
INTERACTIVE EXPLORATION AND VISUAL ANALYTICS FOR LARGE

SPATIOTEMPORAL DATA USING APPROXIMATE QUERY PROCESSING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Guizhen Wang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. David S. Ebert, Chair

School of Electrical and Computer Engineering

Dr. Niklas Elmqvist

College of Information Studies, University of Maryland

Dr. Alexander J. Quinn

School of Electrical and Computer Engineering

Dr. Edward J. Delp

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my parents and siblings

iv

ACKNOWLEDGMENTS

Through the completion of my dissertation, I have received tremendous help.

I want to express my deepest appreciation to my advisor, Dr. David Ebert, for

his immense support of my study and research. His encouragement, guidance, and

patience enabled me to identify cutting-edge research problems and develop this work.

It has been a great honor to be his Ph.D. student. Furthermore, I would like to extend

my sincere thanks to the rest of my thesis committee: Prof. Niklas Elmqvist, Prof.

Alex Quinn, and Prof. Edward Delp, for their insightful comments on my dissertation.

I am also grateful to Prof. Walid Aref for his valuable advice and feedback on my

research. I would like to thank all members of VACCINE lab, José Florencio de

Queiroz Neto, Jieqiong Zhao, Calvin Yau, Jinging Guo, Abish Malik, Jiawei Zhang,

Luke Snyder, and Audrey Reinert, for their support in research and life. In addition,

I am deeply indebted to my parents and siblings for their unconditional love and

supports. Finally, I would like to thank my friends, Xinxin Liu, Xiangning Huang,

Leyu Zhang, Ting Zhang, Cancan Cong, Ximing Zhang, Dihong Gong, Wei Deng,

Shuqi Zhou, and Junwei Zhang. They were of great support in deliberating over my

problems and enriching my life outside of my research.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Sampling Spatiotemporal Data under Architectural Constraints 1

1.2 Conducting Online Sampling of Large Spatiotemporal Data in an Un-
biased manner . 2

1.3 Creating a Perception-Aware Difference Assessment for Incremental
Visualization of Spatial Heatmap . 3

1.4 Thesis Statement . 3

1.5 Outline . 5

2 BACKGROUND AND RELATED WORK 6

2.1 Spatiotemporal Data Visualization and Visual Analytics 6

2.2 Computational Latency Reduction for Interactive Visualization 8

2.3 Approximate Query Processing for General Data and Spatial data . . . 10

2.4 Incremental Visualization and Progressive Visual Analytics 11

2.5 Perception-Aware Data Visualization 14

3 SPATIOTEMPORAL DATA SAMPLING UNDER ARCHITECTURAL CON-
STRAINTS . 17

3.1 Background . 17

3.2 Framework Overview . 18

3.3 Client-side data organization . 20

3.4 Spatiotemporal Data Sampling Model 21

3.5 Evaluation and Results . 23

3.6 Discussion . 28

vi

Page

3.7 Conclusion . 30

4 UNBIASED ONLINE SAMPLING FOR VISUAL EXPLORATION OF LARGE
SPATIOTEMPORAL DATA . 31

4.1 Background . 32

4.2 Visual analytics And Sampling Bias . 33

4.3 STULL . 34

4.3.1 Some Intuition . 34

4.3.2 Index Design . 36

4.3.3 Index Creation . 38

4.3.4 Sample Retrieval . 39

4.3.5 Index Update . 41

4.4 Unbiased Sampling Guarantee and Computational Performance 41

4.4.1 Unbiased Sampling Guarantee 41

4.4.2 Index Construction and Update Performance 42

4.4.3 Online sample retrieval performance 43

4.5 Evaluation . 44

4.5.1 Numerical Accuracy of Approximate Answers 45

4.5.2 Visual Accuracy of Approximate Answers 45

4.5.3 Latency of Incremental Updates 47

4.5.4 Latency on Index Creation and Update 49

4.6 Discussion . 49

4.7 Conclusion and Future Work . 53

5 PERCEPTION-AWARE DIFFERENCE ASSESSMENT FOR SPATIAL
HEATMAPS . 62

5.1 Background . 62

5.2 Human Perception of Approximate Spatial Heatmaps 64

5.3 Visual Difference Assessment Rationale 65

5.4 Visual Difference Detection . 68

5.4.1 Detecting Visible Connected Components 69

vii

Page

5.4.2 Finding Visible Individual Pixels 69

5.4.3 Computing Perception-Aware Measures 70

5.5 Experiments . 71

5.5.1 Accuracy of Approximate Spatial Heatmaps 71

5.5.2 CIELAB-based Cross-Validation 74

5.5.3 Discernible Connected Component Detection 76

5.6 Discussion . 76

5.7 Conclusion . 82

6 CONCLUSION AND FUTURE WORK . 83

REFERENCES . 87

VITA . 98

viii

LIST OF TABLES

Table Page

3.1 Evaluated traffic incident reports and Twitter datasets. 25

3.2 Measurements of incremental updates in our prototype for one incremental
visual update, averaged in five trials. 25

4.1 Evaluated datasets. 55

4.2 Time measurements (in seconds) using STULL to index data. Results are
averaged over five runs. 55

4.3 Time measurements (in milliseconds) for STULL to insert 5000 points into
the existing data index. Results are average over five runs. 57

ix

LIST OF FIGURES

Figure Page

3.1 Framework components and workflow within a visual analytics system. . . 18

3.2 Incremental visual updates of the heatmap using the kernel density esti-
mation technique [20] to estimate the distribution of tweets in Chicago
(introduced in Section 3.5). Different data loading percentages are indi-
cated by the numbers below images. 19

3.3 Illustration of the client-side data organization using the two-level indexing. 21

3.4 The user interface of an implemented incremental spatiotemporal data
visual analytics prototype. The left is the data filter panel, and the right
is a map view showing the spatial heatmap and displaying the data loading
percentage in the bottom left. 24

3.5 Statistics of the experiment testing our proposed framework in five trials.
In (b-c), the x-axis indicates the update sequence. 27

4.1 Incremental visualization workflow leveraged by STULL. 35

4.2 Sampling bias issue in the fixed-sized sample buffer design. Q is a query.
Each sample buffer has 500 random data points. Numbers inside each
buffer lists the number of points satisfying Q. Numbers inside each cell
list the total number of points in the spatial range of the cell and the
number of points satisfying Q respectively. 37

4.3 The data index. (a) shows the temporal index beginning at ts. Each
segment in (a) is a temporal bin. Each temporal bin sets α = 0.25 and
uses a four-level pyramid (in (b)) to spatially organize data. A pyramid
leaf uses a four-segment circular array (in (c)) to store data. Each non-leaf
cell has a sample buffer to store data. 38

4.4 RMSE measurement of approximate Kernel Density Estimation results.
The query requested the entire dataset. Results were average over five
runs. 46

4.5 RMSE measurement of approximate hourly distribution results. The query
pertained to every point in the entire dataset. Results were average over
five runs. 46

x

Figure Page

4.6 Comparison of spatial heatmaps generated by the two approaches. A
number below a heatmap indicates number of sample points selected for
approximate distributions. At the bottom is the gray-scale colormap with
32 shades. 56

4.7 Pie charts showing normalized hourly distribution of the entire data. Each
slice denotes a hour. These approximate charts are generated with 0.1%
points of being selected. The color legend has 32 color shades. The result
is one-time run. 57

4.8 Time measurements (in seconds) to retrieve samples in an in-memory
setting. The query requires the entire data. STULL has α = 0.25, and
RandomPath has at most 4 levels in each of its Quad-trees. Results are
average over 5 runs. 58

4.9 Time measurements (in milliseconds) to retrieve samples from an in-memory
data index. Queried temporal ranges are, 2012 for OSP, 2011-2012 for
GEO, 2013/04-2013/06 for Tweet-Chicago, and 2018/01/01-2018/02/04
for Tweet-US. STULL has α = 0.25. Results are average over five runs. . . 58

4.10 Average time per incremental update. Each incremental update retrieved
5% points. Numbers below a bar indicate queried spatial range, 1 for the
whole spatial extent, 1/4 for a quarter of the whole extent, and 1/8 for a
one-eighth. For STULL, α = 0.25. Each of RandomPath’s Quad-trees has
at most 4 levels. 59

4.11 Averaged latency per incremental update with different numbers of points.
The query required the entire data. In the y-axis, batch indicates time to
retrieve the entire dataset, 20 indicates incremental visualization has 20
updates in total and retrieves 5% point per update; likewise, 100 indicates
1% per update and 100 updates in total. For STULL, α = 0.25. Results
are average over 5 runs. 59

4.12 Averaged sample retrieval latency per incremental update. Each incremen-
tal update retrieved 2.5% points. 0.25 indicates that α of STULL is 0.25,
and correspondingly RandomPath’s Quad-tree index has no more than 4
levels. Likewise, 0.125 indicates α = 0.125, and a Quad-tree index has at
most 8 levels. Results are average over 3 runs. 60

4.13 Latency to retrieve samples from disk-resident indexes for a query requir-
ing the entire data. Each incremental update obtains 5% points. STULL-
Root refers STULL started retrieval from the pyramid root in each temporal
bin. For STULL, α = 0.25. Each of RandomPath’s Quad-trees has at most
4 levels. Results are average over 3 runs. 61

xi

Figure Page

5.1 A pictorial description of information represented by a spatial heatmap.
Numbers in the bins denote data densities in the same rectangular regions.
These numbers are approximate, used for demonstration, and are not the
real ones generating the heatmap on the right side. 64

5.2 A picture illustrating color differences between an approximate spatial
heatmap (leaf) and the exact one (right). 66

5.3 An example demonstrating the impact of spatial frequencies on human
perception. The left side is an approximate heatmap, and the rightmost
is the exact one. 66

5.4 An example demonstrating the size’s impact on human perception. Com-
pared to color differences, which are connected into noticeable components,
differences in smaller components are indiscernible when users compare the
two heatmaps at first glance. 67

5.5 A picture showing preattentive perception of hotspots. 67

5.6 Workflow for perception-aware difference detection and measures. 68

5.7 Incremental visualization of spatial heatmaps created with different sizes
of sample points retrieved by an unbiased sampling approach [65]. 72

5.8 Incremental visualization of spatial heatmaps created with different sizes
of sample points retrieved by a sampling approach without unbiased guar-
antees [1]. 73

5.9 Comparison of accuracies derived from perception-aware metrics and reg-
ular metrics. The experiment runs one time. 75

5.10 Differences measured in the CIELAB color space between approximate
spatial heatmap images and exact ones. Green lines show the average
color differences in the CIELAB space per sample size, and purple lines
show the average differences scaled by an average of S-CIELAB values at
their hotspot regions. 77

5.11 Detection of regions whose color difference area sizes are large to perceive
by humans. White indicates detected connected components. 78

xii

ABSTRACT

Wang, Guizhen Ph.D., Purdue University, August 2020. Interactive exploration and
visual analytics for large spatiotemporal data using approximate query processing.
Major Professor: David S. Ebert.

Approximate query processing (AQP) provides fewer representative samples to

approximate large amounts of data. Processing these smaller data subsets enables

visualization systems to provide end-users with real-time responses. However, chal-

lenges arise for real-world users in adopting AQP-based visualization systems, e.g.,

the absence of AQP modules in mainstream commercial databases, erroneous esti-

mations caused by sampling bias, and end-user uncertainty when interpreting ap-

proximate query results. In this dissertation, we present an AQP-centered technique

for enabling interactive visual analytics for large amounts of spatiotemporal data

under the aforementioned challenges. First, we design, implement and evaluate a

client-based visual analytics framework that progressively acquires spatiotemporal

data from an AQP-absence server-side to client-based visualization systems so that

interactive data exploration can be maintained on a client machine with modest com-

putational power. Second, we design, implement, and evaluate an online sampling

approach that selects samples of large spatiotemporal data in an unbiased manner

and accordingly improves the accuracy of the associated estimates. Last, we design,

implement and evaluate a difference assessment approach that compares approximate

and exact spatial heatmap visualizations in terms of human perception. As such, in-

formation changes perceptible by users are well represented, and users can evaluate

the reliability of approximate answers more easily. Our results show the superior

performance of our proposed AQP-centered technique in terms of speed, accuracy,

and user trust, as compared to a baseline of state-of-the-art solutions.

1

1. INTRODUCTION

Visual analytics systems enable decision-makers to interactively explore data and

then quickly and easily draw insights from digital data. In general, visualizing large

amounts of spatiotemporal data requires certain techniques in order to maintain quick

responses, e.g., computing in parallel and prefetching data in anticipation of user

queries. One widely-used technique is sampling-based Approximate Query Process-

ing (AQP) [1, 2], which allows visual analytics systems to process few data samples

while responding to users quickly with approximate but representative answers. End

users are willing to accept approximate analytical results for decision-making [3–5].

However, challenges exist for visual analytics systems in employing AQP techniques,

including AQP absences caused by IT architectural constraints, sampling bias, and

difficulty for users in choosing trustworthy answers. Each challenge requires special

treatment for AQP. As such, in this dissertation, we propose AQP-centered techniques

to support visual analytics for large-volume spatiotemporal data. We identify three

main challenges preventing the implementation of AQP-based visual analytics sys-

tems, including (a) enabling AQP under architectural constraints, (b) avoiding bias

in the online sampling process, and (c) facilitating users to evaluate AQP results. We

address these challenges and report on our progress in this document.

1.1 Sampling Spatiotemporal Data under Architectural Constraints

Approximate queries of large data often require modifications of traditional data

management systems. Traditional relational databases [6,7] usually retrieve full query

results, while AQP selects a subset of data in order to approximate the entire data

in a representative manner. However, as an emerging technique, AQP has not been

widely implemented in mainstream commercial databases. Therefore, enabling AQP

2

operations for visual analytics requires organizations to replace or heavily modify

their existing database systems.

Unfortunately, in many businesses and local governmental organizations, security

practices or budgetary concerns may prevent the deployment of such AQP-based

solutions or the transfer of data to external servers that do provide AQP [8, 9], and

therefore, put the burden on the client machines to handle the AQP workload.

To address this challenge, we propose, implement, and evaluate a client-based

visual analytics framework for large-scale spatiotemporal data organization and sam-

pling under the aforementioned architectural constraints. The proposed framework

designs a novel sampling method that progressively acquires data from external

servers; meanwhile, it leverages affordable computational resources in a client ma-

chine to visualize data progressively. The presented approach enables end-users to

interactively explore large amounts of spatiotemporal data on the client-side.

1.2 Conducting Online Sampling of Large Spatiotemporal Data in an

Unbiased manner

Online sampling-supported visual analytics is becoming increasingly important, as

it allows users to explore large data sets at interactive rates (e.g., 500ms [10]). How-

ever, the state-of-the-art online spatiotemporal sampling technique [1] has primarily

focused on reducing computational latencies, and has not fully investigated sam-

pling bias. Biased sampling approaches select data points with unequal probabilities,

making their samples erroneously represent the whole queried data [11]. Likewise,

statistics derived from biased samples can lead end users to incorrect interpretations.

To address this challenge, we propose, implement, and evaluate a novel online sam-

pling algorithm in order to select large spatiotemporal data in an unbiased manner.

Our approach makes sure that each data point satisfying the user-defined multidimen-

sional query specification has the same probability of being selected. Our proposed

sampling approach is suitable for analytics tasks that focus on spatiotemporal data

3

aggregates. Our experiments confirm the superiority of our method over state-of-

the-art spatial online sampling techniques, demonstrating that spatial distributions

of data samples generated by our approach are at least 50% more accurate at a 5%

sample size.

1.3 Creating a Perception-Aware Difference Assessment for Incremental

Visualization of Spatial Heatmap

Incremental data visualization uses AQP to sample data progressively. As data

samples are continuously loaded into the system, the accuracies of approximate vi-

sualizations increase over time. Controlling computational time and finding answers

with accuracies that meet the requirements for given analytic tasks relies on users.

In general, users use statistical measures (including confidence intervals [3, 12], dis-

tribution+precision [13] and bootstrapping strategies [14]) to evaluate the accuracy

of approximate results. However, these statistical measures handle visual elements

in a way that is inconsistent with the human visual system [15]. Therefore, end-

users have difficulty connecting the insight gained from the visualizations with the

accuracies indicated by these statistical measures [4].

To address this challenge, we propose, implement, and evaluate a novel approach

to assessing differences between approximate and exact spatial heatmaps in terms of

human perception. Following the human perception mechanism, our approach identi-

fies visual elements users perceive to be discernible. Using these identified elements to

adjust the aforementioned statistical measures can measure the accuracy of approxi-

mate answers in a way that is consistent with human perception. Therefore, measures

generated with the perception-aware approach are easier for users to interpret in a

context where spatial heatmaps incrementally improve.

1.4 Thesis Statement

The thesis statement of this dissertation is as follows:

4

Sampling-based approximate query processing approaches and approximate

answer evaluation methodologies enable end-users to explore large amounts

of spatiotemporal data at interactive rates and make effective decisions.

Specifically, this dissertation makes the following contributions:

1. A client-based AQP framework supporting the interactive exploration of large

amounts of spatiotemporal data in a computational environment where policies

or budgetary concerns restrict a server to be a data provider, and a client

machine lacks sufficient computational resources to process all the data. The

proposed framework enables an average client machine to progressively sample

data from a data server, to execute sampling-based incremental visual analytics,

and to respond to users at interactive rates.

2. An online sampling algorithm enabling visualization systems to query multidi-

mensional spatiotemporal data in an unbiased manner. Compared to existing

methods, our approach achieves 50% more accuracy to approximate data dis-

tributions in the spatial dimension and enables approximate visualizations to

present closer visual appearances to their exact counterparts.

3. A perception-aware difference assessment comparing approximate spatial heatmaps

with exact ones in terms of human perception. Our approach enhances preatten-

tive elements whose differences can likely be perceived by humans and decreases

the role of indiscernible elements in the accuracy quantification. As such, the

accuracy derived using our measure reflects the visual differences perceived by

users; as a result, users are expected to more easily understand the accuracy of

approximate heatmaps and to be less uncertain when choosing heatmaps with

satisfactory accuracies for decision-making.

5

1.5 Outline

This document is organized into six chapters. Chapter 2 discusses the background

and related work about interactive exploration of large amounts of data. The next

three chapters each address one of the three challenges discussed in this introduc-

tion. Specifically, Chapter 3 presents our client-based visual analytics framework for

supporting approximate queries. Chapter 4 presents our online sampling algorithm

that selects large spatiotemporal data in an unbiased manner. Chapter 5 outlines

our perception-aware difference assessment for the incremental visualization of spa-

tial heatmaps. Finally, Chapter 6 summarizes the contributions of this dissertation

and future research work.

6

2. BACKGROUND AND RELATED WORK

Visual analytics (VA) enables users to effectively understand, reason about, and make

decisions with data [16]. A key factor of this effective analytic manner is the inter-

activity that ensures VA systems respond to users in a timely manner so that users

can conduct analyses at the same pace with their mental activities [17]. However,

huge amounts of data postpone slow down the responsiveness of these systems. As

such, interactive exploration and visual analytics become intractable. Focusing on

this challenge, this dissertation presents AQP-centered techniques that enable visu-

alization systems to process data in a scalable manner, maintain interactive data

exploration, and achieve effective decision-making.

