[
ĉ(2− t+)D∗i D̂i

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

D∗i cK∗i
D∗eRTL2c2

max

(2− t+)

2
D̂iK̂i∇̂3

xĉ

− D∗i cσ
∗

D∗eRTc2
max

(2− t+)

2
D̂i

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)
+

2RTσ∗TD∗i
(zF)2D∗i cmaxD∗e

t+σ̂T ∇̂xφ̂

]

∂ρ̂

∂t̂
=∇̂x ·

[
2RTσ∗TD∗i

(zF)2D∗i cmaxD∗e
σ̂T ∇̂xφ̂+

ĉD∗i D̂i

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

1

2

D∗i ĉK∗i
D∗eRTL2c2

max

D̂iK̂i∇̂3
xĉ

− 1

2

D∗i cσ
∗

D∗eRTc2
max

D̂i

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]

(2.9)
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for a pseudobinary system. Here, the following dimensionless numbers are identified:

Dai =
Lk

D∗i
Damköhler number

Pei =
RTσ∗T

(ziF)2D∗i cmax

Péclet number

Chi =
ciK∗i

RTL2c2
max

Cahn number

Ssi =
ciσ
∗

RTc2
max

Stress number

(2.10)

where i={solid, electrolyte}. In the solid phase, the electromigration term is negligi-

ble in the mass conservation equation (less than half compared with the contribution

in the charge conservation equation, assuming t+ = 0.4), while the stress term is

negligible in the charge conservation equation (one fourth compared with the contri-

bution in the mass conservation equation, assuming t+ = 0.4), due to the influence

of the transference number. Thus, equation set 2.9 reduces to:

∂ĉ

∂t̂
=∇̂x ·

[
ĉ(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ− Chs

D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉ

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]

∂ρ̂

∂t̂
=∇̂x ·

[
Pes

D∗s
D∗e
σ̂T ∇̂xφ̂+

ĉD∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

Chs
2

D∗s
D∗e

D̂sK̂s∇̂3
xĉ

]

(2.11)

For the electrolyte phase, the compositionally-induced mechanical stress terms in the

mass and charge conservation equations are negligible, since Young’s Modulus is small
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(about one to three orders of magnitude smaller than in the solid phase, for plasticized

electrolytes and polymer separators, [98]). The resultant simplified equations:

∂ĉ

∂t̂
= ∇̂x ·

[
ĉ(2− t+)D̂e

2RTcmax

U∗
∂2ĝ

∂ĉ2
∇̂xĉ− Che

(2− t+)

2
D̂eK̂e∇̂3

xĉ+ 2Peet+σ̂T ∇̂xφ̂

]

∂ρ̂

∂t̂
= ∇̂x ·

[
2Peeσ̂T ∇̂xφ̂+

ĉ

2RTcmax

D̂eU
∗∂

2ĝ

∂ĉ2
∇̂xĉ−

Che
2

D̂eK̂e∇̂3
xĉ

]

(2.12)

By applying the methodology summarized in Appendix A, the upscaled-homogenized

transport equations approximated to O(ξ2) in the solid phase are:

εs
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)D∗s
2RTcmaxD∗e

U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
x〈ĉ〉 − Chs

D∗s
D∗e

(2− t+)

2

〈
D̂s

〉
K̂s∇̂4

x〈ĉ〉

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
2
∂〈σ̂〉
∂x̂

〈
∂2ε

Che

∂ĉ2

〉
∇̂x〈ĉ〉+

〈
∂ε

Che

∂ĉ

〉
∂2〈σ̂〉
∂x̂2

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
〈σ̂〉
〈
∂2ε

Che

∂ĉ2

〉
∇̂2
x〈ĉ〉

)
− D∗s

D∗e

εs
ξ

DasÂĵBV

εs
∂ 〈ρ̂〉
∂t̂

=2Pes
D∗s
D∗e
〈σ̂T 〉 ∇̂2

xφ̂+
ĉD∗s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
xĉ

− Chs
2

D∗s
D∗e

〈
D̂s

〉
K̂s∇̂4

xĉ−
D∗s
D∗e

εs
ξ

DasÂĵBV

(2.13)

and in the electrolyte phase:

εe
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
x〈ĉ〉 − Che

(2− t+)

2

〈
D̂e

〉
K̂e∇̂4

x〈ĉ〉

+ 2Peet+ 〈σ̂T 〉 ∇̂2
x〈φ̂〉+

εe
ξ

DaeÂĵBV

εe
∂ 〈ρ̂〉
∂t̂

=2Pee 〈σ̂T 〉 ∇̂2
xφ̂+

ĉ

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
xĉ

− Che
2

〈
D̂e

〉
K̂∇̂4

xĉ+
εe
ξ

DaeÂĵBV

(2.14)
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Define the Fourier numbers: Fos = D∗s
D∗e

and Foe = D∗e
D∗e

, and recast equation set 2.13 as:

εs
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)

2RTcmax

U∗
∂2ĝ

∂ĉ2
Fos

〈
D̂s

〉
∇̂2
x〈ĉ〉 − ChsFos

(2− t+)

2

〈
D̂s

〉
K̂s∇̂4

x〈ĉ〉

− SsFos
(2− t+)

2
D̂s

(
2
∂〈σ̂〉
∂x̂

〈
∂2ε

Che

∂ĉ2

〉
∇̂x〈ĉ〉+

〈
∂ε

Che

∂ĉ

〉
∂2〈σ̂〉
∂x̂2

)

− SsFos
(2− t+)

2
D̂s

(
〈σ̂〉
〈
∂2ε

Che

∂ĉ2

〉
∇̂2
x〈ĉ〉

)
− εs
ξ

DasFosÂĵBV

εs
∂ 〈ρ̂〉
∂t̂

=2PesFos 〈σ̂T 〉 ∇̂2
xφ̂+ Fos

ĉD∗s
2RTcmaxD∗e

U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
xĉ

− ChsFos

〈
D̂s

〉
K̂s∇̂4

xĉ−
εs
ξ

DasFosÂĵBV

(2.15)

Similarly, for equation set 2.14:

εe
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)

2RTcmax

U∗
∂2ĝ

∂ĉ2
Foe

〈
D̂e

〉
∇̂2
x〈ĉ〉 − CheFoe

(2− t+)

2

〈
D̂e

〉
K̂e∇̂4

x〈ĉ〉

+ 2PeeFoet+ 〈σ̂T 〉 ∇̂2
x〈φ̂〉+

εe
ξ

DaeFoeÂĵBV

εe
∂ 〈ρ̂〉
∂t̂

=2PeeFoe 〈σ̂T 〉 ∇̂2
xφ̂+ Foe

ĉ

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
xĉ

− CheFoe

〈
D̂e

〉
K̂e∇̂4

xĉ+
εe
ξ

DaeFoeÂĵBV

(2.16)

The dimensionless numbers associated to equation sets 2.15 and 2.16 enable to

identify the contribution of each term of the governing equations to the kinetics of

the system. A comparison of the magnitude of the dimensionless numbers provides a

simple criteria to remove those terms with a negligible contribution to describe the

physical phenomena, which in turn leads to simplified equations and thus faster nu-

merical simulations. For example, gradient energy or mechanical stress contributions

to the transport of lithium-ions can be removed from the calculation if SsiFoi � Foi

or ChiFoi � Foi, thus accelerating dramatically the computation.
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Macroscale models adhere to the continuum approximation assumption when

homogeneity is preserved, i.e., macro and micro scales remain uncoupled, [34]. Specif-

ically, diffusion-dominated transport enforces homogeneity, thus any other driving

force should be smaller in order for the model to be valid. However, fast intercala-

tion, as achieved at high C-rates, induces larger electrochemical and chemomechanical

gradients, [71], and consequently loss of fidelity and prediction power of upscaled-

homogenized models, [34, 72, 73]. In this context, if the gradient energy contribution

is also considered in lithium-ions transport equations, the conditions to enforce sep-

aration of scales demand: (a) gradient energy contribution slower than diffusion,

ChiFoi < Foi; (b) electromigration slower than diffusion, PeiFoi < Foi; (c) interca-

lation reaction slower than diffusion, DaiFoi < Foi; (d) intercalation reaction slower

than gradient energy contribution, Dai < Chi; and (e) intercalation reaction slower

than electromigration, Dai < Pei.

The modern description of LIBs that demand to include the mechanical stress

contribution to the mass and charge transport equations requires to enforce sepa-

ration of scales: (a) mechanical stress slower than diffusion, SsiFoi < Foi; (b) elec-

tromigration slower than diffusion, PeiFoi < Foi; (c) intercalation reaction slower

than diffusion, DaiFoi < Foi; (d) intercalation reaction slower than mechanical stress,

Dai < Ssi; and (e) intercalation reaction slower than electromigration, Dai < Pei. If

gradient energy and mechanical stress contributions are simultaneously relevant, the

conditions to enforce separation of scales are: Foi > Pei > Chi > Ssi > Dai, where i

= {solid, electrolyte}.
In the absence of gradient energy and chemomechanical stresses, equation sets

2.15 and 2.16 reduce to the well-known Newman-type model, when the diffusivity is

setup as independent of concentration and transference number: ĉ(2−t+)
2RTcmax

U∗ ∂
2ĝ
∂ĉ2

= 1

and (2−t+)
2

. For the solid phase:

εs
∂〈ĉs〉
∂t̂

= ∇̂x ·
(

Fosε
1+α∇̂x〈ĉs〉

)
+
εs
ξ
ÂDasFosĵBV

0 = ∇x ·
(

2PesFosε
1+α∇̂x〈φ̂s〉

)
+
εs
ξ
ÂDasFosĵBV

(2.17)
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and for the electrolyte phase:

εe
∂〈ĉe〉B
∂t̂

= ∇̂x ·
(
ε1+αFoe∇̂x〈ĉe〉+ 2PeeFoet+ε

1+α∇̂x〈φ̂e〉
)

+
εe
ξ
ÂDaeFoeĵBV

0 = ∇̂x ·
(

2PeeFoeε
1+α∇̂x〈φ̂e〉

)
+
εe
ξ
ÂDaeFoeĵBV

(2.18)

These two sets of equations are equivalent to those reported by Battiato et al. [34].

From equation sets 2.17 and 2.18, define the extended dimensionless numbers:

Foµ = Fo ε1+α

Peµ = Pe ε1+α

Daµ = Da Âε
i

(2.19)

as the microstructural Fourier, Péclet and Damköhler numbers, and lead to the fol-

lowing revised constraints to enforce scale separation by including the effect of mi-

crostructure:

ξ =
2rp
L
� 1 (2.20)

DaµFo < Foµ (2.21)

PeµFo < Foµ (2.22)

Daµ < Peµ (2.23)

Following Battiato et al. [34], microstructural Fourier, Péclet, and Damköhler param-

eters expressed as a power of the scalar ξ are: Foµ = ξ−δ, Peµ = ξβ, and Daµ = ξγ.

1 Equation 2.21 is satisfied for any γ <
(
−δ − ln (Fo)

ln(ξ)

)
. Equation 2.22 is satisfied for

any β <
(
−δ − ln (Fo)

ln(ξ)

)
. In the limit of γ = −β, Peµ = Daµ and equation 2.23 is

satisfied for any γ > −β.

