
DIGITAL PROVENANCE TECHNIQUES AND APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Amani Abu Jabal

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Elisa Bertino, Chair

College of Science

Dr. Clifton Bingham

College of Science

Dr. Sorin Adam Matei

Brian Lamb School of Communication

Dr. Sonia Fahmy

College of Science

Approved by:

Dr. Clifton Bingham

Head of the School Graduate Program

iii

To my beloved parents, sisters, and brothers.

iv

ACKNOWLEDGMENTS

First and foremost, all praise and gratitude to Allah (God) for granting me the

strength and determination to overcome all difficulties throughout my graduate study.

I want to express my sincere appreciation for those who helped me to reach this point

and those that without them being by my side, I will never be able to survive this

long journey of Ph.D.

I want to thank my advisor Professor Elisa Bertino for her continuous support

during my Ph.D. study and for giving me the opportunity to learn so much from her

knowledge and experience. I have been lucky to work with Prof. Sorin Matei, Prof.

Jorge Lobo, Prof. Alessandro Russo, Dr. Seraphin Calo, Dr. Dinesh Verma, Dr.

Geeth De Mel, and Dr. Christian Makaya as mentors for various research projects.

I would also like to thank my dissertation committee members: Prof. Sonia Fahmy,

Prof. Clifton Bingham, and Prof. Sorin Matei, for their valuable comments, sugges-

tions, and guidance. I want to thank my friends Pinar Yanardag, Daren Fadolalkari-

men, Ruby Tahboub, Hasini Gunasinghe, and Maryam Davari, for their support and

help. Special thanks to my friends Pinar and Daren, for their continuous support and

being beside me whenever I needed their advice and help.

Finally, but not least, I would like to thank my mother, father, sisters, and brothers

who gave me all the endless love and support to encourage me to complete my long

journey to accomplish my dream.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 SimP: Secure Interoperable Multi-Granular Provenance Framework . . 6

1.2 ProFact: A Provenance-based Analytics Framework for Access Control
Policies . 7

1.3 ProWS: Provenance-based Scientific Workflow Search 9

1.4 Polisma: A Framework for Learning Attribute-based Access Control
Policies . 10

1.5 Federated Learning for Attribute-based Access Control Policies 12

1.6 Thesis Organization . 14

2 SIMP: SECURE INTEROPERABLE MULTI-GRANULAR PROVE-
NANCE FRAMEWORK . 15

2.1 Provenance Model . 15

2.1.1 Relational Representation . 17

2.1.2 Graph Representation . 20

2.2 Interoperability With Other Models . 23

2.2.1 Mapping from the OPM Standard Model 23

2.2.2 Mapping from the PROV Standard Model 24

2.3 Provenance Query Language . 26

2.3.1 QL-SimP Grammar . 27

2.3.2 Provenance Queries . 30

2.4 Security . 40

2.5 Granularity . 41

vi

Page

2.6 Integration with the CRIS System . 42

2.7 Experimental Results . 42

2.7.1 Experimental Methodology . 42

2.7.2 Provenance Query Evaluation Results 43

2.8 Related Work to the SimP Framework 48

3 PROFACT: A PROVENANCE-BASED ANALYTICS FRAMEWORK
FOR ACCESS CONTROL POLICIES . 50

3.1 Preliminaries . 50

3.1.1 Role-based Access Control . 50

3.1.2 Policy Life Cycle . 52

3.1.3 Transactions . 53

3.2 Policy Analysis Metrics And Structures 53

3.2.1 Policy Quality Requirements . 53

3.2.2 Structures for Policy Analysis 58

3.3 Policy Analysis Services . 63

3.3.1 Structure-based Analysis . 64

3.3.2 Classification-based Analysis . 68

3.4 Policy Evolution Services . 71

3.4.1 Recommendation Services for Policy Changes 73

3.4.2 Re-evaluation Services for Policy Changes 75

3.5 Query Services . 77

3.6 Experiments . 82

3.6.1 Dataset and Settings . 83

3.6.2 Pre-processing Time for the Analysis Approaches 85

3.6.3 Analysis Results . 86

3.7 Related Work to the ProFact Framework 90

3.7.1 Goals for Policy Analysis . 90

3.7.2 Methods for Policy Analysis . 91

vii

Page

4 PROWS: PROVENANCE-BASED SCIENTIFIC WORKFLOW SEARCH
FRAMEWORK . 92

4.1 Queries on Scientific Workflows . 92

4.1.1 Provenance to Workflow Transformation 95

4.1.2 Indexing and Querying . 95

4.2 Experiments . 100

4.2.1 Experimental Methodology . 100

4.2.2 Search Performance . 102

4.3 Related Work to the ProWS Framework 108

5 POLISMA - A FRAMEWORK FOR LEARNING ATTRIBUTE-BASED
ACCESS CONTROL POLICIES . 110

5.1 Background and Problem Description 110

5.1.1 ABAC Policies . 110

5.1.2 Access Control Decision Examples 111

5.1.3 Problem Definition . 112

5.1.4 Policy Generation Assessment 113

5.2 The Learning Framework . 114

5.2.1 Rules Mining . 114

5.2.2 Rules Generalization . 116

5.2.3 Rules Augmentation using Domain-based Restrictions 121

5.2.4 Rules Augmentation using Machine Learning 124

5.3 Evaluation . 125

5.3.1 Experimental Methodology . 126

5.3.2 Experimental Results . 128

5.4 Related Work to the Polisma Framework 133

6 FLAP - A FEDERATED LEARNING FRAMEWORK FOR
ATTRIBUTE-BASED ACCESS CONTROL POLICIES 135

6.1 Background and Problem Description 135

6.1.1 ABAC Policies . 135

viii

Page

6.1.2 Policy Learning . 136

6.1.3 Problem Definition . 137

6.2 Methodology . 139

6.2.1 Rule Similarity Analysis . 139

6.2.2 Rules Adaptation . 141

6.2.3 Rule Transferability Approaches 145

6.3 Evaluation . 148

6.3.1 Experimental Methodology . 149

6.3.2 Experimental Results . 149

6.4 Related Work to Policy Transfer . 150

7 CONCLUSIONS AND FUTURE WORK 157

7.1 Conclusions . 157

7.2 Future Work . 159

7.2.1 Provenance Similarity Measure 159

7.2.2 A Provenance-based Trustworthiness Model for Evaluating Hu-
man Activities on Social Networks as Valuable Sensors 161

REFERENCES . 163

ix

LIST OF TABLES

Table Page

2.1 Mapping From OPM To SimP . 25

2.2 Mapping From PROV To SimP . 26

2.3 Attribute-based Query Examples . 30

2.4 Invocation-based Query Examples . 31

2.5 Lineage-based Query Examples . 32

2.6 Communication-based Query Examples . 34

2.7 Access-based Query Examples . 35

2.8 Workflow-based Query Examples . 37

2.9 Mapping SimP Model to a Transaction . 38

2.10 Transaction-based Query Examples . 38

2.11 Statistical-based Query Examples . 39

2.12 Provenance Dataset size . 43

3.1 Example of Access Control Policies for the Depot Manager Role for the
Robots Working in a Delivery Management System 55

3.2 Example of Access Control Policies for the Depot Worker Role for the
Robots Working in a Delivery Management System 55

3.3 Notations for The Asymptotic Time Analysis 61

3.4 The Objectives of Policy Analysis Services 65

3.5 Primitive Changes on Policies . 73

3.6 Access Control Policy and Transaction Datasets 83

3.7 The Distribution of Low-Quality Policies among Datasets 84

4.1 Modeling Workflows From Provenance Repository 96

4.2 Attribute List of Workflow Metadata . 96

4.3 Types of Retrieved Workflows with QL and QP using Different Index
Structures . 99

x

Table Page

4.4 Scientific Workflow Datasets . 102

5.1 Details about A Project Management System 115

5.2 Overview of Datasets . 126

xi

LIST OF FIGURES

Figure Page

1.1 The Integration of SimP, ProFact, ProWS, Polisma, and FLAP frameworks 5

1.2 The Infrastructure of the ProFact Framework 8

1.3 Provenance-based Scientific Workflow Search Architecture 10

2.1 SimP Framework . 15

2.2 SimP Relational Model . 18

2.3 SimP Provenance Model . 21

2.4 Average Execution Time for Attribute-based, Invocation-based,
Communication-based, Workflow-based, Transaction-based, and Sta-
tistical Queries with the SYN1, SYN2, and REAL datasets 44

2.5 Execution Time for A Sample of Attribute-based Queries in the SYN2 Dataset44

2.6 Execution Time for A Sample of Workflow-based Queries in the SYN2 Dataset46

2.7 Average Execution Time of Lineage-based Queries 46

2.8 Execution Time for A sample of Lineage-based Queries with the SYN2

Dataset . 47

2.9 Average Execution Time for Access-based Queries 47

3.1 Policy Analysis Structures: Policy Tree (right) and Transaction Tree (left) 59

3.2 The Pipeline of Classification-based Policy Analysis 71

3.3 Policy Evolution Services . 72

3.4 Construction Time for Structure-based Approaches 85

3.5 Analysis Time for Structure-based Approaches 86

3.6 Analysis Performance for Classification-based Approaches 87

3.7 Analysis Efficiency (Recall) for Classification-based Approaches 89

3.8 Analysis Efficiency (Precision) for Classification-based Approaches 89

3.9 Analysis Efficiency (Accuracy) for Classification-based Approaches 89

4.1 An Example of Pattern-based Workflow Search Query 94

xii

Figure Page

4.2 Example of Inverted Index Structure . 98

4.3 Average Query Time for Label-based Queries 103

4.4 Average Percentage of Traversed Workflows for Label-based Queries . . . 103

4.5 Average Query Time for Pattern-based Queries 104

4.6 Average Percentage of Traversed Workflows with Pattern-based Queries . 105

4.7 Average Query Time for Metadata-based Queries 105

5.1 The Architecture of Polisma . 115

5.2 Examples of ground rules generated from rule mining based on the speci-
fications of the running example . 116

5.3 Generalization of ρ2 defined in Fig. 5.2 using the Brute Force Strategy
(BS-UR-C) . 119

5.4 Generalization of ρ2 defined in Fig. 5.2 using Structure-based Strategy:
An example of Attribute-relationship Graph 120

5.5 Rules Augmentation Using Domain-based Restrictions 123

5.6 Comparison of Näıve, Xu & Stoller Miner, and Polisma Using the PM
Dataset . 128

5.7 Comparison of Näıve, Rhapsody, and Polisma Using the AZ Dataset . . 128

5.8 Evaluation of Polisma using the PM dataset. 128

5.9 Comparison between the variants of the brute-force strategy (Step 2) using
the PM dataset. 129

5.10 Polisma Evaluation on the Amazon Dataset (a sample subset and the
whole set). 129

5.11 Polisma Evaluation on a sample subset of Amazon Dataset for only posi-
tive authorizations. 129

6.1 The Architecture of Polisma [49] . 136

6.2 Transfer Policies using Local Log (TPLG) 145

6.3 Transfer Policies using Local Policies (TPLP) 147

6.4 Transfer Policies using Local Learning 147

6.5 Transfer Policies using Hybrid Learning 147

6.6 Transfer Policies using the PM dataset 149

xiii

6.7 Transfer Policies using the Amazon dataset 149

xiv

ABSTRACT

Abu Jabal, Amani Ph.D., Purdue University, August 2020. Digital Provenance Tech-
niques and Applications. Major Professor: Elisa Bertino Professor.

This thesis describes a data provenance framework and other associated frame-

works for utilizing provenance for data quality and reproducibility. We first identify

the requirements for the design of a comprehensive provenance framework which can

be applicable to various applications, supports a rich set of provenance metadata,

and is interoperable with other provenance management systems. We then design

and develop a provenance framework, called SimP, addressing such requirements.

Next, we present four prominent applications and investigate how provenance data

can be beneficial to such applications. The first application is the quality assess-

ment of access control policies. Towards this, we design and implement the Pro-

Fact framework which uses provenance techniques for collecting comprehensive data

about actions which were either triggered due to a network context or a user (i.e.,

a human or a device) action. Provenance data are used to determine whether the

policies meet the quality requirements. ProFact includes two approaches for policy

analysis: structure-based and classification-based. For the structure-based approach,

we design tree structures to organize and assess the policy set efficiently. For the

classification-based approach, we employ several classification techniques to learn the

characteristics of policies and predict their quality. In addition, ProFact supports

policy evolution and the assessment of its impact on the policy quality. The second

application is workflow reproducibility. Towards this, we implement ProWS which is

a provenance-based architecture for retrieving workflows. Specifically, ProWS trans-

forms data provenance into workflows and then organizes data into a set of indexes to

support efficient querying mechanisms. ProWS supports composite queries on three

xv

types of search criteria: keywords of workflow tasks, patterns of workflow structure,

and metadata about workflows (e.g., how often a workflow was used). The third

application is the access control policy reproducibility. Towards this, we propose

a novel framework, Polisma, which generates attribute-based access control policies

from data, namely from logs of historical access requests and their corresponding de-

cisions. Polisma combines data mining, statistical, and machine learning techniques,

and capitalizes on potential context information obtained from external sources (e.g.,

LDAP directories) to enhance the learning process. The fourth application is the

policy reproducibility by utilizing knowledge and experience transferability. Towards

this, we propose a novel framework, FLAP, which transfer attribute-based access

control policies between different parties in a collaborative environment, while con-

sidering the challenges of minimal sharing of data and support policy adaptation

to address conflict. All frameworks are evaluated with respect to performance and

accuracy.

1

1. INTRODUCTION

Data provenance is a set of metadata which captures information about a data ob-

ject starting from its origin until its current state including all the activities and

data objects that were parts of the transformation process. The term data object

refers to data in any format (e.g., files, database records, or workflow templates).

Data provenance is crucial for several purposes including detecting sources of errors

and anomalies [1, 2], providing an audit trail for regulatory purposes, assessing data

trustworthiness [3,4], evaluating data quality [5], and supporting reproducibility [6,7].

The use of data provenance requires a provenance management system which is

capable of capturing, storing and querying sets of data provenance. Despite a large

number of research efforts devoted to provenance management, only a few prove-

nance infrastructures have been proposed. Chimera [8], myGrid [9], and Karma [10]

are examples of provenance systems. However, the provenance models of these sys-

tems are tailored to their specific applications and therefore are not general enough.

PASS [11] is a provenance management system for file systems; it provides a cus-

tom query tool, but it does not support security and different granularity levels for

provenance metadata. In addition, there are two standard provenance models: Open

Provenance Model (OPM) [12] and PROV [13]. These two models are interoperable

and generic so that they are able to represent provenance for different systems and

applications. However, their major limitation is that they are not able to represent

metadata about access control policies. Ni et al. [14] have proposed a provenance

model that focuses on access control policies for provenance. However, Ni’s model

is not able to support different granularity levels. Therefore there is the need for a

comprehensive provenance management framework which addresses the limitations

of existing frameworks. Sultana and Bertino [15] have defined such a framework that

fulfills four requirements: a) including an expressive provenance model able to cap-

2

ture data objects at different granularities (e.g., a table record in a DBMS level or

a file in an OS level), b) providing a query language which is independent of the

provenance model representation, c) enabling interoperability with other provenance

systems adopting other provenance models, and d) supporting a security mechanism

by capturing the permissions granted to users at the time of data manipulation.

Based on such initial definition we design and implement the first comprehensive

provenance infrastructure (named Secure Interoperable Multi-Granular Provenance

Framework (SimP) [16]) addressing these requirements.

Through our research work, we first investigate the use of provenance for assessing

the quality of access control policies. Since provenance can be used for auditing and

capturing all system transactions including access requests and their corresponding

responses, such data can be used to analyze the system behavior and evaluate it

in correspondence of the implemented access control system. Access control is a

fundamental building block for secure information sharing [17]. It has been widely

investigated and several access control models (e.g., the role-based access control

(RBAC) model [18] and the XACML attribute-based access control model [19]) have

been proposed. To date several approaches (e.g., see [20–24]) for policy analysis have

been proposed (surveyed by Abu Jabal et al. [25]). However such previous approaches

have two major drawbacks: they focus on assessing a single quality requirement

(e.g., consistency), and require as input the specification of all possible access control

requests. In particular, the latter drawback makes such previous methods not suitable

for systems in which it is not often possible to determine in advance all actions that

will be executed. Therefore it is not possible to statically analyze the quality of the

policies. We need an approach by which policies are analyzed at “run-time” based on

information on the actual behavior of subjects in the system. Therefore, we propose

a framework, referred to as ProFact [26, 27], which utilizes provenance metadata to

aggregate information about system behavior at execution time, and is thus able

to address all quality requirements of access control policies both statistically and

dynamically.

3

Another emerging application of data provenance is reproducibility. An exam-

ple of reproducibility is to automatically generate a workflow of repetitive tasks and

re-produce data. Thus, workflows have gained popularity in various domains (e.g., sci-

entific discovery [28], business processes [29], and software modeling [30]) where users

deal with data-intensive and sophisticated procedures, e.g., scientific experiments with

workflow systems such as CRIS [31], Kepler [32], Taverna [33], VisTrails [34], and my-

Grid [35]. As a consequence of the widespread use of scientific workflows, online social

websites such as myExperiments [36] have recently emerged aiming at supporting col-

laborative development, sharing and reuse of workflows. An important requirement

towards such goals is the availability of rich and flexible workflow retrieval capabilities

by which users can retrieve and compare workflows of interest for their research. The

design and efficient implementation of a workflow retrieval tool require addressing

several challenges. First, a unified and rich workflow model is required onto which

one can map workflows expressed according to the models of the different scientific

workflow management systems. Second, workflows should provide rich information

to support the high-fidelity reproduction of the corresponding experiments. Scien-

tists who design a workflow might not provide sufficiently detailed information about

the necessary operations to re-execute an experiment. Hence, we need mechanisms

that provide accurate and detailed information about workflows. Third, researchers

are often interested in descriptive metadata and statistical information related to sci-

entific workflows. Such statistical information includes usage percentage and users

that contributed to the workflows. Hence, we propose an architecture, referred to as

ProWS [6], to address such challenges based on the use of data provenance due to

its ability to address all these challenges since it accurately records all the necessary

information for reproducing workflows.

Another example of reproducibility is to generate access control policies (ACP)

from logs (known as policy learning). However, given the challenges that are en-

countered when using the RBAC model including the inability of RBAC to handle

the situations where some context and environmental information are essential for

4

making decisions regarding access requests, in addition to the inability of an RBAC

policy to control the access of multiple objects, most modern access control systems

have moved to another access control policy model, that is capable of overcoming

the early mentioned challenges, which is the attribute-based access control model

(ABAC) [17]. In ABAC, user requests to protected resources are granted or denied

based on discretionary attributes of the users, the resources, and the environmental

conditions [37]. However, a major challenge in using an ABAC model is the manual

specification of the ABAC policies that represent one of the inputs for the enforcement

engine. Such a specification requires detailed knowledge about properties of users,

resources, actions, and environments in the domain of interest [38,39]. One approach

to address this challenge is to take advantage of the many data sources that are today

available in organizations, and use machine learning techniques to automatically learn

ABAC policies from data. Suitable data for learning ABAC policies could be access

requests and corresponding access control responses (i.e., access control decisions)

in addition to other data sources including user directories (e.g., LDAP directories),

organizational charts, workflows, and security tracking’s logs (e.g., SIEM). Access

control decisions are captured by a data provenance mechanism. For example, an

organization may log past decisions taken by human administrators [40], or may have

automated access control mechanisms based on low-level models, e.g., models that

do not support ABAC. If interested in adopting a richer access control model, such

an organization could, in principle, use these data to automatically generate access

control policies, e.g., logs of past decisions taken by the low-level mechanism could

be used as labeled examples for a supervised machine learning algorithm1.

Furthermore, another track that complies with the reproducibility goals is to per-

form knowledge and experience transferability especially in coalition environments

where a coalition member can obtain a log from another coalition member, and use

1Learning policies using logs of access requests and corresponding control responses does not nec-
essarily that there is an existing access control system nor that the goal of policy learning is to
re-produce the policies or validate them. Such logs may consist of examples of access control deci-
sions provided by a human expert.

5

this log to learn new policies for similar missions. Technology advances in areas such

as sensors, IoT, and robotics, enable new collaborative applications (e.g., autonomous

devices). A primary requirement for such collaborations is to have a secure system

which enables information sharing and information flow protection. Policy-based

management system is a key mechanism for secure selective sharing of protected re-

sources. However, policies in each party of such a collaborative environment cannot

be static as they have to adapt to different contexts and situations. However one ad-

vantage of collaborative applications is that each party in the collaboration can take

advantage of knowledge of the other parties for learning or enhancing its own policies.

We refer to this learning mechanism as policy transfer. The design of a policy transfer

framework has challenges, including policy conflicts and privacy issues. Policy con-

flicts typically arise because of differences in the obligations of the parties, whereas

privacy issues result because of data sharing constraints for sensitive data. Hence,

the policy transfer framework should be able to tackle such challenges by considering

minimal sharing of data and support policy adaptation to address conflict.

Fig. 1.1.: The Integration of SimP, ProFact, ProWS, Polisma, and FLAP frameworks

In what follows, we first introduce the SimP provenance framework. Next, we

introduce four frameworks as applications for provenance: ProFact for quality as-

sessment of access control policies, ProWS for workflows reproducibility, Polisma for

policies reproducibility, and FLAP for policy transfer and thus reproducibility. There-

6

after, we outline the organization of this thesis. Fig. 1.1 shows the integration of the

five proposed frameworks. The detailed architectures of the five frameworks will be

described in the next subsections.

1.1 SimP: Secure Interoperable Multi-Granular Provenance Framework

Building a comprehensive provenance infrastructure involves addressing the fol-

lowing requirements ([15]):

• multi-granular provenance model: the infrastructure should provide an

expressive provenance model able to capture data objects with different forms

(e.g., file, database record, data in a workflow);

• provenance query language: the infrastructure should provide a query lan-

guage which is independent of the provenance model representation;

• security mechanism: the infrastructure should capture the permissions

granted to users at the time of data manipulation; the infrastructure should

also restrict access to provenance storage as it might contain sensitive data;

• interoperability services: the infrastructure should be interoperable with

other systems which adopt other provenance models.

We thus design and implement the first comprehensive provenance infrastructure

addressing the four requirements discussed earlier. Our framework, Secure Inter-

operable Multi-Granular Provenance Framework (SimP) [16], is an extension of the

framework on [15]. SimP includes the following contributions:

• A data provenance model extended from the provenance model proposed by

Sultana and Bertino [14]. We provide specifications of this model according to

a relational and graph model;

• A mapping ontology to support interoperation of our provenance model with

both OPM and PROV;

7

• The integration of our provenance framework with the Computational Research

Infrastructure for Science (CRIS) [31]. CRIS is widely used at Purdue Univer-

sity for managing scientific data from many different research areas, including

biology, biochemistry, water management, and social sciences;

• A design, implementation and evaluation of a query language for SimP [16,41].

1.2 ProFact: A Provenance-based Analytics Framework for Access Con-

trol Policies

Advances of technology in areas such as sensors, IoT, and robotics enable new

collaborative applications. Such applications involve not only humans but also au-

tonomous devices (e.g., drones, robots) [42]. A key requirement for such collabo-

rations is represented by secure information sharing or information flow protection.

Access control is a primary mechanism for selectively controlling accesses to a set of

protected information.

An access control system decides, based on a set of access control policies, whether

a subject (e.g., user, process, device, application) can access a specific information

resource (e.g., files) for performing a certain action (e.g., read, write). A large number

of research efforts have been devoted to defining access control models (surveyed by

Bertino et al. [17]) including RBAC [18] and XACML [19].

For an access control system to be effective and efficient, it is critical that poli-

cies be of “good quality” in order to make sure that the appropriate access control

decisions are taken. Towards this, we introduce a set of quality requirements and

propose a framework for policy analysis which utilizes provenance metadata to assess

the quality of policy sets [26].

As shown in Fig. 1.2, ProFact is based on three main phases: data collection,

policy analysis, and policy evolution. The data collection phase uses a provenance

logging component which captures all actions executed in the system in addition to

all changes made on the access control policy set and stores them in the provenance

8

repository. To support the data collection phase, the framework maintains the tree

structures (i.e., policy and transaction trees) which abstract the necessary information

for the analysis phase. The analysis phase includes two types of analysis approaches:

structure-bases and classification-based. The results of the analysis approaches are

aggregated into a separate repository referred to as policy analysis repository. More-

over, the framework provides automatic support for policy evolutions based on the

results of policy analysis. Based on the policy analysis, our evolution tool handles the

modifications to “low quality” policies and re-analyzes them. The overall novel frame-

work, which we refer to ProFact (standing for Provenance-based Analytics Framework

for Access Control Policies), has been implemented and experimental results are re-

ported from the implemented prototype.

Fig. 1.2.: The Infrastructure of the ProFact Framework

While implementing the framework, we were not able to obtain a large set of access

control policies in a real system. Alternatively, we generated a synthesized dataset

for experimental purposes. Moreover, machine learning algorithm (particularly clas-

sification techniques) sufficient dataset to efficiently learning the characteristics of the

dataset. In our framework, we addressed the challenges of classification techniques

9

at two levels: data level by sampling more dataset only in the learning phase and

approach level by devising a classification scheme that combines the classification

results of multiple well-known classifiers.

1.3 ProWS: Provenance-based Scientific Workflow Search

Workflows enable automating repetitive tasks performed by experts and scientists

in research systems. Thus, it is very crucial to benefit from workflows and utilize the

experience of other scientists. However, the key factor to facilitate workflows repro-

ducibility is to have a mechanism which accurately records all the detailed activities

comprising a workflow. The SimP framework allows one to capture detailed informa-

tion related to scientific experiments and then use this information to create workflow

repositories. By using SimP, we can address the three challenges discussed earlier: a)

scientific workflows can be represented by our provenance model independently from

underlying systems storing and managing the workflows; b) our provenance model is

able to accurately represent workflows by capturing all transactions related to work-

flow tasks; and c) provenance captures all metadata related to workflows which can

be aggregated for statistical and metadata queries.

We thus design and implement ProWS which consists of four-sequential stages.

In the first stage, the workflow management system is integrated with a provenance

mechanism to capture and store provenance information in the provenance repository.

Then, provenance metadata is transformed into workflows. Workflows are modeled by

directed graphs with nodes and edges; nodes represent functional modules while edges

represent the dependencies between modules. The workflows graph representation is

derived from the provenance model. In the third stage, several index structures

are allocated which organize workflow data according to different representations

supporting efficient workflow retrieval. The architecture of our framework is shown

in Fig. 1.3.

10

Fig. 1.3.: Provenance-based Scientific Workflow Search Architecture

Since workflows are represented as graphs, searching workflows can be expensive.

For example, supporting pattern matching against a workflow is an NP-complete

problem [43]. Therefore, answering workflow queries by sequentially scanning all

workflows in the workflow repository is not a suitable query processing strategy. To

address such issue, we have developed a set of index structures to reduce the search

space and thus reduce the query processing time.

1.4 Polisma: A Framework for Learning Attribute-based Access Control

Policies

Most modern access control systems are based on the attribute-based access con-

trol model (ABAC) [17]. In ABAC, user requests to protected resources are granted

or denied based on discretionary attributes of users, resources, and environmental

conditions [37]. ABAC has several advantages. It allows one to specify access con-

trol policies in terms of domain-meaningful properties of users, resources, and envi-

ronments. It also simplifies access control policy administration by allowing access

decisions to change between requests by simply changing attribute values, without

changing the user/resource relationships underlying the rule sets [37]. As a result,

access control decisions automatically adapt to changes in environments, and in user

and resource populations. Because of its relevancy for enterprise security, ABAC has

been standardized by NIST and an XML-based specification, known as XACML, has

been developed by OASIS [44]. There are several XACML enforcement engines, some

11

of which are publicly available (e.g., AuthZForce [45] and Balana [46]). Recently a

JSON profile for XACML has been proposed to address the verbosity of the XML

notation.

When addressing the challenge of learning ABAC policies from logs, a few key

requirements must be satisfied. The learned policies must be correct and complete.

Informally, an ABAC policy set is correct if it is able to make the correct decision

for any access request. It is complete if there are no access requests for which the

policy set is not able to make a decision. Such a case may happen when the attributes

provided with a request do not satisfy the conditions of any policy in the set.

To meet these requirements, the following issues need to be taken into account

when learning ABAC policies:

• Noisy examples. The log of examples might contain decisions which are erro-

neous or inconsistent. The learning process needs to be robust to noise to avoid

learning incorrect policies.

• Overfitting. This is a problem associated with machine learning [47] which

happens when the learned outcomes are good only at explaining data given as

examples. In this case, learned ABAC policies would be appropriate only for

access requests observed during the learning process and fail to control any other

potential access request, so causing the learned policy set to be incomplete. The

learning process needs to generalize from past decisions.

• Unsafe generalization. Generalization is critical to address overfitting. But

at the same time generalization should be safe, that is, it should not result

in learning policies that may have unintended consequences, thus leading to

learned policies that are unsound. The learning process has to balance the

trade-off between overfitting and safe generalization.

Thus, we investigate the problem of learning ABAC policies, and proposes a learn-

ing framework that addresses the above issues. Our framework learns from logs of

12

access requests and corresponding access control decisions and, when available, con-

text information provided by external sources (e.g., LDAP directories). We refer to

our framework as Polisma to indicate that our ABAC policy learner uses mining,

statistical, and machine learning techniques. The use of multiple techniques enables

extracting different types of knowledge that complement each other to improve the

learning process. One technique captures data patterns by considering the frequency

and another one exploits statistics and context information. Furthermore, another

technique exploits data similarity. The assembly of these techniques in our frame-

work enables better learning for ABAC policies compared to the other state-of-the-art

approaches.

Polisma consists of four steps. In the first step, a data mining technique is used to

infer associations between users and resources included in the set of decision examples

and based on these associations a set of rules is generated. In the second step,

each constructed rule is generalized based on statistically significant attributes and

context information. In the third step, authorization domains for users and resources

(e.g., which resources were accessed using which operations by a specific user) are

considered in order to augment the set of generalized rules with “restriction rules”

for restricting access of users to resources by taking into account their authorization

domain. Policies learned by those three stages are safe generalizations with limited

overfitting. To improve the completeness of the learned set, Polisma applies a machine

learning (ML) classifier on requests not covered by the learned set of policies and uses

the result of the classification to label these data and generate additional rules in an

“ad-hoc” manner.

1.5 Federated Learning for Attribute-based Access Control Policies

Recent policy-based management systems are attribute-based (AB). In particu-

lar, policy rules are expressed as conditions against domain-meaningful properties of

coalition parties, resources, actions, and environments. This approach simplifies pol-

13

icy administration as policy decisions automatically adapt between requests based on

changes of attribute values. Such a capability is critical to enhancing the autonomy of

coalition parties in the era of multi-domain operation (MDO) [48] involving coalitions.

In coalition MDO, coalition parties operating in the land, air, sea, or cyber will come

together to achieve collective goals by sharing multiple viewpoints about emerging

situations. Since coalition MDO contains multiple parties and types of resources, ap-

proaches to simplify policy specifications and a systematic approach to autonomously

adapt policies according to the context will be critical. A major challenge is the

specification of the AB policies representing the key input for policy enforcement.

Since in MDO, we may typically deal with local contexts and situations, the needed

detailed knowledge may be lacking. Addressing this challenge requires a distributed

intelligence approach for policy learning that is able to: (i) combine datasets avail-

able at coalition parties (e.g., directories, organizational charts, logs, and existing

local policies); and (ii) use machine learning (ML) to infer AB policies from these

combined data.

In coalitions, parties can each have their own datasets, and combining these

datasets can enhance the learning outcomes. In some cases, coalition members may

only share their own local policies but not the data they used to learn their policies.

In practice, a combination of those cases (i.e., sharing datasets, sharing policies) may

occur. A federated approach is thus required for learning policies from a broad vari-

ety of data and knowledge, including raw data, policies expressed as rules, and ML

models. It is, therefore, critical to develop an AB policy learning framework able

to learn from multiple data sources while at the same time assuring that each party

can generate accurate policies. To the best of our knowledge, there are no exist-

ing frameworks addressing such requirement. Recently, we have proposed a learning

framework [49] to learn policies of interest to a single party that uses only the data of

that party. Therefore, such a framework needs to be extended in a way that enables

its utilization in such a federated environment.

14

Towards enabling the learning framework to accommodate the differences that

might be encountered in a federated environment, one main issue is the conflicts that

might arise in the process of interchanging the policies between different coalition

parties. Those conflicts are expected as a result of the regulation differences and

security specifications. Thus, to address this issue, a similarity analysis, as well as

qualitative analysis, should be performed by the target party to ensure the correctness

and accuracy of the learning and transfer process. Another issue is the timeline and

degree of the interaction between the policies of a pair of parties to perform a better

learning and interoperability process. Therefore, we propose four approaches with

different levels of interaction aiming to find the best learning output.

1.6 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the SimP prove-

nance framework. Chapter 3 introduces the ProFact provenance-based policy analysis

framework and Chapter 4 introduces our workflow searching framework. Chapter 5

presents a learning framework for ABAC policies. Chapter 6 presents a federated

learning framework for transferring ABAC policies among multiple parties in a coali-

tion environment. Chapter 7 concludes the thesis and outlines directions for future

work.

15

2. SIMP: SECURE INTEROPERABLE

MULTI-GRANULAR PROVENANCE FRAMEWORK

The SimP provenance framework as shown in Fig. 2.1 is composed of the following

components: provenance model, provenance capturing component, interoperability

component, storage, and query component.

2.1 Provenance Model

In our provenance model, called SimP, the provenance of a data object records the

history of its input data, processes, operations, communications, actors, environments,

and access controls.