In this chapter, we summarize state-of-the-art general techniques for interactive

exploration of large spatiotemporal data, and further expound on AQP-based com-

putational and visualization approaches. Section 2.1 briefs spatiotemporal data visu-

alization and analytics, Section 2.2 overviews methodologies enabling VA systems to

reduce data processing time and maintain interactivity, Section 2.3 expands one of the

methodologies, sampling-based AQP techniques, Section 2.4 summarizes incremental

visualization and progressive visual analytics (PVA) that help users adapt to AQP-

leveraged incremental, yet approximate analytic paradigm, and Section 2.5 shows

incremental visualization approaches that encode information from the perspective of

human perception.

2.1 Spatiotemporal Data Visualization and Visual Analytics

Visualization and visual analytics provide intuitive graphical representations and

convenient interaction to ensure effective data exploration and analyses. The adage

“One picture is worth a thousand words” points out the importance of visualiza-

7

tion. Visual representations use graphical layouts to highlight information that is

implicit and hidden in sequential sentences, which reduces human mental inference

workloads [18]. In addition, interactions allow end users to forage information on de-

mand. For example, VA systems [19,20] widely adopt the information seeking mantra

of “overview first, zoom, filter, and details on demand” [21] for users to explore in-

formation. A broad range of fields, e.g., public safety [22] and social media [23], have

adopted visual analytics for their analyses.

Spatiotemporal visualization techniques characterize spatial and temporal data

patterns, trends, and anomaly analyses in the geographical domain. Data aggregation

in the geospace is a common analytic task [20, 22, 24]. A prevalent visualization

approach representing spatial aggregation, the heatmap [25], uses intuitive colors

to encode density variations. For example, Hotmap [26] uses heatmaps to visualize

spatial locations that are heavily explored by users so that engineers can forecast user

access activities in the spatial dimension and load associated map tiles in advance.

The contour plot [27] outlines regions whose data volumes are above the normal levels,

so that users can easily identify spatial concentration. Spatial analyses are usually

conducted on hierarchical spatial aggregates as well, e.g., nations, states, counties,

and states. A choropleth map [28] is a common approach displaying information

in terms of such spatial aggregates. Topomap [29] preserves the context of textual

information in multi-scale spatial aggregates. Treemap [30] visualizes a hierarchical

organization of information in a compact way, which is particularly effective on a

limited screen. Unlike discrete points on maps, object movements has one more

visualization need, movement sequences. A suite of visualization tools (e.g. space-

time cubes and voronoi-based trajectory movement summarizations) center on such

sequence patterns [31–34].

In addition to graphical information representation, interactivity is crucial to vi-

sualization and visual analytics. Users need to explore data at interactive rates (e.g.,

less than one second) so that their mental activities are not interrupted [17]. A survey

shows that if a VA system’s response time increases by 500ms, end users significantly

8

decrease their analytical activities by doing less interactions and reducing dataset cov-

erage [10]. Prolonged data processing prevents users from detecting errors at earlier

stages of their analyses [3]. As a result, an analyst’s enthusiasm for data exploration

is abated by the time cost, which makes them reluctant to conduct further analyses.

However, in the big data era, data exponentially increase [35], which significantly

prolongs data processing latency. This dissertation focuses on the prolonged latency

challenge, and presents AQP-centric approaches for VA systems to ensure exploration

of large-volume spatiotemporal data at interactive rates.

2.2 Computational Latency Reduction for Interactive Visualization

This section overviews various methodologies for VA systems to process large data

and response to users rapidly.

The Client-Server architecture is the most popular way for visualization systems

to handle large data, where remote high-performance servers quickly conduct heavy

computation and commodity machines on the client side focus on light-weight compu-

tation (e.g., interaction). Scientific Visualization needs to handle large/big textured

polygons. Thus, remote high-end servers process these data for intensive rendering

tasks and transfer rendered signals to the client side for displays [36–39]. The Client-

Server-based remote visualization solutions particularly works for front-end displays

conducted on mobile devices [40].

Specific to machines that process large data, parallelizing the execution workflow

can dramatically reduce computational latencies. MapReduce [41] is a scalable pro-

gramming model that maps a large volume of data records to a cluster of commodity

machines, processes data chunks in parallel and merges the computed results for the

final output. Unlike MapReduce storing intermediate results on disk, Spark [42] fur-

ther reduces disk I/O latency by exporting results into memory. Following the same

parallelism, SpatialHadoop is extended in terms of analytical tasks in the geospatial

domain [43], and VisReduce [44] is tailored for visualization computation.

9

Data cubes aggregate larger dataset into a smaller knowledge graph [45]. Re-

trieving answers from such a compact graph is efficient for aggregate queries (e.g.,

imMens [46], Nanocube [47], Hashedcubes [48], TOPKUBE [49], SmartCube [50]).

But these approaches are designed for predefined queries, not suitable for new ones.

Prefetching can hide computational latencies by predicting user behaviors and

fetching data in advance. A prefetching technique [51] mitigates the discrepancy

between a higher CPU computational rate and a lower memory access rate in texture

mapping. ATLAS [52] predicts the analytical behaviors of end users in the temporal

dimension and uses prefetching to hide data transfer overheads while enabling the

smooth exploration of massive time series data. ForeCache [53] models and predicts

user behaviors in the geospatial data exploration process.

Scenarios with insufficient computational resources are well handled. Out-of-core

precomputation reduces memory usage through dividing data into small blocks and

processing blocks sequentially [54–58]. A hybrid spatial index can swap partial in-

memory data to external devices (e.g., hard drives) and combine memory/external

data together for efficient analysis [1, 59]. EdiFlow [60] follows the same paradigm

and uses database management systems as intermediate storage medium. These

approaches need precomputation and work for only predefined queries.

To further reduce computational workloads, cutting-edge Data Visualization Man-

agement System (DVMS) proposes latency reduction through optimizing computa-

tional workflows integrating both visualization systems and database systems [61] and

avoiding duplicated computation in the decoupled two sides.

These techniques above process all the data and generate exact results quickly.

Sufficient computational resources are vital in these techniques. However, the increase

of these resources cannot surpass the exponential increase of data volumes [5]. Thus,

an effective direction is to develop sampling-based approximate query processing ap-

proaches (presented in Section 2.3), using a small chunk of data to represent large

data and responding to end users with approximate results in a short time instead

10

of accurate results that need lengthy computation time. Our contribution in this

dissertation pertains to AQP-based approaches for spatiotemporal data.

2.3 Approximate Query Processing for General Data and Spatial data

Sampling-based approximate query processing (AQP) techniques use a small ratio

of data to quickly generate usable results [11], which reduces computational latency

and ensures the interactivity of VA systems.

Data sampling techniques contain a series of approaches, e.g., random simple

sampling, stratified random sampling, cluster sampling [11]. Each approach focuses

on a particular scenario. For example, a population contains multiple subgroups,

and properties per subgroup are diverse. A statistic estimate averaging all of the

subgroups cannot approximate each individual subgroup well and likely leads to es-

timation errors [11]. Stratified random sampling pays attention to this phenomenon

and conducts sampling with subgroups. Estimation conducted per subgroup avoids

interference from other subgroups and produces representative estimates.

Further approaches significantly improve data sampling performance. BlinkDB [62]

used computational parallelism to data sampling in order to speed up approximate

answer estimates and generate reliable answers in real time. DAQ [63] and Database

learning [64] abstracted knowledge from previous data queries to improve the accu-

racies of new data sampling results. Online aggregation [12, 13] quickly sampled a

few data, evaluated the accuracy of the approximate results, and progressively en-

larged the data samples to improve the accuracies of the approximate results. This

online method enabled users to see query results quickly and control the sampling

execution time in terms of their accuracy goals. These aforementioned data sampling

techniques work for general data relations, without making specific improvements in

spatial relations. Instead, we focus on spatiotemporal data relations, which adds an

additional dimension of complexity.

11

Efficient data sampling in the spatial dimension requires special treatment. For

efficiency, sampling [43, 65, 66] is conducted upon hierarchical spatial indexes (e.g.,

R-tree [67], Quad-tree [68]) so that sampling time is scalable regarding queried spa-

tial ranges. To satisfy the time-critical scenarios, STORM [1] samples spatial data in

the online manner through using well-designed sample buffers. Furthermore, sampling

strategies [69–71] center on object movement sequences that incorporate an extra tem-

poral dimension. The approach presented in this dissertation (Chapter 4) supports

online aggregation in the spatiotemporal domain as well, addressing the sampling bias

issue decreasing answer accuracy. Mozafari [5] discusses challenges and opportunities

regarding the interaction of AQP with the real world, pointing out difficulties in per-

suading organizations to deploy AQP models in their existing databases. Likewise,

the AQP approach proposed in Chapter 3 was motivated by computational platforms

with AQP functionalities and presents a solution for conducting large spatiotemporal

AQP queries between data providers and client-side visual analytics systems.

2.4 Incremental Visualization and Progressive Visual Analytics

As large data processing is time-consuming, VA systems use AQP techniques

(Section 2.3) to divide large data into multiple small chunks, process one chunk for

quick response, and then progressively process other chunks. Thus, users receive

approximate results immediately and can then observe answers progressively improve.

This progressive computational paradigm has multiple names [3,72]. This dissertation

uses incremental visualization (IV) for approaches presenting new visualizations [73]

and progressive visual analytics (PVA) [74] for approaches focusing on data analyses.

Compared to the blocking paradigm [74] that takes time to process all the data and

generate exact answers, the progressive paradigm has significant benefits. First, exact

answers are not essential for many analytical scenarios. Users can use error-bounded

approximate answers to make the best decisions [5]. Second, the progressive method

increases user engagement with data exploration activities [3, 74, 75]. The blocking

12

paradigm makes domain users reluctant to analyze large data, because processing

the entire dataset for exact analytic results is time-consuming and waiting for the

computation to complete is exhausting. Instead, the incremental workflow helps users

see results quickly so that they can detect errors at early stages, e.g., incorrect query

specifications or inappropriate data settings. Furthermore, the progressive manner

increases analytic data coverage, e.g., trying new analytical hypotheses and exploring

more data. Finally, users can steer large data analyses on demand. Users can trade

computational time for answer accuracy in terms of analytic task requirements and

can adjust computation at interactive rates.

The progressive manner requires users to choose satisfactory answers for their an-

alytic tasks. Approximate answers undergo three phases, starting with early partial

results indicating whether the computation is meaningful to analytic goals, proceed-

ing to mature partial results reliably reflecting the final answers within acceptable

error bounds, and finally becoming definitive partial results without substantially

discernible differences from the final answers [76]. A user study conducting progres-

sive analyses of social media data found that most participants (eight out of ten)

chose answers at the mature or definitive phases, because they thought the observed

answers were unlikely to change [75].

User uncertainty is a key issue for progressive data analyses [3, 75, 77]. Due to

sampling randomness, answers may fluctuate as more data are incorporated into

the computation. Consequently, users are unsure whether the answers they receive

are stable and trustworthy. To enable users to estimate the accuracy of approximate

query results and select trustworthy answers, a series of approaches were developed in

different aspects, e.g., accuracy estimation, data management and machine learning,

user interaction, and visualization [74]. The following paragraphs categorize these

approaches respectively.

First, statistical estimates are widely used to indicate the proximity between ap-

proximate and exact answers. A confidence interval [78] is a typical statistical mea-

surement AQP-leveraged analyses [3,12] to estimate ranges containing exact answers

13

in a certain probability (usually at least 90%). To enable users to express error

guarantees for Group-by queries, Sample+Seek [13] introduced a precision metric,

distribution precision, to express specific accuracy demands and accordingly designed

a sampling scheme that generates samples satisfying the expressed guarantees.

Second, data management and computation should accommodate the incremental

workflow. Section 2.3 overviews approaches regarding progressive data selection. As

for machine learning, A-tSNE [79] progressively projects high-dimension data into

lower-dimension spaces. PANENE [80] progressively computes k-Nearest Neighbors.

Third, novel user interface and visualization designs are essential in order to reduce

user uncertainty. Badam et al. [75] studies a series of PVA user interface design cri-

teria, e.g., comparisons of partial results calculated through different data selection

progresses. These criteria target the improvement of users’ understanding of pro-

gressive feedback and control of the progressive computational workflow. Optimistic

Visualization [4, 77] designed a suite of interactive tools allowing users to compare

differences between the approximate results already used in their decision-makings

and the precise results, so that users can detect and recover from errors. On the vi-

sualization side, a series of approaches enhance users’ understanding of approximate

answers. Statistical measurements of inaccuracies can be represented by uncertainty

visualization, a research area focusing on visualizing analytical uncertainties. The

work [81] used hue to encode uncertainties of an isosurface-based volume rendering.

Error bars can intuitively encode confidence intervals [3]; Correll and Gleicher [82]

compared four types of error bar designs in terms of their abilities to help end users

understand means, confidence intervals, and other measures. They also recommended

two error bar options for certain data query goals. Other work [83] also conducted

empirical user studies to explore visual design choices for understanding uncertain-

ties. Copula [84] is a visual analytics approach to expressing uncertainties resulting

from grid-based statistical analysis in the spatial domain. Bubble Treemaps [85] is a

visual design that represents uncertainties in hierarchical structure data. To prevent

the randomization of data samples in query answers, Kim et al. [86] came up with a

14

sampling approach that outputs samples only if the approximate visuals’ crucial prop-

erties (e.g., ordering) built upon the samples are guaranteed to be consistent with

the exact visual properties. INCVISAGE [73] is a sampling-based incremental visual-

ization approach for one-dimensional or two-dimensional Group-by queries. It enables

visualization to be smoothly and consistently refined without dramatic changes. As

for visualization consistency across different spatial granularities, a spatial level-of-

detail sampling mechanism ensures that approximate sampling results are consistent

and coherent at each spatial granularity the end user explores [87]. For approximate

visualizations in the geospace, sampling approaches probably provide inadequate data

for displaying low-density areas. Users thus draw incorrect conclusions, e.g, trajec-

tories that discontinue in low-density areas, which do not match the truth. To avoid

this issue, one effective sampling strategy is to increase the probability of data be-

ing selected from low-density areas [2]. Human perception can guide sampling-based

AQP techniques toward providing visualizations that are easier to observe. Details

are in Section 2.5. Our perception-aware difference assessment approach (Chapter 5)

also focuses on user concerns about the reliability of approximate answers.

2.5 Perception-Aware Data Visualization

Visualizations use graphical elements to encode information, and humans look at

these visual displays in order to perceive the information. In light of the vital role

of human perception regarding information extraction from visuals, perception-aware

visualizations determine their visual design choices and adjust their data processing

plans in terms of human perception.

The human visual system (HVS) perceives and processes visual information in a

unique way. The human visual system has difficulty precisely decoding graphical in-

formation [88], since it cannot perceive minor differences between graphical elements.

The Weber-Fechner Law [89, 90] models the relationship between the intensity of a

physical stimulus and the smallest change needed for a human to perceived that the

15

stimulus has changed. In the the Weber’s Law component, ∆I = KwI, where Kw is

a constant called the Weber Fraction, I is the stimulus intensity, and ∆I is the dis-

crimination threshold. This component is useful for describing a specific stimuli, e.g.,

brightness. The equation infers that the brighter a color, the harder it is to discern

from colors with similar brightness, since the color’s discrimination threshold increases

as well. Cleveland et al. [91,92] conducted user studies to explore the quantities and

qualities of numerical values inferred by visual observations, and to provide an prelim-

inary rank of several visual encoding choices for analytical tasks including: position,

angle, length, slope, direction, area, volume, curvature, and shading. For scatterplots,

empirical rules were constructed to describe the impact of a stimulus (e.g., brightness)

on the inferred correlation [93], and further experiments show that shapes marked in

the scatterplots strongly influence color and size perception [94]. With time series

charts, user-perception experiments showed that visualizing each time series in sepa-

rate spaces allowed for efficient comparison across a large graphical span, and shared-

space charts were better for comparisons over smaller spans [95]. One preliminary

experiment regarding animated visualization demonstrated that color is the visual

encoding option that makes animated visualization changes easier to observe [96].

For color perception specifically, a series of approaches were developed to mea-

sure the discernible distances required in order to differentiate variants of colors.

Just-Noticeable-Difference (JND) [97] refers to minimal modifications to a color so

that humans can see the difference between the old and new color at a rate bet-

ter than that of chance. Empirical JND rules are determined using different color

models, e.g, luminance whose adaption rules are measured in gray-scale colors [98].

The CIELAB-based color models [99] have evolved their color difference metrics, e.g.,

CIE76 [99], CIE94 [100], and CIEDE2000 [101]. In addition, the sizes of the objects

being observed impact JND thresholds [102]. Stone [103] presented an empirical rule

to quantify JND values in terms of color, visual object size, and visual angles; when

considering nonuniform color across object appearances, S-CIELAB [104] quantified

color differences with this factor. Color difference theory has been widely used in in-

16

dustry applications [99], e.g., estimating the visibility of printed halftone textures [99]

and image quality after image compression [105,106].

Humans are likely to gain the same amount of information from a visualization

with fewer data samples [107]. Therefore, an emerging research topic is to leverage

perceptual empirical knowledge to guide AQP-centered incremental visualization and

analytics in order to avoid sampling more data than needed. Unlike statistically mea-

sured parameters which determine the number of expected data samples, preliminary

perceptual functions [15,107] use human perceptual knowledge to simulate the infor-

mation users can perceive from visualizations and to further determine an intended

sample size, smaller than the size derived from statistical measures.

Our work (in Chapter 5) is related to human perception as well. Unlike the

aforementioned works, we use human perception to assess the differences between

approximate and exact spatial heatmaps during the incremental visualization process.

We detect visual elements with discernible differences between size-by-size heatmaps.

Thus, the accuracy of approximate heatmaps quantified based on detected visual

elements can reflect the information actually perceived by users, and is expected to

help reduce user uncertainty when choosing usable heatmaps for decision-makers.

17

3. SPATIOTEMPORAL DATA SAMPLING UNDER

ARCHITECTURAL CONSTRAINTS

A version of this chapter was previously published by IEEE. Guizhen Wang, Abish Ma-

lik, Chittayong Surakitbanharn, José Florencio de Queiroz Neto, Shehzad Afzal, Siqiao

Chen, David Wiszowaty, David S. Ebert. A Client-based Visual Analytics Framework

for Large Spatiotemporal Data under Architectural Constraints. The IEEE Workshop

on Data Systems for Interactive Analysis 2017. doi: 10.1109/DSIA.2017.8339088.

This chapter introduces the client-based data visualization framework designed

to support interactive exploration of large spatiotemporal data under architectural

constraints. Section 3.1 introduces obstacles of architectural constraints on interac-

tive analysis of large data, Section 3.2 shows system components, Section 3.3 and

Section 3.4 detail the client-side data organization and the associated data sampling

procedure, Section 3.5 and Section 3.6 present and discuss experimental results, and

Section 3.7 concludes this work.

3.1 Background

In the big data era, interactive visual analytic environments often require advanced

computing platforms or advanced client-server architectures with sufficient computing

abilities to enable interactive analysis. These solutions typically offload the expensive

computational tasks to a high-performance server or a distributed computing plat-

form (e.g., Hadoop), while leaving the client-side application to mainly focus on user

interactions and visual representations.

Unfortunately, in many businesses and local governmental organizations, policies

or budgetary concerns may prevent deployment of such solutions, or the transfer of

data to external servers [8, 9], thereby, only allowing the server to provide data, and

18

requiring the client to take care of all the computational workload. However, for

large data, typical client machines probably lack adequate computational resources

to process the entire data, let alone providing real-time responsiveness to end users.

