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ABSTRACT

Adolescent collision-sport athletes may be exposed to repetitive head impacts over years
of practices and competitions without immediately observable symptoms. Despite the grow-
ing concerns, these athletes often continue play while at risk. Concrete objective measure-
ments are desired to inform prompt and effective preventative strategies for this vulnerable
population. However, adolescent brains are rapidly developing and the accrual of brain
injury is often subtle. Prospective screening with sensitive biomarkers is challenging and
requires advanced technologies, rigorous data processing, and the interdisciplinary expertise
of engineering, neurobiology, and cognitive sciences.

To address the challenge, we first developed population-specific brain atlases to facili-
tate reproducible and meaningful statistical analyses. The atlases better characterized the
neuroanatomy of early-to-middle adolescent (ages 13-19) collision-sport athletes, reduced
deformation introduced during spatial normalization, and exhibited higher sensitivity in
image analysis compared to standardized adult or age-appropriate brain templates. The
atlases can be further applied to monitor the neuroanatomical trajectory and can serve as a
coordinate reference system to retrospectively harmonize data collected from different sites
and imaging acquisition parameters, facilitating group analysis at large scale.

Next, to assess whether the changes of white matter microstructure can be attributed
to repetitive head impacts and are reflected by cognitive performance, we analysed the
diffusion tensor imaging (DTI) data of high school mens football and women’s soccer across
a single season, with accompanying data from head impact sensors and neurocognitive
assessments. Within multiple brain regions, we observed significantly altered DTI metrics,
both transiently over a season and chronically with more years of high school experience.
For the football players, hits with peak translational acceleration over 37 g were sufficient to
alter the distributions of DTI changes, and deficits in white matter microstructure correlated
with poorer performance of anti-saccade task at one month post-season, suggesting increased
vulnerability for inhibitory control. Monitoring repetitive head impacts thus provides a
temporal profile for identifying at-risk individuals during the competitive season, informing
prompt interventional strategies, therefore protecting the brain and cognitive health of
early-to-middle adolescent collision-sport athletes in the long run.



1

1. INTRODUCTION

1.1 Mild Traumatic Brain Injury

Traumatic brain injury (TBI) is a public health challenge and a leading factor of dis-
ability and death around the world [1,2]. According to Glasgow Coma Scale [3], TBI can be
divided into mild (≥13), moderate (9-12), severe (3-8), and vegetative (<3) states. About
80 percent of all treated TBIs are mild [4,5]. In the United States, the reported incidence of
mTBI is around 500/100,000 [6], notwithstanding many milder and untreated brain injuries
were not counted [7,8]. The term “mild” does not imply that the impacts of mTBI are mild
on the costs of economy, health care resources, and societal productivity [1]; greater efforts
must be warranted among scientists, engineers, and clinicians to perform high-quality re-
search, develop protective and preventive approaches, and provide prompt diagnosis and
interventions. We ignore mTBI at our peril.

This thesis concerns mTBI in adolescent athletes who participate in collision sports
(American football and soccer), a population vulnerable to brain injury [9, 10]. In this
section, two population-specific risks of mTBI will be introduced, namely concussion and
subconcussive trauma due to repetitive head impacts. Potential fluidic and imaging-based
biomarkers of mTBI will also be described.

Concussion and Subconcussive Trauma

Concussion is a biomechanically induced brain injury [11] and is interchangably referred
to mTBI in the sports literature [12]. In the United States, there are about 3,800,000 cases
of sport related concussion (or severer forms of TBI) every year [8,13]. Adolescent athletes
bear a higher rate of head injury and prolonged recovery than the adults [9,14]; from 2005
to 2010, over 700,000 cases of concussions were reported for high school athletes, and the
true number of injuries may be underreported [15–19].

According to the consensus statement at the 5th International Conference on Concussion
in Sport [20], the following features may be employed to clinically define sport related
concussion:

• “Sport related concussion may be caused either by a direct blow to the head, face,
neck or elsewhere on the body with an impulsive force transmitted to the head.”

• “Sport related concussion typically results in the rapid onset of short-lived impairment
of neurological function that resolves spontaneously. However, in some cases, signs
and symptoms evolve over a number of minutes to hours.”

• “Sport related concussion may result in neuropathological changes, but the acute clin-
ical signs and symptoms largely reflect a functional disturbance rather than a struc-
tural injury and, as such, no abnormality is seen on standard structural neuroimaging
studies.”
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• “Sport related concussion results in a range of clinical signs and symptoms that may
or may not involve loss of consciousness. Resolution of the clinical and cognitive
features typically follows a sequential course. However, in some cases symptoms may
be prolonged.”

In general, the majority of the symptoms of concussion usually resolve within two to
seven days [21], and all the symptoms can fully resolve within three months post injury.
According to International Statistical Classification of Disease and Related Health Prob-
lems, 10th Revision (ICD-10) [22], postconcussion syndrome “occurs following head trauma
(usually sufficiently severe to result in loss of consciousness),” and “there must be at least
3 symptoms present for more than 4 weeks after injury to be diagnosed as postconcussion
syndrome, which include headache, dizziness, fatigue, irritability, difficulty in concentration
and performing mental tasks, impairment of memory, insomnia, and reduced tolerance to
stress, emotional excitement, or alcohol. Additional symptoms of postconcussion syndrome
involve anxiety, depression, fatigue, nausea, balance abnormalities, disturbances in vision
and sleep, and hypersensitivity to light and noise [21,23–25]. In addition, a period of “phys-
iological vulnerability” may present after the clinical symptoms are resolved, but currently
the return-to-play decision is still largely based on clinical recovery and lacks evidence from
physiology [26].

However, there has been long debate over diagnosis of postconcussion syndrome [1],
mainly due to the diverse and nonspecific nature of the symptoms of concussion. ICD-
10 failed to accurately classify mTBI patients potentially having prolonged postconcussion
syndrome [27] and is biased reflecting the true incidence rate [1]. Considering the nonspeci-
ficity of the symptoms and the large discrepancies in the clinical community, Diagnostic
and Statistical Manual of Mental Disorders (DSM-V) has dropped the diagnostic criteria
and added a category “Major or Mild Neurocognitive Disorder due to Traumatic Brain
Injury” [28]. According to DSM-V, “neurocognitive symptoms associated with mTBI are
noted to resolve within days to weeks after the injury with complete resolution by three
months.”

Trauma can evolve from the accumulation of repetitive head impacts, a.k.a. head accel-
eration events (HAEs) [29,30], and this is a critical aspect often ignored in collision sports
due to several reasons. First, a single HAE would not necessarily induce injury or immediate
symptoms of concussion [31, 32]. Second, “risk compensation [33] of wearing helmet. Ath-
letes may believe helmets can sufficiently keep them from getting injured, and therefore hit
more aggressively; since the introduction of more protective helmets in American football in
1959, the use of the head as primary contact was increased [29,33,34]. Third, false-negative
outcomes from conventional neuroimaging. To detect potential structural injury (e.g. hem-
orrhagic lesions) that requires neurosurgical intervention, a Computed Tomography (CT)
scan of head is typically performed in the emergency management of mTBI; however, CT
has poor sensitivity in detecting underlying abnormalities associated with milder forms of
brain injury [1].
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Fluidic and Imaging-based Biomarkers

Biomarker is “a characteristic that is objectively measured and evaluated as an indica-
tor of normal biological processes, pathogenic processes, or pharmacological responses to
a therapeutic intervention [35].” Potential biomarkers for mTBI are divided into two cat-
egories: fluidic (i.e. from blood or cerebrospinal fluid) [36] and imaging-based [37]. Both
categories of biomarkers will be covered in this section, but later chapters of the thesis will
focus exclusively on imaging-based biomarkers.

The complex interplays among the physical, biological, and physiological underpinnings
of mTBI provide a rich pool for identifying potential biomarkers. A thorough review of the
mechanisms can be found in [38] and [39]. First, primary injury in neuronal cells occurs
in the form of mechanical damages, including axonal stretching, swelling, and irreversible
disconnection [40, 41]. Usually, immediate primary injury is not observed from single sub-
concussive HAE. Secondary injury occurs after the mechanical damages, which involves
neurometabolic cascades such as microglial activation, neuroinflammation, and release of
free radicals [39, 42]; contrary to primary injury, secondary injury is non-mechanical and
often lasts from several days to months. Secondary injury also provides potential targets,
such as proteins, microRNAs, and nucleic acids, for developing fluidic biomarkers [43].

Many candidate fluidic biomarkers have been identified in acute (≤ hours) and severer
forms of TBI. Examples include 1) Glial fibrillary acidic protein, which reflects astrocytosis
and axonal injury [44–46]; 2) UCH-L1 (a ubiquitin carboxyl-terminal hydrolase), which
indicates neuronal cell damage [45–47]; 3) S100B (a calcium-binding protein in astrocyte),
whose increase indicates activation of inflammatory response [48]; 4) Myelin basic protein,
whose proteolysis occurs following neurotrauma [49]; 5) Neurofilament (NF), in which the
NF-heavy and NF-light proteins demonstrated potentials to link head impacts with axonal
injury and early neurodegeneration [50–53]; 6) Tau (an axonal structural protein), in which
the levels of phosphorylated and total proteins may be used to diagnose mTBI [54,55].

Evidence for the diagnostic potentials and clinical utilities of candidate fluidic biomark-
ers was still limited [43, 56]. For instance, one study did not suggest glial fibrillary acidic
protein and UCH-L1 were specific for distinguishing mTBI that were CT-negative [57].
Combining multiple fluidic biomarkers present a promising methodology that leverages the
strengths of single biomarker; a proof of concept analysis of the TRACK-TBI Pilot study
integrated a multivariate proteomic panel as an “ensembled biomarker” for TBI [58], and a
recent study from the NCAA-DoD CARE Consortium has shown slight (but not significant)
improvement in diagnostic certainty for acute sport related concussion [46].

On the other hand, the advancement of different neuroimaging modalities has en-
abled progresses in searching imaging-based biomarkers for concussion and/or subconcus-
sive trauma, which is previously not possible with conventional approaches. Back in 2008,
McCrea [1] summarized the findings in mTBI with regard to different imaging modalities,
ranging from conventional approaches such as CT, structural MRI, magnetic resonance
spectroscopy (MRS), all the way to the more advanced diffusion tensor imaging (DTI) and
blood-oxygen-level dependent (BOLD) functional MRI (fMRI) at that time. Over the past
decade, many imaging-based biomarkers have been proposed [37], quantifying 1) white mat-
ter microstructure, such as fractional anisotropy and mean diffusivity from DTI [59–61]; 2)
neurometabolic alterations, including choline, N -acetyl aspartate, and glutamate/glutamine
from MRS [60,62,63]; 3) functional connectivity, based on correlations of BOLD time series
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from fMRI [64, 65]; 4) Cerebral blood flow, estimated from arterial spin labeling, a non-
invasive perfusion MRI technique [66]. Potential biomarkers from other MRI techniques or
imaging modalities are summarized in [37].

Ideally, a biomarker of mTBI should be:

1) sensitive to neurobiological changes resulted from the head injury and the treatment;

2) reproducible with minimal adverse impacts from adjustments in, e.g., acquisition
and/or processing;

3) easily assessed with minimal discomfort introduced to the subjects.

To date, a sensitive and reliable biomarker for concussion or subconcussive trauma is
not available. As an objective probe for diagnosis and measuring recovery, biomarker fails
to bring benefits when the target population do not get the healthcare services that they
should. It is of equal importance to make biomarkers available and accessible. Fluidic
biomarkers, upon successful validation, are easily accessible in a clinical setting, and are
more likely to be covered by healthcare insurance provider than imaging-based biomarkers.
However, although largely serve as research tools, imaging-based biomarkers have great
potential to provide scientific evidences that raise awareness among the general public, drive
technological development (e.g. protective equipment), and guide preventative strategies
that require minimal or even no cost to implement.

1.2 Structural Health Monitoring Framework

To tackle the challenge of prospective screening with sensitive biomarkers, this thesis
has a central theme: we constantly demand advanced technologies that reveal new
insights of brain, rigorous processing pipelines for the acquired data, and the
interdisciplinary expertise of engineering, neurobiology, and cognitive sciences.
This section will present the interdisciplinary framework of Purdue Neurotrauma Group
(PNG), which is essentially an engineering solution that integrate techniques from three
disciplines to monitor brain health of adolescent collision-sport athletes.

Under a SHM framework, failure of a physical structure is assumed to be the conse-
quence of the history of its internally experienced damage. Therefore, SHM incorporates
proactive strategies, such as: prospectively acquiring, processing, and interpreting signals
for monitoring, self-diagnostics and prognostics, etc., so that prompt maintenance can take
place to avoid irrecoverable failure [32]. SHM has been widely adapted in many disciplines
of engineering, and one of the common scenarios is the maintenance of bridges, which expe-
rience stress and strain every day. Built in 1936 to connect West Lafayette and Lafayette,
Indiana, the Sagamore Parkway eastbound bridge was demolished in 2016, and the old deck
of westbound was replaced in the Summer of 2019 [67]. In Hong Kong, SHM has been well
established to monitor the impact of strong wind and severe weather conditions to bridges,
including the Hong Kong-Zhuhai-Macau sea crossing bridge built in 2018 [68].

The statement by Gross [69] back in 1950s motivated understanding mTBI beyond
clinics and through the lenses of engineering dynamics. In essence, clinics and engineering
are just like two sides of the same coin. What is so-called “Shàng Yī Zh̀ı Wèi B̀ıng (the
best doctor provides preventive treatment)” is a principal practice in traditional Chinese
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Medicine [70] and was documented in Huang Di Nei Jing Su Wen back in the late Warring
States period [71]. Therefore, in the domain of mTBI, SHM can be applied to prospectively
monitor single (concussive) or accumulated (subconcussive) HAEs [32].

At PNG, we monitor brain health of adolescent collision-sport athletes through integrat-
ing MRI, biomechanical, and cognitive assessments at multiple sessions across a competition
season (Fig. 1.1). Each of the assessments will be described below in detail.

Fig. 1.1. Structural health monitoring framework of Purdue Neurotrauma
Group, partially adapted from [32] and [64].

Magnetic Resonance Imaging (MRI) Assessments

MRI can non-invasively monitor the physiological processes of body under health and
disease conditions, based on the interaction of the applied magnetic field with mostly the
water components of tissues [72]. With the presence of a main magnetic field, the nuclear
spins exhibit resonance at an equilibrium state. By applying a radiofrequency (RF) mag-
netic pulse tuned to the resonance frequency of the spins, the spins absorb energy from
the RF pulse, being excited out of equilibrium, and undergo relaxation back to equilibrium
once the RF pulse is off. T1 relaxation is the time constant characterizing the return of
the magnetization vector along the longitudinal axis, whereas T2 relaxation is the time
constant characterizing the decay of the vector component in the transverse plane [73]. The
magnetic flux during the relaxation induces an electromagnetic field, generates a voltage in
the receiver coil, which contributes to the signal and ultimately the image that distinguishes
tissues with different T1 and T2 properties. Typically, water has long T1 and T2, therefore
it appears darker in T1 images and brighter in T2 images.

To date, PNG has acquired in total over 1,800 cases of MRI datasets from more than 550
sport athletes over the past ten years. Each dataset is composed of structural (T1-weighted)
MRI, fMRI, diffusion MRI (b=1000 and b=2000), and MRS scans. Since 2018, arterial spin
labeling, a perfusion MRI sequence, was added into the scanning protocol. Analyses on
the datasets have yielded rich insights about how concussion and subconcussive HAEs may
alter brain function, structure, and chemistry [32,62,63,65,74–78].
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Biomechanical Assessments

An HAE is an acceleration-deceleration or rotation that causes sudden head movement,
either indirectly (from the body, a.k.a. “slosh” effect) or directly [79–81]. In biomechanical
assessments, characterizing HAEs involves quantification of peak translational (linear) and
angular (rotational) accelerations (in unit of g, force of gravity), as well as tracking the
number of HAEs [30]. In general, most of the HAEs occur at 60-120g, and the number
of HAEs decay monotonically at 20-120g [82]. Currently, given the sometimes substantial
measurement error of specific magnitudes and locations [83, 84], caution must be made
when processing and analyzing these measures. In addition, it is still in debate whether a
threshold exists for causing concussion and/or concussion-related symptoms [30,85]. Despite
the discrepancies and debates, these measures well suit a SHM framework and may be used
in the future to guide the development of protective equipment and preventive strategies [32].

At PNG, two telemetry-based sensor systems have been employed to estimate the accu-
mulated exposure to HAEs. The first one is the Head Impact Telemetry System (HITSTM,
Simbex LLC), which is helmet-based and provides six uniaxial accelerometers. HITS, how-
ever, was previously shown to have limitations in its accuracy [83]. The other (and more
reliable) one is the xPatch system (X2Biosystems, Inc.), which is head-based and provides
triaxial accelerometer and triaxial gyroscope. Using data from xPatch, our recent work in
adolescent collision-sport athletes showed that neurometabolic disturbance was significantly
associated with HAEs exceeding 50g [63], and prolonged exposure to subconcussive HAEs
may alter cerebrovascular reactivity [76] and produce greater damage in white matter [78].

Cognitive Assessments

Under the SHM framework (Fig. 1.1), an important question is whether the neuroimag-
ing or biomechanical measures can predict cognitive outcomes. For adolescent athletes with
concussion or prolonged exposure to subconcussive HAEs, cognitive assessments can assist
evaluating recovery and making return-to-play decisions [86].

In athletic training community, one of the widely-administered assessments is Immediate
Post-concussion Assessment and Cognitive Test (ImPACTTM) [87,88], a computerized test
battery that allows longitudinal monitoring of athlete’s verbal memory, visual memory,
visual motor speed, reaction time, and impulse control. Studies have shown ImPACT has
relatively high false positive rates [74,89], variable reliability [90,91], and therefore warrant
caution when interpreting these outcomes.

Besides ImPACT, several assessments of working memory are also administered, includ-
ing 1) Running memory span [92]; 2) Antisaccade task [93], which assesses attention and
inhibitory control; 3) Go/No-go task [94], which evaluates inhibitory control.

1.3 Diffusion Tensor Imaging

Diffusion is the random walks (a.k.a. Brownian motion) of molecules in a medium due
to heat. DTI is a quantitative MRI technique that provide signal representations of water
diffusion, which can be used to probe the tissue microstructure of white matter [95]. In
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this section, the physical principles of MRI and DTI will be introduced, the advantages and
technical barriers of DTI will be summarized at the end.

MRI can non-invasively monitor the physiological processes of body under health and
disease conditions, based on the interaction of the applied magnetic field with mostly the
water components of tissues. With the presence of a main magnetic field, the nuclear spins
exhibit resonance at an equilibrium state. By applying a radiofrequency (RF) magnetic
pulse tuned to the resonance frequency of the spins, the spins absorb energy from the
RF pulse, being excited out of equilibrium, and undergo relaxation back to equilibrium
once the RF pulse is off. T1 relaxation is the time constant characterizing the return of
the magnetization vector along the longitudinal axis, whereas T2 relaxation is the time
constant characterizing the decay of the vector component in the transverse plane. The
magnetic flux during the relaxation induces an electromagnetic field, generates a voltage in
the receiver coil, which contributes to the signal and ultimately the image that distinguishes
tissues with different T1 and T2 properties. Typically, water has long T1 and T2, therefore
it appears darker in T1-weighted images and brighter in T2-weighted images.

In MRI, water diffusion can be characterized by a T2-weighted spin-echo sequence with
a Stejskal-Tanner diffusion encoding [96], where a pair of diffusion-sensitizing gradients
is applied along the same direction, one before and one after the 180◦ refocusing pulse
(Fig. 1.2).

Fig. 1.2. Diagram of a spin-echo pulse sequence with Stejskal-Tanner diffusion
encoding [96]. G: gradient amplitude. ∆: the time between the onset of the
gradients. δ: gradient duration. Modified from [97].

For a certain diffusion direction vector n and diffusion weighting b, the diffusion-weighted
signal S(n, b) can be represented as a signal attenuation equation:

S = S0e
−bD(n)

where S0 is the signal intensity at b=0, and D(n) is the apparent diffusion coefficient
along vector n. b is a diffusion-weighting factor that is determined by:

b = γ2δ2G2(∆− δ/3)

where γ is the gyromagnetic ratio (42.577 MHz/T), δ is the gradient duration, G is the
gradient amplitude, ∆ is the time between the onset of the gradients. To estimate D(n),
there must be at least one non-zero b value.
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In DTI, the white matter microstructural integrity is measured through estimating a
symmetric 3-dimension rank-2 Cartesian tensor D [97]. At least 6 distinct gradient direc-
tions are required to estimate D. The three eigenvectors of D characterizes the primary,
secondary, and tertiary directions of water diffusion [98], whereas the three corresponding
eigenvalues, λ1, λ2, and λ3, represent the magnitude of water diffusion along each direction.
Therefore, λ1 > λ2 > λ3. Based on the eigenvalues, two commonly interpreted DTI metrics
can be computed:

Mean Diffusivity (MD) =
λ1 + λ2 + λ3

3

Fractional Anisotropy (FA) =

√
3

2
×
√

(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ21 + λ22 + λ23

MD, a.k.a. apparent diffusion coefficient (ADC), represents cellular density and extra-
cellular volume, whereas FA is a scalar value ranging from 0 (isotropic) to 1 (anisotropic)
representing the diameter, density and the complexity of the axonal network [95]. Voxels
with low FA and high MD values indicate less directionality of water diffusion, which may
be due to demyelination or disorganized axonal structures [99].

Additionally, axial (AD) and radial (RD) diffusivity are also commonly reported in DTI
literature. They can be calculated from the three eigenvalues for each voxel of the diffusion
image:

Axial Diffusivity (AD) = λ1

Radial Diffusivity (RD) =
λ2 + λ3

2

Tract-Based Spatial Statistics (TBSS) is one of the standard voxel-based techniques for
diffusion MRI data analysis [100,101]. TBSS has two distinct characteristics: first, instead
of affine image registration, FA maps are nonlinearly transformed so that distortion effects
are circumvented. Second, instead of running voxel-wise statistical analysis for the entire
image volume, neighboring FA voxels are averaged and localized to generate a skeleton.
The skeleton represents major white matter fiber bundles of the brain, and individual FA
data are projected onto the skeleton. Such dimension reduction effectively minimizes partial
volume effects and boosted statistical power [100], allowing comparisons of microstructural
integrity of white matter at group level [101].

There are several advantages for diffusion MRI, compared to other neuroimaging modal-
ities:

1) Compared to conventional (T1 and T2) MRI techniques, diffusion imaging shows more
detailed information of the brain, including white matter microstructure, which cannot
be achieved under the spatial resolution of conventional MRI. These information can
assist doctors to evaluate the recovery time of patients from brain injury, as well
as allow researchers to better understand mechanisms of complex neuropathological
disorders, such as sport related concussion and mTBI.

2) Compared to invasive histological methods, diffusion imaging is noninvasive, allowing
reconstruction of neuronal pathways without the need of sacrificing subjects or any
chemical staining.
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3) Compared to CT, there is no radiation associated with diffusion MRI, which allows
subjects to be monitored at multiple time points without the concern of tissue damage
from too much radiation exposure.

Currently, the limitations of diffusion MRI are:

1) The spatial resolution is relatively low. To investigate an anatomical region or map
a specific neuronal pathway, diffusion images and fiber tracts often needs to combine
with anatomical MR scans at higher resolution. In order to achieve higher spatial
resolution and resolve white matter tracts that are relatively small, the acquisition
time needs to be longer, which is a technical barrier in signal sampling [102].

2) Diffusion MRI is prone to the assumptions in tensor modeling to characterize axonal
pathways. Crossing fibers violates the assumption of simple tensor model and cannot
be resolved [103]. To overcome this technical barrier, advanced diffusion imaging tech-
niques, such as high angular resolution diffusion imaging [104], have been developed
to better delineate orientations of crossing fiber [105].

3) The estimation of diffusion MRI parameters is confounded by differences in acquisition
parameters, coil designs and configurations, and scanner-specific effects [106,107]. For
instance, increasing echo time causes faster decay of the raw signal and changes in
DTI parameters [108–110]. Different harmonization methods have been proposed to
facilitate joint analysis of diffusion MRI data at large scale [111–114].

Overall, it is important to be aware of the limitations and technical barriers of DTI,
as unawareness or ignorance can lead to systematic errors, complicated interpretations, or
even false discoveries.

1.4 Brain Atlas

What have not been addressed so far are the questions of how : how can DTI detect small
changes in the adolescent brain due to repetitive head impacts? How can DTI delineate
the relationship between brain health and cognitive performance? Before diving into these
questions, it’s essential to recognize that imaging-based biomarkers should objectively char-
acterize the statistics of a population, so that interpreting underlying physiology becomes
possible. This raises the priority of choosing appropriate brain atlas in image processing.

