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ABSTRACT 

Hyperspectral imaging has become one of the most popular technologies in plant 

phenotyping because it can efficiently and accurately predict numerous plant physiological 

features such as plant biomass, leaf moisture content, and chlorophyll content. Various 

hyperspectral imaging systems have been deployed in both greenhouse and field phenotyping 

activities. However, the hyperspectral imaging quality is severely affected by the continuously 

changing environmental conditions such as cloud cover, temperature and wind speed that induce 

noise in plant spectral data. Eliminating these environmental effects to improve imaging quality is 

critically important. In this thesis, two approaches were taken to address the imaging noise issue 

in greenhouse and field separately. First, a computational simulation model was built to simulate 

the greenhouse microclimate changes (such as the temperature and radiation distributions) through 

a 24-hour cycle in a research greenhouse. The simulated results were used to optimize the 

movement of an automated conveyor in the greenhouse: the plants were shuffled with the conveyor 

system with optimized frequency and distance to provide uniform growing conditions such as 

temperature and lighting intensity for each individual plant. The results showed the variance of the 

plants’ phenotyping feature measurements decreased significantly (i.e., by up to 83% in plant 

canopy size) in this conveyor greenhouse. Secondly, the environmental effects (i.e., sun radiation) 

on aerial hyperspectral images in field plant phenotyping were investigated and modeled. An 

artificial neural network (ANN) method was proposed to model the relationship between the image 

variation and environmental changes. Before the 2019 field test, a gantry system was designed and 

constructed to repeatedly collect time-series hyperspectral images with 2.5 minutes intervals of the 

corn plants under varying environmental conditions, which included sun radiation, solar zenith 

angle, diurnal time, humidity, temperature and wind speed. Over 8,000 hyperspectral images of 

corn (Zea mays L.) were collected with synchronized environmental data throughout the 2019 

growing season. The models trained with the proposed ANN method were able to accurately 

predict the variations in imaging results (i.e., 82.3% for NDVI) caused by the changing 

environments. Thus, the ANN method can be used by remote sensing professionals to adjust or 

correct raw imaging data for changing environments to improve plant characterization.  
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 GENERAL INTRODUCTION  

1.1 Overview 

With the human population that is expected to reach 9.7 billion by the end of 2050, the global 

crop production should be doubled to meet the rising demands (Ehrlich and Harte, 2016; Ray et 

al., 2013). Boosting crop yields is a critical solution (Conceição and Mendoza, 2009). To select 

high-yield plants faster and more efficiently, modern phenotyping is the key. Hyperspectral 

imaging has become one of the most important phenotyping technologies in the recent decades (Li 

et al., 2014a). Compared to the traditional imaging technologies like greyscale and red-green-blue 

(RGB) imaging, hyperspectral imaging captures hundreds of bands, which enable researchers and 

scientists to efficiently and accurately measure many plant physiological features such as plant 

biomass, leaf moisture content, and chlorophyll content (Clevers et al., 2008; Di Gennaro et al., 

2018; Garaba and Dierssen, 2018; Li et al., 2014). Currently, various hyperspectral imaging 

platforms exist. Imaging towers have been built for scanning the plants grown in the greenhouse 

(Ma et al., 2019a). Hyperspectral sensors are also mounted on the ground-based vehicles to image 

the plants in the field (Li et al., 2014). The unmanned aerial vehicle (UAV) is widely used to image 

the plants in the field and it has become one of the most popular imaging platforms in field 

hyperspectral studies (Garaba and Dierssen, 2018). Finally, satellites are also used to collect 

hyperspectral images for regional plant growth measurements (Ishida et al., 2017). Hyperspectral 

imaging has advanced plant phenotyping with more accurate measurements of plant features and 

has largely accelerated the progress of plant breeding studies (Di Gennaro et al., 2018). However, 

current hyperspectral imaging data still suffers from severe noise caused by the changing 

environment during the imaging, which greatly affects its quality (Maji et al., 2014).  

Plant hyperspectral phenotyping suffers from several major challenges. Firstly, plants in the 

experiment are treated with a non-uniform environment, especially in the greenhouse. The fans, 

cooling wall and temperature managing system are used to create more desirable environment for 

the growth of plants (Choab et al., 2019). However, these systems create non-uniform 

microclimates which make the plants in the greenhouse look different from each other (Aaslyng 

et al., 2007). For example, some plants grow directly under the lamps, while others are away from 

the lights. Furthermore, the distances between the plants and the fans and cooling walls vary. All 



 

 

19 

these generate a significant gradient in temperature and lighting profiles in the same room (Ahonen 

et al., 2008). These non-uniformities will cause unwanted noise in plant phenotyping. The second 

challenge mostly arises in the field, where the environment changes frequently and is 

uncontrollable. For example, the plant imaging data is greatly affected by the changing intensity 

and color of the sun light. Besides, the plant reflectance spectrum is affected by other 

environmental factors such as changing cloud cover, wind speed, and temperature (Gamon et al., 

2015). Moreover, the plants themselves change over time, which is known as circadian behavior. 

For example, the Normalized Difference Vegetation Index (NDVI) of crops measured in the 

morning differs by over 10% from one assessed at noon (Beneduzzi et al., 2017; Sticksel et al., 

2004). These variations in environmental conditions and time cause significant changes in the 

spectra data, which further reduce the accuracy of plant analysis.  

It is important to discern between plant signal and environmental noise in plant imaging. 

Unfortunately, plant phenotyping researchers are usually looking for weak signals (e.g., nitrogen 

improvement that varies by less than 3%) in severely inconsistent environmental conditions, such 

as non-uniform environments in the greenhouse, different imaging times, or various sun radiations 

(Oliveira and Scharf, 2014). Therefore, reducing the impact of environmental noise on the 

hyperspectral imaging data is critically needed by phenotyping researchers. This dissertation 

develops methods to analyze, model, and eliminate the effects of environmental noise on the crop 

hyperspectral phenotyping data in both greenhouse and field conditions. 

1.2 Dissertation Outline 

The overall objective of the research is to analyze and ameliorate the environmental effects 

on hyperspectral images for improved phenotyping quality in greenhouse and field conditions. 

The organization of this dissertation is as follows. In chapter 1, the overview of this 

dissertation is presented, followed by a review of hyperspectral imaging in plant phenotyping, and 

the challenges from the environmental impacts in greenhouse and field conditions.  

Chapter 2 and Chapter 3 introduce the research work conducted in greenhouse phenotyping, 

aiming to develop a model-driven approach for the removal of greenhouse microclimates 

heterogeneity with an automated conveyor system. Chapter 2 presents the study on greenhouse 

environment modeling and simulation for microclimates estimation. A computational greenhouse 
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environment model is introduced to quantitatively simulate the 3-D temperature and radiation 

distributions over the 24-hour cycle in a local greenhouse. The simulation results of temperature 

and radiation distributions are then utilized to optimize pot movement (distance and frequency) in 

a greenhouse equipped with an automated conveyor system. Chapter 3 introduces a newly 

constructed microclimates-impact-alleviated automatic greenhouse by applying the methodology 

in the Chapter 2 to minimize microclimate heterogeneity. The performance of model-optimized 

conveyor movement solution is evaluated with a comparison test assay for plant variances between 

the conveyor greenhouse and a neighboring traditional greenhouse. 

Chapter 4 and Chapter 5 document the work in field phenotyping, focusing on correcting the 

aerial remote sensing results considering environment variations. Chapter 4 describes the research 

on the changing patterns of aerial crop phenotyping features along the diurnal timeline. A field 

experiment is conducted with the new field imaging gantry at Purdue University to collect a 

substantial number of time-series hyperspectral images on corn at a high sampling frequency 

throughout the growing season. The collected images are then used to analyze and model the 

changes in crop phenotyping features (e.g., NDVI) along the diurnal time. Chapter 5 extends the 

exploration of Chapter 4. It introduces a new ANN model trained with synchronized hyperspectral 

imaging data and environmental data (e.g., sun radiation, temperature and wind speed) for 

predicting the environment-induced variations in crop phenotyping features. The performance of 

the ANN model is evaluated by comparing the variations in the phenotyping result before and after 

the model correction.  

In Chapter 6, the results from this dissertation are summarized. Some limitations of the 

proposed methods are discussed, and potential solutions are proposed for the future work.  

1.3 Literature review 

1.3.1 Hyperspectral imaging-based plant phenotyping 

Modern plant breeding takes advantage of the combination of genotypic and phenotypic data. 

With the rapid development of advanced phenotyping technologies, plant phenotypic properties 

can be more efficiently captured in the imaging data in a non-destructive way. The captured images 

are then processed with imaging process algorithms and statistical tools to access plant traits such 

as drought tolerance (Causse et al., 2018), disease resistance (Miklas et al., 2019; Stone et al., 
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2010), seed dormancy (Torada et al., 2005), and photosynthesis (Herve et al., 2001), which largely 

facilitate the period of plant breeding (Li et al., 2014a). Among all the modern phenotyping 

technologies such as RGB, multispectral, and thermal imaging, hyperspectral imaging represents 

one of the most popular. 

 

Fig. 1.1. The spectral reflectance curve of vegetation. The major absorption and reflectance 

features are indicated (Roman and Ursu, 2016). 

Table 1.1. Distinct wavelength regions in the visible and near-infrared spectral range with 

relevant functions.  

Name 
Wavelength 

(nm) 
Traits measured References 

Visible (VIS) 400–700 
Photosynthetic pigments such 

as chlorophyll a, chlorophyll b, 

carotenoids, and xanthophyll. 

(Broge and Leblanc, 

2001) 

Near-infrared (NIR) 700–1,100 

Chlorophylls, water, or 
macronutrients (e.g., nitrogen), 

various vegetative indices (e.g., 

NDVI). 

(Ma et al., 2019a; 
Ni et al., 2015; 

Zhang et al., 

2019a). 

Short-wave-infrared 

(SWIR) 
1,100–2,500 

Biochemical components such 
as protein, phosphorus, 

cellulose, and hemicellulose. 

Several water relevant bands 
(e.g., 1160 nm, 1440 nm, and 

1930 nm). 

(Tian and Philpot, 

2015) 

 

In plant hyperspectral imaging, the visible and near infrared spectral region (400–2500 nm) 

is usually measured (Fig. 1.1), which has proven effective for the identification of various plant 
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phenotypic characteristics such as plant biomass, leaf moisture content, and chlorophyll content 

(Pandey et al., 2017). The relationship between spectral reflectance and plant phenotypic 

components has been studied for decades (Gewali et al., 2018; Reflectance, 1973). Typically, 

based on the functions, the spectral region (400–2500 nm) is usually partitioned into three distinct 

wavelength regions: the visible (VIS, 400–700 nm), near-infrared (NIR, 700–1,100 nm) and short-

wave-infrared (SWIR, 1,100–2,500 nm) spectral regions (Pandey et al., 2017). As shown in Table 

1.1, the VIS region is the one most responsible for photosynthetic pigments such as chlorophyll a, 

chlorophyll b, carotenoids, and xanthophyll (Broge and Leblanc, 2001). The NIR region is 

determined by the structural reflection of the turgid plant cell (Pandey et al., 2017), and it is widely 

used for predicting essential leaf constituents such as chlorophylls, water, or macronutrients (e.g., 

nitrogen) (Ma et al., 2019a; Ni et al., 2015; Zhang et al., 2019a). Healthy plant tissue typically has 

unique characteristics that it absorbs in the red and blue wavelengths, reflects in the green 

wavelength, and strongly reflects in the near-infrared (NIR) wavelength. Therefore, the combined 

VIS and NIR wavelength is called VNIR, which represents the most commonly used range for 

plant analysis. For example, several vegetation indices are based upon the VNIR range, with the 

most popular represented by the Normalized Difference Vegetation Index (NDVI) (Thenkabail et 

al., 1997) and Carotenoid Reflectance Index 1 (CRI1) (Stylinski et al., 2002).  Besides that, the 

SWIR region is used to quantify a wider range of biochemical components such as protein, 

phosphorus, cellulose, and hemicellulose. Moreover, there are several water relevant bands in the 

SWIR range, including 1160 nm, 1440 nm, and 1930 nm (Tian and Philpot, 2015).     

With the development of the advanced imaging technologies and platforms, hyperspectral 

imaging on plant phenotyping is more capable and accurate in analyzing plant features, which 

largely accelerates the progress of plant breeding studies (Di Gennaro et al., 2018b). However, the 

quality of plant hyperspectral imaging data still suffers from severe environmental effects in both 

greenhouse and field conditions (Maji et al., 2014). In greenhouse, the plants are not exposed to 

the uniform environment. The environment within the same greenhouse is still heterogeneous, 

where diverging regions are referred to as microclimates. Greenhouse plant science assays have 

been impacted by heterogenous microclimates which causes significant level of noise to 

hyperspectral imaging measurements (Ahonen et al., 2008). In field, the plants are not imaged 

under the same environmental condition. The changing environmental conditions have been 

reported to have significant impacts on the imaging result (Gamon et al., 2015). The intensity in 
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remotely sensed images is severely impacted based on the phenomenon of when and where the 

image is captured (Beneduzzi et al., 2017; Maji et al., 2014; Padilla et al., 2019). One source of 

the variation is due to the complicated interactions between camera’s sensitivity, camera’s view 

angle, canopy geometry, solar zenith angle, solar azimuth angle, and shadows (Danner et al., 2019; 

Ishihara et al., 2015; Jackson et al., 1979; Ranson et al., 1985). Another source of variation results 

from plants’ endogenous stress responses to the environmental conditions with complicated 

interactions between their genetic backgrounds, external environments, and treatments (An et al., 

2017; Ranson et al., 1985). All of these, collectively regarded as the environment-induced variation 

in phenotyping features, affect plants’ final reflectance characteristics.   

Although the spectral reflectance signature of the plants contains the rich information about 

their biochemical, physiological and physical characteristics, the noise from the changing 

environment, in either greenhouse or field condition, still limit the accuracy of spectral 

phenotyping results. It is critical to understand the cause of these environmental noise and develop 

relevant solutions to eliminate the environmental effects on hyperspectral images for improved 

phenotyping in greenhouse and field conditions. 

1.3.2 Microclimate heterogeneity in greenhouse  

Greenhouses use solar irradiance to create a favorable microclimate for plant growth (Choab 

et al., 2019). Due to the advantages of generating relatively more stable environments and 

efficiently achieving controlled plant growth compared to field tests (Vásquez et al., 2015; Zhang 

et al., 2019a), greenhouse facilities have proven more attractive than ever as crop research tools. 

However, the microclimate within a greenhouse varies considerably (Alain, 1989). Various factors 

lead to the greenhouse microclimate heterogeneity including ventilation (Norton et al., 2007), 

cooling wall (McCartney et al., 2018), greenhouse architecture (Taki et al., 2016), greenhouse 

location (Çakir and Sahin, 2015), internal lighting position (LI et al., 2003), and ambient control 

system (Kläring et al., 2007). Controlling the microclimate while accounting for these features, 

which are intrinsic to a greenhouse, is never easy. 

The microclimate heterogeneity has received considerable attention by greenhouse 

researchers (Alain, 1989; Baille et al., 2001; Hartung et al., 2019; Körner et al., 2007). 

Environmental factors such as temperature, airflow, relative humidity, radiation, and carbon 

dioxide concentration were found to be non-uniformly distributed in the greenhouse, and these 
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impact the growth, production and quality of the crops (Ahemd et al., 2016; Alain, 1989; Baille et 

al., 2001; Castro et al., 1991; Körner et al., 2007). These heterogeneities resulted in heterogeneous 

stress signals on plants, eventually resulting in inconsistent greenhouse experiments (Ahonen et 

al., 2008; Brien et al., 2013).   

Researchers have continued to explore methods to eliminate the heterogeneity of the 

greenhouse microclimates, both directly and indirectly. The most common and relatively simple 

way involves the direct improvement of the greenhouse either in coating the surface or redesigning 

the construction shape (Baille et al., 2001; Taki et al., 2016). By whitening the greenhouse roof 

located in the coastal area of eastern Greece, the nonuniform environment issue was well addressed 

(Baille et al., 2001). Moreover, to indirectly reduce microclimate heterogeneity, people use a 

randomized complete block design (RCBD) method to statistically randomize the positions of crop 

samples in the greenhouse, which randomly redistributes the variance instead of removing it 

(Hartung et al., 2019). However, the RCBD method just helps to redistribute the environmental 

noise on plants but does not remove the noise. Moreover, this method is not suitable when complete 

block contains considerable variability.   

Recently, benefiting from the rapid advancements in the indoor plant transport facility, an 

innovative solution of relocating plants during the experiment has arisen. One study detailed a 

greenhouse containing plants on conveyor systems to account for the variation of the 

microclimates (Brien et al., 2013). The strategy of cycling plants through greenhouse locations 

replies on the assumption that plants experience uniform growth conditions when spending an 

equal amount of time in each microclimate (Brien et al., 2013). However, this shuffle of plants 

was done at the lane level. Groups of plants sitting on the same lane were moved around together, 

but the microclimate impacts within the lane remained. For example, plants in the middle of the 

lane are higher than the plants at the edge. Moreover, their conveyor facility was under simple 

mechanical movements with empirical operation scenarios. The optimization of the conveyor 

movement for efficiently relocating plants with minimized conveyor movement cost have rarely 

been explored. 

