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ABSTRACT

Wang, Dawei PhD, Purdue University, August 2020. Towards Time-aware Collabo-
rative Filtering Recommendation System. Major Professors: Yuehwern Yih, Mario
Ventresca.

As technological capacity to store and exchange information progress, the amount

of available data grows explosively, which can lead to information overload. The dif-

ficulty of making decisions effectively increases when one has too much information

about that issue. Recommendation systems are a subclass of information filtering

systems that aim to predict a user’s opinion or preference of topic or item, thereby

providing personalized recommendations to users by exploiting historic data. They

are widely used in e-commerce such as Amazon.com, online movie streaming com-

panies such as Netflix, and social media networks such as Facebook. Memory-based

collaborative filtering (CF) is one of the recommendation system methods used to

predict a user’s rating or preference by exploring historic ratings, but without in-

corporating any content information about users or items. Many studies have been

conducted on memory-based CFs to improve prediction accuracy, but none of them

have achieved better prediction accuracy than state-of-the-art model-based CFs. Fur-

thermore, A product or service is not judged only by its own characteristics but also

by the characteristics of other products or services offered concurrently. It can also

be judged by anchoring based on users’ memories. Rating or satisfaction is viewed as

a function of the discrepancy or contrast between expected and obtained outcomes

documented as contrast effects. Thus, a rating given to an item by a user is a compar-

ative opinion based on the user’s past experiences. Therefore, the score of ratings can

be affected by the sequence and time of ratings. However, in traditional CFs, pairwise

similarities measured between items do not consider time factors such as the sequence
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of rating, which could introduce biases caused by contrast effects. In this research,

we proposed a new approach that combines both structural and rating-based simi-

larity measurement used in memory-based CFs. We found that memory-based CF

using combined similarity measurement can achieve better prediction accuracy than

model-based CFs in terms of lower MAE and reduce memory and time by using less

neighbors than traditional memory-based CFs on MovieLens and Netflix datasets.

We also proposed techniques to reduce the biases caused by those user comparing,

anchoring and adjustment behaviors by introducing the time-aware similarity mea-

surements used in memory-based CFs. At last, we introduced novel techniques to

identify, quantify, and visualize user preference dynamics and how it could be used

in generating dynamic recommendation lists that fits each user’s current preferences.
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1. INTRODUCTION

1.1 Motivation

As technological capacity to store and exchange information progress, the amount

of available data grows explosively, which can lead to information overload. The

difficulty of making decisions effectively increases when one has too much informa-

tion about that issue [1]. The world’s technological capacity to store information

grew from 2.6 exabytes (optimally compressed) in 1986 to 295 exabytes (optimally

compressed). This is equivalent to less than one 730-MB CD-ROMs per person in

1986, and almost 61 CD-ROMs per person in 2007 [2]. The world’s technological ca-

pacity to receive information through one-way broadcast networks was 432 exabytes

(optimally compressed) of information in 1986, and 1,900 (optimally compressed)

in 2007 [2]. The world’s technological capcacity to exchange information through

two-way telecommunication networks was 0.281 exabytes (optimally compressed) of

information in 1986, and 65 (optimally compressed) in 2007 [2].

An information filtering system is a system that removes redundant or useless

information from information steam using automated methods to let users manage

information overload. Recommendation systems are a subclass of information filter-

ing systems that aim to predict a user’s opinion or preference of topic or item, thereby

providing personalized recommendations to users by exploiting historic data. They

are widely used in e-commerces such as Amazon.com [3], online movie streaming

companies such as Netflix [4], and social media networks such as Facebook [5]. With

a large amount and diversity of products, a recommendation system could also help

streaming service providers or online vendors provide users with recommendations

that are specific to their preferences. This could improve user experience in search-

ing for items or services and potentially lead them to make more purchases, watch
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more movies, or subscribe to more services. For examples, data gathered for three

weeks in the summer of 2001 showed that between 20% to 40% of sales on Amazon

are due to recommended products that do not belong to the shop’s 100,000 most

sold products [6], and 60% of movies rented by Netflix are selected based on per-

sonalized recommendations1. Furthermore, a recommendation system could generate

not only more direct revenue, but also additional revenue by introducing shoppers

to new categories [7]. Hence, a recommendation system can significantly impact a

company’s revenue [8]. Note that 1% improvement in prediction accuracy in terms of

MAE(Mean Absolute Error) and RMSE(Root Mean Squared Error) may be a small

number, but could result in a significant difference in the ranking of the ”top-10”

most recommended movies for an individual user [9].

Recommendation systems typically generate a list of recommendations to users

in one of three ways [10] - (1) collaborative filtering, (2) content-based filtering, or

(3) a hybrid of those two approaches. Collaborative filtering (CF) analyzes historical

data about user behavior to predict what they might like by learning interactions

between users and items. Content-based filtering predicts by learning descriptions

of items or profiles of users. Collaborative filtering can be memory-based or model-

based. Memory-based approaches rely on pairwise similarities between vectors of

item-user rating matrix while model-based approaches rely on factorizing the entire

rating matrix. Both memory-based and model-based CFs can be implemented from

an item-based or user-based perspective.

A product or service is not judged only by its own characteristics but also by the

characteristics of other products or services offered concurrently [11] or by anchoring

based on users’ memories [12–14]. Rating or satisfaction is viewed as a function of

the discrepancy or contrast between obtained and expected outcomes [15,16]. This is

documented as contrast effects [17]. Thus, the score of rating can be affected by the

sequence of rating. However, in traditional collaborative filtering, pairwise similarities

1As presented by Jon Sanders (Recommendation Systems Engineering, Netflix) during the talk
”Research Challenges in Recommenders” at the 3rd ACM Conference on Recommender Systems
(2009).
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measured between items do not consider the sequence of rating, which could introduce

biases caused by contrast effects.

Moreover, It is well known that consumers’ preferences can shift over time [18–25].

This can be due to (1) exploration of new items, instead of repeatedly interacting

with the same items [22]. New items may continuously enter the market as well.

(2) experience or tendency to interact with items they have previously had positive

interactions with, and to stop interacting with items they have previously negative

interactions with [22]. (3) popularity of the items, irrespective of personal interaction

history [22]. (4) social influence may cause preference changes as a result of observing

the preference changes of friends [22,25].

Unfortunately, traditional recommendation systems learn users’ preferences from

a static dataset, which implies that the system is unaware of any new or developing

user preferences. One approach to overcome this problem is to update the dataset

at predefined intervals (e.g., every week or month), but this strategy still leads to

missed opportunities between updates. Moreover, learning from an updated dataset

still requires sufficient user ratings to cause sufficient changes in the system model

before changes in preference (and thus recommendations) are detected.

Although classic recommendation methods learn over a static dataset, collabora-

tive filtering (one of the most widely used methods in recommendation systems) has

been previously studied with temporal dynamic-based modifications. One approach is

to model the users and items in a network and use only the most recent ratings of user

or item neighbors to predict ratings or suggest recommendations [26]. Another idea

uses different K values for K-Nearest Neighbor algorithms over time, using whichever

K that minimizes the Root-Mean-Square-Error (RMSE) or other error measure [27].

Some other methods use a decay weight on old rated items or the relation between

users and items to decrease the importance of older data versus newer data [28–30].

In [31], a more sophisticated model-based approach was proposed, but it required a

high computation time cost because their algorithm added a time dimension to each

model-based parameter, which is already computationally and data-intensive to train.
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Without introducing a high computational burden, our goal is to modify memory-

based collaborative filtering by devising a new measure of user preference changes such

that recommendations are more reflective of users’ recent preferences. We will test

our approach using the most referred dataset MovieLens , as well as other standard

benchmarks such as that from Netflix [4]. In these contexts, the changes in question

could be by genre in a movie or music context, or a brand loyalty change. The

project is broken into two steps (1) modifying memory-based collaborative filtering

to include this dynamic information, and (2) modeling and estimating preference

changes. Upon completion, the system can be used for a number of applications.

For instance, we can test predictability of recommendations made before users are

even aware of their own desires. Also, we may be able to discover patterns in group

preference changes earlier than other approaches. Therefore, we may be able to make

accurate recommendations even before a user develops new preferences or are about

to switch back to old preferences.

1.2 Organization

The thesis is organized as follows:

In Chapter 2, an overview of background knowledge of recommendation systems,

especially memory-based Collaborative filtering is provided.

In Chapter 3, we propose a new approach that combines both structural and

rating-based similarity measurement to be used for memory-based collaborative fil-

tering. We found that memory-based CF using combined similarity measurement can

achieve better prediction accuracy than model-based CFs in terms of lower MAE and

reduce memory and time by using less neighbors than traditional memory-based CFs

on MovieLens and Netflix datasets.

In Chapter 4, we propose a time-aware similarity measurement that approximate

relationship between items and users by using information that are only available

at the time to the users when this relationship is formed to be more accurately
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representative of the relations between items from the perspective of a particular

user.

In Chapter 5, we propose an approach to identify, quantify, and visualize user

preference shifts and ideas based on collaborative filtering that considers user prefer-

ence changes such as category preference shifts to generate recommendations that fit

users’ most recent preferences.
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2. LITERATURE REVIEW

2.1 An overview of recommendation system

Recommendation systems are a subclass of information filtering systems that aim

to predict a user’s opinion or preference of a topic or item, thereby providing person-

alized recommendations to users by exploiting historic data. They are widely used

in e-commerces such as Amazon.com [3], online movie streaming companies such as

Netflix [4], and social media networks such as Facebook [5]. With a large amount

and diversity of products, a recommendation system could also help streaming ser-

vice providers or online vendors provide users with recommendations that are specific

their preference. This could improve user experience in searching for items or services

and potentially lead them to make more purchases, watch more movies, or subscribe

to more services. For examples, data gathered for three weeks in the summer of

2001 showed that between 20% to 40% of sales on Amazon are due to recommended

products that do not belong to the shop’s 100,000 most sold products [6], and 60%

of movies rented by Netflix are selected based on personalized recommendations1.

Furthermore, a recommendation system could generate not only more direct revenue,

but also additional revenue by introducing shoppers to new categories [7]. Hence, a

recommendation system can significantly impact a company’s revenue [8].

Recommendation systems were first mentioned in 1990 by Jussi Karlgren at Columbia

University [32], and implemented later from 1994 onwards by Jussi Karlgren at SICS

Research Report [33] and research groups led by Pattie Maes at MIT [34], Will Hill

at Bellcore [35], and Paul Resnick [36, 37], also at MIT whose work with GroupLens

was awarded the 2010 ACM Software Systems Award. GroupLens lab at University

1As presented by Jon Sanders (Recommendation Systems Engineering, Netflix) during the talk
”Research Challenges in Recommenders” at the 3rd ACM Conference on Recommender Systems
(2009).
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of Minisota, Twin Cities was one of the first to study automated recommendation

systems. GroupLens’ popular ”MovieLens” movie recommendation site and dataset

is one of the most referred datasets in recommendation systems.

Recommendation systems typically generate a list of recommendations to users

in one of three ways [10] - (1) collaborative filtering, (2) content-based filtering, or

(3) a hybrid of those two approaches. Collaborative filtering (CF) analyzes historical

data about user behavior to predict what they might like by learning interactions

between users and items. Content-based filtering predicts by learning descriptions

of items or profiles of users. Collaborative filtering can be memory-based or model-

based. Memory-based approaches rely on pairwise similarities between vectors of

item-user rating matrix, while model-based approaches rely on factorizing the entire

rating matrix. Both memory-based and model-based CFs can be implemented from

an item-based or user-based perspective.

2.1.1 Content-based filtering

These approaches use keywords or phrases to describe the contents of items,

build user profiles to indicate the types of contents each user prefers using those

keywords(phrases), and then recommend a list of items that fits each user’s prefer-

ence. Several techniques have been studied such as pLSA(Probabilistic latent seman-

tic analysis) [38] [39], LDA(Latent Dirichlet Allocation) [40], etc. While content-based

methods incorporate descriptive information from items by characterizing using key-

words, they do not necessarily incorporate interactions between other users or items.

Recommendations are made based solely on the content information of objects that

the target user has rated in the past [8]. Content-based filterings are widely used in a

variety of domains ranging from recommending webpages, news articles, restaurants,

etc [41]. For examples: Pandora Radio2 recommends users with songs that share sim-

ilar characteristics [42], and Rotten Tomatoes3 recommends users with movies that

2https://www.pandora.com
3https://www.rottentomatoes.com
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share similar casts and storylines. However, Content-based filtering is unable to make

a good recommendation that matches a user’s preference if the profiles of users or

descriptions of items do not contain sufficient information to tell if the user likes or

dislikes the item [41]. Generally, in some domain such as movies, restaurants, items

are not amenable to any useful feature extraction methods with current technology.

Only a very shallow analysis of certain kinds of content can be supplied [43].

2.1.2 Collaborative filtering (CF)

These approaches analyze historical data on user activities, and use it to predict

what they might like based on their similarities to other users, or to items that are

similar to the ones the user is known to like [44]. A key advantage of this approach is

that CFs study only the interactions between individuals without incorporating fea-

ture or attribute information of items and users. Thus, they don’t require knowledge

about the actual context of the data in order to make recommendations. That is,

they can make a prediction without ”understanding” a movie, a friend, or a music,

etc. Thus, this approach can be applied broadly regardless of the contents of the

data. However, when users haven’t rated a sufficient number of items, these methods

may not perform very well (known as the cold start problem [45] [46]). Collaborative

Filtering could also suffer from scalability or sparsity issues [47], (details are listed in

Section 3.2.2).

Collaborative filtering can be implemented in two ways: user-based or item-based.

To make a prediction of how a user u would rate an item i, User-based CF aggregates

the opinions about item i from users that are similar to user u. It assumes that if two

persons share similar opinions on some items, they are likely to hold similar opinions

on other items as well. On the other hand, item-based CF aggregates the opinions

about the items that are similar to item i, and have been rated by user u. It assumes

that users are likely to hold the same opinions on similar items. For both item-based

and user-based CFs, two approaches have been studied:
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1. Memory-based. This approach calculates similarities between items or users and

uses them as weights on ratings to represent how much the opinions on items a

user has rated can represent a user’s opinion on the unrated item. In general,

it is effective and easy to implement. A typical example of this approach is K-

Nearest-Neighbor (KNN) [48] [47]. First, item-based memory-based CFs find

similar items by calculating pairwise similarities between the predicting item

and all other items the user has rated. These pairwise similarities are used to

rank how representative of the predicting item each other item is. Therefore,

the prediction accuracy of collaborative filtering algorithms is highly dependent

on how accurate the similarity measurement is. Second, based on pair-wise

similarity measurement, K most similar items to this predicting item are selected

from the items that this user has already rated on and then it combines the user’s

opinions of those K items by weighted average or weighted sum to predict a

rating for the unrated item from the user. Such approaches are widely used due

to their simplicity, explainability and effectiveness [49], and predictions can be

made in real time as new rating data is added. However, its prediction accuracy

decreases when few items have been rated. Its scalability is also limited for large

datasets [8].

2. Model-based. This approach uses data mining and machine learning algorithms

to develop and train predictive models. There are many different algorithms

such as Singular-Value Decomposition (SVD) [50], and Principal component

analysis (PCA) [51], which use matrix factorization techniques. Dimension-

ality reduction is usually used through model-based approach to improve the

scalability and accuracy. It addresses the sparsity and scalability problems and

performs better in prediction accuracy in comparison to memory-based CFs [10].

But, the models usually use iterative methods to estimate the parameters for

the models, which take more time to build and train compared to memory-

based approaches. Moreover, they could lose useful information as a result of

dimensionality reduction [10].
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2.1.3 Hybrid

This strategy is to combine two or more techniques [52] [53] [54] [55], or with

other techniques such as deep learning [56] or clustering [57] to overcome the limita-

tions of their individuals and improve the performance such as prediction accuracy,

scalability. However, it increases the computational complexity such as time and

resources(memory) required [10].

A complete introduction to all available recommendation systems is beyond the

scope of this thesis, in the next section, we will elaborate more on techniques of

collaborative filtering since CF is the focus of this preliminary proposal.

2.2 Recommendation with Collaborative Filtering

2.2.1 Notation

Before introducing the underlying algorithms of recommendation systems, we de-

fine some terms to better explain CF algorithms through this thesis.
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Table 2.1.: Notation

Notation Meaning

m total number of users
n total number of items
R n-by-m item-user matrix containing ratings from users to items
Rij rating of item i from user j , Rij ∈ R>0

R̂ij predicted rating from targeted user j to predicting item i, R̂ij ∈ R>0

u j vector of ratings for user j, u j = R∗j , ∀∗ ∈ [1..n]
|u j | total number of items that user j has rated, |u j | ∈ [0..n]
T (u j) time difference of the first and last item user j has rated
i i vector of ratings for item i, i i = Ri∗, ∀∗ ∈ [1..m]
|i i| total number of users who has rated item i, |i i| ∈ [0..m]

ū j ū j =
∑n

x=1 Rxj

|uj | , average rating of user j

ī i ī i =
∑m

x=1 Rix

|i i| , average rating of item i

Cij = i i ∩ i j set of co-rated users who rated both item i and item j
|Cij | = |i i ∩ i j | number of co-rated users who rated both item i and item j, i i ∩ i j ∈ [0..m]
Srating(i i, i c) rating-based similarity between item i and item c,

measured based on ratings from
users Cic on item i and item c, Srating(i i, i c) = Ii � Ic 7→ R,
the operation � can be any rating-based similarity measurement
such as Cosine Similarity or Pearson Correlation Coefficient.

Sstruct(i i, i c) structural similarity between item i and item c,
measured based on ”who rates what”,
Sstruct(i i, i c) = Ii � Ic 7→ R≥0,
the operation � can be any structural similarity measurement
such as Jaccard, common neighbor, Sorensen or Ochiai.

R =

u1 u2 u3 . . . um


R11 R12 R13 . . . R1m i 1

R21 R22 R23 . . . R2m i 2

...
...

...
...

...
...

Rn1 Rn2 Rn3 . . . Rnm in

(2.1)
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Given a dataset containing ratings from m users on n items, we can get an item-user

matrix R as shown in (3.1). For example, a dataset is given as:

R =

u1 u2 u3 u4 u5



4 2 4 1 0 i 1

0 4 2 0 0 i 2

0 0 0 3 0 i 3

5 3 5 0 4 i 4

0 0 0 0 5 i 5

(2.2)

Then we can draw the item-user network as in Figure 3.1a and draw item-based

network as in Figure 3.1b. Then we can make a prediction of the rating from a user

on an item by aggregating the opinions from the user on the neighbor items which

have been co-rated by other users.
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(a) Item-user network: Items are
nodes i1, i2, i3, ..., im, users are nodes
u1,u2,u3, ...,un, edges between an item
node i i and an user node u j means user j
has rated item i with rating of Rij , where
Rij ∈ R>0, Cij is the group of users who
have rated both item i and item j.

i1

i5

i4

i2i3

1

4 4

12

1 2

3

2

1

(b) Item-based network: Nodes are items,
connected by edges if there are users who
rated both items. The number on top of each
node |i i| is the number of users who rated
item i, the number on each edge is the num-
ber of co-rated users |Cij | who rated both
item i and item j. Neighbor items are the
items that are co-rated by users, for exam-
ple: items i1 and i1 are neighbors, items i1

and i5 are not.

Figure 2.1.: Illustration of item-user network and Item-based network: From item-
user network as in Figure 2.1a, we draw the item-based network as in Figure 2.1b

2.2.2 Memory-based methods

Here we introduce similarity-based algorithms which are often known as memory-

based collaborative filtering. In the following section, we describe the basic algorithms

as well as similarity measurement computation which plays a critical rule in memory-

based CFs.
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Similarity Measurements

As mentioned in the introduction, memory-based methods can be implemented

in both user-based or item-based approach. So similarities can be either between

items or users. Without loss of generality, we illustrate the process using item-based

approach since the bottleneck of user-based approach is to search for neighbors among

a large user population. With the number of total users m, the total number of items

n, and the number of items |u j| one particular user has rated, (1) to calculate pairwise

similarities offline, the computational complexity for user-based will be O(m2n) as

worst case where the item-user rating matrix R is full. The computational complexity

for item-based will be O(n2m) as worst case. Furthermore, in practice, the item-based

approach is closer to O(nm), as most customers have very few purchases [3]. (2)

Without pairwise similarities calculated offline, item-based approaches only search

for nearest neighbors of the targeted item among what this targeted user has rated

previously [58]. So, the search space of similar items of target item for this particular

user is limited by how many items this targeted user has rated. The worst case

runtime will be O(|u j|). User-based approach searches for the nearest neighbors

of the targeted users among all other users who have rated any of the items this

targeted user has rated previously. The worst case runtime of searching for similar

users of the targeted user j will be O(
∑

i∈uj
|i i|). So the search space for user-based

approach is much larger than item-based approach since most users don’t rate only

1 item and most items are not rated only by this 1 user. Thus, item-based approach

can be less computational expensive. Another advantage of item-based approach is

that similarity between items tends to be more static than similarity between users,

allowing its values and neighbors to be pre-calculated, which could shorten the time

needed to make a prediction [8].

Similarity measurements are chosen based on what type and quality of information

is available. When rating matrix Rij is available, similarities are defined based on

ratings, and two users are considered similar when they give similar ratings to items
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[8]. When rating Rij is not available, similarities can be inferred from the structural

information B(Ii, Ic). For example, two users can be considered similar when they

rated/reviewed/visited/purchased many items in common if we use the number of

items rated by both users as the structural similarity measurement. Furthermore,

external information such as user profile(age, occupation, etc.) or content information

about items(category, price, etc.) can be incorporated into the similarity calculation

[8].