A process manipulates input data objects by performing a sequence of operations

to generate other data objects. A process might be a service in a user application

(e.g., a workflow in a scientific experiment application) or an operating system level

process (e.g., executing a script by shell command in UNIX). At a more detailed level,

an operation executes a task which is part of process execution. The operations may

generate/modify persistent data or intermediate results. In provenance, it is crucial

Fig. 2.1.: SimP Framework

16

to capture the origin of the generated data. Such information is captured by a data

lineage entity. In data lineage, data is described by the other data and the operations

used to derive it. Lineage helps in producing the data dependency graph of a data

object and implicitly describing the process dependency.

The operations in the same process or in two different processes interact by real or

virtual messages. In our model, such an interaction is referred to as communication.

There are two types of communication between operations. The first type refers to the

completion of operation followed by the start of another operation. The second type

refers to an operation executed (i.e., started and completed) within the execution of

another operation. We refer to the first type of communication as sequential and to the

second as composition. A communication may involve data passing if the operation

which initiated the communication generates data. Examples of communications

include data flow, copy-paste in UNIX. On the other hand, a process may initialize

another process to be executed. The process which invokes the initialization is the

parent process and the newly created process is the child process.

Processes (including its operations) and data are manipulated by actors which

can be people or workflows. Capturing information about actors, who actuate the

activities changing data objects, helps in detecting intrusion or system changes. A

user may authorize other users to perform certain activities on his behalf. In this

model, data objects are attributed to actors to identify users who inserted input data

or generated output by executing a process. Processes also have a context that affects

their execution and output. Such a context is represented by the environment which

refers to a set of parameters, and system configurations. Environment information

helps in understanding the system context and performance in which processes were

executed and data output were generated.

Our model is security-aware. Following the model by Ni et al. [14], our model is

able to represent the security access policies of actors at the time of data manipula-

tion by the actors. Information about access control policies includes which actors

are authorized to utilize which processes and operations on which data. Such infor-

17

mation is modeled in Access Control Policy entity which includes actor and policy

information. The policy object might refer to processes, or operations specified by

the policy subject.

All fundamental provenance entities contain a domain attribute which might be

used to specify the scope of provenance information (e.g., where processes and data

manipulations executed), especially when having a provenance storage for different

systems. In addition, the domain value might include more detailed scope information

(e.g., a particular application or workflow). The domain attribute is essential for

providing an abstract domain view of the provenance graph.

Our framework provides specifications of the provenance model in two represen-

tations: relational and graphs.

2.1.1 Relational Representation

In this section, we introduce a relational model representation of SimP which is

shown in Fig. 2.2. Based on the abstract description of our model, the fundamental

entities are stored in six fundamental tables (i.e., Data, Processes, Operations, Actors,

Environments, and Access Control Policies); in addition, there are tables maintaining

many-to-many relationships among the fundamental tables (i.e., Lineages, Commu-

nications, Process Input Data, Process Output Data, Operation Input Data, Operation

Output Data, and Delegations). These tables are connected through a set of refer-

encing relations (i.e., foreign key constrains). Each table has a unique identifier and

consists of several attributes.

Each data record contains a description, value, and Actor ID. An example of a

data object is a file. The actual data object identifier is different from data record

identifier in the provenance storage. Let us assume the data object is a script file

named fi. This file might be edited by different users at different times. Thus, the

provenance storage contains multiple records for fi and each record is identified by

different Data ID, but the description attribute of these records are similar (i.e., fi).

18

Fig. 2.2.: SimP Relational Model

In our model, every data object is attributed to an actor to trace who created the

object or generated it by executing a process.

Each process record has a unique ID and is executed by an actor in a certain

environment. A process manipulates certain data and may generate output data, so

process input and output data are recorded in the Process Input Data and Process

Output Data tables. The process is categorized into two types: application process or

system process. If the process belongs to an application (e.g., a scientific workflow),

it contains a workflow ID. Otherwise, it is a system process. In the case of system

process, the workflow ID attribute refers to the workflow hosting the application

process which encapsulates the system process. Each process has a description which

is the actual identifier of the process (e.g., executing the script file (fi)). A process

19

might be executed multiple times so to capture the provenance about the same process

multiple times we have an automatic generated ID to distinguish process records.

A process might be initialized (i.e., forked) by another process, so we store such

information in the parent process attribute.

Operation record attributes include ID, description, and process ID. Depending

on applications, the operation description attribute might contain different definitions

(e.g., a function name or a block of source code statements). The output of an

operation might be intermediate or persistent. The output is intermediate if it is

used as input for another operation while a persistent output is final. The persistent

output of operations is considered also as the output for the container process. On

the other hand, all input data of a process can be input data for all its contained

operations.

Communication record attributes include a description, carrier, the source oper-

ation ID, the destination operation ID, and type of communication. The detail level

of the communication description depends on the applications. The communication

channel (e.g., HTTP or SOAP) is described by the carrier attribute. The type of

communication between two operations might be sequential or composition.

Lineage record attributes include lineage ID, data ID, and operation ID that

produced this data operating on a certain input data IDs. A data item has multiple

lineage records if it is generated by an operation which took multiple input data.

The attributes of an actor record include actor ID, description, and role. A role

is a job of the actor. For an actor, the most recent record contains its current job

while its previous records might include its previous jobs. An actor can delegate

another actor to execute a process. Such information is stored in a Delegation record

which contains a delegator, delegate, subject, condition, start timestamp and end

timestamp. The subject might refer to processes or operations while the condition

refers to the identifier of the subject.

The content of an Environment record includes domain, state and parameters

attributes. In our model, each process belongs to one environment while an environ-

20

ment contains multiple processes. An environment timestamp is determined by its

parent process record (i.e., the first process executed within the environment).

The attributes of an access control policy record include access policy ID, actor

ID, subject, condition, effect, obligations. Such records capture the security access

policies of actors at the time of manipulating data of interest. The actor ID records

the actor privileged to perform certain operations or processes. The policy subject

might refer to processes, operations, or communications while the condition refers to

the identifier (e.g., process or operation description) of the subject.

2.1.2 Graph Representation

The relational model is suitable for storing provenance in a relational database.

However, as the standard provenance models (i.e., OPM and PROV) are modeled

according to a graph-based format, developing an interoperability ontology mapping

from these models onto our model requires a corresponding graph representation of

our model. Thus, we also introduce a graph model specification of SimP.

As shown in Fig. 2.3, our graph model consists of six nodes and twelve types of

edges. Our graph specifications follow the standard graph models provided by OPM

and PROV.

The graph nodes include Data, Process, Operation, Actor, Environment, and Ac-

cess Control policy. Each graph node has a set of attributes similar to its correspond-

ing entity table described in the relational model.

An edge in the SimP model is a relationship between the source of the edge and

the destination of the edge. The kinds of the relationship (and thus the meaning of

the edges) are specified by the types of the nodes that are the end-points of the edges.

These types of relations are defined as follows:

• An edge of type used connects a source Process or Operation to a destination

Data. It indicates that the process/operation required the availability of certain

data to be able to complete its execution.

21

Fig. 2.3.: SimP Provenance Model

• An edge of type wasGeneratedBy connects a source Data to a destination Pro-

cess or Operation. It indicates that the process/operation was required to ini-

tiate its execution for the data to have been generated.

• An edge of type wasDerivedFrom connects a source Data to a destination Data.

It indicates that the destination data needs to have been generated for the

source data to be generated.

• An edge of type wasExecutedBy connects a source Process to a destination

Actor. It indicates that a process with all its operations was executed by the

actor.

• An edge of type wasInformedBy connects a source Operation to a destination

Operation. It indicates that the execution of the destination operation was

followed by the execution of the source operation.

• An edge of type wasEncapsulatedBy connects a source Operation to a destina-

tion Operation. It indicates that the execution of the source operation is part

of the execution of the destination operation.

22

• An edge of type wasPartOf connects a source Operation to a destination Pro-

cess. It indicates that the execution of the source operation is part of the

execution of the destination process.

• An edge of type wasForkedBy connects a source Process to a destination Pro-

cess. It indicates that the execution of the source operation is initiated by the

destination process.

• An edge of type wasInContext connects a source Process to a destination Envi-

ronment. It indicates that the execution of the source process was in the context

of the destination Environment.

• An edge of type wasGrantedTo connects a source Access Policy to a destination

Actor. It indicates that the destination actor had the source access control

policy at the time of capturing the provenance.

• An edge of type actedOnBehalfOf connects a source Actor to a destination

Actor. It indicates that the action performed by the source actor was granted

by the destination actor.

• An edge of type wasAttributedTo connects a source Data to a destination Actor.

It indicates that the source data was manipulated by the destination actor.

Based on the proposed provenance specifications for relational and graph-based

representations, our framework supports two types of storage: relational database

(i.e., MySQL) or graph database (i.e., Neo4J) for storing provenance metadata. For

this sake, our framework has an abstract storage interface. This abstract interface

communicates with either MySQL adapter or Neo4J adaptor. The default storage is

Neo4J and the framework can be configured to change to the second database. The

administrator is able to change the target storage type at any time, but he should

first import the database from Neo4J to MySQL (or vice versa). We will show in

section III some insights on the choice of storage type based on provenance query

types.

23

2.2 Interoperability With Other Models

Provenance interoperability means that provenance framework is able to integrate

and convert provenance information represented by different provenance models in or-

der to facilitate provenance data interchange. Our model supports interoperability

with two well-known standard provenance models: OPM [12] and PROV [13]. Below

we provide some background about OPM and PROV model ontologies and address

the interoperation challenge by defining a mapping ontology that maps provenance

information expressed in each of those two standard models into provenance informa-

tion expressed in SimP.

2.2.1 Mapping from the OPM Standard Model

OPM [12] represents provenance information in a directed graph which consists

of nodes and edges. The nodes comprise three types of entities; Artifacts (i.e.,

data) which represent resources, Processes which represent actions or steps of ac-

tion performed on artifacts, and Agents (i.e., actuators) which control the processes.

The edges represent the dependencies and relations among the entities. There are

five types of edges: used, wasControlledBy, wasGeneratedBy, wasDerivedFrom, and

wasTriggeredBy. Each edge is distinguished by its source and destination: a process

used an artifact, a process was controlled by an agent, an artifact was generated by

a process, an artifact was derived from another artifact, and a process was triggered

by another process. OPM also introduced the concept of account to represent a

particular view of the provenance.

The conversion from OPM to our provenance model is straightforward because of

the rich vocabularies in our model. Table 2.1 shows the mapping from OPM graph

to our provenance model graph. Besides the intuitive mapping provided in Table 2.1,

we need to consider the following:

• OPM does not have a finer granularity level of description for a process as a

set of operations. When converting a process from OPM to SimP, we create a

24

process and operation and link them by a WasPartOf edge. Mapping an OPM

process into a SimP operation assumes that the relations connected with OPM

process are mapped onto relations with SimP operation. So the purpose of

creating a dummy SimP process is only to host the created SimP operation.

• In OPM, the intercommunication between a process and another process is

identified by one edge type, that is, WasTriggeredBy, which does not capture

the exact meaning of process-process relations (i.e., communication relation-

ship or parent-child relationship). In our model, these relations are repre-

sented by three types of edges (WasForkedBy, WasEncapsulatedBy, and Was-

InformedBy). WasForkedBy represents the parent-child relation between two

processes. On the other hand, WasInformedBy and WasEncapsulatedBy repre-

sent communications between two operations (in the same process or different

processes). More specifically, a WasInformedBy represents a sequential commu-

nication and a WasEncapsulatedBy represents a composition communication.

When performing a conversion, we map the OPM WasTriggeredBy edge to

WasInformedBy in our model under the assumption that all OPM processes

are related with sequential communication.

• OPM supports a particular view of provenance by including the “account” at-

tribute of the graph nodes. By contrast, in our model, we support such a view

of provenance using the environment node. So each node in OPM that has an

account attribute is mapped onto a WasInContext edge connecting the mapped

node with the environment node.

2.2.2 Mapping from the PROV Standard Model

A W3C provenance standard model called PROV [13] was published in 2013 based

on a revision of OPM. PROV graph contains three types of nodes: Entities (i.e., data)

to represent resources, Activities to refer to actions performed on entities and Agents

25

Table 2.1.: Mapping From OPM To SimP

OPM SimP

Nodes

Process Process, Operation, WasPartOf

Artifact Data

Agent Actor

Edges

Used Used

WasGeneratedBy WasGeneratedBy

WasDerivedFrom WasDerivedFrom

WasControlledBy WasExecutedBy

WasTriggeredBy WasInformedBy

to model parties responsible for activities. Additionally, PROV includes seven types

of edges: used (some entity used by an activity), wasAssociatedWith (an agent was

engaged in some activity), wasGeneratedBy (an entity generated by an activity),

wasDerivedFrom (an entity derived from another entity), wasAttributedTo (an agent

used an entity), actedOnBehalfOf (an agent acted on behalf of another agent) and

wasInformedBy (an activity sent its result data to another activity).

Table 2.2 explains the mapping from a PROV graph to a SimP graph. Besides the

straightforward mapping provided in Table 2.2, we need to consider the following:

• When converting an activity in PROV to SimP, we create a process and opera-

tion and link them by a WasPartOf edge. Mapping a PROV process into a SimP

operation assumes the relations connected with PROV process are mapped to

relations with SimP operation.

• As in OPM, PROV does not support an articulated specification of different

types of relations between activities. When converting, we map the PROV

26

Table 2.2.: Mapping From PROV To SimP

PROV SimP

Nodes

Activity Process, Operation, WasPartOf

Entity Data

Agent Actor

Edges

Used Used

WasGeneratedBy WasGeneratedBy

WasDerivedFrom WasDerivedFrom

WasAssociatedWith WasExecutedBy

WasInformedBy WasInformedBy

WasAttributedTo WasAttributedTo

ActedOnBehalfOf ActedOnBehalfOf

WasInformedBy to SimP WasInformedBy by assuming PROV activities are

related with sequential communication relation.

By following the mapping ontology described earlier, we implemented a conversion

tool that facilitates the conversion from the standard models (OPM, and PROV) to

SimP model. The input of the tool is an XML -formatted file containing data prove-

nance encoded according to the OPM model or the PROV model. The conversion tool

stores the converted provenance data into our provenance storage, that is, MySQL or

Neo4J.

2.3 Provenance Query Language

Our framework provides a unified provenance query language independent of the

provenance representation (relational or graph-based) and is referred to as QL-SimP.

27

The language provides expressions and constructs which facilitate the specifications

of SimP queries. Using QL-SimP, we propose a set of provenance queries.

2.3.1 QL-SimP Grammar

QL-SimP is derived from the Versioning Query Language (VQuel) [50]. Similar

to VQuel, a QL-SimP query has two main clauses: iterator and retrieval.

• Iterators specify the source entity from which results are fetched. The iterator

clause has the following format: RangeOf 〈iterator − variable〉 is 〈entity〉.

• The retrieval clause is used to select entity attributes. The retrieval might be

associated with a predicate, sorting, limit, or group-by clause. The predicate

is used to specify a condition which should be satisfied by the retrieved entity

records. The sorting clause re-orders the results based on a certain attribute(s)

either ascending or descending. Furthermore, the limit clause constraint the

number of retrieved records. QL-SimP also supports the Group− by clause to

group the result based on a set of attributes. Besides that, it has aggregate

functions (i.e., sum, avg, count, min, and max) which are usually associated

with the Group − by clause. Subsequently, the retrieval clause is formatted as

shown in definition 2.3.1.

Definition 2.3.1 (Retrieval Clause:) The retrieval clause has the following

format retrieve[〈iterator− list〉].〈attribute− list〉 [where〈predicate〉] [Group−

by〈attribute−list〉] [sort−by〈attribute(s)〉[asc/desc]] [limit〈positive−integer〉]

For referencing attributes, QL-SimP uses the iterator reference (e.g., Pro-

cess.description). The keyword all is also used to retrieve all attributes from the

corresponding entity (e.g., Process.all). QL-SimP supports different types of rela-

tional comparators (i.e., =, 6=, <, ≤, >, and ≥) and logical connectives (i.e., and,

28

or, and not). Combining similar structured results from two different queries is sup-

ported by the Union, UnionAll, and Intersect clauses. Both Union and UnionAll

are used to merge the result between two queries; Union returns distinct values while

UnionAll allows duplicate values. Intersect returns the common results between two

queries. The following example shows a query which combines the results retrieved

from two different entities which have the description attribute:

Query Example:

RangeOf P is Process retrieve P.description

Union — Union All — Intersect

RangeOf O is Operation retrieve O.description

QL-SimP has four constructs (Ancestor, Successor, Neighbor, and Origin) to

facilitate traversing the entities which have recursive relations (e.g., WasDerivedFrom

relates Data entities or WasForkedBy relates Process entities).

• 〈iterator〉.Ancestor(〈integer〉|〈min,max〉[, 〈relation − type〉]): It is used to

return a set of ancestors of the specified 〈Iterator〉 until a number of levels in

the provenance graph is reached. The number of levels can be specified by a

number or range. The relation − type is an optional input which specifies the

relation connecting an iterator with its ancestor.

• 〈iterator〉.Successor(〈integer〉|〈min,max〉[, 〈relation−type〉]): It is similar to

the Ancestor construct, but it returns the successors for a certain iterator.

• 〈iterator〉.Neighbor(〈integer〉|〈min,max〉[, 〈relation− type〉]): It is a relaxed

version of the Ancestor and Successor constructs. The distance between two

instances of an iterator is an integer number of levels regardless of the traversal

graph direction (i.e., forward or backward).

• 〈iterator〉.Origin([relation−type]): It is similar to the Ancestor construct with-

out any limitation on the number of ancestor levels for returning the origin(s)

of a certain iterator.

29

In addition to the recursive-relation traversal constructs, the Relation construct en-

ables traversing non-recursive relations on the provenance graph. It relates two it-

erator variables with a certain relation. It may also contain a predicate which is a

short-hand form of the Where clause. It has the form:

Relation(source− iterator − variable, destination− iterator − variable, type [,

predicate]).

Representing a pattern-based query by using the simple clauses introduced so far

is challenging. So we include in our provenance language an additional construct

to extract a subgraph using a pattern. The pattern is represented by a sequence of

relations. Every two consecutive relations must have a common iterator. The output

of the construct is the source iterator of the first relation. The pattern-based subgraph

has the form:

sub-graph(〈relation− sequence〉).

The following example shows a pattern composed of three relations. Every relation

might contain a predicate to reduce the size of the extracted sub-graph.

sub − graph(Relation(I1 is entity1, I2 is entity2, edge − type), Relation(I2 is

entity2, I3 is entity3, edge− type), Relation(I4 is entity4, I3 is entity3, edge− type)).

QL-SimP supports another construct which checks the connectivity between two

entities in the provenance graph without providing a pattern or a relation through

the Reachable construct which has the form:

Reachable(source− iterator − variable, destination− iterator − variable)

It returns true if the provenance graph contains a path connecting the two itera-

tors; otherwise, it returns false. The reachable construct corresponds to a reachability

query [51].

Besides that, a provenance query might require finding the minimum distance

between two iterator variables. The Minimum−Distanceconstruct, which supports

this functionality, follows the form:

Minimum − Distance(source − iterator − variable, destination − iterator −

variable[, predicate]).

30

Table 2.3.: Attribute-based Query Examples

aQ− P RangeOf P is Process Retrieve P .all Where P .domain = “Workflow”

aQ−O RangeOf P is Process, O is Operation Retrieve O.all Where

Relation(O,P ,wasPartOf) and P .description = “Create Workflow”

aQ−A1 RangeOf A is Actor Retrieve A.all Where A.domain = “Workflow”

aQ−A2 RangeOf P is Process, A is Actor Retrieve P . description Where

Relation(P ,A,wasExecutedBy) and A.description = “Peter” Union

RangeOf D is Data, A is Actor Retrieve D. description Where

Relation(D,A,wasAttributedTo) and A.description = “Peter”

It returns a distance which represents the minimum number of relations relating

two iterator variables. It may also contain a predicate which is a short-hand form of

the Where clause.

2.3.2 Provenance Queries

Attribute-based Queries: In these queries, the main entities of the provenance

model are retrieved by applying filters on their attributes. Examples of such queries

(shown in Table 2.3) are: find processes by domain (this query is referenced as aQ−P),

find all the operations belonging to a process (referenced as aQ− O); find actors by

domain (referenced as aQ − A1); and find a list of processes and data for a certain

actor (referenced as aQ− A2).

Invocation-based Queries: These queries retrieve the set of data objects ma-

nipulated by a selected process or operation. Examples of these queries (shown in

Table 2.4) are to search for data objects generated by processes that satisfy certain

criteria (e.g. process domain, actor or time) (referenced as iQ−Out−P) and to find

data objects which were input for such processes (referenced as iQ− In−P). These

31

Table 2.4.: Invocation-based Query Examples

iQ−Out−P RangeOf P is Process, D is Data Retrieve D.all Where

Relation(D, P , wasGeneratedBy) and P .domain = “Workflow” and

P .startTimestamp = “2015− 09− 02”

iQ− In−P RangeOf P is Process, D is Data, A is Actor Retrieve D.all

Where Relation(P , D, used) and Relation(P , A, wasExecutedBy)

and P .domain = “Workflow”

iQ−Out−O RangeOf P is Process, O is Operation, D is Data Re-

trieve O.Description, D.all Where Relation(O, P , wasPartOf),

Relation(D, O, wasGeneratedBy) and P .description = “Create

Workflow” and P .startTimestamp = “2015− 09− 02”

iQ− In−O RangeOf P is Process, O is Operation, D is Data Re-

trieve O.Description, D.all Where Relation(O, P , wasPartOf),

Relation(D, O, used) and P .description = “Create Workflow” and

P .startTimestamp = “2015− 09− 02”

queries facilitate using provenance for reproducing a data object, tracking system

changes, etc.

Lineage-based Queries: Data object dependencies are traversed either back-

ward or forward. With the backward traversal, we retrieve the historical dependency

of a data object while with the forward traversal we trace the usages of a data object.

An example of the backward data dependency query is to find the ancestor’s data

objects to data d (referenced as lQ − S − A and lQ − S − O in Table 2.5), and an

example of the forward data dependency query is to find the successors of the data

object (referenced as lQ− S − S in Table 2.5). The combined results of forward and

backward data dependency queries can be retrieved using the Neighbor construct

(referenced as lQ − S − N in Table 2.5). Furthermore, an example of finding the

32

Table 2.5.: Lineage-based Query Examples

lQ−S −A RangeOf D is Data, D3 is D.Ancestor(3) Retrieve D3.all Where

D.description = “Anatomy image”

lQ− S − S RangeOf D is Data, S3 is D.Successor(3) Retrieve S3.all Where

D.description = “Anatomy image”

lQ−S−N RangeOf D is Data, N3 is D.Neighbor(3) Retrieve N3.all Where

D.description = “Anatomy image”

lQ−S−O RangeOf D is Data, O is D.Origin() Retrieve O.all Where

D.description = “Anatomy image”

lQ−S−D RangeOf D1 is Data, D2 is Data Retrieve Minimum-Distance(D1,

D2) Where D1.description = “Anatomy image” and D2.description

= “Atlas image”

lQ−P−S1 RangeOf D is Data, GO is sub-graph(¡Relation(O1 is Operation,

P1 is Process, wasPartOf), Relation(P1 is Process, P2 is Process,

wasForkedBy), Relation(O2 is Operation, P2 is Process, wasPartOf,

O2.description = “execute experiment”)) Retrieve D.all Where

Relation(D, GO, wasGeneratedBy)

lQ−P−S2 RangeOf O is Operation, D is Data, GO is sub-graph(¡Relation(O1

is Operation, P1 is Process, wasPartOf), Relation(P1 is Process, P2

is Process, wasForkedBy), Relation(O2 is Operation, P2 is Process,

wasPartOf, O2.description = “execute experiment”)) Retrieve O.all

Where Relation(O, D, used) and Relation(D, GO, wasGeneratedBy)

minimum number of changes on data di to be transformed into another form dj is

shown in example lQ − S − D in Table 2.5. These types of query can utilize the

lineage entity in our provenance model.

33

In addition, data object dependency queries (i.e., lineage queries) may include

patterns, so we refer to them as pattern-based lineage queries. The traversal of

a data object dependency graph involves not only utilizing lineage entities but also

other entities such as processes, operations, and communications. The basic approach

for traversal is to match a set of relations involving fundamental provenance entities.

An example of pattern-based forward data dependency query is the query that finds

data objects produced by a specific flow pattern (referenced as lQ−P − S1 in Table

2.5). An example of the backward data dependency query is the query that finds the

data objects used in a specific flow pattern. Another complex example of the forward

data dependency query is the query that finds all operations which consumed data

objects that have been generated by a certain flow pattern (referenced as lQ−P − 2

in Table 2.5). The flow pattern used in the examples lQ−P −S1 and lQ−P −S2 is

“operations are contained in a process which was formed by another process, and the

later process contains a certain operation.”.

Communication-based Queries: These queries retrieve a set of operations

/processes that communicated with other operations/processes according to certain

types of communications such as sequential or composition. An example is a query

that finds a list of operations/processes which communicate with a certain process by

a composition relation. This type of queries may also be aggregated such as a query

finding the top N processes communicating together within the same environment in

a certain domain (referenced as cQ−A− Intra− P in Table 2.6) or finding the top

N processes communicating together between two different environments in a certain

domain (referenced as cQ−A− Inter−P in Table 2.6). This type of queries utilizes

the communication entity primarily.

Access-based Queries: The main purpose of these queries is to audit access

policies for users (i.e., actors) and how the policies can evolve in the future. These

queries can also be used to detect manipulations that did not follow the security

access policies. Examples of these queries include: find access policies for a certain

actor in a specific timeframe (referenced as acQ − P in Table 2.7); find operations

34

Table 2.6.: Communication-based Query Examples

cQ−A−Intra−P RangeOf P1 is Process, P2 is Process, O1 is Op-

eration, O2 is Operation, E is Environment Re-

trieve P1. description, P2. description, count(*)

Where P1.description 6= P2. Description and

Relation(O1,P1,wasPartOf) and Relation(O2,P2,wasPartOf)

and Relation(O2,O1,wasInformedBy—wasEncapsulatedBy)

and Relation(P1,E,wasInContext) and

Relation(P2,E,wasInContext) and P1.domain = “workflow

domain” and P2.domain = “workflow domain” Group-by P1.

description, P2. description Sort-by count(*) desc Limit n

cQ−A−Inter−P RangeOf P1 is Process, P2 is Process, O1 is Opera-

tion, O2 is Operation, E1 is Environment, E2 is En-

vironment Retrieve P1. description, P2. description,

count(*) Where P1.description != P2. Description and

Relation(O1,P1,wasPartOf) and Relation(O2,P2,wasPartOf)

and Relation(O2,O1,wasInformedBy—wasEncapsulatedBy)

and P1.domain = “workflow domain” and P2.domain =

“workflow domain” and Relation(P1,E1,wasInContext)

and Relation(P2,E2,wasInContext) and E1.description 6=

E − 2.description and P1.domain = “workflow domain”

and P − 2.domain = “workflow domain” Group-by P1.

description, P2. Description Sort-by count(*) desc Limit n

35

Table 2.7.: Access-based Query Examples

acQ−P RangeOf A is Actor, P is Process, AC is AccessPolicy Retrieve AC.all

Where Relation(AC, A, wasGrantedTo) and A.description = “Peter”

and AC.Subject = “Process” and AC.Condition = P .description and

P .startTimestamp ≥ “2015− 09− 02” and P .endTimestamp ≤ “2015−

10− 02”

acQ−O RangeOf O is Operation, A is Actor, P is Process, AC is AccessPol-

icy Retrieve O.all Where Relation(O, P , wasPartOf) and Relation(P ,

A, wasExecutedBy) and Not(Relation(AC, A, wasGrantedTo)) and

AC.Subject = “Process” and AC.Condition = P .description

acQ−H RangeOf P is Process, AC is AccessPolicy, A is Actor Re-

trieve AC.Subject, AC.Condition, AC.Effect, AC.Obligations Where

AC.Subject = “Process” and AC.Condition = P .description and

Relation(P , A, wasExecutedBy) and P .description = “Create Workflow”

and A.description = “Peter” Group-by AC.Subject, AC.Condition,

AC.Effect, AC.Obligations

36

which were actuated by actors who are not privileged to execute them (referenced as

acQ−O in Table 2.7); and find how a policy evolved for a certain process and actor

(referenced as acQ−H in Table 2.7).

Workflow-based Queries: The main purpose of these queries is to utilize

provenance data for retrieving the various versions of a workflow executed within a

time window. The applications of these queries include: analyzing a workflow evolu-

tion over time through comparing the historical versions of the workflow; comparing

the behavior of different users when executing a workflow; and generating an abstract

description of a workflow across several executed versions by different users. Exam-

ples of these queries include: find the list of operations that compose the tasks of a

specific workflow in a certain period (referenced as wQ− OT in Table 2.8); find the

list of data objects that were part of (either manipulated or produced by) the tasks of

a specific workflow in a certain period (referenced as wQ−DT in Table 2.8); find the

operations that compose the tasks of a specific workflow executed multiple times by a

certain actor (referenced as wQ−OA in Table 2.8); find the list of data objects that

were involved in the tasks of a specific workflow executed multiple times by a certain

actor (referenced as wQ−DA in Table 2.8); and find the list of common operations

in a workflow executed by two different actors (referenced as wQ− IA).

Transaction-based Queries: In general, at both application and operating

system level a transaction can be defined abstractly by three attributes: action, ob-

ject, and user. The transaction attributes can be extracted from our provenance

model based on the mapping ontology in Table 2.9. When mapping the used or

wasExecutedBy edges, we map the edge to the object which is the destination of the

edge. Transaction-based queries enable the retrieval of executed transactions in the

system supported by our provenance model. From a security perspective, these types

of query allow one to audit and monitor the system of interest at the transaction

level. Examples of these queries include: find the transactions executed by a certain

user (referenced as tQ − A in Table 2.10); and find the transactions that accessed

specific objects (referenced as tQ−D in Table 2.10).

37

Table 2.8.: Workflow-based Query Examples

wQ−

OT

RangeOf P is Process, O is Operation, E is Environment Retrieve O.description,

P .description, E.description, O.domain Where P .workflowID = “20” and

P .startTimestamp ≥ “2015−09−02” and P .endTimestamp ≤ “2015−10−02” and

Relation(O, P , wasPartOf) and Relation(P , E, inContextOf) Sort-by O.timestamp

wQ−

OA

RangeOf P is Process, O is Operation, A is Actor, E is Environment Retrieve

O.description, P .description, E.description, O.domain, A.description Where

P .workflowID = “20” and Relation(P , A, WasExecutedBy) and Relation(O, P ,

wasPartOf) and Relation(P , E, inContextOf) and A.description = “Peter” Sort-

by O.timestamp

wQ−

DT

RangeOf P is Process, D is Data Retrieve D.description, P .description

Where P .workflowID = “20” and P .startTimestamp ≥ “2015 − 09 − 02” and

P .endTimestamp ≤ “2015− 10− 02” and Relation(D, P , wasGeneratedBy) Sort-

by P .startTimestamp Union RangeOf P is Process, D is Data Retrieve

D.description, P .description Where P .workflowID = “20” and P .startTimestamp

≥ “2015− 09− 02” and P .endTimestamp ≤ “2015− 10− 02” and Relation(P , D,

used) Sort-by P .startTimestamp

wQ−

DA

RangeOf P is Process, D is Data, A is Actor Retrieve D.description,

P .description Where P .workflowID = “20” and Relation(P , A, WasExecut-

edBy) and Relation(D, P , wasGeneratedBy) and A.description = “Peter” Sort-

by O.timestamp Union RangeOf P is Process, D is Data, A is Actor Retrieve

D.description, P .description Where P .workflowID = “20” and Relation(P , A, Wa-

sExecutedBy) and Relation(P , D, used) and A.description = “Peter” Sort-by

O.timestamp

wQ−

IA

RangeOf P is Process, O is Operation, A is Actor Retrieve O.description,

P .description Where P .workflowID = “20” and Relation(P , A, WasExecutedBy)

and Relation(O, P , wasPartOf) and A.description = “Alice” IntersectRangeOf

P is Process, O is Operation, A is Actor Retrieve O.description, P .description

Where P .workflowID = “20” and Relation(P , A, WasExecutedBy) and Relation(O,

P , wasPartOf) and A.description = “Peter”

38

Table 2.9.: Mapping SimP Model to a Transaction

SimP Entity/Edge Transaction Attribute

Process Action

Operation Action

used Object

wasExecutedBy User

Table 2.10.: Transaction-based Query Examples

tQ− A RangeOf A is Actor, P is Process, D is Data Retrieve P .all

Where Relation(P , A, wasExecutedBy) and Relation(P , D, used) and

A.description = “Alice” union RangeOf O is Operation, A is Actor,

P is Process, D is Data Retrieve O.all Where Relation(O, P , was-

PartOf) and Relation(P , A, wasExecutedBy) and Relation(P , D, used)

and A.description = “Alice”

tQ−D RangeOf A is Actor, P is Process, DIN is Data, DOUT is

Data Retrieve O.all Where Relation(P , A, wasExecutedBy) and

Relation(DOUT , P , wasGeneratedBy) and Relation(P , DIN , used) and

DIN .description = “Anatomy image” Union RangeOf O is Operation,

A is Actor, P is Process, DIN is Data, DOUT is Data Retrieve O.all

Where Relation(O, P , wasPartOf) and Relation(P , A, wasExecutedBy)

and Relation(DOUT , O, wasGeneratedBy) and Relation(O, DIN , used)

and DIn.description = “Anatomy image”

39

Table 2.11.: Statistical-based Query Examples

sQ−OT RangeOf O is Operation, P is Process Retrieve P .description,

count(O.description) Where Relation(O, P , wasPartOf) and

P .startTimestamp ≥ “2015 − 09 − 02” and P .endTimestamp ≤

“2015− 10− 02” Group-by P .description

sQ−AT RangeOf A is Actor, P is Process Retrieve P .description,

count(A.description) Where Relation(P , A, wasExecutedBy) and

P .startTimestamp ≥ “2015− 09− 02” and P .endTimestamp ≤ “2015−

10− 02” Group-by P .Description

sQ−AR RangeOf A is Actor, P is Process Retrieve P .description,

count(A.description) Where Relation(P , A, wasExecutedBy) and

A.Role = “Accountant” Group-by P .Description

sQ−OR RangeOf O is Operation, P is Process Retrieve P .description,

count(O.description) Where Relation(O, P , wasPartOf) and A.Role =

“Accountant” Group-by P .description

Statistical Queries: These queries allow one to obtain statistical information

about provenance data. These queries provide a tool to analyze the system usage and

also support detecting abnormal behaviors by analyzing the temporal usage of system

resources by different actors. Examples of these queries include: find how many

operations were executed in each executed process within a certain period (referenced

as sQ − OT in Table 2.11); find how many actors executed each process within a

certain period (referenced as sQ − AT in Table 2.11); find how many operations in

each process were executed by actors having a certain role (referenced as sQ − OR

in Table 2.11); and find how many different actors executed each process where the

actors having a certain role (referenced as sQ− AR in Table 2.11).

