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GLOSSARY 

Dynamic system A system that consists of a mass-spring-damper and has a response 

to a specific input or is in free response (Choudhuri & French, 

2018). 

Fractional calculus  A mathematical tool that utilizes a fractional order or imaginary 

number order of a differentiation or integration operator in an 

expression (Kulish & Lage, 2002). 

Homogenous field A mathematical definition of a space that possess properties that 

are the same throughout the space, such as, an ideal fluid or gas 

(Choudhuri & French, 2018). 

Mathematical model A set of equations and axioms that describe a physical behavior 

under a certain set of constraints (Choudhuri & French, 2018). 

Mittag-Leffler Function A generalized two parameter complex function that is used for 

solving of fractional order differential equations (Garrappa & 

Popolizio, 2018). 

Navier-Stokes A general equation that mathematically describes the motion of an 

object in a homogenous field (Choudhuri & French, 2018). 

Riemann-Liouville A generalized form for evaluating an integral of fractional order 

(Magin, 2006). 
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NOMENCLATURE 

𝐷𝑏
𝑎 𝑎

  Fractional order derivative of 

a function from limit a to b of 

order α 

 𝜏𝜃𝜃 Angular shear stress of the fluid on 

the cylinder 

Γ(x) Euler’s Gamma function of x  𝐺3 Three parameter notation for 

Green’s function 

𝐸𝛼 ,𝛽 (𝑥) Two parameter Mittag-Leffler 

function of x 

 tp Planck’s time = 5.39106 x 10-44 

seconds 

m Mass of an object  I Second moment of area 

c Damping constant  G Shear modulus (of steel) 

k Spring constant  h Height (of the disk) 

λ Eigen value  𝑟𝑜𝑢𝑡𝑒𝑟  Outer radius (of the disk) 

ζ Damping ratio  𝑟𝑖𝑛𝑛𝑒𝑟 Inner radius (of the disk) 

ω Frequency  𝐷𝑠𝑝𝑟𝑖𝑛𝑔  Diameter of the torsional spring 

𝜔𝑛 Natural frequency  𝐿𝑠𝑝𝑟𝑖𝑛𝑔 Length of the torsional spring 

𝜔𝑑 Damped frequency  t Time (seconds) 

ϕ Phase difference    

Re Reynolds number    

𝑙∗ Viscous length scale of the 

disk (top cross section of the 

cylinder) 

   

Ωz Angular acceleration    

𝑐𝑓 Skin friction coefficient    

𝑣𝜏 Angular shear stress friction 

velocity 

   

𝑣𝑟  Velocity in the radial direction    

𝑣𝜃 Velocity in the angular 

direction 

   

𝑣𝑧 Velocity in the vertical (z-

axis) direction 

   

ρ Density of the material    

μ Viscosity of the fluid    
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ABSTRACT 

Fractional calculus is the integration and differentiation to an arbitrary or fractional order. 

The techniques of fractional calculus are not commonly taught in engineering curricula since 

physical laws are expressed in integer order notation. Dr. Richard Magin (2006) notes how 

engineers occasionally encounter dynamic systems in which the integer order methods do not 

properly model the physical characteristics and lead to numerous mathematical operations. In the 

following study, the application of fractional order calculus to approximate the angular position 

of the disk oscillating in a Newtonian fluid was experimentally validated. The proposed 

experimental study was conducted to model the nonlinear response of an oscillating system using 

fractional order calculus. The integer and fractional order mathematical models solved the 

differential equation of motion specific to the experiment. The experimental results were 

compared to the integer order and the fractional order analytical solutions. The fractional order 

mathematical model in this study approximated the nonlinear response of the designed system by 

using the Bagley and Torvik fractional derivative. The analytical results of the experiment 

indicate that either the integer or fractional order methods can be used to approximate the 

angular position of the disk oscillating in the homogeneous solution. The following research was 

in collaboration with Dr. Richard Mark French, Dr. Garcia Bravo, and Rajarshi Choudhuri, and 

the experimental design was derived from the previous experiments conducted in 2018. 
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  INTRODUCTION 

1.1 Overview 

Newton and Leibniz founded integer order calculus in the seventeenth century by 

developing a general symbolic and systematic method of analytical operations. Fractional 

calculus—the integration and differentiation to an arbitrary or fractional order—was 

conceptualized nearly the same time as integer order calculus (Kulish & Lage, 2002). Fractional 

calculus techniques are applied in the following experiment to model the nonlinear response of 

the proposed oscillatory dynamic system. The comparison of the fractional and integer order 

model data determines if the oscillatory decay of the spring-damped system demonstrates 

fractional dynamic behavior.  

1.2 Significance 

The techniques of fractional calculus are not commonly taught in engineering curricula 

since physical laws are expressed by integer order notation. Engineers, however, encounter 

situations in which the integer order methods do not properly model the physical characteristics 

of a dynamic system and lead to numerous mathematical operations (Magin, 2006). Magin 

(2006) provides an example—derived from the original work of Torvik and Bagley (1984)—

where fractional calculus provided an alternative solution for the surface shear stress developed 

by the transverse motion of a rigid flat plate in a homogeneous fluid. Kulish and Lage (2002) 

demonstrated how fractional calculus methods yield the same result in one operation as integer 

order calculus does in three operations. Fractional and integer order methods were applied in the 

proposed experiment to model the angular position of the disk while oscillating in the 

homogeneous fluid. The results from the analyses were then compared to the experimental 

results. The oscillatory decay in the system exhibited fractional behavior since the experimental 

results match the results obtained from the fractional analysis.  
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1.3 Statement of Purpose 

The problem addressed by the following experimental study is that integer order calculus 

does not accurately model all the necessary physical characteristics of dynamic systems and 

produces numerous mathematical operations (Magin, 2006). The purpose of the study was to 

experimentally validate the fractional order model of the proposed dynamic system by 

considering the closeness of fit between the fractional and integer order models compared to the 

experimental data.  

1.4 Experimental Setup 

The proposed system, derived from previous experiments conducted by Choudhuri and 

French (2018), was designed as an aluminum disk rotating about the vertical axis of a stainless-

steel shaft where both ends were supported by bearings. The upper-support beam fixed the top 

end of the torsional spring. The bottom of the torsional spring connected to the upper part of the 

shaft to enable the oscillating motion in the system. The aluminum disk and stainless-steel shaft 

were joined using a force fit.  The bottom end of the shaft was supported by a ball bearing in 

which was attached to the bottom of the tank containing the homogeneous fluid. Figure 1.1 

illustrates the ideal experimental configuration. 

 

Figure 1.1 Ideal experimental setup (Choudhuri & French, 2018). 
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1.5 Assumptions 

The assumptions of the experiment are listed as follows: 

• The boundary conditions at the tank walls do not affect the motion of the disk 

since the diameter of the tank is significantly larger (at least 3x) than the diameter 

of the disk. 

• Fluid boundary layer effects on the shaft are negligible.  

• The surface finish of the disk is uniform meaning that the coefficient of drag is 

uniform along the surface. 

• The contact point between the bottom of the shaft and the bearing fixed to the 

bottom of the tank is frictionless. 

• The homogeneous fluid used in the experiment is considered ideal. 

1.6 Limitations 

The limitations of the experiment are listed as follows: 

• The static and dynamic relationship of the shaft and the disk must remain 

perpendicular. 

• Inertial forces must be high enough, compared to the spring and damping forces, 

to prevent rapid oscillatory decay. 

• The fatigue stresses acting on the torsional spring after each experiment run incurs 

losses thus the spring must be replaced after each run. 

1.7 Delimitations 

The delimitations of the experiment are listed as follows: 

• Fluid boundary layer formation on the vertical shaft is not considered. 

• Variation of the cross-sectional area of the aluminum disk is not considered as it 

has been machined with tight tolerances and is considered uniform. 

• Variation of the surface finish on the top and bottom face of the aluminum disk is 

not considered as it has been machined with tight tolerances and is considered 

uniform. 
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• The alignment of the stainless-steel shaft and aluminum disk is considered 

perpendicular due to careful machining and tight tolerances. 

1.8 Chapter Summary 

Newton and Leibniz established the foundations of integer order and fractional order 

calculus in the seventeenth century. Fractional order calculus is a mathematical concept in which 

integration and differentiation is to an arbitrary, non-integer order (Kulish & Lage, 2002). The 

fractional and integer order differential equations corresponding to the experiment were 

evaluated to model the dynamics of the oscillating system. The purpose of this study was to 

experimentally validate the application of fractional order calculus to approximate the angular 

position of the oscillating disk in a homogeneous fluid . The following chapter goes into further 

details regarding the history, fundamental theories, and applications of fractional order calculus. 
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  REVIEW OF LITERATURE 

2.1 Brief History of Fractional Order Calculus 

The foundations of calculus emerged during the third century after Archimedes, the 

father of statics, computed areas, volumes, and lengths of arcs by methods of exhaustion. The 

method of exhaustion computed the desired area by inscribing polygons in a circle with an 

increasing number of edges in which the area of the polygons converges to the area of the 

containing shape (Rosenthal, 1951). Efforts from Stevin, Valerio, Kepler, Cavalieri, Fermat, 

Pascal, Descartes, and many others set the stage for the two founding fathers of calculus. Newton 

and Leibniz independently founded integer order calculus by developing a general symbolic and 

systematic method of analytical operations independent of geometry during the seventeenth 

century (Rosenthal, 1951). The integer order notation 
𝑑𝑓(𝑥)

𝑑𝑥
𝑜𝑟 𝐷1𝑓(𝑥), 

𝑑2𝑓(𝑥)

𝑑𝑥2  𝑜𝑟 𝐷2𝑓(𝑥) is a 

familiar concept. However, the fractional order notation 
𝑑

1
2𝑓(𝑥)

𝑑𝑥
1
2

 𝑜𝑟 𝐷
1

2𝑓(𝑥) is not easily 

recognized, because textbooks often do not incorporate lessons on fractional order concepts 

(Kleinz & Osler, 2000). Fractional calculus—the method of integration and differentiation to an 

arbitrary, non-integer order—was conceived nearly the same time as integer order calculus in 

1695 (Kulish & Lage, 2002). Fractional calculus operations are demonstrated on functions of 

engineering interest with emphasis on Laplace transform methods to solve initial value problems 

in the time domain and provide expressions describing sinusoidal steady-state behavior in the 

following text. In real analyses, fractional order calculus is the generalization of integer order 

calculus. 

2.2 Fractional Order Calculus Explained 

2.2.1 Fractional Derivative of Exponential Functions 

Kleinz & Osler (2000) provide an explanation of fractional order calculus by examining 

the exponential function below in equation 2.1. 

𝑓(𝑥) = 𝑒𝑝𝑥      (2.1) 

 The corresponding integer-based derivative of the first, second, and third order are shown 

below in equation 2.2.  
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𝑓1(𝑥) = 𝐷1𝑒𝑝𝑥 = 𝑝1 ∗ 𝑒𝑝𝑥 

𝑓2(𝑥) = 𝐷2𝑒𝑝𝑥 = 𝑝2 ∗ 𝑒𝑝𝑥     (2.2) 

𝑓3(𝑥) = 𝐷3𝑒𝑝𝑥 = 𝑝3 ∗ 𝑒𝑝𝑥 

 Assume that n is an integer number and α is a rational number. The general form of the 

integer derivative of equation 2.2 is shown below in equation 2.3. 

𝑓𝑛(𝑥) = 𝐷𝑛𝑒𝑝𝑥 = 𝑝𝑛 ∗ 𝑒𝑝𝑥     (2.3) 

 Substitute α (the rational number) where n (the integer number) appears from equation 

2.3 to create equation 2.4 shown below.  

𝑓𝑎(𝑥) = 𝐷𝑎𝑒𝑝𝑥 = 𝑝𝑎 ∗ 𝑒𝑝𝑥     (2.4) 

 Dα represents any value for α—integer, rational, irrational, or complex. For example, 

dreplace α with the rational number ½ resulting in the ½ order derivative of the exponential 

function as shown below in equation 2.5. 

𝑓
1

2(𝑥) = 𝐷
1

2𝑒𝑝𝑥 =  √𝑝 ∗ 𝑒𝑝𝑥     (2.5) 

 A positive real α represents a derivative of the function and a negative α represents an 

integral of the function for the example above (Kleinz & Osler, 2000). Note, fractional order 

derivatives use previous information to converge to the solution; whereas, integer order 

derivatives are defined completely at a point. 

 

2.2.2 Fractional Derivative of Trigonometric Functions 

Choudhuri and French (2018) derive the general form of the fractional order derivative of 

trigonometric functions sine and cosine using Euler’s expression shown below in equation 2.6. 

𝑒𝑗𝑥 = cos(𝑥) + 𝑗 ∗ sin(𝑥)     (2.6) 

 Substitute equation 2.6 into equation 2.1 to obtain the general form of the fractional order 

derivative of a trigonometric function shown below as equation 2.7. 

