
ADVANCING VIDEO COMPRESSION WITH ERROR RESILIENCE

AND CONTENT ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Di Chen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Fengqing Zhu, Chair

School of Electrical and Computer Engineering

Dr. Edward J. Delp

School of Electrical and Computer Engineering

Dr. Amy Reibman

School of Electrical and Computer Engineering

Dr. Stanley Chan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School of Electrical and Computer Engineering

iii

ACKNOWLEDGMENTS

First of all, there are no words to express my gratitude towards my doctoral ad-

visor, Prof. Fengqing Zhu. She has always encouraged me to learn new things and

to try new ideas. She guided me to achieve the milestones through the graduate pro-

gram. I am very grateful to her for molding me to think like a scholar and teaches me

how to research, how to manage projects, and how to communicate. I feel very proud

and accomplished to have worked with her. I have enjoyed our technical discussions

when her insightful feedback and suggestions guided my projects onto the right track.

She was also gracious to provide suggestions on how to get more involved in the lab

and on my career development.

I also want to personally thank all the members of my Ph.D. advisory committee:

I would like to thank Prof. Edward Delp for providing invaluable guidance since I

joined the Video and Image Processing Laboratory (VIPER). He led me through my

first project and my first published paper at Purdue. He participated in my weekly

meetings where his valuable insights led to fruitful research ideas. I would like to

thank Prof. Amy Reibman and Prof. Stanley Chan for their suggestions, discussions,

and supports. I feel fortunate to have learned Digital Video Systems from Prof.

Reibman, which serves as the knowledge fundamentals of my research.

VIPER is a great place to work on image and video processing problems with a

group of talented engineers. I have been very fortunate to be a part of this vibrant

research environment. I would like to thank Dr. Neeraj Gadgil who has been a

great mentor to me and a very supportive teammate for the video compression with

error resilience project. I really appreciate his guidance during the early stages of my

doctoral research. I want to thank Dr. Chichen Fu for being a great teammate for

the video compression with block-based texture segmentation project. I would like to

iv

thank Dr. Qingshuang Chen for working with me on the project video compression

with content analysis.

I would like to extend my gratitude to all my former and current VIPER lab

members for their friendships and supports: Dr. Albert Parra Pozo, Dr. Neeraj J.

Gadgil, Dr. Joonsoo Kim, Dr. Yu Wang, Blanca, Dr. Chichen Fu, Dr. Shaobo Fang,

Dr. Javier Ribera Prat, Dr. David Joon Ho, Blanca Delgado, He Li, Chang Liu,

Sriram Baireddy, Enyu Cai, Alain Chen, Di Chen, Qingshuang(Cici) Chen, Yuhao

Chen, Jeehyun Choe, David Gera, Jiaqi Guo, Shuo Han, Hanxiang (Hans) Hao, Jiang-

peng He, Jnos Horvth, Han Hu, Soonam Lee, Runyu Mao, Daniel Mas Montserrat,

Ruiting Shao, Zeman Shao, Changye Yang, Sri Kalyan Yarlagadda, Yifan Zhao. In

addition, I would also like to thank the students of Prof. Reibman and Prof. Chan

who voluntarily participated in my subjective study in the project.

I wish to express my gratitude to Prof. John Woods who got me started my

research direction on video coding.

I would like to thank my father, Zhuoning Chen, sister, Xi Chen, for their endless

love and support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xiv

1 Introduction . 1

1.1 Video Basics . 1

1.1.1 Video coding standards . 1

1.1.2 Video compression by redundant information removal 2

1.1.3 Global motion coding tool of AV1 5

1.1.4 Rate distortion optimization . 6

1.1.5 Transformation and quatization 7

1.2 Video Coding And Transmission . 8

1.2.1 Channel model . 9

1.3 Overview Of Region-based Video Coding 10

1.3.1 Texture analysis/synthesis based video coding 11

1.4 Video Coding Using Neural Network 13

1.4.1 Module based video coding . 13

1.4.2 End-to-end deep video coding 19

1.5 Texture Analysis And Synthesis . 20

1.5.1 General scene understanding . 20

1.5.2 Texture based approaches . 21

1.6 Contribution Of This Thesis . 23

1.7 Publications Resulting From This Work 24

vi

Page

2 VP9 Video Coding For Lossy Transmission Channels Using Error Resilience
Packets . 26

2.1 Video Error Concealment And Resilience 26

2.2 Proposed System Architecture . 27

2.3 Experimental Results And Analysis . 29

3 Multi-Reference Video Coding Using Stillness Detection 40

3.1 Introduction . 40

3.2 Method . 41

3.2.1 GF group stillness . 41

3.2.2 Automatic GF group stillness detection 42

3.2.3 Adaptive GF group structure design 46

3.3 Experimental Results . 46

4 Advances In Region-Based Video Coding Using Deep Neural Network 48

4.1 Introduction . 48

4.1.1 Perceptual quality metrics . 50

4.2 Block-Based Texture Coding . 52

4.2.1 Texture analysis using CNN . 54

4.2.2 A new AV1 coding tool - texture mode 57

4.2.3 Experimental results . 64

4.3 Pixel-level Texture Segmentation Based Video Coding With Switch-
able Scheme . 70

4.3.1 Motivation . 70

4.3.2 Texture analysis using CNN . 72

4.3.3 Switchable texture mode . 74

4.3.4 Visual quality assessment . 76

4.3.5 Experimental results . 80

5 Conclusion and Future Work . 95

5.1 VP9 Video Coding For Lossy Transmission Channels Using Error Re-
silience Packets . 95

vii

Page

5.1.1 Conclusion . 95

5.1.2 Future work . 95

5.2 Multi-Reference Video Coding Using Stillness Detection 95

5.2.1 Conclusion . 95

5.2.2 Future work . 96

5.3 Advances In Region-Based Video Coding Using Deep Neural Network . 96

5.3.1 Conclusion . 96

5.3.2 Future work . 96

REFERENCES . 99

VITA . 113

viii

LIST OF TABLES

Table Page

2.1 Test sequences used for our experiments 30

2.2 Lost packet rate and burst length . 32

3.1 Criteria for GF group stillness detection 46

3.2 BD-RATE reduction using proposed method on Google test set 47

3.3 BD-RATE reduction using proposed method on video clips contain GF
group of stillness . 47

4.1 Configuration of different texture mode implementation 58

4.2 Data rate savings at different QP level with block-based texture mask . . . 66

4.3 Result for subjective visual quality test of tex-cp 67

4.4 AV1 data rate savings comparison between color-edge feature based (FM),
block-level (BM) and pixel-level (PM) texture segmentation. A negative
value indicates a reduction in the codec’s bitstream data rate compared
to the AV1 baselines. 83

4.5 Texture region percentage . 84

4.6 Data rate saving comparison between tex-allgf and tex-switch methods
on UGC dataset videos. A negative value indicates a reduction in the
bitstream data rate compared to the AV1 baseline. The green blocks
indicate more data rate saving when switchable scheme is applied while
the red blocks indicate the opposite. 86

4.7 Data rate savings comparison between tex-allgf and tex-switch methods
on standard test sequences. A negative value indicates a reduction in
the bitstream data rate compared to the AV1 baseline. The green blocks
indicate more data rate saving when switchable scheme is applied. 87

4.8 BD-RATE(Qtex) of tex-switch on UGC dataset videos. 89

4.9 BD-RATE(Qtex) of tex-switch on standard test sequences. 89

4.10 Result for subjective visual quality test of tex-switch 91

ix

LIST OF FIGURES

Figure Page

1.1 Majoy video coding standards timeline . 1

1.2 Block diagram of a typical video encoder. See [15] 3

1.3 A typical partitioning of a 64x64 block . 4

1.4 A commen video transmission system. See [15] 8

1.5 Gilbert-Elliott model (Two state markov model) 9

1.6 Overview of texture analysis/synthesis based video coding 12

2.1 Proposed encoder architecture . 28

2.2 Proposed decoder architecture . 30

2.3 Performance comparison for BasketballDrill 31

2.4 Performance comparison for PartyScene 36

2.5 Performance comparison for KristenAndSara 37

2.6 Packet loss performance . 38

2.7 Visual comparison for PartyScene (Luma) 39

2.8 Visual comparison for BasketballDrill (Luma) 39

3.1 GF group coding structures . 42

3.2 GF group coding with stillness detection 43

3.3 Thresholds for metrics . 44

4.1 Block diagram of the proposed method . 53

4.2 CNN architecture for block-based texture classification 54

4.3 Training data preparation . 55

4.4 Flowchart of texture analyzer . 56

4.5 Texture mode encoder implementation . 59

x

Figure Page

4.6 Coding structure of texture mode: (a) GF Group Coding Structure Us-
ing tex-all Configuration. (b) GF Group Coding Structure Using tex-sp
Configuration. (c) GF Group Coding Structure Using tex-cp Configuration. 60

4.7 Texture segmentation examples . 68

4.8 Comparison between block-based and pixel-level texture mask 71

4.9 Two steam cascade framework . 73

4.10 Switchable scheme of texture mode encoder implementation 75

4.11 Switchable texture mode encoder implementation 76

4.12 Texture block decision . 77

4.13 Visual comparison of a sample reconstructed frame using AV1 baseline
and our proposed texture mode, along with the texture mask used. 80

4.14 PSNR and Qtex comparison for the sample reconstructed frame in Figure 4.13.80

4.15 An example of pixel-level texture segmentation for video sequence bridge-
far. Texture mask for class 2 contains semantic segmentation of water and
river in this example. 81

4.16 Texture segmentation example with CNN method and color-edge feature
based method . 82

4.17 Sample reconstructed video frame for NewsClip 480P-15fa, QP=16 92

4.18 Sample reconstructed video frames for MusicVideo 720P-3698, QP=16 . . 93

4.19 Sample reconstructed video frames for MusicVideo 720P-4ad2, QP=16 . . 94

xi

ABBREVIATIONS

ADST asymmetric discrete sine transform

AOM Alliance for Open Media

ARMA Auto-Regressive Moving Average

AV1 AOMedia Video 1

AVM Artifact-based Video Metric

BD Bjontegaard delta

BMA Boundary Matching Algorithm

CABAC Context-Adaptive Binary Arithmetic Coding

CDEF Constrained Directional Enhancement Filter

CNNMCR Convolutional Neural Network-Based Motion Compensation Re-

finement

CTU Coding Tree Unit

CW-SSIM Complex Wavelet Structural Similarity Index

DCT Discrete Cosine Transform

DF Deblocking Filter

DP Data Partitioning

DPI Duplicated Prediction Information

DT-CWT Dual-Tree Complex Wavelet Transform

DVC Deep Video Compression

FAST Features from Accelerated Segment Test

FC Frame Copy method

FCN Fully Convolutional Network

FMO Flexible Macroblock Ordering

FRUC Frame Rate Up Conversion

xii

FV Fisher Vector

GAM Generative Adversarial Nets

GF Golden Frame

GLCM Gray Level Co-occurrence Matrix

GOP Group Of Pictures

GPU Graphics Processing Unit

GVCNN Grouped Variation Convolutional Neural Network

HEVC High Efficiency Video Coding

HM HEVC Test Model

HMVE Hybrid Motion Vector Extrapolation

IDR Instantaneous Decoding Refresh

IP Internet Protocol

IPCED Intra Prediction method via Convolutional Encoder-Decoder net-

work

IPCNN Intra Prediction Convolution Neural Network

IPFCN Intra Prediction using Fully Connected Network

ISO International Standards Organisation

ITU International Telecommunications Union

LBP Local Binary Patterns

LSTM Long Short Term Memory

MASCNN Multi-scale Adaptive Separable Convolutional Neural Network

MDC Multiple Description Coding

ME Motion Estimation

MMA Multi-frame Motion vector Averaging method

MPEG Moving Picture Experts Group

MRF Markov Random Field

MSE Mean Square Error

MV Motion Vector

MVE Motion Vector Extrapolation

xiii

PCM Pulse Code Modulation

PMCNN Pixel Motion Convolutional Neural Network

PS-RNN Spatial Neural Recurrent Network

PSNR Peak Signal-To-Noise Ratio

PU Prediction Unit

QP Quantization Parameter

RANSAC Random Sample Consensus

RD Rate Distortion

RMM Recurrent Neural Network

ReLU Rectified Linear Unit

SATD Sum of Absolute Transformed Difference

SI Switching I-frame

SIFT Scale Invariant Feature Transform

SP Switching P-frame

SSIM Structural Similarity Index

STSIM Structural Texture Structural Similarity Index

SURF Speeded Up Robust Features

SVM Support Vector Machine

UGC User Generate Content

VAE Variational Auto-Encoder

VMAF Video Multimethod Assessment Fusion

VRF Virtual Reference Frame

WARN Wide Activation Residual Network

WCW-SSIM Weighted Complex Wavelet Structural Similarity Index

WHT Walsh Hadamard Transform

xiv

ABSTRACT

Chen, Di Ph.D., Purdue University, August 2020. Advancing Video Compression
With Error Resilience And Content Analysis. Major Professor: Fengqing Zhu.

In this thesis, two aspects of video coding improvement are discussed, namely

error resilience and coding efficiency.

With the increasing amount of videos being created and consumed, better video

compression tools are needed to provide reliable and fast transmission. Many popular

video coding standards such as VPx, H.26x achieve video compression by using spa-

tial and temporal dependencies in the source video signal. This makes the encoded

bitstream vulnerable to errors during transmission. In this thesis, we investigate an

error resilient video coding for the VP9 bitstreams using error resilience packets. An

error resilient packet consists of encoded keyframe contents and the prediction sig-

nals for each non-keyframe. Experimental results exhibit that our proposed method

is effective under typical packet loss conditions.

In the second part of the thesis, we first present an automatic stillness feature

detection method for group of pictures. The encoder adaptively chooses the coding

structure for each group of pictures based on its stillness feature to optimize the

coding efficiency.

Secondly, a content-based video coding method is proposed. Modern video codecs

including the newly developed AOM/AV1 utilize hybrid coding techniques to remove

spatial and temporal redundancy. However, the efficient exploitation of statistical

dependencies measured by a mean squared error (MSE) does not always produce the

best psychovisual result. One interesting approach is to only encode visually relevant

information and use a different coding method for “perceptually insignificant” regions

in the frame. In this thesis, we introduce a texture analyzer before encoding the input

xv

sequences to identify detail irrelevant texture regions in the frame using convolutional

neural networks. The texture region is then reconstructed based on one set of motion

parameters. We show that for many standard test sets, the proposed method achieved

significant data rate reductions.

1

1. INTRODUCTION

1.1 Video Basics

In this section, we provide a brief overview of basic principles and terms of video

coding used throughout this thesis. We describe the timeline of the development of

the video coding standards, the main methods that the video codec use to reduce the

redundant information in the video and the video transmission channel.

1.1.1 Video coding standards

Over the last few decades, a series of video coding standards have been developed

by the standardisation bodies, such as the international standards organisation (ISO)

and the international telecommunications union (ITU). Figure 1.1 shows the timeline

of the major video coding standards. The MPEG-1, MPEG-2, MPEG-4 are ISO

coding standards and the H.26x line is the ITU coding standards. Other video coding

standards such as Theora, Daala, VPx and AV1 have been developed in recent years.

H.261

MPEG-1

H.262

MPEG-4, H.263

H.264

Theora

VP8

H.265/HEVC
VP9
Daala

VP10

AV1

Versatile Video
Coding(VVC)

1990 1993 1995 2000 2003 2004 2010 2013 2015 2018 2020

Fig. 1.1.: Majoy video coding standards timeline

2

In this thesis, our studies are based on VP9 [1, 2] and AV1 [3–5] codecs. VP9 is

a video codec developed by Google initially released in 2013 as a compete to Mov-

ing Picture Experts Group(MPEG) [6]’s High Efficiency Video Coding (HEVC or

H.265) [7, 8]. In 2015, Google and several other industrial leaders jointly founded

the Alliance for Open Media (AOM) [9] to define and develop media codecs, media

formats, and related technologies that are open-source and loyalty-free to meet the

expanding need in web-based video consumption. VP9 is developed into the base of

the first edition of the AOM video codec and released in 2018, namely AV1. Multi-

ple new royalty-free coding tools have been contributed by members of AOM. The

AV1 codec introduced several new features and coding tools such as switchable loop-

restoration [10], global and locally warped motion compensation [11], and variable

block-size overlapped block motion compensation [12]. AV1 has exceeded HEVC on

almost all Derf’s collection of test sequences [13] with respect to BD-PSNR [14]. Like

most typical video coding standards, VP9 and AV1 describe the bitstream structure

and syntax to standardized the decoding process that takes a sequence of compressed

frames and turns it into a sequence of decompressed video frames that are ready to

be displayed in correct order. The encoding process is flexible as long as the encoded

bitstream can be correctly decoded by the codec. There are many ways of choosing

how to encode the original video which can be better or worse depending on how

many bits they end up using and how the reconstructed video looks to the human

visual system.

1.1.2 Video compression by redundant information removal

The goal of video compression is to represent a video with the least amount of bits

possible by reducing the redundant information in the video. There are two major

kinds of redundancy: spatial redundancy and temporal redundancy. Spatial redun-

dancy means that the nearby pixels in a frame is correlated since their pixel values

usually do not change abruptly. Temporal redundancy means that the consecutive

3

frames in a video sequence are usually very similar within the same scene. Video

codecs usually utilize the redundancy and make prediction of the pixel values in the

frame and only send the prediction error which has significantly lower entropy than

that of the original frame.

Fig. 1.2.: Block diagram of a typical video encoder. See [15]

Figure 1.2 shows the block diagram of a typical video encoder. An original video

frame is first divided into non-overlapping basic prediction units or blocks. The

largest block, called the superblock, is 64x64 pixels in VP9 and 128x128 in AV1.

The blocks are processed in raster order. The superblocks can be subdivided into

smaller blocks just like HEVC. The smallest partition is of size 4x4. The subdivision

is done with a recursive quadtree. Unlike HEVC, VP9 and AV1 support horizontal or

vertical subdivision. A typical partitioning of a 64x64 block is shown in Figure 1.3.

Each block is predicted using a single or multiple previously encoded blocks on the

difference frames or the same frame, called the inter prediction and the intra prediction

respectively. The blocks using inter prediction are called inter blocks. An inter-block

contains a motion vector (MV) that specifies the offset in the reference frame of

the part of the image to use as a prediction for this block. The MV can specify a

4

fractional pixel offsets in X and Y direction. In VP9 and AV1, 1
8

sub-pixel motion

compensation is used. The process of searching the MV for inter blocks is called

motion estimation (ME). A new global & warped motion mode is introduced in AV1.

In addition, VP9 support three reference frame candidates while AV1 supports up to

six reference frame candidates.

Fig. 1.3.: A typical partitioning of a 64x64 block

Intra prediction uses the pixels on the upper and/or left side of the current block.

The pixel values of the current block are estimated using one of several directional

5

modes of intra prediction. AV1 has 56 angular intra prediction modes and several

other intra prediction modes.

As mentioned above, a block can use either a single reference frame or a combi-

nation of two reference frames. The latter is called the compound prediction, where

the prediction is first formed from each reference frame then the final prediction is

generated as the average of these two. It is expected that in certain cases this average

is a better predictor than both single predictors even with extra motion information

required.

1.1.3 Global motion coding tool of AV1

Global motion coding tool is one of the new inter prediction modes merged into

AV1 on the base of VP9. It has shown great coding gain for videos that contain strong

non-translational motion [11]. The pure translational model used by block motion

compensation has been approved to be an effective technique which is used by modern

video codecs, such as VP9, H.264 and HEVC. Blocks of a suitable partitioning size

in a frame is predicted using a block in a previously encoded frame where the whole

block is assumed to have the same translational motion represented by a motion

vector. However, the real motion in video is rarely translational only. For videos

with non-translational scenes, such as camera panning and zooming, the only way to

get an accurate prediction with a purely translational motion model is to use smaller

block sizes which makes coding less efficient. A set of coding tools that based on

affine or perspective motion model, including global motion coding tool, is introduce

into AV1. They allow complex motion to be captured at larger block sizes by warping

the blocks. The global motion model is described by the following:

α


x′

y′

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h11



x

y

1

 (1.1)

6

α represents a weight factor, (x, y) represents coordinates of the original pixel in

a current frame and (x′, y′) represents the corresponding warpped coordinates in a

reference frame. The 3x3 homography matrix H has 8 degrees of freedom which

allows blocks to be transformed into arbitrary quadrilaterel. It can be decreased into

lower order motion model. For example, the matrix H for affine projection with 6

degrees of freedom is restricted by:

h31 = h32 = 0, h33 = 1 (1.2)

The current implementation of AV1 supports up to 6-parameter affine model for

the whole frame. The parameters in the motion model are estimated using a feature

matching scheme followed by robust model fitting. First the FAST features [16]

are computed in the current frame and the reference frame. After finding a set of

correspondence between the feature points in the current frame and the reference

frame, a desired motion model is computed using RANSAC [17]. There is a set of

global motion parameters for every reference frames of the current frame. These

parameters are transmitted to the decoder in the frame header.

1.1.4 Rate distortion optimization

Rate distortion optimization is used for block subdivision decision as well as the

choice of prediction modes and reference frames in motion compensated prediction.

The goal of an encoder is to minimize the distortion D subjective to a constraint

R, where R is the number of bits used. The optimization problem can be solved

using Lagrangian optimization where the distortion term is weighted against a rate

term [18]. The Lagrangian optimization problem is given by

min{J}, where J = D + λR (1.3)

7

where the Lagrangian rate-distortion function J is minimized for a particular value

of Lagrange multiplier λ.

The perceived distortion is very hard to measure as the characteristics of the

human visual system are complex and not well modeled. In practice, highly imperfect

distortion models are used such as MSE. λ value is subject to approximations and

is specified by video codec. The R contains the bits for encoding the prediction

error/residual and the corresponding motion information such as the MV and the

prediction mode.

The shape of the block subdivision quadtree and the reference frames and the pre-

diction mode of each block are chosen so that the Lagrangian rate-distortion function

J is minimized.

1.1.5 Transformation and quatization

The prediction error/residual then undergoes an orthogonal transformation such

as discrete cosine transform (DCT), asymmetric discrete sine transform (ADST) or

Walsh Hadamard Transform (WHT). The transform reduces the statistical correlation

within the residual and packs most of the signal’s energy into fewer coefficients in the

frequency domain. The quantization of the transform coefficients allows different

level of lossy compression. The encoder controls the compression ratio by adjusting

the quantization parameter (QP) which specifies the width of the quantizer bin. The

higher QP value is, the fewer bits are used.

