
FEASIBILITY OF GAME THEORY AND MECHANISM DESIGN

TECHNIQUES TO UNDERSTAND GAME BALANCE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Prajwal Balasubramani

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Aeronautics and Astronautics

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Daniel A. DeLaurentis, Chair

School of Aeronautics and Astronautics

Dr. Ali Khalid Raz

School of Aeronautics and Astronautics

Dr. Jitesh Panchal

School of Mechanical Engineering

Approved by:

Dr. Gregory A. Blaisdell

Head of the Graduate Program

iii

To my parents and to everyone who strive to make education accessible.

iv

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Dr. Daniel DeLaurentis for his men-

toring, support and encouragement during my master’s program at Purdue. It was

his faith in me that made it possible for me to complete and obtain this M.S. degree.

The time and resources he has invested in me will always be deeply appreciated.

I would also like to take this opportunity to thank the other members of my

committee for their encouragement and support: Dr. Ali Khalid Raz and Dr. Jitesh

Panchal. Their expert advice has been invaluable in making this research concise and

compelling.

I want to acknowledge the initial contributions by Dr.Santiago Ontanon for de-

velopmental work on the microRTS game and making it openly available for research

(and/or fun). I also owe a debt of gratitude to Apoorv Maheshwari, Adam Dachowitz,

and Chris Brand who were a part of the developmental team of the microRTS frame-

work and also helped me understand the game mechanisms better.

Finally, I would like to thank all my peers and friends within the CISA Lab

and Purdue University for all the good times. Especially Andrew Haines, Ashish

Patel, Chris Brand, Melanie Grande, and Zhong Thai who made the experience more

enjoyable.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Perspective of Multi-Agents Systems (MAS) 3

1.2.1 Games as MAS . 3

1.2.2 Nature of players in games . 5

1.3 Research Problem . 6

1.4 Thesis Structure . 7

2 LITERATURE REVIEW . 9

2.1 Game Balance . 9

2.2 Prisoners’ Dilemma . 11

2.3 Game Theory and Mechanism Design 13

2.3.1 Game Theory . 13

2.3.2 Mechanism Design . 15

3 MULTI-AGENT SYSTEM FRAMEWORK 17

3.1 Multi-Agent System Framework . 17

3.1.1 Agents and Characteristics . 18

3.1.2 Multi-Agent Systems . 20

3.2 Agent Based Models . 23

3.3 microRTS . 25

3.3.1 Maps . 26

vi

Page

3.3.2 Agents, Objects and Actions . 27

3.3.3 Bots and Strategies . 29

3.3.4 Game Data . 30

3.3.5 Mechanisms, Objectives and Perspectives 31

4 APPROACH . 34

4.1 Design of Experiments . 34

4.1.1 Self-play Experiments . 36

4.1.2 Cross-play Experiments . 38

4.2 Simulation Setup . 38

5 RESULTS . 41

5.1 Self-play games . 41

5.1.1 Baseline - Results from Native Form 41

5.1.2 Standalone Experiments . 42

5.1.3 Asymmetric Experiments . 47

5.2 Cross-play games . 51

5.3 Discussion . 54

6 CONCLUSIONS AND FUTURE WORK . 57

6.1 Summary . 57

6.2 Future Work . 58

REFERENCES . 60

vii

LIST OF TABLES

Table Page

3.1 Characteristics of MAS. 22

3.2 MAS Architecture Attributes . 23

3.3 Agents, Objects and Actions in microRTS 28

3.4 Bots and Strategies in microRTS . 30

4.1 Native form of microRTS (baseline model) 35

4.2 Standalone Self-play Tournaments . 37

4.3 Asymmetric Self-play Tournaments . 38

4.4 Cross-play Tournaments . 38

5.1 Preliminary Baseline Game Results . 41

5.2 Tournament results for RQ generations . 43

5.3 Tournament results for RP generations . 44

5.4 Tournament results for BP generations . 45

5.5 Tournament results for SR generations . 46

5.6 Tournament results for RQ-RP generations 48

5.7 Tournament results for RQ-BP generations 50

5.8 Tournament results for RQ-SR generations 51

viii

LIST OF FIGURES

Figure Page

1.1 MAS-Games Methodology [7] . 5

2.1 Variation of Prisoners’ Dilemma . 12

2.2 Classical setting of Prisoners’ Dilemma . 14

3.1 Agent Classification [28] . 19

3.2 Map GUI in microRTS . 27

3.3 Agents in microRTS [34] . 29

3.4 Example Trace File . 31

4.1 Native microRTS - Map . 34

4.2 Native microRTS - Map . 36

4.3 microRTS GUI . 39

5.1 Time taken by Player 2 to win . 49

5.2 Win(Payoff) Matrix for Cross-play tournament 52

5.3 Win(Payoff) Matrix for Cross-play tournament 53

5.4 Dominant Strategy Equilibrium . 54

1 Native form & Cross-play Results . 64

2 Resource Quantity - Gen1 Results . 65

3 Resource Quantity - Gen2 Results . 66

4 Resource Quantity - Gen3 Results . 67

5 Resource Position - Gen1 Results . 68

6 Resource Position - Gen2 Results . 69

7 Resource Position - Gen3 Results . 70

8 Base Position - Gen1 Results . 71

9 Base Position - Gen2 Results . 72

10 Base Position - Gen3 Results . 73

ix

Figure Page

11 Starting Resources - Gen1 Results . 74

12 Starting Resources - Gen2 Results . 75

13 Starting Resources - Gen3 Results . 76

14 RQ-RP - Gen1 Results . 77

15 RQ-RP - Gen2 Results . 78

16 RQ-BP - Gen1 Results . 79

17 RQ-BP - Gen2 Results . 80

18 RQ-SR - Gen1 Results . 81

19 RQ-SR - Gen2 Results . 82

x

ABBREVIATIONS

ABM Agent Based Model(ling)

MAS Multi-Agent Systems

RTS Real Time Strategy

DOE Design of Experiments

SOF Social Objective Function

POF Player Objective Function

xi

ABSTRACT

Balasubramani, Prajwal M.S.A.A, Purdue University, August 2020. Feasibility of
Game Theory and Mechanism Design Techniques to Understand Game Balance. Ma-
jor Professor: Daniel A. DeLaurentis.

Game balance has been a challenge for game developers since the time games have

become more complex. There have been a handful of proposals for game balancing

processes outside the manual labor-intensive play testing methods, which most game

developers often are forced to use simply due to the lack of better methods. Simple

solutions, like restrictive game play, are limited because of their inability to provide

insight on interdependencies among the mechanisms in the game. Complex techniques

framed around the potential of AI algorithms are limited by computational budgets

or cognition inability to assess human actions. In order to find a middle ground we

investigate Game Theory and Mechanism Design concepts. Both have proven to be

effective tools to analyse strategic situations among interacting participants, or in

this case ‘players’. We test the feasibility of using these techniques in an Real Time

Strategy (RTS) game domain to understand game balance. MicroRTS, a small and

simple execution of an RTS game is employed as our model. The results provide

promising insight on the effectiveness of the method in detecting imbalances and fur-

ther inspection to find the cause. An additional benefit out of this technique, besides

detecting for game imbalances, the approach can be leveraged to create imbalances.

This is useful when the designer or player desires to do so.

1

1. INTRODUCTION

1.1 Motivation

In the last three decades, games have moved from arcade machines to consoles to

hand-held mobile devices to cloud operations. With this access to higher and large-

scale computational capabilities, games have increasingly become highly detailed but

at the same time more complex than before. With this ability to produce high fidelity

games, the research potential of games as surrogate models is extensive. Games

worldwide are in as many as genres that the human mind can conceive; supply-chain,

warfare, math and computation, pattern recognition, machine vision and many more.

An interesting result is that these genres directly relate to everyday problems we face

around the world. The possibility of using games to test and hypothesize ideas and

concepts is very much now in the realm of possibility. We have already experienced

this wave occur in the artificial intelligence and machine learning sectors. AlphaGo for

GO, AlphaZero and Deep Blue for Chess, and more recently AlphaStar for Starcraft

II are some examples that use games as the main source of motivation to build really

intelligent decision making AI [1]. While this perspective really shows its potential,

game design like modelling also has some inherent flaws. The most concerning of

which is understanding game balance.

Simple games with few interacting elements have very few design features that

control and impact game play. In games that utilize multiple levels of elements inter-

acting within and across different levels, the complexity in designing the interactions

increases exponentially. The technical and gaming term for these interactions is mech-

anisms. ’Mechanisms’, often also referred to as mechanics by professional gamers, and

controls the game states and outcomes. There has been a lot of confusion over the

semantics of the words ’game mechanisms’ and ’game mechanics’ but it is now widely

2

accepted to be the same in the gamer and game design community. For example, in

the game of rock, paper and scissors the designer is only worried about three mech-

anisms i.e., the interaction between the three elements. This shows that a game of

this scale is easier to understand and design. When we shift to games simulating

warfare, real-time strategy (RTS) games such as Age of Empires or Civilisation or

League of Legends which involve hundreds, and in some cases thousands, of elements

simultaneously interacting, the designer is burdened with establishing every mech-

anism possible within the game environment fairly for all players. Creating these

mechanisms is necessary for a game to be labelled as a ‘complete game’ or a ‘well-

defined game’. A ‘good/fairly’ balanced game needs these defined mechanisms to be

just. Going back to the rock, paper and scissors game, hypothetically, if rock beats

both scissors and paper then the game would not have been as popular as it is today

due the presence of a major imbalance in favor of the player choosing rock as their

strategy. This notion of having an equal playing field is to create a more engaging

game play and is commonly known as game balance. For smaller games it is easier to

interpret the game play in a quantitative sense and arrive at balancing game mecha-

nisms. For complex games like Starcraft II, which is an online multiplayer real time

strategy game, achieving game balance is much more complicated than just a single

attempt at balancing, quantitatively or analytically.

In this work, our focus is not to prove that game theory and mechanism design

techniques are possible methodologies to fix balancing issues in existing games but

rather to test the feasibility of using the same to detect and point to the roots of

imbalances in a game. The lens of the work is motivated to demonstrate the applica-

bility of this methodology to find imbalances in real world multi-agent system (MAS)

scenarios, like warfare, supply chain, and search & rescue-missions etc and one such

technique being explored involves the use of game theory and mechanism design.

3

1.2 Perspective of Multi-Agents Systems (MAS)

The difference between traditional systems, complex systems and multi-agent sys-

tems can be understood by thinking in terms of the constituent elements. In tradi-

tional systems, the elements or components, do not have independence in operation

or management. Components merely carry out functions defined by the system us-

ing rules and protocols. The working definition used at MIT Engineering Systems

Division [2] for a system and complex systems are as follow:

“System: A set of interacting components having well-defined (although possibly

poorly understood) behavior or purpose; the concept is subjective in that what is a

system to one person may not appear to be a system to another.”

