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ABSTRACT

Han, Shuo Ph.D., Purdue University, August 2020. Fluorescence Microscopy Images
Segmentation and Analysis Using Machine Learning. Major Professor: Edward J.
Delp.

Microscopy image analysis can provide substantial information for clinical study

and understanding of the biological structure. Two-photon microscopy is a type of

fluorescence microscopy that can visualize deep into tissue with near-infrared excita-

tion light. Large 3D image volumes of complex subcellular are often produced, which

calls for automatic image analysis techniques. Automatic methods that can obtain

nuclei quantity in microscopy image volumes are needed for biomedical research and

clinical diagnosis. In general, several challenges exist for counting nuclei in 3D image

volumes. These include “crowding” and touching of nuclei, overlapping of two or more

nuclei, and shape and size variances of the nuclei. In this thesis, a 3D nuclei counter

using two different generative adversarial networks (GAN) is proposed and evaluated.

Synthetic data that resembles real microscopy image is generated with a GAN. The

synthetic data is used to train another 3D GAN network that counts the number of

nuclei. Our approach is evaluated with respect to the number of groundtruth nu-

clei and compared with common ways of counting used in the biological research.

Fluorescence microscopy 3D image volumes of rat kidneys are used to test our 3D

nuclei counter. The evaluation of both networks shows that the proposed technique

is successful for counting nuclei in 3D. Then, a 3D segmentation and classification

method to segment and identify individual nuclei in fluorescence microscopy volumes

without having groundtruth volumes is introduced. Three dimensional synthetic data

is generated using the Recycle-GAN with the Hausdorff distance loss introduced in

to preserve the shape of individual nuclei. Realistic microscopy image volumes with
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nuclei segmentation mask and nucleus boundary groundtruth volumes are generated.

A subsequent 3D CNN with a regularization term that discourages detection out of

nucleus boundary is used to detect and segment nuclei. Nuclei boundary refinement

is then performed to enhance nuclei segmentation. Experimental results on our rat

kidney dataset show the proposed method is competitive with respect to several state-

of-the-art methods. A Distributed and Networked Analysis of Volumetric Image Data

(DINAVID) system is developed to enable remote analysis of microscopy images for

biologists. There are two main functions integrated in the system, a 3D visualization

tool and a remote computing tool for nuclei segmentation. The 3D visualization en-

ables real-time rendering of large volumes of microscopy data. The segmentation tool

provides fast inferencing of pre-trained deep learning models trained with 5 different

types of microscopy data.
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1. INTRODUCTION

1.1 Background in Optical Microscopy

Many different types of microscopes have been developed and used for a wide

range of applications. There are three main categories of microscopy, which includes

optical microscopes, electron microscopes, and scanning tunnel electron microscopes.

Among the three categories, optical microscopy is preferred for biological studies.

Optical microscopy imaging is less harmful to biological specimens, making it more

compatible with clinical applications and biomedical research.

Optical microscopy is a type of microscopy that uses visible light to obtain images

of small structures such as tissues or cells. Optical microscopy has been widely used

in biomedical research and clinical studies, since it can visualize biological structures

without the harm from invisible light. Thus, it serves as a powerful tool for clinical

applications with the ability to observe living or moving specimens. In order to

understand how light microscopy works we have to know how the optical microscope

was made. When forming the image from samples, the objective and the condenser are

considered as two major components. The objective is located at the top of the stage

where a living specimen was laid which collects light diffracted by the specimen and

forms a magnified real image. The condenser below the stage concentrates light from

the illuminator on a small area of the [1] specimen. The Koehler illumination’s [2] is

used to place the lens in front of detectors so that light rays passing through focus

in the lens go parallel to one another. The Koehler illumination provides bright and

even illumination at the specimen plane due to these parallel light rays. The choice

of illumination technique greatly determines the image quality.
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Fluorescence microscopy is a type of optical microscopy that can visualize living

tissues using fluorescence. Fluorescence describes a process during which a molecule

first absorbs light energy and then releases it. The molecule that can absorb light is

referred to as a “fluorophore”, also known as fluorescent molecules or fluorescent dyes.

When the fluorophore absorbs energy and becomes excited, it reaches the excited

state. Excited states include singlet states and triplet states, both have higher energy

level than the ground state. The singlet state has its electron pairs spinning in the

same orbital, whereas the triplet state has its electron pairs spinning in two orbitals

forming three different possible configurations [3]. When the fluorophore emits light

energy, it falls back to the ground state. The detailed process of fluorescence is

illustrated in Figure 1.1, known as the Jablonski diagram [3].

Fig. 1.1.: Jablonski diagram

A specific wavelength is used to excite the electrons of the fluorophore when it’s

at ground state, which then absorbs photons and enters the excited states. Multiple

excited states can be reached after excitation based on the difference of the energy
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level. The excitation of a fluorophore from ground state to excited states takes place in

the scale of femtoseconds (10−15 seconds), leaving the molecule in the excited singlet

states. Since fluorophores that are at the excited singlet states have high energy

configurations, they are unstable. The excited fluorophores have a high tendency to

transit to the excited singlet state that has the lowest vibrational energy. This process

is referred to as vibrational relaxation which happens in the scale of around 10−11 -

10−14 seconds. The time that a molecule stays in its excited states is called the excited

lifetime. During the excited lifetimes, most of molecules transit to the lowest excited

singlet state with complete vibrational relaxation. The excess energy from vibrational

relaxation is released into the environment in the form of heat energy. Finally, the

molecules relax back to the ground state in around several nanoseconds (10−9). At

the same time, photons with different energy levels are emitted, i. e., fluorescence

emission. Intersystem crossing is another process that can occur with relatively low

probability. Instead of collapsing to the ground state, the molecules in the excited

singlet states can transfer to the excited triplet state. If photons are emitted and the

molecules relax to ground state from the excited triplet state, the process is referred

to as phosphorescence. If the molecules transit to the excited singlet state from the

excited triplet state, the process is referred to as delayed fluorescence. The energy of

a photon is expressed as

E =
hc

λ
(1.1)

here, Planck’s constant is denoted as h, c denotes the speed of light, and λ denotes the

wavelength. The wavelength of emitted light is longer than the wavelength from the

light source, due to energy lost during vibrational relaxation which caused the energy

released during the emission to be less than the energy absorbed during the excitation.

This loss of energy during vibrational relaxation that leads to a difference between the

absorption and emission spectra maxima can be referred to as the Stokes shift. An

example of the Stokes shift in the excitation and emission spectra for green fluorescent

protein (GFP) is shown in Figure 1.2. Fluorophores with a greater storage shift are

desired because it is easier to isolate the emitted light through interference filters from
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the incoming light. The quantum yield is also another property of fluorophores in

which the quantity yield is the ratio of the number of fluorescent photons emitted to

the number of photons absorbed. Increased quantum output is required to generate

brighter images with the same light intensity.

Fig. 1.2.: Stokes shift of GFP

Although the excitation and fluorescence process is repeatable, some of the molecules

can lose the ability to fluorescent if it is photobleached. Photobleaching occurs when

the molecules in the excited triplet state react with oxidative surrounding agents and

become permanently unable to fluoresce [1].

In summary, the common fluorescence process can be described as a three-step

cyclical process:

• Step 1. The excitation of fluorophore with photon absorption.

• Step 2. The fluorophore losses some energy with vibrational relaxation during

the excited lifetime.

• Step 3. The fluorophore emits photon and release back to the ground state.
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Fluorescent microscopy is widely used in immunohistochemistry. The traditional

method to localize protein is through immunohistochemistry in which a target protein

is detected with fluorescent antibodies. The method has been applied to xanthine oxi-

dase, carbonic anhydrase, and protein kinases C localization assays in skeletal muscle.

Some limitations to this method include the large quantities of detection agent re-

quired and the need for cell permeabilization. The discovery of fluorescent proteins

such green fluorescent protein (GFP) has contributed greatly to live fluorescence mi-

croscopy imaging. In a method called “genetic tagging”, the GFP gene is commonly

used as a reporter protein that helps in locating a co-expressed target protein. This

method is suitable for identifying protein localization changes in response to external

signals. However, it relies heavily on transfection and transgenic technology, which in

turn limits its accessibility. When fluorophores are injected into species, the species

can be magnified and visualized by microscopes. When the light passes through a

target lens, the sample is illuminated evenly. If a fluorophore is located in the area

where it is illuminated from the light source, the fluorophore emitted light passes

through a dichroic mirror and a tube lens and is pictured on a detector. [1]

Confocal microscopy [1] is a type of optical microscopy which was invented by

Minsky in 1955 [4]. A pinhole is added in confocal microscopy which is placed in

front of electron detectors. Transitionally, widefield microscopy’s signal acquisition

suffers from emitted light from fluorophores in different focal planes. The images

acquired from widefield microscopy are blurred by emission originating away from the

focal plane. Blurred background and low-contrast images are produced from widefield

microscopy. More specifically, thick fluorescent specimens may be challenging since

bright signals from objects lying outside the focal plane increase the background and

yield low contrast images. As opposed to widefield microscope, confocal microscope

located a pinhole in front of detectors so that it successfully rejects signals from nearby

sources above and below the focal plane. In confocal microscopy, the light focuses on

one focal plane instead of uniformly illumination on the sample. A spinning disk is

used to fast scan multiple points simultaneously [5].



6

(a) widefield microscopy (b) confocal microscopy

Fig. 1.3.: Widefield microscopy and confocal microscopy

Figure 1.3 shows widefield microscopy and confocal microscopy. Confocal mi-

croscopy has certain limitations for deep tissue photon detection. If a sample’s thick-

ness is greater than the wavelength of visible light from a source, due to light scatter-

ing, the number of photons from fluorescent molecules in deep tissue can be reduced.

With near-infrared (IR) illumination, two-photon microscopy [1, 6–9] can visualize

deeper into tissue. Because IR light has longer wavelength than visible light, even

in deep tissue, IR light scatters less. IR light contains less energy than visible light

according to Equation 1.1, so two or more photons must simultaneously excite the

fluorescent molecules. The signal is linear to the intensity of the incoming light in con-

focal microscopy. For two-photon microscopy, the signal is not linear to the intensity

of the incoming light, but a square of the incoming light’s intensity.

Compared with confocal microscopy, two-photon microscopy has many benefits

specifically for deep tissue imaging. As indicated by confocal microscopy, [10] places

pinhole aperture in front of the detector to reject unfocused dispersed light rays so

that the signal strength is reduced. Two-photon microscopy, on the other hand, uses
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near-infrared rays that can image the subcellular structures without damaging in

vivo [11] since each molecule requires photon with less energy to excite. Deep images

acquisition inside intact living tissues becomes possible because of the preservation

of signal power. In addition, the use of near-infrared rays decreases the scattering

effect such that fluorescence emissions from the focal plane are collected efficiently

over a large detector area. More specifically, the amount of scattering is inversely

proportional to the fourth power of the wavelength in case the scattering particle is

much smaller than, for example, less than 1/10λ [10]. Thus, the excitation of two-

photon microscopy is limited to a small volume that allows for higher contrast, lower

photo damage, and less photobleaching [1].

Multiphoton microscopy techniques are also being developed for visualization in

deep tissue [11–14], which improved the two-photon microscopy technique. The use

of more photons has a lower risk of destroying living tissues as longer wavelengths

can be used compared to microscopy with two photons. For example, an infrared

beam at 1050nm will produce three-photon excitation of an equivalent fluorophore

absorbing ultraviolet light at 350nm whereas two-photon using green fluorophore at

525nm may allow the same illumination. In addition, excitation of three photons

may be used from valuable imagery into deep ultraviolet.

1.2 Challenges

Several steps are required to analyze the images / volumes of a fluorescence mi-

croscopy, detect and segment subcellular structures. For example, an exact segmented

tube boundary can identify a single nephron in the kidney and characterize it. A pre-

cise detection and segmentation of nuclei can also be used to analyze tissue status.

There are several main challenges involved in microscopy imaging. For the follow-

ing reasons, analysis of fluorescence microscopy images may be difficult:

• First of all, noise is a big issue in fluorescence microscopy which can be caused

by non-ideal detectors. There are three main noises in the camera: dark current
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noise, photon noise and reading noise [15, 16]. Dark noise occurs when sensors

detect thermal-emitted electrons. As integration time and charge-coupled de-

vice (CCD) chip temperature increase, heat-excited electrons are detected as

noise. A CCD cooler can reduce dark noise. Photon noise, also known as shot

noise, is caused by photon randomness. Although the light is uniformly emitted,

the frequency of photons that arrive at a sensor is alone. Photon noise there-

fore causes Poisson noise. Note that fluorescence images may contain stronger

Poisson noise due to the weak signal from fluorophores. Finally, read noise is

generated by converting electrons detected by sensors into voltage and digitiza-

tion. Second of all, photobleaching reduces the number photons to the detector

so that most of the fluorescence microscopy images have low contrast and low

signal-to-noise ratio. Also, point spread function (PSF) from a microscope sys-

tem blurs the images. Therefore, the main task of image processing is to restore

the fluorescence images and extract useful content information from the images.

As a consequence, images of fluorescence microscopy are degraded by noise and

blurring during the acquisition of the image. When the ideal pixels intensity is

x, the real pixel intensity of fluorescence microscopies is z. [17–19]:

z = y + b (1.2)

where y ∼ P(x) is a Poisson random variable with a mean of x, b ∼ N (µ, σ2)

is a Gaussian random variable with a mean of µ and a variance of σ2. As noted

above, only a limited number of photons are received in the noise detector be-

cause of low fluorescence from photobleaching, low fluorophore concentrations,

and short duration of exposure. In a microscope device, the PSF can blur vol-

umes that can decrease the resolution. Consequently, because of noise and PSF,

limits to subcellular structures may not be well defined.

• A fluorescence microscopy data set can display multiple structures and struc-

tures to detect and segment specific structures that must be distinguished. Mul-
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tiple structures can be labeled in one fluorophore form. A phalloidine marking,

for example, is both the tube basement membrane and the proximal tubular

brush frontier [20]. In addition, the crosstalk [21] can be used in different color

channels for image structures. Crosstalk may occur when fluorophores emit

wavelength light. Segmentation can be highly challenging when several con-

structs are labeled or introduced.

• Different sizes, shapes, and intensities of may exist in subcells. Cores can

have various sizes and shapes, for example, in fluorescence microscopic vol-

umes. Many of the volumes of fluorescence microscopy are inhomogeneously

large [20, 22], so a simple threshold that loses structures at volume boundary

and catches noise in the volume center. A pre-processing step such as adap-

tive histogram equalization or inhomogeneous correction [22] may be needed to

correct the inhomogeneous intensity.

• It is important to distinguish touching or overlapping of neighboring structures.

For example, the number of nuclei in the fluorescence microscopy volume must

be counted by separating the contact or overlapping nuclei. Structures can be

analyzed individually by separating structures. The [23] watershed technique

that can be used to separate touching objects tends, because of irregular struc-

tural forms, to over-segment kernels. The separation of connected nuclei is still

an open problem for research.

1.3 Notation

To easily describe our various processes, a general notation is introduced and

used for this study for the microscopic volume analysis. The fluorescence data set

can be expressed in 5D with a width (x), height (y), depth (z), time (t), and color

channel (c), without loss of generality. For detailed 5D volume information, we use

subscriptions for the 5D volume indices and superscripts. We denote Izp,tm,cn as

a 2D grayscale image size of X × Y in pth focal plane image along z-direction in
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Fig. 1.4.: The notation for the microscopy volume in this thesis

a volume, the mth time sample, and the nth color channel, where p ∈ {1, . . . , Z},

m ∈ {1, . . . , T}, and n ∈ {1, . . . , C}, respectively. Here, X and Y are image width

and height, Z is the number of focal planes. Likewise, T is the sample number and

C is the number of channels for color. Here, the original volume of fluorescence

microscopy is a single grayscale volume. However, biologists often obtain volumes

with multiple fluorescences that simultaneously highlight various structures. The

volumes are then saved with different colored channels. In this study, we always

separate each channel to obtain a 3D grayscale volume with structure for observation.

In addition, we use a single timestamp for each 3D volume obtained. Therefore, for

brevity, I can be defined as a X × Y × Z 3D image dimension. The volume could

be formed as a stack of multiple images in z-, y-, and x-direction. Therefore, we

denoted Izp as a xy section with pth focal plane along the z-direction in a volume,

where p ∈ {1, . . . , Z}. Similarly, Iyq is a xz section with qth focal plane along y-

direction, where q ∈ {1, . . . , Y }, and Ixr
is a yz section with rth focal plane along

x-direction, where r ∈ {1, . . . , X}. For example, Iorigz23 is the 23rd focal plane image

of an original volume, Iorig. In addition, let I(ri:rf ,qi:qf ,pi:pf) be a subvolume of I,

whose x-coordinate is ri ≤ x ≤ rf , y-coordinate is qi ≤ y ≤ qf , and z-coordinate

is pi ≤ z ≤ pf , where ri, rf ∈ {1, . . . X}, qi, qf ∈ {1, . . . Y }, and pi, pf ∈ {1, . . . Z}.

For example, Iseg(241:272,241:272,131:162) is a subvolume of segmented volume, Iseg, where
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the subvolume is cropped between 241st slice and 272nd slice in x-direction, between

241st slice and 272nd slice in y-direction, and between 131st slice and 162nd slice in

z-direction.

(a) Iz100 of WSM (b) Iz100 of WSM (R channel)

(c) Iz100 of WSM (B channel)

Fig. 1.5.: Sample images of WSM dataset

1.4 Data Sets

In this thesis, different methods are shown to analyze volumes of multiple mi-

croscopy image volumes, with a focus on segmentation and counting. Our data sets

are acquired mainly by multiphoton microscopy. Intravital microscopy has been able
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(a) Iz16 of immuno (b) Iz16,c3 of immuno (B channel)

Fig. 1.6.: Sample images of immuno dataset

(a) I
orig
z403

of 3color

Fig. 1.7.: Sample images of 3color dataset

to observe the physiological processes in cells with recent development of microscopy

techniques such as confocal and microscopic microscopy. Due to this huge and com-

plex collection of data, digital image processing has become a major component.

Different 3D microscopy volume datasets are used to test proposed segmentation

and counting methods. Sample images of WSM 1 are shown in Figure 1.5 which each

1WSM dataset were provided by Malgorzata Kamocka of the Indiana Center for Biological Mi-
croscopy.
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(a) I
orig
z9

of Data-X1 (b) I
orig
z17

of Data-X2 (c) I
orig
z6

of Data-X3

(d) I
orig
z16

of Data-X4 (e) I
orig
z9

of Data-X5 (f) I
orig
z137

of Data-X6

Fig. 1.8.: Sample images of data sets containing nuclei structures

of datasets are acquired from a 3D volume of rat kidney. Sample images of immuno

dataset2 is displayed in Figure 1.6. Along with WSM dataset this immuno dataset

is used for testing our segmentation and visualization including color labeling. In

Figure 1.7, an example slice of dataset 3color 3is displayed.