Thus, each block of the input video frames is expressed in terms of prediction

mode, reference frames, transform coefficient and control signals. Besides control

signals for each block, there are also control signals at frame level such as the reference

frame candidates for the current frame, error resilience mode, etc. Above described

data is then concatenated and entropy-coded using arithmetic coding.

8

1.2 Video Coding And Transmission

During the last decade, there has been a significant increase in the amount of

video traffic over the Internet. With the development of 3G/4G and WiFi networks,

people are not only watching more online videos but also command better quality

online videos which occupy more bandwidth. According to [19], traffic from wireless

and mobile devices will account for more than 63 percent of total IP traffic by 2021.

Globally, Internet video traffic will be 82 percent of all consumer Internet traffic by

2021, up from 73 percent in 2016. The increase in live Internet video traffic, Internet

surveillance video traffic, virtual reality and augmented reality video traffic, consumer

video-on-demand traffic and content delivery network traffic are accounted for this

estimation. Also, mobile data traffic is expected to increase sevenfold between 2016

and 2021 which is twice as fast as fixed IP traffic. This dramatic increase in video

traffic over the Internet has raised challenges for developing efficient video coding

techniques.

As shown in Figure 1.4, the original video signals are encoded and transmitted over

noisy channels. The decoder reconstructed the video signals based on the received

encoded data. The video compression codecs act as the source encoder and source

decoder.

Fig. 1.4.: A commen video transmission system. See [15]

A defining characteristic of a wireless channel is the variation of the channel

strength over time and frequency [20]. This can cause packet loss during signal trans-

mission. In real-time applications such as video chat or live streaming, retransmission

of lost packets is not feasible. As a result, only a subset of transmitted packets is

available at the receiver, which must reconstruct the signal from the available informa-

9

tion [21]. Many well-established video compression standards such as H.264 [22, 23],

HEVC, VP8 [24], VP9 and AV1 are mainly aimed at achieving better compression

efficiencies. Due to the use of spatial-temporal correlations for compression, such

compressed bitstreams typically become vulnerable to errors. A typical video en-

coder uses “in-loop” decoder so that error-free frames are used as a reference at the

encoder, however the reference frames at the decoder may contain errors. These er-

rors can then propagate to the frames decoded next, until an instantaneous decoding

refresh (IDR) or a key frame is successfully received by the decoder [21]. Therefore,

error concealment and resilience methods are indispensable for video delivery over

unreliable channels.

1.2.1 Channel model

In a typical network scenario, packet loss patterns are usually bursty. Under suf-

ficiently high transmission load, there are spontaneous overload peaks causing packet

loss. In order to study the error resilience performance of the video codec in the trans-

fer of real-time data over the Internet, a Gilbert-Elliott model is used as a stochastic

channel model to simulate the bursty packet loss pattern [25,26].

G B

 pB|G

 pG|B

Fig. 1.5.: Gilbert-Elliott model (Two state markov model)

Figure 1.5 illustrates the architecture of the Gilbert model. In this two-state

model, condition “good” denoted as “G” indicates that the packet is correctly received

10

and condition “bad” denoted as “B” indicates that the packet is lost. The transition

probability PM |N is the probability of changing the state from N to M . For example,

PB|G is the probability when the previous state is “G” and the current state is “B”,

and PG|G is the probability when the previous state is “G” and the current state is

also “G”. Therefore:

PG|G = 1− PB|G

PB|B = 1− PG|B

(1.4)

The probability of packet loss can be expressed as:

PB = PB|B × PB + PB|G × PG

= (1− PG|B)× PB + PB|G × (1− PB)
(1.5)

After reorganization,

PB =
PB|G

PB|G + PG|B
(1.6)

The packet loss burst length is the average length of “consecutive stays” in the state

“B:”

LB = 1× PG|B + 2× PB|B × PG|B + 3× P 2
B|B × PG|B + ...

= P−1
G|B

(1.7)

In [27] a typical packet loss rate PB is between 0 and 0.6, and burst length LB is

between 2 and 20. It can also be shown that when PB is small, LB is large; and vice

versa.

1.3 Overview Of Region-based Video Coding

Region-based video coding is an alternative approach to the traditional schemes

of block-based video coding, where the coding units are not square image patches

but regions provided by processes such as image segmentation. Such research can be

categorized into two groups: saliency-based coding and object-based coding. Saliency-

based coding uses image saliency as the description of region-of-interest. For example,

in [28], a video frame is first segmented into several connected regions of arbitrary

11

partition. Then it uses region-based motion estimation to reconstruct each segment

in the frame. The method proposed in [29] decomposes a frame into frequency sub-

bands and search for region-of-interest within each sub-band. The wavelet coefficients

are transmitted in the order of the importance of each region. Object-based codecs

automatically detect objects from the video and generate a foreground/background

segmentation map. The segmentation maps can then be used to reconstruct the pixels

with different models. In [30], the authors investigated object-based video compres-

sion for surveillance videos, in which several segmentation methods are considered to

extract the background. Coding overhead and the corresponding coding performance

are also investigated. Authors in [31] proposed an object-based coding method by

pixel state analysis. The pixel state analysis is utilized to detect the foreground and

background regions in the video and the pixels of the foreground are compressed using

lossless compression.

Since most of the state-of-art video codecs use block-based hybrid coding tech-

niques, many recent works of region-based video coding are integrated into the block-

based video coding framework. Several region-based rate-control schemes are pro-

posed by assigning quantization levels to blocks based on the regions they belong

to [32–34]. In [35], frames are partitioned into multiple slices. Then the best mac-

roblock mode and suitable motion compensation search pattern for a given slice is

chosen. In [36], the authors propose to reduce the bit rate of fixed background

by reconstructing macroblocks in the fixed background using pulse code modulation

(PCM) in H.264. Other approaches involve controlling the number of non-zero DCT

coefficients of the region-of-interest [37,38].

1.3.1 Texture analysis/synthesis based video coding

A popular region-based video coding approach is the texture analysis/synthesis

approach. An overview of this approach is shown in Figure 1.6. Two additional

modules are typically included compared to conventional video codecs. The texture

12

analyzer identifies the texture regions as a pre-processing step before the encoder.

Outputs from the texture analyzer such as model parameters are treated as side

information, which is transmitted to the decoder for texture region reconstruction. We

describe here a few representative works. A comprehensive survey of many promising

texture analysis/synthesis based video coding methods is discussed in [39].

Texture
Analyzer

Encoder Decoder
Texture

Synthesizer

C
h
a
n
n
e
l

Original
Sequence

Reconstructed
Sequence

Side Information Side Information

Fig. 1.6.: Overview of texture analysis/synthesis based video coding

In [40–42], Ndjiki-Nya et al. proposed a close-loop texture analysis/synthesis

method. Texture is identified with dense motion field followed by a split-and-merge

algorithm. Then the texture region is reconstructed by texture warping with an

overlap region on the texture/non-texture boundary that minimizes the subjective

annoyance of the blending. A video quality metric that comprises both global and

local components is used for in-loop optimization and video quality assessment.

Bosch et al. proposed a segmentation-based video compression using texture and

motion models [43] . Two texture features, gray level co-occurrence matrix (GLCM)

and Gabor filters, in combination with two segmentation strategies, split-and-merge

and K-means clustering, are investigated to identify texture regions. Texture region

is reconstructed with texture warping using global motion models with an open-

loop framework. Only subjective video quality assessment was performed for the

reconstructed videos.

Zhang and Bull proposed a parametric framework for video compression based

on texture warping and synthesis [44, 45]. Texture regions are segmented using fea-

tures derived from the complex wavelet transform and further classified into static

and dynamic texture regions according to their spatial and temporal characteristics

13

and reconstructed by texture warping and an auto-regressive moving average process

(ARMA), respectively. An artifact-based video metric (AVM) is proposed to evalu-

ate the quality of the reconstructed video. This method is also employed in-loop to

prevent warping and synthesis artifacts.

More recently, a texture analysis/synthesis approach is integrated in HEVC video

codec [46]. The proposed method identifies and processes static and dynamic tex-

tures based on 2D dual tree complex wavelet transform and steerable pyramid trans-

form [47]. Comparing to previous work [48], different strategies for identifying static

and dynamic textures are considered in [46]. In [49], correspondence analysis is ex-

plored for the analysis of motion patterns in a video on the basis of optic flow data.

Optic flow residual is used as an indicator for dynamic textures. The flow lines gen-

erated from optic flow data are used in texture synthesis for creating an illusion of

continuously flowing texture.

1.4 Video Coding Using Neural Network

Deep neural network has shown its superiority in many challenging tasks, espe-

cially in image processing and computer vision. Recent years, adapting deep neural

networks into the field of video coding has become an active research area [50, 51].

There are two main categories of work, namely module based video coding schemes

which apply deep network with traditional video coding, and end-to-end deep video

coding schemes that are built primarily using deep neural networks.

1.4.1 Module based video coding

Module based method uses a hybrid video coding framework that incorporates

deep neural networks with traditional video coding schemes. The use of deep neural

networks to improve coding efficiency has been explored in almost all coding modules

[50,51]. In this section, we review different coding modules including intra prediction,

inter prediction, quantization and entropy coding, in- and out- loop filtering.

14

Intra Prediction

An input video sequence passes through a video compression framework is divided

into frames, and frames are divided into blocks. Blocks are compressed in a predefined

order and the compressed blocks can be used to predict subsequent blocks in the same

frame. The process of using compressed blocks to predict subsequent ones is known

as intra prediction.

In traditional video coding scheme, there are several predefined intra prediction

modes and the one with the minimal rate-distortion cost is selected when comparing

with other modes. Recent hybrid video coding frameworks use deep neural networks

in intra prediction have shown comparative and even improved performance compared

to traditional methods. Cui et al.proposed an intra prediction convolution network

(IPCNN) that integrates CNN into the HEVC intra prediction module [52]. The

IPCNN has 10 convolutional layers and batch normalization is used except for the

first and the last convolutional layer. Rectified linear unit (ReLU) is selected as

the nonlinear activation function. The IPCNN takes the best estimation predicted

by HEVC intra prediction and three neighboring reconstructed blocks as input, and

use the subtraction of the original blocks and the input as target to train a residual

model. The output of IPCNN is the residual block that is used to refine the prediction

obtained from HEVC. This method uses neighboring blocks as additional context and

the residue learning approach achieved marginal gain.

Instead of using CNN based scheme to refine the traditional intra prediction result,

Li et al.proposed a fully connected network called IPFCN as a new intra prediction

mode in HEVC, among the other 35 modes [53]. Except for the non-linear layer

PReLU [54], all layers in IPFCN are fully connected layers. Similar to IPCNN, IPFCN

uses neighboring pixels as context. For the current N ×N block Y , IPFCN learns a

mapping from Y to its reference pixels R, where R contains L lines above and L lines

to the left with 4NL + L2 pixels in total. They reported around 3% BD-Rate [14]

saving compared to the HEVC reference software HM [55]. Pfaff et al.also proposed

a fully connected network for intra prediction [56]. They took prediction modes into

15

consideration and trained multiple networks for different prediction modes. They

also proposed a second neural network to predict modes from reconstructed samples.

They reported around 6% BD-Rate saving compared to HM.

Hu et al.adopted a progressive spatial neural recurrent network (PS-RNN) for

intra prediction [57]. RNNs are widely used to process time series data, usually one

dimensional data. In order to process 2D image signal, the proposed PS-RNN stacks

RNNs in two orthogonal directions and uses a convolutional layer to fuse the predic-

tion. The PS-RNN consists of three spatial recurrent units, and it progressively infers

information from reference to the current prediction unit (PU). They also proposed

to use sum of absolute transformed difference (SATD) as the loss function to train

the network since SATD is able to consider rate-distortion cost in a residue block

compared to Mean Square Error.

Jin et al.designed an convolutional encoder and decoder network (IPCED) and a

GAN [58] based training framework for intra prediction with PUs of 32× 32, 16× 16

and 4×4 [59]. IPCED uses a multi-scale skip architecture as encoder to combine deep

global information with the shallow local information. The decoder follows mulit-level

branches to generate prediction for each branch. The training framework also includes

an auxiliary context discriminator network. They reported 3.41%, 3.07% and 3.44%

bitrate saving for the Y/Cb/Cr channel respectively compared to HEVC baseline.

Neural network based techniques can also be used for mode decision [60], down-

and up-sampling [61] in intra prediction. Seki et al.proposed a two-stage neural

network to predict mode decision instead of utilizing rate distortion optimization [60].

Authors in [61] designed a compact and efficient CNN for up-sampling instead of using

hand-crafted method in conventional intra coding.

Inter Prediction

In inter prediction, previously compressed frames are used as references to predict

the current frame to be encoded, therefore removing the temporal redundancy. Deep

learning can also facilitate inter prediction by improving fractional-pixel motion com-

16

pensation, reference frame generation, and motion compensation refinement to name

a few.

Yan et al.proposed a CNN based interpolation filter for half-pixel interpolation

[62]. In [63], an image super-resolution approach is used to obtain fractional interpo-

lation results. Later authors in [64] proposed a fractional interpolation method based

on a grouped variation convolutional neural network (GVCNN), which showed round

2.2% data rate saving. The network extracts features from integer position samples

and then the group variations is generated using the same feature maps. The sub-

pixel result is obtained by adding the variations back to the integer sample. Instead of

training a separate network for each QP and each half-pel position, a shared feature

map is used to infer sub-pixel samples under different QPs at once [62,63].

Deep neural networks not only demonstrate superiority in factional motion com-

pensation, but also inspired work to select or generate proper references in inter

prediction. In [65], a deep learning based frame rate up conversion (FRUC) algo-

rithm in HEVC is introduced to generate virtual reference frame (VRF). The VRF is

further enhanced by a CNN model to reduce the compression artifacts and improve

the prediction accuracy. In addition, a CTU level coding mode is proposed to better

adopt VRF in coding process as well as considering trade-off between compression

performance and computational complexity.

Xia et al.proposed a multi-scale adaptive separable convolutional neural network

(MASCNN) to generate additional reference samples which are pixel-wise closer to the

to-be-coded frames [66]. With additional references sample generated from MASCNN,

pixel-wise motion is better modeled which saves bits for coding. In addition, a multi-

scale sum of absolute transformed difference (SATD) is introduced as the loss function

for the multi-scale architecture. In [65, 66], Adaptive Separable Convolution [67] is

used since 1D kernels has reduced number of parameters.

Deep neural networks have also been used in refining motion compensation [68,69]

. In [68], a network is proposed that takes integer position samples as input, extract

feature maps to infer the residual and then obtain the integer-position refinement.

17

Instead of using network to enhance the reference before motion compensation, a

CNN network (CNNMCR) is proposed to refine motion compensation results in [69].

CNNMCR follows the network structure in [70], which considers both the spatial

contextual information and the temporal information by taking motion compensated

prediction and the neighboring reconstructed region as inputs to the network.

Quantization and Entropy Coding

Quantization and entropy coding are two key steps to binarize compressed represen-

tations. Work on leveraging quantization strategies using deep neural networks is still

quite limited. In [71], a three layer neural network with 894 trained parameters is

used to predict the local visibility threshold CT for each 64× 64 CTU that indicates

HEVC distortions. Then the quantization step is derived by regression in

log(Qstep) = αC2
T + βCT + γ (1.8)

where α, β and γ are three coefficients that are predicted from three two layer net-

works respectively. A 11% improvement is reported for HEVC when using coefficients

predicted from CNN models.

Recent advances in entropy coding mostly focus on achieving accurate probabil-

ity estimation of coding modes and transform coefficients. In [56] and [72], a fully

connected network and a convolutional neural network are designed to predict prob-

ability distribution of intra prediction modes respectively and further improve the

entropy coding efficiency. Puri et al.proposed a 12 layered CNN to predict transform

index in multiple transforms framework from the quantized coefficient blocks [73] .

Then one is able to use the predicted probability to code the transform mode in vari-

able length. In [74], a network-based arithmetic coding strategy called CNNAC is

proposed to directly estimate the DC coefficients probability for HEVC intra coding

instead of using hand crafted context-adaptive binary arithmetic coding (CABAC).

18

In-Loop and Out-Loop Filtering

Lossy video compression usually causes visual artifacts, such as blocking, flickering,

ringing and blurring. Typically, filtering is performed to reduce the reconstruction

artifacts. Depending on whether a filter is involved in the encoding processing, it is

categorized as either in-loop filter or out-loop filter. Recent research shows that deep

neural network has a strong ability to learn how to restore degradation generated

from compression.

AV1 codec contains three in-loop filters, Deblocking Filter (DF), Constrained

Directional Enhancement Filter (CDEF) [75] and Loop-Restoration [76]. Different

from these in-loop filters, a CNN called SimNet is proposed to build the relationship

between the reconstructed frame and the original frame in [77]. SimNet is based

on residual framework, and the depth of the network is varied with the distortion

level of the reconstructed frame. SimNet can be applied to both intra- and inter-

prediction, with a skip enhancing strategy for inter coding to improve the coding

efficiency by avoiding the effect of double enhancement. This approach achieves 7.27%

and 5.57% BD-Rate saving for intra- and inter- respectively. With similar skipping

enhancement strategy, [78] designed a Wide Activation Residual Network (WARN)

that allocates network depth and parameters with wide activation [79] to achieve

better performance. This approach achieves 14.42% and 9.64% BD-Rate saving for

intra- and inter- coding.

Post processing using neural networks to reduce compression artifacts are first

applied to image compression [80–85]. Later on, out-loop filters are investigated

using deep neural networks. Wang et al.proposed a 10 layer CNN model to enhance

each reconstructed frame for HEVC [86]. Instead of using one frame as input, Yang

et al.proposed a method to use neighboring frames to enhance the current frame [87]

. An auto-encoder model is designed to learn the residual on encoder side, and then

the residual is transmitted to reconstructed the frame at the decoder [88]. In [89], a

learning based multi-frame video quality enhancement is introduced which enlarges

the spatial-temporal correlation among frames.

19

Although module based video coding with deep neural works is able to achieve

comparable or even better compression quality compare to the traditional video cod-

ing frameworks, the trade-off between computational complexity and compression

efficiency is under explored. In addition, the computational cost is often the obstacle

for deploying deep module based video coding in practical systems.

1.4.2 End-to-end deep video coding

Another popular direction for video compression is extended from end-to-end deep

network image compression schemes [90–92]. Deepcoder [93] is one of the earliest end-

to-end deep video scheme that combines several auto-encoders. For intra-prediction,

the Deepcoder builds an auto-encoder to compress the block. For inter-prediction,

motion estimation and compensation are performed and then compressed by the

auto-encoder. Both intra- and inter-prediction residuals are further encoded using a

another network. All representations from auto-encoders are quantized and encoded

using Huffman entropy coding. This method shows the possibility of building end-

to-end deep neural network in the video coding framework, however the performance

is not comparable to H.264.

The Pixel Motion CNN (PMCNN) [94] introduces a spatio-temporal modeling

and proposes an iterative analysis/synthesis learning approach. The spatio-temporal

modeling is extended from the PxielCNN [95] to sequentially predict frames in chrono-

logical order. The residuals are then analyzed and synthesized using a LSTM-based

auto-encoder with connection between adjacent stages which was introduced in [90].

This method achieves comparable results to H.264.

DVC introduced in [96] takes advantage of traditional video compression architec-

ture and nonlinear ability of neural networks. A learning based optical flow estimation

was proposed, and the method uses two auto-encoders to compress predicted motion

and residues. Instead of using two auto-encoders to compress predicted motion and

residues, Rippel et al.only uses one to achieve the same goal, along with multi-flow

20

representation and a more sophisticated spatial rate control algorithm [97]. This

method is reported to outperform commercial codecs in the low-latency mode.

Other deep video coding schemes includes [98], [99] and [100]. Wu et al.views

video compression as repeated image interpolation and builds an end-to-end trained

network for video compression [98]. Their method uses RNN based image compres-

sion [90] to compress the key frames, and builds a conditional interpolation model to

interpolate B frames hierarchically. A variational inference approach based on vari-

ational autoencoder (VAE) is proposed in [99] for video compression. Their results

show a better visual quality on specialized content videos, and achieved comparable

quality on generic videos compared to VP9. In [100], a deep generative modeling

is proposed which aims to learn a continuous latent representation that can be dis-

cretized with minimal information loss for further binarization, instead of generating

new videos in [101].

The end-to-end deep video coding frameworks have not outperformed HEVC in

terms of PSNR from our observation. Replacing traditional video compression with

neural networks is a challenging task, and research is still at its infancy. In addition

to coding performance improvement, other issues such as computational complexity,

hardware adoption, and power efficiency.

1.5 Texture Analysis And Synthesis

1.5.1 General scene understanding

Region-based video coding relies on having a good understanding of the objects

in the scene, so bit allocation for the different regions can be optimized. Scene under-

standing involves multiple tasks, for example maintaining the coherency of objects

in the scene and recognizing the event in a scene. Scene understanding is a chal-

lenging computer vision task, because the perception of a scene could be varied from

different human point of views. In general, there are two main approaches for scene

understanding, context based and semantic based. Context based approaches use

21

contextual information gathered from nearby objects to analyze the dependencies of

different objects in presence, while semantic based approaches rely on the semantic

meaning of the global scene or explicit objects to help understand the image. The

goal of semantic scene segmentation is to partition a scene based on its semantic

meaning. Recent advances in deep neural networks and the availability of large-

scale datasets like ImageNet [102], COCO [103] and ADE20K [104] have enabled

improved performance in semantic scene segmentation [104–106]. For example, the

Fully Convolutional Network (FCN) [105] is one of the most commonly used network

architectures for semantic scene segmentation. The major issue with FCN [105] is

the lack of global contextual information to categorize global scene, which could lead

to segmentation error. The pyramid scene parsing network (PSPNet) [106] addresses

this issue by adding a global pyramid pooling module to extract global information

from the image.