“Complex Systems: A system with numerous components and interconnections,

interactions or interdependencies that are difficult to describe, understand, predict,

manage, design, and/or change.”

In complex systems, these components are replaced by fully independent system

that is motivated to run on its own. An airplane is a perfect example for complex

system. However, this is not what a multi-agent system is, even though the term

seems to point to the same thing. It is the word agent that changes the perspective

of the definition. The main difference between MAS and other systems is that, the

designed purpose of MAS is not necessarily a common goal. MAS design is more

focused on individual agent interaction and the environment. This is mainly why, in

this work, game environments will be translated to an MAS setting. Making such

translations help to analytically assess the game states and design of experiments. A

more detailed discussion and relevant literature on multi-agent systems is presented

in Chapter 3.

1.2.1 Games as MAS

There are two ways games and MAS correlate. One from the perspective of the

player and the other from the designers’. We will look at both of these perspectives

4

and choose accordingly what fits our research problem approach. Both are equally

important but for the majority of our analysis we use the designers perspective.

From a players perspective the game is a single entity posed as an internal system

with which they interact. This makes the players active agents within the system

environment. To justify such games as an MAS, the number of players must be really

high to contribute to the multi-agent aspects of MAS. A well established example for

a game being considered as an MAS based on the players perspective is Massive Mul-

tiplayer Online Games (MMOGs) [3] such as World of Warcraft. This example also

clearly shows the two polar paradigms within the MAS; autonomous and dependent.

The autonomous aspects are from individual players and the dependent aspects are

from games that involve individual players to collaborate or, more aptly here, form

clans.

All, if not most, games inherently are ABMs and this is what drives the designers’

perspective. Every component of the game designed is done using the ABM method-

ology and is built with independence and behavioural protocols. Depending on the

game style/type, they are either an MAS or just a single agent system. Games like

Tetris can be thought of as a single-agent system, but RTS games on the other hand

have a large number of agents present. In this investigation, we will use an RTS

environment and hence this perspective becomes really important while conducting

the design of experiments. The interactions among the elements of the game and the

environment, are essentially what mechanisms are in games. This perspective has

been successfully used previously to create ABM role playing games (RPGs) for the

purposes of research, training and negotiation support in the field of renewable re-

source management by multiple groups of researchers [4] [5] [6]. This relation between

games and MAS is well represented in Figure 1.1.

Based on these correlations it is completely valid to say that games are low fidelity

surrogate simulators for real world scenarios represented in the form of an MAS. This

translation allows us to use insights about MAS design methodologies & analytics

5

Figure 1.1.: MAS-Games Methodology [7]

and apply them to game settings. Tracking, monitoring and information within the

game is also made possible by this Games-to-MAS translation.

1.2.2 Nature of players in games

There two main classifications for players’ nature that are generally adopted in

games: Cooperative and Non-Cooperative. The term nature here refers to how the

player behaves in the game and not the specific actions or action sequences as con-

veyed by the term strategy. Of course, it is directly dependant on the setting of the

game whether it allows for players to be able to use either or are restricted to one.

Essentially there are games, that run on a predetermined setting of players nature,

and there are others that allow the players to decide their nature. This classification

is purely of the players behavior but not the classification of the types of games that

are defined by game theory, of which there are many.

Cooperative games are ones in which the players are in a collaborative setting and

are not competing against each other. The game may have a defined environment

that the players are competing against in union, for example single player survival

games.

Non-Cooperative or Competitive games are ones in which the players are all func-

tioning independently and are up against one another. Several themes like is multi-

6

player survival, sports or RTS games are under this category. Sometimes the game

environment is also involved in the game design to be competitive against the player.

In our context of investigating game balance using game theory and mechanism

design techniques, the cooperative setup becomes infeasible to study as the compu-

tational budget is very expensive to completely explore the game states. This is

because, in cooperative games the possible game states for a particular scenario are

much larger in comparison to competitive settings. In simple terms, the players in

competitive settings, no matter what the scenario is, are always forced to take ac-

tions that are binary in nature i.e., do or die. In a similar scenario, if the players were

cooperative, it allows them to cooperate or co-exist. Just on this level of abstraction

the number of cases to be investigated is double in case of cooperative (two decision

trees) games over competitive games (one decision tree). Hence the investigation in

this research is restricted to a competitive game setting, specifically RTS themed.

1.3 Research Problem

Now that the importance of game balance is understood in general game design

terms, the next logical step is to look for its presence in games and evaluate. Using

the comparison of MAS to Games, allows us to model real life scenarios into games,

and assessing balance there would give us vital insights on the rules and functions in

the real domain. The general term used in this work is game but it is looked at as

a surrogate word to any real world scenario that is competitive in nature. Knowing

the balance in any such games also provides an understanding on the fairness of the

scenario. It further helps in planning actions to make sure the balance is maintained

or established. However there may be other cases where the balance is established

but it is of our interest to alter it to be imbalanced favoring one side, like that of a

war or sports game where both teams strive to be victors.

The possible avenues to explore these competitive games is captured well by the

concepts of game theory that are preexisting and widely used. Game theory helps

7

us understand the game balance from the perspective of a players motivation to do

something in the game. in other words, the payoff or strategy matrix. The inclusion

of mechanism design is to aid two different purposes. One, to help in the design of

experiments for testing the methodology. Two, to use mechanism design analytics to

understand the state of balance in a game.

“How do we leverage the concepts of Game Theory and Mechanism Design to

understand and assess game balance?, Can game balance be defined by a quantita-

tive measure or parameter within or outside of the game?, Are these methodologies

feasible, if so to what extent?” are some of the quantitative questions that this work is

trying to address. Questions like: “What are some of the shortcomings in using these

methods?, What assumptions are necessary for these methods to be applicable?” are

some analytical conclusions we seek.

1.4 Thesis Structure

The remainder of the thesis progresses as follows:

In Chapter 2, the relevant literature to understand and address game theory,

mechanism design, and game balance are discussed. Game theory and mechanism

design are very large bodies within the economics and mathematics fields of study,

hence only the portions of those that are in use in this research are reviewed in depth.

Existing methods to detect and quantify game balance are introduced along with

current strides made in the field. The commonly known Prisoners’ Dilemma game

is used as a demonstration tool throughout the section to help in understanding the

relevant methodologies.

Chapter 3 provides more context on Multi-Agent System Framework approach

utilized. Agent based models (ABM), which RTS games are based on, is also discussed

along with its history, benefits, and applicability. microRTS, a simplistic RTS game,

used as the model to test our hypothesis is presented. The inner workings of the game

and the external setup for the study are also described.

8

In Chapter 4, the approach to modelling the players, games and design of experi-

ments is introduced. Further, the programming setup to run large number of games

and its accompanying analysis setup is presented. The mechanism changes, metrics,

and process of collection of data is also explained.

Chapter 5 presents all the results obtained from the different tournament settings

and experiments. General discussion on the effectiveness of the methodology to assess

game balance is presented. All the research questions are then addressed one by one,

with quantitative details from the results supporting them. Specific and interesting

games are also elaborated in a case studies subsection.

In Chapter 6, the key findings are summarized and potential applications are

presented. Avenues of future research possibilities extending from the findings are

also discussed.

9

2. LITERATURE REVIEW

Game balance is a growing concern for game developers and professional game players.

With the increase in games used as surrogate research models, more researchers are

also now posing questions about game balance. In this chapter we review the literature

for game balancing and introduce the fundamental concepts of game theory and

mechanism design which will be key to our approach to detecting and identifying the

causes of imbalance in games. To understand the application of these two concepts

we use a demonstration game problem, the commonly known Prisoners’ Dilemma.

2.1 Game Balance

From the time games shifted from being a recreational activity into a household

entertainment element, the explosive industry has had game developers tasked to

make games engaging and challenging for the masses to invest their time and re-

sources. Engagement is a concept that can be delivered by visuals, sound design,

story and/or characters. Player frustration, a counter-intuitive factor contributing

success of games, is a very sensitive element that game designers are always worried

about. It feeds into both, a game being playable and enjoyable. In order to han-

dle this balance between frustration, which drives one to play more and beat the

game, and playability, a designer must make sure the elements and their interactions

within the game environment are not biased to any player irrespective of their skill.

A very commonly quoted example in this aspect is the game of Chess. It is closest

to a well balanced game, the small imbalance comes from the fact that white moves

first giving it a small edge over black. There have been attempts to get over this

hurdle by making a real-time chess called Kung-Fu Chess where there is no turn

based actions. This was critically acclaimed by the audiences, however it removed

10

the time based frustration that players of chess enjoy killing its popularity slowly [8].

According to Jaffe (2012), questions like ”Does either player have any advantage?”,

”Does every action serve a useful role?” and/or ”How much long-term strategy is

there?” lie at the centre of assessing game balance [9]. For example, while develop-

ing Halo 3 the designers discovered that the sniper rifle was overpowered, reducing

effectiveness of several interesting game strategies [10] contributing to an imbalance

via advantages to player over game conditions. This was only realised because of a

good play-testing setup(games are played by professionals, developers and a small

section of casual gamers to test all aspects of the game). Many games are released

without such quality work going into balancing it. Most games then receive either

updates or patches to fix issues, and some get a complete overhauls. This is a very

time consuming and expensive process for the developers to indulge in. This natu-

rally has led teams of researchers, either within the gaming developer community or

the AI community, to ask whether it is possible to automate this. This effort was

brought to a wider audience by the use of a backend reasoning tool which was not

dependent on play-testing [11]. This was however soon halted by the inability of AI

to follow human predictability play, since many existing balancing methods relied on

observing human-play [12]. Of the many balance related questions, the impact of

starting order in turn-based games is the one that is well addressed. Others are still

being explored to find ways to control and evaluate. Many efforts have been made to

understand game balance and figure out the solution to reduce the need for human

play-testing and iterative processes by implementing automation techniques. Jaffe

(2013) demonstrated a novel quantitative method using programmed agents instead

of human players to assess game balance. He further proposed a restricted game play

method, which allows perturbation of game parameters in only one dimension and

assess the change to the game state without the effects of the others, and called it

restricted gameplay [9] [13]. Beyer et. al., proposed an integrated methods to act as a

stepping stone to eventually move away from manual balancing with their integrated

balancing process [14]. While Leigh et. al., state that mathematical proof for game

11

balance may not be possible with the current AI techniques, it can certainly be val-

idated using coevolutionary algorithms [15]. More recently, Wen Xia et. al., (2016)

explored the space of multi-agent models intertwined with ecosystem mechanism iin

order to provide a more flexible way of game balance control [16]. Our approach takes

the work of Jaffe (2012) and Wen Xia (2016) and leverages it to understand game

balance in an RTS game.