1The minus sign for the δ exponent is required for orthogonal plots in equations 2.21 and 2.22.
Similarly, a minus sign in the β exponent will be required to plot equation 2.23, in agreement with
Battiato et al., [34].
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2.3 Implementation for Example Chemistries and Porous Microstruc-
tures

To determine the limits of microstructural validity of Newman-type models,

analytical symbolic calculations were performed in Mathematica, version 10.4.0.0,

[74], where extended dimensionless numbers and physical constraints (equations 2.20,

to 2.23) were enforced.

The markers in Figures 2.1 and 2.3, represent the relation γ = f(−β), where γ

and β are the exponents in the expressions that relate the scaling parameter, ξ, to

the dimensionless numbers. For microstucture-enhanced dimensionless numbers the

relations are: Foµ = ξ−δ, Peµ = ξβ, and Daµ = ξγ, while for microstructure-free are:

Fo = ξ−δ, Pe = ξβ, and Da = ξγ.

Figure 2.2 represents an extension of the relation γ = f(−β), that deter-

mines the range of the function due to subsidiary functional relations. Thus, Daµ =

f
(
ε, α, Â), and Peµ = f

(
ε, α
)
, where α = f(Lxx), Â = f(ε, ra), and Lxx = f(ra). Full

descriptions of the dimensionless reactive area density, Â, the Bruggeman exponent,

α, and the through-thickness depolarization factor for fully aligned particles, Lxx, are

available in the literature, [41].

Figure 2.4, represents the inequality Pe εα ≥ −Da Â, where the functional re-

lations α = f(Lxx = f(ra)), and Â = f(ε, ra) were applied. Table 2.2 summarizes the

properties used to calculate dimensionless numbers for typical commercial batteries.
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Table 2.2.: Macroscale parameters, solid particle size and electrode size; as reported
in the literature for the different Li-ion chemistries [28–30, 39, 75–80]. These values
are used to calculate the transport numbers as listed in the Table B.1.

rp L k De σeT cmax Ds σsT

Chemistry [m] [m]
[

m
s

] [
m2

s

] [
1

Ω m

] [
mol
m3

] [
m2

s

] [
1

Ω m

]
Ref.

×10−6×10−5×10−9×10−10 — ×104×10−15 —

LiC6 12 9.3 7.7 2.9 1.1 2.82 100 100 [75,76]

LiFePO4 11 9.2 5.9 2.3 1.3 2.64 1.2 0.01 [77]

LiMn2O4 1.7 5.0 76.0 3.2 1.83 2.29 6.0 10 [78,79]

Li4Ti5O12 0.01 6.6 150.0 2.0 0.28 2.28 6.8 100 [80]

LiNi1/3Mn1/3Co1/3O2 5.0 4.6 8.3 2.7 0.98 3.62 30.0 3.8 [28,29]

LixNiyCozAl1−y−zO2 2.5 5.0 23.0 3.2 0.87 4.95 100 10 [78]

LiCoO2 10 8.0 4.5 2.6 1.0 5.10 10 100 [30,39]

2.4 Results and Discussion

Figure 2.1 summarizes the effect of the microstructure on Péclet and Damköhler

numbers in the electrolyte, for selected chemistries. Values of dimensionless numbers

are reported in Table B.1 in appendix B. In the absence of mechanical stresses and

gradient energy contributions, the shaded area corresponds to the region of valid-

ity of a Newman-type model, and encloses the constraints to enforce separation of

scales, where a coarse-grained description of the transport at the macroscopic level is

decoupled from the microscopic description.

Figure 2.1 demonstrates that the validity of a Newman-type model to describe

the electrolyte phase is very sensitive to the morphology of secondary particles of

active material. For example, the platelet-shaped morphology of LiFePO4 with aspect

ratio of c/a ∼ 0.3, induces a high dimensionless reactive area density, Â = 3.7, and
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consequently a high intercalation reaction. Its corresponding Bruggeman exponent,

α = 3.01, causes a high through-thickness tortuosity of τ = 37.5 with an assumed

porosity of εe = 0.3. Tortuosity greatly decreases the effective ionic conductivity and,

accordingly, the electromigration contribution. Thus, the intercalation reaction, in

LiFePO4-based electrode layers, dominates over the electromigration process. In this

case, the intrinsic microstructure impedes the validity of the model.

An essential assumption on Newman-type models is the expected spherical mor-

phology of secondary particles. However, spherically-shaped particles of Li4Ti5O12

chemistry are shown outside the region of validity in Figure 2.1, and thus coarse-

grained models are not useful. This situation is avoided if hypothetical prolate-shaped

Li4Ti5O12 particles with aspect ratios, c/a ∼ 5.0, and electrode porosity of εe = 0.88 is

modeled instead. Here, the dimensionless reactive area density drops from Â = 2.14

to Â = 0.31, and the Bruggeman exponent of α = 0.06 decreases the tortuosity 0.47%

to τ ∼ 1.

LiC6, the most widely used material in rechargeable LIBs, is typically used in

platelet form with aspect ratios c/a ∼ 0.3 and electrode porosity of εe ∼ 0.3, naturally

placing it in the non-valid regime. A simple change of the particle aspect ratio to

c/a ∼ 0.5, favors a decrease in tortuosity from τ = 10.5 to τ = 3.8, enabling the

electromigration to dominate over the intercalation reaction, bringing the Newman-

type model back to validity for this chemistry.
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Figure 2.1. Effect of the microstructure on the model validity for Li-ion
transport in the electrolyte phase as a function of Péclet and Damköhler
numbers. Open symbols represent microstructure free chemistries: .
LiC6, 4 LiFePO4, # LiMn2O4, � Li4Ti5O12, 3 LiNi1/3Mn1/3Co1/3O2,
I LiNi0.8Co0.2−xAlxO2, O LiCoO2. Filled symbols describe the effect
of microstructure: I LiC6, N LiFePO4, l LiMn2O4, � Li4Ti5O12, u

LiNi1/3Mn1/3Co1/3O2, F LiNi0.8Co0.2−xAlxO2, t LiCoO2. The shaded-
region above the diagonal line corresponds to the regime where Newman-
type models are valid. Model predicts that Newman approaches will only
be valid when diffusion dominates over reaction and the electromigration
processes.
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For a LiMn2O4-based electrode, Figure 2.2 (a) highlights the region where the

constraint Daµ < Peµ is satified. Basically, intercalation reaction is slower than

electromigration for electrodes with porosity εe ≥ 0.3 for a wide range of particle

shapes. Figure 2.2 (b) shows electrode microstructures that satisfy the constraint,

DaµFo < Foµ. Results demonstrate that the model is valid for a wide range of com-

binations of particle shapes and porosity values, except for platelet-shaped particles

and porosities εe < 0.3. LiMn2O4 particles, with octahedral-like shape [79, 81, 82]

tailored to aspect ratios ranging 0.1 ≤ c/a ≤ 10, are valid for cases with porosities

εe ≥ 0.3 and aspect ratios c/a ≥ 1 or porosities εe ≥ 0.45 and aspect ratios 0.5 ≤ c/a

≤ 1. Another range of validity includes porosities εe ≥ 0.7 and aspect ratios 0.2 ≤
c/a ≤ 0.5.

For highly aligned particles of high aspect ratios, the Bruggeman exponent,

α, increases far above 0.5 [41], and the microstructural Péclet number reaches the

asymptote Peµ →
(

RTσe
F2Decmax

)
in the limit ε → 1. Because both dimensionless num-

bers, Foµ and Peµ, have the same microstructural dependence (ε1+α), the validity

condition Peµ < Foµ, reduces to Pe < 1, as reported in previous work [34].
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Â
✏ e

D
e

⌘

ln
� 2

r p L

�

-� -� -� -� -� -� -� -� � �

�

�

�

�

�

δ= - ���γ(���ϵ�(�+α))

β
=
��
� γ
(�
� �
κ*
ϵ)

1
0.1 5

0.7

10
0.5

0.3 0.50.1

0.3

�
ln
⇣
✏
(1+↵)
e

⌘

ln
� 2rp

L

�

Figure 2.2. Regions of validity as a function of porosity in the electrolyte
and secondary particle aspect ratio for LiMn2O4-based battery electrodes.

correspond to constant values of electrode porosity as particle aspect
ratio change values, 0.1 ≤ c/a ≤ 10. correspond to constant values of
particle aspect ratio for electrode porosity moving in the range 0.1 ≤ ε ≤
1. ( I, N, l, �, u,F, t) correspond to different tailored microstructures
of LiMn2O4-based battery electrodes. The shaded-region corresponds to
the validity regime. Inset (a) demonstrates that intercalation reaction
is slower than electromigration for electrodes with εe ≥ 0.3 and c/a ≥
1. Inset (b) reveals that the intercalation reaction is slower than diffusion
except for εe < 0.3 and c/a ≤ 0.3. Aspect ratio isocontours asymptotically
collapse into a vertical green line x as the porosity, ε, approximates 1.
Aspect ratios, c/a > 1 generate overlapping curves.
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Figure 2.3 summarizes the space of validity of porous electrode theory mod-

els to describe lithium-ion transport inside the particles of active material. Results

demonstrate that for all existing particle shapes and sizes, the numerical homogenized

description of lithium transport inside secondary particles with internal microstruc-

ture is not valid because lithium-ion diffusivity in the solid phase is five orders of

magnitude smaller than in the electrolyte phase. In addition, spinodal decomposition

and stress-induced kinetics are mechanisms that should be included, as reported by

several authors [25, 54,57,59,69]
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Figure 2.3. Effect of microstructure on the validity of the descrip-
tion of the Li-ion transport in the solid phase as a function of Péclet
and Damköhler numbers for the porous electrode model. Empty sym-
bols represent microstructure free chemistries: . LiC6, 4 LiFePO4, #
LiMn2O4, � Li4Ti5O12, 3 LiNi1/3Mn1/3Co1/3O2, I LiNi0.8Co0.2−xAlxO2,
O LiCoO2. Filled symbols demonstrate the effect of microstructure for
the same chemistries: I LiC6, N LiFePO4, l LiMn2O4, � Li4Ti5O12, u

LiNi1/3Mn1/3Co1/3O2, F LiNi0.8Co0.2−xAlxO2, t LiCoO2). The shaded-
region corresponds to the validity regime. Considering porous electrode
theory’s model will only be valid when diffusion dominate, most (if not
all) of the existing chemistries require to spatially describe the effect of
the internal microstructural features of the active solid particles.



28

The overall validity of classic porous electrode theory models as a function of porosity

and secondary particle aspect ratio is summarized in Figure 2.4. Here, a physically ac-

cessible maximal random packaging limit, [84] (red line), defines an additional physical

constraint that is not directly included in the formulation. The blue line represents

the constraint Daµ = Peµ for inset (i), and DaµFo = Foµ for inset (ii). Daµ = Peµ

is more restrictive and supersedes DaµFo = Foµ. Four regimes are identified: regime

(a), which defines the valid range of aspect ratios and porosities where porous elec-

trode theory models can be used; regime (b), where spatially-resolved models are best

suited to describe porous battery electrodes; regimes (c) and (d), which are physically

inaccessible because it is topologically impossible to pack secondary particles of active

material at the specified aspect ratio and porosity.

