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ABSTRACT

Chen, Di Ph.D., Purdue University, August 2020. Advancing Video Compression
With Error Resilience And Content Analysis. Major Professor: Fengqing Zhu.

In this thesis, two aspects of video coding improvement are discussed, namely
error resilience and coding efficiency.

With the increasing amount of videos being created and consumed, better video
compression tools are needed to provide reliable and fast transmission. Many popular
video coding standards such as VPx, H.26x achieve video compression by using spa-
tial and temporal dependencies in the source video signal. This makes the encoded
bitstream vulnerable to errors during transmission. In this thesis, we investigate an
error resilient video coding for the VP9 bitstreams using error resilience packets. An
error resilient packet consists of encoded keyframe contents and the prediction sig-
nals for each non-keyframe. Experimental results exhibit that our proposed method
is effective under typical packet loss conditions.

In the second part of the thesis, we first present an automatic stillness feature
detection method for group of pictures. The encoder adaptively chooses the coding
structure for each group of pictures based on its stillness feature to optimize the
coding efficiency.

Secondly, a content-based video coding method is proposed. Modern video codecs
including the newly developed AOM/AV1 utilize hybrid coding techniques to remove
spatial and temporal redundancy. However, the efficient exploitation of statistical
dependencies measured by a mean squared error (MSE) does not always produce the
best psychovisual result. One interesting approach is to only encode visually relevant
information and use a different coding method for “perceptually insignificant” regions

in the frame. In this thesis, we introduce a texture analyzer before encoding the input



XV

sequences to identify detail irrelevant texture regions in the frame using convolutional
neural networks. The texture region is then reconstructed based on one set of motion
parameters. We show that for many standard test sets, the proposed method achieved

significant data rate reductions.



1. INTRODUCTION
1.1 Video Basics

In this section, we provide a brief overview of basic principles and terms of video
coding used throughout this thesis. We describe the timeline of the development of
the video coding standards, the main methods that the video codec use to reduce the

redundant information in the video and the video transmission channel.

1.1.1 Video coding standards

Over the last few decades, a series of video coding standards have been developed
by the standardisation bodies, such as the international standards organisation (ISO)
and the international telecommunications union (ITU). Figure 1.1 shows the timeline
of the major video coding standards. The MPEG-1, MPEG-2, MPEG-4 are ISO
coding standards and the H.26x line is the ITU coding standards. Other video coding

standards such as Theora, Daala, VPx and AV1 have been developed in recent years.

Versatile Video

H.261 H.262 H.264 VP8 VP10 Coding(VVC)
H.265/HEVC
VP9
MPEG-1 MPEG-4,H.263 Theora Daala AV1

1990 1993 1995 2000 2003 2004 2010 2013 2015 2018 2020

Fig. 1.1.: Majoy video coding standards timeline



In this thesis, our studies are based on VP9 [1,2] and AV1 [3-5] codecs. VP9 is
a video codec developed by Google initially released in 2013 as a compete to Mov-
ing Picture Experts Group(MPEG) [6]’s High Efficiency Video Coding (HEVC or
H.265) [7,8]. In 2015, Google and several other industrial leaders jointly founded
the Alliance for Open Media (AOM) [9] to define and develop media codecs, media
formats, and related technologies that are open-source and loyalty-free to meet the
expanding need in web-based video consumption. VP9 is developed into the base of
the first edition of the AOM video codec and released in 2018, namely AV1. Multi-
ple new royalty-free coding tools have been contributed by members of AOM. The
AV1 codec introduced several new features and coding tools such as switchable loop-
restoration [10], global and locally warped motion compensation [11], and variable
block-size overlapped block motion compensation [12]. AV1 has exceeded HEVC on
almost all Derf’s collection of test sequences [13] with respect to BD-PSNR [14]. Like
most typical video coding standards, VP9 and AV1 describe the bitstream structure
and syntax to standardized the decoding process that takes a sequence of compressed
frames and turns it into a sequence of decompressed video frames that are ready to
be displayed in correct order. The encoding process is flexible as long as the encoded
bitstream can be correctly decoded by the codec. There are many ways of choosing
how to encode the original video which can be better or worse depending on how
many bits they end up using and how the reconstructed video looks to the human

visual system.