2immuno dataset was provided by Kenneth W. Dunn of the Indiana University School of Medicine.
33color dataset was provided by Sherry Clendenon collected while at the Indiana Center for Biolog-
ical Microscopy
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For some additional examples, Figure 1.8 shows image slices from Data-X1, Data-

X2, Data-X3, Data-X4, Data-X5, Data-X6 are datasets collected from rat using two-

photon microscopy where nuclei are labeled with Hoechst 33342 or Dapi. The goal is

to segment nuclei by rejecting other subcellular structures. 4

1.5 Contributions of This Thesis

There are three main applications in fluorescence microscopy image analysis:

restoration, registration, segmentation. Fluorescence microscopy image segmentation

is challenging due to low contrast and inhomogeneous intensity in images or stacks

potentially caused by photobleaching and noise. In addition, region boundaries are

not well defined potentially caused by PSF. Here we discussed two different fields of

microscopy image analysis including microscopy image synthesis and microscopy im-

age segmentation. Microscopy image synthesis, segmentation and counting methods

using generative adversarial networks are discussed in Chapter 3 and Chapter 4. A

microscopy image synthesis and segmentation method is described in Chapter 5. A

microscopy image analysis system is described in Chapter 6.

The main contributions of this thesis are listed below:

• A nuclei counting technique using a Spatial-Constrained Cycle-Consistent Gen-

erative Adversarial Networks (SpCycleGAN) and a 3D Generative Adversarial

Networks (GAN) counting network is introduced. The 3D counting network

is trained with synthetic microscopy data generated by the SpCycleGAN and

tested with both synthetic and real microscopy data. A watershed-based count-

ing method with Convolution Neural Network (CNN) based nuclei segmentation

is also described. This method is consisting of two stages, a CNN nuclei seg-

mentation with majority voting refinement and watershed nuclei counting. Our

method achieves higher accuracy in terms of voxel evaluation.

4Data-X1, Data-X2, and Data-X3 were provided by Tarek Ashkar of the Indiana University School
of Medicine. Data-X4, Data-X5 were provided by Kenneth W. Dunn of the Indiana University
School of Medicine. Data-X6 was provided by Mike Ferkowicz of the Indiana University School of
Medicine.
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• A method for nuclei segmentation and detection with boundary refinement is

also described. This method consists of three stages, a synthetic image volume

generation step, a segmentation step, and a boundary refinement step. The

generation of realistic synthetic data is extended from ReCycleGAN [24] which

is initially developed for video to video style transfer.

• A method for synthetic microscopy image generation also described. This

method consists of two stages, a synthetic image volume generation step and

a segmentation step. The generation of realistic synthetic data is extended

from style transfer method known as arbitrary style transfer in real-time with

adaptive instance normalization.

• A Distributed and Networked Analysis of Volumetric Image Data (DINAVID)

system is developed to enable remote analysis of microscopy images for biolo-

gists. There are two main functions integrated in the system, a 3D visualization

tool and a remote computing tool for nuclei segmentation. The 3D visualization

enables real-time rendering of large volumes of microscopy data. The segmen-

tation tool provides fast inferencing of pre-trained deep learning models trained

with 5 different types of microscopy data.
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2. LITERATURE REVIEW

By developing and advancing fluorescence microscopy, biologists can see subcellular

structures of living cells. Fluorescence microscopy generates a lot of microscopic im-

ages and stacks and these images and stacks need to be analyzed and quantified. Due

to the large amount of data, however, it is not desirable to analyze and quantify the

data manually in order to have an unbiased and effective process. Image and signal

processing can be a great help in analyzing fluorescence microscopy images and stacks

automatically. Automatic analysis of fluorescence microscopy images is challenging,

as the images contain noise and blurriness, are not well aligned in z-direction and

have inhomogeneous intensities between the center and the image boundary. There-

fore, quantitative analysis of data from fluorescence microscopy, noise and blurriness

reduction restoration, alignment registration in z-direction and segmentation for the

partitioning regions of interest is required.

Common techniques for microscopy images analysis starts from identifying the re-

gion of interest. For region of interest that is in large 3D volumes, manual delineation

is impossible. When a specific feature of the images is desired by biologists but a

mathematical description is often not directly available, automatic image segmenta-

tion methods are of increasing demands in those cases. The use of deep learning based

approach has become more popular with its ability to learn from the data. A set of

user created training data is provided to train the deep learning models. This set of

training data is usually not readily available as the desired type of outcome images

need to be delineated by the user first. For example, a binary mask or the boundaries

of the nuclei in 3D microscopy volumes need to be first defined in order to train a

deep learning model to segment nuclei. To replace the need for hand annotation of
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images, synthetic images that can realistically describe the experimental data can be

used. Generative adversarial networks come in handy for the creation of synthetic

images.

2.1 Review of Nuclei Segmentation Methods

Fluorescence microscopy has become an important instrument in the investigation

of cell biology, allowing 3D image volumes to be acquired from deep into the tissue

and the visualization of complex subcellular structures. Nuclei segmentation enables

the quantitative study of those structures that are important for characterizing the

structure and creation of tissue volumes. Nevertheless, due to the size and complexity

of data, manual segmentation is a laborious and unworkable operation.

Many different techniques of segmentation were developed. This included widely

used techniques of active contours or snakes, such as Chan-Vese 2D region-based

active contours model for the segmentation of the two-dimensional nuclei [25], which

in [26] was expanded to 3D segment of cell-structures for rat kidney.

A fully automatic segmentation method with multi-level setting functionality with

a penalty term and a volume conservation constraint for the separation of touching

cells was describe in [27]. It was improved by a watershed approach for initializa-

tion, a non-PDE-based energy minimization for effective computing, and the Radon

transformation to separate touching cells in [28]. In [29], a discrete multi-regional

competition method was used where the number of regions is uncertain. Another

image segmentation technique named Squassh was developed by [30, 31], which used

an energy function derived from a generalized linear model.

When more subcellular structures are present, these techniques do not segment

nuclei. A nuclei segmentation method has been developed to resolve this [32], which

detects primitive nuclei boundaries, and uses regionally expanding to delineate nuclei.

A technique based on midpoint analysis, distance functions for shape fitting and

marked point processes (MPPs) has recently been described by [33]. Both [32] and [33]
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are 2-dimensional segmentation approaches which do not use z-directional information

on volumes even though they can produce good results. The added z-directional

information has increased the difficulty of the study.

Two or more nuclei are frequently found near or sometimes overlap in biological

samples. In addition, in the present focal plane, photons emitted from nuclei can

still be observed in an elongated and clustering nuclei. When fluorescent signal is

emitted in all directions from each nucleus, focal objects appear to be produced in

the vicinity of the nuclei. It will lead to expanded and overlapping segmentation

areas. To fix this, the [34] watershed approach is widely used for demarcating the

individual nucleus after processing. 3D watershed [23, 34] may be used as the post-

processing technique to separate individual nucleus as watershed separates several

overlapping items effectively. For instance, [35] uses a marker-controlled watershed

to segment the nuclei.

Watershed generates a distinct label for each nucleus by finding local minima

in the topographical distance transform [34]. If it is used on an original volume,

local minima will be assigned not only to nuclei but also to other structures. Since

the generated segmentation mask contains only the segmented nuclei, the watershed

demarcates overlapping nuclei and labels adjacent nuclei. The method enables clear

labeling of adjacent nuclei which is visually helpful for analyzing the images. The

total number of nuclei in the volume can thus be estimated based on the number of

labels. This information is particularly useful for analyzing properties such as cell

livability for biological studies.

Recent deep learning approaches have been more used in biological volumetric

analysis: [36–38]. Although deep learning is generally computationally intensive, the

success of graphical processing units (GPUs) has reduced the execution times, which

can be attributed to a renewed interest for deep learning. In several computer vision

applications, such as object detection, human detection, or autonomous driving, Deep

Neural Network (DNN) has been demonstrated to be helpful. The use of neural

convolution networks (CNN), [39–42], forms the basis for a popular deep learning
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approach to image classification and segmentation. In [43] a max-pooling layer CNN

is used for segment electron microscopy neuron membranes and in [44] a broad field

microscopy CNN is used to detect tyrosine Hydroxy-containing cells of zebra-fish

photos. The latter was used to help the collection of CNN training data with a

Support Vector Machines classification [45].

In [46], this network named SegNet had the first objective as scene understand-

ing, although its implementation is expendable. A semantic pixel wise segmentation

deeply CNN was created. The innovation of SegNet is the way to higher resolution

performance from the lower resolution input function charts. In the maximum pool-

ing step of the corresponding encoder upsampling, the decoder explicitly uses pooling

indexes calculated for non-linear efficiency. The segmentation network consists of an

encoder, an encoder and a classification layer.

A combination of several convolutional layers with pooling layers, [47], and a

rectified-linear unit (ReLU) activation function is used for each encoder layer. In

order to maintain the images’ original sizing, each convoluted layer performs the

convolutional operation with a kernel of 3×3with 1pixel padding. Images are sampled

in the pooling layer for a maximum of 2×2 max phase pooling operation. Conversely,

a decoder consists of an up-sampling layer and multiple convolutional layers, which

have the same convolutional layers as the encoder. The architecture’s final layer is

used to evaluate the likelihood that a pixel is or is not in the nucleus by a softmax

classifier.

U-Net has also been used for segmentation of microscopic images, a completely in-

tegrated convolutional network [48]. Data augmentation using elastic deformations to

train CNN architecture with a limited amount of training images has been developed.

An extension of a [36] 3D U-Net was used to prevent 3D, dense segmentation by man-

ual 2D sparse annotation preparation. The 3D density segment has been expected.

Similarly, U-Net, a fully connected convolutional network [48], has been utilized for

segmentation of microscopy images. Due to the lack of training data [48] developed

data augmentation methods using elastic deformations to train the CNN architecture
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using a small number of training images. An extension of [48], a 3D U-Net [36] was

used to generate 3D dense segmentation by using manual 2D sparse annotations. In

addition, [49] used a deep CNN based shape initialization for the nuclei segmentation

of histopathological images, while [50] developed a spatially restricted convolutional

neural network (SC-CNN) which makes a probability map by using the distance from

the center. A segmentation method using triplanar CNN [51] is represented by the

independence and fusion into the final layer of three two-dimensional CNNs on hor-

izontal, frontal and sagittal planes. Yet the training of individual CNNs will be

computationally expensive. In [36], an extension of 2D U-Net [48] is defined as the

3D U-Net for volumetric segmentation. Although [36] 3D U-Net uses 3D operations

to use volumetric data entirely, 2D slices must be annotated by hand.

2.2 Review of Synthetic Data Generation with Deep Neural Networks

Style transfer can render a content image in the style of another image. A style

transfer method should understand and capture the style of given set of training im-

ages. Then, the method should be able to produce high-quality texture images on

the basis of test images, but they may use a collection of training images to provide

the final result with test image characteristics with trained styles. To achieve this

transition, [52] uses CNN networks which, similar to the encoder-decoder structures,

use VGG network [53] to minimize the average pixel differences between two gener-

ated Gram matrix represented in the encoder layer and corresponding layer in the

decoder process. The CNN networks are stacked similar to encoder-decoder struc-

tures. Generative adversarial network (GAN)s have become an increasingly common

model to learn how to produce loss functions along with the model itself because

of [54]’s paper. Adverse loss models have been applied to a broad range of appli-

cations, including image generation, domain adaptation, text-to-image synthesis, 3D

forms-to-structure synthesis, image-to-image translation, super resolution and even

particle physics generation of radiation patterns. These models, however, suffer from
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problems such as mode crashes and training oscillations that make them difficult to

use in practice. These problems are currently being addressed by the community

in several ways. The architecture of the network was carefully optimized and best

practices developed to optimize training were made extensive. The GAN might have

a problem of not converging between the discriminatory and the generative networks.

In order to overcome this problem, [55] demonstrated a deep convolutional GAN

(DCGAN), which employs logarithms to increase network convergence. In addition

to the Jensen-Shannon divergence distance, the Wasserstein GAN (W-GAN) [56] uses

Earth-Mover distance to improve its convergence in training.

Fig. 2.1.: Comparison of Pix2Pix, CycleGAN, and ReCycleGAN [24]

Generating realistic synthetic microscopy image volumes still remain an onerous

issue because a good model must be modeling different types of noise and biological

structures of various kinds. A generative adversarial network (GAN) has recently been

defined to resolve the image-to-image translation issues by means of two adversarial

networks, a generative network and a discriminatory network.

New data similar to the expected one will be generated by the generator. The

discriminator’s objective is to determine whether an input data is real (it belongs to

the original dataset) or false (generated by a forging). The discriminative network, in

particular, learns a loss function to decide whether a real or false output image while

the generative network attempts to minimize the loss function. In traditional GANs,

a random image can be generated with a random code input, however, the level of
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user control and the resolution of the generated images are not ideal. Pix2Pix [57] is

one of the GAN extensions that use conditional GANs to understand the correlation

between the input and the output image that can produce realistic images. Since the

input of Pix2Pix is user-defined images, the level of user control has greatly improved.

For example, Pix2Pix is capable of transform line drawing of a cat into a photo-like

image of cat. The problem with Pix2Pix [57] is that the training of networks still

needs paired data. Later, cycle-consistent adversarial networks (CycleGAN) [58] used

a cycle consistent term for adverse loss function without using paired training data

for image generation. In addition, a space-restricted CycleGAN (SpCycleGAN) has

been implemented to regularize the position of synthetic nuclei in order to boost nuclei

segmentation efficiency. [59] Recently, a network called ReCycleGAN is introduced,

which incorporates spatial and temporal information with adversarial losses in content

translation and style preservation.

A comparison of Pix2Pix, CycleGAN, and ReCycleGAN is illustrated in Figure

2.1. Pix2Pix contains one generative model GY that can transfer image xi in domain

X into image yi in domain Y . xi and yi are a set of paired images. CycleGAN

contains two generative models, GX that can transfer image ys in domain Y into

image yt in domain X. GY that can transfer image xt in domain X into image ys

in domain Y . xt and ys are a set of unpaired independent images, where xt and ys

are not ordered in spatial or temporal domain. The introduction of cycle-consistency

enables image-to-image translation tasks without any expensive labeling by hand.

ReCycleGAN considered the case of unpaired but ordered streams (x1, x2, ..., xt, ...)

and (y1, y2..., ys, ...). ReCycleGAN contains two generative models, GX that can

transfer image y in domain Y into image x in domain X. GY that can transfer

image x in domain X into image y in domain Y . In addition, recurrent temporal

predictor PX and PY is trained to predict future samples in a stream given its past. PX

can predict xt+1 given (x1, x2, ..., xt, ...). PY can predict ys+1 given (x1, x2, ..., xs, ...).

The recurrent loss is introduced to form better mapping by taking advantage of the

temporal or spatial ordering. ReCycleGAN has been successfully used for the style
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transfer of video to video with continuous movement, for example, flower opening.

An impressive feature is that there is no discontinuous artifact between each frame

in time series.

2.3 Microscopy Image Analysis and Visualization Tools

Several popular tools are available among the biomedical community for the as-

sisted analysis of medical images. Here are some examples of the tools that can

segment nuclei in 3D microscopy image volumes:

• CellProfiler 3.0 [60]: CellProfiler is a user-oriented open source program to an-

alyze biological images. CellProfiler has been developed to analyze images, the

size, shape, intensity and textures of any cell (or other object) on a scalable

and flexible and high performance basis in each image. Using a graphical user

interface (GUI), users create a “pipeline” for image analysis, with sequential

modules that each can perform a task of the image processing, including illu-

mination correction, segmentation and object measurement. Users can select,

choose, and change their settings to test the value of interest. It is also suit-

able for low performance assays though originally designed for high-performance

images.

CellProfiler can easily extract useful biological data from photographs and im-

prove objective and statistical intensity of tests. It assists researchers in quan-

titatively addressing a range of biological issues, including standard testing and

various morphological assessments. CellProfiler works through the design and

arrangement of usable modules by designing custom task-specific pipelines.

The default settings used to constitute a typical pipeline for segmentation in-

clude the “IdentifyPrimaryObject” module. The optimized settings can be

developed by adding pre-processing and post-processing modules to the default

pipeline based on our observations of the results obtained by the default set-
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tings. The final settings are chosen from the combination and arrangement of

modules that provide the best results.

• Squaash [30, 31]: Squassh is a ImageJ tool that can segment subcellular struc-

tures in microscopy images in 2D and 3D. Three parameters in Squaash can be

adjusted to produce the visually best segmentation results. The first parameter

is the “Rolling ball window size” from background subtraction. The second

parameter is the “Regularization parameter” for segmentation. Higher values

are used to avoid segmenting noise-induced small intensity peaks. The third

parameter is “Minimum object intensity” for segmentation. High values are

used to force object separation.

The first background subtraction step is carried out as the segmentation model

assumes constant local intensities. Context variations are non-specific signals

that this model does not represent. With the rolling-ball algorithm, it subtracts

the background image. The entire image is segmented. It assigns to every pixel

a number from 0 to 1, which is an object or background pixel score. We use k-

mean clusters to estimate object intensity for this original, rough segmentation

to the maximum intensity in the image. The score mask threshold displays the

initial artifacts.

The threshold value is set to the minimum intensity of the artifacts to be in-

cluded in the analysis, as specified by the user. Each item with less than this

threshold intensity is discarded. Connected areas are marked as separate ob-

jects. Individual segmentation of objects is obtained separately by operating

the algorithm per image region. This move can be accomplished with a segmen-

tation resolution higher than the image resolution, thereby providing subpixel

precision. As this over-sample is done in local patches around the objects in-

stead of the entire image, the measurement costs have only a moderate impact.
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The final segmentation is obtained by using the optimal threshold for the last

point, which reduces the segmentation error, automatically defined as mentioned

above.

• FARSIGHT [61]: FARSIGHT is a popular toolkit for medical image analysis,

particularly for neuronal analysis in microscopy images. It features automated

and computer-assisted method for tracing neural structures and for cell analy-

sis. FARSIGHT is written in C++ and python, using Kitware’s Visualization

Toolkit (VTK) and the Insight Toolkit (ITK). FARSIGHT is designed for the

handling, pre-processing, segmentation and inspection of image data. These

modules can be used to perform a variety of automated image processing tasks.

The core high level image processing algorithms implemented in FARSIGHT are

build using the filters developed by the Insight Segmentation and Registration

Toolkit (ITK) and the visualization is built mainly using The Visualization

ToolKit (VTK). Importantly, all modules are accessible through the Python

scripting language which allows users to create scripts to accomplish sophisti-

cated associative image analysis tasks over multi-dimensional microscopy image

data. For FARSIGHT, four parameters σmin, σmax, rxy, and rz are adjustable.