Figure 2.4 was derived for LiMn2O4-based porous electrodes, but the methodol-

ogy that results on the proposed guidelines can be easily extended to assess in general

the validity of Newman-type models for commercially available LIBs. Thus, for most

chemistries (LiNi1/3Mn1/3Co1/3O2, LiNi0.8Co0.2−xAlxO2, LiCoO2, etc.), the electrodes

with typical porosity of εe ∼ 0.36 and aspect ratios c/a ≥ 0.7 can be faithfully de-

scribed by Newman-type models. LiFePO4 electrodes with a typical porosity of εe

∼ 0.36 and platelet-shaped particles with aspect ratios c/a ∼ 0.2 are not accurately

described by porous electrode theory models. Aspect ratios above c/a = 0.3 would

enable a valid calculation. Similarly, LiC6 electrodes of platelet-shaped particles of

aspect ratios c/a ≤ 0.3 and porosity εe ∼ 0.36 are not well described, but if c/a

= 0.4 the validity of Newman-type models would be restored, e.g. , models with

LiC6-Mesocarbon Microbeads (MCMB) anodes are accurate as long as the electrode

porosity remains high, εe ≥ 0.36. This adds an additional limitation to the design of

advanced LIBs because the community aims to the manufacturing of lower porosity

electrodes, and particles displaying aspect ratios and alignments that differ greatly

from the spherical limit.
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Figure 2.4. Regions of validity for Newman-type model of LiMn2O4.
corresponds to maximal random packing of ellipsoids as reported by

Torquato et al. [84]. Validity of the homogenized Newman-type model
corresponds to the region above the blue line . For inset (i), the blue
line represent Daµ = Peµ, while for inset (ii) represents DaµFo = Foµ.
Four regimes of behavior are observed: Regime (a), where the Newman-
type model simulation would be inaccurate, even for physically accessi-
ble particle packing configurations and porosities; Regime (b), where the
Newman-type model is valid; Regime (c), where the Newman-type model
is valid, but the microstructures are physically inaccessible; Finally regime
(d), where the Newman models are invalid, and the porous microstruc-
tures are physically inaccessible. Simulations in regime (a), should be
modeled with spatially-resolved numerical methodology, while regime (c)
delivers simulations of batteries that would be impossible to manufacture.
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2.5 Summary and Conclusions

A free energy variational principle was used as a starting point to derive trans-

port equations, that incorporate multiphysical contributions such as the gradient

energy and the mechanical stresses in a thermodynamically consistent way. The re-

sultant phase field formulation was used as a starting point to develop an homogenized

description of the kinetic equations, including the conditions to enforce separation of

scales, requiring diffusion to dominate over electromigration, gradient energy, me-

chanical stresses, and intercalation reaction terms.

A set of practical, numerically quantifiable microstructural guidelines to define

the validity of the generality of porous electrode theory models were defined. These

were consolidated into four regimes of behavior: regime (a), which defines the valid

range of aspect ratios and porosities where porous electrode theory models can be

used; regime (b), where spatially-resolved models are best suited to describe porous

battery electrodes; regimes (c) and (d), which are physically inaccessible because it is

topologically impossible to pack secondary particles of active material at the specified

aspect ratio and porosity. Specifically, the spherically-shaped active particles approx-

imation is neither representative of real porous microstructures, nor it guarantees

the validity of a porous electrode theory model. Size, aspect ratio, and morphological

texture of the secondary particles, as well as the porosity and reactive area density, all

have to be taken into consideration to accurately define a physical model to describe

the generality of porous battery materials, and to design advanced LIBs.
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3. COARSE-GRAINED ELECTROCHEMOMECHANICAL EFFECTS IN

POROUS RECHARGEABLE LITHIUM-ION BATTERIES

A version of this chapter is currently in preparation for journal publication as : J.A.

Campos, A. Deva, J. Lund, A. Jana, I. Battiato, and R.E. Garćıa. “Coarse-grained

Electrochemical Effects in Porous Rechargeable Lithium-ion Batteries.”

3.1 Introduction

For large scale applications, such as those used to support the electric grid,

transportation systems, and electric vehicles, the LixNi1/3Mn1/3Co1/3O2 (NMC) chem-

istry has recently emerge as the preferred cathode chemistry due to its ease in fabrica-

tion and scalability [21], cycle stability at temperatures as high as 50 °C, and its high

reversible specific capacity ∼ 234 mAh/g, [85], it became very rapidly, a popular alter-

native to expensive LiCoO2, a cobalt-based-only cathode material. Electrochemical

models developed to understand this cathode material include the work of Christensen

and coworkers [87], who coupled a heat transfer model to assess the temperature het-

erogeneities of NMC-based batteries, as used in transportation systems, finding that

for prismatic cells at discharge rates higher than 4C, the thermal runway was slower

by approximately 50% as compared to cylindrical cells. Vazquez and coworkers con-

ducted a sensitivity analysis over the pseudo-two-dimensional porous electrode model

(P2D) parameters for an NMC-based pouch battery [27], identifying the volume frac-

tions of the solid phases as the sources of higher variability of the cell potential. Dees,

Abraham, et al. studied the electronic conductivity effects in Mn-rich oxides with a

modified volume-averaged model that incorporated capacitive terms in parallel with

the Butler-Volmer reaction and the contact-resistance, [88]. Smekens and coworkers
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derived a conventional porous electrode theory model by starting from irreversible

thermodynamics principles to describe the transport of multiple species in the elec-

trolyte, [29]. Danner, Latz, and coworkers, simulated thick NMC-based electrodes,

larger than 300 µm, with a three-dimensional microstructurally resolved model aided

with kinetic parameters estimated with a 1+1D supplementary model [28], finding

strong transport limitations and high losses in capacity.

A few electrochemomechanical models focused on NMC-based cathodes, includ-

ing the work of Ko, Lindbergh, and coworkers, studied the stress effects with a P2D

model, [89]. Here, the change in chemical potential was formulated through a change

in the equilibrium potential, and two mechanisms were identified: the inter-particle

kinetic lithium exchange, and the intra-particle lithium diffusion. These descriptions

considered short-range effects within the active particle, or inside a representative

volume element.

Despite of great the advances in the electrochemical modeling of NMC-based

LIBs, currently available models are based on adapting Poison-Nerst-Plank (PNP)

equations, and sets of diffusion equations with a source, and are not derived from

thermodynamic principles. Thus, the addition of novel physical phenomena into

existing models is not guaranteed to be in agreement with the laws of thermodynamics

or to be physically consistent. Furthermore, the existing averaging methodology

complicates the description of the generality of transport and phase transitions in

multiphase heterogeneous electrodes. In this paper, a fully homogenized phase field

model that starts from well established thermodynamic principles is presented. The

formulation was developed for the graphite|NMC system, and demonstrates elastic

and gradient energy contributions. The effects of the different driving forces favoring

or limiting power density were assessed.
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3.2 Theoretical Framework

Define the Gibbs free energy of a material system subjected to chemical, elastic,

and electric driving forces as [51–57]:

G[{ci}, ρ, uj; T◦] =

∫

Ω

(
g({ci}; T◦) +

N-1∑

i=1

Ki
2
|∇ci|2 +

1

2

↔
σ · ↔ε e + ρφ

)
dΩ

+

∫

Ω

λ(~x)

(
ρ−

N∑

i=1

Fzici
)

dΩ

(3.1)

where {ci} = {c1, . . . , cN}, is the set of the concentrations of N electrically charged

species, uj is the jth component of the mechanical displacement vector,
↔
σ is the

mechanical stress tensor,
↔
ε e is the total strain tensor, εkl = 1

2

(
∂uk
∂xl

+ ∂ul
∂xk

)
describes

the relation of geometrical strain and displacement, ρ is the electric charge density, T◦

is the temperature, Ki is the interfacial gradient energy penalty of the ith species, Ω

is the volume of the phase in consideration, zi is the charge valence of the ith species,

F is Faraday’s constant, and λ(~x) is a spatially varying Lagrange multiplier [58].

The resultant variational derivatives are [50–52,54,55]:

δG

δci
=
∂g

∂ci
−Ki∇2ci + λFzi +

1

2

∂

∂ci

(
↔
σ · ↔ε e

)

δG

δρ
= φ− λ

δG

δui
= ∇ ·←→σ = ~0

(3.2)

Equation set 3.2 constitutes the electrochemomechanical driving force for transport

and phase transformations, through the set of coupled Cahn-Hilliard equations:

∂ci
∂t

=∇ ·Mi∇
(
δG

δci

)
= ∇ ·Mi∇

(
∂g

∂ci
−Ki∇2ci +

1

2

∂

∂ci

(
↔
σ · ↔ε e

))
+∇ ·MiFzi∇λ

∂ρ

∂t
=∇ ·Mρ∇

(
δG

δρ

)
= ∇ ·Mρ∇φ−∇ ·Mρ∇λ

(3.3)
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where λ(~x) =
Mρφ−

∑N
i=1 ziFMi

(
∂g
∂ci
−Ki∇2ci+

1
2
∂
∂ci

(
↔
σ ·↔ε e

))
+ψ(~x)

Mρ+
∑N
i=1(ziF)2Mi

, and ψ(~x) is a solution to the

Laplace equation (∇2ψ = 0) that will vanish when substituted in equation set 3.3, in

agreement with several authors [51, 58, 59]. Mi = Dici/RT is the chemical mobility,

and Mρ =
∑N

i=1 (ziF)2Mi is the electrical mobility, where σT = σ1 + σ2 + ... + σN ,

and Mρ/2 = σT , [60].

By substituting:

∂ci
∂t

=∇x ·
[

Dici(2− ti)
2RT

(
∂2g

∂c2
i

∇xci −Ki∇3
xci −

∂ε
Che

∂ci
∇xσ − σ

∂2ε
Che

∂c2
i

∇xci

)
+
ziFDici

2RT
∇xφ

+
N∑

j=1,i 6=j

Mij

2

(
∂2g

∂c2
j

∇xcj −Kj∇3
xcj −

∂ε
Che

∂cj
∇xσ − σ

∂2ε
Che

∂c2
j

∇xcj

)]

∂ρ

∂t
=∇x ·

[
σT∇xφ+

N∑

i=1

ziFDici
2RT

(
∂2g

∂c2
i

∇xci −Ki∇3
xci −

∂ε
Che

∂ci
∇xσ − σ

∂2ε
Che

∂c2
i

∇xci

)]

(3.4)

For an intercalating material, strain is imposed in the lattice as a result of the intersti-

tially dissolved lithium [43, 44, 57, 61–63]. The inhomogeneous distribution of solute,

results in compositionally-induced stresses. Here, the total (or geometrical) strain,
↔
ε
T

, is the sum of elastic,
↔
ε e, and the chemical strain,

↔
ε

Che
, [64–70],

↔
ε
T

=
↔
ε e +

↔
ε

Che
.

The stress tensor and the elastic strain are related via Hooke’s law,
↔
σ =

↔
C · ↔ε e.