𝐷𝑎 ∗ 𝑒𝑗𝑥 = 𝑗𝑎 ∗ 𝑒𝑗𝑥 = 𝑒𝑗(𝑥+
𝜋𝑎

2
) = cos (𝑥 +

𝜋𝑎

2
) + 𝑗 ∗ sin (𝑥 +

𝜋𝑎

2
)  (2.7) 
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2.2.3 Fractional Derivative of Polynomial Functions 

Kleinz and Osler (2000) provide the generalized derivative of a polynomial in equation 

2.8 below. 

𝐷𝑛𝑥𝑝 =
𝑝(𝑝−1)(𝑝−2)…(𝑝−𝑛+1)(𝑝−𝑛)(𝑝−𝑛−1)…1

(𝑝−𝑛)(𝑝−𝑛−1)…1
 𝑥𝑝−𝑛 =

𝑝!

(𝑝−𝑛)!
𝑥𝑝−𝑛  (2.8) 

 Equation 2.8 is the integer expression for 𝐷𝑛𝑥𝑝 and to replace the positive integer n by 

the arbitrary number α, the gamma function must be used. The gamma function, introduced by 

Euler in the 18th century, provides meaning to 𝑝! and (𝑝 − 𝑛)! when p and n are not integers. The 

gamma function represented by equation 2.9 satisfies the property shown below in equation 2.10 

(Podlubny, 1999).  

 𝛤(𝑥) =  ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
∞

0
    (2.9) 

𝛤(𝑥 + 1) = 𝑥𝛤(𝑥)     (2.10) 

 Equation 2.8 is then rewritten in the following form since integer n is replaced by the 

non-natural number α as shown in equation 2.11 below. 

𝐷𝑎𝑥𝑝 =
𝛤(𝑝+1)

𝛤(𝑝−𝑎+1)
𝑥𝑝−𝑎    (2.11) 

 The concept of fractional derivatives is extended to cover a variety of functions by using 

a Taylor series in terms of x shown below in equation 2.12. 

𝑓(𝑥) =  ∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑛     (2.12) 

 Differentiate equation 2.12 term by term resulting in equation 2.13 shown below. 

𝐷𝑎𝑓(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 𝐷𝑎𝑥𝑛 = ∑ 𝑎𝑛

∞
𝑛=0  

𝛤(𝑛+1)

𝛤(𝑛−𝑎+1)
𝑥𝑛−𝑎  (2.13) 

Equation 2.13 is the generalized definition of the fractional derivative (Kleinz & Osler, 2000).  

 

2.2.4 Fractional Integrals 

Kleinz and Osler (2000) provide the first and second definite integer order integral of a 

function as shown in equation 2.14 and equation 2.15 below. 

𝐷−1𝑓(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
     (2.14) 

𝐷−2𝑓(𝑥) =  ∫ ∫ 𝑓(𝑡1)
𝑡2

0
𝑑𝑡1𝑑𝑡2

𝑥

0
    (2.15) 

The left-hand plot found in Figure 2 illustrates the area of integration represented by 

equation 2.15 from above. The right-hand plot found in Figure 2.1 illustrates how the area of 
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integration has changed direction after rearranging the order of integration as shown below in 

equation 2.16. 

𝐷−2𝑓(𝑥) =  ∫ ∫ 𝑓(𝑡1)
𝑥

𝑡1
𝑑𝑡2𝑑𝑡1

𝑥

0
    (2.16) 

  

Figure 2.1 Illustration of the Lebesgue integral and Riemann integral, respectively (Kleinz & 

Osler, 2000). 

 

 Equation 2.16 is changed by moving 𝑓(𝑡1) outside the inner integral since 𝑓(𝑡1) is not a 

function of 𝑡2 in this example resulting in equation 2.17 shown below.  

𝐷−2𝑓(𝑥) =  ∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑑𝑡 
𝑥

0
    (2.17) 

 The same procedure is performed for the third and fourth integer-based integrals shown 

in equation 2.18 and equation 2.19 below. 

𝐷−3𝑓(𝑥) =
1

2
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)2𝑑𝑡 

𝑥

0
    (2.18) 

𝐷−4𝑓(𝑥) =
1

2∗3
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)3𝑑𝑡 

𝑥

0
    (2.19) 

 Considering equations 2.17 to 2.19, the generalized definition of the integer order integral 

is shown in equation 2.20 below. 

𝐷−𝑛𝑓(𝑥) =
1

(𝑛−1)!
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑛−1𝑑𝑡 

𝑥

0
   (2.20) 

 Replace the -n term with the arbitrary α term and the factorial with the gamma function to 

produce the definition of the Riemann-Liouville fractional order integral. The Riemann-Liouville 



 

20 

fractional integral expression shown below in equation 2.21 is derived from the Laplace 

transform methods (Magin, 2006). 

𝐷𝑥
𝑎  𝑏

 𝑓(𝑥) =
1

𝛤(−𝑎)
 ∫

𝑓(𝑡) 𝑑𝑡

(𝑥−𝑡)𝑎+1

𝑥

𝑏
     (2.21) 

 

 The fractional derivative symbol 𝐷𝑎  represents positive and negative values for α. The 

integral is improper if α > -1 because as 𝑡 →  𝑥, 𝑥 − 𝑡 → 0 causing the integral to diverge for every 

𝑎 ≥ 0. The improper integral converges whenever −1 < 𝑎 < 0 indicating the α term must be 

negative. Only negative values for α must be used in the example above to consider equation 2.21 

as a definition for the fractional integral which is why limits are included (Kleinz & Osler, 2000). 

The following section outlines how the limit resolves the inherent contradiction found in the 

definition of fractional calculus and provides methods for solving fractional order differential 

equations. 

2.2.5 Solving Fractional Order Differential Equations 

Integer order integrals are expected to have limits hence fractional order integrals are also 

expected to have limits. Integer-based derivatives are not governed by limits; however, fractional 

order derivatives surprisingly must have limits. Why must the limit be included for fractional 

order derivatives if not included for integer order derivatives? Recall equation 2.4 from above 

containing the fractional derivative for the exponential function. Substitute the fractional 

derivative of the exponential function from equation 2.4 into the Taylor Series from equation 

2.13 resulting in equation 2.22 shown below (Kleinz & Osler, 2000). 

𝐷𝑎𝑒𝑥 =  ∑
1

𝑛!
𝑥𝑛 =  ∑

𝑥𝑛−𝑎

𝛤(𝑛−𝑎+1)
∞
𝑛=0

∞
𝑛=0    (2.22) 

 The right side of equation 2.22 from above is equivalent to the Taylor series for 𝑒𝑥 only 

when α is an integer. The case in which α is fractional results in two different functions. The 

expression for the fractional derivative of the exponential function from equation 2.4 is 

inconsistent with the expression for the fractional derivative of the power function from equation 

2.13 since two different limits are being used (Choudhuri & French, 2018).  

 Notice the fractional integral for an exponential function in equation 2.23 shown below. 

𝐷𝑥
−1 𝑏

 𝑒𝑎𝑥 = ∫ 𝑒𝑎𝑥𝑑𝑥
𝑥

𝑏
=

1

𝑎
𝑒𝑎𝑥 −

1

𝑎
𝑒𝑎𝑏   (2.23) 
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The limit is incorporated to satisfy equation 2.23 from above. The term 
1

𝑎
𝑒𝑎𝑏 = 0 when α is 

positive and the lower limit 𝑏 is equal to −∞ represented by equation 2.24 below. 

𝐷𝑥
𝑎 −∞

 𝑒𝑎𝑥 = 𝑎𝑎𝑒𝑎𝑥     (2.24) 

The fractional integral with the lower limit equal to −∞ is referred to as the Weyl fractional 

derivative as seen in equation 2.24 above. The Weyl fractional derivative equation is derived 

from the Riemann-Liouville fractional order integral expression hence equation 2.25 below 

(Choudhuri & French, 2018). 

𝐷𝑥
𝑎 −∞

 𝑓(𝑥) =
1

𝛤(−𝑎)
 ∫

𝑓(𝑡) 𝑑𝑡

(𝑥−𝑡)𝑎+1

𝑥

𝑏
    (2.25) 

 

2.3 Dynamics 

2.3.1 Spring-damped System 

Dynamics is defined as the branch of mechanics concerned with bodies in motion. The 

following section explains how the equations of motion for a single degree of freedom system 

govern the dynamics for the experimental apparatus by using the ideal mass-spring-damped 

system for the example. The single degree of freedom mass-spring-damped system used in the 

following experiment captures the basic behavior of vibrating structures since all structures have 

mass and stiffness. Proportional damping closely resembles the behavior of vibrating structures 

and simplifies the mathematical models used in the experiment. Other damping models exist but 

add complexity to the mathematical models compared to proportional damping. Replacing the 

proportional damper with the fractional damper presents the possibility of modeling more 

complicated dynamic behavior. Figure 2.2 shown below illustrates the ideal mass-spring-damped 

system. 
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Figure 2.2 Ideal mass-spring-damped system (Jones, 2001). 

 

 The equation of motion for the ideal mass-spring-damped system with one degree of 

freedom is written as: 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 +  𝑐
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 𝑓(𝑡)    (2.26) 

where m is the mass, k is the spring stiffness, and c is the damping coefficient. Equation 2.26 

indicates the applied force 𝑓(𝑡) is perfectly counteracted by the sum of the inertial force 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
, 

the stiffness force 𝑐
𝑑𝑥(𝑡)

𝑑𝑡
, and the damping force 𝑘𝑥(𝑡).  

 The motion equation from above is rewritten considering the free response characteristic 

of the system meaning that the external force on the system is equal to zero as shown below in 

equation 2.27 (Jones, 2001). 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 +  𝑐
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 0    (2.27) 

 Choudhuri and French (2018) provide the example in which 𝑥(𝑡) = 𝐴𝑒𝜆𝑡 is the 

characteristic function hence equation 2.28 and equation 2.29 below. 
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(𝜆2𝑚 + 𝜆𝑐 + 𝑘)𝐴𝑒𝜆𝑡 = 0 
 

⇒  𝜆2𝑚 + 𝜆𝑐 + 𝑘 = 0   (2.28) 

𝜆1,2 =  (−𝜁 ± √𝜁2 − 1) √
𝑘

𝑚
     (2.29) 

 The first and the second order eigenvalues are indicated by 𝜆1,2 from equation 2.29. 

Eigenvalues, in context of the proposed experimental study, are numbers that lie on the complex 

plane and correspond to the roots of the natural frequencies of the system (Howle & Trefethen, 

2001). The damping ratio, represented by 𝜁, is a dimensionless measure describing the 

oscillatory decay of the system. The expression for the damping ratio is shown in equation 2.30 

below. 

𝜁 =
𝑐

2√𝑘𝑚
     (2.30) 

The damping ratio is expressed as a fraction of critical damping. Critically damping indicates 

that the system returns to equilibrium without oscillating. The experimental apparatus was 

designed as an underdamped system meaning the oscillatory decay is exponential.  

 

2.3.2 Underdamped 

The system is classified as underdamped when the damping ratio is 0 < 𝜁 < 1. The roots 

of the characteristic function from equation 2.28 above are calculated based on the resonant 

frequency of the system shown in equation 2.31 below: 

𝜆1,2 =  −𝜁𝜔𝑛  ± 𝑖𝜔𝑑     (2.31) 

where 𝜔𝑛 =  √
𝑘

𝑚
  and 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 for the underdamped case. Figure 2.4 graphically 

illustrates the underdamped behavior.  
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Figure 2.3 Graph of the underdamped system (Mathworks, 2015). 

2.4 Fluid Mechanics of the Rotating Disk 

2.4.1 Boundary Layer Conditions 

The fluid mechanics of the rotating disk are explained in the following section to provide 

understanding of the boundary layer formation in the proposed experiment. Cham and Head 

(1969) determined the distribution of the azimuthal and radial velocity field existing within the 

turbulent boundary layer on a rotating disk as illustrated by Figure 2.4. The red lines model the 

azimuthal (meaning in the Ω-direction) velocity profiles corresponding to the theoretical laminar 

flow, the solid black lines model the measured velocity profiles, and the dashed black line 

models the boundary layer thickness. The azimuthal velocity at the outer part of the boundary 

layer is less than 20% of the velocity of the disk at the same radius. The measured data starts 

departing from the theoretical laminar flow model for Reynolds values above 𝑅 = 550 

(Imayama, Lingwood, & Alfredsson, 2014). 
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Figure 2.4 Three-dimensional boundary layer formation on the disk (Choudhuri & French, 

2018). 