2.2 Prisoners’ Dilemma

Prisoners’ Dilemma is a standard example (2.1) for a game analyzed using game

theory. It has two individuals who are acting in their own self-interests in a paradox-

ical decision making scenario. The construct of the game is that both the players are

put to the test in front of the justice system to confess or deter for a crime commit-

ted of which the two players are suspects. It presents a situation where two players

are separated and unable to communicate, must either choose to co-operate with the

other or not i.e., confess for the crime or remain silent. The outcomes of the game

are structured in such a way that, if the players cooperate then their sentences are

the least and, if they choose not to cooperate, the penalty is the highest. The middle

case where one cooperates and the other doesn’t, the one who remains silent gets no

sentence and the one cooperating receives the entire sentence. The problem is setup

in such a way that the players are always motivated to protect themselves. This is

considered as one of the most well known concepts in modern game theory because

it is observed that this form of game occurs very commonly in aspects of economy.

There have been multiple variations of the game over the years. Ones where cooper-

ating is rewarded and others where deterring is rewarded. This is completely up to

the designer of the game, and this slowly leads into the concepts of mechanism design.

The prisoners’ dilemma is a balanced game, if the setting has symmetric penalties

and rewards for both players. A change in either of those makes it an imbalanced

12

game in favor of the player with lower penalty or higher rewards because of the biased

outcomes even though we cannot predict the actual outcome of the game.

Figure 2.1.: Variation of Prisoners’ Dilemma

In the next section we will further explore and understand the different concepts

of mechanism design and game theory while using this game as a demonstration

problem.

13

2.3 Game Theory and Mechanism Design

This section presents the traditional concepts of game theory and mechanism

design relevant to the game balancing concepts. We begin by introducing game

theory which is intimately related to mechanism design. In fact, mechanism design

is often referred to as reverse game theory.

2.3.1 Game Theory

Game Theory is the study of the strategic interactions of agents that are self-

interested within a system or model. Game theory deals with the preferences, states,

information, decisions, and outcomes of the game.

In a given game with more than one agent/player with each player having personal

preferences over the outcomes of a game. Strategy is a complete plan or decision

protocol, that determines what action will be taken by agents in every possible state

of the game. Strategy is a single decisions made by the agents/players preference. A

vector of such available strategies for an agent to take is called a strategy profile. In

the example of the prisoners’ dilemma from Figure 2.1, player A’s strategy profile has

two vectors: Confess & Remain silent. A Strategy in this case would be a decision

that player A makes; here that happens when player A assesses what player B may

have done and tries to look for the best outcome for themselves. Best Response or

Best Reply is the strategy implemented by a player, conditionally, with respect to

the decisions made by the opponent. For every strategy in player A’s side, Player B

has a best reply based on the reward/penalty. This is relevant only in games where

full information is available to the players. From a standpoint of a designer, who

has access to all the information, best replies can be determined even for incomplete

information games.

In a balanced game, for example lets consider the prisoner’s dilemma game as

structured in Figure 2.2, where the case is symmetric, and is balanced. A new change

14

in the penalties compared to the previous game (2.1) is that the new protocol has

cooperation and remaining silent together equally rewarding.

Figure 2.2.: Classical setting of Prisoners’ Dilemma

In this case, both the player benefit when they take the same decision and is fair

to both, and is completely symmetric in setting. Neither decisions are unbiased to

either player. In this case if the designer changed the penalties of only player B to

be 5 years instead of 1 year in both cells 1 and 4. Then this is an unfair design

where deterministically a previously balanced game now produces different responses

from the players (at least player B). A game that was a tie, in a sense, is no longer

15

deterministically producing similar outcomes and states. The introduction of new

changes triggered this effect. This is known as the Grim Trigger, a mechanism or

strategy to trigger game states from their nature of repeatability. This feature helps

us to assess game balance using game theory for our model. Other popular game

theory solution metrics are Nash Equilibrium and Dominant Strategy Equilibrium.

Nash is an equilibrium in which, every agent will select a strategy to maximize

their own utility/reward when the strategy of the other agents are given. Game the-

orists use and have been using Nash Equilibrium as one the fundamental solution

concepts. Having said that, it does come with some restrictions. Mainly because it

assumes that no information is private ans is globally known. It also does not hold

good in games with multiple equilibrium i.e., if the game has multiple Nash solutions.

This can be overcome if the Nash of a game is being determined by a designer. Dom-

inant Strategy Equilibrium is a stronger metric than Nash which points to a state

where all agents will have the same behavior of reward maximizing irrespective of

other agents information and strategy. In the prisoners’ Dilemma game (Figure 2.1),

the Nash equilibrium is when both prisoner’s confess. Nash equilibrium is an inter-

section of the best responses of each player. Here both players are maximizing based

on the information of the other players strategies. In terms of Dominant Strategy,

both prisoner’s remaining silent is the solution. Here the player only thinks about

self-maximizing strategy and that is remaining silent to try to avoid any sentence (0

years). It is possible that dominant strategy solution is also in the Nash (in Figure

2.2) although the underlying principles of a dominant strategy leave Nash analysis

redundant.

2.3.2 Mechanism Design

Mechanism Design, is a field within the field of microeconomics and game theory.

It is the design of mechanisms, protocols, and institutions that are mathematically

proven to satisfy system-wide objectives. In our game, it is the the system wide

16

objective a.k.a social objective is to provide and maintain a fairly balanced game. It

also functions under the assumption that agents in the model act in a self-interested

manner and may hold private information that is relevant to make internal decisions.

Mechanism Design previously has been used in various fields to design protocols and

institutions. Gerkey & Mataric (2002) used mechanism design to structure an auction

system for autonomous robots for task allocation [17]. Holzman et. al., (2003) propose

a new way to apply mechanism design to network routing [18]. In the same category

of network capacity allocation Anshelevich et. al., (2004) and Anderson et. al., (2006)

also proposed using mechanism design [19], [20]. Both Hinz (2003) and Federico &

Rahman (2003) looked at its application in electricity markets [21], [22]. Dang et. al.,

(2006) utilized these concepts in the field of sensor fusion [23]. In systems engineering,

M.Chen et. al., (2004) was one of the first to combine these concepts into the system

analytics world to assess peer-to-peer systems [24].

Social Choice Function or Social Objective Function (SOF) is the selection of

optimal outcome given agent types and thus satisfies the system wide goal. The SOF

selects an alternative from a set of choices given all agents’ preferences. The goal of

using this in mechanism design is to implement it to satisy certain desired properties.

For example, in the prisoners’ dilemma game, the SOF for the designer can be that

they want the truth to be reported by the players and justice to be served rightly.

So the SOF can be structured in a way that the maximum reward is presented to

the players for confessing rather than remaining silent. In our game model, we want

to identify the imbalances in the game, so we use SOF to structure our tests/games.

Similarly, mechanism design also provide the facility to players to have their own

objective function called the Player Objective Function. This allows the designer to

make sure the players payoff is something that the player actually is willing to play

for. If the prison time in all the 4 cases in the game were the same, the player has no

utility to satisfy their objective function i.e., minimize penalty (or) maximize reward.

With the SOF and POF as the fundamental functionality of mechanism design, this

will be leveraged to design and game theory for assessing game balance.

17

3. MULTI-AGENT SYSTEM FRAMEWORK

In this chapter, an overview of Multi-Agent Systems and the framework utilized

to generate a stand-in model for our research problem is presented. Subsequently,

agent based modeling is also introduced to draw parallels between MAS, ABM and,

microRTS. microRTS is an open source RTS game built on ABM principles that is

described in depth to provide context to the research model.

3.1 Multi-Agent System Framework

In the previous sections, we looked at the fundamental concepts of game theory

and mechanism design, specifically in the prisoners’ dilemma setting. However, to ex-

hibit the practicality and use case of mechanism design and understand the processes

involved in the lead up to using MAS framework to interpret game balance, we need

a surrogate model to replicate the complexity and behaviour of an MAS. To do so, we

consider an RTS game which exhibits classical game theory setting where payoffs are

not just dependent on actions of the player but also a result of the opponents actions.

Before we jump into the actual surrogate model, we need to understand what MAS

is and what are its characteristics. Of those we specifically discuss the ones relevant

to our framework.

Since the mid-1990’s, the field of MAS has presented very interesting approaches

to solving problems and hence a large number of mathematicians, scientists, and

engineers are in pursuit of identifying and solving unique problems. Since the advent

of intelligent systems and micro-electronics, fields like robotics, artificial intelligence

and, swarm technologies are heavily dependent on MAS principles and architectures.

Similar to system-of-systems (SoS), the field of MAS is also typically used in cases

requiring large scales of individual and independent agents with defined behavior,

18

communications, beliefs, knowledge, intentions and mechanisms. In SoS however, the

architecture also includes a hierarchical management aspect that may or may not be

necessary in an MAS setting. Even if a hierarchy exists, the SoS hierarchy addresses

layers of varying compositions unlike the homogeneous hierarchies in MAS.

3.1.1 Agents and Characteristics

The concept of multiple systems or large network of systems is well understood,

but to draw comparisons and similarities between those and MAS we need to under-

stand what ’agents’ mean in the MAS context. Further we also should understand the

characteristics of each of these agents. Most commonly ”an agent is a computer sys-

tem that is situated in some environment, and that is capable of autonomous action in

the environment in order to meet its design objective” is defined by Wooldridge [25].

An older definition by Russell et. al., states that an agent is ”anything that can

perceive its environment through sensors and act upon that environment through

actuators” [26]. Many authors continued and still continue to provide unique defini-

tions. Feber [27] in his widely popular book on MAS deconstructed the definitions

and proposed a subset of defining descriptions which is widely accepted and the most

detailed:

• capable of acting in an environment

• can communicate directly with other agents

• driven by a set of tendencies

• possess resources of its own

• capable of perceiving its environment

• only a partial representation of this environment

• possesses skills and can offer services

19

• may be able to reproduce itself

• behavior tends towards satisfying its objectives, taking account of the resources

and skills available to it and depending on its perception, its representations

and the communications it receives.

Agents exhibit a host of different characteristics, enabling us to classify them using

different schemes. Among many existing schemes, most general is the distinction

based on characteristics like autonomy, adaptivity, reactivity, goal orientation, util-

ity orientation, physicality, and social functions. Other common classifications are

based on tasks they perform, range and sensitivity of their perception, control struc-

ture, internal states and/or environment conditions. Franklin & Grasser provided a

hierarchical classification of agents based on properties of agents.

Figure 3.1.: Agent Classification [28]

20

3.1.2 Multi-Agent Systems

The definition of MAS is more complex than the definition of agents. MAS is a big

umbrella term for various kinds of systems. This is due to its branched applicability in

many fields, from healthcare to manufacturing to traffic management to autonomous

vehicles. Keeping consistency with the definitions, Ferber [27] again provides a set of

defining qualities for a system to be classified as MAS:

• An environment or space which generally has volume

• A set of objectives and objects

• An assembly of agents acting as active entities of the system

• An assembly of relations linking objects

• An assembly of operations for agents to perceive, produce, consume, transform

and manipulate objects

• Operators with the task of representing the application of these operations and

the reaction of the world to this attempt at modification, which we shall call

the laws of the universe

The roots of MAS span so wide into multiple host disciplines that are unique,

it is difficult to provide a concise and detailed history without making exceptions.