To calculate similarity between users or items, we generally project the user-item

bipartite network (Fig. 2.1a) which contains the complete information about the

system into a monopartite user-user or item-item network (Fig. 2.1b) illustrated in

Fig. 2.1 .

1. Rating-Based Similarity Measurement. In many e-commerce services,

users are able to evaluate items by ratings. For example, on Amazon.com,

products are rated from ”1 star” to ”5 star”, on Pandora Radio, musics are

rated from ”dislike” or ”like”. With these explicit rating information, items

are considered to be similar when users like both items or dislike both items.

Similarity between two items can be measured by Cosine index [8,59], which is

defined as:

Srating(i i, i c) =

∑
x∈Cic

Rix ·Rcx√∑
x∈Cic R2

ix

√∑
x∈Cic

R2
cx

. (2.3)

The similarity can also be measured by Pearson Correlation Coefficient [36],

which is defined as:

Srating(i i, i c) =

∑
x∈Cic

(Rix − R̄i i) · (Rcx − R̄ic)√∑
x∈Cic(Rix − R̄i i)

2
√∑

x∈Cic
(Rcx − R̄ic)

2
. (2.4)
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The similarity can also be measured by Adjusted Cosine [47], which is defined

as:

Srating(i i, i c) =

∑
x∈Cic

(Rix − R̄ux) · (Rcx − R̄ux)√∑
x∈Cic(Rix − R̄ux)2

√∑
x∈Cic

(Rcx − R̄ux)2
. (2.5)

Experiments have shown that among those 3 rating based similarity measure-

ment, adjusted cosine tends to give us the best prediction accuracy [47,60].

Rating-based similarity measurements between two items are calculated based

on co-rated users who have rated both items. Measurements can be based on

only a few users. Thus, the similarity calculated may not be reliable to represent

the similarity between 2 items. A shrunk correlation coefficient simShrunk(i i, i j)

was introduced to penalize similarity measured by few users [50]:

simShrunk(i i, i j) =
|Cij|
|Cij|+ λ

S(i i, i j). (2.6)

Where a typical λ is suggested to be 100 in [50].

2. Structural-based Similarity Measurement. Similarity can be quantified

solely based on the network structure of the data when explicit rating informa-

tion is not available. Some research shows that structural-based similarity can

produce better recommendations than Pearson correlation coefficient, especially

when the input data is sparse [61]. structural-based similarity measurement

can be categorized into local vs. global, node-dependent vs. path-dependent,

parameter-free vs. parameter-dependent, etc [8]. Here we review some of them.

(a) Local structure based similarity

i. Common Neighbor. The simplest measurement of this kind is common

neighbors, where the similarity between 2 items is directly given by the
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number of users who rated/clicked/purchased both items. Common

Neighbor is computed as:

SCNstruct(i i, i c) = |Cic| (2.7)

ii. Salton/Ochiai [62] [63]. Salton is also called Salton Cosine index. It is

used to calculate the similarity based on cosine angle between vectors

of adjacency matrix [64]. Salton Index is computed as:

SSaltonstruct (i i, i c) =
|Cic|√
|i i| · |i c|

(2.8)

iii. Jaccard [65]. Jaccard is proposed in 1901 as a statistic to compare

similarity and diversity of sample sets. It is the ratio of common

neighbors to all neighbors of two nodes. As a result, Jaccard prevents

higher degree nodes to have high similarity with other nodes [66].

Jaccard is computed as:

SJaccardstruct (i i, i c) =
|Cic|
|i i ∪ i c|

(2.9)

iv. Sørensen [67]. A similar measure to Jaccard proposed by Sørensen in

1948 to measure similarities among species. It is calculated as ratio

of twice the common neighbors to all neighbors of two nodes. It is

computed as:

SSørensen
struct (i i, i c) =

2|Cic|
(|i i|+ |i c|)

(2.10)

v. Hub Promoted Index (HPI) [68]. It is defined as the ratio of common

neighbors to the minimum of degrees of two nodes. It is computed as:

SHPIstruct(i i, i c) =
|Cic|

min(|i i|, |i c|)
(2.11)
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vi. Hub Depressed Index (HDI) [69]. It is defined as the ratio of common

neighbors to the maxinum of degrees of two nodes. It gives lower

score compared to HPI as HPI is taking the minimum degree. HDI is

computed as:

SHDIstruct(i i, i c) =
|Cic|

max(|i i|, |i c|)
(2.12)

vii. Leicht-Holme-Newman Index-1 (LHN1) [70]. It is the ratio of common

neighbors to the product of degrees of two nodes. It is computed as:

SLHN1
struct (i i, i c) =

|Cic|
(|i i| · |i c|)

(2.13)

Compared to Salton in Equation 2.8, Salton always assigns a higher

score as it takes the square root of the product as the denominator.

viii. Preferential Attachment Index (PA) [71]. This is calculated indepen-

dent of the neighborhood of each node. Social networks expand when

new nodes joins in with existing nodes with higher degree [71]. PA is

computed as:

SPAstruct(i i, i c) = |i i| · |i c| (2.14)

ix. Adamic-Adar Index [72]. This is calculated by applying an inverse

of log scale to the degree of common neighbors of the 2 nodes. It is

computed as:

SAAstruct(i i, i c) =
∑
x∈Cic

1

log kx
(2.15)

where x is a common neighbor of item i and c, kx is the degree of node

x.

x. Resource Allocation Index [69]. This is defined as the amount of re-

source one node receives from the other node through indirect links,
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and each intermediate link contributes an unit of resource. It is com-

puted as:

SRAstruct(i i, i c) =
∑
x∈Cic

1

kx
(2.16)

The only difference between RA and AA is that AA takes the log of the

denominator. As a result, AA always gives a higher score compared

to RA.

(b) Global structure based similarity

i. Katz Index. The basic assumption is that two items or users are

similar if they are connected by many paths. Since the number of

distinct paths between pairs of nodes is equal to the elements of an n-

th power of the adjacency matrix, Rn, Katz similarity includes paths

of all lengths, which is defined as:

SKatzstruct(i i, i c) =
∞∑
l=1

βl|pathsli i,ic | = βR(i i,ic)+β
2(R2)(i i,ic)+β

3(R3)(i i,ic)+...

(2.17)

where β is a damping factor controlling the path weights, |pathsli i,ic|

is the set of all paths with length 1 connecting nodes i i and i c. When

β is small, Katz index will be similar to Common Neighbor method.

This can also be written as SKatzstruct = (I − βR)−1 − I.

ii. Leicht-Holme-Newman Index (LHN2) [70]. A variant of the Katz in-

dex, where the term pathsli i,ic is replaced with pathsli i,ic/E[pathsli i,ic ].

iii. Average commute time (ACT) [73]. The average commute time be-

tween node i i and node i c is defined as the average of number of steps

required for a random walker to reach node i c from node i i plus that

from node i c to i i. It can be obtained in terms of the pseudoinverse

of the network’s Laplacian matrix, L+, as:

SACTstruct(i i, i c) =
1

L+
i i,i i

+ L+
ic,ic

+ L+
i i,ic

(2.18)
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iv. Random walk with restart (RWR) [74]. This is a direct application

of PageRank algorithm [75]. Consider a random walker starting from

node x recursively moves to a random neighbor with probability c and

returns to node x with probability 1-c. Denoting by qxy the resulting

stationary probability that the walker is located at node y, we can

write:

qx = cPT qx + (1− c)ex (2.19)

where P is the transition matrix with elements Pxy = 1/kx if x and y

are connected and Pxy = 0 otherwise. The solution to the equation is:

qx = (1− c)(I − cPT )−1 ~ex (2.20)

Finally, the similarity is defined as:

SRWR
struct = qxy + qyx (2.21)

v. SimRank [76]. This index is based on the assumption that two nodes

are similar if they are connected to similar nodes. This allow us to

compute SimRank in a recursive way:

SSimRankxy = C

∑
z∈Γx

∑
z′∈Γy

SSimRankzz′

kxky
(2.22)

where Sxx = 1 indicates each node is similar to itself and C ∈ [0, 1]

is the decay factor. SimRank can also be interpreted as how fast two

random walkers, who respectively start at node x and node y, are

expected to meet at a certain node.

vi. Escape probability [77]. It is computed as:

SEPxy =
Qxy

QxxQyy −QxyQyx

(2.23)
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where Q = RPR
1−βRPR

, RPR is the rooted page rank, which is similar to

random walk with restart.

(c) Quasi-local structure based similarity

i. Local path index (LPI) [69]. This index is similar to local structure

based methods but it considers paths of length ¿2. It is computed as:

SLPIxy = R2 + εR3 + ε2R4 + ...+ εn−2Rn (2.24)

where ε is a damping parameter. If ε = 0, this index is equal to

common neighbors since Eq. 2.24 reduces to SLPIxy = R2 if ε = 0.

ii. Extended Jaccard index [78]. This index considers paths of length 2.

It is computed as:

SEJIxy =
|Γd(x) ∩ Γd(y)|
|Γd(x) ∪ Γd(y)|

(2.25)

where Γd(x) and Γd(y) denote the set of extended neighbors of node x

and y respectively at hops 1...d for each of the node.

iii. Local random walk [79]. To measure similarity between node x and y,

a random walker is introduced in node x and thus the initial occupancy

vector is πx(0) = ex. This vector evolves as πx(t + 1) = P Tπx(t) for

t ≥ 0. The LRW index at time step t is defined as

SLRWxy = qxπxy(t) + qyπxy(t) (2.26)

where q is the initial configuration function and t denotes the time

step. It was suggested to use a simple approach where q is determined

by node degree [79].

iv. Superposed random walk [79]. This is similar to local random walk,

but random walker in this approach is continuously released at the
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starting point. As a result, this index gives us higher similarity com-

pared to local random walk. It is computed as:

SSRWxy (t) =
t∑

τ=1

SLRWxy (τ) =
t∑

τ=1

[qxπxy(t) + qyπxy(t)] (2.27)

where SLRW is defined in Eq. 2.26.

v. FriendLink [80]. This measurement uses paths of length ≥ 2. It is

computed as:

SFLxy =
l∑

i=2

1

i− 1
·
|pathsixy|∏i
j=2(n− j)

(2.28)

where n is the number of vertices in graph, l is the path length consid-

ered l ≥ 2, 1
i−1

is the attenuation factor that weights path according

to length l.
∏i

j=2(n− j) is the number of possible length l-paths from

x to y.

K-Nearest Neighbors

K-nearest neighbor (KNN) method is a type of instance-based learning, where the

function is only approximated locally. There are 2 steps: similarity calculation and

preference prediction. Without loss of generality, taking item-based approach, we

first calculate similarities between items using methods listed in the previous section.

These pairwise similarities can be calculated offline or can be calculated in real time

if similarity measurement chosen is approximated locally, which doesn’t require much

time. Second, the top K most similar items are chosen to form a nearest neighbor

list for the targeted item i i. Item-based memory-based CFs calculate the weighted

aggregate of similarities from the K nearest neighbors on the rating from user u on

those neighbor items to make the prediction of user u on item i:

1. Simple Weighted Average



23

The simplest way to predict the rating from user u on item i using simple

weighted average is [47]:

R̂iu =

∑K
c=1(Rcu) · Srating(i i, i c)∑K

c=1 Srating(i i, i c)
. (2.29)

2. Weighted Sum of Others’ Ratings

We can also use the weighted sum of others’ ratings:

R̂iu = ī i +

∑K
c=1(Rcu − ī c) · Srating(i i, i c)∑K

c=1 Srating(i i, i c)
. (2.30)

2.2.3 Model-based methods

In this approach, models are developed using different machine learning, data

mining techniques to predict users’ rating of unrated items. Through this approach,

dimensionality reduction techniques are mostly used. High dimensional sparse matrix

containing abundant number of missing values are reduced into a much smaller matrix

in lower dimensional space. Information to describe the underlying causes of co-

occurrence data is preserved by hidden variables, or so called latent variables while

the computation complexity and memory requirement for making recommendations

is dramatically decreased [8]. There are many model-based CFs such as singular value

decomposition (SVD) [81, 82],Bayesian clustering [83], probabilistic latent semantic

analysis (pLSA) [39] and latent Dirichlet allocation (LDA) [40], etc. Instead of using

latent variables to describe user preferences, items and users can also be assigned

to classes or groups that share similar features or preferences respectively [84–86].

In this approach, relationship between individual items and users are explained or

represented by that between classes or groups. Through clustering or classification

methods, the number of classes or clusters are usually significantly smaller than the

number of users or items, which then also result in dimensionality reduction. In the
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following section, we discuss one of those techniques - singular value decomposition

(SVD).

Singular value decomposition (SVD)

We start with item-user matrix R which contains ratings from users to items. Rij

denotes the rating of item i from user j. If the rating is not given, then Rij = 0.

If numerical rating is not known, then Rij becomes the adjacency matrix as Rij=1

for connected pair between item i and user j. Recommendation process aims to find

which zero entries in R that are likely to be non-zero in the future.

Singular value decomposition (SVD), which belongs to a broader class of latent

semantic analysis (LSA) techniques, aims to use latent variables to preserve infor-

mation. Dimensional reduction is achieved by introducing K hidden variables to

preserve the relationships between item attributes and user preferences. The original

n-by-m sparse matrix R is factorized into the product of two matrices U and V with

dimension n-by-k and k-by-m respectively:

R = UV (2.31)

where U and V contains item attributes and user preferences respectively, in terms of

K hidden variables. Items are selected based on the overlap between user preferences

and item attributes by the product of U and V .

To obtain U and V, singular value decomposition (SVD) is a common algebraic

tool in LSA to reduce dimensionality while preserving relevant information. R is

factorized as:

R = UΣV (2.32)

where Σ is a k-by-k diagonal matrix with k = min(n,m). The matrix Σ contains the

so-called singular values of R, which is the square root of the eigenvalues of RR∗.

To reduce the dimension, we choose k < min(n,m), which include only K largest
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singular values in Σ and replace others by zero. This is the K-rank approximation in

SVD. R is now approximated with R̃:

R̃ ≈ R = UΣ̃V (2.33)

where Σ̃ is the k-rank approximation of Σ. More details such as quantities include

the lower and the upper bound of the prediction errors, smallest number of non-

zero entries in R to achieve prediction have been studied and proved analytically

in [87–90].An estimate of K is also given in [91].

Once R̃ is approximated, the rating from a user j to an item i can be calculated

as the dot product between the item’s attribute vector U and user’s preference vector

V:

R̃ij =
k∑
x=0

Uix ×Vxj (2.34)

2.3 Time-aware recommendation systems

Nowadays, huge amount of information and data are generated and collected

every second. Due to Internet’s convenience and timeliness, more and more people

read news online instead of from traditional media like newspapers [8]. However,

given this enormous amount of news and information, an urgent problem emerges:

how to filter out irrelevant information and receive timely news and information?

Moreover, a product or service is not judged only by its own characteristics but

also by the characteristics of other products or services offered concurrently [11]. It

can also be judged by anchoring based on users memory [12–14]. Rating or satisfaction

is viewed as a function of the discrepancy or contrast between obtained and expected

outcomes [15,16]. This is documented as contrast effects [17]. Thus, rating scales for

users may shift over time, which can bias the score of ratings.

Last but not least, It is well known that consumers’ preferences can shift over

time [18–25]. This can be due to (1) exploration of new items, instead of repeatedly

interacting with the same items [22]. New items may continuously enter the market
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as well. (2) experience or tendency to interact with items they have previously had

positive interactions with, and to stop interacting with items they have previously

negative interactions with [22]. (3) popularity of the items, irrespective of personal

interaction history [22]. (4) social influence may cause preference changes as a result

of observing the preference changes of friends [22,25].

To overcome those problems, collaborative filtering, as the most widely adopted

method in recommendation systems, is the first one to be considered to adapt con-

sumer preference dynamics. Most related work focuses on assigning weights with

respect to time to suppress old evaluations or items [26,29,30,92–94]. Chen assigned

user credits based on non-linear forgotten function during similarity measurement pro-

cess to select neighbor users that are more active [92]. Vaz found that CF benefits from

a rating scale with smaller granularity and applied exponential decay on ratings [93].

Ding studied different similarity measurements and assign different weights on ratings

based on time [29]. Koren pointed that time-window and decay cannot work as those

techniques lose too much signal. He tracked multiple concept shifts simultaneously

by modifying his SVD++ model, which won the Netflix Grand Prize [31]. Koenig-

stein modeled user temporal dynamics by sessions and item biases by a function and

found out item temporal dynamics are much smoother compared to user temporal

dynamics [19]. Jiang borrowed the idea of fluid dynamics and accommodate time by

changing iteration step sizes [95]. Rafailidis modeled user preference dynamics via

tensor-matrix factorization [22]. Lerman studied how a user’s rank changes in time

as the user becomes more influential in community and aggregate those users’ opin-

ions to promote news on Digg.com [96]. Jamali modeled social temporal dynamics

of social rating networks (epinions.com, flickr.com) [25]. Lathia used time-dependent

iterative method and refined neighbors for CF [27]. He studied a broader problems re-

lated to time-aware recommendation systems such as recommendation accuracy and

diversity in his Ph.D thesis [97]. Koychev applied gradual forgetting function with

linear decay on content-based approach [98]. Baltrunas focused on time partitions

based on time cycles [99]. Potter considered psychological decision making processes
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and modeled user biases like dates by conducting normalization of different rating

system by different users [100].

Another problem of recommendation system related to time is temporal diver-

sity [101]. Although an item with the highest predicted score is the most possible

candidate for a target user, it may occupy the recommendation list over and over

again. Recent developed preferences may take a long time to be reflected in the

recommendation lists. Therefore, temporal diversity becomes crucial in designing

time-based algorithms [8]. Xiang divided user preferences into longer-term and short

term, adjusted similarities between items to make recommendations based on both

long-term and short-term preferences.
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3. IMPROVING NEIGHBOR-BASED COLLABORATIVE

FILTERING BY USING A HYBRID SIMILARITY

MEASUREMENT

Acknowledgements: This chapter was published in Expert Systems with Applica-

tions, Vol. 160, Dawei Wang, Yuehwern Yih, Mario Ventresca, Improving neighbor-

based collaborative filtering by using a hybrid similarity measurement, 113651, Copy-

right Elsevier (2020).

3.1 Abstract

Memory-based collaborative filtering is one of the recommendation system meth-

ods used to predict a user’s rating or preference by exploring historic ratings, but

without incorporating any content information about users or items. It can be either

item-based or user-based. Taking item-based Collaborative Filtering (CF) as an ex-

ample, the way it makes predictions is accomplished in 2 steps: first, it selects based

on pair-wise similarities a number of most similar items to the predicting item from

those that the user has already rated on. Second, it aggregates the user’s opinions on

those most similar items to predict a rating on the predicting item. Thus, similarity

measurement determines which items are similar, and plays an important role on how

accurate the predictions are. Many studies have been conducted on memory-based

CFs to improve prediction accuracy, but none of them have achieved better predic-

tion accuracy than state-of-the-art model-based CFs. In this research, we proposed

a new approach that combines both structural and rating-based similarity measure-

ment. We found that memory-based CF using combined similarity measurement can

achieve better prediction accuracy than model-based CFs in terms of lower MAE and
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reduce memory and time by using less neighbors than traditional memory-based CFs

on MovieLens and Netflix datasets.

3.2 Introduction

Recommendation systems are a subclass of information filtering systems that aim

to predict a user’s opinion or preference of a topic or item, thereby providing person-

alized recommendations to users by exploiting historic data. They are widely used

in e-commerces such as Amazon.com [3], online movie streaming companies such as

Netflix [4], and social media networks such as Facebook [5]. With a large amount

and diversity of products, a recommendation system could also help streaming ser-

vice providers or online vendors provide users with recommendations that are specific

their preference. This could improve user experience in searching for items or services

and potentially lead them to make more purchases, watch more movies, or subscribe

to more services. For examples, data gathered for three weeks in the summer of

2001 showed that between 20% to 40% of sales on Amazon are due to recommended

products that do not belong to the shop’s 100,000 most sold products [6], and 60%

of movies rented by Netflix are selected based on personalized recommendations1.

Furthermore, a recommendation system could generate not only more direct revenue,

but also additional revenue by introducing shoppers to new categories [7]. Hence, a

recommendation system can significantly impact a company’s revenue [8]. Note that

1% improvement in average on MAE(Mean Absolute Error) and RMSE(Root Mean

Squared Error) may be a small number, but could result in a significant difference in

the ranking of the ”top-10” most recommended movies for an individual user [9].

Recommendation systems typically generate a list of recommendations to users

in one of three ways [10] - (1) collaborative filtering, (2) content-based filtering, or

(3) a hybrid of those two approaches. Collaborative filtering (CF) analyzes historical

1As presented by Jon Sanders (Recommendation Systems Engineering, Netflix) during the talk
”Research Challenges in Recommenders” at the 3rd ACM Conference on Recommender Systems
(2009).
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data about user behavior to predict what they might like by learning interactions

between users and items. Content-based filtering predicts by learning descriptions

of items or profiles of users. Collaborative filtering can be memory-based or model-

based. Memory-based approaches rely on pairwise similarities between vectors of

ratings, while model-based approaches rely on factorizing the entire rating matrix.

Both memory-based and model-based CFs can be implemented from an item-based

or user-based perspective. A comparison is given in Section 3.2.1.