 

 The viscous length scale increases proportionately to the radius for a given Reynolds 

number as shown in the equation below: 

𝑙∗ =
𝑣

𝑣𝜏
=

𝑣

𝛺𝑧𝑟
√

2

𝑐𝑓
= 𝑅𝑒−2𝑟√

2

𝑐𝑓
    (2.32) 

where the friction velocity 𝑣𝜏 =  √
𝜏𝜔,𝜃

𝜌
 , the wall shear stress in the azimuthal direction 𝜏𝜔,𝜃, and 

the fluid density 𝜌. The skin friction coefficient 𝑐𝑓 =
2𝑣𝜏

2

(𝛺𝑧𝑟)2 
 is a decreasing function of the 

Reynolds number (Imayama, Lingwood, & Alfredsson, 2014). 
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 The Navier-Stokes differential equation is used to model the flow of incompressible 

fluids. Choudhuri and French (2018) derived the general form of the Navier-Stokes equation in 

cylindrical coordinates to obtain the system of fractional order partial differential equations in 

which model the fluid flow in the proposed experiment as shown in equations 2.33 to 2.35 

below. 

𝜌 (
𝑑𝑣𝑟

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝑟

𝑑𝑟
+ 𝑣𝜃

𝑑𝑣𝑟

𝑑𝜃
−

𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝑑𝑣𝑟

𝑑𝑧
) = 

𝜌𝑔𝑟 −
𝑑𝑃

𝑑𝑟
+ 𝜇 (

𝑑

𝑑𝑟
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟)) +

1

𝑟2 ∗
𝑑2𝑣𝑟

𝑑𝜃2 −
2

𝑟2 ∗
𝑑𝑣𝑟

𝑑𝜃
+

𝑑2𝑣𝑟

𝑑𝑧2 )  (2.33) 

 

𝜌 (
𝑑𝑣𝜃

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝜃

𝑑𝑟
+

𝑣𝜃

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝑑𝑣𝜃

𝑑𝑧
) = 

𝜌𝑔𝜃 −
1

𝑟
∗

𝑑𝑃

𝑑𝜃
+ 𝜇 (

𝑑

𝑑𝑟
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝜃)) +

1

𝑟2 ∗
𝑑2𝑣𝜃

𝑑𝜃2 −
2

𝑟2 ∗
𝑑𝑣𝜃

𝑑𝜃
+

𝑑2𝑣𝜃

𝑑𝑧2  )  (2.34) 

 

𝜌 (
𝑑𝑣𝑧

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝑧

𝑑𝑟
+

𝑣𝜃

𝑟
∗

𝑑𝑣𝑧

𝑑𝜃
+ 𝑣𝑧

𝑑𝑣𝑧

𝑑𝑧
) = 

𝜌𝑔𝑧 −
𝑑𝑃

𝑑𝑧
+ 𝜇 (

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟

𝑑𝑣𝑧

𝑑𝑟
) +

1

𝑟2 ∗
𝑑2𝑣𝑧

𝑑𝜃2 +
𝑑2𝑣𝑧

𝑑𝑧2 ) (2.35) 

 

 The continuity equation expresses conservation of mass in the system where the fluid is 

flowing. The continuity equation and the expression for the shear stress acting on the surface of 

the disk, shown below as equations 2.36 and 2.37 respectively, are applied to solve the fractional 

differential equations derived from the Navier-Stokes equation (Choudhuri & French, 2018). 

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟) +

1

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑑𝑣𝑧

𝑑𝑧
= 0    (2.36) 

𝜏𝜃 =  −𝜇 [2 (
1

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑣𝑟

𝑟
) −

2

3
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟) +

1

𝑟
∗

𝑣𝜃

𝑑𝜃
+

𝑑𝑣𝑧

𝑑𝑧
)]  (2.37) 

2.5 Seminal Theoretical Proposal 

Torvik and Bagley (1984) originally proposed the application of fractional calculus 

methods to model the oscillating dynamic behavior of the large plate fixed to a massless spring 

submerged in a homogeneous fluid illustrated in Figure 2.8 below.  
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 Figure 2.5 Plate with surface area A and mass m is connected to a massless spring with a spring 

constant k (Magin, 2006).  

 

Oscillatory motion is initiated by the force 𝑓(𝑡) applied to the plate in the x-direction. 

Magin (2006) explains how the application of Newton’s second law to the system from Figure 9 

yields the following fractional order differential equation: 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 + 𝑘𝑥(𝑡) + 2𝐴√𝜌𝜇
𝑑

3
2𝑥(𝑡)

𝑑𝑡
3
2

= 𝑓(𝑡)   (2.38) 

where 𝑚 is the mass of the plate, 𝑘 is the spring constant, 𝐴 is the surface area of the plate, 𝜌 is 

the fluid density, 𝜇 is the fluid viscosity, and 𝑓(𝑡) is the force applied to the plate in the x-

direction. The following experiment used the oscillating disk to eliminate leading and trailing 

edges thus simplifying the mathematical models in comparison to Torvik and Bagley’s 

experiment where a rectangular plate was used. 

 

The general form of Green’s function appears in equation 2.39 below (Podlubny, 1999). 

𝑎 𝐷𝑡
𝛽

𝑦(𝑡) + 𝑏 𝐷𝑡
𝑎  𝑦(𝑡) + 𝑐 𝑦(𝑡)0

 = 𝑓(𝑡)0
    (2.39) 
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The Green’s function must be applied to equation 2.39 from above to solve the fractional 

differential equation with constant coefficients and initial conditions. The analytical solution of 

equation 2.40 appears below (Podlubny, 1999): 

𝑦(𝑡) =  ∫ 𝐺3(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

0
    (2.40) 

where 𝐺3 =
1

𝐴
∑

(−1)𝑘

𝑘!
 (

𝐶

𝐴
)

𝑘

𝑡2𝑘+1𝐸1

2
,2+

3𝑘

2

𝑘∞
𝑘=0 (−

𝐵

𝐴
 √𝑡), 𝐸𝜆,𝜇

𝑘 =
𝑑𝑘

𝑑𝑦𝑘  𝐸𝜆,𝜇(𝑦) =  ∑
(𝑗+𝑘)!𝑦𝑗

𝑗!𝛤(𝜆𝑗+𝜆𝑘+𝜇)

∞
𝑗=0 , 

and 𝑘 = 0, 1, 2, … 

2.6 Applications 

Fractional calculus models a variety of complex dynamic systems more accurately 

compared to traditional calculus. Recent development for applications of fractional order 

calculus include but is not limited to fluid mechanics, electrical circuits, heat transfer, signal 

processing, chemical processes, bioengineering, and automatic control. Torvik and Bagley 

(1984) experimentally validated the accuracy of the fractional order calculus model by the finite 

analysis of transient motion in complex viscoelastically-damped structures. The application of 

fractional calculus to model Proportional Integral Derivative (PID) controllers improved system 

precision, efficiency, and overall quality of industrial process control compared to the integer 

order model (Tepljakov, 2017). Ultracapacitors are electrical devices used to store and dissipate 

energy in applications where a high current is supplied for brief time intervals. The study 

conducted by Dzieliński, Sarwas, and Sierociuk (2011) revealed how ultracapacitor frequency 

domain models are intrinsically fractional order. Richard Magin (2006) provides compelling 

results in which describe the viscoelasticity of human lung tissue using pulmonary impedance 

models of fractional order. 

2.7 Chapter Summary 

Fractional calculus—the method of integration and differentiation to an arbitrary, non-

integer order—was conceived through combined efforts nearly the same time as integer order 

calculus in 1695 (Kulish & Lage, 2002). The fractional order notation 
𝑑

1
2𝑓(𝑥)

𝑑𝑥
1
2

 𝑜𝑟 𝐷
1

2𝑓(𝑥) is now 

familiar considering the fundamental theories and basic operations associated with fractional 
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calculus methods were explained in detail. Torvik and Bagley (1984) originally proposed the 

application of fractional calculus methods to model the dynamic behavior of the rectangular plate 

fixed to a massless spring submerged in a homogeneous fluid. The following experiment 

incorporated a disk to eliminate the leading and trailing edges thus simplifying the mathematical 

models. The motivation for the proposed research is derived directly from previous efforts of 

Choudhuri and French (2018) in which the dynamics of an oscillating cylinder were modeled and 

experimentally validated to be of fractional order. 
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  RESEARCH METHODOLOGY 

3.1 Research Approach and Hypotheses 

Can the angular position of a disk oscillating in a homogeneous fluid be calculated using a 

fractional order mathematical model? Does the fractional order model calculating the angular 

position of a disk oscillating in a homogeneous fluid yield a more accurate solution than the 

integer order model? The purpose of this study is to experimentally validate the fractional order 

model of the proposed dynamic system with a quantitative comparison between the fractional 

and integer order models.  

The margins of error must be considered to make such a comparison for each model. The 

fractional order model, integer order model, and quantitative comparison to determine the 

accuracy of each model are the key deliverables of this study. Frictional losses in the bearings, 

static and dynamic alignment of the components, and rotational forces causing the support 

structure to flex are key factors affecting the error in the experiment. The hypotheses tested 

during the experiment are listed as follows: 

• H0: The fractional order model of the angular position of the oscillating disk produces 

less error than the integer order model when comparing the mathematical models to the 

experimental data. 

• Ha: The integer order model of the angular position of the oscillating disk produces less 

error than the fractional order model when comparing the mathematical models to the 

experimental data. 

3.2 Theoretical Models 

3.2.1 Integer Order Model 

The proposed research compares the integer-based and fractional-based models to 

determine if the dynamics of the system are of inherent fractional order. The free body diagram 

for the integer order theoretical model is illustrated by Figure 3.1 below.  
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Figure 3.1 The free body diagram of the oscillating disk for the integer order model (Choudhuri 

& French, 2018). 

 

The integer order equation of motion for the system appears in equation 3.1 below. 

𝐼
𝑑2𝜃

𝑑𝑡
+ 𝐶

𝑑𝜃

𝑑𝑡
+ 𝐾𝜃 = 𝑓(𝑡)    (3.1) 

The area moment of inertia for the cylinder is calculated using equation 3.2  and the spring 

constant was calculated using equation 3.3. 

𝐼 =
𝜋𝜌ℎ

2
 (𝑟𝑜𝑢𝑡𝑒𝑟

4 − 𝑟𝑖𝑛𝑛𝑒𝑟
4 )    (3.2) 

𝐾 =
𝐺𝜋𝐷𝑟𝑜𝑑

4

32𝐿
      (3.3) 

The general integer order equation for the dynamic system in free oscillation appears in equation 

3.2 below: 

𝜃 = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙)𝑒−𝜎𝑡    (3.4) 

where 𝐴 is the amplitude, 𝜔 is the natural frequency of the system, 𝜙 is the phase difference, and 

𝜎 is the shear stress (Choudhuri & French, 2018). 

3.2.2 Fractional Order Model 

The free body diagram for the fractional theoretical model used in the experiment is 

illustrated by Figure 3.2 below. 
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Figure 3.2 The free body diagram of the oscillating cylinder with initial boundary conditions for 

the fractional model (Choudhuri & French, 2018). 

 

The torsion spring with the spring stiffness 𝐾 was assumed to be massless and did not cause 

complications regarding the fluid mechanics of the system. The disk with mass 𝑀 and area 𝑆 was 

assumed to oscillate in the homogeneous fluid with only one degree of freedom. The Bagley-

Torvik fractional differential equation was used to compute the numerical solution for the 

fractional order model as shown in equation 3.3 below: 

𝐴𝑦′′(𝑡) + 𝐵 𝐷𝑡
3/2

 0
 + 𝐶𝑦(𝑡) = 𝑓(𝑡)     (3.3) 

𝐴 = 𝑀, 𝐵 = 2√𝜇𝜌, 𝐶 = 𝐾 

where the initial conditions were 𝑦(0) = 18.9132, 𝑦′(0) = 18.9132, 𝑓(𝑡) = 0 (Podlubny, 

1999, p. 229). The initial force was zero to simplify the mathematical models approximating the 

angular position of the oscillating disk. 

3.3 Related Experiment 

Choudhuri and French (2018) conducted the experimental study of fractional calculus to 

model the dynamics of a cylinder oscillating while submerged in a homogeneous fluid as 

illustrated in Figure 2.9 below.  
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Figure 3.3 Experimental setup from previous research (Choudhuri & French, 2018). 