Brain atlas is a stereotaxic 3D coordinate frame for mapping individual brain images, so
that analyses can be performed at group scale [115]. Consists of templates (representative
spatial maps) and labels (parcellated brain regions), brain atlas serves as a coordinate refer-
ence system that allows automated processing and analyses, without the necessity of being
an expert in neuroanatomy. A brain atlas may be employed bidirectionally, i.e. individual
brain images can be registered and spatially normalized to the atlas space while retaining
the anatomical identities (e.g. shape) as much as possible, or alternatively, referenced from
the atlas to retrieve different types of information. Some examples are: segmenting brain
volumes [116], estimating cortical thickness and surface area [115], performing voxel-based
analyses [117]. To date, there is no population-specific brain atlas for adolescent collision-
sport athletes, and the next chapter will describe the efforts of filling this critical gap.
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2. DEVELOP POPULATION-SPECIFIC BRAIN ATLASES FOR
EARLY-TO-MIDDLE ADOLESCENT COLLISION-SPORT ATHLETES

2.1 Abstract

Human brains develop across the life span and largely vary in morphology. Adolescent
collision-sport athletes undergo repetitive head impacts over years of practices and com-
petitions, and therefore may exhibit a neuroanatomical trajectory different from healthy
adolescents in general. However, an unbiased brain atlas targeting these individuals does
not exist. Although standardized brain atlases facilitate spatial normalization and voxel-
wise analysis at the group level, when the underlying neuroanatomy does not represent
the study population, greater biases and errors can be introduced during spatial normal-
ization, confounding subsequent voxel-wise analysis and statistical findings. In this work,
targeting early-to-middle adolescent (EMA, ages 13-19) collision-sport athletes, we devel-
oped population-specific brain atlases that include templates (T1-weighted and diffusion
tensor magnetic resonance imaging) and semantic labels (cortical and white matter par-
cellations). Compared to standardized adult or age-appropriate templates, our templates
better characterized the neuroanatomy of the EMA collision-sport athletes, reduced defor-
mation introduced during spatial normalization, and exhibited higher sensitivity in diffusion
tensor imaging analysis. In summary, these results suggest the population-specific brain at-
lases are more appropriate towards reproducible and meaningful statistical results, which
better clarify mechanisms of traumatic brain injury and monitor brain health for EMA
collision-sport athletes.

2.2 Keywords

Atlas Template; Adolescents; Traumatic Brain Injury; Magnetic Resonance Imaging;
Spatial Normalization

2.3 Introduction

Adolescent collision-sport (e.g., American football and soccer) athletes bear high risk of
mild traumatic brain injury (mTBI), a complex pathophysiological process that can arise
from either single (concussive) or accumulated (subconcussive) head acceleration events
[29, 30, 118, 119]. The lack of sensitive biomarkers hinders the development of preventive
strategies, allowing this vulnerable population to continue participating at greater risk.
Multi-modal magnetic resonance imaging (MRI) can non-invasively characterize the struc-
ture and function of the human brain in healthy and disease states, thus showing promise
for prospective screening and early detection of mTBI in adolescent athletes. Neverthe-
less, one of the critical steps in MRI processing is to spatially normalize brain images to
a stereotaxic atlas, i.e., a coordinate reference system for neuroimaging studies. When the
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spatial normalization onto an atlas has poor accuracy, voxel-based analysis exhibits low
sensitivity in detecting differences at group level [117, 120]. Therefore, it is vital to ensure
most of the anatomical identities pertinent to adolescent athletes are retained during spatial
normalization.

In general, human brain atlases are either standardized or population-specific; each
comes with a set of templates (representative spatial maps) and labels (parcellated regions).
The two standardized brain atlases long established and well known by the neuroimaging
community come from Talairach and the Montreal Neurological Institute [121]. Talairach
atlas is derived from the dissection of one hemisphere of the brain from a 60-year-old French
woman [122], whereas the ICBM152 template is derived from T1 scans of 152 subjects aged
18.5-43.5, averaged together after high-dimensional linear and nonlinear registration into
the Talairach space [123]. In the same space as ICBM152, FMRIB58 is a standardized
diffusion tensor imaging (DTI) template derived from 58 high-resolution volumes of frac-
tional anisotropy (FA) from healthy male and female adults aged 2050 (FMRIB, Oxford,
UK). Other popular standardized human brain atlases include Brainnetome [124], IIT [125],
SRI24 [126], etc. Recently, two systematic evaluations of DTI templates showed that the
IIT standard template outperformed population-specific DTI templates [125, 127], but the
findings were based on healthy adults and may not generalize in younger populations.
Many literature pointed out the age-related changes in volumes of gray and white mat-
ter [116,128–132]. Although there are several age-specific atlases for adolescents [133–138],
the number is limited compared to adult atlases [128].

The existing brain atlases are handy tools for various types of neuroimaging analyses,
but considering the various pathological conditions and the developing nature of human
brain, they do not always suit the best for studying specific populations. In a multiple
sclerosis population, Van Hecke et al. [139] showed that choosing a non-specific template
can negatively impact the final results of tract-based spatial statistics (TBSS) [100], one of
the standard approaches for DTI analysis [117, 140]. Using both simulated and real DTI
data, Van Hecke et al. observed that a population-specific DTI template resulted in more
reliable voxel-based analysis, as well as higher sensitivity and specificity of detecting DTI
changes, compared to the standardized template [139]. However, developing a study-specific
template from a large population is time consuming, computationally inefficient [140], and
may result in suboptimal quality [125,139], making the use of existing brain atlases a more
pragmatic option for the time being.

To date, an unbiased brain atlas targeting adolescent collision-sport athletes does not
exist, to the best of our knowledge. DTI literature of sports-related mTBI and subconcussive
trauma in adolescents either manually defined their own ROIs [141–143], or more often
did not employ a population-specific template to spatially normalize each individual brain
image, see Table 2.1 for a summary. Variability introduced during spatial normalization may
confound statistical analyses and contribute to varied DTI findings that make it difficult
to interpret axonal pathology [144]. It is critical for studies of mTBI and subconcussive
trauma, especially for adolescent collision-sport athletes, to minimize bias and errors in
every pre-processing stages, because the magnitudes of changes are often subtle, and brains
of this age bracket are rapidly growing [145–148]. Such studies may benefit from using an
unbiased brain atlas created from their study cohort, as opposed to normalizing brains of
adolescent collision-sport athletes to an atlas generated from adults or healthy adolescents.
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Therefore, the purpose of this work is to develop population-specific brain atlases for
early-to-middle adolescent (EMA) collision-sport athletes. Based on the Purdue Neuro-
trauma Group (PNG) longitudinal MRI database [32], we aim to develop:

1) one T1 template, based on the images from 215 EMA collision-sport athletes,

2) T1-based semantic labels of cortical and white matter parcellations, and

3) one DTI template, based on 64 EMA football athletes in a single competition season
[166,167].

To evaluate the templates, our hypothesis is that compared to using a non-specific tem-
plate, the PNG templates can reduce deformation when normalizing brain images of local
adolescent athletes and improve statistical power in detecting small differences in popula-
tion studies using local datasets. The evaluation includes voxel-based morphometry that
characterized the extent of shape changes of the T1 images during spatial normalization,
and sensitivity of detecting longitudinal DTI changes in high school football athletes over a
single season, which has been reported in previous work [166,167] that utilized the standard-
ized FMRIB58 template. The brain atlases have been made available for download [168],
and a user manual is provided at Appendix A.

2.4 Methods

2.4.1 Participants and Data Collection

This study used data collected by PNG in their ongoing longitudinal study of adoles-
cent athletes [32], which has been approved by the Biomedical IRB of Purdue’s Human
Research Protection Program and was carried out in accordance with the Declaration of
Helsinki. These data include athletes participating in the collision sports of American foot-
ball (all males) and soccer (all females), plus data from peer non-collision-sport athletes.
For collision-sport athletes, data were acquired across multiple sessions, including one ap-
prox. one month before contact practices began (Pre), one or more within competition
season (In), and one or more after the season ended (Post). These data were grouped into
different datasets to construct or evaluate the population-specific T1 or DTI templates. See
Table 2.2 for the total number of participants and relevant details for each dataset.

Note that during the period of study, no participant was diagnosed by their athletic
trainer or team physician as being concussed.

2.4.2 MR Imaging

All data were acquired using a 3 T General Electric Signa HDx (Waukesha, WI) with a
16-channel brain array (Nova Medical; Wilmington, MA).



14

Table 2.2.
Summary of the datasets for constructing and evaluating the population-specific
T1 and DTI templates, based on Purdue Neurotrauma Group (PNG) longitu-
dinal MRI database [32].

Task Season Session n Participants Sport∗ (n) Age (years)

PNG T1 template
Construction 2011–2017 Pre-, In-, Post-Season 215 Football (175), Soccer (40) 13–19
Evaluation 2018–2019 Pre-Season 12 Football (12) 14–19

PNG DTI template
Construction 2016–2017 Pre-Season 64 Football (64) 14–18
Evaluation 2016–2017 Pre-, In-Season 64 Football (64) 14–18

∗ All football athletes are male participants, and all soccer athletes are female participants.

T1-weighted imaging data

Anatomical T1 scans were acquired using a 3D fast spoiled gradient-echo sequence
(TR/TE = 5.7/2.0 ms, flip angle = 73◦, 1 mm isotropic resolution). Longitudinal vol-
umetric data from 227 athletes (187 males; 40 females) were used for construction and
evaluation of the template.

Diffusion-weighted imaging data

Diffusion-weighted imaging (DWI) data were acquired using a spin-echo echo-planar
imaging sequence (TR/TE = 12,500/100 ms, 40 slices with 2.5 mm thickness), FOV of
24 × 24 cm2, a 96 × 96 acquisition matrix, in-plane resolution of 2.5 × 2.5 mm2, with
30 diffusion-encoding directions at b = 1000 s/mm2 and one at b = 0 s/mm2, and an
upsampled isotropic resolution of 1 mm. Longitudinal data from sixty-four male football
athletes that participated in one competition season. All participants completed three MRI
sessions: one scan at Pre and two In-Season scans, with one in the first (In1) and one in
the second (In2) 5-week halves of the season.

2.4.3 Atlas Construction

To accelerate the computation time, we established a workflow integrating a high-
throughput (Open Science Grid) [169, 170] and a high-performance (Purdue Community
Clusters) computing platform. Specifically, Open Science Grid integrates the computing
and storage elements from over 100 individual sites spanning the United States and pro-
vides a distributed fabric of high-throughput computational services, allowing numerous
individual, small, and independent tasks to run concurrently on different CPU cores. Pur-
due Community Clusters consists of Dell compute nodes with 1624 cores of Intel Xeon Gold
Sky Lake processors per node, at least 192 GB of RAM, and 100 Gbps InfiniBand inter-
connects, which processes single, large, and interdependent tasks at its fastest speed. The
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workflow was implemented to construct the population-specific T1 template and one of the
two population-specific DTI templates, and the schematic diagrams were shown in Fig. 2.1.

Population-specific T1 template and labels

The workflow was summarized in Fig. 2.1A. T1 preprocessing included denoising [172],
bias correction, skull-stripping, and intensity normalization [173], followed by the first visual
quality assessment where preprocessed T1 images with low signals, cutoff of brain regions,
motion, or observable artifacts were excluded; this resulted in 782 T1 images from 235
participants, where 547 were repeated scans from 168 participants.

We applied the Advanced Normalization Tools (ANTs) [171,174], a top-performing regis-
tration tools, to construct T1 template. ANTs employs symmetric groupwise normalization
that has been shown to retain accurate anatomical details [175]. Using buildtemplateparal-
lel.sh in ANTs, an individual template was created per participant on Open Science Grid,
followed by the second visual quality assessment, which mainly focused on resemblance of
neuroanatomy pertinent to each individual; this resulted in individual templates from 215
participants with good quality. Using Purdue Community Clusters, the final population-
specific template (PNG T1) was created from the individual templates.

Based on the final template, the semantic labels were created using the recon-all pipeline
of FreeSurfer [176] (Fig. 2.3). Three labeling protocols were employed by the pipeline:
Desikan-Killiany protocol [177], Desikan-Killiany-Tourville classifier protocol [178], and De-
strieux protocol [179]. The template and the labels created by Desikan-Killiany protocol
have been made available at Purdue University Research Repository [168].

Population-specific DTI templates

We applied two top-performing registration tools, namely ANTs [171] and DTI-TK
[180], to construct DTI templates. DTI-TK incorporates explicit optimization of tensor
orientation with piecewise affine registration (for algorithm, see Zhang et al. [180]), which
demonstrated accurate spatial normalization [120].

Before constructing the templates, raw DWI data were first preprocessed using FSL
(FMRIB 5.0, Oxford, U.K.), including corrections for motion and eddy currents (eddy correct),
followed by the extraction of aliasing-corrected brains (BET ). DTI metrics, including FA,
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were estimated
for each individual (DTIFit), and all passed the first visual quality assessment for presence
of motion artifact or geometrical distortion.

The workflow of constructing the PNG (ANTs) template is summarized in Fig. 2.1B.
Based on the quality assessments when constructing the population-specific T1 template,
33 of the 64 football players had a qualified T1 image at Pre. Only the corresponding
DWI images at Pre were used, considering that DTI changes were observed at In1 and
In2 [166,167]. For each subject, the b0 image served as the reference image to warp the FA
image to the corresponding T1 image, and subsequently to the PNG T1 template space.
All warping processes were carried out by running antsIntermodalityIntrasubject.sh. All
the warped FA images passed the second visual quality assessment for inspecting whether
they were normalized to the same space of the template. Then, an average map of the



16

Fig. 2.1. High-throughput high-performance computing workflow, for construct-
ing (A) the population-specific T1 template and labels, and (B) the population-
specific DTI template using Advanced Normalization Tools (ANTs) [171].



17

warped FA images was computed to serve as the initial reference image to register to, and
the population-specific DTI template was constructed based on the 64 football players at
Pre (antsMultivariateTemplateConstruction.sh), and has been made available at Purdue
University Research Repository [168]. The second DTI template was constructed using
DTI-TK [180] as a comparison to the PNG (ANTs) template, where the diffusion tensors
in the native space of 64 subjects were used.

2.4.4 Evaluations

Population-specific T1 template

Deformation-based morphometry analyses were performed to evaluate potential bias of
using different T1 templates. Newly acquired T1 scans of 12 high school varsity football ath-
letes (ages: 14-19) prior to the 2018-2019 competition season were normalized (via antsReg-
istrationSyN ) to ICBM152 template, an age-appropriate template (NIHPD13.0−18.5 [134],
IITv3.0 [125], and the population-specific T1 template (PNG); this yielded 4 × 12 = 48
maps of deformation field. The logarithm of Jacobian determinant (logJ , representing local
volume difference) was estimated (via ANTSJacobian) for each map. The maps of absolute
logJ were computed and transformed to the standard space of ICBM152 (1 mm spatial
resolution) via antsApplyTransforms. In the standard space, voxel-wise permutation-based
t-statistics were computed with 5,000 permutations with a repeated ANOVA design, us-
ing the FSL Randomise program [181], with threshold-free cluster enhancement [182] and
family wise error (FWE) of 5% used to control for type-I error.

Population-specific DTI template

All individual FA images were first aligned through a nonlinear transformation algorithm
(fnirt) to four DTI templates, including two standardized templates: FMRIB58 (FMRIB,
Oxford, UK) and IITv3.0 [125], and the two PNG population-specific templates constructed
by ANTs and DTI-TK respectively.

Similar to evaluating the T1 templates, deformation-based morphometry analyses were
performed to evaluate potential bias of using different DTI templates. At each session (Pre,
In1, In2), 4 × 64 = 256 maps of absolute logJ were yielded, and all were transformed to
the standard space of FMRIB58 (same as ICBM152). Using the same design as evaluating
the T1 templates, voxel-wise permutation-based t-statistics were computed for each session.

In the standard space of ICBM152, a skeleton representing the common white matter
tracts across all the subjects was created from thinning the mean FA map that was aver-
aged from all the aligned FA images. The skeleton was thresholded at FA>0.2 to reduce
partial volume effects between borders of different tissues. Regional maximal FA values
were projected onto the skeleton according to a distance map [100]. Based on the mean
FA skeleton, skeletons of MD, AD, and RD were obtained by projecting the corresponding
DTI values onto the FA skeleton (tbss non FA). The processing procedure guaranteed that
the variations of the TBSS results were only related to the template selection.

The resulting DTI skeletons of each subject were fed into voxel-wise permutation-based
statistics with a repeated ANOVA design and with 5,000 permutations among Pre, In1 and
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In2, using the FSL Randomise program [181]. The type-I error was controlled by threshold-
free cluster enhancement [182] and FWE of 5%. For the purpose of demonstrating the effect
of template selection on subsequent statistical findings, only the contrasts comparing Pre
and In2 were presented. Among all the selected contrasts of each template, the ones showing
significant voxels at p < 0.05 (FA and AD: Pre ¿ In2; MD and RD: Pre < In2) were further
segmented into ROIs defined by the JHU-ICBM-DTI-81 WM label atlas [183], and the
corresponding voxel counts and DTI values were extracted via the FSL Cluster program.

Within each ROI overlaid on the TBSS skeletons, we counted

Vt = The number of voxels on the skeleton,

and

Vs = The number of significant voxels from the permutation− based statistics.

First, non-parametric Friedman test was performed to test whether Vt correlated with
template selection, with Vt as the response variable, template as the predictor, and ROI as
the blocking variable.

Then, logistic regression was performed to test whether Vs/Vt correlated with template
selection:

log
pij

1− pij
= β0 + β1 × Templatei + β2 × ROIj

where pij referred to the Vs/Vt ratio from the ith template, with regard to the TBSS skeleton
within the jth ROI. 4 models were established with respect to the Vs/Vt ratio of each DTI
metric (FA, MD, AD and RD). ROIs with no voxel on the TBSS skeletons were excluded
from the analyses. The analyses were performed using SAS 9.4 (SAS Institute, Cary NC).

To investigate the sensitivity of different templates to the short-term changes of white
matter microstructure in high-school football players [166, 167], linear mixed regression
analyses were performed, where timepoint and age were the fixed variables, and subject
was the random variable. Models were fitted within each ROI and for each DTI metrics.
Akaike information criterion (AIC) was used to evaluate model fit, and t and p values
for timepoint were compared across the four templates. FDR was applied to correct for
comparisons in multiple ROIs. ROIs with no voxel on the skeleton, and ROIs rejected
by the Shapiro-Wilks normality test were excluded from the analyses. The analyses were
performed using R version 3.5.2 [184].

2.5 Results

2.5.1 Atlas Construction

The total computation time for constructing the PNG T1 template was about 28.5
hours, where ˜6.5 hours were accounted for creating each individual template at Open
Science Grid, and 22 hours for creating the final T1 template when fully using one node
(24 cores) of the high-performance computing clusters. The comparison of shape and size
between the standardized and PNG T1 template was shown in Fig. 2.2A.
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The total computation time of constructing the PNG (ANTs) DTI template was about
12.5 hours; warping each of the Pre FA images (N = 33, with qualified T1) to the space
of PNG T1 template took ˜2 minutes at Open Science Grid, and the majority of time
were spent on constructing the final DTI template when fully using one node (24 cores).
The comparison of shape and size between the standardized and PNG DTI templates were
shown in Fig. 2.2B.

Fig. 2.2. (A) Standardized T1 templates, including ICBM152 [123],
NIHPD13.0−18.5 [134], IITv3.0 [125], and the population-specific T1 template.
(B) Standardized FMRIB58 (FMRIB, Oxford, UK), IITv3.0 [125], and the
population-specific DTI templates constructed by ANTs [171] and DTI-TK
[180].
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Fig. 2.3. Lateral (top) and medial (bottom) views of PNG Desikan-Killiany
Grey Matter Atlas. banksSTS: banks of the superior temporal sulcus.
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2.5.2 Evaluation of population-specific T1 template

The results of deformation-based morphometry analyses are shown in Fig. 2.4. Com-
pared to ICBM152 (Fig. 2.4A) or NIHPD13.0−18.5 template (Fig. 2.4B), no significantly
larger logJ was produced from using PNG template for the spatial normalization. Com-
pared to IITv3.0 (Fig. 2.4C), fewer voxels showed significantly larger logJ when using PNG
template (IITv3.0: 334,811 voxels; PNG: 109,189 voxels).

Fig. 2.4. Voxel-wise t-statistical maps (p < 0.05, FWE corrected) of potential
bias between our PNG T1 template and (A) ICBM152 [123], (B) NIHPD13.0−18.5

[134], and (C) IITv3.0 [125], represented in axial view in ICBM152 space.
Red/blue indicates significantly larger/smaller deformation during spatial nor-
malization, compared to using PNG template.
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2.5.3 Evaluation of study-specific DTI template

Similar to the deformation-based morphometry findings for T1 templates, at all the
sessions (Pre, In1, In2), fewer voxels showed significantly larger logJ when using the PNG
(ANTs) template compared to the high-quality standardized DTI templates (FMRIB58
and IITv3.0) (Table 2.3). Using the PNG (ANTs) template also exhibited fewer voxels of
significantly larger logJ than the PNG (DTI-TK) template (Table 2.3). Illustrations of the
voxel-wise t-statistical maps were provided in Fig. 2.5.

Table 2.3.
Number of statistically significant (p < 0.05, FWE corrected) voxels of potential
bias when normalizing the FA maps of 64 high school varsity football athletes
to PNG (ANTs) DTI template and to the other templates. Comparisons at
multiple sessions (Pre, In1, In2) were presented.

Contrast Pre In1 In2

FMRIB58 > PNG (ANTs) 588,188 594,116 591,845
FMRIB58 < PNG (ANTs) 126,667 85,782 153,490

IITv3.0 > PNG (ANTs) 597,688 598,457 608,754
IITv3.0 < PNG (ANTs) 69,359 49,774 81,651

PNG (DTI-TK) > PNG (ANTs) 481,365 464,482 445,434
PNG (DTI-TK) < PNG (ANTs) 172,137 181,668 189,488
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Fig. 2.5. Voxel-wise t-statistical maps (p < 0.05, corrected) of potential bias,
comparing PNG (ANTs) template to high-quality standardized DTI templates
(FMRIB58 and IITv3.0), and to PNG (DTI-TK) template, represented in axial
view in ICBM152 space. Red/blue indicates significantly larger/smaller defor-
mation during spatial normalization, compared to using PNG (ANTs) template.
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Table 2.4 summarized the number of statistically significant voxels of DTI metrics (FA,
MD, AD, RD) and the total number of voxels on TBSS skeleton. Non-parametric Friedman
test did not suggest covariate template as a significant factor (χ2=2.370, df=3, p=0.499)
for Vt.

Table 2.4.
Summary of the ratios of the number of statistically significant voxels of DTI
metrics (FA, MD, AD, RD) and the total number of voxels on TBSS skeleton.

DTI Contrast Total Significant Voxels/Total Voxels
FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

FA Pre > In2 16885/30017 16040/29481 16785/29740 15864/29888
MD Pre < In2 7544/30017 6791/29481 6838/29740 6675/29888
AD Pre > In2 888/30017 0/29481 571/29740 100/29888
RD Pre < In2 12235/30017 11598/29481 12093/29740 11889/29888

Hosmer Lemeshow Goodness-of-Fit test showed a good fit for the logistic regression
models of FA, MD, and AD (all p > 0.05), except RD (p < 0.05) (Table 2.5). However, in
all 4 models, covariate template was a significant factor (p < 0.05, Wald Chi-square test)
for the Vs/Vt ratios (Table 2.5). Therefore, there were some evidence to indicate a strong
correlation between the Vs/Vt ratios and template selection.

Table 2.5.
Summary of Hosmer Lemeshow Goodness-of-Fit test and logistic analysis for the
effect of the selected template on the ratio of the number of significant voxels
(from the permutation-based t-statistical maps) and total number of voxels on
the TBSS skeleton within the ROI.

DTI Contrast Goodness-of-Fit Test Wald Test
χ2 df p χ2

template dftemplate ptemplate

FA Pre > In2 11.478 8 0.176 9.759 3 0.020
MD Pre < In2 7.516 7 0.377 12.249 3 0.007
AD Pre > In2 1.725 1 0.189 299.374 3 <0.001
RD Pre < In2 52.032 8 <0.001 20.680 3 <0.001

Within most of the white matter tracts, the number of significant voxels exhibiting
decreased FA at In2 vs. Pre was similar across the four templates (Fig. 2.6). For the
PNG (ANTs) template, the significant voxels in fornix were 99 mm3, much larger compared
to FMRIB58 (14 mm3), IITv3.0 (5 mm3), and the PNG (DTI-TK) templates (13 mm3)
(Fig. 2.6A). For the PNG (DTI-TK) template, the significant voxels in bilateral cingula
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were much smaller compared to the other three templates (Fig. 2.6B). In bilateral cingula
(hippocampi), neither IITv3.0 or PNG (DTI-TK) template exhibited significant voxel of
FA difference (Fig. 2.6B&C). Similarly, no significant voxel of FA difference was observed
in left tapetum for FMRIB58 template.