40

All of the above types of queries (i.e., attribute-based, invocation-based, lineage-

based, communication-based, access-based, workflow-based, transaction-based, and

statistical) can help in detecting anomalies by comparing the expected output in the

recorded data provenance with the current execution. Once an anomaly behavior is

detected, we can identify actors who have such an anomalous behavior.

Because provenance storage grows fast, there is a need to reduce the size of the

provenance graph before executing a query. Our model thus includes some attributes

which enable creating provenance views or abstractions which are enough to execute

different queries. For example, the domain attribute helps in creating a provenance

graph in a certain domain view for executing a query efficiently. Also, the timestamp

attributes create a time-sensitive provenance graph. For example, instead of querying

how processes and actors modified a document two years ago, we can only consider a

subset of the provenance graph in the time frame of interest.

We implemented all these types of provenance queries using our query language

and integrated them as a parallel component in the SimP framework. The query

component supports viewing the results in tabular and graph format. To view the

query result in a visualized graph, we used Graphviz [52] API which is an open source

software created by AT&T Research. The API uses a graph description language

called DOT.

2.4 Security

Due to the sensitivity of data provenance information collected and stored in

provenance storage, security is an essential factor and requirement. Hence, we incor-

porated an additional entity to specify the privileges granted to actors for accessing

the provenance storage and executing provenance queries. Such an entity, referred

to as Provenance Query Authorization, records information about which actors have

which authorizations. The authorization is expressed as subject, condition, and ef-

fect fields. The subject refers to the type of provenance storage entity (e.g., Processes

41

entity) while the condition field identifies the provenance entity (e.g., Process De-

scription value). The effect field indicates the authorization status (e.g., granted or

revoked).

In conclusion, the security requirement in our framework is addressed by the fol-

lowing features: a) access control policy which is a main entity in the SimP model, and

b) provenance query authorization to secure the access to the sensitive information

in provenance storage.

2.5 Granularity

Another main factor in our provenance framework is the ability to specify and

modify the granularity level needed to capture provenance for specific records or

entities. For this purpose, in our provenance database, we include an additional entity,

referred to as Granularity Policy, which is not part of the provenance model, but it

is part of our provenance framework. A granularity policy enables users to specify

the desired level of provenance details to be captured and stored (e.g., capturing

provenance at the activity level in scientific provenance workflow, or the OS level to

capture system configurations). A Granularity Policy record includes the following

fields: granularity policy ID, actor ID, subject, condition, granularity type. The

subject may refer to the targeted process, operations, or communications, whereas

the condition refers to the identifier of the subject. The granularity type is the detail

level of the required provenance.

In conclusion, the requirement of multi-granularity in our framework is addressed

by the following features: a) a provenance model able to represent provenance meta-

data for data objects at various granularity levels; b) support for the integration

with systems utilizing different provenance capturing mechanisms (i.e., provenance

for workflow data or file system); and c) support for granularity preferences based on

granularity policies.

42

2.6 Integration with the CRIS System

We integrated our provenance model in the Computational Research Infrastructure

for Science (CRIS) [31]. CRIS is a scientific data management workflow cyberinfras-

tructure for scientists lacking extensive computational expertise. The application is

currently used by a community of users in Agronomy, Biochemistry, Bioinformat-

ics, and Health Care Engineering at Purdue University. Previously, CRIS had its

own provenance model mainly based on versioning mechanism. Such a mechanism

is not able to capture provenance at different granularities since it is data-centric.

Our model is data and operational centric in that we maintain metadata about the

derivation of every data object (i.e., what is the original source of a data object and

what is the deriving operation?).

Within the CRIS system, we have a provenance logging component based on

aspect oriented programming to instrument the application code. The logging com-

ponent collects a set of appropriate provenance logs while the CRIS is running. The

logs use an XML-based representation of provenance records to facilitate parsing

them into SimP model. Periodically, the CRIS provenance logs are fetched and con-

verted into another XML-format file. The new XML file contains a data dependency

provenance graph following the SimP representation ontology.

2.7 Experimental Results

The main purpose of the experiment part is to evaluate the provenance model in

its two representations, relational and graph-based, using the query component.

2.7.1 Experimental Methodology

To evaluate the performance of provenance queries when executed on the SimP

relational and graph databases, we conducted several experiments using three prove-

nance datasets; one is a real dataset (referred to as REAL) extracted from the CRIS

43

Table 2.12.: Provenance Dataset size

Actor Process Operation Data Lineage Communication

REAL 10 110 997 12.3K 59.8K 936

SYN1 60 4.8K 21.4K 125.6K 289.7K 12.5K

SYN2 150 7.2K 81.6K 357.2K 826.6K 50.3K

testing environment, and the other two are synthetic datasets (referred to as SYN1

and SYN 2) generated by a random dataset generator to scale the size of the prove-

nance experimental dataset. Table 2.12 shows the size of each dataset in terms of the

main entities.

For each query type, we ran multiple parameterized queries and averaged their

execution time. All times are in milliseconds. To avoid the caching effect on timing,

each query was executed 5 times and the longest and shortest times were ignored.

In each database (MySQL or Neo4J), we built a set of indexes to enhance query

performance; for Neo4J we created schema indexes while for MySQL we created b-

tree indexes on proper fields for speeding up queries. To avoid any latency posed by

database driver or middleware existing between our query component and database

engine, all queries were executed natively on the database engine. All experiments

were performed on a 3.6 GHz Intel Core i7 machine with 12 GB memory running

on 64 bit Windows 7. In our provenance framework, we used MySQL 5.7 and Neo4J

2.3.2.

2.7.2 Provenance Query Evaluation Results

Fig. 2.4 shows the execution time for six types of queries (attribute-based,

invocation-based, communication-based, workflow-based, transaction-

based, and statistical) using the REAL, SYN1 and SYN2 datasets. In general,

44

Fig. 2.4.: Average Execution Time for Attribute-based, Invocation-based,

Communication-based, Workflow-based, Transaction-based, and Statistical Queries

with the SYN1, SYN2, and REAL datasets

Fig. 2.5.: Execution Time for A Sample of Attribute-based Queries in the SYN2

Dataset

45

MySQL outperformed Neo4J, especially with large datasets. The queries used in this

experiment are structural queries which require scanning data for a specific attribute

value, joining data, or aggregating data. In the SYN2 dataset, the speedup fac-

tors of attribute-based, invocation-based, communication-based, workflow-

based, transaction-based, and statistical queries were 9.3, 10.2, 3.8, 3.4, 3.5, and

8.9 respectively. The speedup of communication-based, workflow-based and

transaction-based queries was low relatively to the other queries because they re-

quire grouping and joining large amounts of data. Fig. 2.5 shows the execution of

a sample set of attribute-based queries on the SYN2 dataset (aQ − A, aQ − P ,

aQ−O, and aQ−A2). MySQL achieved the highest speedup with a factor of 53.8 in

aQ−A while the lowest speedup was in aQ−A2 with a factor of 1.6. Q−A2 is based

on the Union construct where the relational and graph-based databases have almost

the same execution plan. Thus there is no valuable speedup. Furthermore, Fig. 2.6

shows the execution of a sample set of workflow-based queries on the SYN2 dataset

(wQ − OT , wQ − OA, wQ −DT , wQ −DA, and wQ − IA). MySQL achieved the

highest speedup with a factor of 8.1 in wQ − OT while the lowest speedup was in

wQ−DT with a factor of 3.1. Lineage-based queries show the strength of Neo4J.

Fig. 2.7 shows the execution time in base-10 logarithmic scale. This type of queries

requires provenance graph traversals along certain paths to fetch data. Since Neo4J

stores provenance data as a graph, it is able to perform better than MySQL. With the

REAL dataset, the speedup factor of Neo4J was 12.4 while it was 10.2 and 13.1 with

the SYN1 and SYN2 datasets, respectively. Fig. 2.8 shows the execution of a sample

set of lineage-based queries in base-10 logarithmic scale (lQ− S − A, lQ− S − S,

lQ − S − N , lQ − S − O, and lQ − S − D) in the SYN2 dataset. Neo4J achieved

the highest speedup with a factor of80 in lQ − S −D while the lowest speedup was

in lQ − S − S with a factor of 13.7. Based on Fig. 2.8, the cost of lQ − S − N

is the most because it requires bi-directional traversal (i.e., forward and backward).

Access-based queries are another example of structural queries. Also for such

queries, the performance of MySQL exceeds Neo4J with a very high speedup factor,

46

Fig. 2.6.: Execution Time for A Sample of Workflow-based Queries in the SYN2

Dataset

Fig. 2.7.: Average Execution Time of Lineage-based Queries

47

Fig. 2.8.: Execution Time for A sample of Lineage-based Queries with the SYN2

Dataset

Fig. 2.9.: Average Execution Time for Access-based Queries

48

especially when dealing with a large dataset. Fig. 2.9 shows the execution time in

10-base logarithmic scale where the speedup factor of MySQL was 9.9 in the REAL

dataset.

Based on our evaluation, if the query component is heavily used for lineage queries

Neo4J is the best choice. On the other hand, MySQL is much faster if the user queries

are of a structural type such as attribute-based, invocation-based and access-based

queries.

2.8 Related Work to the SimP Framework

Data provenance has been extensively investigated in e-science systems (surveyed

in [53]). Examples of these systems which are data-centric workflow systems include

myGrid [9], Chimera [8], and Karma [10]. The provenance model in myGrid focuses

on service executions including their duration, data input, and the generated data.

Whereas Chimera has its own language (referred to as Virtual Data Language) that

considers the relations between activities and resources as the main provenance meta-

data. In Karma, the provenance model captures the activities that are executed at

the workflow, service and application levels. Furthermore, there are some provenance

systems that are devoted to process-centric workflows instead of data-centric as (e.g.,

PreServ [54]). In PreServ, the provenance system focuses on the relations among pro-

cesses and data where the relations are categorized as service-service (i.e., source and

sink service), data-data (i.e., data derivation), and service-data (a service consumes

data, or a service produces data). Other than workflow-based provenance systems,

some other systems focus on operating system level (e.g., PASS [11] and ES3 [55]).

PASS captures the provenance of the processes that utilize the shared memory and

records the data which were used or generated by these processes. ES3 also captures

the consumed and produced data at file system level.

On the other hand, OPM [12] and PROV [13] are standard models supporting

interoperability and hence are not restricted to a specific system as in the previ-

49

ously mentioned provenance systems, but can be applied to different systems. PROV

provides a toolbox [56] to create PROV graphs in different representations and trans-

forms the graph among these representations; whereas OPM provides a toolbox [57]

to create OPM graphs. There are some systems which are based on frameworks com-

patible with OPM (e.g., SPADE [58]). OPM and PROV are not able to capture access

control policies. This limitation addressed by Ni et al. [14] and then by Cadenhead

et al. [59]. The provenance models proposed in [14] and [59] support security; how-

ever they focus only on operation-based provenance and hence lack multi-granularity

support. In [15], Sultana and Bertino proposed an initial comprehensive provenance

infrastructure then extended by Abu Jabal and Bertino [16].

Holland et al. [60] discussed the shortcomings of the query languages inherited with

three types of data models (i.e., relational, XML, and RDF). They proposed a query

language, PQL, to support path queries. The limitation of PQL is an extended form

of the Lorel language [61] which is an object-oriented language for semi-structured

data. Our provenance query language is composed of general constructs which can be

implemented in different data models. Anand et al. [62] proposed a query language

which is closed to lineage dependencies. Their query language considers a provenance

graph composed of only data nodes and lineage edges. VQuel, by Chavan et al. [50],

is a unified query language for versioning systems. We extended it to support our

provenance model.

50

3. PROFACT: A PROVENANCE-BASED ANALYTICS

FRAMEWORK FOR ACCESS CONTROL POLICIES

3.1 Preliminaries

In what follows, we introduce background concepts and information needed for

the subsequent developments in the discussion.

3.1.1 Role-based Access Control

The role based access control (RBAC model) consists of four basic components

[18]: users, roles, permissions, and sessions. A role represents an organizational

function within a given domain (e.g., a coalition or an enterprise). Roles are granted

permissions required for the execution of their functions. A permission consists of the

specification of a protected object and an action, defined on the object, and indicates

that the action can be executed on the object. Users (e.g., humans, devices) represent

the active entities that execute actions on the protected objects. Users are assigned to

roles and thus inherit the permissions of their assigned roles. A session is a sequence

of accesses executed by a user under one or more roles. When a user becomes active

in the system, it establishes a session and, during this session, it uses one or more

roles among the ones it has been assigned to.

The RBAC model definition includes several functions. The user assignment (UA)

function specifies which user is assigned which roles, whereas the permission assign-

ment (PA) function specifies the set of permissions assigned to each role. The user

function maps each session to a single user, while the role function assigns a session

to a set of roles (i.e., the roles that are activated by the corresponding user in that

51

session). The following definition (adapted from Sandhu et al. [18]) formally defines

the RBAC model.

Definition 3.1.1 (Role-based Access Control Model [63]) The model consists

of the following components.

• U , R, P , S refer to the set of users, roles, permissions, and sessions, respec-

tively.

• A permission pi ∈ P is a tuple of three components consisting of an object oj ∈

O, an action a ∈ A, and a sign g ∈ {+,−}.

• PA is the permission assignment function that assigns permissions to roles (i.e.,

PA ⊆ R× P and PA(ri) ⊆ P , ∀ri ∈ R).

• UA is the user assignment function that assigns users to roles (i.e., UA ⊆ U×R

and UA(ui) ⊆ R, ∀ui ∈ U).

• The user function assigns a session to a single user (i.e., user : S −→ U |

user(si) ∈ U).

• The roles function assigns a session to the roles associated with the user ac-

tivated the corresponding session (i.e., roles ⊆ S × 2R | roles(si) = {r |

(user(si), r) ⊆ UA}).

• RH is the role hierarchy function (i.e., RH ⊆ R × R), which refers to the

partially ordered role hierarchy (written ≥).

Notice that in Definition 3.1.1, we associate a “sign” with each permission to support

positive and negative authorizations. A positive authorization, denoted by the ‘+’

sign in the permission, is an authorization that allows the role, specified in the autho-

rization, to execute the action on the object specified in the authorization permission.

By contrast, a negative authorization, denoted by the ‘-’ sign in the permission, spec-

ifies that the role, specified in the authorization, cannot execute the action on the

52

object specified in the authorization permission. Negative authorizations are partic-

ularly useful when dealing with large sets of protected objects organized according

to hierarchies. In such contexts, negative authorizations combined with authoriza-

tion propagation along objects hierarchies support the specification of exceptions, by

which one can, for example, allow a role to read an entire directory with the ex-

ception of a given file in the directory. Authorization propagation and positive and

negative authorizations have been widely investigated [64], and also introduced in ac-

cess control systems of commercial products. An example is the access control model

of SQL Server in which authorizations propagate along securable hierarchies and in

which negative authorizations can be specified by means of the DENY authorization

command [65]. In our contexts, negative authorizations are also critical in order to

provide boundaries to actions that cognitive autonomous devices can execute.

3.1.2 Policy Life Cycle

We assume an iterative policy lifecycle composed of three stages (specification,

enforcement, analysis) which form the basis for the deployment of the policies in the

system of interest. In the policy specification stage, the administrator coordinates

with the representative system users to determine the policies to be enforced. The

policy enforcement stage is the one in which policies are applied to control the actions

executed by the system users on the protected objects. As the environments we deal

with are characterized by dynamic contexts and situations, it is often the case that

policies may have to evolve in order to adapt to changes. Therefore, during the policy

enforcement stage, additional information is collected that is used by the next stage

in the policy lifecycle, that is, the analysis stage. Such a stage evaluates the quality

of the current policy set based on the information collected through the enforcement

stage and suggests possible changes to the current set of policies. The evolved policies

are then deployed and enforced.

53

3.1.3 Transactions

Policies are mainly important to control transactions which are performed in the

system. Each process which is logged using provenance refers to a task in a workflow

and each task represents a transaction executed at run-time. We formally define a

transaction as follows:

Definition 3.1.2 (Transaction) A transaction t ∈ T is an action a ∈ A executed

by a user u ∈ U on an object o ∈ O. Thus, a transaction t is represented by a tuple

(u, o, a).

3.2 Policy Analysis Metrics And Structures

In this section, we introduce the quality requirements that are used as metrics to

evaluate policies through the analysis process. We also describe two data structures

that are utilized for the policy analysis.

3.2.1 Policy Quality Requirements

We illustrate the policy quality requirements by the following running example

(adapted from [66]).

Example: We envision an automated delivery management system for army

forces operating in a set of bunkers which are supported by a remote supply depot.

Autonomous vehicles (mules) are used to transfer supplies (e.g., meals ready to eat

(MREs)) from the depot to the bunkers. Supplies in all sites, including the bunkers and

the depot, are managed by robotic devices. Smart refrigerators at bunkers manage the

MRE inventory and notify the robot at the depot when additional supplies are needed.

At the depot, there are several robots and mules. The mules transfer supplies from

the depot to bunkers. There are two types of robot. One is the depot manager which

receives notifications from smart refrigerators at bunkers and manages the transfer of

the required supplies to bunkers; the other type is the worker that is responsible for

54

loading the mules with supply cartoons. In addition, there is a computer system that

maintains a central database for sharing necessary information (e.g., mule location

and status, depot supply, robot status).

In such a delivery management system, we focus on designing an access control

system for the robots working at the depot. Because of the two types of robot, we have

two corresponding roles: manager and worker. The worker executes the following

types of transaction: (i) receive loading requests; (ii) load a mule with the supplies;

and (iii) report its status to the computer system. The manager is authorized to

perform the same types of transaction as the worker and in addition is authorized

to perform the following types of transaction: (i) receive notification from a bunker;

(ii) inquire whether a bunker needs supplies; (iii) check availability of supplies; (iv)

retrieve the list of available mules and workers; (v) and assign a worker and mule for

a delivery request. The access control policies related to these transactions are listed

in Tables 3.1 and 3.2.

The problem of assuring the quality of a set of access control policies can be

restated as the problem of making sure that policies do not have inconsistency, are

not redundant, irrelevant, and incomplete with respect to the actions executed by the

users. In addition, it is critical to minimize the number of explicit exceptions that

must be allowed with respect to the policies. Minimizing the exceptions is critical to

reduce the manual administrative activities to be executed in the system. In what

follows we introduce several definitions underlying our policy quality notion.

Definition 3.2.1 (Inconsistency) Access control policies acpi, acpj ∈ ACP are

inconsistent if and only if

• acpi.r = acpj.r ∧ acpi.p.o = acpj.p.o ∧ acpi.p.a = acpj.p.a

• acpi.p.sign 6= acpj.p.sign.

Inconsistency refers to the situation in which for the same access by the same role, one

policy allows the access and the other denies it. Policy inconsistency leads to conflicts

55

Table 3.1.: Example of Access Control Policies for the Depot Manager Role for the

Robots Working in a Delivery Management System

Policy
Permission

Action Object Sign

acp1 Receive Notification from bunkers +

acp2 Receive Notification from bunker 10 −

acp3 Receive Notification from bunker 5 +

acp4 Inquire a Bunker Bunker Status +

acp5 Inquire central DB Supply Status +

acp6 Inquire central DB List of available mules +

acp7 Inquire central DB List of available workers +

acp8 Assign loading task Worker, Mule, Supply +

acp9 Receive Loading task +

acp10 Load Supply, mule +

acp11 Report to central DB Robot status +

Table 3.2.: Example of Access Control Policies for the Depot Worker Role for the

Robots Working in a Delivery Management System

Policy
Permission

Action Object Sign

acp12 Receive Loading task +

acp13 Load Supply, mule +

acp14 Report to central DB Robot status +

acp15 Report to Manager Robot status −

56

at policy enforcement stage that then requires conflict resolution strategies [67] be

applied. Minimizing the inconsistencies is thus critical to reduce the need for conflict

resolutions activities.

Example : As shown in Table 3.1, acp1 specifies that a robot with the manager

role has a positive permission to receive notifications from all bunkers. However,

based on acp2 the role manager is forbidden from receiving notifications from the

bunker with number 10. Hence, acp1 is inconsistent with acp2.

Definition 3.2.2 (Policies Exceptions) A transaction ti ∈ T (u ∈ U , o ∈ O,

a ∈ A) is an exception with respect to an access control policy acpj ∈ ACP if and

only if

• ti.o = acpj.p.o ∧ ti.a = acpj.p.a ∧ acpj.r ∈ UA(ti.ui) ∧ acpj.p.sign = ‘−′

• ∃PRk ∈ SimP.Processes | PRk.Operation = ti.a ∧ PRk.Data = ti.o ∧

PRk.User = ti.u.

A policy exception arises when a transaction is executed that violates a negative

authorization. In general, whereas exceptions may arise due for example to unforeseen

circumstances; it is important to minimize their occurrences. Exceptions may require

explicit ad-hoc and temporary authorizations from human administrators, which can

be expensive and not always possible. It is thus therefore critical to analyze exceptions

to determine whether policies should be modified so to be able to cover the frequently

occurring exceptions.

Example : Consider policy acp15 from Table 3.2. According to such a policy, a

worker is not authorized to communicate with the manager about emergency situ-

ations. Suppose that one of the worker robots has a malfunction while performing

a loading task. The worker robot should notify the manager about the situation to

enable the manager to reassign the task to another worker. To solve this situation,

the administrator allows the worker robot to notify the manager about the task by

adding a temporary access control policy and disabling acp15. However, it is clear

57

that a modification of the policy allowing a robot to notify the manager in the case

of malfunctioning would be a more efficient solution.

Definition 3.2.3 (Incompleteness) A set of access control policies is incomplete if

and only if

• ∃ti ∈ T | ti = (ui ∈ U , oi ∈ O, ai ∈ A

• ∃PRk ∈ SimP.Processes | PRk.Operation = ti.a ∧ PRk.Data = ti.o ∧

PRk.User = ti.u

• @acp ∈ ACP | ti.o = acp.p.o ∧ ti.a = acp.p.a ∧ acp.r ∈ UA(ti.ui).

Incompleteness refers to the situation in which an access request is issued that is not

covered by the current policies.

Example : Consider the case in which a worker asks information about the ca-

pacity of a mule. In this case, there is no policy either allowing or denying the access

to this information.

In cases like the one in the previous example, we say, as in the well-known XACML

standard [19], that there is no applicable policy. Making sure that all actions are

covered by some policies is critical to enhance the predictability of device behaviors.

Definition 3.2.4 (Redundancy) An access control policy acpi ∈ ACP is redundant

if and only if

• ∃acpj ∈ ACP

• acpi.r = acpj.r∧(acpi.p.o ⊆ acpj.p.o∨acpj.p.o ⊆ acpi.p.o)∧acpi.p.a = acpj.p.a∧

acpi.p.sign = acpj.p.sign.

Redundancy arises when there is a set of similar policies that control the same situ-

ation of interest. Detecting redundancy helps in reducing the size of the policy set.

In addition, it enhances security.

58

Example : Consider the policies in Table 3.1. Based on acp1 and acp3 a robot

manager is authorized to receive notifications from Bunker 5. Hence, these two poli-

cies will be enforced. However it is clear that policy acp3 is redundant with respect

to acp1 and as the latter is more general, the former can be removed.

Definition 3.2.5 (Irrelevancy) An access control policy acpi ACP is irrelevant if

and only if

• @PRk ∈ SimP.Processes | PRk.Operation = acpi.p, a∧PRk.Data = acpi.p.o∧

acpi.r ∈ UA(PRk.User)

• @PLk ∈ SimP.Policies | PLk.Operation = acpi.p, a ∧ PLk.Data = acpi.p.o ∧

acpi.r ∈ UA(PLk.User).

Irrelevancy refers to the situation in which no access requests are issued to which

a given policy is applicable. Removing irrelevant policies enhances security and en-

hances usability in cases in which human users have to inspect the policies, for example

when solving policy conflicts.

Example : Consider the policies in Table 3.1. According to acp4, the robot

manager is able to inquire about a bunker status. Nonetheless, such a policy is

irrelevant as bunkers automatically send requests.

Removing irrelevant policies is critical when policies are not used, as irrelevant

policies may undermine security. For example, an attacker may try to compromise a

user in order to exploit the privileges of this user. Thus, making sure that a user does

not have permissions for actions that the user is not expected to execute is critical to

minimize such exploitations.

3.2.2 Structures for Policy Analysis

Policy analysis requires scanning the policy set to detect the policies which vio-

late the policy quality requirements. Furthermore, assessing policy quality requires

59

searching two types of data sources: the set of policies and the set of executed trans-

actions in the system. Therefore, to support such searches, we introduce the following

structures.

Policy Tree

The set of access control policies ACP is represented by a balanced multi-way

tree structure (referred to as policy tree) (see Fig. 3.1 for an example1). A policy tree

contains four types of nodes: role, action, object, and sign. The root node consists

of role nodes which represent all distinct roles in ACP . Each role node points to a

set of action nodes which represent the authorized actions to the role. Furthermore,

each action points to a set of objects on which the corresponding role is allowed to

perform the corresponding actions. Each object node points to a leaf node which

represents the authorization permission sign. The leaf node is augmented with two

additional values: Policy ID which refers to the identifier of the policy represented

by the corresponding path, and Counter which represents how many times the policy

was enforced.

Fig. 3.1.: Policy Analysis Structures: Policy Tree (right) and Transaction Tree (left)

1The figure is based on the policies with odd identifiers in Tables 3.1 and 3.2 to simplify the figure.

60

Each node in the tree has un-limited fan-out (i.e., the maximum number of chil-

dren) so the constructed structure is a wide and shallow tree. Heuristically, for

constructing the policy tree, we choose role nodes to be stored in the first level to

minimize the number of tree branches; hence searching the tree becomes more ef-

ficient. Furthermore, each node in the tree contains a hash table where the main

elements in the node are the keys while the key values are the corresponding pointers

to the successor nodes. This enhances the efficiency of the searches on the policy tree

for a certain access control policy as it avoids the sequential inspection of all child

nodes in each node.

In distributed environments, each party might have its own local policy set; hence

a set of policy trees are constructed.

Transaction Tree

The set of transactions that are executed in the system is represented by another

balanced multi-way tree (referred to as transaction tree) (see Fig. 3.1 for an example).

The structure of this tree is similar to that of the policy tree, but the leaf nodes are a

set of objects where each leaf node is augmented with a counter (indicates how many

times a transaction recurred) and pointer(s) to leaf node(s) in the policy tree(s). A

leaf node in the transaction tree is mapped optimally to one leaf node in the policy

tree. However, it might be mapped to more than one leaf node (e.g., in the case of

the existence of redundant policies).

The transaction tree is populated with the transactions which are captured by

the provenance framework. Hence, the provenance repository is periodically queried

about recent transactions in order to maintain the transaction tree. The maintenance

of the transaction tree is illustrated in Algorithm 3.1. The retrieved provenance

records include a set of processes where each process record contains a set of operations

and each operation executed by a user and manipulated a set of data. An operation

which is executed by a user and manipulates data is mapped to a transaction t (i.e.,

61

user, object, and action). Since SimP captures the role assigned to the user at the

operation execution time, SimP identifies the role which was assigned to the user

who executed a transaction. A transaction tuple along with its corresponding role

is inserted into the transaction tree. Next, we search the policy tree to identify

the policy which potentially controls the corresponding transaction. If a policy is

found, we connect the leaf node of a transaction path in the transaction tree with the

leaf node of the matching policy path in the policy tree and update their counters

accordingly.

Table 3.3.: Notations for The Asymptotic Time Analysis

Notation Description

n The number of access control policies.

m The number of transactions.

fR The number of unique roles which represents the maximum

fan-out of the root node of the tree structures.

fA The number of unique actions which represents the maximum

fan-out of an action node in the tree structure.

fO The number of unique objects which represents the maximum

fan-out of an object node in the tree structure.

Policy-and-Transaction Tree (PT-Tree)

Instead of building two individual structures (i.e., policy tree and transaction

tree), a hybrid structure (referred to as a policy-and-transaction tree) can be built

to store both sets of transactions and access control policies in a tightly-combined

organization. In order to build such an integrated structure, the structure of policy

tree can be adapted to store access control policies as well as their corresponding

transactions. When an executed transaction does not have a corresponding policy

62

that controls it, the transaction is added as a policy but the value for the sign node is

special2 and the value for Policy ID is empty. Otherwise, the path corresponding to

the enforced policy while executing the transaction is updated by incrementing the

Counter value.

Time Complexity of Structure Construction

Algorithm 3.1 Maintain Transaction Tree

Require: TransactionTree, PolicyTree, SimP

1: for ∃PRk ∈ query(SimP.Processes) do

2: Define t as Transaction

3: t.a = PRk.Operation, t.o = PRk.Data, t.u = PRk.User

4: r = PRk.User.Role

5: leaf 1 = Insert(r, t.a, t.o) into TransactionTree

6: leaf 2 = Search(r, t.a, t.o) into PolicyTree

7: leaf 1.counter = leaf 1.counter + 1

8: if leaf 2 6= φ then

9: link(leaf 1, leaf 2)

10: leaf 2.counter = leaf 2.counter + 1

11: end if

12: end for

For discussing the time asymptotic analysis for constructing the policy, transac-

tion, and PT trees, we used the notations listed in Table 3.3.

At the running time of a system, every transaction executed by a user is mapped

to a record matching an access control policy. Thus, the unique set of transactions

m is bounded by the set of access control policies (i.e., m = O(n)). Regarding the

structure of the policy tree and transaction tree, the fan-out of a node depends on the

2It implies that there is no corresponding permission neither accepting nor rejecting the access.

63

node type (i.e., the fan-out of a root node (fR), action node fA, and object node fO

vary based on the specifications of an access control system). However, the fan-out

of a node in these trees f can be generalized by the maximum of the various node

fan-outs (i.e., f = max(fR, fR, fR)). Subsequently, the time cost of searching the

policy or transaction tree is O(logf n). Inserting a transaction or a policy involves

searching the tree structure; hence the time cost of insertion is also O(logf n).

Based on the aforementioned discussion, given n policies, the time cost of con-

structing the policy tree isO(n logf n). As shown in Algorithm 3.1, while constructing

the transaction tree, the operations of inserting a transaction into the transaction tree

and searching for the corresponding policy in the policy tree are performed in sequen-

tial; hence these two operations are bounded by O(logf n). Given m transactions,

the time cost of constructing the transaction tree is also O(m logf n). Thus, the con-

struction time of a transaction tree is asymptotically larger than the one of a policy

tree.

Intuitively, the asymptotic analysis of the PT tree is bounded by the maximum

of that for the policy tree and transaction tree (i.e., O(max(policy tree, transaction

tree)). Subsequently, the insertion and construction times of the hybrid structure are

O(logf n), O(m logf n), respectively.

3.3 Policy Analysis Services

Our framework supports two types of analysis: structure-based and classification-

based. The structure-based analysis requires maintaining two data structures for

analyzing all policies and find any “low quality” policy. However, this approach is

expensive. Alternatively, the classification-based analysis approach learns the char-

acteristics of policies of each type of “low quality” policies. The classification-based

approach is able to quickly predict the quality of a policy, but inaccurate prediction

might happen.

64

3.3.1 Structure-based Analysis

The search space of the policy-based analytic service is bounded by the access

control policy set itself. Hence the policy-based analytic service is not able to assess

all quality requirements (e.g., cannot assess incompleteness). Thus, the transaction-

based analytic service expands the search space to cover both the executed transac-

tions and their corresponding policies. From another perspective, the policy-based

analysis follows the paradigm “analyze first and enforce later” while the transaction-

based analysis follows the opposite paradigm (i.e.,“enforce first and analyze later”).

For situations that can be detected by both types of analysis, the policy-based one is

preferred because it provides early feedback about the quality of policies.

In the distributed environment that has separate policy sets defined for each party,

the transaction-based analysis makes it possible to determine which policies belong to

different parties while the policy-based analysis is local to each party in the system.

In what follows, we describe our approaches.

Policy-based Analysis

In this service, we aim to evaluate the policies in order to detect: inconsistency,

redundancy, and irrelevancy. The service utilizes the policy tree structure.

The policy-based analysis is described in Algorithm 3.2. Lines 2-11 traverse every

path in the policy tree from the root (role node) to an object node to validate a set

of conditions as follows.

• If a path branches to two different signs, this flags for inconsistency (lines 4-5).

• If the leaf node of a path is augmented with multiple policy IDs, this shows a

case of redundancy (lines 7-9).

• If the counter value of a leaf node is zero, this flags for irrelevancy (lines 10-11).

65

Furthermore, lines 12-19 descends the tree from the root to the action nodes to check

if there are object nodes which are composite of each other to assess for inconsistency

and redundancy.

Time Complexity: The policy-based analysis requires inspecting all access

control policies n. Furthermore, for every policy, the approach searches for the other

policies that involve similar objects. This leads to the time cost of O(n logf n).