To ensure the success of this plant relocation scheme, plants must spend an equal amount of 

time in each microclimate, preferably during equivalent growth stages. To date, methods to 

efficient relocate individual plant while minimizing conveyor movement cost have not been 

addressed. 
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1.3.3 Sources of variability in plant reflectance characteristics 

Plant canopy reflectance equals the ratio of the amount of light leaving the canopy to the 

amount of incoming light (Kitchen et al., 2001). Current remote sensing techniques rely heavily 

on this ratio to obtain information on photosynthetic pigment compounds, vegetation indices, 

water content, or other biochemical contents in crops (Meyer and Neto, 2008; Neuwirthová et al., 

2017; Quemada et al., 2014). Plant canopy reflectance actively changes over time, especially in 

the field, which introduces a great deal of variation  in plant phenotyping results (Beneduzzi et al., 

2017; Maji et al., 2014; Padilla et al., 2019). The variability in canopy reflection is complex due 

to the diversity in the canopy size, shape, composition, and arrangement of cells, leaves, stems, 

and plants within ecosystems (Ollinger, 2011). However, the sources for nearly all such variability 

can be summarized into two categories: changes in leaf optical properties and sun-leaf-sensor 

geometry.  

The interaction of spectral radiation and plant canopy, including reflectance, transmission, 

and absorption, depends on optically relevant constituents such as pigments, liquid water, and 

several other biochemical components (Blackburn, 1998; Ceccato et al., 2001; Kokaly et al., 2009).  

During growth, the plants’ chemical constituents as the environment does (Gamon et al., 2015; 

Ishihara et al., 2015; Jackson et al., 1979; Ranson et al., 1985). Environmental factors such as air 

temperature, solar zenith angle, solar azimuth angle, shadows, humidity, and wind speed were 

found to be highly correlated with the change of chemical constituents in plants (An et al., 2017; 

Gamon et al., 2015; Oliveira and Scharf, 2014; Zhao et al., 2018; Zhou et al., 2017).  In addition 

to their environments, plants’ chemical constitutions also change over time. Plant physiological 

properties usually follow periodical behavior, which is commonly referred to as circadian 

rhythmicity (Greenham et al., 2015; Tindall et al., 2015). The circadian rhythms in plants represent 

the subset of biological rhythms that occur over a period of time (Ast and Dunlap, 2004), which 

have been observed in a diverse range of plant species including corn, potato, rice, wheat, barley 

and soybean during the last decades (Dunford et al., 2002; Kloosterman et al., 2013; Preuss et al., 

2012; Tindall et al., 2015; Turner, 2007).  

Furthermore, the incidence of radiation on the leaf and different angles of observation (sun-

leaf-sensor geometry) impacts the plant canopy’s reflectance (Atrashevskii et al., 1999). During 

the reflectance measurement, the sensor viewing direction is usually fixed (Gamon et al., 2015; 

Ranson et al., 1985). Therefore, most changes in the sun-leaf-sensor geometry arise from the 
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changing sun position and plant leaf angle during the day. These changes affect the scattering on 

the plant canopy, which is eventually reflected in the change in observed reflectance characteristics 

captured by the sensor. For example, one study found the reflectance factor and view angle 

strongly impacted the reflectance characteristics observed for all of the plant canopies considered 

(Ranson et al., 1985). The reference change from sun-leaf-sensor geometry is also theoretically 

explained by the Bidirectional Reflectance Distribution Function (BRDF) (Honkavaara et al., 

2009). In recent decades, BRDF has been widely used for many remote sensing studies to to correct 

the distortions caused by the view and illumination angle effects (Gatebe and King, 2016; Liang 

and Strahler, 1994; Qi et al., 2000).  

The combined PROSPECT leaf optical properties model and SAIL canopy bidirectional 

reflectance model (PROLSAIL) was developed (Jacquemoud and Baret, 1990) to more 

comprehensively analyze the variability in plant canopy reflectance characteristics (Duan et al., 

2014; Jacquemoud et al., 2009; Ni et al., 2015). As previously mentioned, canopy reflectance 

represents the joint product of several spectrally relevant factors (leaf optical properties and sun-

leaf-sensor geometry), which affect the electromagnetic radiation transfer in spectral regions. 

PROSAIL allows the decomposition of the effects of these factors on the canopy reflectance 

(Kattenborn, 2019). Furthermore, sensitivity analyses performed in some studies advanced our 

understanding of how biophysical variables and geometric factors (e.g., incident radiation on the 

leaf) contribute to the variability in canopy reflectance (Berger et al., 2018a; Kattenborn, 2019). 

 However, the PROLSAIL model usually does not meet the accuracy requirement in plant 

phenotyping remote sensing. For example, Berger et al. (Berger et al., 2018b) compared 

PROSAIL’s simulation result with the spectra data collected from the field and found that 

PROSAIL’s predicted spectra showed severe drifts from the field measurements especially at the 

green and red edge (~700nm) wavelengths (Berger et al., 2018b). Besides, the PROSAIL 

prediction theoretically requires three input variables including leaf structure parameter, 

photosynthetic pigment concertation, and water content, while they are difficult and costly to 

measure in remote sensing practices (Jacquemoud et al., 2009). Therefore, a more accurate 

environmental impact analysis for plant reflectance characteristics is still critically needed to 

improve the quality of agricultural remote sensing.   
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 GREENHOUSE ENVIRONMENT MODELING AND 

SIMULATION FOR MICROCLIMATE CONTROL 

Greenhouse plant science assays have been impacted by heterogeneous microclimates that cause 

significant noise in plant growth measurement data. Researchers and scientists have randomized 

pots locations in greenhouses, which helps to redistribute, but does not remove the noise. The 

varying impacts from microclimates can be eliminated by shuffling plants, but no studies have 

been conducted on how such shuffling can be optimized, such as by adjusting the frequency and 

distance of pot movements. The quantitative study of the microclimates in the greenhouse is 

important to properly optimize the shuffling pattern. This study proposes a computer modeling 

approach to simulate a greenhouse’s microclimates, then employs these results to optimize pot 

movement distance and frequency. A computational greenhouse microclimate simulation model 

was developed using inputs from the actual design, materials and location of a Purdue Lily 

greenhouse in West Lafayette, Indiana. This model predicted the microclimate variables, including 

ambient temperature and lighting radiation over a 24-hour, seven-day period. Thermometers and 

lighting sensors were also distributed in the greenhouse to measure the ground truth over a seven-

day period. A comparison of the microclimate variables measured with those predicted by the 

model, including temperature and radiation, demonstrated that the simulation could precisely 

predict temperatures and light radiation at any time and in different positions in the greenhouse. 

The simulation results were then used to determine the optimal pot movement frequency and 

distance. The resulting shuffling pattern of the conveyor movement can remove over 90% of the 

variance in microclimate radiation as well as eliminate more than 95% of the conveyor motion 

compared with non-stop movement.  

2.1 Introduction 

Currently, greenhouse facilities serve as prevalent crop research tools whose advantages 

includes the ability to easily achieve optimal plant growth and, provides a relatively more uniform 

environment than the field tests do (Vásquez et al., 2015; Zhang et al., 2019a). However, due to 

intrinsic greenhouse features, the climate within the same greenhouse retains heterogeneous and 

can be considered microclimates (Alain, 1989). The nonuniform distributions of temperature, 
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relative humidity, carbon dioxide concentration and radiation reflected in these microclimates have 

recently received attention from several researchers (Ahemd et al., 2016; Alain, 1989; Baille et al., 

2001; Castro et al., 1991; Körner et al., 2007), as they unevenly impact on the growth, production, 

and quality of crops. In particular, temperature and radiation represent two major factors that cause 

heterogeneous microclimatic effects (Gonzalez-Real and Baille, 2000; Lindquist et al., 2005; 

Stone et al., 1998). 

Researchers have continued to explore methods to eliminate the uneven impact of the 

greenhouse microclimate. Baille et al. (2001) introduced the greenhouse whitening method. They 

studied how whitening a greenhouse roof influenced its microclimate and canopy behavior during 

the summer in a greenhouse located in the coastal area of eastern Greece. Another innovative study 

was conducted by Brien et al. (2013), who designed a greenhouse that contained a plant conveyor 

system to account for microclimate variation. To ensure the success of the plant relocation methods, 

plants needed to spend an equal amount of time in each microclimate, preferably during 

comparable growth stages. In addition to the redesign of greenhouses, studies have also examined 

how to optimally control the greenhouse environment. 

To more precisely control the local crop temperature, a simulation model developed by 

Körner et al. (2007) modeled the time-dependent crop microclimate from a greenhouse 

macroclimate. By employing temperature measurements from the area close to the leaf surfaces 

collected periodically by PT100 thermometer located above the crop, the model predicted the 

greenhouse microclimate. Teitel et al. (2008) performed a similar study examining the temperature 

distributions within a greenhouse. They investigated the ambient temperature distribution inside a 

greenhouse equipped with vertical roof openings. The computational methods they employed 

proved useful in the prediction of the local temperature distribution for greenhouse climate control 

purposes. However, these models mainly focused upon temperature and failed to include radiation 

data, equally distributed within the greenhouse environment. Moreover, they rarely discussed how 

their simulation model could aid in solving the real greenhouse microclimate problem.  

Greenhouse generates more controlled environments for plant growth. However, as 

discussed above, the microclimate impacts such as the non-uniform temperature and radiation 

distributions are still unsolved due to the lack of understanding of the microclimates. With the goal 

of helping greenhouse researchers to improve plant phenotyping quality, this chapter describes the 
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research work aiming at developing greenhouse microclimate impacts removal solutions, with 

three major objectives as follows: 

1. Develop a greenhouse microclimate simulation model to quantitatively analyze the 

temperature and radiation distributions. 

2. Validate the simulation results with measurement data from regular radiation and 

temperature sensors.  

3. Utilize the simulation model to optimize the conveyor system settings in the greenhouse 

to save conveyor motion cost while upholding the standard of efficiency in eliminating 

microclimate impacts. 

2.2 Materials and methods 

2.2.1 Greenhouse geometry and plants layout 

The simulation study was designed and carried out in the Lily 13-4 greenhouse (latitude 

40.4259◦ N, longitude 86.9081◦ W) at Purdue University, West Lafayette, Indiana (Fig. 2.1). The 

N-S orientated greenhouse facility is covered with transparent glass along with an automated high 

throughput imaging and a belt conveyor-based plant transferring system (Fig. 2.2). In addition to 

the existing microclimatic effects, the installation of a large imaging box across the northern wall 

further escalates these effects. The temperature of the greenhouse is regulated using an evaporative 

cooling system consisting of two ventilation fans (installed on the southern wall of the greenhouse) 

and rectangular evaporative cooling pads (installed on the northern wall) (Fig. 2.2). The 

greenhouse is equipped with 17 sodium lights, each processing a power rating of 1000 Watts. As 

the girders underneath the glass roof of the greenhouse cast shadows over plant canopies, they 

were therefore also introduced into the simulation model.   
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Fig. 2.1. Overall greenhouse geometry and plants layout. 3D coordinates represent x as north, y 

as west, and z as zenith. 

  

Fig. 2.2. Purdue Lily 13-4 Greenhouse with automated, high-throughput imaging system and a 

belt conveyor-based plant transportation system. 

2.2.2 Model Development 

The change in the greenhouse temperature distribution and radiation absorption on the 

surface of the plant was modeled with representations of heat transfer and radiation energy. The 

entire model was computed with the explicit finite element method, which leads itself particularly 

well for the numerical simulation of heat transfer problems (Korioth and Versluis, 1997). More 

specifically, the radiative heat exchange between the greenhouse’s interior surfaces such as the 

Imaging Tower 
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convective heat exchange within indoor air as well as the heat exhaust from the wet wall cooling 

system and the sunlight radiation effect correspond well with elements of this method.  

The heat transfer between different objects can be expressed by the conduction, convection, 

and radiation phenomena (Kimball, 1973). Assuming the simulation model contains constant 

thermal properties, the heat conducted by a solid medium can be described by the classic Fourier’s 

heat conduction (Eq. 2.1) equation  (Eck et al., 2016): 

 
𝜌 𝐶𝑃

𝜕𝑇

𝜕𝑡
+ 𝛻 ∙ 𝑞 = 𝑄 

(2.1) 

Where ρ is the density of the solid material (kgm-3), Cp (Wm-1 K-1) represents the specific heat 

capacity, 
𝜕𝑇

𝜕𝑡
 is time-based temperature derivative (K/s), Q (Wm-3) denotes the amount of heat 

generated and q is the conduction heat flux (Wm-2) which can be represented by Eq. 2.2:  

 𝑞 = −𝑘 𝛻𝑇 (2.2) 

Where k (Wm-1⋅K-1) is the thermal conductivity and 𝛻𝑇  (Km-1) denotes three-dimensional 

temperature distribution.   

In addition to heat conduction within solids, the surface heat transfer, which is affected by 

heat convection and radiation, also plays an important role (Baxevanou et al., 2010). As the 

greenhouse in the study is equipped with an evaporative cooling system, the heat dissipated from 

all surfaces exposed to the air through forced heat convection can be modeled using the heat 

transfer equation (Eq. 2.3).   

 𝑄 = 𝐴 ∗ ℎ(𝑇 − Tambient) (2.3) 

Where A denotes the surface area (m2), h represents the heat transfer coefficient (Wm-2 K-1), T is 

the object temperature (K), and Tambient denotes the ambient air temperature (K).  

In the greenhouse system, the radiative exchange between two objects can represent a major 

factor behind the temperature and plant radiation absorption variation in the greenhouse 

environment (Eck et al., 2016). A plant’s temperature under direct sunlight is significantly higher 

than it would be elsewhere. However, because solar radiation represents the main source of energy 

in the plant photosynthesis process, the nonuniform spread of solar radiation has always 

represented the main part of microclimate impact. The overall radiosity exchange (Eq. 2.4) 

between two objects (Eck et al., 2016) can be defined as  

 𝑅𝑖𝑗 = 𝐴𝑖𝐹𝑖𝑗(𝐽𝑖 − 𝐽𝑗) (2.4) 
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Where Rij is the power transmitted (W) from body i to body j, Ai represents the surface area 

(m2) of body i, Ji denotes the total radiative flux (Wm-2) leaving surface i, Jj is the total radiative 

flux (Wm-2) leaving surface j and Fij is the view factor from body i to body j and can be expressed 

as (Eq. 2.5)  

 
𝐹𝑖𝑗 =

𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝐴𝑖 𝑎𝑛𝑑 ℎ𝑖𝑡𝑡𝑖𝑛𝑔 𝐴𝑗

𝑇𝑜𝑡𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑐𝑖𝑛𝑔 𝐴𝑖
 

(2.5) 

For a certain temperature difference between two surfaces the radiation transmitted from one 

surface to another can be defined as (Eq. 2.6) 

 
𝑅𝑖𝑗 =

𝐴𝑖𝜀𝑖(𝜎𝑇𝑖
4 − 𝐽𝑖)

1 − 𝜀𝑖
 

(2.6) 

Where Ai is the thermal energy (W) leaving surface i, εi represents the emissivity (m2) of surface 

i, and σ is the Stefan Boltzmann constant with a value of 5.67×10−8 (W m−2 K−4). 

This means the radiation flux between two objects can be defined by the Stefan-Boltzmann 

Law (Eq. 2.7). 

 𝑅𝑖𝑗 = 𝐴𝑖 ε 𝑖σ (𝑇𝑖
4 − 𝑇𝑗

4) (2.7) 

Where Ti represents the temperature (K) of surface i, and Tj denotes the temperature (K) of surface 

j. 

As the problem is governed by the heat transfer equation (Eq. 2.1), the difference between 

the energy moving in and out of the system therefore determines the final temperature change. By 

combining all equations and boundary conditions, Eq. 2.1 solving for the overall energy balance 

can be rewritten as (Eq. 2.8) 

 −𝑘 𝛻𝑇 = ℎ(𝑇 − Tambient) + ε 𝑖σ (𝑇𝑖
4 − 𝑇𝑗

4) (2.8) 

The physical properties of the materials used in this study are summarized in Table 2.1, 

which is taken from the COMSOL material library. 

Table 2.1. Properties of materials used in the greenhouse microclimate simulation model. 

Model inputs 
Heat Capacity 

Jkg
-1

K
-1

 

Thermal conductivity 

Wm
-1

K
-1
 

Surface emissivity 

Glass of greenhouse 703 1.38 0.93 

Imager tower 1470 0.18 0.6 
Plant 3000 5.48 0.85 

Roof girders (aluminum) 900 201 0.3 

Ground (concrete) 880 1.8 0.94 
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2.2.3 Computation 

The simulation model was programmed in the COMSOL 5.2b (COMSOL Inc., Burlington, 

MA, USA), which is a cross-platform finite element analysis, solver and Multiphysics simulation 

software. COMSOL 5.2b includes four radiation modules; this study used the “Heat Transfer with 

Surface-to-Surface Radiation” module. In the application area, three equations (Eqs. 2.1, 2.2, 2.7) 

were applied to account for the heat transfer in the greenhouse including heat transfer in solids, 

heat transfer in fluid, and surface to face radiation (Eck et al., 2016).  Referring to Fig. 2.3, the 

initial boundary for the greenhouse was set to measured ambient air temperature (Frei, 2016). Eq. 