Here, σmin and σmax are minimum and maximum scale values of the Laplacian

of Gaussian filter. rxy and rz are used to define clustering behaviors in corre-

sponding directions. FARSIGHT automatically estimates the values of these

four parameters and denotes their values as the default setting.

• ImageJ Based Visualization Tools: ImageJ can be used to visualize image with

the help of plugins. One example that can provide cross-sectional views is

known as 3D Viewer [62]. Another example that is capable of 3D rendering

is Voxx [63] which can display entire stacked images as a single volume and

performs 3D rendering to visualize 3D objects. Similarly, Volume Viewer [64],

does real-time rendering to display stacked images. These 3D rendered viewing
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methods can provide an interactive display of 3D volume so that a user can

interactively investigate the 3D volume.

• ImageVis3D [65]: ImageVis3D has been developed by the NIH / NIGMS In-

tegral Biomedical Computing Center (CIBC) as a new volume rendering pro-

gram. Simplification, scalability and interactivity are key design objectives

of ImageVis3D. A modern user interface that provides unprecedented versa-

tility is easy. Simplicity is achieved. Scalability and interactivity mean users

can explore terabyte-sized hardware data sets, from mobile devices to high-end

graphics workstations interactively. Finally it is possible not only to expand

the ImageVis3D itself but also to reuse portions of it like the rendering core by

exploiting the open source nature and the strict component-to-piece architec-

ture. ImageVis3Dis an example of a OpenGL volumetric rendering tool that

uses Open Graphics Library (OpenGL) [66] ImageVis3D also supports other

viewing methods including 2D slices viewing and maximum intensity projec-

tion (MIP) viewing.

• Apeer [67]: Apeer is a cloud-based system is Apeer [67] from Zeiss. Apeer pro-

vides image processing tools through the use of Python-based modules. Apeer

is powered by Azure from Microsoft for cloud computation and Git for version

control and code collaboration. Users can create their own workflow or choose

to use pre-built workflows. In terms of building workflows, Apeer is similar to

CellProfiler in the ways each module is added and executed sequentially.

• WIPP [68]: For the purpose of facilitating the analysis of large size image data,

the Web Image Processing Pipeline (WIPP) [68] was developed by the National

Institute of Standards and Technology (NIST), who recently reported the devel-

opment of plugins for cloud-based microscopy image analysis [69]. WIPP pro-

vides users with modules for image processing, image feature extraction based

on various image characteristics, and machine learning-based regions of interest
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(ROI) clustering. WIPP is expanding its capability for analysis by adding a

module for statistical modeling.

• WebGL based visualization tools: BioWeb3D [70] is a network-based 3D vi-

sualization tool that uses WebGL. The limitation is that the data can only be

visualized with each pixel as particles or with simple lines drawn between points.

3D Cell Viewer [71] from the Allen Cell Institute is a more advanced example

that uses WebGL and ray-marched path tracing for 3D volume rendering and

provides comprehensive imaging parameter tuning and channel toggle functions.

With preloaded segmentation of cells, 3D Cell Viewer allows users to choose to

turn on or off the visualization of a cell based on its characteristics such as

location and intensity. So far, 3D Cell Viewer is limited to preloaded volumes

of segmented cells. Similarly, Neuroglancer [72] allows examining 2D and 3D

visualizations of data from different kinds of microscopes. Neuroglancer is more

suitable for developers who are familiar with web development for a customized

display of data for their projects.
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3. NUCLEI COUNTING WITH GENERATIVE

ADVERSARIAL NETWORK

3.1 Background

Quantitative information obtained from microscopy images is vital for biomedical

research and clinical diagnosis. For example, analyzing the distribution of cells or

extracellular structures can provide a better understanding of the physiological and

pathological status of the tissue. Two-photon microscopy is a type of fluorescence

microscopy that is favored for living tissue imaging. With the use of near-infrared

excitation to increase penetration depth in tissue, large image volumes in 3D are

produced. The large 3D image sizes and the high cost of manual processing require

automated means to analyze quantitative biological information [73].

Many challenges exist for counting objects in 3D image volumes, which include

“crowding” and touching of objects, overlapping of two or more objects, and variances

in object shape and size. There are many real-life examples where counting is needed,

for example, traffic surveillance, pedestrian counting, and cell density estimation.

Several semi-automatic techniques have been proposed for counting. In [74], a su-

pervised machine learning counting method that can estimate the object count with

manual annotation input was introduced. Another method that uses machine learn-

ing to count objects and estimates the density of the objects in images was described

in [75]. The ImageJ toolset [76] has a 3D object counter, known as JACoP [77], that is

a subcellular colocalization analysis tool that uses a statistical approach with a man-

ually selected threshold to analyze intensity information to obtain the object count

and location. In some counting approaches, segmentation is done prior to counting in

order to distinguish the counting targets (foreground) from the background. The 3D
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nuclei segmentation presented in [22] classifies each voxel in the microscopy image vol-

ume as nuclei or non-nuclei using 3D active contours. Typically the nuclei count can

be obtained from the segmentation results using 3D connected component analysis.

However, multiple nuclei could be counted as one nucleus if they are close enough to

be connected. Thus, using segmentation for counting is less accurate when nuclei are

crowded. One way to address this problem is to use morphological operations [78].

Morphological watershed (2D or 3D) is one of the techniques commonly used for

separating overlapping objects [79, 80]. In the watershed, the topographical distance

transform is used to find the number of local minima in the image, which indicates

the object count [81]. However, a drawback of the watershed is over-segmentation

when more than one local minimum is found for each object, producing inaccurate

counting results [82].

Deep learning has recently become a prominent approach to address the counting

problem [83]. A way of counting that uses convolutional neural networks (CNN) to

estimate the number of pedestrians in a video was presented in [84]. Similarly, a tumor

cell counting CNN is trained to provide both cell count and the cell locations in [75]. In

another example, cell counting using fully convolutional regression networks (FCRNs)

was introduced [85]. The networks were trained to find the locations of the cells from

which cell count was obtained. A combination of a CNN nuclei segmentation and 3D

watershed was used for 3D segmentation and nuclei counting in [86].

Acquiring image groundtruth for the training of deep learning networks is labor

intensive and in many applications difficult to obtain. Synthetic data has been used to

train and test the networks [87]. An approach for generating synthetic microscopy im-

ages in 3D was presented in [88]. Recently, generative adversarial networks (GAN) [54]

have been useful for generating realistic synthetic data. There are two different net-

works in a GAN, a generative network and a discriminative network. More specifically,

the generative network is trained to generate sample images whereas the discrimina-

tive network is used to estimate the probability of a generated sample being a real

image. Both networks are trained to minimize their loss functions simultaneously.
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A deep convolutional generative adversarial network (DCGAN) was described in [55]

for unsupervised learning which uses a GAN together with a CNN for synthesizing

images. Another example of using GANs to synthesize image is the cycle-consistent

adversarial network (CycleGAN) [58]. However, the synthetic images generated by

CycleGAN can be geometrically distorted which includes spatially shifting of ob-

jects [89]. More recently, 3D realistic synthetic microscopy volumes were generated

by a spatially constrained CycleGAN (SpCycleGAN) and utilized with corresponding

synthetic binary volumes to achieve 3D nuclei segmentation [59,90].

In this work, we introduce a nuclei counting technique using two GANs, a SpCy-

cleGAN and a 3D GAN for nuclei counting. The 3D GAN is trained with synthetic

microscopy data generated by the SpCycleGAN and tested with both synthetic and

real microscopy data. Our approach is evaluated with respect to the number of

groundtruth nuclei and compared with common ways of counting used in the bio-

logical research. Fluorescence microscopy 3D image volumes of rat kidneys are used

to test our 3D nuclei counter. The data contains fluorescent labeled (Hoechst 33342

stain) nuclei of kidney cells collected using two-photon microscopy.

3.2 Proposed Method

In this work, I denotes a 3D image volume of size X × Y × Z. Figure 6.1 shows

the block diagram of our proposed way of nuclei counting. There are two main steps

in our nuclei counter: 3D synthetic data generation and 3D nuclei counting. Iorig

denotes a subvolume of the original microscopy volume used for training, and I test

is a subvolume of original or synthetic microscopy volume that is used for testing.

During the evaluation, I test is used as an input to the 3D nuclei counting network

to estimate the number of nuclei, N . Isyn denotes a synthetic microscopy volume

generated with 3D synthetic data generation based on the features of Iorig. Idist

is a distance map volume that contains information regarding the locations of the

nuclei of the microscopy image volumes. Here, Idist is paired with Isyn to train the
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(a)

(b)

(c)

Fig. 3.1.: Block diagrams of (a) the proposed nuclei counter, (b) 3D synthetic data
generation, (c) 3D nuclei counting

3D nuclei counting network. Figure 3.1(b) and Figure 3.1(c) are the detailed block

diagrams for 3D synthetic image generation and 3D nuclei counting, respectively.

Ibitr and Ibi denote the synthetic binary volumes used for SpCycleGAN training and

inference, respectively. Idistg is a synthetic distance map volume generated by 3D

nuclei counting network that contains nuclei location information of I test.

As shown in Figure 3.1(b), synthetic binary volumes, Ibitr, are generated first. Ibitr

is used together with Iorig to train a SpCycleGAN from which a generative model

C is obtained. A different synthetic binary volume, Ibi, is then used to generate

corresponding Isyn with the trained model C. For each Isyn, the corresponding Idist
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is generated. In Figure 3.1(c), paired Isyn and Idist are used to train a 3D GAN

for nuclei counting and obtain a 3D GAN generative model G. Model G is used to

transform I test to its synthetic distance map volume, Idistg, for counting purposes.

Then, post-processing steps which include thresholding and connected component

analysis are used on Idistg to obtain the number of nuclei N .

3.2.1 3D Synthetic Data Generation

Three dimensional synthetic data generation includes synthetic binary volume

generation, distance transformation of the synthetic binary volume, SpCycleGAN

training, and SpCycleGAN inference. A synthetic binary volume is generated by

drawing ellipsoidal shapes in 3D according to randomly selected locations of nuclei

centroids and their orientations.

Following synthetic binary volume generation, the 3D Euclidean distance trans-

form [91] is used to obtain the distance transformation of nuclei. We denote the

distance transform as a function FDT : Ibi → Idist. The Idist volume is obtained

by the distance transform of the binary synthetic nuclei volume Ibi. FDT assigns

a number to each voxel of the binary volume that is the distance from the voxel

to its nearest background voxel. Considering an individual nucleus in Ibi and its

corresponding Idist, the voxels close to the center of the nucleus have high distance

values and the voxels at the boundary have low distance values. Thus, Idist can be

considered as a distance map of the centroid locations of nuclei.

The SpCycleGAN described in our work [59] was an extension of the CycleGAN

[58] by considering spatial loss during the training. The goal is to obtain a generative

model C that can transfer a binary synthetic nuclei volume to a synthetic microscopy

volume with accurate nuclei locations. During SpCycleGAN training, the objective

function is to solve the minimax problem where the training loss (L) consists of the

sum of an adversarial loss, a cycle consistency loss (Lcyc), and a spatial loss (Lspatial).
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The cycle consistent term and spatial constrained term are used in the training loss

for regularization of the SpCycleGAN model. The training loss can be expressed as:

L = LGAN + λ1Lcyc + λ2Lspatial (3.1)

where λ1 and λ2 are the adjustable coefficients for Lcyc and Lspatial. To find the spatial

loss, a separate generative model H is trained by an additional generative network.

Model H can generate a binary mask from a synthetic volume generated by model C.

More specifically, model H uses C(Ibitr) as an input and generates H(C(Ibitr)). This

generative model H minimizes L2 loss between Ibitr and H(C(Ibitr)). The spatial loss

is then formed as:

Lspatial(C,H, Iorig, Ibitr) = EIbitr [||H(C(Ibitr))− Ibitr||2] (3.2)

where || · ||2 denotes the L2 norm. Note that an unpaired set of training data, Iorig

and Ibitr, is used for the training of model C.

During SpCycleGAN inference, the synthetic microscopy volume, Isyn, is gener-

ated from model C with the input as the synthetic binary volume, Ibi. Then, Ibi is

used to obtain the distance map volume, Idist, using distance transformation. Since

the synthetic microscopy volume, Isyn, and the distance map volume, Idist, are ob-

tained from the same synthetic binary volume, Ibi, Isyn and Idist are now a paired set

of volumes and can be used for 3D nuclei counting network training.

3.2.2 3D Nuclei Counting

Three dimensional counting consists of 3D GAN training, 3D GAN inference, and

post-processing counting. As shown in Figure 3.1(c), we utilize a paired set Isyn and

Idist to train a 3D GAN and obtain a generative model G. Here, the groundtruth

distance map volume Idist = FDT (I
bi) provides information on the locations of the

nuclei.



36

The 3D GAN generative model G is used to map nuclei in I test to its synthetic

distance map volume Idistg. This approach has the advantage over learning a direct

mapping between original microscopy volume and nuclei count since the distance map

volume preserves nuclei location information. The number of nuclei is then obtained

from Idistg using thresholding and 3D connected component analysis. Thresholding

of Idistg is done to keep voxels at or near the nuclei centroids and remove noises. By

removing low distance transform voxels around nuclei boundaries, two or more con-

nected nuclei can be identified as individual nuclei. Then, a 3D connected component

analysis is done to assign different colors to individual nuclei at their centroid loca-

tions followed by obtaining N . The detail for post-processing color coding is available

in [92] and [93].

(a)

(b)

Fig. 3.2.: Architecture of 3D GAN for nuclei counting (a) generative network struc-
ture, (b) discriminative network structure

The architecture of the 3D GAN for nuclei counting is shown in Figure 3.2. For

the generative network in Figure 3.2(a), a filter size of 3 × 3 × 3 is used for the 3D

convolution. Each 3D convolution is followed by a batch normalization [47] and a
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rectified-linear units (ReLU) activation function. Similarly, for the discriminative

network shown in Figure 3.2(b), a batch normalization and a Leaky ReLU activation

function are used to follow each 3D convolution layer. Convolutions (stride 2) are

used in replacement of pooling layers, while the number of features is doubled. Fi-

nally, a flatten layer, two dense layers, and a sigmoid activation function are used to

produce the probability of classification P . This probability is used to discriminate

groundtruth distance map volume Idist from the generated synthetic distance map

volume G(Isyn). The architecture of the 3D GAN for counting is designed to have

a lightweight generative network for efficient inference. The discriminator is used to

supervise the prediction of the 3D GAN for nuclei counting to have the features of a

real distance map.

The generative model G learns to transform Isyn into Idist, whereas the discrimina-

tive model D distinguishes between Idist and G(Isyn). As shown in Equation 3.3, the

training loss function of the 3D GAN for nuclei counting is defined as the sum of an

adversarial loss LGAN (Equation 3.4) and a content loss LMSE (Equation 3.5). Here,

we used the mean square error between the synthetically generated distance map

volume G(Isyn) and the groundtruth distance map volume Idist as the content loss.

λ is the weight coefficient used to control the relative importance of the adversarial

loss and the content loss.

L(G,D, Isyn, Idist) = LGAN(G,D, Isyn, Idist) + λLMSE(G, Isyn, Idist) (3.3)

LGAN(G,D, Isyn, Idist) = EIdist [log(D(Idist))] + EIsyn [log(1−D(G(Isyn)))] (3.4)

LMSE(G, Isyn, Idist) = EIdist,Isyn [||G(Isyn)− Idist||2] (3.5)
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Table 3.1.: Experimental Settings

Data-I

Network SpCycleGAN 3D GAN counting

Training volume size 128× 128× 128 64× 64× 64

Number of pairs of training volumes 1 80

Inference volume size 128× 128× 128 128× 128× 64

Number of inference volumes (total) 15 20

Model CData−I GData−I

Data-II

Network SpCycleGAN 3D GAN counting

Training volume size 128× 128× 32 64× 64× 64

Number of pairs of training volumes 4 80

Inference volume size 128× 128× 128 128× 128× (64 or 32)

Number of inference volumes (total) 15 20

Model CData−II GData−II

3.3 Experimental Results

The testing of our counting approach involves two different rat kidney data sets

which are denoted as Data-I and Data-II. Data-I has size of X×Y = 512×512 pixels

with Z = 512 (grayscale images), whereas Data-II consists of Z = 32 with the same

size in X and Y as Data-I. The experimental settings are listed in Table 3.1. The

size of the training and inference volumes were selected according to the original size

of the volumes. The total training volume size of SpCycleGAN is 128 × 128 × 128

for both data sets. Then, 10 synthetic microscopy volumes of size 128 × 128 × 128

were generated and divided into 80 pairs of synthetic microscopy volumes of size

64 × 64 × 64. These volumes were used together with their corresponded distance

map volumes to train a 3D GAN for nuclei counting for each data set. We selected

λ = 10 in Equation 3.4 for both data sets. Our network architecture is implemented

in TensorFlow [94] using Adam optimizer [95] with a learning rate of 0.005.

Figure 4.6 shows the synthetic binary images, their corresponding distance map

images, the synthetic microscopy images, and the original microscopy images. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.3.: Comparison of slices of the synthetic binary volume, the distance map vol-
ume, the synthetic microscopy volume, and the original volume (a) Data-I synthetic
binary image, (b) Data-I distance map image, (c) Data-I synthetic microscopy image,
(d) Data-I original image, (e) Data-II synthetic binary image, (f) Data-II distance
map image, (g) Data-II synthetic microscopy image, (h) Data-II original image

synthetic images are similar to the original microscopy images in terms of nuclei size

and shape, nuclei distribution, intensity, and noise level. Using the trained model

C, we can generate a paired set of training data for the 3D nuclei counting network.

The trained model G is used to transform previously generated synthetic microscopy

volumes into its corresponding synthetic distance map volumes, which contains nuclei

centroid location information. Post-processing is done by first thresholding each voxel

v with value vi in Idistg as in Equation 3.6:

vi =











0 if vi ≤ T or 245 ≤ vi

vi if T ≤ vi ≤ 245

(3.6)

The threshold T is selected experimentally where T = 45 for Data-I and T = 55 for

Data-II. Connected component analysis is then used to count and label each nucleus
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into a different color. For better visualization and evaluation on the object level, the

labeled nuclei are dilated in 3D with a spherical mask to match the original nuclei

sizes. In Figure 3.4, we show the post-processing steps of 3D nuclei counting with

example slices from both synthetic and real microscopy image volumes.

The evaluation of microscopy image counting is difficult since groundtruth infor-

mation is hard to obtain. We evaluate our results by comparing the results of nuclei

counting Ni for the ith subvolume where i ∈ {1, . . . , n} with two other common

ways of counting. N
gt
i is the groundtruth nuclei count for the ith subvolume where

i ∈ {1, . . . , n}. Here, n stands for the number of subvolumes. The mean absolute

percentage error (MAPE) is then measured with Equation 3.7 and reported for each

method.

MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

Ni −N
gt
i

N
gt
i

∣

∣

∣

∣

(3.7)

The techniques compared with the proposed include the 3D watershed [81] and

the ImageJ’s 3D object counter (JACoP) [77]. Both counting approaches are semi-

automatic since a threshold needs to be selected before counting. We initially selected

the thresholding parameters based on the Otsu’s method [96] and adjusted the pa-

rameters to best fit the volumes. Since the original microscopy volume suffers from

a large variation of intensity and noise, we chose subvolumes from different locations

of the original volume and processed each of them to obtain the nuclei count.

For evaluation, we generated n = 10 synthetic microscopy image subvolumes for

both data sets denoted as IsynData−I and IsynData−II , respectively. IsynData−I has a size

of 128×128×64 with the average number of nuclei being 256. IsynData−II has a size of

128×128×64 with the average number of nuclei being 64. We processed these volumes

with the ImageJ’s 3D object counter (JACoP), the 3D watershed, and the proposed

3D nuclei counter to compare the counting results. The quantitative evaluations

for the subvolumes are shown in Table 3.2. In Table 3.2, we can see that the 3D

watershed and the JACoP method produce less accurate counting result comparing

to our proposed method. Based on our observation for the JACoP, nuclei are often
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Table 3.2.: Comparison of mean absolute percentage error (MAPE) of the proposed
3D nuclei counter with 3D watershed [81] and JACoP [77]

n=10 Synthetic Data-I Synthetic Data-II

3D Watershed 14.69% 13.78%

JACoP 11.86% 16.10%

Proposed 3D Nuclei Counter 5.64% 2.13%

Microscopy Data-I Microscopy Data-II

3D Watershed 19.76% 10.88%

JACoP 12.67% 18.72%

Proposed 3D Nuclei Counter 6.68% 6.53%

missing around darker boundaries of the volume. Note that the JACoP has much

lower detection accuracy for microscopy volume of large size due to inhomogeneity

of the microscopy volume, so small subvolumes of microscopy image volume are used

for counting. Our proposed nuclei counter achieves lower mean absolute percentage

error in counting than the other two techniques.

We also selected n = 10 subvolumes from original microscopy data for the eval-

uation purpose. More specifically, we selected 10 subvolumes from IData−I with size

of 128 × 128 × 64 with the average number of nuclei being 298 and 10 subvolumes

of IData−II with size of 128 × 128 × 32 with the average number of nuclei being 25,

respectively. Note that the evaluation size of IData−II is selected according to its

total size 512 × 512 × 32. From Table 3.2, the proposed 3D nuclei counter achieves

the lowest error among all three different counting approaches. Figure 3.5 shows the

comparison of the color-coded images obtained from the 3D watershed, the JACoP,

and our proposed method. It is observed that the 3D watershed and the JACoP

method cannot distinguish between nuclei and non-nuclei structures. Our proposed

method achieves better performance in finding nuclei and separating touching nuclei.
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The color-coded images from the proposed method have less noise from the inhomo-

geneity of the nucleus compared with the results from the other two techniques.

Table 3.3.: Object-based comparison of the proposed 3D nuclei counter with 3D
watershed [81] and JACoP [77] for Data-I

Microscopy Data-I

NTP NFP NFN P R F1

3D Watershed 121 9 153 93.08% 44.16% 59.90%

JACoP 146 19 128 88.48% 53.28% 66.51%

Proposed 3D Nuclei Counter 212 18 56 92.17% 79.10% 85.14%

Table 3.4.: Object-based comparison of the proposed 3D nuclei counter with 3D
watershed [81] and JACoP [77] for Data-II

Microscopy Data-II

NTP NFP NFN P R F1

3D Watershed 171 13 50 92.93% 77.38% 84.44%

JACoP 151 16 62 90.42% 70.89% 79.47%

Proposed 3D Nuclei Counter 193 15 33 92.79% 85.40% 88.94%

To analyze the detection accuracy of the locations of the nuclei found with the

counting methods, we use the object-based evaluation as described in [97]. The eval-

uation is based on manually annotated groundtruth of two subvolumes from IData−I

with size of 128 × 128 × 64 and from IData−II with size of 512 × 512 × 16. The

groundtruth is obtained using ITK-SNAP [98] where each nucleus is manually la-

beled individually. If a nucleus overlaps equal or more than 50% with its correspond-

ing groundtruth nucleus, it is counted as a true-positive, NTP . If a nucleus overlaps

less than 50% with its corresponding groundtruth nucleus or there is no correspond-

ing groundtruth, it is counted as a false-positive, NFP . A false negative, NFN , is

defined as when a nucleus is present in the groundtruth but no corresponding nucleus
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is found by the counting method. Then, the F1 score (F1), Precision (P) and Recall

(R) described in [99] can be calculated as:

P =
NTP

NTP +NFP

, R =
NTP

NTP +NFN

, F1 =
2PR

P +R
(3.8)

For fair comparisons, small objects removal is done to remove objects with sizes less

that 5% of the average nuclei sizes in voxels. In Table 4.1 and Table 3.4, our proposed

3D nuclei counter achieves higher F1 score than the compared methods, which shows

that the proposed method can successfully find nuclei at the correct locations. Both

the 3D watershed and the JACoP method produce large numbers of NFN , causing low

R and F1 score. Overall, our proposed method outperforms the other two methods

in both the MAPE evaluation and the object-based evaluation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3.4.: Example of slices of the testing volume, the synthetic distance map volume
with thresholding, and the color-coded volume from 3D nuclei counting (a) Data-I
synthetic image, (b) corresponding Idistg with thresholding for (a), (c) color-coded
image for (a), (d) Data-II synthetic image, (e) corresponding Idistg with thresholding
for (d), (f) color-coded image for (d), (g) Data-I real image, (h) corresponding Idistg

with thresholding for (g), (i) color-coded image for (g), (j) Data-II real image, (k)
corresponding Idistg with thresholding for (j), (l) color-coded image for (j)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3.5.: Comparison of slices of the original image volume and results obtained from
3D watershed, JACoP, and our proposed method (a) Data-I original image, (b) Data-I
color-coded image from 3D watershed, (c) Data-I color-coded image from JACoP, (d)
Data-I color-coded image from our method, (e) Data-II original image, (f) Data-II
color-coded image from 3D watershed, (g) Data-II color-coded image from JACoP,
(h) Data-II color-coded image from our method
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4. NUCLEI SEGMENTATION AND DETECTION WITH

BOUNDARY REFINEMENT

4.1 Background

Fluorescence microscopy is an optical microscopy for the visualization of subcellu-

lar structures in living species using fluorescence. Two-photon microscopy is a type of

precision fluorescence microscopy that allows biologists to visualize deeper into tissue.

With the increased penetration depth of two-photon microscopy, large size data are

often produced. An automatic image analysis tool that can extract important biologi-

cal information in three dimension is required. A common application is the detection

and segmentation of biological structures such as nuclei within microscopy images.

Microscopy images that contains nuclei are hard to analyze due to several reasons:

nuclei sizes and shapes are nonregular, nuclei are often crowded and “touching” to

nearby nuclei, and the limited image quality with the presence of noise.

Segmentation and classification of cell nuclei in fluorescence 3D microscopy image

volumes are fundamental steps for image analysis. However, accurate cell nuclei

segmentation and detection in microscopy image volumes are hampered by poor image

quality, crowding of nuclei, and large variation in nuclei size and shape. In this work,

we present an unsupervised volume to volume translation approach adapted from

the Recycle-GAN using modified Hausdorff distance loss for synthetically generating

nuclei with better shapes. A 3D CNN with a regularization term is used for nuclei

segmentation and classification followed by nuclei boundary refinement. Experimental

results demonstrate that the proposed method can successfully segment nuclei and

identify individual nuclei.
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With the development of fluorescence microscopy, such as two-photon microscopy

and multi-photon microscopy, large 3D volumes of microscopy data with deep pen-

etration depth into tissue are possible [15]. For quantitative analysis of biomedical

structures in these 3D volumes, cell nuclei have been extensively used since they form

a highly organized structure and can easily be labeled with fluorescent markers [100].

By analyzing volumetric data with nuclei information, important information such as

cell location, cell density, and cell type can be obtained.

There have been several methods developed for nuclei segmentation and classifi-

cation. One example is the use of watershed [23] which is a combination of region

growing and edge detection to achieve individual nuclei segmentation and classifica-

tion. Another popular method for nuclei segmentation is active contours [101] which

minimizes an energy functional iteratively to fit a contour to objects of interest. An

early version of the edge-based active contours [101] tends to fail to segment objects

in fluorescence microscopy because of its sensitiveness to initial contour placement

and vulnerability to noise. Region-based active contours was introduced in [25] that

seeks an energy balance between foreground and background regions. Region-based

active contours was extended to 3D by developing an inhomogeneity intensity cor-

rection in [22]. Meanwhile, CellProfiler software [102] was developed for biomedical

image analysis including cell segmentation and classification.

Fig. 4.1.: Block diagram of the proposed nuclei segmentation and classification
method

Segmenting and detecting cell nuclei in microscopy image volumes are challeng-

ing due to poor image quality, crowding of nuclei, and large variation in nuclei sizes
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and shapes. Recent advancement in deep learning has shown success in finding and

distinguish nuclei under different image contexts. To reduce the intensive work of

groundtruth nuclei in 3D, carefully crafted synthetic training image pairs are used

to train Convolutional Neural Networks (CNN). Amongst methods for image genera-

tion, unsupervised image to image translation with Generative Adversarial Networks

(GAN) has become a prominent choice. Morphological operations are used as sup-

plemental processing in those methods for result refinement.

Convolutional neural networks (CNN) has been popular to address various prob-

lems in medical imaging [103]. U-Net [48] is one of the most successful 2D CNN

architectures used for medical image segmentation. U-Net uses an encoder-decoder

architecture that transfers entire feature maps from each encoder layer to the cor-

responding decoder layer. Nuclei classification, segmentation, and detection using

a combination of densely connected recurrent convolutional network and regression

model with recurrent residual convolutional neural network based on U-Net was de-

scribed in [104]. A 3D nuclei segmentation method that utilizes the SegNet [46] with

data augmentation followed by a 3D watershed was presented in [86]. Additionally,

a 3D U-Net which extends U-Net [48] to 3D to achieve volumetric image segmenta-

tion was introduced in [36]. Similarly, a V-Net which uses the Dice coefficient as a

loss term in training to achieve volumetric segmentation was demonstrated in [105].

More recently, the Hausdorff distance which is typically used for the shape similarity

measure for evaluating segmentation performance [97] was introduced as a loss term

for locating objects [106] as well as medical image segmentation [107].

The previously discussed methods require huge volumes of manually annotated

groundtruth for training. To address this problem, an approach to generate synthetic

groundtruth and corresponding synthetic data was needed. The use of the cycle-

consistent adversarial networks (CycleGAN) [58] for generating realistic 3D images

from unpaired training data has shown promising results in [89] and [108]. Hence, we

introduced a two-stage method known as spatially constrained cycle-consistent adver-

sarial networks (SpCycleGAN) [59] that incorporates a spatially constrained loss to
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the CycleGAN to prevent misalignment between synthetically generated groundtruth

volume and corresponding synthetically generated microscopy volume followed by

3D segmentation. This SpCycleGAN was utilized for nuclei detection and counting

in [109] and further extended in [110] to utilize three directions in a volume along

with axial, coronal, and sagittal sections (3-Way SpCycleGAN) to incorporate 3D

information. One drawback of the SpCycleGAN and the 3-Way SpCycleGAN is that

they are not fully 3D but 2D based methods. They generate synthetic groundtruth

volumes and corresponding microscopy volumes that are not perfectly aligned in 3D.

To address this problem, the Recycle-GAN [24] was introduced which adds a third

dimension to the CycleGAN [58] to achieve video-to-video style transfer.

In this work, we describe a 3D segmentation and classification method to seg-

ment and identify individual nuclei in fluorescence microscopy volumes without hav-

ing groundtruth volumes. Three dimensional synthetic data is generated using the

Recycle-GAN [24] with the Hausdorff distance loss introduced in [107] to preserve the

shape of individual nuclei. Realistic microscopy image volumes with nuclei segmenta-

tion mask and nucleus boundary groundtruth volumes are generated. A subsequent

3D CNN with a regularization term that discourage detection out of nucleus boundary

is used to detect and segment nuclei. Nuclei boundary refinement is then performed

to enhance nuclei segmentation. Experimental results on our rat kidney dataset show

the proposed method is competitive with respect to several state-of-the-art meth-

ods. A 3D CNN network is then trained using the 3D synthetic data to segment

and classify different kinds of nuclei structures. Our method is evaluated using hand

segmented groundtruth volumes of real fluorescence microscopy data from a rat kid-

ney. Our data was collected using two-photon microscopy with nuclei labeled with

Hoechst 33342 staining.
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4.2 Proposed Method

Figure 4.1 shows the block diagram of our proposed method for nuclei segmenta-

tion and classification. In this work, a 3D image volume of size X×Y ×Z is denoted

with I. We use Izp to represent an xy slice of I at the pth focal plane along the

z-direction in a volume. Here, the range of p is p ∈ {1, . . . , Z}. Iyq is a xz slice of I

at the qth focal plane along the y-direction with q ∈ {1, . . . , Y }. Similarly, Ixr
is a yz

slice of I at the rth focal plane along the x-direction with r ∈ {1, . . . , X}. To indicate

how a volume is sectioned from I, I(ri:rf ,qi:qf ,pi:pf) is used, where the coordinates of x

is between {ri, ..., rf}, the coordinates of y is between {qi, ..., qf}, and the coordinate

of z is between {pi, ..., pf}. For example, if a subvolume is a xy section from the

100th slice to the 150th slice along the z-direction, the subvolume can be denoted as

I(1:rf ,1:qf ,100:150).

Our proposed method is composed of three main steps: 3D synthetic data gener-

ation, 3D nuclei segmentation and classification, and post-processing. Iorig denotes

the original microscopy volume used for training during 3D synthetic data generation

and testing during 3D nuclei segmentation and classification. Ibinary represents the

synthetic binary data generated during 3D synthetic data generation, which is used

together with Iorig to train a Recycle-GAN model G. With a trained model G, Isyn

can be generated as a synthetic microscopy volume based on the features of Iorig.

During the generation of Ibinary, two more synthetic volumes Icontour and Ishapemarker

that are corresponding to Ibinary are generated. Here, Icontour contains the boundary

of each nucleus whereas Ishapemarker contains the ellipticity as a shape indicator of the

nuclei. Isyn is paired with Ibinary to train a 3D U-Net segmentation model M . Also,

the corresponding Ishapemarker and Icontour are used during the training of the model

to refine the shape of the segmentation. During the inference of the 3D U-Net, two

different initial results volumes Iseg and Ishape are generated using model M . Here,

Iseg contains the binary segmentation mask of the nuclei and Ishape contains the shape

indicator of the nuclei volume. During the post-processing step, Iseg and Ishape are
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used to produce the final results of the color-coded segmentation volume Isegcolor and

the labeled volumed I label which labels each nucleus by its type.

4.2.1 3D Synthetic Data Generation

Three dimensional synthetic data generation consists of three stages: the gen-

eration of the synthetic volumes, the training of the Recycle-GAN [24], and the

inference of the Recycle-GAN. The synthetic volume Ibinary is created by adding

ellipsoidal nuclei candidates with different shape, size, and orientation to the volume

at random locations. The range of the shape and size of the synthetic nuclei are ap-

propriately chosen for the original microscopy volume. For ith nucleus with semi-axes

ai = (aix , aiy , aiz) and centroid at ci = (xi, yi, zi), I
binary,i can be expressed with Eq.

(4.1) as:

Ibinary,i =











1, if

(

x−xi

aix

)2

+
(

y−yi
aiy

)2

+
(

z−zi
aiz

)2

< 1

0, otherwise

(4.1)

where the value of a is selected from r ∈ {rmin, . . . , rmax}. Let aimin
and aimax

repre-

sent the minimum and maximum value among (aix , aiy , aiz), respectively. Here, the

orientation of nuclei is selected with random rotation as described in [88]. For each

Ibinary, two corresponding synthetic volumes Icontour and Ishapemarker are generated

using Eq. (4.2) and (4.3) such that

Icontour,i =











1, if0.7 <
(

x−xi

aix

)2

+
(

y−yi
aiy

)2

+
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z−zi
aiz

)2

< 1

0, otherwise

(4.2)

Ishapemarker,i = 255 ·

(

aimax
− aimin

rmax − rmin

)

· Ibinary,i (4.3)

The generated Ibinary is then processed with a 3D Gaussian filter with σ = 2 to

simulate microscopy’s image acquisition process where the target object is convolved
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with a 3D point spread function (PSF) [110]. The blurred Ibinary volume is then used

together with Iorig to train the Recycle-GAN.

The Recycle-GAN is an extension of the CycleGAN by replacing the cycle consis-

tency loss with a recurrent loss and a recycle loss. The main difference between the

CycleGAN and the Recycle-GAN is that the Recycle-GAN was originally proposed

for use in the generation of synthetic videos using ordered sequential frames of im-

ages. Here, we used a 3D image volume instead of a video, which means the ordered

sequential images are a series of images taken along the z direction. In addition

to the generative models G1 and G2 and the discriminative models D1 and D2, the

Recycle-GAN uses the predictive models P1 and P2 to predict the current frame based

on S previous frames. For our method, we modified the predictive model to take an

ordered series of S images (Iz) along the z direction in the spatial domain instead of

the temporal domain. The recurrent loss is used to measure the prediction accuracy

of the predictive model. Similarly, the recycle loss is a modified version of the cycle

consistency loss which incorporates the predictive model for image reconstruction.

Eq. (4.4) shows the training losses of our proposed method. Note that λ1, ...,

λ5 are the controllable coefficients for each loss term. G1 is a generative model that

can transfer Ibinary to Isyn whereas G2 is a generative model that can transfer Isyn

to Ibinary. P1 is a generative model that can predict Izp+S+1

binary from Izp:zp+S

binary

whereas P2 is a generative model that can predict Izp+S+1

syn from Izp:zp+S

syn. Addition-

ally, D1 is a discriminative model that distinguishes between Ibinary and P1(G2(I
syn)).