 

The apparatus illustrated in Figure 3.3 consists of a plastic cylinder made from polyvinyl 

chloride, an acrylic fish tank, stainless steel shaft, ceramic bearings, steel ball bearing, brazing 

rod for the spring, camera, and 3D printed material for some of the structural parts. The initial 

force (spinning force) causes the cylinder to oscillate for 100 seconds before coming to rest 

again. Testing was conducted in standard temperature and pressure where the cylinder was fully 

submerged in the homogeneous fluid. The research previously conducted by Choudhuri and 

French (2018) experimentally validated  the fractional order model for the oscillating cylinder 

submerged in the homogeneous fluid. 
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3.4 Experimental Setup 

The experimental apparatus used in this study was derived from the previous experiment 

conducted by Choudhuri and French (2018) where an oscillating cylinder was used. The 

experimental apparatus was designed as an underdamped system to satisfy the general integer 

order equation of a body in free oscillation found in equation 3.4 above. In this experiment, an 

aluminum disk was used as the body oscillating in the homogeneous fluid and was made from 

6061 aluminum. The aluminum disk was machined to have an outer diameter of 9.817 inches, an 

inner diameter of 0.4985 inches, and a height of 2.424 inches. The flatness and cylindricity 

geometric tolerances were controlled while machining the aluminum disk to produce a uniform 

surface finish. The inner diameter through hole tolerances were controlled to ensure a successful 

shrink fit between the disk and shaft. The uniform surface finish of the disk produced a uniform 

drag coefficient along the top and bottom surfaces. The precision ground, polished shaft was 

purchased from McMaster Carr with a diametral tolerance of -0.0002 inches to 0 inches and a 

straightness tolerance of 0 inches to 0.0048 inches per foot. The shaft was made from 303 

stainless steel with a measured diameter of 0.5000 inches. Micrometers and calipers were used to 

inspect the dimensions of the machined components. The disk and shaft were joined with a 

shrink fit, and the disk was carefully positioned at half of the height of the tank which was 12 

inches from the bottom of the tank. The tolerances of the components were ideal to minimize 

fluid layer boundary effects incurring around the shaft and maintain the perpendicular alignment 

required between the disk and the shaft. The disk oscillated about the vertical axis of the shaft 

where both ends of the shaft were supported by bearings. A short shaft approximately 2 inches in 

length was cut from the main section of the shaft and fixed into the base of the apparatus. The 

base was a 3D printed housing designed for the short section of the shaft which was attached to 

the bottom of the tank with epoxy. The short shaft and main shaft were coupled by the lubricated 

0.25-inch ball bearing. Figure 3.3 is an image of the bottom support where the bottom shaft was 

coupled to the main shaft with the 0.25-inch ball bearing. The tank used in the experiment had a 

36-inch diameter with a 24-inch height. 
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Figure 3.4 Image of the bottom support. 

 

The upper end of the shaft was machined to allow one end of the music wire to slide inside the 

pocket. Threaded holes were included for the set screws to fix the end of the wire in place. The 

radial bearing purchased from Bearing Headquarters Company was pressed onto the upper end 

of the shaft. Figure 3.4 is an image depicting the radial bearing pressed onto the upper end of the 

shaft.  

  

Figure 3.5 Radial bearing pressed onto the upper end of the shaft. 

Threaded 

holes for set 

screws 

Radial 

Bearing 
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The radial bearing was then press-fitted into a 3D printed plate to support and center the vertical 

alignment of the shaft. The 3D printed plate was fixed to the wooden frame using screws and 

wing nuts. Figure 3.6 below contains a screenshot of the 3D model illustrating how the bearing 

plate was fixed to the wooden frame. The music wire with a measured diameter of 0.21875-inch 

and a measured length of 28 inches served as the torsional spring. The upper and lower 

crossbeams of the wooden structure supported the top and bottom ends of the music wire in 

which both ends were fixed by stainless steel set screws. Figure 3.7 found below contains an 

image of the experimental setup. Figure 3.8 contains a screenshot of the 3D model of the 

experimental apparatus. 
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Figure 3.6 3D model of the bearing plate fixed to the wooden structure. 
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Figure 3.7 Experimental setup. 
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Figure 3.8 3D model of the experimental apparatus. 

 

The center axis of the camera lens was constrained to the vertical axis of the shaft to 

eliminate parallax. The fully threaded rod supporting the tracer extends 12 inches from the 

threaded hole through the shaft. The threaded rod extending from the shaft was considered as the 

radius for calibration purposes. The camera was accurately positioned and calibrated by 
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collecting data in Tracker and generating a plot of the radius versus time. The plot shown in 

Figure 3.9 below verified the alignment of the center axis of the camera lens to the vertical axis 

of the shaft by producing a constant value for radius as a function of time. 

 

 

Figure 3.9 Plot of radius (m) vs. time (sec) to verify camera alignment. 

3.5 Data Acquisition 

The experiment was conducted in an environment with standard temperature and pressure. 

Video data was acquired using a Panasonic LUMIX G7 camera with specifications of 60 frames 

per second and shutter speed of 1/1000 seconds. The camera was mounted 9 feet and 9 inches 

from the ground pointed downward to view into the tank. The MP4 file created from the video 

recording was uploaded into Tracker—an open source physics software. Figure 3.10 contains a 

screenshot of the Tracker software interface displaying the camera’s view from above the 

apparatus. 
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Figure 3.10 Tracker software interface. 

 

Using Tracker, the necessary frames of reference and relative positions for the components 

were created by following the tracer. The tracer was a rectangular piece of white cardboard fixed 

onto the end of the threaded rod. The black dot was placed in the center of the white cardboard 

rectangle allowing the software to accurately track the radial position of the oscillating disk. 

Figure 3.11 contains a screenshot of Tracker recording the position of the black dot. 
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Figure 3.11 Tracker recording the position of the black dot. 

 

The threaded hole was machined into the shaft to mate with a fully threaded rod 

supporting the tracer. Plumbing tape was included where the fully threaded rod mated with the 

shaft to damp the vibrations generated while applying the initial spin force. Figure 3.12 contains 

an image of the fully threaded rod supporting the tracer used during the experiment. 
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Figure 3.12 Image of the tracer used for Tracker. 

3.6 Data Analysis 

Tracker software was used to acquire the data and create a text file by exporting to the 

Notepad application found on the computer. The text file containing the experimental data 

collected by Tracker was imported to MATLAB using a built-in function and processed to 

generate the fractional and integer order models. MATLAB produced graphical representations 

of the integer and fractional order models superimposed on the experimental data plot. The 

quantitative comparison between graphs determined if the dynamics of the spring-damped 

oscillating system are considered intrinsically fractional order. The squared difference calculated 

between the experimental data and the mathematical models was the primary metric to determine 

error for each model in this study. The more accurate model incurred the least amount of error 

when compared to the experimental data. Further details regarding error calculations are 

included in the Results section below. 
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3.7 Threats to Validity 

Mechanical and frictional losses were controlled by proper alignment between 

components. Tight machining tolerances were maintained throughout the development of the 

experimental apparatus to ensure perpendicularity between the stainless steel shaft and the 

aluminum disk. Uneven loading because of misalignment between the aluminum disk and 

stainless steel introduces frictional forces to the system. The system is assumed to be in free 

response meaning at t = 0 seconds the input force is 𝑓(𝑡) = 0. Although the system is assumed 

to be in free response, the input spin force needed to initiate oscillation potentially introduces 

uneven loading considering the input spin force is performed by hand motion. Proper alignment 

of the components was also verified by using a level to ensure the ground was not sloped where 

the apparatus was placed. Additionally, the bottom of the tank was inspected to ensure that the 

3D-printed bottom support was level. The torsion spring was replaced every trial to eliminate 

mechanical losses caused by rotational fatigue stress and to minimize variation in the spring 

stiffness since the mathematical models use constant coefficients to approximate the angular 

position of the oscillating disk. Rotational angles of 30 degrees or larger resulted in plastic 

deformation of the torsion spring, and the wooden support structure flexed while the angles of 

rotation exceeded 30 degrees. The center axis of the camera lens was constrained to the vertical 

axis of the stainless steel shaft to minimize parallax and a plot of radius versus time was created 

to calibrate the camera position as seen in Figure 3.9 above. Quality inspections of component 

dimensions were accomplished using measurement equipment such as micrometers and calipers. 

All components of the experimental apparatus were visually inspected for defects before use. 
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  RESULTS 

4.1 Experimental Data 

The experimental apparatus was designed to be an underdamped system; however, the 

oscillatory decay does not perfectly mimic exponential decay. The input spin force is performed 

by hand motion and suspected to cause uneven loading resulting in frictional loss until the 

system balances and is in free response oscillation. The fatigue stresses acting on the torsion 

spring are suspected to cause plastic deformation after 30-40 oscillations and are suspected to be 

the source of difference after t = 15 seconds. The following sections explain further details 

regarding the discrepancies of the data and elaborate on the quantitative comparison between the 

mathematical models and the experimental data. The experimental data is graphically 

represented in Figure 4.1 below and the table containing the experimental data is in Appendix A 

located at the end of the document. 
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Figure 4.1 Graph of the experimental data from MATLAB. 

4.2 Comparison of Theoretical Models 

The integer and fractional order models were computed using finite difference 

approximation methods which are used to find numerical solutions of differential equations. 

Figure 4.2 and Figure 4.3 are graphical representations of the integer and fractional order 

models, respectively.  Figure 4.4 graphically compares the local maxima of the experimental data 

and integer and fractional order models.  

The local maxima for each was calculated using the built-in MATLAB function named 

findpeaks which returns a vector with the local maxima of the input signal. Figure 4.5 and Figure 

4.6 graphically illustrates the squared difference between the integer model versus the 

experimental data and the fractional model versus the experimental data, respectively. Equation 

4.1 below represents how the squared difference was calculated for the quantitative comparison 

between the models and experimental data. 
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𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝜃𝑐𝑎𝑙𝑐 − 𝜃𝑒𝑥𝑝)
2

     (4.1) 

Referring to Figure 4.5 and Figure 4.6, the largest squared difference calculated was 7.77 degrees 

squared between the integer order model and the experimental data and 7.849 degrees squared 

between the fractional order model and the experimental data. The largest squared difference 

occurred at t = 0 seconds. The input spin force is performed by hand motion and suspected to 

cause uneven loading resulting in frictional loss until the system balances and is in free response 

oscillation. The squared difference between the mathematical models and the experimental data 

approaches zero from t = 5 seconds to t = 15 seconds. After t = 15 seconds, the largest squared 

difference calculated between the experimental data and the integer and fractional models is 2.00 

degrees squared and 1.50 degrees squared, respectively. The fatigue stresses acting on the torsion 

spring are suspected to cause plastic deformation after 30-40 oscillations and are suspected to be 

the source of difference after t = 15 seconds. 
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Figure 4.2 Graph of the integer order model approximation. 
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Figure 4.3 Graph of the fractional order model approximation. 
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Figure 4.4 Plot for the comparison of local maxima of the experimental data and models. 
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Figure 4.5 Plot for squared difference between integer model and experimental data. 
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Figure 4.6 Plot for the squared difference between fractional model and experimental data. 
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  SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

 The fractional order mathematical model approximated the angular position of the 

oscillating system using the Bagley and Torvik fractional derivative. The experiment validated 

the application of fractional order calculus to determine the analytical solution for the differential 

equations governing the physics of the oscillating system. The graphical comparisons between 

the experimental data and the integer and fractional order models were illustrated in Figures 4.1 

through 4.6. The squared difference calculated between the experimental data and the 

mathematical models is graphically represented by Figure 4.5 and Figure 4.6 and represented by 

equation 4.1 above. The largest squared difference calculated was 7.77 degrees squared between 

the integer order model and the experimental data as shown in Figure 4.5.  The largest squared 

difference calculated was 7.849 degrees squared between the fractional order model and the 

experimental data as shown in Figure 4.6. The largest squared difference occurred at t = 0 

seconds. The input spin force at t = 0 seconds is performed by hand motion and suspected to 

cause uneven loading resulting in frictional loss. The squared difference between the 

mathematical models and the experimental data approaches zero from t = 5 seconds to t = 15 

seconds as shown in Figures 4.5 and 4.6. After t = 15 seconds, the largest squared difference 

calculated between the experimental data and the integer and fractional models is 2.00 degrees 

squared and 1.50 degrees squared, respectively. The fatigue stresses acting on the torsion spring 

are suspected to cause plastic deformation after 30-40 oscillations and are assumed to be the 

source of error after t = 15 seconds. 

The experiment conducted for the mentioned study has improvements to be made for future 

efforts. Magnetic or pneumatic bearings could be used to further reduce mechanical friction. 

Angular displacement was limited during the experiment to 20 degrees or less to prevent flexing 

of the wooden structure. Although the system is assumed to be in free response, the input spin 

force is performed by hand motion and potentially causes uneven loading resulting in frictional 

losses. The input spin force should be applied by a known force acting in a known direction at a 

known angle to minimize error at t = 0 seconds. A fully metal support structure with welded 

joints is recommended to increase the angular displacement in later experiments and minimize 

the stresses in supporting components such as the set screws, wooden support structure, and the 

steel nails within the wooden support structure. The experiment conducted in this study used 
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purified water, but other fluids can be used to observe the differences in the mathematical models 

by changing fluid density and viscosity.  
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APPENDIX A. EXPERIMENTAL DATA 

Table 1. Experimental Data. 