2.3 was used to set the flux boundary condition for both the inside and outside of the greenhouse. 

 

 

Fig. 2.3. The air flow inside and around house related with temperature and radiation. 

The domain was meshed with Lagrange triangular quadratic elements. Triangular elements 

were selected to allow for local mesh refinement (Fig. 2.4). With integration of elements, 

COMSOL computed the view factor with the finite element method as the backend. The 

simulations were all executed on a ThinkPad workstation P300 (Lenovo PC international, 

Morrisville, Morrisville, NC, USA) equipped with 16-gigabytes (GB) of random-access memory 

(RAM) and a 3.70 GHz Intel® Xeon™ E1270 processor.  
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Fig. 2.4. Greenhouse is divided into sub faces by meshing, with facets as triangles. 

2.2.4 Optimization for greenhouse conveyor movement based on simulation result 

Once the simulation results were obtained, the model data was used to optimize the 

movement of the conveyor. Initially, the simulation model calculated the temperature and radiation 

by assuming that all target positions were fixed. However, to incorporate the effect of the conveyor 

movement, the changing temperature and radiation over the movement were then calculated based 

on assumption on conveyor running time, break time, speed, and each plant’s initial position.   

Thirty-eight plant samples were distributed in the greenhouse (Fig. 2.5). Each plant was 

labeled and its position along the conveyor was marked. For instance, Plant 1 was set at 0 m, Plant 

2 was at 0.75 m, Plant 3 was at 1.5 m, and so on. The values of all coordinates were determined 

by their real positions in the model shown in Fig. 2.5. The conveyor running speed was set to be 

12 m/min; the time required to start and stop the conveyor was ignored in this study as they made 

up a small relative share of the total movement time. Since the initial position (X0) of each plant, 

speed of conveyor (v), and the direction of the conveyor were known, the time-based position (Xt) 

of the plant was calculated by the linear position function (Eq. 2.9).  

 𝑋𝑡 = 𝑣𝑡 + 𝑋0 (2.9) 
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Fig. 2.5. Layout of simulated plants in the greenhouse. 

The microclimate information regarding both temperature and radiation varied in the spatio-

temporal domain. The expressions of temperature and radiation could be written as temperature 

(Xt, t) and radiation (Xt, t), respectively. Once the target plant and running time were determined, 

the real-time position (Xt) of the plant was calculated using Eq. 2.9. The two plants closest to Xt, 

for each of 38 fixed positions were marked as X1 and X2. At the same time, the simulated 

temperature and radiation results were also obtained as T1(X1, t), T2(X2, t), R1(X1, t), and R2(X2, 

t).  The real time temperature T (Xt, t) and radiation R (Xt, t) of plant could then be calculated by 

the linear interpolation method (Eq. 2.10 and 2.11). 

 
(𝑋𝑡 , 𝑡) = 𝑅1(𝑋1, 𝑡) + (𝑋𝑡 − 𝑋1) ∗

𝑅2(𝑋2, 𝑡) − 𝑅1(𝑋1, 𝑡)

𝑋2 − 𝑋1
 

(2.10) 

 

 
𝑇(𝑋𝑡, 𝑡) = 𝑇1(𝑋1, 𝑡) + (𝑋𝑡 − 𝑋1) ∗

𝑇2(𝑋2, 𝑡) − 𝑇1(𝑋1, 𝑡)

𝑋2 − 𝑋1
 

(2.11) 

Table 2.2. Summary of running and break time for conveyor movement optimization 

Item 1 2 3 4 5 6 7 8 
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Running time 

(second) 
10 20 40 80 160 320 640 1280 

Break time 

(minute) 
0 1 2 4 8 16 32 64 

 

For both the running and break phases, eight different levels of movement frequencies and 

distances existed. For example, if a combination of 40 s running and 4 min break phase is selected, 

then the conveyor moves for 40 s followed by a 4 min rest period; the process is then repeated. 

This resulted in a total of 64 final combinations of the 8 x 8 step levels. For each combination, the 

accumulated radiation energy received by 38 plants was calculated by summing up R (Xt, t) from 

Eq. 2.10. Different possible combinations were compared to optimize energy efficiency, as 

expressed by the lowest coefficient of variation (Eq. 2.12) and running time ratio. 

 
Coefficient of variation (CV) =

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 
× 100 

(2.12) 

2.2.5 Measurements and validation 

To validate the simulated results, temperature and radiation data was collected from each 

pot with Xiaomi flower care sensors (Xiaomi Inc., Beijing, China). With embedded temperature 

and radiation sensors (Fig. 2.6a), the Xiaomi Flower Care Sensor (Model: HHCCJCY01HHCC) 

provided real-time temperature and light intensity recordings. As shown in Fig. 2.6b, the sensor 

was inserted into the soil of the pot, with actual plants when collecting temperature and radiation. 

To monitor the real microclimates distribution, there were 20 sensors randomly distributed in the 

greenhouse. All sensors were calibrated before the validation test by recording temperature and 

radiation measurements under the same environmental condition and adjusting the measurement 

biases between the sensors. The data was continuously collected for seven days from Aug 09, 2018 

to Sep 04, 2018 and logged at 1/60 Hz using a single-board Raspberry pi 3 computer (Raspberry 

Pi foundation, Cambridge, United Kingdom). 
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(a) (b) 

Fig. 2.6. (a). The layout of the Xiaomi Flower Care Sensor including temperature and radiation 

sensors; (b).  The sensor was inserted into the soil of the pot during data collection.   

2.3 Results and discussion 

By solving the combined heat transfer equation for energy balance, the simulation model 

developed in Section 2.2 enables a detailed analysis of the temperature and radiation change, and 

distributions caused by microclimates in the greenhouse. The analysis reveals significant 

differences between the environmental conditions that exist at various locations within the 

greenhouse. 

2.3.1 Simulated temperature and radiation    

The 3-D simulated radiation profiles for the greenhouse illustrates the spatio-temporal 

variation of the radiation (Fig. 2.7). As the sun rises from the east, Fig. 2.7a demonstrates that the 

east-facing parts of the greenhouse are much brighter, indicating they receive more radiation 

energy in the morning. Furthermore, Fig. 2.7a clearly shows a shadow oriented towards the west. 

At noon, due to the high quantity of solar radiation, the overall color of Fig. 2.7b is brighter. Fig. 

2.7c shows the radiation distribution at 6pm (just before sunset) with a shadow oriented towards 

the east due to the west-oriented sky. At 8pm, at the approach of night, the radiation in the 

greenhouse has become very weak.  

For more specific radiation distribution information, we selected five simulated plants (Fig. 

2.8a). These five samples were drawn from different locations in the greenhouse covering, solar 

radiation levels ranging from low to high.  The temporal distribution of the radiation for the 

selected five plants is plotted in Fig 2.8b, indicating that the plants under shadow received 
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relatively less radiation energy. For example, at 8am, Plant 1 was located in the northwestern 

corner in this greenhouse. Due to the imaging tower, it did not receive enough radiation energy 

(Fig. 2.8b). Conversely, at 6pm, Plant 4 fell under the shadow of the imaging tower. The complex 

structure of this greenhouse thus leads to nonuniform levels of radiation received by plants.   

 

  
(a) (b) 

  
(c) (d) 

Fig. 2.7. Simulated radiation (W/m2) at four different time points during a day: (a). 8am; (b). 

12pm; (c). 18pm; (d). 20pm. The radiation value is shown in grey-scale color legend.    
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(a) (b) 

Fig. 2.8. (a) Positions of five samples labeled from top view of greenhouse, (b) simulated 

radiation (W) of plant with the time (hour). The simulated radiation is calculated for the total 

integrated plant body surface. 

The 3-D simulated temperature profiles for the greenhouse are shown in Fig. 2.9, clearly 

indicating changes in the temperature changes over both time and space. In the morning, the overall 

temperature was relatively low (Fig. 2.9a). The east face of the greenhouse demonstrated a higher 

temperature due to the direct incident solar radiation in the morning. At noon (Fig. 2.9b) and in 

the afternoon (Fig. 2.9c), the temperature of the greenhouse was high. In some areas, like on the 

cement floor within the greenhouse, the temperature reached up to 45 ℃  due to its continuous 

exposure to the sunlight and the small heat capacity properties intrinsic to cement. 

  



 

 

40 

  
(a) (b) 

  
(c) (d) 

Fig. 2.9. Simulated temperature (°C) at four different time points during the day, (a) 8am, (b) 

12pm, (c) 18pm and (d) 20pm. The temperature value is shown in grey-scale color legend.    

Six simulated plants were chosen as an example from different locations covering 

temperatures ranging from low to high. As shown in Fig. 2.10a, six plants were chosen, whose 

temperature changes over time were extracted and plotted in Fig. 2.10b. In this simulation, the 

plant’s temperature was heavily affected by position, even within the same greenhouse. As shown 

in Table 2.3, plants displayed lower temperatures when they were exposed to the cooling wall from 

the north side of the greenhouse (Plant 3, 5 and 6).  Plants 2 and 4, which were blocked from the 

cooling wall by the imaging tower, obviously demonstrated higher temperatures. All the plants in 

Fig. 2.10b also showed a change in temperature profiles over time. They achieved their highest 

temperature points between 3 to 4 pm in the afternoon, as September is still in the summer and the 

hottest part of the day in summer occurs typically between 3:00 p.m. and 4:30 p.m. local time, 

depending on cloud cover and wind speed. The complex structure of this greenhouse led to 

nonuniform temperature distribution. This simulation did not consider plant evapotranspiration 

because the impact from the plant was assumed to be minor compared to the other factors such as 

sun radiation and ambient temperature. Meanwhile, the thermal properties of “wood” as parameter 

were used as inputs for the plant in the simulation model (taken from the COMSOL 5.2b material 

library), explaining why the simulated temperature reached as high as 45°C. We intended to 
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quantity the variation from the heterogenous environment in the greenhouse via this simulation, 

assuming its results successfully represented the effects of the environmental variances.   

 

 

 
(a) (b) 

Fig. 2.10. (a). Six sample positions labeled from top view of greenhouse; (b). Simulated 

temperature of plant with the time (hour). 

Table 2.3. The temperature ranges of the plants from the simulation model.  

Plants Range of simulated temperature (℃) within a day 

Plant 1 24.65 – 31.10 

Plant 2 22.85 – 43.08 

Plant 3 20.55 – 25.56 

Plant 4 22.59 – 39.94 

Plant 5 20.80 – 25.59 

Plant 6 20.30 – 25.59 

2.3.2 Model validation 

The greenhouse model was simulated using the assumptions of a sunny day and steady 

wind speed.  The inputs of the simulation model for the validation test was illustrated in Table 2.4. 

For validation purposes, we chose seven days from Sep 03, 2018 for the ground truth data 

collection, as the weather reflected these environmental assumptions. As described in the methods, 

the data was logged at 1/60 Hz by Xiaomi Flower Care Sensors resulting in one measurement per 

minute. In total, 1440 instantaneous data points were collected per day, accumulated from 

midnight-midnight of each day. 
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Table 2.4. The inputs of the simulation model for the validation test.  

Inputs for the simulation model Values 

Ambient temperature Hourly data from the local weather reports 

Sun radiation at solar noon 1000W/m2 

Fan ventilation speed 5m/s 

Cooling wall temperature 20℃ 

Atmosphere pressure 1 atm 

Humidity 50% 

 

For radiation, based on the collected data and simulated result, we calculated the diurnal 

accumulated radiation value and compared the simulated versus the measured radiance. From this 

point of view, the “accumulated radiation” and “accumulated temperature” represented suitable 

choices, that were also easily compared. As shown in Fig. 2.11, 20 samples were employed that 

covered radiation ranges ranging from low to high. The x-axis represents the simulated radiation 

from software COMSOL 5.2b, in which the original unit is J. Therefore, simulated accumulated 

radiation was measured in J/day. Conversely, the y-axis denotes the radiation measured by Xiaomi 

Flower Care sensor. The results of the linear regression demonstrated a significant correlation 

between measured and simulated radiation, with a R2 of 0.9053.   

  

Fig. 2.11. Accumulated radiation results: actual versus simulated measurements. 

The “accumulated temperature” represents the “integration of temperature over time”. This 

study used this variable to evaluate the heat treatment modeled after “the accumulate of radiation”. 
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This simulation model mainly served as a way to predict the heterogenous environment 

(temperature and radiation) in the greenhouse. Therefore, we measured “accumulated 

temperature”, or the accumulated impact from the temperature on the plants, by summing the 

measured temperature data points. The accumulated heat based on both the prediction as well as 

ground truth measurement from the 20 samples was determined for the same time period. The R2 

between the measured and predicted data was 0.8819 (Fig. 2.12). This result shows that the 

accumulated heat based on temperature can be quantified using the simulation model, including 

the variation in different spots.  

  

Fig. 2.12. Accumulated temperature results: actual versus simulated measurements. 

2.3.3 Use model to drive movement of the conveyor 

The simulation result data was used to compare 64 different combinations of running and 

break time settings. The goal was to find “smart” conveyor “run” and “stop” time intervals, that 

could mostly eliminate the microclimate effect while also significantly reducing the conveyor 

running cost. Fig. 2.13 shows the microclimate variance in each case as the coefficient of variation 

(CV) of accumulated radiation energy. The table is colored as a gray scale heatmap to clearly 

illustrate the different CVs for each of the 64 setting combinations. Generally, plants in the 

greenhouse receive more uniform radiation energy with a longer running time and shorter break 

time; for the same break time, CV decreases when running time increases, since a longer moving 

distance should help eliminate the microclimate effect; conversely, under the condition of the same 
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running time, CVs increase when break time do as well, as lower moving frequency result in a 

larger impact from microclimates on the plants. It should be noted that 640s running time worked 

fairly well regardless of break time. It might be because 640s of running time nearly aligned with 

some near symmetrical movement of pots; a full loop of the conveyor movement took around 640s.  

To indicate the uniformity of radiations, we assumed CVs larger than 1 to be high variance 

whereas those with CVs lower than 1 were considered low variance. After filtering all low-

variance cases, the optimal decision was selected by choosing the combination that expended the 

least energy. For example, shifting from the original setting of continuous operation to a new 

setting of “10s on, 8 min off” would result in the use of 2% of the original energy (98% savings) 

while still keeping the CV low at 0.91. This choice would thus allow the avoidance of unnecessary 

conveyor movement.  

 

   

Fig. 2.13. Coefficient of variation (CV) of the simulated radiation received by plants from 

different running and break time combinations for conveyor movement optimization 

2.4 Conclusions 

A numerical greenhouse temperature and radiation simulation model was developed for the 

purpose of greenhouse microclimate control.  The model successfully predicted temperature and 

radiation distributions over time and space in Purdue University’s Lily 13-4 greenhouse. By 
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applying the simulation results in the optimization of conveyor system movement in Lily 13-4, 

this study showed new insights into how to quantitatively use simulation data to minimize the 

greenhouse microclimates. The proposed model was validated by comparing the simulated 

radiation and heat result with ground truth measurements from temperature and light sensors 

distributed in the greenhouse. The squared correlation coefficient between prediction and 

measurement was 0.9053 for accumulated light radiation and 0.8819 for accumulated heat.  

As an application, the model’s results demonstrated its potential for optimizing greenhouse 

pot movements by choosing the lowest cost with the same ability to mitigate the microclimate 

problem. It will greatly benefit the greenhouses that currently possess automated conveyor systems, 

which have been developed and applied in many plant breeding studies (Ge et al., 2016; Gehan et 

al., 2017; Golzarian et al., 2011). In Purdue’s Lilly 13-4 greenhouse case, shifting from the original 

setting with continuous running to the optimal setting “10s on and 8 min off” suggested by the 

model could save 98% of the original energy required for the conveyor system. In situations where 

pot movements are impractical, this modeling method can still aid researchers in quantitatively 

estimating the impact of microclimates, to distinguish signal from noise when analyzing the plant 

growth measurement data.  
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 REMOVAL OF GREENHOUSE MICROCLIMATE 

HETEROGENEITY WITH A CONVEYOR SYSTEM FOR INDOOR 

PHENOTYPING 

Greenhouse facilities represent a prevalent tool in contemporary crop research, attractive for their 

ability to achieve controlled plant growth in all seasons and with more uniform environments than 

field experiments. However, the environment within the same greenhouse retains heterogeneous; 

such divergent regions are referred to as microclimates. The nonuniform distributions of 

temperature and radiation reflected by microclimates create problems that impact the growth, 

production, and quality of the crops. To address these issues, this study equipped a traditional 

greenhouse with a conveyor system controlled by a computer algorithm to expose plants to more 

equal amounts of heat and radiation. Using a simulation analysis of the greenhouse microclimates, 

the algorithm minimized the conveyor motion while exposing all plants to a nearly equivalent 

accumulation of heat and radiation.  In a traditional greenhouse as well as another outfitted with 

the novel conveyor system, one maize genotype was replicated 50 times in each facility and 

subjected to simultaneous drought and well-watered treatments. The plants were scanned with 

VNIR hyperspectral cameras from both the top and side views. The results showed that the 

measured plant phenotyping features within both treatment groups demonstrated a significantly 

lower variance in the experiment performed in the greenhouse equipped with the conveyor system 

(p < .05). The findings also indicated the greenhouse equipped with the conveyor system displayed 

a better experimental performance than the traditional one; the well-watered and drought stressed 

plants showed statistically stronger differences (p < .05) in projected leaf area, Relative Water 

Content (RWC), Soil Plant Analysis Development (SPAD), as well as 21 other commonly used 

plant indices. These findings reveal that the novel conveyor greenhouse phenotyping mode 

demonstrated a better performance with lower plant variances compared to the conventional 

greenhouses. 