In agreement with Newman et al. [65–67], the Butler-Volmer relation corre-

sponds to:

jBV = kcαe (cmax−cs)αc(1−α)
s exp

(
−

↔
σ · ↔ε e

4RTcmax

)(
exp

(
αF
2RT

η

)
− exp

(
−(1− α)F

2RT
η

))

(3.5)

where the local surface overpotential: η =
(
φs − φe − jBVFRf − 1

2

↔
σ ·↔ε e
Fcmax

)
. The ex-

ponent, αc, is the transfer coefficient, k is the reaction rate constant, and Rf is the

interfacial resistance, also known as ‘film-contact-resistance’.
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Define:

ĉ = c
cmax

, x̂ = x
L
, φ̂ = zFφ

2RT
, ρ̂ = ρ

zFc , D̂ = D
D∗

σ̂ = σ
σ∗
, K̂ = K

K∗ , M̂ = M
M∗
, M̂ρ = Mρ

M∗ρ
, t̂ = t

t
De

ĝ = g
U
, ∇ = ∇̂

L
, ∂

∂c
= 1

cmax

∂
∂ĉ
, ∂

∂c2
= 1

c2max

∂
∂ĉ2
, ∂

∂t
= 1

t
De

∂
∂t̂

∂
∂x

= 1
L
∂
∂x̂
, ∂2

∂x2 = 1
L2

∂2

∂x̂2 ,
∂3

∂x3 = 1
L3

∂3

∂x̂3

(3.6)

which upon substitution into equation set 3.4, results in the following:

∂ĉ

∂t̂
=∇̂x ·

[
ĉ(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

D∗scK∗s
D∗eRTL2c2

max

(2− t+)

2
D̂sK̂s∇̂3

xĉ

− D∗scσ
∗

D∗eRTc2
max

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)
+

2RTσ∗T
(zF)2D∗ecmax

t+σ̂T ∇̂xφ̂

]

∂ρ̂

∂t̂
=∇̂x ·

[
2RTσ∗TD∗s

(zF)2D∗scmaxD∗e
σ̂T ∇̂xφ̂+

ĉD∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

1

2

D∗s ĉK∗s
D∗eRTL2c2

max

D̂sK̂s∇̂3
xĉ

− 1

2

D∗scσ
∗

D∗eRTc2
max

D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]

(3.7)

for a pseudobinary system. Here, the following dimensionless transport numbers are

identified:

Dai =
Lk

D∗i
Damköhler number

Pei =
RTσ∗T

(ziF)2D∗i cmax

Péclet number

Chi =
ciK∗i

RTL2c2
max

Cahn number

Ssi =
ciσ
∗

RTc2
max

Stress number

(3.8)

where i={solid, electrolyte}. In the solid phase, the electromigration term is negligi-

ble in the mass conservation equation (less than half compared with the contribution

in the charge conservation equation, assuming t+ = 0.4), while the stress term is

negligible in the charge conservation equation (one fourth compared with the contri-
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bution in the mass conservation equation, assuming t+ = 0.4), due to the influence

of the transference number. Thus, equation set 3.7 reduces to:

∂ĉ

∂t̂
=∇̂x ·

[
ĉ(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ− Chs

D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉ

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]

∂ρ̂

∂t̂
=∇̂x ·

[
Pes

D∗s
D∗e
σ̂T ∇̂xφ̂+

ĉD∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

Chs
2

D∗s
D∗e

D̂sK̂s∇̂3
xĉ

]

(3.9)

For the electrolyte phase, the compositionally-induced mechanical stress terms in the

mass and charge conservation equations are negligible, since Young’s Modulus is small

(about one to three orders of magnitude smaller than in the solid phase, for plasticized

electrolytes and polymer separators, [98])). The simplified equations are:

∂ĉ

∂t̂
= ∇̂x ·

[
ĉ(2− t+)D̂e

2RTcmax

U∗
∂2ĝ

∂ĉ2
∇̂xĉ− Che

(2− t+)

2
D̂eK̂e∇̂3

xĉ+ 2Peet+σ̂T ∇̂xφ̂

]

∂ρ̂

∂t̂
= ∇̂x ·

[
2Peeσ̂T ∇̂xφ̂+

ĉ

2RTcmax

D̂eU
∗∂

2ĝ

∂ĉ2
∇̂xĉ−

Che
2

D̂eK̂e∇̂3
xĉ

]

(3.10)
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By applying the methodology reported in the Appendix A, the upscaled-homogenized

transport equations approximated to O(ξ2) in the solid phase are:

εs
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)D∗s
2RTcmaxD∗e

U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
x〈ĉ〉 − Chs
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D∗e

(2− t+)

2

〈
D̂s

〉
K̂s∇̂4

x〈ĉ〉
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D∗e
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2
D̂s

(
2
∂〈σ̂〉
∂x̂

〈
∂2ε

Che

∂ĉ2

〉
∇̂x〈ĉ〉+

〈
∂ε

Che

∂ĉ

〉
∂2〈σ̂〉
∂x̂2

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
〈σ̂〉
〈
∂2ε

Che

∂ĉ2

〉
∇̂2
x〈ĉ〉

)
− D∗s

D∗e

εs
ξ

DasAĵBV

εs
∂ 〈ρ̂〉
∂t̂

=2Pes
D∗s
D∗e
〈σ̂T 〉 ∇̂2

xφ̂+
ĉD∗s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
xĉ
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2

D∗s
D∗e

〈
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〉
K̂s ∇̂4

xĉ−
D∗s
D∗e

εs
ξ

DasAĵBV

(3.11)

And in the electrolyte:

εe
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
x〈ĉ〉 − Che

(2− t+)

2

〈
D̂e

〉
K̂e∇̂4

x〈ĉ〉

+ 2Peet+ 〈σ̂T 〉 ∇̂2
x〈φ̂〉+

εe
ξ

DaeAĵBV

εe
∂ 〈ρ̂〉
∂t̂

=2Pee 〈σ̂T 〉 ∇̂2
xφ̂+

ĉ

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
xĉ

− Che
2

D̂e

〈
K̂e
〉
∇̂4
xĉ+

εe
ξ

DaeAĵBV

(3.12)

3.3 Implementation and Numerical Setup

Discretization of the partial differential equations that describe the mass and

charge transport of Li-ions in the graphite|NMC system was performed with the

python-based library FiPy, version 3.4.1, [92].

Compositionally-induced mechanical stresses were calculated based on averaged

mechanical properties, as formulated in Appendix F, in a three-dimensional uniform-

grid mesh. The side length of the squared cross-section (y × z) perpendicular to
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the x direction is ten times larger than the battery cell through-thickness. Stresses

calculated at the center column of the 3D-mesh are mapped into a one-dimensional

stress field variable, to update the values of the stress terms in the one-dimensional

transport equations. Similarly, the updated one-dimensional concentration field is

used as feedback to recalculate the three-dimensional stress field variable in the next

time step. Time steps passed between updates on stress and concentration fields, are

controlled by the user to allow management of computational resources.

Applied boundary conditions in the one-dimensional domain consist of fixed

current
→
I (x, t) ·→n = I, and zero mass flux

→
J(x, t) ·→n = 0, at the current collectors: x

= 0 and x = L. Also, the reference potential was set to zero, φ0 = 0, in the interface

of the negative electrode and the current collector. At the three-dimensional domain,

zero displacement boundary conditions, ux = 0, were applied at the surfaces of the

current collectors facing the electrodes, x = 0 and x = L.

Initial conditions of the solid and electrolyte concentrations, cs = c0
s and ce = c0

e,

were set to the values reported in Table 3.1, and the initial electrode potentials set

to zero, φ0
e = φ0

s = 0 in the one-dimensional and three-dimensional domains. For the

NMC phase, the chemical strain was set as reported by Yabuuchi and coworkers [94],

see Appendix E. The stress-free concentration was set to ĉε1 ∼ 1/3. Similarly, for the

graphite phase were determined by using Vegard’s law, assuming stress free condition

when fully depleted.

The resultant linear systems of equations were solved using GMRES, as imple-

mented by Trilinos, [93]. The iterative solution is performed to a relative tolerance

of 1×10−6. The one-dimensional regular mesh of 120 voxels requires 2 to 3 itera-

tions per time step to be solved, while the three-dimensional regular mesh of 3×105

voxels, requires 2 iterations per time step. The overall performance of the system is

related to the resolution n = (nx×ny×nz)
1
3 of the three-dimensional domain, where

the complexity is of the order of O(n), where n is the number of voxels. A simulation

ten times larger will require ten times more wall-time to compute. The system is

numerically stable if ∆t ≤ ∆x2/(2De).
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Figure 3.1. Computing wall-time vs resolution. Circles (©) represent
simulation cases. Solid lines ( ) represent the least-squares regression.
The complexity of the simulations is on the order O(n).

The chemomechanical part of the calculation is on the order of 3.7×104 voxels,

and required approximately 3.2 GB of RAM and 27.6 minutes of wall time for one

CPU core, and required 4.5 GB of RAM and 10.4 minutes of wall time for eight

CPU cores. The electrochemical part of the 1D calculation is on the order of 120

voxels in 1D arrangement and required 2.2 MB of RAM and 50 seconds of wall time

for one CPU core, and 40 seconds of wall time and 2.5 MB of RAM for eight CPU

cores. Computations were performed on a 2.0 GHz, 32 CPU cores, Linux Ubuntu
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(14.04.5) server with 128 GB RAM. By updating the chemomechanical calculation

from every time step to every ten time steps, the one CPU core wall time decreases

to 4.2 minutes, and the eight CPU cores wall time decreases to a total of 2.3 minutes.

Table 3.1.: Physical parameters used in the coarsed-grained model [27–29,68,94–97].
The free energy definitions as well as equilibrium potentials for NMC, Graphite and
EC:DMC electrolyte, can be found in the Appendix C.

Parameter Cathode Ref. Separator Ref. Anode Ref. Units

Â 1.9 ‡ - - 4.3 ‡ -

c0
e 1.0×103 [28] 1.0×103 [28] 1.0×103 [28] mol/m3

cmax 3.6×104 [29] 1.4×103 ‡ 3.01 ×104 [29] mol/m3

c0
s 1.3×104 ‡ 1×10−5 ‡ 1.9×104 ‡ mol/m3

D∗s 3.4×10−14 [27] 1×10−16 ‡ 3.9×10−14 [95] m2/s

D∗e 2.7×10−10 [96] 2.7×10−10 [96] 2.7×10−10 [96] m2/s

E 120 [97] 0.7 [98] 12 [68] GPa

I 18.7 [29] 18.7 [29] 18.7 [29] A/m2

kr 6.9×10−8 ‡ - - 1.1×10−7 ‡ m/s

K∗e 4.4×10−4 ‡ 4.4×10−4 ‡ 4.4×10−4 ‡ J/m1

K∗s 2.1×10−2 ‡ - - - - J/m1

L 46×10−6 [29] 20×10−6 [29] 52×10−6 [29] m

Q 279 ‡ - - 372 ‡ mAh/g

Rf 0.15 ‡ - - 0.15 ‡ Ω m2

rp 5.5×10−6 [28] - - 12.0×10−6 [28] m

t+ 0.6 [28] - - 0.4 [28] -

β 0.104 [99] - - - - -

εe 0.27 [29] 0.4 [29] 0.34 [29] -

ν 0.3 [97] 0.33 [66] 0.3 [68] -

ρ 4.77 [94] - - 2.11 [27] g/cm3

σ∗s 0.023 [28] - - 100 [28] S/m

σ∗e 0.98 [96] 0.98 [96] S/m

τ ε1.5 ‡ ε1.5 ‡ -

‡ Estimated values.
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3.4 Results and Discussion

For selected fixed current densities, the simulated cell potential of the graphite|NMC

cell was compared against experimental data as reported by Smekens and cowork-

ers, [29], see Figure 3.2. For a 1C-rate of 18.7 A/m2 or 0.614 A, the maximum

attained time-dependent capacity was ∼ 57% of the theoretical capacity, 159 Ah/g.