Transaction-based Analysis

In this service, we aim to evaluate the policy set to detect: inconsistency, redun-

dancy, incompleteness, and exceptions. Unlike the policy-based analysis, this service

utilizes the transaction tree primarily and explores the policy tree.

Table 3.4.: The Objectives of Policy Analysis Services

Policy-based Analysis Transaction-based Analysis

Inconsistency 3 3

Exception 7 3

Incompleteness 7 3

Redundancy 3 3

Irrelevancy 3 7

The transaction-based analysis is described in Algorithm 3.3. The algorithm tra-

verses every path in the transaction tree and explores its corresponding policies in

the policy tree. While traversing the tree, it validates the following conditions:

• If a transaction path does not point to any policy in the tree, this flags for

incompleteness (lines 4-5).

• If a transaction points to two policies which have different signs, this shows a

case of inconsistency (line 6-7).

66

Algorithm 3.2 Policy-Based Analysis

Require: PolicyTree

1: LINCON ←− {},LIRR ←− {},LRED ←− {}

2: for path (r, a, o) ∈ PolicyTree do

3: N = {∀g | g is leaf node for (r, a, o)}

4: if gi ∈ N ∧ gj ∈ N ∧ i 6= j ∧ gi 6= gj then

5: LINCON ←− LINCON ∪ {gi, gj}

6: end if

7: for gi ∈ N do

8: ID = #ofPolicy IDs augmented with gi

9: if ID > 1 then

10: LRED ←− LRED ∪ {gi}

11: end if

12: if gi.counter = 0 then

13: LIRR ←− LIRR ∪ {gj}

14: end if

15: end for

16: Traverse each path (r, a) in PolicyTree

17: N = {∀o | o is child node for (r, a)}

18: if oi ∈ N ∧ oj ∈ N ∧ i 6= j ∧ oi ⊆ oj then

19: N1 = {∀g | g is leaf node for (r, a, oi)}

20: N2 = {∀g | g is leaf node for (r, a, oj)}

21: if gi ∈ N1 ∧ gj ∈ N2 ∧ gi 6= gj then

22: LINCON ←− LINCON ∪ {gi, gj}

23: end if

24: if gi ∈ N1 ∧ gj ∈ N2 ∧ gi = gj then

25: LRED ←− LRED ∪ {gi, gj}

26: end if

27: end if

28: end for

29: return LINCON ,LIRR,LRED

67

Algorithm 3.3 Transaction-Based Analysis

Require: TT : TransactionTree, PT : PolicyTree

1: LINCON ← {}, LINCOMP ← {}, LRED ← {},

LEXP ← {}

2: Traverse each path (r, a, o) in TT

3: N = {∀g | g is pointed by o , g is a leaf node ∈ PT}

4: if N ≡ φ then

5: LINCOMP ← LINCOMP ∪ {(u, a, o)}

6: end if

7: if gi ∈ N ∧ gj ∈ N ∧ i 6= j ∧ gi 6= gj then

8: LINCON ← LINCON ∪ {gi, gj}

9: end if

10: for gi ∈ N do

11: ID = #ofPolicy IDs augmented with gi

12: if ID > 1 then

13: LRED ← LRED ∪ {gi}

14: end if

15: if gi ≡ − then

16: LEXP ← LEXP ∪ {(u, a, o)}

17: end if

18: end for

19: return LINCON ,LINCOMP ,LRED,LEXP

68

• If a transaction points to one policy path, but the path is augmented with

multiple policy IDs, this shows a case of redundancy (lines 9-11).

• If a transaction points to a policy path where the sign of the policy is ‘-’, this

flags for exceptions (lines 12-13).

Time Complexity: The transaction-based analysis requires inspecting all

unique set of transactions (i.e., O(n)). For every transaction, the approach checks

its corresponding policy through the associated pointer linking both trees; hence re-

quiring a constant time. Consequently, the time cost of transaction-based analysis

approach is O(n).

Policy-and-Transaction-based Analysis (PT-based Analysis)

Neither of the policy-based analysis nor the transaction-based analysis are able to

achieve all of the objectives of the policy analysis as shown in Table 3.4. Nonetheless,

performing an analysis utilizing the PT tree can achieve all of the analysis objectives

effectively.

Time Complexity: The PT-based analysis requires inspecting all access con-

trol policies and their corresponding transactions stored in the hybrid structure and

verifying the similarity of each policy with other policies. Thus, the time complexity

of the PT-based analysis is bounded by the maximum of that for the Policy-based

analysis and Transaction-based analysis. Subsequently, the time cost of the PT-based

analysis is O(n logf n).

3.3.2 Classification-based Analysis

The structure-based analysis requires maintaining some data structures. To avoid

having to inspect the tree structures periodically, the classification-based analysis (see

Fig. 3.2) aims at learning the patterns of low-quality policies based on the historical

results of the structure-based analysis and then generating a classifier. Thereafter,

69

the classifier is used to assess policies and predict whether they will not meet the

quality requirements.

Background on Classifiers

Here, we review a set of well-known classifiers. First, the k-Nearest Neighbors

(kNN) classifier is the simplest one which relies on the kNN search on the training

dataset. The class of an object is identified based on the majority voting of its

kNN. Second, Näıve Bayes is a probabilistic classifier based on Bayes’ theorem [68]

which enables calculating a posterior probability for each class at prediction. Third,

Support Vector Machine (SVM) is designed for binary classification. For multi-label

classification, SVM is generalized in two schemes: one-versus-all and one-versus-one.

Our work considers the one-versus-one scheme in which each pairwise class group is

chosen as a two-class SVM each time.

Some classifiers are tree-based such as in the Decision Tree (DT) classifier. A DT

organizes a series of test conditions in a tree structure [69] where the internal nodes

represent criteria for the attributes of each class, and the leaf nodes are associated

with class labels. Random Forest, an extension of DT, includes a set of DTs, and the

output of classification is defined by the leaf node that receives the majority of votes

[70].

The historical results generated from the structure-based policy analysis can be

used to generate the patterns of policies that are of “low quality” and thus create

categories (i.e., classes) of policies. Each policy quality requirement characterized

by a sample set of policies is considered as a class for the corresponding policies. A

subset of policies for each category is used to train a classifier for creating a model

that summarizes the patterns of policies belonging to each category. In particular,

each policy and transaction is represented as a feature vector consisting of role, ob-

70

ject, action, sign, and policy quality class3 (e.g., irrelevant, inconsistent). Then, the

classifier utilizes the model for predicting the class of new policies.

There are, however, two main challenges that are associated with the classification-

based analysis approach: the imbalanced categories of historical policies and the

inevitable classification inaccuracy. Learning the patterns of imbalanced categories

potentially leads to a biased pattern learning for the dense categories (i.e., the cat-

egories which have many policies); hence, increasing the classification inaccuracy to

the sparse categories (i.e., the categories which have few numbers of policies). Thus,

for obtaining balanced categories of policies, we sample more policies policies using

the SMOTE (Synthetic Minority Oversampling Technique) algorithm [71] to over-

sample [72] the class with minority samples. Regarding the classification inaccuracy,

there is no optimal classifier that definitely guarantees accurate prediction results.

Thus, our framework addresses this challenge by adopting the cross-validation mech-

anism while training a classifier and proposing a classification scheme which combines

the classification results obtained from different classifiers to enhance the classification

accuracy.

Classification Approaches

Here, we present two classification schemes which we use in our framework.

Classification of Access Control Policies

One Classifier (OC)

The OC approach adopts one of the state-of-the-art classifiers (i.e., k-Nearest

Neighbors (kNN), Näıve Bayes, Support Vector Machine (SVM), Decision Tree, or

Random Forest) at a time. In the experiment section, we discuss the impact of the

choice of the classifier on the policy classification.

3The classification of policy quality is a multi-class classification (i.e., irrelevant, inconsistent, re-
dundant, exception, incomplete, and good-quality).

71

Combined Classifiers (CC)

Since classifiers inevitably suffer from inherent classification inaccuracy, classifying

a policy with different classifiers may potentially result in various categories for a

given policy. Consequently, combining the results of various classifiers potentially

increases the certainty of the classification result. We investigate two methods for

Fig. 3.2.: The Pipeline of Classification-based Policy Analysis

combining the classifiers: majority voting [73] (referenced as Majority-based Combined

Classifiers (MCC)) and maximum probability [74] (referenced as Probability-based

Combined Classifiers (PCC)). The majority voting method builds a consensus of

opinion among classifiers. In particular, the method selects the predicted class that

is supported by the majority of the classifiers. If there is no majority voting (i.e.,

a strong disagreement among classifiers concerning the predicted class), the method

randomly selects one of the classes predicted by one of the classifiers. Meanwhile,

PCC utilizes the probabilities associated with the predicted class using every classifier

and chooses the class from the classifier whose probability is the highest. The two

methods of the combined classification scheme are formalized in Algorithm 3.4.

3.4 Policy Evolution Services

A dynamic system often requires modifying its access control policies. Especially,

when the policy analysis process identifies some low-quality policies. The analysis

results can be then be used to evolve the system. However, modifying the policies

72

Algorithm 3.4 Classification-based Analysis - Combined Classifiers Approach

1: Let D denote the training set of Access Control Policies, k denote the number

of base classifiers, T be the test set of policies, m denote the mode of combined

classifier approach, and n denote the number of classes.

2: for i ∈ {1, . . . , k} do

3: Build a base classifier Ci from D

4: for each class j ∈ {1, . . . , n} do

5: αij = Accuracy(Ci, ∀ policy x ∈ j)

6: end for

7: end for

8: for each policy x ∈ T do

9: if m: Majority voting based then

10: C∗ (x) = Vote(C1, C2, . . . , CK)

11: else if m: Probability-based then

12: C∗ (x) = Ci(x) | αi = maxki=1 αi

13: end if

14: end for

Fig. 3.3.: Policy Evolution Services

73

manually is not reliable and is expensive in terms of human administrative time

and efforts. Hence, we propose a set of policy evolution algorithms that aim at

automatically evolving the policies in order to enhance them. The policy evolution

module (see Fig. 3.3) comprises two services, i.e., recommendation and re-evaluation

services, that we describe in what follows.

Table 3.5.: Primitive Changes on Policies

Primitive Description

DEL POLICY (ACPi) Delete the policy ACPi

CHG POLICYr(ACPi, x) Change policy role: ACPi.r = x

CHG POLICYa(ACPi, x) Change policy action: ACPi.p.a = x

CHG POLICYo(ACPi, x) Change policy object: ACPi.p.o = x

CHG POLICYs(ACPi, x) Change policy sign: ACPi.p.sign = x

ADD POLICY (ACPi) Add the policy ACPi 〈role: ACPi.r, permission:

(ACPi.p.a, ACPi.p.o, ACPi.p.sign)〉

ADD ROLE(ri, rj) Add the role ri to the parent role rj

DEL ROLE(ri) Delete the role ri

3.4.1 Recommendation Services for Policy Changes

The recommendation services receive as input the results of the policy analysis

module and return a set of recommended primitive policy changes. In particular, there

is a recommendation service for each type of low-quality policies (see Algorithms 3.5-

3.9). Each service inspects the set of access control policies and transactions thor-

oughly to evaluate the causes for low-quality policies and suggests accordingly one or

multiple primitive changes (see Table 3.5 for the list of primitive changes).

The recommendation service for redundant policies is described in Algorithm 3.5.

Given two redundant policies, the service basically checks whether the two policies

74

are identical (lines 2-3) or similar (lines 4-33). Checking the similarity of two policies

implies verifying the similarity of their corresponding three components (i.e., role,

object, and action) 4 as follows:

• If the corresponding roles are related by the parent-child relationship, the two

policies are similar (lines 5-22). Hence, the service recommends either deleting

the policy having the child role or changing the role of the parent policy through

analyzing the executed transactions associated with them.

• If the object of one policy is a child of the object of the other policy, the two

policies are similar (lines 23-27). Hence, the service recommends deleting the

policy corresponding to the child object.

• If the action of one policy is partially implied by the action of the other pol-

icy, the two policies are considered similar (lines 28-32). Hence, the service

recommends deleting the policy corresponding to the partial action.

Regarding inconsistent policies, their recommendation service is described in Al-

gorithm 3.6. Given two inconsistent policies, the service checks the similarity of the

corresponding three components. In particular, if the corresponding roles are re-

lated by the parent-child relationship, the inconsistent policies are considered similar.

Subsequently, the service recommends creating a new role for the users belonging to

the parent role (except the users belonging to the child role of interest), and then

assigning the policy associated with the parent to the new role (lines 4-10). Also,

the service recommends similar changes when the inconsistent policies are considered

similar with respect to the objects (lines 11-16) and actions (lines 17-23).

The recommendation service for exceptional transactions is described in Algo-

rithm 3.9. Given a policy and its corresponding exceptional transaction, the service

checks whether the policy has been enforced. If not, the service recommends negating

the sign of the policy. Otherwise, the service checks the following conditions when the

4The sign is not checked because the two policies are reported as redundant and thus they have the
same sign.

75

exceptional transaction has been repeated a number of times higher than a certain

threshold (i.e., σ):

• If the corresponding roles of the exceptional transaction and the policy are

related by a parent-child relationship, the service recommends creating a new

role for the users belonging to the parent role (except the users belonging to the

child role of interest), and then assigning the policy associated with the parent

to the new role (lines 8-11). Also, the service recommends adding a new policy

to permit the exceptional transaction for the child role (lines 12-14).

• If the corresponding objects (lines 18-26) or actions (lines 27-35) of the ex-

ceptional transaction and the policy are related by a parent-child relationship,

the service recommends similar changes to the ones recommended when the

roles of the exceptional transaction and its associated policy are related by a

parent-child relationship.

Due to space limitations, we omit the algorithms for the recommendation services

in two cases: irrelevancy and incompleteness. Those algorithms are quite simple.

In the case of irrelevant policies, the corresponding service recommends deleting it,

whereas in the case of incomplete policies the service recommends adding new policies

to cover the missing scenarios.

Validating the parent-child relations, among the corresponding roles, objects, and

actions of the two policies, requires inspecting some auxiliary structures. In particular,

the roles are validated using the role hierarchies captured by the RBAC model while

the objects are inspected using metadata defining object hierarchies in the system.

3.4.2 Re-evaluation Services for Policy Changes

The second set of services is to perform the changes recommended by the rec-

ommendation services, and then re-evaluate the policies which are affected by these

recommended changes to assure that the quality of the policy set has been improved

76

as intended. Evaluating the policy set after its evolution is a critical step. How-

ever, re-evaluating the quality of the entire policy set can be expensive. Thus, the

re-evaluation services particularly consider only the policies that are directly affected

by the evolution.

Towards such goal, the re-evaluation services investigate each of the primitives

changes to track their effects on the set of policies and narrows the scope of the re-

analysis to be performed only for them. However, some of these primitives, such as

ADD ROLE and DEL ROLE, have no direct impact on the policy set. Nonethe-

less, such primitives are associated with other primitives (i.e., CHG POLICYr and

DEL POLICY , respectively) which directly affect the policy set.

When adding a new policy or deleting an existing policy acpi (i.e., the primitive

ADD POLICY and DEL POLICY , respectively), the policy tree (or PT tree)

is first searched using a depth-first-search to find a path whose nodes match the

components composing acpi. In particular, the set of policies that are affected by

this change primitive includes any policy acpj that is specified by the components:

a role (acpj.r) matched to acpi.r (or acpj.r and acpj.r are related by a parent-child

relation), an action acpj.p.a matched to (or part of) acpi.p.a, and an object acpj.p.o

matched to acpi.p.o (or acpj.o and acpj.o are related by a parent-child relation).

Meanwhile, when changing a role of a policy (i.e., the primitive CHG POLICYr),

the set of policies that are affected by this change primitive includes any policy acpj

that is specified by the components: a role acpj.r matched to (or share a parent-child

relation with) either of the old or new values of acpi.r, an action acpj.p.a matched

to (or part of) either of the old or new values of acpi.p.a, and an object acpj.p.o

matched to (or share a parent-child relation with) either of the old or new values

of acpi.p.o. Similarly, finding the policies affected by the execution of the primitives

CHG POLICYa and CHG POLICYo follows the same logic. The procedure of

finding the set of affected polices for all primitive changes is outlined in Algorithm

3.10. Thereafter, the identified affected policy set is re-evaluated either by partially

77

traversing the policy tree (or PT tree) or performing the classification-based analysis

on the batch of affected policies.

Algorithm 3.5 Recommendation Algorithm for Redundant Policies
1: Given two policies ACPi and ACPj are redundant.

2: if ACPi = ACPj then

3: Recommend DEL POLICY (ACPi)

4: else

5: if ACPi.r ⊆ ACPj .r then

6: ti = Query Transactions(ACPi)

7: tj = Query Transactions(ACPj)

8: if | tj − ti | = 0 then

9: Recommend DEL POLICY (ACPi)

10: else if | tj − ti | > | ti | then

11: Recommend DEL POLICY (ACPi)

12: if |Query Policies(acpi.r) = 1 then

13: Recommend DEL ROLE(acpi.r)

14: end if

15: else

16: Recommend ADD ROLE(rk, acpj .r)

17: Assign users(tj - ti) to rk

18: Recommend CHG POLICYr(ACPj , rk)

19: end if

20: else

21: Similar Logic to Lines 6-18 but swapping i and j.

22: end if

23: if ACPi.p.o ⊆ ACPj .p.o then

24: Recommend DEL POLICY (ACPi)

25: else

26: Recommend DEL POLICY (ACPj)

27: end if

28: if ACPi.p.a ⊆ ACPj .p.a then

29: Recommend DEL POLICY (ACPi)

30: else

31: Recommend DEL POLICY (ACPj)

32: end if

33: end if

3.5 Query Services

ProFact includes a query services component supporting the following query types:

78

Algorithm 3.6 Recommendation Algorithm for Inconsistent Policies

1: Given two policies ACPi and ACPj are inconsistent

2: ti = Query Transactions(ACPi)

3: tj = Query Transactions(ACPj)

4: if ACPi.r ⊆ ACPj.r then

5: Recommend ADD ROLE(rk, acpj.r)

6: Assign users(tj - ti) to rk

7: Recommend CHG POLICYr(ACPj, rk)

8: else

9: Similar Logic to Lines 5-7 but swapping i and j.

10: end if

11: if ACPi.p.o ⊆ ACPj.p.o then

12: ok = (∀ ow ∈ ACPj.p.o) - ACPi.p.o

13: Recommend CHG POLICYo(ACPj, ok)

14: else

15: Similar Logic to Lines 12-13 but swapping i and j.

16: end if

17: if ACPi.p.a ⊆ ACPj.p.a then

18: Recommend ADD ROLE(rk, acpj.r)

19: ak = (∀ aw ∈ ACPj.p.a) - ACPi.p.a

20: Recommend CHG POLICYa(ACPj, ak)

21: else

22: Similar Logic to Lines 18-20 but swapping i and j.

23: end if

79

Algorithm 3.7 Recommendation Algorithm for Irrelevant Policies

1: Given that a policy ACPi is irrelevant

2: Recommend DEL POLICY (ACPi)

3: if | Query Policies(ACPi.r)| = 1 then

4: Recommend DEL ROLE(acpi.r)

5: end if

6: rp = parent(ACPi.r)

7: if rp 6= NULL then

8: if | Query Policies(rp)| = 1 then

9: Recommend DEL ROLE(rp)

10: end if

11: end if

Algorithm 3.8 Recommendation Algorithm for Incomplete Policies

1: Given a transaction ti 〈r, o, a〉 that does not have a corresponding policy

2: Set ACPi = 〈role: ti.r, permission: (ti.a, ti.o, +)〉

3: Recommend ADD POLICY (ACPi)

80

Algorithm 3.9 Recommendation Algorithm for Exceptional Transactions
1: Given a transaction ti 〈r, o, a〉 that violates an existing policy ACPj

2: n = Count Transactions(ti)

3: tj = Query Transactions(ACPj)

4: if | tj | = 0 then

5: s = ¬ ACPj .p.sign

6: CHG POLICYs(ACPj , s)

7: else if n > σ then

8: if ti.r ⊆ ACPj .r then

9: Recommend ADD ROLE(rk, acpj .r)

10: Assign users(tj - ti) to rk

11: Recommend CHG POLICYr(ACPj , rk)

12: s = ¬ ACPj .p.sign

13: Set ACPi = 〈role: ti.r, permission: (ti.a, ti.o, s〉

14: Recommend ADD POLICY (ACPi)

15: else

16: Similar Logic to Lines 9-14.

17: end if

18: if ti.o ⊆ ACPj .p.o then

19: ok = (∀ ow ∈ ACPj .p.o) - ti.o

20: Recommend CHG POLICYo(ACPj , ok)

21: s = ¬ ACPj .p.sign

22: Set ACPi = 〈role: ti.r, permission: (ti.a, ti.o, s〉

23: Recommend ADD POLICY (ACPi)

24: else

25: Similar Logic to Lines 19-23.

26: end if

27: if ti.p.a ⊆ ACPj .p.a then

28: ak = (∀ aw ∈ ACPj .p.a) - ti.a

29: Recommend CHG POLICYa(ACPj , ak)

30: s = ¬ ACPj .p.sign

31: Set ACPi = 〈role: ti.r, permission: (ti.a, ti.o, s〉

32: Recommend ADD POLICY (ACPi)

33: else

34: Similar Logic to Lines 28-32.

35: end if

36: end if

81

Algorithm 3.10 Find Affected Policies

1: Let acpi :=< r, p.a, p.o, p.sign > denote a policy to be changed, M denote the

policy evolution type {Add, Update, Delete}, and T denote the policy tree con-

structed on D.

2: if M ≡ Add ∨ M ≡ Delete then

3: R = {∀r | (r ⊆ acpi.r) ∨ (acpi.r ⊆ r)}

4: A = {∀a | (a ⊆ acpi.p.a) ∨ (acpi.p.a ⊆ a)}

5: O = {∀o | (o ⊆ acpi..p.o) ∨ (acpi..p.o ⊆ o)}

6: P = {∀acpj | (acpj.r ∈ R) ∧ (acpj.p.a ∈ A) ∧ (acpj.p.o ∈ O) ∧ (i 6= j)}

7: else if M ≡ Update then

8: if updating acpi.r then

9: R = {∀r | (r ⊆ acpi.rold)∨ (acpi.rold ⊆ r)∨ (r ⊆ acpi.rnew)∨ (acpi.rnew ⊆ r)}

10: A = {∀a | (a ⊆ acpi.p.a) ∨ (acpi.p.a ⊆ a)}

11: O = {∀o | (o ⊆ acpi..p.o) ∨ (acpi..p.o ⊆ o)}

12: else if updating acpi.p.a then

13: R = {∀r | (r ⊆ acpi.r) ∨ (acpi.r ⊆ r)}

14: A = {∀a | (a ⊆ acpi.p.aold) ∨ (acpi.p.aold ⊆ a) ∨ (a ⊆ acpi.p.anew) ∨

(acpi.p.anew ⊆ a)}

15: O = {∀o | (o ⊆ acpi..p.o) ∨ (acpi..p.o ⊆ o)}

16: else if updating acpi.p.o then

17: R = {∀r | (r ⊆ acpi.r) ∨ (acpi.r ⊆ r)}

18: A = {∀a | (a ⊆ acpi.p.a) ∨ (acpi.p.a ⊆ a)}

19: O = {∀o | (o ⊆ acpi.p.oold) ∨ (acpi.p.oold ⊆ o) ∨ (o ⊆ acpi.p.onew) ∨

(acpi.p.onew ⊆ o)}

20: else if updating acpi.p.sign then

21: R = {∀r | (r ⊆ acpi.r) ∨ (acpi.r ⊆ r)}

22: A = {∀a | (a ⊆ acpi.p.a) ∨ (acpi.p.a ⊆ a)}

23: O = {∀o | (o ⊆ acpi..p.o) ∨ (acpi..p.o ⊆ o)}

24: end if

25: P = {∀acpj | (acpj.r ∈ R) ∧ (acpj.p.a ∈ A) ∧ (acpj.p.o ∈ O) ∧ (i 6= j)}

26: end if

27: Return P

82

• Queries on the Quality of Policies: Such queries retrieve the policies which

do not satisfy our quality requirements. Querying on quality might be general

(e.g., find all policies which are inconsistent, find all irrelevant policies) or spe-

cific to policy attributes (e.g., find all inconsistencies related to a specific object

or find roles with respect to which policies are incomplete).

• Queries on Policies: These queries allow one to retrieve basic information on

policies (e.g., policies for a role, how many times a policy was enforced) and

advanced information on policies (e.g., the history of a policy, how the policy

was evolved).

• Queries on Transactions: These queries allow one to retrieve information

about the executed transactions. Examples include: find the transactions exe-

cuted by a certain user (through different roles), and find the transactions that

accessed specific objects.

• Queries on Policy Analysis Statistics: These queries utilize the policy

analysis repository to retrieve aggregated analysis results. Examples include:

retrieve the most common exceptions and the frequency of an exception.

• Queries on Policy Evolution Statistics: These queries allow one to estimate

the percentage of policies affected by a specific type of policy changes or find the

policy components mostly affected by a specific type of policy changes; these

queries are based on the historical runs of the evolution service. Examples

include: find the object which was mostly affected by policy deletion, and what

is the primitive change that affected the largest number of policies.

3.6 Experiments

The goal of the experiments is to evaluate the two types of policy analysis ap-

proaches included in ProFact: structure-based and classification-based.

83

3.6.1 Dataset and Settings

Table 3.6.: Access Control Policy and Transaction Datasets

Roles # Objects # Policies # Transactions

Dataset 1 (DS1) 50 2,000 46,800 124,800

Dataset 2 (DS2) 75 2,500 427,500 641,250

Dataset 3 (DS3) 100 3,000 877,200 1,152,000

Due to the lack of a large-scale real dataset compromising both access control poli-

cies and executed transactions for a real system5, we created three synthetic datasets

(referenced as DS1, DS2, and DS3) using a random dataset generator (as explained

later) to evaluate the policy analysis approaches. Table 3.6 shows the size of each

dataset in terms of the number of roles, protected objects, access control policies, and

transactions.

Random Dataset Generator: The dataset generator first generates randomly

the basic entities of a dataset (i.e., users, roles, objects, and actions6. Thereafter,

the generator creates hierarchical relations (i.e., parent-child relations) among the

created roles and objects. For example, for generating the role hierarchies, a quarter

of the roles are initially selected as parent roles and each of the remaining roles is

assigned as a child role to one of the parent roles and this child role is appended to

the set of the parent roles. The object hierarchies are similarly generated. Using

a maximum value for role assignment (i.e., m), each user is assigned randomly at

maximum to a set of m roles. Subsequently, every user is assigned to multiple roles

and every role includes multiple users (given the fact that the number of roles is

much smaller than the number of users). Using all combinations (referenced as X)

5A large-scale dataset is required to generate machine learning models for the classification-based
analysis approach.
6The generator randomly creates at maximum n instances of an entity where n is specified by the
user of the generator.

84

of roles, object, and actions, we randomly select a subset Y ⊂ X to generate a set of

transactions Y . Similarly, we randomly select a subset Z ⊂ X to generate a set of

access control policies Z and the sign of each policy is randomly chosen as positive

or negative7. Finally, the generator randomly assigns a frequency counter to each

transaction. As a result, the generated dataset intentionally includes all types of

low-quality policies. The subset of transactions Y− (Z∩Y) indicates missing policies

(i.e., incompleteness). Meanwhile, the subset of policies Z − (Y ∩ Z) is irrelevant.

The subset of policies which have corresponding transactions (Y ∩Z) can potentially

include inconsistencies, redundancy, and exceptions. Table 3.7 shows the distribution

of the low-quality policies among the three generated datasets.

Table 3.7.: The Distribution of Low-Quality Policies among Datasets

Datasets

DS1 DS2 DS3

Inconsistency 162 368 478

Exceptions 2,836 5,762 12,062

Incompleteness 1,672 3,052 8,755

Redundancy 787 962 1,507

Irrelevancy 1,398 1,940 3,896

Classification approach settings: For the classifiers adopted in our

classification-based analysis, we used the Java Weka library [75]. All classifiers are

trained on 70% of the dataset using 10-fold cross-validation. Regarding the kNN clas-

sifier, we used the instance-based learner algorithm. For the decision tree classifier,

we used the C4.5 Decision algorithm. Overall, we used the Weka default values for

the parameters of the machine learning techniques (e.g., for kNN classifier, k = 1).

We implemented the prototype infrastructure of ProFact in Java 1.7. All exper-

iments were performed on high-performance computing clusters at Purdue Research

7The generator verifies that Y ∩ Z 6= φ to guarantee having all low-quality policy types.

85

Center. The analysis prototype was run on a cluster of one node with 16 cores and

64GB memory.

3.6.2 Pre-processing Time for the Analysis Approaches

We collected the total time for building the underlying structures for the structure-

based approach8. Fig. 3.4 shows the construction time (in base-10 logarithmic scale)

for the three variants (i.e., policy-based, transaction-based, and PT-based) of the

structure-based approach using the three datasets. In general, the construction of

the structure for the transaction-based analysis takes longer time than that of the

policy-based analysis because of two reasons: a) the number of transactions in a

system usually is larger than the number of access control policies, and b) adding

a transaction to the transaction tree involves finding its corresponding policy in the

policy tree to link them together. Moreover, the construction time for PT-tree is

almost similar to that of the transaction tree.

Fig. 3.4.: Construction Time for Structure-based Approaches

8We discarded the training time for every classifier of the classification-based analysis approach
because training a classifier is an off-line step. Meanwhile, the construction of the tree structures
can not be considered off-line because they should be maintained up to date.

86

3.6.3 Analysis Results

Structure-based Analysis

Performance: Fig. 3.5 shows the analysis time for detecting inconsistent

and redundant policies9 using the policy-based, transaction-based, and PT-based ap-

proaches across the three datasets. In general, the transaction-based approach has

the best performance compared to the policy-based approach. In particular, the

transaction-based approach has a speedup factor of 4x, 5x, and 3x with respect to

the policy-based approach using DS1, DS2, and DS3, respectively. All approaches are

based on the tree traversal but with different analysis mechanisms. The transaction-

based approach only visits every path in the tree and utilizes the associated link to

fetch the corresponding policy in the policy tree. Meanwhile, the policy-based ap-

proach searches for all policies that involve similar components while inspecting each

policy. The transaction-based approach invested the time spent on constructing the

transaction tree and linking it with the policy tree to achieve better performance

at the analysis phase. Since the PT-based approach uses the hybrid tree structure

that stores both transactions and policies, inspecting all policies and corresponding

transactions thoroughly through such a structure leads to extra time for the analysis

compared to both the policy-based and transaction-based approaches.

Fig. 3.5.: Analysis Time for Structure-based Approaches

9We discarded the other types of low-quality policies and considered only the types of policies that
can be detected by the three variants of the structure-based approach.

87

Efficiency: Both policy-based and transaction-based approaches were able to

detect all inconsistent and redundant policies. Since irrelevant policies do not have

corresponding transactions in the transaction tree, the irrelevant policies were re-

ported by only the policy-based approach. Nonetheless, the policy-based approach

was not able to detect the exceptions and the incomplete policies as these can only

be detected by analyzing the transactions executed in the system as well as their cor-

responding access control policies. Thus, such cases are detected by the transaction-

based approach. However, the PT-based approach was able to detect all of these

cases.

Classification-based Analysis

Fig. 3.6.: Analysis Performance for Classification-based Approaches

Performance: Fig. 3.6 shows the average analysis time per policy (in base-10

logarithmic scale) using both analysis approaches (structure-based and classification-

based)10 across the three datasets. In general, all schemes of the classification-based

analysis approach (i.e., OC and CC) outperform the structure-based analysis ap-

proach. The analysis time of the classification-based approach using the OC scheme

varies based on the adopted classifier. In particular, OC with the Näıve Bayes and De-

cision Tree classification algorithms have the best performance. Among all classifiers

used with OC, the kNN and Random Forest classifiers have the worst performance

10The analysis time of the structure-based analysis represents the PT-based one since it is able to
detect all types of low-quality policies.

88

since the kNN classifier requires retrieving all closest objects among the training

dataset and Random Forest investigates multiple internal decision trees to conclude

the classification result. Intuitively, CC is slower than OC because CC performs

the analysis through all classifiers adopted by OC to obtain the final classification

results. However, both approaches based on the CC scheme (i.e., Majority Voting

and Max Probability) outperform the structure-based approach. In particular, the

speedup factor of CC is 31x with respect to the structure-based approach.

Efficiency: To evaluate the efficiency of the classification-based analysis ap-

proach, we report the recall, precision, and accuracy values which are formulated in

Eqs. 3.1 - 3.3. For calculating recall, precision, and accuracy, we used the output of

the structure-based analysis results as the ground truth.

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

Figs. 3.7, 3.8, and 3.9 show the recall, precision, and accuracy of both classification

schemes (OC and CC) across the three datasets, respectively. In general, using DS3,

all classification approaches achieve recall and precision values above 70%. Mean-

while, Näıve Bayes was the only one that does not achieve an accuracy value above

70%. Moreover, the efficiency of OC varies based on the trained model and the cho-

sen classifier. For example, Random Forest has the worst recall, and accuracy values

using DS1 and DS2, but it has been improved in DS3. Consequently, the OC scheme

is not reliable for our framework. On the other hand, the CC scheme achieves the

best recall, precision, and accuracy compared with OC using all datasets. In partic-

ular, the CC scheme achieved at maximum recall, precision, and accuracy of 88%,

87%, and 91%, respectively. This supports our claim that using the combined scheme

CC for classification is preferable than using the OC scheme. The CC scheme with

89

Majority Voting and Max Probability techniques achieved almost similar efficiency.

However, Majority Voting was the best with a minor difference.

Fig. 3.7.: Analysis Efficiency (Recall) for Classification-based Approaches

Fig. 3.8.: Analysis Efficiency (Precision) for Classification-based Approaches

Fig. 3.9.: Analysis Efficiency (Accuracy) for Classification-based Approaches

90

3.7 Related Work to the ProFact Framework

The area of policy analysis has been widely investigated. Approaches to policy

analysis use various methods and are characterized by different goals as we discuss

below.

