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ABSTRACT

Aguilar, Camilo G. Ph.D., Purdue University, August 2020. Novel Model-Based and
Deep Learning Approaches to Segmentation and Object Detection in 3D Microscopy
Images. Major Professor: Mary Comer.

Modeling microscopy images and extracting information from them are impor-

tant problems in the fields of physics and material science. Model-based methods,

such as marked point processes (MPPs), and machine learning approaches, such as

convolutional neural networks (CNNs), are powerful tools to perform these tasks.

Nevertheless, MPPs present limitations when modeling objects with irregular bound-

aries. Similarly, machine learning techniques show drawbacks when differentiating

clustered objects in volumetric datasets. In this thesis we explore the extension of

the MPP framework to detect irregularly shaped objects. In addition, we develop a

CNN approach to perform efficient 3D object detection. Finally, we propose a CNN

approach together with geometric regularization to provide robustness in object de-

tection across different datasets.

The first part of this thesis explores the addition of boundary energy to the MPP

by using active contours energy and level sets energy. Our results show this extension

allows the MPP framework to detect material porosity in CT microscopy images and

to detect red blood cells in DIC microscopy images.

The second part of this thesis proposes a convolutional neural network approach to

perform 3D object detection by regressing objects voxels into clusters. Comparisons

with leading methods demonstrate a significant speed-up in 3D fiber and porosity

detection in composite polymers while preserving detection accuracy.

The third part of this thesis explores an improvement in the 3D object detec-

tion approach by regressing pixels into their instance centers and using geometric
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regularization. This improvement demonstrates robustness when comparing 3D fiber

detection in several large volumetric datasets.

These methods can contribute to fast and correct structural characterization of

large volumetric datasets, which could potentially lead to the development of novel

materials.
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1. INTRODUCTION

1.1 Motivation

Image segmentation and object extraction constitute key elements for character-

izing microscopy images. Novel high-throughput imaging techniques such as electron

microscopy yield massive amounts of images often comprised of several thousand

objects. These images, and the system they represent, contain significant informa-

tion that contributes to explaining biological or physical phenomena. For instance,

the shape and deformability of human red blood cells (RBC) can indicate the exis-

tence of pathological conditions; in fact, numerous state-of-the-art works are currently

characterizing the biological mechanics involving the cell’s boundary deformation [1].

Similarly, numerous works in material science require of segmentation and object de-

tection. For instance, the development of novel lightweight materials with high fatigue

resistance requires of detailed microstructural characterization. The arrangement and

interaction of the material’s microstructural components influence the material’s re-

sponse to external loads before reaching failure [2]. Fig. 1.1(a) shows an example

of a differential interference contrast(DIC) image of red blood cells denoting their

bi-concave shape and their often-irregular boundary. Fig. 1.1(b) denotes a sample

cross section of a fiber reinforced polymer where the direction of fibers can affect

the material’s response to external loads. Image segmentation and object extrac-

tion provide solutions to these tasks relating boundary detection and microstructural

characterization.

Nevertheless, microscopy images present several challenges to traditional segmen-

tation techniques. These images are subject to distortion originated from diverse

sources such as electron scattering, volume averaging, and artifacts generated during

the reconstruction procedure. For example, Fig. 1.2(a) shows ring artifacts generated
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(a) Human red blood cells [1] (b) Fiber reinforced polymers [2]

Fig. 1.1. Sample Microscopy Images

during the CT image reconstruction of a fiber reinforced polymer sample across the

XY plane. Fig. 1.2(b) shows line artifacts generated by the reconstruction software

across the ZY plane. Noise sources, combined with the intrinsic ambiguity of mi-

croscopy images, poses challenges to compute and to label segmented data, even for

domain expert labeling.

(a) Sample ring artifacts (b) Sample line artifacts

Fig. 1.2. Sample artifacts generated during the sample reconstruction.
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In recent years, deep learning has gained popularity as a general and accurate

segmentation technique. However, deep learning requires of large training datasets,

which are not readily available in microscopy imaging. In addition, deep learning

often needs of a graphic processing unit (GPU) that limits the amount of memory

a deep learning approach can process. This poses a constrain in memory intensive

tasks such as 3D segmentation.

In this thesis, we propose model-based approaches to perform 2D segmentation of

irregularly shaped objects based on contour boundaries and point processes. Further-

more, we propose neural network approaches adapted to volumetric data to perform

segmentation of 3D fiber reinforced polymer data.

1.2 Model-Based Approaches

Model-based image processing techniques draw parallel analogies from pixel-wise

interactions to well-known physics properties. For instance, the Ising and Potts mod-

els have an equivalent counterpart in the field of statistical mechanics, namely the

Boltzmann Distribution. This equivalence implies that we can use Markov Random

Fields(MRFs) to model material behaviors. One example of this work is to modify

the interaction parameter β to simulate coating interface between different phases in

materials [3]. Another example is to use MRFs to model the stationary probability

distribution of polycrystalline microstructures and use this model to simulate and

characterize the mechanical behavior of these materials [4].

In general, model-based techniques are important to analyze images when we

reach physical systems limitations. We are particularly interested in stochastic models

because they can express the properties of interest with a probability density function

p(ω). This framework provides a setup to generate and evaluate samples from a

distribution, generally using Monte Carlo(MC) sampling techniques.

Among numerous models in the probabilistic framework, we focus our report on

the marked point processes. This approach uses a point process to model a distribu-
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tion of objects and their interactions with each other. MPPs provide the theoretical

framework to employ stochastic samplers in simulated annealing in order to find a

likely configuration. In this report, we explore two approaches to add an irregular

shape framework in order to consider an object’s boundary properties. For exam-

ple, surface roughness or curvature. Also, we explore using the balloon method and

level sets method to propose samples. These methods allowed us to capture large

objects with irregular geometries and use them as part of our object configuration.

The results show the characterization of systems with irregularly shaped objects, and

the effect of varying the contour parameters. These are the first step towards the

characterization of systems comprised of different geometries or irregular shapes.

1.3 Deep Learning

Machine learning techniques aim to approximate a mapping function y = f(x, θ) to

represent the function f(·, θ) from the input vectors x to the output vectors y, with pa-

rameters θ. Convolutional neural networks(CNNs) are a subset of the machine learn-

ing techniques that were often employed in the 80s and 90s; however, they presented

difficulties training: deep neural networks require of more parameters than classic

machine learning techniques and they often over-fitted the training data. The lack

of training data and computational power caused neural networks to perform worse

than classical machine learning methods. During the recent decade, the increased

availability of training data combined with the improved computational resources

allowed neural networks to achieve major breaktroughs in areas such as speech recog-

nition, artificial intelligence, and object segmentation and extraction. Since 2006,

deep neural networks have received major attention and have achieved unmatched

results in segmentation. Popular segmentation architectures involve U-Net [5], Fully

Convolutional Neural Networks (FCN) [6], Feature Pyramid Networks [7], Fully Con-

volutional Dense Nets [8], DeepLabv3 [9] and popular object detection techniques

include RCNNs [10,11], YOLO [12], Embedded leearning [13].
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In this thesis, we propose a novel deep learning approach to extract objects from

3D data. We propose a memory efficient method inspired in embedded learning

and clustering that can capture fibers and voids in a 3D fiber reinforced polymer

dataset. In addition, we extend this work to generalize to other datasets by combining

concepts from our model-based method and deep learning approach. Our results show

improved object detection in several fiber-based reconstructed volumes comming from

different datasets.

1.4 Illustrative Dataset and Experiment

We test most of our experiments in a cylindrical specimen comprised of glass fiber

in a polypropylene matrix composite. This material was fabricated at Dupont and it

was imaged with X-ray tomography at Argonne National Laboratory. The samples

were imaged with a 2-BM beamline and have a resolution of 1.3 µm per pixel. The

reconstruction was performed using the Tomopy software by Agyei et al. and used in

several characterization experiments [2, 14,15].

The sample contains three types of components: matrix (gray voxels), glass fibers

(bright voxels), and voids(dark voxels), which present irregular geometries and are

mainly described by their edges. Fig. 1.2(b), 1.2(a) 1.1(b) denote sample cross-section

views of this material.

The dataset was obtained by the ACME Lab at Purdue University. This exper-

iment proposes to characterize the material’s structural and mechanical properties.

The structural properties include object location, length, diameter, orientation, vol-

ume fraction, or interaction with other objects. Fig. 1.3(a) denotes a sample instance

of a recnostructed volume, Fig 1.3(b) denote the segmented fibers and Fig. 1.3(c)

denote the segmented voids. The mechanical properties include the tracking of events

such as fiber pull out, breakage, or fiber debonding.
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(a) Pre-segmented recon-

structed sample

(b) Detected fibers (c) Detected voids

Fig. 1.3. Illustrative dataset: CT Reconstruction of polypropylene matrix
reinforced with glass fibers

1.5 Challenges

The challenges we aim to solve with the work proposed in this report are:

• System Characterization Numerous experiment’s objective is to find the under-

lying distribution of objects and their effect on the system’s overall behavior.

This requirement is the motivation to utilize point processes explained in chap-

ter 2 to model objects in systems.

• Objects with highly irregular boundaries material science and biological sci-

ences often image and characterize shapes with irregular boundaries or objects

without a pre-defined pattern. This property is the main motivation to add

boundary energy to the MPP model in chapters 3 and 4.

• Objects with low contrast Fig. 1.1(a) and 1.1(b) show that objects such as cells

in DIC images and voids in CT images do not present high contrast between

their interior and exterior regions. We added the balloon force in chapters 3, 4

and trained CNNs in chapter 5 to deal with the challenge of detecting objects

with low-contrast.

• Big Data As imaging systems improve, they generate larger amounts of data. For

instance, the size of the dataset described in section 1.4 is of 2500×2500×1300
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voxels. Hence we require faster and more efficient algorithms. We propose an

approach to propose objects for our sampler in chapter 4 and employ CNNs in

chapters 5, 6 to meet this challenge.

1.6 Report organization and contributions

The report and contributions of this thesis are organized as follows:

• Chapter 1 Provides the motivation for the report and a brief description of model-

based and deep learning-based segmentation methods.

• Chapter 2 Presents a theoretical background of MPPs, the stochastic simulation

techniques employed, and the state of the art MPP methods.

• Chapter 3 Explores the addition of an active contour boundary energy to the

MPP framework applied to microscopy images.

• Chapter 4 Provides an extension to Chapter 3 by exploring the utilization of a

level sets framework and proposes a method to guide the MPP sampler.

• Chapter 5 Proposes a novel CNN approach to tackle microscopy volume segmen-

tation.

• Chapter 6 Extends the CNN approach to adapt for other datasets by enforcing

geometric regularization inspired in the MPP model.

1.7 Publications of this Work

• C. Aguilar and M. Comer, “A Marked Point Process Model Incorporating Active

Contours Boundary Energy,” Electronic Imaging, vol. 2018, no. 15, pp. 230-

12304, 2018
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• C. Aguilar and M. Comer, “Void detection and fiber extraction for statistical char-

acterization of fiber-reinforced polymers,” Electronic Imaging, vol. 2020, no.

23.

• *C. Aguilar and M. Comer, “Segmentation and Detection of Irregularly-Shaped

Regions Using Integrated Marked Point Processes and Level Sets,” in IEEE

Transactions on Image Processing to be submitted July 2020.

• C. Aguilar and M. Comer, "3D Fiber Segmentation with Deep Center Regression

and Geometric Clustering,” in IEEE Transactions on Image Processing. To be

submitted July 2020.
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2. MARKED POINT PROCESS AND STOCHASTIC
SIMULATION

2.1 Point Processes

A point process(PP) in a compact lattice K ⊂ Rp is a realization of a random

configuration of an unordered set of points x = {k1, k2, ..., kN} where ki ∈ K repre-

sents the ith point and N is a finite random variable. The most common point process

is given by a homogeneous Poisson distribution with intensity λµ(K), where µ(.) is

proportional to the Lebesgue measure. A sample homogeneous Poisson distribution

with intensity λ = 1 is depicted in Fig. 2.1(a).

2.2 Marked Point Processes

A marked point process is the assignation of a mark m ∈ M to each point in x.

The mark spaceM defines the possible geometries and dimensions of the objects, and

a single mark m ∈ M describes a specific object. For example, the mark space for

ellipses is defined by M = [amin, amax]× [bmin, bmax]× [θmin, θmax], where a, b, θ denote

the major and minor axis respectively, and θ represents the ellipse orientation. We

describe an object ω by its location and its mark in the form of ω = (k,m) ∈ K×M .

Fig 2.1(b) denotes a sample ellipse object.

We define a realization of the MPP as collection of objects w = {ω1, ω2, ..., ωN} ∈

Ω, where Ω is the space of possible configurations and is defined as:

Ω =
⋃
n∈N

Ωn, (2.1)

Where Ωn represents the configuration space containing n objects and Ω0 = {∅}.

Figure 2.1(c) shows a sample the realization of a point process denoted in Fig. 2.1(a)

with a random mark m ∈M assigned to each point k ∈ x from Fig. 2.1(a).
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(a) Sample Poisson Point

Process

(b) Sample Mark (c) Sample MPP

Fig. 2.1. Marked Point Process Descriptors

2.3 MPP Density

In this report we will assume we only work with Markov point process, hence we

can express the density of an MPP as h(w) ∝ exp {−U(w)}, where U(w) denotes

the Gibbs energy and is generally given by:

U(w) =
∑
ωi∈w

Ud(ωi) +
∑

ωi,ωj∈w
ωi∼ωj

Up(ωi, ωj) (2.2)

Where Ud(ωi) describes how well a single object fits the image, Up(ωi, ωj) describes an

interaction prior, and∼ denotes the symmetric neighbor relation. The data dependent

term Ud(ωi) usually depends on the contrast between the interior and exterior regions

of the object. However, in this report, we modified Ud(ω) to fit the boundary energy.

2.4 Simulated Annealing

Our aim is to find the most likely configuration ŵ ∈ Ω given by:

ŵ = argmax h(w) (2.3)

In order to achieve this goal, we used simulated annealing. This approach repeat-

edly generates samples on the distribution: h(w)
1
To , where To represents the initial

system temperature and decreases according to a specified scheme. Generally, the
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sampler consists of simulating a Markov Chain Wt∈N in the configuration space Ω.