In order to address this architectural constraint, we propose an incremental visual

analytics framework that enables interactive analysis of large spatiotemporal data

under these client-server constraints: (1) a fixed server that only serves as a data

provider (e.g., a relational database), and (2) a local client-side system (e.g., desktop,

web-based) subject to limited computational and memory resources.

3.2 Framework Overview

Fig. 3.1. Framework components and workflow within a visual analytics system.

Our interactive client-based visual analytics framework can be decomposed into

three main components: (a) the client-side user interface, (b) external data sources,

and (c) the client-side data management model, seen in Figure 3.1.

The user interface is a multiview visual interface that supports user interactions

and provides incremental visual feedback to users. When users issue a new query, the

user interface will send the user-specific spatiotemporal range to the data manage-

ment model, and after receiving data samples sent by the data management model,

filter data, update the visualization. The accuracy of approximate visualization is

progressively improved, since new samples are continuously received from the model

19

and added to the visualization. Figure 3.2 demonstrates the progressive updates of a

heatmap.

Fig. 3.2. Incremental visual updates of the heatmap using the ker-
nel density estimation technique [20] to estimate the distribution of
tweets in Chicago (introduced in Section 3.5). Different data loading
percentages are indicated by the numbers below images.

External data sources indicate any data providers that are absent in the client

machine’s memory, including remote data servers, data in the client hard drive, FTP

and so on. Data servers can be any platform that hosts the entire dataset and al-

lows clients to fetch data. Despite the architectural constraints to prevent deploying

customized functions, databases on the server side can provide the function to re-

trieve data based on the spatiotemporal range. For example, popular spatiotemporal

indexing techniques (e.g., R-Tree [67] and data cube techniques [45,108]), widely pro-

vided in commercial database systems, can efficiently reduce the data query time.

Therefore, in our framework, we simply assume that the data server query time is

proportional to the number of data records requested by the client, and so is the

data transfer time from the server to the client. As long as the client retrieves a

smaller number of points from the server, the latency between sending the request

and receiving the data can be reduced to an appropriate value.

The data management model has three components: the sampling module,

the memory controller, and the disk manager. The data sampling module (intro-

20

duced in Section 3.3 and Section 3.4) incrementally fetches data from the server in

accordance with the sample size specified by an upper bound for interactive perfor-

mance. The memory controller monitors, predicts, and swaps in-memory data to

the disk when necessary. When the application launches, memory will be consumed

for initialization of the user interface and the data management model. After initial-

ization, remaining client memory is gradually consumed for loading new data, and

the memory cost of the user interface will keep almost constant despite incrementally

accumulating data samples for these visualizations. For example, the spatial heatmap

in the system initialization stage requires memory allocation for a grid to store the

spatial histogram. In the incremental updates, the user interface only updates bin

values in the grid, without allocating new memory. To prevent the out-of-memory

issue, the controller tracks the memory utilization of each incremental update and

estimates the memory usage in next update, since the data sampling module can

predict the number of points that is going to be obtained. That information can be

applied to coarsely calculate the memory cost of the next update. If the memory is

predicted to be insufficient for the next round, one in-memory data node that has

not been recently accessed is chosen based on the LRU rule [109] and swapped to the

disk cache through the disk manager.

To minimize data acquisition from the server side, in addition to reuse data in the

memory/disk cache, our framework supports user-driven data acquisition: loading

data only matching user interest into the client side, as only data whose spatiotempo-

ral ranges overlap the user query range are sampled, and data that are not requested

by user interactions are avoided.

3.3 Client-side data organization

The proposed data management model organizes data with a two-level organiza-

tion shown in Figure 3.3. The first level is temporal indexing, dividing the entire

temporal range into equal bins (e.g., one month). The second level uses the spatial

21

indexing to organize data within the same temporal bin into a quadtree [110, 111].

Every node in the quad tree covers a rectangular spatial range. Only leaf nodes have

data. An upper bound specifies the number of points one leaf node could contain

at most - the framework takes care of this limit, equally dividing a node into four

children when it is going to have more points than the upper bound. Thus, the spatial

space decomposition in the quadtree will follow the spatial data density in its related

temporal range: denser areas will have more nodes and vice versa.

Fig. 3.3. Illustration of the client-side data organization using the
two-level indexing.

3.4 Spatiotemporal Data Sampling Model

To build the client-side data organization in an average client machine, we pro-

pose a predictive way to estimate data densities through historical sampling results,

refine the node organization, and further sample data in accordance with its actual

statistical distribution.

The client-side data organization initially assumes that the data is uniformly dis-

tributed in the spatiotemporal space, since the client side does not have any infor-

mation about the data distribution. Hence, the client runs a server query to retrieve

the total count of data and the entire spatiotemporal range in the dataset. This

information is used to divide the time range equally into temporal bins, and to build,

22

for each temporal bin, a spatial quadtree. The quadtree is progressively built until

the leaf has fewer points than the upper-bound framework parameter.

After receiving a data request with the specified spatiotemporal range, data are

incrementally sampled in the following steps:

1. Select all leaf nodes that spatiotemporally overlap with the specified range, and

form a node set S

2. Randomly choose a node in the selected node set S

3. If the density of the node is unknown, estimate the data density of the node,

apply possible adjustment to the quadtree in case of upper-bound violation or

merge the node and its three siblings into a parent node in case of sparseness.

4. Fetch the data of the sampled node N from the server

5. Update the corresponding quadtree leaf with the exact number of points

6. Send the data for visualization, and remove N from S

7. Repeat steps 2-6 until S is empty or canceled by end users

The data density estimation procedure in Step 3 is necessary because sampling

a node with unknown data densities actually has an excessively large number of

points. Consequently, the visual update can take longer to fetch data from the server

and process the data on the client side, making the client application unresponsive.

Predicting the number of points in a node Npredict involves three steps. The first step

is to collect nodes in other temporal bins that have acquired data from the server

and have the same spatial range as Npredict. Then, the number of points in Npredict is

calculated using Equation 3.1. If predicted to have a larger point number than the

upper-bound, the node can be split into four children. If predicted to be smaller than

the upper bound, the father node will be estimated to see whether the four children

nodes can be merged as long as the predicted data size is no more than the upper

bound. The last step is to get the final node for sampling. If the original node is split,

23

a child is randomly selected; if the node is merged, its father is selected; otherwise,

the node itself is finally selected.

ppredict =

∑n
i=1 pi
|n|

,

where n is the number of nodes that have the same spatial range

with Npredict and know their data densities.

pi is the number of points in the i-th node.

(3.1)

3.5 Evaluation and Results

In this section, we conducted experiments to verify the effectiveness of our pro-

posed framework. The client is a 32-bit desktop application implemented on the

.NET framework, with one thread for the user interface (Figure 3.4) and the other

for the data management model. The client connects a MySQL database hosted by

a data server in the same network domain. We set the upper bound of a node to be

4096, a multiple of a Windows disk block size, 4KB. The data in the server side is

grouped into multiple tables with each table for one temporal bin. Table 3.1 lists the

test datasets whose temporal ranges are evenly divided into multiple bins: one month

for the osp datasets, and one week for the tweet dataset. The map view was set to

overview the entire Ohio state for osp, and the entire Chicago city for tweets. For the

osp data, the experiment loaded all the data. For the tweets, a specific temporal range

from April 3 to May 9 in 2013, nearly 1.7 million, was selected for experiment. The

application was launched with a clean disk cache, and the process was repeated five

times for each dataset. All experiments were conducted on a client machine with an

Intel(R) Xeon(R) E5-2630 CPU with twelve cores at 2.60GHz, 32GB main memory,

and a 256GB solid state drive.

Table 3.2 measured the latency in each update, including the node sampling time,

the server side query time, and data transfer time, which averaged less than 500ms

24

Fig. 3.4. The user interface of an implemented incremental spatiotem-
poral data visual analytics prototype. The left is the data filter panel,
and the right is a map view showing the spatial heatmap and display-
ing the data loading percentage in the bottom left.

25

Table 3.1.
Evaluated traffic incident reports and Twitter datasets.

Data Description Size

osp
Ohio crime data from January 1, 2012 to De-

cember 31, 2013
3.2 million

tweet
Chicago Twitter data from April 1, 2013 to

September 30, 2013
9.7 million

for all datasets. The low resulting transfer time supports the interactive analysis of

end users.

Table 3.2.
Measurements of incremental updates in our prototype for one incre-
mental visual update, averaged in five trials.

Data Average time per update(ms) Total updates

osp 456.8754 1915.8

tweets 407.3 4681

Figure 3.5(a-c) measures the number of points fetched from the server at each

incremental update. Figure 3.5(a) shows the histogram of the number of points

fetched from the server averaged in the five trials. The distribution of the osp data

has a higher density around [1000, 3000], and the tweet data is more concentrated

with around [0, 2000]. Figure 3.5(b) shows the number of points fetched per update

in one trial of the osp data. We can see that the value in the earlier 8% updates is

sometimes significantly larger than the upper bound, 4096, with the peak at 16,962,

and in the subsequent updates, going down to around or below the upper bound.

Figure 3.5(c) shows the number of points fetched per update in one experiment of

the tweet data. In this case, the total points fetched per update is mainly around

26

or below the upper bound, with only four examples in the first 50% updates being

significantly larger than the upper bound.

Figure 3.5(d) uses Root-Mean-Square-Error (RMSE) [112] to measure the accu-

racy between the approximate spatial data distribution per incremental update and

the final exact data distribution. A Kernel Density Estimation (KDE) method [20,

113] measured the spatial distribution, with the spatial resolution of the 2D histogram

to be 256 by 256 pixels. To reduce the measure inaccuracy from the geospatial spar-

sity, we only compare KDE values in denser areas defined as spatial bins with a KDE

value no less than 0.05 on a normalized scale of 0 to 1. We find that the RMSE

value starts around 0.15 in the first update, gradually decreases with increased data

sampling, and is reduced to 0.1 when 10% of the data are sampled.

Figure 3.5(e) measures the total memory usage of our framework under two con-

ditions. The experiment was first conducted with sufficient memory capacity, 3 GB.

Then, the system was set with a memory limitation of 1.4GB and to swap memory

when the entire system has consumed 1 GB physical memory. The memory required

to load all data was 1.6GB for the 3.2 million osp incidents and 2.4GB for the 9.7

million tweets. We did the experiment five times each for the two dataset respectively,

loading all the data to the system from the same disk cache copy.

RMSE = 2

√√√√ n∑
i=1

(Fi − Ik,i)2
n

Fi ≥ 0.5 or Ik,i ≥ 0.5

(3.2)

Here, Fi is the KDE value in the i-th bin in the final converged distribution. Ik,i is

the KDE value in the i-th bin in the distribution of the k-th incremental cycle. n is

the number of dense bins either in the final distribution or in the current incremental

cycle. RMSE was measured for only the geospatially dense areas per incremental

cycle and the final data convergence. Dense areas were defined as spatial bins with a

KDE value that are no less than 0.5 on a normalized scale of 0 to 1.

27

Fig. 3.5. Statistics of the experiment testing our proposed framework
in five trials. In (b-c), the x-axis indicates the update sequence.

28

3.6 Discussion

Our work is motivated by the challenge one law enforcement agency met to use

our visual analytics system VALET [20] to analyze a large scale data. Subject to

security policies, their servers cannot be allowed to use, except database functions.

Officers were concerned that the solution cannot consume a significant portion of the

computer resources, since they need the computer to process other tasks as well, and

thereby, we developed the framework, and allowed users to specify the amount of

computer memory dedicated to the system.

The server query performance is vital to assure each incremental update can be

completed in real time. In our experiment, the entire dataset in the server-side

database was split into multiple tables, making one table for each temporal bin. We

tested that, in the same condition, with the entire data being hosted within a single

table, each server query increased by about 400ms in the osp data.

The data dimension choice in the two-level indexing of the client-side data or-

ganization can impact the memory usage and performance of the framework. Our

method illustrated in Figure 3.3 organizes data temporally first and then spatially.

One typical approach first splits data spatially then orders data temporally. Setting

the spatial attribute before the temporal attribute can require only one quadtree to

organize the entire data, and greatly reduce the quadtree traversal times, whereas

our method builds a quadtree for each temporal bin and, to query data, traverses

the quadtree in each temporal bin. However, there are important benefits from using

the temporal dimension as the first-level indexing. Suppose that the “spatial first”

structure uses a sorted array (e.g., Mercury [110]) to do the temporal organization of

data. The temporal range will impact the structure of the quadtree. As the upper

bound specifies the maximal amount of data a node can hold, a wide temporal range

aggregates a large amount of data and accordingly will force nodes to divide into four

children. In the case the spatial structure stores data only within the temporal range

desired by users, if users extend or shrink the temporal query range, the quadtree

29

structure will be adjusted significantly. In contrast, in the two-level structure we use,

the quadtree will remain unchanged. Another case is that the “spatial first” structure

uses multiple temporal bins to split data in the leaf nodes, and makes sure that data

in the temporal bins do not exceed the upper bound. In this way, the quadtree will

be adjusted if, in any leaf node, the amount of data in some temporal bin exceeds the

upper bound. Compared to our method, this method could generate more temporal

bins as any temporal bin violating the upper bound constraint will cause the leaf

node to be split into four children, which further forces other temporal bins in the

same leaf node to be divided as well.

There are two parameters in our sampling method, the upper bound to specify

the maximum number of points a leaf node is allowed to have and the length of a

temporal bin. The upper bound can impact the interactivity of the framework. If it

is set to be inappropriately large, a update can take an excessive time to retrieve and

compute a node. Concerning the length of a temporal bin, the shorter the length,

the more updates the approximate visualization takes. In our experiment, the total

number of updates for loading the 1.7 million tweet data is twice of the 3.2 million

osp crime incidents. The reason is that the temporal bin is a week for the tweet and

a month for the osp.

Results in Section 3.5 reveals that the spatial distribution can impact the number

of points fetched per incremental update. Comparing Figure 3.2 and Figure 3.4, we

can see that the tweet data is more spatially concentrated than the osp data, having

a relatively higher density only in the downtown region. Therefore, in the data

organization initialization stage, with the uniform assumption, the majority of tweet

nodes have a smaller number of points than the upper bound, and osp has relatively

fewer nodes below the upper bound. That can explain the fact that in Figure 3.5(c),

in the first 10% updates, the number of points fetched in the tweet is much smaller

than that of osp in Figure 3.5(b), since it is a high chance to select nodes in the

sparser area. However, for the osp, nodes in denser areas have a relatively greater

chance to pick, and thus, in its first 10% updates, the number of points per update is

30

sometimes larger than the upper bound. Along the updates proceed, the client can

refine the data index through data fetched in previous updates. That can explain

the number of points fetched per update in the tweet is quite similar to the osp in

the last 60% updates. Overall, the diverse spatial distribution can significantly affect

initial or earlier updates, and gradually decease the impact in later updates.

3.7 Conclusion

We presented a client-based visual analytics framework for the interactive ex-

ploration of large-scale spatiotemporal data in constrained computer infrastructure

settings. Our framework incorporates an incremental data analysis workflow that

provides users approximate visual representation in real time within the limited com-

putation capability of a client machine. Experiments have validated that our frame-

work can successfully conduct interactive spatiotemporal data exploration in a typical

client machine.

31

4. UNBIASED ONLINE SAMPLING FOR VISUAL

EXPLORATION OF LARGE SPATIOTEMPORAL DATA

In this chapter, we present SpatioTemporal Unbiased onLine sampLing (STULL), a

novel unbiased online sampling approach that supports incremental visualization and

interactive exploration of large spatiotemporal data. STULL has a carefully designed

data index and sample retrieval plan to ensure that each point satisfying the user-

specified multi-dimensional data query has an equal probability of being sampled. In

particular, unlike state-of-the-art spatial online sampling approach [1], our unbiased

guarantee is unaffected by the intrinsic spatial distribution pattern of the data. With

our approach, incrementally updated visualizations can not only achieve higher accu-

racies at the same sample size but also present closer visual appearances to the exact

visualizations. In addition to visual quality, STULL retrieves samples as efficiently as

state-of-the-art approaches (e.g. [1]), and allows users to control the number of points

sampled through incremental updates. Through STULL, VA systems can provide unbi-

ased approximate answers to queries for more accurate spatiotemporal visual analytics

without adversely impacting the computational performance of the interactive data

exploration. Furthermore, STULL supports sampling both stored data and streaming

data, making it suitable for visual analytic environments that leverage both types of

data, such as social media analytics tools [114,115].

Our experiments confirm the effectiveness and efficiency of STULL in producing

unbiased samples for large spatiotemporal data queries. Compared to the state-of-the-

art online spatial sampling approach [1] on historical data, in the same computational

time, STULL improves the approximate spatial accuracy by at least 50% when sampling

less than 5% of the original dataset. Using our approach, approximate visualizations

reduce visual differences from visualizations encoding the exact answers. For stream-

ing data, STULL takes less than 500ms on average to index incoming streaming data

32

(1000∼4000+ tweets per second [110]) for answering queries, well below the response

time thresholds for interactive visualization [10].

Our contributions include the following:

1. a novel, unbiased online sampling approach for VA systems to incrementally

present approximate yet reliable interactive analyses,

2. theoretical guarantees on the unbiased property of our presented approach,

The rest of this paper is structured as follows. We elaborate on the drawbacks of

biased sampling for visual analytics in Section 4.2, detail STULL in Section 4.3, and

provide unbiased guarantee in Section 4.4. In Section 4.5, we explain our experiments

and discuss obtained results in Section 4.6. Finally, we conclude the paper and present

future directions in Section 4.7.

4.1 Background

Online sampling-supported Visual Analytics (VA) allows users to explore large

volumes of data at interactive rates. This is done through continuous retrieval and

visualization of data samples that approximate the distribution of the underlying

dataset being queried, also known as incremental visualization [3]. As users wait for

samples to accumulate over time, the increasing sample size improves the accuracy

of the inferred data pattern, allowing users to trade wait time for accuracy [116].

Current state-of-the-art online sampling approach to spatial data [1] focus on the

efficiency of data sample retrieval, without fully resolving the sampling bias. Biased

sampling methods, by definition, sample data with unequal probabilities [11], generate

data patterns that deviate from the original dataset and can lead users to erroneous

conclusions. To ensure accurate, trustworthy, and reliable data exploration, selection

and filtering during online sampling for visual analytics systems, it is critical to remove

sampling bias.

33

4.2 Visual analytics And Sampling Bias

Unbiased sampling requires that each record satisfying the query specification

has the same probability of being selected [11]. Conversely, a sampling approach is

considered as biased if the probability of each individual record being selected is not

equal.

Sampling bias can distort patterns of data and render data exploration ineffective

and inaccurate [35]. For instance, a common aggregation task in crime analysis is to

identify spatial hotspots where the most incidents occur. Data samples retrieved by

unbiased approaches should approximate the hotspot patterns regardless of sample

sizes; biased approaches may be skewed towards locations outside of the true hotspots

and may create false hotspots.

Furthermore, such erroneous interpretations can accumulate throughout the sense-

making process. VA systems are often designed to support the interactive exploration

of data, following the information seeking mantra [21]: “Overview first, zoom and fil-

ter, then details-on-demand.” This practice is common in geospatial analysis, where

users often start the exploration by examining data patterns across the overall geo-

graphic extent, and then identify locations of interest for further investigation. How-

ever, if sampling is biased toward specific geographic regions, the visual display at

the overview level could already be misleading. As a result, it would then exacerbate

the biased selection of relevant regions for further exploration.