3.7.1 Goals for Policy Analysis

The goals of policy analysis mainly fall into two directions: assessing the fulfillment

of a set of quality requirements, and designing and organizing a set of policies.

Policy Quality Assessment: Past work on policy quality requirements have

focused on some of the quality requirements that we have introduced. Among these

requirements, consistency was the most investigated one. Gupta et al. [20] and Cau et

al. [21] focused on detecting policies inconsistencies in the RBAC domain. Meanwhile,

Mankai et al. [76] and Turkmen et al. [22] proposed methods to detect inconsistency

among XACML policies. Regarding other requirements, redundancy has been eval-

uated using various approaches such as the ones proposed by Ngo et al. [23], Hadj

et al. [77] and Pina et al. [78], while incompleteness is assessed using other research

approaches (e.g., [24,79,80]). To the best of our knowledge, our approach is the first

to assess access control policies with respect to new types of quality requirements

(i.e., exceptions and irrelevancy). Because of incorporating provenance metadata,

our framework is able to aggregate information about system behavior at execution

time, and thus it is able to address all quality requirements.

Policy Design and Organization: For properly re-organizing and evolving

policy sets, it is often important to assess the similarity of different policies and the

impact of policy modifications. Policy similarity refers to the technique for char-

acterizing the relationships between policies and the actions authorized by them.

Several researchers focused on policy similarity including Kolovski et al. [81], Lin et

al. [82,83], Craven et al. [84,85], and Mazzoleni et al. [86,87]. Change impact analysis

on the policy set evaluates the changes between two versions of a policy by providing

91

a set of counterexamples that illustrate semantic differences between the two policies.

Several research efforts have been devoted to investigating the change impact anal-

ysis (e.g., [22, 88, 89]). Our framework includes the policy evolution services which

analyzes the impact of changing one of the policies on the quality of the correlated

policies of the changed policy. However, for analyzing policies, our framework utilizes

the matching metric which is a simple similarity policy for identifying the correlated

policies. Our framework can be enhanced by utilizing other similarity metrics.

3.7.2 Methods for Policy Analysis

Various methods have been proposed for policy analysis including formal meth-

ods, model checking, data mining, and structure-based. Some policy analysis ap-

proaches utilizing formal methods techniques such as reasoning [90] [91], and argu-

mentation [92–94]. Moreover, several approaches and frameworks for policy analysis

have been developed using model checking techniques such as SAT solver [83, 95],

or SMT solver [22, 96], and binary decision diagrams [21, 78, 83, 97]. Regarding data

mining methods, Shaikh et al. [79, 98, 99] and Aqib et al. [100] proposed several

approaches for policy analysis using decision tree classifier while Bauer et al. [101]

proposed an approach to reorganize the RBAC policies using association rule mining

method. Furthermore, structure-based methods were adopted for analyzing access

control policies. For example, Xu et al. [102], Staniford et al. [103], Alves et al. [104]

used adapted versions of the graph data structure. Meanwhile, the tree structure

was used for firewall policy analysis [105, 106]. To the best of our knowledge, our

approach is the first to utilize tree-based structures for analyzing access control poli-

cies. In addition, our framework proposes another analysis approach based on various

classification methods, other than decision trees.

92

4. PROWS: PROVENANCE-BASED SCIENTIFIC

WORKFLOW SEARCH FRAMEWORK

4.1 Queries on Scientific Workflows

In what follows, we formally define the primary concepts and queries used in the

subsequent discussion.

Definition 4.1.1 (Scientific Workflow) A scientific workflow w is defined by two

components: a set of metadata, denoted by w.M , and a graph, denoted by w.G. w.M

is a tuple of n attributes 〈a0, a1, . . . , an−1〉; the value of each attribute ai is evaluated

by its corresponding function denoted by ζi(ai). w.G is a connected directed graph

consisting of the following components:

• N , E, T , P , L refer to the set of nodes, edges, node types, edge types, and node

labels, respectively;

• α: N → T is the node type function;

• β: N → L is the node label function; and

• γ: E → N × N × P is the node connectivity function which connects two nodes

N × N with an edge type P .

Definition 4.1.2 (Scientific Workflow Dataset) A workflow dataset D is defined

as a set of m scientific workflow graphs (i.e., D = {w0, w1, . . . , wm−1}) where each

workflow wi in D is represented by a pair (wi.G, wi.M) defined according to Definition

4.1.1.

Hereafter, we formally define the notion of the composite query to search a sci-

entific workflow dataset. Such a query is composed of three subqueries: workflow

93

metadata subquery, workflow node labels subquery, and workflow structure subquery.

A composite query should include at least one subquery.

Definition 4.1.3 (Metadata-based Workflow Search Query) A metadata-based

query QM is defined as:

QM(S,D)⇔ {wi ∈ D | ∃aj ∈ wi.M ∧Θ(./, ζj(wi.M.aj), vj) ∧(aj, vj) ∈ S}.

QM is represented by a set of pairs S = (a0, v0), (a1, v1), . . . , (an−1, vn−1) where

ai is the query metadata attribute and vi is the attribute value. Θ is an attribute

matching function which compares the value of a workflow metadata attribute ζj

(wi.M.aj) with a query attribute value vj using a comparison operator denoted as ./.

Without loss of generality, in this chapter ./ is an equality (i.e., =, 6=) or relational

(i.e., >, <, ≤, ≥) operator.

Definition 4.1.4 (Label-based Workflow Search Query) A label-based query QL

is defined as:

QL(S,D) ⇔ {wi ∈ D | ∃n ∈ wi.N ∧ α(n) = tj ∧ tj ∈ wi.T ∧ β(n) ⊆ lj ∧lj ∈

wi.L ∧ (tj, lj) ∈ S}.

QL is represented by a set of pairs S = (t0, l0), (t1, l1), . . . , (tn−1, ln−1) where tj is

the query node type and li is the query node label.

Definition 4.1.5 (Pattern-based Workflow Search Query) A pattern-based

query QP is defined as:

QP (N ′, E ′, T ′, P ′, L′, α′, β′, γ′) which is a subgraph similarity search query for re-

trieving a workflow wi ∈ D. Checking if QP ⊆ wi is performed using a mapping

function f : QP .N ⇒ wi.N such that:

∃n′i, n′j ∈ QP .N
′, γ′(n′i, n

′
j) ∈ QP .E

′ → α′(n′i) = α(f(n′i)) ∧ α′(n′j) = α(f(n′j)) ∧

β′(n′i) ⊆ β(f(n′i)) ∧ β′(n′j) ⊆ β(f(n′j)) ∧ γ(f(n′i), f(n′j)) ∈ QP .E
′.

An example of a pattern-based query is shown in Fig. 4.1. The pattern query is

composed of three data nodes (medical documents, extracted proteins, and extracted

diseases per protein) and two operation nodes (extract protein and link proteins to

94

diseases) and four edges. In this example, we color-coded the nodes based on type

(i.e., data nodes in red and operation nodes in blue).

Fig. 4.1.: An Example of Pattern-based Workflow Search Query

To rank candidate workflows based on the predicates of QM and QL, we use

the metrics in Eqs. 4.1 and 4.2, respectively. In both equations, #matches is the

number of attributes or labels found in the workflow, and #mismatches is the number

of attributes or labels which are not found in the workflow. To rank candidates

workflows based on the pattern predicate provided by QP , we use the Most Common

Subgraph Algorithm (MCS) [107] in the metric defined by Eq. 4.3. MCS calculates

the maximum number of matched edges. Eqs. 4.1, 4.2, 4.3 are derived from the

Jaccard similarity coefficient metric; thus the outcome of the similarity metric is a

normalized value (i.e., between 0 and 1).

simM =
#matched attributes

#matched attributes+ #mismatched attributes
(4.1)

simL =
#matched labels

#matched labels+ #mismatched labels
(4.2)

simP =
mcs(w,Qp)

|w.E|+ |Qp.E| −mcs(w,Qp)
(4.3)

95

If a composite query contains more than one subquery (i.e., QM , QL, or QP),

evaluating such a composite query leads to the separate evaluation of each subquery.

Such an evaluation produces individual results; hence the outcome of the composite

query is the intersection of the results of the individual subqueries. In this section,

we discuss the provenance-workflow transformation, indexing, and querying stages.

4.1.1 Provenance to Workflow Transformation

As discussed earlier, a key phase of our approach is the transformation phase

which constructs the workflow repository based on the provenance repository. The

transformation phase first groups all provenance graphs based on the WorkflowID

attribute of Processes. To avoid any loss of information during transformation, each

set of provenance graphs having the same WorkflowID is transformed into a work-

flow graph wi.G based on the modeling mapping shown in Table 4.1. In the current

version of our approach, each workflow has the metadata attributes (wi.M) shown

in Table 4.2. Extracting wi.M requires a thorough analysis of provenance graphs.

For example, through provenance, we can calculate the number of provenance graphs

corresponding to a workflow (i.e., the “Usage Frequency” attribute). Furthermore,

the list of the actors, who performed the processes of the provenance graphs cor-

responding to a workflow, defines the “Users” attribute. In addition, a workflow

might be derived from another workflow; hence provenance enables us to locate the

source workflow (i.e., DerivedFrom) and hence CreatedBy and CreationTime are sub-

sequently evaluated.

4.1.2 Indexing and Querying

Retrieving workflows based on a composite query (QM , QL, andQP) comprises two

consecutive steps: searching and ranking. The searching step utilizes two strategies

to find similar workflows: linear-scan strategy (referred to as Näıve) and index-based

96

Table 4.1.: Modeling Workflows From Provenance Repository

Provenance Model Workflow Model

Nodes

Process N ; α = Process

Operation N ; α = Operation

Data N ; α = Data

Environment N ; α = Environment

Edges

Used E; γ = (Process ∨ Operation) x Data x used

WasGeneratedBy E; γ = Data x (Process ∨ Operation) x WasGener-

atedBy

WasDerivedFrom E; γ = Data x Data × WasDerivedFrom

WasInformedBy E; γ = Operation x Operation x WasInformedBy

wasEncapsulatedBy E; γ = Operation x Operation x wasEncapsulatedBy

wasPartOf E; γ = Operation x Process x wasPartOf

wasForkedBy E; γ = Process x Process x wasForkedBy

wasInContext E; γ = Process x Environment x wasInContext

Table 4.2.: Attribute List of Workflow Metadata

Attribute Description

Description Workflow purpose.

Usage Frequency The number of times a workflow was executed.

Users The list of users who carried out the various tasks of a workflow.

CreatedBy The user who defined a workflow.

CreationTime Workflow creation time.

DerivedFrom The workflow which originates a workflow.

97

strategy. Finally, the ranking step sorts the retrieved workflows with respect to their

relevance to the query.

Searching Strategies

A. Näıve Search Strategy

Under this approach, each workflow wi ∈ D is evaluated with respect to QM , QL,

and QP individually as shown in Algorithm 4.1. The goal of each subquery is to

find similar workflows based on the query criteria. Hence, each subquery produces a

similarity score separately. A workflow is a candidate for the composite query if the

workflow potentially satisfies the criteria of each provided subquery (i.e., the similarity

score of each subquery is above zero). Evaluating each subquery requires different

algorithms; for QP the workflow graph (wi.G) is traversed using the depth-first search

algorithm to find MCS; for QL only the list of workflow graph nodes (i.e., wi.G.N)

is traversed; and for QM no graph traversal is required in that only the workflow

attributes must be evaluated against the predicates (i.e., wi.M).

B. Index-Based Search Strategy

To speed-up searches on the workflow dataset D, we adopt an approach based

on the use of multiple index structures for each subquery. The main goal of an

index structure is to minimize the number of workflows to be traversed (i.e., search

space reduction). For efficiently executing QM , an individual B-tree index is built

for each attribute. For QL or QP , we adopt three forms of inverted index structures:

Label-based Inverted Index (LII), Node-based Inverted Index (NII), and Edge-based

Inverted Index (EII). The LII, NII, and EII structures are adapted versions of

the Inverted Index structure widely used for document search. In document search,

an inverted index (see the example in Fig. 4.2) is a collection of keys where each key

is a word and the list of the identifiers of the documents containing this word [108].

98

The keys are referred to as keywords, and the associated lists are known as inverted

lists. In our index structures, we change the form of keys and inverted lists to enhance

the efficiency of workflow searches. In what follows we explain the construction and

searching mechanism of each index structure in detail.

Fig. 4.2.: Example of Inverted Index Structure

Constructing LII, NII, and EII: The distinction among these structures is

the type of keys. In LII, the individual tokens which compose the labels of workflow

nodes (i.e., ∀ k ∈ wi.lj | lj ∈ wi.L ∧ wi ∈ D) are used as keys. In NII, the keys are

the sets of the workflow nodes (i.e., ∀ n ∈ wi.N | wi ∈ D). Finally, in EII the keys

are the lists of edges composing the workflows (i.e., ∀ e ∈ wi.E | wi ∈ D). In all of

these structures, the inverted list of each key (i.e., a node label token in LII, a node

in NII, or an edge in EII) is the list of workflows which contain the corresponding

key.

Constructing B-trees: The B-tree structure is implemented efficiently in any com-

mercial relational database management system. Hence, we store the metadata tuples

for all workflows in a relational table where we allocate a B-tree index on each column

(i.e., on each attribute of the workflow metadata).

Querying LII: These structures support the evaluation of QL and QP . Algorithms

4.2 and 4.3 show the usage of LII for processing QL, and QP , respectively. In both

queries, we first query the index structure for each label in QL.S or QP .L’ to retrieve

an intermediate set of workflows which potentially satisfy the query criteria. Then,

we estimate the similarity metric (i.e., simL with QL or simP with QP) for each

99

workflow in the intermediate set. LII might retrieve “false-hit” workflows because

the keys of LII do not contain the type of node that contains such keys. The addi-

tional “false-hit” workflows require an extra cost for traversing them to validate the

relevancy to the query criteria.

Table 4.3.: Types of Retrieved Workflows with QL and QP using Different Index

Structures

Indexes
QL Workflows QP Workflows

Similar “false-hit” Similar “false-hit”

LII 3 3 3 3

NII 3 7 3 3

EII 3 7 3 7

Querying NII: Like LII, NII supports both QL and QP . Evaluating these

queries with NII is analogous to evaluating the queries with LII, but NII avoids

the retrieval of “false-hit” workflows when querying QL. Each key of NII is a pair

consisting of a node label and the node type; hence it is sufficient to validate all query

criteria provided by QL. When querying QP , NII does not only query for certain

node but also queries about the relations among these nodes. Thus, querying QP

with NII might result with “false-hit” workflows as NII does not maintain all the

information required the query evaluation.

Querying EII: Like LII and NII, EII supports both QL and QP . Evaluating these

queries with EII is analogous to evaluating them with LII and NII, but EII avoids

the retrieval of “false-hit” workflows when querying both QL and QP . Each key of

EII is composed of an edge connecting two nodes where each node is represented by a

pair of label and the node type; hence it is sufficient for retrieving the workflows that

satisfy the query criteria of QL and QP with the minimum relevancy. When querying

QP , NII does not only query for certain node but also queries about the relations

100

among these nodes. Thus, querying QP with NII might result in “false hit” workflows

as it does not maintain all the required information for the query evaluation. Table

4.3 summarizes the types of retrieved workflows with different index structures when

querying QL and QP .

Querying B-trees: This type of index structures is used to enhance the evaluation

of QM . The similarity of each retrieved workflow by QM is calculated by the similarity

function simM .

Ranking Search Results

Each subquery (i.e., QM , QL, and QP) retrieves an individual set of workflows.

The final result of the composite query is the intersection of the results of the sub-

queries. Each workflow in the final result is associated with three similarity scores

(i.e., generated by simM , simL, and simP). Hence, to rank the workflows in the final

result set, we use the weighted combined score given by Eq. 4.4. This combined

score uses three different weights (ψM , ψL, and ψP) which reflect the impact of each

subquery on the workflow relevancy. Estimating these weights requires a thorough

user evaluation which is out of the scope of this work. For simplicity, we assume that

all the subqueries have the same weight.

sim(wi, QM , QL, QP) = ψM ∗ simM + ψL ∗ simL + ψP ∗ simP (4.4)

4.2 Experiments

4.2.1 Experimental Methodology

Dataset: To evaluate the performance of our searching strategies (i.e., Näıve,

LII, NII, and EII), we conducted several experiments using two scientific workflows

datasets: one of them is a real dataset (referred to as REAL) extracted from the CRIS

(Computational Research Infrastructure for Science [31]) testing environment, and the

other one is a synthetic dataset (referred to as SYN) generated by a random dataset

101

Algorithm 4.1 Näıve Search Strategy

Require: D, QM , QL, QP

1: R = {}

2: for ∀ wi ∈ D do

3: sM = simM(wi.M , QM .M)

4: sL = simL(wi.G, QL.S)

5: sP = simP (wi.G, QP .P
′)

6: if (sM > 0 ∧ sL > 0 ∧ sP > 0) then

7: R = R∪ {wi}

8: end if

9: end for

10: return R

Algorithm 4.2 QL with Label-based Inverted Index

Require: D, LLI, QL

1: RL = {}, R = {}

2: for ∀ lj ∈ QL.S do

3: RL = RL ∪ search(LII, lj)

4: end for

5: for ∀ wi ∈ RL do

6: sL = simL(wi, QL.S)

7: if (sL > 0) then

8: R = R∪ {wi}

9: end if

10: end for

11: return R

102

generator to scale the size of the workflow experimental dataset. Table 4.4 shows the

size of each dataset in terms of the number of workflows, nodes, and edges.

Table 4.4.: Scientific Workflow Datasets

#Workflows #Nodes #Edges

REAL 30 600 2.7K

SYN 1000 18K 95K

Queries and Metrics: For each subquery type, we report two metrics; query

time (in milliseconds) and the percentage of traversed workflows (see Eq. 4.5). To

avoid caching effects on timing, each query was executed five times and the longest

and shortest times were ignored and the query time is the average of the remaining

times. We performed a set of queries, and we report the average of both query time

and the percentage of traversed workflows.

Percentageoftraversedworkflows =
#traversedworkflows

#Totalworkflows
(4.5)

Settings: We stored workflow metadata in MySQL 5.7, and allocated a B-tree index

on each column. All experiments were performed on a 3.6 GHz Intel Core i7 machine

with 12 GB memory running on 64 bit Windows 7.

4.2.2 Search Performance

Label-based Query Evaluation

Query Time: Fig. 4.3 shows the query time (in base-10 logarithmic scale) for

label-based queries (QL) using the REAL and SYN datasets. In general, the Näıve

approach has worse performance compared to the index-based approaches, and among

the index-based approaches, NII has the best performance. In particular, NII

achieved a speedup factor of 34x and 23x with respect to the Näıve approach on

103

Fig. 4.3.: Average Query Time for Label-based Queries

Fig. 4.4.: Average Percentage of Traversed Workflows for Label-based Queries

104

REAL and SYN, respectively. Furthermore, LII performed worse than NII because

unlike NII, the LII structure does not provide information about node types. We

recall that the query predicate of QL includes both keywords and node types. More-

over, EII incurred the worst performance compared to both LII and NII, because

each key in the EII structure is composed of an edge connecting a source and desti-

nation nodes; thus, QL had scanned all keys in EII sequentially to inspect the source

and destination nodes.

Fig. 4.5.: Average Query Time for Pattern-based Queries

Percentage of Traversed Workflows: Fig. 4.4 shows the percentage of tra-

versed workflows for label-based queries (QL) using the REAL and SYN datasets. The

Näıve approach is not able to reduce the search space; thus, it traversed all workflows

(i.e., 100%) on both REAL and SYN. Meanwhile, the index-based approaches suc-

cessfully reduced the search space by traversing only a subset of scientific workflows.

Among the index-based approaches, LII has the highest percentage of traversed

workflows compared to NII and EII because LII traverses some workflows which

are potentially “false hit” when querying QL. Furthermore, NII and EII have the

same percentage of traversed workflows because when querying QL, both of them

reduced the search space and avoided “false hit” workflows. The difference in key

structures in NII and EII only affects the time for locating the workflows that are

105

Fig. 4.6.: Average Percentage of Traversed Workflows with Pattern-based Queries

Fig. 4.7.: Average Query Time for Metadata-based Queries

106

potentially similar to the query predicate. Nonetheless, such a difference does not

influence the percentage of traversed workflows.

Pattern-based Query Evaluation

Query Time: Fig. 4.5 shows the query time (in base-10 logarithmic scale) for

Algorithm 4.3 QP with Label-based Inverted Index

Require: D, LLI, QP

1: RP = {}, R = {}

2: for ∀ lj ∈ QL.S do

3: RP = RP ∪ search(LII, lj)

4: end for

5: for ∀ wi ∈ RP do

6: sP = simP (wi, QP .P
′)

7: if (sP > 0) then

8: R = R∪ {wi}

9: end if

10: end for

11: return R

pattern-based queries (QP) using the REAL and SYN datasets. In general, the index-

based approaches outperformed the Näıve approach. As opposed to QL, EII has the

best performance among the index-based approaches when querying QP because the

keys in EII comprise the segments of structures of workflow graphs. In particular,

EII showed a speedup factor of 12x and 13x with respect to the Näıve approach

on REAL and SYN, respectively. When querying Qp, NII has worse performance

when compared with EII because the keys in NII comprise only the nodes of the

workflow graphs but do not comprise the dependency relations between nodes; thus,

NII traversed a higher number of “false hit” workflow. Furthermore, the keys in LII

107

do not contain nodes or edges; thus, LII had worse performance compared to both

NII and EII.

Percentage of Traversed Workflows:

Fig. 4.6 shows the percentage of traversed workflows for pattern-based queries

(QP) using the REAL and SYN datasets. Like in the case of QL, the Näıve approach

is not able to reduce the search space; thus, it traversed all workflows (i.e., 100%) on

both REAL and SYN. Among the index-based approaches, EII requires traversing

the smallest percentage of workflows compared to both NII and LII since the keys

in EII contain sufficient information to validate the query predicates — thus it had

not traversed any “false hit” workflows. On the other hand, LII requires travers-

ing a higher percentage of workflows compared to NII because LII traverses some

workflows which are potentially “false hit” when querying QP due to the lack of the

sufficient information to evaluate the query predicates.

Metadata-based Query Evaluation

Query Time: Fig. 4.7 shows the query time for metadata-based queries (QM)

using the REAL and SYN datasets. In general, the B-Tree-based approach outper-

formed the Näıve approach. The B-tree-based approach achieved speedup factors of

3x and 9x with respect to the Näıve approach on REAL and SYN, respectively.

We report only the query time for QM because the B-Tree index is not our pro-

posed index structure.

In summary, the index-based approaches enhance searching workflows with all

subqueries (i.e., QM , QL, and QP). When querying QL, NII can outperform the

other index structures, while when querying QP , EII achieves the best performance

compared to the other index structures.

108

4.3 Related Work to the ProWS Framework

Modeling Workflows: Various representations for workflows have been pro-

posed based on the application domain. For representing business process workflows,

multiple languages have been proposed such as Business Process Modeling Notation

(BPMN) [109], Event-driven Process Chain (EPC) [110], Business Process Execution

Language (BPEL) [111], and Yet Another Workflow Language (YAWL) [112]. For

software model workflows, Web Modeling Language (WebML) [113] has been pro-

posed. With respect to scientific workflows, the standard PROV model has recently

been extended to represent workflows using the ProvOne model [114]. In our work,

we use the SimP provenance model because it is interoperable with other standard

provenance models (i.e., PROV and OPM). In each provenance-based scientific work-

flow representation, each edge is typically associated with a type attribute; hence the

query languages for searching workflows should be adapted according to these models

to consider edge types.

Querying Workflows: Two categories of query languages have been proposed

for searching workflows: keyword-based and graph-based languages. Among the lan-

guages in the first category, WISE [115] enables extracting business process workflow

models based on keyword matching whereas myExpreiment [36], Galaxy [116], and

CrowdLab [117] are examples of keyword-based search engines for scientific workflows.

For the languages in the second category, the focus has been on the design of data

structures and methods to enhance the efficiency of query processing, such as index-

based structures [118], a clustering-based method [119], and more complex techniques

combining Grid structures with auxiliary inverted index structures [30]. While several

approaches have been proposed for searching scientific workflows by keyword-based

queries (e.g., myExperiment) or graph-based queries (e.g., [120], [121], [122], [123],

[124], [125], [126]), all those approaches neither utilize provenance to model work-

flows nor support metadata-based queries. To the best of our knowledge, the search

approach closest to ours is PBase [127] which is provenance-based scientific workflow

109

search using PROV as provenance model and ProvOne as workflow model. How-

ever, PBase only supports keyword-based and graph-based queries — thus, it does

not support metadata-based queries. Additionally, PBase does not address search

efficiency.

Searching Graphs : Different graph indexing algorithms use different graph

features as indexes. For example, GraphGrep [128] is an index on paths, gIndex

[129] is an index on frequent and discriminative subgraphs, TreePi [130] is an index

on frequent subtrees, and FG-Index [131] is an index on subgraphs. Zhao et al.

[132] proposed using frequent tree structures and a small number of discriminative

subgraphs as indexing features. Furthermore, Zou et al. [133] designed an approach

which first builds a summary of sub-structures, and then constructs an index on them,

while the approach by Williams et al. [134] first enumerates all induced subgraphs

stored in the database and then organize them w.r.t. cross-index hash for efficient

lookup. Additionally, the closure-tree indexing technique [135] supports subgraph and

similarity queries over generalized graph representations. All of these approaches rely

on abstracting graphs with one type of node, while our indexing approaches consider

a provenance-based model which has various types of nodes and edges.

110

5. POLISMA - A FRAMEWORK FOR LEARNING

ATTRIBUTE-BASED ACCESS CONTROL POLICIES
5.1 Background and Problem Description

In what follows, we introduce background definitions for ABAC policies and access

request examples, and formulate the problem of learning ABAC policies.

5.1.1 ABAC Policies

Attribute-based access control (ABAC) policies are specified as Boolean combi-

nations of conditions on attributes of users and protected resources. The following

definition is adapted from Xu et al. [136]:

Definition 5.1.1 (cf. ABAC Model [136]) An ABAC model consists of the fol-

lowing components:

• U , R, O, P refer, respectively, to finite sets of users, resources, operations, and

rules.

• AU refers to a finite set of user attributes. The value of an attribute a ∈ AU

for a user u ∈ U is represented by a function dU(u, a). The range of dU for an

attribute a ∈ AU is denoted by VU(a).

• AR refers to a finite set of resource attributes. The value of an attribute a ∈

AR for a resource r ∈ R is represented by a function dR(r, a). The range of dR

for an attribute a ∈ AR is denote

• A user attribute expression eU defines a function that maps every attribute a ∈

AU , to a value in its range or ⊥, eU(a) ∈ VU(a) ∪ {⊥}. Specifically, eU can be

expressed as the set of attribute/value pairs eU = {〈ai, vi〉 | ai ∈ AU ∧ f(ai) =

vi ∈ VU(ai)}. A user ui satisfies eU (i.e., it belongs to the set defined by eU)

111

iff for every user attribute a not mapped to ⊥, 〈a, dU(ui, a)〉 ∈ eU . Similarly, a

resource si can be defined by a resource attribute expression eR.

• A rule ρ ∈ P is a tuple 〈eU , eR, O, d〉 where ρ.eU is a user attribute expression,

eR is a resource attribute expression, O ⊆ O is a set of operations, and d is the

decision of the rule (d ∈ {permit, deny})1.

The original definition of an ABAC rule does not include the notion of “signed

rules” (i.e., rules that specify positive or negative authorizations). By default,

d = permit, and an access request 〈u, r, o〉 for which there exist at least a rule ρ

= 〈eU , eR, O, d〉 in P such that u satisfies eU (denoted by u |= eU), r satisfies eR

(denoted by r |= eR), and o ∈ O, is permitted. Otherwise, the access request is

assumed to be denied. Even though negative authorizations are the default in access

control lists, mixed rules are useful when dealing with large sets of resources orga-

nized according to hierarchies, and have been widely investigated [64]. They are used

in commercial access control systems (e.g., the access control model of SQL Servers

provides negative authorizations by means of the DENY authorization command),

and they are part of the XACML standard.

5.1.2 Access Control Decision Examples

An access control decision example (referred to as a decision example (l)) is com-

posed of an access request and its corresponding decision. Formally,

Definition 5.1.2 (Access Control Decisions and Examples (l)) An access con-

trol decision is a tuple 〈u, r, o, d〉 where u is the user who initiated the access request,

r is the resource target of the access request, o is the operation requested on the re-

source, and d is the decision taken for the access request. A decision example l is

a tuple 〈u, eU , r, eR, o, d〉 where eU and eR are a user attribute expression, and a re-

source attribute expression such that u |= eU , and r |= eR, and the other arguments

are interpreted as in an access control decision.

1Throughout the paper, we will use the dot notation to refer to a component of an entity (e.g., ρ.d
refers to the decision of the rule ρ).

112

There exists an unknown set F of all access control decisions that should be

allowed in the system, but for which we only have partial knowledge through examples.

In an example l, the corresponding eU and eR can collect a few attributes (e.g., role,

age, country of origin, manager, department, experience) depending on the available

log information. Note that an access control decision is an example where eU and eR

are the constant functions that assign to any attribute ⊥. We say that an example

〈u, eU , r, eR, o, d〉 belongs to an access control decision set S iff 〈u, r, o, d〉 ∈ S. Logs

of past decisions are used to create an access control decision example dataset (see

Definition 5.1.3). We say that a set of ABAC policies P controls an access control

request 〈u, r, o〉 iff there is a rule ρ = 〈eU , eR, O, d〉 ∈ P that satisfies the access request

〈u, r, o〉. Similarly, we say that the request 〈u, r, o〉 is covered by F iff 〈u, r, o, d〉 ∈ F ,

for some decision d. Therefore, P can be seen as defining the set of all access decisions

for access requests controlled by P and, hence, be compared directly with F - and

with some overloading in the notation, we want decisions in P (〈u, r, o, d〉 ∈ P) to be

decisions in F (〈u, r, o, d〉 ∈ F).

Definition 5.1.3 (Access Control Decision Example Dataset (D)) An access

control decision example dataset is a finite set of decision examples (i.e., D = {l1,

. . . , ln}).

D is expected to be mostly, but not necessarily, a subset of F . D is considered to be

noisy if D 6⊆ F .

5.1.3 Problem Definition

Using a set of decision examples, extracted from a system history of access requests

and their authorized/denied decisions, together with some context information (e.g.,

metadata obtained from LDAP directories), we want to learn ABAC policies (see

Definition 5.1.4). The context information provides user and resource identifications,

as well as user and resource attributes and their functions needed for an ABAC model.

Additionally, it might also provide complementary semantic information about the

system in the form of a collection of typed binary relations, T = {t1, . . . , tn}, such

113

that each relation ti relates pairs of attribute values, i.e., ti ⊆ VX(a1)× VY (a2), with

X, Y ∈ {U ,R}, and a1 ∈ AX , and a2 ∈ AY . For example, one of these relations can

represent the organizational chart (department names are related in an is member or

is part hierarchical relation) of the enterprise or institution where the ABAC access

control system is deployed.

Definition 5.1.4 (Learning ABAC Policies by Examples and Context

(LAPEC)) Given an access control decision example dataset D, and context in-

formation comprising the sets U , R, O, the sets AU and AR, one of which could

be empty, the functions assigning values to the attributes of the users and resources,

and a possibly empty set of typed binary relations, T = {t1, . . . , tn}, LAPEC aims

at generating a set of ABAC rules (i.e., P = {ρ1 . . . ρm}) that are able to control all

access requests in F .

5.1.4 Policy Generation Assessment

ABAC policies generated by LAPEC are assessed by evaluation of two quality

requirements: correctness , which refers to the capability of the policies to assign

a correct decision to any access request (see Definition 5.1.5), and completeness ,

which refers to ensuring that all actions, executed in the domain controlled by an

access control system, are covered by the policies (see Definition 5.1.6). This assess-

ment can be done against example datasets as an approximation of F . Since datasets

can be noisy, it is possible that two different decision examples for the same request

are in the set. Validation will be done only against consistent datasets as we assume

that the available set of access control examples is noise-free.

Definition 5.1.5 (Correctness) A set of ABAC policies P is correct with respect to

a consistent set of access control decisions D if and only if for every request 〈u, r, o〉

covered by D, 〈u, r, o, d〉 ∈ P → 〈u, r, o, d〉 ∈ D.

Definition 5.1.6 (Completeness) A set of ABAC policies P is complete with re-

spect to a consistent set of access control decisions D if and only if, for every request

〈u, r, o〉, 〈u, r, o〉 covered by D → 〈u, r, o〉 is controlled by P.

114

These definitions allow P to control requests outside D. The aim is twofold. First,

when we learn P from an example dataset D, we want P to be correct and complete

with respect to D. Second, beyond D, we want to minimize incorrect decisions while

maximizing completeness with respect to F . Outside D, we evaluate correctness

statistically through cross validation with example datasets which are subsets of F ,

and calculating Precision, Recall, F1 score, and accuracy of the decisions made by P .

We quantify completeness by the Percentage of Controlled Requests (PCR) which is

the ratio between the number of decisions made by P among the requests covered by

an example dataset and the total number of requests covered by the dataset.

Definition 5.1.7 (Percentage of Controlled Requests (PCR)) Given a subset

of access control decision examples N ⊆ F , and a policy set P, the percentage of

controlled requests is defined as follows:

PCR =
|{〈u, r, o〉 | 〈u, r, o〉 is covered by N and 〈u, r, o〉 is controlled by P}|

|{〈u, r, o〉 | 〈u, r, o〉 is covered by N}|

5.2 The Learning Framework

Our framework comprises four steps, see Fig. 5.1. Throughout this section, we

use the following running example.

Example. Consider a system including users and resources both associated with

projects. User attributes, resource attributes, operations, and possible values for two

selected attributes are shown in Table 5.1. Assume that a log of access control decision

examples is given.