Figs. 2.7, 2.8, and 2.9 provide illustrations of the t-statistical maps for significant dif-
ferences of MD, AD, and RD, at In2 vs. Pre. Detailed summary of the significant voxels
exhibiting differences of FA, MD, AD, and RD can be found at Tables 2.6, 2.7, 2.8, and 2.9.

According to the linear mixed-effect regression analyses for the longitudinal changes
of FA (Table 2.10), model fits were similar among the regions commonly identified across
the 4 templates. FMRIB58 exhibited the highest model fit (i.e., lowest AIC) in most of
the white matter tracts, including the left cerebral peduncle, left posterior corona radiata,
right superior corona radiata, right external capsule, left anterior internal capsule, right
posterior internal capsule, left inferior longitudinal/fronto-occipital fasciculus, and left stria
terminalis. For IITv3.0, the highest fits were observed in the right cingulum, right anterior
corona radiata, and right anterior internal capsule. For the PNG (ANTs) population-specific
template, higher fits were observed in the bilateral superior fronto-occipital fasciculus and
right superior longitudinal fasciculus. whereas the PNG (DTI-TK) template exhibited the
highest fit in the right anterior corona radiata and left superior corona radiata.

Tables 2.11 and 2.12 summarized the linear mixed-effect regression analyses for the
longitudinal changes, for MD and RD respectively. Similar to FA, model fits were similar
among the commonly identified regions. No table was shown for AD, since there was no
voxel exhibited the significant difference when IITv3.0 DTI template was used (see Table 2.4
and Fig. 2.8).
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Fig. 2.6. Illustrations of t-statistical maps (red-yellow, FWE corrected, p < 0.05)
showing decreased FA at In2 vs. Pre in (A) sagittal, (B) coronal, and (C) ax-
ial views, overlaid on TBSS skeleton (green) and mean FA image derived from
FMRIB58 (FMRIB, Oxford, UK), IITv3.0 [125], PNG (ANTs), and PNG (DTI-
TK) DTI templates respectively. Major white matter tracts showing different
sensitivity across the templates for detecting FA changes are highlighted in ar-
rows. cg : cingula. cg(h): cingula (hippocampi). L/R: left/right hemisphere.
A/P : anterior/posterior. S/I : superior/inferior.
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Fig. 2.7. Illustrations of t-statistical maps (blue-lightblue, FWE corrected, p <
0.05) showing increased MD at In2 vs. Pre in sagittal, coronal, and axial views,
overlaid on TBSS skeleton (green) and mean FA image derived from FMRIB58,
IITv3.0, PNG (ANTs), and PNG (DTI-TK) DTI templates respectively. L/R:
left/right hemisphere. A/P : anterior/posterior. S/I : superior/inferior.
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Fig. 2.8. Illustrations of t-statistical maps (red-yellow, FWE corrected, p < 0.05)
showing decreased AD at In2 vs. Pre in sagittal, coronal, and axial views,
overlaid on TBSS skeleton (green) and mean FA image derived from FMRIB58,
IITv3.0, PNG (ANTs), and PNG (DTI-TK) DTI templates respectively. L/R:
left/right hemisphere. A/P : anterior/posterior. S/I : superior/inferior.
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Fig. 2.9. Illustrations of t-statistical maps (blue-lightblue, FWE corrected, p <
0.05) showing increased RD at In2 vs. Pre in sagittal, coronal, and axial views,
overlaid on TBSS skeleton (green) and mean FA image derived from FMRIB58,
IITv3.0, PNG (ANTs), and PNG (DTI-TK) DTI templates respectively. L/R:
left/right hemisphere. A/P : anterior/posterior. S/I : superior/inferior.
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Table 2.6.
Summary of the number of statistically significant voxels that exhibit lower FA
at In2 vs. Pre (numerator), with respect to the corresponding total number
of voxels within each ROI (denominator), for the standardized and population-
specific DTI templates. L/R: Left/right hemisphere.

ROI FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

Cereral peduncle L (cpL) 188/247 178/230 199/244 185/240
Cereral peduncle R (cpR) 230/283 189/249 229/271 205/253

Cingulum (cingulate gyrus) L (cgL) 221/487 126/278 116/320 5/213
Cingulum (cingulate gyrus) R (cgR) 32/422 106/252 108/251 6/111

Superior corona radiata L (scrL) 841/1234 892/1318 932/1370 946/1345
Superior corona radiata R (scrR) 1182/1323 1225/1369 1260/1387 1200/1363
Anterior corona radiata L (acrL) 874/1546 868/1583 828/1583 836/1589
Anterior corona radiata R (acrR) 499/1504 414/1628 374/1635 368/1633
Posterior corona radiata L (pcrL) 425/741 381/695 319/683 285/687
Posterior corona radiata R (pcrR) 324/818 292/820 278/859 257/819

Body of corpus callosum (bcc) 2057/3142 2180/3182 2256/3295 2188/3360
Genu of corpus callosum (bcc) 907/1743 935/1823 933/1696 878/1786

Splenium of corpus callosum (bcc) 1717/2528 1389/2278 1383/2397 1321/2397
External capsule L (ecL) 166/1353 123/1351 93/1287 102/1340
External capsule R (ecR) 858/1239 809/1240 850/1162 818/1244

Fornix (fx) 14/162 88/142 99/162 13/168
Cingulum (hippocampus) L [cg(h)L] 25/60 2/14 24/42 0/53
Cingulum (hippocampus) R [cg(h)R] 86/110 0/44 63/77 0/81

Ilf/Ifof L 96/241 75/183 91/185 87/205
Ilf/Ifof R 270/334 186/279 205/258 161/225

Anterior limb of internal capsule L (alicL) 381/776 355/703 337/729 345/735
Anterior limb of internal capsule R (alicR) 550/786 554/771 509/725 536/760
Posterior limb of internal capsule L (plicL) 576/859 641/853 650/857 703/862
Posterior limb of internal capsule R (plicR) 690/858 659/835 713/855 744/872

Retrolenticular part of internal capsule L (rlicL) 468/782 421/796 525/795 525/793
Retrolenticular part of internal capsule R (rlicR) 615/767 611/774 664/768 639/759

Posterior thalamic radiation L (ptrL) 265/991 182/881 174/755 152/763
Posterior thalamic radiation R (ptrR) 484/1101 192/969 309/912 155/872

Fornix (cres)/stria terminalis L (fx/stL) 221/316 133/174 185/249 177/239
Fornix (cres)/stria terminalis R (fx/stR) 274/288 129/132 221/227 216/223

Superior fronto-occipital fasciculus L (sfofL) 28/93 57/114 52/117 52/112
Superior fronto-occipital fasciculus R (sfofR) 62/98 83/112 88/113 95/112

Superior longitudinal fasciculus L (slfL) 478/1332 714/1694 640/1662 716/1769
Superior longitudinal fasciculus R (slfR) 765/1402 833/1640 1030/1702 892/1760

Tapetum L (ttL) 0/2 10/15 20/29 30/54
Tapetum R (ttR) 5/20 3/22 15/54 19/78

Uncinate fasciculus L (ufL) 0/16 0/28 0/10 0/6
Uncinate fasciculus R (ufR) 11/13 5/10 13/17 7/7

Total 16885/30017 16040/29481 16785/29740 15864/29888
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Table 2.7.
Summary of the number of statistically significant voxels that exhibit higher MD
at In2 vs. Pre (numerator), with respect to the corresponding total number of
voxels within each ROI (denominator), for the standardized and population-
specific DTI templates. L/R: Left/right hemisphere.

ROI FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

Cereral peduncle L (cpL) 0/247 0/230 0/244 0/240
Cereral peduncle R (cpR) 185/283 135/249 168/271 143/253

Cingulum (cingulate gyrus) L (cgL) 0/487 22/278 0/320 0/213
Cingulum (cingulate gyrus) R (cgR) 216/422 99/252 0/251 0/111

Superior corona radiata L (scrL) 137/1234 5/1318 107/1370 5/1345
Superior corona radiata R (scrR) 1014/1323 1089/1369 1072/1387 1098/1363
Anterior corona radiata L (acrL) 0/1546 0/1583 7/1583 0/1589
Anterior corona radiata R (acrR) 309/1504 322/1628 294/1635 290/1633
Posterior corona radiata L (pcrL) 8/741 0/695 0/683 0/687
Posterior corona radiata R (pcrR) 204/818 170/820 168/859 186/819

Body of corpus callosum (bcc) 1225/3142 1104/3182 955/3295 1025/3360
Genu of corpus callosum (bcc) 312/1743 154/1823 324/1696 186/1786

Splenium of corpus callosum (bcc) 73/2528 22/2278 53/2397 52/2397
External capsule L (ecL) 0/1353 0/1351 0/1287 0/1340
External capsule R (ecR) 843/1239 842/1240 821/1162 805/1244

Fornix (fx) 0/162 44/142 2/162 0/168
Cingulum (hippocampus) L [cg(h)L] 0/60 0/14 0/42 0/53
Cingulum (hippocampus) R [cg(h)R] 0/110 0/44 0/77 0/81

Ilf/Ifof L 0/241 0/183 0/185 0/205
Ilf/Ifof R 229/334 169/279 178/258 152/225

Anterior limb of internal capsule L (alicL) 0/776 0/703 0/729 0/735
Anterior limb of internal capsule R (alicR) 518/786 465/771 460/725 473/760
Posterior limb of internal capsule L (plicL) 0/859 0/853 0/857 0/862
Posterior limb of internal capsule R (plicR) 703/858 669/835 680/855 725/872

Retrolenticular part of internal capsule L (rlicL) 0/782 0/796 0/795 0/793
Retrolenticular part of internal capsule R (rlicR) 409/767 385/774 376/768 362/759

Posterior thalamic radiation L (ptrL) 0/991 0/881 0/755 0/763
Posterior thalamic radiation R (ptrR) 123/1101 103/969 93/912 99/872

Fornix (cres)/stria terminalis L (fx/stL) 0/316 0/174 0/249 0/239
Fornix (cres)/stria terminalis R (fx/stR) 180/288 63/132 136/227 130/223

Superior fronto-occipital fasciculus L (sfofL) 0/93 0/114 0/117 0/112
Superior fronto-occipital fasciculus R (sfofR) 78/98 99/112 93/113 76/112

Superior longitudinal fasciculus L (slfL) 0/1332 0/1694 0/1662 0/1769
Superior longitudinal fasciculus R (slfR) 762/1402 821/1640 834/1702 861/1760

Tapetum L (ttL) 0/2 0/15 0/29 0/54
Tapetum R (ttR) 3/20 0/22 0/54 0/78

Uncinate fasciculus L (ufL) 0/16 0/28 0/10 0/6
Uncinate fasciculus R (ufR) 13/13 9/10 17/17 7/7

Total 7544/30017 6791/29481 6838/29740 6675/29888
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Table 2.8.
Summary of the number of statistically significant voxels that exhibit lower AD
at In2 vs. Pre (numerator), with respect to the corresponding total number
of voxels within each ROI (denominator), for the standardized and population-
specific DTI templates. L/R: Left/right hemisphere.

ROI FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

Cereral peduncle L (cpL) 109/247 0/230 0/244 0/240
Cereral peduncle R (cpR) 0/283 0/249 0/271 0/253

Cingulum (cingulate gyrus) L (cgL) 0/487 0/278 0/320 0/213
Cingulum (cingulate gyrus) R (cgR) 0/422 0/252 0/251 0/111

Superior corona radiata L (scrL) 0/1234 0/1318 0/1370 0/1345
Superior corona radiata R (scrR) 0/1323 0/1369 0/1387 0/1363
Anterior corona radiata L (acrL) 0/1546 0/1583 0/1583 0/1589
Anterior corona radiata R (acrR) 0/1504 0/1628 0/1635 0/1633
Posterior corona radiata L (pcrL) 35/741 0/695 0/683 0/687
Posterior corona radiata R (pcrR) 0/818 0/820 0/859 0/819

Body of corpus callosum (bcc) 0/3142 0/3182 0/3295 0/3360
Genu of corpus callosum (bcc) 0/1743 0/1823 0/1696 0/1786

Splenium of corpus callosum (bcc) 67/2528 0/2278 0/2397 0/2397
External capsule L (ecL) 63/1353 0/1351 40/1287 0/1340
External capsule R (ecR) 0/1239 0/1240 0/1162 0/1244

Fornix (fx) 0/162 0/142 0/162 0/168
Cingulum (hippocampus) L [cg(h)L] 0/60 0/14 0/42 0/53
Cingulum (hippocampus) R [cg(h)R] 0/110 0/44 0/77 0/81

Ilf/Ifof L 57/241 0/183 75/185 0/205
Ilf/Ifof R 0/334 0/279 0/258 0/225

Anterior limb of internal capsule L (alicL) 0/776 0/703 0/729 0/735
Anterior limb of internal capsule R (alicR) 0/786 0/771 0/725 0/760
Posterior limb of internal capsule L (plicL) 48/859 0/853 23/857 0/862
Posterior limb of internal capsule R (plicR) 0/858 0/835 0/855 0/872

Retrolenticular part of internal capsule L (rlicL) 389/782 0/796 402/795 95/793
Retrolenticular part of internal capsule R (rlicR) 0/767 0/774 0/768 0/759

Posterior thalamic radiation L (ptrL) 100/991 0/881 26/755 5/763
Posterior thalamic radiation R (ptrR) 0/1101 0/969 0/912 0/872

Fornix (cres)/stria terminalis L (fx/stL) 16/316 0/174 5/249 0/239
Fornix (cres)/stria terminalis R (fx/stR) 0/288 0/132 0/227 0/223

Superior fronto-occipital fasciculus L (sfofL) 0/93 0/114 0/117 0/112
Superior fronto-occipital fasciculus R (sfofR) 0/98 0/112 0/113 0/112

Superior longitudinal fasciculus L (slfL) 0/1332 0/1694 0/1662 0/1769
Superior longitudinal fasciculus R (slfR) 0/1402 0/1640 0/1702 0/1760

Tapetum L (ttL) 0/2 0/15 0/29 0/54
Tapetum R (ttR) 0/20 0/22 0/54 0/78

Uncinate fasciculus L (ufL) 4/16 0/28 0/10 0/6
Uncinate fasciculus R (ufR) 0/13 0/10 0/17 0/7

Total 888/30017 0/29481 571/29740 100/29888
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Table 2.9.
Summary of the number of statistically significant voxels that exhibit higher
RD at In2 vs. Pre (numerator), with respect to the corresponding total number
of voxels within each ROI (denominator), for the standardized and population-
specific DTI templates. L/R: Left/right hemisphere.

ROI FMRIB58 IITv3.0 PNG (ANTs) PNG (DTI-TK)

Cereral peduncle L (cpL) 0/247 0/230 0/244 0/240
Cereral peduncle R (cpR) 237/283 185/249 223/271 192/253

Cingulum (cingulate gyrus) L (cgL) 229/487 121/278 139/320 52/213
Cingulum (cingulate gyrus) R (cgR) 227/422 112/252 125/251 4/111

Superior corona radiata L (scrL) 569/1546 513/1583 445/1583 597/1589
Superior corona radiata R (scrR) 419/1504 391/1628 404/1635 407/1633
Anterior corona radiata L (acrL) 122/741 105/695 127/683 111/687
Anterior corona radiata R (acrR) 236/818 260/820 256/859 244/819
Posterior corona radiata L (pcrL) 373/1234 457/1318 302/1370 511/1345
Posterior corona radiata R (pcrR) 1206/1323 1285/1369 1296/1387 1249/1363

Body of corpus callosum (bcc) 1792/3142 1804/3182 1873/3295 1901/3360
Genu of corpus callosum (bcc) 690/1743 702/1823 677/1696 689/1786

Splenium of corpus callosum (bcc) 1227/2528 1024/2278 1099/2397 1017/2397
External capsule L (ecL) 39/1353 34/1351 0/1287 22/1340
External capsule R (ecR) 933/1239 943/1240 929/1162 959/1244

Fornix (fx) 19/162 75/142 7/162 0/168
Cingulum (hippocampus) L [cg(h)L] 0/60 0/14 0/42 0/53
Cingulum (hippocampus) R [cg(h)R] 0/110 0/44 0/77 0/81

Ilf/Ifof L 0/241 0/183 0/185 0/205
Ilf/Ifof R 282/334 204/279 205/258 175/225

Anterior limb of internal capsule L (alicL) 0/776 0/703 0/729 0/735
Anterior limb of internal capsule R (alicR) 583/786 563/771 532/725 539/760
Posterior limb of internal capsule L (plicL) 0/859 80/853 111/857 0/862
Posterior limb of internal capsule R (plicR) 719/858 707/835 727/855 773/872

Retrolenticular part of internal capsule L (rlicL) 67/782 0/796 124/795 2/793
Retrolenticular part of internal capsule R (rlicR) 584/767 571/774 622/768 600/759

Posterior thalamic radiation L (ptrL) 112/991 53/881 64/755 3/763
Posterior thalamic radiation R (ptrR) 197/1101 220/969 157/912 214/872

Fornix (cres)/stria terminalis L (fx/stL) 0/316 0/174 0/249 0/239
Fornix (cres)/stria terminalis R (fx/stR) 260/288 118/132 209/227 199/223

Superior fronto-occipital fasciculus L (sfofL) 0/93 0/114 0/117 0/112
Superior fronto-occipital fasciculus R (sfofR) 87/98 107/112 105/113 99/112

Superior longitudinal fasciculus L (slfL) 169/1332 69/1694 250/1662 295/1769
Superior longitudinal fasciculus R (slfR) 840/1402 877/1640 1046/1702 1001/1760

Tapetum L (ttL) 0/2 5/15 9/29 11/54
Tapetum R (ttR) 4/20 3/22 13/54 16/78

Uncinate fasciculus L (ufL) 0/16 0/28 0/10 0/6
Uncinate fasciculus R (ufR) 13/13 10/10 17/17 7/7

Total 12235/30017 11598/29481 12093/29740 11889/29888
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Table 2.10.
Summary of linear mixed-effect regression analyses of the longitudinal FA
changes during a single season. L/R: Left/right hemisphere.

ROI Template AIC tTimepoint pTimepoint ROI Template AIC tTimepoint pTimepoint

Cerebral peduncle L FMRIB58 -999.006 -3.933 <0.001 Internal capsule - anterior R FMRIB58 -893.710 -3.600 <0.001
Cerebral peduncle L IITv3.0 -965.835 -4.022 <0.001 Internal capsule - anterior R IITv3.0 -897.371 -4.006 <0.001
Cerebral peduncle L PNG (ANTs) -973.708 -3.951 <0.001 Internal capsule - anterior R PNG (ANTs) -890.680 -3.790 <0.001
Cerebral peduncle L PNG (DTI-TK) -957.593 -3.832 <0.001 Internal capsule - anterior R PNG (DTI-TK) -888.374 -3.921 <0.001

Cingulum R FMRIB58 -700.252 -2.424 0.017 Internal capsule - posterior R FMRIB58 -963.365 -3.631 <0.001
Cingulum R IITv3.0 -842.960 -3.613 <0.001 Internal capsule - posterior R IITv3.0 -940.976 -3.519 0.001
Cingulum R PNG (ANTs) -807.769 -3.089 0.002 Internal capsule - posterior R PNG (ANTs) -936.896 -3.512 0.001
Cingulum R PNG (DTI-TK) -503.286 -1.590 0.114 Internal capsule - posterior R PNG (DTI-TK) -934.373 -3.565 0.001

Corona radiata - anterior L FMRIB58 -949.874 -5.608 <0.001 Ilf/Ifof L FMRIB58 -803.620 -3.122 0.002
Corona radiata - anterior L IITv3.0 -965.638 -5.730 <0.001 Ilf/Ifof L IITv3.0 -756.940 -2.823 0.006
Corona radiata - anterior L PNG (ANTs) -950.563 -5.427 <0.001 Ilf/Ifof L PNG (ANTs) -782.879 -2.949 0.004
Corona radiata - anterior L PNG (DTI-TK) -938.728 -5.380 <0.001 Ilf/Ifof L PNG (DTI-TK) -773.210 -2.870 0.005

Corona radiata - anterior R FMRIB58 -909.229 -4.273 <0.001 Stria terminalis L FMRIB58 -762.923 -2.749 0.007
Corona radiata - anterior R IITv3.0 -910.472 -4.359 <0.001 Stria terminalis L IITv3.0 -779.923 -3.256 0.001
Corona radiata - anterior R PNG (ANTs) -885.240 -3.761 <0.001 Stria terminalis L PNG (ANTs) -770.464 -2.895 0.004
Corona radiata - anterior R PNG (DTI-TK) -915.480 -3.729 <0.001 Stria terminalis L PNG (DTI-TK) -758.315 -2.880 0.005

Corona radiata - posterior L FMRIB58 -984.764 -3.561 0.001 Superior fronto-occipital fasciculus R FMRIB58 -815.550 -2.341 0.021
Corona radiata - posterior L IITv3.0 -936.434 -3.208 0.002 Superior fronto-occipital fasciculus R IITv3.0 -828.499 -2.756 0.007
Corona radiata - posterior L PNG (ANTs) -949.140 -2.919 0.004 Superior fronto-occipital fasciculus R PNG (ANTs) -857.783 -2.601 0.010
Corona radiata - posterior L PNG (DTI-TK) -948.283 -3.060 0.003 Superior fronto-occipital fasciculus R PNG (DTI-TK) -800.028 -2.527 0.013

Corona radiata - superior L FMRIB58 -1001.893 -3.744 <0.001 Superior fronto-occipital fasciculus L FMRIB58 -867.900 -2.153 0.033
Corona radiata - superior L IITv3.0 -1006.359 -3.888 <0.001 Superior fronto-occipital fasciculus L IITv3.0 -875.889 -2.657 0.009
Corona radiata - superior L PNG (ANTs) -1015.911 -4.134 <0.001 Superior fronto-occipital fasciculus L PNG (ANTs) -900.604 -2.504 0.014
Corona radiata - superior L PNG (DTI-TK) -1016.414 -4.144 <0.001 Superior fronto-occipital fasciculus L PNG (DTI-TK) -854.079 -2.480 0.014

Corona radiata - superior R FMRIB58 -976.167 -4.211 <0.001 Superior longitudinal fasciculus L FMRIB58 -971.099 -3.546 0.001
Corona radiata - superior R IITv3.0 -974.193 -4.117 <0.001 Superior longitudinal fasciculus L IITv3.0 -996.790 -4.505 <0.001
Corona radiata - superior R PNG (ANTs) -976.064 -4.314 <0.001 Superior longitudinal fasciculus L PNG (ANTs) -980.142 -4.146 <0.001
Corona radiata - superior R PNG (DTI-TK) -966.943 -4.117 <0.001 Superior longitudinal fasciculus L PNG (DTI-TK) -1004.102 -4.592 <0.001

External capsule R FMRIB58 -978.784 -3.761 <0.001 Superior longitudinal fasciculus R FMRIB58 -902.519 -3.357 0.001
External capsule R IITv3.0 -966.536 -3.966 <0.001 Superior longitudinal fasciculus R IITv3.0 -882.844 -3.333 0.001
External capsule R PNG (ANTs) -973.989 -3.771 <0.001 Superior longitudinal fasciculus R PNG (ANTs) -904.064 -3.397 0.001
External capsule R PNG (DTI-TK) -959.332 -3.905 <0.001 Superior longitudinal fasciculus R PNG (DTI-TK) -892.056 -3.408 0.001

Internal capsule - anterior L FMRIB58 -997.917 -4.395 <0.001
Internal capsule - anterior L IITv3.0 -983.458 -4.613 <0.001
Internal capsule - anterior L PNG (ANTs) -969.372 -4.228 <0.001
Internal capsule - anterior L PNG (DTI-TK) -975.600 -4.363 <0.001

(cont.)
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Table 2.11.
Summary of linear mixed-effect regression analyses of the longitudinal MD
changes during a single season. L/R: Left/right hemisphere.