1.5.2 Texture based approaches

Texture analysis

Many region-based video coding methods use different coding modes for texture in

a frame, since regions containing texture are “perceptual insignificant”, yet costly to

encode. Texture is an essential visual cue in many types of images and videos. In

general, texture represents region with no explicit objects, and texture region usually

follows a structural pattern or can be approximated by probabilistic models. Ana-

lyzing texture regions in an image or video such as detection and synthesis can help

understand the scene for subsequent processes, which has drawn a lot of research

interest in computer vision and video compression. The key process of analyzing tex-

ture is to formulate the texture representation, which is a vector transformed from

the input image. Early development of texture representations can be categorized

into two areas, filtering based approaches and statistical modelings. Gabor filters is

one of the common filter based approaches which convolves the image, and is fol-

22

lowed by nonlinearity to obtain texture representation [107,108]. Texture can also be

represented by a statistical model, e.g., the Markov Random Field (MRF) [109,110].

Later on, local hand crafted features, such as the Scale Invariant Feature Transform

(SIFT) [111], Speeded Up Robust Features (SURF) [112] and Local Binary Patterns

(LBP) [113], are widely used as texture descriptors. In recent years, neural network

has shows success in learning and extracting features from large labeled datasets.

CNN based texture representations are very popular, and the most straightforward

approach is to directly extract from the fully connected layers, e.g., from the FC6

or FC7 layer of AlexNet [114]. In [115], the output of the convolutional layer is fur-

ther encoded with a traditional encoder, namely the Fisher Vector (FV) [116], which

shows the orderless pooling of CNN features is a good texture descriptor.

Texture synthesis

Depending on how texture is represented and encoded, texture synthesis may be re-

quired to reconstruct pixels corresponding to the texture regions in a frame. There

are two main approaches of texture synthesis in general. Non-parametric based ap-

proaches resample texture patches from the reference image [117–119]. Parametric

statistical models reconstruct the texture regions by optimizing statistic models and

sampling from the models [47, 120, 121]. Markov random field (MRF) is one of the

most frequently used models. Recently, a pre-trained CNN model on image classifica-

tion task is used to generate texture patches [122] which showed a new direction for

texture synthesis. In addition, generative models have also shown promising results

in image synthesis [58, 123]. Li et al.proposed a Markovian generative adversarial

network for texture synthesis which showed remarkable results in terms of synthesis

quality [124]. However, consider the computational cost and implementation chal-

lenges, utilizing generative models as a hybrid module at the decoder side of video

codec is still not well exploited.

23

1.6 Contribution Of This Thesis

The main contributions of this thesis are:

• VP9 Video Coding For Lossy Transmission Channels Using Error Resilience

Packets

– We presented a VP9-based error resilient video coding method that uses er-

ror resilience packets that consist of the frame-level macroblock prediction

information and encoded keyframe information.

– We compared our proposed method with several previously developed error

resilience methods for video compression. Experimental results exhibit

that our method performs well in terms of both PSNR and image quality

under typical lossy network conditions.

• Multi-Reference Video Coding Using Stillness Detection

– We proposed an automatic Golden Frame (GF) group stillness feature

detection method. Each GF groups is classified into still GF group and

non-still GF group based on three metrics.

– We utilized the GF group stillness feature to adaptively choose the coding

structure for each GF group based on its stillness feature to optimize the

coding efficiency.

• AV1 Video Coding Using Texture Analysis With Convolutional Neural Net-

works

– We propose a Convolutional Neural Network architecture which identifies

the “perceptually insignificant” region before encoding the video sequences

using conventional video codec.

24

– We developed a new CNN based texture analysis/synthesis coding tool for

AV1 codec that reconstructs the texture region differently for the B-frames

and the P-frames which largely reduces the temporal visual artifacts.

– We proposed a visual quality assessment metric for evaluating visual qual-

ity of videos with texture synthesized region.

– We compared our proposed method with the original AV1 codec. Ex-

perimental results show that our proposed method can achieve significant

data rate reduction with satisfying visual quality for both standard test

sets and user generated content, which are verified by a subjective study

and objective quality assessments.

– Our proposed method is a pioneering work that integrates learning-based

texture analysis and reconstruction approach with modern video codec for

enhancing video compression performance.

1.7 Publications Resulting From This Work

1. Di Chen, Neeraj Gadgil and Edward J. Delp, “VPx video coding for lossy

transmission channels using error resilience packets”, Picture Coding Symposium

(PCS), December, 2016, Nurembreg, Germany.

2. Chichen Fu, Di Chen, Edward J. Delp, Zoe Liu and Fengqing Zhu, “Texture

segmentation based video compression using convolutional neural networks”, Elec-

tronic Imaging (EI), January, 2018, Burlingame, CA.

3. Di Chen, Zoe Liu, Yaowu Xu, Fengqing Zhu, Edward Delp, “Multi-Reference

Video Coding Using Stillness Detection”, Electronic Imaging (EI), January, 2018,

Burlingame, CA.

4. Di Chen, Chichen Fu, Zoe Liu and Fengqing Zhu, “AV1 Video Coding

Using Texture Analysis With Convolutional Neural Networks”, arXiv preprint, p.

arXiv:1804.09291, 2018.

25

5. Di Chen, Qingshuang Chen and Fengqing Zhu, “Pixel-level Texture Segmenta-

tion Based AV1 Video Compression”, International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), May, 2019, Brighton, UK.

6. Di Chen, Qingshuang Chen, Zoe Liu and Fengqing Zhu, “Advances In Region-

Based Video Coding Using Deep Neural Network”, Proceedings of the IEEE, 2020,

under revision.

26

2. VP9 VIDEO CODING FOR LOSSY TRANSMISSION

CHANNELS USING ERROR RESILIENCE PACKETS

2.1 Video Error Concealment And Resilience

As mentioned in chapter 1, the variation of the channel strength and overloaded

transmission may cause bursty packet loss during video transmission. Therefore, the

increasing video traffic over error-prone wireless channels has raised some significant

challenges for developing efficient coding techniques for this purpose. In real-time

applications such as video chat or live streaming, retransmission of lost packets is not

feasible. As a result, only a subset of transmitted packets is available at the receiver,

which must reconstruct the signal from the available information [21]. This may be

achieved by error concealment and error resilience techniques for video compression

and transmission.

Various error concealment approaches such as spatial pixel interpolation, fre-

quency domain reconstruction have been proposed [21]. Temporal error concealment

is another popular error concealment technique. It uses the correlation between a

lost frame and its temporal neighbors. In [125], a method that estimates the motion

vector by doing a full motion search in the neighborhood of a lost pixel-block is pro-

posed. Another temporal approach called boundary matching algorithm (BMA) [126]

selects the lost motion based on a boundary difference. Multi-frame motion vector

averaging method (MMA) [127], motion vector extrapolation (MVE) [128] and hy-

brid motion vector extrapolation (HMVE) [129] methods estimate the entire missing

frame using the received frames. A redundant motion vector method for H.264/AVC

is proposed in [130], in which motion vectors are sent as additional information. Many

error resilience methods have been proposed to make compressed bitstream robust to

losses [21]. One such scheme proposes the use of redundant pictures that are trans-

27

mitted using a reliable channel [131]. Scalable video coding (SVC) [132] and multiple

description coding (MDC) [133] are two popular error resilient coding techniques.

Several error resilience tools are proposed for the VPx and H.26x bitstreams.

Specifically, H.264 offers data partitioning (DP), flexible macroblock ordering (FMO)

and switching P (SP) and switching I (SI) slices [134]. In the current VP9 [1] imple-

mentation, a flag “error resilient mode” is used to turn on the error resilience mode

at encoder. This mode restricts entropy decoding dependency across frames. The

entropy coding context probabilities are reset at the beginning of each frame. Also,

the colocated MV from previously encoded reference frame cannot be included in

the list of MV reference candidates. However, without other scheme to prevent drift

between the encoder and decoder, there can be a significant drop in image quality of

the decoded video. A simple method that uses duplicated prediction information can

be effective to provide a graceful degradation of performance with packet loss [135].

However, this method is less effective in the case of keyframe loss as can be seen in

the failure cases. In this thesis, we use a redundant bitstream that is composed of

only keyframes and duplicated prediction information for non-keyframes. This is sent

to the receiver in the form of an “error resilience packet” at each time interval.

2.2 Proposed System Architecture

Encoder: As shown in Figure 2.1, the original video sequence shown in white is

encoded using a standard VP9 encoder with encoded keyframes shown in green and

interframes shown in blue. Our proposed system is designed to form an “error re-

silience packet” shown in yellow for a given interval of time, i.e. every N frames.

The error resilience packet consists of two parts. The first part is the duplicated

prediction (mode/motion) information of all interframes. It includes the frame head-

ers and per-macroblock prediction information for each interframe in this interval as

used in [135].

28

Fig. 2.1.: Proposed encoder architecture

Secondly, we extract all the keyframes from the original video sequence and

concatenate them to make what we call keyframe-sequence. Then we encode this

keyframe-sequence with VP9 at a lower bitrate than that of the original encoder.

A suitable value of “target-bitrate” is used while encoding to adjust the amount of

overhead due to redundant keyframe information. Consider N frames of the original

video sequence encoded at f frames per second using (BR)Seq target-bitrate. Let

K be the number of frames that are encoded as keyframes out of N frames. Our

keyframe-sequence consists of the above K original frames. Let k be the average

frame rate of the keyframe-sequence: k = K/(N
f

) frames per second. Now, we encode

the keyframe-sequence at k frames per second using (BR)kf, the target-bitrate of the

keyframe-sequence:

(BR)kf =
1

d

(
k ·

(BR)Seq

f

)

29

where d (> 1) is a positive constant.

We concatenate the two above described data and a list of keyframe indexes to

form an error resilience packet for every N frames of the original sequence. The error

resilience packets are sent over the network and assumed to be protected from packet

losses. They are sent either embedded in the bitstream or over a separate channel

as side information. In this chapter, we do not discuss any details of the syntax for

the error resilient bitstream generated using our proposed method. But we allocate

a certain number of bytes to accommodate any additional syntax elements needed to

specify the presence of the error resilience packets.

Decoder: Our error resilient decoder is shown in Figure 2.2. The error resilience

packet corresponding to each N frames is first decoded to obtain redundant keyframes

and per-frame prediction information. The main part of the bitstream is then decoded

such that each frame is reconstructed using the received packet data. When packet

loss occurs, the decoder examines the frame headers and the list of keyframe indexes

obtained from the error resilience packet to get the frame type. If the lost frame is a

keyframe, shown in red, the decoder uses the lower-bitrate keyframe as the conceal-

ment signal. If it is an interframe, shown in pink, the decoder uses the prediction

information from the error resilience packet to reconstruct the frame. The residue

signal corresponding to a lost interframe cannot be recovered since it is not sent as a

part of the error resilience packet. The concealed frames are also used to update the

VPx reference frame pool in the same way as it is done for the received frames.

2.3 Experimental Results And Analysis

Our proposed method is implemented by modifying the libvpx software available

on the WebM website [136]. We used the VP9 encoding options, mainly “codec”,

“good”, “error-resilient”, “cpu-used”, “target-bitrate”, “kf-max-dist” to obtain differ-

ent encoded bitstreams [137]. The following are our encoding configuration settings:

30

Fig. 2.2.: Proposed decoder architecture

./vpxenc -w <Width > -h <Height > --i420 --verbose --psnr -o <out.webm>

--codec=vp9 --good --cpu-used=0 --end-usage=cbr --fps= < f >/1 --passes=1

--target-bitrate=<1500-15000> --kf-min-dist=0 --kf-max-dist=<kDist >

--error-resilient=1 <in.yuv>

As shown in Table 2.1, three video sequences BasketballDrill, PartyScene and

KristenAndSara are used for our experiments.

Table 2.1.: Test sequences used for our experiments

Spatial Frame No. of Maximum key-
Sequence Resolution Rate frames frame distance

(Width × Height) (f) (kDist)

BasketBallDrill 832× 480 50 500 25

PartyScene 832× 480 50 500 25

KristenAndSara 1280× 720 60 600 30

31

(a) Lossless

(b) Packet Loss=5%

(c) Packet Loss=10%

Fig. 2.3.: Performance comparison for BasketballDrill

32

We assume one packet contains one encoded frame. We use a Gilbert-Elliott model

that is used in [138], to simulate packet loss pattern for the lossy network. When the

packet loss rate is small, burst length is large, and vice versa [27]. Table 2.2 shows a

list of packet loss rates and their respective burst lengths used in our experiments.

Table 2.2.: Lost packet rate and burst length

Packet Loss Rate 2% 4% 6% 8% 10% 12%

Burst Length 6 6 5 5 4 4

For all sequences, we set d = 5 to control the target bitrate of the keyframe-

sequence. For our experiments, we send an error resilience packet for the entire length

of the short sequences we used for testing. However, N can be adjusted according to

the requirement of an application, since it controls the latency of the communication.

The error resilience packet and the first frame of each sequence are assumed to be

error-free. In addition to the data in the error resilience packet, we reserve 100 bytes

to accommodate the syntax elements. Then the total bitrate is the addition of the

original bitrate, the extra bitrate from the error resilience packet and the 100 bytes

reserved for syntax elements.

We compare the results of our proposed method (PR) with the frame copy (FC)

method from [139] in which the lost frame is concealed using the previously received

frame. For each packet loss rate, the experiment is repeated 50 times with different

packet loss patterns for our proposed method and the FC method. Each data point

reported in the figures is the average PSNR of these 50 packet loss experiments.

Figure 4.14 presents the comparison of PR and FC methods for BasketballDrill,

PartyScene and KristenAndSara sequences for the lossless (0%), 2%, 4%, 6%, 8%,

10% and 12% packet loss cases. For all sequences, FC method outperforms PR when

there is no packet loss. This is because we send additional data using the error

resilience packet that is redundant when there is no packet loss. For BasketballDrill

and PartyScene sequences, the PSNR performances of PR and FC for the 2% loss case

are close to each other. When the packet loss increases to 4%, our proposed method

33

begins to outperform FC. For KristenAndSara sequence, our proposed method has

better PSNR performance from 2% packet loss rate for all our tested data rates.

When packet loss rate is above 4%, PR clearly outperforms FC for all test sequences

in terms of average luma PSNR. In addition, as packet loss increases, our proposed

method shows a graceful degradation in performance, while the performance of the

FC method decreases more rapidly, especially for higher data rates. This is because

the burst packet loss (simulated using the Gilbert-Elliott model) often causes multiple

successive frames to be lost at the receiver. In that case all the lost frames are replaced

by the one most recently received frame. This causes a significant drift at the decoder

and a visual appearance of “frame-freeze.” The effects of the drift continue until a

keyframe is received. Whereas, our proposed method conceals a lost interframe using

the protected prediction information to reduce the drift. If a keyframe is lost, our

method recovers a low-quality version of the keyframe using the error resilience packet

to prevent the drift propagation.

We also compare the results of our proposed method and the FC method with

that of the duplicated prediction information (DPI) method used in [135]. Figure 2.3,

Figure 2.4 and Figure 2.5 present the performance of our proposed method (PR)

as compared with the frame copy method (FC) and the duplication of prediction

information (DPI) method used in [135] for “Lossless” (0%), 5% and 10% packet loss

cases.

For all test sequences, FC performs better than PR and DPI in the lossless case as

expected. This is because the other two methods contain various levels of redundant

information in their bitstreams, in the form of error resilience packets. In lossless

case, DPI performs better than PR because the size of error resilience packet in our

proposed method is larger than that used in DPI, as a result of redundant keyframe

information. For packet loss at “5%”, our proposed method outperforms the other

two (DPI and FC) for almost all data rates. For 10% packet loss, our proposed

method shows a greater advantage over DPI and FC in terms of PSNR. This shows

34

that the error concealment performance of our proposed method is improved under

higher packet loss conditions.

Figure 2.7 and Figure 2.8 show examples of visual comparison of the error conceal-

ment done using our proposed method and that done with FC. Each Figure contains

(a) the original frame, (b) decoded frame without any packet loss, (c) frame concealed

using our proposed method and (d) frame concealed using the FC method.

As seen in the PartyScene example shown in Figure 2.7, our proposed method has

produced a better concealment than the FC method. Some parts of the frame con-

cealed using our proposed method are blurred (e.g. the letter “P”). This is because

the lost keyframe that is used to form the prediction signal for this frame is concealed

using the keyframe-sequence encoded at a lower bitrate. There are also blocky ar-

tifacts in the moving area (e.g. the girl’s hair). This is because our error resilience

packet contains a copy of only the prediction information of interframes and it does

not contain any information about the pixel-wise residues. The frame concealed using

the FC method has relatively larger distortions in the moving areas (e.g. the girl’s

face). This is because the lost keyframe was concealed using a previously received

frame which was inaccurately used as prediction signal for the current frame.

For BasketballDrill example shown in Figure 2.8, the frame concealed using our

method contains blurriness and blockiness in the moving area (e.g. the basketball

and the player’s hands). Whereas, the frame concealed using the FC method contains

seemingly fewer of these artifacts. However, this frame is from a considerably earlier

time and the video reconstructed using this frame has a noticeable “frame-freeze”

artifact, which seems visually worse than small blocking artifacts localized in a frame.

In another example (not shown in the chapter), if the lost keyframe is also a frame

with the scene-change, the image quality produced by the FC method is unacceptably

low for the concealed keyframe and many subsequent frames until another keyframe

is received. The DPI method conceals lost frames that are subsequent to a lost

keyframe with the scene-change using the concealed keyframe. This leads to the

failure cases reported in [135]. This observation is also supported in terms of poor

35

PSNR performance of individual frames concealed after the scene-change. Therefore,

our proposed method performs better than other two methods in terms of both the

PSNR and the visual video quality.

36

(a) Lossless

(b) Packet Loss=5%

(c) Packet Loss=10%

Fig. 2.4.: Performance comparison for PartyScene

37

(a) Lossless

(b) Packet Loss=5%

(c) Packet Loss=10%

Fig. 2.5.: Performance comparison for KristenAndSara

38

(a) BasketballDrill

(b) PartyScene

(c) KristenAndSara

Fig. 2.6.: Packet loss performance

39

(a) Original (b) No Loss

(c) Loss Concealed using PR (d) Loss Concealed using FC

Fig. 2.7.: Visual comparison for PartyScene (Luma)

(a) Original (b) No Loss

(c) Loss Concealed using PR (d) Loss Concealed using FC

Fig. 2.8.: Visual comparison for BasketballDrill (Luma)

40

3. MULTI-REFERENCE VIDEO CODING USING

STILLNESS DETECTION

3.1 Introduction

The AV1 codec is an open source, royalty-free video codec developed by a consor-

tium of major technology companies called Alliance for Open Media which is jointly

founded by Google. It followed the VP9 codec, a video codec designed specifically for

media on the web by Google WebM Project. It is expected to achieve generational

improvement in coding efficiency over VP9. The AV1 codec introduced several new

features and coding tools, one of which being the multilayer coding structure [140].

The current AV1 codec divides the source video frames into Golden-Frame (GF)

groups. The length of each GF group, i.e. the GF group interval, may vary according

to the video’s spatial or temporal characteristics and other encoder configurations,

such as the key frame interval at request for the sake of random access or error

resilience. The coding structure of each GF group is based on their interval length

and the selection of reference frames buffered for the coding of other frames. The

coding structure determines the encoding order of each individual frame within one

GF group.

In the current implementation of the AV1 encoder, a GF group may have a length

between 4 to 16 frames. Various GF coding structures may be designed depending on

the encoder’s decision on the construction of the reference frame buffer, as shown in

Figure 3.1(a) and Figure 3.1(b). The extra-ALTREF FRAMEs and the BWDREF FRAMEs

introduce hierarchical coding structure to the GF groups [140]. The VP9 codec

uses three references for motion compensation, namely LAST FRAME, GOLDEN FRAME

and ALTREF FRAME. GOLDEN FRAME is the intra prediction frame. LAST FRAME is the

forward reference frame. ALTREF FRAME is the backward reference frame selected

41

from a distant future frame. It is the last frame of each GF group. A new cod-

ing tool is adopted by AV1 that extends the number of reference frames by adding

LAST2 FRAME, LAST3 FRAME, extra-ALTREF FRAME and BWDREF FRAME. LAST2 FRAME

and LAST3 FRAME are similar to LAST FRAME. extra-ALTREF FRAME and BWDREF FRAME

are backward reference frames in a relatively shorter distance. The main difference is

that BWDREF FRAME does not apply temporal filtering. The hierarchical coding struc-

ture in Figure 3.1(a) may greatly improve the coding efficiency due to its multi-layer,

multi-backward reference design.

The current AV1 encoder uses the coding structure shown in Figure 3.1(a) for

all the GF groups. However, a comparison of the compression performance with

extra-ALTREF FRAME and BWDREF FRAME enabled and disabled showed that the coding

efficiency for some test videos was actually worse when these two reference frames

were enabled. This means that the multilayer coding structure does not always have

better coding efficiency for all the GF groups. One such example is the GF groups with

stillness feature. In this section, we propose a new approach that adaptively designs

the Golden-Frame group coding structure through the use of stillness detection. A

set of metrics are designed to determine whether the frames in a GF group is of

little motion. Little work has been done that investigates the use of different coding

structures depending on video content. In [141], an adaptive video coding control

scheme is proposed that suggests using more P- and B-frame while the temporal

correlation among the frames in a group of pictures (GOP) is high. A method for

using different GOP sizes based on video content is presented in [142].

3.2 Method

3.2.1 GF group stillness

A GF group may be constructed to contain consistent characteristics to differen-

tiate itself from other GF groups. For instance, some GF group may present stillness

across its successive frames, and others may present a zoom-in / zoom-out motion

42

(a) GF Group Coding Structure Using Multilayer

(b) GF Group Coding Structure Using One-Layer

Fig. 3.1.: GF group coding structures

across the entire GF group. We examined the coding efficiency and the stillness fea-

ture of each GF group and found that when stillness is present in one GF group, the

use of multilayer coding structure as shown in Figure 3.1(a) may produce worse cod-

ing performance, as opposed to that generated by the one-layer structure in Figure

3.1(b).

3.2.2 Automatic GF group stillness detection

An automatic stillness detection of the GF groups is proposed in this section which

allows the GF groups to choose adaptively between two coding structures as shown

in Figure 3.1(a) and Figure 3.1(b). Three metrics are extracted from the GF group

43

during the first coding pass of AV1 to determine the GF group stillness. The first

coding pass of AV1 conducts a fast block matching with integer-pixel accuracy and

uses only one reference frame, the previous frame. Some motion vector and motion

compensation information are collected during the first coding pass. Our proposed

stillness detection method uses this information to extract three metrics as described

below which requires small amount of computation. It then identifies the thresholds

and derives the criteria to classify GF groups into two categories: GF groups of

stillness and GF groups of non-stillness. The thresholds are obtained by collecting

statistics of the three metrics from GF groups of eight low resolution (cif) test videos.