Results demonstrate that the ∼ 9.2% of the macroscopic cell potential corresponds to

the contributions of the stresses, and is equivalent to a contribution from film-contact-

resistance, ∼ 10.2%. The exclusion of either, the mechanical stresses or the ohmic

losses, leads to a cell potential mismatch with the experimental potential curve be-

cause both contributions slow down the lithium intercalation by the reduction on the

local overpotential. Thus, models not accounting for the contribution of mechanical

stresses require unrealistically higher values of the film-contact-resistance to match

experimental values, inaccurately describing the physical system, particularly at high

C-rates.

Simulations show that the effect of the gradient energy term on the cell potential

is small, ∼ 1.5%. The main effect of the gradient energy term is shown at the interface

with the separator.
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Figure 3.2. Comparison of simulated cell potential in graphite|NMC
system versus experimental data l as reported by Smekens et al. [29], sub-
jected to selected fixed current densities. simulation without mechanical
stress effect discharges ∼ 9.2% faster, simulation without film-contact-
resistance effect discharges ∼ 10.2% faster, simulation without gradient
energy contribution effect minimally delays discharge by ∼ 1.5% . 1C cor-
responds to 18.7 A/m2 or 0.614 A.

Figure 3.3 (a) shows that during the first two minutes of discharge, the greater

availability of Li-ions and intercalation sites in the vicinity of the cathode-separator

interface, induces local lithium accumulation. During the first six minutes of dis-
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charge, Figure 3.3 (a) showed spatial inhomogeneities in the intercalation reaction

developed as a result of the mechanical stresses in the composite electrode (polymer

matrix + NMC particles), until the strain-free concentration of the individual NMC

particles, cε ∼ 1.45×104 mol/m3, was reached at 5 µm away from the separator af-

ter eighteen minutes. Immediately after, the mechanical stresses in the composite

electrode became progressively less compressive and lead to a continued reduction

of the concentration gradients, as shown in Figure 3.3 (b). Lithium intercalation

was affected by less-compressive mechanical stresses by means of the reduced local

overpotential, which entirely flattened the concentration gradients except at those

positions closer to the separator. After 32 minutes, the intercalated lithium exceeded

the concentration value for maximum chemical strain inside individual NMC parti-

cles, cεmax ∼ 2.31×104 mol/m3. As a result, the magnitude of the mechanical stresses

at the composite electrode level decreased and spatial inhomogeneities were developed

again until the end of the galvanostatic discharge.
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Figure 3.3. Active material Li-ion concentration profiles at 1C-rate for
graphite|NMC system. 1C corresponds to 18.7 A/m2 or 0.614 A. Inset (a)
highlights first 14 minutes of active material Li-ion concentration profile in
the NMC electrode. Inset (b) corresponds to Li-ion concentration profile
on both electrodes for the full 60 minutes discharge. During the first 2
minutes, Li-ions intercalate in the vicinity of the separator in the positive
electrode due to the greater availability of lithium at the intercalating
sites of NMC. Such process is followed by an interdiffusion sequence after
the first 6 minutes, as intercalation sites become preponderantly occupied
in the active material close to separator, and the intercalating reaction is
affected by the chemically-induced stresses. The spatial inhomogeneities
in the intercalation reaction (see Figure 3.6) develop again after thirty two
minutes as a result of the stress contributions and the transport limitations
that result because of the porosity of the electrode.
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As shown in Figure 3.4 (a), at the start of the galvanostatic discharge, the initial

hydrostatic stresses in the cathode, σh ∼ −37 MPa, were compressive and spatially

uniform because the starting lithium concentration was smaller than the NMC particle

strain-free concentration and the imposed (fixed displacement) boundary conditions.

However, initial inhomogeneous intercalation in the vicinity of the cathode-separator

interface developed an initial localized region of higher compressive stress that was

progressively mitigated as the concentration gradients diminished. After eighteen

minutes of discharge, the average mechanical stress reached σh ∼ −47.5 MPa, the

maximum compressive stress. Shortly after, the concentration of lithium in the solid

phase was greater than the strain-free concentration. From t = 19 minutes to t = 31

minutes the stress profile remained flat until at t = 32 minutes when the concentration

of lithium in the solid phase reached the condition for maximum NMC lattice strain.

As the compositional strain decreased, long range stress heterogeneities developed,

see Figure 3.4 (b). This was because the intercalating sites in the vicinity of the

separator became available. The mechanical stresses developed in graphite electrode

showed moderate heterogeneity due to small concentration gradients in the solid phase

at the region close to the separator. For current densities greater than 1C, the NMC

electrode will remain in compression because chemically-induced stress never have

the opportunity to relax.

The porous separator develops small elastic stresses, due to its small Young’s

Modulus, E = 0.7 GPa, [98], in comparison to the Young’s Modulus of the graphite

particles, E = 12 GPa, [68], or the NMC particles, E = 120 GPa, [97].
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Figure 3.4. Stress distribution in graphite|NMC system for 1C galvanos-
tatic discharge. 1C corresponds to 18.7 A/m2 or 0.614 A. Inset (a) cor-
responds to selected instants of the hydrostatic stress during the first 18
minutes of discharge, while inset (b) corresponds to the full 60 minutes
discharge. Stress is the result of current collectors and time-dependent
chemomechanical expansion of the porous electrode layers.

Figure 3.5 (a) shows that after eleven seconds of discharge, chemical gradients

developed in the vicinity of the separator in the electrolyte, favored by the higher

intercalation rate in those particles exposed to a higher magnitude of overpotential.
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Because Li-ions in the electrolyte had a one minute recovery time, the steady-state

profile of the electrolyte concentration developed after thirty minutes, as shown in

Figure 3.5 (b), because there was a small number of available sites at the surface of

particles of active material, less lithium was intercalated from the electrolyte, while

lithium accumulated in the anode-separator region.
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Figure 3.5. Electrolyte Li-ion concentration profiles at 1C-rate for
graphite|NMC system. 1C corresponds to 18.7 A/m2 or 0.614 A. Inset
(a) highlights the predicted electrolyte Li-ion concentration profile in the
NMC electrode during the first 2 minutes of discharge. Inset (b) sum-
marizes electrolyte Li-ion concentration profile for the full 60 minutes of
discharge. During the first 11 seconds of discharge, the NMC cathode
intercalates lithium faster in the vicinity of the current collector side be-
cause of the combined effects of elastic energy and the overpotential drop
across the electrode. After 35 seconds, the concentration in the vicin-
ity of the current collector recovers and the intercalation/deintercalation
activity relocate to zones close to the separator.
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In agreement with Figures 3.3 to 3.5, for a 1C-rate, the Butler-Volmer flux

underwent a transient the first four minutes, after which it decreased uniformly and

continuously until the end of discharge, see Figure 3.6 (a). The gradient energy

contribution in the solid phase, induced a region of high heterogeneity in the vicinity

of the separator, that is visible after twenty four minutes of discharge, and is about 5

µm wide. Thereafter, the localized zone of heterogeneities grew towards the current

collector until t = 42 minutes. Afterwards, the exchange current density became

dominated by the electrical contributions of the overpotential because the chemically-

induced stresses decreased.

The magnitude of the local overpotential in the negative electrode was larger in

the vicinity of the separator, as compared to the overpotential displayed in the positive

electrode in the equivalent region. As shown in Figure 3.6 (b), the Butler-Volmer flux

in the cathode is greater at the interface with the current collector.
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Figure 3.6. Spatial distribution of Butler-Volmer flux during 1C discharge
for graphite|NMC system. 1C corresponds to 18.7 A/m2 or 0.614 A. In-
set (a) corresponds to selected instants during the first 28 minutes of
discharge, while inset (b) corresponds to the full 60 minutes discharge.
Calculations demonstrate the progressive development of localized hetero-
geneities zones, aided by the transport limitations of the porous electrode
and the stress fields that shift the intercalation reaction. Intercalation is
enhanced until the maximum stress is reach after 18 minutes.

Figure 3.7 quantifies the lithium distribution populations in the NMC layer. For

a 1C-rate, after one minute of discharge, two out of three populations were identified:
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i) the diffusion-limited population, which is a result of the negligible composition gra-

dients, and is identified by the first sharp peak of concentration; ii) the stress-induced

population, as a result of chemically-induced expansion of the lattice and character-

ized by a second and smaller peak. After fourteen to eighteen minutes of discharge,

the stress-induced population collapsed into a single concentration population as a re-

sult of particles transitioning from being below the stress-free concentration to above

it. A third population iii) arose to the left of the first (diffusion-limited) popula-

tion peak, as a consequence of the lithiation induced by the gradient energy term.

After 44 minutes, the total stresses kept moving towards the zero stress, as advised

by the flattening of the spatial concentration profile. At the end of discharge, the

stress-induced population merged with the diffusion-limited population, for t = 60

minutes.

Figure 3.8 summarizes the effects on the lithium distribution populations in the

NMC layer at a 5C-rate. The three frequency populations became evident after 3

minutes of galvanostatic discharge. Due to the high electrical current, the calculation

demonstrates that the stress-induced population dominated the kinetics of the system.
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Figure 3.7. Concentration frequency histograms for 1C galvanostatic discharge, for selected instants. 1C corresponds
to 18.7 A/m2 or 0.614 A. Three populations are observed: (i) the lithiation-induced population, (ii) the stress-induced
population, and (iii) the diffusion-limited population.
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Figure 3.8. Concentration frequency histograms for 5C galvanostatic discharge, for selected instants. 5C corresponds
to 93.5 A/m2 or 3.07 A. After t = 3 minutes of discharge, three populations are developed: (i) the lithiation-induced
population, (ii) the stress-induced population, and (iii) the diffusion-limited population.
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3.5 Summary and Conclusions

A coarsed-grained thermodynamically consistent phase field model, based on

the electrical, chemical, and elastic energy contributions to the total free energy of

the system, was developed to investigate the transport limitations and the long range

effects imposed by the related mechanisms on the kinetics of LIBs. The numerical

implementation of the mathematical model was applied to the commercial chemistry,

LixNi1/3Mn1/3Co1/3O2, and validated against experimental data available in the lit-

erature, [29].