1.1.2 Video compression by redundant information removal

The goal of video compression is to represent a video with the least amount of bits
possible by reducing the redundant information in the video. There are two major
kinds of redundancy: spatial redundancy and temporal redundancy. Spatial redun-
dancy means that the nearby pixels in a frame is correlated since their pixel values

usually do not change abruptly. Temporal redundancy means that the consecutive



frames in a video sequence are usually very similar within the same scene. Video
codecs usually utilize the redundancy and make prediction of the pixel values in the
frame and only send the prediction error which has significantly lower entropy than

that of the original frame.

Original Video Coder Control l
Sequence . it -9----4
e Residue v Vs Coding
s A Transform [ Quantization Control
T +\/
Basic Coding Pred. Signal Inverse Transform
Units Transform Coefficients
. s Encoded
v L Formatting | Bitstream
Intra-Mode | Intra- = | & Entropy
Estimation | Prediction Coding
1 Filter -
o = Control
/“—{ Intra Prediction |<— Filter
I ’.' Motion- In_'LOOP
*“—~  Compensated Bilsers Motion
Intr a{Inter Prediction (MCP) \ —
Switch vy
Motion .
Estimation (ME) . Decoded Picture
M Buffer (DPB)

Fig. 1.2.: Block diagram of a typical video encoder. See [15]

Figure 1.2 shows the block diagram of a typical video encoder. An original video
frame is first divided into non-overlapping basic prediction units or blocks. The
largest block, called the superblock, is 64x64 pixels in VP9 and 128x128 in AV1.
The blocks are processed in raster order. The superblocks can be subdivided into
smaller blocks just like HEVC. The smallest partition is of size 4x4. The subdivision
is done with a recursive quadtree. Unlike HEVC, VP9 and AV1 support horizontal or
vertical subdivision. A typical partitioning of a 64x64 block is shown in Figure 1.3.
Each block is predicted using a single or multiple previously encoded blocks on the
difference frames or the same frame, called the inter prediction and the intra prediction
respectively. The blocks using inter prediction are called inter blocks. An inter-block
contains a motion vector (MV) that specifies the offset in the reference frame of

the part of the image to use as a prediction for this block. The MV can specify a



fractional pixel offsets in X and Y direction. In VP9 and AV1, % sub-pixel motion
compensation is used. The process of searching the MV for inter blocks is called
motion estimation (ME). A new global & warped motion mode is introduced in AV1.
In addition, VP9 support three reference frame candidates while AV1 supports up to

six reference frame candidates.

64 pixels
1 2 5
0 3| 4 | (BxB) 15 16
(16x16) 5 . (16x18) (16x16)
(8x8) | (8x8)
8 9 13
(8x8) | 10 (16x8) 17 18
11 19 14 (16x18) (16x16)
(8x8) | (8x8) (16x8)
64 pixels
19
(32x16)
21
(32x32)
20
(32x16)

Fig. 1.3.: A typical partitioning of a 64x64 block

Intra prediction uses the pixels on the upper and/or left side of the current block.

The pixel values of the current block are estimated using one of several directional



modes of intra prediction. AV1 has 56 angular intra prediction modes and several
other intra prediction modes.

As mentioned above, a block can use either a single reference frame or a combi-
nation of two reference frames. The latter is called the compound prediction, where
the prediction is first formed from each reference frame then the final prediction is
generated as the average of these two. It is expected that in certain cases this average
is a better predictor than both single predictors even with extra motion information

required.

1.1.3 Global motion coding tool of AV1

Global motion coding tool is one of the new inter prediction modes merged into
AV1 on the base of VP9. It has shown great coding gain for videos that contain strong
non-translational motion [11]. The pure translational model used by block motion
compensation has been approved to be an effective technique which is used by modern
video codecs, such as VP9, H.264 and HEVC. Blocks of a suitable partitioning size
in a frame is predicted using a block in a previously encoded frame where the whole
block is assumed to have the same translational motion represented by a motion
vector. However, the real motion in video is rarely translational only. For videos
with non-translational scenes, such as camera panning and zooming, the only way to
get an accurate prediction with a purely translational motion model is to use smaller
block sizes which makes coding less efficient. A set of coding tools that based on
affine or perspective motion model, including global motion coding tool, is introduce
into AV1. They allow complex motion to be captured at larger block sizes by warping

the blocks. The global motion model is described by the following:

' hiir hia his x
afy'| = |ha ha hos| |y (1.1)
1 hsi hsa hi| |1



« represents a weight factor, (z,y) represents coordinates of the original pixel in
a current frame and (2,y’) represents the corresponding warpped coordinates in a
reference frame. The 3x3 homography matrix H has 8 degrees of freedom which
allows blocks to be transformed into arbitrary quadrilaterel. It can be decreased into
lower order motion model. For example, the matrix H for affine projection with 6

degrees of freedom is restricted by:

hgl = hgg = 0, h33 =1 (12)