We manually labeled the stillness or non-stillness of the GF groups. Figure 3.3 shows

the histograms and the thresholds of the three metrics. We intentionally included

some test videos that contain GF groups of “stillness-like” characteristics in the non-

stillness class because they are more likely to be misclassified as GF group of stillness.

The GF group with “stillness-like” characteristics shows either very slow motion or

static background with small moving objects. We obtained three criteria which are

jointly applied to automatically detect stillness. Finally, the GF group is coded using

the workflow given in Figure 3.2.

Fig. 3.2.: GF group coding with stillness detection

44

(a) zero motion accumulator

(b) avg pixel error

(c) avg error stdev

Fig. 3.3.: Thresholds for metrics

45

Stillness Detection Metrics:

1. zero motion acumulator: Minimum of the per-frame percentage of zero-motion

inter blocks within one GF group:

zero motion accumulator = MIN(pcnt zero motionFi | Fi ∈ S) (3.1)

where

S = {Fi|i = 1, 2, ..., gf group interval}, the set of frames in the GF group

gf group interval: number of frames in the GF group

pcnt zero motion: percentage of the zero-motion inter blocks out of all the inter

blocks

2. avg pixel error: Average of per-pixel sum of squared errors (SSE) within one

GF group:

avg pixel error =

MEAN(frame sseFi/number of pixels per frame | Fi ∈ S)
(3.2)

where

frame sseFi is the SSE of frame Fi

3. avg error stdev: First calculate the standard deviation of the block-wise SSEs

for each frame, where block SSEs are obtained from zero-motion prediction; then

obtain the mean value of the standard deviations of all the frames in one GF group:

avg error stdev = MEAN(STDEVFi(block sse(0,0)) | Fi ∈ S) (3.3)

where

block sse(0,0) is the block-wise SSEs obtained from zero-motion prediction

46

STDEVFi is the standard deviation of the block-wise SSEs of frame Fi

We use the above three metrics to differentiate those GF groups of stillness features

from other GF groups, subject to the criteria in Table 3.1.

Table 3.1.: Criteria for GF group stillness detection

Stillness Detection Stillness Detection Criteria
Metrics (Identified as GF group of stillness)

zero motion accumulator >0.9
avg pixel error <40
avg error stdev <2000

3.2.3 Adaptive GF group structure design

Once a GF group is categorized as a GF group of stillness, no extra-ALTREF FRAME

or BWDREF FRAME is used in the single layer coding structure as shown in Figure

3.1(b). The single layer coding structure still has multiple reference frames em-

ployed for the coding of one video frame. LAST FRAME, LAST2 FRAME, LAST3 FRAME

and GOLDEN FRAME are used as forward prediction reference and ALTREF FRAME is used

as backward prediction reference. If a GF group is categorized as non-still GF group,

we will further leverage the use of BWDREF FRAME and extra-ALTREF FRAME to help

improve the coding performance.

3.3 Experimental Results

We tested the proposed method using two standard video test sets with various

resolutions and spatial/temporal characteristics, as shown in Table 3.2. More specif-

ically, the set of lowres includes 40 videos of cif resolution, and the set of midres

includes 30 videos of 480p and 360p resolution. Each video is coded with a single

47

GOLDEN FRAME and a set of target bitrates. For quality metrics, we use the arithmetic

average of the frame PSNR and Structural Similarity Index (SSIM) [143]. To compare

RD curves obtained by the base AV1 codec and our proposed method, we use the BD-

RATE metric [14]. Experimental results demonstrated the advantage of the proposed

approach. The Google test set of lowres has two video clips that contain detected still

GF groups (pamplet cif and bowing cif) and test set midres has one (snow mnt). As

shown in Table 3.3, by applying the proposed approach, the BD-RATE of video clips

that contain GF groups of stillness has decreased by approximately 1%. The classifi-

cation results of the proposed automatic stillness detector contain no misclassification

case in the videos from these two test video sets. There are mainly two reasons that

the single layer coding structure has better coding efficiency on the GF groups with

stillness feature. One is that the multilayer coding structure in Figure 3.1(a) involves

more candidate reference frames thus requires more motion information to be trans-

mitted to the decoder. The other reason is that the multilayer coding structure uses

an unbalanced bit allocation scheme which is not preferable for GF group of stillness

in which the frames are very similar.

Table 3.2.: BD-RATE reduction using proposed method on Google test set

test set BD-RATE(PSNR) BD-RATE(SSIM)
test set of lowres -0.063 -0.045
test set of midres -0.026 -0.041

Table 3.3.: BD-RATE reduction using proposed method on video clips contain GF
group of stillness

video clip BD-RATE(PSNR) BD-RATE(SSIM)
pamplet cif -1.395 -1.076
bowing cif -1.118 -0.735
snow mnt -0.767 -1.235

48

4. ADVANCES IN REGION-BASED VIDEO CODING

USING DEEP NEURAL NETWORK

4.1 Introduction

The growing demand for high quality online video content has resulted in novel

video coding schemes developed to improve the coding efficiency of video compression

methods. One category of these techniques is region-based video coding approaches.

As opposed to conventional block-based video coding approaches, where each frame

is partitioned into block structures and separately encoded, transmitted and decoded,

region-based video coding approaches segment a frame into coherent regions based

on features such as motion and texture, then each region is coded using different

approaches or encoding parameters. Since most modern video codecs, such as H.264,

HEVC and AV1, use block-based hybrid coding approach, region-based approaches

need to be further integrated into the block-based coding structure [144]. Block-

based hybrid coding techniques consist of 2D transforms and motion compensation

techniques to remove spatial and temporal redundancy by efficient exploitation of

statistical dependencies measured by MSE. However, it does not always produce the

best psychovisual result. Region-based methods aim to remove the psychovisual irrel-

evant information and enhance the visual quality by improving the fidelity of human

interested regions which leads to data rate reduction without noticeable degradation

of visual quality.

A popular region-based video coding approach is the analysis/synthesis approach.

It is assumed that many video scenes can be classified into textures that are either

“perceptually significant” (in an MSE sense) or “perceptually insignificant”. By “per-

ceptually insignificant” pixels, we mean regions in a frame that an observer will not

notice any difference without observing the original video sequence. The viewer per-

49

ceives the semantic meaning of the displayed texture rather than the specific details

therein [145]. The “perceptually insignificant” pixel blocks usually are “noise-like”

textures and are generally costly to encode using hybrid coding methods. In this pa-

per, we define texture as “perceptually insignificant” pixels in a frame with respect to

the Human Visual System, while non-texture area refers to all other pixels in a frame.

The encoder only encodes areas of a video frame that are “perceptually significant”

using hybrid coding techniques. The “perceptually insignificant” pixels are treated

differently by fitting a statistical model. The model parameters are then transmitted

to the decoder as side information. The decoder uses the model parameters to recon-

struct the pixels in the frame as an approximation. Since the residual signal is not

transmitted and the parameters of the statistical model generally can be represented

by far fewer bits, data rate can be significantly reduced. Over the past two decades,

many promising region-based video coding methods have been developed which are

discussed in [39].

In recent years, adapting deep neural networks into the field of video coding

has become an active research area [50, 51]. Module based methods use a hybrid

video coding framework that incorporates deep neural networks with traditional video

coding schemes. The use of deep neural networks to improve coding efficiency has been

explored in almost all coding modules, including intra prediction, inter prediction,

quantization and entropy coding, loop filtering and post-processing. In addition,

attempts have been made to build end-to-end video coding schemes that primarily

use deep neural networks which show a new direction of video compression.

Previous work on “analysis/synthesis” coding approaches use hand-crafted fea-

ture based texture analyzers which require a set of manually chosen parameters to

achieve accurate texture segmentation for different videos. In [146], both static and

dynamic texture models are investigated for image and video coding, respectively. A

texture analysis-synthesis loop is developed to identify “rigid” or “non-rigid” texture

regions which are then synthesized at the decoder using corresponding side informa-

tion. This approach only applies to Gaussian texture. In [45], a perspective motion

50

model is employed to warp static textures. Texture regions are segmented using fea-

tures derived from wavelet transform and further classified based on their spatial and

temporal features. It relies on the proper choices of a set of parameters to achieve

accurate texture segmentation. The texture synthesizer in [147] does not use motion

model but instead uses pixels from the above and left macroblocks to synthesize static

texture. In practice, this requires the current block to find similar contexts from the

above and left area which may not be true for all encoding blocks. While they have

shown good performance on a selection of test videos, it is difficult to scale up to

a large variety of videos with different texture-liked areas without manual tuning of

the parameters. To overcome this challenge, deep learning based methods can learn

these parameters during training, therefore do not require such parameter tuning for

inference.

4.1.1 Perceptual quality metrics

Research has shown that MSE based criterion such as PSNR and SSIM typically

used in hybrid coding system is not an adequate quality measure for videos recon-

structed with texture synthesis approaches since they are not optimized for pixel-wise

similarity measure with the original video frames [148]. Therefore, the incorporation

of perceptual-based quality metric instead of MSE based metric is important and nec-

essary to assess the coding performance of a texture analysis/synthesis based video

coding system. We will review existing perceptual-based quality metrics and intro-

duce a new metric in our own work.

To assess the performance of a video coding system, video quality metrics are

computed to describe the visual quality of video sequences. The most direct way

to measure video quality is through a subjective test. Subjective tests capture the

viewer’s perception of the visual quality of the video sequences under carefully de-

signed testing process and a controlled environment. However, the process is very

resource intensive and cannot be automated. Objective video quality metrics are

51

mathematical models to estimate a viewer’s perception. They are efficient and con-

venient for in-loop optimization of video codecs. The result of subjective tests can

be used as the ground-truth to evaluate the performance of objective quality metrics.

The most commonly used metric, PSNR compares the pixel-wise difference between

the decoded frame and the reference frame, thus may not correspond well with the

human subjective evaluation. In recent years, a number of visual quality metrics have

been developed to have a better correlation with human perception.

Inherent structural information is an important factor for human visual percep-

tion. The SSIM [149] and the multi-scale SSIM [150] estimate the structural similarity

by computing the mean, variance and co-variance of the pixels. The complex wavelet

transform variant of the SSIM, CW-SSIM [151] and WCW-SSIM [152], are invariant

to image scaling, translation and rotation.

A perceptually motivated reduced-reference (RR) quality metric for synthesized

textures is proposed in [153]. The perceptual regularity of the original and synthe-

sized textures is quantified through the visual saliency of the textures. But it is

not sensitive to artifacts from texture warping. In [148], a compatible artifact-based

video metric (AVM) is proposed to capture the artifact caused by texture synthesis

and was also employed in in-loop optimization. AVM consists of blurring estimation,

similarity estimation and edge artifact detection. However, the similarity estimation

component uses a simple model for human visual system and relies on the accurate

choice of several parameters. The STSIM [154] and STSIM2 [155] remove the pixel-

wise comparison component in SSIM to compare the texture similarity. However,

they do not capture temporal artifacts in the reconstructed videos.

The Video Multimethod Assessment Fusion (VMAF) [156] fuses several image

quality metrics using an SVM-based regression. However, these metrics are still

largely based on pixel-by-pixel comparison to the original video, which are not suitable

for video reconstructed using analysis/synthesis approaches. The experiments in [157]

showed that VMAF is not suitable for assessing the quality of synthesized content,

52

indicating that significant research is still needed to develop perceptually accurate

quality metrics that can assess synthesis artifacts.

In this chapter, we propose a block-level and a pixel-level texture segmentation

methods to extract texture regions in a video frame using convolutional neural net-

works and only encode areas of a video frame that are “perceptually significant.” To

model the textures both spatially and temporally, we introduce a new coding mode

called the “texture mode” that reconstructs the blocks by warping the texture block

from the reference frame towards the current frame using global motion parameters.

The proposed method is implemented using AV1 codec and is tested on both standard

test sequences and selected sequences from the YouTube UGC dataset [158].

4.2 Block-Based Texture Coding

We present in this section a block-based texture segmentation method using Con-

volutional Neural Network (CNN) we have developed for the AV1 codec. A deep

learning based texture segmentation method was developed to detect texture regions

in a frame that is “perceptually insignificant.” The proposed method is implemented

in the AV1 codec by enabling the global motion mode to ensure temporal consistency.

As mentioned in Section 4.1, deep learning based texture analyzer has the advan-

tage of not requiring manual tuning of parameters for inference since these parameters

are learned during training as opposed to hand craft features. The problem with us-

ing the texture analyzer alone to encode the texture region in the video is that if each

frame is encoded separately, areas that are reconstructed using the texture models

will be obvious when the video is displayed. This then requires the textures to be

modeled both spatially and temporally. We propose a scheme that reconstructs the

texture region differently for the bidirectional predicted frames (B-frames) and for-

ward predicted frames (P-frames) which largely reduces the temporal visual artifacts.

We introduce a new coding mode for AV1 called the “texture mode”. The “texture

mode” is completely an encoder side option, which in essence skips the coding of

53

the block entirely through leveraging the use of global motions provided by the AV1

codec. Specifically, the texture mode uses a modified version of the global motion

coding tool [11] in the AV1 codec to ensure the temporal consistency of the texture re-

gions between frames. Experimental results validate the efficacy of the texture mode

with a consistent coding gain compared to the AV1 baseline over a variety of video

test sets given a fixed perceptual quality level [159].

Fig. 4.1.: Block diagram of the proposed method

The general scheme for video coding using texture analysis and reconstruction is

illustrated in Fig. 4.1. The texture analyzer identifies the texture regions in a frame.

We use a classification convolutional neural network to label each block in a frame

as textures or non-texture and generate a block-based texture mask for each frame.

The texture mask and the original frame are fed into the AV1 video codec to enable

the texture mode where the identified texture regions skip the encoding process. The

texture region is reconstructed by warping texture region in a reference frame to the

current frame. A modified version of the global motion tool in AV1 is used to obtain

motion estimation and reconstructs the texture region without sending residues for

the identified texture region.

54

4.2.1 Texture analysis using CNN1

To provide texture information for the AV1 encoder, we use a block-based deep

learning texture detector to analyze video frames and produce segmentation masks.

Our deep learning detector obtains texture segmentation masks by classifying each

32× 32 block in a frame.

Fig. 4.2.: CNN architecture for block-based texture classification

The CNN architecture of our method is shown in Figure 4.2. Our CNN network

is inspired by the VGG network architecture [160]. The input of our architecture is a

32× 32 color image block. The architecture consists of convolutional layers followed

by a batch normalization ReLU and a max pooling operation. Three fully connected

layers with dropout operations and a softmax layer produces class probabilities. The

output of our network is the probability that a 32× 32 block is labeled as texture or

non-texture, which indicates reliably of the texture/non-texture block label produced

by the network. The kernel size of the convolutional layer is 3 × 3 and is padded by

1. The max pooling layer down samples the image by 2 and doubles the number of

feature maps.

1Joint work with Chichen Fu

55

Fig. 4.3.: Training data preparation

Training

The Salzburg Texture Image Database (STex) and the Places365 [161] were used for

training the CNN. Images in the STex dataset are ”pure” texture images. Images in

the Place365 dataset are of general scenes. The texture class samples were created by

cropping 512 × 512 STex images into 256 × 256 and 128 × 128 image patches and

resizing them to 32×32 patches. ThePlace365 images were resized into 32×32 image

patches. Since the texture content in the Places365 images were lost during resizing

operation, we can use resized Places365 images as non-texture class samples. In total,

1740 texture class images and 36148 non-texture class images were generated. The

CNN training data preparation procedure is shown in Figure 2.

56

The proposed CNN architecture was implemented in Torch [162]. Mini-batch

gradient descent is used with a fixed learning rate of 0.01, a momentum of 0.9 and

a weight decay of 0.0005. The batch size of 512 image patches was trained in each

iteration. For each epoch, 74 iterations were performed to cover the entire training set.

The training set was shuffled before each epoch. Since our training set is unbalanced

for the texture class images and non-texture class images, the class weight of each

class was set proportion to the inverse of class frequency. The error of training was

calculated using cross entropy criterion and was converted to probability score using

softmax regression. A total of 100 epochs were trained using one NVIDIA GTX Titan

GPU.

Inference

After training the CNN, texture segmentation is performed using test video frames.

Each frame is divided into 32×32 adjacent non-overlapping blocks. Each block in the

video frames is classified as either texture or non-texture block. The segmentation

mask for each frame is formed by grouping the classified blocks in the frame.

Texture segmentation mask refinement

Fig. 4.4.: Flowchart of texture analyzer

In order to fit the texture segmentation mask in the AV1 codec and minimize

the artifacts produced by encoding, we add a series of post-processes for block-based

57

masks. As shown in Fig. 4.4, an adaptive K-means clustering [163] is used to group

different types of texture in the texture segmentation mask. A temporal and spatial

correction is then used to maintain the consistency of texture segmentation mask

throughout the entire video sequence. The temporal correction uses a majority voting

of three consecutive frames to determine whether a block in the current frame should

be labeled as a texture block. The spatial correction uses 4-connectivity neighborhood

voting to fill holes in the texture segmentation mask. Finally, a small connected

labeling marks the connected components that are less than 5 blocks as non-texture

blocks.

4.2.2 A new AV1 coding tool - texture mode

In this section, we describe how we modified the AV1 codec by introducing a

texture mode to encode the identified texture blocks in a video frame.

Texture mode encoder design

The texture analyzer is integrated into the AV1 encoder as illustrated in Fig. 4.11. At

the encoder, for each frame that contains texture area, we first fetch the texture masks

for the current frame and the selected reference frames from the texture analyzer.

Based on the texture region in the current frame, a set of texture motion parameter

that represents the global motion of the texture area is estimated for each reference

frame. For each block larger than 32 × 32, we use a two-step method to check if a

block is a texture block as described in section 4.2.2. A texture block is reconstructed

using global motion parameters and no motion compensation residuals will be coded

and transmitted for the texture block. We call this new coding paradigm the texture

mode. At the decoder, since there is no syntax change to the AV1 bitstream, the

bitstream is decoded the same as AV1 baseline.

In general, a texture block in the current frame is reconstructed by warping the

texture block from the reference frame towards the current frame. We use a modified

58

T
ab

le
4.

1.
:

C
on

fi
gu

ra
ti

on
of

d
iff

er
en

t
te

x
tu

re
m

o
d
e

im
p
le

m
en

ta
ti

on

te
x-
a
ll

te
x-
sp

te
x-
cp

D
is

a
b

le
te

x
tu

re
m

o
d

e
fo

r
G

O
L

D
E

N
/

A
L
T

R
E

F
fr

a
m

e
O

ri
g
in

a
l

G
F

g
ro

u
p

in
te

rv
a
l

(4
-1

6
)

F
ix

ed
8

G
F

g
ro

u
p

in
te

rv
a
l

si
n

g
le

-l
a
y
er

co
d

in
g

st
ru

ct
u

re
m

u
lt

i-
la

y
er

co
d

in
g

st
ru

ct
u

re
U

se
te

x
tu

re
m

o
d

e
fo

r
a
ll

fr
a
m

es
ex

ce
p

t
G

O
L

D
E

N
/
A

L
T

R
E

F
fr

a
m

e
U

se
te

x
tu

re
m

o
d

e
fo

r
ev

er
y

o
th

er
fr

a
m

e
(f

ra
m

e1
,3

,5
,7

in
th

e
G

F
g
ro

u
p

)
U

se
si

n
g
le

-p
re

d
ic

ti
o
n

(f
o
rw

a
rd

o
r

b
a
ck

w
a
rd

)
U

se
si

n
g
le

fo
rw

a
rd

p
re

d
ic

ti
o
n

U
se

co
m

p
o
u

n
d

p
re

d
ic

ti
o
n

59

Fig. 4.5.: Texture mode encoder implementation

version of the global motion coding tool in the AV1 codec to perform block warping

as described in Section 4.2.2. Based on the selection of coding structures and choices

of reference frames for texture reconstruction, we investigated three different imple-

mentations, namely tex-all, tex-sp, and tex-cp of the texture mode in terms of data

rate savings and perceived quality. Configuration of the three implementations are

described in Table 4.1 and can be visualized in Fig. 4.6. Encoders of AV1 codec con-

sider an input video sequence as a succession of frames grouped in Golden-Frame (GF)

groups. GF groups may have 4-16 frames with the first frame being the GOLDEN

60

frame and the last frame being ALTREF frame. For tex-sp and tex-cp, a multi-layer

hierarchical coding structure [140] is used for each GF group.

Fig. 4.6.: Coding structure of texture mode: (a) GF Group Coding Structure Using
tex-all Configuration. (b) GF Group Coding Structure Using tex-sp Configuration.

(c) GF Group Coding Structure Using tex-cp Configuration.

The tex-all implementation has the best data rate savings since the number of

frames with texture mode enabled is approximately twice as many as the other two

implementations. However, we noticed some visual artifacts in the reconstructed

61

videos in several test sequences due to the accumulated errors from warping displace-

ment. If a block contains both texture and non-texture region and is classified as a

texture block, there will be visual artifacts in the non-texture region. These artifacts

can be passed on to other frames that use this frame as a reference frame, and caus-

ing the artifacts to propagate. The artifacts are most prominent in videos with high

motion or complex global motion.

The tex-sp implementation solves the accumulation error by only enabling texture

mode for every B-frame and disabling texture mode for every I and P frame. It only

uses the immediate previous frame as the reference frame for texture warping to

estimate a more accurate global motion model. As a result, the data rate savings

are reduced to approximately half the data rate savings of the tex-all configuration.

Some flickering artifacts can still be observed between frames for some test videos.

The tex-cp further reduces the flickering artifacts by using compound prediction

from the previous frame and the next frame. The data rate savings are only slightly

lower than that of tex-sp. The improvement in visual quality is most prominent in

low-mid resolution videos. In practice, we use tex-cp as the configuration for the

texture mode which ensures good visual quality.

Texture motion parameters

The global motion coding tool in AV1 is used primarily to handle camera motion.

A motion model is explicitly conveyed at the frame level for the motion between a

current frame and any one or more of its reference frames. The motion model can

be applied to any block in the current frame to generate a predictor. The affine

transformation is selected as the motion model. The motion model is estimated using

a FAST feature matching scheme followed by a robust model fitting using RANSAC.