This research takes the approach of item-based and memory-based collaborative

filtering due to its simplicity, efficiency, and ability to produce accurate recommen-

dations [49]. The way it makes predictions is accomplished in two steps: first, it

selects K of the most similar items based on a pair-wise similarity measurement to

the predicting item, from the items that the particular user has already rated. Sec-

ond, it combines this user’s ratings on those K items to predict a rating on the

predicting item (more details are given in Section 3.3). In this work, we introduce

a framework to combine similarity measurements between items. We compare the

proposed algorithm against state-of-the-art collaborative filtering techniques using

MovieLens [58] and Netflix datasets [4]. Our results indicate that the prediction ac-

curacy of the proposed algorithm performed better than state-of-the-art collaborative

filtering techniques in terms of a lower MAE, while also requiring less wall time and

computer memory.

3.2.1 Recommendation systems

As stated above, there are three typical approaches for recommendation systems:

content-based filtering, collaborative filtering or a hybrid of those two approaches [59]

[10] [8]:

1. Content-based filtering. These approaches use keywords or phrases to describe

the contents of items, build user profiles to indicate the types of contents each

user prefers using those keywords(phrases), and then recommend a list of items
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that fits each user’s preference. Several techniques have been studied such as

pLSA(Probabilistic latent semantic analysis) [38] [39], LDA(Latent Dirichlet

Allocation) [40], etc. While content-based methods incorporate descriptive in-

formation from items by characterizing using keywords, they do not necessarily

incorporate interactions between other individuals. Recommendations are made

based solely on the content information of objects that the target user has rated

in the past [8]. Content-based filterings are widely used in a variety of domains

ranging from recommending webpages, news articles, restaurants, etc [41]. For

examples: Pandora Radio2 recommends users with songs that share similar

characteristics [42], and Rotten Tomatoes3 recommends users with movies that

share similar cast and storyline. However, Content-based filtering is unable to

make a good recommendation that matches a user’s preference if the profiles of

users or descriptions of items do not contain sufficient information to tell if the

user likes or dislikes the item [41].

2. Collaborative filtering (CF). These approaches analyze historical data on user

activities, and use it to predict what they might like based on their similarity

to other users, or to items that are similar to the ones the user is known to like

[44]. A key advantage of this approach is that CFs study only the interactions

between individuals without incorporating feature or attribute information of

items and users. Thus, they don’t require knowledge about the actual context of

the data in order to make recommendations. That is, they can make a prediction

without ”understanding” a movie, a friend, or a music, etc. Thus, this approach

can be applied broadly regardless of the contents of the data. However, when

users haven’t rated a sufficient number of items, these methods may not perform

very well (known as the cold start problem [45] [46]). Collaborative Filtering

could also suffer from scalability or sparsity issues [47], (details are listed in

Section 3.2.2).

2https://www.pandora.com
3https://www.rottentomatoes.com
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Collaborative filtering can be implemented in two ways: user-based or item-

based. To make a prediction of how a user u would rate an item i, User-based

CF aggregates the opinions about item i from users that are similar to user

u. It assumes that if two persons share similar opinions on some items, they

are likely to hold similar opinions on other items as well. On the other hand,

item-based CF aggregates the opinions about the items that are similar to item

i, and have been rated by user u. It assumes that users are likely to hold the

same opinions on similar items. For both item-based and user-based CFs, two

approaches have been studied:

(a) Memory-based. This approach calculates similarities between items or

users and uses them as weights on ratings to represent how much the opin-

ions on items a user has rated can represent a user’s opinion on the unrated

item. In general, it is effective and easy to implement. A typical example

of this approach is K-Nearest-Neighbor (KNN) [48] [47]. First, item-based

memory-based CFs find similar items by calculating pairwise similarities

between the predicting item and all other items the user has rated. These

pairwise similarities are used to rank how representative of the predicting

item each other item is. Therefore, the prediction accuracy of collabora-

tive filtering algorithms is highly dependent on how accurate the similarity

measurement is. Second, based on pair-wise similarity measurement, K

most similar items to this predicting item are selected from the items that

this user has already rated on and then it combines the user’s opinions of

those K items by weighted average or weighted sum to predict a rating for

the unrated item from the user. Such approaches are widely used due to

their simplicity, explainability and effectiveness [49], and predictions can

be made in real time as new rating data is added. However, its prediction

accuracy decreases when few items have been rated. Its scalability is also

limited for large datasets [8].
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(b) Model-based. This approach uses data mining and machine learning algo-

rithms to develop and train predictive models. There are many different al-

gorithms such as Singular-Value Decomposition (SVD) [50], and Principal

component analysis (PCA) [51], which use matrix factorization techniques.

Dimensionality reduction is usually used through model-based approach to

improve the scalability and accuracy. It addresses the sparsity and scala-

bility problems and performs better in prediction accuracy in comparison

to memory-based CFs [10]. But, the models usually use iterative methods

to approximate the parameters for the models, which take more time to

build and train compared to memory-based approaches. Moreover, they

could lose useful information as a result of dimensionality reduction [10].

3. Hybrid. This strategy is to combine two or more techniques [52] [53] [54] [55], or

with other techniques such as deep learning [56] or clustering [57] to overcome

the limitations of their individuals and improve the performance such as predic-

tion accuracy, scalability. However, it increases the computational complexity

such as time and resources required [10].

Recent years, deep neural networks yield immense success on computer vision and

natural language processing. There are also successful works on applying Graph Con-

volutional Networks (GCNs) to recommendation systems. The basic idea of GCNs is

to iteratively train the model over multiple layers through two steps at each layer: 1)

node embedding with convolutional neighborhood aggregation; 2) non-linear trans-

formation of node embeddings parameterized by a neural network [102] A general

framework of Neural network-based Collaborative Filtering (NCF) is proposed to

learn user-item interaction via a multi-layer perceptron [103]. Neural Graph Col-

laborative Filtering (NGCF) is proposed embedding propagation layer to leverage

high-order connectivities in user-item integration graph of model-based CF [104].

Multi-Component graph convolutional Collaborative Filtering (MCCF) approach is

proposed to distinguish the latent purchasing motivations [105]. They have shown
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improvements over the state-of-the-art methods in prediction accuracy. There are

also works on improving the scalability of Graph Convolutional Network (GCN) al-

gorithms by reducing the complexity, such as PinSage, which combines random walks

and graph convolutions to incorporate both graph structure and node feature infor-

mation [106]; Simple Graph Convolution (SGC) [107] and Linear Residual Graph

Convolutional Collaborative Filtering (LR-GCCF) [102] removes the non-linearities.

Although most GCN based approaches including GCN based recommendation models

achieve the best performance with two layers [106, 108, 109]. It still requires train-

ing the model with all user-item interaction information iteratively as model-based

approaches.

3.2.2 Characteristics and Challenges of Collaborative filtering

We focus our approach on memory-based collaborative filtering since it can be

generalized to be used on any relational data without knowing the content of the

data. However, there are some key fundamental challenges of collaborative filtering

to predict an accurate rating in real time:

Sparsity

In practice, recommendation systems are used with very large datasets such as

those from Amazon [3], Facebook [5] or Netflix [4]. There are usually at least tens

of thousands of items and millions of users, but most users only review few items

with regard to the total number of items. One of the typical challenges that could be

introduced by data sparsity is the Cold Start Problem [45] [46]. Since collaborative

filtering methods make recommendations based on users’ past preferences, new users

need to rate a sufficient number of items in order to let the recommendation system

learn their preferences and make reliable recommendations. Collaborative filtering

methods are generally unable to make accurate recommendations if users have only

rated very few items.
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Scalability

As the number of users and items can grow extremely large, traditional collabo-

rative filtering methods will suffer scalability problems. In order to react to new user

ratings in real time to make an updated recommendation, it would be challenging for

model-based approaches since they use the entire dataset to train. However, in prac-

tice, most users have only reviewed relatively few items relative to the total number of

items [3], and memory-based methods can react to new ratings and make a prediction

in real time even for extremely large datasets [47] [3]. While model-based approaches

can mitigate scalability problems by using dimensionality reduction techniques such

as SVD [110], they suffer from computationally expensive matrix factorization and

may lose useful information in the process. Thus, there are tradeoffs between scala-

bility and performance for model-based approaches [10].

Curse of Dimensionality

Collaborative filtering needs to calculate similarities between items or users in

order to identify similar items or users. Those pairwise similarities are calculated in

high-dimensions since there are many users and items. With a fixed size of training

samples, the predictive power reduces as the dimensionality increases, which is known

as the Hughes Phenomenon [111]. Two outcomes may result [112]:

1. Concentration. Similarities between all users or items become the same, then

memory-based CF is unable to find the most similar items or users, thus will

not be able to make a reliable prediction.

2. Hubness. Some items occur more frequently in other items’ nearest neighbor

lists. Those items are usually high rated popular items and are not contributing

any personal preference information for recommendations since they may be

liked by many users. They can behave like noise making memory-based CF not

able to make accurate predictions.
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Memory-based Collaborative filtering methods that use cosine-like similarity mea-

surements to calculate pairwise similarities suffer hubness and concentration problems

caused by high dimensionality of the data. Model-based methods with dimension re-

duction methods such as SVD cannot solve those problems either [112]. Hubness

starts reducing only when intrinsic dimensionality is reached, where further reduc-

tion may incur loss of information [112]. The concentration and hubness are inherent

properties of high dimensionality, not proprieties like sparsity or skewness of the dis-

tribution of ratings [112]. Both phenomena can negatively affect the accuracy of

predictions since they impact the representativeness of nearest neighbor lists [112].

While reducing hubness by using mutual proximity as a similarity measurement can

increase the performance of prediction, the accuracy cannot rival the state-of-the-art

of model-based approaches [113] [114].

3.2.3 Summary of Main Contributions

In this research, we review traditional memory-based collaborative filtering meth-

ods and propose a new approach. We discuss problems that traditional similarity

measurements try to solve, and problems each hasn’t overcome (Section 4.4). We

study how hubness appears in nearest neighbor list using rating-based and structural

similarity measurement alone. The main contributions of this research are:

1. We propose a similarity measurement framework that combines rating-based

similarity measurements and structural similarity measurements to overcome

the limitations of using either of those two measurements alone, and the prob-

lems of hubness (Section 4.4).

2. We compare two benchmarks for prediction accuracy evaluation: MAE(Mean

Absolute Error) and RMSE(Root Mean Squared Error) (Section 3.5.2) and

provide experimental results on three most widely referenced datasets: Movie-

Lens100K, MovieLens1M, and Netflix Challenge datasets (Section 4.5).
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3. We show: (1) Our method outperforms state-of-the-art collaborative filterings

in terms of lower MAE with 1/3 to 1/2 number of neighbors compared to tradi-

tional memory-based CFs on MovieLens 100K, 1M and Netflix datasets (Section

3.6.1); (2) Memory-based CF with the proposed similarity measurement uses

1/2 to 1/39 wall time compared to state-of-the-art model-based CFs on Movie-

Lens 1M dataset (Section 3.6.2) and (3) Our method can achieve 3% lower MAE

and RMSE compared to traditional memory-based CFs on non-cold start users

on MovieLens 100K dataset (Section 3.6.3).

3.3 Background

As briefly mentioned in Section 3.2.1, memory-based collaborative filtering can

be item-based or user-based. There are 2 steps for both approaches: similarity cal-

culation and preference prediction. Without loss of generality, taking item-based

approach, the detailed steps are in Sections 3.3.2 and 3.3.3. Before that, let’s define

some terminologies and notations in Section 3.3.1.
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3.3.1 Notation

Table 3.1.: Notation

Notation Meaning

m total number of users
n total number of items
R n-by-m item-user matrix containing ratings from users to items
Rij rating of item i from user j , Rij ∈ R>0

R̂ij predicted rating from targeted user j to predicting item i, R̂ij ∈ R>0

u j vector of ratings for user j, u j = R∗j , ∀∗ ∈ [1..n]
|u j | total number of items that user j has rated, |u j | ∈ [0..n]
i i vector of ratings for item i, i i = Ri∗, ∀∗ ∈ [1..m]
|i i| total number of users who has rated item i, |i i| ∈ [0..m]

ū j ū j =
∑n

x=1 Rxj

|uj | , average rating of user j

ī i ī i =
∑m

x=1 Rix

|i i| , average rating of item i

Cij = i i ∩ i j set of co-rated users who rated both item i and item j
|Cij | = |i i ∩ i j | number of co-rated users who rated both item i and item j, i i ∩ i j ∈ [0..m]
Srating(i i, i c) rating-based similarity between item i and item c,

measured based on ratings from
users Cic on item i and item c, Srating(i i, i c) = Ii � Ic 7→ R,
the operation � can be any rating-based similarity measurement
such as Cosine Similarity or Pearson Correlation Coefficient.

Sstruct(i i, i c) structural similarity between item i and item c,
measured based on ”who rates what”,
Sstruct(i i, i c) = Ii � Ic 7→ R≥0,
the operation � can be any structural similarity measurement
such as Jaccard, common neighbor, Sorensen or Ochiai.

Given a dataset containing ratings from m users on n items, we can get an item-

user matrix R as shown in (3.1).

R =

u1 u2 u3 . . . um


R11 R12 R13 . . . R1m i 1

R21 R22 R23 . . . R2m i 2

...
...

...
...

...
...

Rn1 Rn2 Rn3 . . . Rnm in

(3.1)
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For example, a dataset is given as:

R =

u1 u2 u3 u4 u5



4 2 4 1 0 i 1

0 4 2 0 0 i 2

0 0 0 3 0 i 3

5 3 5 0 4 i 4

0 0 0 0 5 i 5

(3.2)

Then we can draw the item-user network as in Figure 3.1a and draw item-based

network as in Figure 3.1b. Then we can make a prediction of the rating from a user

on an item by aggregating the opinions from the user on the neighbor items which

have been co-rated by other users.
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(a) Item-user network: Items are
nodes i1, i2, i3, ..., im, users are nodes
u1,u2,u3, ...,un, edges between an item
node i i and an user node u j means user j
has rated item i with rating of Rij , where
Rij ∈ R>0, Cij is the group of users who
have rated both item i and item j.
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1
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(b) Item-based network: Nodes are items,
connected by edges if there are users who
rated both items. The number on top of each
node |i i| is the number of users who rated
item i, the number on each edge is the num-
ber of co-rated users |Cij | who rated both
item i and item j. Neighbor items are the
items that are co-rated by users, for exam-
ple: items i1 and i1 are neighbors, items i1

and i5 are not.

Figure 3.1.: Illustration of item-user network and Item-based network: From item-
user network as in Figure 3.1a, we draw the item-based network as in Figure 3.1b

Without loss of generality, we illustrate the process using item-based approach

since the bottleneck of user-based approach is to search for neighbors among a large

user population. With the number of total users m, the total number of items n,

and the number of items |u j| one particular user has rated, (1) to calculate pairwise

similarities offline, the computational complexity for user-based will be O(m2n) as

worst case where the item-user rating matrix R is full. The computational complexity

for item-based will be O(n2m) as worst case. Furthermore, in practice, the item-based

approach is closer to O(nm), as most customers have very few purchases [3]. (2)

Without pairwise similarities calculated offline, item-based approaches only search

for nearest neighbors of the targeted item among what this targeted user has rated
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previously [58]. So, the search space of similar items of target item for this particular

user is limited by how many items this targeted user has rated. The worst case

runtime will be O(|u j|). User-based approach searches for the nearest neighbors

of the targeted users among all other users who have rated any of the items this

targeted user has rated previously. The worst case runtime of searching for similar

users of the targeted user j will be O(
∑

i∈uj
|i i|). So the search space for user-based

approach is much larger than item-based approach since most users don’t rate only

1 item and most items are not rated only by this 1 user. Thus, item-based approach

can be less computational expensive. Another advantage of item-based approach is

that similarity between items tends to be more static than similarity between users,

allowing its values and neighbors to be pre-calculated, which could shorten the time

needed to make a prediction [8].

3.3.2 Item-Based Similarity Computation

Similarity measurements are chosen based on what type and quality of information

is available. When rating matrix Rij is available, similarities are defined based on

ratings, and two users are considered similar when they give similar ratings to items

[8]. When rating Rij is not available, similarities can be inferred from the structural

information B(Ii, Ic). For example, two users can be considered similar when they

rated/reviewed/visited/purchased many items in common if we use the number of

items rated by both users as the structural similarity measurement. Furthermore,

external information such as user profile(age, occupation, etc.) or content information

about items(category, price, etc.) can be incorporated into the similarity calculation

[8].

Rating-Based Similarity Measurement

Traditional methods only use ratings to compute similarity between items (e.g.

Pearson correlation coefficient [36], cosine and adjusted cosine [47]) by only consider-
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ing ratings from co-rated users Cij. Taking adjusted cosine similarity measurement

as an example, it is calculated as:

Srating(i i, i c) =

∑
x∈Cic

(Rix − R̄ux)(Rcx − R̄ux)√∑
x∈Cic(Rix − R̄ux)2

√∑
x∈Cic

(Rcx − R̄ux)2
. (3.3)

There are some common cases that using rating-based similarity measurements

alone can misrepresent the similarity between items, and thus lead to the inaccuracy

of prediction:

• Opinions agreed upon by a different number of users are weighted

the same. Universally liked items are not as useful at capturing similarity of

less common items since they do not contribute any user preference information

as most users likes those items [60]. To compensate, the idea of inverse user

frequency was introduced by multiplying log( |i i|
m

) to the original item similarity

measurement [60]. Note that if |i i| = m, then log( |i i|
m

) = 0. In this case, less

common items are assigned a higher weight. However, it doesn’t consider the

number of co-rated users. Therefore, opinions aggregated based on a few users

will be weighted the same with regard to opinions aggregated based on more

co-rated users. The similarity calculated can be biased towards the very few

users.

• Various popularities of items are not considered. Similarity can be calcu-

lated based on opinions from few users who have rated both items as the number

of users who rated an item varies. Traditional methods such as cosine, Pearson

correlation coefficient or adjusted cosine do not consider the number of co-rated

pairs. By neglecting the quantity of co-rated pairs, the similarity between items

calculated based on many users’ opinions are considered equally as important

as one calculated based on only one user’s opinion. Therefore, pairwise simi-

larities between items can be biased towards few users when there are few who
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have rated both items. A shrunk correlation coefficient simShrunk(i i, i j) was

introduced to penalize similarity measured by few users [50]:

simShrunk(i i, i j) =
|Cij|
|Cij|+ λ

S(i i, i j). (3.4)

Where a typical λ is suggested to be 100 in [50].

However, (3.4) only considers the number of users who have rated both items

|Cij|, not the total number of users who have rated each item |i i| or |i j|. So,

similarities between all pairs of items are penalized by a fixed parameter λ,

not with regard to how many co-rated users each pair could possibly have. It

penalize opinions aggregated based on few users but ignores that the popularity

of items varies.

• Curse of dimensionality. As stated in Section 3.2.2, with a fixed number

of training samples, as a result of the Hughes Phenomenon, predictive power

decreases as the dimension of the user-item matrix increases [111]. Two con-

sequences may result when calculating similarity in high-dimensional space: 1.

Pairwise distances between all pairs tend to be similar, known as distance con-

centration; 2. Items with high similarity will frequently occur in other item’s

nearest neighbor lists, which is known as hubness [112].

• Take a part for the whole. By calculating similarity measurement using

co-rated users, traditional CFs only consider the ratings from co-rated users.

Dissimilar items do not usually tend to share co-rated users, yet traditional CFs

aim to find whether they are similar by only focusing on the intersection Cij,

but similarity calculated can then be very unreliable or biased towards to Cij.

Structural Similarity Measurement

Instead of just focusing on the co-rated items, structural similarity measurement

focuses on vectors of i i and i j. In this way, pairwise similarity is not biased to
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only those co-rated users Cij. However, by using only structural information, we

can find highly correlated items that users tend to rate together, but we can not

know whether users like both items without considering ratings Rui. Therefore, the

underlying assumption of collaborative filtering, which is that a person who likes

item A is likely to like its similar item B, will not be valid. Moreover, the curse of

dimensionality could also become an issue since we are ingoring rating information

by only focusing on structural information [114].

Predictions made by traditional item-based memory-based CF with rating-based

similarity measurement or structural similarity measurement alone can be inaccurate

since they only focus on either the structural part or rating part of the relationship

between items, as shown in Section 3.3.2. Studies have tried to combine rating-

based similarity measurement with structural information to form a better similarity

measurement. As illustrated in Section 3.3.2, [50] used a fixed variable to penalize

similarities that are calculated based on a very few users as illustrated in Equation

(3.4) without considering the local information such as the upper bound of the num-

ber of co-rated users min(|i i|, |i j|). [60] used only the structural information about

the number of users who rated the targeted item |i i| without considering structural

information about the other neighbor item |i j| or the number of co-rated users be-

tween them Cij. None of them considered how ”strong” the structural relationship is

between two items relatively to other neighbors locally.

3.3.3 Preference Prediction

After similarity Srating(i i, i c) is calculated, the top K most similar items are chosen

to form a nearest neighbor list for the targeted item i i. Item-based memory-based

CFs calculate the weighted aggregate of similarities from the K nearest neighbors on

the rating from user u on those neighbor items to make the prediction of user u on

item i:
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Simple Weighted Average

The simplest way to predict the rating from user u on item i using simple weighted

average is [47]:

R̂iu =

∑K
c=1(Rcu) · Srating(i i, i c)∑K

c=1 Srating(i i, i c)
. (3.5)

Weighted Sum of Others’ Ratings

We can also use the weighted sum of others’ ratings:

R̂iu = ī i +

∑K
c=1(Rcu − ī c) · Srating(i i, i c)∑K

c=1 Srating(i i, i c)
. (3.6)

3.4 Proposed Approach

We propose a new similarity measurement to quantify the similarity between

items. Unlike traditional CFs that use rating-based similarity measurement, such

as adjusted cosine, Pearson correlation coefficient, or structural similarity measure-

ment alone, we propose to combine both measurements. Rating-based similarity

measurements Srating(i i, i c) can tell us whether two items are positively or negatively

correlated based on opinions of users Cic who have rated both items, while structural

similarity measurements Sstruct(i i, i c) can tell us how correlated two items are based

on the number of users who have rated either one of them without telling us whether

they are positive or negative correlated since they can only be positive. By combin-

ing structural measurement and rating-based measurement together, we aim to know

how correlated they are and how similar they are from users who have rated not only

both items but also any of the two items. That is, we expand the focus from only the

users who have rated both items Cic to any user that has rated any of the two items

so that similarities are not biased towards to users Cic.