Also, D2 is a discriminative model that distinguishes between Isyn and P2(G1(I
binary)).
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L(G1, G2, D1, D2, P1, P2, S){I
binary, Isyn}

=LGAN(G1, D2) + LGAN(G2, D1)

+λ1 · Lrecycle(G1, G2, P2, S) + λ2 · Lrecycle(G2, G1, P1, S)

+λ3 · Lrecurrent(P1, S) + λ4 · Lrecurrent(P2, S)

+λ5 · Lcontour(G2, P1, S) (4.4)

Moreover, we utilize a contour constraint loss term Lcontour based on estimating

the Hausdorff distance from the distance transform as described in [107]. Since the

Hausdorff distance estimates the difference between two boundaries, adding this loss

could refine the shape of the synthetic generated nuclei. We define the distance trans-

form as a function FDT : Ibinary → FDT (I
binary) which finds the Euclidean distance

between each voxel and its nearest background voxel. Lcontour works by penalizing

large errors at the boundaries of nuclei so that the generated nuclei have refined shape

by minimizing Lcontour as in Eq. (4.5):

Lcontour(G2, P1, S){I
binary, Isyn} =

EIbinary{(||Ibinary − P1(G2(I
syn))||2 · FDT (I

binary)2

+||Ibinary − P1(G2(I
syn))||2 · FDT (P1(G2(I

syn)))2)1/2} (4.5)

During the Recycle-GAN inference, the synthetic microscopy volume, Isyn, is gen-

erated from using the model G on the synthetic binary volume, Ibinary. For each

synthetic volume Ibinary, the corresponding synthetic volumes Icontour and I labelmarker

are generated. Ibinary and Isyn form a paired set of volumes for the training of the

3D U-Net segmentation model.
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4.2.2 3D Nuclei Segmentation and Classification

Three dimensional nuclei segmentation and classification consists of 3D U-Net

training, 3D U-Net inference, and post-processing. As shown in Figure 4.1, we utilize

a paired set Isyn and Ibinary to train a 3D U-Net and obtain a generative model M1.

Here, the model M1 is a function mapping nuclei in Iorig to the segmented volume

in Iseg. Another paired set Isyn and Ishapemarker are used to train a 3D U-Net model

M2. The model M2 is a function that maps nuclei in Iorig to its corresponding shape

information in Ishape. Icontour is utilized during the training of the model M1 and M2

for refining the shape of nuclei in the segmented volume. Iseg and Ishape are then

used to generate nuclei segmentation volume Isegcolor and I label.

Fig. 4.2.: Architecture of the modified 3D U-Net

The architecture of the modified 3D U-Net [36] for nuclei segmentation and classi-

fication is shown in Figure 4.2. A filter size of 3×3×3 is used for 3D convolution. Each

3D convolution is followed by a batch normalization [47] and a rectified-linear unit

(ReLU) activation function. Each convolutional layer contains a 3D convolution with

filter size of 3×3×3, a batch normalization, and a rectified-linear unit (ReLU) activa-

tion function. A 3D max-pooling of stride 2 with a window size of 2×2×2 is used for

the downsampling procedure. For upsampling, 3D transposed convolutional is used.
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Between each encoding and decoding layer, a concatenation operation is used to pre-

serve spatial information. Similarly,canny a 3D transposed convolution is used for an

upsampling procedure. Corresponding encoder and decoder layers are connected with

a concatenation operation to preserve spatial information. The training loss here is

the same as described in [59] but with an addition of LMSE{I
contour, C(Iseg)}, where

C(·) is a Canny [111] edge function that finds the edges of a binary volume.

4.3 Experimental Results

We tested our proposed method on two different rat kidney data sets. These data

sets contain grayscale images of size X = 512×Y = 512. Data-III consists of Z = 415

images.

The ReCycleGAN is implemented in Pytorch with default parameters given by [24]

with Tt = 10. A 128 × 128 × 128 synthetic binary volume for Data-III denoted as

IbiData−III and a 128× 128× 128 subvolume of original microscopy volume of Data-III

denoted as IorigData−III were used to train model CData−III . .

Since our modified 3D segmentation architecture takes volumes of size of 64×64×

64, we divided IbiData−III , IbdData−III , and IsynData−III into adjacent non overlapping

64×64×64. Thus, we have 80 pairs of synthetic binary volumes and corresponded syn-

thetic microscopy volumes per each data to train our 3D segmentation network. Note

that these 80 synthetic binary volumes per each data are used as groundtruth volumes

to be paired with corresponding synthetic microscopy volumes. Model MData−III are

then generated.

Our 3D segmentation network is implemented in Pytorch using the Adam op-

timizer [95] with learning rate 0.001. For the evaluation purpose, we use different

settings of using 3D synthetic data generation methods. Also, we use different loss

functions with different settings of the µ1 and µ2. Moreover, we also compared our

modified 3D U-Net with 3D encoder-decoder architecture [88]. Lastly, small objects

which are less than 20 voxels were removed using 3D connected components.
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(a) (b)

(c)

Fig. 4.3.: Comparison of the synthetic binary volume with Gaussian blur, the syn-
thetic microscopy volume, and the original volume (a) Data-III synthetic binary image
gaussian blur, (b) Data-III synthetic microscopy image, (c) Data-III original image

Figure 4.3 shows the synthetic images generated by our proposed method. The left

side indicates synthetic binary images with blur whereas the middle shows synthetic

image artificially generated from corresponding synthetic binary image, the right side

shows the original image. As can be seen from Figure 4.3, the synthetic images reflect

characteristics of the original microscopy images such as background noise, nuclei
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(a)

(b)

Fig. 4.4.: Comparison of the in 3D view of the synthetic binary volume with Gaussian
blur, and the synthetic microscopy volume (a) left side angle view, (b) right side angle
view

shape, orientation and intensity. Figure 4.4 shows two angles of the 3D visualization

of the 128 × 128 × 128 volumes of the synthetic binary volume with blur and the

synthetic microscopy volume used to train the ReCycleGAN model C.

Figure 4.5 shows the segmentation of result generated from the 3D segmentation

network M . For the first row, the left images shows the original image, the middle
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5.: Comparison of slices of the original volume, the segmentation volume after
3-way watershed, and the color coded volume of the segmentation result (a) Data-III
original volume, (b) Data-III segmentation volume after 3-way watershed, (c) Data-
III color coded volume of the proposed method, (d) Data-III Watershed result color
coded, (e) Data-III CellProfiler result color coded, (f) Data-III Squassh result color
coded
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image show the segmentation image of the proposed method after 3-way watershed,

and the right side image shows the color-coded result of the segmentation result.

For the second row, the left images shows the result from Watershed, the middle

image shows the result from CellProfiler, and the right side image shows the color-

coded result of Squassh. As can be observed, the segmentation result can detect

nuclei regardless of the brightness and blurring from the original image. Nuclei that

are of non-round shapes can be detected. Nuclei that are close to each other are

separated from each other in the color-coded image. In Squassh and Watershed

method, the nuclei at the center of the images are grouped into one cluster, greatly

lowered the detection accuracy. In the CellProfiler result, miss detection of nuclei

around the corner regions are observed, also, adjacent nuclei are more often detected

as connected. By visual observation, the proposed method can segment and detect

nuclei more accurately comparing to the other methods.

To test our proposed method, we used two rat kidney data sets denoted as Data-I

and Data-II1. The size of Data-I and Data-II are X × Y × Z = 512 × 512 × 415

voxels and X × Y × Z = 512 × 512 × 32 voxels. A volume size of 128 × 128 × 128

was selected for the Recycle-GAN training for both data sets. By inferencing with

the trained model G, 10 synthetic microscopy volumes were generated, with the size

being 128× 128× 128. Those volumes were divided into 80 pairs of smaller volumes

(64 × 64 × 64). These 80 pairs of synthetic volumes are then used for the training

of model M1 and M2. Also, λ1 = 1, λ2 = λ3 = λ4 = 10, λ5 = 0.1, S = 10 in Eq.

(4.4) were experimentally selected and used for both data sets. Note that we used

PyTorch to implement our network architecture. We used Adam optimizer [95] with

a learning rate of 0.0001.

Figure 4.6 shows the synthetic binary images, the corresponding synthetic contour

images, and the corresponding synthetic microscopy images. An original microscopy

image is shown in Figure 4.6(a). An example slice of the synthetic Ishapemarker is

1All imaging data used for this work was obtained from animals and was collected at the Indiana
Center for Biological Microscopy at the Indiana University Medical School. The studies used to
collect this data were approved by the Indiana University animal use committee.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6.: Comparison of slices of the synthetic volumes with the original volume of
Data-I (a) Iorig (b) Ibinary with Gaussian blur, (c) Icontour, (d) Ishapemarker at another
plane, (e) Isyn from Recycle-GAN, (f) Isyn from Recycle-GAN with the Hausdorff
distance loss

displayed in Figure 4.6(d). It can be observed that the synthetic microscopy images

look like the original microscopy image with respect to nuclei characteristics. Then,
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7.: Comparison of slices of the original image volume and results obtained from
SpCycleGAN [59], CellProfiler [102], and our proposed method of Data-I: (a) Iorig,
(b) segmentation result from SpCycleGAN, (c) segmentation result from CellProfiler,
(d) Isegcolor from our method, (e) contour image from our method, (f) I label image
from our method
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8.: Comparison of slices of the original image volume and results obtained from
SpCycleGAN [59], CellProfiler [102], and our proposed method of Data-II: (a) Iorig,
(b) segmentation result from SpCycleGAN, (c) segmentation result from CellProfiler,
(d) Isegcolor from our method, (e) contour image from our method, (f) I label from our
method
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we use the synthetic images obtained from model G to train a segmentation network

and a classification network. In particular, since a 3D U-Net model M1 is trained

with paired sets Ibinary and Isyn, this model is able to do segmentation. Similarly,

the model M2 is trained with paired sets Ishapemarker and Isyn so that this model

is able to generate Ishape from Iorig which contains the shape information of the

nuclei. Lastly, post-processing on Iseg is done by using watershed in 3 dimensions

and labeling the nuclei with different colors with 3D connected component. Then,

a distance transform followed by thresholding is done on Iseg to obtain the contour

images. The post-processing on Ishape is done by the Gaussian blurring with σ = 2

followed by thresholding with empirically selected thresholds. The thresholded images

are then overlaid with the contour images to obtain I label.

Our proposed method is compared with SpCycleGAN [59] and CellProfiler [102].

Note that both methods are tuned to produce the best results possible. Also, the

SpCycleGAN is used together with a modified 3D U-Net whose training loss includes

the Binary Cross Entropy (BCE) loss and the Dice loss [59]. Figure 4.7 and 4.8 show

the comparison of the color-coded images obtained from the SpCycleGAN [59] with

3D U-Net for segmentation, CellProfiler [102] using the watershed for segmentation,

and our proposed method. It is observed that the SpCycleGAN method tends to miss

multiple nuclei and cannot capture the correct shape of the elongated nuclei while the

CellProfiler method cannot distinguish and label a cluster of nuclei. Our method can

find nuclei at the correct location with more accurate nuclei shape. Figure 4.7(e) and

4.8(e) shows the contour image generated from 3D U-Net and post-processing which

labels the boundary of detected nuclei. Figure 4.7(f) and 4.8(f) is an example slice

of I label which exhibits nuclei classified as non-sphere shaped nuclei. The centroids

of those nuclei are highlighted in red and the nuclei boundaries overlaid onto those

centroids are highlighted in green. It can be observed that nuclei with red labels have

more ellipsoidal shapes.

We used the object-based evaluation we presented in [97] to find the accuracy of

the nuclei segmentation. Small objects removal is done to remove objects with small
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Table 4.1.: Evaluation of the proposed method of Data-I and Data-II

Microscopy Data-I Microscopy Data-II

P R F1 P R F1

[102] 71.32% 65.25% 68.15% 81.21% 73.63% 77.23%

[59] 86.77% 68.62% 76.64% 89.32% 87.45% 88.37%

Proposed 76.99% 88.04% 82.14% 90.16% 95.82% 92.90%

sizes (fewer than 50 voxels). Manually annotate groundtruth is obtained using the

ITK-SNAP [98] which generated distinct labels for each nucleus. The groundtruth we

used here are a subvolume of Data-I with a size of 128× 128× 64 and a subvolume of

Data-II with a size of 256×256×32. A true-positive, NTP , is obtained if a nucleus has

at least 50% overlap with its matching groundtruth. A false-positive, NFP , is obtained

if a nucleus has less than 50% overlap with its matching groundtruth. A false-negative,

NFN , is obtained if a nucleus in the groundtruth can not find a matching nucleus in

the segmentation result. The F1 score (F1), Precision (P), and Recall (R) are then

obtained as in [97]. Table 4.1 shows that our proposed method performs better

than the compared methods with a higher F1 score. The object-based evaluation

demonstrates that our method can segment and locate nuclei correctly.

4.4 Conclusions

In this work, we have demonstrated an approach for segmenting and classifying

nuclei in 3D microscopy image volumes using synthetic training data. We first gen-

erated synthetic microscopy image volumes using the Recycle-GAN with a loss term

using the Hausdorff distance. With the use of Recycle-GAN, three dimensional in-

formation can be fully utilized for generating synthetic image volumes. The use of

the Hausdorff distance based loss function can refine the boundary of the generated

nuclei by penalizing inaccuracies occurring around the boundaries of the synthetic

nuclei. We then employed a 3D CNN for nuclei segmentation and another 3D CNN
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for nuclei classification based on the shape of the nuclei. The 3D CNN trained on

synthetic data was capable of segmenting nuclei and generating volumes with nuclei

shape information without fine-tuning. Our proposed method has the advantage to

preserve nuclei shape and can be used to separate different types of nuclei within

the same volume without additional information. In the future, we plan to produce

groundtruth volumes with nuclei type information and evaluate the accuracy of nuclei

type classification.
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5. SYNTHETIC MICROSCOPY IMAGE GENERATION

AND NUCLEI SEGMENTATION WITH STYLE

TRANSFER

5.1 Background

Fluorescence microscopy is an optical microscopy for the visualization of fluo-

rescence in living species of subcellular structures. Biologists are able to see more

depth of the tissue through two-photon microscopy, a type of fluorescence precision

microscopy. With a greater depth of penetration, large data are often generated by

a two-photon microscopy. An automatic image analysis tool is required to extract

significant biological information in three dimensions. The detection and division of

biological structures such as nuclei within microscopic images is a common applica-

tion. Nuclei containing microscopy images are difficult to examine, because of many

factors.

The fluorescent multi-channel images vary significantly from those of natural im-

ages. The light and properties of a particular material in the scene decide color in

natural photographs. A GAN needs to capture the connection between materials that

make up a specific object and its colors, in order to produce realistic natural samples.

In fluorescent images, by contrast, the light intensity in a given channel corresponds

to the local concentration of the tagging pro-dye and the correlation between signals

in the different Channels is an important piece of information about protein relation.

Segmenting cell nuclei in microscopy image volumes are challenging due to poor

image quality, crowding of nuclei, and large variation in nuclei sizes and shapes. Re-

cent advancement in deep learning has shown success in finding and distinguish nuclei

under different image contexts. To reduce the intensive work of groundtruth nuclei in
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3D, carefully crafted synthetic training image pairs are used to train Convolutional

Neural Networks (CNN). Amongst methods for image generation, unsupervised im-

age to image translation with Generative Adversarial Networks (GAN) has become a

prominent choice.

In this work, we develop an unsupervised translation approach adapted from

Adaptive Instance Normalization (AdaIN) [112] for synthetic microscopy image gen-

eration that utilizes three dimensional image information. Realistic microscopy image

volumes with nuclei segmentation mask and nucleus boundary groundtruth volumes

are generated. A subsequent 3D CNN with a regularization term that discourage

detection out of nucleus boundary is used to detect and segment nuclei. Experimen-

tal results on our rat kidney dataset show the proposed method is competitive with

respect to several state-of-the-art methods.

5.2 Proposed Method

Fig. 5.1.: Block diagram of the proposed method

In this work, I denotes a 3D image volume of sizeX×Y ×Z. Figure 5.1 and Figure

5.2(a) shows the block diagram of our proposed method. Iorig denotes a subvolume of
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(a)

(b)

Fig. 5.2.: Block diagrams of the proposed method

the original microscopy volume used for training, and I test is a subvolume of original

or synthetic microscopy volume that is used for testing. Isyn denotes a synthetic

microscopy volume generated with 3D synthetic data generation based on the features

of Iorig. Isty denotes the stylized image generated with the style of the style image

that is corresponding to the content image. Iseg denotes the segmentation result

volume.

Synthetic binary volumes, Isyn, Ibi and Ibd, are generated first. Ibi is used together

with Iorig to train a AdaIN model from which a generative model C is obtained. A

different synthetic binary volume, Ibi, is then used to generate corresponding Isyn

with the trained model C. For each Ibi, the corresponding Ibd is generated. In Figure

5.2(b), paired Isyn and Ibd, Ibi are used to train a CNN for nuclei segmentation

and obtain a 3D CNN generative model M . Model M is used to transform I test to



69

its binary mask and boundary volume, Isegi and Ibdi. Then, by using Canny edge

detection filter on Ibi, the resulting edge image is then compared with Ibd. The

similarity of two edge images are measured and reported. The segmentation result is

then refined by rejecting false positive detection outside of nuclei boundary.

Three dimensional synthetic data generation includes synthetic binary volume

generation, synthetic boundary volume generation, AdaIN [112] training, and AdaIN

inference. A synthetic binary volume is generated by drawing ellipsoidal shapes in

3D according to randomly selected locations of nuclei centroids and orientations.

The AdaIN layer is used to align the mean and variance of the content features

with those of the style features. The input and output of an AdaIN layer is described

as in Equation 5.1.

AdaIN(x, y) = σ(y)
x− µ(x)

σ(x)
+ µ(y) (5.1)

(a)

Fig. 5.3.: Architecture of the segmentation and refinement network structure
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Figure 5.3 demonstrates the 3D CNN architecture for nuclei segmentation. For 3D

convolution, the filter size is 3×3×3. A 1×1×1voxel padding is used to preserve the

original volume size of the output of each convolution layer. Batch normalization [47]

is used in each 3D convolution and the activation function is rectified linear units

(ReLU). For downsampling path, 3D max pooling is used with a stride of 2, while

a 3D transpose convolution is used in the upsampling direction between the layers.

Information between the downsample path and the corresponding upsample path is

passed by concatenation.

The training loss function is a linear combination of the Dice loss (LDice) and the

binary cross-entropy loss (LBCE) such that

Lseg(T, S) = µ1LDice(T, S) + µ2LBCE(T, S) (5.2)

where

LDice(T, S) =
2(
∑N

i=1 tisi)
∑N

i=1 t
2
i +

∑N
i=1 s

2
i

LBCE(T, S) = −
1

N

N
∑

i=1

ti log(si) + (1− ti) log(1− si),

respectively.

Please note that T is the set of the targeted value of the groundtruth, and ti ∈ T

is a targeted value at the voxel location ith. Similarly, S is a binary segmentation

probability map and si ∈ S is the ith voxel position probability map. Finally, N is the

voxel total number and µ1, µ2 is the weights in Equation (5.2) between the loss terms.