5.2.1 Rules Mining

D provides a source of examples of user accesses to the available re-

sources in an organization. In this step, we use association rule min-

ing (ARM) [137] to analyze the association between users and resources.

115

Table 5.1.: Details about A Project Management System

User Attributes (AU) {id, role, department, project, technical area}

Resource Attributes (AR) {id, type, department, project, technical area}

Operations List (O) {request, read, write, setStatus, setSchedule, ap-

prove, setCost}

VU(role) {planner, contractor, auditor, accountant, de-

partment manager, project leader}

VR(type) {budget, schedule, and task}

Fig. 5.1.: The Architecture of Polisma

Thus, rules having high as-

sociation metrics (i.e., sup-

port and confidence scores)

are kept to generate ac-

cess control rules. ARM is

used for capturing the fre-

quency and data patterns

and formalize them in rules.

Polisma uses Apriori [138]

(one of the ARM algo-

rithms) to generate rules

that are correct and complete with respect to D. This step uses only the exam-

ples in D to mine a first set of rules, referred to as ground rules. These ground

rules potentially are overfitted (e.g., ρ1 in Fig. 5.2) or unsafely-generalized (e.g., ρ2

in Fig. 5.2). Overfitted rules impact completeness over F while unsafely-generalized

rules impact correctness. Therefore, Polisma post-processes the ground rules in the

next step.

116

Fig. 5.2.: Examples of ground rules generated from rule mining based on the specifi-

cations of the running example

5.2.2 Rules Generalization

To address overfitting and unsafe generalization associated with the ground rules,

this step utilizes the set of user and resource attributes AU , AR provided by either

D, external context information sources, or both. Straightforwardly, eU (i.e., user

expression) or eR (i.e., resource expression) of a rule can be adapted to expand or

reduce the scope of each expression when a rule is overfitted or is unsafely generalized,

respectively. In particular, each rule is post-processed based on its corresponding user

and resource by analyzing AU and AR to statistically “choose” the most appropriate

attribute expression that captures the subsets of users and resources having the same

permission authorized by the rule according to D. In this way, this step searches for

an attribute expression that minimally generalizes the rules.

Polisma provides two strategies for post-processing ground rules. One strategy,

referred to as Brute-force Strategy BS, uses only the attributes associated with users

and resources appearing in D. The other strategy assumes that attribute relationship

metadata (T) is also available. Hence, the second strategy, referred to as Structure-

based Strategy SS, exploits both attributes and their relationships. In what follows,

we describe each strategy.

Brute-force Strategy (BS)

To post-process a ground rule, this strategy searches heuristically for attribute

expressions that cover the user and the resource of interest. Each attribute expression

117

is weighted statistically to assess its “safety” level for capturing the authorization

defined by the ground rule of interest.

The safety level of a user attribute expression eU for a ground rule ρ is estimated

by the proportion of the sizes of two subsets: a) the subset of decision examples in D

such that the access requests issued by users satisfy eU while the remaining parts of

the decision example (i.e., resource, operation, and decision) match the corresponding

ones in ρ; and b) the subset of users who satisfy eU . The safety level of a resource

attribute expression is estimated similarly. Thereafter, the attribute expression with

the highest safety level is selected to be used for post-processing the ground rule of

interest. Formally:

Definition 5.2.1 (User Attribute Expression Weight Wuav(ui, aj, dU(ui, aj),

D)) For a ground rule ρ and its corresponding user ui ∈ U , the weight of a user

attribute expression 〈aj, dU(ui, aj)〉 is defined by the formula: Wuav = |UD|
|UC |

, where UD

= {l ∈ D | dU(ui, aj) = dU(l.u, aj) ∧ l.r ∈ ρ.eR ∧ l.o ∈ ρ.O ∧ ρ.d = l.d} and UC =

{uk ∈ U | dU(ui, aj) = dU(uk, aj)}

Different strategies for selecting attribute expressions are possible. They can be

based on a single attribute or a combination of attributes, and they can consider ei-

ther user attributes, resource attributes, or both. Strategies using only user attributes

are referred to as BS-U -S “for a single attribute” and BS-U -C “for a combination

of attributes”. Similarly, BS-R-S and BS-R-C are strategies for a single or a combi-

nation of resources attributes. The strategies using the attributes of both users and

resources are referred to as BS-UR-S and BS-UR-C. Due to space limitation, we

show only the algorithm using the selection strategy BS-U -S (see Algorithm 5.1).

Example. Assume that BS-UR-C is used to generalize ρ2 defined in Fig. 5.2. AU

is {id, role, department, project, technical area} and AR is {id, type, department,

project, technical area}. Moreover, ρ2 is able to control the access for the user whose

ID is “acct-4’ when accessing a resource whose type is task. The attribute values

of the user and resources controlled by ρ2 are analyzed. To generalize ρ2 using BS-

UR-C, each attribute value is weighted as shown in Fig. 5.3. For weighting each

118

Algorithm 5.1 Brute-force Strategy (BS-U -S) for Generalizing Rules

Require: ρi: a ground rule, ui: the user corresponding to ρi, D, AU .

1: Define wmax = -∞, aselected= ⊥.

2: for ai ∈ AU do

3: wi = Wuav(ui, ai, dU(ui, ai), D)

4: if wi > wmax then

5: aselected = ai, wmax = wai

6: end if

7: end for

8: eU ← 〈 aselected, dU(ui, aselected) 〉

9: Create Rule ρ′i = 〈eU , ρi.eR, ρi.O, ρi.d〉

10: return ρ′i

Algorithm 5.2 Structure-based Strategy (SS) for Generalizing Rules

Require: ρi: a ground rule to be Generalized, ui: the user corresponding to ρi, ri:

the resource corresponding to ρi, T , AU , AR.

1: gi = G(ui, ri, AU , AR, T)

2: 〈x ∈ AU , y ∈ AR〉 = First-Common-Attribute-Value(gi)

3: eU ← 〈 x, dU(ui, x) 〉; eR ← 〈 y, dR(ri, y) 〉

4: Create Rule ρ′i = 〈eU , eR, ρi.O, ρi.d〉

5: return ρ′i

user/resource attribute value, the proportion of the sizes of two user/resource subsets

is calculated according to Definition 5.2.1.

In particular, for the value of the “department” attribute corresponding to the user

referred by ρ2 (i.e., “d1”) (Fig. 5.3b), two user subsets are first found: a) the subset

of the users belonging to department “d1”; and b) the subset of the users belonging

to department “d1” and having a permission to perform the “setCost” operation on

a resource of type “task” based on D. Then, the ratio of the sizes of these subsets is

119

considered as the weight for the attribute value“d1”. The weights for the other user

and resource attributes values are calculated similarly. Thereafter, the user attribute

value and resource attribute value with the highest wights are chosen to perform the

generalization. Assume that the value of the “department” user attribute is associated

with the highest weight and the “ project” resource attribute is associated with the

highest weight. ρ2 is generalized as:

ρ′2=〈user(department: d1), resource (type: task, project: d1-p1), setCost, permit〉

(a) w.r.t. dU (uid=′acct−4′ , “role”) (b) w.r.t. dU (uid=′acct−4′ , “department”)

(c) w.r.t. dU (uid=′acc−4′ , “project”) (d) w.r.t. dR(rtype=′task′ , “project”)

Fig. 5.3.: Generalization of ρ2 defined in Fig. 5.2 using the Brute Force Strategy

(BS-UR-C)

Structure-based Strategy (SS)

The BS strategy works without prior knowledge of T . When T is available, it

can be analyzed to gather information about “hidden” correlations between common

attributes of a user and a resource. Such attributes can potentially enhance rule

generalization. For example, users working in a department ti can potentially access

the resources owned by ti. The binary relations in T are combined to form a directed

graph, referred to as Attribute-relationship Graph G (see Definition 5.2.2). Traversing

this graph starting from the lowest level in the hierarchy to the highest one allows

120

one to find the common attributes values between users and resources. Among the

common attribute values, the one with the least hierarchical level, referred to as first

common attribute value, has heuristically the highest safety level for generalization

because the generalization using such attribute value supports the least level of gen-

eralization. Subsequently, to post-process a ground rule, this strategy uses T along

with AU , AR of both the user and resource of interest to build G. Thereafter, G is

used to find the first common attribute value between the user and resource of that

ground rule to be used for post-processing the ground rule of interest (as described

in Algorithm 5.2).

Fig. 5.4.: Generalization of ρ2 defined in Fig. 5.2 using Structure-based Strategy: An

example of Attribute-relationship Graph

Example. Assume that SS is used to generalize ρ2, defined in Fig. 5.2. Also,

suppose that Polisma is given the following information:

• The subset of resources R′ satisfying ρ2.eR has two values for the project attribute

(i.e., “d1-p1”, “d1-p2”).

• The user “acct-4” belongs to the project “d1-p1”.

• R′ and “acct-4” belong to the department “d1”.

• T = {(“d1-p1”, “d1”), (“d1-p2”, “d1”)}.

121

G is constructed as shown in Fig. 5.4. Using G, the two common attributes for “acct-

4” and R′ are “d1-p1” and “d1” and the first common attribute is “d1-p1”. Therefore,

ρ2 is generalized as follows:

ρ′′2 = 〈user(project: d1-p1), resource (type: task, project: d1-p1), setCost, permit〉

Definition 5.2.2 (Attribute-relationship Graph G) Given AU ,AR, ρ and T , the

attribute-relationship graph (G) of ρ is a directed graph composed of vertices V and

edges E where

V = {v | ∀ui ∈ ρ.eU ,∀ai ∈ AU , v = dU(ui, ai)}

∪ {v | ∀ri ∈ ρ.eR,∀ai ∈ AR, v = dR(ri, ai)}, and

E = {(v1, v2) | ∃ti ∈ T ∧ (v1, v2) ∈ ti ∧ v1, v2 ∈ V }.

Proposition 5.2.1 Algorithms 1 and 2 output generalized rules that are correct and

complete with respect to D.

As discussed earlier, the first step generates ground rules that are either overfitted

or unsafely-generalized. This second step post-processes unsafely-generalized rules

into safely-generalized ones; hence, improving correctness. It may also post-process

overfitted rules into safely-generalized ones; hence, improving completeness. However,

completeness can be further improved as described in the next subsections.

5.2.3 Rules Augmentation using Domain-based Restrictions

“Safe” generalization of ground rules is one approach towards fulfilling complete-

ness. Another approach is to analyze the authorization domains of users and resources

appearing in D to augment restriction rules, referred to as domain-based restriction

rules2. Such restrictions potentially increase safety by avoiding erroneous accesses.

Basically, the goal of these restriction rules is to augment negative authorization.

One straightforward approach for creating domain-based restriction rules is to an-

alyze the authorization domain for each individual user and resource. However, such

2This approach also implicitly improves correctness.

122

an approach leads to the creation of restrictions suffering from overfitting. Alterna-

tively, the analysis can be based on groups of users or resources. Identifying such

groups requires pre-processing AU and AR. Therefore, this step searches heuristi-

cally for preferable attributes to use for partitioning the user and resource sets. The

heuristic prediction for preferable attributes is based on selecting an attribute that

partitions the corresponding set evenly. Hence, estimating the attribute distribution

of users or resources allows one to measure the ability of the attribute of interest

for creating even partitions3. One method for capturing the attribute distribution

is to compute the attribute entropy as defined in Eq. 5.1. The attribute entropy is

maximized when the users are distributed evenly among the user partitions using the

attribute of interest (i.e., sizes of the subsets in Gai
U are almost equal). Thereafter,

the attribute with the highest entropy is the preferred one.

Example. Assume that we decide to analyze the authorization domain by grouping

users based on the “role” user attribute. As shown in the top part of Fig. 5.5, the au-

thorization domains of the user groups having distinct values for the “role” attribute

are identified using the access requests examples of D. These authorization domains

allow one to recognize the set of operations authorized per user group. Thereafter,

a set of negative authorizations are generated to restrict users having a specific role

from performing specific operations on resources. Given the preferred attributes, this

step constructs user groups as described in Definition4 5.2.3. These groups can be an-

alyzed with respect to O as described in Algorithm 5.3 Consequently, user groups Gai
U

and resource groups Gai
R along with O comprise two types of authorization domains:

operations performed by each user group, and users’ accesses to each resource group.

Subsequently, the algorithm augments restrictions based on these access domains as

follows.

3Even distribution tends to generate smaller groups. Each group potentially has a similar set of
permissions. A large group of an uneven partition potentially includes a diverse set of users or
resource; hence hindering observing restricted permissions
4The definition of constructing resource groups is analogous to that of user groups.

123

Fig. 5.5.: Rules Augmentation Using Domain-based Restrictions

• It generates deny restrictions based on user groups (similar to the example in

Fig. 5.5). These restriction rules deny any access request from a specific user

group using a specific operation to access any resource.

• It generates deny restrictions based on both groups of users and resources.

These restriction rules deny any access request from a specific user group using

a specific operation to access a specific resource group.

On the other hand, another strategy assumes prior knowledge about preferred

attributes to use for partitioning the user and resource sets (referred to as Semantic

Strategy (SS)) .

Definition 5.2.3 (Attribute-based User Groups Gai
U) Given U and ai ∈ AU , U

is divided into is a set of user groups Gai
U {g

ai
1 , . . . , gaik } where (gaii = {u1, . . . , um} |

∀u′, u′′ ∈ gi, dU(u′, ai) = dU(u′′, ai) ,m ≤| U |)∧ (gi ∩ gj = φ | i 6= j)∧ (k =| VU(ai) |).

Entropy(Gai
U , ai) = (

−1

lnm
∗

m∑
j=1,gj∈G

ai
U

pj ∗ ln pj), where m = |Gai
U |, pj =

|gj|∑m
l=1,gl∈G

ai
U
|gl|

(5.1)

124

Proposition 5.2.2 Step 3 outputs generalized rules that are correct and complete

with respect to D.

Algorithm 5.3 Rules Augmentation using Domain-based Restrictions

Require: D, U , R, x: a preferable attribute of users, y: a preferable attribute of

resources, O.

1: GU = GaiU (U , x); GR = GaiR (R, y)

2: ∀ gi ∈ GU , Ou
gi
→ {}; ∀ gi ∈ GR, Or

gi
→ {}; ∀ gi ∈ GR, U r

gi
→ {}

3: for li ∈ D do

4: g′ ← gi ∈ GU | li.u ∈ gi ∧ li.d = Permit; Ou
g′ → Ou

g′ ∪ li.o

5: Or
g′′ → Or

g′′ ∪ li.o; U r
g′′ → U r

g′′ ∪ li.u

6: end for

7: P ′ → {}

8: for gi ∈ GU do

9: ρi = 〈〈x, dU(ui, x)〉, ∗, oi, Deny〉 | ui ∈ gi ∧ oi ∈ (O \ Ou
gi

); P ′ → P ′ ∪ ρi
10: end for

11: for gi ∈ GR do

12: ρi = 〈〈x, dU(ui, x)〉, 〈y, dR(ri, y)〉, ∗, Deny〉 | ri ∈ gi ∧ ui ∈ (U \ U r
gi

); P ′ → P ′

∪ ρi
13: end for

14: return P ′

5.2.4 Rules Augmentation using Machine Learning

The rules generated from the previous steps are generalized using domain knowl-

edge and data statistics extracted from D. However, these steps do not consider

generalization based on the similarity of access requests. Thus, these rules cannot

control a new request that is similar to an old one (i.e., a new request has a similar

125

pattern to one of the old requests, but the attribute values of the new request do not

match the old ones).

Example. Assume that D includes a decision example (li) for a user (id: “pl-1”)

accessing a resource (id: “sc-1”) where both of them belong to a department “d1”.

Assuming Polisma generated a rule based on li as follows: ρi = 〈 user(role: planner,

department: d1), resource (type: schedule, department: d1), read, permit 〉 Such a

rule cannot control a new request by a user (id: “pl-5” for accessing a resource (id:

“sc-5”) where both of them belong to another department “d5”). Such a is similar

to li. Therefore, a prediction-based approach is required to enable generating another

rule.

A possible prediction approach is to use an ML classifier that builds a model

based on the attributes provided by D and context information. The generated model

implicitly creates patterns of accesses and their decisions, and will be able to predict

the decision for any access request based on its similarity to the ones controlled by

the rules generated by the previous steps. Thus, this step creates new rules based on

these predictions. Once these new rules are created, Polisma repeats Step 2 to safely

generalize the ML-based augmented rules. Notice that ML classification algorithms

might introduce some inaccuracy when performing the prediction. Hence, we utilize

this step only for access requests that are not covered by the rules generated by the

previous three steps. Thus, the inaccuracy effect associated with the ML classifier is

minimized but the correctness and completeness are preserved.

Note that Polisma is used as a one-time learning. However, if changes arise in

terms of regulations, security policies and/or organizational structure of the organi-

zation, the learning can be executed again (i.e., on-demand learning).

5.3 Evaluation

In this section, we summarize the experimental methodology and report the eval-

uation results of Polisma.

126

Table 5.2.: Overview of Datasets

Datasets

Project Management (PM) Amazon (AZ)

of decision examples 550 1000

of users 150 480

of resources 292 271

of operations 7 1

of examples with a “Permit” decision 505 981

of examples with a “Deny” decision 50 19

of User Attributes 5 12

of Resource Attributes 6 1

5.3.1 Experimental Methodology

Datasets. To evaluate Polisma, we conducted several experiments using two

datasets: one is a synthetic dataset (referred to as project management (PM) [136]),

and the other is a real one (referred to as Amazon5). The PM dataset has been

generated by the Reliable Systems Laboratory at Stony Brook University based on a

probability distribution in which the ratio is 25 for rules, 25 for resources, 3 for users,

and 3 for operations. In addition to decision examples, PM is tagged with context

information (e.g., attribute relationships and attribute semantics). We used such a

synthetic dataset (i.e., PM) to show the impact of the availability of such semantic

information on the learning process and the quality of the generated rules. Regard-

ing the Amazon dataset, it is a historical dataset collected in 2010 and 2011. This

dataset is an anonymized sample of access provisioned within the Amazon company.

One characteristic of the Amazon dataset is that it is sparse (i.e., less than 10% of

the attributes are used for each sample). Furthermore, since the Amazon dataset is

large (around 700K decision examples), we selected a subset of the Amazon dataset

(referred to as AZ). The subset was selected randomly based on a statistical anal-

ysis [139] of the size of the Amazon dataset where the size of the selected samples

suffices a confidence score of 99% and a margin error score of 4%. Table 5.2 shows

5http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples

127

statistics about the PM and AZ datasets.

Comparative Evaluation. We compared Polisma with three approaches. We de-

veloped a Näıve ML approach which utilizes an ML classifier to generate rules. A

classification model is trained using D. Thereafter, the trained model is used to gen-

erate rules without using the generalization strategies which are used in Polisma. The

rules generated from this approach are evaluated using another set of new decision

examples (referred to as N)6. Moreover, we compared Polisma with two recently

published state-of-the-art approaches for learning ABAC policies from logs: a) Xu &

Stoller Miner [136], and b) Rhapsody by Cotrini et al. [140].

Evaluation and Settings. On each dataset, Polisma is evaluated by splitting the

dataset into training D (70%) and testing N (30%) subsets. We performed a 10-fold

cross-validation on D for each dataset. As the ML classifiers used for the fourth step

of Polisma and the näıve approach, we used a combined classification technique based

on majority voting where the underlying classifiers are Random Forest and kNN7. All

experiments were performed on a 3.6 GHz Intel Core i7 machine with 12 GB memory

running on 64-bit Windows 7.

Evaluation Metrics. The correctness of the generated ABAC rules is evaluated

using the standard metrics for the classification task in the field of machine learn-

ing. Basically, predicted decisions for a set of access requests are compared with their

ground-truth decisions. Our problem is analogous to a two-class classification task be-

cause the decision in an access control system is either “permit” or “deny”. Therefore,

for each type of the decisions, a confusion matrix is prepared to enable calculating

the values of accuracy, precision, recall, and F1 score as outlined in Eqs 5.2-5.3 8.

6Datasets are assumed to be noise-free, that is, (N ⊂ F) ∧ (D ⊂ F) ∧ (N ∩D = φ). Note that F is
the complete set of control decisions which we will never have in a real system.
7Other algorithms can be used. We used Random Forest and kNN classifiers since they showed
better results compared to SVM and Adaboost.
8F1 Score is the harmonic mean of precision and recall.

128

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(5.2)

F1 Score = 2 · Precision ·Recall
Precision+Recall

, Accuracy =
TP + TN

TP + TN + FP + FN
(5.3)

Regarding the completeness of the rules, they are measured using PCR (see Defini-

tion 5.1.7).

5.3.2 Experimental Results

Fig. 5.6.: Comparison of Näıve, Xu &

Stoller Miner, and Polisma Using the

PM Dataset

Fig. 5.7.: Comparison of Näıve, Rhap-

sody, and Polisma Using the AZ

Dataset

(a) Polisma (BS-HS-ML) (b) Polisma (SS-SS-ML)

Fig. 5.8.: Evaluation of Polisma using the PM dataset.

129

Fig. 5.9.: Comparison between the

variants of the brute-force strategy

(Step 2) using the PM dataset.

Fig. 5.10.: Polisma Evaluation on the

Amazon Dataset (a sample subset and

the whole set).

Fig. 5.11.: Polisma Evaluation on a

sample subset of Amazon Dataset for

only positive authorizations.

Polisma vs. Other Learning Approaches

Here, Polisma uses the default strategies in each step (i.e., the BS-UR-C strat-

egy in the second step and the HS strategy in the third step9) and the impact of

the other strategies in Polisma is evaluated next. The results in Fig. 5.6 show that

Polisma achieves better results compared to the näıve and Xu & Stoller Miner us-

ing the PM dataset. In this comparison, we did not include Rhapsody because the

default parameters of Rhapsody leads to generating no rule. With respect to Xu

& Stoller Miner, Polisma’s F1 score (PCR) improves by a factor of 2.6 (2.4). This

shows the importance of integrating multiple techniques (i.e., data mining, statistical,

9Since the AZ dataset does not contain resource attributes, BS-R-C (instead of BS-UR-C) is
executed in the second step and the execution of the third step is skipped.

130

and ML techniques) in Polisma to enhance the policy learning outcome. Moreover,

Xu & Stoller Miner requires prior knowledge about the structure of context infor-

mation while Polisma benefits from such information when available. Xu & Stoller

Miner [136] generates rules only for positive authorization (i.e., no negative authoriza-

tion). This might increase the possibility of vulnerabilities and encountering incorrect

denials or authorizations. Moreover, Xu & Stoller in their paper [136] used different

metrics from the classical metrics for data mining that are used in our paper. In their

work [136], they used a similarity measure between the generated policy and the real

policy which given based on some distance function. However, such a metric does

not necessarily reflect the correctness of the generated policy (i.e., two policies can

be very similar, but their decisions are different). In summary, this experiment shows

that the level of correctness (as indicated by the precision, recall and F1 score) and

completeness (as indicated by the PCR) of the policies that are generated by Polisma

is higher than for the policies generated by Xu & Stoller Miner and the näıve approach

due to the reasons explained earlier (i.e., the lack of negative authorization rules), as

well as generating generalized rules without considering the safety of generalization.

Furthermore, as shown in Fig. 5.7, Polisma also outperforms the näıve approach and

Rhapsody using the AZ dataset. Rhapsody [140] only considers positive authoriza-

tion (similar to the problem discussed above about Xu & Stoller Miner [136]); hence

increasing the chances of vulnerabilities. In this comparison, we have excluded Xu

& Stoller Miner because of the shortage of available resource attributes information

in the AZ dataset. Concerning the comparison with the näıve approach, on the PM

dataset, the F1 score (PCR) of Polisma improves by a factor of 1.2 (4.1) compared

to that of the näıve. On the AZ dataset, Polisma’s F1 score (PCR) improves by

a factor of 2.7 (3.3) compared to the näıve. Both Polisma and the näıve approach

use ML classifiers. However, Polisma uses an ML classifier for generating only some

of the rules. This implies that among Polisma steps which improve the results of

the generated rules (i.e., Steps 2 and Step 4), the rule generalization step is essen-

tial for enhancing the final outcome. In summary, the reported results show that the

131

correctness level of the rules generated by Polisma is better than that of the ones gen-

erated by Rhapsody and the näıve approach (as indicated by the difference between

the precision, recall, and F1 scores metrics). Meanwhile, the difference between the

completeness level (indicated by PCR) of the generated rules using Polisma and that

of Rhapsody is not large. The difference in terms of completeness and correctness is

a result of Rhapsody missing the negative authorization rules.

Steps Evaluation

Fig. 5.8 shows the evaluation results for the four steps of Polisma in terms of

precision, recall, F1 score, accuracy, and PCR. In general, the quality of the rules

improves gradually for the two datasets, even when using different strategies in each

step. The two plots show that the strategies that exploit additional knowledge about

user and resource attributes (e.g., T) produce better results when compared to the

ones that require less prior knowledge. Moreover, the quality of the generated rules is

significantly enhanced after the second and the fourth steps. This shows the advantage

of using safe generalization and similarity-based techniques. On the other hand, the

third step shows only a marginal enhancement on the quality of rules. However, the

rules generated from this step can be more beneficial when a large portion of the

access requests in the logs are not allowed by the access control system.

We also conducted an evaluation on the whole Amazon dataset; the results are

shown in Fig. 5.10. On the whole dataset, Polisma achieves significantly improved

scores compared to those when using the AZ dataset because Polisma was able

to utilize a larger set of decision examples. Nonetheless, given that the size of

AZ was small compared to that of the whole Amazon dataset, Polisma outcomes

using AZ10 are promising. In summary, the increase of recall can be interpreted

as reducing denials of authorized users (i.e., smaller number of false-negatives).

A better precision value is interpreted as being more accurate with the decisions

10We also experimented samples of different sizes (i.e., 2k-5k), the learning results using these sample
sizes showed slight improvement of scores.

132

(i.e., smaller number of false-positives). Figs. 5.8a-5.8b show that most of the

reduction of incorrect denials is achieved in Steps 1 and 2, whereas the other steps

improve precision which implies more correct decisions (i.e., decreasing the number

of false-positives and increasing the number of true-positives). As Fig. 5.11 shows,

the results improve significantly when considering only positive authorizations. This

is due to the fact that the negative examples are few and so they are not sufficient in

improving the learning of negative authorizations. As shown in the figure, precision,

recall, and F1 score increase indicating that the learned policies are correct. Precision

is considered the most effective metric especially for only positive authorizations to

indicate the correctness of the generated policies since higher precision implies less

incorrect authorizations.

Variants of the Brute-force Strategy

As the results in Fig. 5.9 show, using resource attributes for rules generalization is

better than using the user attributes. The reason is that the domains of the resource

attributes (i.e., VR(ai) | ai ∈ AR) is larger than that of the user attributes (i.e., VU(aj)

| aj ∈ AU) in the PM dataset. Thus, the selection space of attribute expressions is

expanded; hence, it potentially increases the possibility of finding better attribute

expression for safe generalization. In particular, using resources attributes achieves

23% and 19% improvement F1 score and PCR when compared to that of using users

attributes producing a better quality of the generated policies in terms of correctness

(as indicated by the values of precision, recall, and F1 score) and completeness (as

indicated by the PCR value). Similarly, performing the generalization using both

user and resource attributes is better than that of using only user attribute or re-

source attributes because of the larger domains which can be exploited to find the

best attribute expression for safe generalization. In particular, BS-UR-C shows a

significant improvement compared to BS-U -C (22% for F1 score (which reflects a

133

better quality of policies in terms of correctness), and 25% for PCR (which reflects a

better quality of policies in terms of completeness)). In conclusion, the best variant of

the BS strategy is the one that enables exploring the largest set of possible attribute

values to choose the attribute expression which has the highest safety level.

5.4 Related Work to the Polisma Framework

Policy mining has been widely investigated. However, the focus has been on

RBAC role mining that aims at finding roles from existing permission data [141]

[142]. More recent work has focused on extending such mining-based approaches

to ABAC [136] [140] [143] [144] [145]. Xu and Stoller [136] proposed the first ap-

proach for mining ABAC policies from logs. Their approach iterates over a log of

decision examples greedily and constructs candidate rules; it then generalizes these

rules by utilizing merging and refinement techniques. Medvet et al. [143] proposed

an evolutionary approach which incrementally learns a single rule per group of deci-

sion examples utilizing a divide-and-conquer algorithm. Cotrini et al. [140] proposed

another rule mining approach, called Rhapsody, based on APRIORI-SD (a machine-

learning algorithm for subgroup discovery) [146]. It is incomplete, only mining rules

covering a significant number of decision examples. The mined rules are then filtered

to remove any refinements. All of those approaches ([136] [140] [143]) mainly rely on

decision logs assuming that they are sufficient for rule generalization. However, logs,

typically being very sparse, might not contain sufficient information for mining rules

of good quality. Thus, those approaches may not be always applicable. Moreover,

neither of those approaches is able to generate negative authorization rules.

Mocanu et al. [144] proposed a deep learning model trained on logs to learn a

Restricted Boltzmann Machine (RBM). Then, the learned model is used to gener-

ate candidate rules. Their proposed system is still under development and further

testing is needed. Karimi and Joshi [145] proposed to apply clustering algorithms

over the decision examples to predict rules, but they don’t support rules general-

134

ization. To the best of our knowledge, Polisma is the first generic framework that

incorporates context information, when available, along with decisions logs to increase

accuracy. Another major difference of Polisma with respect to existing approaches

is that Polisma can use ML techniques, such as statistical ML techniques, for pol-

icy mining while at the same time being able to generate ABAC rules expressed in

propositional logics.

135

6. FLAP - A FEDERATED LEARNING FRAMEWORK

FOR

ATTRIBUTE-BASED ACCESS CONTROL POLICIES

6.1 Background and Problem Description

In this section, we first introduce background notions about the attribute-based

access control (ABAC) model. We then briefly describe our approach to learn ABC

policies. Finally we formally introduce the problem addressed in this paper.

6.1.1 ABAC Policies

We assume a formal attribute-based access control (ABAC) model [136] that in-

cludes several finite sets: users U , resources R, operations O, and rules P . Each user

(i.e., u ∈ U) and resource (i.e., r ∈ R) is represented by independent sets of attributes

(referred to as user attributes AU and resource attributes AR, respectively). The val-

ues of these attributes are represented by a function which assigns to each attribute

a value from the value range for the attribute as shown in Eqs. 6.1 and 6.2. An

ABAC policy consists of a set of rules P where each rule ρ is defined as 〈eU , eR, O, d〉

where eU is a user attribute expression, eR is a resource attribute expression, O ⊆ O

is a set of operations, and d is the decision of the rule (d ∈ {permit, deny}). An

attribute expression comprises a set of attribute/value pairs. For example, a user ui

satisfies eU (denoted by ui |= eU) iff for every user attribute a not mapped to ⊥,

〈a, dU(ui, a)〉 ∈ eU , and a resource ri satisfies eR (i.e., it belongs to the set defined

by eR, denoted by ri |= eR) iff for every resource attribute a not mapped to ⊥, 〈a,

dR(ri, a)〉 ∈ eR.

136

dU(ui, aj) = vk | ui ∈ U ∧ aj ∈ AU ∧ vk ∈ VU(aj) (6.1)

dR(ri, aj) = vk | ri ∈ R ∧ aj ∈ AR ∧ vk ∈ VR(aj) (6.2)

Intuitively, policy rules can be compared or combined using algebra operators

(referred to policy algebra operators). These operators are a policy algebra could be

represented as rule set operations. Compound policies can be obtained by combining

policy rule sets through the algebra operators. We formally define the following

algebra operators over rule sets:

6.1.2 Policy Learning

Fig. 6.1.: The Architecture of Polisma [49]

With the availability of a log of access requests and their corresponding control

decisions, one can analyze such a log and generate the specifications of access con-

trol policies to control future requests. This problem is referred to as policy learning

137

(a.k.a. policy mining) and several approaches have been proposed to solve this prob-

lem [136] [140] [147]. Recently, we introduced a novel framework, named Polisma [49],

which utilizes both examples of access requests and corresponding access control

decisions as well as contextual information obtained from other data sources (e.g.,

organizational charts, user directories (e.g., LDAP directories), workflows, security

tracking’s logs (e.g., SIEM)), if available.

In Polisma (see Fig. 6.1), learning process is performed according to a sequence of

steps. A data mining technique is first used to infer associations between parties and

resources in the set of decision examples and based on these associations a set of rules

is generated. In the second step, each constructed rule is generalized based on statisti-

cally significant attributes and context information. In the third step, policy domains

are analyzed to augment the rules with restrictions as for some application domains

(e.g. security) generalization can have undesired consequences. Policies learned by

those stages are safe generalizations with minimal overfitting. To improve the com-

pleteness of the learned set, Polisma applies a ML classifier to decision examples not

covered by the learned rules; it uses the classification result to generate additional

rules in an “ad-hoc” manner.

6.1.3 Problem Definition

Policy learning algorithms typically analyze past access requests associated with

their control decisions (as defined in Definition 6.1.1) and aims at generating a set of

ABAC rules to control any access request.

Definition 6.1.1 (Access Control Decisions and Examples (l)) An access con-

trol decision is a tuple 〈u, r, o, d〉 where u is the user who initiated the access request,

r is the resource target of the access request, o is the operation requested on the re-

source, and d is the decision taken for the access request. A decision example l is

a tuple 〈u, eU , r, eR, o, d〉 where eU and eR are a user attribute expression, and a re-

138

source attribute expression such that u |= eU , and r |= eR, and the other arguments

are interpreted as in an access control decision.

In a coalition environment, different parties are involved and each party might en-

counter different scenarios that enrich their experience with respect to control several

access requests. However, such expertise might not be similar for all parties. These

differences open the opportunity for collaboration among the parties and sharng of

their experience and access control decisions. Therefore, in this work we assume there

are two parties that are willing to exchange knowledge about access control decisions.