Time (sec) θ (Deg) 

0.000 0.018 

0.017 0.012 

0.033 0.014 

0.050 0.015 

0.067 0.016 

0.083 0.018 

0.100 0.018 

0.117 0.018 

0.133 0.019 

0.150 0.014 

0.167 0.016 

0.184 0.015 

0.200 0.018 

0.217 0.011 

0.234 0.016 

0.250 0.005 

0.267 0.007 

0.284 0.010 

0.300 0.008 

0.317 0.015 

0.334 0.013 

0.350 0.015 

0.367 0.014 

0.384 0.015 

0.400 0.018 

0.417 0.013 

0.434 -0.012 

0.450 -0.128 

0.467 -0.187 

0.484 -0.294 

0.501 -0.417 

0.517 -0.519 

0.534 -0.655 

0.551 -0.810 

0.567 -0.976 

0.584 -1.143 
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0.601 -1.331 

0.617 -1.569 

0.634 -1.755 

0.651 -1.932 

0.667 -2.104 

0.684 -2.264 

0.701 -2.428 

0.717 -2.592 

0.734 -2.747 

0.751 -2.916 

0.767 -3.070 

0.784 -3.231 

0.801 -3.395 

0.817 -3.566 

0.834 -3.724 

0.851 -3.902 

0.868 -4.086 

0.884 -4.313 

0.901 -4.535 

0.918 -4.717 

0.934 -4.915 

0.951 -5.276 

0.968 -5.454 

0.984 -5.683 

1.001 -5.865 

1.018 -6.064 

1.034 -6.276 

1.051 -6.348 

1.068 -6.524 

1.084 -6.681 

1.101 -6.840 

1.118 -6.987 

1.134 -7.129 

1.151 -7.276 

1.168 -7.485 

1.185 -7.606 

1.201 -7.765 

1.218 -7.831 

1.235 -7.937 

1.251 -8.033 

1.268 -8.197 
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1.285 -8.356 

1.301 -8.506 

1.318 -8.616 

1.335 -8.791 

1.351 -8.946 

1.368 -9.142 

1.385 -9.350 

1.401 -9.564 

1.418 -9.740 

1.435 -9.920 

1.451 -10.100 

1.468 -10.260 

1.485 -10.440 

1.502 -10.596 

1.518 -10.759 

1.535 -10.927 

1.552 -11.145 

1.568 -11.264 

1.585 -11.413 

1.602 -11.569 

1.618 -11.776 

1.635 -11.902 

1.652 -12.143 

1.668 -12.326 

1.685 -12.534 

1.702 -12.738 

1.718 -12.955 

1.735 -13.217 

1.752 -13.476 

1.768 -13.772 

1.785 -14.065 

1.802 -14.399 

1.818 -14.744 

1.835 -15.076 

1.852 -15.420 

1.869 -15.799 

1.885 -16.196 

1.902 -16.614 

1.919 -17.072 

1.935 -17.567 

1.952 -17.942 
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1.969 -18.358 

1.985 -18.720 

2.002 -18.913 

2.019 -18.780 

2.035 -18.325 

2.052 -17.566 

2.069 -16.300 

2.085 -14.684 

2.102 -12.568 

2.119 -9.757 

2.135 -6.922 

2.152 -3.615 

2.169 -0.228 

2.186 3.231 

2.202 6.481 

2.219 9.409 

2.236 11.908 

2.252 13.813 

2.269 15.114 

2.286 15.606 

2.302 15.501 

2.319 14.443 

2.336 12.945 

2.352 10.655 

2.369 8.065 

2.386 4.967 

2.402 1.711 

2.419 -1.694 

2.436 -5.073 

2.452 -8.088 

2.469 -10.731 

2.486 -12.828 

2.503 -14.369 

2.519 -15.188 

2.536 -15.297 

2.553 -14.697 

2.569 -13.379 

2.586 -11.460 

2.603 -8.972 

2.619 -6.134 

2.636 -2.940 
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2.653 0.268 

2.669 3.644 

2.686 6.794 

2.703 9.428 

2.719 11.876 

2.736 13.437 

2.753 14.626 

2.769 14.890 

2.786 14.703 

2.803 13.573 

2.819 12.054 

2.836 9.729 

2.853 7.114 

2.870 4.030 

2.886 0.883 

2.903 -2.346 

2.920 -5.595 

2.936 -8.367 

2.953 -10.852 

2.970 -12.727 

2.986 -14.064 

3.003 -14.707 

3.020 -14.678 

3.036 -13.965 

3.053 -12.553 

3.070 -10.664 

3.086 -8.137 

3.103 -5.324 

3.120 -2.212 

3.136 0.919 

3.153 4.144 

3.170 7.100 

3.187 9.565 

3.203 11.769 

3.220 13.206 

3.237 14.224 

3.253 14.361 

3.270 13.975 

3.287 12.749 

3.303 11.099 

3.320 8.844 
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3.337 6.263 

3.353 3.313 

3.370 0.231 

3.387 -2.854 

3.403 -5.968 

3.420 -8.556 

3.437 -10.868 

3.453 -12.512 

3.470 -13.693 

3.487 -14.152 

3.504 -14.000 

3.520 -13.172 

3.537 -11.700 

3.554 -9.700 

3.570 -7.261 

3.587 -4.459 

3.604 -1.536 

3.620 1.555 

3.637 4.580 

3.654 7.381 

3.670 9.726 

3.687 11.698 

3.704 13.002 

3.720 13.744 

3.737 13.827 

3.754 13.228 

3.770 12.073 

3.787 10.314 

3.804 8.113 

3.820 5.432 

3.837 2.648 

3.854 -0.375 

3.871 -3.329 

3.887 -6.242 

3.904 -8.677 

3.921 -10.799 

3.937 -12.343 

3.954 -13.337 

3.971 -13.653 

3.987 -13.342 

4.004 -12.378 
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4.021 -10.882 

4.037 -8.880 

4.054 -6.496 

4.071 -3.669 

4.087 -0.865 

4.104 2.178 

4.121 5.059 

4.137 7.595 

4.154 9.768 

4.171 11.526 

4.188 12.732 

4.204 13.254 

4.221 13.229 

4.238 12.516 

4.254 11.326 

4.271 9.421 

4.288 7.309 

4.304 4.638 

4.321 1.885 

4.338 -0.944 

4.354 -3.827 

4.371 -6.576 

4.388 -8.863 

4.404 -10.737 

4.421 -12.107 

4.438 -12.932 

4.454 -13.129 

4.471 -12.713 

4.488 -11.658 

4.505 -10.173 

4.521 -8.066 

4.538 -5.741 

4.555 -3.002 

4.571 -0.260 

4.588 2.569 

4.605 5.319 

4.621 7.726 

4.638 9.744 

4.655 11.286 

4.671 12.356 

4.688 12.717 
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4.705 12.596 

4.721 11.744 

4.738 10.524 

4.755 8.593 

4.771 6.442 

4.788 3.885 

4.805 1.091 

4.821 -1.598 

4.838 -4.357 

4.855 -6.810 

4.872 -9.002 

4.888 -10.706 

4.905 -11.960 

4.922 -12.599 

4.938 -12.618 

4.955 -12.161 

4.972 -11.034 

4.988 -9.460 

5.005 -7.374 

5.022 -5.104 

5.038 -2.392 

5.055 0.248 

5.072 3.016 

5.088 5.641 

5.105 7.770 

5.122 9.747 

5.138 11.050 

5.155 12.040 

5.172 12.202 

5.189 12.045 

5.205 11.062 

5.222 9.747 

5.239 7.830 

5.255 5.647 

5.272 3.163 

5.289 0.537 

5.305 -2.057 

5.322 -4.747 

5.339 -7.073 

5.355 -9.065 

5.372 -10.581 
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5.389 -11.634 

5.405 -12.188 

5.422 -12.056 

5.439 -11.503 

5.455 -10.288 

5.472 -8.700 

5.489 -6.597 

5.506 -4.318 

5.522 -1.720 

5.539 0.866 

5.556 3.460 

5.572 5.954 

5.589 7.925 

5.606 9.757 

5.622 10.867 

5.639 11.707 

5.656 11.732 

5.672 11.454 

5.689 10.399 

5.706 9.078 

5.722 7.111 

5.739 4.985 

5.756 2.532 

5.772 -0.005 

5.789 -2.524 

5.806 -5.037 

5.822 -7.137 

5.839 -9.023 

5.856 -10.395 

5.873 -11.329 

5.889 -11.703 

5.906 -11.511 

5.923 -10.815 

5.939 -9.561 

5.956 -7.926 

5.973 -5.909 

5.989 -3.657 

6.006 -1.181 

6.023 1.349 

6.039 3.822 

6.056 6.132 
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6.073 7.934 

6.089 9.600 

6.106 10.571 

6.123 11.240 

6.139 11.193 

6.156 10.740 

6.173 9.673 

6.190 8.269 

6.206 6.367 

6.223 4.291 

6.240 1.891 

6.256 -0.566 

6.273 -2.976 

6.290 -5.334 

6.306 -7.301 

6.323 -9.006 

6.340 -10.221 

6.356 -10.992 

6.373 -11.216 

6.390 -10.955 

6.406 -10.195 

6.423 -8.912 

6.440 -7.236 

6.456 -5.258 

6.473 -3.008 

6.490 -0.617 

6.507 1.757 

6.523 4.144 

6.540 6.265 

6.557 7.972 

6.573 9.427 

6.590 10.255 

6.607 10.749 

6.623 10.606 

6.640 10.070 

6.657 8.972 

6.673 7.472 

6.690 5.624 

6.707 3.508 

6.723 1.218 

6.740 -1.154 
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6.757 -3.484 

6.773 -5.661 

6.790 -7.505 

6.807 -9.062 

6.823 -10.154 

6.840 -10.763 

6.857 -10.864 

6.874 -10.516 

6.890 -9.602 

6.907 -8.313 

6.924 -6.605 

6.940 -4.649 

6.957 -2.405 

6.974 -0.170 

6.990 2.152 

7.007 4.405 

7.024 6.312 

7.040 7.929 

7.057 9.219 

7.074 9.996 

7.090 10.337 

7.107 10.179 

7.124 9.495 

7.140 8.416 

7.157 6.895 

7.174 5.068 

7.191 3.007 

7.207 0.777 

7.224 -1.468 

7.241 -3.709 

7.257 -5.742 

7.274 -7.423 

7.291 -8.803 

7.307 -9.725 

7.324 -10.210 

7.341 -10.211 

7.357 -9.739 

7.374 -8.795 

7.391 -7.464 

7.407 -5.767 

7.424 -3.829 
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7.441 -1.695 

7.457 0.445 

7.474 2.675 

7.491 4.799 

7.508 6.555 

7.524 8.073 

7.541 9.091 

7.558 9.798 

7.574 9.895 

7.591 9.711 

7.608 8.902 

7.624 7.845 

7.641 6.264 

7.658 4.483 

7.674 2.461 

7.691 0.327 

7.708 -1.781 

7.724 -3.896 

7.741 -5.735 

7.758 -7.354 

7.774 -8.555 

7.791 -9.389 

7.808 -9.726 

7.824 -9.676 

7.841 -9.103 

7.858 -8.090 

7.875 -6.763 

7.891 -5.104 

7.908 -3.202 

7.925 -1.086 

7.941 0.940 

7.958 3.063 

7.975 5.040 

7.991 6.587 

8.008 8.022 

8.025 8.894 

8.041 9.537 

8.058 9.546 

8.075 9.240 

8.091 8.381 

8.108 7.267 
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8.125 5.659 

8.141 3.960 

8.158 1.960 

8.175 -0.090 

8.192 -2.142 

8.208 -4.152 

8.225 -5.813 

8.242 -7.279 

8.258 -8.365 

8.275 -9.064 

8.292 -9.287 

8.308 -9.088 

8.325 -8.470 

8.342 -7.419 

8.358 -6.093 

8.375 -4.396 

8.392 -2.562 

8.408 -0.566 

8.425 1.402 

8.442 3.437 

8.458 5.280 

8.475 6.724 

8.492 8.034 

8.509 8.734 

8.525 9.243 

8.542 9.099 

8.559 8.762 

8.575 7.816 

8.592 6.604 

8.609 4.990 

8.625 3.313 

8.642 1.374 

8.659 -0.617 

8.675 -2.544 

8.692 -4.425 

8.709 -5.965 

8.725 -7.314 

8.742 -8.241 

8.759 -8.826 

8.775 -8.915 

8.792 -8.674 
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8.809 -8.000 

8.825 -6.897 

8.842 -5.585 

8.859 -3.969 

8.876 -2.159 

8.892 -0.249 

8.909 1.682 

8.926 3.597 

8.942 5.277 

8.959 6.599 

8.976 7.762 

8.992 8.369 

9.009 8.757 

9.026 8.573 

9.042 8.111 

9.059 7.134 

9.076 5.960 

9.092 4.423 

9.109 2.716 

9.126 0.889 

9.142 -1.051 

9.159 -2.862 

9.176 -4.625 

9.193 -6.062 

9.209 -7.273 

9.226 -8.081 

9.243 -8.560 

9.259 -8.590 

9.276 -8.242 

9.293 -7.496 

9.309 -6.430 

9.326 -5.014 

9.343 -3.399 

9.359 -1.643 

9.376 0.149 

9.393 2.004 

9.409 3.796 

9.426 5.302 

9.443 6.512 

9.459 7.555 

9.476 8.070 
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9.493 8.299 

9.510 8.080 

9.526 7.551 

9.543 6.589 

9.560 5.363 

9.576 3.826 

9.593 2.185 

9.610 0.410 

9.626 -1.403 

9.643 -3.167 

9.660 -4.743 

9.676 -6.100 

9.693 -7.179 

9.710 -7.872 

9.726 -8.239 

9.743 -8.175 

9.760 -7.758 

9.776 -6.959 

9.793 -5.829 

9.810 -4.498 

9.826 -2.880 

9.843 -1.217 

9.860 0.555 

9.877 2.301 

9.893 3.981 

9.910 5.322 

9.927 6.465 

9.943 7.285 

9.960 7.760 

9.977 7.891 

9.993 7.606 

10.010 6.955 

10.027 5.987 

10.043 4.739 

10.060 3.328 

10.077 1.696 

10.093 -0.008 

10.110 -1.725 

10.127 -3.357 

10.143 -4.816 

10.160 -6.030 
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10.177 -6.950 