3.1 Introduction 

Modern plant breeding efforts depend on a combination of genotypic and phenotypic data.  

Developments in sequencing technology have reduced the time and cost required to generate large 

amounts of genotypic data. However, the volume of plant phenotypic data has not increased at the 
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same rate due to the high cost of labor associated with collecting it, thus becoming the limiting 

factor in genetic improvement efforts (Fiorani and Schurr, 2013; Houle et al., 2010; Ribaut and 

Ragot, 2019).  Meanwhile, conventional field phenotyping is labor-intensive and time-consuming, 

and therefore automated greenhouse platforms demonstrate the potential to increase the accuracy 

and quality of plant phenotyping data (Li et al., 2014; Peirone et al., 2018).  

Greenhouse facilities are more attractive than ever as a crop research method due to the 

greater control they possess over the generation of more uniform environments and therefore the 

success of controlled plant growth compared to field tests (Vásquez et al., 2015). Equipped with 

advanced imaging systems for high-throughput plant phenotyping, greenhouses have been used to 

assess many traits. Greenhouses are often used to appraise abiotic stresses such as drought (Causse 

et al., 2018) and salt tolerance (Lee et al., 2004), biotic stresses such as disease resistance (Miklas 

et al., 2019; Stone et al., 2010), qualitative traits such as seed dormancy (Torada et al., 2005), and 

biological processes such as photosynthesis (Herve et al., 2001). Greenhouses have also been used 

to study advancements in crop improvement techniques, including varietal selection methods 

(Hickey et al., 2017; Jannink et al., 2010). Moreover, greenhouses are employed for trait 

introgression in conjunction with marker assisted selection (MAS) (Prasad et al., 2006) in place of 

off-season nurseries (Bassi et al., 2015), rapid-generation advancement (Tanaka et al., 2016), and 

early-generation selections (Glenn et al., 2017). However, the within-greenhouse environment,  

often referred to as a “microclimate”, remains heterogeneous (Alain, 1989). The nonuniform 

distributions of temperature, relative humidity, carbon dioxide concentration, and radiation caused 

by the differences between microclimates create disparate impacts on the growth, production, and 

quality of the crops.  

Modern greenhouses are equipped with ambient control systems to optimize plants’ growing 

environments. However, these control systems remain unsatisfactory. For example, the 

temperature in greenhouse air is monitored at a singular point that may not be representative of all 

points within the environment (Körner et al., 2007). Moreover, because heat transfer disperses 

within environments at variable rates, crop temperature frequently does not equal greenhouse air 

temperature. To enable uniform growth conditions for the plants, scientists have designed different 

greenhouses to diminish the microclimate impacts. One study examined the influence of a 

whitened greenhouse roof on microclimates during the summer in a greenhouse located on the 

eastern coast of Greece (Baille et al., 2001). It successfully reduced the nonuniformity from the 



 

 

48 

outside environment, but failed to account for the internal heterogenous environmental impacts 

within greenhouses on the plants.  

Brien (2013) described a greenhouse containing plants on conveyor systems to account for 

variations in the microclimate. The strategy of cycling plants through greenhouse locations replies 

on the assumption that plants experience uniform growth conditions when spending an equal 

amount of time in each microclimate (Brien et al., 2013). However, this shuffle of plants was done 

at the lane level. Groups of plants sitting on the same lane were moved around together, but the 

microclimate impacts within the lane remained. For example, plants in the middle of the lane are 

higher than the plants at the edge. Similar automatic greenhouses with conveyor systems have been 

developed and applied in many plant breeding studies (Ge et al., 2016; Gehan et al., 2017; 

Golzarian et al., 2011).  No greenhouse facility has continuously moved the plants on an individual 

plant level to different locations to address the microclimate issues during their entire period of 

growth.  

Recent advances in conveyor-based automatic phenotyping greenhouses enable relocating 

the plants during the indoor experiment. In these facilities, the conveyor is used for two purposes 

simultaneously: (1) shuffling plants to remove microclimate effects and (2) transferring plants to 

the imager. In all the previously existing facilities of this type, plants are moved with simple 

empirical operation scenarios (Ge et al., 2016; Gehan et al., 2017; Golzarian et al., 2011). It has 

rarely been explored to optimize the conveyor movement for efficiently relocating plants with 

minimum conveyor movement cost. This chapter introduces the development of a new 

phenotyping greenhouse at Purdue University with a smartly controlled conveyor system to shuffle 

the plants for equal exposure to temperature and radiation conditions while minimizing the cost of 

conveyor movement. There were three major objectives of this work: 

1. Design and construct a greenhouse with an automated, high-throughput imaging system 

and automatic conveyor system. 

2. Apply environmental modeling approach to optimize the conveyor movement to equally 

expose the plants to heat and radiation conditions while minimizing the cost of 

movement. 

3. Evaluate the performance of optimized plants movement solution with a comparison 

plant assay test. 
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3.2 Materials and methods 

3.2.1 High throughput imaging greenhouse with conveyor system 

To control the microclimate issues, a conveyor system was constructed in a high-

throughput imaging greenhouse at Purdue University shown in Fig. 3.1. The facility consists of 

two major parts: (a) the conveyor system and (b) the hyperspectral imaging system. The conveyor 

system addresses issues of microclimate variation. Plants are kept on the conveyor system for the 

entire growing cycle, which should, in theory, expose them to similar amounts of heat and radiation. 

The hyperspectral imaging system (Fig. 3.2) includes an imaging tower with Middleton Spectral 

Vision MSV 500 cameras that accommodates plants up to 1.5m tall. These cameras are push-

broom sensors, which scan top-view and side-view hyperspectral images from 370 to 1030 

nanometers with a spectral resolution of 1.3 nanometers.  Inside the imaging tower, eight studio 

halogen lamps provide illumination. The imaging tower automatically opens and closes its doors 

to accept sample plants and exclude ambient light. The imaging time ranges from approximately 

1-2 mins depending on plant size. The plants are automatically rotated on the imaging platform, 

so the widest plane of the plant faces the side-view camera. The whole system is fully automated 

in regard to plant imaging, watering, and fertilizing.    

 

  

Fig. 3.1. Purdue Lily Greenhouse with an automated, high-throughput imaging system and a 

belt-conveyor-based plant transportation system. 



 

 

50 

 
(a) 

 
(b) 

Fig. 3.2. High-throughput hyperspectral imaging system with belt conveyor system: (a). The 

layout of the conveyor system and the direction of plant movement; (b). A high-throughput 

hyperspectral imager tower. 

3.2.2 Microclimate simulation model to optimize conveyor movement 

To optimize the environmental distribution on plants while minimizing the conveyor 

operation cost, a numerical greenhouse temperature and radiation simulation model was developed 

for greenhouse microclimate control (Ma et al., 2019b). With an explicit finite element method 

(Korioth and Versluis, 1997), the radiative heat exchange between greenhouse interior surfaces 

(such as convective heat exchange within indoor air, heat exhaust resulting from the wet wall 
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cooling system, and the effect of sunlight radiation) can be readily associated with its 

corresponding elements. The change in the greenhouse temperature distribution and radiation 

absorption on the surface of the plant can be modeled with equations for heat transfer and radiation 

energy (Fig. 3.3). 

 −𝑘 𝛻𝑇 = ℎ(𝑇 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) + 𝜀 𝑖𝜎 (𝑇𝑖
4 − 𝑇𝑗

4) (3.1) 

Where Ti is the temperature (K) of surface i, Tj denotes the temperature (K) of surface j, εi 

represents the emissivity (m2) of surface i, and σ is the Stefan Boltzmann constant with a value of 

5.67×10−8 (W m−2 K−4). 

By solving the overall energy balance in the greenhouse (Eq. 3.1), the simulation was 

explored to find the optimized conveyor “run” and “break” time intervals, so that the microclimate 

effect is still mostly eliminated while the conveyor running cost is significantly reduced. 

 

 

Fig. 3.3. : Overall greenhouse geometry: the air flow inside and around house related with 

temperature and radiation. 

The numerical simulation results from the greenhouse microclimate control model 

determined the optimal pot movement frequency and distance (Ma et al., 2019b). With appropriate 

assumptions, the model output suggests shifting from the original, continuously running setting to 

the optimal setting of “30s running time and 5min break time”, which implies a great deal of energy 

from the conveyor system can be saved. The model’s suggested shuffling pattern can remove most 

microclimate variance while reducing huge efforts (~90%) to shuffle plants compared with non-
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stop movement. Though the simulation result results from a sample calculation, it provides a 

preliminary suggestion about how to move the plant on the conveyor system.  

3.2.3 Comparison experiment design 

To test if the conveyor system could eliminate the microclimate and enable a more uniform 

plant growth environment, a comparison experiment occurred at Purdue University (latitude 

40.4259◦ N, longitude 86.9081◦ W) in the summer of 2017. Maize hybrid B73xMo17 was grown 

in a Lily greenhouse with a traditional setup and in a room that was outfitted with a high-

throughput imager with conveyor system (Fig. 3.4). In the comparison experiment, each room 

housed 100 pots seeded with a custom soil media mix (Fig. 3.4). The custom soil media mix was 

composed of equal amount of topsoil, sand, and Turface Athletics MVP.  Topsoil and sand were 

combined to provide low water holding capacities and low nutrient content to the substrate.  The 

Turface is a calcined, non-swelling illite clay with 60% minimum amorphous silica that also 

includes 5% or less of iron oxide, aluminum oxide, calcium oxide, magnesium oxide, potassium 

oxide, sodium oxide, and titanium oxide with strong cation exchange capacity.  In the traditional 

greenhouse, the pots were arranged in three separate rows with 33-34 replicates each running in a 

north to south orientation. These plants were allocated in a randomized block design (Sharma et 

al., 1999). Each pot was irrigated with 200ml of water every morning.  Inside the conveyor system, 

the plants were grown on the conveyor, which ran for 30s, followed by a five-minute break. The 

automatic water station on the conveyor distributed 200ml water to each plant every morning.  The 

air temperature of both greenhouses was set to remain within 23-29°C, and supplemental lighting 

was on 12 hours a day.  

Beginning at plant stage V6, two water treatments were given in both greenhouses: 50 pots 

of maize were kept well-watered, while the other 50 pots of maize were placed under drought 

stress conditions.  Water treatments were applied for three days before the final sampling (imaging 

collection and ground truth measurements), at which point the drought stress response became 

apparent. 
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(a) 

   
(b) 

Fig. 3.4. The growth of maize plants in two greenhouses at different leaf stages: (a). Traditional 

greenhouse; (b). Conveyor greenhouse. 

3.2.4 Plant imaging collection and analysis 

All the hyperspectral images of the plants were collected with the hyperspectral imager in 

the conveyor greenhouse. Once collected, the hyperspectral images were processed using a 

segmentation procedure with convolution methodology (Zhang et al., 2019a). A vector of 

sequential integers ranging from −20 to 20 was multiplied by the reflectance intensity vector from 

the red-edge region (680–720 nm). By choosing threshold 7 as the boundary between plant tissue 

and the background, the maize was successfully segmented. Fig. 3.5 illustrates the top-view of two 

maize plants that each experienced three days of one of the two the water treatments, whose results 

were obviously reflected by their morphology. The well-watered plant in Fig. 3.5a is clearly larger 

with flat leaves, whereas the drought-stressed plant in Fig. 3.5b has withered, curling leaves.        

Using hyperspectral spectra, 21 different plant indices were calculated including NDVI, 

Carte1, Datt1, GNDVI, MCARI, MTVI1, NDCI, NDVI705, NVI, OSAVI, PRI, RDVI, REP, 
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RI1dB, SPVI, SPVI2, SR_675_700, TCARI, TVI, VOG1 and mNDVI705 (Liang et al., 2015).  

Using the segmented binary images, morphological features were also obtained, including 

projected leaf area, perimeter, major axis length, minor axis length, and eccentricity. 

  
(a) 

  
(b) 

Fig. 3.5. The top-view images of maize in the hyperspectral imaging tower and the segmented 

binary images: (a). Well-watered; (b). Drought. 

3.2.5 Ground truth measurements 

Ground truth measurements, including SPAD and RWC of plants, were also collected. All 

plants were sampled for three SPAD measurements on the top-collared leaf by using the SPAD-

502Plus meter (Konica Minolta Sensing Americas, Inc., USA); the average of the three provided 

the final measurement. The plant was then imaged in the hyperspectral imaging tower including 

both top-view and side-view camera angles. After imaging, a small section (2.5 cm x 5.0 cm) of 

the top-collared leaf was taken to measure relative water content (Turner, 1981).  On the day of 

sampling, the fresh weight of the leaf sample was measured, and the leaf tissue was added to vials 

full of deionized water to obtain turgid weights. These samples were then dried over a three-day 
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period in a 90 °F dryer; their dry weights were then measured and their RWC computed using the 

Eq. 3.2:  

  𝑅𝑊𝐶 = [(𝐹𝑊 –  𝐷𝑊) / (𝑇𝑊 –  𝐷𝑊)] ∗  100%.  (3.2) 

Where FW denotes fresh weight, DW represents dry weight, and TW is the turgid weight.  

3.2.6 Statistical analysis 

A two-tailed t-test was conducted to evaluate the differences in projected leaf area, RWC, 

SPAD measurements, and results from 21 other plant indices between the well-watered and the 

drought groups in both greenhouses. As performed in P-Value Precision and Reproducibility 

(Boos and Stefanski, 2011), the -log10(p-value) generated from comparing drought-stressed and 

well-watered plant indices within experiment were used to compare against the experiment 

performed in their greenhouse counterpart.  

Levene’s test was used to analyze the homogeneity of variance across groups to determine 

whether variability significantly changed between treatment groups. Levene’s Test for Equality of 

Variances is commonly employed to measure shared variance between populations (Schultz, 1985).  

Levene’s test was performed using the statistical programming language R (R Core Team, 2016) 

with the “cars” package. 

3.2.7 Software and computation 

In this study, the greenhouse simulation model was programmed in the COMSOL 5.2b 

(COMSOL Inc., Burlington, MA, USA), a cross-platform finite element analysis solver and 

multiphysics simulation software. All the simulations were executed on a ThinkPad workstation 

P300 (Lenovo PC international, Morrisville, Morrisville, NC, USA) equipped with 16-gigabytes 

(GB) of random-access memory (RAM) and a 3.70 GHz Intel® Xeon™ E1270 processor. In 

addition, Matlab R2016a software (The MathWorks Inc., Natick, MA, USA) was used to develop 

the image processing algorithms. The vegetative indices were computed in the Python version 

3.7.2 software environment (Python Software Foundation, 2018). All the Matlab and Python 

computations were run on a HP 17 G3 Mobile Workstation (Hewlett-Packard, Palo Alto, CA, USA) 

equipped with 64-gigabytes (GB) of random-access memory (RAM) and a 2.70 GHz Intel® 

Core™ i7-6820HQ processor.   
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3.3 Results and discussions 

3.3.1 Projected Leaf Area, RWC and SPAD measurements   

This study first utilized pixel-based projected leaf area and ground truth measurements 

including RWC and SPAD as the major indicators. For example, Fig. 3.6 illustrates a 

straightforward improvement of the conveyor greenhouse on the tradition one: the NDVI 

measurements of plants within each treatment group showed much better uniformity and lower 

variance. Furthermore, Table 3.1 also summarizes pixel-based projected leaf area and ground truth 

measurements. The well-watered and drought-stress treatments evidently succeeded in both 

greenhouses. Compared with the drought group, the well-watered group showed a larger Projected 

Leaf Area and higher RWC and SPAD measurements. Meanwhile, the results from the traditional 

greenhouse demonstrated a higher variance within both treatment groups, with larger standard 

deviations. This held particularly true for the drought-stressed group, in which this variance was 

relatively large, which would reduce the signal-to-noise ratio during analysis. The traditional 

greenhouse environment was heterogeneous, and the non-uniform distributions of temperature and 

radiation led to disparate impacts on the growth, production, and quality of the plants. Conversely, 

in the conveyor greenhouse, the plants were relocated to different positions throughout the whole 

experiment. By exposing plants to more equal environments, both treatment groups demonstrated 

lower variances.  