Results demonstrate that mechanical stresses have a comparable effect to that

of the ohmic losses as imposed by the film-contact-resistance, demonstrating that

such effects cannot be ignored during battery design and manufacturing, in order

to optimize performance, and minimize long-term degradation. Further, three dis-

tinguishable lithium distribution populations were identified in the cathode: i) the

diffusion-limited population as a result of the negligible composition gradients, ii)

the stress-induced population as a result of chemically-induced stresses, and iii) the

lithiation-induced population, as a result of the lithiation induced gradient energy

contribution. The stress-controlled population dominates the kinetics of lithiation at

high C-rates.

Self-induced, compressive mechanical stresses developed as a result of the chem-

ical strain and the externally imposed boundary conditions. These stresses enhance

the intercalation reaction process by increasing the local overpotential, even though

the magnitude of the interfacial reaction can be greatly suppressed (see Equation 5).

Thus, it is desirable for the mechanical stresses contribution to Li-ion transport, as

quantified by its dimensionless number, Sss, to be comparable to the intercalation

reaction driving force contribution, Sss ∼ Das. Further, the design of LIBs whose

initial state of charge favors compressive stresses, so that Das ≤ Sss < Pes, will result

in improved performance. However, even though it was not the focus of this work,
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the induced chemomechanical stresses might also favor the development of irreversible

(degradation) reactions, as well as chemomechanical (cycling) fatigue.
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4. FUTURE WORK

The developed phase field framework allows the addition of multiple driving forces to

the free energy of the system. Also, the interactions between multiple charged species

can be described by enabling the “wind energy” term in the transport equations. In

this context, the theoretical framework has ample capabilities to support a broad

range of future research projects.

In the short term, tasks related with the work presented in Chapters 2 and 3

have been identified:

1. Continue the effort to provide experimental guidelines that help to engineer the

microstructure of chemically active materials, and comply with the conditions

of validity for porous electrode theory models.

2. Extend the comparison of dimensionless numbers to determine the regions of

predominance of each transport process. Specifically, those derived from the

contribution of gradient energy and elastic energy driving forces:

• gradient energy contribution slower than the diffusion process (ChiFoi < Foi)

• electromigration process slower than diffusion process (PeiFoi < Foi)

• intercalation reaction slower than diffusion process (DaiFoi < Foi)

• intercalation reaction slower than gradient energy contribution (Dai < Chi)

• intercalation reaction slower than electromigration process (Dai < Pei)

• mechanical stress contribution slower than diffusion process (SsiFoi < Foi)

• electromigration process slower than diffusion process (PeiFoi < Foi)

• intercalation reaction slower than diffusion process (DaiFoi < Foi)

• intercalation reaction slower than mechanical stress contribution (Dai < Ssi)
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• intercalation reaction slower than electromigration process (Dai < Pei)

3. Parallel computing capability through GPU’s.

4. Publication of the numerical implementation of the developed model. [91].

In the long term, projects related to extensions of the theoretical framework:

• Describe phase transforming materials.

• Incorporate additional contributions to the free energy functional.

• Apply to charged species different than Lithium-ions.

• Apply to systems with more than one charged species.

• Explore the life cycle of rechargeable batteries.
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APPENDIX A. HOMOGENIZATION METHODOLOGY

Coarse-grained models approximate the transport phenomena occurring at the molec-

ular level into a macroscopic scale continuum. The multiple-scale expansion requires

a scalar ξ = 2rp/L << 1, and an additional spatial variable ŷ = x̂/ξ named ’fast

space’ variable, to relate macroscale and microscale spatial dimensions. As identified

earlier, this battery model considers five processes. Therefore, the following seven

variables of time are defined:

τ
R

=
t

tR
= Daet̂ reaction

τ
Ms

=
t

t
Ms

= Pes
Dae
Das

t̂ migration at solid

τ
Me

=
t

t
Me

= Peet̂ migration at electrolyte

τ
Chs

=
t

t
Chs

= Chst̂ gradient energy at solid

τ
Che

=
t

t
Che

= Chet̂ gradient energy at electrolyte

τ
Sss

=
t

t
Sss

= Sss t̂ stress at solid

τ
Sse

=
t

t
Sse

= Sse t̂ stress at electrolyte

(A.1)

where t̂ = t/t
De

is the dimensionless time. As a result of the introduction of new

spatial and temporal variables, the functional relation for any field variable B (e.g.

concentration, stress, potential), involved in the physical formulation, has to be recast

from one spatial and one temporal variables: Bξ(x, t), into two spatial and eight

time variables B(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sss
). Accordingly, the spatial and

temporal operators become:

∇
ξ

= ∇x + ξ−1∇y (A.2)
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∂
ξ

∂t
=

∂

∂t
+Dae

∂

∂τ
R

+Pes
∂

∂τ
Ms

Dae
Das

+Pee
∂

∂τ
Me

+Chs
∂

∂τ
Chs

+Che
∂

∂τ
Che

+Sss
∂

∂τ
Sss

+Sse
∂

∂τ
Sse

(A.3)

Moreover, any recast variable B(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) has to be ex-

pressed as an asymptotic series, in integer powers of the scalar ξ as:

B =
∞∑

n=0

ξn Bn(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) n = 0, 1, 2... (A.4)

and any field constant will be re-defined as a power of the scalar ξ:

Pes = ξ−β, Das = ξγ, Chs = ξδ, Sss = ξζ

Pee = ξ−ι, Dae = ξυ, Che = ξo, Sse = ξω
(A.5)

where the values of the exponents β, γ, δ, ζ, ι, υ, o, and ω are constrained to the domain

of the real numbers R. Lithium-ion transport equations can be homogenized up to a

desired order approximation, by the number of terms used from the power expansion.

Thus, to homogenize the transport equations with an error of O(ξ2), the physical

variables are expanded:

ci = ξ0ci,0 + ξci,1 +O(ξ2) (A.6)

φi = ξ0φi,0 + ξφi,1 +O(ξ2) (A.7)

ρi = ξ0ρi,0 + ξρi,1 +O(ξ2) (A.8)

σi = ξ0σi,0 + ξσi,1 +O(ξ2) (A.9)

The conservation equations for mass and charge, when applied in volume ele-

ments containing solid and electrolyte phases, are coupled to the interfacial condition:

~n ·
[

Dc(2− t+)

2RT

(
∂2g

∂c2
∇xc−K∇3

xc−
∂ε

Che

∂c
∇xσ − σ

∂2ε
Che

∂c2
∇xc

)
+
zFDc

2RT
∇xφ

]
= jBV

(A.10)
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~n ·
[
σT∇xφ+

zFDc

2RT

(
∂2g

∂c2
∇xc−

K
2
∇3
xc−

∂ε
Che

∂c
∇xσ−σ

∂2ε
Che

∂c2
∇xc

)]
= FjBV (A.11)

By applying 2.8 to equations A.10 and A.11 leads to:

~n ·
[
ĉ(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

D∗scK∗s
D∗eRTL2c2

max

(2− t+)

2
D̂sK̂s∇̂3

xĉ

− D∗scσ
∗

D∗eRTc2
max

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]
=
Lk

D∗s

D∗s
D∗e
cαcmaxĵBV

(A.12)

~n ·
[

2RTσ∗TD∗s
(zF)2D∗scmaxD∗e

σ̂T ∇̂xφ̂+
ĉD∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

1

2

D∗s ĉK∗s
D∗eRTL2c2

max

D̂sK̂s∇̂3
xĉ

]

=
Lk

D∗s

D∗s
D∗e
cαcmaxF

ĵBV
k

(A.13)

from there, the dimensionless numbers are identified:

~n ·
[
ĉ(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ− Chs

D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉ

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉ
∇̂xσ̂ + σ̂

∂2ε
Che

∂ĉ2
∇̂xĉ

)]
= Das

D∗s
D∗e
cαcmax

ĵBV
k

(A.14)

~n ·
[
Pes

D∗s
D∗e
σ̂T ∇̂xφ̂+

ĉD∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
∇̂xĉ−

Chs
2

D∗s
D∗e

D̂sK̂s∇̂3
xĉ

]
= Das

D∗s
D∗e
cαcmaxF

ĵBV
k

(A.15)
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Applying equations A.2 through A.5 to the mass conservation equation 2.11 at the

solid phase:

∂cs
∂t

+ ξγ
∂cs
∂τ

R

+ ξ−β
(
ξυ−γ

∂cs
∂τ

Ms

)
+ ξ−ι

∂cs
∂τ

Me

+ ξδ
∂cs
∂τ

Chs

+ ξo
∂cs
∂τ

Che

+ ξζ
∂cs
∂τ

Sss

+ ξω
∂cs
∂τ

Sse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs + ξ−1∇̂3

y ĉs

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂ + ξ−1∇̂yσ̂

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

))]

+ ξ−1∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs + ξ−1∇̂3

y ĉs

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂ + ξ−1∇̂yσ̂

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

))]

(A.16)
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then, applying equations A.6 and A.9 to equation A.16:

∂cs,0
∂t

+ ξ
∂cs,1
∂t

+ ξγ
∂cs,0
∂τR

+ ξγ+1∂cs,1
∂τR

+ ξ−β
(
ξυ−γ

∂cs,0
∂τMs

+ ξυ−γ+1 ∂cs,1
∂τMs

)
+ ξ−ι

∂cs,0
∂τMe

+ ξ−ι+1 ∂cs,1
∂τMe

+ ξδ
∂cs,0
∂τChs

+ ξδ+1 ∂cs,1
∂τChs

+ ξo
∂cs,0
∂τChe

+ ξo+1 ∂cs,1
∂τChe

+ ξζ
∂cs,0
∂τSss

+ ξζ+1 ∂cs,1
∂τSss

+ ξω
∂cs,0
∂τSse

+ ξω+1 ∂cs,1
∂τSse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ξ∇̂xĉs,1 + ξ−1∇̂y ĉs.0 + ∇̂y ĉs.1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ξ∇̂3

xĉs,1 + ξ−1∇̂3
y ĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ξ∇̂xσ̂s,1 + ξ−1∇̂yσ̂s,0 + ∇̂yσ̂s,1

)

+ σ̂
∂2εe
∂ĉ2

s

(
∇̂xĉs,0 + ξ∇̂xĉs,1 + ξ−1∇̂y ĉs,0 + ∇̂y ĉs,1

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
ξ−1∇̂xĉs,0 + ∇̂xĉs,1 + ξ−2∇̂y ĉs,0 + ξ−1∇̂y ĉs,1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
ξ−1∇̂3

xĉs,0 + ∇̂3
xĉs,1 + ξ−2∇̂3

y ĉs,0 + ξ−1∇̂3
y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
ξ−1∇̂xσ̂s,0 + ∇̂xσ̂s,1 + ξ−2∇̂yσ̂s,0 + ξ−1∇̂yσ̂s,1

)

+ σ̂
∂2εe
∂ĉ2

s

(
ξ−1∇̂xĉs,0 + ∇̂xĉs,1 + ξ−2∇̂y ĉs,0 + ξ−1∇̂y ĉs,1

))]

(A.17)

Collecting terms of O(ξ):