The network takes a 64× 64× 64 grayscale input volume and produces the same size

of the input volume for the classified 3D volume. In order to train our M model,

V pairs of synthetic microscopy volumes, Isyn, and synthetic binary volumes, I label,

are used. Two separate 3D U-Net models are trained, producing Ibi which contains

binary segmentation mask and Ibd which is the boundary information volume used

for the refinement of results as describe in [113]
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5.3 Experimental Results

(a)

Fig. 5.4.: Comparison of the synthetic binary volume, the synthetic microscopy vol-
ume from style transfer, and the original volume

We tested our proposed method on two different rat kidney data sets. These data

sets contain grayscale images of size X = 512×Y = 512. Data-III consists of Z = 415

images.

The AdaIN is implemented in PyTorch with default parameters given by [112].

A 128 × 128 × 128 synthetic binary volume for Data-III denoted as IbiData−III and

a 128 × 128 × 128 subvolume of original microscopy volume of Data-III denoted as

IorigData−III were used to train model CData−III . .

Because our modified 3D segmentation architecture uses volume size of 64×64×64,

we have divided the larger volumes into an adjacent, non-complete 64× 64× 64, for

IbiData−III , IbdData−III , and IsynData−III . So we have 80 pairs of training volumes for

each data to train our 3D segmentation network with synthetic binary volumes and

the corresponding synthetic microscopy volumes. Remember that these 80 for each
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(a)

Fig. 5.5.: Comparison of the synthetic binary volume, the synthetic microscopy vol-
ume from style transfer, and the original volume

data is used to pair these synthetic binary volumes as groundtruth volumes with the

corresponding synthetic microscopy volumes, generating MData−III .

The Adam optimizer [95] with learning rate 0.001 is used for the 3D segmentation

network with PyTorch. We use different 3D synthetic data generation methods for

the evaluation purpose. Furthermore, with the µ1 and µ2 settings, different loss

functions are used. In addition, our updated 3D U-Net was compared to the [88]

encoder-decoder architecture of 3D. Finally, with 3D connected components, small

objects smaller than 20 have been eliminated.

Figure 5.4 shows the synthetic images generated by our proposed method. The left

side indicates original style images whereas the top row shows synthetic binary im-

age artificially generated, the bottom row shows the synthetic generated microscopy

image. As can be seen from Figure 5.5 and 5.6, the synthetic images reflect char-

acteristics of the original microscopy images such as background noise, nuclei shape,

orientation and intensity.
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(a)

Fig. 5.6.: Comparison of the synthetic microscopy volume from style transfer model
one, the synthetic microscopy volume from style transfer model two, and the original
volume

Figure 5.7 shows the segmentation of result generated from the 3D segmentation

network M . For the first row, the left images shows the original image, the middle

image show the segmentation image of the proposed method after 3-way watershed,

and the right side image shows the color-coded result of the segmentation result.

Figure 5.7 compares the left images showing the original image, the middle image

showing the result from this method, and the right side image showing the color-

coded result of SpCycleGAN. As can be observed, the segmentation result can detect

nuclei regardless of the brightness and blurring from the original image. Nuclei that

are of non-sphere shapes can be detected. Nuclei that are close to each other are

separated from each other in the color-coded image. In the compared method, the

nuclei at the center of the images are grouped into one cluster, greatly lowered the

detection accuracy. In the SpCycleGAN result, miss detection of nuclei around the

corner regions are observed, also, adjacent nuclei are more often detected as connected.
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By visual observation, the proposed method can segment and detect nuclei more

accurately comparing to the other methods.
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(a)

(b)

(c)

Fig. 5.7.: Comparison of slices of the original volume, the segmentation volume after
3-way watershed, and the color coded volume of the segmentation result (a) Data-III
original volume, (b) Data-III segmentation volume after 3-way watershed, (c) Data-III
color coded volume of the proposed method
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(a)

(b)

(c)

Fig. 5.8.: Comparison of slices of the original volume, color coded volume of the
segmentation result from this method, and the color coded segmentation volume
from SpCycleGAN generated synthetic images (a) Data-III original volume, (b) Data-
III color coded volume of the proposed method, (c) Data-III color coded volume of
SpCycleGAN
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6. DISTRIBUTED AND NETWORKED ANALYSIS OF

VOLUMETRIC IMAGE DATA (DINAVID)

6.1 Background

Recent progress in microscopy technology has allowed the acquisition of large 3D

volumetric data [114,115] including 3D multi-spectral data using fluorescence imaging.

Fig. 6.1.: Block diagram of the DINAVID system

Several challenges exist for the analysis of this 3D data. The first major challenge

is the extraction of key information from a 3D volume. This can be a problem due to

the characteristics of the biological structures, such as crowding of structures, blurred

boundaries, and various noises. A common task for data analysis is to quantify the

features of objects of interest. For example, image analysis tools are used to quan-

tify the amount of fluorescence of different protein stains in the region around the

cell [116]. CellProfiler [60] and ImageJ [117] are examples of popular image analysis

packages in the biology community which we will discuss in more detail below. With

tremendous expansion in the use of machine learning and deep learning, more tools

use these techniques for extraction and quantification of important biological informa-

tion. For example, U-Net [48] is a deep-learning architecture developed originally for

This is a joint work with Dr. Chichen Fu, Dr. Soonam Lee, Alain Chen, Changye Yang, and Liming
Wu of Purdue University
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biomedical segmentation and is very popular for microscopy image segmentation. Im-

ageJ [117] and CellProfiler [60] has been making progress in incorporating U-Net [48]

and other machine learning tools. In some cases manual installation of libraries is

needed which limits its use for non-expert users. In other cases [117], a user needs to

provide the set of original images and corresponding groundtruth images to train the

network.

The second challenge is to obtain representative and effective visualization. Since

the visualization of living organisms and subcellular structures are vital for the anal-

ysis and understanding of related biological processes [118], traditional 2D visualiza-

tion often lacks important perspectives. Effective 3D visualization is needed for a

complete understanding of the data. A variety of ways have been used to achieve

3D visualization of an image volume, such as maximum intensity projection (MIP),

three-dimension views, or cross sectional views [1]. We will review the commonly

used visualization tools in the next section.

The final challenge is the computational requirements for large 3D multi-channel

image analysis. The 3D microscopy volumes are often in the range of several gigabytes

(GB)s to terabytes (TB)s of data. These 3D volumes require more computational

resources (e.g. many GPUs) than a biologist may have access to in typical desktop

or laptop computers especially if machine learning tools are being used for image

analysis. With this increased amount of data analysis and computational complexity,

there is a need for a more accessible, easy-to-use, and efficient network-based/cloud-

based 3D image visualization and processing system. The Distributed and Networked

Analysis of Volumetric Image Data (DINAVID) system is being developed to enable

cloud-based analysis of microscopy images for biologists. The goal is to provide a

system that biologists can use without worrying about managing the computational

resources. DINAVID has a web user interface and requires that a user has a network

connection of 100Mb/s and a less than $1000 graphics card 1 in the computer system

they use to access DINAVID.

1An example is the NVIDIA GeForce RTX 2060.
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DINAVID is designed for fast and accurate quantitative analysis of large 3D mi-

croscopy volumes. DINAVID supports traditional imaging processing tools such as

filtering, thresholding, background subtraction, watershed [119], and morphological

operations as well as deep learning-based 3D segmentation tools for fluorescent mi-

croscopy images of nuclei. Our system consists of network-based user interface and

computing servers that contain high performance GPUs. It contains the function-

ality of an ImageJ plugin named VTEA [116] with a web-interface and leverage

high-performance computing clusters and GPUs to support analysis of large scale mi-

croscopy volumes. Users are able to upload volumes and download analysis results via

the network-based user interface. The system supports storage, management, quan-

titative analysis, visualization, and exploration of large image volumes, and provides

real-time visualization. All data flow between DINAVID and the users is encrypted.

In this work we will present an overview of the DINAVID system and compare it to

other tools currently available for microscopy image analysis. A block diagram of the

DINAVID system is shown in Figure 6.1.

6.2 Review of Existing Systems

In analyzing 3D microscopy volumes, a user would like to be able to visualize

the volumes in 3D (or 2D) and then be able to use various image analysis methods

to extract quantitative information about the structures in the volume. We below

overview some of the existing systems and tools that are available for a user to analyze

volumes. We will differentiate them not only by their capabilities to analyze volumes

but also what biologists would need to manage using the systems tools with emphasis

on whether the tools are network-based or require download and installation.

6.2.1 “Local” Image Analysis Systems

A “local” system is a set of tools that a user would need to install on their

local computer to use. Open source local image processing packages are preferred
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by many biologists. Examples of these are ImageJ [117] and CellProfiler [60, 102].

ImageJ is an image processing system with installable plugins that enables many

types of image processing and analysis. ImageJ provides support for displaying,

editing, processing, and analyzing images in various formats. In addition, ImageJ is

extendable via plugins and it is possible to use macros or scripts to execute repeating

tasks. One challenge of working with ImageJ is that it does not have built-in 3D

visualization. ImageJ has addressed this limitation by adding support for plugins

such as 3D Filter [120] and 3D Object Counter [121]. ImageJ has limited support for

user defined workflows, but has a well-developed and mature suite of image processing,

analysis and visualization tools. One example of a set of tools based on ImageJ is

the Volumetric Tissue Exploration and Analysis (VTEA) [116] for image processing,

segmentation, and cytometry on 3D data. CellProfiler [60, 102] is another popular

local open-source image processing tool that integrates image processing, analysis, and

visualization. It has many modules that can be added by a user to define a particular

analysis workflow. In CellProfiler, users can start by modifying existing workflows or

choosing to develop their own workflows. The pre-built workflows are designed for

various analysis tasks such as DNA gel analysis and cell counting. CellProfiler is user-

friendly for biologists with repeating well-defined analysis without many parameter

adjustments. Both ImageJ and CellProfiler are what we refer to as “local” systems in

that they require installation on a user’s computer which means the computational

capabilities are limited by the user’s “local” computer.

With respect to 2D/3D visualization several of the tools are also local. One

example that can provide cross-sectional views is known as 3D Viewer [62] and is

a plugin of ImageJ. Since cross sectional viewing could not display the objects-of-

interest in 3D, a user needs to observe back and forth along the cross-sections to

estimate the 3D surface. Thus, true 3D rendering is preferred. An example 3D

rendering is Voxx [63] which can display entire stacked images as a single volume

and performs 3D rendering to visualize 3D objects. Similarly, Volume Viewer [64],

a plugin in ImageJ, does real-time rendering to display stacked images. These 3D
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rendered viewing methods can provide an interactive display of 3D volume so that a

user can interactively investigate the 3D volume. One of the most popular approaches

for volume rendering is the Open Graphics Library (OpenGL) [66]. An example of

a OpenGL volumetric rendering tool is known as ImageVis3D [65]. ImageVis3D also

supports other viewing methods including 2D slices viewing and maximum intensity

projection (MIP) viewing. Additionally, Agave [122] is a software package that uses

path trace rendering for speeding up the process in order to support large volume

rendering.

6.2.2 “Network-Based” Image Analysis Systems

The above mentioned traditional image visualization and analysis tools are often

limited to users with special research training, and the installation and maintenance

of such software can be burdensome for some users. Thus, it is been observed that

there is a growing trend for network-based image visualization tools as well as cloud-

based image analysis tools. By a network-based (or cloud-based) system we mean a

system that allows a user to process and visualize 3D volumes remotely. This does not

require that they install and execute anything on their local computational resources.

Users access the system via the web.

One example of a cloud-based system is Apeer [67] from Zeiss. Apeer provides im-

age processing tools through the use of Python-based modules. Users can create their

own workflow or choose to use pre-built workflows. In terms of building workflows,

Apeer is similar to CellProfiler in the ways each module is added and executed se-

quentially. Apeer is powered by Azure from Microsoft for cloud computation and Git

for version control and code collaboration. For the purpose of facilitating the analysis

of large size image data, the Web Image Processing Pipeline (WIPP) [68] was devel-

oped by the National Institute of Standards and Technology (NIST), who recently

reported the development of plugins for cloud-based microscopy image analysis [69].

WIPP provides users with modules for image processing, image feature extraction
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based on various image characteristics, and machine learning-based regions of interest

(ROI) clustering. WIPP is expanding its capability for analysis by adding a mod-

ule for statistical modeling. Another example of open source cloud-based platform

is BisQue [123], which is designed for sharing and exchanging of published datasets.

BisQue has a web interface that allows choosing and visualization of images. It also

provides access to image analysis tools that come from CellProfiler.

There have been several examples of 2D/3D visualization tools that use the Web

Graphics Library (WebGL) [124,125]. WebGL is derived from the OpenGL Embedded

Systems 2.0 [125] and has a lighter computational load than OpenGL [66, 126]. Due

to the lighter computational load and its compatibility with any web browser, WebGL

has become a popular tool for the network-based systems [127].

BioWeb3D [70] is a network-based 3D visualization tool that uses WebGL. The

limitation is that the data can only be visualized with each pixel as particles or with

simple lines drawn between points. 3D Cell Viewer [71] from the Allen Cell Institute

is a more advanced example that uses WebGL and ray-marched path tracing for 3D

volume rendering and provides comprehensive imaging parameter tuning and channel

toggle functions. With preloaded segmentation of cells, 3D Cell Viewer allows users

to choose to turn on or off the visualization of a cell based on its characteristics such

as location and intensity. So far, 3D Cell Viewer is limited to preloaded volumes of

segmented cells. Similarly, Neuroglancer [72] allows examining 2D and 3D visualiza-

tions of data from different kinds of microscopes. Neuroglancer is more suitable for

developers who are familiar with web development for a customized display of data

for their projects.

6.3 An Overview of DINAVID

The basic components of the DINAVID system are shown in Figure 6.1, which

includes a user interface and computational and GPU nodes. Through a simple, easy

to understand user interface, one can upload or visualize 3D volumes. Operations such

as image analysis and visualization are sent to the high-performance computational
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Table 6.1.: Comparison of Microscopy Image Analysis Tools I

Method
Local/
Network

2D
Visualization

3D
Visualization

Upload/
Show
User’s
Volume

3D Cell Viewer [71] Net Yes Yes No
Apeer Core [67] Net Yes Yes Yes

WIPP [68] Net Yes No Yes
BisQue [123] Net Yes Yes Yes
bioWeb3D [70] Net No Yes Yes

Neuroglancer [72] Net Yes Yes No
ImageVis3D [65] Local Yes Yes Yes

Agave [122] Local Yes Yes Yes
CellProfiler [60, 102] Local Yes No Yes

VTEA [116] Local Yes No Yes
DINAVID Net Yes Yes Yes

Table 6.2.: Comparison of Microscopy Image Analysis Tools II

Method

Image
Processing
Tools

Segment
Objects

Save
Results

3D Cell Viewer [71] No No No
Apeer Core [67] Yes No Yes

WIPP [68] Yes Yes Yes
BisQue [123] Yes Yes Yes
bioWeb3D [70] No No No

Neuroglancer [72] No No No
ImageVis3D [65] No No No

Agave [122] No No No
CellProfiler [60, 102] Yes Yes Yes

VTEA [116] Yes Yes Yes
DINAVID Yes Yes Yes

and GPU nodes. After processing the resultant volumes are available to the user via

the interface to be visualized or downloaded by the user.

The architecture of the system is composed of the user interface and the DINAVID

computational engines. The user interface was designed with web development tools
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that support interactive controls, real-time updating of processed information, and

displaying images or image volumes. The visualization system allows for real-time

interactive control and utilizes GPU acceleration of the user’s local GPU in their

desktop or laptop when possible. We assume that the user has a network connection of

100Mb/s and a graphics card with modest GPU capability. This provides reasonable

interactivity and response time between DINAVID and the user. The DINAVID

user interface system is responsible for managing the data and processed results and

queuing of tasks from multiple users and between the computational nodes. The user

interface also manages administration of DINAVID with user authentication, priority

handling, file locking, secure login and logout, and changing of user credentials when

needed.

The functionalities of the system include image and data analysis tools, 2D/3D

visualization, and several auxiliary tools. The image analysis tools include Gaussian

filtering, median background subtraction, median filter, thresholding/clamping, mor-

phological operations, rolling ball subtraction, and machine learning segmentation

tools. The statistics of segmented cells can be generated and displayed on a scatter

plot. The scatter plot can be used to distinguish cells in certain statistical ranges and

find gated cells in the original image, providing insights for further analysis.

The 2D visualization capability can load and adjust colors for multi-channel im-

ages, real-time previewing of image adjustments such as brightness tuning, and pre-

viewing of the image analysis operations. 3D visualization renders user defined sub-

regions of an image volume and displays it in a separate window. 3D visualization has

separate adjustments that allows for quick changing of the appearance of the rendered

volume. DINAVID also provides a bandwidth testing function that will warn the user

if their network bandwidth does not meet the 100 Mb/s suggested requirement, which

means the system will not load images and perform functions with a high degree of

interactivity.
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6.4 Comparison of Systems

We compare characteristics of the above mentioned systems with DINAVID in

Table 6.1 and Table 6.2. The comparison is in terms of if the system is local or

network-based, its ability to do 2D or 3D visualization, and if it allows for uploading

or visualizing a user supplied volume. We also compared the availability of image

processing tools, the capability of object segmentation without needing to install

external packages, and if it allows a user to save and download their processed results.

Most network-based systems lack image analysis tools while many local-based so-

lutions are not as versatile in its visualization functions. 3D Cell Viewer [71] from

the Allen Cell Institute is network-based and is capable of interactive 3D visualiza-

tion of a single cell or a group of cells from their provided library of cell selections.

Thus it is not able to visualize or process a user’s own volume. Apeer [67] Core

and WIPP [68] are both network-based which is targeted for processing of images

based on user defined pipelines. Apeer only support 3D visualization through a sep-

arate viewer and it only support segmentation through user installation of external

Python plugins. WIPP does not support 3D visualization. BisQue [123] has the

ability for 2D/3D visualization but it only supports image analysis and segmentation

through integrated CellProfiler [102] functions. BioWeb3D [70] and Neuroglancer [72]

are both network-based software made for purpose of the demonstration of 3D visu-

alization only. ImageVis3D [65] and Agave [122] are both local-based software for

visualization of data, thus limited in their image processing abilities. CellProfiler and

the VTEA [116] plugin from ImageJ [117] are both local-based software targeted for

image analysis and qualitatively analysis which cannot render image volumes in 3D

natively. Overall, most network-based solutions lack the capability of image analysis

while many local-based solutions are not as versatile in their visualization functions.

It can be observed that our method is able to perform the essential functions of 2D/3D

visualization along with image processing, user uploading, and result downloading.
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6.5 Architecture/Functionalities of DINAVID

In this section we describe in more detail the architecture and functionalities of

the DINAVID system. The architecture of DINAVID include the user interface and

the DINAVID server. The functionalities of the system include 2D visualization, 3D

visualization, image processing tools, and quantitative data analysis tools.