In Equation 3.7, the structural similarity measurement Sstruct(i i, i c) is used to

search for strongly correlated items by focusing on all users who have rated any of
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those two items and then rating-based similarity measurement Srating(i i, i c) is used to

find out whether those two items are positively or negatively correlated based on the

options from users Cic. We assume that in practice, the popularity of each item varies,

so that the number of users who rate item |i i| varies, and the number of co-rated users

between each pair of items |Cic| varies. Therefore, we combine structural similarity

measurement as a weight on a rating-based similarity measurement to compensate

the differences of popularity among items. In this way, opinions of items aggregated

based on few co-rated users are penalized. To calculate the similarity between item i

and its neighbor item c, the similarity measurement Scombined(i i, i c) becomes:

Scombined(i i, i c) = Sstruct(i i, i c)
α · Srating(i i, i c). (3.7)

where α ≥ 1 is the amplification parameter on structural similarity measurement.

3.4.1 Choice of structural and rating-based similarity measurements

The rating-based similarity measurement we choose is Adjusted Cosine as litera-

tures show that it gives us the most accurate prediction result among other rating-

based similarity measurements [47]. A list of some structural similarity measurement

is in Table 3.2. The structural similarity measurement we choose fulfills the following

2 requirements:

Approximated locally

As KNN is a type of instance-based learning, where the function is only approx-

imated locally. In this way, we do not need additional global information from the

data to calculate this new introduced structural-based similarity measurement. We

keep the advantage of memory-based CF which doesn’t need the entire item-user rat-

ing matrix to make a prediction. Moreover, by approximating locally, we do not use

a fixed parameter estimated globally across all pairs of items to penalize similarities
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among items with various popularities. The combined similarity measurement only

requires the information from the two item vectors i i, i c about the number of co-

rated users |Cic| and the number of users who rated each of those 2 items |i c|, |i i|.

The structural similarity measurement can be any structural similarity measurements

approximated locally.

A ratio of intersection to union

Some structural similarity measurements only consider part of the structural in-

formation. Common neighbor only considers the number of co-rated users. PA only

considers the number of users who rated each item. Those measurements are not

suitable to compare across pairs of items as the size of the local network formed for

each item varies. A ratio such as Ochiai that utilizes both the intersection and the

union of 2 vectors is more suitable to compare across different local networks of items.

Table 3.2.: Lists of some structural similarity measurements approximated locally.
Those measurements do not require global information such as the total number of
users. All information required for the calculation can be gathered from those 2
associated vectors i c and i i.

Structural similarity measurement Definition Sstruct(i i, i c)
Common neighbor |Cic|
PA |i i| · |i c|
Jaccard |Cic|/|i i ∪ i c|
Salton/Ochiai |Cic|/

√
|i i| · |i c|

Sorensen 2|Cic|/(|i i|+ |i c|)
HPI |Cic|/min(|i i|, |i c|)
HDI |Cic|/max(|i i|, |i c|)
LHN1 |Cic|/(|i i| · |i c|)

Specifically, the structural similarity measurement we have chosen is Ochiai simi-

larity where cosine similarity measurement is applied to binary data since it is a ratio
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of the number of co-rated users |Cic| to the number of users who rated each item |i c|,

|i i| approximated locally. Results of adjusted cosine combined with other structural

similarity measurement such as common neighbor, Sorensen, and Ochiai (α = 1) are

shown in Appendix.

3.4.2 Improvements over using rating or structural similarity alone

As constraint of using rating or structural based similarity measurement alone

shown in Section 3.3.2, the proposed method with structural similarity measurements

chosen fulfilling requirements in Section 3.4.1 improves over the following aspects:

• Compensate unpopular but similar items: if both items are not popular

but most users have rated both items, we do not penalize items’ similarity

because of their unpopularity. Instead of using a fixed global shrinkage factor

[50] to penalize pairs of items with small number of co-rated users, the structural

similarity measurement uses local ratio of |Cij| to the local possible co-rated

users |i i| and |i j| to compensate unpopular but highly co-rated items. We

expect to see the prediction accuracy higher than using rating-based similarity

measurement alone.

• Reduce hubness: When calculating based on rating-based similarity mea-

surement only, big hubs are those universally liked popular items. Those items

do not contribute much personal preferences but highly referred as neighbor

items. By multiplying rating-based similarity measurement with structural-

based similarity measurement, big hubs caused by using rating-based similarity

measurement alone are penalized since those big hubs are rated by lots of users,

which ends with a relative small structural-based and combined similarity. We

expect to see the hubness of using the local ratio structural-based similarity

weighted rating-based similarity lower than using rating-based similarity alone.

When calculating similarities based on structural data only, big hubs appear

when some user rates unpopular items that are rarely rated by other users. So
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the structural-based similarity will be high. But the nearest neighbor list of

collaborative filtering contains only items that the user has rated on. So those

big hubs could only appear in the nearest neighbor list of users who like rating

unpopular items. Using those nearest neighbor lists that contain unpopular

items, it would recommend unpopular items to users who like unpopular items.

so we don’t expect the hubness of overall users would be change much from using

structural similarity measurement alone to using the combined measurement.

• Full picture: By combining both, we are able predict whether the user likes

an item or not from his or her opinions on highly correlated neighbor items.

Structural similarity measurement finds the highly correlated items and rating-

based similarity measurement tells us whether the user likes the item.

3.4.3 Amplification parameter α

Structural similarity measurement is less biased than rating-based similarity mea-

surement since structural similarity measurements consider opinions from more users

i i ∪ i j while rating-based similarity measurements focus only on the intersection

i i ∩ i j. The probability that dissimilar items are co-rated by many users is rarely

low. Therefore, the structural similarity measurement is raised to the power of α to

enlarge the differences of structural similarities between each nearest neighbor. In

this way, rankings can only change when there is a large difference between their

rating-based similarities as illustrated in Table A.3 in Appendix. The higher power

we raise structural similarity measurement to, we emphasize more on the ranking

calculated based on structural similarity.

Amplification parameter also reduces noise in the data [10]. It tends to favor high

weights as small values become negligible when being raised to a power.

Amplification parameter α is determined by the data so that the top K nearest

neighbors of the targeted item can contribute equal weight on their opinions so that

the prediction is not biased towards opinions of the first few top ranked neighbor
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items. In this way, the similarity measurement is mainly used for finding top K

nearest neighbors. Once the top K nearest neighbor list is chosen, by assigning equal

weight to each neighbor item. Otherwise, if one of the opinions from the first few top

ranked neighbor items does not truly represent user’s opinion, the prediction can be

inaccurate. A typical value for α is around 2.5 for MovieLens and Netflix datasets

estimated by cross validation illustrated in Section 4.5.

3.5 Experimental Setup

3.5.1 Data Sets

For comparison purposes, the MovieLens and Netflix datasets are used as they

are the most widely referenced in literature. (See Table 4.2)

Table 3.3.: Data sets. Datasets vary in different sizes (number of users, number of
items, number of ratings, and density). MovieLens have been pre-processed-users
who had less than 20 ratings or did not have complete demographic information were
removed [115]. MovieLens 100K dataset contains data collected through MovieLens
web site (movielens.umn.edu) from 1997/09/19 through 1998/04/22. MovieLens 1M
dataset contains data collected during from 2000/04/25 through 2003/02/28. Netflix
dataset contains data collected from 1998/10 through 2005/12 and reflects all ratings
received during this period. Density is the ratio of the number of actual ratings to
the possible maximum number of ratings

Data Set Number of Users Number of Movies Number of Ratings Density
MovieLens 100K [115] 943 1,682 100,000 6%
MovieLens 1M [115] 6,040 3,952 1,000,209 4%
Netflix Prize [4] 480,189 17,770 100,480,507 1%

The distribution of ratings are shown in Figure 3.2. We can see all three datasets

have similar shape of distribution. They are all right skewed with peak at rating of

4.
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Figure 3.2.: Density Distribution of Ratings of MovieLens, Netflix, where x-axis is
the rating from 1 to 5, y-axis is the density of number of users who rated given rating.

Combined similarity measurement is expected to work better with the degree

distribution of items of those datasets shown in Figure 3.3. Although MovieLens

datasets are not as skewed as Netflix dataset, all three datasets have a long tail.

Some items are rated only by a few users. Using rating-based similarity measurement

only, many pairwise similarities are based on few co-rated users. Those similarities

will be biased towards those few users. There are popular items rated by lots of users

too. Using rating-based similarity measurement alone, the similarities will tend to

be the same known as the concentration problem. High rated popular items will also

become big hubs that frequently appear in other items’ nearest neighbor lists. Those

will cause CF not able to make a reliable prediction as pointed in Section 3.2.2.
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(a) ML-100K (b) ML-1M (c) Netflix

Figure 3.3.: Degree Distribution of Items of MovieLens, Netflix, where x-axis is the
degree of the number of users, y-axis is the density of number of items gets rated
by given number of users. Rating-based similarity measurement will not be able to
capture and utilize those structural information.

3.5.2 Accuracy Evaluation

Both Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were

used to evaluate prediction accuracy since most literature on MovieLens dataset use

MAE and most literature on Netflix dataset use RMSE. MAE measures the aver-

age over the sample of the absolute differences between the actual rating and the

prediction, where all individual differences have equal weight:

MAE =
1

n

n∑
i=1

|Riu − R̂iu|. (3.8)

where n is the number of total predictions.

RMSE measures the average of squared differences between the actual observation

and the prediction:

RMSE =

√√√√ 1

n

n∑
i=1

(Riu − R̂iu)
2
. (3.9)

Both MAE and RMSE are negatively-oriented scores, which means that lower values

are more desirable. The difference is that RMSE squares the errors before they are

averaged, so RMSE gives a higher weight to larger errors. RMSE does not necessarily
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increase with the variance of the errors; it increases with the variance of the frequency

distribution of error magnitudes. See Appendix for examples.

Another implication is that RMSE can be problematic when compared results

calculated based on different sample sizes because of the square root of the number of

errors. RMSE tends to be increasingly larger than MAE when the size of the sample

size increases. So it would be inappropriate to compare RMSE across datasets with

different sample sizes.

Overall, RMSE is ambiguous since it reflects three characteristics of a set of error

[116] [117]: (1) variability of the distribution of error magnitudes, (2) the square

root of the number of errors, (3) the average-error magnitude (MAE). It could be an

inappropriate and misinterpreted measure of average error because sums-of-squared-

based statistics do not satisfy the triangle inequality. We present both results below

and leave it to the reader to determine which is more appropriate in their context.

3.5.3 Hubness Evaluation

To compute hubness, first, pKi (x) is defined as:

pKi (x) =

1, if item x is among the K nearest neighbors of item i

0, otherwise

(3.10)

Second, OK(x) is defined as the number of times item x occurs in the K-nearest

neighbor lists of all other objects:

OK(x) =
n∑
i=1

pKi (x) (3.11)

Then, hubness is defined as the skewness of the distribution of OK [118]:

HK =
E[(OK − µOK )3]

σ3
OK

. (3.12)



54

A dataset with few hub items that occurs frequently among other items’ K-nearest

neighbor lists and many anti-hubs with occurrence of 0 yields high hubness [114].

However, this doesn’t capture whether those hubs are overall liked items. For Col-

laborative Filtering, overall liked items that occurs frequently among other items’

K-nearest neighbor lists are the hubs that do not contribute any personal preferences.

To capture hubness of overall liked items, pKi (x) in Equation (3.10) is redefined as:

pKi (x)

R̄ix , if item x is among the K nearest neighbors of item i

0, otherwise

(3.13)

Let’s call this rating conditioned hubness HK
R .

3.6 Experimental Results

Experiments over MovieLens dataset (ml-100K and ml-1M) were conducted us-

ing a 4 GHz Intel i7 CPU, 16 GB 1600MHz DDR3 memory iMac with OSX 10.13.

Experiments over Netflix dataset were conducted on computing clusters of two 12-

Core Intel Xeon Gold CPU, 96 GB memory, 793.2 TeraFLOPS. Time measured were

in wall time. Memory-based CFs are implemented in C++. Model-based CFs im-

plemented by MyMediaLite library [119] are written in C#. Hyperparameters of

model-based CFs suggested by MyMediaLite over the MovieLens dataset are calcu-

lated using 5-fold cross validation on the training dataset. Hyperparameter selection

is supported using grid search and Nelder-Mead algorithm [120]. The exact partition-

ing of the 5-fold test is not provided by MyMediaLite. To make a fair comparison

among different methods, we generated 5-fold training and testing dataset randomly.

The same partitioning of training and testing dataset is used across all experiments

in this paper.

The rest of this section is structured as follows: Prediction accuracy in terms of

MAE and RMSE over MovieLens and Netflix datasets were compared among state-

of-the-art methods in Section 3.6.1. We proposed a different testing method besides
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using the probe dataset provided in the Netflix prize challenge over the Netflix dataset.

We excluded ratings that are in the probe dataset from the training dataset. In

Section 3.6.2, we compared time and memory resources required by memory-based

and model-based methods. In Section 3.6.3, we compared the prediction accuracy

and coverage of memory-based methods by cutting off cold start users.

3.6.1 Prediction Accuracy

MovieLens Datasets

5-fold test is performed on the MovieLens (ml-100K and ml-1M) datasets. MAE

performance follows a concave shape for both K (size of the nearest neighbor list)

ranging from 10 to 50 with increment of 1 and α(case amplification parameter) ranging

from 1 to 5 with increment of 1 over ml-100K dataset as shown in Figure 3.5. MAE

is the lowest when K=25. By fixing K=25, it is observed MAE follows a concave

shape in Figure 3.5a. α ranging from 2 to 3 gives the lowest MAE value. By letting

α=2.6, MAE decreases as K increases from 10 to 25. After K=25, MAE increases

as shown in Figure 3.5b. By setting K=25 and α=2.6, memory-based collaborative

filtering with the proposed similarity measurement outperforms other state-of-the-art

memory-based and model-based methods over ml-1k and ml-1M datasets with respect

to MAE as shown in Tables 3.4 and 3.5.
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Figure 3.4.: MAE performance for different size of nearest neighbor list and case
amplification parameter, where x-axis is the power (case amplification parameter)
raised on structural similarity measurement, y-axis is the size of the nearest neighbor
list, z-axis is the MAE(Mean Absolute Error). We can see MAE follows a concave
shape respect to K and α. We choose the parameters with MAE at the lowest point.
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(a) MAE performance for different power
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(b) MAE performance for different K when
α=2.6, where we can see that MAE follows
a concave shape with respect to K.

Figure 3.5.: Accuracy performance for different nearest neighbor list size and ampli-
fication parameter. Those two figures are transections of Figure 3.5.
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Table 3.4.: Comparison of prediction accuracy among state-of-the-art CFs on ML-
100K dataset. The table is ranked by MAE. Our method is in bold font. Note: Model-
based collaborative filtering methods are calculated with suggested hyperparameters
using MyMediaLite library [119].

Method Parameterization MAE RMSE
ItemKNNPearson K=60 0.736125 0.936507
ItemKNNAdjustedCosine K=60 0.733618 0.935528
ItemKNNPearsonReg reg I=1, reg U=12, K=60 0.733399 0.932648
ItemKNNAdjustedCosineReg reg I=1, reg U=12, K=60 0.729538 0.929991
ItemKNNBCosine K=25 0.725362 0.924898
BiasedMatrixFactorization num factors=40, bias reg=0.1,

reg u=1.0, reg i=1.2,
learn rate=0.07, num iter=100,
frequency regularization=true,
bold driver=true

0.721715 0.912668

ItemKNNPearsonShrink reg I=1, reg U=12, K=40, shrink-
age=2500

0.718144 0.915559

ItemKNNAdjustedCosineShrink reg I=1, reg U=12, K=40, shrink-
age=2500

0.717390 0.915710

SigmoidUserAsymmetricFactorModel num factors=5, regularization=0.003,
bias reg=0.01, learn rate=0.006,
bias learn rate=0.7, num iter=70

0.716550 0.910353

SVDPlusPlus num factors=50, regularization=1,
bias reg=0.005, learn rate=0.01,
bias learn rate=0.07, num iter=50,
frequency regularization=true

0.715941 0.909214

ItemKNNCombined K=25, power=2.6 0.708815 0.909131
ItemKNNCombinedReg RegU=1, RegI=4, K=25, power=2.6 0.704588 0.903682

Table 3.5.: Comparison of prediction accuracy among state-of-the-art CFs on ML-1M
dataset. The table is ranked by MAE. Our method is in bold font. Note: Model-
based collaborative filtering methods are calculated with suggested hyperparameters
using MyMediaLite library [119].

Method Parameterization MAE RMSE
ItemKNNAdjustedCosine K=80 0.690876 0.879840
ItemKNNAdjustedCosineReg K=80, reg u=2, reg i=3 0.690622 0.879012
BiasedMatrixFactorization num factors=120, bias reg=0.001,

regularization=0.055, learn rate=0.07,
num iter=100, bold driver=true

0.675454 0.853102

SVDPlusPlus num factors=20, num iter=80,
reg=0.05, learn rate=0.005

0.667725 0.853002

ItemKNNCombinedReg RegU=2, RegI=3, K=20, power=2.6 0.664384 0.852439
ItemKNNCombined K=20, power=2.6 0.664270 0.852514
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Memory-based collaborative filtering with the proposed similarity measurement

also uses 1/3 to 1/4 total number of neighbors to predict compared to traditional

KNN methods as shown in Tables 3.4 and 3.5. This means that it can predict 3

to 4 times faster than traditional KNN methods with pre-calculated similarities in

the preference prediction phase. Over the ml-100K dataset, we use K=25 whereas

traditional KNN with adjusted cosine uses K=60. For the ml-1M dataset, we use

K=20 whereas traditional methods with adjusted cosine use K=80. For comparison

purposes, when using the same K for both CFs with combined similarity and adjusted

cosine, we can see that both MAE and RMSE of the CF with the combined similarity

measurement are at least 3% (for both MAE and RMSE) lower than traditional KNN

method using adjusted cosine as similarity measurement with K ranging from 5 to 50

in Figure 3.6 over ml-100K dataset.

(a) MAE performance with different nearest
neighbor size K, where x-axis is K, y-axis is
the MAE.

(b) RMSE performance with different near-
est neighbor size K, where x-axis is K, y-axis
is the RMSE.

Figure 3.6.: Prediction accuracy with different nearest neighbor size K

Netflix Dataset and Modified Dataset

Prediction accuracy in terms of MAE and RMSE is tested on the Netflix dataset using
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predefined Netflix probe and testing dataset [4]. CFs with the proposed similarity

measurement performs better than traditional memory-based CF and model-based

CF in terms of 0.3%-1.7% lower MAE as shown in Table 3.6. Note that the ratings in

the probe dataset are also contained in the training dataset, which can benefit model-

based CFs more than memory-based CFs since model-based CFs are trained with all

testing data while memory-based CFs are trained with part of the testing data. More

importantly, in practice, The actual rating that we are trying to predict is usually

unknown. Therefore, another testing method is proposed by removing all ratings of

probe testing datasets from the training datasets so that CFs are not benefiting from

using testing data to train. It can be observed that the predication accuracy of all

algorithms became worse in terms of higher MAE and RMSE compared to the result

of using training dataset that contains probe dataset to train in Tables 3.6 and 3.8.

However, using the proposed method, the MAE of the proposed method compared

to traditional KNN with adjusted cosine lowered from 0.3% to 1.7% (from 0.002177

to 0.012415).

Table 3.6.: Comparison of prediction accuracy among state-of-the-art CFs on Netflix
probe testing dataset. The table is ranked by MAE. Our method is in bold font.
Note: Model-based collaborative filtering methods are calculated with suggested hy-
perparameters using MyMediaLite library [119].

Method Parameterization MAE RMSE
UserItemBaseline reg u=4.5, reg i=1.137, num iter=10, 0.768320 0.982610
BiasedMatrixFactorization num factors=80, learn rate=0.005,

reg=0.035, num iter=26
0.712600 0.916900

ItemKNNAdjustedCosine K=20 0.702826 0.920311
ItemKNNCombined K=20, power=2 0.700649 0.927615
ItemKNNCombinedReg K=20, power=2, RegU=10, RegI=25,

iter=100
0.700598 0.927516
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Table 3.7.: Comparison of prediction accuracy among state-of-the-art CFs on Netflix
dataset with training dataset containing no ratings from the testing dataset. The
table is ranked by MAE. The proposed method is in bold font. Note: Model-based
collaborative filtering methods are calculated with suggested hyperparameters using
MyMediaLite library [119].

Method Parameterization MAE RMSE
ItemKNNAdjustedCosine K=20 0.728092 0.953960
BiasedMatrixFactorization num factors=80, learn rate=0.005,

reg=0.035 num iter=26
0.726186 0.927115

ItemKNNCombined K=20, power=2 0.715677 0.947513

Hubness experiments are conducted on MovieLens and Netflix Challenge datasets

to see if prediction accuracy increased by using combined similarity measurement

over using rating or structural based similarity measurements alone is due to the

reduction of the hubness. Overall, with K = 20, the rating conditioned hubness H20
R

of combined similarity measurement is approximately 2 times lower than adjusted

cosine similarity measurement across all 3 datasets. It is slightly lower than Ochiai

similarity measurement except for ml-1M dataset.