ROI Template AIC tTimepoint pTimepoint

Corona radiata - superior L FMRIB58 -3540.243 2.901 0.004
Corona radiata - superior L IITv3.0 -3397.201 1.620 0.108
Corona radiata - superior L PNG (ANTs) -3531.498 2.907 0.004
Corona radiata - superior L PNG (DTI-TK) -3379.134 1.812 0.072

Corona radiata - posterior R FMRIB58 -3519.733 3.933 <0.001
Corona radiata - posterior R IITv3.0 -3513.535 4.119 <0.001
Corona radiata - posterior R PNG (ANTs) -3516.493 3.991 <0.001
Corona radiata - posterior R PNG (DTI-TK) -3526.663 4.227 <0.001

External capsule R FMRIB58 -3442.098 3.672 <0.001
External capsule R IITv3.0 -3432.47 3.605 <0.001
External capsule R PNG (ANTs) -3434.88 3.625 <0.001
External capsule R PNG (DTI-TK) -3427.17 3.626 <0.001

Internal capsule - anterior R FMRIB58 -3486.412 4.128 <0.001
Internal capsule - anterior R IITv3.0 -3490.873 4.339 <0.001
Internal capsule - anterior R PNG (ANTs) -3489.208 4.291 <0.001
Internal capsule - anterior R PNG (DTI-TK) -3481.104 4.353 <0.001

Internal capsule - retrolenticular R FMRIB58 -3496.76 3.524 0.001
Internal capsule - retrolenticular R IITv3.0 -3483.141 3.648 <0.001
Internal capsule - retrolenticular R PNG (ANTs) -3497.656 3.622 <0.001
Internal capsule - retrolenticular R PNG (DTI-TK) -3491.496 3.481 0.001

Posterior thalamic radiation R FMRIB58 -3292.574 3.475 0.001
Posterior thalamic radiation R IITv3.0 -3286.593 3.504 0.001
Posterior thalamic radiation R PNG (ANTs) -3289.02 3.581 <0.001
Posterior thalamic radiation R PNG (DTI-TK) -3289.954 3.432 0.001

Stria terminalis R FMRIB58 -3400.108 3.900 <0.001
Stria terminalis R IITv3.0 -3360.821 4.016 <0.001
Stria terminalis R PNG (ANTs) -3391.484 4.221 <0.001
Stria terminalis R PNG (DTI-TK) -3393.781 4.121 <0.001
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Table 2.12.
Summary of linear mixed-effect regression analyses of the longitudinal RD
changes during a single season. L/R: Left/right hemisphere.

ROI Template AIC tTimepoint pTimepoint

Corona radiata - anterior L FMRIB58 -3428.679 3.485 0.001
Corona radiata - anterior L IITv3.0 -3425.700 3.424 0.001
Corona radiata - anterior L PNG (ANTs) -3423.187 3.378 0.001
Corona radiata - anterior L PNG (DTI-TK) -3445.185 3.519 0.001

Corona radiata - posterior L FMRIB58 -3504.331 3.278 0.001
Corona radiata - posterior L IITv3.0 -3534.104 3.353 0.001
Corona radiata - posterior L PNG (ANTs) -3524.536 2.962 0.004
Corona radiata - posterior L PNG (DTI-TK) -3521.961 3.226 0.002

Corona radiata - posterior R FMRIB58 -3458.142 3.595 ¡0.001
Corona radiata - posterior R IITv3.0 -3491.897 3.634 ¡0.001
Corona radiata - posterior R PNG (ANTs) -3478.747 3.543 0.001
Corona radiata - posterior R PNG (DTI-TK) -3478.698 3.678 ¡0.001

Corona radiata - superior L FMRIB58 -3541.785 3.433 0.001
Corona radiata - superior L IITv3.0 -3557.260 3.209 0.002
Corona radiata - superior L PNG (ANTs) -3527.164 3.132 0.002
Corona radiata - superior L PNG (DTI-TK) -3573.729 3.386 0.001

Corona radiata - superior R FMRIB58 -3530.146 3.637 ¡0.001
Corona radiata - superior R IITv3.0 -3525.039 3.624 ¡0.001
Corona radiata - superior R PNG (ANTs) -3520.918 3.709 ¡0.001
Corona radiata - superior R PNG (DTI-TK) -3510.795 3.691 ¡0.001

Cingulum R FMRIB58 -3418.196 3.696 ¡0.001
Cingulum R IITv3.0 -3449.840 4.119 ¡0.001
Cingulum R PNG (ANTs) -3409.712 3.802 ¡0.001
Cingulum R PNG (DTI-TK) -3076.682 2.334 0.021

External capsule R FMRIB58 -3441.819 3.673 ¡0.001
External capsule R IITv3.0 -3430.025 3.626 ¡0.001
External capsule R PNG (ANTs) -3435.033 3.640 ¡0.001
External capsule R PNG (DTI-TK) -3438.866 3.679 ¡0.001

Internal capsule - posterior R FMRIB58 -3523.569 3.928 ¡0.001
Internal capsule - posterior R IITv3.0 -3505.418 3.850 ¡0.001
Internal capsule - posterior R PNG (ANTs) -3492.866 3.860 ¡0.001
Internal capsule - posterior R PNG (DTI-TK) -3490.177 3.804 ¡0.001

Internal capsule - retrolenticular R FMRIB58 -3448.227 3.659 ¡0.001
Internal capsule - retrolenticular R IITv3.0 -3444.532 3.594 ¡0.001
Internal capsule - retrolenticular R PNG (ANTs) -3454.165 3.501 0.001
Internal capsule - retrolenticular R PNG (DTI-TK) -3439.085 3.285 0.001

Superior longitudinal fasciculus L FMRIB58 -3546.147 3.125 0.002
Superior longitudinal fasciculus L IITv3.0 -3506.088 3.064 0.003
Superior longitudinal fasciculus L PNG (ANTs) -3535.539 2.973 0.004
Superior longitudinal fasciculus L PNG (DTI-TK) -3561.371 3.435 0.001
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2.6 Discussion

Due to repetitive head impacts experienced during practices and games, EMA collision-
sport athletes may exhibit a distinct neurological trajectory that is different from those
typical at the same age. Bias may be introduced when modeling the neurological con-
sequences using the existing standardized human brain atlases based on healthy adult or
adolescent populations, leading to confounding (sometimes even contradictory) findings. In
this work, population-specific brain atlases were developed for EMA collision-sport ath-
letes in the PNG longitudinal database. Compared to the standardized adult or other
age-appropriate T1 templates (Fig. 2.2), significantly fewer biases were introduced in spa-
tial normalization using PNG T1 template (Fig. 2.4). The PNG (ANTs) DTI template
resulted in minimal biases compared to the standardized or PNG (DTI-TK) DTI templates
(Table 2.3, Fig. 2.5), and the selection contributed to different sensitivity of detecting DTI
changes in TBSS (Tables 2.5 2.6, 2.7, 2.8, and 2.9; Figs. 2.6, 2.7, 2.8, and 2.9), whereas the
sensitivity of detecting longitudinal change of DTI metrics from ROI-based regression anal-
yses was relatively comparable (Tables 2.10, 2.11, and 2.12). In summary, the main findings
suggested that the brain atlases better characterized the neuroanatomy of EMA collision-
sport athletes, reduced biases introduced during spatial normalization, and exhibited higher
sensitivity in detecting regional DTI differences. As template selection is a critical strategic
step towards robust and rigorous statistical findings, we expect neuroimaging and clinical
researchers will benefit from the proposed atlases to better clarify mechanisms of mTBI and
monitor brain health of EMA collision-sport athletes.

The strengths and limitations between standardized and population-specific brain atlas
have been discussed [117, 120]. Being a pragmatic option for computational efficiency, a
standardized brain atlas often comes with a comprehensive set of templates and semantic
labels, facilitating the processing and analysis of brain images acquired from multiple sites
or studies [120]. However, when the underlying neuroanatomy of the study population
is different, mis-registration can lead to greater bias and errors in voxel-wise and ROI-
based statistical analysis. On the other hand, the registration errors of using a population-
specific template are unbiased towards the study population; however, the template usually
lacks semantic labels [117]; therefore, subsequent transformation to a standard space (e.g.,
ICBM152) is required for interpreting the statistical maps [185]. In addition, suboptimal
data quality can lead to a poorly constructed template and lowers spatial normalization
accuracy [120, 125, 186], so a nontrivial amount of diligence is demanded in constructing
population-specific templates. The selection strategy largely depends on the specific study,
including research questions to address, participants of the study, as well as the number,
type, and quality of data [117]. Neuroimaging researchers working on clinical populations
should carefully leverage these aspects to ensure rigorous and robust neuroimaging findings
are reported in clinical literature and be cautious when reporting voxel-wise statistical
findings based off of non-specific brain atlas.

This work clarified the advantages and limitations of constructing population-specific
DTI templates (Fig. 2.2B) using scalar-based (ANTs) and tensor-based (DTI-TK) registra-
tions. Conventionally, spatial normalization of diffusion tensor fields is achieved by aligning
the b0 image to the anatomical T1 image [187], and our evaluation showed that this ap-
proach introduced minimal biases in spatial normalization (Table 2.3, Fig. 2.5). ANTs is
a diffeomorphic registration that uses cross-correlation metrics to optimize the shape and
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appearance during template construction, with the underlying assumption that possibly
different shapes of the same structures exist in both images [171]; as a result, the PNG
(ANTs) template has a sharp appearance that can discern adjacent white matter tracts.
Unlike ANTs, DTI-TK utilizes the six tensor components and does not include such tem-
plate update procedures, and the PNG (DTI-TK) template was computed as the average of
the co-registered dataset. Although the appearance was more blurred than the PNG (ANTs)
template, adjacent white matter tracts can be discerned. While it is commonly believed that
tensor-based registration algorithms improve the registration quality of DTI [185,188–190],
the estimates of tensor in certain biological structures (e.g., the fornix) can be not very ac-
curate, which may adversely affect the quality of the constructed template. A combination
of tensor information with a scalar-based registration method can potentially improve the
quality of a population-specific template [191].

According to the voxel-based morphometric analyses (Fig. 2.4), using the PNG T1 tem-
plate introduced minimal bias during spatial normalization of the T1 images from the EMA
collision-sport athletes, even compared to the NIHPD13.0−18.5 template (Fig. 2.4B). Given
that the NIHPD template was constructed based on healthy adolescents of similar age range,
one explanation is that the trajectory of subcortical volumes in adolescent collision-sport
athletes may be different from healthy adolescents of similar ages. Previously, Narvacan et
al. [116] reported in a lifespan study of healthy adolescents that at age 13-17, non-linear
decrease of subcortical volumes was observed within certain regions for the male partici-
pants. It would then comprise a meaningful exploration to see whether the trajectory of
subcortical volumes can be driven by sports-related concussion and subconcussive trauma.
Notably, future work is needed to validate the T1-based semantic labels (Fig. 2.1A), which
may be applied to investigate the regional volumetric trajectory.

The selection of DTI templates did not lead to significantly different TBSS skeleton
but was a significant covariate for the voxel-wise statistical analyses (Table 2.4, 2.5, Ta-
bles 2.6, 2.7, 2.8, and 2.9). Previously, utilizing the standardized FMRIB58 template in
TBSS processing, abnormal DTI changes in 64 adolescent football athletes from Pre to
In2 was observed, including decreased FA, decreased AD, increased MD, and increased
RD [166, 167]. In this work, compared to FMRIB58, the PNG (ANTs) template resulted
in consistent but more sensitive detection of FA decrease within the fornix and bilateral
cingula (hippocampi), whereas on the skeletons of IITv3.0 and PNG (DTI-TK), such differ-
ence was either detected with fewer voxels or not statistically significant (Fig. 2.6). Fornix
and hippocampus are major parts of the limbic system. Surrounded by cerebrospinal fluids,
the main body of the fornix is located in the midline of the brain, with neuronal projections
to bilateral cingula (hippocampi) in medial temporal lobes. Fornix is critical for normal
cognitive functioning; literature reported atrophy in fornix for neurological disorders [192].
The hippocampus consists of gray matter, with a thin layer of white matter on its ventricu-
lar surface [193]. Atrophy of hippocampus a common neuropathology in chronic traumatic
encephalopathy [194,195]. The volume of bilateral cingula (hippocampi) correlated with FA
in the fornix [196], and reduced fornix and hippocampal volumes reported in morphometric
study of TBI [197] (for review, see Shenton et al. [198]). Both structures are relatively small
and prone to mis-registration in DWI, due to low spatial resolution, geometric distortions
from eddy current, and partial volume effects [199–202]. The PNG (ANTs) template po-
tentially provided DTI insights that complemented the volumetric findings and were likely
due to subconcussive trauma, to the best of our knowledge, in white matter tracts not pre-
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viously observed for this vulnerable population. Consistent with Cabeen et al. [127] that
the study template resulted in significantly larger number of voxels in the fornix, the higher
sensitivity within these areas was perhaps attributable to the better anatomical alignment
in PNG T1 template, which is unbiased towards the study population and better captured
anatomical structure than the standardized templates (Fig. 2.2).

This work has several limitations. Considering that our recruited participants were
exclusively male football or female soccer players (Table 2.2), we constructed brain atlases
only for the combined collision-sport population and not for each sport, but sex differences
may exist and warrant future investigation to determine the necessity of having sex-specific
brain atlases for collision sports. Subjective bias from observer during the visual quality
assessments may negatively impact the quality of the final templates; in the future, quality
assessments should be automated, with specific and objective guideline (e.g., in Jang et
al. [78]). Template selection is only one out of many aspects in image processing pipeline
that contributes to the inconsistent DTI findings reported in mTBI literature; to achieve
reproducible and meaningful results, variability in study design, scanning parameters, and
analytic techniques should also be considered [144, 203, 204]. The PNG T1 template was
constructed using buildtemplateparallel.sh, which was found to have an issue of rigid-only
registration and later superseded by antsMultivariateTemplateConstruction.sh. This could
have an impact on the quality of individual templates based on repeated scans (Fig. 2.1A).
There are several limitations when using ANTs for template construction [117]: first, due to
the differences in acquisition protocols, DWI data often have artifacts such as distortions due
to eddy currents, so that mis-registration can occur between b0 and T1-weighted images.
Second, since white matter has rather homogeneous intensity on a T1 image, using the
warping of T1 images to guide DTI alignment may lead to mismatch of white matter
alignment. This work evaluated the proposed DTI templates using real data and compared
to previous findings based on standardized template [166,167], but a more robust scheme of
evaluation is to employ simulated data, with a priori knowledge of the pathology as a ground
truth [205]; such a scheme is robust for modeling pathology like multiple sclerosis, where
white matter degeneration is well characterized by the corresponding FA reduction [206,207],
but is difficult for sports-related mTBI and subconcussive trauma in adolescents, given the
conflicting DTI characterization for axonal pathology in literature [144].

2.7 Conclusion

In summary, we demonstrated that template selection is a critical strategic step towards
robust and rigorous findings in voxel-wise analysis. In this work, utilizing a high-throughput
high-performance computing workflow that shortened the computation time of template
construction, population-specific brain atlases were constructed for EMA collision-sport
athletes in the PNG longitudinal database. We compared two population-specific DTI
templates constructed using scalar-based (ANTs) and tensor-based (DTI-TK) registration
methods respectively. Evaluations of the T1 templates (ICBM152, NIHPD13.0−18.5, IITv3.0,
PNG T1) showed that during spatial normalization of the images from new participants,
minimal changes in morphometry were introduced using the PNG T1 template. We further
showed that selection of the DTI templates contributed to different sensitivity in detecting
the abnormal DTI changes observed in high school football athletes over a single season; on
the TBSS skeletons, voxels of significant FA decrease within the fornix and bilateral cingula
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(hippocampi) were either missing or spurious on the standardized (FMRIB58, IITv3.0)
and PNG (DTI-TK) templates. Applying the unbiased brain templates can better clarify
mechanisms of mTBI and monitor brain health of EMA collision-sport athletes.
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3. MONITOR REPETITIVE HEAD IMPACTS ON BRAIN HEALTH
OF HIGH SCHOOL MEN’S FOOTBALL AND WOMEN’S SOCCER

ACROSS A SINGLE SEASON

3.1 Abstract

Accrual of traumatic brain injury due to repetitive head acceleration events (HAEs)
in collision sports has raised growing concerns, yet adolescent athletes continue to partici-
pate without prompt and effective preventative strategies. Using diffusion tensor imaging
(DTI), we monitored changes of white matter microstructure in high school football (males,
N = 57) and soccer (females, N = 13) athletes across a single season with accompanying
head impact monitoring and neurocognitive assessment. Whole-brain tract-based spatial
statistics showed widespread decrease of fractional anisotropy (FA) and axial diffusivity
(AD), and increase of mean (MD) and radial diffusivity (RD), from preseason to ten weeks
in-season. The deficits in FA, MD, and RD persisted to one month post-season, although
AD did increase. ROI-based ANCOVA suggested typical white matter maturation as age
increase, but individuals with more years of high school experience exhibited lower FA or
higher MD than those that had participated for fewer years. For the football athletes, hits
with peak translational acceleration over 37 g were sufficient to alter the distributions of
DTI changes, and poorer performance of anti-saccade task at one month post-season was
associated with higher MD and RD, suggesting that persistent deficits in white matter mi-
crostructure may increase vulnerability for inhibitory control. Monitoring HAE exposures
in practices and games thus provides a temporal profile for identifying at-risk individu-
als during the competitive season, informing prompt interventional strategies, therefore
preventing persistence of deficits into post-season and preventing the brain and cognitive
health of adolescent collision-sport athletes in the long run.

3.2 Keywords

Magnetic Resonance Imaging; Diffusion Tensor Imaging; Subconcussive Trauma; Ado-
lescence; Cognition

3.3 Introduction

In the United States, about 3.8 million cases of sport-related concussion or other forms
of traumatic brain injury (TBI) are reported every year [8, 13], with many more milder
and untreated brain injuries unaccounted for [7]. One critical aspect of collision sports
[208] is the exposure to subconcussive head acceleration events (HAEs) [29], which induce
sudden head movement through direct acceleration-deceleration or rotation of the head
(a.k.a. slosh effect) that do not necessarily result in easily observable clinical symptoms
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[79–81]. Reported head accelerations for American football can exceed 250g and the number
of head impacts experienced in a season may range from 200-1900 [82,208–210].

Adolescent athletes bear a higher rate of head injury and prolonged recovery than the
adults [9, 14] and are particularly vulnerable to injury from subconcussive HAEs, because
during adolescence, brain and cognition are undergoing a critical period of development [211,
212], with increase in white matter (WM) volume [131, 213, 214] and myelination of axons
[146, 215–220]. Over years of practices and competitions, subconcussive HAEs accumulate
and may eventually result in cognitive impairments without symptom of concussion [61,
64, 221, 222]. To detect potential structural injury in the brain that requires neurosurgical
intervention (e.g., hemorrhage), computed tomography and structural magnetic resonance
imaging (MRI) typically are performed, but neither can capture the neurophysiological
features of concussions or a milder form of TBI [223].

Diffusion tensor imaging (DTI) is an MRI technique that non-invasively evaluates the
WM microstructural integrity [97, 105, 224, 225] and provide sensitivity profiles of water
diffusion in pathology [110]. In DTI metrics, fractional anisotropy (FA) is sensitive to the
myelination of axons, as well as the size and density of axonal network; mean diffusivity
(MD) reflects the overall magnitude of water diffusion in extracellular volume [95,225,226].
Normal WM fibers have intact myelin layers and therefore exhibit high FA; lower FA, on
the other hand, indicates less directional water diffusion that often suggests demyelination
due to neurotrauma, and is typically associated with higher MD [227–229]. Additional
DTI metrics include axial diffusivity (AD) and radial diffusivity (RD); evidence in animal
studies suggest that AD and RD measures correspond to pathology in axon and myelin
respectively [230, 231], where notable decrease of AD typically develops during the acute
phase (within the first 2 weeks) of mild TBI (mTBI) [232]. As these metrics reflect fiber
organization and myelin changes in the brain, DTI has been applied to detect damage to
WM microstructure and provide evidence for TBI and concussion [150,233–236].

DTI literature of collision-sport athletes mainly addressed adult population [198, 237,
238] and engaged various analytic approaches [144]. For those studied adolescents and
utilized voxel-wise or region of interest (ROI) analysis, conflicting differences or changes of
DTI metrics were reported. Borich et al. found higher FA and lower diffusivity (MD, AD,
and RD) primarily in frontal WM during subacute phase of concussed adolescent athletes,
compared to healthy controls [153]. Reduced diffusivity can sustain from subacute to chronic
phase for concussed athletes [239,240], and was observed in healthy athletes across a single
football season as well, within widespread WM tracts [157]. On the contrary, Kuzminski
et al. did not observe significant voxel of FA changes over a single season of high school
football, but the ROI analysis showed decreased FA within the limbic WM tracts [158].
Chun et al. observed increase of the variances of FA changes in several WM tracts over two
seasons of high school football, and such increase correlated with subconcussive HAEs [75].
Jang et al. found that for high school football players, more voxels exhibited changes (both
increases and decreases) of FA and MD compared to the non-collision sport controls, yet
the prolonged exposure to subconcussive HAEs correlated only with the FA decrease and
MD increase [78].

Monitoring and characterizing subconcussive impacts to the brain provide a basis for
effective preventive strategies [30, 119]. Neuroimaging studies of adolescent athletes who
sustained repeated HAEs found structural or functional abnormalities that were related to
the total number of HAEs [64,74,78] or those events whose peak translational acceleration
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(PTA) were at high loads (typically ¿50 g) [63,76,241], and the directionality of DTI changes
may depend on whether the exposure was relatively recent (within two weeks) or remote
(earlier or throughout the competitive season) [242]. Currently, the preventive strategies
being proposed focus on either limiting head impacts [31], such as modifying rules (e.g.
stance of the offensive line in American football) and reducing full-contact practice activi-
ties [243], or developing helmets better at absorbing energy [31, 244–247]. Although these
strategies can effectively lower the amount or magnitude of HAEs, they do not preclude
HAEs from accumulating across the season and over years of practices. It is important to
recognize that each individual athlete possesses a unique temporal profile of HAE exposure
and pertinent impacts to the brain, yet current literature have not addressed when brain
injury (or abnormalities) may occur during the season, i.e., when and to what extent shall
intervention be imposed to effectively prevent brain injury. Therefore, the purpose of this
work is to address how monitoring the brain and behavior of early-to-middle adolescent
athletes during the season may inform strategies for preventing post-season deficits. By
retrospectively analyzing a DTI dataset in a prospective longitudinal study of high school
American football and soccer athletes in the Purdue Neurotrauma Group (PNG) longitu-
dinal MRI database [32], we investigated the DTI changes from preseason to one month
after the season ended, a critical time point where the athletes undergo a dynamic pro-
cess of WM repair after experiencing repetitive HAEs during the competition season [78].
We hypothesized that participants would experience white matter abnormalities during the
season, and that the abnormalities would largely persist to one month post-season. Our
analyses addressed how the alterations of WM microstructure are associated with the ex-
posure to HAEs and cognitive performance. We postulated the concept of cumulative HAE
threshold, such that the white matter health can be monitored during the season on an
individual basis, which may benefit at-risk individuals to prevent post-season deficits.

3.4 Methods

3.4.1 Study Population

High school collision-sport athletes, including 57 football (FB) and 13 soccer (SOC)
players, participated in PNG longitudinal studies approved by the Biomedical IRB of Pur-
due’s Human Research Protection Program and was carried out in accordance with the
Declaration of Helsinki. Before enrolling in the study, written informed consent was ob-
tained from each participant, and subject assent and parental consent were obtained for
participants under the age of 18. Demographic information collected from the participants
include age, years of high-school experience (YoE), concussion history, status of attention
deficit hyperactivity disorder (ADHD), and the racial and ethnic categories (Table 3.1).
All participants completed four MRI sessions: one scan up to one month before contact
practices began (Pre), one scan in the first half of the season (In1), one scan in the second
half of the season (In2), and one scan approx. one month after the end of their competition
season (Post ; Fig. 3.1).

During the period of study, no participant was diagnosed by athletic trainers or team
physicians as being concussed. Subject information such as varsity levels, history of con-
cussion, years of experience (YoE), and ethnicity were collected as a part of the study
(Table 3.1).
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Fig. 3.1. Imaging schedule for high school football (FB) and soccer (SOC)
athletes. The average intervals ( ± standard deviation, in weeks) between the
preseason scanning session (Pre) and the follow-up sessions (In1, In2, Post) are
reported.

Table 3.1.
Demographics of early-to-middle adolescent football (FB) and soccer (SOC)
players with complete set of imaging data.

Group American Football (FB) [N = 57] Soccer (SOC) [N = 13]

Competition season 2016-2017 2015-2016

Gender Male Female

Age (range) 16.1± 1.0 (14, 18) 16.2± 1.0 (14, 18)

Years of high-school experience (YoE)
0 year 6 2
1 year 11 1
2 years 22 5
3 years 18 5

Concussion history
No 40 9
Yes 17 4

ADHD*
No 49 13
Yes 8 0

Racial and ethnic categories
White 33 12
Black or African American 6 0
Hispanic or Latino 5 1
Native American 3 0
More than one 6 0
Unspecified 4 0

* ADHD: Attention deficit hyperactivity disorder.
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3.4.2 Magnetic Resonance Imaging

A 3T General Electric Signa HDx was used for data acquisition, using a 16-channel brain
array (Nova Medical, Wilmington, MA). Diffusion weighted image data were acquired for
DTI analysis using a spin-echo echo-planar imaging sequence (TE = 100 ms, TR = 12,500
ms, 40 slices with 2.5 mm thickness), with 30 diffusion-encoding directions at b = 1000
s/mm2 and one acquisition at b = 0 s/mm2, an acquisition matrix of 96 × 96, with a FOV
of 24 × 24 cm2.