Sampling bias also impairs incremental visualization. Incremental VA systems

progressively improve upon approximate answers through three main stages [76]:

early, mature and definitive. Answers presented in the early stage can reflect the

exact answers, helping users evaluate whether or not their analytic activities are on

track. The results of the mature stage can approximate exact answers with acceptable

errors and are useful for time-critical tasks. Finally, the definitive stage approximates

answers that do not change significantly and can address analytic tasks that require

smaller error margins. However, with the same sample size, answers constructed from

34

biased samples are often further from the exact answers than their unbiased counter-

parts. Thus, biased sampling hinders the advent of each stage and prolongs wait time

for users. Moreover, users’ trust in approximate answers is an intrinsic challenge of

incremental visualization [77] and sampling bias can exacerbate the trust issue. For

example, one effective visualization technique to help users become confident in the

analytic results is to compute the exact answers offline so users can compare their se-

lected, approximate answers against exact ones and redo their analyses if needed [4].

Biased approximate answers can increase the number of times a user has to redo

analyses, decreasing the rate at which they can complete tasks.

Therefore, for data exploration in VA systems, it is vital for sampling to be un-

biased, i.e., for each data record in the original result set to have an equal chance of

being sampled. This ensures that the sampled data accurately represent the entire

result set.

4.3 STULL

As users issue queries, STULL continuously samples data so that the VA system

can create rapid visualizations and progressively improve them (Figure 4.1). In sin-

gle incremental update, STULL retrieves sample points per the spatial and temporal

specifications of a particular query. After receiving samples, the visualization side

generates and updates the visuals. This section presents the computational details of

STULL.

4.3.1 Some Intuition

Efficient sample retrieval is crucial for online sampling. A sampling plan that

randomly selects points from a collection of data points is apparently not efficient

because the retrieval accesses all of the points even if users query merely a small part

of the data. A scalable plan is indexing data and retrieving samples from the index, as

the index can minimize the accessed data to the subsets specified by queries. Specific

35

Fig. 4.1. Incremental visualization workflow leveraged by STULL.

to spatial sampling, spatial indexes (e.g., R-tree [67] and Quad-tree [68]) are widely

used to organize data in a spatial hierarchy. These trees often store all the points

into leaf cells. The sample retrieval procedure starts from the tree root, randomly

chooses a child in terms of point volume belonging to each child, and recursively picks

a child of the chosen cell until it reaches a leaf from which a point is selected. The

same procedure repeats until the desired number of points is collected. This type of

approaches produces samples that can unbiasedly represent the queried data, but is

not efficient. First, the sample retrieval latency increases in proportion to the tree

heights. Second, the retrieval selects samples from most of the leaves belonging to the

queried spatial range. In a case where data indexes are stored on hard drives, loading

these reached leaves into memory is a lengthy process because each leaf requires

at least one disk Input/Ouput (I/O) operation and completing all the I/Os needed

for loading these leaves is time-consuming. To reduce the number of I/Os, advanced

approaches [1,117] group data points into a series of buffers [117] and retrieve samples

from buffers. Since each buffer is a randomly ordering of points, a sequential scan

of the buffer can construct a sample set. Therefore, retrieving some samples from

buffers may require a single disk I/O, whereas retrieving the same number of samples

36

from leaves needs much more I/Os. As such, buffers-based approaches can retrieve

samples quickly and support VA systems to proceed at interactive rates.

Since buffer-based sampling approaches retrieve samples in the units of buffers,

the state-of-the-art fixed-sized design [1] in which each buffer has the same number

of points raises bias (Figure 4.2). In this example, each non-leaf cell has a 500-point

sample buffer. At level 2, collectively, the union dataset of the orange and green

cells has the distribution of 43.3% (i.e. 1000+1600
2000+4000

) Q, whereas the samples that is

a combination of their sample buffers has the distribution of 45% (i.e., 250+200
500+500

) Q.

Therefore, the samples cannot accurately approximate the dataset.

To avoid this issue, we propose a proportionally-sized design. In this design,

each cell’s buffer caches 100α percent of its data. The sample buffer is therefore pro-

portional to the cell’s specified range. In the case when a query relates to multiple

cells (Figure 4.2), the union of these cells’ buffers will contain exactly 100α percent of

the data being queried. Therefore, the proportionally-sized design can approximate

the distribution of the queried data without bias whereas the fixed-sized [1] is contin-

gent on the spatial index itself. STULL uses the proportionally-sized design so that it

can prevent such issues and ensure that the samples can represent the exact spatial

distribution unbiasedly.

4.3.2 Index Design

STULL indexes data with an ordered list of pyramids that represents the spatio-

temporal segmentation of the data. (Figure 4.3). The temporal range of the data,

∆t, is first divided into adjacent, non-overlapping, equal-sized temporal bins, each

indexing a subset of the data that falls into its range. Within each temporal bin,

data is further indexed with a pyramid (e.g., Mars [111]) per its spatial dimensions.

Each pyramid follows the proportionally-sized design and its non-leaf cells cache 100α

percent of points randomly selected from their spatiotemporal ranges. Therefore, each

pyramid level has totally 100α percent of points. Therefore, a pyramid has 100
100α

= 1
α

37

Total: 10,000
 Q: 3000

Sample buffer:
 Q: 150 points

Total: 4000
 Q: 1600

Sample buffer:
 Q: 200 points

Total: 2000
 Q: 1000

Sample buffer:
 Q: 250 points

Fig. 4.2. Sampling bias issue in the fixed-sized sample buffer design. Q
is a query. Each sample buffer has 500 random data points. Numbers
inside each buffer lists the number of points satisfying Q. Numbers
inside each cell list the total number of points in the spatial range of
the cell and the number of points satisfying Q respectively.

levels in total. Each pyramid recursively and equally divides the data’s spatial range

into four fixed-sized rectangular sub-ranges until the d 1
α
e-th level.

At the bottom level of a pyramid, leaf cells store all of the data within their range

in a circular array (Figure 4.3(c)). We divide each circular array into 1
α

segments

in terms of the pyramid height, where each segment contains 100α percent of the

data. These segments will be used to add points into non-leaf cells’ sample buffers

(Section 4.3.3) and participate in sample retrieval (Section 4.3.4). Figure 4.3(c) ex-

emplifies the circular array in the leaf with the id “1122” in Figure 4.3(b). Since

α = 0.25, its circular queue has four segments.

Cells from the non-bottom levels of a pyramid cache randomly selected samples

from their respective ranges in one-dimensional arrays, termed sample buffers. Col-

lectively, data in the sample buffers form a sample that approximates the distribution

of the original data (Section 4.3.4).

38

Fig. 4.3. The data index. (a) shows the temporal index beginning at
ts. Each segment in (a) is a temporal bin. Each temporal bin sets
α = 0.25 and uses a four-level pyramid (in (b)) to spatially organize
data. A pyramid leaf uses a four-segment circular array (in (c)) to
store data. Each non-leaf cell has a sample buffer to store data.

4.3.3 Index Creation

To build the index, STULL first puts each data point in the appropriate temporal

bin. Then, starting from the root level of the pyramid, in a top-down fashion, we

proceed to the appropriate spatially-ranged leaf cell and insert this point into its

circular array, and repeat this process for all data points. At completion, the circular

arrays at the bottom levels of all pyramids will contain the entire data set.

Next, in each pyramid, STULL adds points to sample buffers at the non-bottom

levels of pyramids. First, each leaf cell randomly shuffles data in its circular array

39

(Figure 4.3(c)). Second, a bottom-up procedure copies segments of data from leaf cell

circular arrays into sample buffers of their ancestor cells. Take one leaf for example,

its circular array has 1
α

segments. In clockwise order, the data in the first segment

is copied into the sample buffer of the root level, data in the second ancestor cell on

the second level, and so forth, until the 1
α

-th segment is copied. Algorithm 1 shows

the pseudo-code of this procedure.

Algorithm 1: Building sample buffers

input : A list T consisting of temporal bins that need to build sample

buffers.

1 for each time bin t in T do

2 empty all sample buffers;

3 for each leaf u of t do

4 random shuffle data in u’s circular array;

5 n← the length of u’s circular array;

6 index← 0;

7 for i = 1 : 1
α

do

8 c← the ancestor cell in the i-th level and belonging to the path

from u to the root;

9 b← the whole data in the i-th segment of u’s circular queue;

10 Add b to c’s sample buffer;

11 random shuffle all sample buffers;

4.3.4 Sample Retrieval

STULL retrieves sample points that satisfy a given query Q in an incremental way.

Suppose a VA system plans to use 100θ percent of data points to generate quick

answers and progressively refine answers with the same number of new points.

40

In order to keep the sampling result unbiased in the temporal dimension, STULL

retrieves only a 100θ percent of sample points from each temporal bin requested per

Q. The union of samples retrieved from all of the requested bins is the set of samples

the visualization side uses for visual computation.

Retrieving 100θ percent of points from a single temporal bin takes the following

steps. First, STULL randomly picks a pyramid level lr to retrieve points. For each of

cells spatially overlapping with Q at the lr level, we retrieve 100θ points from its data,

which is equivalent to retrieve θ/α percent of data from its sample buffer. In each

incremental update, the retrieval repeatedly retrieves a chunk of θ/α percent of data

from sample buffers of eligible cells. The retrieval on a level continues until either

users terminate the incremental retrieval procedure or the sample buffer is exhausted

after 1
θ

rounds, in which case, we move on to the next level [(lr + 1)mod 1
α

].

Suppose lQ is the lowest pyramid level in which a single cell contains the queried

spatial range. There is a (αlQ − α) probability that lr < lQ and consequently the lr

level has more points irrelevant with Q. In such a case, to avoid most of the irrelevant

points, we will simply retrieve samples from the bottom level since it contains all of

the data.

When sampling is on the bottom level, the same steps are conducted on consec-

utive segments of leaf cells’ circular arrays. In the case lr ≥ lQ, since the retrieval

has obtained points from Level lr to Level (1
α
− 1), the retrieval begins at the 1

α
-th

segment. Otherwise, it starts at the lr-th segment. Similar to sample buffers, the

retrieval procedure accesses the same θ/α portion of point in a segment, continue,

and will exhausts all eligible points after 1/θ times. Then, index of the next retrieved

segment is (lr + 1)mod 1
α

. Likewise, the retrieval continues until either users cancel or

lr is reached again.

Algorithm 2 describes the whole retrieval procedure in a time bin.

41

4.3.5 Index Update

Once new data arrive, STULL updates its data index through finding temporal

bins associated with the new points, adding the points into leaf cells and following

Algorithm 1 to refresh sample buffers in each associated bin. This updating procedure

applies to both existing data and new streams of data. In general, existing data (e.g.,

historical logs) are well collected and curated before the visual analytics process.

Thus, its index update has sufficient time to conduct before queries, unlike streaming

data, which must be timed carefully. Incoming data streams and their queries span

more recent time ranges (e.g., a monitoring system [111] querying sensor data collected

in the last ten minutes); the update procedure likely adjusts only the latest few

temporal bins, which is therefore fast.

4.4 Unbiased Sampling Guarantee and Computational Performance

Unbiased sampling in STULL is guaranteed as a result of the index and the afore-

mentioned sample retrieval procedure. We provide the theoretical proof of its unbiased

claim in Section 4.4.1. STULL also guarantees interactive rates, making it suitable for

online sampling and incremental visualization. A formal computational complexity

analysis is detailed in Section 4.4.2 and Section 4.4.3.

4.4.1 Unbiased Sampling Guarantee

We prove that STULL conducts unbiased sampling in two steps. First, we prove

that STULL retrieves samples from one temporal bin without bias, and then prove for

cases that use multiple bins.

For one temporal bin (e.g., a t-th bin), the sample retrieval procedure follows

Algorithm 2 to access its pyramid and obtains 100θ percent of points that satisfy Q.

Recalling Algorithm 2, the sample retrieval starts from a random level lr, if lr >= lQ,

and the bottom level otherwise. The procedure in the case of lr >= lQ is equivalent

42

to the other procedure. Thus, we reduce the proof of unbiased sampling for just the

bottom level. Suppose CQ is a set of leaf cells that spatially overlap with Q. In each

leaf of CQ, the retrieval process on average accesses l segments of its circular queue,

where l = θ/α. For each leaf of CQ, the equivalent procedure first accesses the lr-th

circular queue segment and then continues fetching data from (lr + 1)-th section in a

clockwise order until l segments are accessed. Equation 4.1 shows that each segment

in the circular queue of a leaf has an equal chance of being selected. Equation 4.2

shows that each point satisfying Q in a leaf is also the same for other points satisfying

Q. Therefore, points in each leaf of CQ are equally likely to be selected.

P (Segment li is chosen) = P (lr = li) + P (lr 6= li)× P (l0

belongs to l − 1 segments counterclockwise from li)

=
1

1/α
+ (1− 1

1/α
)
l − 1

1/α− 1
= lα =

θ

α
α = θ

(4.1)

P (Point r is chosen)

=
∑1/α

li=1
P (r is in the li-th segment)× P (li is chosen)

=
∑1/α

lj=1

1

α
× θ = θ

(4.2)

Second, we prove that sample points retrieved from multiple temporal bins are

unbiased as well. Suppose Q requires 100θ percent of points from each temporal

bin in a set, TQ. Derived from Equation 4.2, a point satisfying Q in the t-th bin is

selected with probability θ. Therefore, STULL ensures that each point satisfying Q

has the same selection probability θ.

In conclusion, STULL is unbiased in selecting points satisfying a multidimensional

query specification.

4.4.2 Index Construction and Update Performance

Given a data set of N points, STULL first takes O(N 1
α

) to put all points into the

right temporal bins and go through a 1
α

-length path to put each point into the right

43

leaf. Next, building sample buffers (Algorithm 1) includes a linear combination of two

steps, 1) at the bottom level: random shuffling the circular array of one leaf having

m data points is O(m), hence random shuffling of leaves within all time bins is O(N);

2) at other levels: each cell having n points contains a sample buffer of αn points,

and needs O(αn) for random shuffle; since non-leaf cells in the same level have a total

of αN points in their sample buffers, thereby, sample buffers in the same level take

O(αN) for random shuffle. Therefore, the time complexity to save data into sample

buffers is O(N + (1
α
− 1)αN) = O((2− α)N). To conclude, the complexity of index

construction is O(N 1
α

)+ O((2− α)N) = O((2 + 1
α
− α)N).

In the case of streaming data, suppose the newly arrived data has n points. Let M

be the set of temporal bins that will insert new data, and a total of NM points have

been indexed in the bins of M . STULL takes O(n 1
α

) to put all points into the right bins

and leaf cells, and takes to build same buffers is O((2−α)(n+Nm). As such, the time

complexity to index new data is O((2−α)(n+Nm)+n 1
α

) = O((2+ 1
α
−α)n+(2−α)NM).

From the time complexity, we can see that the performance of indexing newly arrived

data relates strongly to NM . Since continuous data streams often provide data with

the up-to-date time values, therefore, temporal bins that contains new points tend to

be the ones belonging to the latest time range. If the time interval of temporal bins

is relatively smaller, accordingly, the total time span of bins in M becomes smaller

in the finer granularity of temporal bins, which further helps reduce NM . Thus, we

recommend that the time interval of temporal bins in the streaming data index should

be relatively smaller.

4.4.3 Online sample retrieval performance

According to the sample retrieval algorithm (Algorithm 2), STULL retrieves on

average 100θ percent of points satisfying Q in each while loop (within lines 14-18).

Suppose nQ denotes the total number of points belonging to a set of leaf cells that

44

spatially overlap with Q. Thus, each update retrieves nQθ points. Thus, its time

complexity is O(nQθ).

4.5 Evaluation

In this section, we present our experiments and results to demonstrate the effec-

tiveness of STULL.

Implementation: STULL and its two baseline approaches are built upon the

Microsoft .Net Framework v4.0 and written in Visual C++ [121]. The two baseline

approaches are briefly described below.

• STORM [1] is a spatial online sampling approach, using a R-tree [67] to index

a dataset in terms of spatial coordinates of the points. The R-tree’s non-leaf

cells have fixed-size sample buffers. In our experiments, STORM used the Boost

library API [122] to build a quadratic R-tree [67], and each of its sample buffers

have 1024 data points.

• RandomPath is a variant of a spatial sampling approach [66]. In our implementa-

tion, points are grouped into temporal bins, and each bin uses a Quad-tree [68]

to index its points spatially. There are no sample buffers, and all of the points

are stored merely in leaf cells. In each bin, it follows the spatial approach [66]

(in Section 4.3.1) to retrieve samples. RandomPath produces an unbiased sam-

pling, but is slower in sample retrieval, especially when its data resides in hard

drives. Thus, RandomPath is an alternative approach to sampling in place of

online sampling.

Data sets. Table 4.1 lists the test datasets. Spatial distributions among the

datasets are diverse. Hotspots scattered in the OSP case and concentrate at few

locations the in other three.

Environment. We conduct all experiments on a machine with an Intel(R)

Core(TM) i7-4770K CPU at 3.5GHz, 8GB main memory, and a 256GB solid state

drive.

45

4.5.1 Numerical Accuracy of Approximate Answers

We quantified one of the advantages of unbiased sampling through the accu-

racy of approximate answers expressed in numbers. The accuracy was measured

by RMSE [112], which calculates differences between exact answers and approximate

answers.

Regarding accuracy in the spatial dimension, we queried the Kernel Density Esti-

mation (KDE) [113] results of the whole data in the geospace. RMSE was measured

on spatial bins with a KDE value no less than 0.05 on a normalized scale of 0 to 1.

Figure 4.4 shows the accuracy of approximate KDE results, compared to the exact

KDE results. Overall, RMSE values and sample sizes are inversely correlated. At the

same sample size, STORM has the most significant RMSE values, and the other two

are almost the same or smaller. When the sample size is 5%, STORM’s RMSE value

is at least twice as much as the others; and the difference decreases along with the

increase of sample sizes. Moreover, RMSE values in the OSP case are the largest at

the same sample size, and nearly three times that of the other three at a particular

5% size.

For accuracy in the temporal dimension, we queried the hourly distribution of

points in the entire data set. The density value in each hour was normalized to the

scale of 0 to 1. Figure 4.5 shows RMSE-quantified accuracy, compared to the exact

distribution. We see that at the same sample size, STULL has the lowest RMSE errors.

At 5%, STULL’s value is averagely 50% less than that of the others. Furthermore, the

RMSE errors in the OSP case are the largest.

4.5.2 Visual Accuracy of Approximate Answers

To show the impacts of unbiased sampling on the accuracy of approximate answers

expressed in visualizations, we compared them in the spatial and temporal scenarios

respectively.

46

STULLSTORM RandomPath

0.000

0.015

0.030

0.045

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE
% of sample points

GEO

0.000

0.040

0.080

0.120

0.160

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

OSP

0.000

0.015

0.030

0.045

0.060

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-US

0.000
0.015
0.030
0.045
0.060
0.075

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-Chicago

Fig. 4.4. RMSE measurement of approximate Kernel Density Esti-
mation results. The query requested the entire dataset. Results were
average over five runs.

0.000

0.002

0.004

0.006

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-US

0.000
0.002
0.004
0.006
0.008

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

Tweet-Chicago

0.000

0.004

0.008

0.012

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

OSP

0.000

0.010

0.020

0.030

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

R
M

SE

% of sample points

GEO

STULLSTORM RandomPath

Fig. 4.5. RMSE measurement of approximate hourly distribution re-
sults. The query pertained to every point in the entire dataset. Re-
sults were average over five runs.