Initially, at high temperatures, the chain Wt explores the solution space, but as the

temperature approaches zero, Wt converges to a distribution concentrated around

the optimal configuration. While the theory of this approach ensures convergence,

in practice, this result is highly influenced by the initial temperature To, the selected

annealing scheme, and the number of iterations. Our literature review proposed that

the optimal choice for To can be calculated by running several experiments and cal-

culating twice the standard deviation of the energy at infinite temperature. Hence

the optimal value is given by To = 2σ(UT=∞). Similarly, [16] determined the optimal

annealing scheme to be logarithmic, however we chose a geometric decrease in the

form of Tt = Toα
t
T , α ∈ (0, 1) because it was proven to achieve reasonable results in

faster time [17].

2.5 MCMC Samplers

The energy U(ω) is usually minimized with an RJMCMC sampler [18]. This

sampler simulates the MC Wt and at each iteration proposes a local perturbation

according to a kernel function Q(w→ .). The choice of kernel functions can include

birth/death kernels, translation, rotation, among other local perturbation of the cur-

rent states. The chain needs to be reversible, irreducible, and aperiodic in order to

converge (note that it is not a homogeneous chain because it is temperature depen-

dent). In this report, we based our samplers in the Multiple Birth and Death(MBD)

algorithm [19], that aims to parallelize the state transitions of Wt.

2.6 State of the art MPP

This approach has been used extensively in the last two decades to extract objects

of repeated geometries in images. Popular methods involve using ellipses or lines to

extract objects in satellite [20] [21] [22] or material images [23], [24]. However, we

will list interesting approaches that expanded the capabilities of the MPP method by
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improving the sampling techniques, or by proposing adaptations to extend beyond

the geometric constraint of the MPP method.

During recent years, the area of instance segmentation experienced a rapid growth

manifested in popular object proposal techniques such in mask-rcnn [10], PANet [25],

Box2Pix [26]. While these approaches have proven successful in popular benchmark

datasets, the instance segmentation paradigm becomes challenging when transition-

ing to microscopy volumetric datasets: microscopy images tend to have large numbers

of clustered objects, the jump in dimensions represents a significant increase in mem-

ory requirements, and thin 3D geometries oriented in arbitrary orientations poses

challenges for bounding box characterizations.

• Improved Samplers Descombe et al. [22] proposed the MBD sampler as to paral-

lelize MC transitions. Verdie et al. [27] proposed a parallel sampler for the RJM-

CMC by exploiting the Markovian property (Fig. 2.2(a)). Cracium et al. [28]

proposed a data driven sampler in spatiotemporal data by using a Kalman fil-

ter. Zhu et al. proposed a data-driven sampler [29] by pre-calculating image

features.

• Irregularly shaped objects MPP Zhao et al. proposal a joint MRF-MPP to

impose global and local constraints for segmentation. These results are depicted

in Fig. 2.3(b). Descombes et al. [30] proposed an irregular shape shape library

(a) Object independece requirements and image partition in [27]

Fig. 2.2. Parallel RJMCMC Sampler
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to capture objects with irregular geometries. These results are shown in Fig.

2.3(d). Kuliakova et al. [31] modeled fireworks by adding active contours with

a strong prior, shown in Fig. 2.3(f). Our work extends these results.

(a) NiCrAl from [32] (b) MPP-MRF from [32]

(c) Biomedical Cells from [30] (d) Shape library from [30]

(e) Fireworks from [31] (f) Strong shape prior from [31]

Fig. 2.3. Sample arbitrary shapes MPP
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3. A MARKED POINT PROCESS INCORPORATING AN
ACTIVE CONTOUR ENERGY

3.1 Overview

The MPP obtained remarkable results but numerous systems require analysis of

more complex shapes without a pre-defined geometry. For example, Figure 3.1 shows

two images of the fiber reinforced polymer presented in section 1.4. Void extrac-

tion represents a challenging task due to two reasons: they often have an irregular

geometry, and they do not have a constant pixel intensity. These factors can cause

problems in segmentation algorithms that rely on pixel intensities such as MRF based

segmentations [33], shown in Figure 3.2(a).

In this chapter, we incorporate a parametric active contour energy(AC) into the

MPP framework. The addition of this energy allows the MPP model to detect objects

with irregular shapes. This energy accounts for the elasticity and curvature properties

of the detected objects. Our method aims to extend the work presented in [34] by

incorporating a different optimization technique. We also use different forces such as

a pre-segmentation external force obtained from [33]. These changes allow the MPP-

Active Contours (MPP-AC) framework to detect a broader range of objects while

modeling the object boundary characteristics. We explore the effects of changing the

elasticity and viscosity terms, and we demonstrate the results of our model applied

to capture irregular shapes in material images.

3.2 Parametric Active Contours

Contour-based detection methods have shown promising results for detecting in-

dividual voids. Fig. 3.2(a) denotes the resulting contour from applying the balloon
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(a) Ellipsoidal Shape (b) U-shape

Fig. 3.1. Example of irregularly-shaped objects

(a) EMMPM with 3 labels (b) Active Contours

Fig. 3.2. Sample results from EMMPM and active contours segmentation

model proposed by Cohen in [35] on a single void. Kulikova et al. in [34] suc-

cessfully incorporated the active contours framework into an MPP configuration to

model objects with irregular shapes. This method evolved contours based on contour

smoothness, image edges and precomputed background and foreground intensities.

However, that approach would not yield satisfactory results on images such as Fig.

3.2(b) due to the similar intensities between the object foreground and background.
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3.3 Contour Energy

We model an individual object as a closed contour denoted by C(t) = (x(t), y(t)),

t ∈ [0, 2π]. This contour is defined on the image domain and is deformed according

to the energy functional E(C(t)) given by:

E(C(t)) =

∫ 2π

0

1

2
(α||C ′(t)||2 + β||C ′′(t)||) + Eext(C(t)) dt (3.1)

In this equation, C ′(t) and C ′′(t) denote the first and second derivative of the contour

with respect to parameter t. These terms model the object elasticity and curvature,

respectively, and they are regulated by the positive parameters, α and β. During the

methods described in the chapter, we set the α,β parameters experimentally . Fig.

3.3 denotes distinct convergence for different curvature weights. Larger β reduces

the object’s curvature. The parameter α regularizes the edge smoothness. Hence its

value did not have a significant effect on the final contour. Table 3.1 denotes the raw

elasticity and curvature energies of each of the converged contours of Fig. 3.3.

3.3.1 External Energy

The external energy defines the fitting of the snake with the image and it is defined

by:

Eext(C(t)) = EEdge(C(t)) + Edark(C(t)) (3.2)

The first term attracts the contour towards image edges and it is given by EEdge =

−||∇(gσ ∗ I(x(t), y(t)))||2, where gσ is a Gaussian smoothing filter with parameter σ

and∇ is the gradient operator. The second term is a pre-segmentation energy and it is

defined as : Edark = −Ik(x(t), y(t)), where Ik is zero everywhere except at the output

for a pre-segmentation algorithm. For example, in Figure 3.2(a),the class of interest

is the void region, therefore we chose class k = 1, the one with lowest pixel intensity

values. We used the EM/MPM segmentation proposed in [33] as a pre-segmentation

algorithm. Finally, We used the method proposed in [35] to ensure the contour will

evolve even when it is not subject to an external force. This force contributes to
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(a) Initialization (b) β = 0

(c) β = 10 (d) β = 100

Fig. 3.3. Influence of β at constant α = 1 when detecting human stem
cells

the characterization of irregular objects that do not have a constant internal pixel

intensity. The balloon force is given by: Fballoon = κn̂(t), where κ determines the

weight and direction and n̂(t) represents the normal vector to the contour.

3.3.2 Boundary Energy Optimization

We employed calculus of variations to find a force-balanced equation. The solution

to this method is expressed as the Euler-Lagrange equations given by: αC ′′(t) −
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Table 3.1.
Comparison for internal energy of contours in Fig. 3.3

β C ′(t) C ′′(t)

0 876.46 44.83

10 818.88 15.77

100 746.83 5.00

βC ′′(t) − ∇Eext = 0. The numerical approximation for this equation is discussed

in [36] and its solution is given by:

Ck(t) = (A+ γI)−1(γCk−1(t)−∇Eext(Ck−1(t)) (3.3)

Where Ck(t) denotes the contour at iteration k, γ represents the step size or vis-

cosity parameter , Matrix A denotes a pentadiagonal matrix containing the discrete

approximations of the first and second derivative coefficients, and ∇Eext denotes the

gradient of the external energy.

Note that the external force includes the balloon force to inflate the contour to-

gether with three constants κ1, κ2, κ3 to weight the effect of each individual force:

∇EExt = κ1n̂ − κ2∇Eedge − κ3∇Edark. In our experiments, we used κ1 ∈ [−1, 1],

κ2 ∈ [0, 1] and κ3 ∈ [0, 1], and [35] recommended to choose each κ within the same

order of magnitude.

3.4 A Marked Point Process with Active Boundary Energy

3.4.1 Marked Point Process Framework

A Marked Point Process W defined on K ×M models the observed scene Y as

a finite unordered set of random objects. We let Ωw denote the space of all possible
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realizations of W . The point process can be modeled by a Gibbs density function

given by

p(w) =
1

Z
exp{−U(w)} (3.4)

where U(w) describes the energy function and Z =
∫
w∈Ωw

p(w) dw is the normalizing

constant.

3.4.2 Irregular Shape Marked Point Process

The addition of active contours boundary would require a high dimensional mark

space to represent irregular geometries. However, Kulikova presented in [34] an alter-

native space to represent these configurations based on the disk MPP model and the

contour energy functional E(C(t)). We let an initial disk ωi with radius ri belong to

space W = K×M . We can parametrize a disk ωi as a contour ωi(t) living in a space

Wo and define a contour energy functional E(ωi(t)). We can minimize this functional

using the method described in section 3.3.2 to evolve ωi(t) into ω̃i(t) ∈ Wo, with

.̃ : Wo 7→ Wo denoting the energy minimization( and following the notation of [34]).

Therefore, the new single object space Wo is equivalent to a parametrization of the

disks in W and deformed by E(ω(t)). This space describes the contour initialized by

ωi adapted to the image by a local minimum of E(ω(t)).

We followed [34] to create the extension from a single object to multiple objects, given

by the symmetrical set:

ΩWo =
∞⋃
n=0

[W n
o /Sn], (3.5)

where W n
o is the space containing n deformed disks and Sn is a symmetry group of n

elements on the components of W n
o . The energy of this MPP model is described as:

U(w) =
∑
ωi∈w

Ud(ωi) +
∑

ωi,ωj∈w
ωi∼ωj

Up(ωi, ωj) (3.6)

Where Ud denotes the data energy, ∼ denotes neighbor relation, and Up denotes the

prior energy.
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Data Energy

The data energy describes how well current configuration w fits with the current

image and it is the sum of all the individual data energies for each object ωi. The

data energy for a single object is given by:

Ud(ωi) = E(ω̃i(t)) (3.7)

Prior Energy

This energy Up(w) accounts for prior knowledge about the system. Numerous

MPP models use an overlapping penalizer which discourages spatial overlap between

detected objects in w. Hence, our prior energy depends only on the interaction

between objects:

Up(ωi, ωj) =

 A(ω̃i, ω̃j) if A(ω̃i, ω̃j) ≤ Toverlap

∞ otherwise

 (3.8)

Where A(ω̃i, ω̃j) denotes the overlapping ratio between ω̃i and ω̃j. For this section,

we chose Toverlap = 5% experimentally in order to prevent from multiple contours

converging to the same local minimum.

3.5 Optimization

Our objective is to obtain the most likely configuration ŵ = argmax(p(w)). We

can achieve this goal by minimizing the energy function given in equation (3.6). This

energy function is not convex and also it is numerically infeasible to calculate the

normalizing constant Z =
∫
w∈Ωw

p(w) dw. Hence we resort to stochastic optimization

embedded in a simulated annealing scheme. We simulate a MC from ΩW and use the

multiple births and death dynamics presented by [19] . This algorithm uses a pre-

computed birthmap to favor certain regions during the birth phase and gives birth to

multiple objects in each iteration. Then it sorts the detected objects by decreasing
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energy to "kill" the less likely objects first. Finally it decreases the temperature

T and the process intensity σ to ensure convergence to a strong local minimum.

This optimization method is summarized in Algorithm 1. This algorithm ensures

convergence to the global minimum of eq. (3.6) given the necessary conditions are

met.

Algorithm 1 Multiple Birth and Death Algorithm
1: procedure MPP Energy Minimization

2: Initialization:

3: Create birthmap bo

4: Initialize brate = bo, T = To, σ = σo.

5: Birth Step:

6: Visit pixels in raster order

7: ω′ ← draw a sample from space W

8: Add ω′ to configuration w with probability σbrate

9: Evolve ω′ using the method described in section 3.3 to ω̃′

10: Death Step:

11: Sort all elements of w by decreasing energy.

12: For every object ωi in w calculate:

13: drate(wi) =
σ(k)exp

U(w|Y )−U(w−ωi|Y )

Tk

1+σ(k)exp
U(w|Y )−U(w−ωi|Y )

Tk

;

14: Delete ωi with probability drate(ωi)

15: Convergence Test :

16: if all the elements born during the birth step are killed during the death step

then

17: terminate process

18: else

19: Update parameters: T k+1 ← T k × α , σk+1 ← σk × α α ∈ (0, 1)

20: goto Birth Step

21: end if

22: end procedure
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3.6 Results and Experiments

We tested our model on two different datasets: a fiber reinforced polymer and

human cells, and we compared it with the software provided by [37]. This software is

a popular tool to use image processing techniques to extract information from images.

3.6.1 Void Detection in Fiber Reinforced Polymer

(a) Original (b) EMMPM

(c) MPP-AC (d) FIJI Particle Analyzer

Fig. 3.4. Void Detection on Fiber Reinforced Polymer

Fig. 3.4 represents the fiber reinforced polymer described in [14]. Figure 3.4(c)

shows that our algorithm can effectively characterize the largest voids despite their

irregular internal pixel intensity. The birthmap used for this data was a dilated image
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of the 10% of darkest pixels. We exploited Edark to ensure that contours with dark

edges have low energy. Figure 3.4(b) shows the EM/MPM results using 3 classes.

This algorithm can detect the contour of the void but the interior region is labeled

as background. Figure 3.4(d) shows the results of using FIJI’s [37] particle analyzer

tool. Our method is particularly better at detecting the large void. This occurs

due to the balloon force acting on contours initialized in the interior region, and the

energy proposed U(w) in eq. (3.6) used to calculate the likelyhood of the object.