    
(a) (b) 

Fig. 3.6. NDVI of plants from different water treatments: (a). Traditional greenhouse; (b). 

Conveyor greenhouse. 
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Table 3.1. The mean and standard deviation of projected leaf area, RWC and SPAD 

measurements   

Measurements Traditional greenhouse Conveyor greenhouse  

Projected Leaf Area (Well-watered) (pixel) 2.55 × 105 ± 3.89 × 104 1.65 × 105 ± 1.54 × 104 

RWC (Well-watered) (%) 96.15±1.07 94.36±1.70 

SPAD (Well-watered) 48.99 ±6.41 42.35 ±3.78 

Projected Leaf Area (Drought) (pixel) 1.82 × 105 ± 4.57 × 104 9.96 × 104 ± 8.25 × 103 

RWC (Drought) (%) 78.43±10.48 70.22±4.80 

SPAD (Drought) 43.29 ± 5.51 33.93±3.73 

 

 

To further illustrate the experimental improvement from a uniform growth environment, 

Fig. 3.7, 3.8, and 3.9 illustrate the estimated probability density distribution of Projected Leaf Area, 

RWC and SPAD measurements from both traditional and conveyor greenhouses, respectively. The 

estimated probability density distribution was calculated with the kernel density estimate (KDE) 

method (Kristan et al., 2011). For the traditional greenhouse, even though the results showed that 

the well-water group resulted in larger Projected Leaf Area and higher RWC and SPAD 

measurements on average, the measured data of two groups still overlapped significantly. Due to 

the significant overlap between the two groups (Fig 3.7a, 3.8a, and 3.9a), determining a cutoff line 

to separate the well-watered and drought groups would prove difficult, leading to severe Type 1 

and Type 2 errors in classifying the maize plants. Conversely, the data measured in the conveyor 

greenhouse displayed lower variance, with a more enhanced signal from water treatments. Clear 

gaps between existed between the well-watered and drought groups, determining a cutoff threshold 

to separate the two groups was easy (Fig 3.7b, 3.8b, and 3.9b).  
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(a) (b) 

Fig. 3.7. The probability density of Projected Leaf Area of maize from both treatments: (a). 

Traditional greenhouse; (b). Conveyor greenhouse. 

 

  
(a) (b) 

Fig. 3.8. The probability density of measured relative water content (RWC) of maize from both 

treatments: (a). Traditional greenhouse; (b). Conveyor greenhouse. 

 

  
(a) (b) 

Fig. 3.9. The probability density of SPAD measurements of maize from both treatments: (a). 

Traditional greenhouse; (b). Conveyor greenhouse. 
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3.3.2 t-test for projected leaf area, RWC, SPAD measurements and plant indices 

To quantify the differences between the well-watered and drought-stressed groups, we 

conducted two-tailed t-tests and computed -log10(p-values) for the projected leaf area (pixel), RWC, 

SPAD measurements, and 21 plant indices, respectively. The statistical results are summarized in 

Table 3.2. Larger -log10 (p-values) result in smaller p-values, indicating a larger significance in the 

difference between the two groups. Meanwhile, we selected -log(p-value) 1.3, which equals a p-

value of 0.05, as the critical value. Therefore, any plant indices’ p-values that equaled less than 1.3 

after the negative log transformation for both traditional and conveyor greenhouses were not 

considered in the comparison test. This transformation illustrated that differences between the two 

groups were more significant in the conveyor greenhouse, particularly for the GNDVI, NDCI and 

PRI measurements. These measurements did not significantly differ between treatments in the 

traditional greenhouse (-log10(p-value) =12.27, 2.28 and 23.76).  In summary, compared with the 

traditional greenhouse, the greenhouse equipped with the conveyor system displayed a stronger 

experimental performance through lower p-values for predicting measurements like RWC and 

SPAD and hyperspectral imaging results (projected leaf area and plant indices). 

3.3.3 Variance analysis for Projected Leaf Area, RWC, SPAD measurements and plant 

indices 

To determine whether variability significantly changed between treatment groups, 

Levene’s Test was used to analyze the homogeneity of variance across groups. Its results showed 

that plant variance was significantly higher in the traditional greenhouse compared to the conveyor 

greenhouse (p < .05) within both well-watered and drought treatments.  

For the well-watered treatment measurements, projected leaf area (pixel), RWC, SPAD, 

and all plant indices excluding NDVI705 were found to display statistically different (p < .05) 

variances when the traditional greenhouse and the greenhouse equipped with the conveyor system 

were compared. For the drought treatment measurements, projected leaf area (pixel), RWC, SPAD, 

and all plant indices excluding EVI were found to demonstrate statistically different variances (p 

< .05) when comparing the traditional greenhouse and the greenhouse equipped with the conveyor 

system.  

In addition to the homogeneity of variance tests, more detailed results examining the 

variance of each variable are shown in Table 3.3.  For the well-watered group, all variables except 
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for RWC and NDVI displayed lower variances in the conveyor greenhouse. For the drought group, 

all the variables demonstrated lower variances in the conveyor greenhouse. Once the variance in 

plant phenotyping feature was reduced, the two groups were more easily separated for better 

experimental performance. To conclude, this conveyor greenhouse phenotyping mode showed 

stronger hyperspectral phenotyping experimental performance with lower plant variances within 

both the well-watered and drought treatment groups compared to the conventional greenhouses. 
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Table 3.2. -Log10 (P-value) of Projected Leaf Area, RWC and vegetative indices for plant status estimation between the well-watered 

and drought plant groups in the conveyor and traditional greenhouses. 

 

Phenotyping features Formulation References With conveyor Traditional 

Projected Leaf Area (pixel) Top-view projected leaf area (Ge et al., 2016) 44.71 12.60 

RWC (%) [(FW – DW) / (TW – DW)] * 100 (Turner, 1981) 53.69 19.42 

SPAD SPAD-502Plus meter Konica Minolta Sensing Americas, Inc. 18.03 5.08 

NDVI (R800-R650)/(R800+R650) (Schafleitner et al., 2007) 25.86 14.25 

Carte1 R695/R420 (Carter, 1994) 0.33 0.66 

Datt1 (R850-R710)/(R850-R680) (Datt, 1999) 7.57 2.80 

EVI 2.5[(R800-R670)/(R800-6R670-7.5R475+1)] (Huete et al., 1994) 23.70 7.03 

GNDVI (R750-R550)/(R750+R550) (Gitelson et al., 1996) 12.27 0.79 

MCARI [(R700-R670)-0.2(R750-R550)] (R700/R670) (Daughtry et al., 2000) 60.50 12.36 

MTVI1 1.2[1.2(R800-R550)-2.5(R670-R550)] (Haboudane, 2004) 35.56 4.19 

NDCI (R762-R527)/(R762+R527) (Marshak et al., 2000) 2.28 0.35 

NDVI705 (R750-R705)/(R750+R705) (Gitelson and Merzlyak, 1994) 1.29 0.24 

NVI (R777-R747)/R673 (Gupta, 2001) 20.46 9.33 

OSAVI (1+0.16) (R800-R670)/(R800+R670+0.16) (Rondeaux et al., 1996) 33.82 12.01 

PRI (R531-R570)/(R531+R570) (Gamon et al, 1992) 23.76 0.69 

RDVI (𝑅800 − 𝑅670)/√(𝑅800 + 𝑅670) (Roujean and Breon, 1995) 32.60 4.62 

REP 700+40[(R670+R780)/2-R700]/(R740-R700) (Clevers, 1994) 60.66 17.32 

RI1dB R735/R720 (Gupta et al., 2003) 36.08 10.72 

SPVI 0.4*3.7(R800-R670)-1.2|R550-R670| (Cho et al., 2011) 16.07 2.24 

SR [675,700] R675/R700 (Chappelle et al., 1992) 49.79 13.36 

TCARI 3[(R700-R670)-0.2(R700-R550) (R700/R670)] (Haboudane, Miller, 2002) 59.69 9.85 

TVI 0.5[120(R750-R550)]-2.5(R670-R550) (Broge and Leblanc, 2001) 18.18 2.39 

VOG1 R740/R720 (Vogelmann et al., 1993) 41.24 12.34 

mNDVI705 (R750-R705)/(R750+R705-2R445) (Datt, 1999) 36.64 5.18 
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Table 3.3. Standard deviation of Projected Leaf Area, RWC and vegetative indices for plant 

status estimation of the well-watered and drought plant groups in the conveyor and traditional 

greenhouses. 

Phenotyping features 
Well-watered Drought 

With conveyor Traditional With conveyor Traditional 

Projected Leaf Area (pixel) 1.54E+04 3.89E+04 8.25E+03 4.57E+04 

RWC (%) 1.70E+00 1.07E+00 4.80E00 1.05E+01 

SPAD 3.80E+00 6.41E+00 3.73E+00 5.51E+00 

NDVI 5.87E-03 7.6E-03 1.26E-02 1.70E-02 

Carte1 2.15E-04 1.04E-02 4.71E-04 9.12E-03 

Datt1 4.45E-05 4.14E-04 1.01E-04 4.03E-04 

EVI 2.49E-01 3.84E-01 1.99E-01 4.28E-01 

GNDVI 3.05E-05 1.61E-04 8.18E-05 2.21E-04 

MCARI 1.65E-04 2.25E-03 8.57E-05 2.34E-03 

MTVI1 5.73E-03 1.97E-01 3.22E-03 1.49E-01 

NDCI 3.47E-05 2.03E-04 8.26E-05 2.49E-04 

NDVI705 3.11E-05 1.07E-04 9.93E-05 1.47E-04 

NVI 5.90E-04 3.25E-03 8.59E-04 5.40E-03 

OSAVI 6.34E-05 1.30E-04 1.59E-04 3.40E-04 

PRI 3.13E-06 1.35E-04 2.05E-05 1.53E-04 

RDVI 3.98E-04 7.20E-03 2.97E-04 6.19E-03 

REP 2.06E-02 7.32E-02 7.29E-02 6.73E-01 

RI1dB 7.92E-05 3.44E-04 2.41E-04 9.33E-04 

SPVI 3.33E-03 1.32E-01 2.27E-03 1.08E-01 

SR_675_700 9.43E-05 3.11E-04 2.80E-04 9.53E-04 

TCARI 4.17E-04 9.08E-03 2.08E-04 7.91E-03 

TVI 4.07E+00 2.09E+02 2.95E+00 1.71E+02 

VOG1 1.20E-04 5.24E-04 3.64E-04 1.74E-03 

mNDVI705 3.38E-04 2.01E-03 4.46E-04 3.05E-03 



 

 

63 

3.4 Conclusions 

In this study, a novel phenotyping greenhouse facility was designed and built with an 

automated, high-throughput imaging system and a belt-based plant conveyor. With the conveyor 

system controlled by the computer algorithm, plants were relocated in the greenhouse throughout 

the experiment. This system enabled uniform growth conditions because plants spent an equal 

amount of time in each microclimate, at a low cost of conveyor movement. A comparison test was 

performed in which 50 maize plants were subjected to drought and well-watered treatments 

respectively in both a neighboring traditional greenhouse and the novel greenhouse with the 

conveyor system. The results showed that variance of the phenotyping feature measurements 

among the plants in the conveyor greenhouse fell significantly (by up to 83% in Projected Leaf 

Area, for example) when compared with the traditional greenhouse. The findings also indicated 

the greenhouse equipped with the conveyor system demonstrated a better experimental 

performance with more significant differences between the two treatments (drought and well-

watered) for Projected Leaf Area, RWC, SPAD, and plant indices.  
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 MODELING OF DIURNAL CHANGES IN AERIAL 

CROP IMAGES 

Aerial remote sensing technologies have been widely applied in field crop phenotyping.  However, 

the quality of current remote sensing data suffers from significant diurnal variances. The severity 

of the diurnal issue has been reported in various plant phenotyping studies over the last four 

decades, but limited studies exist that model the diurnal changing patterns so people can precisely 

predict the level of diurnal effects. To comprehensively investigate the diurnal variability, 

collecting time-series field images with a very high sampling frequency (normally one sample per 

15 minutes) was necessary. In 2019, Purdue agricultural engineers deployed their first field visible-

to-near-infrared (VNIR) hyperspectral gantry platform, which can repetitively image the same 

field plots every 2.5 minutes. This gantry and image equipment collected 8631 hyperspectral 

images of two genotypes of corn plants from vegetative stage V4 to reproductive stage R1 in the 

2019 growing season. The analysis of these images showed that although almost all the image-

derived phenotyping features vary significantly throughout the day, these changes follow stable 

patterns. This allows the prediction of the imaging drifts by modeling the changing patterns. This 

paper reports detailed diurnal changing patterns for several selected plant phenotyping features 

such as Normalized Difference Vegetation Index (NDVI), Relative Water Content (RWC), and 

single spectrum bands. For example, NDVI showed a repeatable V-shaped diurnal pattern, which 

linearly drops by 0.012 per hour before the highest sun angle and increases thereafter by 0.010 per 

hour. The different diurnal changing patterns in various nitrogen stress treatments, genotypes, and 

leaf stages were also compared and discussed. With the modeling results of this work, remote 

sensing users will be able to more precisely estimate the deviation or change in crop feature 

predictions caused by the specific imaging time of the day. This will aid researchers in deciding 

upon an acceptable imaging time window during a day. It can also be used to correct/compensate 

the remote sensing results considering the time effect. 

4.1 Introduction 

Modern plant breeding efforts depend on phenotypic data to select high-yield and stress-

tolerant plants quickly and efficiently (Fiorani and Schurr, 2013; Houle et al., 2010). Ag remote 
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sensing technologies have been developing rapidly for many years. Currently, field phenotyping 

activities have been performed with satellites, airborne platforms (manned and unmanned), and 

ground-based vehicles (Li et al., 2014; Rehman et al., 2019). Various sensors such as RGB (Red-

Green-Blue), hyperspectral and thermal cameras are carried by these platforms to take images of 

the crop field. These technologies have proven effective in various Ag remote sensing projects (Li 

et al., 2014; Wang et al., 2020). However, the quality of Ag remote sensing data is still limited by 

various sources of noise, such as changes in daylight, wind speed, temperature, sun angle, etc. (de 

Souza et al., 2010; Fiorani et al., 2012; Gamon et al., 2015; Maji et al., 2014). Among these noises, 

diurnal variability represents one of the major factors that causes significant quality issues in Ag 

remote sensing. 

The diurnal impact on plants’ reflectance characteristics is a complicated process. It 

introduces strong noise in plant phenotyping result (Beneduzzi et al., 2017; Maji et al., 2014; 

Padilla et al., 2019). For example, the reflectance characteristics of the same plants at noon can 

differ greatly from those in the afternoon. These variations are caused by interactions between 

camera sensitivity, camera view angle, canopy geometry, solar zenith angle, solar azimuth angle, 

and shadows (Jackson et al., 1979; Ranson et al., 1985). Meanwhile, the plant itself displays an 

endogenous sensitivity to the environmental conditions that result from complicated interactions 

between the genetic backgrounds, the external environments, and the treatments 

(G(Genotype)*E(Environment)*T(Treatment)). All these affect the final reflectance 

characteristics of plants throughout the day, causing the diurnal variabilities.  

The diurnal variance on phenotyping data has resulted in unignorable impacts in many plant 

studies. Gardener (Gardner, 1985) stated that this variance represented a major unresolved noise 

issue in using reflectance measurements for estimating leaf area, plant biomass, or phenology as 

all were affected by diurnal changes. In the most recent decades, diurnal variability has been 

documented in various plant phenotyping studies for corn (Oliveira and Scharf, 2014), soybean, 

wheat (Beneduzzi et al., 2017) with both passive (de Souza et al., 2010; Sticksel et al., 2004) and 

active sensors (Oliveira and Scharf, 2014).These variances are retained in the captured images, 

weakening the signal power of the data. Sometimes, the generated variances are even larger than 

the plant differences caused by biotic or abiotic stresses, which severely limits the accuracy in 

phenotyping data. However, in most current remote sensing studies, people rarely consider the 

impacts from diurnal variabilities, which introduces much noise into the results of the final analysis. 
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For example, the NDVI values demonstrated a difference of over 10% over time on the same plant 

from the raw remote sensing measurements (Beneduzzi et al., 2017; Sticksel et al., 2004). Similar 

diurnal variances are also found in many other plant features such as plant temperature, spectra 

features, chlorophyll content, and so on (Gamon et al., 2015; Zhao et al., 2018). Therefore, the 

reduction of diurnal variabilities in the data is important for improved remote sensing quality.  

With the development of plant phenotyping, researchers are better aware of the diurnal 

variabilities although limited studies exist on how to deal with diurnal variability in Ag remote 

sensing. To reduce impacts of diurnal variability, remote sensing technologies, such as unmanned 

aerial vehicles (UAV), usually have strict rules on the sampling time window and weather 

condition requirement (Barbedo, 2019; Di Gennaro et al., 2018; Gracia-Romero et al., 2019). 

According to Bellvert et al. (Bellvert and Girona, 2012), the proper time of the day to acquire 

thermal and multispectral images is around noon, due to the almost complete absence of shadow 

effects. Meanwhile, plant physiology changes on a cyclical diurnal basis due to photosynthetic 

activity and processes dependent on incident solar radiation (Bellvert and Girona, 2012). 