However, Ferber 1999 [27] and Bousquet & Le Page 2004 [29] in their work provide

to their best abilities, a thorough text discussing in detail about the MAS history.

The origin of MAS comes from the field of AI where it first appeared in the second

half of the nineteenth century but gained larger attention in the 1980’s. Specifically,

Distributed Artificial Intelligence is credited to be the root of MAS [29]. This com-

munity, like the context in chapter 2, was always focused on single agent systems and

their immediate environment. Since the 1980’s the focus shifted onto multi agent

settings pushing researchers to define and lay down the foundations for a new field.

21

The applications of MAS are divided into 5 overarching categories by Ferber

(1999). These are categorized based on the various application domains, at the time,

MAS was being used in. The functionality and objectives of the MAS in each of these

categories is unique.

Applications of MAS:

• Problem Solving

• Multi-Agent Simulations

• Building Artificial Worlds

• Collective Robotics

• Program Design

In 2007, six fundamental aspects of MAS that are unique was listed [30] that is

widely considered to provide most accurate distinctions from single agent systems.

Table 3.1 lists them, defines and also provides context to their meaning in our game

balance investigation.

22

Table 3.1.: Characteristics of MAS.

Characteristic Description Context

Environment

Dynamic and not static en-

vironment from an agents

point of view due to pres-

ence of other agents

Movement of opponent

agents around the player

makes the environment

dynamic

Agent Design

Heterogeneous agents

whose behaviors vary in

their own extent

Different attacking units in

an RTS game have differ-

ent capabilities and operate

with their own protocols

Perception

Agents have partial percep-

tion of what is happening in

their environment

Player only knows the loca-

tion of opponents position,

but no perception of their

resources, units and opera-

tions

Control

Control is decentralised for

reasons of robustness of

model. Coordinating the

actions of the agents is a

challenge, which is the sub-

ject of game theory.

The player (bot) units make

decisions on their own based

on evaluation functions and

protocols

Knowledge

The agents understanding

of the world, it varies from

one agent to another

What certain units know

may or may not be known

by other units in the game

Communication

Agents can receive and

transmit messages, which

allows for coordination and

negotiation

Positions of enemy units, re-

sources and bases

23

With characteristics of MAS clearly laid out, a comprehensive overview of the

architecture of MAS with the ranges of their attributes defined by Weiss (1999) is

provided in table 3.2.

Table 3.2.: MAS Architecture Attributes

Attributes Range and Type

Agents

Number Two or more

Uniformity Homogeneous/Heterogeneous

Goals Contradictory/Complementary

Architecture Reactive/Deliberative

Abilities Simple/Complex

Objects

Frequency Low/High

Persistence Short/Long Term

Pattern Decentralised/Hierarchical

Level Signal Passing/Knowledge intensive

Variability Fixed/Dynamic

Purpose Competitive/Cooperative

Environment

Predictability Foreseeable/Unforeseeable

Accessibility Limited/Unlimited

Dynamics Fixed/Variable

Diversity Poor/Rich

Resource Availability Restricted/Sufficient

3.2 Agent Based Models

Agent Based Modelling (ABM), also known as Multi-agent Simulations, is a very

powerful tool where systems are modeled as a collection of intelligent and/or rule-

24

based agents. It is relatively a new approach to modelling dynamics of complex

systems and MAS. It modelling approach is from the perspective of individual con-

stituents i.e., agents. Generally it follows a bottom-top approach to modelling giving

rise to organizational and behavioral characteristics of both the system and environ-

ment. Emergence and emergent behavior in ABM is one of the biggest concerns.

Even in a simple model with very few interactions, the number of possible complex

behavioral patterns are many. Unanticipated and/or non-programmed patterns from

agents actually add more information to the state of the ABM. So in a way, ABM

helps fix issues within ABMs. Another advantage of ABM is that it is amenable to

non-mathematical models too, such as social systems or human systems.

According to Jiang & Gimblett (2002), ABMs can be characterized using four

constructs [31]:

• Agents: Set of all simulated heterogeneous behavioral entities.

• Objects: Set of all represented passive entities that do not react to stimuli.

• Environment: Topological space where agents and objects are located and sig-

nals propagated.

• Communications: Set of all possible communications between entities.

ABMs are best known for their unique capabilities over other modelling tools, as

illustrated by Bonabeau (2002), it captures emergent phenomenon; provides natural

description of the system; and its flexible modelling approach [32]. ABM modelling

approaches can be divided into three categories based on the type of model being

built, and this is described clearly by Axtell (2000) [33].

To solve models that can be completely solved. Mainly used within the

traditional space of operations research, where all the processes, operations and in-

teractions are mathematically defined. If any model can be defined completely by

mathematical equations, ABM takes the form of Monte-Carlo analysis and if an an-

alytical solution exists then it provides numerical results.

25

Models that are partially soluble. If models cannot be defined by mathemat-

ical and logical equations then the models cannot be completely solved, but can be

solved in parts to get some insight on the functioning of the model. It sheds light on

possible solutions and properties. On top of these possibilities, these models can be

tested using sensitivity analysis to understand the dependencies and stability of the

model.

Models that are intractable. If a model is intractable, then it is not possible

to define it using mathematical framework. ABM is one of the very few methods with

which a systematic analysis can be used as a viable substitute.

Given the similarities in the definitions, approaches and use-cases of ABM and MAS,

there exist a plethora of different terms for the similar processes. Some authors refer

to such overlapping models as multi agent models and others purely talk about it

in the sense of ABM. The terms multi-agent simulation, multi-agent modelling and

agent-based modeling can be used interchangeably with some exceptions. Our surro-

gate model, microRTS (section 3.3), is one such exception. It shows characteristics

of both ABM and MAS, and hence the perspective is changed dynamically through-

out the study to fit which analytics works well to extract results. From an ABM

perspective it allows use to model and control every single agent in the system, and

most of this is priori to the analytical processes. However, once we start generating

results, it is more fit to assess the data from a MAS perspective,a holistic view, as it

is easier to extract and translate the information to work well with the game theory

and mechanism design methods. More about this holistic perspective is presented in

section 3.3.6

3.3 microRTS

microRTS [34] is a small open-source implementation of an RTS game by Dr.

Santiago Ontanon, an associate professor at Drexel University and a research scientist

26

at Google Research. it is developed in Java and is available with a GPL license for

use and distribution [35]. It was primarily designed to perform AI research. The

advantage microRTS has over other higher fidelity games like Starcraft or Age of

Empires is that microRTS is much simpler, and can be used to quickly test theoretical

ideas, before moving on to full-fledged RTS games. Many researchers have used

microRTS for testing their hypothesis and ideas, not restricted to AI based topics,

successfully. The topics range from hierarchical Task planning in networks to learning

action probability models [36] [37]. Application of Convolutional Neural Networks,

Monte Carlo Tree Searches and other machine learning methods in RTS games to

evaluate game states is also another key research area that microRTS is actively used

in [38] [39]. The game’s simplistic nature and standard programming procedures,

allow us to use it to our own research interests, just like the many before have.

In its default configuration, microRTS is a two-player deterministic and real-time

(i.e. players can issue actions simultaneously, and actions are durative) however,

our study will involve hard-coded players and not human players. It is possible

to experiment both with fully-observable and partially-observable games, as well as

with some elements of non-determinism. Thus, it is not adequate for evaluating

AI techniques designed to deal with non-determinism (although future versions of

microRTS might include non-determinism activated via certain flags). For our testing,

we will only be using fully-observable games in the deterministic setting. As part of

the source code, the developer has also included a collection of hard-coded, and game-

tree search techniques (such as variants of minimax, Monte Carlo search, and Monte

Carlo Tree Search) for player bots to utilize. In section 3.3.2 we will discuss more

about the player bot strategies involved in our research.

3.3.1 Maps

The map in microRTS is a basic 2D array that stores information as physical cell

for each cell in the array. The array forms a GUI grid that the source code already

27

has an implementation for. The size of the grid is variable according to the users

choice, but the code comes with a few standard settings; 8 X 8 (Figure 3.2), 12 X 12,

16 X 16, 24 X 24, and 32 X 32 cells. The game by default opts a dark background for

the map and uses high contrast bright colors for agents on the map. The map GUI

also has a timer and player statistics indicator at the bottom left corner.

Figure 3.2.: Map GUI in microRTS

3.3.2 Agents, Objects and Actions

Based on the definitions in section 3.1 and 3.2, microRTS has a total of 6 agents.

Each of those and their associated functions is summarized in Table 3.3. Figure 3.3

depicts a visual interpretation of Table 3.3. In cases of non-human player, like this

study, all agents are provided with a rule-based logic that they follow according to

a pre-defined bot strategy. Objects are, as previously defined, entities within ABMs

that do not have an active role of the system but make up the functions of the

environment. microRTS has only two objects built into the model; Resources (aka

28

Minerals) & Terrain. Terrain is not involved in the study purely to eliminate the

volume of iterative experiments it would add to our Design of Experiments. For

example, in an 8x8 grid, the number of useful terrain permutations are little less than

64! (factorial). Actions are a set of available commands that a player can assign to

their agents on the map. microRTS has 5 actions that a player may utilize. These

are also listed in Table 3.3.

Table 3.3.: Agents, Objects and Actions in microRTS

Agents Function

Base Stores resources and trains workers

Barracks Trains attack units (H,L,R)

Workers Harvests minerals, construct buildings and basic defence

Heavy(H) High attack ability, low speed

Light(L) Low attack ability, high speed

Ranged(R) Long range attack ability

Objects Purpose

Minerals Harvested by workers for resources to train and build units

Terrain Restrict unit movements (not used)

Actions Impact

Move Navigate units on the map

Attack Damage enemy units or buildings

Harvest Gather resources using Workers

Train Create attack units or workers

Construct Build bases or barracks

29

Figure 3.3.: Agents in microRTS [34]

3.3.3 Bots and Strategies

Bots are hard-coded players that perform a given strategy throughout the game.

microRTS provides a variety of bots with the open-source package. The options range

from simple rule-based abstraction AI to more complex bots using Monte-Carlo or

Tree search algorithms to play. In our study we will make use of only the abstraction

Bots to limit the computational budget. Games using bots of sophisticated algorithms

take somewhere between 2000 to 6000 seconds per game and on the other hand games

with abstraction bots take a maximum of 30 seconds. Strategy in general is any plan

of action or tactic a player uses to satisfy their objectives. Table 3.4 lists the bots

being used in our design of experiments and also their strategies.