Table 3.8.: Comparison of hubness and rating conditioned hubness between rating
and structural based similarity measurements on MovieLens and Netflix dataset. Both
the hubness and rating conditioned hubness decrease as the size of the neighbor list
increases, with K=20, the rating conditioned hubness H20

R of combined similarity mea-
surement is approximately 2 times lower than adjusted cosine similarity measurement
across all 3 datasets.

Adjusted Cosine Ochiai Combined
Dataset H5 H10 H20 H5

R H10
R H20

R H5 H10 H20 H5
R H10

R H20
R H5 H10 H20 H5

R H10
R H20

R
ml-100K 6.2 5.2 3.7 6.9 5.4 3.9 4.1 3.1 2.4 3.6 3.0 2.7 6.0 4.9 3.8 3.4 2.7 2.4
ml-1M 12.2 9.2 7.5 8.1 9.0 8.0 6.5 4.4 2.9 7.2 4.5 3.1 7.5 5.2 3.5 7.5 5.1 3.4
Netflix 21.7 17.6 15.2 24.9 19.5 16.3 38.5 23.8 13.1 22.9 13.2 13.4 45.7 25.3 14.0 31.6 16.1 8.9

Netflix Dataset and Modified Dataset without cold start users

Since collaborative filtering methods, especially memory-based CFs, are prone to cold
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start problem [45] [46], experiments are performed to see how much prediction accu-

racy improvement can be achieved on non-cold start users. experiments in Section

3.6.1 were reconducting using both the Netflix training-probe dataset and training-

probe separated dataset to predict on users with at least a certain number of ratings.

Since the MovieLens datasets are preprocessed by selecting users who rated at least 20

items [115], with the larger Netflix dataset, users who rated at least 50 are selected to

be non-cold start users. By comparing Tables 3.9 and 3.10, the predication accuracy

of all algorithms became worse in terms of higher MAE and RMSE with predefined

training-probe datasets in Table 3.9 compared to the result of using training-probe

separated dataset in Table 3.10. Model-based CF (BiasedMatrixFactorization) per-

forms better than the proposed method with training dataset that contains ratings

from testing dataset as shown in Table 3.9. But when using the training dataset that

doesn’t contain ratings of the testing dataset, which is usually the case in practice,

the proposed method still performs better than both traditional memory-based CF

and model based CF in terms of lower MAE in Table 3.10. Therefore, memory-based

CF with the proposed similarity measurement can perform better than model-based

CFs on non-cold-start users on this dataset.

Table 3.9.: Comparison of prediction accuracy among state-of-the-art CFs on Netflix
probe testing dataset for users with more than 50 ratings. The table is ranked by
MAE. The proposed method is in bold font. Note: Model-based collaborative filtering
methods are calculated with suggested hyperparameters using MyMediaLite library
[119].

Method Parameterization MAE RMSE
ItemKNNAdjustedCosine K=20 0.673137 0.879225
ItemKNNCombined K=20, power=2 0.670398 0.885109
BiasedMatrixFactorization num factors=80, learn rate=0.005,

reg=0.035, num iter=26
0.658173 0.839787
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Table 3.10.: Comparison of prediction accuracy among state-of-the-art CFs on Netflix
dataset with training dataset containing no ratings from the testing dataset for users
with more than 50 ratings. The table is ranked by MAE. Our method is in bold
font. Note: Model-based collaborative filtering methods are calculated with suggested
hyperparameters using MyMediaLite library [119].

Method Parameterization MAE RMSE
ItemKNNAdjustedCosine K=20 0.698783 0.912899
BiasedMatrixFactorization num factors=80, learn rate=0.005,

reg=0.035, num iter=26
0.692484 0.887858

ItemKNNCombined K=20, power=2 0.682575 0.900724

3.6.2 Computational Resources

In this section, memory-based CFs and model-based CFs are compared with re-

spect to computational time in order to show how much time is required versus

model-based CFs, it is observed that memory-based CF takes 2-39 times less wall

time to predict: SVDPlusPlus takes 78 mins, whereas ItemKNNCombined takes only

2 mins as shown in Table 3.11. Note that in order to make one single prediction,

model-based methods take the same amount of time as shown in the Table 3.11 and

entire item-user matrix to train while memory-based methods are able to predict

using only the item vectors that a particular user has rated on in real time.

Table 3.11.: Comparison of time consumption between memory-based and model-
based algorithms on ml-1M dataset. We choose one method that performs well in
accuracy prediction from previous section since other methods are derived from those.
We can see that memory-based CFs are much faster than model-based CFs. Model-
based CF Library provided by [119]. Note that: all methods in this section are
single-threaded coded. No parallelization is done for any method.

Algorithm Wall Time (mins)
SVDPlusPlus 78
BiasedMatrixFactorization 4
ItemKNNCombined 2
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3.6.3 Performance without cold-start users

In this section, memory-based item-based CF with adjusted cosine and the pro-

posed similarity measurement is compared with respect to prediction accuracy and

coverage to see if there is a difference in prediction accuracy between the proposed

method vs. traditional methods. Since memory-based CFs are prone to the Cold

Start Problem, a better performance can also be achieved on prediction accuracy

by not making predictions based on less than a certain number (5-25) of neighbors

instead of cutting users with less than certain number (50) of ratings as shown in

Section 3.6.1. Both the proposed method and KNN with adjusted cosine sacrifice

prediction coverage (the number of actually predictions made w.r.t. total number of

predictions expected to be made for testing dataset) as items with fewer than Bot-K

neighbors are not predicted, but both methods share the same coverage with the same

Bot-K.

The proposed method is approximately 4% better (for both MAE and RMSE)

than KNN using adjusted cosine as similarity measurement with Bot-K ranging from

5 to K-1 as shown in Table 3.12 and Figure 3.7. Furthermore, The differences of MAE

and RMSE between KNN with adjusted cosine and the method stay the same with

Bot-K ranging from 0 to K-1.

Table 3.12.: Prediction accuracy and coverage with bottom-K cutoff. Bot-K is the
number of minimum neighbors used to make a prediction. ItemKNNCombined is
using K=25, α=2.6.

Bot-K cut off Combined-MAE AdjCos-MAE Combined-RMSE AdjCos-RMSE Coverage(%)
0 0.708815 0.737840 0.909131 0.941535 100
5 0.707348 0.736244 0.90692 0.939081 99.3828
10 0.703131 0.732921 0.900971 0.934320 95.826
15 0.699072 0.729698 0.895132 0.929595 90.9246
20 0.694031 0.725457 0.888688 0.924096 86.1294
25 0.690634 0.722816 0.884356 0.920776 81.3963
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(a) MAE Performance For Different Bot-K
Cutoff

(b) RMSE Performance For Different Bot-K
Cutoff

Figure 3.7.: Accuracy Performance For Different Bot-K Cutoff

3.7 Discussion

3.7.1 Prediction Accuracy

The proposed similarity measurement can improve the prediction accuracy of tra-

ditional KNN method for the MovieLens and Netflix datasets in terms of lower MAE

as shown in Section 3.6.1. Since the number of co-rated users between each pair of

items |Cic| and the degree distribution among items varies as shown in Figure 3.3, the

structural similarity Sstruct(i i, i c) varies among the K nearest neighbors as well. Thus,

the MAE of CF using the proposed similarity measurement Scombined(i i, i c) would be

lower than the traditional CF method using rating-based similarity measurements

Srating(i i, i c) only. The performance of CF with the proposed similarity measure-

ment and adjusted cosine similarity would yield the same MAE or RMSE only when

the structural similarity measurement Sstruct(i i, i c) is the same between all pairs of

items. The structural similarity Sstruct(i i, i c) in the numerator and denominator in

Equations 3.5 and 3.6 will be canceled and make the new proposed similarity mea-

surement equal to adjusted cosine. This would happen when the popularity of each

item |i i| is the same and the number of co-rated users between all pair of items |Cic|
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is the same, which could hardly be true in practice as we can see from the degree dis-

tribution of MovieLens and Netflix dataset follows a power law distribution in Figure

3.2.

The combined similarity measurement also requires 2/3 to 3/4 times fewer neigh-

bors to achieve a better ( 4% lower in MAE) prediction accuracy compared to tra-

ditional KNN methods that uses structural or rating-based similarity measurement

alone using MovieLens datasets. Since structural similarity measurement and rating-

based similarity measurement are combined together to compensate each other, big

hubs that occur when calculating using rating-based similarity measurement or struc-

tural similarity measurement alone, but do not contribute much personal preferences,

are not frequently among the nearest neighbor lists. The rating conditioned hubness

of combined similarity measurement is approximately 2 times lower than adjusted

cosine similarity measurement across MovieLens and Netflix Datasets. 2/3 to 3/4

times fewer nearest neighbors are able to represent the user’s opinion, a 2/3 to 3/4

shorter nearest neighbor list is needed to make an accurate prediction compared to

traditional CFs over the MovieLens Dataset.

Although model-based CFs are known to have better prediction accuracy in terms

of lower MAE than memory-based CFs on MovieLens and Netflix datasets, we can see

that KNN memory-based CF with the proposed similarity measurement can achieve

lower MAEs than sophisticated model-based CFs on MovieLens and Netflix Datasets.

Although model-based CFs that utilize the entire user-item space can be potentially

more unbiased with more information included in the training, with the nearest neigh-

bor list ranked by the proposed similarity measurement, local neighbor items of the

predicting item can be more representative of the user’s opinion, thus achieve lower

MAE. Therefore, local KNN CFs can perform better in prediction accuracy than

model-based CFs with similarity measurements that are more representative of true

relationships between items.

Since RMSE penalizes large errors, model-based CFs with entire dataset to train

performs better on error regularization than memory-based CFs, thus achieving lower



67

RMSE. Comparing to memory-based CFs that only use the associated user informa-

tion and items this user has rated on to predict. Memory based CFs can get higher

RMSE compared to model-based CFs when users tend to give extreme ratings more

often. With pre-processed datasets such as MovieLens datasets, memory based CF

can perform better than model-based CFs in terms of both lower MAE and RMSE.

The prediction accuracy of memory-based CFs with proposed combined similar-

ity measurement can achieve better prediction accuracy than most state-of-the-art

Graph Convolutional Network (GCN) approaches and identical to Multi-Component

graph convolutional Collaborative Filtering (MCCF) (MAE: 0.7050, RMSE: 0.9070)

on MovieLens100K dataset reported in [105]. Moreover, except MCCF, the predic-

tion accuracy of those GCN approaches reported in [105] perform slightly worse than

SVD++ over MovieLens100K dataset. Though GCN approaches have good perfor-

mance, they generally require more computational resources or information to train

the model compared to memory-based CFs.

3.7.2 Computational Resources

Model based CFs require the entire user-item matrix R to train. Consequently,

they require 2-39 times more time and memory in order to make one single prediction

compared to memory-based CFs as shown in Section 3.6.2. Although once the training

is done, the prediction can be made in real time. However, in order to make the most

accurate prediction, the training process needs to be repeated after each new rating is

made. On the other hand, memory-based CFs only require the associated user and the

item information that this user has rated on to make a prediction. They require much

less memory and time compared to model-based approaches which require the entire

matrix to train. More importantly, the prediction can be done in real time when new

ratings are made. Furthermore, with the proposed similarity measurement, we can

predict with fewer neighbors versus traditional KNN CFs that use adjusted cosine,

and so require less time to predict.
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3.7.3 Performance without cold-start users

KNN CF with the proposed similarity measurement perform better with sufficient

amount of items rated by this predicting user as shown in Section 3.6.3. Memory-

based CFs are very intuitive to understand compared to model-based CFs such as

SVD that use hidden factors to describe the underlying reasons of why a user likes

an item. Although memory-based CFs suffer from the Cold Start Problem, it is more

easily understandable and explained why a user likes an item and why a particular

prediction is made. Then, active learning can be conducted [45] to specifically gather

more data to better understand user preference and then make a more reliable pre-

diction. While with model-based CFs, it is unable to explain why a user likes a item

and why predictions are made based on hidden factors which are not descriptive, it

would be challenging to form a strategy on how we could understand user preference

better by gathering ratings of which items from users.

3.8 Conclusion

In this research, we proposed a general framework to combine similarity measure-

ment to be used in KNN memory-based collaborative filtering methods that improves

the prediction accuracy over state-of-the-art CF methods. This is accomplished with-

out losing the advantages that memory based CF methods require less memory and

time compared to model-based CF methods. Furthermore, with the proposed similar-

ity measurement, KNN memory-based CFs use fewer neighbors to predict compared

to traditional KNN memory-based CFs as well.

Future work will incorporate time into recommendation systems by utilizing dy-

namic models of user preference dynamics. We will investigate on under what condi-

tions time would affect recommendation systems.
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4. IMPROVING MEMORY-BASED COLLABORATIVE

FILTERING BY CONSIDERING CONTRAST EFFECTS,

ANCHORING AND ADJUSTMENT BEHAVIORS

4.1 Abstract

Consumers rate items anchoring based on the ratings they have given to similar

items recently or based on the overall average ratings of this item given by other

consumers. The score of rating for an item can be a relative measure of how consumers

think of this item based on their own past experiences, or whether they believe this

item is overrated or underrated by all other consumers. Therefore, the score of the

rating given by a user can be biased because of the user’s past experience such as

the sequence of the ratings, or the average of the item rated at the time when the

user rates this item. Two techniques are proposed in this paper to reduce the biases

caused by those user comparing, anchoring and adjustment behavior by modifying

the similarity measurements used in memory-based collaborative filtering.

4.2 Introduction

4.2.1 Time-aware Recommendation Systems

A product or service is not judged only by its own characteristics, but also by

the characteristics of other products or services offered concurrently [11]. It can also

be judged by anchoring based on users’ memories [12–14]. Rating or satisfaction is

viewed as a function of the discrepancy or contrast between expected and obtained

outcomes [15, 16]. This is documented as contrast effects [17]. Thus, a rating given

to an item by a user is a comparative opinion based on the user’s past experiences.



70

Therefore, the score of ratings (e.g., 1-5) can be affected by the sequence and time of

ratings. However, in traditional collaborative filtering, pairwise similarities measured

between items do not consider time factors such as the sequence of rating, which

could potentially introduce biases caused by contrast effects. Furthermore, the user

averages used in adjusted cosine or item averages used in Pearson Correlation Coef-

ficient similarity measurement are overall averages of all ratings. In those similarity

measurements, item averages or user averages are used as a threshold of whether a

user liked an item. Those averages can shift over time. Using a fixed overall aver-

age as a threshold can give us inaccurate opinions of items from users at that given

time. Thus, 2 techniques are proposed in this paper to incorporate time factors

into memory-based collaborative filtering by modifying similarity measurements to

reduce biases introduced by consumer behaviors such as contrast effects, anchoring

and adjustment.

4.2.2 Summary of Main Contributions

In this paper, works about recommendation systems that considers time factors

and propose a new approach based on memory-based collaborative filtering method

are reviewed. How hubness and prediction accuracy of item-based collaborative fil-

tering in terms of MAE (Mean Absolute Error) improved by using our approach. The

main contributions of this paper are:

• A time-aware similarity measurement for both structure-based and rating-based

similarity measurements to be used in memory-based collaborative filtering is

proposed to overcome the limitations of: 1) unreliable measurements of pairwise

relationships between items being rated over a long time apart due to user

interest shifts; 2) highly rated but dissimilar items being measured as similar

items by traditional similarity measurements due to broad user preferences.

• The experimental results of our proposed approach, user anchoring and adjust-

ment behavior with recent or all data anchoring on user average or item av-
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erage using Pearson Correlation Coefficient and Adjusted Cosine as similarity

measurements on 3 most widely referred datasets: MovieLens100K, MovieLens-

LatestSmall, and Netflix Challenge datasets are provided. The results show: 1)

The prediction accuracy and hubness of memory-based CF improve by using our

time-aware similarity measurements; 2) Time affects the prediction accuracy for

both datasets collected via offline survey (users rates all movies at once) or on-

line rating (users rate one movie after they watched) system ; 3) Users compare

items and enlarge the differences in ratings that are rated close to each other in

time for online rating systems; 4) The differences between items rated within

minutes to each other for offline survey system are narrowed due to the rigidity

of the integer rating scale; 5) Hubness of memory-based CF does not change

via random removal except under some certain conditions; 6) Users anchor and

adjust their ratings not only on simple measures such as item or user averages.

4.3 Background

4.3.1 Related works

One of the most widely used approaches to deal with user interest shifts is by time

window, or referred as instance selection, time truncation [26,121]. It only learns the

user interests from the most recent observations [122] [123]. There are studies on how

prediction accuracy can be improved by adjusting the window size. [124] showed that

the prediction accuracy can be further improved by using heuristics to adjust the

size of the window . [125] showed that a time-based function to determine which old

observations are outside a certain time window should be neglected. However, there

are some cases that old observations are also important compared to new ones, to

avoid loss of useful information, some of the systems also learn from old observations

[122]. Hybrid models combining both short-term and long-term model of user interests

were also developed [126] to include observations that are old, but important. The
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method learns from the recent observations first. If a story cannot be classified using

short-term model, then it uses long-term model to learn from old observations.

As time-window approach can lose too much signal [31], models that assign weights

on the ratings with different decay functions are also developed. For example, a

gradual forgetting function with linear decay is developed as natural forgetting is a

gradual process [98]. With recent data being more important, [28] used an exponential

weight function to assign data importance based on time. Different clusters of items

or users can also have different decay rates.

There are also approaches that model time as one of the factors trained in model-

based approaches. Global effects, such as ratings may fall with time after the movie’s

initial release dates are also considered in deriving interpolation weights [127]. Time-

factors can also be modeled as biases [100]. Users are profiled based different time

cycles such as day, month or year [99]. Model-based SVD++ is introduced to capture

gradual concept drift [31]. Multiple time attributes can be derived, such as season,

week, or time of the day, to recommend [128]. [19] found that users tend to rate items

in similar context in a short period of time, which they modeled as sessions. [129]

considered rating sequence into matrix factorization model to improve prediction

accuracy. Users shift preferences due to : 1) new item exploration, 2) users’ past

experience, 3) popular item bias, 4) neighbors’ influence. [22] used a tensor-matrix

factorization method to include all those factors to capture user preference dynamics.

[130] used a overlapping community detection algorithm to include time factors. [131]

factorized the coupled tensor by weighting the importance of past user preference by

giving more weights on users with more rare side information.

There are also some additional approaches. Instead of assigning weights on the

rating, weights of similarities between items can also be assigned differently. It can

be based on the deviation of the rating on the item from the most recent rating [29].

It can also be a measure of time similarity between items [132].
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4.3.2 Memory-based collaborative filtering

Our approach is based on memory-based CFs. Memory-based CFs can be item-

based or user-based [10]. There are 2 steps for both approaches: similarity calculation

and preference prediction. Without loss of generality, taking item-based approach,

the detailed steps are in previous chapter, Sections 3.3.2 and 3.3.3. To help read-

ers understand better, terminologies and notations are defined in previous chapter,

Section 3.3.1.

4.4 Proposed Approach

Our approaches focus on modifying similarity measurement to reduce biases in-

troduced by consumer behaviors such as contrast effects, anchoring and adjustment.

In contrast, most literatures apply exponential decays on ratings to make predictions

more reflective of recent user preferences. However, Koren pointed that time-window

and decay cannot work as those techniques loose too much information about the

data [31]. in our approaches, instead of applying time-window and decay during pre-

diction phase for each user, they are applied in similarity measurement phase only.

In this way, each user’s individual subjective opinions are preserved as rating data

are not filtered or ignored for each user based on how recent this rating is during the

prediction phase. Instead, Time windows are applied based on how far apart those

two items are rated in time from one user. Therefore, if two movies that are consid-

ered similar from one user will be considered similar in the future as well if those two

movies are rated close in time. Since users may shift their preferences and dislike a

movie they used to like, they are likely to dislike the other similar movie as well if

those 2 movies are rated close in time, as they reflects the preference of that user from

the same time period. Furthermore, as similarity measurements are an aggregation

of opinions between two items among all users who have rated both items. Ignoring

parts of opinions would not affect the prediction coverage. So 2 approaches are pro-

posed to estimate similarities between items and compare the hubness after applying
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our approach. At last, the comparison between using item average and using user

average as anchoring point in rating-based similarity measurements is performed.

4.4.1 Reducing contrast effects in rating-based similarity measurements

As items are judged by anchoring based on users’ memories [12–14], the contrast

effects that users give ratings by comparing recent items, becomes the first bias to

ignore. Figure 4.1 illustrates the behaviors caused by contrast effects(anchoring and

adjustment). By looking at the figure, the cores of the ratings may be affected by the

sequences of the ratings.

(a) Ratings of User X who watched and rated
items in the order of item 1,2,3,4,5

(b) Ratings of User X who watched and rated
items in the order of item 5,4,3,1,2

Figure 4.1.: The scores of ratings affected by the sequence of ratings. Ratings given
may be anchored and adjusted based on user memories. In Fig 4.1a, User X rated
item 3, and later found that item 4 and item 5 were better, but the highest rating
this user can give is 5. So the user gave item 4 and 5 with ratings of 5 as well. While
in Fig. 5.6a, User X rated the best item 5, and then found item 4 and 3 were not as
good as item 5, so he gave lower ratings to those items. The score of the ratings are
affected by the sequence of ratings.