Consequently, UAV data collections are required to operate during a certain time period to 

accurately monitor crop physiology (Barbedo, 2019). 

Quantitatively modeling the diurnal variability of crop phenotyping features is important for 

improved Ag remote sensing quality. The combined PROSPECT leaf optical properties model and 

SAIL canopy bidirectional reflectance model (PROSAIL) has been widely used to predict the 

change in plant canopy spectral reflectance influenced by the changing environmental conditions 

such as solar angle (Ishihara et al., 2015; Jacquemoud and Baret, 1990). However, the model does 

not meet the accuracy requirement in plant phenotyping remote sensing. For example, Berger et 

al. (Berger et al., 2018b) compared PROSAIL’s simulation result with the spectra data collected 

from the field and found that PROSAIL’s predicted spectra differed drastically from the field 

measurements, especially at the green and red edge (~700nm) wavelengths (Berger et al., 2018b).  

This finding was also confirmed in the field remote sensing experiment in 2019 at Purdue 

University, in which the PROSAIL model only predicted less than 5% of the diurnal variance of 

the NDVI observed with a hyperspectral camera. More accurate diurnal variability models are thus 

still urgently needed.  

Modeling diurnal variability in plant phenotyping data is difficult due to the complicated 

interactions between plants and real-time environment conditions such as cloud coverage, wind, 
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and so on. Collecting hundreds or thousands of time series images of the same field in order to 

model the diurnal changes is necessary but has proven difficult with the current airborne platforms. 

For instance, the UAV platforms rarely imaged the same field more than once a day due to various 

environmental and logistical limitations (Krishna, 2018). To solve this problem, the Ag engineers 

at Purdue University deployed a fixed field VNIR hyperspectral gantry platform as a “mock drone” 

system in Purdue’s research farm in 2019. With this field gantry imaging system, hyperspectral 

images of the same field can be continuously collected under various weather conditions 

throughout the daytime on a minute-by-minute schedule. A local weather station and distributed 

soil sensors in the field provide environmental condition data that synchronize with the images. 

This chapter introduced the research work to analyze the diurnal variations in plant phenotypic 

data by collecting time-series crop images with the unprecedented high imaging frequency of the 

new field imaging gantry. With the overarching goal of enabling remote-sensing users to 

understand crop feature prediction changes caused by imaging time of day due to diurnal factors, 

this work aimed for the following objectives: 

1. Collect time-series hyperspectral images of two varieties of corn plants with three nitrogen 

treatments from V4 to R1 extensively (every 2.5 minutes) throughout the daylight hours.  

2. Apply imaging processing algorithms to characterize phenotyping features such as NDVI, 

predicted RWC, and single spectral bands from canopy spectra. 

3. Propose a diurnal pattern modeling approach to analyze the diurnal variation in plant 

phenotyping results.  

4.2 Methods 

4.2.1 High-throughput field imaging acquisition system 

The field VNIR hyperspectral gantry platform at Purdue University’s Agronomy Center 

for Research and Education (ACRE) was used to collect imaging data in this study. A weatherproof 

VNIR push-broom hyperspectral camera (MSV-101-W, Middleton Spectral Vision, Middleton, 

WI, USA) was carried by the 7-meter-high gantry platform to scan a 50-by-5 meter strip field 

under a wide range of weather conditions. The VNIR images contained a spectral range from 376 

nm to 1044 nm with a spectral resolution of 1.22 nm and spatial resolution of 0.5 cm/pixel ground 

sample distance (GSD). The system could be configured to automatically scan the crops in the 



 

 

68 

field repeatedly. It takes 6.5 minutes to scan the 250-square meters field, although the scanning 

frequency can be higher if a sub-portion of the field needs to be scanned (Fig. 4.1).  

This single-sided imaging gantry stood at the north side of the field and the length of the 

camera structure on the top was restricted by a certain ratio of the gantry’s height. This unique 

design prevented any of the shadow from falling on the crops, which enabled the system to more 

realistically simulate drone remote sensing in the field. The hyperspectral camera utilized sunlight 

as the lighting source, so the gantry system could function any time after sunrise until sunset on 

each day. A white reference panel was installed 0.5 meters underneath the hyperspectral camera 

and moves along with it.  A local mini weather station and distributed soil sensors were installed 

in the same field to collect real-time environmental condition data such as temperature, solar 

radiation, wind speed, and soil moisture when each image was taken.  

Table 4.1. Parameters for the hyperspectral imaging sensor 

Parameters MSV-101-W  

Camera model acA780-75gm 

Spectrograph SpecIM V10H 

Frame rate 30 FPS 

Exposure time 6 ms 

Spectral resolution  1.22 nm 

Ground sample distance (GSD) 0.5 cm/pixel 

Spectral range  376 nm -1044 nm 

 



 

 

 

6
9
 

 

Fig. 4.1. Field VNIR hyperspectral platform at Purdue University. (a). VNIR hyperspectral imaging sensor; (b).  Local weather station 

(Ambient Weather, Chandler, AZ, USA); (c) and (d).  Xiaomi flower care sensor (Xiaomi Inc., Beijing, China); (e).  The layout of the 

East-West orientated imaging system; (f).  Image sample of the whole field; (g). Enlarged image sample of part of the field; (h). Binary 

image after segmentation; (i). Layout of the plots with three nitrogen treatments and two genotypes. The green boxes were for Genotype 

P1105AM, and the blue boxes were for Genotype B73 x Mo17.  Nitrogen treatments of high nitrogen (HN), low nitrogen (LW) and 

medium nitrogen (MN) were also labeled; (j). NDVI heatmap; (k). The spectra from different genotypes and N treatments.   
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4.2.2 Experiment design and data collection 

To study the diurnal variation in hyperspectral image data, two genotypes of corn plants, 

including genotype B73 x Mo17 and P1105AM, were grown in the field underneath the gantry in 

2019.  Each genotype was treated with three different nitrogen solutions: High Nitrogen (HN) with 

56 kg/ha (32mL 28-0-0 in 1L water), Medium Nitrogen (MN) with 28 kg/ha (16mL 28-0-0 in 1L 

water), and Low Nitrogen (LN) with 0 kg/ha (water). Each of the genotype-by-nitrogen-solution 

treatment combination is repeated in five 2-rows-by-3-meter mini-plot replicates so 30 plots in 

total exist in the field.  

To capture the instant effects to the images from changes in cloud coverage, wind speed and 

other environmental conditions, the team decided to image the field every 2.5 minutes. This 

allowed us to scan up to six different plots, once the extra time needed for data transfer, real-time 

image processing, and homing the gantry cart is taken into consideration. The six plots were 

selected to cover all three nitrogen levels and both genotypes.  

The continuous imaging started when the corn plants reached V4 stage and lasted 31 days 

until the plants are at R1 stage on average. On each of the 31 days, imaging started at 7:00am and 

ended at 7:30pm. Around 280 hyperspectral images were collected with a repetitive imaging 

frequency of every 2.5 minutes. The gantry was only turned off during extreme weather conditions 

such as thunderstorms to protect the equipment. By the end of the 31 days, a total of 8,631 

hyperspectral images were collected. 

 

  

 
(a) 

 
(b) 

 
(c) 

Fig. 4.2. The NDVI heatmaps for the whole field at three leaf stages with different 

accumulated days after planting (DAP). (a). 31 DAP, leaf stage V4. The red boxes indicate the 

regions for 30 distinct plots; (b). 38 DAP, leaf stage V6; (c). 49 DAP, leaf stage V9. 
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In the middle of the project when the plants were at V9, we collected ground truth 

measurements such as nitrogen content, RWC, and plant fresh weight. Two plants were randomly 

sampled from each plot. The plant shoot was cut to measure the fresh weight. A small section 

(2.5 cm × 5.0 cm) of the top-collared leaf was taken to measure the RWC using Eq. 4.1 (Turner, 

1981).  The remaining part of the top-collared leaf was sent to the Great Lakes A&L laboratories 

(A & L Great Lakes Laboratories, Inc., Fort Wayne, IN, USA) for measuring the nitrogen 

percentage. 

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑊𝑎𝑡𝑒𝑟 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 (𝑅𝑊𝐶) = [

(𝐹𝑊 − 𝐷𝑊)

(𝑇𝑊 − 𝐷𝑊)
] × 100 

(4.1) 

Where FW represents fresh weight, DW denotes dry weight, and TW is the turgid weight. 

 

Fig. 4.3. The growth of corn plants in the Purdue ACRE field during the experiment at 

different accumulated days after planting (DAP). 

4.2.3 Image segmentation and feature extraction 

After data collection, standard imaging processing protocols were performed to extract the 

plant phenotyping features of interest. The raw hyperspectral images were firstly calibrated with 

the real-time white reference, which ensured each scanning line from this push-broom sensor was 
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calibrated with a reference that used the same lighting conditions. The image calibration was 

performed by the following equation: 

 
𝑅𝑐𝑎𝑙𝑖 =

𝑅𝑟𝑎𝑤 − 𝑅𝑑𝑎𝑟𝑘

𝑅𝑤ℎ𝑖𝑡𝑒 + 𝑅𝑑𝑎𝑟𝑘
 

(4.2) 

 

Where 𝑅𝑐𝑎𝑙𝑖  is the calibrated image, 𝑅𝑟𝑎𝑤  denotes the raw hyperspectral image, 𝑅𝑑𝑎𝑟𝑘  

represents the dark reference image and  𝑅𝑤ℎ𝑖𝑡𝑒  is the hyperspectral image of the white reference. 

The calibrated images were then processed using a segmentation procedure with convolution 

methodology (Ma et al., 2019a; Zhang et al., 2019a). A vector of sequential integers from −20 to 

20 was multiplied by the reflectance intensity vector from the red-edge region (680 – 720 nm). By 

choosing threshold 7 as the boundary, the plant tissue was successfully segmented from the 

background (Fig. 4.1h). Some images contained weeds whose size was irrelevant compared to the 

corn plants (See the red boxes in Fig. 4.1h).  

The average reflectance spectrum from each plot was calculated.  In total, 51,786 spectra 

(8631 images* 6 plots/image) were calculated for the plots with different genotypes and nitrogen 

treatments. These spectra were used to calculate the crop remote sensing results such as NDVI and 

predicted relative water content (RWC). The formula below was used for calculating NDVI.   

 
𝑁𝐷𝑉𝐼 =

𝑅800𝑛𝑚 − 𝑅650𝑛𝑚

𝑅800𝑛𝑚 + 𝑅650𝑛𝑚
 

(4.3) 

Where R800nm and R650nm represent the reflectance values of wavelength 800nm and 

650nm respectively (Daughtry et al., 2000; Schafleitner et al., 2007). The partial least squares 

regression (PLSR) model was used to predict RWC from the spectra.  In order to avoid prediction 

drifts between facilities (Alamar et al., 2007; Ji et al., 2015; Li et al., 2015), instead of using an 

existing RWC prediction model developed in previous studies, the team decided to build a new 

PLSR model with the spectra and RWC ground truth data collected in the same project. The new 

model predicted RWC with the cross-validation coefficient of determination (R2) of 0.722 and root 

mean square error (RMSE) of 6.22% (Fig.  4). This RWC model was then applied to each of the 

51,786 spectra to predict RWC in those plots over the 31 diurnal cycles.  
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Fig. 4.4. The Relative Water Content (RWC) prediction model based on Partial Least Square 

Regression Relative (PLSR):  measurement vs. prediction. 

4.2.4 Data quality check 

After calculating the remote sensing result data such as spectra, NDVI and predicted RWC, 

the data quality was checked, and outlier data removed. For each feature from each day, the 

measurements between the upper inner fence (Q3+1.5IQR) and lower inner fence (Q1-1.5IQR) 

were noted (Schwertman and de Silva, 2007). IQR is the interquartile range, equaling the 

difference between 75th (Q3) and 25th (Q1) percentiles. This quality filtering removed the blunders 

and gross errors in the image acquisition setup and process. For example, some of the removed 

outlier images were taken under very high wind-speed conditions, causing the plant stems to bend 

severely and significantly altering the images.  The data before 10:00 am and after 5:30 pm also 

showed extreme variances and noises. This could be caused by the dews on the surface of leaves 

and dim lighting conditions (Manea and Calin, 2015). Only the data collected between 10 am and 

5:30 pm was used in the diurnal pattern analysis since very few airborne remote sensing activities 

occur outside this time range. We ended up using this selected data pool (Table 4.2) for the diurnal 

pattern analysis. Please note the time was in the Eastern Standard Time (EST) Zone Daylight 

Saving Time (DST) and this selected time window remained centered at the solar noon in West 

Lafayette, IN.   
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Table 4.2. Number of image samples after the quality check for six plant plots. 

Plant Plots Number of samples after the quality check 

HN & B73 x Mo17  5,070 

MN & B73 x Mo17 5,092 

LN & B73 x Mo17 5,083 

HN & P1105AM 5,108 

MN & P1105AM 5,084 

LN & P1105AM  5,093 

4.2.5 Evaluating the impacts from treatments, stages and genotypes to diurnal changing 

patterns 

Before modeling the diurnal changing patterns, the diurnal patterns between different 

nitrogen treatments, growth stages and genotypes were compared to decide if any of these factors 

significantly impacted the diurnal pattern. If not, the data from different treatments, stages and 

genotypes could be combined for the diurnal pattern modeling. Otherwise, the modeling should be 

performed separately for each different case. 

The changing patterns were compared by applying the dynamic time warping (DTW) 

method to calculate the similarity between the relative different ratio (RDR) curves from the 

different plants plots (Berndt and Clifford, 1994). An RDR curve was calculated to describe the 

diurnal changing pattern each day as the percentage of the change of the phenotyping feature value 

relative to the feature’s value at the reference time point (Eq. 4.4). For the reference time, we 

selected solar noon since this represents the center point of the daytime, when the lowest NDVI 

value was observed every day.  

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑡 − 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛
 

(4.4) 

The DTW method was selected as it is an algorithm more commonly used to measure the 

similarity between two time-series data (Berndt and Clifford, 1994). More specifically, DTW 

represents a time series alignment algorithm developed to align two sequences of feature vectors 

by warping the time axis iteratively until an optimal match occurs (Kate, 2016). Thus, a distance 

score is generated during the process of alignment, which can be used as the difference between 

two curves. For example, a small distance score means higher similarity between two curves. DTW 

also allows non-linear mapping, which was appropriate for the purpose of pattern matching. With 
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the distance scores from DTW, the similarity of RDR curves of different plots were quantitively 

compared and discussed.  

4.2.6 Diurnal patterns calculation by time series signal decomposition 

Inspired by the idea of the time series decomposition method (Cleveland et al., 1990), we 

decomposed the changing signal of each feature into two major parts: the day-to-day trend (𝑇𝑡) 

and the diurnal pattern (𝐷𝑡 ). 𝑇𝑡  is calculated with the LOESS (locally estimated scatterplot 

smoothing) method (Rojo et al., 2017). By fitting a non-parametric regression curve on the 

scattered plot of the data, the day-to-day change can be clearly extracted from the raw signal 

(Cleveland et al., 1990). This trend primarily reflects changes in plant growth and general weather 

conditions over the 31 days of imaging. The diurnal component (𝐷𝑡) was calculated by subtracting 

the day-to-day trend (𝑇𝑡) from the raw signal.  𝐷𝑡 is also called the detrended data.  𝐷𝑡 contains the 

higher-frequency-variance components mainly caused by short-term events such as plants’ 

circadian behavior, sun angle, solar radiation and temperature changes during the day. 

 𝑅𝑎𝑤 𝑇𝑖𝑚𝑒 𝑆𝑒𝑟𝑖𝑒𝑠 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑇𝑡 + 𝐷𝑡 (4.5) 

The mean curve of 𝐷𝑡 with all the data combined for 31 days was calculated for the diurnal 

pattern fitting. Meanwhile, the 95% confidence interval was also calculated to evaluate the 

consistency of the diurnal patterns across the days. 

4.2.7 Diurnal pattern fitting 

Both first-order (Eq. 4.6) and second-order (Eq. 4.7) piecewise models were tested to fit 

the diurnal changing patterns of the crop phenotyping features including NDVI, the RWC 

prediction as well as two single spectral band. By calculating the first-order derivative of the mean 

curve, the critical lowest point 𝑡𝑎 (which perfectly matched the time with the highest sun angle) 

was derived. The performance of developed models was evaluated and compared with the 

coefficient of determination (R2) and root mean square error (RMSE) between the fitted results 

and the original measurements. For each feature, when both displayed excellent regression 

performances with no significant difference between the two models, we adopted the simpler first-

order model.  
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𝑓(𝑡) = {

𝑎1𝑡 + 𝑏1             𝑖𝑓 𝑡 ≤ 𝑡𝑎   
𝑎2𝑡 + 𝑏1             𝑖𝑓 𝑡 > 𝑡𝑎   

 
(4.6) 

 
𝑓(𝑡) = {

𝑎1𝑡2 + 𝑏1𝑡 + 𝑐1             𝑖𝑓 𝑡 ≤ 𝑡𝑎   

𝑎2𝑡2 + 𝑏2𝑡 + 𝑐2             𝑖𝑓 𝑡 > 𝑡𝑎   
 

(4.7) 

Where t is the time offset (in hours) from solar noon. (i.e., t at 12:15 pm is -1.5, on a day and at a 

location where solar noon is 13:45.) 