The caveat of the balloon force is that despite its contributions to our results, we

cannot guarantee to achieve the global minimum of U(w) since the MC employed is

not irreducible anymore.

3.6.2 Human Cells:

Fig. 3.5(a) shows human stem cells obtained from Kaggle data science bowl

competition [38]. This image comes from a set of biomedical images provided to

improve segmentation algorithms and contribute to cell characterization.

We chose the birthmap to be the thresholded image with threshold=20. In this

image, we set the balloon force κ1 = 0, and κ3 = 0 since Edark is not necessary for

this image. We filtered the image with a Gaussian filter with σ = 2, and we set the

parameter κ2 = 0.4. Fig. 3.5(b) denotes the marks for each object and Figs. 3.5(d)

and 3.5(f) show the evolution for different parameters of β. Larger values of β tend

to preserve an ellipsoidal shape while smaller values allow more deformation. For

example, the cell in the center left resembles more the ground truth with β = 10

than with β = 100. Similarly, the cell in the top left preserves the curvature better

with β = 10. For all these experiments, we kept the parameter α = 1. We varied

this parameter but its effect was negligible due to the pre-smoothing cause by the

Gaussian filter. The viscosity parameter γ significantly affects the evolution of the

contours. A large viscosity value prevented the contour from expanding correctly.
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(a) Biomedical Images (b) Marks

(c) Ground Truth (d) MPP-AC β = 10

(e) Fiji (f) MPP-AC β = 100

Fig. 3.5. Human Cells
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Finally, the objects in the borders were not detected due to the instabilities caused

in the parametrization of the contours.

3.7 Chapter Summary

In this section we explored a method to add the parametric active contours as a

marked object. We covered the theory to combine both frameworks and we presented

results on 2D data. This combination captures shapes with irregular boundaries

and allows to modify the boundary properties such as smoothness and curvature for

objects in a 2D space. We tested the balloon force to detect voids in material images

with the caveat of not guaranteeing to achieve the optimal solution. In addition, the

dimension jump to 3D demands for more complex parametrization. One example

is to use a mesh of polygons and use the marching cubes algorithm to approximate

this mesh. However, this volumetric parametrization involves significant numerical

instabilities. Another approach is to look into non-parametric level sets as they

provide flexibility to when increasing the number of dimensions. This approach is

covered in Chapter 4.
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4. SEGMENTATION AND DETECTION OF
IRREGULARLY-SHAPED REGIONS USING

INTEGRATED MARKED POINT PROCESS AND LEVEL
SETS

4.1 Overview

In Chapter 3 we presented the idea of incorporating AC terms to the MPP energy.

However, while the AC method can detect irregular shapes, it relies on evolving para-

metric contours with complex numerical approximations and can present difficulty

adapting to topological changes. In this chapter, we extend this idea to incorporate

the level sets(LS) framework into the MPP. The LS approach uses a zeroth-level set to

model non-parametric contours while considering contour properties such as curvature

and stiffness. This framework has been used as a common extension to the parametric

active contours and accounts for topological changes, contour merging/splitting, and

reduced sensitivity to contour initialization. However, the LS method alone presents

drawbacks in multi-object systems: it merges nearby objects, it depends on a correct

initialization, and it tends to capture multiple false positives. Fig. 4.1(c) shows an

example of level sets result from using the method proposed by Yan et al. in [39].

In this chapter, we propose to model an image as a realization of an MPP, where

each marked point represents a disk deformed with the level sets procedure. The level

sets evolve constrained by a geometric prior that represents the object’s MPP-model

mark. Conversely, the Gibbs energy for the MPP is based on a LS-inspired likelihood

as well as a prior energy based on object interaction. Finally, we use birth and death

dynamics embedded in simulated annealing to explore the solution space at high

temperatures and to converge to strong local maxima as the temperature decreases.

We also propose an alternate sampling procedure to use the level sets results as object
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proposals for the MPP model. We present results using our model to extract porosity

in reinforced materials and evaluate our approach on a public dataset of human red

blood cells images.

We discuss the LS model in Section 4.2. We develop the proposed MPP model

in Section 4.3. We present the optimization approach in Section 4.4 and we present

results in Section 4.5.

(a) NiCrAl alloy image (b) MPP-only

(c) LS-only (d) MPP-LS (proposed)

Fig. 4.1. Sample results using different approaches.
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4.2 Level Sets Segmentation

The LS paradigm models contours by the zeroth level set of an embedding function

φ defined on the image lattice K ⊂ Rn. A contour is defined as C = {k|φ(k) =

0, k ∈ K}, where φ(k) > 0 inside the contour and φ(k) < 0 outside. Many level

sets-based methods have been proposed in the last two decades, including the edge-

based Geodesic Active Contours(GAC) [40] and the region-based Active Contours

without Edges (ACWB) [41]. Popular state-of-the-art methods include Local Image

Fitting(LIF) [42], Morphosnakes [43], MCMC contours [44], or multi-object contours

[45] [46]. Each method is well designed to tackle specific problems, such as reducing

initialization sensitivity, stabilizing numerical optimization, guaranteeing convergence

to a strong minimum, or discriminating overlapping objects (given a known number

of objects). In this chapter, we used Zhang’s Hybrid Level Sets(HLS) [39] because of

its combination of both region and edge terms. Low contrast objects such as material

porosity in microscopy images are often described by their edges and a slight intensity

difference between the interior and exterior regions of their bodies. The proposed HLS

energy depends on a combination of a region term Eregion and an edge term Eedge that

can characterize the cross sections of the voids shown in Fig. 4.3(a). In addition, we

include a shape prior Eshape that regulates the geometry of the level set. The modified

level set energy term has the form:

E(φ) = αrEregion(φ) + βeEedge(φ) + γsEshape(φ) (4.1)

If we define Ik to be the image intensity at location k, we let Eregion(φ) =
∫
k∈K(Ik −

µ)H(φk)dk. This energy attracts the contour to regions with intensities Ik brighter

or darker than the constant µ ≥ 0 (depending on the sign of parameter αr). The

function H(φk) is the Heaviside function and is nonzero only in the interior part of

the level set, i.e. φk > 0 [39]. Fig. 4.3(b) depicts objects of interest in the image

shown in 4.3(a), and Fig. 4.3(d) shows that the region energy is lowest near the

objects (depicted by bright pixel intensities).
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The second term of equation (4.1), Eedge(φ) =
∫
k∈K gσ(k)|∇H(φ)| dk, attracts

the contour to edges. The function gσ(k) = 1
1+αedge|fσ∗∇Ik|2

is minimum at the edges

smoothed by a Gaussian filter fσ with parameter σ. The term αedge works as a

threshold parameter to keep only strong edges. Through all the experiments in this

chapter, we set the parameter σ = 2 and vary αedge ∈ {0.1, 1, 10} depending on the

quality of the edges in the image. Fig. 4.3(c) denotes the regions with high (dark

pixels) and low (bright pixels) energy for the objects shown in Fig. 4.3(b).

The last term Eshape(φ) =
∫
k∈K(H(φ)−H(φm))2 dk was inspired from the LS with

shape prior model [47] and it helps to preserve a specific shape in the level set. In this

chapter, φm denotes a disk or ellipse and its angles and dimensions are determined

by the mark m of the object in the MPP model. In most of our experiments, we set

the parameter αregion ∝ 1
max(K)

to normalize the effect of the region term. We set

αshape ∈ {1, 2} to regularize the effect of the two other terms. We used the values

of βedge to increase the stiffness and penalize contour splitting. Fig. 4.2 denotes

the converge for different values of the geodesic weight βedge. A larger value of βedge

penalizes the creation of edges and keeps a smooth shape.

4.2.1 Level Set Optimization

Level sets are commonly evolved according to some velocity φt and the solution

is often approximated with using an Euler Lagrange approximation to reach a stable

solution to the partial differential equationdE
dφ

= dφ
dt
. We followed the numerical scheme

dictated in [39] to evolve the contour in equation (4.1) to its local minimum. This

procedure consists in evolving the level set in time according to equation:

φt = αregion(K − µ) + βedge div(gα(K)∇φ) + γshape(H(φ)−H(φm)) (4.2)

The curve evolution involves: re-initializing the contour, updating the contour at iter-

ation k as φk+1 = φk+∆t(αregion(K−µ)+γshape(H(φk)−H(φm)), and approximating

the divergence operator using the additive operator splitting(AOS) approximation.

The detailed algorithm for the level set optimization is described in Appendix A. For
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(a) Initialization (b) βedge = 1

(c) βedge = 10 (d) βedge = 20

Fig. 4.2. Converges for different values of βedge

all the experiments in this chapter, we chose the step size ∆t = 2. Fig. 4.4 shows two

different initializations and convergences of the hybrid level sets active contours. A

common drawback of this method is its sensitivity to initialization and its difficulty

to capture nearby elements such as the bottom right corner of Fig. 4.4(d).

4.3 Marked Point Process with Level Sets

The MPP single object with active contours energy was shown in section 3.4. This

consisted in proposing a disk ω with marks m = {k, r} and deforming it with a para-

metric active contour energy EAC(ω), shown in Fig. 4.5. The functional describing the

contour was minimized using Euler-Lagrange to achieve a local minimum EAC(ω̃) as
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(a) Original Image (b) Manual Labeling

(c) Region Term µ = 93 (d) Edge Term αedge = 0.01

Fig. 4.3. Components of hybrid energy.

shown in Fig. 4.5(b). We defined an object configuration as w = {ω1, ω2, ...ωN} ∈ Ω,

where N is a random variable and Ω contains the possible disks configurations, and

a space a ΩWo containing the respective deformed disks.

To address the common parametric active contour problems and extend the model

to level sets, we investigate two approaches: single object level sets and multiple object

level sets.
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(a) Side Initialization (b) Convergence from (a), (expand)

(c) Border Initialization (d) Convergence from (c), (contract)

Fig. 4.4. Convergence of evolving level sets at different initializations.

4.3.1 Single Object Level Set

We initialize a level set φ(k) to an ellipse object ω = (k,m). We evolve this level

set to its local minimum φ̃(k) following the procedure in Appendix A, using the shape

prior to prevent splitting. Then we parametrize the resulting zeroth level set with a

closed contour ω̃. This would be equivalent to the procedure done in Chapter 3 but

using level sets instead of parametric active contours. Fig. 4.5 shows the idea of this

approach.
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(a) ω = (ki, ri) (b) ω̃ : ω minimized with

EAC(ω)

Fig. 4.5. Original marks disk and deformed disk.

4.3.2 Multiple Objects Level Set

This approach consists of initializing random level sets without shape prior (γs =

0) and evolving the LS functional until convergence to φ̃(K). This approach allows

the zeroth level set to merge and split to adjust to the image. Once the level set φ(K)

is evolved to its local minimum φ̃(K), we parametrize all the closed contours created

by the zeroth level set by using a best fit approach [48] to assign a location k and

mark m to each contour. If a parametrized level set has a mark m outside the mark

space M , we automatically discard the object. Fig. 4.6 shows an example of evolving

a level set and obtaining multiple marked objects. The caveat of this approach is

that we cannot guarantee a global minimum since the markov chain is not irreducible

since we cannot visit every state in a finite number of steps.

4.3.3 MPP Energy

We model a set of marked points W ∈ Ω with a Gibbs density of the form:

p(W ) =
1

zω
exp (−U(W )), (4.3)
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(a) Original Image (b) Evolved Level Set (φ̃) (c) Sample Marked Objects

w = {ω1, ω2, ..., ωN}

Fig. 4.6. Sample of multiple objects level set in satellite image of lakes. Im-
age obtained from Kaggle’s Satellite Image Classification Challenge [38].

where U(W ) is the Gibbs energy and zω =
∫
W∈Ω

exp(−U(W )) is the partition func-

tion. We define the Gibbs energy of the form

U(W ) =
∑
ωi∈W

Ud(ωi) +
∑

ωi,ωj∈W
ωi∼ωj

Up(ωi, ωj), (4.4)

Where Ud(ωi) represents the potential energy for a single object ωi, and Up(ωi, ωj)

represents an interaction potential between neighboring elements ωi and ωj. In our

model, the neighbor relation ∼ is defined by object overlapping. The details for Ud(ωi)

and Up(ωi, ωj) will be defined in sections 4.3.5 and 4.3.4 .

4.3.4 Single Object Potential Uo

Since the contour w̃i cannot be simply represented by a mark, we parametrize

each object ω̃i in the locally minimized level set into ω̃i(t) with nt points separated

by 1 pixel (measured in Euclidean distance) in the boundary of ω̃i. We let Dω̃idenote

the region occupied by object ω̃i(t) and calculate the single object energy:

E(ω̃i(t)) = αrEregion(ω̃i(t)) + βeEedge(ω̃i(t)) (4.5)
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where Eregion(ω̃i(t)) = 1
|Dω̃i |

∑
s∈Dω̃(I(t) − µ)ds is a normalized parametric repre-

sentation of Eregion(φ) from eq. (4.1) . This normalized sum evaluates the percent-

age of dark pixels inside the parametrized object. The second term Eedge(ω̃i(t)) =

1
nt

∑
t∈ω̃i gσ(t) dt is a normalized parametric representation of Eedge(φ) from eq. (4.1)

and it evaluates the percentage of border points located at a strong edge, denoted by

the function gσ (defined in section 4.2). These terms were inspired in the level sets

energy given in eq. (4.1), but adapted to a single parametric object.

For the object single potential Uo(ω), we define a quality term that favors desirable

configurations:

Uo(ω) =

 1− exp(−E(ω̃)−Eo
3Eo

), if E(ω̃) ≥ Eo

(E(ω̃)
Eo

)
1
3 − 1, otherwise,

(4.6)

where Eo is a hyper-parameter that is image-dependent. This expression results in a

value that is between -1 and 1 and ensures that objects with good fit get values close

to -1 (favoring) and objects with bad fit get values close to 1(penalizing). Figure 4.7

shows the energy curve with the parameter Eo set to 0.25.
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Fig. 4.7. Quality energy term.
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4.3.5 Prior Potential Up

For prior potential, we use an overlapping penalizer. This prior potential allows

overlap between objects up to a certain threshold Toverlap. If we let Dω denote the

region occupied by object ω in the image, andDω̃ the region occupied by the deformed

object ω̃, the overlap potential is given by:

Vp(ω̃i, ω̃j) =

 A(ω̃i, ω̃j), if A(ω̃i, ω̃j) < TOverlap

∞, otherwise
(4.7)

where TOverlap ∈ [0, 1] is a constant indicating the allowed amount of overlap between

two distinct objects, ω̃ is the deformed object from ω, and A(ω̃i, ω̃j) is the overlapping

ratio between two distinct regions formed by overlapping objects and is given by:

A(ω̃i, ω̃j) =
|Dω̃i ∩Dω̃j |

min(|Dω̃i |, |Dω̃j |)
(4.8)

This prior potential is often used for satellite images to allow object occlusion for

objects at different heights; for all our experiments in section 4.5 we set Toverlap = 0.05.