ξ

{
∂cs,1
∂t

+ ξγ
∂cs,1
∂τR

+ ξ−β
(
ξυ−γ

∂cs,1
∂τMs

)
+ ξ−ι

∂cs,1
∂τMe

+ ξδ
∂cs,1
∂τChs

+ ξo
∂cs,1
∂τChe

+ ξζ
∂cs,1
∂τSss

+ ξω
∂cs,1
∂τSse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂xĉs,1 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉs,1

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂xσ̂s,1 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂xĉs,1

)]}

(i)
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Collecting terms of O(ξ0):

ξ0

{
∂cs,0
∂t

+ ξγ
∂cs,0
∂τR

+ ξ−β
(
ξυ−γ

∂cs,0
∂τMs

)
+ ξ−ι

∂cs,0
∂τMe

+ ξδ
∂cs,0
∂τChs

+ ξo
∂cs,0
∂τChe

+ ξζ
∂cs,0
∂τSss

+ ξω
∂cs,0
∂τSse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs.1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂xĉs,1 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉs,1

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂xσ̂s,1 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂xĉs,1

)]}

(ii)

Collecting terms of O(ξ−1):

ξ−1

{
0 = ∇̂x ·

[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂y ĉs.0 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

y ĉs,0

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂εChe

∂ĉs
∇̂yσ̂s,0 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂y ĉs,0

)]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]}

(iii)

Collecting terms of O(ξ−2):

ξ−2

{
0 = ∇̂y ·

[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂y ĉs,0 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

y ĉs,0

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂yσ̂s,0 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂y ĉs,0

)]} (iv)
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Now, applying equation A.2 to the left-hand-side of equation A.14:

~n·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs + ξ−1∇̂3

y ĉs

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂ + ξ−1∇̂yσ̂

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

))]

+ ξ−1∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs + ξ−1∇̂3

y ĉs

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂ + ξ−1∇̂yσ̂

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs + ξ−1∇̂y ĉs

))]

(A.18)

then, applying equations A.6 and A.9 to equation A.18:

~n ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ξ∇̂xĉs,1 + ξ−1∇̂y ĉs.0 + ∇̂y ĉs.1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ξ∇̂3

xĉs,1 + ξ−1∇̂3
y ĉs,0 + ∇̂3

y ĉs,0

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ξ∇̂xσ̂s,1 + ξ−1∇̂yσ̂s,0 + ∇̂yσ̂s,1

)

+ σ̂
∂2εe
∂ĉ2

s

(
∇̂xĉs,0 + ξ∇̂xĉs,1 + ξ−1∇̂y ĉs,0 + ∇̂y ĉs,1

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
ξ−1∇̂xĉs,0 + ∇̂xĉs,1 + ξ−2∇̂y ĉs,0 + ξ−1∇̂y ĉs,1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
ξ−1∇̂3

xĉs,0 + ∇̂3
xĉs,1 + ξ−2∇̂3

y ĉs,0 + ξ−1∇̂3
y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
ξ−1∇̂xσ̂s,0 + ∇̂xσ̂s,1 + ξ−2∇̂yσ̂s,0 + ξ−1∇̂yσ̂s,1

)

+ σ̂
∂2ε

Che

∂ĉ2
s

(
ξ−1∇̂xĉs,0 + ∇̂xĉs,1 + ξ−2∇̂y ĉs,0 + ξ−1∇̂y ĉs,1

))]

(A.19)

The exponential part of ĵBV , at the right-hand-side of equation A.14, can be expanded

by substitution of the equations A.7, A.9, and the identity 2∗sinh(x)=ex − e−x.
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Define:

x =
(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe + ξ(φ̂1

s − φ̂1
e − ĵ1

BV R̂f − σ̂1εe
)
,

2 ∗ sinh
(
x
)

= exp
(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe + ξ(φ̂1

s − φ̂1
e − ĵ1

BV R̂f − σ̂1εe)
)

− exp
(
−
(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe + ξ(φ̂1

s − φ̂1
e − ĵ1

BV R̂f − σ̂1εe)
))

+O(ξ2)

(A.20)

Then, simplify the trigonometric identity, sinh(a + b) = sinh(a) cosh(b) + cosh(a)

sinh(b), by approximating sinh(a) ∼ a, and assuming that ξ(φ̂1
s− φ̂1

e− ĵ1
BV R̂f − σ̂1εe)

∼ 0, is negligible. Thus, cosh(ξ(φ̂1
s − φ̂1

e − ĵ1
BV R̂f − σ̂1εe)) = 1, and sinh( a + b) can

be expanded to O(ξ2).

Define:

a =
(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe

)
,

b =
(
ξ(φ̂1

s − φ̂1
e − ĵ1

BV R̂f − σ̂1εe
)
,

2 ∗ sinh
(
a+ b

)
= sinh

(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe

)

+ ξ
(
φ̂1
s − φ̂1

e − ĵ1
BV R̂f − σ̂1εe

)
cosh

(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe

)

(A.21)

Similarly, the expansion up to O(ξ2) of the coefficient of ĵBV in the right-hand-side

of equation A.14 is:

(ĉeĉs(ĉmax − ĉs))
1
2 =

[
(ĉ0
e + ξĉ1

e)(ĉ
0
s + ξĉ1

s)(1− (ĉ0
s + ξĉ1

s))

] 1
2

=

{
ĉ0
e ĉ

0
s(1− ĉ0

s)

[
1 + ξ

(
ĉ1
s

ĉ0
s

+
ĉ1
e

ĉ0
e

− ĉ1
s

(1− ĉ0
s)

)]} 1
2

(A.22)
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From equations A.21 and A.22, the following terms can be identified:

A0 = sinh
(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe

)

A1 =
(
φ̂1
s − φ̂1

e − ĵ1
BV R̂f − σ̂1εe

)
cosh

(
φ̂0
s − φ̂0

e − ĵ0
BV R̂f − σ̂0εe

)

B1 =

(
ĉ0
e ĉ

0
s(1− ĉ0

s)

) 1
2

B0 =

[
1 + ξ

(
ĉ1
s

ĉ0
s

+
ĉ1
e

ĉ0
e

− ĉ1
s

(1− ĉ0
s)

)] 1
2

(A.23)

Re-organizing terms, ĵBV up to O(ξ2) can be re-written as:

ĵBV = (A0 + ξA1)(B0B1)

= A0B0B1 + ξA1B0B1 +O(ξ2)
(A.24)

Now, both sides of equation A.14 are expanded, and the terms can be re-organized.

Collecting terms of O(ξ):

ξ

{
~n·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,1

)
− Chs

D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,1

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
ξ∇̂xĉs,1

))]

= Das
D∗s
D∗e
cαcmaxA1B0B1

}
(v)
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Collecting terms of O(ξ0):

ξ0

{
~n·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs.1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)

+ σ̂
∂2ε

Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂xĉs,1 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉs,1

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂xσ̂s,1 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂xĉs,1

)]

= Das
D∗s
D∗e
cαcmaxA0B0B1

}

(vi)

Collecting terms of O(ξ−1):

ξ−1

{
~n·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂y ĉs.0 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

y ĉs,0

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂yσ̂s,0 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂y ĉs,0

)]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)

+ σ̂
∂2ε

Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]
= 0

}

(vii)

Homogeneity of equation iv guarantees independence of ‘y’ in the variable c0:

i.e. ĉ0(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) is independent of y if:

∇̂y ĉ0 = 0 (A.25)
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Similarly, φ̂0(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) is independent of y if:

∇̂yφ̂0 = 0 (A.26)

Lastly, σ̂0(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) is independent of y if:

∇̂yσ̂0 = 0 (A.27)

Applying A.25, A.26 and A.27 to equation iii

0 = ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]

(A.28)

Applying A.25, A.26 and A.27 to equation vi

~n·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs.1

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
∇̂3
xĉs,0 + ∇̂3

y ĉs,1

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
∇̂xσ̂s,0 + ∇̂yσ̂s,1

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
∇̂xĉs,0 + ∇̂y ĉs,1

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂xĉs,1 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉs,1

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂xσ̂s,1 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂xĉs,1

)]
= Das

D∗s
D∗e
cαcmaxA0B0B1

(A.29)

Substituting equation A.29 into equation A.28:

0 = ∇̂y · [DaA0B0B1] (A.30)

therefore, A0B0B1 = 0.
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Now, proposing solutions of the form:

ĉ1(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) = χ1(y)∇̂xĉ0(x, t, τ

R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

+ ĉ1(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

(A.31)

φ̂1(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) = χ2(y)∇̂xφ̂0(x, t, τ

R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

+ φ̂1(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

(A.32)

σ̂1(x, y, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
) = χ3(y)∇̂xσ̂0(x, t, τ

R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

+ σ̂1(x, t, τ
R
, τ

Ms
, τ

Me
, τ

Chs
, τ

Che
, τ

Sss
, τ

Sse
)

(A.33)

and substituting equations A.31 and A.33 into equation ii:

∂cs,0
∂t

+ ξγ
∂cs,0
∂τR

+ ξ−β
(
ξυ−γ

∂cs,0
∂τMs

)
+ ξ−ι

∂cs,0
∂τMe

+ ξδ
∂cs,0
∂τChs

+ ξo
∂cs,0
∂τChe

+ ξζ
∂cs,0
∂τSss

+ ξω
∂cs,0
∂τSse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
I + ∇̂yχ1

)(
∇̂xĉs,0

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
I + ∇̂3

yχ1

)(
∇̂3
xĉs,0

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
I + ∇̂yχ3

)(
∇̂xσ̂s,0

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
I + ∇̂yχ1

)(
∇̂xĉs,0

))]

+ ∇̂y ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

∇̂xĉs,1 − Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s∇̂3

xĉs,1

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
∇̂xσ̂s,1 + σ̂

∂2ε
Che

∂ĉ2
s

∇̂xĉs,1

)]

(iiA)
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Similarly, substituting equation v into equation iiA:

∂cs,0
∂t

+ ξγ
∂cs,0
∂τR

+ ξ−β
(
ξυ−γ

∂cs,0
∂τMs

)
+ ξ−ι

∂cs,0
∂τMe

+ ξδ
∂cs,0
∂τChs

+ ξo
∂cs,0
∂τChe

+ ξζ
∂cs,0
∂τSss

+ ξω
∂cs,0
∂τSse

= ∇̂x ·
[
ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

(
I + ∇̂yχ1

)(
∇̂xĉs,0

)

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂s

(
I + ∇̂3

yχ1

)(
∇̂3
xĉs,0

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs

(
I + ∇̂yχ3

)(
∇̂xσ̂s,0

)
+ σ̂

∂2ε
Che

∂ĉ2
s

(
I + ∇̂yχ1

)(
∇̂xĉs,0

))]

+ ∇̂y ·
[
Das

D∗s
D∗e
cαcmaxA1B0B1

]

(iiB)

now, multiplying equation iiB by ξ, integrating w.r.t. y, and recalling equation A.3:

ξ

∫

S

(
∂cs,0
∂t

+ ξγ
∂cs,0
∂τR

+ ξ−β
(
ξυ−γ

∂cs,0
∂τMs

)
+ ξ−ι

∂cs,0
∂τMe

+ ξδ
∂cs,0
∂τChs

+ ξo
∂cs,0
∂τChe

+ ξζ
∂cs,0
∂τSss

+ξω
∂cs,0
∂τSse

)
dy =

ĉs(2− t+)D∗sD̂s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2
s

ξ

∫

S

(
I + ∇̂yχ1

)(
∇̂2
xĉs,0

)
dy

− Chs
D∗s
D∗e

(2− t+)