4.2.8 Model performance evaluation    

The performance of the developed diurnal model was evaluated and compared with the R2 and 

RMSE between the prediction results and the calculated diurnal changes from time series 

decomposition. Moreover, to further assess the impacts from nitrogen treatments and genotypes, 

the general diurnal model was tested on and the R2 and RSME obtained for each of the six plant 

plots.    

4.2.9 Diurnal models’ applications 

These regression models of diurnal changes can be used to calculate suitable imaging 

windows based on allowable diurnal variances. The models can also be used to remove the diurnal 

effect. For example, the NDVI measured at any other time point of the day can be converted to the 

NDVI at the highest sun angle time (a “solar noon equivalent”) with the fitted model. However, 

the data used in the model was drawn from one single field test whose imaging data was collected 

from Purdue’s field gantry system, which might induce systematic bias in the model. The camera 

sensor on this gantry is seven meters above the ground, while the normal UAV images above 60 

meters (Sadeghi and Sohrabi, 2019). External validation data from the other remote sensing 

platforms such as UAVs are still needed. 

4.3 Results  

In this study, the diurnal changing patterns models were built for various plant phenotyping 

features (including NDVI, predicted RWC, Band670 (Red) and Band760 (NIR)). The detailed 

procedures and corresponding results for modeling NDVI’s diurnal changing pattern was 

demonstrated and discussed first, as NDVI is one of the most common plant features in remote 
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sensing (Cabrera-Bosquet et al., 2011). The summarized modeling results are reported for the other 

plant phenotyping features including predicted RWC, Red and NIR, respectively.  

4.3.1 The NDVI diurnal fluctuations  

The measured NDVI values was plotted to show the diurnal fluctuations from the raw 

imaging data (Fig. 4.5). Fig. 4.5a displays the results for all 31 days. Each gathering group 

represents one day, and the gaps between groups denote the time between 5:30 in the afternoon 

until 10:00 next day without imaging data. In this figure, NDVI shows obvious diurnal variabilities 

with repeatable V-shaped patterns. Fig. 4.5b displays the zoomed in diurnal fluctuation in Day 1. 

It shows that NDVI continues to decrease until solar noon at 1:39pm on that day. This confirmed 

similar findings that had been reported in previous research papers that the NDVI of wheat and 

soybean were higher at the beginning and end of the day (Sagan et al., 2019; Sticksel et al., 2004). 

This diurnal change could occur due to the combination of the imaging lighting condition change 

and the plant’s physiological changes over a diurnal cycle, which is central in regulating the 

susceptibility and responses to biotic or abiotic stresses (Dunford et al., 2002; Kloosterman et al., 

2013; Turner, 2007).  
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(a) 

 
(b) 

Fig. 4.5. (a). The NDVI of HN and Genotype B73 x Mo17 plot from V4 stage to the R1 stage 

(obtained from the hyperspectral images); (b). The NDVI measurements across Day 1 (black 

dots). The red curve is the predicted NDVI diurnal variance by PROSAIL model. Parameters for 

the PROSAIL model for the corn canopies followed the work of Ishihara et al. in 2015. 

The significance of NDVI’s diurnal variation was assessed by calculating the difference 

ratio between the highest and lowest NDVI during the same day (Table 4.3). The HN and B73 x 

Mo17 genotype plot demonstrated the highest diurnal variation in NDVI, with a 15.71% change 

over the day. This high diurnal variation is too extreme to be accepted in most plant phenotyping 

studies (Ni et al., 2015; Rahman et al., 2015). This result therefore justifies the need to model the 

diurnal pattern and calibrate the diurnal changes.   
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Table 4.3. Statistical analysis of the NDVI at Day 1 for six plant plots 

Plant Plots Mean Highest Lowest 
Diurnal variation 

(%) 

HN & B73 x Mo17  0.756 0.808 0.698 15.71 

MN & B73 x Mo17 0.732 0.780 0.689 13.33 

LN & B73 x Mo17 0.686 0.741 0.645 14.95 

HN & P1105AM 0.759 0.817 0.717 13.96 

MN & P1105AM 0.738 0.797 0.689 15.68 

LN & P1105AM  0.687  0.733  0.648 13.20  

4.3.2 The impacts of nutrient treatments, genotypes and leaf stages on diurnal variation   

The relative difference ratio (RDR) curves were compared to study the effects of treatments, 

genotypes and growth stages on diurnal variation patterns. For each plant plot, the mean RDR 

curve for NDVI was computed from all 31 RDR curves (one RDR curve per day).  In Fig.  4.6, the 

mean NDVI RDR curves from different treatment and genotype plots showed very similar trends.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4.6. The mean NDVI relative difference ratio (RDR) curves of six plant plots versus time 

(H): (a). HN & B73 x Mo17; (b). HN & P1105AM; (c). MN & B73 x Mo17; (d). MN & 

P1105AM; (e). LN & B73 x Mo17; (f). LN & P1105AM. 

For a more quantitative comparison, the DTW distance scores were calculated to measure 

the similarity between RDR curves (Table 4.4). A small distance score means greater similarity 

between two curves. To indicate similarity of two RDR curves, we assumed DTW larger than 5 to 

be not similar whereas those with a DTW lower than 5 are considered similar. The distance scores 

between plots with the same genotype but different nitrogen treatments range between 1.37-3.75. 

Meanwhile, the distance scores between different genotype plots are 0.33, 0.20 and 0.30 for HN, 

MN and LN, respectively. Table 4.5 shows the DTW distance scores between different leaf stages. 

All these distance scores lie below 5. To summarize, comparatively, the nitrogen treatment 

impacted the variation in diurnal trends more than genotype and plant stage did. This finding 

confirmed the observation in previous study (Atkin et al., 2000). However, all these factors did not 
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much impact the diurnal trend (DTW < 5), which allowed the combination of data to build one 

general diurnal changing model. 

Table 4.4. The DTW distance scores between NDVI’s RDR curves of the plant plots with 

different nitrogen treatments and genotypes. 

Plant Plots 
HN & B73 

x Mo17 

HN & 

P1105AM 

MN & B73 

x Mo17 

MN & 

P1105AM 

LN & B73 

x Mo17 

LN & 

P1105AM 

HN & 

B73 x Mo17 
0.00 0.33 1.37 1.48 1.40 2.31 

HN & P1105AM 0.33 0.00 2.67 2.95 2.59 3.75 

MN & 
B73 x Mo17 

1.37 2.67 0.00 0.20 0.14 0.60 

MN & P1105AM 1.48 2.95 0.20 0.00 0.30 0.82 

LN & 

B73 x Mo17 
1.40 2.59 0.14 0.30 0.00 0.30 

LN & 

P1105AM 
2.31 3.75 0.60 0.82 0.30 0.00 

Table 4.5. The DTW distance scores between NDVI’s RDR curves of the plant plots with 

different plant stages 

Plant Plots Distance score between early stage 

and late stage 

HN & B73 x Mo17 0.90 

MN & B73 x Mo17 1.26 

LN & B73 x Mo17 1.15 

HN & P1105AM 0.25 

MN & P1105AM 0.74 

LN & P1105AM 0.63 

Note: Early stage contains the first 15 days, and late stage contains the later 16 days.  

4.3.3 Diurnal changing pattern 

Based on the result in Section 4.3.2, the data of all six plant plots were combined to model 

the diurnal changing pattern since the nitrogen treatments, genotypes and leaf stages only had 

minor effects on the diurnal variation (DTW < 5); a general diurnal pattern model is thus preferred 

for its relative ease of use.    
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4.3.3.1 Decomposition 

The changing signal in predicted phenotyping features were decomposed into two major 

parts: day-to-day trend (𝑇𝑡) and diurnal pattern (𝐷𝑡). Fig. 4.7 shows the decomposition result for 

NDVI. As seen in the chart of trend 𝑇𝑡, NDVI values increased overall from the early leaf stage to 

the late stage. This confirmed the previous findings that as plants mature, NDVI increased until 

the reproductive stage (Wang et al., 2016). In our experiment, there were two big dips in NDVI 

along the timeline, which correspond to two severe temperature drops in the West Lafayette area. 

The diurnal changes illustrated in Fig. 4.7 showed clear repetition of V-shaped NDVI 

measures over time. The NDVI value consistently decreased until it reached solar noon. We were 

not able to collect the complete data for the whole day on 36, 37, 58, 59 and 60 DAP due to the 

extreme weather conditions. In this paper, we only focus on modeling the diurnal changing patterns 

under “normal” weather conditions. The modeling of the weather condition impacts will be 

reported in another paper.  

 

 

Fig. 4.7. The NDVI of HN and Genotype B73 x Mo17 plot from V4 stage to the R1 stage. The 

raw NDVI plot was decomposed into the day-to-day trend (𝑇𝑡) and diurnal pattern (𝐷𝑡). The red 

boxes are the days with incomplete data measurements due to the extreme weather conditions, 

which are 36, 37, 58, 59 and 60 DAP. 

 

 

 

 

Severe temperature  

drops 
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To model the general diurnal changes, the NDVI diurnal changes for all 31 days were 

combined to calculate the mean curve and 95% confidence interval (Fig. 4.8). The narrow 95% 

confidence interval also provided strong evidence that the diurnal pattern remains consistent 

through the days. As discussed in methodology, since the confidence interval is much lower 

compared with the mean curve’s change over the diurnal cycle, the mean curve (black line) is used 

to model the diurnal pattern. This also helps to “average out” the impacts from abnormal weather 

conditions on a few days.  

 

   

Fig. 4.8. The diurnal changes of NDVI summarized from 31 days and six experimental plots. 

The x-axis is the diurnal time in a unit of hour. The y-axis is the diurnal NDVI changes. The 

black line is the mean diurnal NDVI adjustment value. The shaded area is the 95% confidence 

interval. The red line is the first-order piecewise fitted result for the mean diurnal NDVI 

adjustment value.  

4.3.3.2 Pattern fitting 

Both first-order and second-order piecewise polynomial models were tested to fit the 

diurnal changes of NDVI. Both displayed excellent regression performances without significant 

difference between the two models. We therefore adopted the simpler first-order model, 

concluding that the NDVI diurnal changes can be described by a linear model. The fitted first-

order model in Eq. 4.8 can then be used to describe the NDVI diurnal changing pattern based on 

the time offset from solar noon. 

 𝑁𝐷𝑉𝐼(𝑡) = {
−0.012 × 𝑡 + 𝑁𝐷𝑉𝐼solar noon            𝐵𝑒𝑓𝑜𝑟𝑒 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 
0.010 × 𝑡 + 𝑁𝐷𝑉𝐼solar noon              𝐴𝑓𝑡𝑒𝑟 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 

 (4.8) 

Slope=-0.012 

𝑆𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 

Slope=0.010 
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Where t is the time offset (in hours) from solar noon. (i.e., t at 12:15 pm is -1.5, on a day and at a 

location where solar noon is 13:45.) 𝑁𝐷𝑉𝐼solar noon is the NDVI measured at solar noon.  

Equations Eq. 4.8 fit the observed diurnal pattern with an R2 of 0.99 and RMSE of 0.0012. 

Fig. 4.8 illustrates the detailed fitted result. To test the model for different genotypes and nitrogen 

treatments, the fitted equation was applied on each different field plot. The model maintained an 

accurate performance in all cases (Table 4.6), proving this general diurnal pattern model remains 

valid for plants from different nutrient treatments and genotypes.       

Table 4.6. Fit and error of the piecewise NDVI diurnal changing pattern model (Eq 4.8) on 

assorted experiment plots. 

Plant Plots R2 RMSE 

HN & B73 x Mo17 0.77 0.0058 

MN & B73 x Mo17 0.96 0.0036 

LN & B73 x Mo17 0.95 0.0032 

HN & P1105AM 0.91 0.0038 

MN & P1105AM 0.94 0.0034 

LN & P1105AM 0.98 0.0022 

4.3.3.3 Applications of the model 

The diurnal changing pattern model can be utilized to determine the proper imaging 

window based on specific quality requirements. In Table 4.7, the proper imaging windows were 

calculated based on the different tolerance thresholds for variations of NDVI. For example, when 

solar noon was the standard imaging time, to limit the NDVI’s diurnal changes within ±0.03 on 

the same plant, the imaging needs to occur between 10:55 and 16:30. 
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Fig. 4.9. The intersections between the adjusted NDVI’s diurnal changes and three different 

thresholds for proper imaging windows. The x-axis is the diurnal time in a unit of hour. The y-

axis is the adjusted NDVI’s diurnal changes when adjustment at solar noon to be 0.  

Table 4.7. Proper imaging windows for different thresholds of the NDVI changes caused by 

diurnal factors (when solar noon is the standard imaging time). 

Thresholds Suggested imaging time  Range  

0.01 

0.02 

0.03 

12:45 – 14:40 1h 55min 

11:55 – 15:45 3h 50min 

10:55 – 16:30 5h 35min 

 

Besides uncovering an acceptable imaging time window, the diurnal changing model can 

also be used to easily calibrate the diurnal variances. For example, an NDVI measured two hours 

before solar noon should be decreased by 0.024 (0.012*2), so the adjusted NDVI can be considered 

“solar noon equivalent”. This ameliorates the significant diurnal variance and enable phenotyping 

researchers to do fairer comparisons and analyses.   

4.3.4 Other image-derived phenotyping features   

Along with NDVI, the diurnal changing patterns of other plant phenotype features, 

including RWC prediction, as well as Red and NIR bands in the spectra, were modeled in a similar 

way. Due to the time-consuming modeling process, we chose the Red and NIR bands to be 

analyzed first because these are important bands for calculating many plant features such as 

chlorophyll content. Both first-order and second-order piecewise models were tested to fit the 

diurnal changes of predicted RWC, Red and NIR. The fitting results were shown in Table 4.8. For 
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the predicted RWC and NIR, both first-order and second-order piecewise models had excellent 

regression performances and there was no significant difference. Therefore, we adopted the 

simpler first-order model. We therefore concluded the RWC and NIR diurnal changing patterns 

could be described by linear models. On the other hand, the Red diurnal changing pattern displayed 

a non-linear pattern, so we selected the second-order model.  

Table 4.8. The fitted results of piecewise diurnal changing pattern models for other plant 

phenotyping features including predicted RWC, Red and NIR bands in the spectra. 

 

The diurnal changes of predicted RWC, as well as Red and NIR in the spectra were fitted 

and plotted in Fig. 4.10a, b, and c. Equations 4.9, 4.10 and 4.11 represent the diurnal changing 

pattern models. All models showed an excellent description of the observed diurnal patterns. 

Similarly, these models demonstrated the potential to help improve the efficiency and data quality 

in phenotyping practices. Moreover, successful application of the same proposed diurnal pattern 

modelling method on the predicted RWC, Red and NIR indicated that this method could 

potentially generalize well to other phenotypic features, which could be further explored in future 

research. 

 

 

 

Features 

R2 RMSE 

 First-order 

model 

Second-order 

model 

First-order 

model 

Second-order 

model 

Predicted RWC 0.96 0.97 0.30 0.16 

A red band 0.82 0.91 0.0013 0.00094 

A NIR band 0.97 0.98 0.013 0.0071 
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            (a) 

 
                (b) 

 
                (c) 

Fig. 4.10. The diurnal changing patterns and fitted results of other plant phenotyping features 

including: (a). predicted RWC; (b). a red band; (c). a NIR band. The black line in each plot is the 

mean diurnal adjustment value. The shaded area is the 95% confidence interval. The red line is 

the piecewise fitted result for the mean diurnal adjustment value.    
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𝑅𝑊𝐶(𝑡) = {

0.45 × 𝑡 + 𝑅𝑊𝐶solar noon                                       𝐵𝑒𝑓𝑜𝑟𝑒 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 
−0.89 × 𝑡 + 𝑅𝑊𝐶solar noon                                       𝐴𝑓𝑡𝑒𝑟 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 

 
(4.9) 

 
𝑅𝑒𝑑(𝑡) = {

−0.0011 × 𝑡2 − 0.0011 × 𝑡 + 𝑅𝑒𝑑solar noon       𝐵𝑒𝑓𝑜𝑟𝑒 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 

−0.00019 × 𝑡2 − 0.0011 × 𝑡 + 𝑅𝑒𝑑solar noon       𝐴𝑓𝑡𝑒𝑟 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 
 

(4.10)  

 
𝑁𝐼𝑅(𝑡) = {

−0.040 × 𝑡 − 𝑁𝐼𝑅solar noon                                     𝐵𝑒𝑓𝑜𝑟𝑒 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 
0.042 × 𝑡 − 𝑁𝐼𝑅solar noon                                        𝐴𝑓𝑡𝑒𝑟 𝑠𝑜𝑙𝑎𝑟 𝑛𝑜𝑜𝑛 

 
(4.11)  

4.4 Discussions 

4.4.1 Strengths 

The diurnal patterns of plant phenotyping features, including NDVI, predicted RWC, and two 

individual spectral bands (Red and NIR), were quantitatively described and modeled in detail for 

the first time. The unprecedented high-imaging frequency of the new field hyperspectral-imaging 

gantry at Purdue, with over 8,000 repeated images during a single growing season. Furthermore, 

most previous studies reported the diurnal changes directly from the raw phenotyping features 

(e.g., NDVI, chlorophyll content) (Beneduzzi et al., 2017; Ishihara et al., 2015; Sticksel et al., 

2004). However, these results remain inconsistent due to changes in plant growth stage and 

weather condition. To address this issue, our proposed approach incorporates a modified time-

series decomposition method to filter out the signal variance caused by the changing plant stage 

and weather conditions, so the later modeling process can exclusively focus on the higher-

frequency diurnal changes.  