30

Table 3.4.: Bots and Strategies in microRTS

Bots Strategy

LightRush Rushes opponent with Light attack units

HeavyRush Rushes opponent with Heavy attack units

RangedRush Rushes opponent with Ranged attack units

WorkerRush Rushes opponent with Worker units

LightDefence Defends using Light attack units

HeavyDefence Defends using Heavy attack units

RangedDefence Defends using Ranged attack units

WorkerDefence Defends using Worker units

3.3.4 Game Data

The microRTS setup allows researchers to store and retrieve game data in two

forms. All game results and tournament results are stored in a data file in .xml

format. This file stores wins, losses, ties, and the average game time for all the three

game results. This data the best way to assess each bot strategy either against a

similar or different bot strategies. The second form of information about the games

are stored in what is called a ‘trace’ file. This file is a data representation of every

timestamp in each game. It stores every action, agent, object and parameters of

the game. This can be used to dig deeper into specific games to look for specific

instances. This becomes really important when differentiating a balanced game from

an imbalanced one. It makes it easier to point to the specific factor contributing

to the imbalance and the time at which it occurs. Trace files can also be used to

re-visualize a saved game. Figure 3.4 shows a single timestamp record in an example

trace file. Somethings that can be seen in the example are resources, player bases

and player unit locations, their actions and internal properties.

31

Figure 3.4.: Example Trace File

3.3.5 Mechanisms, Objectives and Perspectives

From our experience of game mechanisms defined earlier for the rock paper and

scissors, and the prisoners’ dilemma game, we can instantly tell that the mechanisms

involved in this game are much larger in number. While the list below contains all

mechanisms categories possible in the game, our focus will only be in exploring a few.

• Influence of Strategy

• Influence of Resource Quantity

• Influence of Resources Location

• Influence of Starting Position of Player Base

• Influence of Starting Resources

• Influence of Starting Position of Player Unit (not tested)

32

• Influence of Unit properties (Light, Range, Heavy, Worker) (not tested)

• Influence of Terrain (not tested)

• Influence of costs (units, buildings) (not tested)

• Influence of Map size

Each of these categories have multiple mechanisms underneath them. Lets con-

sider each of these one by one and discuss in detail the underlying mechanisms.

Resource quantity on a map is predetermined before the game is setup. Most pre-

coded maps use either 25 resources or 50 resources allocated to each player. controlling

the number and where they are placed gives us two dimensions of mechanism design at

the designer level. Qualitatively there are two ways the influence of starting position

of player base can be altered; closer to the resources or away from them. Of course

in a quantitative sense, the base can be moved to 64 different positions on a 16x16

map. Each player is given a worker unit and resources (either none or 5) to begin

with. The amount of resources that are given can be varied as desired by the game

designer. Similarly, in terms of starting position of the worker unit each player is

given can also be changed either to be closer to the base, or closer to the resource

or equidistant or far from both. Every unit in the game has certain properties that

define the impact of their action. For example, all attack units have damage rates

that determine the damage they deal to opponent units or buildings in each timestep.

There’s also unit health, which represents how much damage they can take before

being destroyed. Worker units also have harvest rate which influences the amount

of resources they can mine in one timestep. The final of the unit properties are

the movement speed which defines their rate of movement per timestep across grids.

Since this gives rise to too many permutations of mechanism changes, our study does

not involve this dimension. The same reason applies to the others explained from

this point on. Terrain as already discussed in a previous subsection has the highest

changeable permutations for a simple 8x8 map, and gets more complicated as the grid

33

size increases. Every unit and building is associated with a resource cost to create or

build. Altering this is also another dimension the designer can introduce influence on

the game result.

From the context of mechanism design, we need to identify the social objective and

player objective of the game. Similar to the case in prisoners’ dilemma, the social

objective and the player objective in this game are interdependent. The players

objective is that each player wants to win the game, this can either be done using

a superior strategy or by taking advantage of an imbalance in their favour. As the

designer, the social objective is to find the imbalances and make sure that the players

are on a level playing field. For this we make use of mechanism design as our Design

of Experiments tool to test all the strategies and mechanisms.

The influence of strategy is utilized a little differently than the others. It becomes

really difficult to interpret such large data and chain-of-events games using game

theory to identify the the equilibrium. Changing the perspective of the game helps

in reducing the complexity to find the Nash and Dominant Strategies. instead of

looking at each bot as a player which would make each timestep in a game a part of

the analysis, we consider the bots as a strategy option for a player. So the analysis is

done from one level above, at the level of games than time within games. To provide a

working example, think of the payoff matrix of the experiment to be between two bots

and the actions and instance in the game become the rows and columns of the matrix.

This complicates the process and gives rise to large matrices. In our perspective, the

view is one level higher, the matrix is built for two players whose options are the bot

strategies. This way we do not have to look at what happens within games, but only

the final outcomes. This reduces the size of the matrix to the number of bot options

available, in our case 10. A detailed description of this process and its nuances are

discussed in the DOE section 4.2

34

4. APPROACH

In chapter 2, we looked at restrictive game balancing technique, where one parame-

ter/factor is the only variable and the rest are made unchangeable to determine the

effect of that specific parameter/factor alone. Our design of experiments starts with a

similar ideology, where we use mechanism design to account for all such mechanisms

and then test them individually. This method of testing is also closely associated to

the popular sensitivity analysis. We then further extend this to test with multiple

mechanisms as variables at the same time. This is done in order to establish any

interdependencies among mechanisms that are not easy to perceive when playing the

game at first. Section 4.1 details the different experiments planned using this ideol-

ogy. Section 4.2 describes the simulation setup. Figure 4.1, shows a schematic of the

methodology.

Figure 4.1.: Native microRTS - Map

4.1 Design of Experiments

Each of our experiments in the DOE will involve two layers of testing. The first is

what we call the ‘self-play games’ and the other is ‘cross-play games’. Self play games

35

are used to test the influence of game mechanisms other than strategy. In these

games the designer’s SOF states that all games must have both players using the

same strategy. In cross-play games, the players are allowed to use different strategies.

Here we study the influence of strategy. Apart from strategy, we have four other

influencing mechanisms that need to be tested. The mechanism design inspired DOE

will test each of these individually (similar to restrictive game play methodology [9])

and then have tests where they are combined in pairs. All results are then analysed

with the help of solution concepts from game theory. Before the different DOE games

are run, a baseline test is conducted to establish control data. In this setting, the

game is in its native form and a batch of games are run where both self-play data is

recorded. This native form is then altered to produce the variants required by the

DOE. With our definition of game mechanisms in microRTS, Table 4.1 and Figure

4.2 describe the native form of the game in terms of mechanisms that are of interest.

All games in the DOE will continue to run on the 16 x 16 map and same starting

units (since those are not the dimensions of mechanisms being explored).

Table 4.1.: Native form of microRTS (baseline model)

Mechanism Setting

Map 16x16

Resource Quantity Each player gets 50

Resource Position Stacked and cornered

Starting Resources None

Base Positions Symmetric

Starting Units One Worker unit

36

Figure 4.2.: Native microRTS - Map

4.1.1 Self-play Experiments

Using the social objective definition in mechanism design, the designer has the

capability to make global rules that all players must follow. For self-play games, as

previous mentioned, the players are only allowed to use similar strategies as their

opponent, is made as the social objective construct. This then gives rise to four

different game batches for each of the four mechanisms planned to be tested. From

this point of, these batches will be addressed as tournaments. Each tournament

will have eight games, each game representing the eight strategies that the players

will use in common (Table 4.4). However for each tournament, there will be three

different generations. All generations have the same player strategies and mechanisms

of interest but, there is a change in one of the mechanisms of interest. Lets look at an

example tournament to understand the structure. If Resource Quantity (RQ) is our

first mechanism to be assessed, then that is also points to the tournament type - RQ.

Both players will play eight games where they use the eight available strategies. The

difference in the three generations is, the resource quantity for player one is changed

37

from the native form. A total of 3 generations, 24 games for one tournament type,

and a total of 96 games for all the different mechanisms tested individually. Table 4.2

shows the standalone self-play experiments as a result of the DOE. Please note that

all changes to mechanisms in the standalone self-play tournaments are forced onto

player 1 only. Player 2 will resemble the native form.

The next set of experiments are where the designer is making asymmetric changes

to the mechanisms i.e., each player has their own unique mechanism of interest. So

far we tested each of those individually, now to gauge the interdependencies, the

designer makes asymmetric variations of the mechanisms. Here each tournament will

have only one generation each but there will be total of 3 tournaments with player

one differing the resource quantity but player 2 differing in the other 3 mechanisms.

This effort is to show an example correlation between two mechanisms and identify

the one with a higher impact. Table 4.3 shows the asymmetric self-play experiments

as a result of the DOE.

Table 4.2.: Standalone Self-play Tournaments

Tournament Type Generations (3)

Resource Quantity (RQ) 30, 40 & 60

Resource Position (RP) Displaced by 1, 2 & 3 cells

Base Position (BP) Displaced closer, farther & equidistant to resources

Starting Resources (SR) 2, 4 & 5

38

Table 4.3.: Asymmetric Self-play Tournaments

Tournament Type Generation (2)

(RQ, RP) (60, closer) & (40, closer)

(RQ, BP) (60, closer) & (40, closer)

(RQ, SR) (60, 2) & (60, 5)

4.1.2 Cross-play Experiments

The structure of cross-play experiments is much simpler. The only varying mech-

anism here are the strategies which the new social objective construct allows players

to do. Table 4.4 shows the cross-play experiments as a result of the DOE. This

way players play a round-robin tournament with each strategy as a single entry in

the tournament. This eventually points to advantages a player can have on their

opponents purely based on the strategies in play.

Table 4.4.: Cross-play Tournaments

Tournament Type Generation (1)

Strategy LightRush, HeavyRush, RangedRush, WorkerRush,

LightDefence, HeavyDefence, RangedDefence, Work-

erDefence

4.2 Simulation Setup

microRTS is a game built on the Java programming platform hence the execution

of the tests does not need a GUI interface and can be run using command line. For

most of our tournaments and generations this is made use of. Only for games that

39

produce peculiar results that are anomalous to the data set, are re-run using the

inbuilt GUI provided by the developer of the game to visually understand the game

progression. Figure shows the GUI to run games. Figure 4.3 is the GUI window of

microRTS. To run the tournaments, a new script was written to conduct games in

iteration with different settings each time. The script also has the ability to turn off

visualization, if needed, to save computation budget. It can be turned on to enable

grabbing visual data of games for video demos. The script is built in a way that other

mechanisms and bot strategies can be added to increase the extensibility of the tests.

This also includes other map sizes and designs. The trace and game data extracted

from the each game is stored in their respective tournament folder in a compressed

format. The script also allows for the results to be printed onto the command line

interface instead of a .xml file.