Raw DWI images were upsampled to a 256 × 256 matrix by the MRI system. The DWI
data were preprocessed using FSL (FMRIB 5.0; Oxford, U.K.), including correction for
eddy currents (eddy correct), followed by the extraction of aliasing-corrected brains (BET ).
The DTI metrics (FA, MD, AD, RD) were estimated for each individual (DTIFit), and the
quality of each DTI map was visually inspected to confirm no motion artifact or geometrical
distortion was present.

Tract-based spatial statistics (TBSS) [100] were performed to process all DTI maps for
voxel-wise group-level analysis. First, a study-specific DTI template was constructed using
all the individual FA images, based on a population-specific T1 template for early-to-middle
adolescent collision-sport athletes [168] and using a high-throughput high-performance com-
puting framework [248]. Then, individual FA images were aligned through a nonlinear
transformation algorithm to the study-specific DTI template (tbss 2 reg -t). All aligned
FA images were then normalized to the Montreal Neurological Institute standard space
(MNI152 T1, 1 mm spatial resolution) (tbss 3 postreg). A mean FA skeleton was created
from thinning the mean FA image that was averaged from all FA images of the dataset, thus
representing the common WM tracts across all the subjects (tbss 4 prestats). The skeleton
was thresholded at FA > 0.2 to reduce partial volume effects between borders of different
tissues; this yielded a skeleton of approx. 80,000 upsampled (1 mm isotropic) voxels. To
further reduce partial volume effects, regional maximal FA values were projected onto the
skeleton according to a distance map [100]. Based on the mean FA skeleton, skeletons of
the other DTI metrics were obtained by projecting local DTI values onto the FA skeleton
(tbss non FA).

3.4.3 Head Acceleration Events (HAE) Measurements

Forty-five of the FB participants, and all the SOC participants had HAEs recorded
during all practices and games for the observed season. HAEs were recorded using xPatch
sensors (X2 Biosystems; Seattle, WA). The xPatch was placed behind a players right ear
via adhesive patch after the area was cleaned with rubbing alcohol [84, 208]. Sensors were
used if a football session required full pads and in all sessions for soccer. The raw HAE
measures include PTA and total number of hits.

A detailed protocol of processing the HAE data is documented in Bari et al [63]. To
process the raw HAE measures, recorded data were downloaded after sessions. Only the
recorded data that fell within the valid time window of a practice or game were considered
for analysis; these data were then thresholded to only include those with a PTA greater
than or equal to 20 g [84,208].

Outliers were removed per xPatch session per player, according to the following criteria:
if ≥ 5 HAEs occurred within a 10-second time window during a session, all the readings
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in the time window were flagged. If the number of flagged HAEs in a session accounted
for more than 50% of the impacts for that session, all the HAEs from that session were
removed, because this was indicative of a faulty sensor. Sessions with ≥ 100 recorded HAEs
were considered because all sessions were observed and athletes never approached this many
HAEs in a single session. If a session with ≥ 100 HAEs had an impact rate of 1 impact per
minute, the session was removed. If the session had more than double the number of HAEs
than the session with the greatest number of hits less than 100, the session was removed.
The sensors were power cycled before being deployed for the next session.

In some xPatch sessions, a player participated without an active sensor. To correct for
this and account for the times that a player was active but not wearing a sensor, repair data
was generated. For each PTA threshold, an impact rate was calculated for each player per
session type by dividing a players HAEs for a session type by the total active participation
time for that session type in a season. The impact rate was multiplied by the time in a
session a player was playing without a sensor to determine the number of repair HAEs
needed for that session. Outlier days were also replaced using the same method with the
missed time equal to the total time for the session. The repair HAEs were then used to
estimate the repair PTA per session. For example, the repair PTA for the ith player in the
kth session of the jth session type can be estimated using the Equation:

Repair PTAi
jk = Repair Dataijk × aPTAj,i

The cumulative PTA were calculated by summing up a player’s recorded and repair
PTA to the players specific scan date. The average PTA were calculated by dividing the
cumulative PTA by the total number of HAEs up to the player specific scan date. The total
number of HAEs prior to each of the sessions (In1, In2, Post) was calculated by adding a
player’s recorded number of HAEs and repair data that were occurred on the same or prior
date to the scheduled scan.

3.4.4 Cognitive Measurements

Participants were assessed for neurocognitive function prior to each MRI session. FB
participants completed tests of: 1) Running memory span task, which assessed working
memory [92, 249]; 2) Anti-saccade task, which assessed attention control [93, 250–252], 3)
Go/no-go task, which assessed inhibitory control with go response time individual stan-
dard deviations (RTISD) and no-go accuracy [94, 253]. The SOC participants completed a
computer-based Immediate Post-concussion Assessment and Cognitive Test (ImPACTTM;
ImPACT Applications Inc.; Pittsburgh, PA), a widely-implemented test in the athletic
training community to assist return-to-play decision after clinically-diagnosed concussion
[87, 88]. Four components were evaluated with computed scores, including verbal recog-
nition memory (verbal memory composite), spatial recognition memory (visual memory
composite), processing speed (visual motor speed composite), and reaction time (reaction
time composite).
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3.4.5 Statistical Analyses

Voxel-wise, nonparametric statistical testing was conducted to compare DTI metrics
(FA, MD, AD, RD) and test microstructural abnormalities among the MRI sessions (Pre,
In1, In2, Post) in a whole-brain manner. The resulting skeletons for each subject were
taken as inputs of the FSL Randomise program (Randomise v2.9) [181]. The testing was
conducted with 5,000 permutations, using a repeated measures ANOVA design, on contrasts
among pairs of the MRI sessions (Pre, In1, In2, and Post). Type I errors were controlled
by threshold-free cluster enhancement [182] and family-wise error (FWE) corrections across
space for the size of the skeleton.

To investigate relations of DTI metrics with years of experience (YoE), HAE exposure,
and cognitive performance, we focused on the contrasts comparing Pre and In2 for down-
stream ROI-based analyses, given that significant voxels (p < 0.05, FWE corrected) were
observed for all the DTI metrics (Fig. 3.2 and 3.3). Significant voxels in the contrasts of FA
and AD showing Pre > In2 and in the contrasts of MD and RD showing Pre < In2 were
extracted via the FSL cluster program, with the corresponding WM tracts identified by
the 48 ROIs on the Johns Hopkins WM label atlas (JHU-ICBM-DTI-81) [183]. Ten of the
48 ROIs did not contain voxels from the skeleton, due to the DWI acquisition and the FA
> 0.2 thresholding procedure, and therefore they were excluded from statistical analysis,
resulting in a total of 38 ROIs (see Table 3.2).

A 3-way ANCOVA of sports (FB, SOC) × time (Pre, In1, In2, Post) × YoE was per-
formed to investigate the interaction and the main effects of YoE for the FB and SOC
participants across a single season, using age, concussion history, and status of attention
deficit hyperactivity disorder (ADHD) as covariates. Models were excluded when the resid-
uals failed Shapiro-Wilks normality tests. The corresponding p-values were corrected with
false discovery rate (FDR) (adjusted p = 0.025).

For each FB participant, the change of DTI values from Pre to In2 (∆DTI = DTIIn2
DTIPre) was computed within each ROI. To assess whether the distribution of ∆DTI was
dependent on HAE exposure, each participant was categorized as 1) exhibiting positive or
negative ∆DTI, and 2) being above or below an imposed threshold for HAE metrics (the
total number of HAEs, cumulative PTA, and the number of HAEs exceeding certain PTA
values) in the preceding 1-to-6 weeks prior to In2 and from the time when the participants
had the 1st HAE (approx. ten weeks prior to In2). For each metric, a series of thresholds
were imposed, and Pearsons Chi-squared tests were performed for each set of categories,
corrected with FDR for multiple comparisons (adjusted p = 0.025). Two scenarios were
recorded: the threshold with maximum counts of significant findings (most-cases scenario),
and the lowest threshold at which the 1st significant finding was observed (1st-case scenario).
To be considered as either scenario, the findings must survived the FDR correction for
multiple comparisons, and when equal counts of the findings occurred, the one with lower
HAE threshold was chosen. For each scenario, linear regression was used to model the
relation after logarithmic conversions, and visualized using log-log plots (Fig. 3.5). No
ROI-based Chi-square test was performed for SOC, due to the relatively small sample size
(N = 13). An interactive application was developed using the Shiny package [254], to
display the large number of statistical tests and the log-log plots. The application is hosted
at: https://boilerkai.shinyapps.io/PNG_dMRI_xPatch/.

https://boilerkai.shinyapps.io/PNG_dMRI_xPatch/
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For each session (Pre, In1, In2, Post), associations between the ROI-based DTI metrics
and cognitive measures (FB: running-span, anti-saccade, no-go accuracy, and go RTISD;
SOC: verbal memory, visual memory, reaction time, and visual motor speed composites)
were investigated using Pearsons partial correlations with age as covariate. Observations
of cognitive measures exceeding two standard deviations from the mean of the correspond-
ing session were excluded from the analyses. All the findings were corrected for multiple
comparisons using FWE (adjusted p = 0.05÷ 38 ROIs = 0.0013). R version 3.6.1 [184] was
used to perform all statistical analyses.

3.5 Results

3.5.1 Whole-brain Voxel-wise TBSS

From Pre to In2, FA (Fig. 3.2A) and AD (Fig. 3.2B) were significantly decreased,
whereas MD (Fig. 3.3A) and RD (FIG. 3B) were significantly increased. The voxels ex-
hibiting altered FA, MD, and RD were found within widespread WM tracts (Table 3.2).
Those with altered AD were primarily within the left cerebral peduncle, left internal capsule
(anterior, posterior, and retrolenticular), and the left sagittal stratum (Table 3.2).

At Post, FA was still significantly lower than Pre (Fig. 3.2A) and statistically equivalent
to In2; however, we observed significant increase of AD since In2 (Fig. 3.2B). For MD
(Fig. 3.3A) and RD (Fig. 3.3B), both were significantly decreased since In2, with more
voxels exhibiting lower RD (MD: 3,241; RD: 46,689); however, both metrics were still
higher compared to Pre.

3.5.2 ROI-based ANCOVA

Fractional Anisotropy (Table 3.3)

The 3-way interaction among sports, time, and YoE was not significant for any of the
ROIs. Age was a significant covariate within the genu of the corpus callosum (β = 0.006, p =
0.026), left cerebral peduncle (β = 0.009, p < 0.001), right anterior limb of internal capsule
(β = 0.010, p < 0.001), right anterior corona radiata (β = 0.008, p = 0.004), right cingulum
(cingulate gyrus; β = 0.019, p = 0.024), and left cingulum (hippocampus; β = 0.019,
p = 0.001), where higher FA was observed for older participants. Significant interactions
between sports and YoE were observed within the left retrolenticular part of internal capsule
(β = −0.018, p = 0.034) and the left cingulum (hippocampus; β = −0.039, p = 0.041),
where the SOC participants with more YoE exhibited lower FA (Fig. 3.4A and 3.4B). There
were main effects of YoE within the genu of the corpus callosum (β = −0.012, p = 0.009)
and right anterior corona radiata (β = −0.014, p = 0.001), where participants with more
YoE exhibited lower FA (see Fig. 3.4C and 3.4D for SOC participants). Participants with
concussion history exhibited lower FA within the right cingulum (cingulate gyrus) than those
no previous concussion (β = −0.021, p = 0.013). Participants with ADHD exhibited lower
FA within the right anterior corona radiata, compared to those without ADHD (β = −0.014,
p = 0.010).
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Mean Diffusivity (Table 3.3)

Similar to FA, the 3-way interaction was not significant for any of the ROIs. Age was
a significant covariate within the right cingulum (cingulate gyrus; β = −1.05 × 10−6, p =
0.002), where lower MD was observed in participants at older age. There was no significant
interaction between sports and YoE within any of the ROIs. The main effects of YoE were
observed within the right cingulum (cingulate gyrus; β = 1.20× 10−5, p = 0.028) and right
anterior corona radiata (β = 1.41×10−5, p = 0.002), where the participants with more YoE
exhibited higher MD (see Fig. 3.4E and 3.4F for SOC participants). Neither concussion
history nor ADHD was a significant covariate.

Axial Diffusivity

There was only one significant 3-way ANCOVA model for the left posterior corona
radiata [F(16,263) = 1.978, p = 0.015], however, it was likely a false-positive finding given
the small volume (2 mm3).

Radial Diffusivity

There was no significant 3-way ANCOVA model for any of the ROIs.
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Fig. 3.2. Contrasts of whole-brain voxel-wise TBSS showing WM tracts with
significant Pre to Post alterations of (A) fractional anisotropy (FA) and (B)
axial diffusivity (AD) for the high school football and soccer athletes. From Pre
to Post, there was a decrease of FA, whereas AD exhibited an in-season decrease
followed by an increase at Post. All voxels were FWE corrected t-statistical
maps (p < 0.05, red-yellow). The TBSS skeleton (green) is overlaid on the MNI
template (1.0× 1.0× 1.0 mm3) for visualization, displaying in sagittal, coronal,
and axial views.
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Fig. 3.3. Contrasts of whole-brain voxel-wise TBSS showing WM tracts with
significant increase of (A) mean diffusivity (MD) and (B) radial diffusivity (RD)
from Pre to Post, for the high school football and soccer athletes. All voxels were
FWE corrected t-statistical maps (p < 0.05, blue-lightblue). The TBSS skeleton
(green) is overlaid on the MNI template (1.0× 1.0× 1.0 mm3) for visualization,
displaying in sagittal, coronal, and axial views.
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Table 3.2.
Number of statistically significant voxels with significant DTI changes from Pre
to In2, within different WM tracts. All statistical significance was determined
at FWE corrected p < 0.05. L/R: left/right hemisphere.

# Voxels with significant
Pre to In2 DTI changes

WM Tracts FA↓ MD↑ AD↓ RD↑
Genu of corpus callosum (gcc) 1212 1212 0 1606
Body of corpus callosum (bcc) 2057 2463 0 2986
Splenium of corpus callosum (scc) 1352 2195 0 2239
Fornix (fx) 0 71 0 86
Cerebral peduncle R (cpR) 192 273 0 272
Cerebral peduncle L (cpL) 159 183 61 244
Anterior limb of internal capsule R (alicR) 408 505 0 660
Anterior limb of internal capsule L (alicL) 411 174 84 558
Posterior limb of internal capsule R (plicR) 655 793 0 849
Posterior limb of internal capsule L (plicL) 577 552 149 833
Retrolenticular part of internal capsule R (rlicR) 620 575 0 742
Retrolenticular part of internal capsule L (rlicL) 426 129 181 586
Anterior corona radiata R (acrR) 439 784 0 1093
Anterior corona radiata L (acrL) 867 797 0 1274
Superior corona radiata R (scrR) 1003 1218 0 1307
Superior corona radiata L (scrL) 823 410 3 1063
Posterior corona radiata R (pcrR) 259 381 0 442
Posterior corona radiata L (pcrL) 289 207 2 282
Posterior thalamic radiation R (ptrR) 356 349 0 700
Posterior thalamic radiation L (ptrL) 184 113 2 361
Inferior longitudinal/fronto-occipital fasciculus R 191 240 0 278
Inferior longitudinal/fronto-occipital fasciculus L 119 59 36 128
External capsule R (ecR) 667 852 0 961
External capsule L (ecL) 137 369 0 751
Cingulum (cingulate gyrus) R (cgR) 30 182 0 154
Cingulum (cingulate gyrus) L (cgL) 81 234 0 272
Cingulum (hippocampus) R [cg(h)R] 83 55 0 82
Cingulum (hippocampus) L [cg(h)L] 24 17 0 36
Fornix (cres)/stria terminalis R (fx/stR) 236 181 0 230
Fornix (cres)/stria terminalis L (fx/stL) 186 134 0 211
Superior longitudinal fasciculus R (slfR) 1122 1371 0 1584
Superior longitudinal fasciculus L (slfL) 722 784 0 1216
Superior fronto-occipital fasciculus R (sfofR) 57 100 0 109
Superior fronto-occipital fasciculus L (sfofL) 38 3 3 79
Uncinate fasciculus R (ufR) 20 20 0 20
Uncinate fasciculus L (ufL) 0 0 0 13
Tapetum R (ttR) 37 62 0 67
Tapetum L (ttL) 23 38 0 40
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Fig. 3.4. Scatter plots of ROI-based ANCOVA (see Table 3.3) for the soccer
athletes. There was typical segregation of FA/MD values by the years of high-
school experience (YoE), with lower FA and higher MD observed for players with
3 YoE (4) than those participating for the first time (�). FA in the (A) left
retrolenticular part of internal capsule (rlicL), (B) left cingulum (hippocampus)
[cg(h)L], (C) genu of the corpus callosum (gcc) and (D) right anterior corona
radiata (acrR), and MD in the (E) right cingulum (cingulate gyrus) (cgR) and
(F) right anterior corona radiata (acrR), are shown at different sessions.
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3.5.3 Dependence of regional DTI changes with HAE exposure

For the 45 FB participants with recorded HAE exposure, the 1st significant finding of
altered distribution of ∆DTI (i.e. 1st-case scenario) was observed when the participants
experienced 33 HAEs/week for the preceding week to In2, 18.5 HAEs/week for two weeks,
17.0 HAEs/week for three weeks, 14.0 HAEs/week for four weeks, 14.6 HAEs/week for five
weeks, 15.0 HAEs/week for six weeks, and 19.4 HAEs/week since the 1st HAE (approx. ten
weeks). Most of the significantly altered distributions of ∆DTI (i.e., most-cases scenario)
were observed at 85.0 HAEs/week for the preceding week to In2, 45.5 HAEs/week for two
weeks, 31.7 HAEs/week for three weeks, 35.0 HAEs/week for four weeks, 33.4 HAEs/week
for five weeks, 29.2 HAEs/week for six weeks, and 28.8 HAEs/week since the 1st HAE
(approx. ten weeks). For the most-cases scenario, the linear regression model after the
logarithmic conversions was significant with negative slope (Fig. 3.5A).

For cumulative PTA, similar to the weekly HAE exposure, the 1st-case scenario was
observed when the participants experienced 2468.0 g/week for the preceding week to In2,
775.5 g/week for two weeks, 599.3 g/week for three weeks, 557.0 g/week for four weeks, 574.4
g/week for five weeks, 554.7 g/week for six weeks, and 641.5 g/week since the 1st HAE.
The most-cases scenario were observed when the participants experienced 2895.0 g/week
for the preceding week to In2, 1388.5 g/week for two weeks, 1239.3 g/week for three weeks,
1224.2 g/week for four weeks, 1261.2 g/week for five weeks, 1095.2 g/week for six weeks,
and 1237.6 g/week since the 1st HAE. For the most-cases scenario, the linear regression
models after logarithmic conversions were significant with negative slope (Fig. 3.5B). The
linear model for the 1st-case scenario was also significant (not shown in Fig. 3.5B).

Dividing the cumulative PTA by the total number of HAEs, the most-cases scenario
were observed when PTA per hits exceeded 34.1 g/HAE for the preceding week to In2, 30.5
g/HAE for two weeks, 39.1 g/HAE for three weeks, 35.0 g/HAE for four weeks, 37.8 g/HAE
for five weeks, 37.5 g/HAE for six weeks, and 43.0 g/HAE since the 1st HAE (approx. ten
weeks). The linear regression after logarithmic conversions was not significant (figure not
shown), which was equivalent to a horizontal line with y intercept at the mean (1.56 in log
scale, 36.7 g/HAE in original scale).
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Fig. 3.5. Log-log plots showing dependence of regional DTI changes with
patterns of HAE exposure for the football athletes. Points indicate the observed
thresholds of the maximum counts of significant findings (most-cases scenario,
N), and the 1st count of significant finding (1st-case scenario, •). Regression
lines (dark red) indicate the predicted thresholds for the most-cases scenarios
of (A) Cumulative hits/week and (B) cumulative PTA/week, with respect to
the number of weeks prior to In2 scan. For detailed Chi-squared tests, visit the
application at: https://boilerkai.shinyapps.io/PNG_dMRI_xPatch/.

https://boilerkai.shinyapps.io/PNG_dMRI_xPatch/
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3.5.4 Associations with Cognitive Measurements

For FB participants, lower Pc scores of anti-saccade task at Post correlated with higher
MD and RD within the bilateral posterior corona radiata [right: MD (r = -0.510), RD (r
= -0.531), both p < 0.001; left: MD (r = -0.440), RD (r = -0.447), both p = 0.001], and
right posterior thalamic radiation [MD (r = -0.459), RD (r = -0.444), both p = 0.001].
Lower scores were also correlated with higher diffusivity metrics within the right cingulum
(cingulate gyrus; MD: r = -0.450, p = 0.001) and right tapetum (RD: r = -0.435, p =
0.001) (Fig. 3.6). There was no significant association between other cognitive measures
(running-span, no-go accuracy, go RTISD) and DTI metrics for any of the sessions.

For SOC participants, higher visual memory composites at Pre were correlated with
higher AD within the left cerebral peduncle (r = 0.908, p < 0.001). There was no significant
association between other cognitive measures (visual memory, reaction time, visual motor
speed composites) and DTI metrics for any of the sessions.
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Fig. 3.6. Associations between proportion correct (Pc) scores of anti-saccade
task and diffusivity metrics for the football athletes, within (A and B) the
right posterior corona radiata (pcrR), (C and D) left posterior corona radiata
(pcrL), (E and F) right posterior thalamic radiation (ptrR), (G) right cingulum
(cingulate gyrus) (cgR), and (H) right tapetum (ttR) at Post (after season end).
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3.6 Discussion

Using a Structural Health Monitoring protocol [32], we assessed WM microstructure,
HAEs, and cognitive performance of early-to-middle adolescent collision-sport athletes across
a single season. As the competition season progressed, FB and SOC participants typically
exhibited WM abnormalities, which largely persisted to post-season (Fig. 3.2, 3.3, and Ta-
ble 3.2). In the WM tracts with significant alterations, FA increased and MD decreased as
a function of age, but such process was reversed for participants with more YoE (Fig. 3.4
and 3.3). For FB participants, exposure to HAEs exceeding 37 g was sufficient to alter the
distributions of DTI changes from Pre to In2 (Fig, 3.5), and cognitive impairments were
associated with higher MD and RD at post-season (Fig. 3.6).

The WM microstructural abnormalities developed after the start of the season and per-
sisted into post-season Fig. 3.2 and 3.3). Whole-brain voxel-wise TBSS showed a significant
decrease of FA and increase of MD from Pre to In2 (Table 3.2). Decreased FA typically
reflects misalignment, disruption of axons, or demyelination [95,225,226,255,256], which is
often associated with reduced axonal density, leading to increased MD [227–229]. Measures
of FA and MD depend on the magnitudes of AD and RD; the decreased AD and increased
RD from Pre to In2 (Table 3.2) may indicate a compromised integrity of axonal membrane
and myelin [231], where the widespread increase of RD may be the primary factor driving
the FA reduction and MD increase. The fewer voxels exhibiting abnormal DTI change at
post-season (Pre > Post, Fig. 3.2A; Post < In2, Fig. 3.3A and 3.3B), together with the
AD increase (Post > In2, Fig. 3.2B), supported the hypothesis of an active WM injury and
repair process [78]. Here, the repair seemed to occur faster than damage due to injury, yet
the WM has not been fully restored to a level comparable to the baseline (Fig. 3.2A, 3.3A
and 3.3B). These observations were consistent with previous studies that detected WM
abnormalities across a single season in youth [257] or high school football [158].

Years of high-school experience playing collision sports may serve as an indicator of
high-risk individuals in early-to-middle adolescents for subconcussive trauma. ROI-based
ANCOVA demonstrated an increase of FA and decrease of MD as a function of age (Ta-
ble 3.3), which is consistent with the normal trajectory of brain development during ado-
lescence [146,217–220]. Participants with more YoE, however, exhibited lower FA or higher
MD than those with fewer YoE (Table 3.3), suggesting that the WM maturation process can
be perturbed by regular participation in collision sports over years. This is consistent with
previous DTI studies that prolonged HAE exposure can accumulate abnormalities of WM
microstructure and contribute to neural injury in collision-sport athletes [61,75,257]. These
injuries can lead to dysfunction in controlling stress and emotional behaviour [258], which
has long been believed to exacerbate the injury risk in adolescent athletes [259]. There-
fore, adolescent collision-sport athletes with more YoE presents a priority in preventive
strategies for controlling HAE exposure, which may effectively minimize risk of developing
subconcussive trauma.