To capture the phenomena that the scores of ratings could be affected by the

sequences of ratings caused by contrast effects, the part of the Eq. 4.1 for the item

being rated later are raised to the power of β, where β > 0, to enlarge or reduce the

differences between the later rating and the item average to capture the phenomena
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that opinions of later rated items may be anchored based on previous rated items.

Rating-based similarity measurements such as adjusted cosine now becomes Eq. 4.1.

By choosing β > 1, contrast effects are enlarged. The difference between the later

rating and the reference average are enlarged. In this way, the rigidity of the integer

rating scale can be compensated. If 2 items are rated with the same score, the later

item now becomes more or less favorable by the user depending on both ratings are

rated higher or lower than the average. On the other hand, by choosing β < 1, the

contrast effects are reduced. The phenomena that the difference of the scores between

two items that are rated close in time are enlarged due to comparison is compensated.

By adjusting β, the relationship between 2 items measured from the ratings from the

user become less biased if users give comparative opinions anchored on recent rated

items.

S
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∑
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((
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))2 , (4.1)

where β ∈ (0,+∞), zi = sgn(Rix − R̄ux) = Rix−R̄ux

|Rix−R̄ux |
,zc = sgn(Rcx − R̄ux) =

Rcx−R̄ux

|Rcx−R̄ux |
,γ is the binary parameter to determine which item is later rated, which is

defined as: γi = 0, γc = 1 tc > ti

γi = 1, γc = 0 tc < ti

(4.2)

Two time distance measurements of how far between co-rated items in time are

introduced to be used as a threshold to determine whether to apply the modified

Strating,β,γ(i i, i c). They are: time distance and item distance. Time distance measures

the natural time distance (ex. days) between the time when each user rated those 2

items. Item distance measures how many items were rated between those 2 items in

time by this user. Similarity measurement is modified only on pairs of items that are

rated close to each other in time determined by those 2 measurements as in Eq. 4.1.
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Figure 4.2.: Plot of y = zi

((
|Rix − R̄ux|+ 1

)β − 1
)

. Contrast effects can be enlarged

or reduced by choosing different β. when β > 1, the contrast effects are enlarged,
when β < 1, the contrast effects are reduced.

For pairs of items that are not close to each other in time, traditional adjusted cosine

is used as contrast effects happen among items rated close to each other in time.

4.4.2 Ignoring relationship between items rated long time apart in struc-

tural similarity measurements

Structural similarity measurements can be biased because of item popularity since

structural similarity measurements consider two items similar if those two items share

lots of co-rated users. However, two popular items may not be highly correlated.

But using traditional structural similarity measurements would make them seem so

popular items usually share lots of co-rated users. But users’ preferences may change
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over time, items being rated by the same user may not be similar if the time distance

between the ratings of those two items from the same user is far. Traditional structural

similarity doesn’t consider time distance to capture whether those two items are rated

far in time. So it doesn’t consider user preference shifts across time or item popularity.

Therefore, to lower the similarities between popular but not necessarily similar items,

if the ratings of 2 items by the same user are rated far in time based on time distance

measurements, the relationship of this pair of items formed by this user is neglected,

in which those pairs of items are excluded in structural similarity measurements. The

time distance between the rating of pairs of items are again: natural time distance and

item distance. Structural similarity measurements now become in Table. 4.1. With

this modified structural similarity measurement, The hubness of items is expected

to reduce and the prediction accuracy is expect to increase as similarities between

popular but not necessarily similar items are reduced.

Table 4.1.: Lists of some time-aware structural similarity measurements approximated
locally. |Ct

ic| denotes the pairs of items that are rated by the same user within a certain
natural time distance or item distance. Note that those measurements do not require
global information such as the total number of users. All information required for the
calculation can be obtained from those 2 associated vectors i c and i i.

Structural similarity measurement Definition Ststruct(i i, i c)

Common neighbor |Ctic|
Jaccard |Ctic|/|i i ∪ i c|
Salton/Ochiai |Ctic|/

√
|i i| · |i c|

Sorensen 2|Ctic|/(|i i|+ |i c|)
HPI |Ctic|/min(|i i|, |i c|)
HDI |Ctic|/max(|i i|, |i c|)
LHN1 |Ctic|/(|i i| · |i c|)

By applying time-aware modifications on the structural and rating based similarity

measurements incrementally to reduce those biases mentioned in previous 2 sections

is expected to lead to an improvement in prediction accuracy in terms of lower MAE.
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However, as each technique is limiting the amount of data used during calculation.

Using less and less data could make similarity measurement calculation more prone

to Cold Start Problems, which too few data are used that could leads to unreliable

representation of the relationship between items too. So the performance of prediction

accuracy will improve at first by ignoring biased opinions of pairs of items and then

decrease when too many pairs of items are ignored in the structural or rating-based

similarity measurements, which similarities between items are biased towards opinions

from very few users.

4.4.3 Hubness

Hubness of item-based CF using time-aware rating-based similarity measurements

will not change compared to the ones without considering time. This is because that

rating-based similarity measurements are consensuses among all users who have rated

both items as those measurements are aggregated over opinions of all pairs of items

rated by the same user. They consider 2 items similar if most users rate both items

above or below user averages or item averages. Time-aware rating-based similarity

measurements exclude opinions of items rated close to each other in time from the

same user. It is very unlikely that 2 items are rated close to each other in time

by most users in reality as it is not likely that most users watch movies in the same

sequence. Therefore, it removes only a small portion of opinions on pairs of items that

are rated close to each other. How much exactly is the portion of pairwise opinions

removed is shown in Thm. 4.4.1 and 4.4.2. Those removed pairwise opinions can be

unreliable due to contrast effects as mentioned in the previous section. Again, rating-

based similarities are consensuses over co-rated users. By removing a small portion of

unreliable consensuses, the structure of the item-based network isn’t affected. Only

the edges with rating-based similarities as weights get adjusted without considering

those unreliable opinions. Therefore,hen choosing x � n, what has been removed

is a portion of the opinions from the consensuses from all co-rated users over the
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pairwise items. As total number of ratings n grows, the portion being removed gets

even smaller. So not much change in the hubness of item-based CF using time-aware

rating-based similarity measurements compared to the ones without considering time

is expected.

Theorem 4.4.1. The total number of pairwise opinions over items from one user

rated within item distance of x is: nx2 = (x−1)n− (x−1)x
2

, where n is the total number

of items this user rated, x is the total number of items rated between 2 items with

regard to time, x ∈ N>1, x ≤ n.

Proof. Let x be the item distance, nx be the total number of pairwise opinions, then:

x nx
2 n− 1
3 (n− 1) + (n− 2)
4 (n− 1) + (n− 1) + (n− 3)
...

...
x (n− 1) + (n− 2) + (n− 3) + · · ·

+(n− x− 1) = (x− 1)n− (x−1)x
2

Given that x is a constant, the rate of number of pairwise opinions grows in O(n).

However, the total number of pairwise opinions nx2 from one user grows exponentially

with regard to the total number of ratings this user gives. To be exact, that is:

Theorem 4.4.2. The rate of total number of pairwise ratings n2 from one user grows

in O(n2), where n is the total number of ratings from this user.

Proof. The number of pairwise opinions from one user is:

n2 =

(
n

2

)
, (4.3)
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where n is the total number of ratings from this user. As

n2 =

(
n

2

)
=
n(n− 1)

2
=
n2

2
− n

2
, (4.4)

then,

n2 = O(n2). (4.5)

However, hubness of item-based CF using time-aware structural similarity mea-

surements will decrease compared to the ones without considering time as popular

but not necessarily similar pairs of items are ignored. Structural similarity measure-

ments consider two items similar if those two items share a lot of users who rated

both of them. As mentioned in previous section, popular items tend to share lots of

co-rated users. Therefore, with structural similarity measurements, two items that

are not necessarily similar in content but are both popular will be considered similar.

One user can have variety of different interests and those preferences may shift over

time. by considering all pairwise opinions, all those items that are not necessarily

similar in content, but popular, will be considered to be similar due to that they

share lots of co-rated users determined by structural similarity measurements caused

by the varieties and shifts of user preferences. In item-based network, all items will be

considered similar eventually as the network grows. Therefore, assuming that users

may shift preferences gradually, the time-aware structural similarity measurements

are proposed to remove pairwise opinions that are rated over a long period of time

in terms of how many days or item distance they were rated apart by the same user

to reserve the true dynamics between items. From Table. 4.1, structural similarity

measurements are a function of the number of co-rated users. Taking Ochiai as an

example, to reduce the hubness of popular items, the reduction is only applied over

the nominator |Ct
ic|. Therefore, Similarities of popular items that are rated over a

long period of time will not increase but be penalized by their popularities as the

denominator stays the same. Therefore, the more popular the items are, the more
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reduction they will get in similarity measurements. Hubness is expected to reduce in

this way if our assumption that users shift their preferences gradually and eventually

rate more popular items is true. If user preferences do not change or user prefer-

ences change abruptly within the time distance threshold, there will be no change in

hubness by using this approach.

Reduction in hubness of item-based CF using time-aware structural similarity

measurements is not simply due to random reduction in the number of co-rated

users. To further verify that hubness reduction is contributed by our strategical time-

related removal approach, it can be compared with random removal by approving

those following theorems:

Theorem 4.4.3. Given a weighted graph G(V,E,W ), where [wij = f(xij)] ∈ W , xij

is an attribute of eij ∈ E, ∀xij ≥ 0, f(xij is a non-negative monotonically increasing

function. For G′(V,E,W ), such that ∀x′ij = αxij, where α > 0. Then the hubness

H(G′) = H(G).

Proof. we We are going to prove by contradiction. the hubness, which is the skewness

of the distribution of the number of times each node occurs in the nearest neighbor

lists of all other objects can change if the nearest neighbor lists change. The nearest

neighbor lists can change because the rankings of the nearest neighbor lists changes.

Assume that the ranking of the nearest neighbor list can be changed by decreasing

or increasing x′ij = αxij on every edge, this can not be true as it contradicts that wij

is a non-negative monotonically increasing function. Therefore, nearest neighbor lists

does not change, the hubness does not change.

First, let α ∈ (0, 1], that is x′ij ≤ xij, since x′ij = αxij. Before decreasing xij to

x′ij, 2 nearest neighbors of v1: v2 and v3, ranked by:f(x13) ≤ f(x12) =⇒ x13 ≤ x12

since wij is a non-negative monotonically increasing function.

When decreasing x on all edges to x′ by the same ratio α, x′ over all edges are

decreasing at the same rate, x13 ≤ x12 =⇒ αx13 ≤ αx12.
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Assume that the ranking of the nearest neighbor list can be changed by decreasing

∀x′ij = αxij on every edge, that is: after decreasing, αx13 ≤ αx12 =⇒ f(αx13) ≥

f(αx12).

However, this contradicts that wij = f(xij) is a non-negative monotonically in-

creasing function. Thus, this can not be true.

Therefore, the nearest neighbor list can not be changed by decreasing xij on every

edge. Thus, the hubness, which is the skewness of the distribution of the number

of times each node occurs in the nearest neighbor lists of all other objects, does not

change.

The proof is similar for α > 1, where ∀xij being increased to x′ij by the same rate

α.

Note that if the function f(x) is not monotonic, the hubness is possible to change.

That is:

Remark. Given a weighted graph G(V,E,W ), where [wij = f(xij)] ∈ W , xij is an

attribute of eij ∈ E, ∀xij ≥ 0, Wij is NOT a non-negative monotonically increasing

function. For G′(V,E,W ), such that ∀x′ij = αxij, where α > 0, Then the hubness

H(G′) is not guaranteed to equal to H(G).

However, for those structure similarities used in CF - Sstruct(i i, i c) listed in the

Table. 4.1 are all non-negative monotonically increasing function w.r.t. |Cic|. So this

phenomenon will not happen.

But the hubness of item-based CF using structural similarity measurements can

be reduced by random removal under some condition. That is:

Theorem 4.4.4. Given a weighted graph G(V,E,W ), where [wij = f(xij)] ∈ W , xij

is an attribute of eij ∈ E, ∀xij ≥ 0, wij is a non-negative monotonically increasing

function, x < θ =⇒ f(x) = 0. For G′(V,E,W ), such that ∀x′ij = αxij, where α > 0,

Then the hubness H(G′) ≤ H(G).
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Proof. We are going to proof by direct proof by showing that as the weights Wij

on each edge decreases at the same rate, the smallest weight will always have the

highest likelihood to decrease to become under the threshold θ to let f(xij) become 0

first. Then these two nodes will become disconnected with each other and disappear

among each other node’s nearest neighbor list. Then the hubness decreases. With

more weights become 0, the hubness continues to decrease until it becomes 0 with

the graph becomes completely empty with no edge exists.

As Theorem 4.4.3 shows, when decreasing xij on all edges to x′ij by the same ratio

α, the hubness H(G′) = H(G).

However, xij < θ =⇒ f(xij) = 0. The smallest weight Wij among all other

weights will always have the highest likelihood to decrease to 0 first since f(xij) is a

non-negative monotonically increasing function, f(xmin) = min(f(xij)) =⇒ xmin =

min(xij) =⇒ x′min = αxmin = min(x′ij) =⇒ f(x′min) = min(f(x′ij)).

With W ′
ij = f(x′ij) becomes 0, two nodes become disconnected. Thus, if one node

is among the other node’s nearest neighbor list, this node will no longer be among

the other’s nearest neighbor list now.

As hubness is the skewness of the distribution of the number of times each node

occurs in the nearest neighbor lists of all other objects as described in Section ??.

The hubness will decrease.

With xij continuing to decrease on all edges, the 2nd smallest xij becomes under

the threshold θ. The weight w′ij = f(x′ij) becomes 0. As xij continues to decrease

over all edges, more weights on more edges become zero and become disconnected.

More nodes disappear from the end of other nodes’ nearest neighbor lists with the

size of the nearest neighbor lists large enough to hold those nearest neighbors before

decreasing xij.

With more 0s appearing as the number of times each node occurs in the nearest

neighbor lists of all other objects, the hubness continues to decrease.
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Eventually, the hubness of the graph is decreased to 0 as it becomes a completely

empty graph.

Although, the hubness of item-based CF using structural similarity measurements

can be reduced by random removal according to Theorem 4.4.4, The prediction ac-

curacy in expected to decrease as less neighbors are used to make a prediction.

The prediction accuracy and hubness between random removal and time-aware

removal will be compared to see if the proposed strategy reduces hubness and increases

prediction accuracy simply due to reducing the density of the data. By removing the

same amount of co-rated users, the proposed strategy is expected to reduce more

hubness and achieve better prediction accuracy.

4.4.4 Anchoring and Adjustment

In traditional collaborative filtering, all pairwise opinions are used to calculate

similarity measurements. Reference points to determine whether a user likes an item

or not, such as user rating averages or item averages during calculation, are approxi-

mated based on all data. In adjusted cosine or Pearson Correlation Coefficient(PCC),

ratings of 2 items i, j from the same user u above the user average Riu,Rju > ūu

or each item’s average Riu > ī i,Rju > ī j are considered to be positively correlated.

However, those reference points can shift over time ū t
u 6= ū t+1

u as user rating scales

or preferences shift. As user averages ūu shift over time, the user average at the time

when this user rated each item or the overall user average can all be different. A

rating above the user average at time t the user rated Riu > ū t
u can later at time

t+ 1 become below the user average Riu < ū t+1
u as the user average shifts over time.

Then an item liked by the user at the time t the user rated can later be interpreted

as the user disliked the item at time t + 1. Using a static overall user average as a

reference point during the similarity calculation to determine whether a user liked an

item, the opinions of an item from a user at a previous timestamp can be interpreted

totally different based on an average calculated at a later time using all data as shown



85

in Fig 4.3. Thus, similarity measurements such as adjusted cosine or PCC calculated

using static user or item averages can be unreliable as they are approximated with

all opinions from a user to evaluate an opinion made earlier. Unreliable similarities

used in CFs can lead to inaccurate prediction accuracy.

Figure 4.3.: Static average v.s. dynamic average. Using constant user average as the
reference point, item 1 and item 2 will yield a negative relationship, since item 1 is
above the average while item 2 is below. Using dynamic user average as the reference
point, item 1 and item 2 will yield a positive relationship.

Users may be anchoring based on how others think of the item (item averages)

or their own memories, which is the user averages in this case. A comparison of

both PCC using accumulative item average with ratings before the user made the

rating v.s. the static overall item average and Adjusted Cosine using user averages

calculated using only most recent ratings from the user v.s. static overall user average

can be performed to show if there is any difference. A comparison of the performance

of prediction accuracy of CF with PCC v.s. Adjusted Cosine over datasets which
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users do or do not know the item average ratings when they made the rating can

show if users rate anchoring on item averages.

CF with PCC is expected to perform better over the datasets which users know

the item average rating when they made the rating, as users may anchor on the item

average during rating, while CF with Adjusted Cosine will perform better over the

datasets which users do not know the item average rating when they made the rating,

as users may be anchoring on their user experiences, which may be more related to

user averages.

4.5 Experiment Design

4.5.1 Data Sets

For comparison purposes, the MovieLens and Netflix datasets are used as they are

the most widely referenced in literature (See Table 4.2). For ML100K and Netflix257,

the last rating of each user based on timestamp is separated into testing dataset and

the rest is in training dataset. For MLNew and Netflix2761, the last 10% rating of

each user based on timestamp is separated into testing dataset and the rest is in

training dataset. One difference is that over ML100K dataset, it was collected in a

survey fashion. Users rate at most hundreds of movies within a day. While over the

Netflix and MLNew datasets, Assume users rate each movie right after they watched

the movie. The other difference is that: users in ML100K dataset don’t know the item

average ratings when they made the ratings. Users in Netflix and MLNew datasets

know the item average ratings when they made the ratings.

4.6 Experimental Results

4.6.1 Time affecting prediction accuracy

First, the real-world data is used to examine how the contrast effects indicated

by literatures affect the accuracy of recommendation systems. The dataset chosen is
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Table 4.2.: Data sets. Datasets vary in different sizes (number of users, number of
items, number of ratings, and density). MovieLens datasets have been pre-processed
with users who had less than 20 ratings or did not have complete demographic infor-
mation were removed [115]. ML100K dataset contains data collected through Movie-
Lens web site (movielens.umn.edu) from 1997/09/19 through 1998/04/22. MLNew
contains data collected between March 29, 1996 and September 24, 2018. Netflix
datasets are selected sub-dataset from Netflix Prize dataset which contains data col-
lected from 1998/10 through 2005/12 and reflects all ratings received during this
period. Netflix contains users who have rated at least 20 items and been active for
more than 1 day. Netflix257 contains less ratings with less users compared to Net-
flix2761. Density is the ratio of the number of actual ratings to the possible maximum
number of ratings.

Data Set Number of Users Number of Movies Number of Ratings Density
MovieLens 100K (ML100K) [115] 943 1,682 100,000 6%
MovieLens Latest Small (MLNew) [115] 9,742 610 100,836 1.7%
Netflix257 [4] 257 1,000 10,008 4%
Netflix2761 [4] 2,761 1,000 104,697 4%
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a well-known dataset used by most recommendation systems as a benchmark called

MovieLens 100K. More details about this dataset can be referred in Section 4.5.1.

Three sets of experiments on 4 sub-datasets generated from MovieLens 100K were

conducted. Each dataset is separated into training and testing datasets by users.

Each testing dataset contains the last rating of each user based on the timestamp.

The rest of the ratings are in training dataset. The training and testing dataset SU>1

contains ratings from 291 users who are active for more than 1 day. The training and

testing dataset SU≤1 contains ratings from 636 users who are active for less than 1

day.

Then, the users were ranked based on the number of ratings each user has and

separated users into 2 datasets: SU+ and SU−. The training and testing datasets of

SU+ contains ratings from top 292 users based on the ranking of the number of ratings,

which contains more rating. The training and testing datasets of SU− contains the

ratings from the rest 645 users, which contains less rating. The size of dataset SU>1

is close to that of SU+. The size of dataset SU≤1 is close to that of SU−. Model-based

CF SVD++ and memory-based CF with adjusted cosine and our proposed similarity

measurement from [133] were conducted on those 4 datasets. The results are shown

in Table 4.3.

By comparing the MAE of SU>1 and SU≤1, users who are active for more than

1 day yield about 13-15% (Adjusted Cosine, SVD++, Combined) better prediction

accuracy. But it may be because of that users who are active for more than 1 day

also have more ratings to train with. To investigate whether more ratings leads to

better prediction accuracy. By comparing the MAE of SU+ and SU−, it shows that

more ratings do contribute to better prediction accuracy. But when looking at the

differences of MAE between SU>1 and SU≤1 and the differences of MAE between SU+

and SU−, differences of MAE between SU>1 and SU≤1 is approximately 5% larger

than the differences of MAE between SU+ and SU−, which indicates that the number

of ratings is not the only factor that contributes to better prediction accuracy. Users

who are active for less than one day tend to rate all movies within a short period
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Table 4.3.: Prediction accuracy of memory-based and model-based CF performed on
4 datasets: SU>1: users active for more than 1 day, SU≤1: users active for less than 1
day, SU+: users with more ratings, SU−: users with less ratings. By comparing the
MAE of SU+ and SU−, more number of ratings can potentially contribute to better
prediction accuracy of CFs(but not necessarily, by comparing the MAE of SU− and
SU≤1 of SVD++). By comparing the MAE of SU>1 and SU+ users who are active for
longer time have better prediction accuracy than users who have more ratings.