47

Figure 4.6 shows incremental visualization of approximate spatial heatmaps [24]

created by STORM and the unbiased-guaranteed STULL respectively. Overall, heatmaps

of both approaches progressively get closer to the visual appearances of the exact ones.

At a smaller sample size, both heatmaps have perceptible differences in low-density

areas since these areas have fewer points selected; When sample sizes exceeds certain

numbers, heatmaps of the both approaches display indiscernible visual appearances.

At the same sample sizes, heatmaps generated by STORM are perceived as presenting

more visual differences from the exact heatmaps than the other; likewise, STULL uses

less samples to generate heatmaps that are indiscernible from the exact ones in terms

of human perception. In the incremental updates, hotspot (densities values at least

0.5) distributions in the STULL’s heatmaps keep constant without discernible changes,

whereas hotspots in the STORM cases have noticeable changes when the sample sizes

are smaller, e.g., the heatmap with 1.4% points and the heatmap with 5.1% points

in the OSP case.

As for the temporal dimension, Figure 4.7 compares pie charts encoding the hourly

distribution of points selected by STULL and STORM. Overall, pie charts associated with

STULL have less visual differences to the exact ones than those with STORM. In the

OSP case, point densities between 6 AM and 12 PM extrapolated from the STORM-

supported chart clearly disagree with that of the exact one. This is also true of the

GEO case, where densities between 5 PM and 1 AM extrapolated from STORM’s chart

have obvious discrepancies. STORM also presents light but discernible color differences

between 12 AM and 6 AM in the Tweet-Chicago case and between 7 AM and 11 AM

in the Tweet-US case.

4.5.3 Latency of Incremental Updates

We measured incremental sample retrieval latency in multiple scenarios.

First, a series of experiments were conducted when data indexes were in-memory.

Figure 4.8 shows the time spent progressively retrieving samples for a query that

48

queried the entire data. It shows that STULL can retrieve a sample of 5% data in less

than 250ms, and the entire dataset is retrieved in 1 to 4 seconds, depending on the

data volume. Both STULL and STORM have almost the same retrieval latencies, overall

shorter than RandomPath. On average, at the same sample size, STULL saved at least

60% of the time used by RandomPath. Figure 4.9 presents the same time measurement

for a query requiring partial temporal ranges. It shows that STULL is faster because

it retrieves from partial temporal bins, but STORM indexed points only in the spatial

dimension and needs to access the entire dataset to filter out points in a temporal

sub-range. Figure 4.10 shows averaged sample retrieval latency in one incremental

update for queries requiring various spatial ranges. It shows that RandomPath takes

a longer time than the other approaches. At the same sample size, STULL takes less

than 35% of the time used by RandomPath. Moreover, when queried spatial extents

expand, STULL remains almost the same, whereas RandomPath changes significantly.

Second, as α and θ are essential parameters for STULL, we measured sampling

latency under various values of the two. Figure 4.11 shows averaged sample retrieval

time per update under different number of points retrieved per update. It shows that

the average time per update is almost proportional to the number of points required

in each update. Figure 4.12 shows sample retrieval latency regarding α. It shows

that STULL saves at least 68% of the time used by RandomPath under the α = 0.25

settings and at least 70% of the time under the α = 0.125 settings. In addition, the

latency of STULL stays the same or increases no more than 35% if α reduces from 0.25

to 0.125, compared to RandomPath, which increases more.

Lastly, we measured sample retrieval latency when an index was stored in hard

drives. Figure 4.13 compares retrieval time between STULL and RandomPath. When

sampling 5% points for the first-time visual update, at least 62% of the time needed

by RandomPath, averagely 3.2-4.7 seconds, is saved by STULL if it starts the retrieval at

the pyramid root. But in the GEO case, it takes almost the same time as RandomPath.

GEO points are extremely concentrated in a few leaves. As a result, time needed for

RandomPath to load points from other leaf cells is negligible.

49

4.5.4 Latency on Index Creation and Update

Computational complexity analysis (in Appendix A) shows that index creation

and update are impacted by α. Thus, we conducted experiments on historical data

and streaming data with different α. Table 4.2 shows that the average time to index

historical logs is inversely correlated with α. It indicated that latency doubled when

α drops from 0.25 to 0.125. For streaming data, Table 4.3 shows the average time

to insert new arrivals of 5000 tweets, with the assumed streaming data arrival rate

around 1000∼4000+ per second [1, 110]. This is a simulated experiment where we

randomly select 5000 points from a temporal bin and measure the time required to

add these data into the same bin. The recorded time is a sum of the time to add data

to the pyramid and time to build sample buffers. We can see that the insertion takes

75% more time in the Tweet-US case and less than 33% in other cases.

4.6 Discussion

We validated the importance of the unbiased guarantee for incremental

visualization through designing experiments that measured numerical and visual

accuracy between approximate and exact answers. RMSE results (Figure 4.4 and

Figure 4.5) show that compared to STORM, unbiased sampling reduces both spatial

and temporal distribution errors by at least 50%, given a sample set of 5% points. The

same accuracies between STULL and RandomPath confirm that our online-manner ap-

proach can ensure the same sampling quality as a regular unbiased sampling approach.

Figure 4.6 and Figure 4.7 show that unlike STORM, approximate spatial heatmaps and

approximate hourly pie charts constructed by unbiased samples have closer visual

appearances to exact answers. Consequently, users have a higher chance of inferring

high-fidelity answers from approximate visuals. Improved accuracy on the numerical

measurements and visual effects are vital for incremental visualization in terms of

user uncertainty [4,77]. Users feel uncertain about choosing trustworthy approximate

answers for their decision-making. A common solution to facilitate user evaluation

50

of the answer reliability is the use of statistical measurements derived from numer-

ical properties of approximate answers (e.g., Confidence Interval) [12, 77]. STULL

can provide samples that have better performances in such measurements, thereby

helping users reduce uncertainty and obtain confidence in choosing the best answers.

In addition, improved visual accuracy confirms that unbiased-guarantee incremental

visualizations can take fewer sample points to provide visual answers equivalent to

the exact answers. This is crucial to incremental visualization, because users proba-

bly use the visualizations presented in the first few visual updates to check whether

the data selection conditions in a query is correct or not [3]. Visualizations created

from biased samples can mislead users that they issued wrong queries and need to do

some correction, whereas the query specifications are correct. As a result, users’ men-

tal efforts to use incremental visualization for data exploration and decision-making

significantly increase.

Specific to geospatial accuracy, STULL is affected only by sample size [11]. How-

ever, STORM has one more factor, intrinsic spatial distributions in the data. In our

experiments, in spatially clustered distribution cases (e.g., GEO), compared to STULL,

STORM has light or indiscernible visual differences in hotspot areas, but is incompe-

tent in lower-density areas. On the other hand, in a scattered distribution case (e.g.,

OSP), the absence of an unbiased guarantee causes STORM to extend defective visual

appearances to hotspots, e.g., incorrect hotspot locations. The RMSE value (Fig-

ure 4.4) in the OSP case is almost ten times that of the concentrated cases. So is

the visual effect in which STORM defectively represented in wider spatial extents in

the OSP case but misrepresented merely sparse ones in the concentrated scenes. We

believe STORM’s reduced accuracy loss in spatially concentrated cases is caused by the

fixed-size sample buffer. First, STORM’s spatial index, R-Tree tends to create more

cells in high-density areas, and fewer cells in low-density areas. Accordingly, in a

spatially concentrated case, a majority of cells are associated with scarce hotspot re-

gions. Since in the fixed-sized buffer design, the number of points sampled in a region

51

is proportional to the number of its cells, STORM can retrieve more points in order to

characterize hotspot areas but pay less attention to lower-density areas.

As for temporal unbiased property, STULL achieves it through determining

the number of samples retrieved from each temporal bin proportional to the total

data volume in the bin, which is a widely used golden rule [69, 71]. Thus, we do not

elaborate on it.

Our range of experiments also validate the efficiency of STULL’s sample re-

trieval. Experiments (Figure 4.8, Figure 4.9, Figure 4.10) indicate that compared to

RandomPath, STULL can reduce latency by at least 60% to sample 5% of in-memory

data per incremental update despite query specification at various geospatial and

temporal scales. As to the case where data indexes are on disk drives, STULL and

STORM load points from buffers of root cells first and continue retrieval from buffers of

its descendants. This significantly reduces the number of STULL’s disk I/Os needed

for the first visual update, whereas RandomPath needs to retrieve points from most of

its leaf cells, consequently forcing almost every cell to be loaded into memory, which

results in an extremely slow response. Thus, RandomPath does not satisfy the critical

latency.

Our experiments show that users are able to keep computational latency per

incremental update well under control. Figure 4.11 shows that STULL successfully

controls retrieval time proportional to the number of points per visual update. In ad-

dition, our experiments sequentially accessed temporal bins to obtain samples, which

resulted in higher latency compared to an in-parallel scheme. We leave STULL’s

adoption of parallel computing techniques to future work.

STULL reduces the data index creation and update workload, compared

to STORM. STULL indexes data spatially using pyramids for efficiency [110]. We con-

ducted experiments to measure index creation time and confirmed the superiority

of our pyramid-based approach, which is approximately 10% faster than the R-tree

based STORM. Regarding streaming data, Table 4.3 shows that it takes less than 450ms

to index 5000 points. Thus, inserting the new data into the existing data index and re-

52

trieving samples from the updated data index can be completed in approximately less

than 500 ms for the OSP, Tweet-Chicago and Tweet-US datasets and approximately

600ms for the GEO.

STULL is designed for aggregation-based spatiotemporal analytics that assist

end-users in summarizing trends and patterns of data, e.g., grouping data into hourly-

divided time units. Here, we demonstrate aggregation computation with samples

retrieved by STULL and use confidence intervals [11, 12] to estimate the proximity of

generated approximate answers to exact answers. Suppose a query calculates the

average length of tweets posted in the morning. A sample S of n tweets is retrieved

by STULL. The average length of tweets is v̄ = 1
n

∑
si∈S vi, vi is the length of the

i-th tweet. Let c denotes the standard deviation of the sample estimate. Thus, the

interval [v − 2c, v + 2c] contains the exact answer with 95% of the time.

Despite efficient sampling, STULL suffers from inefficient usage of storage

space. The bottom levels of STULL’s pyramids contain all data points, in addi-

tion to (1−α) portion of data in non-bottom levels. Thus, STULL maximizes retrieval

efficiency at the expense of data storage space. In the case where higher-level data

are not duplicated at the bottom level, data retrieval will move from the bottom level

to the higher levels, and sample data from these higher levels. Since higher levels

consist of cells whose spatiotemporal ranges are quadratically larger than the queried

range, we could anticipate a 3-fold increase in retrieval time. Although the duplicated

data will take additional storage resources, our design choice has at least two benefits.

First, STULL restricts the retrieval to a minimum set of spatially relevant data, per

Q. Secondly, when the data index is on disk, retrieving spatially irrelevant data in

the alternative option will cause more disk I/Os.

Another limitation of STULL is that it does not yet fully investigate a disk-based

index. As data volume increases, in-memory data storage becomes scarce. A hybrid

index of both in-memory and disk-resident data is essential to overcome the memory

shortage [60]. For convenient disk-based data storage and retrieval, STORM [1] uses

the fixed-sized design and sets the space usage of a sample buffer as equivalent to the

53

size of a disk block, resulting in that each cell has the same number of data cached in

its sample buffer. Thus, if one sample buffer is needed, STORM loads the corresponding

disk block into memory, retrieves all data stored in that block, and removes the block

from memory after use. But in STULL, the proportionally-sized design causes sample

buffers to have various sizes. Consequently, it is common for one sample buffer to

involve multiple blocks, with one of these blocks only partially filled. These partially

filled blocks cause the low disk storage utilization concern and slow down disk I/O as

well. We leave this to future work.

4.7 Conclusion and Future Work

This chapter presents an online sampling approach, STULL, which samples large

spatiotemporal data in an unbiased manner. Extensive evaluations verify that STULL

is unbiased and computationally superior over comparable online sampling approaches.

STULL is suitable for a range of online data exploration including visual analytics and

incremental visualization. Approximate visualizations leveraged by STULL increase

their numerical accuracies and reduce their visual differences as compared to the

exact visualizations, when compared to approaches without unbiased guarantee.

In the future, we will extend this work by designing a novel scheme to store our

data index on hard drives. The current implementation has comparable performance

for retrieving a small ratio of points, about 10% in our experiment, from a disk-

resident data index, but is slower if more points are wanted. A novel scheme is

expected to solve this issue.

54

Algorithm 2: Retrieving samples in Temporal Bin t

input : Query Q; θ

output: A random sample S with 100θ percent of points

1 Determine lQ according to the spatial query range of Q;

2 Initialize empty lists S and G;

3 lr ← a level randomly chosen between 1 and 1
α

;

4 l← lr;

5 u← 1;

6 while (u <= 1
θ

or users didn’t terminate) do

7 if G is empty then

8 if l0 ≥ lr and l < 1
α

then

9 G← sample buffers of cells that are in the l-th level and spatially

overlapping with Q;

10 else

11 G← the l-th segments of cells that are in the leaf level and spatially

overlapping with Q;

12 u0 ← (u mod α
θ
) == 0? α

θ
: u mod α

θ
;

13 for each element b in G do

14 s ← points satisfying Q and in the [100(u0 − 1)θ/α%, 100u0θ/α%]

portion of b;

15 S ← S ∪ s;

16 Send S to a VA system for visualization;

17 u← u+ 1;

18 if u mod α
θ

== 0 then

19 G← an empty list;

20 l ← 1 + (l mod 1
α

) ;

21 if l == l0 then

22 break;

55

Table 4.1.
Evaluated datasets.

Data Description

Counts

(mil-

lion)

Memory

size

(MB)

Spatial

range

Temporal

bin

counts

Temporal

bin in-

terval

GEO

[118–

120]

human movement

data from April,

2011 to August, 2013

5.8 3289
Beijing,

CHINA
3 year

OSP

Ohio traffic incident

data from January 1,

2012 to December 31,

2013

3.2 2279
Ohio,

USA
4

6

months

Tweet-

Chicago

tweets in Chicago

from April 1, 2013 to

September 30, 2013

9.4 4452
Chicago,

IL, USA
6 month

Tweet-

US

tweets across the en-

tire US from January

1, 2018 to March 11,

2018

12.4 4879 USA 11 week

Table 4.2.
Time measurements (in seconds) using STULL to index data. Results
are averaged over five runs.

GEO OSP
Tweet-

Chicago
Tweet-US

α = 0.250 76.142 58.461 181.493 163.234

α = 0.125 172.233 206.146 243.323 227.889

56

Fig. 4.6. Comparison of spatial heatmaps generated by the two ap-
proaches. A number below a heatmap indicates number of sample
points selected for approximate distributions. At the bottom is the
gray-scale colormap with 32 shades.

57

Fig. 4.7. Pie charts showing normalized hourly distribution of the
entire data. Each slice denotes a hour. These approximate charts are
generated with 0.1% points of being selected. The color legend has
32 color shades. The result is one-time run.

Table 4.3.
Time measurements (in milliseconds) for STULL to insert 5000 points
into the existing data index. Results are average over five runs.

OSP GEO
Tweet-

Chicago
Tweet-US

α = 0.250 153.103 218.732 268.735 190.614

α = 0.125 203.089 260.397 346.852 334.355

58

0

5

10

15

0.0
0
0.1
0
0.2
0
0.3
0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
1.0
0

Ti
m

e
(s

)

% of Samples

Tweet-US

0
2
4
6
8
10
12

0.0
0
0.1
0
0.2
0
0.3
0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
1.0
0

Ti
m

e
(s

)

% of samples

Tweet-Chicago

0

1

2

3

4

0.0
0
0.1
0
0.2
0
0.3
0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
1.0
0

Ti
m

e
(s

)

% of samples

OSP

0

2

4

6

8

0.0
0
0.1
0
0.2
0
0.3
0
0.4
0
0.5
0
0.6
0
0.7
0
0.8
0
0.9
0
1.0
0

Ti
m

e
(s

)
% of Samples

GEO

STULLSTORM RandomPath

Fig. 4.8. Time measurements (in seconds) to retrieve samples in an
in-memory setting. The query requires the entire data. STULL has
α = 0.25, and RandomPath has at most 4 levels in each of its Quad-
trees. Results are average over 5 runs.

0

2000

4000

6000

8000

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

Ti
m

e
(m

s)

% of Samples

Tweet-Chicago

0
200
400
600
800
1000

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

Ti
m

e
(m

s)

% of Samples

OSP

0

500

1000

1500

2000

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

Ti
m

e
(m

s)

% of Samples

GEO

STULLSTORM

0

5000

10000

15000

0.0
5
0.1
5
0.2
5
0.3
5
0.4
5
0.5
5
0.6
5
0.7
5
0.8
5
0.9
5

Ti
m

e
(m

s)

% of Samples

Tweet-US

Fig. 4.9. Time measurements (in milliseconds) to retrieve samples
from an in-memory data index. Queried temporal ranges are, 2012 for
OSP, 2011-2012 for GEO, 2013/04-2013/06 for Tweet-Chicago, and
2018/01/01-2018/02/04 for Tweet-US. STULL has α = 0.25. Results
are average over five runs.

59

0
40
80

120
160
200

1 1/4 1/8
Ti

m
e

(m
s)

OSP

0
70

140
210
280
350

1 1/4 1/8

Ti
m

e
(m

s)

GEO

0
120
240
360
480
600

1 1/4 1/8

Ti
m

e
(m

s)

Tweet-Chicago

0

200

400

600

800

1 1/4 1/8

Ti
m

e
(m

s)

Tweet-US

STULLSTORM RandomPath

Fig. 4.10. Average time per incremental update. Each incremental
update retrieved 5% points. Numbers below a bar indicate queried
spatial range, 1 for the whole spatial extent, 1/4 for a quarter of the
whole extent, and 1/8 for a one-eighth. For STULL, α = 0.25. Each of
RandomPath’s Quad-trees has at most 4 levels.

0 5000 10000 15000 20000

100

20

batch

Time (ms)

GEO

0 10000 20000 30000 40000 50000

100

20

batch

Time (ms)

Tweet-Chicago

0 10000 20000 30000 40000 50000

100

20

batch

Time (ms)

Tweet-US

0 5000 10000 15000

100

20

batch

Time (ms)

OSP

Fig. 4.11. Averaged latency per incremental update with different
numbers of points. The query required the entire data. In the y-axis,
batch indicates time to retrieve the entire dataset, 20 indicates incre-
mental visualization has 20 updates in total and retrieves 5% point
per update; likewise, 100 indicates 1% per update and 100 updates in
total. For STULL, α = 0.25. Results are average over 5 runs.

60

0

50

100

150

0.25 0.125
Ti

m
e

(m
s)

OSP

0
50

100
150
200
250
300

0.25 0.125

Ti
m

e
(m

s)

GEO

0
100
200
300
400
500

0.25 0.125

Ti
m

e
(m

s)

Tweet-Chicago

0

200

400

600

800

0.25 0.125

Ti
m

e
(m

s)
Tweet-US

STULL RandomPath

Fig. 4.12. Averaged sample retrieval latency per incremental update.
Each incremental update retrieved 2.5% points. 0.25 indicates that α
of STULL is 0.25, and correspondingly RandomPath’s Quad-tree index
has no more than 4 levels. Likewise, 0.125 indicates α = 0.125, and a
Quad-tree index has at most 8 levels. Results are average over 3 runs.