The estimated global motion parameter is added to the compressed header of each

inter-frame.

Since the motion model parameters of the global motion coding tool in AV1 is

estimated at the frame level between the current frame and the reference frame,

62

these parameters may not accurately reflect the motion model for the texture regions

within a frame. We modified the global motion tool to design a new set of motion

modal parameters, called texture motion parameters. The texture motion parameters

are estimated based on the texture region of the current frame and the reference

frame using the same feature extraction and model fitting method as in the global

motion coding tool. A more accurate motion model for texture region may reduce

the artifacts on the block edges between the texture blocks and non-texture blocks

in the reconstructed video. In order to keep the syntax of AV1 bitstream consistent,

the texture motion parameters are sent to the decoder in the compressed header of

the inter frames by replacing the global motion parameters of the reference frames.

Texture block decision

The minimum size of a texture block is 32× 32 as described in Section 4.2.1. For all

blocks larger than or equal to 32× 32, we use a two-step approach to check if a block

should be encoded using the novel texture mode scheme we proposed to AV1. First,

we overlap the texture mask generated by the texture analyzer and the current frame

to check if the entire block is inside the texture region of the current frame. We also

need to ensure that the pixels used for texture reconstruction in the reference frames

are within the texture regions identified by the texture analyzer. In order to maintain

temporal consistency of the texture regions, in the second step, we warp the blocks

inside the texture region towards the two reference frames, i.e., the previous frame

and the next frame in the tex-cp configuration. If the two warped blocks are within

the texture regions of both corresponding reference frames, the block is considered a

texture block and texture mode is enabled.

Block Splitting Decision

Like most modern video coding standards, the baseline AV1 codec uses rate-distortion

(RD) optimization to make block splitting decision and choose the best coding units.

The problem of finding the block splitting decision that minimizes the distortion

63

between the original block and its reconstruction subject to a constrained rate can

be described as

minimize
p∈Pk

Dk(p) + λRk(p) (4.1)

where Rk(p) represents the number of bits that are required for signaling the block

splitting and prediction decision p and the actual bit cost by an entropy coder in

the bitstream. Dk(p) represents the distortion measure. λ ≥ 0 denotes the Lagrange

multiplier.

In our proposed method, however, the position of the texture regions inside a

block has higher priority than the RD values of different block splitting methods for

this block. If the block is a texture block, we do not further split it into smaller

sub-blocks. If the block contains no texture region, RD optimization is performed for

block partitioning and mode decision. If part of a block contains texture region, we

split it into sub-blocks regardless of the RD value as long as the size of the sub-blocks

is equal or larger than 32 × 32. In general, there is no block that is part texture

and part non-texture. The use of texture mode also largely increases the encoding

speed, since no RD optimization is performed for a texture block which reduces the

need for different prediction modes, reference frames selection, and the block splitting

recursion.

Texture Reconstruction

We use AV1 codec’s global motion tool and compound prediction to reconstruct tex-

ture for texture blocks at the decoder. The previous frame and the next frame of the

current frame are chosen to be the reference frames for the texture block reconstruc-

tion. The texture regions in the two reference frames are warped towards the texture

blocks in the current frame using the corresponding texture motion parameters. We

used compound prediction to reconstruct the texture block from the two reference

frames. As discussed earlier, the use of compound prediction for texture blocks re-

duces flickering artifacts between frames. The residual of the texture blocks is set to

zero. Since all the texture blocks in one frame use the same reference frames and the

64

same set of motion parameters, there is no displacement on the block edges of the

texture blocks within the texture region.

4.2.3 Experimental results

Texture analysis results:

Nine representative video sequences contain different texture types were tested using

the CNN based texture analyzer. Sample texture segmentation results are shown

in Fig. 4.7. Our texture analyzer can successfully identify and locate most texture

regions. Currently, the texture analyzer uses a block-based texture classification

method with fixed block size. Texture within smaller blocks is not included in the

segmentation mask. For example, in the sequence bridgefar, some parts of the water,

as well as the sky, are not included in the texture mask because they cannot cover a

32×32 block. Small non-texture parts can also be included in the segmentation mask

when the majority of the 32× 32 block is in a texture region, such as the bowing of

the white boat in the sequence coastguard.

Coding performance:

To evaluate the performance of the proposed texture-based method, data rate savings

at four quantization levels (QP = 16, 24, 32, 40) are calculated for each test sequence

using the tex-cp configuration and compared to the AV1 baseline. The AV1 baseline

is the original codec with a fixed group interval of eight frames and using hierarchical

multilayer coding structure [140]. The data rate is computed by dividing the output

WebM file size by the number of frames. The WebM file is the output bitstream from

the AV1 encoder. The data rate saving is calculated as

Pbit = (R−Rb)/Rb × 100% (4.2)

65

where Pbit represents data rate saving, R represents the bitstream size of the proposed

method, Rb represents the bitstream size of the AV1 baseline method. A negative

value indicates a reduction in the codec’s bitstream data rate compared to the AV1

baselines.

Results for several test videos are shown in Table 4.2. The test videos include

large texture areas. We also include the average percentage of pixels that uses the

texture mode in a frame in the table.

As shown in Table 4.2, at low QP, most of the videos show large data rate savings.

However, as the QP increases, the data rate savings decreases. At high QP, texture-

based method tends to have worse coding performance than AV1 baseline for some

test videos, such as football, waterfall and netflix aerial. This is because at high

QP, many non-texture blocks also have zero residual and our method requires a few

extra bits for the texture motion parameters and for using two reference frames in

compound prediction.

Result for subjective visual quality test:

Established quality assessment measures, such as the PSNR cannot be applied to

evaluate our method because there can be a large pixel-wise difference in the expected

MSE between texture regions reconstructed using motion compensation versus using

the proposed method. However, an observer will not notice any difference without

observing the original video sequence. A similar argument holds for the SSIM as it

is based on the sample cross-covariance. Therefore, we performed a subjective visual

quality study on 20 participants. The study received Purdue Institutional Review

Board approval under protocol #1802020229. All subjects have signed the consent

forms prior to participating in the research.

In the study, each participant is asked to watch two versions of a test video. One

is the reconstructed video using the original AV1 codec with QP=16. The other

is the reconstructed video using our proposed method (tex-cp) with QP=16. The

participants are asked to choose the video that has better visual quality without

66

T
ab

le
4.

2.
:

D
at

a
ra

te
sa

v
in

gs
at

d
iff

er
en

t
Q

P
le

ve
l

w
it

h
b
lo

ck
-b

as
ed

te
x
tu

re
m

as
k

V
id

eo
R

es
ol

u
ti

on
N

u
m

b
er

of
F

ra
m

es
D

at
a

R
at

e
S
av

in
g

(%
)

T
ex

tu
re

R
eg

io
n

(%
)

Q
P

=
16

Q
P

=
24

Q
P

=
32

Q
P

=
40

b
ri

d
ge

cl
os

e
ci

f
30

0
-1

3.
77

-9
.7

8
-3

.2
0

1.
67

33
.1

2
b
ri

d
ge

fa
r

ci
f

30
0

-8
.8

0
-5

.9
0

-4
.4

4
-4

.3
8

21
.1

9
co

as
tg

u
ar

d
ci

f
30

0
-7

.8
0

-6
.9

9
-4

.7
0

-1
.9

0
37

.4
2

fl
ow

er
ci

f
15

0
-1

0.
55

-8
.6

6
-5

.9
6

-3
.3

8
58

.0
0

fo
ot

b
al

l
ci

f
15

0
-0

.3
5

0.
02

0.
01

0.
02

10
.3

2
w

at
er

fa
ll

ci
f

15
0

-4
.6

3
-3

.9
6

0.
33

3.
74

61
.2

2
n
et

fl
ix

ae
ri

al
51

2x
27

0
30

0
-8

.5
9

-2
.1

5
0.

68
4.

59
29

.9
4

n
et

fl
ix

ro
ll
er

co
as

te
r

51
2x

27
0

30
0

-3
.4

4
-2

.3
9

-1
.0

2
0.

41
35

.5
5

in
to

tr
ee

12
80

x
72

0
30

0
-5

.3
2

-4
.2

3
-1

.9
9

2.
83

43
.2

5
tr

ac
to

r
12

80
x
27

0
30

0
-3

.3
2

-2
.2

5
-1

.6
8

0.
30

20
.1

7
cr

ow
d

ru
n

19
20

x
10

80
30

0
-0

.1
6

-0
.1

0
-0

.0
5

0.
10

9.
45

67

T
ab

le
4.

3.
:

R
es

u
lt

fo
r

su
b

je
ct

iv
e

v
is

u
al

q
u
al

it
y

te
st

of
te

x-
cp

V
id

eo

Q
u
al

it
y

of
re

co
n
st

ru
ct

ed
v
id

eo
fr

om
te

x-
cp

is
b

e
tt

e
r

th
an

th
e

or
ig

in
al

co
d
ec

Q
u
al

it
y

of
re

co
n
st

ru
ct

ed
v
id

eo
fr

om
te

x-
cp

is
e
q
u
a
l

to
th

e
or

ig
in

al
co

d
ec

Q
u
al

it
y

of
re

co
n
st

ru
ct

ed
v
id

eo
fr

om
te

x-
cp

is
w

o
rs

e
th

an
th

e
or

ig
in

al
co

d
ec

b
ri

d
ge

cl
os

e
15

%
60

%
25

%
b
ri

d
ge

fa
r

10
%

65
%

25
%

co
as

tg
u
ar

d
40

%
40

%
20

%
fl
ow

er
20

%
55

%
25

%
fo

ot
b
al

l
0%

65
%

35
%

w
at

er
fa

ll
25

%
60

%
15

%
n
et

fl
ix

ae
ri

al
20

%
75

%
5%

n
et

fl
ix

ro
ll
er

co
as

te
r

25
%

60
%

15
%

in
to

tr
ee

15
%

55
%

30
%

68

Fig. 4.7.: Texture segmentation examples

knowing which method is used to encoding the video. They were asked to choose

69

among three options: the first video has better visual quality, the second video has

better visual quality, or there is no difference between the two versions of the video.

The two versions of a test video are shown one at a time on a monitor. The viewing

distance is about 50cm. The participants can choose to watch the videos multiple

times. The result of this study is summarized in Table 4.3.

Results show that on average 59% of the time participants cannot tell the difference

between the reconstructed video by the original codec and the proposed method. 19%

of the time participants prefer the visual quality of the reconstructed video by the

proposed method. 22% of the time the visual quality of the reconstructed video using

baseline AV1 is preferred. This indicates that the visual quality degradation due to

our video coding models is minimal and acceptable. The texture region does not use

residual for reconstruction. Although they have quality degradation with respect to

PSNR, an observer will not notice any difference without observing the original video

sequence. The main artifacts mainly come from the inaccurate block-based texture

mask. For example, the football sequence has flickering artifacts on some of the frames

which is noticeable to the participant. In the proposed texture analyzer, a block is

considered a texture block if it contains a large percentage of texture area, although

it may also contain a small amount of structural objects. In the football sequence,

some parts of the player are also included in the texture mask and reconstructed

using texture mode. Since the motion of the player is different from the motion of

the texture area, i.e. the grass, there are noticeable flickering artifacts around those

parts of the frame. This phenomenon also happens to some frames in the coastguard

sequence. We plan to improve the texture analyzer in our future work by generating

a more accurate segmentation mask of the texture area to reduce these artifacts.

Another visual artifact we noticed comes from the inaccurate motion model. For

example, the intotree sequence has the most complex global motion among all the

test sequences which may be better presented using the planar perspective motion

model instead of the affine motion model used in the global motion model.

70

4.3 Pixel-level Texture Segmentation Based Video Coding With Switch-

able Scheme

4.3.1 Motivation

a) Pixel-level texture mask based on semantic scene segmentation

While the proposed approach in 4.2 can achieve a data rate saving of 1% to 13%

compared to the baseline when implemented using AV1 with satisfactory visual qual-

ity, the block-based texture masks cannot always accurately represent the texture

regions. The block-based texture masks can be seamlessly integrated into AV1 since

the common coding units are blocks. However, it can sometimes cause noticeable

visual artifacts when an identified texture block consists of small structural region.

In addition, the smallest texture block size in [159] was 32 × 32 in order to avoid

detecting small moving objects, but at the same time limits the size of identified tex-

ture regions and reduces potential data rate savings. To illustrate this, an example is

shown in Figure 4.8 where part of the bow of the white boat and the person’s head

are identified as texture region in [159] since the majority of that block is texture.

The bow of the white boat and the person’s head show flickering artifacts since they

have different motion trajectory than the river. There are also some texture regions

in the river not identified due to the large block size used in the texture analyzer.

The methods proposed in this paper address both of these issues.

Recent advances in deep neural networks have led to a renewed interest in semantic

scene segmentation [104–106]. Large-scale datasest like ImageNet [102], COCO [103]

and ADE20K [104] have enabled improved performance for these tasks. For example,

the Fully Convolutional Network (FCN) [105] is one of the most commonly used net-

work architectures for semantic scene segmentation. The major issue with FCN [105]

is the lack of global contextual information to categories global scene which could

lead to parsing error. The pyramid scene parsing network(PSPNet) [106] addresses

this issue by adding a global pyramid pooling module to extract global information

from the image.

71

(a) reconstructed frame by
AV1 original codec

(b) block-based mask

(c) reconstructed frame using
block-based mask

(d) pixel-level mask

(e) reconstructed frame using
pixel-level mask

Fig. 4.8.: Comparison between block-based and pixel-level texture mask

In this section, we incorporate semantic scene segmentation into video compres-

sion by generating pixel-level texture segmentation masks to represent “perceptually

insignificant” regions in a frame and use motion models to reconstruct the texture

regions at the decoder to improve the coding efficiency.

b) A switchable scheme for texture mode

In our work [164], the texture mode is enabled for every B-frames. Experimental

72

results show that the method in [164] achieved significant data rate reductions in most

standard test videos. However, some videos have worse coding performance than the

AV1 baseline. One reason is that at high QP, the high compression ratio results in

many zero residual blocks thus there is limited margin for data rate saving using

texture based methods. In general, as QP increases, the data rate saving decreases.

Another reason is that some videos have relatively small texture regions. Thus a

limited number of blocks are using texture mode. In addition, the texture based

method needs to transmit extra side information of the texture motion parameters,

and some extra bits for using two reference frames in compound prediction for all the

texture blocks.

We further improve this method by introducing a switchable scheme for the “tex-

ture mode” that automatically detects the Golden-Frame groups that have the largest

potential data rate savings when texture mode is enabled. Our switchable region-

based coding scheme leverages semantic segmentation to improve coding efficiency

for video sequences containing texture-like areas.

4.3.2 Texture analysis using CNN2

A semantic scene segmentation method is used to generate masks for different

semantic classes, and then group several semantic classes with similar texture into

four texture classes to produce a single pixel-level segmentation mask for each texture

class.

Stuff and objects are two high-level categories often used in semantic scene un-

derstanding [106, 165]. Stuff refers to background areas such as sky, grass, and they

usually contain large texture areas, and objects are more likely to appear in the

foreground.

In this work, we use a two-stream cascade network [165] to generate semantic scene

segmentation shown in Figure 4.9. The stuff stream generates stuff segmentation

2Joint work with Qingshuang Chen

73

Fig. 4.9.: Two steam cascade framework

and objectness map, while the object stream generates object segmentation using

the objectness map from the stuff stream. The final segmentation combines the

results from stuff stream and object stream. We use ResNet50 [166] with dilated

convolutions [167,168] as the encoder to extract feature map. For the decoder, we use

the pyramid pooling module from PSPNet [106] followed by bilinear upsampling. The

pyramid pooling module uses four different sizes of CNN receptive fields to represent

global contextual information contained in four pyramid scales. The pyramid pooling

module reduces the scene parsing errors by considering global contextual relationship

in a scene. Cross-entropy loss is used at the end of each stream. The total training

loss is the stuff steam loss plus the object stream loss as expressed in Equation 4.3,

where for a given pixel x, N is the number of stuff classes and M is the number of

object classes, px,i is the predicted probability of pixel x for class i and yx,i is the

binary indicator (0 or 1) for that class.

Ltotal = −
N∑
i=1

yx,i log(px,i)−
M∑
j=1

yx,j log(px,j) (4.3)

The pre-trained model is obtained from a scene parsing benchmark, MIT Scen-

Parse150 [165], to generate semantic segmentation. The model is trained on a subset

74

of a densely annotated dataset, ADE20K [104], with the top 150 categories ranked

by their pixel ratios in which 35 of them are stuff classes, 115 are object classes. The

pixel accuracy of this model is 80.23% as reported on the benchmark [165].

After obtaining pixel-level semantic segmentation for each class, several semantic

classes with similar texture are grouped into four texture classes to produce a single

pixel-level segmentation mask for each texture class. We define four perceptually

insignificant texture classes that are commonly observed in nature scenes. The four

texture classes are based on groupings of different semantic classes defined in ADE20K

dataset [104] that have similar textures. Texture class 1 includes earth and grass;

texture class 2 includes water, sea and river; texture class 3 includes mountain and

hill; texture class 4 includes tree. A single pixel-level mask for each texture class is

generated by combining semantic segmentation within each group.

4.3.3 Switchable texture mode

We introduce a switchable scheme that is designed to identify GF groups that

show potential data rate saving and only enables the texture mode for those GF

groups. As shown in Figure 4.10, the first GF group of each scene is encoded with

and without texture mode enabled to collect data rate savings. The texture region

percentage is calculated as the average ratio of the total area of the texture blocks in

the B-frames. If the texture region percentage of the first GF group is less than 10%,

or if the GF group has no data rate saving when texture mode is enabled, we disable

the texture mode for all the GF group in the scene. Otherwise, all the GF group in

the scene are encoded with texture mode enabled.

The switchable scheme is designed under the assumption that the texture region

percentage and the data rate saving performance of the first GF group in a scene can

represent the rest of the GF groups in the same scene. In practice, we use the intra

frames selected by AV1 as the scene change frames.

75

Fig. 4.10.: Switchable scheme of texture mode encoder implementation

The texture analyzer is then integrated into the AV1 encoder as illustrated in

Figure 4.11. The configuration of tex-cp is used. At the encoder, We process the log

of statistics of the first pass encoding to retrieve the scene change information. For

each scene, we compare the size of the texture region of each texture class among the

4 texture classes and use the pixel-level texture mask of the largest one. The AV1

codec syntax allows only one set of motion parameters for each pair of the current

frame and reference frame to be compressed and transmitted in the frame header.

Therefore, for this study, only one class of texture is considered using texture mode

in order to keep the original decoding syntax.

Then we use the switchable scheme to decide whether to enable the texture mode

for each GF group in each scene. Within the GF groups whose texture mode are

enabled, for each frame that contains texture area, we first fetch the texture masks

for the current frame and the selected reference frames from the texture analyzer.

Based on the texture region in the current frame, a set of motion parameter that

represents the global motion of the texture area is estimated for each reference frame.

For each block larger than 16 × 16, we use a two-step method to check if a block

is a texture block as described in Section 4.2.2. The difference is that the texture

analyzer produces pixel-level texture mask of arbitrary shape comparing with the

76

Frame

Level

Block

Level

Y

N

Get scene change information from first pass encoding

Calculate motion parameter

Choose texturemode

Is it a texture block?

RD optimization

Encode block

Choose the texture class with the largest texture area

Load pixel-based texturemask of the chosen texture class

Sequence

Level

Fig. 4.11.: Switchable texture mode encoder implementation

block-based texture mask, as shown in Figure 4.12. A texture block is reconstructed

using global motion parameters and no motion compensation residuals will be coded

and transmitted for the texture block. At the decoder, since there is no syntax change

to the AV1 bitstream, the bitstream is decoded the same as AV1 baseline.

We call this new coding paradigm the switchable texture mode.

4.3.4 Visual quality assessment

As mentioned in section 4.1.1, for texture synthesis based video compression, exist-

ing distortion-based metrics, such as PSNR and SSIM, are not suitable for evaluating

visual quality since their calculations involve pixel-wise difference comparison rather

than perceptually based metrics, which may not correspond with the human subjec-

77

Fig. 4.12.: Texture block decision

tive evaluation. Inspired by [148, 169], we propose an objective video metric (Qtex)

to conduct visual quality assessment of the reconstructed video frames.

Qtex consists of four components: blur artifact metric, edge artifacts metric,

STSIM2 [169] and the temporal variance of STSIM2. The proposed metric is the

average of the four components.

Blur Distortion Metric. In global motion transform and texture warping based

reconstruction method, warping tends to cause blur. The level of blur depends on the

type of transform used and the motion parameters. In [148], the authors proposed a

blur estimation method by comparing subband coefficients (excluding DC) between

the reference and test frames for the six high-frequency subbands in a single stage

DT-CWT decomposition. We use it to estimate the blur artifacts in the texture area

on the reconstructed frames and the corresponding area on the original frames. The

blur artifact metric is described as:

Ab(x, y) =
6∑

i=1

|Bi
r(x, y)| −

6∑
i=1

∣∣Bi
t(x, y)

∣∣ (4.4)

Ab = MEAN(Ab(x, y)) (4.5)

Abn = 1− CLAMP (Ab, 0, 5)

5
(4.6)

78

For location (x, y), |Bi
r(x, y)| and

∣∣Bi
t(x, y)

∣∣ are the amplitude of one of the six

subband coefficients in the original frame and reconstructed frames, respectively. Ab

is the average of Ab(x, y) in the texture area. Abn is the normalized Ab within range

[0, 1]. The clamping threshold is empirically derived.

Edge Artifact Metric. Edge artifacts can occur at the boundary of the texture

block and the non-texture block. Edge artifacts are most visible when motion param-

eters are not accurate. AV1 and most block-based codec use loop filters to reduce the

block artifacts on the block edges. However, loop filters are not suitable for effectively

reducing the edge artifact between a conventionally encoded block and a synthesized

block. We employ a metric to quantify edge artifact similar to that presented in [148].