4.4 Marked Point Process Optimization

The energy U(W ) presented in eq. (4.4) is non-convex. We use stochastic simula-

tion for optimization. Often, MPP models are optimized using a Markov chain Monte

Carlo(MCMC) sampling embedded in simulated annealing. This approach is based

on starting at a high temperature to explore the configuration space and reducing the

temperature to allow the solution to be concentrated around the configuration that is

the MAP estimate, ie Ŵ = argmax
W

(p(W )). Popular samplers include the reversible

jump Markov chain Monte Carlo (RJMCMC), proposed by Green [18] or Multiple

Births and Deaths(MBD) proposed by Descombes [19]. In this chapter, we use the

MBD sampler because it was shown to achieve faster convergence than the traditional

RJMCMC [30,32]. The choice of the initial temperature To and the annealing scheme

are essential to ensure the convergence to a global optimum. In our experiments



37

we determined αT = 0.90 achieved a faster convergence without compromising the

quality of detection.

4.4.1 Multiple Births and Deaths with Strictly Unary Level Set

The MBD sampler we use consists of finding a birthmap, normally pre-computed

from a segmentation, then iterating over every pixel and giving birth to objects ω

with probability pbirth with parameters drawn from the distribution of M . The de-

tailed algorithm for this procedure is listed in Algorithm 2. The algorithm reaches

convergence if and only if all the objects born during the birth step are killed during

the death step. For this procedure, we do not allow merging/splitting of level sets.

The algorithm reaches convergence if and only if all the objects born during the birth

step are killed during the death step.

4.4.2 Simulating Multiple Births and Deaths with Splitting Level Sets

Stochastic simulation algorithms with simple proposal distributions tend to ac-

cept only a fraction of the proposed samples. Because of large image dimensions,

traditional MPP sampling techniques can result in a large number of wasted compu-

tations, especially in systems with sparse objects and irregular geometries. On the

other hand, level sets often evolve with faster deterministic methods but they rely on

a correct initialization in order to converge to a meaningful solution. Hence, in order

to preserve the probabilistic framework of the MPP and the ability to capture objects

from the level sets, we parametrize the objects found with level sets and use them as

proposals for the MPP model. In order to do this, we use as reference Algorithm 6

in [30]. This method consists of simulating multiple births in a system by drawing

realizations of a Poisson Process. However, instead of drawing realizations from a

distribution, we initialize level sets at random locations and evolve the level sets to a

local minimum. Then we use all the possible objects as proposals and use the birth
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Algorithm 2 Multiple Birth and Death with Stricly Unary Level Set
1: procedure MPP Energy Minimization

2: Initialization:

3: Create birthmap bo

4: Initialize brate = bo, T = To, σ = σo.

5: Birth Step:

6: Visit pixels in raster order

7: ω′ ← draw a sample from space W

8: Add ω′ to configuration w with probability σbrate

9: Evolve ω′ using the method described in Appendix A to ω̃′

10: Death Step:

11: Sort all elements of w by decreasing energy.

12: For every object ωi in w calculate:

13: drate(wi) =
σ(k)exp

U(w|Y )−U(w−ωi|Y )

Tk

1+σ(k)exp
U(w|Y )−U(w−ωi|Y )

Tk

;

14: Delete ωi with probability drate(ωi)

15: Convergence Test :

16: if all the elements born during the birth step are killed during the death step

then

17: terminate process

18: else

19: Update parameters: T k+1 ← T k × α , σk+1 ← σk × α α ∈ (0, 1)

20: goto Birth Step

21: end if

22: end procedure
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and death dynamics to update our configuration. The details of this approach are

given in Algorithm 3.

Algorithm 3 Using Level Sets to simulate Multiple Births
1: procedure MPP Energy Minimization in Image I

2: Initialization:

3: Initialize brate = bo, T = To, σ = σo, W = {}

4: Birth Step:

5: Initialize a level set φ(k) at a random location

6: Evolve φ(k) using the method described in Appendix A to φ̃(k)

7: Parametrize every closed contour ω̃′ in φ̃(k)

8: Calculate a best fitting marked object ω′ for for each contour ω̃′. Call W ′ =

{ω′1, ω′2, ..., ω′n} the new configuration.

9: Add the configuration to the current configuration W ← W ∪W ′

10: For every object ω in W calculate:

11: aω = exp

[
U(W )−U(W\ω)

Tk

]
; draw p form a uniform distribution over [0, 1]

12:

13: if p < aωδ
1+aωδ

then remove ω : W ← W\ω

14:

15: end if

16:

17: if n < Max Iterations then

18: Update parameters: T k+1 ← T k × α , σk+1 ← σk × α, n← n+ 1

19:

20: end if

21: goto Birth Step

22: end if

23: end procedure
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4.5 Experimental Results

We tested our method on images containing objects of irregular shapes and little

or no contrast difference. First, we validated the MPP-LS with human red blood

cell data publicly available from the Broad Bioimage Benchmark Collection [1]. We

compare our results with the MPP-AC method proposed by Aguilar et al. in [49]

and the hybrid-LS approach presented by Yan et al. in [39]. We use the three

metrics presented by Broad Bioimage Benchmark Collection to evaluate our method:

“background′′, “outlines′′, and “counts′′. The background metric evaluates the quality

of pixel-wise segmentation of background/foreground. The outlines metric evaluates

the quality of contours detected: a contour pixel is marked as true positive if it lies

within two pixels of a ground truth contour pixel. The counts metric evaluates the

error between the ratio of detected objects and ground truth objects. In addition, we

tested our approach detecting large porosities in fiber reinforced composite images

and we compare the results with the hybrid level sets presented by Yan et al. [39].

In this dataset, we only evaluate the segmentation score since the labeled-data is a

hand-drawn approximation and can cause ambiguities in the outlines score.

4.5.1 Human Red Blood Cells

This dataset was obtained from image set BBBC009v1 in the Broad Bioimage

Benchmark Collection and it consists of five differential intensity contrast (DIC)

images of human red blood cells. The dimension of each image is 600 × 800 pix-

els and each image contains close to 40 red blood cells. Fig. 4.8(a) denotes a

sample DIC image where the cells are characterized by a low contrast body sur-

rounded with an ellipsoidal contour. For these images, we use the birth-death sam-

pling described in Section 4.4 using level sets consisting of a unary contour with

an ellipse geometric prior. We define the mark space for the ellipse to be M =

[aMin, aMax] × [bMin, bMax] × [θMin, θMax] = [10, 50] × [10, 50] × [0, π], where a, b rep-

resent the ellipse minor and major axis respectively, and θ represents the orientation
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with respect to the positive x-axis. In addition, we discard the region term using

αr = 0 since there is no contrast between the interior and exterior regions of the cells,

we let the edge parameters be αedge = 1 and βe = 7, and we let the parameter γs = 1.

Finally, we let Eo = 0.5 so the potential energy would favor objects with 50% or more

of its borders located at a strong edge and would penalize the objects otherwise.

Fig. 4.8 denotes sample images with hand annotations, and results for the LS-

only method [50], MPP-AC [49], and MPP-LS (proposed) and Table 4.1 presents

the numeric results for each metric. The traditional level sets was initialized at

the border pixels and contracted until convergence. The LS-only method cannot

differentiate between adjacent objects and merges the objects as shown in the third

column of Fig. 4.8. On the other hand, the MPP-AC method can differentiate

objects near each other but it has the drawback of lower accuracy in edge detection.

The parametric contours lead to inaccurate border representations and also present

difficulties capturing objects with noisy bodies. Our method, depicted in the fifth

column of Fig. 4.8 outperforms the MPP-AC and the traditional LS at both boundary

detection, object separation, and segmentation. The improvement of the MPP-LS vs

the MPP-AC comes from using non-parametric contours and the improvement from

MPP-LS vs LS-only comes from multiple contour initializations and assigning a mark

to each object.

The disadvantage of using non-parametric contours is the amount of operations

to evolve the curve, since level sets require O(rows ∗ columns) operations while the

parametric contour only requires O(Nt), where Nt is the number of points used to

model the contour. Also, in both methods there are false positives in empty regions

surrounded by cells. This flaw is intrinsic to the MPP model since the deformed

model is surrounded by edges and gives a high likelihood to a false positive detection.

In addition, our literature review shows that one popular method to segment these

images [51] obtained 93.4% segmentation accuracy for image 4.8(a). We obtained

94.35% accuracy for the image in 4.8(a) and 83.94% accuracy for the entire image
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(a) DIC image (b) Labeled out-

lines

(c) LS-only (d) MPP-AC (e) MPP-LS

(proposed

method)

(f) DIC image (g) Labeled out-

lines

(h) LS-only (i) MPP-AC (j) MPP-LS

(proposed

method)

(k) DIC image (l) Labeled out-

lines

(m) LS-only (n) MPP-AC (o) MPP-

LS(proposed

method)

Fig. 4.8. Human red blood cells . Images obtained from Broad Bioimage
Benchmark Collection [1].

dataset. Also, unlike the method in [51], our approach yields an individual object-wise

segmentation.

4.5.2 NiCrAl Alloy

Fig. 4.9 shows a NiCrAl Alloy microscopy image with dimensions 208× 208. For

this image, we chose the level sets parameters µ = 90 based on the average intensity of

a particle. We also set αregions = −1 since we wanted the contour to evolve into regions

with intensities greater than µ. The edge term was set to βedge = 0.01. In addition, we
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Table 4.1.
Comparison f1 scores for human red blood cells

Method Background Outlines Counts

MPP-AC 0.790 0.680 0.897

Hybrid-LS 0.432 0.784 -

MPP-LS (proposed) 0.843 0.820 0.927
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used the ellipse model for our mark spaceM = [amin, amax]×[bmin, bmax]×[θmin, θmax].

We sampled uniformly for the parameters a and b and we followed [32] to define θ

with a Gaussian mixture with means at θ = π
4
and θ = 3π

4
, with variance 0.12.

This image was used for testing the MPP method in [32]. The MPP combined

with level sets took 40 iterations to detect the particles in Fig. 4.9(b) while the

MPP took 200 iterations using similar MPP parameters. The MPP alone works very

well for capturing nearby elements, however, it does not provide description of the

particles border, nor allows to simulate the boundary properties. On the other hand,

the mpp distinguished nearby particles in the middle of the image while the MPP-LS

merged both elements together. This is one of the problems with level sets when

there is a weak edge between close elements.

(a) Original (b) MPP-only (c) MPP-LS

Fig. 4.9. MPP-LS results on NiCrAl alloy image

4.5.3 Fiber Reinforced Polymers

The images shown in the first column of Fig. 4.11 were provided by ACME lab

at Purdue University. These images depict slices of a volume reconstructed from CT

scans of a fiber reinforced polymer. The volume consists of 1300 slices of 2500× 2500

pixels, and the sub-volume used for validation entails 10 images with sizes 950 ×

950 pixels with labeled segmentation. The labeled images were generated by pre-
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(a) ROC measurements

(b) f1 scores

Fig. 4.10. Fiber reinforced polymer segmentation evaluation
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segmenting the volume with the methods described in [2, 14, 15] and with a post-

processing step of hand correction.

The images are comprised of three elements: fibers(bright intensities), voids (dark

irregularly shaped objects), and matrix(background). In this chapter, we focused on

extracting the voids, which are represented by objects of irregular shapes and low

intensity-contrast between the interior and exterior parts. Fig. 4.11 shows different

sample images cropped with different dimensions for visualization purposes. The first

row has dimensions 950 × 950 pixels, the second row has 600 × 650 pixels, and the

third row has 300× 300 pixels.

We approximated the hyper-parameters with pre-segmentation algorithms and

experimentally. The region term µ = 95 was chosen as the average intensity in the

3 darkest regions of a pre-segmentation algorithm [33] with 9 labeled regions. The

edge weight was set experimentally to αEdge = 0.1 by checking that the regions of

interest were captured in the edges. Finally, the weighting parameters αregions = 1
15

and βedge = 45 were set to regularize the effects of the region term and to prevent the

contours from splitting since we set γshape = 0 for this method.

We use the approach presented in section 4.4 to propose objects in the MPP

framework based on the results of multiple level sets. We set the geometric prior to

zero (αs = 0) due to the irregular shapes and dimensions of voids (shown in Figs.

4.11(b), 4.11(f), 4.11(j)) and due to the ability of the LS-only to detect voids (shown

in Figs. 4.11(c), 4.11(g), 4.11(k)). The main drawback of the LS-only method is

that the LS depends on correct contour initializations. For instance, Fig. 4.11(c)

and Fig. 4.11(g) show the results from initializing the level set at the image borders.

Fig. 4.11(c) detected a large false positive that affects significantly the foreground

segmentation score and 4.11(k) missed porosity located near the image borders. In

addition, the LS-only method does not evaluate the likelihood of each detected object.

For example, Fig. 4.11(k) detected multiple false positives generated due to noise and

edges adjacent to fibers. We exploit the MPP-LS approach by evolving multiple level

sets, obtaining a mark for each object, calculating the potential energy using equation
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Table 4.2.
ROC values for fiber reinforced composites

Method mean f1 ROC

Hybrid-LS 0.559 0.338

MPP-LS (proposed) 0.770 0.592

(4.5), and finding the likelihood for each object. For example, Fig. 4.11(l) preserves

only the voids that are surrounded by strong edges and a dark foreground. In addition,

4.11(h) shows a void that was captured by two level sets and was missed in the LS-

only method. It is worth mentioning we only compare against the hybrid-level sets

method since the MPP-AC presents difficulties adapting to the void topology, and the

MPP-AC also presents large computational times due to the large image dimensions.