61

0
5000

10000
15000
20000
25000
30000

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

Ti
m

e
(m

s)

% of Samples

GEO

0
2000
4000
6000
8000

10000
12000

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

Ti
m

e
(m

s)
% of Samples

OSP

0

5000

10000

15000

20000

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

Ti
m

e
(m

s)

% of Samples

Tweet-Chicago

STULL-Root RandomPath

0
5000

10000
15000
20000
25000

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

0.0
8

0.0
9

0.1
0

Ti
m

e
(m

s)

% of Samples

Tweet-US

Fig. 4.13. Latency to retrieve samples from disk-resident indexes for a
query requiring the entire data. Each incremental update obtains 5%
points. STULL-Root refers STULL started retrieval from the pyramid
root in each temporal bin. For STULL, α = 0.25. Each of RandomPath’s
Quad-trees has at most 4 levels. Results are average over 3 runs.

62

5. PERCEPTION-AWARE DIFFERENCE ASSESSMENT

FOR SPATIAL

HEATMAPS

Incremental data visualization and analytics provides quick responses to user queries

and progressively improves the accuracy of these quick answers. Users need to evalu-

ate these answers and select usable ones for their analytic tasks. This chapter focuses

on user uncertainty issues about choosing satisfactory answers to the best decision-

makings. We define an appropriate assessment methodology to identify perceptually

more accurate spatial heatmap from a sequence of incremental updates. Compared to

traditional approaches, e.g., mean squared differences [112], our approach measures

differences between approximate and exact heatmaps in terms of human perception.

Differences quantified by our approach are regarded to be congruous with human-

perceived results [123], so that users can interpret differences more easily and choose

heatmaps users observe to be identical to the exact answers. Section 5.1 states the

importance of perception-aware difference assessment, Section 5.2 describes human

perception effects on spatial heatmap comparison, Section 5.3 shows our perception-

aware assessment rationale, Section 5.4 follows the rationale to derive a visual differ-

ence detection function, Section 5.5 and Section 5.6 evaluate and discuss our approach

respectively, and Section 5.7 summarizes this chapter.

5.1 Background

In the big data era, a proliferation of studies have been conducted on the ways that

users can interactively explore data through incremental visualization. Usually, incre-

mental visualization techniques employ sampling-based approximate query processing

63

(AQP) techniques to provide users immediate but approximate visual feedback. Such

visualizations progressively sample more data and refine answers; accordingly, the

trade-off between computational time and accuracy relies on end users. Users expect

to choose approximate answers satisfying accuracy demands imposed by their ana-

lytic tasks. Therefore, assessing the accuracy of approximate visualizations is vital in

order for users to choose trustworthy answers.

Existing visual analytics systems typically [3,4] provide users with statistical mea-

sures (e.g., confidence intervals [12] and mean squared errors [112]) for estimating

whether the presented results satisfy the accuracy requirements of the analytic tasks

at hand. These measurements evaluate visual elements equally to all other com-

ponents; however, visualizations are the primary medium users rely on to evaluate

answers, and humans perceive visual elements in a nonuniform way.

The human visual system (HVS) treats visual stimuli (e.g., graphics) unevenly.

First, empirical human perception experiments show that humans are insensitive to

minor changes of colors [124]. Visual elements with indiscernible appearances but

encoding different information can be incorrectly interpreted as identical. Conse-

quently, the process of extracting knowledge from visual information comes at the

cost of some information loss [15,107]. Second, humans process visual information at

different speeds. For example, humans can pre-attentively identify a red dot among

many gray ones, but require focused attention to distinguish targets with similar

colors. In the context of incremental visualization, users are mostly attracted by

animated preattentive visual elements and perceive peripheral elements the least.

Therefore, users have difficulty precisely connecting the perceived visual differences

with accuracies measured by traditional measurements which treat all visual elements

equally [5].

In order to address this inconsistency between visual differences perceived by hu-

mans and the accuracy measurements used for data items, we propose a perception-

aware difference assessment that compares spatial heatmaps in terms of human per-

ception.

64

5.2 Human Perception of Approximate Spatial Heatmaps

A spatial heatmap [25] is a typical visualization used to characterize data density

variations across a spatial extent. Usually, such visualizations divide the entire spatial

extent into a grid and then use Kernel Density Estimation [113] to estimate densities

on the basis of rectangular spatial divisions. Carefully designed colormaps transform

density values into colors so that users can intuitively observe hotspots and low-

density areas. Figure 5.1 illustrates information encoded by spatial heatmaps.

Fig. 5.1. A pictorial description of information represented by a spa-
tial heatmap. Numbers in the bins denote data densities in the same
rectangular regions. These numbers are approximate, used for demon-
stration, and are not the real ones generating the heatmap on the right
side.

Spatial data distributions are usually nonuniform and sparse, with data highly

concentrated in a few regions and widely scattered across most areas (e.g., criminal

incidents often concentrate in specific spatial regions [22]). Consequently, most areas

are rendered on a heatmap by colors encoding lower densities, and a few areas are

rendered by a sub-range of colors that are easy to observe. Therefore, the heatmap

preattentively represents hotspots (high-density locations), thereby, enabling ob-

servers to notice hotspots immediately (less than 250ms [125]) and requiring focused

attention to see sparse areas.

65

Incremental visualization use online sampling techniques to create approximate

heatmaps. Online sampling approaches follow spatial distributions to fetch samples

from each region. The number of selected points per region is in proportion to the

region’s data density. However, subject to the randomness of sampling approaches,

data samples can approximate the exact data distribution but fail to visually represent

it exactly. As a result, differences always exist between approximate heatmaps and

exact ones. Due to the intrinsic sparsity in the geospace, low-density bins contribute

to the majority of density differences, whereas hotspots take up a smaller ratio. Since

traditional accuracy measurements consider each bin equally, their measures reflect

differences in the low-density areas the most. However, when users look at approxi-

mate heatmaps and exact ones together, hotspots are the primary elements catching

users’ attention, and their differences play a key role in their judgments.

5.3 Visual Difference Assessment Rationale

In this section we present a perception-aware rationale for identifying visual ele-

ments that humans perceive to be different when simultaneously looking at an ap-

proximate heatmap and its exact counterpart. Visual elements in a spatial heatmap

include individual pixels, sub-regions, and hotspots. The rationale includes the fol-

lowing four criteria.

R1 Color difference: For two heatmaps placed in juxtaposition, the colors in

the same positions are compared for differences (Figure 5.2). Visual elements

with color differences that cannot perceived by humans are regarded to have no

differences.

R2 Spatial frequency: Heatmaps use colors to encode data densities, assigning

distinguishable colors per density level. Accordingly, visual contrast between

high-density points and their low-density surroundings should be clearly per-

ceivable. However, such observations become vague when a heatmap has high-

frequency density variation in the geospace (Figure 5.3). If the contrast occurs

66

Fig. 5.2. A picture illustrating color differences between an approxi-
mate spatial heatmap (leaf) and the exact one (right).

in high frequencies, e.g., multiple hotspots aggregate in close proximity, it is not

easy for humans to visually inspect individual hotspots in the moment. On the

other hand, contrasts in low-frequency areas are easier to see. Therefore, visual

elements located in high-frequency surroundings are difficult to compare.

Fig. 5.3. An example demonstrating the impact of spatial frequencies
on human perception. The left side is an approximate heatmap, and
the rightmost is the exact one.

R3 Visual element size: In situations where approximate heatmaps are created

from few data samples, bins in lower-density areas have no or insufficient sample

points to depict. These bins are usually connected into components. For visual

elements like connected components, their colors are perceived as dramatically

different based on their sizes [102,103]. Thus, in two heatmaps showing the same

67

region (Figure 5.4), color differences become indiscernible if their associated

polygons are not large. It is recommended to exclude such areas in perception-

aware assessments.

Fig. 5.4. An example demonstrating the size’s impact on human per-
ception. Compared to color differences, which are connected into
noticeable components, differences in smaller components are indis-
cernible when users compare the two heatmaps at first glance.

R4 Hotspot importance: Heatmap preattentively present hotspots so that when

comparing two heatmaps, hotspot differences will immediately catch a human’s

attention, whereas differences in lower-density areas require time-consuming

focused attention. Therefore, hotspots play a larger role in the overall visual

differences between approximate and exact heatmaps, especially in cases when

approximate heatmaps update incrementally.

Fig. 5.5. A picture showing preattentive perception of hotspots.

68

5.4 Visual Difference Detection

Following the perception-aware rationale (Section 5.3), here we derive a perception-

aware function in order to identify pixels whose visual differences can be perceived

by humans in a side-by-side heatmap image comparison scenario. This function is

developed in the RGB color space. Figure 5.6 shows our function’s computational

workflow. First, we extract the luminance components of the two and generate a

luminance difference array. Second, from the luminance differences, we detect visible

pixels and their connected components (Section 5.4.1). Next, we exclude individual

pixels at high-frequency locations and keep the remaining pixels (Section 5.4.2). Fi-

nally, a union of pixels in the both second and third steps is perception-aware pixels.

These pixels can serve accuracy assessment metrics (e.g., RMSE [112]) to generate

perception-aware measures (Section 5.4.3).

Fig. 5.6. Workflow for perception-aware difference detection and measures.

69

5.4.1 Detecting Visible Connected Components

Suppose A is an approximate heatmap, and R is the exact heatmap. R and A have

the same resolution by rx × ry . The following steps find the pixels whose luminance

values reach the empirical thresholds of being visible in their luminance backgrounds.

1. Calculate LR, a grayscale luminance array for R. So is LA for A.

2. Calculate luminance differences d = ||LR − LA||.

3. Find A’s visible pixels, whose luminance values are no less than d’s JND thresh-

olds. Equation 5.1 shows our applied JND formula developed by Chou and

Li [98].

LJND =

17× (1−
√
B/127) if B < 127

3× (B − 127)/128 + 3 otherwise

B is the averaged luminance of a pixel’s background pixels

LJND is the JND threshold in a background of B

(5.1)

From the visible pixels, we find the most connected components C and get the

bounding boxes of these components. Components whose bounding-box areas have

no less than a certain threshold will be regarded as discernible. We determine the

threshold as an empirical size, that is, rx
16
× rx

16
.

5.4.2 Finding Visible Individual Pixels

We adapt a JND approach modeled by Wu et al. [105] to our needs in order to

determine a visibility score per pixel in terms of the spatial frequency and luminance

contrast in its background surroundings. This approach emphasizes the impact of

spatial frequency on human perception and regards pixels in the region boundaries

with hard-to-perceive differences. We use this approach to process d (the luminance

70

differences in Section 5.4.1) and calculate the spatial masking per each pixel. Then we

apply Equation 5.1 to LA and obtain the contrast masking per each pixel. Calculations

based on spatial masking and contrast mask derive the visibility score [105]. A higher

score indicates lower visibility. Based on the obtained scores, we cluster pixels as

invisible if their scores exceed a range calculated as follows:

1. Determine r, the ratio of background color pixels in the exact heatmap image

2. Determine p, the percentile of scores regarded as indiscernible in the approxi-

mate heatmap, p = max{r + (100− r)/10, 95}

3. Find the visibility threshold t, a score at the p-th percentile

4. Mark a pixel as visible if its score is no more than t.

5.4.3 Computing Perception-Aware Measures

Perception-aware pixels, P , are a union of visible connected components C (Sec-

tion 5.4.1)) and individual visible pixels I (Section 5.4.2), P = C∪I. Perception-aware

measures (e.g., RMSE [112]) are conducted upon P .

Suppose P = {p1, p2, · · · , pn} is the associated properties of n perception-aware

pixels between an approximate heatmap and the exact one. M(px) is a measurement

for evaluating the approximate heatmap, where px is the property of the x-th pixel.

The measurement result is M(P) = 1
n

∑n
i=1M(pi).

Considering the importance of hotspots (R4) for heatmap observations, we adjust

M(P) by the differences at hotspots. We define pixels owned by hotspots to be

those whose colors encode the higher half of densities. Suppose H is the set of

pixels locating at hotspot areas. The final perception-aware measure between an

approximate heatmap and the exact one is M(H)M(P).

71

5.5 Experiments

In this section, we report on experiments designed to verify our proposed perception-

aware difference assessment approach. We used two sampling approaches to sample

spatial data in the online manner, an unbiased approach [65] and a second approach

without unbiased guarantees [1]. Incremental visualization of the continuously gener-

ated data samples produced a series of approximate spatial heatmaps with a 256×256

bin resolution (except a 256×512 resolution for the Tweet-US case). These heatmaps

were saved as color images with the same resolution. Table 4.1 lists the test datasets.

All experiments were implemented in MATLAB [126]. We quantified accuracy be-

tween approximate and exact answers through two measures: Root-Mean-Squared-

Error (RMSE) [112] and structural similarity (SSIM) measurement [106,127]. RMSE

quantifies the bin-level Euclidean-based distances between approximate data densi-

ties and the exact ones. SSIM quantifies the pixel-level similarity between approx-

imate and exact heatmaps, a widely-used image similarity measurement method.

For each approximate heatmap, we detected its perception-aware pixels, and applied

RMSE and SSIM to these pixels respectively. To easily compare between regular and

perception-aware measures in the same figures, we normalized the hotspot differences

(M(H) in Section 5.4.3) into a range [0, 1] in order to scale perception-aware results.

5.5.1 Accuracy of Approximate Spatial Heatmaps

Figure 5.7 and Figure 5.8 show approximate heatmaps with samples retrieved by

the unbiased and biased sampling approaches respectively. We can see that when

sample sizes are smaller, less than 1% in this experiment, the approximate heatmaps

are visually discernible from the exact heatmaps in low-density areas. For hotspots,

approximate heatmaps in the unbiased case show the same hotspot distributions with

the exact, but the biased results are not. In both cases, approximate heatmaps us-

ing more than 50% data samples are harder to visually distinguish from exact ones.

All of the observations are reflected by the quantified measurements in Figure 5.9.

72

Fig. 5.7. Incremental visualization of spatial heatmaps created with
different sizes of sample points retrieved by an unbiased sampling
approach [65].

73

Fig. 5.8. Incremental visualization of spatial heatmaps created with
different sizes of sample points retrieved by a sampling approach with-
out unbiased guarantees [1].

74

First, both regular and perception-aware (PA) results in the RMSE/SSIM measures

decrease quickly along with the increase of sample sizes, and the PA results decrease

faster. Second, when sample sizes reach a particular number, PA errors reduce into

a proximity to zero, but the regular results do not. This shows that after sample

sizes reach a particular threshold, hotspots’ approximation reaches a relatively high

accuracy, and users are visually insensitive to their minor differences. Overall, the

particular numbers in the unbiased cases are smaller than their counterparts in the

biased cases, which indicates that at the same sample sizes, accuracies in the unbi-

ased cases are higher than their counterparts in the biases cases. Last, the purple

PA RMSE/SSIM errors decrease faster than the red measures that do not consider

the impact of preattentive hotspots on human observations. In particular, the GEO

perception-aware results in both the biased and unbiased cases are zero, which indi-

cates that approximate values in the hotspot areas are almost identical to the exact.

This shows that the answers in the hotspots converge to the exact ones more quickly

than those in the low-density areas.

5.5.2 CIELAB-based Cross-Validation

Since our perception-aware function (Section 5.4) was conducted in the RGB color

space, a cross-validation in the CIELAB space investigated one of our perception-

aware rationales, R4 (Section 5.3). Compared to RGB, the color differences de-

rived from CIELAB are closer to differences perceived by humans [99]. We chose

S-CIELAB [104] to calculate the differences between a pixel in the approximate im-

ages and its counterpart in the exact ones. Our experiment followed S-CIELAB’s

settings in which a CRT display showed images and the distance between the user

and the screen was 18 inches to measure pixel-wise color differences. Figure 5.10

shows the comparison results. At the same sample sizes, biased results’ color dif-

ferences are almost ten times than the unbiased ones. In addition, for the unbiased

sampling results, the OSP regular results reduce slower than its perception-aware

75

Fig. 5.9. Comparison of accuracies derived from perception-aware
metrics and regular metrics. The experiment runs one time.

76

differences, whereas in the other three datasets the two measures represent exactly

the same error trends. This is caused by the diverse spatial distributions in the four

datasets. In the OSP case, hotspots scatter across the space; in the other three cases,

hotspots are extremely concentrated in a few locations. Thus, during the incremen-

tal updates, hotspot distribution in the other three datasets are almost the same as

the exact answers. This comparison confirms the importance of using preventative

hotspots to assess heatmap differences. Likewise, the unbiased results clearly indi-

cate the particular numbers. Heatmaps created by more samples than the particular

numbers almost have no color differences from the exact ones.

5.5.3 Discernible Connected Component Detection

Figure 5.11 shows connected components in approximate spatial heatmaps, whose

sizes are large enough for users to perceive differences when compared to the exact

heatmaps. We used Matlab’s bwconncomp [128] to find components connected by pix-

els that were visible in terms of Equation 5.1. Then we used Matlab’s regionprops [129]

to find the bounding-box areas of the detected components. The parameters for the

regionprops function include ‘Area’, ‘MajorAxisLength’ and ‘MinorAxisLength’ [129].

We can see that those components locate in lower-density spaces, which are consistent

with our observations of the heatmaps. In addition, these components shrink along

with the increase in sample sizes, and eventually disappear.

5.6 Discussion

Our perception-aware approach has a presumptive assumption that as sample

sizes increase, the visual differences between approximate and exact spatial heatmaps

decrease and become indiscernible after a certain sample size is reached. Approxi-

mate visualizations using more data than that particular size look the same as the

exact ones from the perspective of human perception. Our experiments support this

assumption, because PA errors in Figure 5.9 converge to zero after a certain sample

77

Fig. 5.10. Differences measured in the CIELAB color space between
approximate spatial heatmap images and exact ones. Green lines show
the average color differences in the CIELAB space per sample size,
and purple lines show the average differences scaled by an average of
S-CIELAB values at their hotspot regions.

78

Fig. 5.11. Detection of regions whose color difference area sizes are
large to perceive by humans. White indicates detected connected
components.

79

size. We believe for the incrementally updated heatmaps, after a certain sample size

reached, users are hardly to notice differences from subsequently displayed heatmaps.

If users choose approximate answers whose associated perception-aware accuracies

converge to zero, they reduce their uncertainty about the reliability of these answers.

This will be investigated by a quantitative user study in the future.

The importance of hotspots (R4) is essential since the characteristics of random

simple sampling (RSR) [11] require to emphasize hotspots (R4). RSR approaches

randomly select points in a dataset, and therefore, high-density areas would have

more points being selected than lower areas. Accordingly, approximate heatmaps

have sufficient data to describe hotspots but require more for other areas. Therefore,

the differences of hotspots reduce more quickly than those of low-density areas.

The characteristic of heatmaps emphasizes the importance of hotspots (R4) as

well. Hotspots are preattentively present when compared to low-density areas. Users

can perceive differences at hotspot areas quickly and completely, whereas differences

at low-density areas require additional efforts to identify. Thus, from the perspective

of human perception, hotspots are the primary visual elements used to assess approx-

imate answers. However, regular measures (e.g., RMSE and SSIM) treat sparse areas

and hotspots equally. Since the low-density areas take up a majority of bins or pix-

els, results gained from regular measurements significantly reduce the magnitude of

hotspot differences. Therefore, discrepancies exist between human perception and reg-

ular measures. Such a discrepancy was confirmed by our experiments with the GEO,

Tweet-Chicago, and Tweet-US datasets. Spatial distributions in the three datasets

are highly concentrated, so in the incremental updates of their spatial heatmaps, per-

ceived differences come mainly from low-density areas whose differences tend to be in

a smaller scale. Our perception-aware results, shown in Figure 5.9 (the purple lines),

converge to zero quicker, proving that visual appearances at the hotspot areas evolve

to the exact ones quicker than the low-density areas. However, regular measures (the

green lines), which ignore such information, decrease at a steady pace.