The current implementation of AV1 supports up to 6-parameter affine model for
the whole frame. The parameters in the motion model are estimated using a feature
matching scheme followed by robust model fitting. First the FAST features [16]
are computed in the current frame and the reference frame. After finding a set of
correspondence between the feature points in the current frame and the reference
frame, a desired motion model is computed using RANSAC [17]. There is a set of
global motion parameters for every reference frames of the current frame. These

parameters are transmitted to the decoder in the frame header.

1.1.4 Rate distortion optimization

Rate distortion optimization is used for block subdivision decision as well as the
choice of prediction modes and reference frames in motion compensated prediction.
The goal of an encoder is to minimize the distortion D subjective to a constraint
R, where R is the number of bits used. The optimization problem can be solved
using Lagrangian optimization where the distortion term is weighted against a rate

term [18]. The Lagrangian optimization problem is given by

min{J}, where J =D+ AR (1.3)



where the Lagrangian rate-distortion function J is minimized for a particular value
of Lagrange multiplier .

The perceived distortion is very hard to measure as the characteristics of the
human visual system are complex and not well modeled. In practice, highly imperfect
distortion models are used such as MSE. A\ value is subject to approximations and
is specified by video codec. The R contains the bits for encoding the prediction
error/residual and the corresponding motion information such as the MV and the
prediction mode.

The shape of the block subdivision quadtree and the reference frames and the pre-
diction mode of each block are chosen so that the Lagrangian rate-distortion function

J 1s minimized.

1.1.5 Transformation and quatization

The prediction error/residual then undergoes an orthogonal transformation such
as discrete cosine transform (DCT), asymmetric discrete sine transform (ADST) or
Walsh Hadamard Transform (WHT). The transform reduces the statistical correlation
within the residual and packs most of the signal’s energy into fewer coefficients in the
frequency domain. The quantization of the transform coefficients allows different
level of lossy compression. The encoder controls the compression ratio by adjusting
the quantization parameter (QP) which specifies the width of the quantizer bin. The
higher QP value is, the fewer bits are used.

Thus, each block of the input video frames is expressed in terms of prediction
mode, reference frames, transform coefficient and control signals. Besides control
signals for each block, there are also control signals at frame level such as the reference
frame candidates for the current frame, error resilience mode, etc. Above described

data is then concatenated and entropy-coded using arithmetic coding.



1.2 Video Coding And Transmission

During the last decade, there has been a significant increase in the amount of
video traffic over the Internet. With the development of 3G /4G and WiFi networks,
people are not only watching more online videos but also command better quality
online videos which occupy more bandwidth. According to [19], traffic from wireless
and mobile devices will account for more than 63 percent of total IP traffic by 2021.
Globally, Internet video traffic will be 82 percent of all consumer Internet traffic by
2021, up from 73 percent in 2016. The increase in live Internet video traffic, Internet
surveillance video traffic, virtual reality and augmented reality video traffic, consumer
video-on-demand traffic and content delivery network traffic are accounted for this
estimation. Also, mobile data traffic is expected to increase sevenfold between 2016
and 2021 which is twice as fast as fixed IP traffic. This dramatic increase in video
traffic over the Internet has raised challenges for developing efficient video coding
techniques.

As shown in Figure 1.4, the original video signals are encoded and transmitted over
noisy channels. The decoder reconstructed the video signals based on the received

encoded data. The video compression codecs act as the source encoder and source

decoder.
.Orlgll.““l _ Source | | Channel Channel | | Source | Re.constltucted
Video Signal | Encoder Encoder Decoder Decoder Video Signal

Fig. 1.4.: A commen video transmission system. See [15]

A defining characteristic of a wireless channel is the variation of the channel
strength over time and frequency [20]. This can cause packet loss during signal trans-
mission. In real-time applications such as video chat or live streaming, retransmission
of lost packets is not feasible. As a result, only a subset of transmitted packets is

available at the receiver, which must reconstruct the signal from the available informa-



tion [21]. Many well-established video compression standards such as H.264 [22, 23],
HEVC, VP8 [24], VP9 and AV1 are mainly aimed at achieving better compression
efficiencies. Due to the use of spatial-temporal correlations for compression, such
compressed bitstreams typically become vulnerable to errors. A typical video en-
coder uses “in-loop” decoder so that error-free frames are used as a reference at the
encoder, however the reference frames at the decoder may contain errors. These er-
rors can then propagate to the frames decoded next, until an instantaneous decoding
refresh (IDR) or a key frame is successfully received by the decoder [21]. Therefore,
error concealment and resilience methods are indispensable for video delivery over

unreliable channels.