Interpreting the directionality of DTI changes need to be pertinent to the study design
and cannot be made without paying attention to the heterogeneous analytical approaches
and image processing [144, 242]. Although the whole-brain voxel-wise TBSS suggested the
directionality of DTI changes predominant at group level, they do not necessarily represent
the trajectory for each individual. Such profile was characterized in this study by the ROI-
based analyses for significant contrasts between Pre and In2. Both increase and decrease of
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FA were presented at the individual level, providing insights to the general trend (decreased
FA) suggested by TBSS. Elevated FA was constantly observed in mTBI subjects with acute
WM injury (within two weeks) [260], which may be a consequence of reduced inter-axonal
space due to axonal swelling [242]. In addition, we also observed more participants exhib-
ited decreased MD and/or RD when HAE exposure exceeded a particular dosage, which
contradicted the general trend (increased MD and RD). Concurrent decrease of diffusivity
metrics from pre-season to post-season has also been reported in the literature [157, 162],
which may be attributed to axonal swelling or inflammation that lowers the water content
in extracellular space [261]. Besides variability in analytical approaches, efforts to mini-
mize bias and errors in every processing steps is another critical aspect in studies of mTBI
and subconcussive trauma, because the magnitudes of changes are often subtle, especially
for adolescent athlete cohorts who are undergoing rapid brain development [145–148]. In
this study, a study-specific DTI template was constructed for spatial normalization, based
on an unbiased population-specific brain atlas for early-to-middle adolescent collision-sport
athletes [168,248].

To the best of our knowledge, this is the first DTI study providing a temporal profile
of HAE exposure (Fig. 3.5) that allows for examination of individual FB players during
the season, which may help develop strategies to prevent the subconcussive sequelae from
persisting into the post-season. Data of the 1st-case scenario represent the lowest amount
of HAEs that led to a significant alteration to the distribution of DTI change, providing
a subconcussive threshold at which a given FB participant may start to develop neural
injury. Data of the most-cases scenario represent the subconcussive threshold at which
most of such significant alterations were observed. Based on the profiles (Fig. 3.5), WM
microstructural abnormalities were typically a consequence of accumulating either more
frequent and stronger HAEs over a shorter time, or less frequent and milder HAEs over
a longer time (Fig. 3.5). We previously showed that PTA was not a sufficient measure to
predict cognitive deficits [64]. Here, we showed that the pattern of HAE exposure over the
season, including both the frequency (number of HAE) and magnitude (cumulative PTA) in
a given time, should be monitored for predicting WM microstructural deficits. A previous
studies that utilized a 10 g threshold found an average of 50 HAEs/week would lead to
physiological deficits in post-season measured by fMRI [30, 64]. Here, at a 20 g threshold,
we demonstrated that HAEs exceeding 37 g were sufficient to alter the distributions of DTI
changes, and the threshold did not significantly vary over time. Our finding augmented
previous DTI work by Jang et al. that every HAE (> 20 g) seemed to accumulate WM mi-
crostructural abnormalities [74,89], but HAEs exceeding 37 g can meaningfully accumulate
neural injury that may persist to post-season. These findings extended our understanding of
high-load HAE exposure, which was previously shown to meaningfully affect cerebrovascular
reactivity [78] and lead to metabolic disturbances [76,241].

We identified WM microstructural abnormalities correlated with poorer performance in
cognitive assessments. In FB participants, lower scores of anti-saccade task at post-season
correlated with higher MD and RD, primarily within the WM tracts of posterior brain re-
gions and the right cingulum (cingulate gyrus; Fig. 3.6). Notably, posterior thalamic radia-
tion fibers connect thalamus with the posterior parietal lobe, an area involved in performing
anti-saccade task [262,263]. Cingulum fibers connect to the posterior cingulate gyrus, which
is prominent for cognitive functions such as working memory and attention [264]. Interest-
ingly, participants with more YoE also demonstrated higher MD within the right cingulum
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(cingulate gyrus; Fig. 3.6), suggesting these individuals may be at higher risks of cogni-
tive impairments. We only observed one significant correlation between DTI and ImPACT
scores for SOC participants, which may be a false-positive finding given the many correla-
tion analyses performed. Overall, these findings identified neurological pathways that may
explain the connection between subconcussive HAEs and cognitive impairments.

This study has several limitations. Because we did not evaluate male soccer athletes,
population bias can exist, and it remains to be explored which of these changes may exist in
athletes playing other sports. No temporal profile of DTI and HAE exposure was provided
for SOC participants as we did for FB (Fig. 3.5), because the sample size was too small (N
= 13) to allow ROI-based Chi-square tests being performed. ImPACT has been shown to
bear relatively high false-positive rates [74, 89] and variable reliability [90, 91], warranting
caution when interpreting the outcomes. FDR procedure was used in ROI-based ANCOVA
and Chi-square tests to adjust multiple comparisons, which can lead to more false-positive
findings. The associations with cognitive measures still bears replication in a subsequent
sample, even though the FB dataset is larger than many studies of this type, and a stringent
FWE procedure was carried out. The datasets of this work haven’t utilized more advanced
diffusion imaging techniques developed and applied in studying collision sports, including
kurtosis imaging [265,266], multi-shell imaging [239,240] and neurite orientation dispersion
and density imaging [239, 267, 268]. It is expected that the ongoing development of diffu-
sion MRI will advance understanding of TBI and concussion in collision sports, therefore
facilitating improved care of cognitive and brain health for these athletes.

3.7 Conclusion

Concerns in recent years regarding the brain and cognitive health of adolescent collision-
sport athletes are supported by this work. The WM microstructural abnormalities de-
veloped during the competition season can persist after the season ended, and based on
correlations with cognitive measures, the abnormal WM microstructure could affect these
athletes performance and particularly with regard to attention control, making them more
vulnerable to future sports-related injury. Such adverse effect may be prevented by con-
trolling the extent of HAE exposure during the season, especially for those with more years
of experience. Such actions may help resume the normal WM development pattern for
adolescents and ensure their cognitive health.
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4. FUTURE DIRECTIONS

4.1 Monitoring Volumetric Trajectory

The grey matter labels (Fig. 2.3) may be used to monitor the volumetric trajectory of
the cohort of adolescent collision-sport athletes. One explanation of the results in Fig. 2.4B
is that the adolescent collision-sport athletes had morphological characteristics that devi-
ated from healthy adolescents of similar age bracket, represented by the NIHPD13.0−18.5

template. In addition, adolescents (age 13–17) demonstrated non-linear decrease in certain
subcortical volumes, as was shown in a lifespan study of healthy adolescents [116] It would
then comprise a meaningful exploration to see whether the characteristics and trajectories
of the subcortical volumes are different in adolescent collision-sport athletes, compared to
those observed in the healthy subjects of Narvacan et al.’s study [116].

Before data analysis, it is critical to obtain accurate segmentation of subcortical vol-
umes for each subject. Three grey matter labeling protocols were involved when running
recon-all in Freesurfer [269] to segment the PNG T1 template, and each of the protocols re-
sulted in different number of labels. Desikan-Killiany protocol [177] resulted in 35 ROIs per
hemisphere (Fig. 2.3), and is commonly used in literature [270]. Desikan-Killiany-Tourville
protocol [178] resulted in 31 ROIs per hemisphere, 4 fewer than the Desikan-Killiany proto-
col (banksSTS, corpus callosum, frontal pole, and temporal pole) (Fig. 4.1), and Destrieux
protocol [179] resulted in 74 ROIs per hemisphere, the most among the three protocols
(Fig. 4.2). Manual editing on the labels is needed, preferably by a certified neuroradiolo-
gist, to ensure each brain region was correctly segmented. Following the editing, accuracy
of segmentation can be evaluated using Dice Similarity Coefficient [271]:

2× True Positive

2× True Positive + False Positive + False Negative

Besides accuracy, segmentation should have high precision and labeling efficiency [272].
Label fusion strategies, such as major vote [271], take multiple atlases into account, which
effectively avoids bias from a single atlas and produces consistent segmentation. To im-
plement these strategies, an integrated computational framework (e.g. Fig. 2.1) can allow
labeling to be performed at large scale and at the fastest speed.
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Fig. 4.1. Lateral (top) and medial (bottom) views of PNG Desikan-Killiany-
Tourville Grey Matter Atlas.
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Fig. 4.2. Lateral (top) and medial (bottom) views of PNG Destrieux Grey
Matter Atlas.
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4.2 Diffusion Kurtosis Imaging

Diffusion Kurtosis Imaging (DKI) is an advanced diffusion MRI technique that probes
the extent of water diffusion deviated from a normal Gaussian distribution. In reality,
patterns of water diffusion in brain may be non-Gaussian, due to the complex cellular en-
vironment of white matter and different pathological conditions; therefore, DKI provides a
more sensitive representation of potential underlying change due to mTBI than the tradi-
tional tensor model [273]. A few studies have employed DKI to investigate sport-related
concussion in adolescent and/or collegiate football athletes [156,239,240], but so far, to the
best of our knowledge, no study has investigated the effect of repetitive head impacts on
adolescent brain using DKI.

To obtain estimates of diffusion kurtosis, the acquired DWI must have at least two
nonzero b-values and 15 distinct gradient directions, see Appendix B for a derivation. In
general, diffusion kurtosis tends to increase with increased diffusion heterogeneity, and can
be altered by water exchange and diffusion barriers [274]. Voxels with high values of dif-
fusion kurtosis indicates larger extent of deviation of water diffusion from Gaussian distri-
bution [275], suggesting complexity of diffusion in the extracellular space. For example,
increased axial kurtosis (Kax) indicates “axonal beading” that occur after axonal injury,
where accumulations of proteins occur along an axon after calcium influx [276].

A bespoke preprocessing pipeline for obtaining DKI metrics has been streamlined based
on the PNG longitudinal database (Fig. 4.3). There are two sets of data, one set com-
prising four b=0 and thirty b=1000 3D DWI volumes, and the other comprising four b=0
and thirty b=2000. After converting into NIfTI formats (dcm2nii), all the DWI data un-
dergo corrections for motion and eddy current (eddy) [277], followed by brain extraction
(bet). Of note, it is recommended to use FSL eddy [277], the latest tool in replacement
of the previous eddy current, for simultaneously correcting motion artifacts and geometric
distortions induced by eddy current, which can also detect and replace outlier slices with
signal dropout (eddy -repol) [278]. Next, rigid body registrations are performed to align
the two DWI data sets for each individual (flirt). An average is computed from the eight
b=0 volumes (fslsplit, fslmaths), and a new 4D DWI file is created (fslmerge), in which the
volumes are merged in the order of b=0, b=1000, and b=2000. A text file containing diffu-
sion direction vectors (in the same order as the new DWI file) are also created. Finally, the
new 4D DWI volumes, together with the text files, are taken as inputs of fed into Diffusion
Kurtosis Estimator (DKE, version 2.6) [279] to obtain DKI metrics, including Kax, Kmean,
and Krad (see Appendix B).

In DKE processing, a 3×3×3 outlier removal median filter is applied to voxels that vio-
lated the constraints [279], which may produce erroneous estimates in major fiber tracts. By
default, a “strong filtering” is applied to remove voxels that violate any of the constraints;
the alternative “weak filtering” only remove voxels that violate ≥ 15 constraints. An ex-
ample of strong and weak filtering is illustrated in Fig. 4.4. For outputs of low quality from
the default strong filtering pipeline, reprocessing using weak filtering can be considered, but
for both cases, rigorous quality assessments are required to make sure the DKI data can
proceed for analyses.
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Fig. 4.3. Preprocessing pipeline for estimating DKI metrics using Diffusion
Kurtosis Estimator [279].
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Fig. 4.4. Illustration of the outputs from strong and weak filtering in Diffusion
Kurtosis Estimator [279]. In the highlighted region (yellow circle), weak filtering
did not resolve the low quality of estimating kurtosis metrics.
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4.3 Retrospective Harmonization

To investigate WM microstructure of adolescent collision-sport athletes at large scale,
the DWI data acquired from different sites and with varying parameters need to be har-
monized. As is outlined in Section 1.3, diffusion MRI measures are prone to different
scanners [106], changes in TE [107–109,113], and other confounding factors such as vendor,
bandwidth, and interaction between coil and signal-to-noise ratio [107]. The longitudinal
DWI data at PNG was complicated by an increase in TE of 1̃7ms in scanning protocol since
the 2015–2016 competition season, and by the migration from InnerVision Imaging Center
to the new Engineering MRI Facility in March 2017. Although the reliability of aggregating
DTI measures from the two sites was supported by a study of 24 traveling subjects [280], the
study was based on a standardized protocol (TE=100ms) and did not address aggregating
DWI data acquired with different TE. To date, many harmonization techniques for diffusion
MRI have been proposed, and a thorough review can be found in [281]. This section will
focus on two types of harmonization techniques and introduce one public dataset where the
techniques can be developed and validated.

Harmonizing Parametric Maps: ComBat and ComBat-based Techniques

ComBat (a.k.a. Combined association test) is a statistical tool initially developed to
correct for batch effect in gene expression analysis [282]. In recent years, ComBat has gained
popularity in harmonizing MRI data [111, 283, 284], by removing variability introduced by
sites and scanners in parametric maps, and meanwhile preserving biological variability.

Let yijk denote the observed DTI measure of site i, subject j, and region k [111]:

yijk = fk(Xij) + γik + δikeijk

where
fk(Xij) = α̂k +Xij β̂k

In the linear function fk(Xij), α̂k is the intercept of the observed DTI measure, Xij

is a vector of biologically relevant covariates (e.g. age and sex), and β̂k are the regression
coefficients of Xij . γik and δik are the site-effect parameters, where γik is the mean of
site effects and has a Gaussian distribution, and δik is the variance of site effects and has
an inverse gamma distribution. The two site-effect parameters are estimated empirically
(denoted as γ∗ik and δ∗ik). The error term, eijk, is assumed to be normally distributed. In the
final step, Bayesian analysis is applied to correct harmonization by its prior distributions.
The ComBat harmonization for yijk is expressed as [111]:

yComBat
ijk =

yijk − fk(Xij)− γ∗ik
δ∗ik

+ fk(Xij)

ComBat provides a flexible framework where non-linear or non-parametric methods
can be incorporated to account for complexities of empirical data in different conditions.
ComBat-GAM is one of such modified techniques, which utilizes Generalized Additive Model
(GAM) and has been proposed to adjust for the nonlinear age effects in cortical and sub-
cortical structures. Specifically, fk(Xij) is substituted by a non-linear function of covariates
age x, sex z, and intracranial volume w [285]:

fk(xij , zij , wij) = ak + f(xij) + bk ∗ zij + ck ∗ wij
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which leads to ComBat-GAM [285]:

yComBat-GAM
ijk =

yijk − fk(xij , zij , wij)− γ∗ik
δ∗ik

+ fk(xij , zij , wij)

Another ComBat-based technique is called CovBat (a.k.a. Correcting covariance batch
effects), which has been proposed to harmonize regional measures of cortical thickness by
considering the covariance of scanner effects [286]:

yCovBat
ijk = eCovBat

ijk + α̂k +Xij β̂k

eCovBat
ijk is the CovBat-adjusted residual based on the ComBat-adjusted residuals [286]:

eComBat
ij = (eComBat

ij1 , eComBat
ij2 , ..., eComBat

ijk )T

where

eComBat
ijk =

yijk − fk(Xij)− γ∗ik
δ∗ik

Assuming that the covariance matrices of eComBat
ij are different across scanners, prin-

ciple component analysis is employed on the covariance matrix of the full-data to reduce
dimensions and capture the main variability. For details, see [286].

In the future, it is expected that ComBat and ComBat-based techniques can be applied
to harmonize parametric maps of DWI data at voxel level. However, it is also worth noting
that because these techniques take parametric maps as inputs, harmonization may be prone
to cases where brain images exhibit structural alterations or pathological conditions [285],
and where assumptions on parametric prior distributions are violated [112].

Harmonizing DWI: Rotation Invariant Spherical Harmonics (RISH)

Unlike techniques that harmonize parametric maps, rotation invariant spherical har-
monics (RISH) [113] is a model-free approach that directly tackle DWI signal. RISH was
proposed by Mirzaalian et al. [113] and has demonstrated good performance in harmonizing
multi-site DWI data in parcellated brain regions [114]. Recently, Karayumak et al. [112]
improved RISH to account for different acquisition parameters and be implemented at voxel
level. The mathematical formulation of RISH has been well documented in [112, 281]. In
brief, RISH features are obtained by representing DWI signal with a set of spherical har-
monics basis functions, and harmonization is achieved by scaling the RISH features at each
harmonic order from target site to reference site, where the scaling is based on the RISH
feature templates, at each harmonic order, that are learned from the subset of subjects [112].

There are several technical issues for RISH harmonization. In principle, the DWI acquisi-
tion parameters cannot be too different; for example, different number of diffusion-encoding
directions may lead to different set of harmonic orders and complicate the scaling process.
To ensure good scaling, the RISH feature templates should be learned from at least 20
subjects who are ideally scanned at both sites (“travelling subjects”), which limits its ap-
plicability to datasets with fewer subjects and without travelling subject. Although subset
of age- and sex-matched subjects can be used, the learned templates potentially introduce
larger deformation and misregistration in the scaling process [287]. A population-specific
DTI template (e.g. Fig. 2.2B) may serve as a common space for the learned templates
without traveling subject, but this warrants evaluation in the future.
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The Adolescent Brain Cognitive Development (ABCD) Study

The ABCD Study (https://abcdstudy.org/), by far the largest longitudinal study of
brain development and child health in the United States, presents an ideal database for
investigating data harmonization techniques. The Study has recruited over 11,500 children
ages 9-10, collected at 21 research sites across the country, using the major MR scanner
platforms (GE, Siemens, Philips). Neuroimaging data of the ABCD Study include high-
resolution structural MRI, advanced diffusion MRI, resting-state and task-based fMRI.

It is anticipated that the ABCD Study will facilitate our scanner harmonization efforts
at PNG. Over the past eleven years, PNG has collected over 1,800 MRI datasets from
more than 550 participants, including both collision and non-collision sport athletes. The
neuroimaging datasets include structural MRI, diffusion MRI, fMRI, and MRS. When har-
monizing these datasets, the focus would be to preserve the multiple levels of information
in the data, so as to allow tracking and modeling the dynamic process of neural injury
and repair in adolescent brain. Having access to the ABCD Study Release 3.0 data will
facilitate investigations for the upgrade from a GE Signa HDx 3T to a GE MR750 3T
scanner at Purdue, and additional factors to be considered include different sites, head coil
designs, longitudinal brain developmental trajectories, practice effects in task-based fMRI,
image quality, etc. To avoid outcome-based publication and researcher bias, our analytic
approaches can first be proposed as a Registered Report (https://cos.io/rr/).

4.4 Neurocognitive Prediction

Understanding how intelligence relates to brain structure during adolescence is an impor-
tant topic in cognitive neuroscience. In 2019, a group of researchers initiated the ABCD Neu-
rocognitive Prediction Challenge (https://sibis.sri.com/abcd-np-challenge/). Par-
ticipating teams of the Challenge proposed algorithms that predict the residualized fluid
intelligence scores of children ages 9–10, using the structural MRI data. We proposed a
novel framework that applied 3D convolutional neural networks (ConvNets) to predict in-
dividual fluid intelligence scores, and our work won the 4th place at the final leaderboard.
Our findings demonstrated that machine learning can be applied in the domains of neu-
roimaging and cognitive neuroscience, reveal insights about brain development and child
health, and ultimately help us better unravel the relations between brain and behavior. A
documentation of the proposed framework can be found at Appendix C.

The proposed 3D ConvNets framework can be translated to the PNG longitudinal
database, which incorporates neurocognitive tests of verbal memory, visual memory, visual
motor speed, reaction time, impulse control, and tests of working memory (see Section 1.2).
It is worthwhile to explore the different grey matter labels in the PNG atlases, namely the
Desikan-Killiany atlas (Fig. 2.3), Desikan-Killiany-Tourville atlas (Fig. 4.1), and Destrieux
atlas (Fig. 4.2), to see what brain regions contribute to intelligence prediction. Again, a
good predictive outcome critically depends on rigorous evaluations on the brain segmen-
tations [272] (see Section 4.1), and the proposed framework can be continuously validated
and improved in the future.

https://abcdstudy.org/
https://cos.io/rr/
https://sibis.sri.com/abcd-np-challenge/
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[111] J.-P. Fortin, D. Parker, B. Tunç, T. Watanabe, M. A. Elliott, K. Ruparel, D. R.
Roalf, T. D. Satterthwaite, R. C. Gur, R. E. Gur, R. T. Schultz, R. Verma, and R. T.
Shinohara, “Harmonization of multi-site diffusion tensor imaging data,” NeuroImage,
vol. 161, pp. 149–170, 2017.



80

[112] S. Cetin Karayumak, S. Bouix, L. Ning, A. James, T. Crow, M. Shenton, M. Kubicki,
and Y. Rathi, “Retrospective harmonization of multi-site diffusion MRI data acquired
with different acquisition parameters.” NeuroImage, vol. 184, pp. 180–200, 2019.

[113] H. Mirzaalian, A. de Pierrefeu, P. Savadjiev, O. Pasternak, S. Bouix, M. Kubicki, C.-
F. Westin, M. E. Shenton, and Y. Rathi, “Harmonizing Diffusion MRI Data Across
Multiple Sites and Scanners.” Medical image computing and computer-assisted inter-
vention : MICCAI ... International Conference on Medical Image Computing and
Computer-Assisted Intervention, vol. 9349, pp. 12–19, 2015.

[114] H. Mirzaalian, L. Ning, P. Savadjiev, O. Pasternak, S. Bouix, O. Michailovich, S. Kar-
macharya, G. Grant, C. E. Marx, R. A. Morey, L. A. Flashman, M. S. George, T. W.
McAllister, N. Andaluz, L. Shutter, R. Coimbra, R. D. Zafonte, M. J. Coleman,
M. Kubicki, C. F. Westin, M. B. Stein, M. E. Shenton, and Y. Rathi, “Multi-site har-
monization of diffusion MRI data in a registration framework,” Brain Imaging and
Behavior, 2018.

[115] A. C. Evans, A. L. Janke, D. L. Collins, and S. Baillet, “Brain templates and atlases.”
NeuroImage, vol. 62, no. 2, pp. 911–922, 2012.

[116] K. Narvacan, S. Treit, R. Camicioli, W. Martin, and C. Beaulieu, “Evolution of deep
gray matter volume across the human lifespan,” Human Brain Mapping, vol. 38, no. 8,
pp. 3771–3790, 2017.

[117] W. Van Hecke, A. Leemans, and L. Emsell, “DTI Analysis Methods: Voxel-Based
Analysis,” in Diffusion Tensor Imaging: A Practical Handbook, W. V. Hecke, L. Em-
sell, and S. Sunaert, Eds. Springer New York LLC, 2016, pp. 183–203.

[118] H. Ling and J. Hardy, “Neurological consequences of traumatic brain injuries in
sports,” Molecular and Cellular Neuroscience, vol. 66, pp. 114–122, 2015.

[119] E. A. Nauman, T. M. Talavage, and P. S. Auerbach, “Mitigating the Consequences
of Subconcussive Head Injuries.” Annual review of biomedical engineering, 2020.

[120] S. Zhang and K. Arfanakis, “Role of standardized and study-specific human brain
diffusion tensor templates in inter-subject spatial normalization,” Journal of Magnetic
Resonance Imaging, vol. 37, no. 2, pp. 372–381, 2013.

[121] F. G. Ashby, Statistical analysis of fMRI data., 1st ed. Cambridge: The MIT Press,
2011.

[122] J. Talairach and P. Tournoux, Co-planar stereotaxic atlas of the human brain: 3-
dimensional proportional system: an approach to cerebral imaging. New York:
Thieme, 1988.

[123] G. Grabner, A. L. Janke, M. M. Budge, D. Smith, J. Pruessner, and D. L. Collins,
“Symmetric atlasing and model based segmentation: an application to the hippocam-
pus in older adults.” Med Image Comput Comput Assist Interv, vol. 9, no. Pt 2, pp.
58–66, 2006.

[124] L. Fan, H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S. Xie, A. R.
Laird, P. T. Fox, S. B. Eickhoff, C. Yu, and T. Jiang, “The Human Brainnetome
Atlas: A New Brain Atlas Based on Connectional Architecture,” Cerebral Cortex,
vol. 26, no. 8, pp. 3508–3526, 2016.



81

[125] S. Zhang and K. Arfanakis, “Evaluation of standardized and study-specific diffusion
tensor imaging templates of the adult human brain: Template characteristics, spatial
normalization accuracy, and detection of small inter-group FA differences,” NeuroIm-
age, vol. 172, pp. 40–50, 2018.

[126] T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, “The SRI24 multichannel
atlas of normal adult human brain structure,” Human Brain Mapping, vol. 31, no. 5,
pp. 798–819, 2010.

[127] R. P. Cabeen, M. E. Bastin, and D. H. Laidlaw, “A Comparative evaluation of voxel-
based spatial mapping in diffusion tensor imaging,” NeuroImage, vol. 146, pp. 100–
112, 2017.

[128] D. A. Dickie, S. D. Shenkin, D. Anblagan, J. Lee, M. B. Cabez, D. Rodriguez, J. P.
Boardman, A. Waldman, D. E. Job, and J. M. Wardlaw, “Whole Brain Magnetic
Resonance Image Atlases: A Systematic Review of Existing Atlases and Caveats for
Use in Population Imaging,” Frontiers in Neuroinformatics, vol. 11, p. 1, 2017.