80

Regarding the CIELAB color space, our preliminary experiment verified the effec-

tiveness of two of our four criteria, color difference and hotspot importance. However,

the effectiveness of the other two criteria, spatial frequency and visual element size,

is not yet investigated in this dissertation, as existing CIELAB-based color difference

models [103, 104, 130] and our observations draw different conclusions about the dif-

ferences among the colors encoding lower densities (KDE values smaller than 0.25) in

our experiment. These models estimated the color differences to be indiscernible. For

example, we used S-CIELAB to quantify pixel-wise color differences between an ap-

proximate heatmap image (e.g., created with 0.2% data) and the exact one. We used

the median of these differences to indicate the visibility of the two heatmaps and

found out that color differences in lower-density areas were calculated to be indis-

cernible. Similar results were obtained in another two CIELAB-based color difference

models [103, 130]. As a result, we encountered difficulty in deriving formulas for the

visual element size criterion, as we perceived the color differences in low-density areas.

We think this contradiction comes from the fact that existing CIELAB-based models

use assumptions that cannot effectively match the spatial distribution patterns and

nuances of spatial heatmaps. For example, Danielle Szafir [130] built one color dif-

ference model in terms of color perception experiments conducted upon scatterplots.

Nevertheless, the colors chosen to render points on scatterplots tend to have more sig-

nificant differences to each other than the colors used in the heatmap case. Regarding

the spatial frequency criterion, as the existing color difference models [72, 104, 130]

evaluated only hotspot-region differences to be discernible, one appropriate way to

measure the impact of spatial frequency is grounded in the number of hotspots in a

local region of a heatmap. However, to the best of our knowledge, modeling human

perception effects on point variations have not been well developed. As such, more

investigation is needed before utilizing the spatial frequency and visual element size

criteria to develop a CIELAB-based function (e.g., a quantitative user study to eval-

uate color difference parameters in heatmaps). Thus, in the future, we will extend

our perception-aware approach to CIELAB measurements.

81

The foremost application that benefits from our proposed perception-aware ap-

proach is incremental visualization and analytics. Our perception-aware measures

quantify visual differences perceived by users and represent the dynamic trend of

these differences to users as the incremental workflow proceeds. Combining the trend

and perceived visual element changes, users may figure out whether these changes

improve approximate answers or not, and the improvement magnitude brought by

these elements. Likewise, users can also predict visual elements’ changes in the sub-

sequent updates. Also, experiments reveal that heatmaps created by samples more

than a certain volume become visually indiscernible. This particular number will be

a good indicator for users to choose approximate answers that look accurate.

Our proposed perception-aware approach can serve a series of applications as well.

First, the experiment in Figure 5.11 shows that connected components whose color

differences are discernible are detected. This detection is able to guide a visualization

system to select more samples from the regions that need to improve their visual

appearances the most. In fact, adjusting the sampling process in terms of visual-

ization needs is essential since spatial distribution is innately nonuniform [11]. Such

a non-uniformity causes SRS approaches to fetch more samples from hotspots and

fewer from sparse areas. As a result, the sampling requires more data to describe

lower-density areas. Fixing such issues requires advanced sampling techniques, e.g.,

stratified sampling [11]. Stratified sampling divides the entire spatial range into a se-

ries of regions, and selects a proper amount of data from each division. We will extend

our approach to facilitate stratified sampling for dividing the spatial range in the fu-

ture. Another analytical scenario that is limited by scarce data in low-density areas is

trajectory visualization [2]. Such visualizations suffer discontinuities in lower-density

areas. As a result, users extrapolate no trajectories spread at such areas, which is

incorrect. VAS is an approach solving such issues via a mathematical optimization

solution. In the future, we will compare our approach with VAS thoroughly. An-

other application scenario is to compare sampling approaches, since the experiment

in Figure 5.9 indicates the ability for our approach to compare unbiased and biased

82

sampling. In the figure, we can see that in both RMSE and SSIM measures, in a

pairwise comparison the results between a perception-aware accuracy score and a

perception-aware score without hotspot scaling are quite different. This infers that

approximated heatmaps created through the biased approach contain inaccuracies in

the hotspot regions, whereas those created using the unbiased approach do not.

5.7 Conclusion

In this chapter, we present a perception-aware approach to assessing visual dif-

ferences between approximate and exact heatmaps. A perception-aware assessment

rationale is introduced, and an RGB-based difference quantification function is pre-

sented as well. Our approach follows the characteristics of the human visual system in

order to measure visual differences in terms of their influences on human perception.

The differences derived from our approach are closer to the differences perceived by

humans. In the future, we will extend our approach to the CIELAB color space, and

conduct a quantitative user study.

83

6. CONCLUSION AND FUTURE WORK

In this dissertation, we have presented three approaches for users to incrementally vi-

sualize and analyze large spatiotemporal data. Our techniques focus on performance

issues arising from the core of incremental analytical solutions, sampling-based ap-

proximate query processing (AQP). Three primary challenges include the absence of

AQP modules in the computational environments, erroneous estimation due to sam-

pling bias, and user concerns about the reliability of approximate answers [5]. Our

techniques address these gaps, enabling users to explore data at interactive rates and

reducing uncertainty in selecting best answers for their analytic tasks. We elaborate

the contributions in the following three aspects:

• A client-based visual analytics framework that enables visualization

systems to conduct interactive spatiotemporal data exploration in

the architectural constraint environments: We focus on two types of con-

straints in the server-client architecture, including (1) insufficient computational

resources on the client side (e.g., shortages of computer memory), which cannot

afford to process the entire data at one time; and (2) organizational policies

restricting the server side from deploying associated data processing techniques

(e.g., AQP modules). We create a framework for visualization systems hosted

on an average client machine in order to maintain interactive data exploration

in this constrained environment. The client side assumes that data queried by

users are uniformly distributed in the spatiotemporal extent, and accordingly

follows this distribution to fetch sample points from the server side. On the other

side, retrieved data can help the client side know more about the data distribu-

tion being queried, which enables samples fetched in the subsequent sampling

procedure to better approximate the queried data. Extensive experiments have

84

validated the ability of our framework that can support visualization systems

to sustain interactive data exploration in the architectural environment.

• An online sampling approach that queries spatiotemporal data with

an unbiased guarantee: We created an online sampling approach that sup-

ports visualization systems in progressively retrieving data samples. Our tech-

nique presents a carefully designed data index and an associated sample re-

trieval plan to guarantee that each point satisfying the query will have the

same probability of being selected. As such, samples retrieved by our approach

can approximate the subset of the data being queried without bias. We vali-

dated that at the same sample size, the accuracy of the approximate answers

constructed by our approach is greater than those without unbiased guarantees,

improving by at least 50% when 5% points are sampled; the visual appearances

of these approximate visualizations are perceived to be closer to the exact ones

when compared to visualizations compromised by sampling bias. Therefore,

incremental visualizations of spatiotemporal data leveraged by our approach

can converge with the exact ones more quickly, which enables users to obtain

trustworthy approximate answers in less time.

• A difference assessment approach that compare approximate spatial

heatmaps with exact ones in terms of human perception effects: In-

cremental visualization continuously provides users with improved approximate

answers and requires users to choose the best answers for their analytic tasks.

In this workflow, users need to evaluate the accuracy of approximate answers

in order to find trustworthy answers. We created a difference quantification ap-

proach that evaluates the accuracy of approximate spatial heatmap according

to characteristics of the human visual systems. Our perception-aware approach

identifies visual elements whose differences are discernible in a side-by-side com-

parison of approximate and exact spatial heatmaps. Spatial heatmap accuracy

metrics measuring these detected perception-aware elements can reflect infor-

85

mation observed by users, whereas metrics that (e.g., RMSE [112], SSIM [127])

treat each heatmap elements equally cannot. Preliminary experiments indicate

that our perception-aware accuracy measurements can evaluate approximate

spatial heatmaps in accordance with empirical human perception rules.

We also discuss future work of this dissertation as follows. This future work is

derived based on the deficiencies of our proposed techniques and extensive visual

analytics needs suitable for our approach to address.

• Reducing latency taken by our unbiased online sampling approach to

retrieve samples from disk cache: With an exponential increase of data,

visualization systems cannot load the entire data into computer memory and

must extend their storage space to hard drives. In such a scenario, samples are

retrieved from in a hybrid structure consisting of a memory-based and a disk-

based index together. Although we have demonstrated efficient sample retrieval

in the memory space, reading and writing data to hard drives (disk I/O) produce

a performance bottleneck, since their data transfer rate is significantly slower

than memory-based rates. In the future, we will propose a novel sampling

strategy that can efficiently retrieve data from disk caches as well.

• Extending our perception-aware visual difference assessment to the

CIELAB color space: Our perception-aware difference assessment approach

contains a perception-aware rationale that evaluates important visual proper-

ties of heatmaps from the perspective of human perception. Based on this

rationale, we implemented a perception-aware detection function. This func-

tion follows empirical luminance adaption rules that were built on the RGB

color space [98]. However, unlike the RGB space, color differences quantified

in the CIELAB are closer to the actual differences perceived by humans. We

anticipate that color differences measured in the CIELAB space will simulate

the human visual system more accurately. In the future, we will extend our

86

perception-aware rationale to the CIELAB space and develop a CIELAB-based

difference detection function.

• Validating our perception-aware difference assessment approach by

conducting a quantitative user study: We followed empirical observa-

tions [99, 102, 103] to develop a perception-aware visual difference assessment

rationale and its associated visual difference detection function. Our experi-

ments showed that in the incremental update of spatial heatmaps, the accu-

racy of approximate heatmaps quantified from our detected perception-aware

heatmap elements proceeded in a trend coherent with empirical human per-

ception practices. However, these results only partially validate our approach,

and a quantitative user study is essential to test whether our approach can be

robust in the wild. In the future, we plan to recruit at least 20 participants to

analyze data through incremental visualization of spatial heatmaps. A group

of people will use our approach to choose the best answer for their questions,

and a control group will have no such information. Performance Differences

between the two groups will be statistically quantified.

REFERENCES

87

REFERENCES

[1] L. Wang, R. Christensen, F. Li, and K. Yi, “Spatial online sampling and ag-
gregation,” Proceedings of the VLDB Endowment, vol. 9, no. 3, pp. 84–95, Nov
2015. doi: 10.14778/2850583.2850584

[2] Y. Park, M. Cafarella, and B. Mozafari, “Visualization-aware sampling for very
large databases,” in Proceedings of the IEEE Conference on Data Engineering,
2016, pp. 755–766. doi: 10.1109/ICDE.2016.7498287

[3] D. Fisher, I. Popov, S. M. Drucker, and mc schraefel, “Trust me, I’m partially
right: incremental visualization lets analysts explore large datasets faster,” in
Proceedings of the ACM Conference on Human Factors in Computing Systems,
2012, pp. 1673–1682. doi: 10.1145/2207676.2208294

[4] D. Moritz, D. Fisher, B. Ding, and C. Wang, “Trust, but verify: Optimistic
visualizations of approximate queries for exploring big data,” in Proceedings
of the ACM Conference on Human Factors in Computing Systems, 2017, pp.
2904–2915. doi: 10.1145/3025453.3025456

[5] B. Mozafari, “Approximate query engines: Commercial challenges and research
opportunities,” in Proceedings of the ACM Conference on Management of Data,
2017, pp. 521–524. doi: 10.1145/3035918.3056098

[6] “MySQL,” https://www.mysql.com/, accessed: 2018-07-09.

[7] “SQL Server,” https://www.microsoft.com/en-us/sql-server/default.aspx, ac-
cessed: 2018-07-09.

[8] A. J. Lattanze, Architecting Software Intensive Systems: A Practitioners Guide,
1st ed. Boston, MA, USA: Auerbach Publications, 2008.

[9] M. Peterson, Intelligence-led Policing: The New Intelligence Architecture.
Rockville, MD: Bureau of Justice Assistance, 2005.

[10] Z. Liu and J. Heer, “The effects of interactive latency on exploratory visual
analysis,” IEEE Transactions on Visualization and Computer Graphics, vol. 20,
no. 12, pp. 2122–2131, 2014. doi: 10.1109/TVCG.2014.2346452

[11] S. L. Lohr, Sampling: Design and Analysis, ser. Second. Boston, MA, USA:
Brooks/Cole, 2009.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” ACM
SIGMOD Record, vol. 26, no. 2, pp. 171–182, June 1997. doi: 10.1145/253262.
253291

88

[13] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang, “Sample
+ Seek: Approximating aggregates with distribution precision guarantee,” in
Proceedings of the ACM Conference on Management of Data, 2016, pp. 679–
694. doi: 10.1145/2882903.2915249

[14] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden,
B. Mozafari, and I. Stoica, “Knowing when you’re wrong: Building fast and
reliable approximate query processing systems,” in Proceedings of the ACM
conference on Management of Data, 2014, pp. 481–492. doi: 10.1145/2588555.
2593667

[15] D. Alabi and E. Wu, “PFunk-H: Approximate query processing using perceptual
models,” in Proceedings of the Workshop on Human-In-the-Loop Data Analyt-
ics, 2016, pp. 1–6. doi: 10.1145/2939502.2939512

[16] K. A. Cook and J. J. Thomas, Illuminating the Path: The Research and Devel-
opment Agenda for Visual Analytics. IEEE-Press, 5 2005.

[17] E. Zgraggen, A. Galakatos, A. Crotty, J. D. Fekete, and T. Kraska, “How
Progressive Visualizations Affect Exploratory Analysis,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 8, pp. 1977–1987, 2017. doi:
10.1109/TVCG.2016.2607714

[18] J. H. Larkin and H. A. simon, “Why a diagram is (sometimes) worth ten thou-
sand words,” Cognitive Science, vol. 11, no. 1, pp. 65–99, 1987. doi: 10.1111/j.
1551-6708.1987.tb00863.x

[19] G. Wang, A. Malik, C. Yau, C. Surakitbanharn, and D. S. Ebert, “TraSeer: A
visual analytics tool for vessel movements in the coastal areas,” in Proceedings
of the IEEE Symposium on Technologies for Homeland Security, 2017, pp. 1–6.
doi: 10.1109/THS.2017.7943473

[20] A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and W. Huang, “A
correlative analysis process in a visual analytics environment,” in Proceedings
of the IEEE Conference on Visual Analytics Science and Technology, Oct 2012,
pp. 33–42. doi: 10.1109/VAST.2012.6400491

[21] B. Shneiderman, “The eyes have it: a task by data type taxonomy for in-
formation visualizations,” in Proceedings of the IEEE Symposium on Visual
Languages, 1996, pp. 336–343. doi: 10.1109/VL.1996.545307

[22] G. Wang, A. Akers, J. F. de Queiroz Neto, C. Surakitbanharn, and D. S. Ebert.,
“Spatiotemporal driven analysis of law enforcement data,” in Proceedings of The
IEEE Workshop on Visualization in Practice, 2017.

[23] J. Zhang, J. Chae, C. Surakitbanharn, and D. S. Ebert, “SMART: Social media
analytics and reporting toolkit,” in Proceedings of The IEEE Workshop on
Visualization in Practice, 2017.

[24] A. Malik, R. Maciejewski, S. Towers, S. McCullough, and D. S. Ebert, “Proac-
tive spatiotemporal resource allocation and predictive visual analytics for com-
munity policing and law enforcement,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 1863–1872, 2014. doi: 10.1109/TVCG.
2014.2346926

89

[25] L. Wilkinson, The Grammar of Graphics (Statistics and Computing). Berlin,
Heidelberg: Springer-Verlag, 2005.

[26] D. Fisher, “Hotmap: Looking at geographic attention,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1184–1191, 2007. doi:
10.1109/TVCG.2007.70561

[27] E. Imhof, Cartographic Relief Presentation. Redlands, CA: ESRI Press, 2007.

[28] B. D. Dent, J. S. Torguson, and T. W. Hodler, Cartography: Thematic Map
Design, 6th ed. Boston, MA: McGraw-Hill Higher Education, 1999.

[29] J. Zhang, C. Surakitbanharn, N. Elmqvist, R. Maciejewski, Z. Qian, and D. S.
Ebert, “TopoText: Context-preserving text data exploration across multiple
spatial scales,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2018, pp. 1–13. doi: 10.1145/3173574.3173611

[30] B. Johnson and B. Shneiderman, “Tree-Maps: A space-filling approach to
the visualization of hierarchical information structures,” in Proceedings of the
IEEE Conference on Visualization, 1991, pp. 284–291. [Online]. Available:
https://dl.acm.org/doi/10.5555/949607.949654

[31] G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel, Visual Analytics
of Movement. Berlin Heidelberg: Springer, 2013. doi: 10.1007/978-3-642-37583
-5

[32] R. Scheepens, N. Willems, H. van de Wetering, and J. J. van Wijk, “Interactive
visualization of multivariate trajectory data with density maps,” in Proceedings
of the IEEE Pacific Visualization Symposium, 2011, pp. 147–154. doi: 10.1109/
PACIFICVIS.2011.5742384

[33] R. Scheepens, N. Willems, H. van de Wetering, G. Andrienko, N. Andrienko,
and J. J. van Wijk, “Composite density maps for multivariate trajectories,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 2518–2527, 2011. doi: 10.1109/TVCG.2011.181

[34] R. Scheepens, C. Hurter, H. van de Wetering, and J. J. van Wijk, “Visualization,
selection, and analysis of traffic flows,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 1, pp. 379–388, 2016. doi: 10.1109/TVCG.2015
.2467112

[35] D. Fisher, “Big data exploration requires collaboration between visualization
and data infrastructures,” in Proceedings of the Workshop on Human-In-the-
Loop Data Analytics, ser. HILDA ’16, 2016, pp. 1–5. doi: 10.1145/2939502.
2939518

[36] K. Engel, P. Hastreiter, B. Tomandl, K. Eberhardt, and T. Ertl., “Combining
local and remote visualization techniques for interactive volume rendering in
medical applications,” in Proceedings of the IEEE Conference on Visualization,
2000, pp. 449–452. doi: 10.1109/VISUAL.2000.885729

[37] K. Engel, O. Sommer, and T. Ertl, “A framework for interactive hard-
ware accelerated remote 3D-visualization,” in Proceedings of the IEEE
VGTC/Eurographic Symposium on Visualization, 2000, pp. 167–177. doi: 10
.1007/978-3-7091-6783-0 17

90

[38] K.-L. Ma and D. M. Camp, “High performance visualization of time-varying
volume data over a wide-area network,” in Proceedings of the ACM/IEEE Con-
ference on Supercomputing, Nov 2000, pp. 29–29. doi: 10.1109/SC.2000.10000

[39] S. Stegmaier, M. Magallón, and T. Ertl, “A generic solution for hardware-
accelerated remote visualization,” in Proceedings of the Symposium on Data
Visualisation, 2002, pp. 87–94. doi: 10.5555/509740.509754

[40] F. Lamberti and A. Sanna, “A streaming-based solution for remote visualization
of 3D graphics on mobile devices,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 2, pp. 247–260, 2007. doi: 10.1109/TVCG.2007
.29

[41] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[42] “Apache spark,” https://spark.apache.org/, accessed: 2018-07-09.