2
D̂sK̂sξ

∫

S

(
I + ∇̂3

yχ1

)(
∇̂4
xĉs,0

)
dy

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
∂ε

Che

∂ĉs
ξ

∫

S

(
I + ∇̂yχ3

)(
∇̂2
xσ̂s,0

)
dy

+ σ̂
∂2ε

Che

∂ĉ2
s

ξ

∫

S

(
I + ∇̂yχ1

)(
∇̂2
xĉs,0

)
dy

)

+ ξ

∫

S

∇̂y ·
[
Das

D∗s
D∗e
cαcmaxA1B0B1

]
dy

(iiC)

Considering: 〈
D̂i

〉
=

∫

S

D̂i

(
I + ∇̂yχ

)
dy

〈σ̂i〉 =

∫

S

σ̂i
(
I + ∇̂yχ

)
dy

(A.34)

where the closure variable χ(y)i has zero mean 〈χ〉 = 0, and is the solution to:

∇̂y ·
(
I + ∇̂yχ

)
= 0

~n ·
(
I + ∇̂yχ

)
= 0

(A.35)
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The integral w.r.t. y is performed over the volume domain, S, although the intercala-

tion reaction occurs only at surface domain, dS. Thus a volume-to-surface conversion

is required:

∫

dS

∇̂y ·
[
Das

D∗s
D∗e
cαcmaxA1B0B1

]
dy =

|A|
|V | ×

∫

S

∇̂y ·
[
Das

D∗s
D∗e
cαcmaxA1B0B1

]
dy (A.36)

Recasting equations A.6 and A.9 as:

ĉs = ξ0ĉs,0 + ξĉs,1 +O(ξ2)

ξĉs = ξĉs,0 +O(ξ2)
(A.37)

σ̂s = ξ0σ̂s,0 + ξσ̂s,1 +O(ξ2)

ξσ̂s = ξσ̂s,0 +O(ξ2)
(A.38)

Substituting equations A.37 and A.38 into equation iiC, using equation A.24, A.30,

and the dimensionless reactivity definition
(
Â = |A|

|V |

)
, the upscaled-homogenized mass

transport equation for the solid phase, approximated to O(ξ2) is:

εs
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)D∗s
2RTcmaxD∗e

U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
x〈ĉ〉 − Chs

D∗s
D∗e

(2− t+)

2

〈
D̂s

〉
K̂s∇̂4

x〈ĉ〉

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
2
∂〈σ̂〉
∂x̂

〈
∂2ε

Che

∂ĉ2
i

〉
∇̂x〈ĉi〉+

〈
∂ε

Che

∂ĉi

〉
∂2〈σ̂〉
∂x̂2

)

− Ss
D∗s
D∗e

(2− t+)

2
D̂s

(
〈σ̂〉
〈
∂2ε

Che

∂ĉ2
i

〉
∇̂2
x〈ĉi〉

)
− D∗s

D∗e

εs
ξ

DasÂĵBV

(A.39)

Following the process for the charge transport equation in equation set 2.11:

εs
∂ 〈ρ̂〉
∂t̂

= 2Pes
D∗s
D∗e
〈σ̂T 〉 ∇̂2

xφ̂+
ĉD∗s

2RTcmaxD∗e
U∗
∂2ĝ

∂ĉ2

〈
D̂s

〉
∇̂2
xĉ

− Chs
2

D∗s
D∗e

〈
D̂s

〉
K̂s∇̂4

xĉ−
D∗s
D∗e

εs
ξ

DasÂĵBV
(A.40)
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Similarly, the mass and charge transport equations for the electrolyte are given by:

εe
∂〈ĉ〉
∂t̂

=
ĉ(2− t+)

2RTcmax

U∗
∂2ĝ

∂ĉ2
i

〈
D̂e

〉
∇̂2
x〈ĉ〉 − Che

(2− t+)

2

〈
D̂e

〉
K̂e∇̂4

x〈ĉ〉

+ 2Peet+ 〈σ̂T 〉 ∇̂2
x〈φ̂〉+

εe
ξ

DaeÂĵBV

εe
∂ 〈ρ̂〉
∂t̂

= 2Pee 〈σ̂T 〉 ∇̂2
xφ̂+

ĉ

2RTcmax

U∗
∂2ĝ

∂ĉ2

〈
D̂e

〉
∇̂2
xĉ

− Che
2

〈
D̂e

〉
K̂∇̂4

xĉ+
εe
ξ

DaeÂĵBV

(A.41)
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APPENDIX B. DIMENSIONLESS NUMBERS

Table B.1.: Estimated values of transport numbers at the electrolyte phase and at the solid electrode particle
for different chemistries. The first section (columns 2 to 8) presents the microstructural dependent transport
numbers. Transport numbers dependent only on the chemistry are given in the second section (columns 9 to 15).

Chemistry Daeµ Peeµ Foeµ Dasµ Pesµ Fosµ Dae Pee Foe Das Pes Fos

×10−3 ×10−3 ×10−1 ×102 ×102 ×10−5 ×10−3 ×10−3 — ×102 ×102 ×10−4

LiC6 I 2.76 1.04 0.28 0.19 450 0.98 . 2.5 37.0 1 0.07 16000 3.44

LiFePO4 N 3.46 0.46 0.08 14.9 0.006 0.004 4 2.4 58.0 1 4.34 0.81 0.05

LiMn2O4 l 6.3 15.3 2.33 7.91 45.2 0.43 # 11.7 65.9 1 6.3 194 0.19

Li4Ti5O12 � 31.9 2.6 1.58 21.9 272 0.53 � 49.8 16.3 1 14.7 1700 0.34

LiNi1/3Mn1/3Co1/3O2 u 0.9 4.19 1.58 0.19 1.45 1.77 3 1.4 26.5 1 0.13 9.18 1.12

LiNi0.8Co0.2−xAlxO2 F 1.73 4.06 2.79 0.013 0.15 86.5 I 3.4 14.5 1 0.01 0.54 31.0

LiCoO2 t 1.03 2.22 1.11 0.063 5.77 4.26 O 1.4 20.1 1 0.04 52.2 3.85

Assumed values of ε = 0.3
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APPENDIX C. ELECTROCHEMICAL DATA

The Gibbs free energy density for LixNi1/3Mn1/3Co1/3O2 was defined as:

g(c) = c(∆gb −∆ga) + ∆ga + RT(c ln(c) + (1− c) ln(1− c)) + c(1− c)
(
L0 + L1(2c− 1)

+ L2(2c− 1)2 + L3(2c− 1)3 + L4(2c− 1)4
)

(C.1)

where ∆gb − ∆ga = −396000 J/mol, L0 = −60000 J/mol, L1 = 20500 J/mol,

L2 = 18000 J/mol, L3 = −20000 J/mol, and L4 = −16000 J/mol. The equilibrium po-

tential was derived as φ
OCP

= − 1
zF

∂g
∂c

, and the second derivative as: ∂2g
∂c2

= −zF ∂φ
OCP

∂c
.

The Gibbs free energy density for EC:DMC electrolyte was defined as:

g(c) =
RT

Ω
(c ln(c) + (1− c) ln(1− c)) + (c(1− c)(L0 + L1(2c− 1) + L2(2c− 1)2))

(C.2)

where Ω = 6.93 × 10−5 m3/mol, L0 = −4.35 × 108 J/m3, L1 = 0, L2 = −4.40 × 108

J/m3.

The open circuit potential for Graphite used in this paper was reported by

Safari and coworkers [95]:

φ
OCP

= (0.6379 + 0.5416 exp(−305.5309c) + 0.044(tanh(−(c− 0.1958)/0.1088)

− 0.1978 tanh((c− 1.0571)/0.0854)− 0.6875 tanh((c+ 0.0117)/0.0529)

− 0.0175 tanh((c− 0.5692)/0.0875))

(C.3)

Considering ∂g
∂c

= −zFφ
OCP

, the second derivative is defined as: ∂2g
∂c2

= −zF ∂φ
OCP

∂c
.
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APPENDIX D. CHARACTERISTIC TIME SCALES

Five characteristic times related to diffusion, electromigration, heterogeneous reac-

tion, gradient energy, and stress were identified:

t
Di

=
L2

D∗i
(D.1)

t
Mi

=
(ziF)2L2cmax

RTσ∗T
(D.2)

t
R

=
L

k
(D.3)

t
Chi

=
RTL4c2

max

D∗i ciK∗i
(D.4)

t
Ssi

=
RTL2c2

max

D∗i ciσ
∗ (D.5)

and i={solid, electrolyte}.
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APPENDIX E. NMC CHEMICAL STRAIN

In-plane and out-of-plane chemical strain as a function of concentration [94]:

εChe
xx (ĉ) = 0.0119− 0.0454ĉ+ 0.028ĉ2 + 0.0065ĉ3 (E.1)

εChe
zz (ĉ) = −0.012− 0.0012(1.− ĉ) + 0.204(1.− ĉ)2 − 0.2513(1.− ĉ)3 (E.2)
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Figure E.1. Effect of discharge current in the chemically-induced strain of
NMC electrodes. corresponds to chemically-induced strain calculated
from the lattice parameter changes measured experimentally during first
cycles of galvanostatic discharge at C/40, as reported by Yabuuchi et
al. [94]. # identify cases of strain-free concentration or maximum strain.
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APPENDIX F. ELECTRICAL AND MECHANICAL PROPERTIES

Macroscopic physical quantities such as electrical conductivity and chemical diffu-

sivity are related to porosity and tortuosity through the well-known expressions

[5, 7, 8, 10,24,42]:

〈σ〉 =
εσ◦
τ
, and 〈D〉 =

εD◦
τ

(F.1)

Porosity and tortuosity are connected through the Bruggeman relation τ = 1
εα

[15].

Similarly, the average mechanical properties are given by [101]:

〈E〉 =
9〈K〉

1 + 3〈K〉/〈µ〉 (F.2)

where the average values of the bulk (K) and the shear (µ) modulus are derived from

a variational formulation known as Hashin-Shtrikman bounds [100]. The lower bound

is defined as:

〈K〉 = Km + (1− ε)
[

1

Kp −Km

+
3ε

3Km + 4µm

]−1

(F.3)

〈µ〉 = µm + (1− ε)
[

1

µp − µm
+

6ε(Km + 2µm)

5µm(3Km + 4µm)

]−1

(F.4)

K is the bulk modulus and µ the shear modulus, such that:

µ = E
2(1+ν)

K = E
3(1−2ν)

(F.5)

Here, m stands for matrix and p for embedded particles.

Similarly, the average of the differential chemical strain ∂εe/∂ĉ is:

〈
∂εe
∂ĉi

〉
=

[
(∂εe
∂ĉi

)mεKm + (∂εe
∂ĉi

)p(1− ε)Kp

εKm + (1− ε)Kp

]
(F.6)

in analogy to the thermal expansion formulation [101].
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