Figure 4.3.: microRTS GUI

40

Each game is set to run for 5000 time steps which is equal to 5000 action frames in

the game. Player 1 starts at the top-left corner of the map and Player 2 in the bottom-

right. All games are run twice for a consistency check to validate that the result is

deterministic. microRTS has the option to run the game non-deterministically, but

we are not using that to allow players to compete in complete information games.

The game is decided as a tie/draw when either players have no winnable outcome

possible (no units or no resources left) or when the units have a defensive standoff

for more than 500 time steps.

41

5. RESULTS

5.1 Self-play games

5.1.1 Baseline - Results from Native Form

A total of eight matches were run with, 2 iterations for consistency, in the native

form (symmetric beginning conditions) of microRTS to register control data to com-

pare the experiments against. The players are forced to use the same strategy by the

SOF rule laid out by the designer. Table 5.1 depicts the results from the games. All

quantitative data to support the results are in the Appendix.

Table 5.1.: Preliminary Baseline Game Results

Strategy Result

LightRush Player 2 Wins

HeavyRush Player 2 Wins

RangedRush Player 2 Wins

WorkerRush Player 2 Wins

LightDefence Player 2 Wins

HeavyDefence Player 2 Wins

RangedDefence Tie

WorkerDefence Tie

Even though the game setup was very symmetrical and the SOF making sure

that the players are on equal footing, we see that there is a bias in the native form

of the game to favour Player 2, bottom-right corner. This is a starting advantage

42

that Player 2 has that causes the imbalance. However, a case may be made for

the two matches that ended in a tie. Upon closer inspection of the games; The

WorkerDefence game is a tie because the player units genuinely exhaust the available

resources and can no longer create units to continue the game at 3350/5000th timestep

and the RangedRush game ends in a draw at 3590/5000th as the units are all killed

on both sides and have no more. The starting imbalance in the other cases may be

from various factors, collective or singular. Some of the possible reasons are: Path

planning algorithm based on the location (even though the positioning is symmetric),

lapse in the logic of the programmed strategies, and/or . In the next section, where

we present results for the standalone and asymmetric self-play games, we can explore

what mechanism in the game could negate this starting imbalance while making sure

that that change doesn’t cause an imbalance in the mid-game or end-game stages of

the game play. Based on the results of these games, Nash and Dominant Strategy

Equilibrium solution concepts suggest that Player 1 has only two dominant strategies

to force Player 1 into an equilibrium (multiple equilibrium) if they have the ability to

do so but players cannot force the game rules. Player 2 has six dominant strategies.

microRTS in its native form has no Nash or Dominant Strategy Equilibrium for the

given eight player strategies. For it to be completely balanced game, it should generate

8 Dominant Strategy Equilibrium where all strategies are the dominant strategies for

both players. Nash equilibrium will not be a solution concept with self-play games

as there are no cross-play games that would bring in the concept of best responses,

which is key in identifying Nash Equilibrium.

5.1.2 Standalone Experiments

Now that we’ve established that the native form has some starting imbalances for

most player strategies, testing the game mechanisms with our DOE (which is similar

to restrictive game play [9]) may help us find the cause of the imbalance.

43

Resource Quantity

The first of our DOE tournament types is the variation in Resource Quantity

(RQ) available to the players. Table 5.2 shows the results of the three generations of

testing conducted.

Table 5.2.: Tournament results for RQ generations

Strategy RQ-30 RQ-40 RQ-60

LightRush Player 2 Wins Player 2 Wins Player 2 Wins

HeavyRush Player 2 Wins Player 2 Wins Player 2 Wins

RangedRush Player 2 Wins Player 2 Wins Player 2 Wins

WorkerRush Player 2 Wins Player 2 Wins Player 2 Wins

LightDefence Player 1 Wins Tie Player 2 Wins

HeavyDefence Player 2 Wins Player 2 Wins Player 2 Wins

RangedDefence Tie Tie Tie

WorkerDefence Tie Tie Tie

The initial reaction is that testing the Resource Quantity mechanism has no effect

on majority of the strategies. However when one pays attention the average game

time that these games take to complete (please refer Appendix Figure 2, 3 & 4), it

shows that Player 2 takes longer to win games in RQ-30 and RQ-40 than the native

form (RQ-50) and RQ-60. This shows that RQ does have a significant impact on the

balance. In the case of Light defence, it seems that RQ is a very major contribut-

ing factor to the balance equation. In RQ-30, using LightDefence, Player 1 easily

wins and, in RQ-40 the game ties by reaching a balanced state for this setting. For

RangedDefence and WorkerDefence, RQ had no impact to their previously balanced

state in the native form. In terms of game theory solution concepts, there is still

no Nash or Dominant Strategy Equilibrium but the number of dominant strategies

44

for both players has shifted. For Player 1, there are now three responses for RQ-3

and RQ-40 generations. Which is an increase compared to the native form. Similarly

the number of dominant strategies for Player 2 which was six previously has reduced

to five. RQ-60 however is a generation that adds more resource to Player 2 who

already had an imbalance favoring them, hence in the effort to balance the game this

generation is not useful.

Resource Position

The second of our DOE tournament types is the variation in Resource Position

(RP) available to the players. Table 5.3 shows the results of the three generations of

testing conducted. Note: the RQ is reset to native form. Both players play with 50

resources available.

Table 5.3.: Tournament results for RP generations

Strategy RP-1 RP-2 RP-3

LightRush Player 2 Wins Player 2 Wins Player 1 Wins

HeavyRush Player 2 Wins Player 2 Wins Player 1 Wins

RangedRush Player 2 Wins Player 2 Wins Player 1 Wins

WorkerRush Player 2 Wins Tie Player 1 Wins

LightDefence Player 1 Wins Player 1 Wins Player 1 Wins

HeavyDefence Player 2 Wins Player 2 Wins Tie

RangedDefence Tie Tie Player 1 Wins

WorkerDefence Tie Tie Player 1 Wins

Very similar to the effect that resource quantity had on the games, resource po-

sition also challenged the biased Player 2 when the resource position was 2 or more

cells away. However, the impact that this has is far more significant than the resource

45

quantity. This mechanism variation generated a higher number of ties and Player 1

favourable results than resource quantity tournaments. Player 1 has eight dominant

strategies in RP-3 and player has none. This has completed shifted the balance in

favor of Player 1. Although this is not desired, the shift in balance shows the extent

of the impact resource position as a mechanism has control over game balance. It

seems to be a very sensitive but the changes made in generations are also very small.

It might be in the best interest of the designer to not involve resource position as

a major game balancing mechanism. Like the previous tournament, no Dominant

Strategy Equilibrium exists here too.

Base Position

The third of our DOE tournament types is the variation in Base Position (BP)

available to the players. Table 5.4 shows the results of the three generations of testing

conducted. Note: the RQ and RP both are reset to native form.

Table 5.4.: Tournament results for BP generations

Strategy BP-Closer BP-Farther BP-Equidistant

LightRush Player 2 Wins Player 1 Wins Player 2 Wins

HeavyRush Player 2 Wins Player 1 Wins Player 2 Wins

RangedRush Player 2 Wins Player 1 Wins Player 2 Wins

WorkerRush Player 2 Wins Player 1 Wins Player 2 Wins

LightDefence Player 2 Wins Player 1 Wins Tie

HeavyDefence Player 2 Wins Player 1 Wins Tie

RangedDefence Player 2 Wins Player 1 Wins Tie

WorkerDefence Player 2 Wins Tie Tie

46

Compared to the previous two mechanisms, the final outcome has the highest

sensitivity to base position. When closer to resources Player 2 has the advantage and

when placed two cells away imitating a farther position, the results completely switch

over. This could be because of two reason or a combination of both. When placed

farther, it takes time to accumulate resource and the base is also more exposed to

opponents units making it vulnerable to Rush strategies. While the fact that base

position is a volatile mechanism, it did bring us very close to finding a Dominant

Strategy Equilibrium. In generation 3, nearly half the games are tied and both

players have equal number of dominant strategies. The only issue is that they is no

intersection and are disjoint sets.

Starting Resources

The third of our DOE tournament types is the variation in Starting Resources

(SR) available to the players. Table 5.4 shows the results of the three generations of

testing conducted. Note: the RQ, RP, and BP are all reset to native form.

Table 5.5.: Tournament results for SR generations

Strategy SR-2 SR-4 SR-5

LightRush Player 2 Wins Player 2 Wins Player 2 Wins

HeavyRush Player 2 Wins Player 2 Wins Player 2 Wins

RangedRush Player 2 Wins Player 2 Wins Player 2 Wins

WorkerRush Player 2 Wins Player 2 Wins Player 2 Wins

LightDefence Player 2 Wins Player 2 Wins Player 2 Wins

HeavyDefence Player 2 Wins Player 2 Wins Player 2 Wins

RangedDefence Tie Tie Tie

WorkerDefence Tie Tie Tie

47

Of all the test conducted so far, the starting resources mechanism tests are the

most destabilizing. One, because prior to the DOE, the biased favor for Player 2 in the

native form was not known. So testing the model with increased starting resource

for Player 2 put them in a much more comfortable position. Two, the resulting

outcomes were not helpful in mapping the strategies dependency on the mechanism

as the results are very one-sided and provides no perspective for the other player’s

state. We continue to see that no Dominant Strategy Equilibrium exists.

Next, with the current understanding of the effects that each mechanism has, we

test their combined interdependencies on game balance using one example construct

- Resource Quantity.

5.1.3 Asymmetric Experiments

The DOE setup for these is described in Section 4.1.1 and depicted in Table 4.3,

RQ-RP tournaments

In this set of experiments, the resource quantity available for Player 2 is varied to

60 and then to 40, and for Player 1 the Resource Position is moved closer compared

to the native form. Table 5.6 shows the results of the games.

We have a precursor knowledge that RP has more control over game balance

compared to RQ if displaced by more than 2 cells. In this experiment, it is just

displaced by 1 cell. Since Player 1 is given a closer resource position than previously,

it should have a higher probability to either win or draw (draw - because the game

originally has Player 2 winning). However, the game results don’t seem to have any

conclusive evidence of the opposing mechanism designs that should lead to a negation

of the imbalances. No Dominant Strategy Equilibrium exists here too. However,

looking at Figure 5.1, which shows the difference in the length of games in terms of

time steps, tells that the mechanisms are opposing each others effect on the game

balance. What used to be an easier game for Player 2 is no longer easy with reduced

48

resources (only games that Player 2 won are on the plot to reduce noise of other game

results).