[43] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A mapreduce framework for
spatial data,” in Proceedings of the IEEE Conference on Data Engineering,
2015, pp. 1352–1363. doi: 10.1109/ICDE.2015.7113382

[44] J.-F. Im, F. G. Villegas, and M. J. McGuffin, “VisReduce: Fast and responsive
incremental information visualization of large datasets,” in Proceedings of the
IEEE Conference on Big Data, Oct 2013, pp. 25–32. doi: 10.1109/BigData.2013
.6691710

[45] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh, “Data Cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals,” Data Mining and Knowledge
Discovery, vol. 1, no. 1, pp. 29–53, Jan. 1997. doi: 10.1023/A:1009726021843

[46] Z. Liu, B. Jiang, and J. Heer, “imMens : Real-time visual querying of big data,”
Computer Graphics Forum, vol. 32, no. 3pt4, pp. 421–430, June 2013. doi: 10.
1111/cgf.12129

[47] L. Lins, J. T. Klosowski, and C. Scheidegger, “Nanocubes for real-time explo-
ration of spatiotemporal datasets,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 12, pp. 2456–2465, Dec 2013. doi: 10.1109/
TVCG.2013.179

[48] C. A. L. Pahins, S. A. Stephens, C. Scheidegger, and J. L. D. Comba, “Hashed-
cubes: Simple, low memory, real-time visual exploration of big data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 671–
680, Jan 2017. doi: 10.1109/TVCG.2016.2598624

[49] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva, “Topkube: A rank-aware
data cube for real-time exploration of spatiotemporal data,” IEEE Transactions
on Visualization and Computer Graphics, vol. 24, no. 3, pp. 1394–1407, 2018.
doi: 10.1109/TVCG.2017.2671341

[50] C. Liu, C. Wu, H. Shao, and X. Yuan, “Smartcube: An adaptive data manage-
ment architecture for the real-time visualization of spatiotemporal datasets,”
IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp.
790–799, 2020. doi: 10.1109/TVCG.2019.2934434

91

[51] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a texture cache archi-
tecture,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop
on Graphics Hardware, Aug 1998, pp. 133–ff. doi: 10.1145/285305.285321

[52] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan, “Maintaining interactivity
while exploring massive time series,” in Proceedings of the IEEE Symposium on
Visual Analytics Science and Technology, 2008, pp. 59–66. doi: 10.1109/VAST.
2008.4677357

[53] L. Battle, R. Chang, and M. Stonebraker, “Dynamic prefetching of data tiles
for interactive visualization,” in Proceedings of the ACM Conference on Man-
agement of Data, 2016, pp. 1363–1375. doi: 10.1145/2882903.2882919

[54] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy, “Real-time out-of-core vi-
sualization of particle traces,” in Proceedings of the IEEE symposium on parallel
and large-data visualization and graphics, 2001, pp. 45–50. doi: 10.1109/PVGS
.2001.964403

[55] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno,
“Adaptive TetraPuzzles: Efficient out-of-core construction and visualization of
gigantic multiresolution polygonal models,” ACM Transactions on Graphics,
vol. 23, no. 3, pp. 796–803, Aug 2004. doi: 10.1145/1015706.1015802

[56] M. Cox and D. Ellsworth, “Application-controlled demand paging for out-of-
core visualization,” in Proceedings of the IEEE Conference on Visualization,
1997, pp. 235–ff.

[57] T. A. Funkhouser and C. H. Séquin, “Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments,” in Proceed-
ings of the ACM Conference on Computer Graphics and Interactive Techniques,
1993, pp. 247–254. doi: 10.1145/166117.166149

[58] C. Silva, Y. jen Chiang, W. Corrêa, J. El-sana, and P. Lindstrom, “Out-of-core
algorithms for scientific visualization and computer graphics,” in Proceedings of
the IEEE Conference on Visualization, 2002.

[59] M. Singh, Q. Zhu, and H. Jagadish, “SWST: A disk based index for sliding
window spatio-temporal data,” in Proceedings of the IEEE Conference on Data
Engineering. IEEE, 2012, pp. 342–353. doi: 10.1109/ICDE.2012.98

[60] V. Benzaken, J.-D. Fekete, P.-L. Hémery, W. Khemiri, and I. Manolescu, “Edi-
Flow: Data-intensive interactive workflows for visual analytics,” Proceedings of
the IEEE Conference on Data Engineering, pp. 780–791, 2011. doi: 10.1109/
ICDE.2011.5767914

[61] E. Wu, L. Battle, and S. R. Madden, “The case for data visualization man-
agement systems: Vision paper,” Proceedings of the VLDB Endowment, vol. 7,
no. 10, pp. 903–906, 2014. doi: 10.14778/2732951.2732964

[62] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica,
“BlinkDB: Queries with bounded errors and bounded response times on very
large data,” in Proceedings of the ACM European Conference on Computer Sys-
tems, April 2013, pp. 29–42. doi: 10.1145/2465351.2465355

92

[63] N. Potti and J. M. Patel, “DAQ: A new paradigm for approximate query pro-
cessing,” Proceedings of the VLDB Endowment, vol. 8, no. 9, pp. 898–909, May
2015. doi: 10.14778/2777598.2777599

[64] Y. Park, A. S. Tajik, M. Cafarella, and B. Mozafari, “Database learning: To-
ward a database that becomes smarter every time,” in Proceedings of the ACM
Conference on Management of Data, 2017, pp. 587–602. doi: 10.1145/3035918
.3064013

[65] F. Olken, “Random sampling from databases,” Ph.D. dissertation, University
of California at Berkeley, 1993.

[66] F. Olken and D. Rotem, “Sampling from spatial databases,” Statistics and
Computing, vol. 5, no. 1, pp. 43–57, Mar 1995. doi: 10.1007/BF00140665

[67] A. Guttman, “R-Trees: A dynamic index structure for spatial searching,” Pro-
ceedings of the ACM Conference on Management of Data, vol. 14, no. 2, pp.
47–57, June 1984. doi: 10.1145/971697.602266

[68] R. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on com-
posite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974. doi: 10.1007/
BF00288933

[69] Y. Li, C.-Y. Chow, K. Deng, M. Yuan, J. Zeng, J.-D. Zhang, Q. Yang, and Z.-L.
Zhang, “Sampling big trajectory data,” in Proceedings of the ACM Conference
on Information and Knowledge Management, ser. CIKM ’15, Oct 2015, pp.
941–950. doi: 10.1145/2806416.2806422

[70] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic
observation,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 280–
292, Jun 2001. doi: 10.1109/90.929851

[71] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adaptive storage
system for very large trajectory data sets,” in Proceedings of the IEEE Confer-
ence on Data Engineering, March 2010, pp. 109–120. doi: 10.1109/ICDE.2010.
5447829

[72] C. D. Stolper, A. Perer, and D. Gotz, “Progressive visual analytics: User-driven
visual exploration of in-progress analytics,” IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 1653–1662, 2014. doi: 10.1109/
TVCG.2014.2346574

[73] S. Rahman, M. Aliakbarpour, H. K. Kong, E. Blais, K. Karahalios,
A. Parameswaran, and R. Rubinfield, “I've seen ''enough'': Incrementally im-
proving visualizations to support rapid decision making,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1262–1273, Aug. 2017. doi: 10.14778/
3137628.3137637

[74] J.-D. Fekete, D. Fisher, A. Nandi, and M. Sedlmair, “Progressive Data Analysis
and Visualization (Dagstuhl Seminar 18411),” Dagstuhl Reports, vol. 8, no. 10,
pp. 1–40, 2019. doi: 10.4230/DAGREP.8.10.1

[75] S. K. Badam, N. Elmqvist, and J. D. Fekete, “Steering the craft: UI ele-
ments and visualizations for supporting progressive visual analytics,” Computer
Graphics Forum, vol. 36, no. 3, pp. 491–502, 2017. doi: 10.1111/cgf.13205

93

[76] M. Angelini, G. Santucci, H. Schumann, and H. J. Schulz, “A review and char-
acterization of progressive visual analytics,” Informatics, vol. 5, no. 3, pp. 1–27,
2018. doi: 10.3390/informatics5030031

[77] D. Moritz and D. Fisher, “What users don’t expect about exploratory data
analysis on approximate query processing systems,” in Proceedings of the ACM
Workshop on Human-In-the-Loop Data Analytics, ser. HILDA’17, 2017, pp.
9:1–9:4. doi: 10.1145/3077257.3077258

[78] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua ap-
proximate query answering system,” ACM conference on Management of data,
vol. 28, no. 2, pp. 574–576, 1999. doi: 10.1145/304181.304581

[79] N. Pezzotti, B. P. Lelieveldt, L. Van Der Maaten, T. Höllt, E. Eisemann, and
A. Vilanova, “Approximated and user steerable tSNE for progressive visual an-
alytics,” IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 7, pp. 1739–1752, 2017. doi: 10.1109/TVCG.2016.2570755

[80] J. Jo, J. Seo, and J. D. Fekete, “PANENE: A progressive algorithm for indexing
and querying approximate k-nearest neighbors,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 26, no. 2, pp. 1347–1360, 2020. doi: 10.
1109/TVCG.2018.2869149

[81] P. J. Rhodes, R. S. Laramee, R. D. Bergeron, and T. M. Sparr, “Uncer-
tainty Visualization Methods in Isosurface Rendering,” in Proceedings of the
IEEE VGTC/Eurographics Symposium on Visualization, 2003. doi: 10.2312/
egs.20031054

[82] M. Correll and M. Gleicher, “Error bars considered harmful: Exploring alter-
nate encodings for mean and error,” IEEE Transactions on Visualization and
Computer Graphics, vol. 20, no. 12, pp. 2142–2151, 2014. doi: 10.1109/TVCG.
2014.2346298

[83] A. M. MacEachren, R. E. Roth, J. O'Brien, B. Li, D. Swingley, and M. Gahe-
gan, “Visual semiotics & uncertainty visualization: An empirical study,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2496–2505, 2012. doi: 10.1109/TVCG.2012.279

[84] S. Hazarika, A. Biswas, and H.-W. Shen, “Uncertainty visualization using
copula-based analysis in mixed distribution models,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 934–943, 2018. doi: 10
.1109/TVCG.2017.2744099

[85] J. Görtler, C. Schulz, D. Weiskopf, and O. Deussen, “Bubble treemaps for
uncertainty visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 719–728, 2018. doi: 10.1109/TVCG.2017.2743959

[86] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and R. Rubinfeld,
“Rapid sampling for visualizations with ordering guarantees,” Proceedings of the
VLDB Endowment, vol. 8, no. 5, pp. 521–532, Jan 2015. doi: 10.14778/2735479
.2735485

[87] A. Das Sarma, H. Lee, H. Gonzalez, J. Madhavan, and A. Halevy, “Efficient
spatial sampling of large geographical tables,” in Proceedings of the ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD ’12,
2012, pp. 193–204. doi: 10.1145/2213836.2213859

94

[88] E. Goldstein, Sensation and Perception, 8th ed. Belmont, CA: Wadsworth,
Cengage Learning, 2009.

[89] L. Harrison, F. Yang, S. Franconeri, and R. Chang, “Ranking visualizations of
correlation using weber’s law,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 20, no. 12, pp. 1943–1952, 2014. doi: 10.1109/TVCG.2014.
2346979

[90] M. Kay and J. Heer, “Beyond weber’s law: A second look at ranking visu-
alizations of correlation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 1, pp. 469–478, 2016. doi: 10.1109/TVCG.2015.2467671

[91] W. S. Cleveland, Visualizing Data. Summit, N.J.: Hobart Press, 1993.

[92] W. S. Cleveland and R. McGill, “Graphical perception: Theory, experimenta-
tion, and application to the development of graphical methods,” Journal of the
American Statistical Association, vol. 79, no. 387, pp. 531–554, 1984. doi: 10.
2307/2288400

[93] R. A. Rensink and G. Baldridge, “The perception of correlation in scatterplots,”
Computer Graphics Forum, vol. 29, no. 3, pp. 1203–1210, Aug 2010. doi: 10.
1111/j.1467-8659.2009.01694.x

[94] S. Smart and D. A. Szafir, “Measuring the separability of shape, size, and color
in scatterplots,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2019. doi: 10.1145/3290605.3300899

[95] W. Javed, B. McDonnel, and N. Elmqvist, “Graphical perception of multi-
ple time series,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 927–934, 2010. doi: 10.1109/TVCG.2010.162

[96] E. Wu, L. Jiang, L. Xu, and A. Nandi, “Graphical perception
in animated bar charts,” ArXiv e-prints, 2016. [Online]. Available:
https://arxiv.org/abs/1604.00080

[97] C. G. Healey and A. P. Sawant, “On the limits of resolution and visual angle
in visualization,” ACM Transactions on Applied Perception, vol. 9, no. 4, 2012.
doi: 10.1145/2355598.2355603

[98] Chun-Hsien Chou and Yun-Chin Li, “A perceptually tuned subband image
coder based on the measure of just-noticeable-distortion profile,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 467–476,
1995. doi: 10.1109/76.475889

[99] G. Sharma, Digital Color Imaging Handbook, 1st ed. Boca Raton, FL: CRC
Press., 2003.

[100] M. Melgosa, CIE94, History, Use, and Performance. Berlin, Heidelberg:
Springer, 2014, pp. 1–5. doi: 10.1007/978-3-642-27851-8 13-1

[101] M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-
difference formula: Ciede2000,” Color Research & Application, vol. 26, no. 5,
pp. 340–350, 2001. doi: 10.1002/col.1049

95

[102] M. Stone, “In color perception, size matters,” IEEE Computer Graphics and
Applications, vol. 32, no. 2, pp. 8–13, 2012. doi: 10.1109/MCG.2012.37

[103] M. Stone, D. A. Szafir, and V. Setlur, “An engineering model for color difference
as a function of size,” in Color and Imaging Conference, vol. 2014, no. 2014.
Society for Imaging Science and Technology, 2014, pp. 253–258.

[104] Xuemei Zhang, A. Silverstein, J. Farrell, and B. Wandell, “Color image quality
metric S-CIELAB and its application on halftone texture visibility,” in Proceed-
ings of the IEEE COMPCON Digest of Papers, Feb 1997, pp. 44–48. doi: 10.
1109/CMPCON.1997.584669

[105] J. Wu, L. Li, W. Dong, G. Shi, W. Lin, and C. C. Kuo, “Enhanced Just Notice-
able Difference Model for Images with Pattern Complexity,” IEEE Transactions
on Image Processing, vol. 26, no. 6, pp. 2682–2693, 2017. doi: 10.1109/TIP.2017
.2685682

[106] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look
at signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1,
pp. 98–117, 2009. doi: 10.1109/MSP.2008.930649

[107] E. Wu and A. Nandi, “Towards perception-aware interactive data visualization
systems,” in Proceedings of The IEEE Workshop on Data Systems for Interac-
tive Analysis, 2015.

[108] D. Papadias, Y. Tao, P. Kalnis, and J. Zhang, “Indexing spatio-temporal data
warehouses,” in Proceedings 18th International Conference on Data Engineer-
ing, 2002, pp. 166–175. doi: 10.1109/ICDE.2002.994706

[109] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
8th ed. Wiley Publishing, 2008, ch. 9, pp. 416–417.

[110] A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He, “Mercury: A
memory-constrained spatio-temporal real-time search on microblogs,” in Pro-
ceedings of the IEEE Conference on Data Engineering, 2014, pp. 172–183. doi:
10.1109/ICDE.2014.6816649

[111] A. Magdy, A. M. Aly, M. F. Mokbel, S. Elnikety, Y. He, and S. Nath, “Mars:
Real-time spatio-temporal queries on microblogs,” in Proceedings of the IEEE
Conference on Data Engineering, 2014, pp. 1238–1241. doi: 10.1109/ICDE.2014
.6816750

[112] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, no. 4, pp. 679 – 688,
2006. doi: 10.1016/j.ijforecast.2006.03.001

[113] V. A. Epanechnikov, “Non-parametric estimation of a multivariate probability
density,” Theory of Probability & Its Applications, vol. 14, no. 1, pp. 153–158,
1969. doi: 10.1137/1114019

[114] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and T. Ertl,
“Spatiotemporal social media analytics for abnormal event detection and ex-
amination using seasonal-trend decomposition,” in Proceedings of the IEEE
Conference on Visual Analytics Science and Technology, 2012, pp. 143–152.

96

[115] S. Pezanowski, A. M. MacEachren, A. Savelyev, and A. C. Robinson, “Sense-
place3: a geovisual framework to analyze place–time–attribute information in
social media,” Cartography and Geographic Information Science, vol. 45, no. 5,
pp. 420–437, 2018. doi: 10.1080/15230406.2017.1370391

[116] B. Mozafari and N. Niu, “A handbook for building an approximate query en-
gine,” IEEE Data Engineering Bulletin, vol. 38, pp. 3–29, 2015.

[117] L. Arge, “The buffer tree: A technique for designing batched external data
structures,” Algorithmica, vol. 37, no. 1, p. 1–24, 2003. doi: 10.1007/s00453
-003-1021-x

[118] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation mode from
raw gps data for geographic applications on the web,” in Proceedings of the
17th International Conference on World Wide Web, 2008, pp. 247–256. doi: 10
.1145/1367497.1367532

[119] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobil-
ity based on gps data,” in Proceedings of the ACM Conference on Ubiquitous
Computing, 2008, pp. 312–321. doi: 10.1145/1409635.1409677

[120] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding transporta-
tion modes based on gps data for web applications,” ACM Transactions on the
Web, vol. 4, no. 1, pp. 1–36, 2010. doi: 10.1145/1658373.1658374

[121] .NET Programming with C++/CLI, Microsoft Inc., March 2018.
[Online]. Available: https://docs.microsoft.com/en-us/cpp/dotnet/dotnet-
programming-with-cpp-cli-visual-cpp

[122] Boost C++ Libraries, C++ Standards Committee Library Working Group.,
March 2018. [Online]. Available: http://www.boost.org/

[123] C. Ware, Information Visualization: Perception for Design, 2nd ed. Academic
Press Burlington, April 2004. doi: 10.1016/B978-1-55860-819-1.X5000-6

[124] B. Brewer, “Perception and its objects,” Philosophical Studies, vol. 132, no. 1,
pp. 87–97, Jan 2007. doi: 10.1007/s11098-006-9051-2

[125] C. Healey and J. Enns, “Attention and visual memory in visualization and com-
puter graphics,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 7, pp. 1170–1188, July 2012. doi: 10.1109/TVCG.2011.127

[126] MATLAB, The MathWorks, Inc, April 2020. [Online]. Available:
https://www.mathworks.com/products/matlab.html

[127] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. doi: 10.1109/TIP.2003.
819861

[128] Find connected components in binary image, The
MathWorks, Inc, April 2020. [Online]. Available:
https://www.mathworks.com/help/images/ref/bwconncomp.html

97

[129] Measure properties of image regions, The MathWorks, Inc, April 2020. [Online].
Available: https://www.mathworks.com/help/images/ref/regionprops.html

[130] D. A. Szafir, “Modeling Color Difference for Visualization Design,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 392–401,
2018. doi: 10.1109/TVCG.2017.2744359

VITA

98

VITA

Guizhen Wang is a Ph.D. student in the School of Electrical and Computer En-

gineering at Purdue University in West Lafayette, IN, USA. Her research interests

include visual analytics, information visualization, human-computer interaction, and

database. She received her master’s degree in computer science in 2012 from Zhe-

jiang University in Hangzhou, China. She received her bachelor’s degree in computer

science from Shandong University in Jinan, China.