1.2.1 Channel model

In a typical network scenario, packet loss patterns are usually bursty. Under suf-
ficiently high transmission load, there are spontaneous overload peaks causing packet
loss. In order to study the error resilience performance of the video codec in the trans-
fer of real-time data over the Internet, a Gilbert-Elliott model is used as a stochastic

channel model to simulate the bursty packet loss pattern [25,26].

Pgic

Pgis

Fig. 1.5.: Gilbert-Elliott model (Two state markov model)

Figure 1.5 illustrates the architecture of the Gilbert model. In this two-state

model, condition “good” denoted as “G” indicates that the packet is correctly received
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and condition “bad” denoted as “B” indicates that the packet is lost. The transition
probability Py is the probability of changing the state from N to M. For example,
Pp¢ is the probability when the previous state is “G” and the current state is “B”,
and Pgg is the probability when the previous state is “G” and the current state is

also “G”. Therefore:
Pgg =1— Pp

(1.4)

Ppp=1- FPgp

The probability of packet loss can be expressed as:
PB:PB|BXPB+PB|GXPG (15)

= (1 — Pg|B) X Pg + PB|G X (1 — PB)
After reorganization,
Ppia

Pp=——— 1.6
b Ppic + PaiB (16)

The packet loss burst length is the average length of “consecutive stays” in the state
CCB:”
Lg=1x Pg|B + 2 X PB|B X Pg|B + 3 X Pl23|B X Pg|B+

_ —1
= Pap

(1.7)

In [27] a typical packet loss rate Pg is between 0 and 0.6, and burst length Lp is
between 2 and 20. It can also be shown that when Pg is small, Lg is large; and vice

versa.

1.3 Overview Of Region-based Video Coding

Region-based video coding is an alternative approach to the traditional schemes
of block-based video coding, where the coding units are not square image patches
but regions provided by processes such as image segmentation. Such research can be
categorized into two groups: saliency-based coding and object-based coding. Saliency-
based coding uses image saliency as the description of region-of-interest. For example,

in [28], a video frame is first segmented into several connected regions of arbitrary
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partition. Then it uses region-based motion estimation to reconstruct each segment
in the frame. The method proposed in [29] decomposes a frame into frequency sub-
bands and search for region-of-interest within each sub-band. The wavelet coefficients
are transmitted in the order of the importance of each region. Object-based codecs
automatically detect objects from the video and generate a foreground/background
segmentation map. The segmentation maps can then be used to reconstruct the pixels
with different models. In [30], the authors investigated object-based video compres-
sion for surveillance videos, in which several segmentation methods are considered to
extract the background. Coding overhead and the corresponding coding performance
are also investigated. Authors in [31] proposed an object-based coding method by
pixel state analysis. The pixel state analysis is utilized to detect the foreground and
background regions in the video and the pixels of the foreground are compressed using
lossless compression.

Since most of the state-of-art video codecs use block-based hybrid coding tech-
niques, many recent works of region-based video coding are integrated into the block-
based video coding framework. Several region-based rate-control schemes are pro-
posed by assigning quantization levels to blocks based on the regions they belong
to [32-34]. In [35], frames are partitioned into multiple slices. Then the best mac-
roblock mode and suitable motion compensation search pattern for a given slice is
chosen. In [36], the authors propose to reduce the bit rate of fixed background
by reconstructing macroblocks in the fixed background using pulse code modulation
(PCM) in H.264. Other approaches involve controlling the number of non-zero DCT

coeflicients of the region-of-interest [37,38].

1.3.1 Texture analysis/synthesis based video coding

A popular region-based video coding approach is the texture analysis/synthesis
approach. An overview of this approach is shown in Figure 1.6. Two additional

modules are typically included compared to conventional video codecs. The texture
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analyzer identifies the texture regions as a pre-processing step before the encoder.
Outputs from the texture analyzer such as model parameters are treated as side
information, which is transmitted to the decoder for texture region reconstruction. We
describe here a few representative works. A comprehensive survey of many promising

texture analysis/synthesis based video coding methods is discussed in [39].