[129] T. L. Jernigan and P. Tallal, “Late childhood changes in brain morphology observable
with MRI,” Developmental Medicine & Child Neurology, vol. 32, no. 5, pp. 379–385,
1990.

[130] T. Paus, A. Zijdenbos, K. Worsley, D. Collins, J. Blumenthal, J. Giedd, J. Rapoport,
and A. Evans, “Structural Maturation of Neural Pathways in Children and Adoles-
cents: In Vivo Study,” Science, vol. 283, no. 5409, pp. 1908–1911, 1999.

[131] A. Pfefferbaum, D. H. Mathalon, E. V. Sullivan, J. M. Rawles, R. B. Zipursky, and
K. O. Lim, “A Quantitative Magnetic Resonance Imaging Study of Changes in Brain
Morphology from Infancy to Late Adulthood,” Archives of Neurology, vol. 51, no. 9,
pp. 874–887, 1994.

[132] J. Richards and W. Xie, “Brains for All the Ages: Structural Neurodevelopment in
Infants and Children from a Life-Span Perspective,” Adv Child Dev Behav, vol. 48,
pp. 1–52, 2015.

[133] B. B. Avants, J. T. Duda, E. Kilroy, K. Krasileva, K. Jann, B. T. Kandel, N. J.
Tustison, L. Yan, M. Jog, R. Smith, Y. Wang, M. Dapretto, and D. J. Wang, “The
pediatric template of brain perfusion,” Scientific data, vol. 2, p. 150003, 2015.

[134] V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, and D. L. Collins,
“Unbiased average age-appropriate atlases for pediatric studies,” NeuroImage, vol. 54,
no. 1, pp. 313–327, 2011.

[135] N. Gogtay, J. N. Giedd, L. Lusk, K. M. Hayashi, D. Greenstein, A. C. Vaituzis,
T. F. Nugent, D. H. Herman, L. S. Clasen, A. W. Toga, J. L. Rapoport, and P. M.
Thompson, “Mapping adolescent brain change reveals dynamic wave of accelerated
gray matter loss in very early-onset schizophrenia,” PNAS, vol. 98, no. 20, pp. 11 650–
11 655, 2004.

[136] C. E. Sanchez, J. E. Richards, and C. R. Almli, “Age-specific MRI templates for
pediatric neuroimaging,” Developmental Neuropsychology, vol. 37, pp. 379–399, 2012.

[137] D. Wu, T. Ma, C. Ceritoglu, Y. Li, J. Chotiyanonta, Z. Hou, J. Hsu, X. Xu, T. Brown,
M. I. Miller, and S. Mori, “Resource atlases for multi-atlas brain segmentations with
multiple ontology levels based on T1-weighted MRI,” NeuroImage, vol. 125, pp. 120–
130, 2016.



82

[138] T. Zhao, X. Liao, V. S. Fonov, Q. Wang, W. Men, Y. Wang, S. Qin, S. Tan, J. H.
Gao, A. Evans, S. Tao, Q. Dong, and Y. He, “Unbiased age-specific structural brain
atlases for Chinese pediatric population,” NeuroImage, vol. 189, pp. 55–70, 2019.

[139] W. Van Hecke, A. Leemans, C. A. Sage, L. Emsell, J. Veraart, J. Sijbers, S. Sunaert,
and P. M. Parizel, “The effect of template selection on diffusion tensor voxel-based
analysis results,” NeuroImage, vol. 55, no. 2, pp. 566–573, 2011.

[140] M. Bach, F. B. Laun, A. Leemans, C. M. Tax, G. J. Biessels, B. Stieltjes, and K. H.
Maier-Hein, “Methodological considerations on tract-based spatial statistics (TBSS),”
NeuroImage, vol. 100, pp. 358–369, 2014.

[141] B. L. Bartnik-Olson, B. Holshouser, H. Wang, M. Grube, K. Tong, V. Wong, and
S. Ashwal, “Impaired neurovascular unit function contributes to persistent symptoms
after concussion: a pilot study,” Journal of neurotrauma, vol. 31, no. 17, pp. 1497–
1506, 2014.

[142] T. A. Maugans, C. Farley, M. Altaye, J. Leach, and K. M. Cecil, “Pediatric sports-
related concussion produces cerebral blood flow alterations,” Pediatrics, vol. 129,
no. 1, pp. 28–37, 2012.

[143] K. J. Nilsson, H. G. Flint, Y. Gao, L. Kendrick, S. Cutchin, R. Pentecost, and K. Par-
due, “Repetitive Head Impacts in Youth Football: Description and Relationship to
White Matter Structure,” Sports Health, vol. 11, no. 6, pp. 507–513, 2019.

[144] B. M. Asken, S. T. DeKosky, J. R. Clugston, M. S. Jaffee, and R. M. Bauer, “Diffu-
sion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild
traumatic brain injury (mTBI): a systematic critical review,” Brain Imaging and Be-
havior, vol. 12, no. 2, pp. 585–612, 2018.

[145] A. Giorgio, K. E. Watkins, M. Chadwick, S. James, L. Winmill, G. Douaud, N. De
Stefano, P. M. Matthews, S. M. Smith, H. Johansen-Berg, and A. C. James, “Longi-
tudinal changes in grey and white matter during adolescence,” NeuroImage, vol. 49,
pp. 94–103, 2010.

[146] C. Lebel and C. Beaulieu, “Longitudinal Development of Human Brain Wiring Con-
tinues from Childhood into Adulthood,” Journal of Neuroscience, vol. 31, no. 30, pp.
10 937–10 947, 2011.

[147] C. Lebel, S. N. Mattson, E. P. Riley, K. L. Jones, C. M. Adnams, P. A. May, S. Y.
Bookheimer, M. J. O’Connor, K. L. Narr, E. Kan, Z. Abaryan, and E. R. Sowell,
“A longitudinal study of the long-term consequences of drinking during pregnancy:
Heavy in utero alcohol exposure disrupts the normal processes of brain development,”
Journal of Neuroscience, vol. 32, no. 44, pp. 15 243–15 251, 2012.

[148] D. J. Simmonds, M. N. Hallquist, M. Asato, and B. Luna, “Developmental stages and
sex differences of white matter and behavioral development through adolescence: A
longitudinal diffusion tensor imaging (DTI) study,” NeuroImage, vol. 92, pp. 356–368,
2014.

[149] L. Babcock, W. Yuan, J. Leach, T. Nash, and S. Wade, “White matter alterations
in youth with acute mild traumatic brain injury,” Journal of Pediatric Rehabilitation
Medicine, vol. 8, no. 4, pp. 285–296, 2015.

[150] J. J. Bazarian, T. Zhu, B. Blyth, A. Borrino, and J. H. Zhong, “Subject-specific
changes in brain white matter on diffusion tensor imaging after sports-related con-
cussion,” Magnetic Resonance Imaging, vol. 30, no. 2, pp. 171–180, 2012.



83

[151] K. Oishi, A. Faria, H. Jiang, X. Li, K. Akhter, J. Zhang, J. T. Hsu, M. I. Miller,
P. C. M. van Zijl, M. Albert, C. G. Lyketsos, R. Woods, A. W. Toga, G. B. Pike,
P. Rosa-Neto, A. Evans, J. Mazziotta, and S. Mori, “Atlas-based whole brain white
matter analysis using large deformation diffeomorphic metric mapping: application
to normal elderly and Alzheimer’s disease participants,” NeuroImage, vol. 46, no. 2,
pp. 486–499, 2009.

[152] B. Whitcher, D. S. Tuch, J. J. Wisco, A. G. Sorensen, and L. Wang, “Using the
wild bootstrap to quantify uncertainty in diffusion tensor imaging,” Human Brain
Mapping, vol. 29, no. 3, pp. 346–362, 2008.

[153] M. Borich, N. Makan, L. Boyd, and N. Virji-Babul, “Combining Whole-Brain Voxel-
Wise Analysis with In Vivo Tractography of Diffusion Behavior after Sports-Related
Concussion in Adolescents: A Preliminary Report,” Journal of Neurotrauma, vol. 30,
no. 14, pp. 1243–1249, 2013.

[154] S. Mori, K. Oishi, H. Jiang, L. Jiang, X. Li, K. Akhter, K. Hua, A. V. Faria, A. Mah-
mood, R. Woods, A. W. Toga, G. B. Pike, P. R. Neto, A. Evans, J. Zhang, H. Huang,
M. I. Miller, P. van Zijl, and J. Mazziotta, “Stereotaxic white matter atlas based
on diffusion tensor imaging in an ICBM template,” NeuroImage, vol. 40, no. 2, pp.
570–582, 2008.

[155] E. M. Davenport, C. T. Whitlow, J. E. Urban, M. A. Espeland, Y. Jung, D. A.
Rosenbaum, G. A. Gioia, A. K. Powers, J. D. Stitzel, and J. A. Maldjian, “Abnormal
White Matter Integrity Related to Head Impact Exposure in a Season of High School
Varsity Football,” Journal of Neurotrauma, vol. 31, no. 19, pp. 1617–1624, 2014.

[156] E. M. Davenport, K. Apkarian, C. T. Whitlow, J. E. Urban, J. H. Jensen, E. Szuch,
M. A. Espeland, Y. Jung, D. A. Rosenbaum, G. A. Gioia, A. K. Powers, J. D. Stitzel,
and J. A. Maldjian, “Abnormalities in diffusional kurtosis metrics related to head
impact exposure in a season of high school varsity football,” Journal of Neurotrauma,
vol. 33, no. 23, pp. 2133–2146, 2016.

[157] K. B. Foss, W. Yuan, J. Diekfuss, J. Leach, W. Meehan, C. DiCesare, G. Solomon,
D. Schneider, J. MacDonald, J. Dudley, N. Cortes, R. Galloway, M. Halstead,
G. Walker, and G. Myer, “Relative Head Impact Exposure and Brain White Mat-
ter Alterations After a Single Season of Competitive Football: A Pilot Comparison of
Youth Versus High School Football,” Clin J Sport Med, vol. 29, pp. 442–450, 2019.

[158] S. J. Kuzminski, M. D. Clark, M. A. Fraser, C. C. Haswell, R. A. Morey, C. Liu, K. R.
Choudhury, K. M. Guskiewicz, and J. R. Petrella, “White Matter Changes Related
to Subconcussive Impact Frequency during a Single Season of High School Football,”
American Journal of Neuroradiology, vol. 39, no. 2, pp. 245–251, 2018.

[159] A. R. Mayer, J. M. Ling, Z. Yang, A. Pena, R. A. Yeo, and S. Klimaj, “Diffusion ab-
normalities in pediatric mild traumatic brain injury.” Journal of Neuroscience, vol. 32,
no. 50, pp. 17 961–17 969, 2012.

[160] G. D. Myer, W. Yuan, K. B. Foss, D. Smith, M. Altaye, A. Reches, J. Leach, A. W.
Kiefer, J. C. Khoury, M. Weiss, S. Thomas, C. Dicesare, J. Adams, P. J. Gubanich,
A. Geva, J. F. Clark, W. P. Meehan, J. P. Mihalik, and D. Krueger, “The effects
of external jugular compression applied during head impact exposure on longitudinal
changes in brain neuroanatomical and neurophysiological biomarkers: A preliminary
investigation,” Frontiers in Neurology, vol. 7, p. 74, 2016a.



84

[161] G. D. Myer, W. Yuan, K. B. Foss, S. Thomas, D. Smith, J. Leach, A. W. Kiefer,
C. Dicesare, J. Adams, P. J. Gubanich, K. Kitchen, D. K. Schneider, D. Braswell,
D. Krueger, and M. Altaye, “Analysis of head impact exposure and brain microstruc-
ture response in a season-long application of a jugular vein compression collar: A
prospective, neuroimaging investigation in American football,” British Journal of
Sports Medicine, vol. 50, no. 20, pp. 1276–1285, 2016b.

[162] G. D. Myer, K. B. Foss, S. Thomas, R. Galloway, C. A. Dicesare, J. Dudley, B. Gadd,
J. Leach, D. Smith, P. Gubanich, W. P. Meehan, M. Altaye, P. Lavin, and W. Yuan,
“Altered brain microstructure in association with repetitive subconcussive head im-
pacts and the potential protective effect of jugular vein compression: A longitudinal
study of female soccer athletes,” British Journal of Sports Medicine, vol. 53, pp.
1539–1551, 2019.

[163] E. K. Satchell, S. D. Friedman, V. Bompadre, A. Poliakov, A. Oron, and T. M.
Jinguji, “Use of diffusion tension imaging in the evaluation of pediatric concussions,”
Musculoskeletal Science and Practice, vol. 42, pp. 162–165, 2019.

[164] N. Virji-Babul, M. R. Borich, N. Makan, T. Moore, K. Frew, C. A. Emery, and L. A.
Boyd, “Diffusion tensor imaging of sports-related concussion in adolescents,” Pediatric
Neurology, vol. 48, no. 1, pp. 24–29, 2013.

[165] W. Yuan, K. B. Foss, S. Thomas, C. A. DiCesare, J. A. Dudley, K. Kitchen, B. Gadd,
J. L. Leach, D. Smith, M. Altaye, P. Gubanich, R. T. Galloway, P. McCrory, J. E.
Bailes, R. Mannix, W. P. Meehan, and G. D. Myer, “White matter alterations over
the course of two consecutive high-school football seasons and the effect of a jugu-
lar compression collar: A preliminary longitudinal diffusion tensor imaging study,”
Human Brain Mapping, vol. 39, no. 1, pp. 491–508, 2018.

[166] Y. Zou, I. Jang, N. L. Vike, T. M. Talavage, and J. V. Rispoli, “Acute impacts of
football competition on brain white matter microstructure in high school athletes,”
in Biomedical Engineering Society 2017 Annual Meeting, Phoenix, AZ, U.S.A., 2017.

[167] Y. Zou, T. Lee, R. J. Lycke, I. Jang, N. L. Vike, E. A. Nauman, T. M. Talavage, and
J. V. Rispoli, “High-G head collisions are associated with short-term white matter
microstructural deficits in high school football athletes,” in Journal of Neurotrauma,
vol. 35, Toronto, ON, Canada, 2018.

[168] Y. Zou, W. Zhu, H.-C. Yang, T. M. Talavage, and J. V. Rispoli, “Population-
specific brain atlas for adolescent collision-sport athletes in Purdue Neurotrauma
Group longitudinal database,” 2019. [Online]. Available: https://doi.org/10.4231/
XGNK-JX08

[169] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Black-
burn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky,
J. McGee, and R. Quick, “The open science grid,” J Phys Conf Ser, vol. 78, p.
012057, 2007.

[170] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Würthwein,
“The pilot way to Grid resources using glideinWMS,” Proc WRI World Congr Comput
Sci Inf Eng, vol. 2, pp. 428–432, 2009.

[171] B. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic
image registration with cross-correlation: Evaluating automated labeling of elderly
and neurodegenerative brain,” Medical Image Analysis, vol. 12, no. 1, pp. 26–41,
2008.

https://doi.org/10.4231/XGNK-JX08
https://doi.org/10.4231/XGNK-JX08


85
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Overview 
 
Summary 
 

We developed a population-specific brain atlas target adolescent collision-sport 
(American football, soccer) athletes, based on the MRI scans from the longitudinal 
database of Purdue Neurotrauma Group. The brain atlas was developed in an effort to 
facilitate multimodal neuroimaging studies, specifically to minimize bias introduced 
in spatial normalization, improve sensitivity of voxel-wise statistical analysis, and 
therefore better clarify the mechanisms that lead to traumatic brain injury in 
adolescent athletes, which is one of our long-term commitments to this vulnerable 
population. Image processing software including FSL, ANTs, and Freesurfer were 
used to create the templates (T1-weighted and DTI) and semantic labels (cortical and 
white matter parcellations). To scale and speed up the atlas creation, we established a 
high-throughput high-performance computing workflow which integrated Open 
Science Grid and Purdue Community Clusters. 
 
List of files 
 
PNG215_t1w_brain.nii.gz A T1-weighted template, based on the images 

from 215 early-to-middle adolescent collision-
sport athletes. The template has the dimension 
of 256´256´256 and is not in ICBM-152 
space. 

  
PNG215_t1w_brain_mask.nii.gz A binary mask based on the T1-weighted 

template.  
  
PNG64_fa_ANTs.nii.gz A DTI template, based on the FA maps of 64 

early-to-middle adolescent football athletes in 
a single competition season. The template has 
the dimension of 256´256´256 and is in the 
same space as the T1-weighted template. 

  
PNG215_aparc_aseg.nii.gz T1-based semantic labels of cortical 

parcellations, according to the Desikan-
Killiany labelling protocol. The labels are in 
the same space as the T1-weighted template, 
with the dimension of 256´256´256. 

  
PNG215_wmparc.nii.gz T1-based semantic labels of white matter 

parcellations. The labels are in the same space 
as the T1-weighted template, with the 
dimension of 256´256´256. 

  
PNG215_freesurfer_labels.txt Labels for the cortical and white matter 

parcellations, in plain text format. 
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How to display the image files 
 
First of all, it is assumed that you have some working knowledge of Linux command 
line, which would be generally helpful for operating the image files. The image files 
(templates and labels) are in NIfTI format (https://nifti.nimh.nih.gov/). The following 
tools are recommended to display NIfTI files: 
 

• FSLeyes: FSL image viewer (version 5.0.10 onwards) 
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes  

• mrview: MRtrix image viewer 
https://mrtrix.readthedocs.io/en/latest/reference/commands/mrview.html  

• MRIcron: a cross-platform NIfTI format image viewer 
https://www.nitrc.org/projects/mricron  
 

Alternatively, the NIfTI files can be converted to MGH/MGZ format 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/MghFormat) and be viewed 
using freeview, the FreeSurfer image viewer: 
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewGeneralUsage/Fre
eviewQuickStart  

99



	

Labels for the PNG215_aparc_aseg.nii.gz 
 
order label StructName 
0 0 background 
1 2 Left-Cerebral-White-Matter 
2 3 Left-Cerebral-Cortex 
3 4 Left-Lateral-Ventricle 
4 5 Left-Inf-Lat-Vent 
5 7 Left-Cerebellum-White-Matter 
6 8 Left-Cerebellum-Cortex 
7 10 Left-Thalamus-Proper 
8 11 Left-Caudate 
9 12 Left-Putamen 
10 13 Left-Pallidum 
11 14 3rd-Ventricle 
12 15 4th-Ventricle 
13 16 Brain-Stem 
14 17 Left-Hippocampus 
15 18 Left-Amygdala 
16 24 CSF 
17 26 Left-Accumbens-area 
18 28 Left-VentralDC 
19 30 Left-vessel 
20 31 Left-choroid-plexus 
21 41 Right-Cerebral-White-Matter 
22 43 Right-Lateral-Ventricle 
23 44 Right-Inf-Lat-Vent 
24 46 Right-Cerebellum-White-Matter 
25 47 Right-Cerebellum-Cortex 
26 49 Right-Thalamus-Proper 
27 50 Right-Caudate 
28 51 Right-Putamen 
29 52 Right-Pallidum 
30 53 Right-Hippocampus 
31 54 Right-Amygdala 
32 58 Right-Accumbens-area 
33 60 Right-VentralDC 
34 62 Right-vessel 
35 63 Right-choroid-plexus 
36 77 WM-hypointensities 
37 85 Optic-Chiasm 
38 251 CC_Posterior 
39 252 CC_Mid_Posterior 
40 253 CC_Central 
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order label StructName 
41 254 CC_Mid_Anterior 
42 255 CC_Anterior 
43 1000 ctx-lh-unknown 
44 1001 ctx-lh-bankssts 
45 1002 ctx-lh-caudalanteriorcingulate 
46 1003 ctx-lh-caudalmiddlefrontal 
47 1005 ctx-lh-cuneus 
48 1006 ctx-lh-entorhinal 
49 1007 ctx-lh-fusiform 
50 1008 ctx-lh-inferiorparietal 
51 1009 ctx-lh-inferiortemporal 
52 1010 ctx-lh-isthmuscingulate 
53 1011 ctx-lh-lateraloccipital 
54 1012 ctx-lh-lateralorbitofrontal 
55 1013 ctx-lh-lingual 
56 1014 ctx-lh-medialorbitofrontal 
57 1015 ctx-lh-middletemporal 
58 1016 ctx-lh-parahippocampal 
59 1017 ctx-lh-paracentral 
60 1018 ctx-lh-parsopercularis 
61 1019 ctx-lh-parsorbitalis 
62 1020 ctx-lh-parstriangularis 
63 1021 ctx-lh-pericalcarine 
64 1022 ctx-lh-postcentral 
65 1023 ctx-lh-posteriorcingulate 
66 1024 ctx-lh-precentral 
67 1025 ctx-lh-precuneus 
68 1026 ctx-lh-rostralanteriorcingulate 
69 1027 ctx-lh-rostralmiddlefrontal 
70 1028 ctx-lh-superiorfrontal 
71 1029 ctx-lh-superiorparietal 
72 1030 ctx-lh-superiortemporal 
73 1031 ctx-lh-supramarginal 
74 1032 ctx-lh-frontalpole 
75 1033 ctx-lh-temporalpole 
76 1034 ctx-lh-transversetemporal 
77 1035 ctx-lh-insula 
78 2000 ctx-rh-unknown 
79 2001 ctx-rh-bankssts 
80 2002 ctx-rh-caudalanteriorcingulate 
81 2003 ctx-rh-caudalmiddlefrontal 
82 2005 ctx-rh-cuneus 
83 2006 ctx-rh-entorhinal 
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order label StructName 
84 2007 ctx-rh-fusiform 
85 2008 ctx-rh-inferiorparietal 
86 2009 ctx-rh-inferiortemporal 
87 2010 ctx-rh-isthmuscingulate 
88 2011 ctx-rh-lateraloccipital 
89 2012 ctx-rh-lateralorbitofrontal 
90 2013 ctx-rh-lingual 
91 2014 ctx-rh-medialorbitofrontal 
92 2015 ctx-rh-middletemporal 
93 2016 ctx-rh-parahippocampal 
94 2017 ctx-rh-paracentral 
95 2018 ctx-rh-parsopercularis 
96 2019 ctx-rh-parsorbitalis 
97 2020 ctx-rh-parstriangularis 
98 2021 ctx-rh-pericalcarine 
99 2022 ctx-rh-postcentral 
100 2023 ctx-rh-posteriorcingulate 
101 2024 ctx-rh-precentral 
102 2025 ctx-rh-precuneus 
103 2026 ctx-rh-rostralanteriorcingulate 
104 2027 ctx-rh-rostralmiddlefrontal 
105 2028 ctx-rh-superiorfrontal 
106 2029 ctx-rh-superiorparietal 
107 2030 ctx-rh-superiortemporal 
108 2031 ctx-rh-supramarginal 
109 2032 ctx-rh-frontalpole 
110 2033 ctx-rh-temporalpole 
111 2034 ctx-rh-transversetemporal 
112 2035 ctx-rh-insula 
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Labels for the PNG White Matter Atlas (PNG215_wmparc.nii.gz) 
 