Adjusted Cosine SVD++ Combined
Dataset MAE RMSE MAE RMSE MAE RMSE
SU>1 0.713728 0.918298 0.710057 0.921500 0.698495 0.894182
SU≤1 0.834777 1.075180 0.828599 1.046482 0.827064 1.061490
SU+ 0.769130 1.006780 0.752907 0.972794 0.735208 0.970204
SU− 0.835165 1.052060 0.817157 1.025473 0.825090 1.051230
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of time. Some rate movies every few minutes or seconds. They may rate movies

based on their memories and take the rating as a survey. Their memories may not

be reliable to reflect their true ratings. While users who are active for more than

1 day tends to rate movies at least every few hours or days. Assume those users

rate movies right after they watched the movie. So the rating may be more reliable.

By further comparing the MAE of SU≤1 and SU−, SVD++ and CF with combined

similarity measurement get lower MAE for SU−, which indicates that more rating

doesn’t necessarily contributes to better prediction accuracy. Therefore, separating

users by active time shows that time is a factor that contribute to prediction accuracy.

4.6.2 Reducing contrast effects in rating-based similarity measurements

The approach in Section. 4.4.1 is applied to the pairs of items rated by the same

user within a time distance and item distance on dataset SU>1 (explained in Section

4.6.1) and got the results in Table 4.4. Traditional memory-based CF with adjusted

cosine can now perform 0.5% better than model-based CF SVD++. Memory-based

CF with our combined similarity measurement improves 1% in terms of lower MAE

when enlarging the contrast effects with β > 1 compared to the one (SU+ Combined in

Table 4.3) without considering the time. Over Netflix257 dataset, which has approx-

imately the same number of users as dataset SU>1, reducing contrast effects lowered

MAE. Choosing β close to 0 neglects the pairs of items that are rated close to each

other yields the best result. Compared to the MAE without time in Table. ??, our

combined+ method that neglects pairs of items rated within item distance of 4 gives

us a 1.4% improvement in MAE.

MAE RMSE Parameter
AdjCos 0.726202 0.937236 topN=30
Combined 0.707023 0.916561 topN=30 α=2.6
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Table 4.4.: Results for enlarging contrast effects in rating-based similarity measure-
ments. Traditional memory-based CF with adjusted cosine can now perform better
than sophisticated model-based CF SVD++. Memory-based CF with our combined
similarity measurement improves 1% in terms of lower MAE compared to SU+ Com-
bined in Table 4.3.

MAE RMSE Parameter
AdjCos 0.713728 0.918298
Combined 0.698495 0.894182
AdjCos+ 0.709950 0.913432 power = 1.15 session= 1hr
Combined+ 0.690399 0.907679 power=4 session=1hr
Combined+ 0.686851 0.901488 power=8 session=3 items
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Table 4.5.: MAE of combined+ on Netflix257 dataset with α=2.6, topN=30: best
prediction accuracy is achieved by setting β close to 0 to neglect similarities of pairs
of items rated close to each other(within a time distance, or within an item distance)
in final similarity aggregation. Using item distance as selecting criteria performances
better than using time distance.

β=0.01 0.05 2
1 day 0.705928 0.706 0.713306
1 week 0.70474 0.705594 0.708456
1 month 0.704851 0.703818 0.713187
1 item 0.701893 0.703934 0.715352
2 items 0.705934 0.705315 0.711787
3 items 0.702577 0.703745 0.713396
4 items 0.696801 0.701337 0.713051
5 items 0.697233 0.699512 0.713963

The distribution of item distance and time distance over SU+ and Netflix257

dataset is examined to understand why enlarging the contrast effects works better

over SU+, while reducing or neglecting the pairs rated too close to each other in time

works better over Netflix257 dataset (See Figs. 4.4,4.5). It turned out that users in

MovieLens dataset rate movies very frequently like a survey, while users in Netflix257

rate movies at least a few hours or days after watching each movie.
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Figure 4.4.: Distribution of time distance and item distance of all pairs of items rated
by the same user over ML100K dataset
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Figure 4.5.: Distribution of time distance and item distance of all pairs of items rated
by the same user over Netflix257 dataset
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Table 4.6.: MAE of Ochiai with structural similarity cutoff on Netflix257 dataset with
α=2.6, β=0.01, topN=30.

N itemDist<N timeDist<N itemDist<N%*|u i| timeDist<N%*T (u i)

10 0.706093 0.709055 0.710428 0.719146
20 0.708270 0.711792 0.704031 0.711037
30 0.710478 0.712353 0.709794 0.714870
40 0.710022 0.715786 0.709625 0.712801
50 0.709791 0.719761 0.711649 0.718054
60 0.711901 0.719217 0.713215 0.716313
70 0.714322 0.718554 0.713919 0.712742
80 0.711829 0.717690 0.715343 0.711432
90 0.711277 0.715113 0.713619 0.710775
100 0.712398 0.716477 0.713996 0.713996

Static Ochiai 0.713996

4.6.3 Ignoring relationship between items rated long time apart in struc-

tural similarity measurements

Next, relationship formed long time apart is ignored in structural similarity mea-

surements introduced in Section. 4.4.2 over Netflix257 to examine if the prediction

accuracy can be improved. Two item and time distance thresholds were used: static

and dynamic. Static item distance threshold ignores pairs of items that are rated

more than a certain item distance apart. Dynamic item distance threshold ignores

items that are rated apart more than a certain percentage of total number of items

this user has rated. While static time distance threshold ignores pairs of items that

are rated more than a certain days apart. dynamic time distance threshold ignores

items that are rated more than a certain percentage of active days (days between

first and last rating) of a user. Ochiai similarity is used as an example of structural

similarity measurement. The results are shown in Table. 4.6 and Fig. 4.6. Using

a dynamic item distance with 20 items yield the lowest MAE of 0.704031, which is

about 1.4% lower than static Ochiai without considering time.
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Figure 4.6.: MAE of Ochiai with structural similarity cutoff on Netflix257 dataset
with β=0.01, topN=30. Using a dynamic item distance with 20 items yield the lowest
MAE of 0.704031, which is about 1.4% lower than static Ochiai without considering
time.

Then, the same approach with combined similarity measurement is performed

over Netflix257 to see if relationship formed long time apart is ignored in structural

similarity measurements could improve the prediction accuracy. The results are shown

in Tab. 4.7 and Fig. 4.7. There is only an improvement of 0.3% in MAE by using

dynamic time distance.
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Table 4.7.: MAE of combined+ with structural similarity cutoff on Netflix257 dataset
with α=2.6, topN=30. There is only an improvement of 0.3% in MAE by using
dynamic time distance.

N itemDist<N timeDist<N itemDist<N%*|u i| timeDist<N%*T (u i)

10 0.726780 0.741209 0.734249 0.730346
20 0.718433 0.730557 0.734641 0.737068
30 0.705206 0.726725 0.716630 0.732055
40 0.706586 0.721525 0.717111 0.723287
50 0.711158 0.720189 0.707323 0.710828
60 0.708677 0.714149 0.717750 0.705783
70 0.710804 0.720011 0.711336 0.704815
80 0.706399 0.720809 0.707582 0.705452
90 0.705485 0.719271 0.706103 0.706489
100 0.704925 0.725100 0.707023 0.707023

Static Combined 0.707023
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Figure 4.7.: MAE of combined+ with structural similarity cutoff on Netflix257 dataset
with α=2.6, topN=30.

Finally, the approaches of reducing contrast effects in rating-based similarity mea-

surements and ignoring relationship formed long time apart in structural similarity

measurements were combined together to examine if there is an improvement in pre-

diction accuracy over the Netflix257 dataset. The results are shown in Table. 4.8 and

Fig. 4.11. The MAE is improved by 1.3% over the combined method with neglecting

items rated close to each other within item distance of 4 in rating-based similarity

measurement and 2.7% over the static combined method.
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Table 4.8.: MAE of combined+ with structural and rating similarity cutoff on Net-
flix257 dataset with α=2.6, β=0.01(itemDist=4), topN=30.

# itemDist¡# timeDist¡# itemDist¡%*|u i| timeDist¡%*T (u j)

10 0.718879 0.702213 0.716909 0.706304
20 0.700994 0.704779 0.722187 0.713683
30 0.691385 0.708916 0.693583 0.715001
40 0.687667 0.700999 0.698405 0.707568
50 0.692490 0.707992 0.690667 0.695967
60 0.692871 0.705808 0.699012 0.690531
70 0.697553 0.701944 0.696385 0.692553
80 0.694137 0.701593 0.696463 0.690865
90 0.693688 0.696626 0.695633 0.694505
100 0.693211 0.701254 0.696801 0.696801

Static Combined 0.707023
Combined+ Rating neglect(itemDist=4) 0.696801
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Figure 4.8.: MAE of combined+ with structural and rating similarity exclusion on
Netflix257 dataset with α=2.6, β=0.01(itemDist=4), topN=30. The MAE is im-
proved by 1.3% over the combined method with neglecting items rated close to each
other within item distance of 4 in rating-based similarity measurement and 2.7% over
the static combined method.

4.6.4 Coverage and Hubness

Although pairs of items rated close to each other are excluded to reduce contrast

effects in rating-based similarity measurements and pairs of items rated far to each

other are excluded to reduce relationship formed due to popularity of items and user

preference shifts in structural similarity measurements. The coverage, which is how

many predictions that are able to make, does not decrease as shown in Table. 4.9.

Because similarities are aggregated over multiple users. Excluding some pairs from

one user does not affect the overall coverage.
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However, the hubness is dramatically reduced at most 70% with CF using com-

bined+ compared to traditional adjusted cosine. The result is shown in Table. 4.9

and Fig. 4.9. Combined+ method with both techniques achieves the lowest hub-

ness. That means the most popular highly rated items are least frequently among the

nearest neighbor lists when using combined+ as similarity measurement. Hubness of

combined+ decreased up to 43% compared to static combined method. However, this

may also be caused by excluding pairs of items alone. By excluding pairs of items

rated within item distance of 4 in rating-based similarity measurement, 14% of pairs

are excluded. By excluding pairs of items rated more than item distance of 40 away

in structural similarity measurement, 22% of pairs are excluded.

14% and 22% (same amount of pairs being ignored using threshold cutoff) pairs

of items are randomly excluded in rating-based similarity measurement and struc-

tural similarity measurement accordingly to see if hubness is reduced simply due

to less pairs of items considered. The hubness of all rating-based, structural-based

and combined similarity measurements with excluding the same amount of pairs of

items randomly do not change much compared to the ones without random excluding.

However, by comparing random excluding and our approach with the same density of

pairs excluded, hubness is reduced over structural (Ochiai+) and Combined+ (Both)

similarity measurements. Hubness of strategically excluded Ochiai+ is reduced up to

25% compared to Ochiai with randomly excluding the same amount of pairs of items.

Our proposed Combined+ (Both) with excluding pairs of items in both rating-based

and structural similarity measurements further reduced the hubness up to 45% com-

pared to Combined (Both) with random excluding the same amount of pairs. By

comparing randomly and strategically excluding pairs of items in rating-based and

structural similarity measurements separately, excluding strategically in structural

similarity measurement contributes to the hubness reduction in Combined+ method

since the hubness of Combined+ (Rating itemDist<4) is the same as randomly ex-

cluded Combined(random exclude 22% Rating), while the hubness of Combined+
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Table 4.9.: Comparison of hubness between rating-based, structural-based and com-
bined similarity measurement with and without considering time effects. Combined+
with both techniques achieves the lowest hubness.

Similarity Measurement H5
R H10

R H15
R H20

R H25
R H30

R

AdjCos 5.8 3.9 3.1 2.5 2.2 1.9
Ochiai 5.2 4.1 3.3 3.0 2.8 2.5
Combined 3 2 1.7 1.4 1.2 1.1
AdjCos (random exclude 14%) 6 4 3 2.5 2.1 1.8
Ochiai random exclude 22%) 5.2 3.9 3.2 2.8 2.5 2.2
Combined (random exclude 22% Rating) 2.9 2 1.6 1.4 1.2 1
Combined (random exclude 14% Struct) 3.1 2.2 1.6 1.3 1.1 1
Combined (both) 3.1 2.2 1.6 1.3 1.1 1
AdjCos+ 5.8 3.9 3.1 2.5 2.2 1.8
Ochiai+ 3.9 2.7 2.4 2.3 2.3 2.1
Combined+ (Rating itemDist¡4) 3 2 1.7 1.4 1.2 1
Combined+ (Struct itemDist¿40) 1.7 1.2 1.1 1.1 1 1.1
Combined+ (Both) 1.7 1.2 1 1.1 1 1

(Struct itemDist>40) is reduced compared to Combined (random exclude 14% Struct)

and is the same as Combined+ (Both).
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Figure 4.9.: Comparison over Hubness (HK
R ) of KNN list with similarities randomly

and strategically exclusion. Combined+ (both) achieves the lowest hubness. Hubness
of Ochiai+ is less than Ochiai with random exclusion, while there is no significant
difference in hubness between strategically and random exclusion over rating-based
AdjCos (random exclude 14%) and AdjCos+.

The experiment of randomly removing pairs of items in Ochiai similarity measure-

ment is performed to see if the hubness can be reduced to the same level of Ochiai+,

which was removed strategically based on one of the time factors. The result is showed

in Fig. 4.10. Ochiai+ (Struct itemDist<40) excluded 14% of pairs of items, which

achieved hubness (H5
R) of 3.9. Different amount of pairs over Ochiai ranging from 0%

to 90% were randomly excluded to see how much density is needed to be excluded in

order to achieve the same hubness of Ochiai+. Note that the threshold θ in Theorem

4.4.4 here is equal to 1 as at least 1 co-rated user is needed to create an edge between

nodes. The result shows that the same hubness of Ochiai is achieved by removing

80% of the pairs of items randomly over Ochiai similarity measurement. However, the
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prediction accuracy in terms of MAE of Ochiai start to decrease dramatically after

excluding 40% of pairs.
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Figure 4.10.: Comparison of prediction accuracy and hubness (H5
R) of KNN list with

Ochiai+ and Ochiai with different density of pairs of items excluded. To achieve the
same hubness of Ochiai with 14% pairs excluded, Ochiai needs to remove at least 80%
of pairs. However, Prediction accuracy (MAE) of Ochiai is dramatically decreased
after excluding 50% of pairs.

4.6.5 Anchoring and Adjustment

The prediction accuracy of CFs using PCC between with accumulative item av-

erages (PCC+) with ratings till the time the user made the rating and with static

overall item averages (PCC) over the Netflix2761 dataset were first compared. Differ-

ent numbers of items (0-100) as the warm up period were used for the accumulative

averages to examine if different warm up period would improve the prediction accu-
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racy. Then the same comparison was performed over Adjusted Cosine between with

accumulative user averages (AdjCos+) with ratings till the time the user made the

rating and with static overall user averages (AdjCos). The performances over the

combined methods with PCC (CombPCC+) and Adjusted Cosine(CombAdjCos+)

was also compared. At last, the prediction accuracy of CFs between using adjusted

cosine with user averages calculated with most recent items each user had rated before

the user rated this item and using adjusted cosine with overall static user averages

was compared. The results are shown in Fig. 4.11. There is not any significant

improvement in prediction accuracy in terms of lower MAE by using dynamic user or

item averages in rating-based similarity measurements. But PCC or CombPCC with

item averages as the reference points usually works better than adjusted cosine or

CombAdjCos with user averages as the reference points over this Netflix2761 dataset,

which means users knowing the item averages when rating, may anchor more on item

average than user averages.

Then the PCC and Adjusted Cosine over SU>1 (extracted from ML100K) and

Netflix257 were compared. Both datasets contains around 200-300 users. As seen in

4.4b and 4.5b, over MovieLens dataset, it was collected in a survey fashion. Users rate

at most hundreds of movies within a day. While over the Netflix dataset collected by

the content provider, assume users rate each movie right after they watched the movie.

The results of prediction accuracy of CFs with PCC and Adjusted Cosine in terms

of MAE are shown in Table 4.10. Without knowing the item averages when rating,

CF with adjusted cosine using user averages as reference points performs better than

with PCC. With knowing the item averages when rating, CF with PCC using item

averages as reference points performs better than with adjusted cosine. The same

sets of experiments were performed over the larger Netflix2761 and MLNew datasets

which was collected over a longer period of time with users knowing the item averages

when rating for both datasets. CF with PCC performs better than adjusted cosine

over both datasets which users know item averages when rating, indicating that users

may anchor more on item averages than user averages when knowing item averages.
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Figure 4.11.: MAE of Scene building techniques. #items means the number of items
excluded as warm up period in accumulative average calculation in PCC, AdjCos
methods, and number of items included in AdjCosRecent methods. There isn’t much
difference in MAE of CFs using similarity measurements with dynamic averages com-
pared to static averages.

Table 4.10.: Comparison of prediction accuracy (MAE) of CFs using PCC v.s. Ad-
justed Cosine over the ML100K and Netflix257 datasets. CF with PCC performs
better over Netflix257, Netflix2761 and MLNew, which users know item averages
when rating. CF with adjusted cosine performs better over ML100K which users
don’t know item averages when rating.

ML100K Netflix257 MLNew Netflix2761

PCC 0.714789 0.70424 0.68525 0.704707
AdjCos 0.708824 0.726202 0.69611 0.718571
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4.7 Discussion

The prediction accuracy of item-based memory-based collaborative filtering(CF)

can be improved by neglecting pairs of items rated close to each other in time by the

same user in rating-based similarity measurements. For survey-like rating datasets

such as MLens100K, users watched all movies and then rated all movies at once like

taking a survey. Users tend to have lower contrast effects. However, the rating dif-

ferences between movies are limited by the rigidity of the integer rating scale. Thus,

enlarging contrast effects improves the prediction accuracy of CFs by enlarging the

difference between ratings of items rated close to each other to restore the true dif-

ferences of ratings between those compared items. For content subscribing websites

such as Netflix, assume users rate right after they watch the movie. Users may com-

pare movies they watched more recently and introduce biases when rating. Therefore,

by reducing pairs of items rated close to each other in similarity measurement im-

proves the reliability of the similarities. Thus, it improves the prediction accuracy of

CFs with those time-aware rating-based similarity measurements over the traditional

rating-based similarity measurements.

The prediction accuracy of item-based memory-based CF can also be improved

by neglecting pairs of items rated far from each other in time by the same user

in structural similarity measurements. For structural similarity measurements, two

items are considered similar if two items share large portion of users who rated both

items. However, as users may shift preferences and develop new interests over time,

items rated by the same user but over a long period of time doesn’t necessarily mean

those 2 items are similar. However, traditional structural similarity measurements

without incorporating time factors may consider them correlated. Thus, neglecting

pairs of items rated across a long period time reduces the possibilities of dissimilarity

items being considered similar in structural similarity measurements. Therefore, it

reduces the possibility that user opinions over pairs of items rated over long period

of time from each other get the chance to represent the same opinions from the same
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user but over 2 items that are actually dissimilar. Thus, it improves the prediction

accuracy of CFs with those time-aware structural similarity measurements over the

traditional structural similarity measurements.

Hubness can also be reduced to improve prediction accuracy by strategically ex-

cluding pairs of items in structural similarity measurements. Again, for structural

similarity measurements, whether two items are considered similar is based on the

ratio of the number of co-rated users over total number of users who rated either

item. If the ratio is high, then 2 items are considered similar. Big hubs in

By excluding pairs of items, the number of co-rated users get reduced, while the

total number of users who rated either item stays the same. Thus, pairs of two

popular items co-rated by lots of users, which are considered big hubs in structural

similarity measurements, have higher chance of being excluded randomly. Therefore,

by randomly excluding pairs of items in structural similarity measurement aggre-

gation, hubness of KNN list using structural similarity measurements gets reduced,

while rating-based similarity measurement is not affected by random exclusion since

rating-based similarity measurement is a consensus measured over only co-rated users

on whether users like both items. It is not affected by change in the ratio of the num-

ber of co-rated users over users who rated either item.

Hubness can also be reduced as highly rated items, which may be introduced by

contrast effects, are now neglected in rating-based similarity measurements and highly

correlated while dissimilar pairs of popular items are also neglected in structural

similarity measurements. Lower hubness reserves better user preferences as popular

liked items are not referred again and again. Thus, reducing the hubness can also

potentially improves the prediction accuracy of CFs.

Users give ratings anchoring based either on user memories or how others think of

this item and then make adjustments. If they think this item is worse than how others

think of, they may give a rating lower than the item average. If item average is not

provided, they may give ratings based on their past experiences. This phenomenon

can be seen by comparing the prediction accuracy of CFs using PCC or adjusted
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cosine with item average or user average accordingly over different datasets, which

item averages are provided or not. With item averages provided, CFs with PCC using

item averages tend to yield a better prediction accuracy, while with item averages not

provided, CFs with adjusted cosine using user averages tend to yield a better result.

4.8 Conclusion

In this research, a general framework is proposed to consider time in similarity

measurements used in KNN memory-based collaborative filtering methods that im-

proves the prediction accuracy and reduces hubness over traditional methods without

considering time. This is accomplished by adjusting contrast effects introduced by

user comparing items rated close to each other in time and removing pairs of items

rated long time apart in time as user preference and rating scale may shift over time.

The comparison of prediction accuracy of CFs between using PCC and using adjusted

cosine with item average and user average over datasets which users are aware of item

averages when rating or not is shown. With item averages provided, the prediction

accuracy of CFs is better using PCC with item averages.

Future work will consider how to utilize the contrast effects into user preferences

and rating scale. When does the user anchor more on user experiences and when does

the user anchor more on item averages will be investigated. How much peer review

pressure affects the user rating scale.
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5. QUANTIFICATION AND VISUALIZATION OF USER

MOVIE GENRE SHIFTS AND DYNAMIC

RECOMMENDATION USING COLLABORATIVE

FILTERING

5.1 Introduction

User preference dynamics refer to questions such as: whether and how users change

their preference across different categories? If people do change their preference across

different categories, do they prefer different categories at the same time period or

they prefer only 1 category at a time? Are the user dynamic patterns of the same

user across different categories different? Do they stop shopping from the previous

category instantly or move to a new category gradually? Do they ever come back to

the previous category? If so, how frequent is it? It is therefore desirable to have a

transparent recommendation system that could shed light on these questions in an

intuitive manner.