To improve the comparison across slices, we varied the region intensity parameter

µ (from Fig. 4.3(d)) since the image pixel intensity distribution varies depending on

the slice number. This issue is generated during the CT reconstruction process and

can be solved using histogram matching as pre-processing. The appropriate value

for µ ranges between µ ∈ [95, 110] depending on the slice of interest. The results of

applying our method and the hybrid level sets method at different parameter choices

are depicted in Fig.4.10(a). The MPP-LS approach obtains higher precision than

the HLS method for values below µ = 115 due to the death step process. However,

at higher values than µ = 115, the MPP-LS assigns a high probability to all the

proposed objects and therefore, its performance decreases. Fig. 4.10(b) shows the

average f1 score across all 10 images. Our method obtains a higher f1 score at all the

parameter ranges than the level-sets only approach. In addition Table 4.2 shows the

mean f1 scores given the best parameter choice for each image. Our method obtains

0.770 compared to 0.559 using the Hybrid-LS method. It is worth noting the labeling

is an approximation to a ground truth due to the labor intensive process of image

annotation, and due to the intrinsic ambiguity of microscopy images.



48

(a) Sample slice.

Size: 950× 950

(b) Labeled segmen-

tation

(c) Hybrid level sets (d) MPP-LS (pro-

posed)

(e) Cropped slice.

Size: 600× 650

(f) Labeled segmen-

tation

(g) Hybrid level sets (h) MPP-LS (pro-

posed)

(i) Cropped slice.

Size: 300× 300

(j) Labeled segmen-

tation

(k) Hybrid level sets (l) MPP-LS (pro-

posed)

Fig. 4.11. Detecting voids in fiber reinforced polymers. Second column:
hybrid level sets only. Third column: MPP-LS. Images provided by Dr.
Michael Sangid’s laboratory, Purdue University

The HLS method [39] were initialized to the external border and contracted to

reach the convergence shown in the middle column of Fig.4.12. We exploited the

MPP approach by obtaining a mark for each object, calculating the potential energy

of the object using equation (4.5) to find the likelyhood. In addition, we explored

simulating multiple initializations of the level set to capture different objects, but
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in our experiments, few initializations were necessary as the level set converged to

similar results. The right column of Fig. 4.12 denotes our results after finding the

likelyhood for each object and killing the ones with higher energy. Our results show

improvement over the HLS approach since our method keeps only the objects of

interest. In addition, the bottom left corner of Fig. 4.12(i) shows an object with

more accurate boundary characterization than in 4.12(h). However, our approach

comes at the expense of more operations as we evolve multiple level sets.

4.6 Towards 3D Results in Fiber Reinforced Polymers

The level sets method provides the setup for 3D sampling. However, our approach

requires several level sets initializations and every level set requires O(nd) operations,

where n is the size of a single side and d is the number of dimensions. In addition,

CT volumetric images present imaging noise, reconstruction noise, ring artifacts, and

intensity variations for individual slices. In our experiments, this data inconsistency

created instabilities when running direct 3D models for the contours. Hence, we

followed the procedure listed in Fig. 4.13 where we detected 2D objects in each

slice, use a 3D Gaussian smoothing filter with parameter σ = 2, and then used

connected components to label each object. This procedure accounted for individual

slices that missed contours but had contours detected in the neighboring slices. Fig.

4.14 denotes the comparison of a manual segmentation with the results obtained from

the procedure shown in Fig. 4.13.

4.7 Chapter Summary

We explored the addition of level sets framework to the MPP model. We exploit

the numerical tools of level sets to find objects and then parametrize the closed con-

tours to treat them as marked objects in the MPP framework. The MPP framework

includes the level set energy as well as an overlapping prior. The combination of these

models allows modeling objects found in level sets with a probabilistic approach, and
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(a) Original Image (b) Hybrid Level Sets (c) Proposed Method

(d) Original Image (e) Hybrid Level Sets (f) Proposed Method

(g) Original Image (h) Hybrid Level Sets (i) Proposed Method

Fig. 4.12. MPP-LS results on fiber reinforced polymers

hence it helps to characterize randomly located irregularly shaped objects. We show

results for two different images and compare the results with other methods, showing

the advantage of the proposed approach.
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(a)

Fig. 4.13. Procedure to expand results to 3D

(a) Manual Labeling (b) Proposed Method (c) Manual Labeling (d) Proposed Method

Fig. 4.14. 3D Void detection from different views and comparison with
rough manual segmentations
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5. 3D VOID DETECTION AND FIBER EXTRACTION
FOR STATISTICAL CHARACTERIZATION OF

FIBER-REINFORCED POLYMERS

5.1 Overview

Chapter 4 finishes with an approach to perform volumetric segmentation. How-

ever, the combination of multiple geometries such as fibers (tubes) and voids (con-

tours) joint detection increases significantly the model complexity and memory re-

quirements. In addition, the inference time for large volumes can last for several days

or up to weeks, presenting a necessity for faster and unified methods. In this chapter,

we propose a surrogate approach consisting in training a neural network with the

overlapped model-based results. This approach focuses on microscopy images where

labeled data is not readily available, but purely model based approaches can be too

slow to process entire volumes due to their computational complexity. In addition, we

propose an encoder-decoder alternative to a fiber instance segmentation paradigm,

showing a speedup in training and inference times without a significant decrease in ac-

curacy with respect to alternative methods. The neural networks approach represent

a significant speedup over model based approaches and can correctly capture most

fibers and voids in large volumes for further statistical analysis of fiber reinforced

polymers.

5.2 Related Fiber and Void Segmentation Works

Many researchers have proposed solutions to extract structural information from

volumetric representations of fiber-reinforced polymers. For example, multiple projects

have used morphological filters and watershed to extract fibers Huan et al. [52], yet
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Fig. 5.1. Sample architecture with residual blocks proposed by [13]

this problem presents issues detecting thin fibers. Similarly, Agyei et al. [14] pro-

posed a multi-view fiber fitting based on 2D pre-segmentation and 2D multi-slice

ellipse fitting; however this method relies on characterizing fiber cross sections for

different axes with 2D ellipses. Also, Li et al. [53] proposed to use a connected tube

marked point process model to extract fibers. This approach proved promising but

non-scalable to large volumes due to the required time to find each tube. Finally,

Konopczynski et al. [13] proposed an embedded learning method to extract fibers

from composite materials; however this approach requires pre-labeled data and the

large memory requirements of this architecture limits the network to tile the sample

into very small subvolumes (32× 32× 32) . This architecture is depicted in Fig. 5.1,

which consists in a neural network comprised of several convolutional and residual

blocks connected in series.

On the other hand, few methods have been proposed to extract voids from tomo-

graphic images. This occurs due to the irregular shape and arbitrary sizes that voids

can exhibit in 3D. Numerous researchers proposed threshold segmentation, however

this approach does not work well for large voids [54] [2]. The work proposed by

Nageswara et a. [55] proposed finding voids from phased arrays but in this chap-



54

ter we only deal with absorption images. In Chapter 3 we proposed void detection

using active contour framework embedded in a marked point process model and in

Chapter 4 we extended this method to level sets; however, the computational com-

plexity of such a methods present difficulties when extending to a third dimension

and extracting objects in very large volumes.

In this chapter, we propose a surrogate approach that incorporates model-based

methods on subvolumes and uses their results to train a neural network. This ap-

proach takes into account the lack of labeled data but also exploits the inference

parallelization of using convolutional neural networks. In addition, we propose an

encoder-decoder architecture to perform instance segmentation in order to speed up

training and inference times.

5.3 Model Based Methods: Marked Point Process

We used the MPP method explained in Section 2 applied to subvolumetric data

to obtain the labeled data. Explicitly, we used the MPP method proposed by Li et

al. [53] and the MPP method proposed in Chapter 4. The sample results of fiber

detectiction are denoted in Fig. 5.2(b) and the sample void detection is shown in Fig.

5.3(b).

5.3.1 Fibers: Connected Tube Marked Point Process

We used the 3D extension of the connected tube MPP model proposed in [53]

to detect fibers. This approach defines the mark space as M = [Rmin, Rmax] ×

[Lmin, Lmax] × [θmin, θmax × [φmin, φmax] and proposed a prior model to encourage

long tubes, and connections between nearby short tubes. Fig. 5.2(a) and Fig. 5.2(b)

shows a volume and 3D results of this approach applied to a glass fiber reinforced

polymer. This approach can model fibers by detecting several tubes connected by

their end points. We followed the procedure listed in [53] in order to set the model

parameters.
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(a) Glass fiber reinforced polymer [15] (b) Connected Tube MPP [53]

Fig. 5.2. Sample connected-tube MPP results

5.3.2 Voids: Hybrid-Level sets and Active Contours

We detected voids using the method explained in section 4.6. One drawback of

combining an MPP with level sets is that the computational requirements used to

deform the contours increase exponentially with an increase of dimensions. Therefore,

we detected voids in successive 2D slices, and used 3D smoothing filters to merge the

results into a 3D structure. This approach is denoted in Fig. 5.3(b).

5.4 Surrogate approach with Convolutional Neural Networks

Despite the promising results, MPP models rely on stochastic sampling for op-

timization. This approach can result in extensive computational burdens in order

to find an optimal object configuration. This issue could make the inference of very

large volumetric datasets unfeasible. For example, Table 5.1 shows the running times

for a varying size of subvolumes belonging to the fiber reinforced composite shown

in Fig. 5.4 . These ruining times were measured in single subvolumes for the case of

300× 300× 300 and 500× 500× 500, and they were estimated for the subvolumes of
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(a) Glass fiber reinforced polymer [15] (b) Consecutive slices stacked to form

3D volume

Fig. 5.3. Results of Model-Based void detection

Table 5.1.
Time profiling for MPP methods

Voxels Connected Tube MPP Level Sets MPP

300× 300× 300 18 mins 3 mins

500× 500× 500 6 hours 20 mins

2025× 2025× 1350 19 days 26 days

sizes 2025× 2025× 1350 based on parallel implementations of connected tube MPPs

and MPP-LS detection.

In addition, the proposed model based methods detect fibers and voids indepen-

dently and the results are superimposed; however, both results could yield discrepan-

cies such as classifying a voxel as both fiber and void. In this section, we propose the

use of neural networks to tackle both the object detection speed-up and the merging

of fiber and void detection into a unified method. We propose to use the combined
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Fig. 5.4. Sample volume sizes
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model-based results as labeled data to train neural networks to segment instances of

objects in 3D. This approach is depicted in Fig. 5.5.

(a)

Fig. 5.5. Proposed surrogate approach to train neural networks from
model-based results. The Tube MPP detects fibers and the AC-MPP
detects voids.

5.4.1 Encoder-Decoder Embedding Instance Segmentation

Multiple projects have proposed instance segmentation approaches such as object

proposal based [10] detection. For example Figs. 5.6(a) and 5.6(b) show possible

bounding boxes characterization for a system comprised of fibers. These characteri-

zations do not describe the system correctly since fibers are narrow objects oriented

in arbitrary directions and the system requires of tight bounding boxes with different

orientations. Similarly, a popular approach such as deep watershed [56] could fail to

approximate a watershed energy for fibers with small radius. For example, Fig. 5.7(a)

shows a sample approximate 3D watershed energy. A neural network would require

very high resolution to estimate a corret watershed energy; however, neural networks

with very high resolution often are limited to small subvolumes due to their memory

requirements. In addition, the watershed approach requires of a correct marker ini-

tialization, Fig. 5.7(b) shows the watershed segmentation with an incorrect marker

initialization.
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(a) Densely populated system (b) Sample bounding box charac-

terization

Fig. 5.6. Sample bounding-box proposals for 3D narrow fibers.

(a) Sample watershed energy. (b) Sample watershed segmentation

with faulty marker selection

Fig. 5.7. Sample watershed segmentation approach for 3D fibers.
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In this chapter, we explore further the work done in fiber embedding segmentation

[13]. This method consists of tiling images into cubes of size 32× 32× 32 voxels and

using a residual network network shown in Fig. 5.1, with 2 output channels to classify

pixels into foreground and background. Then, a similar network but with 12 output

channels finds a mapping of foreground pixels into distant clusters in an embedded

space. This approach is summarized in Fig. 5.8.

(a) n=0

Fig. 5.8. Method proposal for inference

We propose an extension to this work by using a U-Net [5] architecture. This

architecture represents both a speed-up in inference times over the residual network

and a reduction in memory requirements. This approach allowed us to increase the

window size from 32 × 32 × 32 voxels to 128 × 128 × 128 voxels without compro-

mising performance. Fig. 5.9 represents the chosen network architecture, where we

followed the architecture proposed by [5] for semantic segmentation, and the same

architecture but with 12 output channels for instance segmentation. The required

memory for different window sizes is depicted in Fig. 5.10, where we compared the

required memory for performing semantic segmentation with a 3D U-Net [5], a 3D

DeepLabV3 [9], and the Residual-based Net from [5]. Similarly, Table 5.2 denotes the

f1 segmentation scores for detecting fibers and voids for each method evaluated in a

manually labeled subvolume from the dataset presented in section 5.5.1. The U-Net

shows the best overall performance for segmenting voids and fibers while DeepLabV3

segmented voids better but obtain a 0.420 f1 score for fiber segmentation. In our im-
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plementation and parameters, the R-Net had the worst performance for both fibers

and voids while requiring the highest amount of memory.
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Fig. 5.9. Encoder Decoder Network Architecture proposed by [5]

Fig. 5.10. Memory Consumption for different semantic segmentation ar-
chitectures
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Table 5.2.
Semantic segmentation results for different architectures

f1 fiber segmentation f1 void segmentation

U-Net [5] 0.809 0.622

R-Net [13] 0.326 0.067

DeepLabV3 [9] 0.420 0.701

5.4.2 Network Training

Semantic Segmentation

We used the weighted cross entropy loss function in order to train the semantic

segmentation network. The cross entropy function is defined as:

LossSemantic = −
L−1∑
i=0

witilog(si) (5.1)

where L is the number of classes, ti is the ground truth label, si is the output score

for class i, and wi is a predefined weight. We trained the network with L = 3 for

the dataset depicted in Fig. 5.15(a), with w0 = 1 (matrix),w1 = 10(fiber) , w2 = 20

(void) and L = 2 for the dataset depicted in Fig. 5.13(a) with w0 = 1, and w1 = 5

. These weights were chosen from the voxel ratios between classes available in the

labeled data. We used the Adam optimizer with a leaning rate lr = 0.0001 and we

trained the network for 1000 epochs, feeding 30 cropped subvolumes in each epoch.
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Instance Segmentation

For instance segmentation, we followed the approach taken by [13]; therefore we

used a similar network to our semantic segmentation network, but with 12 output

channels. The instance segmentation loss function is defined as follows:

Lossinstance = αLpull + βLpush + γLregularization (5.2)

The first part of the loss function teaches the network to pull the embedding outputs

of an instance towards the center of a cluster and is defined as

Lpull =
1

C

C∑
c=1

Nc∑
xi=1,xi∈c

(||xi − µc|| − δv)2
+ (5.3)

, where (x)+ = max(0, x), C is the number of instances, xi is the output of the

embedding network for the ith voxel that belongs to instance c, and µc = 1
Nc

∑Nc
i=1 xi

is the mean embedding value for one specific instance with Nc voxels. In all our

experiments, we set the hyper-parameter δv = 0.2. This value could be translated to

the euclidean distance parameter in clustering algorithms as the maximum distance

to consider two points to belong to the same cluster.