6.5.1 User Interface

To make DINAVID accessible and easy to use, the staring point for using DI-

NAVID is a web site that is accessed with a web browser. We use Apache [128] to

establish the secure connections between the DINAVID system and the browser of

the user. The biggest advantage of using DINAVID is that there is no need for a user

to download and install anything locally on the user’s system. The tools that the

user interacts with are implemented in Hypertext Markup Language (HTML) [129],

JavaScript [130], and Cascading Style Sheets (CSS) [131]. HTML is used to define the

content and CSS is used to define the style and layout of HTML elements of the sys-

tem web interface, while JavaScript provides user interaction and dynamic content

updating within the browser. Examples of JavaScript enabled functions including

hiding certain areas of the content, controlling multimedia, animating images, and

sending the information to the system. Django [132], a Python-based web frame-

work, is used to create the web interface and manages the communication between

a user’s request and the system response. Once the user uploads an image volume,

they can interact with the DINAVID tools to process their volume. The processed

image volume can then be visualized in the user’s browser.

6.5.2 Data and User Request Handling

Once the user uploads volumes to DINAVID, Django [132] is used to process

user requests and to schedule and load data for processing on the computational and
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GPU nodes. Users send HTTP [133] requests to Django through their browser. For

example, a request for displaying images will cause Django to forward the request to

the appropriate “view.” Each “view” is a Python script that defines how to process

the request. During the processing of the requests, the views may interact with

the “model” script for reading or writing data depending on what is required. For

example, the “view” needs to know what images/volumes need to be retrieved from

the system storage for the requested operation. Django will then return a response

to the user’s browser, often by dynamically creating an HTML page and by inserting

the retrieved data into placeholders in an HTML template.

The DINAVID system employs Celery [134] to support task scheduling such as

task queuing and distributed message passing. Task queues are used as a strategy

to distribute the workload between multiple threads or computational nodes. Tasks

can execute asynchronously (in the background) or synchronously (wait until ready).

The DINAVID system supports parallel task processing for multiple users. This is

achieved by RabbitMQ [135], a message broker, to accept and forward messages.

The combination of RabbitMQ and Celery can achieve the function of managing and

scheduling tasks from different users. It can automatically distribute the user’s data

to different computational nodes for processing. The resultant information will be

stored in the system storage for users to access when needed.

6.5.3 Image Processing and Analysis

A common workflow in image processing for tissue cytometry includes image pro-

cessing, segmentation, previewing and analysis. [116]. Processing of the data is often

required to correct errors in image capture or to facilitate further analysis. Also,

the processing of the data is often required to obtain the desired appearance of the

microscopy volume for further analysis.

DINAVID supports the many image processing and operations as we indicated

above. Here we describe these in a bit more detail. For Gaussian filtering to smooth
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or blur an image we allow the user to adjust the filter kernel size using the parameter

σ, the standard deviation of the Gaussian filter. The median filter is used to remove

noise from the image and we allow a user to adjust the window size of the kernel.

Median background subtraction is used to remove background noise from an image

by subtracting a median filtered image from the original image. Thresholding is also

available including simple thresholding and Otsu’s method [96]. Clamping removes

low intensity values in the image. Pixels whose intensity is lower than the threshold

are set to 0, while pixels whose intensity is greater than the threshold remains the

same.

2D morphological operations for binary images are available to determine how

local contents of the image are shaped relative to a given flat structuring element. The

structuring element is defined by its shape and size with erosion, dilation, opening,

and closing available. Erosion is used to shrinks objects, while dilation expands

objects in a binary image. Opening is used to remove small objects, while closing

removes small holes in a binary image. Rolling ball [136] is one of the options for

background subtraction. We use a Python version implemented by [137]. Users can

adjust the radius of the ball used in the rolling ball background subtraction. All of

these functions are implemented via OpenCV [138], with the exception of rolling ball

subtraction. DINAVID also allows the user to select Otsu’s method [96] to determine

a threshold value for the threshold operation. The user can select any combination

of the operations or repeat them as needed. As in VTEA, the user can add as many

of the above steps or repeat them and able to choose parameters for each operation.

6.5.4 Segmentation

In order to quantify the features of individual cells, it is important to identify the

boundaries to distinguish between neighborhood cells. Since the boundaries of cells

are not easy to segment directly, the workaround is to segment nucleus then find the

region immediately around the nucleus. To quantify the protein label associated with
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each cell, segmentation is done followed by quantifing the amount of fluorescence of

different colors in the region around the cell.

Segmentation of each cell is needed to quantify the features of individual cells.

But the boundary of each individual cell is often difficult to find [116]. DINAVID

took the approach of finding the cell nuclei first and then use the region immediately

around the nuclei to represent the cells. This approach is also used in researches

like [116] and [139].

The boundary of the cells is often hard to define in fluorescent microscopy, but

cell nuclei are much easier to find [116]. Segmentation of cell nuclei is used instead

and then the region immediately around the nucleus is considered as a part of that

cell. DINAVID adopts this approach for segmentation.

Two nuclei segmentation tools are currently available in DINAVID, watershed [119]

and a deep learning-based method known as DeepSynth [118]. Watershed was imple-

mented via Scipy [140] and Scikit-Image [141]. The input to our watershed is assumed

to a binary image.

A deep learning-based nuclei segmentation method, DeepSynth [59, 118], is im-

plemented in our system. This method is unique in the sense that the segmentation

system only uses synthetic data for training [59, 109, 110]. This method consists of

two stages: 3D synthetic data generation and a 3D convolutional neural network

(CNN) for 3D segmentation. More specifically, 3D synthetic data is generated using

a spatially constrained cycle-consistent adversarial network (SpCycleGAN) without

the need of manual segmented groundtruth volumes [59,109,110]. The synthetic data

generated from the SpCycleGAN reflects characteristics of the original microscopy

volumes such as background noise, nuclei shape, orientation, and intensity. The syn-

thetic data is used to train our 3D segmentation CNN. Five pre-trained versions of

DeepSynth [118] segmentation are available for users in DINAVID.

Since some image analysis processes require a long execution time, working directly

on the entire image volume is often impractical or will take too long. A better

practice is to first test the analysis on a sub-volume that shows results quickly before
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processing the entire volume. A previewing function is added for the image processing

and segmentation steps. Previewing the image processing or segmentation steps is

done on the selected nuclei channel on a user-selected region of interest on a single

slice.

6.5.5 Visualization

DINAVID supports both 2D and 3D visualization. A user may upload a volume

with as many 19 3D channels. For 2D visualization we display a slice from a 3D

section of all of the channels.

Each channel in a 2D slice is assigned a color. The user can choose a color for each

channel individually, a default color scheme is also provided. The maximum possible

intensity in each channel is assigned to the selected color, while lower intensity values

are assigned colors that are scaled to ratio of their relative intensity values to the

maximum possible intensity. A maximum projection within each of the red, green,

and blue components of the colors assigned to each channel is applied to generate the

final color image that is displayed.

The default colors applied to each channel, in order, are = [’#0000ff’, ’#ff0000’,

’#00ff00’ , ’#f58231’, ’#4363d8’, ’#911eb4’, ’#42d4f4’, ’#f032e6’, ’#bfef45’, ’#fabebe’,

’#469990’, ’#e6beff’, ’#9a6324’, ’#fffac8’, ’#800000’, ’#aaffc3’, ’#808000’, ’#ffd8b1’,

’#000075’]. This is approximately [primary blue, primary red, primary green, orange,

blue, purple, cyan, magenta, lime, pink, teal, lavender, brown, beige, maroon, mint,

olive, apricot, navy]. This list is adapted from [142].

DINAVID also has the capability of adjusting gamma, brightness, and offset for

each of the individual channels, using Equation 6.1:

IAdjusted(x, y) = max(min(B ×
Iorig(x, y)

255

γ

+ C), 0), 1)× 255 (6.1)
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where B is brightness, C is offset, and γ is gamma.

Whenever a visualization setting is changed, the change to the 2D slice is instanta-

neous. This is accomplished via an Asynchronous JavaScript and XML (AJAX) [143]

request from the browser when a change in visualization parameter is detected. When

a change is detected, the browser sends an AJAX request to the system. The system

takes the user input and generates a new image with the new visualization parameters

and sends this image back to the user’s browser. Each image corresponds to a single

slice of the 3D volume. Each AJAX request only handles one slice of the volume for

efficiency. If the user wants to view different slices, a new image is generated each

time a new slice is examined.

As described above 3D visualization uses WebGL [124] for interactive rendering

and visualization. Volume rendering with ray casting is then implemented with We-

bGL for the ability to “see through” the 3D image volume. We first combine the

images to be visualized into one large mosaic file which allows the data to be more

accessible to the rendering engine. The tool is built with the goal of fast and accurate

rendering that is capable to work on large data. The visualization is real-time and

interactive and also supports a user adjusting parameters.

To generate a 3D visualization of a region of interest, the user needs to select a

region on the slice by dragging a box that represents the region of interest. DINAVID

generates the necessary files for rendering while the user’s browser handles the render-

ing using local GPU acceleration in the users computer if available. The files needed

for rendering are a 2D tiled image of the 3D subvolume and a JavaScript Object No-

tation (JSON) file that describes the size and shape of the subvolume. The rendering

engine is a JavaScript library known as ShareVol [144] using WebGL. Similar to 2D

visualization, we have the capability for adjusting gamma, brightness, and offset for

each of the red, green, and blue channels as seen in Equation 6.1. Note that the input

of the ShareVol is always a grayscale image and colors are randomly selected to dif-

ferentiate between each 2D slice when all slices are stacked together in 3D. The colors

present in the 3D visualization should match the colors used in the 2D visualization,
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(a)

(b)

Fig. 6.2.: Examples of the mosaic images of original and color labeled of the nu-
clei dataset (a) Mosaic image of original volume, (b) Mosaic image of color labeled
segmentation results.

so we had to modify ShareVol so that it accepts color images as input. To achieve

developing the 3D volume rendering, we use a framework similar to lightweight vol-
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ume viewer in WebGL called “ShareVol” [144]. For the dependencies, Javascript

matrix and vector library for real time 3D graphics via WebGL called “glMatrix”

and a lightweight graphical user interface for changing variables in JavaScript called

“dat.GUI” are used. Here, the glMatrix supports the capability of handling the 3D

volume with rotating (mouse left click) and panning (mouse right click) based on

client input. Since this 3D volume rotating and panning motion are instantaneously

and therefore real time 3D interactive visualization becomes possible. Additionally,

there are red, green, and blue axes located at the volume to indicate which sections

are displayed to help the client understand between 3D volume and 2D cross sec-

tions. Also, the dat.GUI supports the graphic user interface and allows parameter

changes in the windows while the visualization is running. Again, this functionality

is necessary for a client who would like to interactively adjust the parameters until

the volume is displayed in the best setting.

One drawback in using WebGL is that WebGL does not support 3D textures be-

cause it is the lightweight version of OpenGL. Hence, a typical OpenGL approach

such as loading the image stacks to generate a 3D texture input becomes impracti-

cal [125]. Alternatively, the stack of images are saved as a 2D texture with a mosaic

configuration is described in [145]. Two examples of the mosaic images of original

and color labeled segmentation results are shown in Figure 6.2. As can be seen in

Figure 6.2, this dataset contains 32 images stacked to form an original volume and

color labeled segmentation volume, respectively. DINAVID is also able to color label

a segmented volume.

6.5.6 Quantitative Image Analysis

Cellular neighborhood contains critical information about the cell in fluorescent

microscopy [116, 146]. For example, in [146] cellular neighborhood had a profound

impact on the expression of protein receptors in immune cells. DINAVID estimates

multiple statistics in a cellular neighborhood of each cell and generates a scatter plot.
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(a) (b)

(c) (d)

Fig. 6.3.: Examples of 2D image processing and visualization (a) Panel to adjust
visualization parameters, (b) 2D Image visualization, (c) Panel to select image pro-
cessing steps and adjust parameters, (d) An example slice after a Gaussian blurring
operation

All the segmented cells are plotted in one scatter plot based on the statistics. Different

types of cells might have different statistics in their cellular neighborhood. Ideally, a
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specific type of cell can be isolated by a region of interest (ROI) on the scatter plot.

DINAVID allows users to choose an ROI on the scatter plot and highlights the cells

inside the ROI on the original image volume. Users are able to see the distribution

of a specific type of cell inside the imaged biostructure [116,139].

We define the cellular neighborhood as the pixels surrounding each nucleus. With

the segmented nuclei masks, pixels surrounding each nucleus are extracted using mor-

phological dilation. Nuclei masks of each cell are dilated by a user-defined thickness.

The difference between the resulting dilated mask and the original nuclei masks rep-

resents the pixels around the nuclei. Note the previous step only captures the layer

of pixels wrapping outside the nuclei and the pixels belonging to the nuclei are not

included. For each cell, we then extract six statistics (minimum, maximum, mean,

standard deviation, sum, and count) using the pixels surrounding the cell nuclei. If

the volume has more than one channel, for each individual channel all six statistics are

calculated. DINAVID also generates a spreadsheet containing the estimated statistics

of each cell.

Using the estimated statistics of each cell, DINAVID generates a 2D scatter plot

with user defined statistics. For example, the default statistics on the x-axis is chan-

nel one mean and the default statistics on the y-axis is channel two means. Each

segmented cell from the volume will be part of the scatter plot. Users can change

the type of statistics and channels used on the scatter plot axis. A region of interest

(ROI) can also be selected on the scatter plot. DINAVID takes the cells inside the

ROI and highlights the cell nuclei on the original image volume. Users can view the

image volume with highlighted cell nuclei in 2D slices.

6.5.7 DINAVID Hardware Description

The hardware that we have for the current test version of the DINAVID is as

follows:

Network-Based User Interface Server

• CPU: Intel Core i7-6900K
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Fig. 6.4.: Example of a 3D Visualization

• RAM: 128GB

• GPU: NVIDIA GeForce GTX 1080 (1 GPU)

• Storage Driver: 1TB SSD + 10TB HDD

Compute/GPU Server

• CPU: Intel Core i7-6900K

• RAM: 128GB

• GPU: NVIDIA Titan XP 12GB RAM per GPU (4 GPUs)

• Storage Driver: 1TB SSD + 10TB HDD

We intend to deploy a larger version of DINAVID with multiple computational

nodes in the near future. We will also deploy a version of DINAVID on the Amazon

AWS system.

6.6 An Example of DINAVID Use Case

Users interact with DINAVID with a web browser. Users are required to log in

using the credentials that are supplied to them on request. The login credentials are
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(a) (b)

(c) (d)

Fig. 6.5.: Examples of quantitative image analysis with scatter-plot and plotting gated
nuclei (a) Example segmentation using watershed [119], (b) Panel for quantitative
scatter plot settings, (c) Scatter plot of nuclei, (d) Mapping of gated nuclei.

secured and managed by Django’s Admin tools. A greeting page will be shown to

the users with tabs containing project information and instructions to use DINAVID.
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There are four main tabs for navigating through DINAVID, “Tools” for accessing

the processing and visualization tools, “Tutorial” for instructions on using DINAVID,

“Demo” for trying the system with a preloaded example image, and “Contact” for any

questions and contact information. Users can upload an image volume for processing

and visualization. Figure 6.3 shows an example interface for selecting the parameters

for 2D visualization. After choosing the desired channel and corresponding color

to visualize in Figure 6.3 (a), the changes in brightness, gamma, and offset to the

images will be reflected in Figure 6.3 (b). Figure 6.3 (c) shows the menu for adding

processing steps to the user uploaded image. The number of steps and the sequence of

processing is customizable. Figure 6.3 (d) shows an example slice of blurring operation

on the nuclei channel of the sample image. Figure 6.4 shows an example interface for

3D rendered visualization with GUI for parameter tuning. The user can adjust the

rendered volume and its appearance interactively in real-time. For segmentation with

DeepSynth [118], five different segmentation models trained with different microscopy

images are provided. An example of quantitative analysis after nuclei segmentation

is shown in Figure 6.5. Using the segmentation result obtained from watershed [119],

a scatter plot is generated by specifying the x-axis and y-axis statistics range. The

gated nuclei are then overlaid on the original image.

Also, an image preview window shows the uploaded image. User can also pro-

cess on a subvolume of the data by specifying a region of interest in the preview

window. By pushing the blue “Process” button, our system will process the data

at our computing clusters. Once our system finished the process, the web page will

automatically be redirected to the result download page.

6.7 Building of the system

Biologists have been able to obtain large 3D microscopy data in recent develop-

ments in microscopy technology and computer system. This data is enormous in size

and scope and provides many essential knowledge to understand biological processes.
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A more efficient software and hardware for image processing, which can handle large

and complex data quickly, is required. By designing the high-performance image pro-

cessing framework for volumetric image analysis (DINAVID), It is hoped that machine

learning and profound preparation would be brought into the hands of biologists who

may not be specialists in areas of computer vision. The system supports large image

volumes obtained by the 3D tissue cytometry center, storage, management, visual-

ization, quantitative analysis, and exploration and supports remote investigators in

real-time.

So far, we have designed and developed the prototype of a network-based mi-

croscopy image analysis system (DINAVID). This system is designed for fast and

accurate analysis of large scale microscopy volumes. As shown in Figure 6.1, our

system consists of network-based user interface and computing clusters that con-

tains high performance GPUs. User will be able to upload and download data using

network-based user interface. Also, built-in image previewer and built-in 3D volume

visualization tools are integrated for visualizing data before and after processes.

The DINAVID system supports the function of image uploading and storage, im-

age visualization, and segmentation of 3D microscopy image volumes. The distributed

functionally of the system can support using multiple machines for deep learning based

image volume processing and data transfer. The system has a embedded network-

based visualization function. This system offers the capability to support client or

server-side rendering options, to optimize performance for small versus large image

volumes.

The DINAVID system has a user interface, a data and request handling mecha-

nism, and an embedded network-based 3D data visualization tool.

• User Interface: The user interface of the website is written in JS, HTML and

CSS. A Django framework is used to create the application. Django is python

based web framework which allows quickly create web application. Django pro-

vides tools and components for the builder to add functions to the application.
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The user data is managed by MySQL database server, which works with Django

as well.

• Data and User Request Handling: The data and user request handling part of

the website is written in Python, supported by Django as well. The language

choice of Python allows us to integrate our deep learning functions which uses

the PyTorch platform. To achieve distributed tasking and data transfer, Celery

is used. Celery is an asynchronous task queue based on distributed message

passing. Task queues are used as a strategy to distribute the workload between

threads/machines. The messenger RabbitMQ is used to execute asynchronous

in a Django application. RabbitMQ is required because Celery requires an ex-

ternal solution to send and receive messages. Those solutions are called message

brokers. Once set up, the system is capable of managing and scheduling tasks

from different web-users. The tasks are user data are securely sent to the GPU

nodes machine to process. Once processed, the result data will be transfer back

to the network node for download and display.