Table 5.6.: Tournament results for RQ-RP generations

Strategy (60,Closer) (40,Closer)

LightRush Player 2 Wins Player 2 Wins

HeavyRush Player 2 Wins Player 2 Wins

RangedRush Player 2 Wins Player 2 Wins

WorkerRush Player 2 Wins Player 2 Wins

LightDefence Player 2 Wins Tie

HeavyDefence Player 2 Wins Player 2 Wins

RangedDefence Tie Tie

WorkerDefence Tie Tie

49

Figure 5.1.: Time taken by Player 2 to win

RQ-BP tournaments

In this set of experiments, the resource quantity available for Player 2 is varied to

60 and then to 40, and for Player 1 the Base Position is moved closer compared to

the native form. Table 5.7 shows the results of the games. Not so surprisingly, the

impact that Base Position has on a player’s win rate is easily observed. As previously

discussed, this mechanism is too sensitive and probably is the most influential when

changed. However, we continue to observe that for defence oriented strategies that

these mechanism changes don’t affect their state of balance. This either points to some

modelling issues or, more likely, these strategies are independent of these mechanisms

and rely on the ones not tested. Even though in both cases Player 1 wins most games,

a closer look at the game run times suggest that with the second case the time taken is

drastically less (see appendix) as expected with player 2 also having the disadvantage

of having lower resources. No Dominant Strategy Equilibrium observed in this case

either.

50

Table 5.7.: Tournament results for RQ-BP generations

Strategy (60,Closer) (40,Closer)

LightRush Player 1 Wins Player 1 Wins

HeavyRush Player 1 Wins Player 1 Wins

RangedRush Player 1 Wins Player 1 Wins

WorkerRush Player 1 Wins Player 1 Wins

LightDefence Player 1 Wins Player 1 Wins

HeavyDefence Tie Tie

RangedDefence Tie Tie

WorkerDefence Tie Tie

RQ-SR tournaments

In this set of experiments, the resource quantity available for Player 2 is varied

to 60 and then to 40, and for Player 1 the Starting Resources is increased first to

2 and then to 4, compared to the native form. Table 5.8 shows the results of the

games. In our previous test for Starting Resources, which turned irrelevant because

of the direction of the change, the impact could not be assessed. However, with

this asymmetric test, ,we see that starting resources do have a major impact to

the outcome. In all the cases, having additional resources at the start of the game

gave Player 1 the edge to win the games. The defence strategies consistently prove

that their modelling has been very well balanced. However, no Dominant Strategy

Equilibrium is seen.

51

Table 5.8.: Tournament results for RQ-SR generations

Strategy (60, 2) (40, 5)

LightRush Player 1 Wins Player 1 Wins

HeavyRush Player 1 Wins Player 1 Wins

RangedRush Player 1 Wins Player 1 Wins

WorkerRush Player 1 Wins Player 1 Wins

LightDefence Player 1 Wins Player 1 Wins

HeavyDefence Tie Tie

RangedDefence Tie Tie

WorkerDefence Tie Tie

5.2 Cross-play games

In this mode, the SOF allows players to use any strategy against their opponent.

Since we’ve already looked at self game results, we neglect the games where self-play

occurs to purely understand the impact of strategy on game balance. Figure 5.2 is

a bar chart representing the results for each of the strategies against others. From

this we can clearly say that WorkerDefense has the highest balance based on the

number of games that it has participated in, that has ended up in a tie. This is

closely followed by RangedDefence for being the second most strategy used in games

ending in a tie. This is also very accurate with the nature of results we observed

in the self-play games which suggested that RangedDefence and WorkerDefence are

the most balanced strategies in the microRTS game play. HeavyRush, WorkerRush,

LightRush and HeavyDefence are the least balanced, since they are either too powerful

for an opponent or too weak. Since we observed that the game in its native form has

players in the bottom right winning even when conditions are identical, to counter

that effect, cross-plays were run where Player 1 and Player 2 were given equal number

52

of chances to start at both ends with all the strategies. Looking at the ties alone will

give us more context about the balance in the game. Figure 5.3 shows the percentage

of games each strategy has turned into ties.

Figure 5.2.: Win(Payoff) Matrix for Cross-play tournament

53

Figure 5.3.: Win(Payoff) Matrix for Cross-play tournament

Consistent with the previous results, defence based strategies produce the highest

number of games that end in ties. If an exclusive study of just defence oriented

strategies were conducted, then microRTS could easily be termed as a balanced game.

Unfortunately, that is not the case here and probably the same even in the world of

video games. Developers can’t design games expecting all users to play with one type

of strategy. Now that we understand where the imbalances and balances lie, it is easy

to work on the model to improve it’s balance.

From the lens of game theory, with cross-plays we finally are able to identify

Dominant Strategy Equilibrium, and there are multiple, two to be precise. Both of

these occur when the players use WorkerRush and LightRush as their options. Of

course the instance is repeatable and hence it appears twice in Figure 5.4, but in

terms of implementation, it is one pair of strategies.

54

Figure 5.4.: Dominant Strategy Equilibrium

5.3 Discussion

In self-play games, for attack based strategies (Rush) the change in mechanisms

individually made no significant change to the final outcomes of the game. The de-

fence strategies were the most sensitive to mechanism changes and reacted as expected

to these changes. This hinted that each player strategy depends on different mecha-

nisms uniquely to achieve a balanced (or favourable) state for themselves. This was

further affirmed by the outcomes in the asymmetric self-play and cross-play tourna-

ments. Attaining Dominant Strategy Equilibrium may be close to impossible when

all these strategies are involved since their dependencies on the tested mechanisms

vary invariably and independently. We may find a Dominant Strategy Equilibrium

for a different mechanism (ones that are not tested here) or a different combination

of asymmetric testing. From the perspective of RangedDefence and WorkerDefence,

the game is very balanced to begin with. However, with cross play, the established

internal balance that these two strategies maintained, fails. The trend that Dominant

Strategy Equilibrium has followed in the test cases and the concept of weakly domi-

nant strategies (here, players settling for ties over wins), points to a possibility where

game balance can be declared if the game has a dominant strategy equilibrium for

all possible game settings or for equilibrium results ending in draws. In other words,

either all games played, irrespective of self/cross-play, should end in a tie or if there

55

exists diversity in the results then the dominant strategy equilibrium of all the games

should be games that produce ties.

Our approach detected that microRTS is an imbalanced game but is very close to

being a balanced game. We see almost 30-40% of the total number of games ending in

ties, inclusive of both self-play and cross-play games. Even though this number is not

as high as desired, the test cases and specific strategies analysed suggest that small

changes in the game mechanisms will lead to a higher number of tied games. Our

test included only a handful of mechanisms available for a designer to tweak, an all

inclusive automated mechanism design for multi-agent model would throw more light

on the exact balancing needed for the game. However, based on our testing methods

and results, a general assessment points to what developers could do to remove the

imbalances is discussed below.

Suggested balancing measures for microRTS:

1. Investigate the effects of unit parameters, because from our results it is obvious

that most of the imbalances caused are not from the environmental elements of the

game. If anything, these show promising results when checked for consistency in

impact and extent of impact they have on balance.

2. To remove the starting imbalance, on top providing a symmetric/identical

starting game setup, the model further needs to inspected to identify the root cause

of this imbalance. One effective avenue to do so is to record and analyse the emergent

behavior that the player in the bottom-right displays. This can be done with the help

of analysing a large number game states with filtering algorithms like Convolutional

Neural Networks.

3. Some issues are caused by the fact that the game runs on a grid system. While

that is a limitation of the ABM implementation and not the game design itself, it

could be changed to not result in imbalances due to minimalist modelling. One way

to do this is use a free roam model (such as Boids Birds) and provide better movement

classes to the dynamic agents in the game.

56

4. While Nash equilibria is a weaker concept compared to Dominant Strategy

Equilibria, it can be used to figure out if the game has finite players (which microRTS

does) and detect pure strategies. This helps in determining whether strategies used by

players are consistent across all games. Since we use rule based strategies this holds

true, but when microRTS is used in the context of real world players or complicated

AI algorithm based agents, it would be essential to do this in order to fix the balancing

issues.

5. Cross-play balancing is the trickier of the two. For example, currently all player

strategies use common definitions for its units (agents) and have no personalised

definition of their units. In more complex games or real world scenarios this is not true.

Every player has a personalised definition of their agents and unique performance

indices. This effort to balance games for non-symmetric setting cross-play game

makes the process laborious. Most commonly, for strategies whose performance are

too weak or too strong, the unit definitions are modified to provide a equal playing

field. In the game development industry this is called as ’buffing’ and/or ’nerfing’ of

players, respectively.

57

6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

To test the feasibility of using Game Theory and Mechanism Design methods in

understanding game balance we looked at a simple RTS game, microRTS. This re-

search was mainly driven by the lack of game balancing techniques that provide a

middle ground between manual labor intensive methods and AI-based methods that

have cognitive inabilities. Our approach uses mechanism design as the design of ex-

periments technique to generate tests where mechanisms, one or more, are changed

and game outcomes are recorded. Experiments were designed in a way to also estab-

lish the interdependencies among the mechanisms that may impact the state of game

balance. microRTS is run in a fully observable, deterministic and two player setting.

This makes it a finite, zero sum game. The results from the games are then analysed

using game theory lens. This is done to demonstrate any possible correlation between

game theory solution concepts and balance of a game.

Although microRTS is a low fidelity ABM, it serves the purpose to test our hy-

pothesis. The results obtained clearly indicate that game theory is a great analytical

tool to assess game states. For a zero-sum game, the results obtained still provide

sufficient context about the imbalances. The fact that most RTS games when anal-

ysed from a perspective of the game end up as zero-sum games. This handicaps the

solution concepts of game theory like Nash Equilibrium which already is a limited

metric. Hence our research worked on the problem from the perspectives of players

instead of the events of the game. Whether that points to game theory’s inaptness

to game balancing indefinitely is a question that still needs to be further inspected.

However, for simple games of the scale similar to microRTS, it is promising and ad-

58

equate to evaluate the state of the game and understand the individual impact and

interdependencies of game mechanisms.

Our objective was also to check the feasibility of mechanism design and its role in

designing and implementing institutions to evaluate game balance. Between the sim-

plicity of microRTS and the holistic approach used here, it provides key cognizance on

the possible involvement of mechanism design in future game balance testing frame-

works. The design of experiments covered only five of all the available mechanisms

in microRTS. Even though this is a small number there is sufficient evidence that

this is effective for finite game play and non-zero sum games. However, beyond these

boundaries the effectiveness is still untested.

microRTS is not a balanced game and from our investigation we know that the

most obvious reason is the starting imbalance that gives one of the players an upper

hand purely based on their positioning even when the game is setup symmetrically.

To reduce the imbalances, microRTS needs to increase its model fidelity, specifically

for the map and the interacting agents. Having said that, testing with sophisticated

AI-algorithm based player agents used in the annual IEEE competitions [40], would

definitely provide additional valuable and accurate understanding of game balance

within microRTS.

6.2 Future Work

The first step in extending this work is to include the rest of the mechanisms in the

game that were not a part of the tests. Ideally, the ability to automate this process

would make it much easier, so that’s another major avenue that needs to be explored.