The edge artifact metric is given by:

Ae(x, y) = (Ev(x, y) + Eh(x, y)) (4.7)

Ev(x, y) = (It(x, y)− It(x− 1, y))− (Ir(x, y)− Ir(x− 1, y)) (4.8)

Eh(x, y) = (It(x, y)− It(x, y − 1))− (Ir(x, y)− Ir(x, y − 1)) (4.9)

Aen = 1− CLAMP (Ae, 0, 50)

50
(4.10)

For location (x, y), Ir(x, y) and It(x, y) are the pixel value in the original frame and

reconstructed frames, respectively. Ae is the average of Ae(x, y) among pixel locations

on the boundary of texture and non-texture area. Aen is the normalized Ae within

range [0, 1]. The clamping threshold is empirically derived.

STSIM2 mean. To compare the structural texture similarity between the recon-

structed frames and the original frames, we employ the STSIM2 metric from [169].

STSIM2 is derived from SSIM. It decouples from the point-to-point measurement in

SSIM and the structure is characterized by the cross-correlation between correspond-

ing windows in the two frames being compared.

STSIM2 mean =
1

N

N∑
i=1

(STSIM2(Fi)) (4.11)

79

where N is the number of frames and Fi is the ith frame.

STSIM2 var. We use tex-cp implementation in our proposed method which only

utilizes texture mode on the B-frames in the GF groups. This may cause flickering

artifact if there exists a large visual quality difference between the frames that use

texture mode and neighboring frames that do not use texture mode. The STSIM2 var

characterizes the temporal artifact with the variance of STSIM2 of sequential frames.

STSIM2 var =
1

N − 1

N∑
i=2

(STSIM2(Fi)− STSIM2(Fi−1)) (4.12)

STSIM2 varn = 1− CLAMP (STSIM2 var, 0, 0.05)

0.05
(4.13)

where N is the number of frames and Fi is the ith frame. The clamping threshold is

empirically derived.

The proposed perceptual texture metric Qtex is the average of the four metrics:

Qtex =
1

4
(Abn + Aen + STSIM2 mean+ STSIM2 varn) (4.14)

where Qtex is within the range of [0, 1].

Qtex(dB) = 10log(
1

1−Qtex

) (4.15)

Figure 4.13 shows a sample frame from the test sequence NewsClip 480P-7a0d

reconstructed by AV1 and by proposed texture mode. Figure 4.14 shows the RD

curve for PSNR and Qtex of the reconstructed frame at four QP values. Although the

visual quality difference between the two reconstructed frames is unnoticeable, there

is a large PSNR gap. However, the Qtex shows better consistency with the perceptual

quality of the frame.

80

Fig. 4.13.: Visual comparison of a sample reconstructed frame using AV1 baseline
and our proposed texture mode, along with the texture mask used.

Fig. 4.14.: PSNR and Qtex comparison for the sample reconstructed frame in
Figure 4.13.

4.3.5 Experimental results

We selected sequences with texture regions from standard test sequences and the

YouTube UGC data set [158]. YouTube UGC dataset is a sampling from thousands

of User Generated Content (UGC) videos uploaded to YouTube. We calculate the

data rate savings at different quantization levels. The Qtex perceptual quality met-

ric introduced in Section 4.3.4 is used to estimate the BD-RATE savings. We also

conducted a subjective video quality test on the reconstructed videos.

81

Texture analysis results:

Figure 4.15 shows an example of pixel-level texture segmentation mask for texture

class 2, which combines semantic segmentation of water and river.

(a) Semantic segmentation (b) Texture mask for class 2

Fig. 4.15.: An example of pixel-level texture segmentation for video sequence
bridgefar. Texture mask for class 2 contains semantic segmentation of water and

river in this example.

Figure 4.16 shows a comparison between the texture segmentation results of the

first five frames of coastguard by a feature based texture analyzer and two proposed

CNN based texture analyzers. Figure 4.16(a) is the result of the segmentation method

proposed in [170] that uses color and edge based features. Figure 4.16(b) is the result

of the proposed block-based CNN method described in section 4.2.1. The texture

mask generated by block-based CNN is more accurate and shows more spatial and

temporal consistency. As shown in 4.16(c), the result of the block-based CNN method

is further improved by a pixel-level texture segmentation method as described in 4.3.2.

Coding performance:

To evaluate the performance of the proposed switchable texture mode method, data

rate savings at four quantization levels (QP = 16, 24, 32, 40) are calculated for each

test sequence using the tex-cp configuration and compared to the AV1 baseline. We

compared the data rate saving result of encoding with the color-edge feature based

texture mask, blocked-based texture mask and the pixel-level texture mask. We also

82

(a) Texture mask for coastguard with color and edge features

(b) Texture mask for coastguard with block-based CNN

(c) Texture mask for coastguard with pixel-level CNN

Fig. 4.16.: Texture segmentation example with CNN method and color-edge feature
based method

compared the data rate saving result of encoding with the proposed switchable texture

mode scheme and with texture mode enabled for all GF groups.

83

T
ab

le
4.

4.
:

A
V

1
d
at

a
ra

te
sa

v
in

gs
co

m
p
ar

is
on

b
et

w
ee

n
co

lo
r-

ed
ge

fe
at

u
re

b
as

ed
(F

M
),

b
lo

ck
-l

ev
el

(B
M

)
an

d
p
ix

el
-l

ev
el

(P
M

)
te

x
tu

re
se

gm
en

ta
ti

on
.

A
n
eg

at
iv

e
va

lu
e

in
d
ic

at
es

a
re

d
u
ct

io
n

in
th

e
co

d
ec

’s
b
it

st
re

am
d
at

a
ra

te
co

m
p
ar

ed
to

th
e

A
V

1
b
as

el
in

es
.

V
id

eo
D

a
ta

ra
te

sa
v
in

g
(%

)
Q

P
=

1
6

Q
P

=
24

Q
P

=
32

Q
P

=
40

F
M

[1
70

]
B

M
[1

59
]

P
M

[1
64

]
F

M
B

M
P

M
F

M
B

M
P

M
F

M
B

M
P

M

lo
w

re
s

co
as

tg
u

ar
d

0.
17

-7
.8

-9
.1

4
0.

36
-6

.9
9

-8
.0

1
0.

43
-4

.7
-5

.7
2

0.
62

-1
.9

-2
.1

3
fl

ow
er

-7
.4

2
-1

0.
55

-1
3

-5
.4

2
-8

.6
6

-1
0.

78
-2

.5
1

-5
.9

6
-4

.9
5

-0
.1

9
-4

.9
5

-4
.9

5
fo

ot
ba

ll
-0

.6
1

-0
.3

5
-0

.6
3

-0
.4

1
0.

02
-0

.0
8

-0
.0

4
0.

01
0.

01
0.

02
0.

02
0

w
at

er
fa

ll
-3

.6
5

-4
.6

3
-1

3.
11

-1
.5

8
-3

.9
6

-7
.2

1
0.

14
0.

33
-1

.3
3.

00
3.

74
3.

48
n

et
fl

ix
ae

ri
al

-1
.1

5
-8

.5
9

-9
.1

5
0.

26
-2

.1
5

-5
.5

9
1.

32
0.

68
-1

.0
5

2.
10

4.
59

4.
01

h
ig

h
re

s
in

to
tr

ee
-0

.8
8

-5
.3

2
-9

.7
1

-0
.1

5
-4

.3
2

-9
.4

2
0.

14
-1

.9
9

-8
.4

6
0.

26
2.

83
-4

.9
2

84

a) FM vs. BM vs. PM

As shown in Table 4.4, compared to the FM method, the BM and PM methods

show larger data rate saving for the most of the test videos. The texture mask

generated by color and edge features is less accurate and less consistent both spatially

and temporally. So the number of pixels that are reconstructed using texture mode is

usually much smaller than that of BM and PM method. The parameters in the FM

method need to be tuned for each video to get better texture segmentation result.

compared to the BM method, the PM method shows larger data rate savings. For

the BM method, the fixed size blocks for CNN based texture analyzer need to be

large enough to ensure classification accuracy. While for the PM method, there is no

such limitation so we use 16 × 16 as the minimum size for texture blocks instead of

32 × 32 in the texture mode. Therefore, there are more pixels in a frame that are

reconstructed using the texture mode in the PM method leading to larger data rate

savings. We did not using smaller texture blocks because further block splitting will

require extra bits to send the motion information for these blocks. Table 4.5 shows

the texture region percentage, defined in equation 4.16 as average percentage of the

regions that are reconstructed using texture mode within the frames where texture

mode is enabled.

Ptex = (
Ftex∑
j=1

(

∑Nj

i=1 Bij

W ×H
))/Ftex × 100% (4.16)

where Ftex is the number of frames that enables texture mode, Nj is the number of

texture blocks in the jth frame, Bij is the block size of texture block i in frame j, W

and H are frame width and height.

Table 4.5.: Texture region percentage

Texture region encoded FM (%) BM (%) PM (%)
coastguard 12 37 41

flower 19 58 24
football 16 10 22

waterfall 56 61 77
netflix aerial 24 37 53

intotree 5 43 52

85

The texture percentage of the FM method is smaller than that of the BM and

PM method for most of the test videos. The texture masks generated by FM are less

consistent. So there are larger number of blocks in the texture region on the current

frame cannot be identified as texture blocks because When warped onto the reference

frame they are not in the texture region of the reference frame. One exception is the

texture region percentage of FM for football which is larger than that of BM. Because

the color and edge features for the texture and non-texture region of football are easy

to be separated and FM uses 16×16 texture block size while BM uses 32×32 texture

block size. The texture region percentage of FM for intotree is much smaller than

the other two. Because the FM identifies the smaller sky area in the intotree as the

texture region but not the larger tree area identified by BM and PM.

In general the texture region percentage of the PM method is larger than that of

the BM method, thus the increase in data rate saving. The texture region percentage

of PM for flower is smaller because the texture mask of BM contains sky and flowerbed

area as it fails to identify them as two different classes of texture. Although texture

mask of PM only contains flowerbed area, the sky area is very homogeneous which

has small residual using AV1 baseline. Therefore, we still achieve more data rate

saving using PM than BM. The PM method also reduces flickering artifacts in some

of the reconstructed video when using the BM method. The pixel-level texture mask

can more accurately represent the perceptually insignificant pixels. An example is

illustrated in Figure 4.8 and discussed in Section 3.1.

b) tex-allgf vs. tex-switch

Compare to the AV1 baseline, the coding performance of tex-allgf shows larger

data rate savings at lower QP. However, as QP increases, the data rate saving de-

creases. In some cases, tex-allgf has worse coding performance than the AV1 baseline

at high QP.

Compare to the tex-allgf method, the proposed tex-switch method shows larger

or equal data rate savings in most cases. When the switchable scheme enables the

86

T
ab

le
4.

6.
:

D
at

a
ra

te
sa

v
in

g
co

m
p
ar

is
on

b
et

w
ee

n
te

x-
al

lg
f

an
d

te
x-

sw
it

ch
m

et
h
o
d
s

on
U

G
C

d
at

as
et

v
id

eo
s.

A
n
eg

at
iv

e
va

lu
e

in
d
ic

at
es

a
re

d
u
ct

io
n

in
th

e
b
it

st
re

am
d
at

a
ra

te
co

m
p
ar

ed
to

th
e

A
V

1
b
as

el
in

e.
T

h
e

gr
ee

n
b
lo

ck
s

in
d
ic

at
e

m
or

e
d
at

a
ra

te
sa

v
in

g
w

h
en

sw
it

ch
ab

le
sc

h
em

e
is

ap
p
li
ed

w
h
il
e

th
e

re
d

b
lo

ck
s

in
d
ic

at
e

th
e

op
p

os
it

e.

V
id

e
o

S
e
q
u
e
n
c
e

R
e
so

lu
ti
o
n

Q
P
=
1
6

Q
P
=
2
4

Q
P
=
3
2

Q
P
=
4
0

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

N
ew

sC
li
p

3
6
0
P

-1
b

1
c

3
6
0
P

-0
.7

5
-0

.7
5

-0
.4

9
-0

.5
5

0
.3

4
0
.0

9
1
.4

5
0
.0

0
N

ew
sC

li
p

3
6
0
P

-1
e1

c
3
6
0
P

-1
0
.7

7
-1

0
.7

7
-9

.2
7

-9
.2

7
-5

.2
3

-5
.2

3
-1

.5
4

-1
.5

4
N

ew
sC

li
p

3
6
0
P

-2
2
ce

3
6
0
P

-1
7
.3

7
-1

7
.3

7
-1

5
.7

9
-1

5
.7

9
-1

6
.3

7
-1

6
.3

7
-1

7
.9

8
-1

7
.9

8
N

ew
sC

li
p

3
6
0
P

-6
6
a
e

3
6
0
P

0
.0

3
0
.0

0
0
.0

6
0
.0

0
0
.0

5
0
.0

0
0
.0

8
0
.0

0
S

p
o
rt

s
3
6
0
P

-0
c6

6
3
6
0
P

-0
.7

1
-0

.7
1

0
.0

5
0
.0

0
0
.6

7
0
.0

0
1
.3

2
0
.0

0
T

el
ev

is
io

n
C

li
p

3
6
0
P

-3
b

9
a

3
6
0
P

-1
.4

5
-1

.4
5

-0
.4

8
-0

.4
8

1
.0

9
0
.0

0
3
.2

6
0
.0

0
T

el
ev

is
io

n
C

li
p

3
6
0
P

-7
4
d

d
3
6
0
P

-1
.6

6
-1

.6
6

-1
.1

7
-1

.1
7

-0
.3

6
-0

.3
6

0
.3

7
0
.0

0
H

o
w

T
o

4
8
0
P

-0
4
f1

4
8
0
P

-3
.8

1
-3

.8
1

-2
.5

7
-2

.5
7

-0
.9

3
-0

.9
3

-0
.0

6
-0

.3
6

H
o
w

T
o

4
8
0
P

-4
c9

9
4
8
0
P

-2
.3

6
-2

.3
6

-1
.6

7
-1

.6
7

-0
.3

7
0
.0

0
1
.1

6
0
.0

0
M

u
si

cV
id

eo
4
8
0
P

-1
ee

e
4
8
0
P

-3
.3

1
-3

.3
1

-3
.2

9
-3

.2
9

-2
.5

3
-2

.5
3

0
.3

0
0
.3

0
M

u
si

cV
id

eo
4
8
0
P

-2
d

e0
4
8
0
P

0
.3

5
0
.0

0
0
.4

0
0
.0

0
0
.7

4
0
.0

0
1
.1

6
0
.0

0
M

u
si

cV
id

eo
4
8
0
P

-4
1
ce

4
8
0
P

0
.3

2
-0

.1
1

0
.6

3
0
.0

1
1
.1

4
0
.0

7
1
.0

6
-0

.1
0

N
ew

sC
li
p

4
8
0
P

-1
5
fa

4
8
0
P

-6
.3

1
-6

.3
1

-6
.0

5
-5

.7
9

-0
.5

3
-0

.1
1

0
.7

9
-0

.0
3

N
ew

sC
li
p

4
8
0
P

-7
a
0
d

4
8
0
P

-1
1
.5

4
-1

1
.5

4
-1

0
.0

3
-1

0
.0

3
-1

.5
3

-1
.5

3
-0

.0
8

0
.0

0
T

el
ev

is
io

n
C

li
p

4
8
0
P

-1
9
d

3
4
8
0
P

-3
.1

3
-3

.1
3

-2
.8

6
-2

.8
6

-1
.6

6
-1

.6
6

-0
.5

8
0
.0

0
H

o
w

T
o

7
2
0
P

-0
b

0
1

7
2
0
P

-1
2
.7

2
-1

2
.7

2
-1

1
.8

4
-1

1
.8

4
-9

.3
1

-9
.3

1
-6

.3
5

-6
.3

5
M

u
si

cV
id

eo
7
2
0
P

-3
6
9
8

7
2
0
P

-1
.7

6
-1

.7
6

-1
.0

7
-1

.0
7

-0
.3

0
-0

.3
0

0
.1

7
0
.0

0
M

u
si

cV
id

eo
7
2
0
P

-4
a
d

2
7
2
0
P

-6
.9

3
-6

.9
3

-3
.8

1
-3

.8
1

-1
.8

7
-1

.8
7

-0
.6

0
-0

.1
1

N
ew

sC
li
p

7
2
0
P

-4
6
0
3

7
2
0
P

-0
.0

1
0
.0

0
0
.5

2
0
.0

0
0
.8

0
0
.0

0
0
.4

5
0
.0

0
H

o
w

T
o

1
0
8
0
P

-4
d

7
b

1
0
8
0
P

-7
.3

1
-7

.3
1

-6
.0

7
-6

.0
7

-3
.2

1
-3

.2
1

-0
.7

2
-0

.7
2

M
u

si
cV

id
eo

1
0
8
0
P

-5
5
a
f

1
0
8
0
P

-3
.8

8
-3

.8
8

-1
.7

8
-1

.7
8

-0
.3

1
-0

.3
3

0
.9

9
0
.6

8
N

ew
sC

li
p

1
0
8
0
P

-1
d

b
0

1
0
8
0
P

-0
.2

4
-0

.2
4

-0
.1

7
0
.0

0
0
.0

1
0
.0

0
0
.0

8
0
.0

0
a
v
er

a
g
e

-4
.3

3
-4

.3
7

-3
.4

9
-3

.5
5

-1
.8

0
-1

.9
8

-0
.6

9
-1

.1
9

87

T
ab

le
4.

7.
:

D
at

a
ra

te
sa

v
in

gs
co

m
p
ar

is
on

b
et

w
ee

n
te

x-
al

lg
f

an
d

te
x-

sw
it

ch
m

et
h
o
d
s

on
st

an
d
ar

d
te

st
se

q
u
en

ce
s.

A
n
eg

at
iv

e
va

lu
e

in
d
ic

at
es

a
re

d
u
ct

io
n

in
th

e
b
it

st
re

am
d
at

a
ra

te
co

m
p
ar

ed
to

th
e

A
V

1
b
as

el
in

e.
T

h
e

gr
ee

n
b
lo

ck
s

in
d
ic

at
e

m
or

e
d
at

a
ra

te
sa

v
in

g
w

h
en

sw
it

ch
ab

le
sc

h
em

e
is

ap
p
li
ed

.

V
id

e
o

S
e
q
u
e
n
c
e

R
e
so

lu
ti
o
n

Q
P
=
1
6

Q
P
=
2
4

Q
P
=
3
2

Q
P
=
4
0

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

te
x
-a

ll
g
f

te
x
-s
w
it
c
h

b
ri

d
g
ec

lo
se

ci
f

-1
5
.7

8
-1

5
.7

8
-1

0
.8

7
-1

0
.8

7
-4

.2
1

-4
.2

1
-2

.7
7

-2
.7

7
b

ri
d

g
ef

a
r

ci
f

-1
0
.6

8
-1

0
.6

8
-8

.5
6

-8
.5

6
-6

.3
4

-6
.3

4
-6

.0
1

-6
.0

1
co

a
st

g
u

a
rd

ci
f

-9
.1

4
-9

.1
4

-8
.0

1
-8

.0
1

-4
.7

0
-4

.7
0

-2
.1

3
-2

.1
3

fl
o
w

er
ci

f
-1

3
.0

0
-1

3
.0

0
-1

0
.7

8
-1

0
.7

8
-4

.9
5

-4
.9

5
-3

.2
0

-3
.2

0
w

a
te

rf
a
ll

ci
f

-1
3
.1

1
-1

3
.1

1
-7

.2
1

-7
.2

1
-1

.3
0

-1
.3

0
3
.4

8
0
.0

0
n

et
fl

ix
a
ri

el
5
1
2
x
2
7
0

-9
.1

5
-9

.1
5

-5
.5

9
-5

.5
9

-1
.0

5
-1

.0
5

4
.5

9
0
.0

0
in

to
tr

ee
1
0
8
0
P

-9
.7

1
-9

.7
1

-9
.4

2
-9

.4
2

-8
.4

6
-8

.4
6

-4
.9

2
-4

.9
2

a
v
er

a
g
e

-1
1
.5

5
-1

1
.5

5
-8

.6
3

-8
.6

3
-4

.4
3

-4
.4

3
-1

.5
7

-2
.7

2

88

texture mode for all the GF group in the test video, data rate saving of tex-allgf and

tex-switch are the same. The tex-switch method disables texture mode for some of the

GF groups in the test video to avoid using more data rate than the AV1 baseline. In

the cases where tex-switch has zero data rate saving compared to the AV1 baseline,

the texture mode is disabled for all the GF groups. The tex-switch method has

improved data rate savings on average for all the four QPs, especially for larger QPs

where tex-allgf has worse coding performance than the AV1 baseline in many cases.

In a few cases, however, tex-switch has less data rate saving than tex-allgf. This is

because the data rate saving performance of the first GF group in the scene fails to

accurately represent the whole scene.

Quality assessment:

Table 4.8 and Table 4.9 show the BD-RATE(Qtex) of tex-switch method compared

to AV1 baseline. A negative value indicates a reduction in bitstream data rate with

the same Qtex as the quality metric. The average data rate saving in the tables is the

average data rate saving of different QPs from Table 4.8 and Table 4.9.

The texture type in the tables is either time-static (e.g. ground, grass) or dy-

namic (e.g. water). We observe that videos with large data rate saving and static

texture type have more consistency BD-RATE(Qtex) improvement compared to dy-

namic texture, e.g. HowTo 480P-04f1, MusicVideo 480P-1eee, NewsClip 480P-15fa,

TelevisionClip 480P-19d3, MusicVideo 720P-4ad2, Howto 1080P-4d7b, flower, and

netflix aerial. The correlation between the Qtex and the subjective visual quality for

the dynamic texture is not as high as that of static texture type. As a result, the Qtex

may be low for videos with dynamic texture area reconstructed by tex-switch method

even when the reconstructed video does not have noticeable visual artifact. In these

cases, there is little or no BD-RATE(Qtex) improvement by the proposed method

but the data rate saving is high, e.g. NewsClip 360P-22ce in the UGC dataset, and

bridgefar, coastguard, waterfall in the standard test sequences. In the cases where

89

Table 4.8.: BD-RATE(Qtex) of tex-switch on UGC dataset videos.