In particular, one party has a set of ABAC policies (referred to source ABAC poli-

cies) and another party has a set of access control decision examples, extracted from

a system history of access requests and their corresponding authorized/denied deci-

sions, together with some context information (e.g., metadata obtained from LDAP

directories). The problem is to generate “local” ABAC policies at the second party

utilizing both a local log as well as the ABAC policies from the other party. More

precisely:

Definition 6.1.2 (Transferring ABAC Policies by Local Examples and Con-

text (TAPEC)) In an environment that consists of different parties, given informa-

tion of two parties (source and target) including:

• a local set of access control decision examples (i.e., D = {l1, l2, . . . , ln}) for the

target party,

• local context information (the sets U , R, O, the sets AU and AR, one of which

could be empty, and the functions assigning values to the attributes of the users

and resources) for the target party

• a set of ABAC rules (i.e., PS = {ρ1 . . . ρm}) implemented or learned at the

source party,

TAPEC aims at generating a new set of ABAC rules (i.e., PL = {ρ1 . . . ρw}) that

are able to control access requests at the target party.

139

6.2 Methodology

Transferring ABAC policies from a party to another includes three operations.

First, the rules from the source party are compared with access request decision

examples and the generated rules at the target party. Second, some rules potentially

require adaptation to accommodate the differences between the domains, context,

and obligations of the target party. Thus an adaptation process has to be executed.

Finally, the original rules (from the source party) along with the new rules generated

from the adaptation process, as well as the context information of the target party,

are incorporated to enrich the target party with the security requirements from the

source party.

6.2.1 Rule Similarity Analysis

The first step for transferring policies from a source party to a target party is

to assess the similarity of each source rule with respect to the log of access control

decision examples available at the target party. This process includes verifying that an

access control decision example satisfies a rule of interest. Specifically, the verification

comprises checking three conditions (see Definition 6.2.1): a) the user of the decision

example satisfies the user attribute expression of the rule; b) the resource of the

decision example satisfies the resource attribute expression of the rule; and c) the

operation of the decision example is included in the rule operations set. Moreover,

the target party might generate a set of rules (as we will discuss in Subsection 6.2.3).

In this case, the policy transfer procedure requires checking the similarity between

the source and target rules (see Definition 6.2.3).

Recognizing rule similarity enables next checking their consistency. A rule is

consistent with another similar rule if their corresponding decisions are identical (i.e.,

both of them are deny or permit); otherwise they are inconsistent. Similarly, an

access control decision example is consistent with a similar rule if their decisions are

140

identical. The consistency of a rule with respect to a decision example or another

rule is formally defined in Definitions 6.2.2 and 6.2.4, respectively.

Definition 6.2.1 (Similarity of ABAC Rule and Access Control Decision

Example) Given an ABAC rule ρ = 〈eU , eR, O, d〉 and an access control decision

example l = 〈u, eU , r, eR, o, d〉, l is similar to ρ (i.e., l ≈ ρ) if and only if:

• (l.u |= ρ.eU ∨ l.eU ⊆ ρ.eU),

• (l.r |= ρ.eR ∨ l.eR ⊆ ρ.eR), and

• l.o ⊆ ρ.O.

Definition 6.2.2 (Consistency of ABAC Rule and Access Control Decision

Example) An ABAC rule ρ and access control decision example l are consistent (i.e.,

ρ ' l) if and only if:

• ρ ≈ l, and

• ρ.d = l.d.

Definition 6.2.3 (Similarity of a Pair of ABAC Rules) Given two ABAC rules

ρi = 〈eU , eR, O, d〉 and ρj = 〈eU , eR, O, d〉, ρi and ρj are similar to each other (i.e.,

ρi ≈ ρj) if and only if:

• (ρi.eU ⊆ ρj.eU ∨ ρi.u |= ρj.eU) ∨ (ρj.eU ⊆ ρi.eU ∨ ρj.u |= ρi.eU),

• (ρi.eR ⊆ ρj.eR ∨ ρi.r |= ρj.eR) ∨ (ρj.eR ⊆ ρi.eR ∨ ρj.r |= ρi.eR), and

• (ρi.o ⊆ ρj.O) ∨ (ρj.o ⊆ ρi.O).

Definition 6.2.4 (Consistency of a Pair of ABAC Rules) Two rules ρi and ρj

are consistent (i.e., ρi ' ρj) if and only if:

• ρi ≈ ρj, and

• ρi.d = ρj.d.

141

6.2.2 Rules Adaptation

The second operation for policy transfer is to adapt the rules that are identified as

inconsistent ones after conducting the similarity analysis. A straightforward approach

to resolve the inconsistency between two rules (or a rule and an access request decision

example) is to apply one of the policy-combining-algorithms used in XACML (e.g.,

deny overrides, permit overrides, and first applicable). However, prioritizing one

of the rules on the other and ignoring the one with the least priority may lead to

unintended consequences that increase over-privileged or under-privileged accesses.

Thus, to avoid such scenarios it is safer to adapt the inconsistent rules in a way that

resolves the inconsistency and preserves the intended privilege at the same time.

Adaptation of Two Inconsistent Rules

Resolving the conflict of two inconsistent rules (ρi, ρj) is performed by first iden-

tifying the mutual and non-mutual rule predicates (i.e., which operations, users and

resources) between the two rules (see Definition 6.2.6), and then deriving new rules

from the original ones based on either the identified mutual or non-mutual conditions

(see Algorithm 6.1). Therefore, the first derived rule is generated based on the mu-

tual rule predicates while setting the access control decision as either always “permit”

(i.e., permissive paradigm) or always “deny” (restrictive paradigm) (see lines 2-3 in

Algorithm 6.1). This strategy is analogous to the XACML combining algorithms ap-

plied when encountering a conflict. Using either permissive or restrictive paradigm

is heuristically decided based on the number of conflicting decision examples that

are resolved by each paradigm (see lines 4-10 in Algorithm 6.1). Next, new rules are

generated by adapting the original rules using the non-mutual rule predicates. In this

case, the adaptation is performed by employing the following mechanisms on both

the inconsistent rules.

142

• user-based rule adaptation: preserve the decision of the access request for only

the subset of non-mutual users while the rule resource expression and operations

remain the same (see lines 12-13 in Algorithm 6.1);

• resource-based rule adaptation: preserve the decision of the access request for

only the subset of non-mutual resources while the rule user expression and

operations remain the same (see lines 15-16 in Algorithm 6.1); and

• operation-based rule adaptation: preserve the decision of the access request

for only the subset of non-mutual operations while the rule user and resource

expressions remain the same (see lines 18-19 in Algorithm 6.1).

Nonetheless, employing only one of these mechanisms may result in a loss of some

authorizations which are specified in the original rules. Thus, all of these mechanisms

are applied in sequence. Nonetheless, to perform each of the adaptation mechanisms

successfully, the corresponding non-mutual predicate should be refer to an empty

predicate (i.e., Un 6= φ∨Rn 6= φ∨On 6= φ). Finally, the original inconsistent rules are

overridden by the rules derived from both of mutual and non-mutual rule predicates.

Definition 6.2.5 (Mutual Predicates of ABAC Rules) Given two rules ρi =

〈eU , eR, O, d〉 and ρj = 〈eU , eR, O, d〉, the mutual predicates comprise:

• the mutual user expression Um: the intersection between the user expressions of

both rules (i.e., Um = {ρi.eU ∩ ρj.eU}).

• the mutual resource expression Rm: the intersection between the resource ex-

pressions of both rules (i.e., Rm = {ρi.eR ∩ ρj.eR}).

• the mutual operations Om: the subset of operations that are part of the operations

of both rules (i.e., Om = {ρi.O ∩ ρj.O}).

Such that (Um 6= φ) ∧ (Rm 6= φ) ∧ (Om 6= φ).

Definition 6.2.6 (Non-Mutual Predicates of ABAC Rules) Given two rules

ρi = 〈eU , eR, O, d〉 and ρj = 〈eU , eR, O, d〉, the non-mutual predicates comprise:

143

• the non-mutual user expression Un: the user expression that is a subset of the

user expression of “only one” of the two rules (i.e., Un = {(ρi.eU \ ρj.eU) ∨

(ρj.eU \ ρi.eU)}.

• the non-mutual resource expression Un: the resource expression that is a subset

of the resource expression of “only one” of the two rules (i.e., Rn = {(ρi.eR \

ρj.eR) ∨ (ρj.eR \ ρi.eR)}.

• the non-mutual operations On: the subset of operations are part of the operations

of “only one” of the two rules (i.e., On = {(ρi.O \ ρj.O) ∨ (ρj.O \ ρi.O)}.

Example: Given two inconsistent rules ρ1 = 〈 {dept id: 9, 10, 11}, {resource id:

1, 2, 3}, {read, write}, permit 〉, ρ2 = 〈 {dept id: 9, 12}, {resource id: 1}, {read},

deny 〉, the resolution is performed as follows:

For the non-mutual predicates: By the user-based adaptation, the new rules are:

• ρ′1=〈 {dept id: 10,11}, {resource id: 1,2,3}, {read,write}, permit 〉

• ρ′2=〈 {dept id: 12}, {resource id: 1}, {read}, deny 〉

By the resource-based adaptation, the new rules are:

• ρ′′1=〈 {dept id: 9,10,11}, {resource id: 2,3}, {read,write}, permit 〉

By the operation-based adaptation, the new rules are:

• ρ′′′1 =〈 {dept id: 9,10,11}, {resource id: 1,2,3}, {write}, permit 〉.

For the mutual predicates:

• According to the permissive paradigm, the new rule is : ρ′′2 = 〈 {dept id: 9},

{resource id: 1}, {read}, permit 〉

• According the restrictive paradigm, the new rule is : ρ′′′2 = 〈 {dept id: 9},

{resource id: 1}, {read}, deny 〉

Eventually, when adapting two inconsistent rules, at maximum six rules can be

generated based on the non-mutual predicates, while one rule at maximum can be

generated based on the mutual predicates.

144

Algorithm 6.1 Adapt Two Inconsistent ABAC Rules (Adapt2Rules)

Require: D: Access control decision examples and (ρi, ρj) a pair of inconsistent

ABAC rules

1: P = {} # New adapted rules.

2: ρk = 〈 ρi.eU ∩ ρj.eU , ρi.eR ∩ ρj.eR, ρi.o ∩ ρj.o, permit 〉

3: ρ′k = 〈 ρi.eU ∩ ρj.eU , ρi.eR ∩ ρj.eR, ρi.o ∩ ρj.o, deny 〉

4: Dρk = {∀l ∈ D | (l ' ρk }

5: Dρ′k = {∀l ∈ D | (l ' ρ′k }

6: if | Dρk | > | Dρ′k | then

7: P = P ∪ ρk
8: else

9: P = P ∪ ρk′
10: end if

11: # User-based Adaptation.

12: ρ′i = 〈 ρi.eU \ ρj.eU , ρi.eR, ρi.O, ρi.d 〉

13: ρ′j = 〈 ρj.eU \ ρi.eU , ρj.eR, ρj.O, ρj.d 〉

14: # Resource-based Adaptation.

15: ρ′′i = 〈 ρi.eU , ρi.eR \ ρj.eR, ρi.O, ρi.d 〉

16: ρ′′j = 〈 ρj.eU , ρj.eR \ ρi.eR, ρj.O, ρj.d 〉

17: # Operation-based Adaptation.

18: ρ′′′i = 〈 ρi.eU , ρi.eR, ρi.O \ ρj.O, ρi.d 〉

19: ρ′′′j = 〈 ρj.eU , ρj.eR, ρj.O \ ρi.O, ρj.d 〉

20: P = P ∪ ρ′i ∪ ρ′j ∪ ρ′′i ∪ ρ′′j ∪ ρ′′′i ∪ ρ′′′j
21: return P

Adaptation of Groups of Inconsistent Rules

When an ABAC rule contradicts a set of ABAC rules, one approach is to execute

the resolution algorithm separately for each pair of inconsistent rules (i.e., Algo-

145

rithm 6.1). However, this might not be as simple as it seems. Applying such an

approach potentially generates additional conflicts because the newly adapted rules

are generated by considering only a pair of rules but not the other ones. Thus, a re-

cursive adaptation is performed until no further inconsistency is encountered within

the original group of inconsistent rules and the ones adapted from them (i.e., the

newly generated ones).

6.2.3 Rule Transferability Approaches

Näıve Approaches

Transfer Policies using a Local Log (TPLG)

The straightforward approach for transferring policies is to use the raw log of

historical access control decisions collected at the target system for adapting the

source rules to be used in the system of interest. In particular, the rules are tuned

using the local log, as illustrated in Algorithm 6.4 and shown in Fig. 6.2. Towards this,

first the source rules are enforced using the historical set of access control requests

available.

Fig. 6.2.: Transfer Policies using Local Log (TPLG)

After the enforcement, the approach inspects the decision of each rule for the

corresponding examined access requests compared to the historical access control

decisions. The inspection can results in three cases: a) the rule has not been enforced

146

by any of the historical requests, b) the rule has been enforced with no inconsistency

with any of the historical decisions, c) the rule has been enforced with inconsistency

with respect to the historical decisions. In the first case, the rule is transferred in order

to be used for handling situations not yet encountered. For the second case, the rule

is also transferred because of its compliance with the local historical access control

decisions. Finally, in the third case, the rule is adapted by restricting its attribute

expressions to fit with either only the corresponding historical decision requests that

comply with or the contradicting set of historical decision requests.

Transfer Policies using Local Policies (TPLP)

TPLG is easy to implement; however, the main limitation of this approach is that

it utilizes the raw local log for tuning the source policies directly without analyzing

the log. Such an approach assumes that the observation of each historical access

control decision represents a rule; however, each rule is typically an abstraction of

security specifications for multiple access control decisions. Alternatively, another

approach is to utilize the local log for generating ABAC rules referred to as “local

policies” using one of the state-of-the-art policy learning approaches [49] [136] [140].

In general, the approach is composed of two main steps (see Algorithm 6.5 and

Fig. 6.3). First, the approach uses a policy learner to generate local rules using the

local log. Thereafter, a similarity analysis is performed on both local and source

rules. The outcome of such analysis has three cases: a) no local rule is similar to a

source rule (see lines 11-12); b) all of the local rules which are similar to a source

rule are consistent with it (see lines 6-7); and c) some of the local rules which are

similar to a source rule are inconsistent with it (see lines 8-10). In the first and the

second cases, the source rule is migrated to the target system. In the third case, the

conflicts between the local and source rules are resolved by performing the adaptation

algorithm such that their corresponding attribute expressions are tailored either by

expanding or restricting their covered scope.

147

Proposed Approaches

Fig. 6.3.: Transfer Policies using Local Policies (TPLP)

Fig. 6.4.: Transfer Policies using Local

Learning

Fig. 6.5.: Transfer Policies using Hybrid

Learning

Transfer Policies using Local Learning (TPLL)

TPLP post-processes the generated rules from a policy learner using the source

rules. However, such a mechanism potentially generates local rules that are incon-

sistent with the source rules and also increases the conflicts among the rules learned

throughout the learning stages. One approach to avoid such a problem is to use the

source rules to adapt the intermediate forms of the local rules. In particular, the rule

adaptation is performed in tandem with policy learning from the local log.

148

Since a policy learner is typically composed of multiple learning phases, the inter-

mediate rules generated after each step are compared with the source rules using a

similarity analysis (see Algorithm 6.6 and Fig. 6.4). If these intermediate local rules

conflicts with the source rules, the local rules are adapted in the early stages; hence

enabling the evolution of more accurate local rules among the phases of the policy

learner (i.e., reducing error propagation) while filtering the source policies to exclude

the ones that have a conflict with any of the local rules. Moreover, this mechanism

enables either increasing or decreasing the significance of intermediate rules and con-

trolling their evolution. After the local rules are generated, the remaining source rules

are transferred to the target system.

Transfer Policies using Hybrid Learning (TPHL)

TPLL does not fully exploit the source rules while learning the local rules from

the local log since TPLL only uses the source rules for controlling the evolution of

the intermediate rules. Therefore, we propose another approach in which the source

rules are in-lined with the intermediate local rules to allow the next learning phases

to exploit the source rules as well as the local log in the learning stages. Such an

approach allows one to generate correct rules that cover further security aspects and

requirements of the local system.

As shown in Fig. 6.5, the source rules are used in two ways in this approach. First,

the intermediate local rules are adapted after each learning phase of the policy learner.

Second, the filtered source rules (by excluding the ones that have a conflict with any

of the local rules) are used as input for the subsequent learning phases alongside the

intermediate local rules. The steps of TPHL are illustrated in Algorithm 6.7.

6.3 Evaluation

In this section, we summarize the experimental methodology and report the eval-

uation results for FLAP.

149

6.3.1 Experimental Methodology

Dataset. We conducted experiments using two datasets: a synthetic dataset (re-

ferred to as project management (PM) dataset [136]) and real dataset (referred to as

Amazon dataset), obtained from Amazon1. This dataset is an anonymized sample of

accesses provisioned within the Amazon company and it is composed of around 700K

decision examples. We used 70% of the dataset as decision examples of the target

party and 30% for the source party.

Evaluation Metrics. To evaluate FLAP, we use three metrics: precision, recall,

and F1 score. These metrics are able of conveying the correctness of the adapted

policies, by checking their responses to the local decision examples, and their ability

to cover new access requests derived from the source policies.

Fig. 6.6.: Transfer Policies using the PM

dataset

Fig. 6.7.: Transfer Policies using the Ama-

zon dataset

6.3.2 Experimental Results

Figs 6.6 and 6.7 shows the evaluation results for the four approaches introduced

in the paper, that is, TPLG, TPLP , TPLL, and TPHL, on the PM and Ama-

zon datasets, respectively. In general, both TPLL and TPHL perform better than

TPLG, TPLP in terms of all evaluation metrics due to the fact that both TPLL

and TPHL utilize the source policies along with the local log in the learning pro-

1http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples

150

cess to filter and adapt the rules including the intermediate ones; hence reducing

the effect of the error propagation. On the other hand, TPLG and TPLP perform

the worst because TPLG uses “only” the local log for adapting the source policies

without analyzing the local log while TPLP uses the local log to learn local rules

for the target system without utilizing the source rules. Moreover, the results on the

Amazon dataset are better than that of the PM dataset because the Amazon dataset

contains more decision examples in the local log and more source policies compared

to the PM dataset, and thus, such an increase in the input data positively affects the

transfer process. Figs 6.6 and 6.7 show the evaluation results with respect to three

metrics: precision, recall, and F1 score. The recall metric reflects the ability of the

rules generated of the transfer process to correctly control more scenarios, while the

precision metric reflects the correctness of the decisions produced by the generated

rules2.

6.4 Related Work to Policy Transfer

The problem of ABAC policy transfer has not yet been investigated. Approaches

have been proposed for policy adaptation in the context of mobile systems, such

as [148]. However the policies considered in such approaches are not attribute-based.

Work related to ours also includes work on mining ABAC policies from access con-

trol decision logs [140], [49], [147], [144], [136], and work on ABAC policy similar-

ity [83], [82]. However such approaches do not address policy migration and adap-

tation. More recently approaches have been proposed that apply transfer learning

techniques in the context of intrusion detection [149], [150], [151], [152], [153]. How-

ever those approaches have been designed for transferring neural networks used for

classifying network packets as benign or malicious and thus do not deal with rule

transfer and adaptation.

2F1 score is the harmonic mean of precision and recall.

151

Algorithm 6.2 Subtract Rules (SubAttrFromRule)

Require: An ABAC rule ρ0 inconsistent with a group of rules (PC = {ρ1, . . . , ρm})

and P the set of resulted rules

1: if | PC |= 0 then

2: return ρ0

3: else

4: for ai ∈ (ρ0.aU ∪ ρ0.aR ∪ ρ0.O) do

5: # ρ1 is first rule of PC
6: ρ1 = PC \ {∀ρi ∈ PC | i > 1}

7: if ai ∈ ρ0.aU then

8: eUa0 = {(ai, dU(u, ai)) | ∀u |= ρ0.aU}

9: eUa1 = {(ai, dU(u, ai)) | ∀u |= ρ1.aU}

10: a′U = {∀u |= eUa0} \ {∀u |= eUa1}

11: ρ′0 = 〈a′U , ρ0.aR, ρ0.O, ρ0.d〉

12: else if ai ∈ ρ0.aR then

13: eRa0 = {(ai, dR(r, ai)) | ∀r |= ρ0.aR}

14: eRa1 = {(ai, dR(r, ai)) | ∀r |= ρ1.aR}

15: a′R = {∀r |= eRa0} \ {∀r |= eRa1}

16: ρ′0 = 〈ρ0.aU , a′R, ρ0.O, ρ0.d〉

17: else if ai ∈ ρ0.O then

18: a′O = ρ0.O \ ρ1.O

19: ρ′0 = 〈ρ0.aU , ρ0.aR, a′O, ρ0.d〉

20: end if

21: if ρ′0 6= φ then

22: ρ0 = ρ′0

23: # Remove the 1st rule from PC
24: PC = {∀ρi ∈ PC | i > 1}

25: P = P ∪ SubAttrFromRule(ρ0,PC,P)

26: end if

27: end for

28: end if

29: return P

152

Algorithm 6.3 Adapt a Group of Inconsistent ABAC Rules (AdaptGRules)

Require: D: Access control decision examples and an ABAC rule ρ0 inconsistent

with a group of rules (PG = {ρ1, . . . , ρm})

1: PC = {}, P = {}

2: for ρi ∈ PG do

3: PC = PC ∪ (ρ0 ∩ ρi)

4: end for

5: P = SubAttrFromRule(ρ0,PC,P)

6: for ρi ∈ PG do

7: P = P ∪ SubAttrFromRule(ρi, {ρ0 ∩ ρi},P)

8: end for

9: for ρi ∈ PC do

10: ρk = 〈 ρi.eU , ρi.eR, ρi.o, permit 〉

11: ρ′k = 〈 ρi.eU , ρi.eR, ρi.o, deny 〉

12: Dρk = {∀l ∈ D | (l ' ρk }

13: Dρ′k = {∀l ∈ D | (l ' ρ′k }

14: if | Dρk | > | Dρ′k | then

15: P = P ∪ ρk
16: else

17: P = P ∪ ρk′
18: end if

19: end for

20: return P

153

Algorithm 6.4 Transfer Policies using Local Log (TPLG)

Require: D: Access control decision examples, PS: “Source” access control policies.

1: PL = {} # Adapted “Local” access control policies.

2: for ρi ∈ PS do

3: Dρi = {∀l ∈ D | l ≈ ρi}

4: Dmρi = {∀l ∈ Dρi | l ' ρi}

5: Dcρi = {∀l ∈ Dρi | l 6' ρi}

6: if Dmρi 6= φ ∧ Dcρi = φ then

7: PL = PL ∪ ρi
8: else if Dcρi 6= φ then

9: Pc′ρi = {} # Adapted conflicting “Local” access control policies.

10: Pc′ρi = AdaptGRules(D, ρi, Dc
′
ρi

)

11: PL = PL ∪ Pc
′
ρi

12: else if Dmρi = φ ∧ Dcρi = φ then

13: PL = PL ∪ ρi
14: end if

15: end for

16: return PL

154

Algorithm 6.5 Transfer Policies using Local Policies (TPLP)

Require: PS: “Source” access control policies, PL: “Local” access control policies.

1: P ′L = {} # “Adapted Local” access control policies.

2: for ρi ∈ PS do

3: Pρi = {∀pj ∈ PL | pj ≈ ρi }

4: Pmρi = {∀pk ∈ Pρi | pk ' ρi}

5: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}

6: if Pmρi 6= φ ∧ Pcρi = φ then

7: P ′L = P ′L ∪ ρi
8: else if Pcρi 6= φ then

9: Pc′ρi = {} # Adapted conflicting “Local” access control policies.

10: Pc′ρi = AdaptGRules(D, ρi, Pcρi)

11: P ′L = P ′L ∪ Pc
′
ρi

12: else if Pmρi = φ ∧ Pcρi = φ then

13: P ′L = P ′L ∪ ρi
14: end if

15: end for

16: return P ′L

155

Algorithm 6.6 Transfer Policies using Local Learning (TPLL)

Require: D: Access control decision examples, PS: “Source” access control policies,

: a policy learner consisted of n steps {1, 2, . . . , n}.

1: P ′S = PS # “Adapted Source” access control policies.

2: P ′L = {} # “Adapted Local” access control policies.

3: for k ∈ do

4: PL = k(D, P ′L)

5: for ρi ∈ P ′S do

6: Pρi = {∀pj ∈ PL | pj ≈ ρi }

7: Pmρi = {∀pk ∈ Pρi | pk ' ρi}

8: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}

9: if Pρic 6= φ then

10: Pc′ρi = {} # Adapted conflicting “Local” access control policies.

11: Pc′ρi = AdaptGRules(D, ρi, Pcρi)

12: P ′S = P ′S − ρi
13: PL = PL − Pcρi
14: PL = PL ∪ Pc

′
ρi

15: end if

16: end for

17: P ′L = PL
18: end for

19: P ′L = P ′L ∪ P ′S
20: return P ′L

156

Algorithm 6.7 Transfer Policies using Hybrid Learning (TPHL)

Require: D: Access control decision examples, PS: “Source” access control policies,

: a policy learner consisted of n steps {1, 2, . . . , n}.

1: P ′S = PS.

2: P ′L = {}.

3: for k ∈ do

4: PL = k(D, P ′L)

5: for ρi ∈ P ′S do

6: Pρi = {∀pj ∈ PL | pj ≈ ρi }

7: Pmρi = {∀pk ∈ Pρi | pk ' ρi}

8: Pcρi = {∀pk ∈ Pρi | pk 6' ρi}

9: if Pcρi 6= φ then

10: Pc′ρi = {} # Adapted conflicting “Local” access control policies.

11: Pc′ρi = AdaptGRules(D, ρi, Pcρi)

12: P ′S = P ′S − ρi
13: PL = PL − ρi
14: PL = PL − Pρic
15: PL = PL ∪ Pc

′
ρi

16: end if

17: end for

18: PL = PL ∪ P ′S
19: P ′L = PL
20: end for

21: return P ′L

157

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this thesis, we present a provenance framework in addition to a set of appli-

cations utilizing provenance metadata. In particular, these provenance applications

include auditing, quality assessment, and reproducibility.

Data Provenance Framework. In Chapter 2, we have introduced SimP [16], a

comprehensive provenance framework that is built on a comprehensive provenance

model provided with relational and graph specifications. Our provenance model

is interoperable with the OPM and PROV provenance models. In addition, SimP

includes a unified provenance query language (QL-SimP) [41, 154] which is indepen-

dent of the provenance representation. Based on our benchmark, the performance

for provenance queries which require path traversal is better when using a graph

database while the performance for structural provenance queries is better when

using a relational database.

Provenance for Assessing the Quality of Access Control Policies. In

Chapter 3, we have proposed a set of requirements to evaluate the quality of

access control policies. We have also shown the use of provenance for capturing

fine-grained metadata essential for evaluating the quality of policies. Our framework

(ProFact) [26, 27] supports various types of query services which convey detailed

information about the system environment in the context of transactions and access

control policies. ProFact supports two approaches for policy analysis: structure-based

and classification-based. Regarding the structure-based approach, our experiments

show that transaction-based analysis is faster than policy-based analysis with a

158

maximum speedup factor of 5X. Regarding the classification-based analysis approach,

kNN and SVM achieved the best efficiency obtaining a maximum recall of 80% and

86%, respectively. By adopting the combined classifiers, the efficiency improved

reaching a recall of 88%. Moreover, classification-based approach outperformed the

structure-based approach with a maximum speedup factor of 31x. If the system is

not in a real-time environment, the system can adopt the structure-based analysis

approach to obtain a 100% recall.

Provenance for Reproducing Workflows of Repetitive Tasks. In Chapter 4,

we have presented an architecture to facilitate creating scientific workflow repositories

and enable searching them efficiently based on the provenance representation of scien-

tific workflows. Our architecture (ProWS) [6] supports composite queries comprising

three subqueries, namely: metadata-based, label-based, and pattern-based queries.

We have underpinned our formalisms with respect to logical constructs and have

proposed efficient techniques to match search parameters with provenance details of

the workflows. To enhance the search, we proposed a set of index structures. Based

on our experiments, our index-based approaches are able to enhance the retrieval of

similar workflows efficiently by minimizing the query time and avoiding the traversal

of “false hit” workflows.

Provenance for Learning Attribute-based Access Control Policies. In

Chapter 5, we have proposed Polisma [49], a framework for learning ABAC policies

from examples and context information. Polisma comprises four steps employing

various techniques, namely data mining, statistical, and machine learning. Our

evaluations, carried out on a real-world decision log (referred to as AZ) and on a

synthetic one (referred to as PM), show that Polisma is able to learn policies that

are both complete and correct. The rules generated by Polisma using the PM

dataset achieve an F1 score of 0.81 and PCR of 0.95; also, when using the AZ

dataset, the generated rules achieve an F1 score of 0.86 and PCR of 0.98. Moreover,

159

By using the semantic information available with the PM dataset, Polisma improves

the F1 score to reach 0.85.

Provenance for Transferring Attribute-based Access Control Policies. In

Chapter 6, we have proposed FLAP [155], a framework for policy transfer in a fed-

erated environments. It allows one to transfer attribute-based policies from a source

party to a target party. We have proposed four approaches that vary in their inter-

action levels between the source and target resources, as well as the timing of this

interaction. Our preliminary evaluation, carried out on a real-world access control

decision dataset and a synthetic one, show the ability of FLAP to transfer the source

policies to a target party to generate correct policies which can be used in future for

unseen scenarios.

7.2 Future Work

In future, I intend to extend this work in the following directions.

7.2.1 Provenance Similarity Measure

As discussed earlier, provenance metadata is crucial for several purposes. How-

ever, provenance metadata often is quite large in size which leads to restrictions on

its usages. Addressing such an issue requires analyzing provenance metadata to ex-

tract useful metadata to the application of interest and guarantee its effective and

efficient utilization. Such analysis includes multiple methods such as querying, filter-

ing, removing redundancy, and abstraction. All such methods primarily require an

effective provenance similarity measure. Evaluating the provenance similarity varies

based on the purpose of the application utilizing the provenance metadata. One of the

main applications of data provenance is auditing and anomaly detection which require

measuring the similarity of application resources (e.g., data objects) effectively. An-

other emerging application is to utilize provenance metadata for data quality purpose.

160

Provenance metadata provides rich information about how data has been generated

by processes. Hence, we need to devise a provenance similarity measure based on the

activities executed in the application of interest (e.g., ProFact [26, 27]). Moreover,

provenance can be utilized for data reproducibility. Provenance provides metadata

about the sequence of tasks executed by different users for achieving similar goals.

Predicting such patterns needs a similarity measure to compare all actions operated

by such users. (e.g., ProWS [6]). Therefore, we need to define multi-purpose prove-

nance similarity measure.

Similarity analysis has been investigated in other domain other than data prove-

nance. Lin et al. [82, 156] proposed a policy similarity approach mainly based on

XACML [19] policies. Their proposed approach is based on information retrieval

and is utilized for policy analysis purposes. Another domain is text similarity which

includes sentence similarity [157], ontology similarity [158] and document similar-

ity [159]. Such approaches can not be applied in the domain of data provenance since

the underlying representation is complex and different.

Provenance analysis has been the focus of some research efforts which include

investigating mechanisms for provenance similarity analysis. For example, Biton et

al. [160] presented a system to retrieve relevant provenance metadata in the context

of workflows. The main target of this system was retrieving the most relevant prove-

nance metadata and reducing the amount of returned provenance of users queries.

Hence, they focused on abstraction techniques mainly by constructing provenance

users views based on workflow specifications. Garijo et al. [161] have also focused

on provenance abstraction for workflows context. Garijo’s approach is to abstract

provenance based on finding common tasks according to workflow templates among

the provenance logs using graph algorithms. Similarly, Missier et al. [162] designed

a tool for provenance abstraction using graph transformations. All these works have

primarily focused on provenance analysis for the workflows context and mostly using

graph-based approaches. Hence, there is a need for a similarity approach which is

capable of considering different application domains including workflows.

161

To address the provenance similarity challenges (i.e., the rich representation of

data provenance and the applicability for various contexts), we thus plan to design

a provenance similarity measure using two approaches: model checking (e.g., using

a SAT solver [163], and a multi-terminal binary decision diagram (MTBDD) [164]),

and information retrieval. The first approach is computationally expensive, especially

when dealing with a large-scale repository of data provenance. The problem is equiv-

alent to solving Boolean satisfiability, which is NP-complete. The second approach is

based on principles from the information retrieval field. This approach uses the notion

of provenance similarity measure, based on which a similarity score can be quickly

computed for corresponding provenance entities and relations. In our plan, we will

investigate the similarity approaches using the SimP model [16] which is interoperable

with OPM [12] and PROV [13].

7.2.2 A Provenance-based Trustworthiness Model for Evaluating Human

Activities on Social Networks as Valuable Sensors

Recently, online social networks (e.g., Flickr1, Facebook2, Instagram3, Snapchat4,

and Twitter5) have been massively used especially with the advances of sensor-rich

smartphones equipped with the Internet connectivity. Due to the growth of using

these online social networks, humans are uncontrollably reporting and publishing a

massive amount of information about various topics. For example, people daily post

500 million tweets on Twitter [165] and 734 million comments on Facebook [166]. Such

huge streams of data potentially provide a valuable source of knowledge about the

physical environment, social phenomena, and people daily lives. Subsequently, many

research works have utilized social media data to investigate public characteristics

(e.g., demographic and urban characteristics [167,168], customer opinions about prod-

1http://www.flickr.com
2http://www.facebook.com
3http://www.instagram.com
4https://www.snapchat.com
5http://www.twitter.com

162

ucts [169, 170], political views [171], and public health information [172]). Further-

more, social media has been used as active sensors during emergency events [173,174]

such as disasters (e.g., flood, earthquake, and hurricane). In particular, the Fed-

eral Emergency Management Agency (FEMA) identifies social media as an essential

component of future disaster management [175]. Hence, it is crucial to measure the

trustworthiness of human posts on social networks.