I
Original o Reconstructed
Seauence Texture Encoder f Decoder [|— Texture 4>Sequence
Analyzer T c::é T Synthesizer
I T
Side Information Side Information

Fig. 1.6.: Overview of texture analysis/synthesis based video coding

In [40-42], Ndjiki-Nya et al. proposed a close-loop texture analysis/synthesis
method. Texture is identified with dense motion field followed by a split-and-merge
algorithm. Then the texture region is reconstructed by texture warping with an
overlap region on the texture/non-texture boundary that minimizes the subjective
annoyance of the blending. A video quality metric that comprises both global and
local components is used for in-loop optimization and video quality assessment.

Bosch et al. proposed a segmentation-based video compression using texture and
motion models [43] . Two texture features, gray level co-occurrence matrix (GLCM)
and Gabor filters, in combination with two segmentation strategies, split-and-merge
and K-means clustering, are investigated to identify texture regions. Texture region
is reconstructed with texture warping using global motion models with an open-
loop framework. Only subjective video quality assessment was performed for the
reconstructed videos.

Zhang and Bull proposed a parametric framework for video compression based
on texture warping and synthesis [44,45]. Texture regions are segmented using fea-
tures derived from the complex wavelet transform and further classified into static

and dynamic texture regions according to their spatial and temporal characteristics
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and reconstructed by texture warping and an auto-regressive moving average process
(ARMA), respectively. An artifact-based video metric (AVM) is proposed to evalu-
ate the quality of the reconstructed video. This method is also employed in-loop to
prevent warping and synthesis artifacts.

More recently, a texture analysis/synthesis approach is integrated in HEVC video
codec [46]. The proposed method identifies and processes static and dynamic tex-
tures based on 2D dual tree complex wavelet transform and steerable pyramid trans-
form [47]. Comparing to previous work [48], different strategies for identifying static
and dynamic textures are considered in [46]. In [49], correspondence analysis is ex-
plored for the analysis of motion patterns in a video on the basis of optic flow data.
Optic flow residual is used as an indicator for dynamic textures. The flow lines gen-
erated from optic flow data are used in texture synthesis for creating an illusion of

continuously flowing texture.

1.4 Video Coding Using Neural Network

Deep neural network has shown its superiority in many challenging tasks, espe-
cially in image processing and computer vision. Recent years, adapting deep neural
networks into the field of video coding has become an active research area [50,51].
There are two main categories of work, namely module based video coding schemes
which apply deep network with traditional video coding, and end-to-end deep video

coding schemes that are built primarily using deep neural networks.

1.4.1 Module based video coding

Module based method uses a hybrid video coding framework that incorporates
deep neural networks with traditional video coding schemes. The use of deep neural
networks to improve coding efficiency has been explored in almost all coding modules
[50,51]. In this section, we review different coding modules including intra prediction,

inter prediction, quantization and entropy coding, in- and out- loop filtering.
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Intra Prediction
An input video sequence passes through a video compression framework is divided
into frames, and frames are divided into blocks. Blocks are compressed in a predefined
order and the compressed blocks can be used to predict subsequent blocks in the same
frame. The process of using compressed blocks to predict subsequent ones is known
as intra prediction.

In traditional video coding scheme, there are several predefined intra prediction
modes and the one with the minimal rate-distortion cost is selected when comparing
with other modes. Recent hybrid video coding frameworks use deep neural networks
in intra prediction have shown comparative and even improved performance compared
to traditional methods. Cui et al.proposed an intra prediction convolution network
(IPCNN) that integrates CNN into the HEVC intra prediction module [52]. The
IPCNN has 10 convolutional layers and batch normalization is used except for the
first and the last convolutional layer. Rectified linear unit (ReLU) is selected as
the nonlinear activation function. The IPCNN takes the best estimation predicted
by HEVC intra prediction and three neighboring reconstructed blocks as input, and
use the subtraction of the original blocks and the input as target to train a residual
model. The output of IPCNN is the residual block that is used to refine the prediction
obtained from HEVC. This method uses neighboring blocks as additional context and
the residue learning approach achieved marginal gain.

Instead of using CNN based scheme to refine the traditional intra prediction result,
Li et al.proposed a fully connected network called IPFCN as a new intra prediction
mode in HEVC, among the other 35 modes [53]. Except for the non-linear layer
PReLU [54], all layers in IPFCN are fully connected layers. Similar to IPCNN, IPFCN
uses neighboring pixels as context. For the current N x N block Y, IPFCN learns a
mappi