Video BD-RATE Average Data Texture
Sequence (Qtex) Rate Saving(%) Type

NewsClip 360P-1b1c 4.53 -0.30 static
NewsClip 360P-1e1c -5.12 -6.70 dynamic
NewsClip 360P-22ce 2.72 -16.88 dynamic
NewsClip 360P-66ae 0.00 0.00 static

Sports 360P-0c66 3.52 -0.18 static
TelevisionClip 360P-3b9a -0.06 -0.48 static
TelevisionClip 360P-74dd 2.36 -0.80 static

HowTo 480P-04f1 -1.35 -1.92 static
HowTo 480P-4c99 -0.43 -1.01 static

MusicVideo 480P-1eee -1.20 -2.21 static
MusicVideo 480P-2de0 0.00 0.00 static
MusicVideo 480P-41ce -0.01 -0.03 static
NewsClip 480P-15fa -3.33 -3.06 static
NewsClip 480P-7a0d -6.31 -5.77 dynamic

TelevisionClip 480P-19d3 -1.12 -1.91 static
HowTo 720P-0b01 -7.03 -10.05 dynamic

MusicVideo 720P-3698 -0.58 -0.78 static
MusicVideo 720P-4ad2 -2.20 -3.18 static
NewsClip 720P-4603 0.00 0.00 static
HowTo 1080P-4d7b -2.32 -4.33 static

MusicVideo 1080P-55af 1.52 -1.33 dynamic
NewsClip 1080P-1db0 -0.01 -0.06 static

Table 4.9.: BD-RATE(Qtex) of tex-switch on standard test sequences.

Video BD-RATE Average Data Texture
Sequence (Qtex) Rate Saving(%) Type
bridgeclose -1.65 -8.41 dynamic
bridgefar 5.06 -7.90 dynamic

coastguard 10.12 -6.06 dynamic
flower -1.41 -7.98 static

waterfall 5.29 -5.41 dynamic
netflix aerial -1.14 -3.95 static

intotree 3.88 -8.13 dynamic

90

BD-RATE and data rate saving are zero, the texture mode is disabled for all the GF

groups.

Result for subjective visual quality test:

We also performed a subjective visual quality study on 20 participants in addition to

evaluating using objective video quality metrics, Qtex.

In this study, each participant is asked to watch two versions of a test video

sequence. One is the reconstructed video using the original AV1 codec with QP=16.

The other is the reconstructed video using our proposed method (tex-switch) with

QP=16. The subjective test setting is as described in section 4.2.3.

The result of this study is summarized in Table 4.10. Results show that on average

42.59% of the time participants cannot tell the difference between the reconstructed

video by the original codec and the proposed method. 28.62% of the time participants

prefer the visual quality of the reconstructed video by the proposed method. 28.79% of

the time the visual quality of the reconstructed video using baseline AV1 is preferred.

The main artifacts come from the inaccurate pixel-based texture mask. For ex-

ample, in some frames of MusicVideo 720P-3698 and TelevisionClip 360P-74dd se-

quence, the texture masks include parts of the moving objects in the foreground,

which are reconstructed using texture mode. Since the motion of the moving ob-

jects is different from the motion of the texture area, there are noticeable artifacts

around those parts of the frame. Another visual artifact we noticed comes from the

inaccurate motion model. For example, the intotree sequence has the most complex

global motion among all the test sequences which may be better presented using the

planar perspective motion model instead of the affine motion model used in the global

motion model.

Figure 4.17, Figure 4.18 and Figure 4.19 show some sample reconstructed frames

using tex-switch and AV1 baseline method, as well as the texture blocks in those

frames.

91

Table 4.10.: Result for subjective visual quality test of tex-switch

Video

Quality of
reconstructed

video
from tex-switch
is better than

the original
codec

Quality of
reconstructed

video
from tex-switch

is equal to
the original

codec

Quality of
reconstructed

video
from tex-switch
is worse than

the original
codec

NewsClip 360P-1b1c 50% 25% 25%
NewsClip 360P-1e1c 50% 10% 40%
NewsClip 360P-22ce 35% 25% 40%
NewsClip 360P-66ae 15% 45% 40%

Sports 360P-0c66 65% 30% 5%
TelevisionClip 360P-3b9a 50% 20% 30%
TelevisionClip 360P-74dd 20% 15% 65%

HowTo 480P-04f1 40% 20% 40%
HowTo 480P-4c99 25% 55% 20%

MusicVideo 480P-1eee 35% 55% 10%
MusicVideo 480P-2de0 70% 10% 20%
MusicVideo 480P-41ce 45% 30% 25%
NewsClip 480P-15fa 60% 25% 15%
NewsClip 480P-7a0d 40% 55% 5%

TelevisionClip 480P-19d3 35% 30% 35%
HowTo 720P-0b01 55% 10% 35%

MusicVideo 720P-3698 15% 5% 80%
MusicVideo 720P-4ad2 55% 5% 40%
NewsClip 720P-4603 50% 30% 20%
HowTo 1080P-4d7b 60% 30% 10%

MusicVideo 1080P-55af 40% 15% 45%
NewsClip 1080P-1db0 20% 75% 5%

bridgeclose 65% 5% 30%
bridgefar 50% 45% 5%

coastguard 40% 45% 15%
flower 70% 0% 30%

waterfall 40% 45% 15%
netflix aerial 30% 55% 15%

intotree 10% 15% 75%
average 42.59% 28.62% 28.79%

92

(a) Frame reconstructed by AV1 baseline method

(b) Frame reconstructed by tex-switch

(c) Corresponding texture area

Fig. 4.17.: Sample reconstructed video frame for NewsClip 480P-15fa, QP=16

93

(a) Frame reconstructed by AV1 baseline method

(b) Frame reconstructed by tex-switch

(c) Corresponding texture area

Fig. 4.18.: Sample reconstructed video frames for MusicVideo 720P-3698, QP=16

94

(a) Frame reconstructed by AV1 baseline method

(b) Frame reconstructed by tex-switch

(c) Corresponding texture area

Fig. 4.19.: Sample reconstructed video frames for MusicVideo 720P-4ad2, QP=16

95

5. CONCLUSION AND FUTURE WORK

5.1 VP9 Video Coding For Lossy Transmission Channels Using Error

Resilience Packets

5.1.1 Conclusion

In chapter 2, we presented a VP9-based error resilient video coding method that

uses error resilience packets that consist of the frame-level macroblock prediction

information and encoded keyframe information. Experimental results exhibit that

our method performs well in terms of both PSNR and image quality under typical

lossy network conditions.

5.1.2 Future work

In the future, we could use downsampled keyframes to improve the compression

efficiency of our current method. The downsampled keyframes could be reconstructed

using image super-resolution methods. We could also develop a backward frame

prediction that uses future frames to improve the concealment performance.

5.2 Multi-Reference Video Coding Using Stillness Detection

5.2.1 Conclusion

In chapter 3, we proposed an automatic GF group stillness feature detection

method. Each GF group is classified into still GF group and non-still GF group

based on three metrics and the encoder adaptively chooses the coding structure based

on optimized coding efficiency. Experimental results showed coding gain for videos

containing still GF group.

96

5.2.2 Future work

We also observed that GF groups containing other features, such as fast zoom-out

and high motion, may also benefit from the single layer coding structure. We could

explore the possibility to obtain other GF group features from the AV1 first coding

pass to help choose the coding structure for the second coding pass.

5.3 Advances In Region-Based Video Coding Using Deep Neural Net-

work

5.3.1 Conclusion

In chapter 4, we proposed a new video coding paradigm that integrates texture

modeling into a video codec. The texture modeling method uses deep learning based

approaches to detect texture regions in a frame that is perceptually insignificant to

the human visual system. We developed a scheme to integrate the texture analyzer

into the video codec that reconstructs the texture region differently for B/P frames

which largely reduces the temporal visual artifacts. We introduced a new perceptual

video quality metric to assess the quality of reconstructed videosThe proposed method

is implemented and tested using the AV1 codec by introducing a new coding mode

- texture mode, to the AV1 encoder. The texture mode uses the multi-layer coding

structure, a modified global motion tool and the compound prediction mode.

5.3.2 Future work

We envision that region-based coding will continue to improve in terms of both

quality and data rate, especially by leveraging advances of deep learning methods.

However, there remain several open challenges that require further investigation.

Accurate region analysis: The accuracy of region analysis or segmentation is one

of the major challenges of region-based video coding. Recent advances in scene under-

97

standing have significantly improved the performance of region analysis. For example,

in the case study, the proposed pixel-level deep learning based segmentation approach

has improved texture segmentation accuracy, leading to improved data rate savings

and visual quality. However, visual artifacts are still noticeable when non-texture re-

gion is incorrectly included in the texture mask, particularly if the analysis/synthesis

coding system is open loop. One potential solution is to incorporate the perceptual

visual quality measure in-loop in the texture region reconstruction.

Memory and computation efficiency of deep tools: In the case study, we have

shown that the analysis/synthesis approach using texture masks generated by neural

networks can result in significant data rate savings while maintaining visual quality.

This result reveals the huge potential of utilizing neural networks in region based

video coding to improve code efficiency. However, the computational overhead of

obtaining the segmentation masks is still a big obstacle for practical systems. Gener-

ating pixel-based mask is more computationally complex and requires more memory

for model parameters compared to earlier block-based texture analyzer [171]. There

exists a trade-off between the accuracy of the region representation, e.g., texture,

and computational complexity. To address this challenge, future work needs to ex-

plore more compact and efficient networks structures, and to design hardware that is

efficient to deploy deep neural networks.

Proper visual quality metric: A proper perceptual visual quality metric for video

with synthesized region still remains a challenge. Most research on analysis/synthesis

approaches conduct subjective test for visual quality measurement. In our case study,

the proposed metric does not work well for dynamic texture. One solution could be

to add a thresholding mask for the STSIM2 part of the proposed metric to reduce

the impact of the high frequency component in the image as adopted in [45].

In addition, the blur distortion metric in our proposed quality metric is designed

to be the small the better. Because in general, a clearer image is more preferable and

98

blurring is an artifact the viewer would like to avoid. However, sometimes an over-

sharpened video is also not desirable by the viewer. We need to quantitatively verify

the effectiveness of the proposed quality metric and its fitness with the subjective

visual quality sense of a human, for example through subjective MOS (Mean Opinion

Score).

Lack of annotated datasets: Video segmentation benchmark datasets with high

quality annotation are important for developing machine learning methods for region-

based video coding. There are several texture segmentation datasets for images [172].

However, the images in these dataset are not segmented into “perceptually signifi-

cant” and “perceptually insignificant” regions, but rather objects with homogeneous

texture. The lack of temporal information in these datasets would result in poor

temporal consistency when directly applied to texture analysis in video, therefore

post-processing is required. There are few datasets for general video object segmen-

tation [173, 174], but they do not include texture segmentation. A publicly available

dataset is provided in [175] which contains test sequences with a wide range of static

and dynamic textures, as well as subjective opinion scores, but it does not provide

texture segmentation labels.

Data dependency robustness: The current test videos are picked from standard

test video dataset and Youtube UGC dataset that contain texture regions which have

potential data rate savings using texture analysis/synthesis method. The proposed

method needs to be further tested on more general test video datasets that contain

large categories of video content.

REFERENCES

99

REFERENCES

[1] D. Mukherjee, J. Bankoski, R. S. Bultje, A. Grange, J. Han, J. Koleszar,
P. Wilkins, and Y. Xu, “The latest open-source video codec VP9 - an overview
and preliminary results,” Proceedings of the IEEE Picture Coding Symposium,
pp. 390–393, December 2013, San Jose, CA.

[2] ——, “A technical overview of VP9 - the latest open-source video codec,”
SMPTE Annual Techical Conference & Exhibition, October 2013.

[3] U. Joshi, D. Mukherjee, J. Han, Y. Chen, S. Parker, H. Su, A. Chiang, Y. Xu,
Z. Liu, Y. Wang, J. Bankoski, C. Wang, and E. Keyder, “Novel inter and
intra prediction tools under consideration for the emerging AV1 video codec,”
Applications of Digital Image Processing XL, vol. 10396, pp. 54–66, 2017.

[4] Z. Liu, D. Mukherjee, W. Lin, P. Wilkins, J. Han, and Y. Xu, “Adaptive multi-
reference prediction using a symmetric framework,” Electronic Imaging, vol.
2017, no. 2, pp. 65–72, 2017.

[5] Y. Chen, D. Murherjee, J. Han, A. Grange, Y. Xu, Z. Liu, S. Parker, C. Chen,
H. Su, U. Joshi, C. Chiang, Y. Wang, P. Wilkins, J. Bankoski, L. Trudeau,
N. Egge, J. Valin, T. Davies, S. Midtskogen, A. Norkin, and P. de Rivaz, “An
overview of core coding tools in the AV1 video codec,” Proceedings of Picture
Coding Symposium, pp. 41–45, June 2018, San Francisco, CA.

[6] P. Tudor, “MPEG-2 video compression,” Electronics Communication Engineer-
ing Journal, vol. 7, no. 6, pp. 257–264, December 1995.

[7] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency
video coding (HEVC) standard,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1649–1668, December 2012.

[8] M. Wien, High efficiency video coding: coding tools and specification. New
York, NY: Springer Publishing Company, Incorporated, 2014.

[9] “AOM - alliance for open media,” http://www.aomedia.org/.

[10] D. Mukherjee, S. Li, Y. Chen, A. Anis, S. Parker, and J. Bankoski, “A switch-
able loop-restoration with side-information framework for the emerging AV1
video codec,” Proceedings of the IEEE International Conference on Image Pro-
cessing, pp. 265–269, September 2017, Beijing, China.

[11] S. Parker, Y. Chen, D. Barker, P. de Rivaz, and D. Mukherjee, “Global and
locally adaptive warped motion compensation in video compression,” Proceed-
ings of the IEEE International Conference on Image Processing, pp. 275–279,
September 2017, Beijing, China.

100

[12] Y. Chen and D. Mukherjee, “Variable block-size overlapped block motion com-
pensation in the next generation open-source video codec,” Proceedings of the
IEEE International Conference on Image Processing, pp. 938–942, September
2017, Beijing, China.

[13] https://media.xiph.org/video/derf/.

[14] G. Bjøntegaard, “Calculation of average PSNR differences between RD-curves,”
13th VCEG meeting, March 2001, Austin, Texas.

[15] N. Gadgil, “Error resilient video coding using bitstream syntax and iterative
microscopy image segmentation,” Ph.D. dissertation, Purdue University, West
Lafayette, 2016.

[16] E. Rosten and T. Drummond, “Fusing points and lines for high performance
tracking,” Proceedings of the IEEE International Conference on Computer Vi-
sion (ICCV), October 2005, Beijing, China.

[17] M. A. Fischler and R. C. B. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the Association for Computing
Machinery, vol. 24, no. 6, pp. 381–395, June 1981. [Online]. Available:
http://doi.acm.org/10.1145/358669.358692

[18] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video com-
pression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74–90, Nov
1998.

[19] “Cisco visual networking index: Forecast and methodology, 2016-2021, white
paper,” Cisco Systems Inc., Tech. Rep., 2017.

[20] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge
University Press, 2005.

[21] Y. Wang and Q.-F. Zhu, “Error control and concealment for video communi-
cation: A review,” Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997, May
1998.

[22] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[23] I. E. Richardson, The H.264 advanced video compression standard, 2nd ed. San
Francisco, CA: Wiley Publishing, 2010.

[24] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins,
and Y. Xu, “VP8 data format and decoding guide, rfc 6386,”
http://datatracker.ietf.org/doc/rfc6386/.

[25] M. Yang, “Multiple description video coding with adaptive error concealment,”
Ph.D. dissertation, Purdue University, West Lafayette, 2012.

[26] R. Zhang, “Efficient inter-layer motion compensation and error resilience for
spatially scalable video coding,” Ph.D. dissertation, Purdue University, West
Lafayette, 2009.

101

[27] U. Horn, K. Stuhlmller, M. Link, and B. Girod, “Robust Internet video trans-
mission based on scalable coding and unequal error protection,” Image Com-
munication, vol. 15, pp. 77–94, September 1999.

[28] V. Dang, A. Mansouri, and J. Konrad, “Motion estimation for region-based
video coding,” Proceedings of International Conference on Image Processing,
vol. 2, pp. 189–192, October 1995, Washington D.C.

[29] T. E. Slowe and I. Marsic, “Saliency-based visual representation for compres-
sion,” Proceedings of International Conference on Image Processing, vol. 2, pp.
554–557, October 1997, Santa Barbara, CA.

[30] A. Vetro, T. Haga, K. Sumi, and H. Sun, “Object-based coding for long-term
archive of surveillance video,” Proceedings of International Conference on Mul-
timedia and Expo, vol. 2, p. 417, July 2003, Baltimore, MD.

[31] T. Nishi and H. Fujiyoshi, “Object-based video coding using pixel state analy-
sis,” Proceedings of the 17th International Conference on Pattern Recognition,
vol. 3, pp. 306–309, August 2004, Cambridge, UK.

[32] D. Grois, E. Kaminsky, and O. Hadar, “Adaptive bit-rate control for region-of-
interest scalable video coding,” Proceedings of IEEE 26th Convention of Elec-
trical and Electronics Engineers, pp. 761–765, November 2010, Eilat, Israel.

[33] H. Hu, B. Li, W. Lin, W. Li, and M. Sun, “Region-based rate control for
H.264/AVC for low bit-rate applications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 11, pp. 1564–1576, November 2012.

[34] M. Meddeb, M. Cagnazzo, and B. Pesquet-Popescu, “Region-of-interest-based
rate control scheme for high efficiency video coding,” Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 7338–7342,
May 2014, Florence, Italy.

[35] S. Kattula and M. Dasari, “On the adaptive motion estimation in video cod-
ing based on video content analysis,” Proceedings of International Conference
on Advances in Computing, Communications and Informatics, pp. 132–136,
September 2016, Jaipur, Indian.

[36] G. Qiang, L. Yue, and F. Yu, “An region of interest based video compression
for indoor surveillance,” Proceedings of 2nd International Conference on In-
formation Technology and Electronic Commerce, pp. 157–160, December 2014,
Dalian, China.

[37] X. K. Yang, W. S. Lin, Z. K. Lu, X. Lin, S. Rahardja, E. P. Ong, and S. S.
Yao, “Local visual perceptual clues and its use in videophone rate control,”
Proceedings of IEEE International Symposium on Circuits and Systems, vol. 3,
pp. III–805, May 2004, Vancouver, Canada.

[38] H. Wang and K. El-Maleh, “Joint adaptive background skipping and weighted
bit allocation for wireless video telephony,” Proceedings of International Con-
ference on Wireless Networks, Communications and Mobile Computing, vol. 2,
pp. 1243–1248, June 2005, Wuhan, China.

102

[39] P. Ndjiki-Nya, D. Doshkov, H. Kaprykowsky, F. Zhang, D. Bull, and T. Wie-
gand, “Perception-oriented video coding based on image analysis and comple-
tion: A review,” Signal Processing: Image Communication, vol. 27, no. 6, pp.
579–594, 2012.

[40] P. Ndjiki-Nya, T. Hinz, and T. Wiegand, “Generic and robust video coding with
texture analysis and synthesis,” Proceedings of IEEE International Conference
on Multimedia and Expo, pp. 1447–1450, July 2007, Beijing, China.

[41] P. Ndjiki-Nya, T. Hinz, A. Smolic, and T. Wiegand, “A generic and automatic
content-based approach for improved H.264/MPEG4-AVC video coding,” Pro-
ceedings of IEEE International Conference on Image Processing, vol. 2, p. 874,
September 2005, Genoa, Italy.

[42] P. Ndjiki-Nya, T. Hinz, C. Stuber, and T. Wiegand, “A content-based video
coding approach for rigid and non-rigid textures,” Proceedings of International
Conference on Image Processing, pp. 3169–3172, October 2006, Atlanta, Geor-
gia.

[43] M. Bosch, F. Zhu, and E. J. Delp, “Segmentation-based video compression
using texture and motion models,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 7, pp. 1366–1377, 2011.

[44] F. Zhang and D. R. Bull, “Enhanced video compression with region-based tex-
ture models,” Proceedings of 28th Picture Coding Symposium, pp. 54–57, De-
cember 2010, Nagoya, Japan.

[45] F. Zhang and D. R. Bull, “A parametric framework for video compression us-
ing region-based texture models,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 7, pp. 1378–1392, November 2011.

[46] U. S. Thakur and O. Chubach, “Texture analysis and synthesis using steerable
pyramid decomposition for video coding,” Proceedings of International Confer-
ence on Systems, Signals and Image Processing, pp. 204–207, September 2015,
London, UK.

[47] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint
statistics of complex wavelet coefficients,” International Journal of Computer
Vision, vol. 40, no. 1, pp. 49–70, 2000.

[48] A. Dumitras and B. G. Haskell, “An encoder-decoder texture replacement
method with application to content-based movie coding,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 14, no. 6, pp. 825–840, June
2004.

[49] S. Bansal, S. Chaudhury, and B. Lall, “Dynamic texture synthesis for video
compression,” Proceeding of National Conference on Communications, pp. 1–5,
Feb 2013, New Delhi, India.

[50] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wanga, “Image and video
compression with neural networks: A review,” IEEE Transactions on Circuits
and Systems for Video Technology, 2019.

[51] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, “Deep learning-based video coding: A
review and a case study,” arXiv preprint arXiv:1904.12462, 2019.

103

[52] W. Cui, T. Zhang, S. Zhang, F. Jiang, W. Zuo, and D. Zhao, “Convo-
lutional neural networks based intra prediction for HEVC,” arXiv preprint
arXiv:1808.05734, 2018.

[53] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-based
intra prediction for image coding,” IEEE Transactions on Image Processing,
vol. 27, no. 7, pp. 3236–3247, 2018.

[54] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification,” Proceedings of the IEEE
International Conference on Computer Vision, pp. 1026–1034, 2015, Santiago,
Chile.

[55] K. Sueh, “HEVC test model, 16.9,” 2016. [Online]. Available:
https://hevc.hhi.fraunhofer.de/

[56] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek, H. Schwarz, D. Marpe,
and T. Wiegand, “Neural network based intra prediction for video coding,”
Applications of Digital Image Processing XLI, vol. 10752, p. 1075213, 2018.

[57] Y. Hu, W. Yang, M. Li, and J. Liu, “Progressive spatial recurrent neural net-
work for intra prediction,” IEEE Transactions on Multimedia, vol. 21, no. 12,
pp. 3024–3037, 2019.

[58] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014, Montreal, Canada.

[59] Z. Jin, P. An, and L. Shen, “Video intra prediction using convolutional encoder
decoder network,” Neurocomputing, 2019.