• 3D Visualization: The visualization tool is built with WebGL, which is a cross-

platform web standard for 3D graphics API based on OpenGL ES. Volume

rendering with ray casting is then implemented with WebGL for the ability to

“see through” the uploaded 3D images data. We first combine the images to be

visualized into one large mosaic file, which allows the data to be more accessible

to the shader. The tool is built with the goal of fast and accurate rendering that

is capable to work on large data. The visualization is real-time and interactive

which also supports user adjusting parameters. Based on our testing, it can

work on desktops, laptops, as well as on mobile devices.

6.8 Software Components Needed for the DINAVID System

List of required tools for building the system

(A) For the network user interface machine
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1. Apache2

2. pip

3. mod-wsgi library (libapache2-mod-wsgi)

4. Virtualenv

5. Python 2.7 with libraries (numpy, spicy, scikit-image)

6. Django 1.11.11

7. PyTorch 0.3.1, torchvision, visdom

8. Celery 4.1.0 (No.5-8 above are installed under virtual environment installed at

No.4)

9. RabbitMQ and Erlang

(B) For the computing GPU machine

1. pip

2. Python 2.7 with libraries (numpy, spicy, scikit-image)

3. Django 1.11.11

4. PyTorch 0.3.1, torchvision, visdom

5. Celery 4.1.0

6. RabbitMQ and Erlang

6.9 Setup Steps for the DINAVID System

• Django Setup and Database Setup In order to use Django for web development,

one needs to consider the database driven design of the application. Although it

is possible to use Django without a database, most Django applications use an

object-relational mapper. The object-relational mapper can describe the layout

of a database in Python code. For our case, several objects can be represented in

the form of a ”Model”. For example, in order to make uploading a user image

volume possible, the image volume is represented as a ”Model” with several

attributes, the location of the image file, the ownership of the image file, and

the name of the image file and so on.
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• Serving of the Django application with Apache Although Django is a powerful

web framework that allows rapidly release your Python application or website,

but a more secure and strong web server is necessary for anything that is even

slightly related to production. Django also contains a simplified development

server for local code testing. In order to install and configure Django in a virtual

environment in Python, one needs to handle the client requests directly prior

to passing requests which require an application logic to the Django app. The

installation of Apache in our application is needed. It is achieved with mod

wsgi Apache, which can interact with Django via the specification of the WSGI

GUI. It is needed to configure Apache to interface with the Django app once we

have the application running and up. The Apache module mod-wsgi is used to

convert HTTP requests into a standard application format with a specification

called WSGI.

• Django Architecture

Fig. 6.6.: The architecture of Django [132]

Figure 6.6 shows the architecture of Django [132]. Once the user uploads vol-

umes to DINAVID Django is used to process user requests and schedule and

load data for processing on the computational and GPU nodes. The users send
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HTTP requests to Django through their browser. For example, a request for

displaying images will cause Django will forward the requests to the appropri-

ate “views.” Each “view” is a Python script that defines how to process the

request. During the processing of the requests, the views may interact with the

“model” script for reading or writing data depending on what is required. For

example, the “view” needs to know what images/volumes need to be retrieved

from the system storage for the requested operation. Django will then return

a response to the user’s browser, often by dynamically creating an HTML page

and by inserting the retrieved data into placeholders in an HTML template.

The DINAVID system employs Celery [134] to support task scheduling such

as task queuing and distributed message passing. Task queues are used as a

strategy to distribute the workload between multiple threads or computational

nodes. Tasks can execute asynchronously (in the background) or synchronously

(wait until ready). The DINAVID system supports parallel task processing

for multiple users. This is achieved by RabbitMQ [135], a message broker, to

accept and forward messages. The combination of RabbitMQ and Celery can

achieve the function of managing and scheduling tasks from different users. It

can automatically distribute users’ data to different computational nodes for

processing. The resultant information will be stored in the system storage. The

data will be saved for the user to access when needed.

6.10 Extensibility of the System

DINAVID is a system that can be extended with additional functionality built

with Python. It is also possible to extend the system with web-based applications.

One of the common use cases for extending the system is to add a user’s demand

of ”pre-processing” techniques to the system. There are three parts of altering that

is needed. Firstly, modify the webpage by adding a new JavaScript function. Then,

add the processing step as a new operation with a new operation ID. Secondly, in the
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corresponding ”Views”, add the function you want to build into the system. Thirdly,

for the function to work with Celery, modify the file that defines the task to be

executed in the Celery task files. In the same way, a new segmentation method can

be added.

6.11 Using the DINAVID System

Figure 6.7 shows the login pages. User will need to login to our system using

our issued credential. The login credentials are secured and managed by the Django

Admin tools. Django Admin tools are supported by Django with a user friendly

administration interface. The metadata from the models can allow trusted users to

mange and control the website.

Fig. 6.7.: Login page of DINAVID

Figure 6.8 shows the welcome page, which has our project information and a brief

tutorial. In the “Tool” tap, the upload function will allow user to uploaded they data

into system using the blue “Upload Images” button.
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Fig. 6.8.: Home page of DINAVID
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After logging in, the user can see a list of uploaded image volumes. At the right

top of the page, user can delete all the images using the red “Delete Uploaded Images”

button. Multiple image formats are supported. Once the user has finished uploading

images, by click the “visualize” button, a new window will be loaded and show the

3D view of the uploaded grayscale images.

Fig. 6.9.: Visualize input image

A deep learning based nuclei segmentation method, DeepSynth, is implemented

in our system. This is a 3D segmentation method is used to identify and segment

nuclei in fluorescence microscopy volumes using machine-learning techniques, in par-

ticular deep learning. The method is unique in that the segmentation system only

uses synthetic data for training. This method consists of two stages: 3D synthetic

data generation and a 3D convolutional neural network (CNN) for 3D segmentation.

More specifically, 3D synthetic data is generated using a spatially constrained cycle-
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Fig. 6.10.: Segmentation tool selection page



108

consistent adversarial network (SpCycleGAN) without the need of manual segmented

groundtruth volumes. The synthetic data generated from the SpCycleGAN reflects

characteristics of the original microscopy volumes such as background noise, nuclei

shape, orientation and intensity. The synthetic data is used to train our 3D segmen-

tation CNN. The 3D segmentation CNN is then used to segment nuclei structures in

real microscopy volumes.

In Figure 6.11, five different segmentation models that trained with different mi-

croscopy images are provided. User can process their uploaded data with these mod-

els. Also, a image preview window shows the uploaded image.

Fig. 6.11.: Segmentation tool selection page

As shown in Figure 6.12, user can also process on a subvolume of the data by

specifying a region of interest in the preview window. By pushing the blue “Process”

button, our system will process the data at our computing clusters. Once our system
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finished the process, the web page will automatically redirected to the result download

page.

Fig. 6.12.: Subvolume selecting functionality

In Figure 6.13, our visualization tool can also provide subvolume visualization and

2D slices visualization. The visualization tool support visual settings of adjustable

density, brightness, contrast, mindensity, and maxdensity. The default setting are as

follows: Density: 10, Brightness: 0, Contrast: 1, Mindensity: 0.05, Maxdensity: 1.

With the advancement of high throughput optical microscopy very large 3D image

datasets can be acquired. Image analysis tools and three dimensional visualization

are critical for analyzing and interpreting these 3D image volumes. These large 3D

microscopy volumes also require more computational resources than a biologist may

have access to in typical desktop or laptop computers especially if machine learning

tools are being used for image analysis. With this increased amount of data analysis

and computational complexity, there is a need for a more accessible, easy-to-use, and

efficient network-based/cloud-based 3D image processing system. The Distributed

and Networked Analysis of Volumetric Image Data (DINAVID) system is being de-

veloped to enable remote analysis of microscopy images for biologists. DINAVID is

designed using open source tools and has two main sub-systems, a computational
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Fig. 6.13.: 3D visualization of DINAVID
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system for 3D microscopy image processing and analysis and a 3D visualization sys-

tem. The 3D visualization system enables real-time rendering of large 3D volumes of

microscopy data. The computational system supports traditional imaging processing

and analysis such as watershed [23], blurring, enhancement, and noise removal. The

computational system also supports deep learning based tools for the detection and

analysis of nuclei of 3D fluorescent microscopy images.

6.12 Conclusion

In this work, we described the DINAVID system that was developed for the anal-

ysis of 3D microscopy volumes. The goal is to provide a system capable of analyzing

large 3D microscopy volumes using sophisticated machine learning methods that bi-

ologists can use without worrying about managing computational resources. We also

compared DINAVID to existing systems. Implemented as a cloud-based system in-

stead of a locally installable system, DINAVID removes the necessity for hardware

and software installations beyond a computer with a less than $1000 GPU, 100Mb/s

network connection, and a web browser. DINAVID provides real-time 2D focal plane

and 3D volume rendering, along with a tissue cytometry tool with processing, seg-

mentation, quantification, and data analysis steps. Each component of the tissue

cytometry workflow is independent with one another, enabling the capability to add

new features or methods to each component.

DINAVID is designed using open source tools. The source code and user access

to DINAVID are available upon request.

In the future we will deploy more image analysis tools including machine learning

architectures for microscopy image analysis from our research group. One example

that can be added in the future is the ability to provide a way for a user to upload

training data into DINAVID so that the machine learning models can be retrained.

We also plan to add features to DINAVID to process more types of microscopy image

data, such as supporting additional bio-imaging formats beyond 3D composite TIFFs
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or collections of 2D slices. We are also investigating adding online transfer learning

tools that will allow users to investigate their own types of data by training machine

learning methods.
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7. CONCLUSIONS

7.1 Summary and Future Work

7.1.1 Summary of the contribution of the thesis

The main contributions of this thesis are:

• Microscopy Nuclei Counting and Segmentation: We have introduced a nuclei

counting method using synthetic microscopy images generated with the previous

mentioned SpCycleGAN. A 3D GAN counting network is used to estimate the

number of nuclei in a microscopy image volume. The 3D counting network

is evaluated with both synthetic and real microscopy data. Since the above

mentioned nuclei counting method generates a segmentation mask before the

post-processing counting is performed, the segmentation results are retained

and used to find the object-based F1 score of the nuclei finding accuracy.

• Microscopy Nuclei Segmentation and Classification: In this thesis, I also de-

scribed a method for nuclei segmentation and detection with boundary refine-

ment. Three main stages of the method were described in the following order.

The first step is a synthetic image generation step using GAN. The generation

of realistic synthetic data is extended from ReCycleGAN [24] which is initially

developed for video to video style transfer. ReCycleGAN extended CycleGAN

into three dimensions with the added temporal dimension. Instead of using the

temporal dimension, we used one additional dimension in the spatial dimension

in the 3D image volume. This approach can generate synthetic images that are

continuous along the z-axis, which contains more complete information of a 3D

image volume. Following the synthetic image generation is the segmentation
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step with boundary refinement. Using the generated segmentation mask and

shape indicator volumes, the method is able to predict the ellipsoidity of the

nuclei without any prerequisite labeling of nuclei types.

• Distributed and Networked Analysis of Volumetric Image Data (DINAVID)

System: We developed the Distributed and Networked Analysis of Volumetric

Image Data (DINAVID) system with the purpose of providing biologists with a

tool for convenient analyzing of large volumes of microscopy data. The system

is designed according to the standard workflow and habits of microscopy image

analysis guided by biologists’ perspective. Two main components of system

were described in this thesis, a 3D visualization tool that is capable of display-

ing original and colored images volume in 3D with interactive visualization,

and a remote computing tool that provides multiple types of image processing

and analysis functions including machine learning based nuclei segmentation.

The 3D visualization enables real-time rendering of large volumes of microscopy

data. The segmentation tool provides fast inferencing of pre-trained deep learn-

ing models trained with 5 different types of microscopy data.

7.1.2 Future Work

The proposed future work from this thesis is listed here:

• Microscopy Nuclei Image Segmentation and Counting: The previously men-

tioned SpCycleGAN is able to generate nuclei images without using any manu-

ally labeled data. The generated 2D images can be stacked to form 3D volume.

Although the characteristic of nuclei is realistic in 2D, shape of the structures

are not perfectly defined in 3D. In the future, we would like to expand our cur-

rent method to a 3D technique. Also, our current method can be used on other

applications such as image denoising, super resolution, and image restoration.

We plan to investigate how to evaluate the quality of synthetically generated

microscopy data in terms of noise, blur, and homogeneity. In the future, we
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would like to explore more on how to generalize our techniques. A unified

model can provide a pre-trained models for the user to fine-tune, which is a

useful expansion of application for generalized nuclei segmentation. In the fu-

ture, we plan to test across different types of segmentation network and work

on 3D ways to generate synthetic microscopy volumes. The 3D GAN counter

can be used for the analysis of very crowd nuclei images, while still produc-

ing an accurate counting result. Since biologists are usually more interested in

quantifying the number of nuclei, we want to focus the method on more efficient

ways of producing the counting measurement. Also, nuclei that locate around

the boundaries of the microscopy volumes are hard to detect, we plan to im-

prove the detection accuracy around the boundaries with majority voting and

refinement techniques.

• Microscopy Nuclei Segmentation and Boundary Refinement: In this work, a

method for nuclei segmentation and detection with boundary refinement is also

described. This method consists of three stages, a synthetic image volume

generation step, a segmentation step, and a boundary refinement step. The

generation of realistic synthetic data is extended from ReCycleGAN [24] which

is initially developed for video to video style transfer. In the future, we hope to

use this method to generate large sizes of synthetic data that is also meaningful

and realistic in three dimensions. The plan for this work includes the evalua-

tion of the microscopy images generated synthetically with a comparison with

images generated by our SpCycleGAN and CycleGAN. Since different shapes

of nuclei co-exist in a single volume, during the generation of synthetic images,

we have manually crafted the ratio of round shaped and elongated nuclei. In

the future, we plan to have machine learning based method for the analysis

of the distribution ratio of these different types of nuclei. In this way, it is

helpful for generating more realistic synthetic images that are more close in the

characteristic and distribution of nuclei.
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• In this work, we have proposed a Distributed and Networked Analysis of Volu-

metric Image Data (DINAVID) system is developed to enable remote analysis

of microscopy images for biologists. There are two main functions integrated

in the system, a 3D visualization tool and a remote computing tool for nuclei

segmentation. The 3D visualization enables real-time rendering of large vol-

umes of microscopy data. The segmentation tool provides fast inferencing of

pre-trained deep learning models trained with 5 different types of microscopy

data. In the future, we hope to process more types of microscopy image data,

for cases when the users are prepared to provide training data. We hope to add

online transfer learning functions that can allow users to try their own types

of data and refine the results from the training of our provided segmentation

network. Users can also preprocess their data with simple image processing

tools, like blurring, background removal, histogram equalization, and resizing

or scaling of the image volumes. The segmentation processing tools can have

more options, for example, asking the user to resize their nuclei images to match

the nuclei sizes between user data and pre-trained data. The future of this work

including expanding the system to a larger scale with around 50 users with bi-

ological backgrounds. The users can test and share their results in real-time

with co-workers and select sub-regions of their interest to follow up. The sys-

tem will also have higher security features, that can preserve and protect user

data while encouraging sharing and collaboration. We are also investigating

the ability for remotely visualize 3D large volumes of microscopy data. The

current 3D interactive visualization system is locally rendered which means the

ability of rendering speed and size is dependent on the user’s side. By utiliz-

ing server side GPU and send information to clients, we can lower the burden

from client side. One potential issue is the remote sharing rendering will have

a performance that is largely depended on the network speed. So we will look

into methods for compression and speedy transferring of real-time rendered 3D

image volumes.
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7.2 Publication Result From This Work

Journal Papers

1. K. W. Dunn, C. Fu, D. J. Ho, S. Lee, S. Han, P. Salama, and E. J. Delp,

“DeepSynth: Three-dimensional nuclear segmentation of biological images using

neural networks trained with synthetic data,” Scientific Reports, Volume 9,

Article number: 18295, December 2019. DOI: 10.1038/s41598-019-54244-5

Journal Papers In Preparation

1. E. J. Delp, S. Han, A. Chen, S. Lee, C. Fu, C. Yang, L. Wu, P. Salama,

K. W. Dunn, and P. Salama, “DINAVID: A High-Performance Distributed and

Networked Image Analysis System for Volumetric Image Data,” To be submitted

2. C. Fu*, S. Han*, S. Lee, D. J. Ho, P. Salama, K. W. Dunn and E. J. Delp,

“Three Dimensional Nuclei Synthesis and Instance Segmentation”, To be Sub-

mitted to the IEEE Transactions on Medical Imaging.

3. S. Lee, S. Han, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Three di-

mensional tubule synthesis and segmentation for fluorescence microscopy using

generative adversarial networks,” To be submitted to the IEEE Transactions on

Medical Imaging.

Conference Papers

1. S. Han, S. Lee, A. Chen, C. Yang, P. Salama, K. W. Dunn, and E. J. Delp,

“Three Dimensional Nuclei Segmentation and Classification of Fluorescence Mi-

croscopy Images,” Proceedings of the IEEE International Symposium on Biomed-

ical Imaging (ISBI), pp. 1–5, April 2020, Iowa City, Iowa.

2. S. Han, S. Lee, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Nuclei counting

in microscopy images with three dimensional generative adversarial networks,”

Proceedings of the SPIE Conference on Medical Imaging, pp. 109492Y-1-11,

February 2019, San Diego, CA.
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3. D. J. Ho, S. Han, C. Fu, P. Salama, K. W. Dunn, and E. J. Delp, “Center-

Extraction-Based Three Dimensional Nuclei Instance Segmentation of Fluores-

cence Microscopy Images,” Proceedings of the IEEE International Conference

on Biomedical and Health Informatics (BHI), May 2019, Chicago, IL.

4. S. Lee, S. Han, P. Salama, K. W. Dunn, and E. J. Delp, “Three Dimen-

sional Blind Image Deconvolution for Fluorescence Microscopy Using Genera-

tive Adversarial Networks,” Proceedings of the IEEE International Symposium

on Biomedical Imaging (ISBI), April 2019, Venice, Italy.

5. C. Fu, S. Lee, D. J. Ho, S. Han, P. Salama, K. W. Dunn and E. J. Delp,

“Three dimensional fluorescence microscopy image synthesis and segmentation”,

Proceedings of the Computer Vision for Microscopy Image Analysis workshop

at Computer Vision and Pattern Recognition, June 2018, Salt Lake City, UT.

6. C. Fu, D. J. Ho, S. Han, P. Salama, K. W. Dunn, E. J. Delp, “Nuclei segmen-

tation of fluorescence microscopy images using convolutional neural networks”,

Proceedings of the IEEE International Symposium on Biomedical Imaging, pp.
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