The second term is in Eq. (5.2) has the purpose of teaching the network to

push the centers of the clusters away from each other. This loss function is defined

as Lpush = 1
(C)(C−1)

∑C
i=1

∑C
j=1,j 6=i(δd − ||µi − µj||)2

+. In all our experiments, we set

δd = 5. This parameter was chosen following the convention δd � δv.

The third part of the loss function is intended to regularize the mean embeddings

and is defined as Lregularization = 1
C

∑C
i=1 ||µi||.

This loss function only takes into account the foreground pixels previously clas-

sified by the semantic segmentation network. We used the Adam optimizer with

learning rate lr = 0.001 and we trained the network during 2000 epochs with subvol-

umes cropped from the labeled data. We followed the parameter setting used by [13]

and set the parameters α = 2, β = 2, and γ = 0.001. Fig. 5.11 shows the learning

procedure of the mapping network for different training iterations. Each color rep-

resents a distinct instance of a fiber. Finally a clustering algorithm (DBSCAN [57])
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assigns each pixel to clusters that represent fiber instances. Fig. 5.12 shows the sam-

ple instance segmentation f1 results for the labeled dataset presented in Section 5.5.2

at different number of embeddings. We tested these results in 3 subvolumes of sizes

64× 64× 64.

(a) n=0 (b) n=10

(c) n=100 (d) n=2000

Fig. 5.11. Embedded learning at different iterations. Images have been
reduced to 2 dimensions using t-SNE [58] for visualization purposes

5.5 Results

In this section we present results for the two datasets. One experimental dataset

where we do not have ground truth; therefore our results are evaluated by comparing

sample statistics with the results from Agyei2018 et al. [15] and Hanhan et al. [2]. We

focused on comparing statistics of interest such as fiber and void fraction, number
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(a) n=0

Fig. 5.12. f1 score vs number of embedding

of fibers, fiber length distribution and fiber orientation distributions, and finally,

computational time.

In addition, we used a set of synthetic datasets for numeric evaluation and we

considered three parameters: 1) voxel-wise segmentation accuracy, 2) fiber detec-

tion correctness, and 3) inference time. In addition, we perform experiments in an

experimental dataset where we do not have ground truth,

We evaluate our method compared to the superimposed model-based results (Con-

nected Tube MPP and Active Contours MPP), the residual network-based approach

[13], our proposed encoder-decoder approach using the MPP results as training data

and our proposed encoder-decoder approach using the true labels as labeled data

(when available).
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5.5.1 Experimental Data: Glass Fiber Reinforced Polymer

The first dataset was an X-ray micro-computed tomography scan of a glass fiber

reinforced polypropylene [15] and represents glass fibers in a polypropylene matrix

composite. The sample was imaged at 1.3µm of resolution and its dimensions are

2400× 2400× 1300 voxels. In this chapter, we used a subvolume of 301× 301× 301

voxels for display purposes. It is worth noting we we used the connected tube MPP

and active contours MPP to obtain labeled training data.

Semantic Segmentation

For semantic segmentation, we converted the superimposed MPP results to three

classes denoted in Fig.5.13(b). These methods provided a starting point for the

semantic segmentation, but they still presented noise in the results. For instance,

Fig.5.13(b) shows a false void(blue) at the bottom left part of the image. Similarly,

Fig.5.13(b) shows multiple missed fibers(green) near the center and left part of the

image. This issue happens due to noise generated during the imaging and sample

reconstruction procedure, and due to parameter calibration for both MPP approaches.

We trained both networks using the same training parameters, however we used a

window size of 128× 128× 128 voxels for our network, and we used a window size of

32×32×32 voxels for the residual network. Both neural network approaches were able

to segment all the voids and reduced the amounts of phantom voids that were detected

in the model-based approaches. Additionally, the networks learned to segment fibers

that were not segmented originally in the model-based methods; however, Fig. 5.13(c)

shows the residual network presented over-segmentation of fibers. This issue leads to

difficulty performing instance segmentation.

Fig. 5.13 denotes the results obtained from finding the semantic segmentation for

3 different approaches: Connected Tube MPP [53], Fully Convolutional Residual Net-

work [13], and our method. Fig 5.13(c) represents the output of our implementation

of the work proposed by Konopczynski [13] trained with the MPP as labeled data.
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(a) Cross Section of Fiber Reinforced

Composite

(b) Connected Tube MPP and MPP-LS

[53]

(c) Residual Network [13] (d) Proposed Encoder-Decoder

Fig. 5.13. Semantic Segmentation for polypropylene matrix composite.
Fibers are represented green, voids are represented blue

Instance Segmentation Statistical Comparison

In order to validate the instance segmentation, our method was evaluated and

compared in a subvolume of size 950× 950× 150 with the results of [2] and [14]. For

example, Fig. 5.14 shows the orientation A11, A22, and A33 orientation tensors of

fibers detected across different regions of the sample. The plots demonstrate that
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Table 5.3.
Statistical Comparisons for the Proposed approach and leading fiber seg-
mentation approaches

Statistic Hanhan [2] and Agyei [14] Proposed Approach

Fiber volume fraction 9.47% 9.21%

Void volume fraction 3.63% 2.78%

Number of fibers 4613 4045

Fibers with aspect ratio > 5 45.70% 45.96%

Computation time for full volume 125 hours 30 hours

the proposed method had close values to the one proposed by [15] and [2]. Similarly,

Table 5.5.1 shows the results for numerous statistics where the results of the proposed

method matched the statistics obtained by leading fiber segmentation methods. The

fiber volume fraction has a 0.26% difference, the void volume dafraction has a 0.85%

difference, and the difference in percent of fibers detected with aspect ration greater

than 5 is 0.26%; however, the proposed method obtained a computation time of 30

hours versus the 125 hours required for the fiber segmentation approach proposed

by [14] and [2].

5.5.2 Labeled Data: Synthetic Low Resolution Fibrous Material

We tested our methods on a synthetic dataset [13] for numerical comparison.

This dataset provides several real and synthetic fibrous volumes imaged at 3µm of

resolution. We used the datasets R_HR3_1 and R_HR3_2 for training the networks,

and we evaluated the results on multiple subvolumes of the dataset S_HR_5.35. We

use only fiber data for validation since this dataset does not contain voids and we

used subvolumes of size 600× 600× 600 pixels for numerical and timing analysis.
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Fig. 5.14. Fiber orientation tensors at different locations. Image obtained
from the ACME Lab at Purdue University.
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Semantic Segmentation

For evaluation of semantic segmentation, we evaluated precision, recall and the f1

score, which is defined as:

f1 =
2 ∗ precision ∗ recall
precision+ recall

(5.4)

where precision = TP
TP+FP

, and recall = TP
TP+FN

, and TP denote true positives, FP

denote false positives, and FN denote false negatives.

The results for the segmentation numerical comparison are depicted in Table 5.4.

All the neural networks-based approaches present high recall values but low precision

values. This occurs due to the over segmentation occurring at the fiber boundaries.

On the other hand, the connected tube MPP has a larger precision but lower re-

call values. This issue could happen because the MPP models objects with basic

geometries(tubes) and does not account for the fibers’ surface roughness.

Table 5.4.
Quantitative Results

Method Precision Recall f1

Connected Tube MPP 0.801 0.692 0.743

Embedded Learning [13] 0.547 0.986 0.704

Proposed trained with MPP 0.561 0.976 0.712

Proposed trained with labels 0.662 0.972 0.787

Despite the different approaches proposed for segmentation, the maximum f1 score

is 0.787 by the encoder-decoder network. The low scores happen mainly due to the

ambiguity at fiber boundaries. However, it should be noted that, due to limitations in

spatial resolution of physical imaging systems, it is often impossible for even materials

experts to determine exact boundaries between different regions in a microstructure.



71

We consider any pixel to be within
√

2 voxels from a fiber voxel to be a TP; similarly,

we consider any segmented voxel farther than
√

2 voxels from a labeled fiber voxel to

be a FP, and we consider any missed fiber voxel farther than
√

2 from a labeled fiber

voxel to be a FN. The results with the this "relaxed-boundary" scoring are presented

in Table 5.5.

Table 5.5.
Relaxed-Boundary Quantitative Results

Method Precision Recall f1

Connected Tube MPP [53] 0.979 0.966 0.972

Residual Network [13] 0.918 0.999 0.957

Proposed-trained with MPP 0.990 0.911 0.949

Proposed-trained with labels 0.894 0.999 0.944

Instance Segmentation

For instance segmentation, we considered 3 common cases in fiber detection: the

fiber is detected correctly (true positive), the fiber is artificially broken (broken pieces

are false positives), or the fiber is missed(false negative). We say a fiber is detected

correctly if the IoU between the detected object and the ground truth label is greater

than 0.5. We consider a fiber to be broken if multiple detected fibers fit into the

ground truth fiber, such that the total IoU is greater than 0.5. We say a fiber is

missed if either the total IoU of overlapping detected objects and ground truth label

is less than 0.5, or if the fiber was merged with a nearby fiber. Fig. 5.15 shows the

results for a subvolume of 600 × 600 × 600 voxels using both MPP and Connected

Tube MPP. Table 5.6 denotes the fiber detection numerical results using different

approaches. In terms of detecting fibers at least partially (including the detected and
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broken cases), the approach with best results was the Connected Tube MPP which

missed only 0.6% of fibers. The next best result uses the proposed encoder-decoder

network using the labeled data for training, which missed 12% of fibers. Finally, the

Residual Network approach together with the proposed method trained with MPP

labels showed worse performance a 74% and 78% of fibers correctly detected.

(a) Synthetic Data (b) Ground Truth

(c) Connected Tube MPP (d) Encoder-Decoder Instance Segmen-

tation

Fig. 5.15. Instance Segmentation
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Table 5.6.
Fiber Detection Results

Method f1

Connected Tube MPP [53] 0.932

Residual Network [13] 0.855

Proposed trained with MPP [53] results 0.880

Proposed trained with labels 0.930

Required Time

We performed timing comparisons for volume inference for volumes of size 1003, 2003, 4003,

and 6003. Fig. 5.16 denotes the different timing measurements for each method at

different subvolumes. The connected-tube MPP model was implemented in C++

programming language and was timed using a single core on an Intel(R) Core(TM)

i9-9900X CPU processor running at 3.50GHz. Both neural networks were imple-

mented in pytorch and tested in the same machine with an NVIDIA TITAN RTX

GPU. The encoder/decoder architecture represented a 10 times speedup over the

connected tube MPP, and a 4 times speedup over the residual network architecture.

5.6 Chapter Summary

We presented an approach to train a neural network with model based approaches

in order to detect objects in microscopy images. We validated our method compar-

ing the extracted material statistics with different methods and we also validated

our data using f1 semantic and instance segmentation score on a synthetic dataset.

Our approach showed several advantages over the model based results and also over

common deep learning instance segmentation methods.
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Fig. 5.16. Time Difference

First, we discussed the motivation of using CNNs over model based methods for

inference in large datasets. While model-based approaches allow system characteri-

zation and simulation, they present drawbacks in the required inference times. For

example, Table 5.1 shows that the model-based methods alone would require up to

26 days to obtain results in a 2025× 2025× 1350 voxels sample. However, they can

be used to segment subvolumes of 300 × 300 × 300 and these results can become

training data for a CNN. On the contrary, Table 5.5.1 shows the computation time

on the same volume reduced from 26 days from model based and from 125 hours from

modern fiber segmentation approaches, to 19 hours when using CNNs.

In addition, we analyze using embedded segmentation over object proposal-based

RCNNs and Deep Watershed to detect fibers and voids. Fibers in microscopy images

are narrow objects oriented in arbitrary directions and cannot be correctly character-

ized with a four point bounding box. Similarly, a method such as Deep Watershed
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would require very high resolution to correctly estimate the watershed energy for

fibers; however, 3D segmentation imposes memory constrains and this method would

be constrained to very small tiles in order to correctly estimate a watershed energy.

Also, our results showed that for a dataset consisting of fibers and porosity, a U-

Net [5] architecture obtains the best overall f1 scores over two other popular semantic

segmentation architectures, namely the residual based convolutional neural network

(R-Net [13]), and the encoder-decoder based DeepLabV3 [9] neural network. The

U-Net architecture was able to segment voids thanks to its multi-resolution approach

and was able to segment fibers thanks to its skipped connections. On the other

hand, DeeplabV3 was better at capturing large voids but it did not segment fibers

correctly due to its loss of resolution during the encoding procedure. The residual

based network performed poorly detecting voids due to its small field of view and was

also outperformed by encoder-decoder networks for fiber detection.

Finally, we tested the effects of training the neural networks with the results

of model-based approaches. While the model-based approaches obtain reasonable

results, they contain noise and can yield sub-optimal segmentations. However, the

neural network obtained better semantic segmentation results than the noisy data

used for training. It can be inferred that 1) the neural network generalized the 3D

data from few examples and that 2) the neural network worked as a denoiser due

to its encoder-decoder architecture. Nevertheless , Tables 5.5 and 5.4 show that our

method still performs better when trained on real labeled data versus trained with

noisy model-based results.
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6. 3D FIBER SEGMENTATION WITH DEEP CENTER
REGRESSION AND GEOMETRIC CLUSTERING

6.1 Overview

In Chapter 5, we presented a surrogate approach to detect fibers and voids in fiber-

reinforced polymers. While this approach represented a speed-up in inference without

compromise in accuracy, it is limited to its training dataset and has difficulties adapt-

ing to new data. In this chapter, we propose a volumetric object detection approach

comprised of fibrous structures by using deep centroid regression and geometric reg-

ularization. To this end, we train encoder-decoder networks for segmentation and

centroid regression. We use the regression information combined with prior system

knowledge to propose cylindrical objects and enforce geometric regularization in the

segmentation. We train our networks on synthetic data and test our methods in sev-

eral experimental datasets. Our approach shows competitive results when tested in

the synthetic data and outperforms common 3D segmentation methods across differ-

ent datasets.