10.194 -7.568 

10.210 -7.777 

10.227 -7.681 

10.244 -7.139 

10.260 -6.315 

10.277 -5.223 

10.294 -3.831 

10.310 -2.351 

10.327 -0.704 

10.344 0.918 

10.360 2.621 

10.377 4.156 

10.394 5.368 

10.410 6.432 

10.427 7.093 

10.444 7.491 

10.460 7.439 

10.477 7.139 

10.494 6.440 

10.511 5.479 

10.527 4.178 

10.544 2.825 

10.561 1.217 

10.577 -0.415 

10.594 -2.035 

10.611 -3.583 

10.627 -4.847 

10.644 -5.967 

10.661 -6.777 

10.677 -7.292 

10.694 -7.419 

10.711 -7.260 

10.727 -6.673 

10.744 -5.822 

10.761 -4.690 

10.777 -3.349 

10.794 -1.883 

10.811 -0.285 

10.827 1.236 

10.844 2.831 



 

73 

10.861 4.276 

10.878 5.322 

10.894 6.300 

10.911 6.818 

10.928 7.195 

10.944 7.047 

10.961 6.757 

10.978 5.956 

10.994 5.017 

11.011 3.709 

11.028 2.360 

11.044 0.869 

11.061 -0.716 

11.078 -2.226 

11.094 -3.685 

11.111 -4.839 

11.128 -5.855 

11.144 -6.497 

11.161 -6.940 

11.178 -6.960 

11.195 -6.732 

11.211 -6.136 

11.228 -5.289 

11.245 -4.170 

11.261 -2.857 

11.278 -1.426 

11.295 0.075 

11.311 1.539 

11.328 3.028 

11.345 4.320 

11.361 5.295 

11.378 6.153 

11.395 6.581 

11.411 6.850 

11.428 6.600 

11.445 6.269 

11.461 5.441 

11.478 4.504 

11.495 3.193 

11.512 1.882 

11.528 0.431 
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11.545 -1.068 

11.562 -2.494 

11.578 -3.838 

11.595 -4.857 

11.612 -5.794 

11.628 -6.333 

11.645 -6.647 

11.662 -6.625 

11.678 -6.297 

11.695 -5.667 

11.712 -4.798 

11.728 -3.699 

11.745 -2.390 

11.762 -1.060 

11.778 0.392 

11.795 1.765 

11.812 3.171 

11.828 4.314 

11.845 5.201 

11.862 5.955 

11.879 6.281 

11.895 6.461 

11.912 6.137 

11.929 5.748 

11.945 4.880 

11.962 3.980 

11.979 2.701 

11.995 1.410 

12.012 0.068 

12.029 -1.387 

12.045 -2.707 

12.062 -3.888 

12.079 -4.853 

12.095 -5.639 

12.112 -6.127 

12.129 -6.320 

12.145 -6.274 

12.162 -5.831 

12.179 -5.219 

12.196 -4.305 

12.212 -3.219 
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12.229 -1.999 

12.246 -0.686 

12.262 0.660 

12.279 2.017 

12.296 3.301 

12.312 4.312 

12.329 5.140 

12.346 5.782 

12.362 6.013 

12.379 6.100 

12.396 5.782 

12.412 5.303 

12.429 4.476 

12.446 3.513 

12.462 2.334 

12.479 1.060 

12.496 -0.215 

12.513 -1.568 

12.529 -2.824 

12.546 -3.867 

12.563 -4.799 

12.579 -5.461 

12.596 -5.863 

12.613 -5.967 

12.629 -5.815 

12.646 -5.357 

12.663 -4.691 

12.679 -3.812 

12.696 -2.727 

12.713 -1.552 

12.729 -0.280 

12.746 0.994 

12.763 2.233 

12.779 3.413 

12.796 4.303 

12.813 5.041 

12.829 5.512 

12.846 5.737 

12.863 5.704 

12.880 5.375 

12.896 4.798 
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12.913 3.996 

12.930 3.020 

12.946 1.871 

12.963 0.694 

12.980 -0.525 

12.996 -1.773 

13.013 -2.970 

13.030 -3.899 

13.046 -4.732 

13.063 -5.279 

13.080 -5.628 

13.096 -5.628 

13.113 -5.471 

13.130 -4.984 

13.146 -4.329 

13.163 -3.396 

13.180 -2.368 

13.197 -1.232 

13.213 0.005 

13.230 1.176 

13.247 2.353 

13.263 3.404 

13.280 4.166 

13.297 4.860 

13.313 5.196 

13.330 5.399 

13.347 5.266 

13.363 4.951 

13.380 4.320 

13.397 3.526 

13.413 2.563 

13.430 1.508 

13.447 0.366 

13.463 -0.777 

13.480 -1.920 

13.497 -3.029 

13.514 -3.854 

13.530 -4.621 

13.547 -5.028 

13.564 -5.313 

13.580 -5.290 
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13.597 -5.006 

13.614 -4.506 

13.630 -3.842 

13.647 -2.950 

13.664 -1.938 

13.680 -0.888 

13.697 0.255 

13.714 1.371 

13.730 2.511 

13.747 3.377 

13.764 4.129 

13.780 4.720 

13.797 4.959 

13.814 5.120 

13.830 4.861 

13.847 4.510 

13.864 3.848 

13.881 3.135 

13.897 2.162 

13.914 1.184 

13.931 0.073 

13.947 -1.055 

13.964 -2.089 

13.981 -3.085 

13.997 -3.821 

14.014 -4.487 

14.031 -4.823 

14.047 -5.009 

14.064 -4.947 

14.081 -4.661 

14.097 -4.156 

14.114 -3.415 

14.131 -2.545 

14.147 -1.563 

14.164 -0.567 

14.181 0.537 

14.198 1.543 

14.214 2.587 

14.231 3.360 

14.248 3.983 

14.264 4.533 
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14.281 4.645 

14.298 4.779 

14.314 4.476 

14.331 4.150 

14.348 3.481 

14.364 2.710 

14.381 1.836 

14.398 0.787 

14.414 -0.242 

14.431 -1.239 

14.448 -2.214 

14.464 -3.143 

14.481 -3.813 

14.498 -4.342 

14.515 -4.654 

14.531 -4.758 

14.548 -4.655 

14.565 -4.327 

14.581 -3.809 

14.598 -3.066 

14.615 -2.233 

14.631 -1.273 

14.648 -0.300 

14.665 0.707 

14.681 1.688 

14.698 2.646 

14.715 3.316 

14.731 3.871 

14.748 4.298 

14.765 4.453 

14.781 4.465 

14.798 4.157 

14.815 3.726 

14.831 3.091 

14.848 2.319 

14.865 1.453 

14.882 0.526 

14.898 -0.421 

14.915 -1.397 

14.932 -2.353 

14.948 -3.092 
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14.965 -3.685 

14.982 -4.126 

14.998 -4.356 

15.015 -4.394 

15.032 -4.205 

15.048 -3.843 

15.065 -3.321 

15.082 -2.626 

15.098 -1.867 

15.115 -0.940 

15.132 -0.038 

15.148 0.885 

15.165 1.824 

15.182 2.658 

15.199 3.216 

15.215 3.726 

15.232 4.018 

15.249 4.143 

15.265 4.013 

15.282 3.719 

15.299 3.315 

15.315 2.671 

15.332 1.921 

15.349 1.058 

15.365 0.142 

15.382 -0.740 

15.399 -1.591 

15.415 -2.405 

15.432 -3.069 

15.449 -3.575 

15.465 -3.957 

15.482 -4.168 

15.499 -4.136 

15.516 -3.963 

15.532 -3.537 

15.549 -3.023 

15.566 -2.354 

15.582 -1.562 

15.599 -0.743 

15.616 0.107 

15.632 0.944 
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15.649 1.826 

15.666 2.527 

15.682 3.031 

15.699 3.507 

15.716 3.679 

15.732 3.790 

15.749 3.649 

15.766 3.345 

15.782 2.855 

15.799 2.276 

15.816 1.517 

15.832 0.730 

15.849 -0.093 

15.866 -0.913 

15.883 -1.726 

15.899 -2.510 

15.916 -3.080 

15.933 -3.524 

15.949 -3.824 

15.966 -3.967 

15.983 -3.861 

15.999 -3.654 

16.016 -3.245 

16.033 -2.696 

16.049 -2.046 

16.066 -1.269 

16.083 -0.519 

16.099 0.302 

16.116 1.049 

16.133 1.848 

16.149 2.465 

16.166 2.915 

16.183 3.326 

16.200 3.443 

16.216 3.507 

16.233 3.306 

16.250 3.008 

16.266 2.518 

16.283 1.914 

16.300 1.229 

16.316 0.480 
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16.333 -0.264 

16.350 -1.061 

16.366 -1.753 

16.383 -2.422 

16.400 -2.925 

16.416 -3.344 

16.433 -3.530 

16.450 -3.578 

16.466 -3.472 

16.483 -3.202 

16.500 -2.835 

16.517 -2.286 

16.533 -1.661 

16.550 -0.934 

16.567 -0.249 

16.583 0.544 

16.600 1.229 

16.617 1.958 

16.633 2.498 

16.650 2.859 

16.667 3.178 

16.683 3.210 

16.700 3.249 

16.717 2.995 

16.733 2.685 

16.750 2.190 

16.767 1.655 

16.783 1.018 

16.800 0.314 

16.817 -0.422 

16.833 -1.103 

16.850 -1.756 

16.867 -2.375 

16.884 -2.773 

16.900 -3.119 

16.917 -3.263 

16.934 -3.299 

16.950 -3.164 

16.967 -2.867 

16.984 -2.508 

17.000 -1.976 
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17.017 -1.402 

17.034 -0.740 

17.050 -0.069 

17.067 0.590 

17.084 1.251 

17.100 1.876 

17.117 2.329 

17.134 2.668 

17.150 2.942 

17.167 2.975 

17.184 2.946 

17.201 2.679 

17.217 2.366 

17.234 1.876 

17.251 1.366 

17.267 0.734 

17.284 0.075 

17.301 -0.577 

17.317 -1.235 

17.334 -1.812 

17.351 -2.348 

17.367 -2.698 

17.384 -3.003 

17.401 -3.101 

17.417 -3.038 

17.434 -2.874 

17.451 -2.556 

17.467 -2.203 

17.484 -1.704 

17.501 -1.093 

17.518 -0.522 

17.534 0.083 

17.551 0.717 

17.568 1.338 

17.584 1.868 

17.601 2.205 

17.618 2.510 

17.634 2.697 

17.651 2.676 

17.668 2.654 

17.684 2.354 
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17.701 2.027 

17.718 1.554 

17.734 1.046 

17.751 0.518 

17.768 -0.091 

17.784 -0.721 

17.801 -1.279 

17.818 -1.757 

17.834 -2.206 

17.851 -2.533 

17.868 -2.708 

17.885 -2.806 

17.901 -2.725 

17.918 -2.544 

17.935 -2.223 

17.951 -1.875 

17.968 -1.391 

17.985 -0.887 

18.001 -0.295 

18.018 0.250 

18.035 0.811 

18.051 1.377 

18.068 1.851 

18.085 2.145 

18.101 2.367 

18.118 2.512 

18.135 2.493 

18.151 2.360 

18.168 2.138 

18.185 1.843 

18.202 1.379 

18.218 0.890 

18.235 0.389 

18.252 -0.176 

18.268 -0.741 

18.285 -1.256 

18.302 -1.708 

18.318 -2.056 

18.335 -2.326 

18.352 -2.460 

18.368 -2.534 
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18.385 -2.396 