[60] Y. Seki, Y. Shishikui, and S. Iwamura, “Two-stage neural network for intra pre-
diction mode decision,” Proceedings of the International Workshop on Advanced
Image Technology, vol. 11049, p. 1104924, 2019, Singapore.

[61] Y. Li, D. Liu, H. Li, L. Li, F. Wu, H. Zhang, and H. Yang, “Convolutional neural
network-based block up-sampling for intra frame coding,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 28, no. 9, pp. 2316–2330,
2018.

[62] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network approach for
half-pel interpolation in video coding,” Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 1–4, 2017, Baltimore, MD.

[63] H. Zhang, L. Song, Z. Luo, and X. Yang, “Learning a convolutional neural
network for fractional interpolation in HEVC inter coding,” Proceedings of the
IEEE Conference on Visual Communications and Image Processing, pp. 1–4,
2017, St. Petersburg, FL.

[64] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped variation
network-based fractional interpolation in video coding,” IEEE Transactions on
Image Processing, vol. 28, no. 5, pp. 2140–2151, 2018.

[65] L. Zhao, S. Wang, X. Zhang, S. Wang, S. Ma, and W. Gao, “Enhanced motion-
compensated video coding with deep virtual reference frame generation,” IEEE
Transactions on Image Processing, vol. 28, no. 10, pp. 4832–4844, 2019.

104

[66] S. Xia, W. Yang, Y. Hu, and J. Liu, “Deep inter prediction via pixel-wise
motion oriented reference generation,” Proceedings of the IEEE International
Conference on Image Processing, pp. 1710–1774, 2019, Taipei, Taiwan.

[67] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive sepa-
rable convolution,” Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 261–270, 2017, Venice, Italy.

[68] S. Xia, Y. Hu, and J. Liu, “Deep integer-position samples refinement for mo-
tion compensation of video coding,” Proceedings of the International Forum
on Digital TV and Wireless Multimedia Communications, pp. 391–400, 2018,
Shanghai, China.

[69] S. Huo, D. Liu, F. Wu, and H. Li, “Convolutional neural network-based motion
compensation refinement for video coding,” Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, pp. 1–4, 2018, Florence, Italy.

[70] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach for post-
processing in HEVC intra coding,” Proceedings of the International Conference
on Multimedia Modeling, pp. 28–39, 2017, Reykjavik, Iceland.

[71] M. M. Alam, T. D. Nguyen, M. T. Hagan, and D. M. Chandler, “A percep-
tual quantization strategy for HEVC based on a convolutional neural network
trained on natural images,” Applications of Digital Image Processing XXXVIII,
vol. 9599, p. 959918, 2015.

[72] R. Song, D. Liu, H. Li, and F. Wu, “Neural network-based arithmetic coding
of intra prediction modes in HEVC,” Proceedings of the IEEE Visual Commu-
nications and Image Processing, pp. 1–4, 2017, St. Petersburg, FL.

[73] S. Puri, S. Lasserre, and P. Le Callet, “CNN-based transform index prediction
in multiple transforms framework to assist entropy coding,” Proceedings of the
European Signal Processing Conference, pp. 798–802, 2017, Kos island, Greece.

[74] C. Ma, D. Liu, X. Peng, and F. Wu, “Convolutional neural network-based
arithmetic coding of dc coefficients for HEVC intra coding,” Proceedings of
the IEEE International Conference on Image Processing, pp. 1772–1776, 2018,
Athens, Greece.

[75] S. Midtskogen, A. Fuldseth, and M. Zanaty, “Constrained low pass filter,” Net-
work Working Group, 2016.

[76] D. Mukherjee, S. Li, Y. Chen, A. Anis, S. Parker, and J. Bankoski, “A switch-
able loop-restoration with side-information framework for the emerging AV1
video codec,” Proceedings of the IEEE International Conference on Image Pro-
cessing, pp. 265–269, 2017, Beijing, China.

[77] D. Ding, G. Chen, D. Mukherjee, U. Joshi, and Y. Chen, “A CNN-based in-
loop filtering approach for AV1 video codec,” Proceedings of the Picture Coding
Symposium, pp. 1–5, 2019, Ningbo, China.

[78] G. Chen, D. Ding, D. Mukherjee, U. Joshi, and Y. Chen, “AV1 in-loop filtering
using a wide-activation structured residual network,” Proceedings of the IEEE
International Conference on Image Processing, pp. 1725–1729, 2019, Taipei,
Taiwan.

105

[79] Y. Fan, J. Yu, and T. S. Huang, “Wide-activated deep residual networks based
restoration for bpg-compressed images.” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 2621–2624, 2018,
Salt Lake City, UT.

[80] C. Dong, Y. Deng, C. Change Loy, and X. Tang, “Compression artifacts reduc-
tion by a deep convolutional network,” Proceedings of the IEEE International
Conference on Computer Vision, pp. 576–584, 2015, Santiago, Chile.

[81] L. Cavigelli, P. Hager, and L. Benini, “CAS-CNN: A deep convolutional neural
network for image compression artifact suppression,” Proceedings of the IEEE
International Joint Conference on Neural Networks, pp. 752–759, 2017, An-
chorage, Alaska.

[82] J. Guo and H. Chao, “Building dual-domain representations for compression
artifacts reduction,” Proceedings of the European Conference on Computer Vi-
sion, pp. 628–644, 2016, Amsterdam, The Netherlands.

[83] L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo, “Deep generative ad-
versarial compression artifact removal,” Proceedings of the IEEE International
Conference on Computer Vision, pp. 4826–4835, 2017, Venice, Italy.

[84] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-cnn for
image restoration,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 773–782, 2018, Salt Lake City, UT.

[85] Y. Zhang, L. Sun, C. Yan, X. Ji, and Q. Dai, “Adaptive residual networks
for high-quality image restoration,” IEEE Transactions on Image Processing,
vol. 27, no. 7, pp. 3150–3163, 2018.

[86] T. Wang, M. Chen, and H. Chao, “A novel deep learning-based method of
improving coding efficiency from the decoder-end for HEVC,” Proceedings of
the Data Compression Conference, pp. 410–419, 2017, Snowbird, Utah.

[87] R. Yang, M. Xu, Z. Wang, and T. Li, “Multi-frame quality enhancement for
compressed video,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6664–6673, 2018, Salt Lake City, UT.

[88] Y.-H. Tsai, M.-Y. Liu, D. Sun, M.-H. Yang, and J. Kautz, “Learning binary
residual representations for domain-specific video streaming,” Proceedings of
the AAAI Conference on Artificial Intelligence, 2018, New Orleans, Louisiana.

[89] J. Tong, X. Wu, D. Ding, Z. Zhu, and Z. Liu, “Learning-based multi-frame
video quality enhancement,” Proceedings of the IEEE International Conference
on Image Processing, pp. 929–933, 2019, Taipei, Taiwan.

[90] G. Toderici, D. Vincent, N. Johnston, S. Jin Hwang, D. Minnen, J. Shor, and
M. Covell, “Full resolution image compression with recurrent neural networks,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 5306–5314, 2017, Honolulu, Hawaii.

[91] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image com-
pression,” arXiv preprint arXiv:1611.01704, 2016.

106

[92] L. Theis, W. Shi, A. Cunningham, and F. Huszár, “Lossy image compression
with compressive autoencoders,” arXiv preprint arXiv:1703.00395, 2017.

[93] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma, “Deepcoder: A deep
neural network based video compression,” Proceedings of the IEEE Visual Com-
munications and Image Processing, pp. 1–4, 2017, St. Petersburg, FL.

[94] Z. Chen, T. He, X. Jin, and F. Wu, “Learning for video compression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 30, no. 2, pp.
566–576, Feb 2020.

[95] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural
networks,” arXiv preprint arXiv:1601.06759, 2016.

[96] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An end-to-
end deep video compression framework,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 11 006–11 015, 2019, Long
Beach, CA.

[97] O. Rippel, S. Nair, C. Lew, S. Branson, A. G. Anderson, and L. Bourdev,
“Learned video compression,” Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 3454–3463, 2019, South Korea.

[98] C.-Y. Wu, N. Singhal, and P. Krahenbuhl, “Video compression through image
interpolation,” Proceedings of the European Conference on Computer Vision,
pp. 416–431, 2018, Munich, Germany.

[99] J. Han, S. Lombardo, C. Schroers, and S. Mandt, “Deep probabilistic video
compression,” arXiv preprint arXiv:1810.02845, 2018.

[100] S. Lombardo, J. HAN, C. Schroers, and S. Mandt, “Deep generative video
compression,” Advances in Neural Information Processing Systems, pp. 9283–
9294, 2019.

[101] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene
dynamics,” Proceedings of Advances in Neural Information Processing Systems,
pp. 613–621, December 2016, Barcelona, Spain.

[102] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet large scale visual recog-
nition challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, 2015.

[103] T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common objects in context,” Proceedings of
the IEEE European Conference on Computer Vision, pp. 740–755, September
2014, Zürich, Switzerland.

[104] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Se-
mantic understanding of scenes through the ADE20K dataset,” arXiv preprint
arXiv:1608.05442, 2016.

[105] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3431–3440, June 2015, Boston, MA.

107

[106] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,”
Proceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion, pp. 2881–2890, July 2017, Honolulu, HI.

[107] A. K. Jain and F. Farrokhnia, “Unsupervised texture segmentation using ga-
bor filters,” Proceedings of the International Conference on Systems, Man, and
Cybernetics Conference proceedings, pp. 14–19, 1990, Los Angeles, CA.

[108] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis using
localized spatial filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 1, pp. 55–73, 1990.

[109] G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, no. 1, pp. 25–39,
1983.

[110] R. Chellappa and S. Chatterjee, “Classification of textures using Gaussian
Markov random fields,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 33, no. 4, pp. 959–963, 1985.

[111] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Inter-
national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[112] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
Proceedings of the European Conference on Computer Vision, pp. 404–417,
2006, Graz, Austria.

[113] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987,
2002.

[114] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Advances in Neural Information Process-
ing Systems, pp. 1097–1105, 2012.

[115] M. Cimpoi, S. Maji, and A. Vedaldi, “Deep filter banks for texture recognition
and segmentation,” Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3828–3836, 2015, Boston, Massachusetts.

[116] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for
large-scale image classification,” Proceedings of the European Conference on
Computer Vision, pp. 143–156, 2010, Crete, Greece.

[117] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,”
Proceedings of the Seventh IEEE International Conference on Computer Vision,
vol. 2, pp. 1033–1038, 1999, Kerkyra, Greece.

[118] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector
quantization,” Proceedings of the 27th Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 479–488, 2000, New Orleans, LA.

[119] M. Ashikhmin, “Synthesizing natural textures,” Proceedings of the Symposium
on Interactive 3D Graphics, pp. 217–226, 2001, New York, NY.

108

[120] H. Derin and H. Elliott, “Modeling and segmentation of noisy and textured
images using Gibbs random fields,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, no. 1, pp. 39–55, 1987.

[121] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analysis/synthesis,”
Proceedings of the 22nd annual Conference on Computer Graphics and Inter-
active Techniques, pp. 229–238, 1995, Los Angeles, CA.

[122] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional
neural networks,” Advances in neural information processing systems, pp. 262–
270, 2015.

[123] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra,
“Draw: A recurrent neural network for image generation,” arXiv preprint
arXiv:1502.04623, 2015.

[124] C. Li and M. Wand, “Precomputed real-time texture synthesis with markovian
generative adversarial networks,” Proceedings of the European Conference on
Computer Vision, pp. 702–716, 2016, Amsterdam, The Netherlands.

[125] J. Zhang, J. Arnold, and M. Frater, “A cell-loss concealment technique for
MPEG-2 coded video,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 10, no. 4, pp. 659–665, June 2000.

[126] W. Lam, A. Reibman, and B. Liu, “Recovery of lost or erroneously received
motion vectors,” Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, vol. 5, no. 12, pp. 417–420, April 1993,
Minneapolis, MN.

[127] S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, “An error concealment algo-
rithm for streaming video,” Proceedings of the IEEE International Conference
on Image Processing, vol. 3, pp. 649–652, September 2003, Barcelona, Spain.

[128] Q. Peng, T. Yang, and C. Zhu, “Block-based temporal error concealment for
video packet using motion vector extrapolation,” Proceedings of the IEEE In-
ternational Conference on Communications, Circuits and Systems and West
Sino Expositions, vol. 1, pp. 10–14, June 2002, Chengdu, China.

[129] B. Yan and H. Gharavi, “A hybrid frame concealment algorithm for
H.264/AVC,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 98–
107, January 2010.

[130] M. Dissanayake, C. Hewage, S. Worrall, W. Fernando, and A. Kondoz, “Redun-
dant motion vectors for improved error resilience in H.264/AVC coded video,”
Proceedings of the IEEE International Conference on Multimedia and Expo,
no. 7, pp. 25–28, June 2008, Hannover, Germany.

[131] X. Fan, O. Au, D. Zhao, and W. Gao, “Joint forward backward error con-
cealment of redundantly coded video,” Proceedings of the IEEE International
Packet Video Workshop, no. 7, pp. 25–32, December 2010, Hong Kong.

[132] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding
extension of the H.264/AVC standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, September 2007.

109

[133] N. Gadgil, M. Yang, M. L. Comer, and E. J. Delp, E-Signal processing. Oxford,
UK: Elsevier, vol. 4, ch. Multiple Description Coding, p. to appear.

[134] T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in wireless en-
vironments,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 657–673, July 2003.

[135] N. Gadgil and E. Delp, “VPx error resilient video coding using duplicated pre-
diction information,” Proceedings of the IS&T Electronic Imaging: Conference
on Visual Information Processing and Communication VII, February 2016, San
Francisco, CA.

[136] http://www.webmproject.org/.

[137] “VP8 Encoder Parameter Guide,” URL: http://www.webmproject.org/docs/encoder-
parameters/, Last accessed: 05/27/2016.

[138] M. Yang, M. Comer, and E. Delp, “A four-description MDC for high loss-
rate channels,” Proceedings of the Picture Coding Symposium, pp. 418–421,
December 2010, Nagoya, Japan.

[139] P. Seeling, F. Fitzek, and M. Reisslein, “Incorporating transmission errors into
simulations using video traces,” in Video Traces for Network Perforamance
Evaluation. Dordrecht, Netherlands: Springer, 2007, pp. 195–228.

[140] Z. Liu, D. Mukherjee, W. Lin, P. Wilkins, J. Han, Y. Xu, and J. Bankoski,
“Adaptive multireference prediction using a symmetric framework,” Proceed-
ings of the IS&T International Symposium on Electronic Imaging, Visual In-
formation Processing and Communication VIII, pp. 65–72(8), January 2017,
Burlingame, CA.

[141] S. C. Hsia, “An adaptive video coding control scheme for real-time
MPEG applications,” EURASIP Journal on Advances in Signal Pro-
cessing, vol. 2003, no. 3, p. 161846, Mar 2003. [Online]. Available:
https://doi.org/10.1155/S1110865703210040

[142] B. Zatt, M. S. Porto, J. Scharcanski, and S. Bampi, “Gop structure adaptive
to the video content for efficient h.264/avc encoding,” Proceedings of the Inter-
national Conference on Image Processing, pp. 3053–3056, September 2010.

[143] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[144] Z. Chen, W. Lin, and K. N. Ngan, “Perceptual video coding: challenges and
approaches,” Proceedings of IEEE International Conference on Multimedia and
Expo, pp. 784–789, July 2010, Singapore.

[145] D. Doshkov and P. Ndjiki-Nya, “Chapter 6 - how to use texture analysis and
synthesis methods for video compression,” in Academic Press Library in signal
Processing, ser. Academic Press Library in Signal Processing, S. Theodoridis
and R. Chellappa, Eds. Oxford, UK: Elsevier, 2014, vol. 5, pp. 197–225.

[146] J. Balle, A. Stojanovic, and J. Ohm, “Models for static and dynamic texture
synthesis in image and video compression,” IEEE Journal of Selected Topics in
Signal Processing, vol. 5, no. 7, pp. 1353–1365, Nov 2011.

110

[147] K. Naser, V. Ricordel, and P. L. Callet, “Local texture synthesis: A static tex-
ture coding algorithm fully compatible with HEVC,” 2015 International Con-
ference on Systems, Signals and Image Processing (IWSSIP), pp. 37–40, Sept
2015.

[148] F. Zhang and D. R. Bull, “A parametric framework for video compression us-
ing region-based texture models,” IEEE Journal of Selected Topics in Signal
Processing, vol. 5, no. 7, pp. 1378–1392, November 2011.

[149] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.

[150] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for
image quality assessment,” Proceedings of The Thrity-Seventh Asilomar Con-
ference on Signals, Systems Computers, vol. 2, pp. 1398–1402, Nov 2003, pacific
Grove, CA.

[151] Zhou Wang and E. P. Simoncelli, “Translation insensitive image similarity in
complex wavelet domain,” Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 2, pp. 573–576, March 2005,
Philadelphia, PA.

[152] A. C. Brooks, X. Zhao, and T. N. Pappas, “Structural similarity quality met-
rics in a coding context: exploring the space of realistic distortions,” IEEE
Transactions on Image Processing, vol. 17, no. 8, pp. 1261–1273, August 2008.

[153] S. Varadarajan and L. J. Karam, “A reduced-reference perceptual quality metric
for texture synthesis,” Proceedings of IEEE International Conference on Image
Processing, pp. 531–535, October 2014, Paris, France.

[154] X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff, “Structural texture
similarity metrics for retrieval applications,” Proceedings of 15th IEEE Inter-
national Conference on Image Processing, pp. 1196–1199, October 2008, San
Diego, CA.

[155] J. Zujovic, T. N. Pappas, and D. L. Neuhoff, “Structural similarity metrics for
texture analysis and retrieval,” Proceedings of 16th IEEE International Confer-
ence on Image Processing, pp. 2225–2228, Novebmer 2009, Cairo, Egypt.

[156] Netflix, Inc., “VMAF: Perceptual video quality assessment based on multi-
method fusion,” https://github.com/Netflix/vmaf, 2017.

[157] F. Zhang, F. M. Moss, R. Baddeley, and D. R. Bull, “BVI-HD: A video qual-
ity database for HEVC compressed and texture synthesized content,” IEEE
Transactions on Multimedia, vol. 20, no. 10, pp. 2620–2630, Oct 2018.

[158] Y. Wang, S. Inguva, and B. Adsumilli, “YouTube UGC dataset for video com-
pression research,” IEEE International Workshop on Multimedia Signal Pro-
cessing, September 2019, Kuala Lumpur, Malaysia.

[159] D. Chen, C. Fu, and F. Zhu, “AV1 video coding using texture analysis with
convolutional neural networks,” ArXiv e-prints, April 2018.

111

[160] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint, p. arXiv:1409.1556, 2014.

[161] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva, “Places: An image
database for deep scene understanding,” arXiv preprint, p. arXiv:1610.02055,
2016.

[162] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like environ-
ment for machine learning,” Proceedings of the BigLearn workshop at the Neural
Information Processing Systems, pp. 1–6, December 2011, Granada, Spain.

[163] C. Chen, J. Luo, and K. J. Parker, “Image segmentation via adaptive k-mean
clustering and knowledge-based morphological operations with biomedical ap-
plications,” IEEE transactions on image processing, vol. 7, no. 12, pp. 1673–
1683, December 1998.

[164] D. Chen, Q. Chen, and F. Zhu, “Pixel-level texture segmentation based AV1
video compression,” Proceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 1622–1626, May 2019, Brighton, UK.

[165] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene pars-
ing through ADE20k dataset,” Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, vol. 1, no. 2, p. 4, July 2017, Honolulu,
HI.

[166] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, June 2016, Las Vegas, NV.

[167] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,”
arXiv preprint arXiv:1412.7062, 2014.

[168] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
arXiv preprint arXiv:1511.07122, 2015.

[169] T. N. Pappas, J. Zujovic, and D. L. Neuhoff, “Image analysis and
compression: renewed focus on texture,” Visual Information Processing
and Communication, vol. 7543, pp. 178 – 189, 2010. [Online]. Available:
https://doi.org/10.1117/12.851682

[170] M. Bosch, F. Zhu, and E. J. Delp, “Spatial texture models for video com-
pression,” Proceedings of IEEE International Conference on Image Processing,
vol. 1, pp. 93–96, September 2007, San Antonio, TX.

[171] C. Fu, D. Chen, Z. Liu, E. J. Delp, and F. Zhu, “Texture segmentation based
video compression using convolutional neural networks,” Proceedings of Elec-
tronic Imaging, February 2018, Burlingame, CA, USA.

[172] M. Haindl and S. Mike, “Texture segmentation benchmark,” Proceedings of the
19th International Conference on Pattern Recognition, pp. 1–4, December 2008,
Tampa, FL.

[173] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang, “YouTube-
VOS: A large-scale video object segmentation benchmark,” arXiv preprint, p.
arXiv:1809.03327, 2018.

112

[174] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. V. Gool, M. Gross, and A. Sorkine-
Hornung, “A benchmark dataset and evaluation methodology for video object
segmentation,” Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 724–732, June 2016, Las Vegas, NV.

[175] M. A. Papadopoulos, F. Zhang, D. Agrafiotis, and D. Bull, “A video texture
database for perceptual compression and quality assessment,” Proceedings of
IEEE International Conference on Image Processing, pp. 2781–2785, September
2015, Quebec City, QC.

VITA

113

VITA

Di Chen was born in China. She receives the B.E. in Electrical Engineering from

Huazhong University of Science and Technology, China.

Di Chen joined the graduate program at the School of Electrical, Computer and

Systems Engineering of Rensselaer Polytechnic Institute, Troy, NY in August 2012.

She worked under the supervision of Professor John W. Woods.

Di Chen joined the graduate program at the School of Electrical and Computer

Engineering, Purdue University, West Lafayette, Indiana in August 2015. She worked

at the Video and Image Processing Laboratory (VIPER) under the supervision of

Professor Fengqing Zhu. She was an intern at the Chrome Media team of Google

Inc., Mountain View, CA in the summer of 2017. She was an intern at the Media

Algorithm team at Youtube of Google Inc., Mountain View, CA in the summer of

2018.

Di Chen is a recipient of the National First-class Scholarship awarded by the

Ministry of Education of China and Cha Chi Ming & Liu Bie Ju Undergraduate

Student Scholarship awarded by Qiu Shi Science & Technologies Foundation. Her

research focuses on video analysis and compression.