order label StructName 
0 0 background 
1 2 Left-Cerebral-White-Matter 
2 4 Left-Lateral-Ventricle 
3 5 Left-Inf-Lat-Vent 
4 7 Left-Cerebellum-White-Matter 
5 8 Left-Cerebellum-Cortex 
6 10 Left-Thalamus-Proper 
7 11 Left-Caudate 
8 12 Left-Putamen 
9 13 Left-Pallidum 
10 14 3rd-Ventricle 
11 15 4th-Ventricle 
12 16 Brain-Stem 
13 17 Left-Hippocampus 
14 18 Left-Amygdala 
15 24 CSF 
16 26 Left-Accumbens-area 
17 28 Left-VentralDC 
18 30 Left-vessel 
19 31 Left-choroid-plexus 
20 41 Right-Cerebral-White-Matter 
21 43 Right-Lateral-Ventricle 
22 44 Right-Inf-Lat-Vent 
23 46 Right-Cerebellum-White-Matter 
24 47 Right-Cerebellum-Cortex 
25 49 Right-Thalamus-Proper 
26 50 Right-Caudate 
27 51 Right-Putamen 
28 52 Right-Pallidum 
29 53 Right-Hippocampus 
30 54 Right-Amygdala 
31 58 Right-Accumbens-area 
32 60 Right-VentralDC 
33 62 Right-vessel 
34 63 Right-choroid-plexus 
35 77 WM-hypointensities 
36 85 Optic-Chiasm 
37 251 CC_Posterior 
38 252 CC_Mid_Posterior 
39 253 CC_Central 
40 254 CC_Mid_Anterior 
41 255 CC_Anterior 
42 1000 ctx-lh-unknown 
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order label StructName 
43 1001 ctx-lh-bankssts 
44 1002 ctx-lh-caudalanteriorcingulate 
45 1003 ctx-lh-caudalmiddlefrontal 
46 1005 ctx-lh-cuneus 
47 1006 ctx-lh-entorhinal 
48 1007 ctx-lh-fusiform 
49 1008 ctx-lh-inferiorparietal 
50 1009 ctx-lh-inferiortemporal 
51 1010 ctx-lh-isthmuscingulate 
52 1011 ctx-lh-lateraloccipital 
53 1012 ctx-lh-lateralorbitofrontal 
54 1013 ctx-lh-lingual 
55 1014 ctx-lh-medialorbitofrontal 
56 1015 ctx-lh-middletemporal 
57 1016 ctx-lh-parahippocampal 
58 1017 ctx-lh-paracentral 
59 1018 ctx-lh-parsopercularis 
60 1019 ctx-lh-parsorbitalis 
61 1020 ctx-lh-parstriangularis 
62 1021 ctx-lh-pericalcarine 
63 1022 ctx-lh-postcentral 
64 1023 ctx-lh-posteriorcingulate 
65 1024 ctx-lh-precentral 
66 1025 ctx-lh-precuneus 
67 1026 ctx-lh-rostralanteriorcingulate 
68 1027 ctx-lh-rostralmiddlefrontal 
69 1028 ctx-lh-superiorfrontal 
70 1029 ctx-lh-superiorparietal 
71 1030 ctx-lh-superiortemporal 
72 1031 ctx-lh-supramarginal 
73 1032 ctx-lh-frontalpole 
74 1033 ctx-lh-temporalpole 
75 1034 ctx-lh-transversetemporal 
76 1035 ctx-lh-insula 
77 2000 ctx-rh-unknown 
78 2001 ctx-rh-bankssts 
79 2002 ctx-rh-caudalanteriorcingulate 
80 2003 ctx-rh-caudalmiddlefrontal 
81 2005 ctx-rh-cuneus 
82 2006 ctx-rh-entorhinal 
83 2007 ctx-rh-fusiform 
84 2008 ctx-rh-inferiorparietal 
85 2009 ctx-rh-inferiortemporal 
86 2010 ctx-rh-isthmuscingulate 
87 2011 ctx-rh-lateraloccipital 
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order label StructName 
88 2012 ctx-rh-lateralorbitofrontal 
89 2013 ctx-rh-lingual 
90 2014 ctx-rh-medialorbitofrontal 
91 2015 ctx-rh-middletemporal 
92 2016 ctx-rh-parahippocampal 
93 2017 ctx-rh-paracentral 
94 2018 ctx-rh-parsopercularis 
95 2019 ctx-rh-parsorbitalis 
96 2020 ctx-rh-parstriangularis 
97 2021 ctx-rh-pericalcarine 
98 2022 ctx-rh-postcentral 
99 2023 ctx-rh-posteriorcingulate 
100 2024 ctx-rh-precentral 
101 2025 ctx-rh-precuneus 
102 2026 ctx-rh-rostralanteriorcingulate 
103 2027 ctx-rh-rostralmiddlefrontal 
104 2028 ctx-rh-superiorfrontal 
105 2029 ctx-rh-superiorparietal 
106 2030 ctx-rh-superiortemporal 
107 2031 ctx-rh-supramarginal 
108 2032 ctx-rh-frontalpole 
109 2033 ctx-rh-temporalpole 
110 2034 ctx-rh-transversetemporal 
111 2035 ctx-rh-insula 
112 3001 wm-lh-bankssts 
113 3002 wm-lh-caudalanteriorcingulate 
114 3003 wm-lh-caudalmiddlefrontal 
115 3005 wm-lh-cuneus 
116 3006 wm-lh-entorhinal 
117 3007 wm-lh-fusiform 
118 3008 wm-lh-inferiorparietal 
119 3009 wm-lh-inferiortemporal 
120 3010 wm-lh-isthmuscingulate 
121 3011 wm-lh-lateraloccipital 
122 3012 wm-lh-lateralorbitofrontal 
123 3013 wm-lh-lingual 
124 3014 wm-lh-medialorbitofrontal 
125 3015 wm-lh-middletemporal 
126 3016 wm-lh-parahippocampal 
127 3017 wm-lh-paracentral 
128 3018 wm-lh-parsopercularis 
129 3019 wm-lh-parsorbitalis 
130 3020 wm-lh-parstriangularis 
131 3021 wm-lh-pericalcarine 
132 3022 wm-lh-postcentral 
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order label StructName 
133 3023 wm-lh-posteriorcingulate 
134 3024 wm-lh-precentral 
135 3025 wm-lh-precuneus 
136 3026 wm-lh-rostralanteriorcingulate 
137 3027 wm-lh-rostralmiddlefrontal 
138 3028 wm-lh-superiorfrontal 
139 3029 wm-lh-superiorparietal 
140 3030 wm-lh-superiortemporal 
141 3031 wm-lh-supramarginal 
142 3032 wm-lh-frontalpole 
143 3033 wm-lh-temporalpole 
144 3034 wm-lh-transversetemporal 
145 3035 wm-lh-insula 
146 4001 wm-rh-bankssts 
147 4002 wm-rh-caudalanteriorcingulate 
148 4003 wm-rh-caudalmiddlefrontal 
149 4005 wm-rh-cuneus 
150 4006 wm-rh-entorhinal 
151 4007 wm-rh-fusiform 
152 4008 wm-rh-inferiorparietal 
153 4009 wm-rh-inferiortemporal 
154 4010 wm-rh-isthmuscingulate 
155 4011 wm-rh-lateraloccipital 
156 4012 wm-rh-lateralorbitofrontal 
157 4013 wm-rh-lingual 
158 4014 wm-rh-medialorbitofrontal 
159 4015 wm-rh-middletemporal 
160 4016 wm-rh-parahippocampal 
161 4017 wm-rh-paracentral 
162 4018 wm-rh-parsopercularis 
163 4019 wm-rh-parsorbitalis 
164 4020 wm-rh-parstriangularis 
165 4021 wm-rh-pericalcarine 
166 4022 wm-rh-postcentral 
167 4023 wm-rh-posteriorcingulate 
168 4024 wm-rh-precentral 
169 4025 wm-rh-precuneus 
170 4026 wm-rh-rostralanteriorcingulate 
171 4027 wm-rh-rostralmiddlefrontal 
172 4028 wm-rh-superiorfrontal 
173 4029 wm-rh-superiorparietal 
174 4030 wm-rh-superiortemporal 
175 4031 wm-rh-supramarginal 
176 4032 wm-rh-frontalpole 
177 4033 wm-rh-temporalpole 
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order label StructName 
178 4034 wm-rh-transversetemporal 
179 4035 wm-rh-insula 
180 5001 Left-UnsegmentedWhiteMatter 
181 5002 Right-UnsegmentedWhiteMatter 
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B. DERIVING DIFFUSION KURTOSIS FROM DWI SIGNAL

The DKI approximation is a essentially a Taylor expansion (Maclaurin series) of ln[S(n, b)]
in power of b, which is given as [274]:

ln
[S(n, b)

S0

]
≈ −bD(n) +

1

6
b2D̄2K(n)

where

D(n) =

3∑
i,j=1

ninjDij , K(n) =
D2

D(n)2

3∑
i,j,k,l=1

ninjnknlWijkl

Dij are the elements of the 3-dimension rank-2 diffusion tensor D, andWijkl are the elements
of the 3-dimension rank-4 kurtosis tensor W. Both D and W are fully symmetric, and
therefore the number of independent components are 6 and 15 respectively. In order to
solve the signal attenuation equation, at least two nonzero b-values and 15 distinct gradient
directions are required.

Subsequently, W can be orthogonally transformed by:

W̃ijkl =

3∑
i′,j′,k′,l′=1

Rii′Rjj′Rkk′Rll′Wi′j′k′l′

with W̃ijkl being the elements of W in the rotated frame R, in which Rij is the j-th
component of the eigenvector corresponding to λi in D. Now, we can define:

Ki =
MD2

λ2i
W̃iiii

and compute axial (Kax), radial (Krad), and mean kurtosis (Kmean):

Kax = K1, Krad =
K2 + K3

2
, Kmean =

K1 + K2 + K3

3
=

1

n

n∑
i=1

K(i).

In order to obtain physically and biologically plausible estimates of diffusivity and kur-
tosis parameters, constraints need to be satisfied. See Tabesh et al. [279] for details.
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C. USING DEEP LEARNING FRAMEWORK WITH BRAIN MRI
FOR NEUROCOGNITIVE PREDICTION
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Abstract. We present a novel framework using 3D convolutional neural 
networks to predict residualized fluid intelligence scores in the MICCAI 2019 
Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge 
datasets. Using gray matter segmentations from T1weighted MRI volumes as 
inputs, our framework identified several cortical and subcortical brain regions 
where the predicted errors were lower than random guessing in the validation set 
(mean squared error = 71.5252), and our final outcomes (mean squared error = 
70.5787 in the validation set, 92.7407 in the test set) were comprised of the 
median scores predicted from these regions. 

Keywords: Adolescence · Brain · Convolutional neural networks · Fluid 
intelligence · MRI 

1 Introduction 

Unraveling puzzles between behavior and human brain has long been an intriguing 

topic in cognitive neuroscience [16]. One important research question is to understand 

how intelligence relates to brain structure in adolescence. There is evidence showing 

that fluid intelligence [2], the capacity of learning and adapting to novel situations, 

improves rapidly during late childhood (age 8–15) and is thought to be primarily 

influenced by neurobiological factors [1,12]. Derived from a collection of gold standard 

tests, the fluid intelligence scores are continuous values with normal distribution, thus 

posing a very interesting challenge in machine learning: can fluid intelligence be 

predicted from high dimensional features, such as brain morphometry? 
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Carrying this idea to a broader scientific community, a group of researchers at 

Stanford University, UC San Diego, Vanderbilt University, and Children’s National 

Health System initiated the MICCAI 2019 ABCD Neurocognitive Prediction 

Challenge. Participating teams of the Challenge proposed algorithms that predict the 

residualized fluid intelligence scores using T1-weighted (T1w) MRI. The original fluid 

intelligence scores were residualized to remove confounding factors (brain volume, 

data collection site, and socio-demographic variables); the residualized scores and T1w 

brain images of 4,154 participants (3,739 for training set, 415 for validation set) were 

provided, whereas the scores of 4,515 participants (test set) were predicted from their 

images. 

In neuroimaging, several machine learning methods have been proposed for 

predicting single continuous values from high feature dimensionality. Wang et al. [20] 

proposed a sparse learning framework using a Support Vector Regression model to 

predict the Intelligence Quotient from structural MRI; the framework reduced 

dimensionality by selecting the derived gray and white matter features, and by fusing 

different features, the multi-kernel model achieved better performance than the single-

kernel model. In 2017, Cole et al. [3] first demonstrated that by applying 3D 

convolutional neural networks (ConvNets), the chronological age of healthy individuals 

can be reliably predicted based on T1w brain images that were only minimally 

processed, suggesting that 3D ConvNets have strengths in high-dimensional prediction 

tasks and discovering potential relationships between neuroimages and behavioral 

outcomes [14]. 

Inspired by the previous work, here we propose a novel framework for the 

intelligence prediction task on ABCD datasets, using 3D ConvNets trained on multiple 

cortical and subcortical brain regions. We hypothesize that under our framework, (1) 

certain brain regions can predict residualized fluid intelligence scores (a.k.a. predictive 

regions), and (2) compared to each predictive region, the median predicted scores from 

multiple predictive regions contribute to a lower mean squared error (MSE). Below we 

describe the methods and preliminary results in detail. 

2 Materials and Methods 

2.1 Dataset 

The ABCD Study [10] is by far the largest multisite longitudinal study of brain 

development and child health in the United States. The Study has recruited over 11,500 

children ages 9–10 at 21 sites across the country. In February 2018, the first annual 

curated ABCD data (Release 1.0) were made available on NIMH Data Archive (NDA), 

including minimally processed brain image volumes and tabulated results of structural 

MRI, diffusion MRI, and fMRI (both restingstate and task-based). Non-imaging 

assessments were also provided, including physical and mental health, neurocognition, 

substance use, biospecimens, as well as culture and environment domains. 

The ABCD data used in this report came from Release 1.1. For the training set 

(3,739 participants) and validation set (415 participants), residualized fluid intelligence 

scores and processed T1w MRI were provided; for the test set (4,515 participants), only 

the images were provided. The fluid intelligence scores were collected in NIH Toolbox 

Neurocognition Battery [1]. The raw T1w brain images were acquired using a 3D T1w 
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inversion prepared RF-spoiled gradient echo scan (1mm isotropic), with prospective 

motion correction [19,21]. 

2.2 Processing 

Fluid Intelligence Scores. The fluid intelligence scores were residualized using a linear 

regression model, with brain volume, data collection site, age at baseline, sex at birth, 

race/ethnicity, highest parental education, parental income, and parental marital status 

as independent variables. Any participant in the training or validation set with missing 

values in the dependent or independent variables was excluded. After model fitting, the 

residuals were computed for all the participants. The R code implementing the 

procedure has been made available on the official website (https://sibis.sri.com/abcd-

np-challenge/). 

T1-Weighted (T1w) MRI. A detailed documentation of MRI processing can be found 

in Pfefferbaum et al.’s Data Supplement [13]. First, the raw data were transformed into 

NIfTI formats [8], followed by noise removal, field inhomogeneity correction, and 

confined to a brain mask defined by non-rigidly aligning SRI24 atlas [15] to the T1w 

MRI. The brain mask was refined by a majority voting approach among the outputs of 

a variety of neuroimaging software. Based on the refined masks, inhomogeneity 

correction was repeated, and the skull-stripped T1w image was segmented into gray 

matter, white matter, and cerebrospinal fluid. Based on the SRI24/TZO parcellation 

map, the gray matter tissue was further parcellated after non-rigidly aligning the T1w 

image to the SRI24 atlas. Afterwards, skull-stripped T1w image and corresponding gray 

matter segmentations were affinely mapped to the SRI24 atlas, and the results were 

visually inspected. 

2.3 3D ConvNets Framework 

A schematic illustration of the 3D ConvNets framework is shown in Fig. 1. Due to 
memory constraints, we proposed this framework after the attempts of feeding the 
whole brain into the 3D ConvNet and training volumes of multiple brain regions in a 
simultaneous manner. First, the whole brain volume of size (240 × 240 × 240) was 
trimmed down to the specific size and location of each region of interest (ROI) 
according to the gray matter segmentations, as summarized in Table 1. The gray matter 
within each ROI was taken as input of 3D ConvNet. The ConvNet contains 3 repeated 
blocks of: a (3 × 3 × 3) convolutional layer (with stride of 1 and an L2 regularizer of  
1 × 10−4), a 3D batch-normalization layer [9], an ELU activation function, a (2 × 2 × 2) 
average pooling layer (with stride of 2), and a 3D dropout layer (rate of 0.4 for the first 
two blocks, 0.3 for the third) [18]. The number of feature channels for the three blocks 
were 8, 16, and 32 respectively. The total number of parameters for the three blocks 
were 224, 3,472, and 13,856 respectively. For the three ROIs (left triangular part of 
interior frontal gyrus, left caudate nucleus, and left thalamus) that were included for the 
final prediction scores, the number of parameters in the last fully connected layer were 
6,913, 10,977, and 4,001 respectively. The predicted scores from these ROIs were 
concatenated to obtain the median predicted scores, which contributed to the final 
scores. 
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Fig. 1. Schematic illustration of the proposed 3D ConvNets framework. Only the three most 
predictive regions that contributed to the final submission are shown. ROI 13: left triangular part 
of interior frontal gyrus; ROI 71: left caudate; ROI 77: left thalamus. 

2.4 Selected Brain Regions 

We focused on the brain areas previously reported by Wang et al. [20] for estimating 

intelligence, including: bilateral transverse temporal gyri, bilateral thalamus (left is 

shown in Fig. 2), left parahippocampal gyrus, left hippocampus, right opercular part of 

inferior frontal gyrus, left anterior cingulate gyrus, right amygdala, left lingual gyrus, 

left superior parietal lobule, right inferior parietal lobule, left angular gyrus, left 

paracentral lobule, and left caudate nucleus (shown in Fig. 2). For those areas that were 

unilateral, we also explored their contralateral part. In addition, we explored bilateral 

triangular part of inferior frontal gyri (left is shown in Fig. 2). The full list of regions 

can be found in Table 1. 

2.5 Implementation 

During training, we formed batches by randomly sampling from the 3D volumes, with 

a batch size of 32. 3 epochs were chosen for training all the selected ROIs. The weights 

were trained by minimizing the MSE using the Adam optimizer [11], with a learning 

rate of 0.1 and constant decay of 5×10−5 after each epoch. 

To determine ROIs that predict the scores in the validation set well, all the MSEs were 

compared to a “random guessing” model, which is essentially an MSE computed after 

assigning the mean of the residualized fluid intelligence score to each individual, and 

only those ROIs whose MSE was lower than the random guessing model were selected 

to compute the median predicted scores (final scores). 

The 3D ConvNets were implemented using Keras library (v2.2.4) with Tensorflow 

(v1.12) as the backend in Python (v3.6) environment. The cluster consisted of 16 Intel 

Xeon processors, 196 GB system RAM, and two NVIDIA Tesla P100 GPUs (each with 

16 GB memory). The GPUs were used independently to optimize the ConvNets; once 

the optimization was done, one GPU was used to evaluate the test set.  
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Table 1. Specific dimensions and locations of the selected brain regions in the SRI24 space [15]. 
L/R: left/right hemisphere. 

ROI Brain Region Dimensions X Y Z 
   Min Max Min Max Min Max 

11 L Inferior frontal 
gyrus - opercular 

65 × 65 × 65 41 101 105 165 102 162 

12 R Inferior frontal 
gyrus - opercular 

65 × 65 × 65 131 196 95 160 96 161 

13 L Inferior frontal 
gyrus - triangular 

62 × 62 × 62 40 102 127 189 100 162 

14 R Inferior frontal 
gyrus - triangular 

63 × 63 × 63 130 193 126 189 95 158 

31 L Cingulate gyrus - 
anterior 

83 × 83 × 83 51 134 113 196 89 172 

32 R Cingulate gyrus - 
anterior 

80 × 80 × 80 71 151 115 195 96 176 

37 L Hippocampus 64 × 64 × 64 57 121 76 140 64 128 

38 R Hippocampus 64 × 64 × 64 107 171 76 140 66 130 

39 L Parahippocampal 
gyrus 

83 × 83 × 83 40 123 74 157 35 118 

40 R Parahippocampal 
gyrus 

78 × 78 × 78 89 167 75 153 39 117 

41 L Amygdala 41 × 41 × 41 78 119 105 146 76 117 

42 R Amygdala 44 × 44 × 44 120 164 105 149 75 119 

47 L Lingual gyrus 76 × 76 × 76 55 131 25 101 48 124 

48 R Lingual gyrus 78 × 78 × 78 90 168 24 102 47 125 

59 L Parietal lobule - 
superior 

75 × 75 × 75 48 123 16 91 121 196 

60 R Parietal lobule - 
superior 

75 × 75 × 75 91 166 15 90 121 196 

61 L Parietal lobule - 
inferior 

56 × 56 × 56 49 105 47 103 122 178 

62 R Parietal lobule - 
inferior 

74 × 74 × 74 124 198 32 106 106 180 

65 L Angular gyrus 68 × 68 × 68 40 108 19 87 104 172 

66 R Angular gyrus 63 × 63 × 63 134 197 15 78 105 168 

69 L Paracentral lobule 65 × 65 × 65 68 133 43 108 135 200 

70 R Paracentral lobule 72 × 72 × 72 81 153 38 110 129 201 

71 L Caudate nucleus 75 × 75 × 75 56 131 89 164 77 152 

72 R Caudate nucleus 70 × 70 × 70 84 154 93 163 83 153 

77 L Thalamus 54 × 54 × 54 74 128 81 135 88 142 

78 R Thalamus 54 × 54 × 54 98 152 82 136 89 143 

79 L Temporal gyrus - 
transverse 

56 × 56 × 56 45 101 80 136 84 140 

80 R Temporal gyrus - 
transverse 

65 65 65 132 197 62 127 77 142 
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Fig. 2. Anatomical illustrations of the three most predictive ROIs among four participants. Red: 
left caudate nucleus (ROI 71); Green: left triangular part of interior frontal gyrus (ROI 13); Blue: 
left thalamus (ROI 77). (Color figure online) 

3 Preliminary Results 

Different number of epochs were tested, and 3 epochs were chosen for training the 28 

selected brain regions (see Fig. 3). The total time used for training the 28 3D ConvNets 

was approximately 6 h. 

For the validation set, the mean and standard deviation for the residualized fluid 

intelligence scores was −0.50±8.47. The MSE of the random guessing model was 

71.5252. Among all the prediction MSEs in validation, the three regions producing 

lower prediction error than the random guessing model were: left caudate nucleus (ROI 

71) (MSE = 70.9454, R2 = 0.0451), left triangular part of inferior frontal gyrus (ROI 13) 

(MSE = 71.1361, R2 = 0.0060), and left thalamus (ROI 77) (MSE = 71.2036, R2 = 

0.0068). The median predicted scores resulted from these three ROIs produced a 

prediction error of 70.5787 (R2 = 0.0323). 

In addition, we observed that the right amygdala (ROI 42) produced a slightly lower 

prediction error (71.4737, R2 = 0.0029) than the random guessing model, and we 

explored including it in our model; since the final prediction error did not improve (i.e., 

lower than 70.5787), we decided to exclude this ROI from our final model. The 

prediction errors in the validation set are summarized in Fig. 4. In the end, our proposed 

framework produced a prediction error of 92.7407 in the test set. 
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Fig. 3. Prediction errors during training (batch size=32). Results of ten epochs are shown. Left: 
left triangular part of inferior frontal gyrus (ROI 13); Center: left caudate nucleus (ROI 71); 
Right: left thalamus (ROI 77). 

 

Fig. 4. Prediction errors of all the selected brain regions in the validation set, in comparison with 
the random guessing model (dashed line). 

4 Discussion 

Our proposed framework was inspired by previous work of [3] and [20]. The main idea 

of this framework is to take a holistic perspective of intelligence predictions obtained 

from multiple ROIs. Initially, we attempted to feed the whole brain into the 3D 

ConvNet, and we attempted to train volumes of multiple ROIs while adding a 

concatenating layer on the top to merge the features from each ROI; these attempts, 

however, failed due to the memory constraints. In addition, we observed overfitting 

occurred very early, which was the reason including regularizer and the dropout layer 

within each repeated block unit, as well as training all the models for 3 epochs only. 

Overall, the proposed framework showed that the median predicted scores from the 

left triangular part of inferior frontal gyrus, left caudate nucleus, and left thalamus 

contributed to a better prediction performance, compared to both the random guessing 
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and to each region individually. Interestingly, the three ROIs all locate in the left 

hemisphere, and they have unique anatomical characteristics (see Fig. 2) and roles in 

cognitive functions. The triangular part of inferior frontal gyrus, also known as 

Brodmann area 45, is a cortical structure responsible for language processing [5]. 

Caudate nucleus is a subcortical structure and part of basal ganglia; it belongs to the 

corticostriatal circuitry and has many connections with frontal cortex and thalamus. 

This circuitry, particularly the caudate nucleus, contributes to goal-directed learning 

where the subject learns to recognize incentive perception to achieve a desirable 

outcome [7]. Thalamus is a subcortical structure located between the midbrain and 

cerebral cortex, with connections to many subcortical areas and the cerebral cortex. For 

a long time, thalamus was thought to be a hub that mainly relays information between 

different regions, but a recent study suggests that thalamus takes an active role in 

controlling functional cortical connectivity [17]. 

This research has several limitations. First, the SRI24 atlas [15] is derived from 24 

participants spanning from late adolescence to late adulthood (age 19– 84). Considering 

that the ABCD participants are 9–10 years old, the extent of age-related changes in 

cortical and subcortical structures can lead to biased (sometimes even misclassified) 

parcellations [4]. This is the primary concern that led us to refrain from interpreting the 

potentially biased anatomical changes, and we strongly suggest normalizing T1w data 

to an age-appropriate brain atlas to reduce biases and improve interpretability [4,6]. 

Second, we did not examine and exclude potential outliers in the datasets; utilizing the 

brain tissue segmentation volumetrics [13] provided by the organizer may help the 

process. Nevertheless, the strength of ConvNets is that the features learnt and extracted 

from images are much richer than the features (e.g., brain tissue segmentation 

volumetrics) derived from processing pipelines. Therefore, providing raw (or 

minimally processed) T1w images would be beneficial in extracting anatomical features 

for high-dimensional prediction tasks, as is previously shown [3]. Third, we trained the 

3D ConvNets only for a few selected brain regions, and it is worthwhile to fully utilize 

the gray matter segmentations and explore whether other brain regions contribute to 

intelligence prediction. 

In conclusion, our proposed framework suggested several cortical and subcortical 

brain regions that contribute to a better prediction of residualized fluid intelligence 

scores, compared to random guessing. Our framework can be validated and improved 

in the future, and it offers a new and unique perspective for predicting fluid intelligence 

based on brain morphometry. 
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