18.402 -2.222 

18.418 -1.895 

18.435 -1.553 

18.452 -1.082 

18.468 -0.593 

18.485 -0.097 

18.502 0.404 

18.519 0.885 

18.535 1.384 

18.552 1.751 

18.569 2.010 

18.585 2.195 

18.602 2.221 

18.619 2.192 

18.635 2.051 

18.652 1.816 

18.669 1.523 

18.685 1.082 

18.702 0.595 

18.719 0.199 

18.735 -0.320 

18.752 -0.788 

18.769 -1.238 

18.785 -1.651 

18.802 -1.904 

18.819 -2.153 

18.835 -2.216 

18.852 -2.236 

18.869 -2.084 

18.886 -1.901 

18.902 -1.589 

18.919 -1.240 

18.936 -0.843 

18.952 -0.415 

18.969 0.067 

18.986 0.535 

19.002 0.912 

19.019 1.376 

19.036 1.683 

19.052 1.869 
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19.069 2.034 

19.086 2.029 

19.102 2.005 

19.119 1.845 

19.136 1.563 

19.152 1.292 

19.169 0.891 

19.186 0.438 

19.203 0.055 

19.219 -0.413 

19.236 -0.830 

19.253 -1.230 

19.269 -1.563 

19.286 -1.750 

19.303 -1.922 

19.319 -2.012 

19.336 -2.012 

19.353 -1.884 

19.369 -1.705 

19.386 -1.397 

19.403 -1.072 

19.419 -0.708 

19.436 -0.286 

19.453 0.090 

19.469 0.539 

19.486 0.889 

19.503 1.238 

19.520 1.505 

19.536 1.681 

19.553 1.815 

19.570 1.731 

19.586 1.694 

19.603 1.537 

19.620 1.281 

19.636 1.007 

19.653 0.683 

19.670 0.263 

19.686 -0.093 

19.703 -0.448 

19.720 -0.873 

19.736 -1.209 
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19.753 -1.445 

19.770 -1.597 

19.786 -1.725 

19.803 -1.726 

19.820 -1.719 

19.836 -1.565 

19.853 -1.391 

19.870 -1.095 

19.887 -0.815 

19.903 -0.456 

19.920 -0.095 

19.937 0.246 

19.953 0.574 

19.970 0.904 

19.987 1.217 

20.003 1.373 

20.020 1.527 

20.037 1.594 

20.053 1.538 

20.070 1.466 

20.087 1.340 

20.103 1.071 

20.120 0.854 

20.137 0.547 

20.153 0.223 

20.170 -0.095 

20.187 -0.431 

20.204 -0.757 

20.220 -1.040 

20.237 -1.244 

20.254 -1.388 

20.270 -1.439 

20.287 -1.431 

20.304 -1.390 

20.320 -1.240 

20.337 -1.069 

20.354 -0.838 

20.370 -0.577 

20.387 -0.266 

20.404 0.049 

20.420 0.364 
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20.437 0.652 

20.454 0.924 

20.470 1.191 

20.487 1.313 

20.504 1.380 

20.521 1.421 

20.537 1.376 

20.554 1.269 

20.571 1.110 

20.587 0.891 

20.604 0.655 

20.621 0.405 

20.637 0.093 

20.654 -0.185 

20.671 -0.445 

20.687 -0.734 

20.704 -0.917 

20.721 -1.083 

20.737 -1.223 

20.754 -1.238 

20.771 -1.234 

20.787 -1.158 

20.804 -1.009 

20.821 -0.837 

20.837 -0.661 

20.854 -0.389 

20.871 -0.175 

20.888 0.134 

20.904 0.343 

20.921 0.589 

20.938 0.807 

20.954 0.997 

20.971 1.116 

20.988 1.131 

21.004 1.149 

21.021 1.110 

21.038 0.979 

21.054 0.892 

21.071 0.654 

21.088 0.475 

21.104 0.288 
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21.121 0.014 

21.138 -0.200 

21.154 -0.432 

21.171 -0.656 

21.188 -0.833 

21.205 -0.965 

21.221 -1.003 

21.238 -1.011 

21.255 -0.993 

21.271 -0.917 

21.288 -0.826 

21.305 -0.667 

21.321 -0.503 

21.338 -0.327 

21.355 -0.104 

21.371 0.097 

21.388 0.304 

21.405 0.482 

21.421 0.652 

21.438 0.796 

21.455 0.819 

21.471 0.849 

21.488 0.824 

21.505 0.795 

21.522 0.685 

21.538 0.589 

21.555 0.442 

21.572 0.287 

21.588 0.119 

21.605 -0.084 

21.622 -0.240 

21.638 -0.379 

21.655 -0.520 

21.672 -0.668 

21.688 -0.712 

21.705 -0.800 

21.722 -0.809 

21.738 -0.752 

21.755 -0.682 

21.772 -0.584 

21.788 -0.472 
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21.805 -0.334 

21.822 -0.179 

21.838 -0.015 

21.855 0.148 

21.872 0.308 

21.889 0.460 

21.905 0.582 

21.922 0.663 

21.939 0.682 

21.955 0.667 

21.972 0.643 

21.989 0.618 

22.005 0.523 

22.022 0.448 

22.039 0.310 

22.055 0.158 

22.072 0.006 

22.089 -0.143 

22.105 -0.238 

22.122 -0.366 

22.139 -0.485 

22.155 -0.522 

22.172 -0.571 

22.189 -0.571 

22.206 -0.526 

22.222 -0.507 

22.239 -0.466 

22.256 -0.358 

22.272 -0.296 

22.289 -0.188 

22.306 -0.049 

22.322 0.053 

22.339 0.139 

22.356 0.268 

22.372 0.328 

22.389 0.449 

22.406 0.478 

22.422 0.476 

22.439 0.482 

22.456 0.467 

22.472 0.442 
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22.489 0.341 

22.506 0.306 

22.523 0.169 

22.539 0.124 

22.556 0.000 

22.573 -0.070 

22.589 -0.165 

22.606 -0.204 

22.623 -0.264 

22.639 -0.339 

22.656 -0.342 

22.673 -0.342 

22.689 -0.339 

22.706 -0.312 

22.723 -0.310 

22.739 -0.203 

22.756 -0.171 

22.773 -0.052 

22.789 -0.015 

22.806 0.057 

22.823 0.125 

22.839 0.148 

22.856 0.181 

22.873 0.229 

22.890 0.294 

22.906 0.300 

22.923 0.299 

22.940 0.281 

22.956 0.197 

22.973 0.165 

22.990 0.139 

23.006 0.089 

23.023 0.081 

23.040 0.009 

23.056 -0.022 

23.073 -0.027 

23.090 -0.051 

23.106 -0.050 

23.123 -0.043 

23.140 -0.072 

23.156 -0.033 
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23.173 -0.020 

23.190 -0.006 

23.207 0.000 

23.223 0.001 
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APPENDIX B. MATLAB CODE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% THIS CODE SOLVES FOR THE INTEGER AND FRACTIONAL ORDER % 
% MODELS FOR THE PROPOSED EXPERIMENT.                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
clear all 
close all 
clc 

  
% 
%importing experimental data collected from Tracker Software 
data = importdata('7_32_in_rod_wet_trial_01_txt.txt'); 

  
% 
%creating array to store experimental data imported from text file 
[n_size,~] = size(data); 
time_exp = zeros(n_size,1); 
theta_exp = zeros(n_size,1); 
time_exp = data(:,1); 
theta_exp = data(:,2); 

  
ti = 0; 
t_offset = 2.002; 

  
tf = 25; 
dt = 0.01; 
T = time_exp(end); 
N = round(T/dt); 

  
% 
%COMPUTING INTEGER ORDER MODEL 
% 

  
% 
%integer order model parameters 
A_int = 0.0625; 
B_int = 0.12; 
C_int = 10.6; 

  

% 
%initial conditions 
theta_int(1) = -18.913; 
theta_int(2) = -18.913; 

  
% 
%for loop computes integer order model for angular position 
for i = 2:N 
    theta_int(i+1) = -dt^2/A_int*(B_int/dt*(theta_int(i) - theta_int(i-1)) + 

C_int*theta_int(i-1)) + 2*theta_int(i) - theta_int(i-1); 
end 
time_int = dt*(1:length(theta_int)); 
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% 
%COMPUTING FRACTIONAL ORDER MODEL 
% 
%constant coefficients for fractional model 
A_frac = 0.0721; 
B_frac = 0.0017; 
C_frac = 10.6; 

  

  
% 
%initial conditions 
theta_frac(1) = -18.9132; 
theta_frac(2) = -18.9132; 

  

  
omega = 0; 

  
% 
%alpha-th derivative for fractional model 
alpha = 1.5; 

  

  
% 
%for loop computes fractional order model for angular position 
for m = 2:N  

    
 %computing omega for fractional order model 
  for j = 1:m 
    omega = (-1)^j*gamma(alpha+1)/(gamma(j+1)*gamma(alpha-j+1)); 
  end 
    theta_frac(m+1) = (dt^2*(-C_frac*theta_frac(m)) + 

A_frac*(2*theta_frac(m)-theta_frac(m-1)) - 

B_frac*sqrt(dt)*omega*theta_frac(m-1))/(A_frac + B_frac*sqrt(dt)); 

  
end 

  
time_frac = dt*(1:length(theta_frac)); 

  

  

  

  
% 
%GENERATING PLOTS 
% 

  
% 
%plot for experimental data 
figure(1) 
plot((time_exp((time_exp>t_offset))-

t_offset),theta_exp((time_exp>t_offset)),'k') 
hold on 
grid on 
grid minor 
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axis([0 (T-t_offset) -20 20]) 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Experimental Data') 
title('Experimental Data') 

  
% 
%plot for integer model 
figure(2) 
plot(time_int,theta_int, 'r') 
grid on 
grid minor 
axis([0 T -20 20]) 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Integer Order Model') 
title('Integer Order Model') 

  
% 
%plot for fractional model 
figure(3) 
plot(time_frac,theta_frac, 'b') 
grid on 
grid minor 
axis([0 T -20 20]) 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Fractional Order Model') 
title('Fractional Order Model') 

  

% 
%plot for experimental data and integer model 
figure(4) 
plot(time_int,theta_int, 'r') 
grid on 
hold on 
grid minor 
plot((time_exp((time_exp>t_offset))-

t_offset),theta_exp((time_exp>t_offset)),'k') 
axis([0 T -20 20]) 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Integer Order Model', 'Experimental Data') 
title('Experimental Data vs. Integer Order Model') 

  

% 
%plot for experimental data and fractional model 
figure(5) 
plot(time_frac,theta_frac, 'b') 
grid on 
hold on 
grid minor 
plot((time_exp((time_exp>t_offset))-

t_offset),theta_exp((time_exp>t_offset)),'k') 
hold on 
grid on 
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grid minor 
axis([0 T -20 20]) 
ylabel('\theta (deg)') 
xlabel('Time (sec)') 
legend('Fractional Order Model', 'Experimental Data') 
title('Experimental Data vs. Fractional Order Model') 

  
% 
%plot for experimental data, integer, and fractional model 
figure(6) 
plot(time_int,theta_int, 'r') 
hold on 
plot(time_frac,theta_frac, 'b') 
grid on 
hold on 
grid minor 
plot((time_exp((time_exp>t_offset))-

t_offset),theta_exp((time_exp>t_offset)),'k') 
axis([0 T -20 20]) 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Integer Order Model', 'Fractional Order Model', 'Experimental Data') 
title('Comparison of Experimental Data to Integer and Fractional Models') 

  
%time offset included to compensate for initial spin force to respect the 
%assumption of free response system 
data_cropped = xlsread('7_32_in_rod_wet_trial_0001.xlsx'); 
[nn_size,~] = size(data_cropped); 
time_exp_cropped = zeros(nn_size,1); 
theta_exp_cropped = zeros(nn_size,1); 
time_exp_cropped = data_cropped(:,1); 
theta_exp_cropped = data_cropped(:,2); 
theta_exp_cropped_0 = theta_exp_cropped(1:end-1); 

  
% 
%Fractional model error 
theta_interp_frac = interp1(time_frac, theta_frac, time_exp_cropped); 

  
theta_interp_frac_0 = theta_interp_frac(2:end); 

  
% % 
% %Integer model error 
theta_interp_int = interp1(time_int, theta_int, time_exp_cropped); 
%  
theta_interp_int_0 = theta_interp_int(2:end); 

  
% 
%comparing int vs frac models 
figure(7) 
plot(time_int,theta_int, 'r') 
hold on 
plot(time_frac,theta_frac, 'b') 
grid on 
hold on 
grid minor 
axis([0 T -20 20]) 
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xlabel('Time (sec)') 
ylabel('\theta^2 (deg)') 
title('Integer Order Model vs. Fractional Order Model') 
legend('Integer Order Model', 'Fractional Order Model') 

    
error_frac_int = (theta_frac - theta_int).^2; 