We thus plan to investigate designing a trustworthiness model based on provenance

which can consider the reliability level of an individual posted data with respect to

its source among the active users participating in the social network as well as the

trust score of each user based on the aggregated value of his posted data. As a result,

our trustworthiness model aims at filtering only reliable data for using them in other

applications which depend on the available streams of data on online social networks.

The two future steps can be considered as a middle layer between provenance

data and its applications. Therefore, such a middle layer can be an additional com-

ponent for the SimP framework to be ultimately and effectively used in the different

applications and contexts.

REFERENCES

163

REFERENCES

[1] D. Fadolalkarim, A. Sallam, and E. Bertino, “PANDDE: Provenance-based
anomaly detection of data exfiltration,” in Proceedings of the Sixth ACM Con-
ference on Data and Application Security and Privacy. ACM, 2016, pp. 267–
276.

[2] A. Awad, S. Kadry, G. Maddodi, S. Gill, and B. Lee, “Data leakage detection
using system call provenance,” in Proceedings of the 2016 International Con-
ference on Intelligent Networking and Collaborative Systems (INCoS). IEEE,
2016, pp. 486–491.

[3] C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu, “An approach to evaluate data
trustworthiness based on data provenance,” in Proceedings of the 5th VLDB
Workshop on Secure Data Management SDM. Springer, 2008, pp. 82–98.

[4] X. Wang, K. Govindan, and P. Mohapatra, “Provenance-based information
trustworthiness evaluation in multi-hop networks,” in Proceedings of the Global
Telecommunications Conference (GLOBECOM 2010), 2010 IEEE. IEEE,
2010, pp. 1–5.

[5] N. Prat and S. Madnick, “Measuring data believability: A provenance ap-
proach,” in Proceedings of the 41st Hawaii International International Con-
ference on Systems Science (HICSS). IEEE, 2008, pp. 393–393.

[6] A. Abu Jabal, E. Bertino, and G. De Mel, “Provenance-based scientific workflow
search,” in Proceedings of the 2017 IEEE 13th International Conference on e-
Science (e-Science). IEEE, 2017, pp. 119–127.

[7] J. Wang, N. Car, B. Evans, L. Wyborn, and E. King, “Supporting data re-
producibility at nci using the provenance capture system,” D-Lib Magazine,
vol. 23, no. 1/2, 2017.

[8] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera: A virtual data system
for representing, querying, and automating data derivation,” in Proceedings.
14th International Conference on Scientific and Statistical Database Manage-
ment (SSDBM). IEEE, 2002, pp. 37–46.

[9] J. Zhao, C. Goble, R. Stevens, and S. Bechhofer, “Semantically linking and
browsing provenance logs for e-science,” in Proceedings of the International
Conference on Semantics for the Networked World. Springer, 2004, pp. 158–
176.

[10] Y. L. Simmhan, B. Plale, and D. Gannon, “Query capabilities of the karma
provenance framework,” Concurrency and Computation: Practice and Experi-
ence, vol. 20, no. 5, pp. 441–451, 2008.

164

[11] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems,” in USENIX Annual Technical Conference,
General Track, 2006, pp. 43–56.

[12] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson, “The
open provenance model,” 2007. [Online]. Available: http://eprints.ecs.soton.
ac.uk/14979/1/opm.pdf

[13] “Prov overview.” [Online]. Available: http://www.w3.org/TR/2013/
NOTE-prov-overview-20130430/

[14] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access control language
for a general provenance model,” in Workshop on Secure Data Management.
Springer, 2009, pp. 68–88.

[15] S. Sultana and E. Bertino, “A distributed system for the management of fine-
grained provenance,” Journal of Database Management (JDM), vol. 26, no. 2,
pp. 32–47, 2015.

[16] A. Abu Jabal and E. Bertino, “Simp: Secure interoperable multi-granular prove-
nance framework,” in Proceedings of the 2016 IEEE 12th International Confer-
ence on e-Science (e-Science). IEEE, 2016, pp. 270–275.

[17] E. Bertino, G. Ghinita, and A. Kamra, “Access control for databases: Concepts
and systems,” Foundations and Trends R© in Databases, vol. 3, no. 1–2, pp. 1–
148, 2011.

[18] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based
access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[19] “Extensible access control markup language (xacml) version 3.0.” [Online].
Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.
html

[20] P. Gupta, S. D. Stoller, and Z. Xu, “Abductive analysis of administrative poli-
cies in rule-based access control,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 5, pp. 412–424, 2014.

[21] A. Cau, H. Janicke, and B. Moszkowski, “Verification and enforcement of access
control policies,” Formal Methods in System Design, vol. 43, no. 3, pp. 450–492,
2013.

[22] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone, “Analysis of xacml
policies with smt,” in Proceedings of the 2015 4th International Conference on
Principles of Security and Trust (POST), London, UK, April 11-18, 2015, 2015,
pp. 115–134.

[23] C. Ngo, Y. Demchenko, and C. de Laat, “Decision diagrams for xacml policy
evaluation and management,” Computers & Security, vol. 49, pp. 1–16, 2015.

[24] X. Ma, R. Li, Z. Lu, and W. Wang, “Mining constraints in role-based access
control,” Mathematical and Computer Modelling, vol. 55, no. 1, pp. 87–96, 2012.

[25] A. Abu Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, A. Russo,
and C. Williams, “Methods and tools for policy analysis,” ACM Computing
Surveys (CSUR), vol. 51, no. 6, pp. 121:1–121:35, 2019.

165

[26] E. Bertino, A. Abu Jabal, S. Calo, C. Makaya, M. Touma, D. Verma, and
C. Williams, “Provenance-based analytics services for access control policies,”
in Proceedings of 2017 IEEE World Congress on Services (SERVICES). IEEE,
2017, pp. 94–101.

[27] A. Abu Jabal, M. Davari, E. Bertino, C. Makaya, S. Calo, D. Verma, and
C. Williams, “ProFact: A provenance-based analytics framework for access
control policies,” IEEE Transactions on Services Computing (TSC), 2019.

[28] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Brafman,
G. Petretto, G.-M. Rignanese, G. Hautier et al., “Fireworks: A dynamic work-
flow system designed for high-throughput applications,” Concurrency and Com-
putation: Practice and Experience, vol. 27, no. 17, pp. 5037–5059, 2015.

[29] M. Kunze, M. Weidlich, and M. Weske, “Querying process models by behavior
inclusion,” Software & Systems Modeling, vol. 14, no. 3, pp. 1105–1125, 2015.

[30] P. Fraternali et al., “Graph search of software models using multidimensional
scaling,” in CEUR WORKSHOP PROCEEDINGS, 2015, pp. 163–170.

[31] E. C. Dragut, P. Baker, J. Xu, M. I. Sarfraz, E. Bertino, A. Madhkour, R. Agar-
wal, A. Mahmood, and S. Han, “Cris—computational research infrastructure
for science,” in Information Reuse and Integration (IRI), 2013 IEEE 14th In-
ternational Conference on. IEEE, 2013, pp. 301–308.

[32] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao, “Scientific workflow management and the kepler system,”
Concurrency and Computation: Practice and Experience, vol. 18, no. 10, pp.
1039–1065, 2006.

[33] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat et al., “Taverna: a tool for the composition
and enactment of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17,
pp. 3045–3054, 2004.

[34] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo, “Managing the evolution of dataflows with vistrails,” in Data Engineering
Workshops, 2006. Proceedings. 22nd International Conference on. IEEE, 2006,
pp. 71–71.

[35] “mygrid project.” [Online]. Available: http://www.mygrid.org.uk/

[36] D. De, R. Carole, and G. R. Stevens, “The design and realisation of the myEx-
periment virtual research environment for social sharing of workflows,” Future
Generation Comp. Syst., vol. 25, no. 5, pp. 561–567, 2009.

[37] V. Hu, D. Ferraiolo, K. Rick, A. Schnitzer, K. Sandlin, R. Miller, and K. Scar-
fone, “Guide to attribute based access control (abac) definition and consid-
erations, 2017,” [Online]. Available from: https://nvlpubs.nist.gov/nistpubs/
specialpublications/nist.sp.800-162.pdf.

[38] N. Sadeh, J. Hong, L. Cranor, I. Fette, P. Kelley, M. Prabaker, and J. Rao,
“Understanding and capturing people’s privacy policies in a mobile social net-
working application,” Personal and Ubiquitous Computing, vol. 13, no. 6, pp.
401–412, 2009.

166

[39] R. A. Maxion and R. W. Reeder, “Improving user-interface dependability
through mitigation of human error,” International Journal of Human-Computer
Studies, vol. 63, no. 1-2, pp. 25–50, 2005.

[40] Q. Ni, J. Lobo, S. Calo, P. Rohatgi, and E. Bertino, “Automating role-based
provisioning by learning from examples,” in SACMAT. ACM, 2009, pp. 75–84.

[41] A. Abu Jabal and E. Bertino, “Ql-simp: Query language for secure interoper-
able multi-granular provenance framework,” in Proceedings of the 2016 IEEE
2nd International Conference on Collaboration and Internet Computing (CIC).
IEEE, 2016, pp. 131–138.

[42] S. B. Calo, D. C. Verma, and E. Bertino, “Distributed intelligence: Trends
in the management of complex systems,” in Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies. ACM, 2017, pp. 1–7.

[43] R. G. Michael and S. J. David, “Computers and intractability: a guide to the
theory of np-completeness,” WH Free. Co., San Fr, pp. 90–91, 1979.

[44] “OASIS eXtensible Access Control Markup Language (XACML) TC,” [On-
line]. Available from: https://www.oasis-open.org/committees/tc\ home.php?
wg\ abbrev=xacml.

[45] “AuthZForce,” [Online]. Available from: https://authzforce.ow2.org/.

[46] “Balana,” [Online]. Available from: https://github.com/wso2/balana.

[47] R. Kohavi and D. Sommerfield, “Feature subset selection using the wrapper
method: Overfitting and dynamic search space topology,” in KDD, 1995, pp.
192–197.

[48] “The U.S. army in multi-domain operations 2028,” [Online]. Avail-
able from: https://www.tradoc.army.mil/Portals/14/Documents/MDO/
TP525-3-1 30Nov2018.pdf.

[49] A. Abu Jabal, E. Bertino, J. Lobo, M. Law, A. Russo, S. Calo, and D. A. Verma,
“Polisma - a framework for learning attribute-based access control policies,” in
Proceedings of ESORICS 2020, 2020.

[50] A. Chavan, S. Huang, A. Deshpande, A. Elmore, S. Madden, and
A. Parameswaran, “Towards a unified query language for provenance and ver-
sioning,” arXiv preprint arXiv:1506.04815, 2015.

[51] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently answering reachabil-
ity queries on very large directed graphs,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 2008, pp.
595–608.

[52] “Graphviz.” [Online]. Available: http://www.graphviz.org/

[53] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in
e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31–36, 2005.

[54] R. Hoekstra, P. Groth et al., “Linkitup: link discovery for research data,” in
AAAI Fall Symposium Series Technical Reports (FS-13-01), 2013, pp. 28–35.

167

[55] S. Bowers, T. Mcphillips, S. Riddle, M. K. Anand, and B. Ludäscher, “Ke-
pler/ppod: Scientific workflow and provenance support for assembling the tree
of life,” in International Provenance and Annotation Workshop. Springer,
2008, pp. 70–77.

[56] “Prov toolbox.” [Online]. Available: https://github.com/lucmoreau/
ProvToolbox

[57] “Opm toolbox.” [Online]. Available: https://github.com/lucmoreau/
OpenProvenanceModel

[58] A. Gehani and D. Tariq, “Spade: support for provenance auditing in distributed
environments,” in Proceedings of the 13th International Middleware Conference.
Springer-Verlag New York, Inc., 2012, pp. 101–120.

[59] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham, “A lan-
guage for provenance access control,” in Proceedings of the first ACM conference
on Data and application security and privacy. ACM, 2011, pp. 133–144.

[60] D. A. Holland, U. J. Braun, D. Maclean, K.-K. Muniswamy-Reddy, and M. I.
Seltzer, “Choosing a data model and query language for provenance,” 2008.

[61] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener, “The lorel
query language for semistructured data,” International journal on digital li-
braries, vol. 1, no. 1, pp. 68–88, 1997.

[62] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for efficiently querying
scientific workflow provenance graphs.” in EDBT, vol. 10, 2010, pp. 287–298.

[63] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-based
access control model,” ACM Transactions on Information and System Security
(TISSEC), vol. 4, no. 3, pp. 191–233, 2001.

[64] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A model of authorization for
next-generation database systems,” ACM Transactions on Database Systems
(TODS), vol. 16, no. 1, pp. 88–131, 1991.

[65] “Authorization and permissions in sql server.” [Online]. Available: https:
//msdn.microsoft.com/en-us/library/bb669084(v=vs.110).aspx

[66] M. Touma, E. Bertino, B. Rivera, D. Verma, and S. Calo, “Framework for
behavioral analytics in anomaly identification,” in Ground/Air Multisensor In-
teroperability, Integration, and Networking for Persistent ISR VIII, vol. 10190.
International Society for Optics and Photonics, 2017, p. 101900H.

[67] E. Bertino, S. Calo, M. Touma, D. Verma, C. Williams, and B. Rivera, “A
cognitive policy framework for next-generation distributed federated systems:
concepts and research directions,” in Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on. IEEE, 2017, pp. 1876–1886.

[68] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI (EMP AI
Workshop), vol. 3, no. 22. IBM, 2001, pp. 41–46.

[69] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1,
pp. 81–106, 1986.

168

[70] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new
classifier ensemble method,” PAMI, vol. 28, no. 10, pp. 1619–1630, 2006.

[71] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, 2002.

[72] N. Japkowicz, “The class imbalance problem: Significance and strategies,” in
Proc. of the Int’l Conf. on Artificial Intelligence, 2000.

[73] D. Ruta and B. Gabrys, “Classifier selection for majority voting,” Information
fusion, vol. 6, no. 1, pp. 63–81, 2005.

[74] R. P. Duin and D. M. Tax, “Experiments with classifier combining rules,” in
MCS. Springer, 2000, pp. 16–29.

[75] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The weka data mining software: an update,” ACM SIGKDD explorations
newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[76] M. Mankai and L. Logrippo, “Access control policies: Modeling and validation,”
in 5th NOTERE Conference (Nouvelles Technologies de la Répartition), 2005,
pp. 85–91.

[77] M. A. El Hadj, M. Ayache, Y. Benkaouz, A. Khoumsi, and M. Erradi,
“Clustering-based approach for anomaly detection in xacml policies,” in Pro-
ceedings of the 14th International Joint Conference on e-Business and Telecom-
munications (ICETE), Madrid, Spain, July 24-26, 2017, 2017, pp. 548–553.

[78] S. Pina Ros, M. Lischka, and F. Gómez Mármol, “Graph-based xacml eval-
uation,” in Proceedings of the 2012 17th ACM Symposium on Access Control
Models and Technologies (SACMAT), Newark, NJ, USA, June 20-22, 2012.
ACM, 2012, pp. 83–92.

[79] A. Shaikh Riaz, K. Adi, L. Logrippo, and S. Mankovski, “Detecting incom-
pleteness in access control policies using data classification schemes,” in Digital
Information Management (ICDIM), 2010 Fifth International Conference on.
IEEE, 2010, pp. 417–422.

[80] J. Ma, D. Zhang, G. Xu, and Y. Yang, “Model checking based security policy
verification and validation,” in Proceedings of the 2010 Second International
Workshop on Intelligent Systems and Applications (ISA). IEEE, 2010, pp.
1–4.

[81] V. Kolovski, J. Hendler, and B. Parsia, “Analyzing web access control poli-
cies,” in Proceedings of the 16th International Conference on World Wide Web
(WWW), Banff, Alberta, Canada, May 8-12, 2007. ACM, 2007, pp. 677–686.

[82] D. Lin, P. Rao, E. Bertino, and J. Lobo, “An approach to evaluate policy
similarity,” in Proceedings of the 2007 12th ACM Symposium on Access Control
Models and Technologies (SACMAT). ACM, 2007.

[83] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo, “Exam: a comprehensive
environment for the analysis of access control policies,” International Journal
of Information Security, vol. 9, no. 4, pp. 253–273, 2010.

169

[84] R. Craven, J. Lobo, E. Lupu, J. Ma, A. Russo, M. Sloman, and A. Bandara,
“A formal framework for policy analysis,” Imperial College London, Tech. Rep,
2008.

[85] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu, and A. Bandara, “Expressive
policy analysis with enhanced system dynamicity,” in Proceedings of the 4th
ACML Symposium on Information, Computer, and Communications Security
(ASIACCS), Sydney, Australia, March 10-12, 2009. ACM, 2009, pp. 239–250.

[86] P. Mazzoleni, E. Bertino, B. Crispo, and S. Sivasubramanian, “Xacml policy
integration algorithms: not to be confused with xacml policy combination algo-
rithms!” in Proceedings of the 11th ACM Symposium on Access Control Models
and Technologies (SACMAT), Lake Tahoe, California, USA, June 7-9, 2006.
ACM, 2006, pp. 219–227.

[87] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino, “Xacml policy in-
tegration algorithms,” ACM Transactions on Information and System Security
(TISSEC), vol. 11, no. 1, p. 4, 2008.

[88] D. J. Power, M. Slaymaker, and A. Simpson, “Conformance checking of dynamic
access control policies,” in Proceedings of the 13th International Conference on
Formal Engineering Methods (ICFEM), Durham, UK, October 26-28, 2011.
Springer, 2011, pp. 227–242.

[89] Y. Elrakaiby, T. Mouelhi, and Y. Le Traon, “Testing obligation policy enforce-
ment using mutation analysis,” in Proceedings of the 2012 IEEE Fifth Inter-
national Conference on Software Testing, Verification and Validation (ICST),
Montreal, QC, Canada, April 17-21, 2012. IEEE, 2012, pp. 673–680.

[90] J. Y. Halpern and V. Weissman, “Using first-order logic to reason about
policies,” ACM Transactions on Information and System Security (TISSEC),
vol. 11, no. 4, p. 21, 2008.

[91] A. K. Bandara, E. C. Lupu, and A. Russo, “Using event calculus to formalise
policy specification and analysis,” in Proceedings of 2003 IEEE 4th Interna-
tional Workshop on Policies for Distributed Systems and Networks, Lake Como,
Italy, June 4-6, 2003. IEEE, 2003, pp. 26–39.

[92] G. Boella, J. Hulstijn, and L. Van Der Torre, “Argumentation for access con-
trol,” AI* IA 2005: Advances in Artificial Intelligence, pp. 86–97, 2005.

[93] G. Boella, J. Hulstijn, and L. van der Torre, “Argument games for interac-
tive access control,” in Proceedings of the 2005 IEEE/WIC/ACM International
Conference on Web Intelligence, Compiegne, France, 19-22 September 2005.
IEEE, 2005, pp. 751–754.

[94] L. Perrussel, S. Doutre, J.-M. Thévenin, and P. McBurney, “A persuasion di-
alog for gaining access to information,” in Proceedings of the 4th International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS), Honolulu, HI,
USA, May 15, 2007. Springer, 2007, pp. 63–79.

[95] G. Hughes and T. Bultan, “Automated verification of access control policies
using a sat solver,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 10, no. 6, pp. 503–520, 2008.

170

[96] F. Alberti, A. Armando, and S. Ranise, “Efficient symbolic automated analysis
of administrative attribute-based rbac-policies,” in Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. ACM,
2011, pp. 165–175.

[97] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz, “Verifi-
cation and change-impact analysis of access-control policies,” in Software En-
gineering, 2005. ICSE 2005. Proceedings. 27th International Conference on.
IEEE, 2005, pp. 196–205.

[98] R. A. Shaikh, K. Adi, L. Logrippo, and S. Mankovski, “Inconsistency detec-
tion method for access control policies,” in Information Assurance and Security
(IAS), 2010 Sixth International Conference on. IEEE, 2010, pp. 204–209.

[99] R. A. Shaikh, K. Adi, and L. Logrippo, “A data classification method for in-
consistency and incompleteness detection in access control policy sets,” Inter-
national Journal of Information Security, vol. 16, no. 1, pp. 91–113, 2017.

[100] M. Aqib and R. A. Shaikh, “Policy validation tool for access control policies,”
Journal of Internet Technology, 2018.

[101] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving policy miscon-
figurations in access-control systems,” ACM Transactions on Information and
System Security (TISSEC), vol. 14, no. 1, p. 2, 2011.

[102] W. Xu, X. Zhang, and G.-J. Ahn, “Towards system integrity protection with
graph-based policy analysis,” in Proceedings of the Data and Applications Se-
curity XXIII, 23rd Annual (IFIP) (WG) 11.3 Working Conference, Montreal,
Canada, July 12-15, 2009. Springer, 2009, pp. 65–80.

[103] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle, “Grids-a graph based intrusion detec-
tion system for large networks,” in Proceedings of the 19th national information
systems security conference, vol. 1. Baltimore, 1996, pp. 361–370.

[104] S. Alves and M. Fernández, “A graph-based framework for the analysis of access
control policies,” Theoretical Computer Science, 2016.

[105] E. S. Al-Shaer and H. H. Hamed, “Modeling and management of firewall poli-
cies,” IEEE Transactions on Network and Service Management, vol. 1, no. 1,
pp. 2–10, 2004.

[106] S. Davy, B. Jennings, and J. Strassner, “Efficient policy conflict analysis for
autonomic network management,” in Proceedings of the IEEE 5th Workshop
on Engineering of Autonomic and Autonomous Systems (EASE). IEEE, 2008,
pp. 16–24.

[107] J. W. Raymond, E. J. Gardiner, and P. Willett, “Rascal: Calculation of graph
similarity using maximum common edge subgraphs,” The Computer Journal,
vol. 45, no. 6, pp. 631–644, 2002.

[108] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM computing
surveys (CSUR), vol. 38, no. 2, p. 6, 2006.

[109] O. F. A. Specification, “Business process modeling notation specification,” 2006.

171

[110] A.-W. Scheer, O. Thomas, and O. Adam, “Process modeling using event-driven
process chains,” Process-aware information systems, pp. 119–146, 2005.

[111] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte et al., “Business process execution language for
web services,” 2003.

[112] W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another workflow
language,” Information systems, vol. 30, no. 4, pp. 245–275, 2005.

[113] P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera, “Designing
data-intensive web applications,” 2002.

[114] “Provone: A prov extension data model for scientific workflow provenance
(2014).” [Online]. Available: http://purl.org/provone

[115] Q. Shao, P. Sun, and Y. Chen, “Wise: A workflow information search engine,”
in Data Engineering, 2009. ICDE’09. IEEE 25th International Conference on.
Ieee, 2009, pp. 1491–1494.

[116] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research
in the life sciences,” Genome biology, vol. 11, no. 8, p. R86, 2010.

[117] P. Mates, E. Santos, J. Freire, and C. T. Silva, “Crowdlabs: Social analysis and
visualization for the sciences,” in International Conference on Scientific and
Statistical Database Management. Springer, 2011, pp. 555–564.

[118] T. Jin, J. Wang, and L. Wen, “Efficient retrieval of similar workflow models
based on behavior,” in Asia-Pacific Web Conference. Springer, 2012, pp. 677–
684.

[119] Z. Yan, R. Dijkman, and P. Grefen, “Fast business process similarity search
with feature-based similarity estimation,” in OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”. Springer, 2010,
pp. 60–77.

[120] R. Bergmann and Y. Gil, “Similarity assessment and efficient retrieval of se-
mantic workflows,” Information Systems, vol. 40, pp. 115–127, 2014.

[121] N. Friesen and S. Rüping, “Workflow analysis using graph kernels,” in Proceed-
ings of the ECML/PKDD Workshop on Third-Generation Data Mining: To-
wards Service-Oriented Knowledge Discovery (SoKD 2010), Barcelona, Spain,
2010.

[122] E. Santos, L. Lins, J. P. Ahrens, J. Freire, and C. T. Silva, “A first study
on clustering collections of workflow graphs,” in International Provenance and
Annotation Workshop. Springer, 2008, pp. 160–173.

[123] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Braganholo,
L. Murta, and M. Mattoso, “Similarity-based workflow clustering,” in JCIS,
vol. 2, no. 1, 2011, pp. 23–35.

[124] J. Stoyanovich, B. Taskar, and S. Davidson, “Exploring repositories of scien-
tific workflows,” in Proceedings of the 1st International Workshop on Workflow
Approaches to New Data-centric Science. ACM, 2010, p. 7.

172

[125] A. Goderis, P. Li, and C. Goble, “Workflow discovery: the problem, a case study
from e-science and a graph-based solution,” in Proceedings of the International
Conference on Web Services (ICWS). IEEE, 2006, pp. 312–319.

[126] X. Xiang and G. Madey, “Improving the reuse of scientificworkflows and their
by-products,” in Web Services, 2007. ICWS 2007. IEEE International Confer-
ence on. IEEE, 2007, pp. 792–799.

[127] V. Cuevas-Vicentt́ın, B. Ludäscher, and P. Missier, “Provenance-based search-
ing and ranking for scientific workflows,” in International Provenance and An-
notation Workshop. Springer, 2014, pp. 209–214.

[128] D. Shasha, J. T. Wang, and R. Giugno, “Algorithmics and applications of
tree and graph searching,” in Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems. ACM, 2002,
pp. 39–52.

[129] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based
approach,” in Proceedings of the 2004 ACM SIGMOD international conference
on Management of data. ACM, 2004, pp. 335–346.

[130] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing method,” in
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on.
IEEE, 2007, pp. 966–975.

[131] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: towards verification-free query
processing on graph databases,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007, pp. 857–872.

[132] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree+ delta¡= graph,”
in Proceedings of the 33rd international conference on Very large data bases.
VLDB Endowment, 2007, pp. 938–949.

[133] L. Zou, L. Chen, H. Zhang, Y. Lu, and Q. Lou, “Summarization graph index-
ing: beyond frequent structure-based approach,” in International Conference
on Database Systems for Advanced Applications. Springer, 2008, pp. 141–155.

[134] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using struc-
tured graph decomposition,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on. IEEE, 2007, pp. 976–985.

[135] H. He and A. K. Singh, “Closure-tree: An index structure for graph queries,”
in Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International
Conference on. IEEE, 2006, pp. 38–38.

[136] Z. Xu and S. D. Stoller, “Mining attribute-based access control policies from
logs,” in IFIP DBSec. Springer, 2014, pp. 276–291.

[137] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between
sets of items in large databases,” in ACM SIGMOD Record, vol. 22, no. 2.
ACM, 1993, pp. 207–216.

[138] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in
VLDB, vol. 1215, 1994, pp. 487–499.

173

[139] R. V. Krejcie and D. W. Morgan, “Determining sample size for research activ-
ities,” Educational and psychological measurement, vol. 30, no. 3, pp. 607–610,
1970.

[140] C. Cotrini, T. Weghorn, and D. Basin, “Mining abac rules from sparse logs,”
in EuroS&P. IEEE, 2018, pp. 31–46.

[141] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo,
“Mining roles with semantic meanings,” in SACMAT. ACM, 2008, pp. 21–30.

[142] Z. Xu and S. D. Stoller, “Algorithms for mining meaningful roles,” in SACMAT.
ACM, 2012, pp. 57–66.

[143] E. Medvet, A. Bartoli, B. Carminati, and E. Ferrari, “Evolutionary inference of
attribute-based access control policies,” in EMO. Springer, 2015, pp. 351–365.

[144] D. Mocanu, F. Turkmen, and A. Liotta, “Towards abac policy mining from logs
with deep learning,” in IS, 2015, pp. 124–128.

[145] L. Karimi and J. Joshi, “An unsupervised learning based approach for mining
attribute based access control policies,” in Big Data. IEEE, 2018, pp. 1427–
1436.

[146] B. Kavšek and N. Lavrač, “Apriori-sd: Adapting association rule learning to
subgroup discovery,” Applied Artificial Intelligence, vol. 20, no. 7, pp. 543–583,
2006.

[147] M. W. Sanders and C. Yue, “Mining least privilege attribute based access con-
trol policies,” in Proceedings of the 2019 Annual Computer Security Applications
Conference (ACSAC), 2019.

[148] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst, “Utilising the event cal-
culus for policy driven adaptation on mobile systems,” in 3rd International
Workshop on Policies for Distributed Systems and Networks (POLICY 2002),
5-7 June 2002, Monterey, CA, USA. IEEE Computer Society.

[149] A. Singla, E. Bertino, and D. Verma, “Preparing network intrusion detection
deep learning models with minimal data using adversarial domain adaptation,”
in Proceedings of the 2020 ACM Asia Conference on Computer and Communi-
cations Security, AsiaCCS 2020, Taipei, Taiwan, October 05-08, 2020. ACM.

[150] ——, “Overcoming the lack of labeled data: Training intrusion detection models
using transfer learning.” in Proceedings of the IEEE International Conference
on Smart Computing, SMARTCOMP 2019, Washington, DC, USA, June 12-
15, 2019. IEEE.

[151] J. Zhao, S. Shetty, J. W. Pan, C. Kamhoua, and K. Kwiat, “Transfer learning
for detecting unknown network attacks,” EURASIP Journal on Information
Security, vol. 2019, no. 1, p. 1, 2019.

[152] J. Zhao, S. Shetty, and J. W. Pan, “Feature-based transfer learning for network
security,” in MILCOM 2017-2017 IEEE Military Communications Conference
(MILCOM). IEEE, 2017, pp. 17–22.

174

[153] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative
domain adaptation,” in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, pp. 7167–7176.

[154] A. Abu Jabal and E. Bertino, “A comprehensive query language for prove-
nance information,” International Journal of Cooperative Information Systems,
vol. 27, no. 03, p. 1850007, 2018.

[155] A. Abu Jabal, B. Elisa, J. Lobo, A. Russo, S. Calo, and D. Verma, “Flap - a
federated learning framework for
attribute-based access control policies,” 2020, manuscript submitted for publi-
cation.

[156] D. Lin, P. Rao, R. Ferrini, E. Bertino, and J. Lobo, “A similarity measure for
comparing xacml policies,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 25, no. 9, pp. 1946–1959, 2013.

[157] D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and J. Zobel, “Similarity
measures for tracking information flow,” in Proceedings of the 14th ACM inter-
national conference on Information and knowledge management. ACM, 2005,
pp. 517–524.

[158] T. C. Hoad and J. Zobel, “Methods for identifying versioned and plagiarized
documents,” Journal of the Association for Information Science and Technol-
ogy, vol. 54, no. 3, pp. 203–215, 2003.

[159] M. Ehrig, P. Haase, M. Hefke, and N. Stojanovic, “Similarity for ontologies-a
comprehensive framework,” ECIS 2005 Proceedings, p. 127, 2005.

[160] O. Biton, S. Cohen-Boulakia, and S. B. Davidson, “Zoom* userviews: Querying
relevant provenance in workflow systems,” in Proceedings of the 33rd interna-
tional conference on Very large data bases. VLDB Endowment, 2007, pp.
1366–1369.

[161] D. Garijo, O. Corcho, and Y. Gil, “Detecting common scientific workflow frag-
ments using templates and execution provenance,” in Proceedings of the seventh
international conference on Knowledge capture. ACM, 2013, pp. 33–40.

[162] P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger, Provenance graph
abstraction by node grouping. Computing Science, Newcastle University, 2013.

[163] T. H. Cormen, Introduction to Algorithms. MIT press, 2009.

[164] M. Fujita, P. C. McGeer, and J. Yang, “Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation,” Formal methods
in system design, vol. 10, no. 2-3, pp. 149–169, 1997.

[165] “Number of tweets per day?” [Online]. Available: https://www.dsayce.com/
social-media/tweets-day/

[166] “The top 20 valuable facebook statistics.” [Online]. Available: https:
//zephoria.com/top-15-valuable-facebook-statistics/

175

[167] S. Wakamiya, R. Lee, and K. Sumiya, “Crowd-based urban characterization:
extracting crowd behavioral patterns in urban areas from twitter,” in Proceed-
ings of the 3rd ACM SIGSPATIAL international workshop on location-based
social networks. ACM, 2011, pp. 77–84.

[168] L. Mitchell, M. R. Frank, K. D. Harris, P. S. Dodds, and C. M. Danforth,
“The geography of happiness: Connecting twitter sentiment and expression,
demographics, and objective characteristics of place,” PloS one, vol. 8, no. 5,
p. e64417, 2013.

[169] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury, “Twitter power: Tweets
as electronic word of mouth,” Journal of the American society for information
science and technology, vol. 60, no. 11, pp. 2169–2188, 2009.

[170] Y. Liu, X. Huang, A. An, and X. Yu, “Arsa: a sentiment-aware model for
predicting sales performance using blogs,” in Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval. ACM, 2007, pp. 607–614.

[171] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, “Predicting
elections with twitter: What 140 characters reveal about political sentiment.”
in Proceedings of the Fourth International AAAI Conference on Weblogs and
Social Media (ICWSM), 2010, pp. 178–185.

[172] M. J. Paul and M. Dredze, “You are what you tweet: Analyzing twitter for
public health.” in Proceedings of the Fifth International Conference on Weblogs
and Social Media. AAAI Press, 2011, pp. 265–272.

[173] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users: real-
time event detection by social sensors,” in Proceedings of the 19th International
Conference on World Wide Web (WWW). ACM, 2010, pp. 851–860.

[174] A. Kongthon, C. Haruechaiyasak, J. Pailai, and S. Kongyoung, “The role of
twitter during a natural disaster: Case study of 2011 thai flood,” in Proceed-
ings of Technology Management for Emerging Technologies (PICMET). IEEE,
2012, pp. 2227–2232.

[175] S. E. Vieweg, “Situational awareness in mass emergency: A behavioral and
linguistic analysis of microblogged communications,” Ph.D. dissertation, Uni-
versity of Colorado at Boulder, 2012.