6.2 Related Work

6.2.1 Instance Embedded Learning

This method consists of segmenting and grouping pixels into clusters in an abstract

embedded space. The network outputs a vector e of dimensions NF ×K where NF

is the number of foreground pixels and K is the dimension of the embedded space in

which the networks learns to form clusters. The loss function consists of a weighted

sum of three parts and is defined as:

Lembedded = αLpull + βLpush + γLreg (6.1)
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(a) Cross section (b) Inference cross section

(c) 3D Pre-segmentation (d) 3D inference

Fig. 6.1. Sample results of our method displayed with Fiji [37] software.
Each color represents a different instance of an object. Image courtesy of
the ACME Lab at Purdue University.

The Lpull term learns to pull each embedding point to the center of the mean em-

bedding of an instance, the Lpush term learns to separate the cluster means from

each other, and the Lreg term regularizes the instance means. Finally, a clustering

algorithm groups points in the embedding space in order to map pixels to instances.

The embedded learning concept has been shown to be memory efficient and

promising; however, this method relies on finding an arbitrary embedded space that

does not have a direct interpretation in the image space and the choice of both the

clustering algorithm and its parameters influence greatly the segmentation results. A
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large eps parameter for DBSCAN merges nearby clusters and a small eps parameter

splits clusters or does not detect them.

6.2.2 Joint-Task Learning

Several papers (for both 2D and 3D) have proposed joint-task approaches to

circumvent the foreground/background pixel classification and instance regression.

These methods rely on single encoder-multiple decoder networks. For example, Neven

et al. [59] trained an encoder-double decoder network to jointly learn instance centers

and the cluster bandwidth. However, this method uses a loss function that relies on

a weighted sum of a center regression and bandwidth loss. This issue could result

in time-consuming parameter tuning when training the networks for several days.

Kendall et al. proposed an efficient ensemble training for both tasks [60]. This ap-

proach estimates the weight uncertainties for each task to find the optimal weight

parameter. The weight uncertainty approach states the multi-task loss function LMT
as a Gaussian log likelihood :

LMT =
1

2σ2
1

LSeg(W ) +
1

2σ2
2

LReg(W ) + log σ1σ2, (6.2)

where W represents the network weights to be optimized, LSeg(W ) represents the

segmentation loss, LReg(W ) represents the regression loss, and σ1 and σ2 represent

the weight uncertainties for the segmentation and regression losses respectively. The

optimization procedure minimizes with respect to W , and (σ1, σ2). This approach

is promising; however, the combination of two decoders and one encoder can worsen

the results of each decoder. In fact, in our experiments, the implementation of two

separate networks obtained better results across all the tests.

6.3 Method

We propose a two-network approach, one for segmentation, one for centroid re-

gression. In addition, we propose to use the regression vectors to obtain information
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about the original properties of each instance, such as the instance’s orientation and

length. We used a modification of the architecture presented in [5] due to its ef-

fectiveness in microscopy volumes and robustness to scarce training data. The two

networks are the semantic segmentation, which has two outputs denoting the proba-

bility of each class, and the regression network, which has three outputs denoting a

vector pointing to the instance center. Fig. 6.2 denotes the detailed architecture of

our networks.

(a)

Fig. 6.2. Architecture: we used a modified version of U-Net [5].

Pixel Classification

For semantic segmentation, we use the dice loss with two classes, foreground to

represent fibers and background to represent non-fiber pixels. The dice loss function

is expressed as:

LSeg(X, Y ) =
2|X ∩ Y |
|X|+ |Y |

(6.3)

where X and Y are the input and training vectors respectively. The output of this

network is depicted in Fig. 6.3(c).
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(a) Input volume (b) Labeled data

(c) Semantic segmentation (d) Centroid regression

Fig. 6.3. Network Outputs: The networks detect the fiber pixels and
their instance centroid µc. Each color represents an instance, and pixels
are clustered around their centers. Gray fibers are for display purposes.
The figures were generated with the Fiji Software.

Centroid Regression

The second network learns to cluster pixels around their instance centroid µc. The

network outputs a vector vi ⊂ R1×3 for each foreground pixel’s coordinate si ∈ Sf
such that vi = si − µc. The loss function for centroid regression is defined as:

LInst(Sf ) =
C∑
c=1

∑
si∈Sc

(||si − µc|| − δv)2
+, (6.4)

where Sf is the set of foreground pixels coordinates, Sc ⊂ Sf is the subset of pixel

coordinates belonging to object c and C is the total number of objects obtained

from the labeled data. The term (a)+ = max(a, 0) is inspired by the Hinge Loss



81

function, with δv as a hyper-parameter representing the maximum distance between

neighboring points. In all our experiments, we set this hyperparameter δv = 1. We

use the result from this clustering network to guide our geometric clustering. The

results of applying the offset output by this network are depicted in Fig. 6.3(d).

6.3.1 Geometric Constrained Clustering

In this section, we aim to find a set of clusters w = {ω1, ω2, . . . , ωĈ} that represent

a set of objects in the volumetric space, where Ĉ is the final estimate of the unknown

number of objects. Fig. 6.3(d) shows that the clusters preserve the cylindrical shape

of their original objects. We follow the convention used in the connected tube marked

point process [53] to describe objects with marks describing their properties. We use

cylindrical clusters with the marks mc = (µc, rc, lc, θc, φc) where µc denotes the center

coordinate of the cylinder, rc ∈ [rmin, rmax] denotes the cylinder radius and rmin, rmax

denote the minimum and maximum possible radii respectively. The parameter lc ∈

[lmin, lmax] denotes the fiber length, and lmin, lmax denote the minimum and maximum

possible fiber lengths. The parameters θc ∈ [θmin, θmax] and φc ∈ [φmin, φmax] denote

the cylinder orientation with respect to the positive xy axis and with respect to the

positive z axis, with their respective possible minimum and maximum values.

Birthmap Computation

We use the centroid regression vectors vi to shift all the foreground pixels si ∈ Sf
to their estimated instance center oi, i.e. oi = si− vi, hence generating a set of offset

pixels Of . The offset pixels tend to be concentrated around the fibers’ center, thus,

we generate a heat map near the true instance center by counting the number of offset

pixels that lie in each coordinate. This heat map is shown in Fig, 6.4(b) and is used

as a birthmap for further computation.
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(a) Original volume (b) Birthmap

Fig. 6.4. Cropped image and its birthmap.

Cluster Proposal

We pick the unlabeled offset pixels oi sorted by the number of votes from the

birthmap to propose a new estimated cluster center µ̂c . We gather the offset pixels

that are within a distance eps of the estimated center, ŵc = {oi ∈ Of : ||oi − µ̂c|| <

eps}. These pixels contain their original coordinate information and hence generate

a cloud of points that can be fitted with a cylinder. We use a GPU adaptation of [61]

to estimate the marks m̂c: radius r̂c, length l̂c, and orientation θ̂c, φ̂c of the cloud of

points to propose a cylindrical cluster. Finally we add to the proposed cluster set ω̂c

all the offset pixels that lie inside the proposed cylinder. Fig. 6.5(b) shows a sample

cluster proposal result.

Cluster Evaluation

Finally, we evaluate the proposed cylinder in the original volume space by cal-

culating the volume percent of segmented pixels covered by the cylinder Vd and the

volume percent of overlap with other cylinders Vp. We set two threshold parameters

for volume percent of segmented pixels Td and for volume percent of overlap Tp . If

Vd > Td and Vp < Tp we accept the cylinder, otherwise we leave the set of pixels as

unlabeled. We choose Td = 0.5 to keep consistent with the IoU metrics explained
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(a) Regressed labeled pix-

els

(b) Cluster proposals

Fig. 6.5. Sample cluster proposal and ground truth labels.

in Section 6.4 and Tp = 0.2 to allow the proposed cluster 20% of overlap with other

clusters. The volume percent Vp ensures the proposed object fits the semantic seg-

mentation and the overlap percent Vp prevents from proposing multiple clusters for

the same fiber. These evaluations were inspired by the success of the overlap prior

from the marked point process model [53]. The detailed procedure of the clustering

algorithm is listed in Algorithm 4.

(a) Ground truth pixels (b) Sample inference

Fig. 6.6. Ground truth labels and a sample inference.
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Algorithm 4 Gemetric Constrained Clustering
1: procedure Obtain Set of Clusters w = {ω1, ω2, . . . , ωĈ}

2: Initialization:

3: w = {}

4: Sf ← original foreground pixels coordinates

5: Of ← center regressed foreground pixels coordinates

6: for each pixel s in birthmap do

7: if s ∈ wi : wi ∈ w then

8: continue (pixel has a label)

9: else

10: Cluster Proposal

11: µ̂k ← s

12: ŵk ← {sk ⊂ Of : ||sf − µ̂k|| < eps}

13: m̂k ← marks(ŵk, Sf , Of )

14: Evaluate Cluster

15: Vd ← percent of segmented pixels inside m̂k

16: Vp ← percent of overlapping pixels of m̂k and other cylinders

17: if Vd > Td and Vp < Tp then

18: w← w ∪ wk
19: k ← k + 1

20: end if

21: end if

22: end for

23: end procedure
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Fig. 6.7. Merging Procedure

6.3.2 Volume Tiling and Merging

We tile the initial volumetric data into overlapping subvolumes of size 64×64×64

in order to circumvent large memory demands from some datasets. We detect fibers

locally and we implement a merging procedure to detect objects in the full volume.

We extend the approach presented by Konopczynski [13], which consists of merging

nearby fibers in overlapping tiles. However, this procedure does not consider the fiber

properties and can merge nearby local fibers even if they are perpendicular to each

other. We implement an additional constraint based on the orientation information

provided by the cluster properties. If two fibers in overlapping tiles are nearby, we

merge them if the angle between between them is less than a threshold T∆θ,∆φ. The

value of this threshold is set based on prior knowledge of the system, such as the fiber

expected curvature. A sample representation of this procedure is denoted in Fig. 6.7.

6.4 Experiments

We use two metrics to evaluate the instance segmentation results. First, we follow

the guideline provided in [62] and use the Adjusted Rand Index [63] (Ra) metric
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for evaluation. This metric evaluates the agreement between two sets of clusters

C = {c1, c2, . . . , ck}, and C ′ = {c′1, c′2, . . . c′l} and ranges from 0 to 1 depending on the

degree of similarity between C and C ′. The Ra criteria is given by:

Ra(C,C
′) =

∑k
i

∑l
j

(
mij

2

)
− t3

1
2
(t1 + t2)− t3

(6.5)

Where mij = |ci ∩ c′j|, t1 =
∑k

i

(|ci|
2

)
, t2 =

∑l
j

(|c′j |
2

)
, and t3 = 2t1t2

n(n−1)
.

In addition, we use the intersection over union evaluation (IoU) where we say a

fiber is detected correctly if its IoU with the equivalent ground truth fiber is greater

than 0.50. We describe an equivalent ground truth fiber as the object in the ground

data that overlaps the most with the estimated fiber. We label broken fibers whose

IoU is less than 0.5 as false positives (fiber segments). We label as false negative all

the ground truth fibers that were not captured by the initial segmentation or that

had an IoU less than 0.5.

We average the results obtained from multiple tiles of size 64× 64× 64 voxels and

compared our method with our implementation of the method proposed by Kendall

et. al [60], with the method proposed in Chapter 5, and with our method but using

center regression and DBSCAN for clustering. We do not use the angle criteria

for fiber merging when we use the DBSCAN algorithm since we do not have fiber

orientation information.

We implemented all the networks and trained with the same training parameters

as described in Section 6.4. We followed the parameters denoted in each work and

chose δv = 0.2 and eps = 0.4 for the embedding learning parameters shown in Chapter

5.

6.4.1 Training Information: Synthetic Fibers

This dataset was generated from a computational model by Konopczynski et al.

[62] and it is a simulation of short glass fibers embedded in a reinforced polymer.

The fibers have a radius of 6.5 µm and a mean length of 500 µm with a deviation of



87

100 µm and are oriented in arbitrary directions. We used the dataset named “2016-

S-HR-5.35p′′ depicted in Fig. 6.8 for training the network and the dataset named

“2016-S-HR-5.38p′′ for testing.

We trained all the networks with the Adam [64] optimizer with a learning rate

of lr=0.001 over 2000 epochs. We normalized the data to unit variance and zero

mean and we trained cropping subvolumes of sizes 64× 64× 64 cropped at uniformly

random locations of the full volume, and we performed volume rotations for data

augmentation. All the models were trained on an NVIDIA-Titan RTX GPU with

25GB of memory with a training time of approximately two days.

Fig. 6.9 shows the average results over all tiles when varying the eps parameters

for different methods and Table 6.1 shows the best scores obtained for each method

over the tested eps values. The implementation that performs only centroid regression

with DBSCAN achieved the best scores with 0.993 f1 score and 0.767 Ra score. Our

approach obtained 0.973 for the object-wise f1 score and 0.719 for the Ra score.

(a) Synthetic data (b) Synthetic labels

Fig. 6.8. Training dataset: synthetic fibers generated by Konopczynski
[62]
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Table 6.1.
f1 and Ra results for synthetic dataset

Method Ra f1

Embedding Learning, Chapter 5 0.756 0.983

Multitask Learning [60] 0.622 0.977

Centroid Regression 0.767 0.993

Proposed 0.719 0.973
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(a) Ra score

(b) f1 score

Fig. 6.9. Evaluation of average tile scores vs eps parameter in synthetic
data. For the proposed method, we use eps ≡ rmin

6.4.2 Low Resolution SFRP Dataset

This dataset was provided by Konopczynski et al. [62] and it represents two sam-

ples of a commercial polybutlylene terephthalate PBT reinforced with short glass
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fibers. The fibers have a diameter of 10-14 µm and 1.1mm of length. The samples

were imaged with X-ray CT with an isotropic resolution of 3.9µm and the volumetric

dimensions of 200 × 260 × 260 voxels. We used the dataset named “Real MR2” for

testing our approach. It is worth noting that the labeled fibers were pre-segmented,

hand labeled, and refined with the watershed algorithm. Therefore, the segmentation

labels and instance segmentation labels can be biased to the pre-segmentation algo-

rithm followed by the watershed algorithm. The first column of Fig. 6.11 shows a tiled

cross section of sizes 64×64 pixels and each row shows results for different approaches.