  

  
theta_exp_pks = findpeaks(theta_exp_cropped); 

  
time_exp_pks = 0:0.525:24; 
time_pks = 0:0.55:24; 
[mm_size,~] = size(theta_exp_pks); 
theta_exp_pks_0 = zeros(mm_size,1); 
theta_exp_pks_00 = theta_exp_pks(1:end-2); 

  
theta_frac_pks = findpeaks(theta_interp_frac_0); 

  
theta_int_pks = findpeaks(theta_interp_int_0); 

  

  
figure(8) 
plot(time_pks, theta_exp_pks_00, 'ks') 
xlim([0 T]) 
hold on 
grid on 
grid minor 
plot(time_pks, theta_frac_pks, 'b^') 
plot(time_pks, theta_int_pks, 'r*') 
xlabel('Time (sec)') 
ylabel('\theta (deg)') 
legend('Experimental Data', 'Fractional Order Model', 'Integer Order Model') 
title('Comparison of Local Maxima') 

  
sq_error_int_frac = transpose((theta_frac_pks - theta_int_pks).^2); 
sq_error_exp_int = (theta_exp_pks_00 - theta_int_pks).^2; 
sq_error_exp_frac = (theta_exp_pks_00 - theta_frac_pks).^2; 

  
figure(9) 
plot(time_pks, sq_error_exp_int) 
grid on 
grid minor 
xlim([0 T]) 
title('Squared Difference - Integer Model vs. Experimental Data') 
xlabel('Time (sec)') 
ylabel('\theta^2 (deg)') 

  
figure(10) 
plot(time_pks, sq_error_exp_frac) 
grid on 
grid minor 
xlim([0 T]) 
title('Squared Difference - Fractional Model vs. Experimental Data') 
xlabel('Time (sec)') 
ylabel('\theta^2 (deg)') 
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figure(11) 
plot(time_pks, sq_error_int_frac) 
grid on 
grid minor 
xlim([0 T]) 
title('Squared Difference - Fractional Model vs. Integer Model') 
xlabel('Time (sec)') 
ylabel('\theta^2 (deg)') 
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APPENDIX C. LIST OF EQUATIONS 

𝑓(𝑥) = 𝑒𝑝𝑥      (2.1) 

 

𝑓1(𝑥) = 𝐷1𝑒𝑝𝑥 = 𝑝1 ∗ 𝑒𝑝𝑥 

𝑓2(𝑥) = 𝐷2𝑒𝑝𝑥 = 𝑝2 ∗ 𝑒𝑝𝑥     (2.2) 

𝑓3(𝑥) = 𝐷3𝑒𝑝𝑥 = 𝑝3 ∗ 𝑒𝑝𝑥 

 

𝑓𝑛(𝑥) = 𝐷𝑛𝑒𝑝𝑥 = 𝑝𝑛 ∗ 𝑒𝑝𝑥     (2.3) 

 

𝑓𝑎(𝑥) = 𝐷𝑎𝑒𝑝𝑥 = 𝑝𝑎 ∗ 𝑒𝑝𝑥     (2.4) 

 

𝑓
1

2(𝑥) = 𝐷
1

2𝑒𝑝𝑥 =  √𝑝 ∗ 𝑒𝑝𝑥     (2.5) 

 

𝑒𝑗𝑥 = cos(𝑥) + 𝑗 ∗ sin(𝑥)     (2.6) 

 

𝐷𝑛𝑥𝑝 =
𝑝(𝑝−1)(𝑝−2)…(𝑝−𝑛+1)(𝑝−𝑛)(𝑝−𝑛−1)…1

(𝑝−𝑛)(𝑝−𝑛−1)…1
 𝑥𝑝−𝑛 =

𝑝!

(𝑝−𝑛)!
𝑥𝑝−𝑛  (2.8) 

 

𝛤(𝑥) =  ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
∞

0
    (2.9) 

 

𝛤(𝑥 + 1) = 𝑥𝛤(𝑥)     (2.10) 

 

𝐷𝑎𝑥𝑝 =
𝛤(𝑝+1)

𝛤(𝑝−𝑎+1)
𝑥𝑝−𝑎    (2.11) 

 

𝑓(𝑥) =  ∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑛     (2.12) 

 

𝐷𝑎𝑓(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 𝐷𝑎𝑥𝑛 = ∑ 𝑎𝑛

∞
𝑛=0  

𝛤(𝑛+1)

𝛤(𝑛−𝑎+1)
𝑥𝑛−𝑎  (2.13) 

 



 

99 

𝐷−1𝑓(𝑥) =  ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
     (2.14) 

 

𝐷−2𝑓(𝑥) =  ∫ ∫ 𝑓(𝑡1)
𝑡2

0
𝑑𝑡1𝑑𝑡2

𝑥

0
    (2.15) 

 

𝐷−2𝑓(𝑥) =  ∫ ∫ 𝑓(𝑡1)
𝑥

𝑡1
𝑑𝑡2𝑑𝑡1

𝑥

0
    (2.16) 

 

𝐷−2𝑓(𝑥) =  ∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑑𝑡 
𝑥

0
    (2.17) 

 

𝐷−3𝑓(𝑥) =
1

2
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)2𝑑𝑡 

𝑥

0
    (2.18) 

 

𝐷−4𝑓(𝑥) =
1

2∗3
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)3𝑑𝑡 

𝑥

0
    (2.19) 

 

𝐷−𝑛𝑓(𝑥) =
1

(𝑛−1)!
 ∫ 𝑓(𝑡)(𝑥 − 𝑡)𝑛−1𝑑𝑡 

𝑥

0
   (2.20) 

 

𝐷𝑥
𝑎  𝑏

 𝑓(𝑥) =
1

𝛤(−𝑎)
 ∫

𝑓(𝑡) 𝑑𝑡

(𝑥−𝑡)𝑎+1

𝑥

𝑏
     (2.21) 

 

𝐷𝑎𝑒𝑥 =  ∑
1

𝑛!
𝑥𝑛 =  ∑

𝑥𝑛−𝑎

𝛤(𝑛−𝑎+1)
∞
𝑛=0

∞
𝑛=0    (2.22) 

 

𝐷𝑥
−1 𝑏

 𝑒𝑎𝑥 = ∫ 𝑒𝑎𝑥𝑑𝑥
𝑥

𝑏
=

1

𝑎
𝑒𝑎𝑥 −

1

𝑎
𝑒𝑎𝑏   (2.23) 

 

𝐷𝑥
𝑎 −∞

 𝑒𝑎𝑥 = 𝑎𝑎𝑒𝑎𝑥     (2.24) 

 

𝐷𝑥
𝑎 −∞

 𝑓(𝑥) =
1

𝛤(−𝑎)
 ∫

𝑓(𝑡) 𝑑𝑡

(𝑥−𝑡)𝑎+1

𝑥

𝑏
    (2.25) 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2
+  𝑐

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 𝑓(𝑡)    (2.26) 

 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 +  𝑐
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘𝑥(𝑡) = 0    (2.27) 
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(𝜆2𝑚 + 𝜆𝑐 + 𝑘)𝐴𝑒𝜆𝑡 = 0 
 

⇒  𝜆2𝑚 + 𝜆𝑐 + 𝑘 = 0   (2.28) 

 

𝜆1,2 =  (−𝜁 ± √𝜁2 − 1) √
𝑘

𝑚
     (2.29) 

 

𝜁 =
𝑐

2√𝑘𝑚
     (2.30) 

 

𝜆1,2 =  −𝜁𝜔𝑛  ± 𝑖𝜔𝑑     (2.31) 

where 𝜔𝑛 =  √
𝑘

𝑚
  and 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

 

𝑙∗ =
𝑣

𝑣𝜏
=

𝑣

𝛺𝑧𝑟
√

2

𝑐𝑓
= 𝑅𝑒−2𝑟√

2

𝑐𝑓
    (2.32) 

 

𝜌 (
𝑑𝑣𝑟

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝑟

𝑑𝑟
+ 𝑣𝜃

𝑑𝑣𝑟

𝑑𝜃
−

𝑣𝜃
2

𝑟
+ 𝑣𝑧

𝑑𝑣𝑟

𝑑𝑧
) = 

𝜌𝑔𝑟 −
𝑑𝑃

𝑑𝑟
+ 𝜇 (

𝑑

𝑑𝑟
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟)) +

1

𝑟2 ∗
𝑑2𝑣𝑟

𝑑𝜃2 −
2

𝑟2 ∗
𝑑𝑣𝑟

𝑑𝜃
+

𝑑2𝑣𝑟

𝑑𝑧2 )  (2.33) 

 

𝜌 (
𝑑𝑣𝜃

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝜃

𝑑𝑟
+

𝑣𝜃

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝑑𝑣𝜃

𝑑𝑧
) = 

𝜌𝑔𝜃 −
1

𝑟
∗

𝑑𝑃

𝑑𝜃
+ 𝜇 (

𝑑

𝑑𝑟
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝜃)) +

1

𝑟2 ∗
𝑑2𝑣𝜃

𝑑𝜃2 −
2

𝑟2 ∗
𝑑𝑣𝜃

𝑑𝜃
+

𝑑2𝑣𝜃

𝑑𝑧2  )  (2.34) 

 

𝜌 (
𝑑𝑣𝑧

𝑑𝑡
+ 𝑣𝑟

𝑑𝑣𝑧

𝑑𝑟
+

𝑣𝜃

𝑟
∗

𝑑𝑣𝑧

𝑑𝜃
+ 𝑣𝑧

𝑑𝑣𝑧

𝑑𝑧
) = 

𝜌𝑔𝑧 −
𝑑𝑃

𝑑𝑧
+ 𝜇 (

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟

𝑑𝑣𝑧

𝑑𝑟
) +

1

𝑟2 ∗
𝑑2𝑣𝑧

𝑑𝜃2 +
𝑑2𝑣𝑧

𝑑𝑧2 ) (2.35) 

 

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟) +

1

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑑𝑣𝑧

𝑑𝑧
= 0    (2.36) 

 

𝜏𝜃 =  −𝜇 [2 (
1

𝑟
∗

𝑑𝑣𝜃

𝑑𝜃
+

𝑣𝑟

𝑟
) −

2

3
(

1

𝑟
∗

𝑑

𝑑𝑟
(𝑟𝑣𝑟) +

1

𝑟
∗

𝑣𝜃

𝑑𝜃
+

𝑑𝑣𝑧

𝑑𝑧
)]  (2.37) 

 



 

101 

𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 + 𝑘𝑥(𝑡) + 2𝐴√𝜌𝜇
𝑑

3
2𝑥(𝑡)

𝑑𝑡
3
2

= 𝑓(𝑡)   (2.38) 

 

𝑎 𝐷𝑡
𝛽

𝑦(𝑡) + 𝑏 𝐷𝑡
𝑎  𝑦(𝑡) + 𝑐 𝑦(𝑡)0

 = 𝑓(𝑡)0
    (2.39) 

 

𝑦(𝑡) =  ∫ 𝐺3(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

0
    (2.40) 

where 𝐺3 =
1

𝐴
∑

(−1)𝑘

𝑘!
 (

𝐶

𝐴
)

𝑘

𝑡2𝑘+1𝐸1

2
,2+

3𝑘

2

𝑘∞
𝑘=0 (−

𝐵

𝐴
 √𝑡), 𝐸𝜆,𝜇

𝑘 =
𝑑𝑘

𝑑𝑦𝑘
 𝐸𝜆,𝜇(𝑦) =  ∑

(𝑗+𝑘)!𝑦𝑗

𝑗!𝛤(𝜆𝑗+𝜆𝑘+𝜇)

∞
𝑗=0 , 

and 𝑘 = 0, 1, 2, … 

 

𝐼
𝑑2𝜃

𝑑𝑡
+ 𝐶

𝑑𝜃

𝑑𝑡
+ 𝐾𝜃 = 𝑓(𝑡)    (3.1) 

 

𝐼 =
𝜋𝜌ℎ

2
 (𝑟𝑜𝑢𝑡𝑒𝑟

4 − 𝑟𝑖𝑛𝑛𝑒𝑟
4 )    (3.2) 

 

𝐾 =
𝐺𝜋𝐷𝑟𝑜𝑑

4

32𝐿
      (3.3) 

 

𝜃 = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜙)𝑒−𝜎𝑡    (3.4) 

 

𝐴𝑦′′(𝑡) + 𝐵 𝐷𝑡
3/2

 0
 + 𝐶𝑦(𝑡) = 𝑓(𝑡)     (3.3) 

𝐴 = 𝑀, 𝐵 = 2√𝜇𝜌, 𝐶 = 𝐾 

 

𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = (𝜃𝑐𝑎𝑙𝑐 − 𝜃𝑒𝑥𝑝)
2

     (4.1) 

 

 

 