Automated Mechanism Design has been established but successfully only for single-

agent systems. While the asymmetric self-play tests were just a demonstration for

proof of concept and involved only two at a time, this further needs to be expanded to

multiple mechanisms and a large number of permutations. With such a strong hold

59

over all the mechanisms and their relations (internal and external), more specifics on

how balance is structured, its issues and nuances in the game can be identified.

Most of the results used in this study are based on the game outcomes (win, loss

and ties), but game balance should also be perceived to be more than just the win-loss

probability. This argument is supported by our insights on the game run times for

the various tests. Involving this into the game theoretical evaluation would throw

more light on the state of game balance, especially for self-play games. Particularly

since this two player setting produces a zero sum game, using multiple approaches is

beneficial to accurately predict the state of balance.

The strategies used by player agents here are all simple rule-based abstraction AI

that may not completely interact with all elements of the game. So to include more

complicated and sophisticated strategies using AI frameworks or ML algorithms will

help in building stronger data sets with higher levels of confidence.

REFERENCES

60

REFERENCES

[1] G. Robertson and I. Watson, “A Review of Real-Time Strategy Game AI,” AI
Magazine, vol. 35, no. 4, pp. 75–104, Dec. 2014, number: 4. [Online]. Available:
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2478

[2] C. L. Magee and O. L. de Weck, “ USAn Attempt at Complex System
Classification,” Massachusetts Institute of Technology. Engineering Systems
Division, Working Paper, May 2002, accepted: 2016-05-31T18:55:16Z. [Online].
Available: https://dspace.mit.edu/handle/1721.1/102730

[3] G. Aranda, C. Carrascosa, and V. Botti, “Characterizing Massively Multiplayer
Online Games as Multi-Agent Systems,” in Hybrid Artificial Intelligence Sys-
tems, ser. Lecture Notes in Computer Science, E. Corchado, A. Abraham, and
W. Pedrycz, Eds. Berlin, Heidelberg: Springer, 2008, pp. 507–514.

[4] P. Guyot and S. Honiden, “Agent-based participatory simulations: Merging
multi-agent systems and role-playing games,” Journal of Artificial Societies and
Social Simulation, vol. 9, no. 4, 2006.

[5] D. F. Adamatti, J. S. Sichman, P. Bommel, R. Ducrot, C. Rabak, and M. Ca-
margo, “JogoMan: A prototype using multi-agent-based simulation and role-
playing games in water management,” 2005.

[6] O. Barreteau and G. Abrami, “Variable time scales, agent-based models, and
role-playing games: The PIEPLUE river basin management game,” Simulation
& Gaming, vol. 38, no. 3, pp. 364–381, Sep. 2007, publisher: SAGE Publications
Inc. [Online]. Available: https://doi.org/10.1177/1046878107300668

[7] O. Barreteau, F. Bousquet, and J.-M. Attonaty, “Role-playing games for opening
the black box of multi-agent systems: method and lessons of its application to
Senegal River Valley irrigated systems,” Journal of artificial societies and social
simulation, vol. 4, no. 2, p. 5, 2001.

[8] “The 12th Annual Independent Games Festival - 2002
Finalists & Winners,” Mar. 2014. [Online]. Available:
https://web.archive.org/web/20140327125722/http://www.igf.com/2002finalistswinners.html

[9] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and
Z. Popovic, “Evaluating Competitive Game Balance with Re-
stricted Play,” in Eighth Artificial Intelligence and Interactive
Digital Entertainment Conference, Oct. 2012. [Online]. Available:
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE12/paper/view/5470

[10] J. Griesemer, “Design in Detail: Changing the Time Between Shots for the
Sniper Rifle from 0.5 to 0.7 Seconds for Halo 3,” 2010.

61

[11] M. J. Nelson and M. Mateas, “A requirements analysis for videogame design
support tools,” 2009, pp. 137–144.

[12] V. Volz, G. Rudolph, and B. Naujoks, “Demonstrating the Feasibility of
Automatic Game Balancing,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016, ser. GECCO ’16. Denver, Colorado, USA:
Association for Computing Machinery, Jul. 2016, pp. 269–276. [Online].
Available: https://doi.org/10.1145/2908812.2908913

[13] A. B. Jaffe, “ USUnderstanding Game Balance with Quantitative Methods,”
Thesis, Jul. 2013, accepted: 2013-07-23T18:28:24Z. [Online]. Available:
https://digital.lib.washington.edu:443/researchworks/handle/1773/22797

[14] M. Beyer, A. Agureikin, A. Anokhin, C. Laenger, F. Nolte, J. Winterberg,
M. Renka, M. Rieger, N. Pflanzl, M. Preuss, and V. Volz, “An integrated process
for game balancing,” in 2016 IEEE Conference on Computational Intelligence
and Games (CIG), Sep. 2016, pp. 1–8, iSSN: 2325-4289.

[15] R. Leigh, J. Schonfeld, and S. J. Louis, “Using coevolution to understand
and validate game balance in continuous games,” in Proceedings of the 10th
annual conference on Genetic and evolutionary computation, ser. GECCO ’08.
Atlanta, GA, USA: Association for Computing Machinery, Jul. 2008, pp.
1563–1570. [Online]. Available: https://doi.org/10.1145/1389095.1389394

[16] W. Xia and B. Anand, “Game balancing with ecosystem mechanism,” in 2016 In-
ternational Conference on Data Mining and Advanced Computing (SAPIENCE),
Mar. 2016, pp. 317–324.

[17] B. Gerkey and M. Mataric, “Sold!: auction methods for multirobot coordina-
tion,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 758–
768, Oct. 2002, conference Name: IEEE Transactions on Robotics and Automa-
tion.

[18] R. Holzman and N. Law-Yone, “Network structure and strong equilibrium in
route selection games,” Mathematical Social Sciences, vol. 46, no. 2, pp. 193–
205, 2003, publisher: Elsevier.

[19] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Rough-
garden, “The price of stability for network design with selfish agents,” 2004, pp.
295–304.

[20] E. Anderson, F. Kelly, and R. Steinberg, “A contract and balancing mechanism
for sharing capacity in a communication network,” Management Science, vol. 52,
no. 1, pp. 39–53, 2006, publisher: INFORMS.

[21] J. Hinz, “Optimal bid strategies for electricity auctions,” Mathematical Methods
of Operations Research, vol. 57, no. 1, pp. 157–171, 2003, publisher: Springer.

[22] G. Federico and D. Rahman, “Bidding in an electricity pay-as-bid auction,”
Journal of Regulatory Economics, vol. 24, no. 2, pp. 175–211, 2003, publisher:
Springer.

[23] V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings, “Overlapping coalition
formation for efficient data fusion in multi-sensor networks,” vol. 6, 2006, pp.
635–640.

62

[24] M. Chen, G. Yang, and X. Liu, “Gridmarket: A practical, efficient market bal-
ancing resource for Grid and P2P computing.” Springer, 2003, pp. 612–619.

[25] M. Wooldridge, An introduction to multiagent systems. John Wiley & Sons,
2009.

[26] S. Russell, P. Norvig, J. Canny, J. Malik, and D. Edwards, “Informed search
methods,” Artificial Intelligence: A Modern Approach; Pompili, M., Chavez, S.,
Eds, pp. 92–118, 1995.

[27] J. Ferber and G. Weiss, Multi-agent systems: an introduction to distributed ar-
tificial intelligence. Addison-Wesley Reading, 1999, vol. 1.

[28] S. Franklin and A. Graesser, “Intelligent agents III,” Lecture Notes on Artificial
Intelligence (Springer-Verlag, Berlin, 1997) pp, pp. 21–35, 1997.

[29] F. Bousquet and C. Le Page, “Multi-agent simulations and ecosystem manage-
ment: a review,” Ecological modelling, vol. 176, no. 3-4, pp. 313–332, 2004,
publisher: Elsevier.

[30] N. Vlassis, “A concise introduction to multiagent systems and distributed ar-
tificial intelligence,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 1, no. 1, pp. 1–71, 2007, publisher: Morgan & Claypool Publish-
ers.

[31] B. Jiang and H. R. Gimblett, “An agent-based approach to environmental and
urban systems within geographic information systems,” Integrating geographic
information systems and agent-based techniques for simulating social and ecolog-
ical processes. Oxford University Press, New York, pp. 171–189, 2002.

[32] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating
human systems,” Proceedings of the National Academy of Sciences, vol. 99, no.
suppl 3, pp. 7280–7287, May 2002, publisher: National Academy of Sciences
Section: Colloquium Paper.

[33] R. Axtell, “Why agents?: on the varied motivations for agent computing in the
social sciences,” 2000.

[34] “microRTS - microRTS AI Competition,” library Catalog: sites.google.com. [On-
line]. Available: https://sites.google.com/site/micrortsaicompetition/microrts

[35] S. O. Villar, “santiontanon/microrts,” Jun. 2020, original-date: 2015-03-
12T18:16:53Z. [Online]. Available: https://github.com/santiontanon/microrts

[36] S. Ontanón and M. Buro, “Adversarial hierarchical-task network planning for
complex real-time games,” 2015.

[37] S. Ontanon, “Experiments on Learning Unit-Action Models from Replay Data
from RTS Games,” 2016.

[38] N. A. Barriga, M. Stanescu, and M. Buro, “Game tree search based on nonde-
terministic action scripts in real-time strategy games,” IEEE Transactions on
Games, vol. 10, no. 1, pp. 69–77, 2017, publisher: IEEE.

[39] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro, “Evaluating real-time strategy
game states using convolutional neural networks.” IEEE, 2016, pp. 1–7.

63

[40] S. Ontañón, N. A. Barriga, C. R. Silva, R. O. Moraes, and L. H. Lelis, “The
first microrts artificial intelligence competition,” AI Magazine, vol. 39, no. 1, pp.
75–83, 2018.

APPENDIX

64

Figure 1.: Native form & Cross-play Results

65

Figure 2.: Resource Quantity - Gen1 Results

66

Figure 3.: Resource Quantity - Gen2 Results

67

Figure 4.: Resource Quantity - Gen3 Results

68

Figure 5.: Resource Position - Gen1 Results

69

Figure 6.: Resource Position - Gen2 Results

70

Figure 7.: Resource Position - Gen3 Results

71

Figure 8.: Base Position - Gen1 Results

72

Figure 9.: Base Position - Gen2 Results

73

Figure 10.: Base Position - Gen3 Results

74

Figure 11.: Starting Resources - Gen1 Results

75

Figure 12.: Starting Resources - Gen2 Results

76

Figure 13.: Starting Resources - Gen3 Results

77

Figure 14.: RQ-RP - Gen1 Results

78

Figure 15.: RQ-RP - Gen2 Results

79

Figure 16.: RQ-BP - Gen1 Results

80

Figure 17.: RQ-BP - Gen2 Results

81

Figure 18.: RQ-SR - Gen1 Results

82

Figure 19.: RQ-SR - Gen2 Results