Users may or may not shift their preferences due to various reasons: [134] stud-

ied how a mental disorder could shift a user’s musical preference. The study found

that although most patients did not change music preferences after the onset of a

mental disorder, a group of patients who had a shifts reported that music had im-

paired them during the time of illness, and a third group stopped listening to music

completely. Musical preferences may also shift as users age [135–137]. [137] found

that musical preferences are subject to change throughout the life span: some music

preference dimensions may decrease with age (e.g., Intense, Contemporary), whereas

some music preference dimensions may increase with age (e.g., Unpretentious, So-

phisticated). [138] studied how user exposed to foreign culture might shift their movie
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genre preferences. It found that users might shift to more comprehensive movies when

cultural literacy is required.

In this chapter, real-world datasets are used to examine if there is a preference

shift in movie genre with regards to aging and how to quantify those shifts. This

rest of this chapter is organized as following: In Section 5.2, how to visualize and

quantify the preference shifts are illustrated. In Section 5.3, the real-word datasets

are introduced and preference shifts among users on movie genres using those methods

are shown. in Section 5.4, how to potentially use those shifts to generate dynamic

recommendation lists with those user preference dynamics is discussed.

5.2 Method

Three steps are proposed to identify user preference dynamics: 1) sampling,

2) visualization, 3) quantification. Sampling prepares the data in a time series

manner to be used for visualization. Then the data is visualized and projected into

a lower-dimensional space. At last, those shifts if any are quantified over the original

space and compare it with the projection on the lower-dimensional space.

5.2.1 Sampling

The numbers of ratings are considered, not the scores of ratings. Unusually, rating

data describes which user rates which item at what timestamp with what score.

Here, assume that a user rating a movie indicates that the user is interested in this

genre of movies. Therefore, the actual scores of the ratings are ignored in identifying

user preference dynamics. For example, a user likes the movie ¡Star Wars¿ series very

much. No matter how low the score of the rating he gives to one episode, he would

still watch and rate the next episode, which means that the preferences of movie

genres don’t necessarily correlate with the shifts of scores of ratings.

The number of ratings are aggregated every once a while. Let’s call the time

intervals when ratings are sampled as Sampling Window, and the time intervals
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sampling are skipped as Skipping Window as shown in Fig. 5.1. The size of

sampling windows and skipping windows determines how well the visualization and

how much each shift is. The size of the sampling windows need be large enough to

capture enough number of ratings to reflect the genre preferences, while the size of

the skipping window need be large enough to distinguish a preference shift if any

exists. If the sampling window size is too small, then a short-time period shift be

misidentified as a long-time period shift. If the skipping window size is too small,

then shifts may not be identified as differences are too subtle. The sizes of sampling

and skipping windows depend on how many movies and how frequent each user rates.

Ratings during the first time interval named Warm Up Period are ignored, since

users may rate lots of movies they have watched before at once when they enter the

system at the beginning. The timestamps associated with the rating during the warm

up period doesn’t necessarily align with the actual preference at that moment.

Figure 5.1.: Time sampling: the ratings are sampled during sampling windows once
every skipping windows. The warm up period is also skipped as users may rate lots
of movies they have seen before at once at the beginning. But the time he watched
the movie may be a long time ago.

Next, the proportion of movies belonging to each genre during each sampling

window for each user is calculated. During each sampling window t, the number

of ratings of movies |N t
i,g| belonging to each genre g given by each user i with m

total genres is counted. Then the percentage of movies belonging to each genre

is calculated by dividing by the total number of all movies rated during this time
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window by this user: P t
i,g =

|Nt
i,g |∑m

c=1 |Nt
i,c|

, where m is the total number of genres. Then

P t
i = {P t

i,1, P
t
i,2...P

t
i,x} contains the elements of proportions of numbers of movies

belonging to each genre from user i during sampling window t.

5.2.2 Visualization

The method to compare those multi-dimensional genre proportion vectors across

different time Pi = {P 1
i , P

2
i , P

3
i , ...P

t
i } from user i, and cross different users P =

{Pi, Pj, ...} is by using Multidimensional Scaling (MDS).each sampling P t
i from each

user is treated as one vector data entry in the matrix P and later group data points

by users. MDS performs non-linear dimensionality reduction by taking the input of

distance matrix between each object and places each object into a N-dimensional

space such that the relative distance between each object are preserved as much as

possible through optimization procedures. In this way, the preference shifts within

each user and trend among all users across time can be projected to a 2D or 3D

dimension that can interpreted. A useful loss function of MDS called stress, which is

often minimized to ensure the distance between objects are preserved. [139] suggests

that stress values below 15% represent a good fit.

5.2.3 Quantification

The quantification of user preference shifts can be done in the original data space

or the reduced space after performing MDS. Since each P t
i is sampled at the same rate

as the skipping window size is constant. The distance between adjacent data sampling

point P t
i and P t+1

i from the same user is actually how fast this user’s preference shift.

Let’s call this Shifting step size. The average shifting step size ∆Ḡi for user i

can be measured using similarity measurement mentioned in Chapter 2.2.2. Taking

the most common manhattan distance as an example, each shifting step size can be

calculated as:



113

∆Gt+1,t
i = ||P t+1

i − P t
i ||1 =

m∑
g=1

|P t+1
i,g − P t

i,g|, (5.1)

where m is the number of all genres.

Then the average shifting step size for user i is calculated as:

∆̄Gi =

∑tn−1
t=1 ∆Gt+1,t

i

tn − 1
, (5.2)

where tn is the total number of sampling windows for user i.

Shifting step size can also be approximated after MDS visualization. How well

it is approximated depends on the goodness-of-fit of MDS, which can be indicated

by the loss function stress. Taking a 2D MDS to illustrate the process, each P t
i will

have a data point on the MDS plot with x and y coordinate on the plane. Let’s

call the coordinate xti, y
t
i from user i at time t. As explained earlier, since each data

point is sampled by the same skipping window, the distance between 2 data point

on the MDS plot with the adjacent sampling time (e.g., t and t + 1) from the same

user is also approximated as how fast this user’s preference shifts. Each shifting step

size ∆Gt+1,t
i can be approximated using Manhattan distance or Euclidean distance.

Taking Manhattan distance as an example:

∆Gt+1,t
i ≈ |xt+1

i − xti|+ |yt+1
i − yti |. (5.3)

Let’s say that if the user shifts his or her preference along the same direction as

the previous shift, the user is predictable. Let’s call this measurement as stability

or predictability of a user. The way to measure how stable users are shifting their

preferences along the same direction compared to previous shifts is by calculating the

change of direction of any adjacent shift such as from P t
i to P t

i and from P t+1
i to P t+2

i .

This is calculated only in the original space, not in reduced lower dimensional space

since MDS preserves the relative distance between points, but not the angle between
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2 vectors formed by those 3 points P t
i , P

t+1
i , P t+2

i . In a euclidean space, the similarity

of direction between 2 previous adjacent shifts at time t for user i is calculated as:

∆ωti = cos (θti) =
(P t

i − P t−1
i ) · (P t−1

i − P t−2
i )

||P t
i − P t−1

i || · ||P t−1
i − P t−2

i ||
. (5.4)

Then the angular distance (1−∆ωt,t−2
i ) is the angular difference between 2 shifts.

The stability or predictability of user i, which is the average differences of shifts in

direction of a user is aggregated as:

¯∆ω(i) =

∑tn
t=3(1−∆ωti)

tn − 2
. (5.5)

5.3 Experiment

The most widely used MovieLens100K and MovieLens25m were used for our ex-

periments. The time span of MovieLens100K is about half year, while MovieLens25m

is about 25 years. The preliminary experiments were performed on the shorter time

span MovieLens100K.

Evidence showing that users switch preferences among different genres by looking

at the changes of propotions of number of movies belonging to different genres over

the MovieLens100K dataset [115] is illustrated in Figure 5.2. Some users switches

among different genres more frequently than others, while some users does not switch

among different genres and stays in one genre.

Next the non-MDS with euclidean distance as distance matrix on MovieLens25m

with longer time span was performed to examine how users’ preferences shift in a

long run. There are 18 genes in total. Each user was sampled for one year every 5

years starting at the 2nd year after each user joins MovieLens. Each user has to rate

at least 20 movies during all sampling windows and has to be active for more than

20 years. Although the dataset contains 162,541 users, only 9 users are left above

this threshold. The result is shown in 5.3. Dots on the plot are colored by users and

connected sequentially with arrows pointing in chronological order. Some users shift
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(a) Pattern of user watching movies belong-
ing to different genres over time

(b) Pattern of user watching movies from the
same genre over time

Figure 5.2.: User switching movie genres over time. X-axis is the time in week, week
0 is the date when the user started to rate in the database. Y-axis is the density of
movie genres. Those are two users selected randomly from the MovieLens100K [115]
dataset to show two different shifting patterns. In Figure 5.2a, at different time
period, the user watched movies belonging to different genres, which indicates a user
preference shift over time.

a lot such as user 4 with longer distance compared to others, while some users shift

a little such as user 2.

The stress for 2D MDS is 12%, which indicates a good fit. The goodness-of-fit

can also be checked by using Shepard diagram as shown in Fig. 5.4. The plot shows

that most points are spread around the fitted function, which also indicates a good

fit of the 2D MDS. The scree plot for up to 18 dimensions is shown in Fig. 5.5. 2D

MDS gives us a good fit with stress under 15%.

The proportion of each genre over the 25 years for user 2 and user 4 was plotted

to examine if that’s really the case as shown in MDS plots in Fig. 5.6. The changes

of the proportions of each genre for user 2 is not as dramatic as user 4. User 4 has

gone into a different direction at year 15 and then go back to the same direction in

year 20 as shown in Fig. 5.3. The proportion of genres in the lower bottom in violet

colors goes down and then goes up, while the proportion of comedy in green color in

the middle gets large in year 15 and then smaller in year 20. This may be the reason

why the user shifts in a very different direction at year 15.
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Figure 5.3.: MDS plot for user genre preference shifts: Each dot is colored, labeled by
user from 1 to 9, connected sequentially with arrows pointing in chronological order.
Users don’t shift too much such as user 2, while some users shift a lot such as user 4
based on distances between dots.

The average shifting step size was calculated using euclidean distance in both

original and reduced space (2D MDS) and the predictability of those 9 users in original

space as shown in Table. 5.1. The users with the largest and smallest average step

sizes are the same users calculated in the original space and those in the reduced

space after performing MDS. Since the stress of 2D MDS is 12%, it is not expected

to preserve the ranks of users with distance that are too close to each other. With

more dimensions and lower stress for MDS, the ranks can be preserved better. For

predictability, user 4 is ranked highest, though its average shifting step size is ranked

lowest. There is a clear trend from Fig. 5.6b that this user is watching more action

movies at a steady increasing rate. While the plot for user 2 doesn’t show a clear

pattern of the shifting trend, who is ranked 4 for predictability.
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Table 5.1.: Average step size and predictability of each user: MDS successfully pre-
serves the distance between points as the largest and least shifts are the same as
calculated in original space and reduced space. User 4 shifts the most with the
largest average shifting step size. But the shifting is the most predictable as the
predictability of user 4 is ranked the highest.

Average Shifting Step Size Predictability

User id Original
Space

Rank Reduced
Space

Rank Original
Space

Rank

1 0.229 7 0.122 3 1.198 8
2 0.129 1 0.065 1 1.159 6
3 0.235 8 0.175 6 0.986 4
4 0.379 9 0.245 9 0.813 1
5 0.214 5 0.232 8 0.925 2
6 0.201 4 0.118 2 0.956 3
7 0.190 3 0.171 4 1.263 9
8 0.165 2 0.174 5 1.138 5
9 0.228 6 0.218 7 1.172 7
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Figure 5.4.: Shepard plot for 2D MDS: most points are spread around the fitted
function, which indicates a good fit of the 2D MDS

Figure 5.5.: Stress with different dimensions: 2D MDS gives us a good fit with stress
under 15%
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(a) User 2 (b) User 4

Figure 5.6.: User preference shifts comparison: the changes of the proportions of each
genre for user 2 is not as dramatic as user 4. But user 4 is shifting at some pattern
such as the proportion of action movies are watched more at a steady increasing rate.

5.4 Dynamic Recommendation List - Future Work

Now there is a way to identify whether there’s a preference shift among each user.

But how to utilize this information to generate dynamic recommendation list that

best reflects the user’s most recent preferences?

Let U be the items the user has interacted with (purchased, watched, etc.). As-

suming some similarity measure between items, each item j ∈ U is analyzed and

N of the most similar items are found by summing the similarities of the candidate

item and most similar k items from U [140]. To include user preference changes, a

Category Index (CI) αg,u,t is introduced on the item category g for user u at (current)

time t, where αg,u,t represents how each user interacted (e.g., rated, reviewed) with

each category over time. αg,u,t is calcualted as:

αg,u,t =
Number of items belonging to category g at time t that user u has rated

Total number of items at time t that user u has rated

=

∑
Ix∈Iu,t [Category(Ix) = g]

|Iu,t|
, (5.6)
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where Ix denotes the item, Iu,t denotes the items rated by user u within the current

time window t. The size of time window t can vary among different users as users

may not switch genre preferences with the same frequency and rate. User historic

data is used to find the best time window for each user.

By tracking whether the Category Index increases or decreases for each category

at each time interval t, when a user switches his or her preferences from one category

to another can be detected. This may be a switch that only happens in one session,

which indicates that this user prefers some certain categories over others at that

specific time. Then the recommendation list is adjusted to contain more items that

belongs to that certain genre during that session time. It could also detect a trend

as the user gradually switches his or her preferences towards other categories. The

recommendation list will gradually contain fewer items belonging to the category that

the user no longer prefers. This is achieved by letting αg,u,t be the vector of all genre

preferences of user u at the current time window. Instead of selecting the N most

similar items for each item j ∈ U , N · dαg,u,te of the most similar items for each

item j ∈ U are selected based on j’s category. αg,u,t can also be used as a weight

on neighboring items by multiplying αg,u,t to the similarities of candidate item and

j ∈ U , before summing and ranking of similarities. In this way, either more items

that are similar to current users’ category preference are selected or more weights are

assigned on the user opinions on the items that are similar to current users’ category

preference . In both ways, the recommendation list will be composed of more items

that are related to the category that the user prefers at the current time.

5.4.1 Future Expected Setup and Expected Results

A number of validation experiments can be conducted. For example, randomly

selecting a number of users with all their ratings from real-world dataset such as

MovieLens, Netflix datasets and analyzing their preference dynamics to determine

parameters (e.x., time window size t). Then, the Users Preference Dynamics(UPD)
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[22] of recommendation lists of the current time window t and previous time window

t−1 between our time-aware category-aware approach and the traditional approaches

can be compared to determine how the improvements our algorithm can provide by

considering user preference changes. The UPD is defined as:

UPDu = 1−
Iucur ∩ Iuprev
Iucur ∪ Iuprev

(5.7)

where Icuru denotes the recommendation list generated for current time window for

user u, Iprevu denotes to the recommendation list generated for previous time window

for user u. Lower UDPu values indicated low dynamics of the recommendation list.

The recommendation list is expected to generate for those two time windows by

our algorithm will vary more (higher UPD) compared to traditional approaches, if

the user has indeed changed his or her preferences from time window t− 1 to t. This

means that at each time window, recommendations are made reflective of the user’s

most recent preferences.
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APPENDIX A

AMPLIFICATION PARAMETER

Figure A.1.: MAE of adjusted cosine combined with different structural similarity
measurements with α = 1 over ML-100K dataset. The performance of the combi-
nation of adjusted cosine and structural similarity measurement works better than
using adjusted cosine or structural similarity measurement alone.
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(a) CASE 2: Small α=1 makes structural similarity mea-
surement lose dominance over the ranking process by
choosing a small α not to enlarge the differences calcu-
lated by structural similarity measurement big enough so
that the list can be re-ranked by rating-based similarity
measurement. Note that every item is re-ranked.

Ranking Item ID Sstruct Srating New Sim
1 3 0.8 0.8 0.81 × 0.8=0.64
2 1 1.0 0.5 11 × 0.5=0.50
3 2 0.9 0.5 0.91 × 0.5=0.45
4 8 0.3 0.6 0.31 × 0.6=0.18
5 7 0.4 0.4 0.41 × 0.4=0.16
6 6 0.5 0.3 0.51 × 0.3=0.15
7 4 0.7 0.2 0.71 × 0.2=0.14
8 9 0.2 0.5 0.21 × 0.5=0.10
9 10 0.1 0.7 0.11 × 0.7=0.07
10 5 0.6 0.1 0.61 × 0.1=0.06

(b) CASE 2: Percentage of
each neighbor items when
α=1: although the list is
totally re-ranked by rating-
based similarities, the per-
centage of each neighbor simi-
larity changes a little compar-
ing to the percentage before
multiplying rating-based sim-
ilarities.

(a) CASE 1: Large α=10 makes structural similarity mea-
surement dominant the ranking process by choosing a large
α to enlarge the differences calculated by structural sim-
ilarity measurement so large that rating-based similarity
measurement can hardly re-rank.

Ranking Item ID Sstruct Srating New Sim
1 1 1.0 0.5 110 × 0.5=5.00e-1
2 2 0.9 0.5 0.910 × 0.5=1.74e-1
3 3 0.8 0.8 0.810 × 0.8=8.58e-2
4 4 0.7 0.2 0.710 × 0.2=5.64e-3
5 5 0.6 0.1 0.610 × 0.1=6.04e-4
6 6 0.5 0.3 0.510 × 0.3=2.92e-4
7 7 0.4 0.4 0.410 × 0.4=4.19e-5
8 8 0.3 0.6 0.310 × 0.6=3.54e-6
9 9 0.2 0.5 0.210 × 0.5=5.12e-8
10 10 0.1 0.7 0.110 × 0.7=7e-11

(b) CASE 1: Percentage of
each neighbor items when
α=10: new similarity of the
first item is more than that of
the rest items combined. The
prediction would be biased to-
wards to the user opinion of
the first item.
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Table A.3.: Choice of amplification parameter α. CASE 1: If α is too large, prediction
is biased towards the opinions of the first few neighbor items. CASE 2: If α is too
small, prediction can be biased towards very few users since the ranking can be
determined by rating-based similarity measurement which could be calculated based
on very few users. CASE 3: Ranking is determined mainly by structural similarity
while allowing rating-based similarity to adjust on a smaller scale.

(a) CASE 3: α=1.5 makes structural similarity measure-
ment dominant the ranking process by enlarging the differ-
ences calculated by structural similarity measurement large
enough but also small enough to let rating-based similarity
measurement re-rank the list on a smaller scale. Note that
only item 3 and item 5 change their ranking.

Ranking Item ID Sstruct Srating New Sim
1 3 0.8 0.8 0.81.5 × 0.8=0.5724
2 1 1.0 0.5 11.5 × 0.5=0.5000
3 2 0.9 0.5 0.91.5 × 0.5=0.4259
4 4 0.7 0.2 0.71.5 × 0.2=0.1171
5 6 0.5 0.3 0.51.5 × 0.3=0.1060
6 7 0.4 0.4 0.41.5 × 0.4=0.1011
7 8 0.3 0.6 0.31.5 × 0.6=0.0985
8 5 0.6 0.1 0.61.5 × 0.1=0.0464
9 9 0.2 0.5 0.21.5 × 0.5=0.0447
10 10 0.1 0.7 0.11.5 × 0.7=0.0221

(b) CASE 3: Percentage of
each neighbor items when
α=1.5: the list is re-ranked
a little bit by rating-based
similarities, the percentage
of each neighbor similarity
changes a little comparing to
the percentage before multi-
plying rating-based similari-
ties.
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Table A.4.: MAE v.s. RMSE with increasing error variance. MAE stays the same
while RMSE increases as the frequency distribution of magnitudes of error variance
increases. Large errors will result a higher RMSE.

(a) CASE 1: Evenly dis-
tributed errors

ID Error |Error| Error2

1 2 2 4
2 2 2 4
3 2 2 4
4 2 2 4
5 2 2 4
6 2 2 4
7 2 2 4
8 2 2 4
9 2 2 4
10 2 2 4

MAE: 2.000
RMSE: 2.000

(b) CASE 2: Small variance
in errors

ID Error |Error| Error2

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 3 3 9
7 3 3 9
8 3 3 9
9 3 3 9
10 3 3 9

MAE: 2.000
RMSE: 2.236

(c) CASE 3: Large error out-
lier

ID Error |Error| Error2

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 20 20 400

MAE: 2.000
RMSE: 6.325
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APPENDIX B

MAE V.S. RMSE

Table B.1.: MAE v.s. RMSE with different variance of errors. RMSE stays the same
while MAE differs with error variance of case 4 is greater than that of case 5.

(a) CASE 4: Errors = 0 or 5

ID Error |Error| Error2

1 5 5 25
2 5 5 25
3 5 5 25
4 5 5 25
5 5 5 25
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0

MAE: 2.500
RMSE: 3.536

(b) CASE 5: Errors = 3 or 4

ID Error |Error| Error2

1 3 3 9
2 3 3 9
3 3 3 9
4 3 3 9
5 3 3 9
6 4 4 16
7 4 4 16
8 4 4 16
9 4 4 16
10 4 4 16

MAE: 3.500
RMSE: 3.536