The third and fourth row show that the DBSCAN approaches encounter difficulties

clustering fibers. For example, Fig. 6.11(c) shows numerous groups of white pixels

(unlabeled pixels) that are near two different fibers. Similarly, Fig. 6.11(d) shows

merging of that are close to each other. These issues are translated in the volumetric

results as shown in Figs. 6.11(h) and Figs. 6.11(i) where fibers are artificially broken

or nearby fibers are merged. Our method, shown in Fig. 6.11(e) can discriminate

between nearby fibers and has also the ability to segment curved fibers when using

volume merging as shown in Fig. 6.11(j).

The numerical evaluation in Table 6.2 shows that our method obtains significantly

better scores for both metrics with an Ra value of 0.638 and a f1 score of 0.917. Fig.

6.11 shows that we obtain the highest score when the eps parameter is equivalent to

the true fiber radius. However, Fig, 6.10 shows that our method is more robust to

parameter variations than the rest of proposed approaches.

6.4.3 High resolution SFRP: Polypropylene Matrix

This dataset was provided by the ACME Laboratory at Purdue University. The

sample consists of a polypropylene material reinforced with glass fibers, imaged at

1.3 µm resolution. The reconstructed volume has dimensions 2300 × 2300 × 1300

voxels and we used a sub-volume comprised of 950× 950× 150 voxels (shown in Fig.
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Table 6.2.
f1 and Ra results for low resolution SFRP dataset.

Method Ra f1

Embedding Learning, Chapter 5 0.222 0.634

Multitask Learning [60] 0.111 0.831

Centroid Regression 0.563 0.831

Proposed 0.638 0.917
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(a) Ra scores

(b) f1 scores

Fig. 6.10. Evaluation of mean tile scores vs eps parameter in Low Reso-
lution SFRP Dataset.

6.13(a)). The ground truth is from the results of Agyei et al. [15] and is shown in

Fig. 6.13(b).
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(a) Cross

section

(b) 2D ground

truth

(c) Embed-

ded learning,

Chapter5

(d) Multi-task

learning [60]

(e) proposed

(f) Raw volume (g) Ground

truth volume

(h) Embed-

ded learning,

Chapter 5

(i) Multi-task

learning [60]

(j) proposed

Fig. 6.11. Low Resolution SFRP Dataset. Each color represents a different
fiber instance and white pixels represent unlabeled pixels.

The first row of Fig. 6.13 shows the XY-axis cross section no the testing sam-

ple, the second row shows a cropped volume of size 256 × 256 × 150, and the third

row shows a YZ-axis cross section of the cropped volume. This dataset is signifi-

cantly different from the training dataset, and hence both the embedding learning

and multi-task method merge multiple nearby fibers. These results can be noticed in

Figs. 6.13(h), 6.13(m). and Figs. , 6.13(i) and 6.13(n). Our results, shown in Figs.

6.13(j) and6.13(o) show that our method does not merge nearby fibers thanks to the

regularization imposed by cylindrical geometry regularization. We should also point

out that our method detects fibers that were not detected in the ground truth dataset.

Our method also shows promising results for the merged volume in Fig. 6.13(e) com-

pared to the merged results shown in Figs.6.13(c) and 6.13(d). Our method shows
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Table 6.3.
f1 and Ra results for high resolution SFRP: Polypropylene Matrix.

Method Ra f1

Embedding Learning, Chapter 5 0.365 0.604

Multitask Learning [60] 0.051 0.733

Centroid Regression 0.134 0.767

Proposed 0.422 0.855

improvement over the provided ground truth in detecting long fibers shown in Fig.

6.13(b).

Table 6.3 shows the Ra and f1 results for each approach. The Ra score is rela-

tively low because it also depends on the segmentation and our method has an over

segmentation compared to the provided ground truth, and also because the provided

ground truth is not perfect. Fig. 6.13 shows several visual examples where we believe

our approach captured fibers that were not captured in the ground truth. Fig. 6.12

shows the scores across varying parameters denoting our proposed approach is more

robust to parameter variation.

6.4.4 Preceramic Polymer in Unidirectional Fiber Beds

This dataset was obtained from Globus [65, 66] and has been used in [66–68].

The aim of the experiment is to characterize the microstructure evolution during the

impregnation of a polymer into fiber beds. The volume represents a reconstructed X-

ray CT of size 2000×2000×2000 voxels and contains several time instances obtained

during the polymer impregnation. The specimen consists of SiC fibers with an average

fiber radius of 6.4 µm and was imaged at high resolution to yield 7-10 pixels of fiber

radius. We used a cropped volume of 500×500×500 pixels and enforced a minimum
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(a) Ra Scores

(b) f1 Scores

Fig. 6.12. High resolution fiber reinforced polymers: evaluation Scores vs
eps parameter

fiber radius of 7 pixels. Fig. 6.14(a) shows a cross section and Fig. 6.14(b) shows

a cropped pre-segmented volume. The second row shows the results from using an
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(a) Sample cross

section

(b) Ground truth

cross section

(c) Cross section:

Embedded learn-

ing, Chapter 5

(d) Cross Section:

Multi-task Learn-

ing [60]

(e) Cross section:

proposed

(f) Volume (g) Ground truth (h) Embedded

learning, Chapter

5

(i) Multi-Task

Learning [60]

(j) proposed

(k) Side cross sec-

tion

(l) Ground truth

side cross section

(m) Embedded

learning, Chapter

5

(n) Multi-

Task [60]

(o) proposed

Fig. 6.13. SFRP: Polypropylene Matrix. Each color represents a different
instance of a fiber

embedded learning approach and the third row shows the results of using centroid

regression but with DBSCAN. Our proposed method can segment a large number of

fibers although it is constrained by the quality of the segmentation.

6.5 Chapter Summary

We presented a neural network approach to detect fibers in large volumetric

datasets by first segmenting and then regressing a vector pointing from each fore-
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(a) Cropped cross

section

(b) Cropped volume (c) Embedded

Learning Chapter

5

(d) Embedded Learn-

ing Volume

(e) Center

Regression

(f) Center Regression

Volume

(g) Cropped

cross section:

proposed

(h) Cropped: pro-

posed

Fig. 6.14. Object detection in unidirectional fiber beds.

ground pixel to its instance centroid. Our approach showed robustness across several

datasets thanks to the geometric constrained clustering and also allows to constrain

the proposed objects with prior image knowledge. Unlike common instance segmen-

tation and clustering techniques, we proposed a clustering technique that relies on

finding objects of specific shapes. We showed that our approach outperforms 3D

object detection in several datasets and we believe that it can contribute to improve

fiber-reinforced materials characterization.

In this chapter, our results demonstrated that neural networks that learn to regress

objects’ centers adapt better to different datasets than their training dataset. For

example, Tables 6.2 and 6.3 show results of multiple approaches trained on synthetic

data and tested in real datasets. The methods that perform center regression obtain

the best f1-performance among the possible approaches.
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In addition, in this chapter we explored the implementation of an encoder-multiple

decoder network, such as a 3D extension of the multi-task learning approach proposed

by Kendall [60]. This method obtained competitive results when tested on synthetic

data; however, its performance decreased significantly when testing the network in a

dataset composed of real fibers. In this work, we showed that while a multi-task learn-

ing approach presents an elegant solution to a two stage semantic/instance segmen-

tation; however, this method is outperform by implementing two different networks

to perform semantic and instance segmentation individually.

Finally, our results showed that when we used a regularized clustering across dif-

ferent parameters, we obtained the highest scores when the eps parameter resembled

the fiber’s real radius. For example, Figs. 6.10 and 6.12 show the Ra and f1 scores

at different parameter choices. Our method obtained the highest performance when

eps ∈ [2, 3] in Fig. 6.10, this is translated to the real fiber radius r ∈ [2.5, 3.5] voxels.

Similarly, Fig, 6.12 shows that our clustering obtains the best results when eps = 2

while the mean radius of the fibers (given our resolution) is r = 2.08.
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7. SUMMARY AND FUTURE WORK

7.1 Summary

In this report we explored methods to incorporate the boundary energy to the

MPP framework. In chapter 2 we provided an overview of the theory and samplers

used in our method.

In chapter 3, we talked about the MPP with parametric active contours and bal-

loon force. The inclusion of a parametric model helped to capture multiple shapes of

irregular boundaries. The balloon method contributed to detect objects with low con-

trast such as large voids, and the addition of a pre-segmentation energy contributed

to keep only the objects of interest.

In chapter 4, we explored the addition of the level sets framework to the MPP.

The results show an improvement over the original MPP-AC method. This method

handles better changes in topology is less sensitive to initialization. The addition

of the method into the MPP-LS framework contributed to sample objects and also

keep only the ones of interest. In addition, we proposed the combination of level sets

results to simulate the MBD sampler in order to converge faster to a solution.

In chapter 5, we explored a deep learning approach based on learning embeddings

and performing clustering. This method denoted a significant speed up in volume

object detection over traditional model-based approaches.

Finally, in chapter 6, we extended our approach from chapter 5 by performing cen-

troid regression and using this information to propose objects. Our approach proved

robustness across multiple datasets when compared to other embedding learning and

center regression approaches.
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7.1.1 Model Based Methods vs Deep Learning

In this report, we proposed both model-based approaches and deep learning meth-

ods to detect fibers and porosity in material images. Our model-based procedures

incorporate real world variables into the segmentation such as the contour smoothness

and rigidity. For example, setting the parameter βEdge = 100 in the active contour

model in Chapter 3 enforces very smooth boundaries while setting βEdge = 1 allows

sharp edges. These variables can be tuned to modify the segmentation to match

desired physical properties. Additionally, model based approaches allow to propose

energy functions to match hand desired features. For example, Eedge and Eregion in

Chapter 4 favor void configurations around edges and dark(or bright) regions, and

Eshape enforces an ellipsoidal shapes. Finally, model based methods and probabilistic

approaches allow to simulate systems based on a pre-defined probability function. For

example, we used birth and death simulations in Chapters 3 and 4.

On the other hand, deep learning techniques learn patterns in the data and adjust

their parameters to perform classification or regression. While common deep learning

approaches do not model physical properties, they often match or beat the segmenta-

tion results obtained from model-based methods. For instance, in this report we show

a deep embedding learning matched the f1 scores from the connected tube MPP to

segment fibers in a synthetic dataset; however the deep embedding learning approach

took 1 hour while the MPP required of 10 hours. Similarly, in Chapter 5, we show

that networks trained on noisy MPP results were able to correct for noise and ob-

tained better results than their training data. Similarly, in Chapter 5, we show that

our proposed deep embedded learning obtained the similar results to leading fiber

and void segmentation techniques, but our results required of 30 hours versus 125

hours required by other methods.
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7.2 Future Work: Towards Model-Based Deep Learning

In this report we explored the combination of the MPP framework and the active

contours approach. However, MCMC techniques require extensive sampling which

makes this technique unpractical for very large datasets. Perhaps this computational

cost is one of the reasons the MPP has not been widely adopted by industry and

researchers. Similarly, deep learning methods obtain competitive results but requires

large amounts of training data. Particularly 3D microscopy labels are expensive to

obtain and can be ambiguous due to imaging and reconstruction noise. It would be an

interesting approach to explore further into the combination of MPP-based methods

with deep learning techniques.

During the last two decades, multiple MCMC samplers have borrowed concepts

from the data-driven MCMC (DDMCMC) proposed by Tu et al. [29]. This algorithm

considers classic image processing algorithms such as active contours, edge detection,

and clustering algorithms, to guide the RJMCMC samplers. He used parzen windows

G(θ − θi) with pre-computed parameters θi and pre-computed weights to propose

the next RJMCMC steps. Some MPP techniques have followed this approach and

improved their samplers [69] [27]. Similarly, Jampani et al. built on this idea to create

the informed sampler [70] and Kortylewski et al. proposed the informed samplers

using neural networks [71].

Chapter 6 sets a base to combine a Tube MPP with deep learning. Particularly, we

used deep centroid regression to create a birthmap for MPP objects, and to propose

objects with a mark that resembles the MPP mark. Future work could involve using

the MPP with an initial classic MCMC sampler to train a center regression network,

and inform the MCMC sampler with the network results as the network learns to

regress centroid pixels.
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A. HYBRID LEVEL SETS WITH SHAPE PRIOR CURVE
EVOLUTION

Given an image lattice K ⊂ Rd, we let a contour be represented as a set of connected

points along the zeroth level set Ct = {k|φ(k) = o}. We used a shape prior φo to

modify the original version of the functional in [39] to:

E(φ) = α

∫
k∈K

(k − µ)H(φ) dk + β

∫
k∈K

g(k)|∇H(φ)| dk + γ

∫
k∈K

(H(φ)−H(φo))
2 dk

(A.1)

Where φo is negative inside a fixed shape and positive outside, and H(φ) denotes the

Heaviside function:

H(φ) =

 0, if φ < 0

1, if φ ≥ 0

and g(K) is a function that is minimum at strong edges and is denoted as:

g(K) =
1

1 + αedge|∇(fσ ∗K)|2

Where fσ is a Gaussian smoothing filter with parameter σ and αedge affects the slope.

The associated PDE for this functional is given by:

φt = δ(φ)
[
α(K − µ) + β div

(
g(K)

∇φ
|∇φ|

)
+ 2 γ

(
H(φ)−H(φo)

)]
(A.2)

Where δ(φ) represents the diract function and it is the derivative of the Heavyside

function. We can let δ(φ) = |∇(φ)| [41], and we let |∇(φ)| = 1 since we work only with

signed distance functions [41]. Hence the curve evolution equation looks as follows:

φt = α(K − µ) + β div
(
g(K)∇φ

)
+ 2 γ

(
H(φ)−H(φo)

)
(A.3)

We followed the indications dictated in [39] evolve the contour. However, we added

the shape prior term. The method with the shape prior consist in:
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Algorithm 5 Evolve Hybrid Level Sets with Shape Prior
1: procedure Hybrid Level Sets Energy Minimization

2: Initialization:

3: Initialize level set φ0, shape prior φo, ∆t, and iteration number to

4: t← 0

5: Repeat while t < to:

6: Reinitialize level set φt to be distance function |φt| = 1.

7: φt ← φt−1 + ∆t

[
α(K − µ) + γ

(
H(φt−1)−H(φ0)

)]
8: Reinitialize φt

9: φt ← βdiv (g(K)∇φt) using additive operator splitting (AOS)

10: t← t+ 1

11: end procedure
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