4.4.2 Limitations and future work 

In this experiment, all the imaging data was collected from the same field imaging gantry 

facility. Additional testing is needed to validate the other remote sensing platforms such as UAV. 

In addition, the diurnal patterns are reported based on corn plants, which may limit the scope of 

application. More tests should be conducted on diverse plant species (e.g., soybean, wheat, and 

rice).  

In the 2020 season, the developed diurnal models will be externally validated using the field 

gantry’s images. The model will also be validated on a UAV hyperspectral imaging platform in 
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the same field. Finally, the diurnal changing patterns on other plant species, such as soybean wheat 

and rice will be also explored and compared.   

Besides the diurnal effect, the changing environmental conditions in the field such as cloud 

coverage, temperature, wind speed, and so on all showed strong impacts on the phenotyping 

results. The data has shown that these effects could also be precisely modeled. The environmental 

calibration models for plant remote sensing will be reported in future papers.  

4.5 Conclusions 

In this study, diurnal changing patterns in crop remote sensing images were quantitatively 

investigated with the proposed novel modeling approach. Over 8000 repeated hyperspectral 

images of the corn field were taken by the field imaging gantry at Purdue University throughout 

the 2019 growing season. Images of corn plants from stages V4 to R1 were captured. Hyperspectral 

image processing algorithms were applied to calculate the reflective canopy spectra and predict 

plant physiological features such as NDVI, RWC, and two individual spectral bands (Red and 

NIR).  The diurnal patterns for these phenotyping features were successfully modeled. The results 

showed that the NDVI presents a repeatable V-shaped diurnal changing pattern: it linearly 

decreases by 0.012/h before the solar noon and increases by 0.010/h thereafter. Besides NDVI, 

predicted RWC and the NIR band display linear diurnal changing pattern as well, where predicted 

RWC changes in an inversed V-shaped pattern and NIR changes in a normal V-shaped pattern. 

The red band shows a quadratic diurnal changing pattern in an inversed V shape. With the result 

of this work, Ag remote sensing users will be able to more precisely understand the deviation or 

change in crop feature predictions caused by the specific imaging time of the day. The reported 

diurnal models can also be used to correct the remote sensing result so to remove the diurnal effects.  
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 MODELING OF ENVIRONMENTAL EFFECTS ON 

AERIAL HYPERSPECTRAL IMAGES FOR CORN PHENOTYPING 

Aerial imaging technologies have been widely applied in agricultural plant remote sensing. 

However, an as-yet unexplored challenge with field imaging is that the environmental conditions 

such as sun angle, cloud coverage, temperature, and so on. can significantly alter plant appearance 

and thus affect the imaging sensor’s accuracy toward extracting plant feature measurements. These 

image alterations result from the complicated interaction between the real-time environments and 

plants. Analysis of these impacts requires continuous monitoring of the changes through various 

environmental conditions which has been difficult with current airborne remote sensing systems. 

This paper aimed to propose a modeling method to comprehensively understand and model the 

environmental influences on hyperspectral imaging data. In 2019, a fixed hyperspectral imaging 

gantry was constructed in Purdue University’s research farm, and over 8,000 repetitive images of 

the same corn field were taken with a 2.5 minutes interval for 31 days. Time-tagged local 

environment data including solar zenith angle, solar irradiation, temperature, wind speed, and so 

on. were also recorded during the imaging time. The images were processed for phenotyping data, 

and the time series decomposition method was applied to extract the phenotyping data variation 

caused by the changing environments. An artificial neural network (ANN) was then built to model 

the relationship between the phenotyping data variation and environmental changes. The ANN 

model was able to accurately predict the environmental effects in remote sensing results, and thus 

could be used to effectively eliminate the environment-induced variation in the phenotyping 

features. The test of the Normalized Difference Vegetation Index (NDVI) calculated from the 

hyperspectral images showed that variance in NDVI was significantly reduced by 79%. A similar 

performance was confirmed with the Relative Water Content (RWC) predictions. Therefore, this 

modeling method showed great potential to be applied in airborne remote sensing applications in 

agriculture to significantly improve the imaging quality by effectively eliminating the effects from 

the changing environmental conditions.  
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5.1 Introduction 

Recent years have seen the rapid growth of remote sensing applications in the field of 

agriculture (Gracia-Romero et al., 2019; Li et al., 2014; Wang et al., 2016) The advent and 

advances of low-weight, low-cost imaging platforms, and smart imaging devices resulted in the 

improved capability of the agricultural data collection. With various sensors such as red-green-

blue (RGB), hyperspectral and thermal cameras carried by these platforms, plant phenotypic 

properties are captured in the images that largely facilitate the process of crop analyses such as 

accessing plant biomass, nutrient level, diseases stresses and so on (Li et al., 2014; Ma et al., 2019b; 

Wang et al., 2020; Zhang et al., 2019b). However, the changing environmental conditions have 

been reported to significantly impact the imaging result (Gamon et al., 2015). The intensity of 

remotely sensed images changes greatly based on when and where the image is captured 

(Beneduzzi et al., 2017; Maji et al., 2014; Padilla et al., 2019). One source of the variation arises 

from the complicated interactions between the camera’s sensitivity, camera’s view angle, plant 

canopy geometry, solar zenith angle, solar azimuth angle, and shadows (Danner et al., 2019; 

Ishihara et al., 2015; Jackson et al., 1979; Ranson et al., 1985). Another source of variation results 

from plants’ endogenous stress responses to the environmental conditions with complicated 

interactions between their genetic backgrounds, external environments, and treatments (An et al., 

2017; Ranson et al., 1985). All of these, collectively regarded as the environment-induced variation 

in phenotyping features, affect plants’ final reflectance characteristics. 

To reduce the impacts from environment variation, a relatively simple method involves 

standardizing or fixing the sampling time of the day and restricting imaging to clear conditions 

without cloud coverage (Barbedo, 2019; Di Gennaro et al., 2018; Gracia-Romero et al., 2019). 

Bellvert and Girona (2012) suggested that the field phenotypic data should be collected around 

noon under clear weather conditions. Similarly, unmanned aerial vehicles (UAV) imaging is 

preferably performed at midday to ensure consistent data collection and analysis (Krishna, 2018). 

These restrictions could reduce the environmental impacts on the data, but they also significantly 

inhibit the imaging window and flexibilities. Practically speaking, performing the imaging at a 

fixed time is difficult, as many procedures, such as equipment setup, need to be completed before 

imaging, while the field environment is naturally uncontrollable and unpredictable. These 

challenges often result in the collection of remote sensing data at different times of the day under 

varying environmental conditions. Therefore, the correction of the impact of different imaging 
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time and varying environmental conditions to improve the quality of agricultural remote sensing 

is critically important to study.  

Most airborne remote sensing systems require imaging white reference panels beside the 

target plants so that the sensing data are calibrated against reference values to remove the 

illumination variation between images (Miura and Huete, 2009). White reference calibration is 

effective in compensating different lighting conditions, but these reference images do not precisely 

reflect the bidirectional reflectance (BRDF) on the leaf surface. Variations from the changes in 

leaf angles and the plant’s endogenous responses remain. An existing calibration method, the 

combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance 

model (PROSAIL) (Jacquemoud and Baret, 1990), enables the prediction of the plant canopy 

spectral reflectance changes caused by the changing environmental conditions (Ishihara et al., 

2015; Jacquemoud and Baret, 1990). However, the model usually does not meet the accuracy 

requirement in plant phenotyping remote sensing (Berger et al., 2018b). Furthermore, the 

PROSAIL prediction theoretically requires three input variables including leaf structure parameter, 

photosynthetic pigment concertation, and water content, which are difficult and costly to measure 

in remote sensing practices (Jacquemoud et al., 2009).   

Another potential solution arises from the use of different regression methods to predict 

and compensate the environmental effects. For example, a correction model with the polynomial 

regression method was developed to predict the crop reflectance as a function of solar zenith angle, 

time of day, and ICI (instantaneous clearness index). The capability of the model in reducing the 

diurnal variation with Green Normalized Difference Vegetation Index (GNDVI) and some 

individual bands (de Souza et al., 2010) was tested. However, that model only calibrates the 

imaging time and ambient lighting factors, while many more environmental condition changes 

such as temperature and wind speed also impact the imaging result. Moreover, the plant data was 

collected on a small portion of the leaf by a handheld radiometer with four bands, which may not 

properly simulate airborne remote sensing platforms carrying hyperspectral or multispectral 

cameras. The simple polynomial regression model could successfully describe the changes in data 

over three consecutive days. However, it may fail to represent the general pattern on other days 

when the plants are at different stages of their growth cycle. Therefore, a comprehensive 

environmental impact analysis for general aerial remote sensing images is still critically needed. 

This analysis requires the continuous collection of crop images at various plant stages through 
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different environmental conditions, a task that has proven challenging with existing airborne 

remote sensing systems.  

On the modeling method side, the artificial neural network (ANN) models, as opposed to 

conventional regression models, has received considerable attention because of its ability to learn 

the features directly from the raw data without prior knowledge and human effort in feature design 

(Wang et al., 2019). Due to their better data utilization capacity, ANN models have outperformed 

conventional methods for solving regression problems in many ways (Abiodun et al., 2018). For 

example, researchers have achieved high accuracies and efficiencies on modeling multivariable 

and time-series datasets (Mokarram and Bijanzadeh, 2016; Yilmaz and Kaynar, 2011; Zhang et 

al., 2017). Given the previous successful applications, an ANN model can prove a reliable and 

efficient alternative for modeling the environment-induced effects in remote sensing data.  

This chapter introduced the research work of correcting the aerial remote sensing results 

by modeling and analyzing the effects from the changing field environmental conditions such as 

sun radiation, solar zenith angle, humidity, temperature and wind speed. There are three major 

objectives in the work of this chapter: 

1. Collect time-series hyperspectral images of two varieties of corn plants with three 

nitrogen treatments from V4 to R1 every 2.5 minutes throughout the whole growing 

season, along with synchronized environmental condition data. 

2. Build a prediction model for the environment-induced variation in each of the measured 

phenotyping features (e.g., NDVI and RWC) with time-series decomposition and ANN 

method. 

3. Evaluate the performance of the trained ANN models and their effects in removing the 

environmental noise by comparing the variances in the phenotyping features (e.g., 

NDVI and RWC) before and after the model correction. 

5.2 Materials and methods  

5.2.1 Experiment design and data collection 

To analyze the environmentally induced variation in phenotyping data, hyperspectral 

images of the crops and environmental data were collected from a corn field in the Purdue 

University Agronomy Center for Research and Education (ACRE). Two genotypes (B73 x Mo17 
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and P1105AM) of corn (Zea mays L.) were grown in the summer of 2019. Each genotype was 

treated with three different nitrogen (N) solutions: high N with 56 kg/ha (32mL, 28-0-0 in 1L 

water), medium N with 28 kg/ha (16mL, 28-0-0 in 1L water), and low N with 0 kg/ha (water). In 

total, six experimental plots existed, with one of two corn genotypes treated with one of three 

nitrogen level; each plot had around 25 plant replicates. The abbreviation for each experimental 

plot is listed in Table 5.1.   

Table 5.1. Abbreviations of plant plots with different nitrogen treatments and genotypes. 

Plant groups Genotypes N Treatments Abbrev 

1 B73 x Mo17 (Genotype 1) High G1H 

2 B73 x Mo17 (Genotype 1) Medium G1M 

3 B73 x Mo17(Genotype 1)  Low G1L 

4 P1105AM (Genotype 2) High G2H 

5 P1105AM (Genotype 2) Medium G2M 

6 P1105AM (Genotype 2) Low G2L 

1-6 combined All combined All combined All 

 

Hyperspectral images of corn plants were continuously acquired using the Purdue field 

VNIR hyperspectral imaging gantry system (Ma et al. 2020). To capture the instant environmental 

effects on the images, imaging frequency was set at 2.5 minutes. Starting from the vegetative 

growth stage V4, the continuous imaging occurred for 31 consecutive days until the plants reached 

the reproductive stage R1. Every day, imaging started at 8:00 am and ended at 7:30 pm. In total, 

we collected 8631 hyperspectral images of the same crop field (Table 5.2) for this study. After 

data collection, the hyperspectral images were further processed to measure the plant phenotyping 

features of interest, including the reflectance spectrum, NDVI, and predicted RWC for each 

experimental plot. The reflectance spectrum was obtained from the averaged data of plant tissues 

using the image segmentation algorithm highlighted in (Ma et al., 2019a). The NDVI was 

calculated from the spectrum by following Eq. 5.1 (Daughtry et al., 2000; Schafleitner et al., 2007). 

The plant’s RWC was predicted with the pretrained partial least squares regression (PLSR) model 

(Ma et al., 2020).       

 
𝑁𝐷𝑉𝐼 =

𝑅800𝑛𝑚 − 𝑅650𝑛𝑚

𝑅800𝑛𝑚 + 𝑅650𝑛𝑚
 

(5.1) 
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Table 5.2. Hyperspectral images and environmental data collection. 

Data collection Sampling days # Samples Variables 

Hyperspectral 
images 

 

31 

 

 

8,631 

 

VNIR Spectra: 376-1044nm with 
1.22nm interval. 

 

Environmental data 

 

 

31 

 

 

8,631 

 

Air temperature (℃) 
Sun radiation (W/m2) 

Wind speed (m/s) 

Solar zenith angle (degree) 

Humidity (%) 
Diurnal time (min) 

 

In addition to the hyperspectral imaging data, a local miniature weather station (Ambient 

Weather, Chandler, AZ, USA) was installed within the experimental plots to collect real-time time-

tagged environmental data. The environmental data included air temperature (℃), solar radiation 

(W/m2), wind speed (m/s), sun zenith angle (degree), humidity (%), and diurnal time (min) (Table 

5.2). 

 

 

Fig. 5.1.  Field VNIR hyperspectral platform at Purdue University. It consists of a VNIR 

hyperspectral imaging sensor (MSV-101-W, Middleton Spectral Vision, Middleton, WI, USA) 

and a local weather station (Ambient Weather, Chandler, AZ, USA). The gantry platform is 

seven meters high capable of scanning all or part of a 50-by-5 meter strip field under a wide 

range of weather conditions. 

5.2.2 Time series decomposition for environment-induced variation 

The phenotyping data from 31 days were collected to provide enough images under various 

environmental conditions. However, besides the instant environmental effects, the plant growth 
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change and other day-by-day gradual weather changes also contributed to the variation among the 

images. These different components of variation need to be clearly separated before we can focus 

on modeling the instant environmental effects. As most of the field environment factors fluctuate 

over the course of a single day (Weatherley, 1951; Zhou et al., 2017), we hypothesized that the 

higher frequency environment-induced variation could be identified by removing the lower 

frequency variation as the day-to-day trend. Thus, a time series decomposition method was applied, 

decomposing the original time-series phenotyping signal into two major parts: day-to-day trend 

(𝑇𝑡) and daily instant changes (𝐷𝑡) (Eq. 5.2). More specifically, 𝑇𝑡 is calculated with the locally 

estimated scatterplot smoothing (LOESS) method (Rojo et al., 2017). By fitting a non-parametric 

regression curve on the scattered plot of the data, the day-to-day changing trend can be extracted 

from the raw signal (Cleveland et al., 1990). This trend mostly reflects the changes in the plant 

growth stage and general weather conditions over the 31 days of imaging. The daily instant 

changes (𝐷𝑡) were calculated by subtracting the day-to-day trend (𝑇𝑡) from the raw signal. 𝐷𝑡 

contains the higher frequency variation components mostly caused by the plant’s circadian 

behavior and environmental condition changes such as sun angle, solar radiation, and temperature 

changes during the day. In this study, 𝐷𝑡 was used as the output of the proposed model. 

 𝑅𝑎𝑤 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = 𝑇𝑡 + 𝐷𝑡 (5.2) 

5.2.3 Environmental data transformation and selection 

To generate more discriminatory power in higher-dimensional feature spaces besides the 

original environmental variables (temperature, solar zenith angle, wind speed, etc.) for improved 

model accuracy, a feature transformation was performed by taking the square and square root of 

the measurements of the original environment factors (Kusiak, 2001). These new non-linear 

variables have proven more effective in modeling environment variation (de Souza et al., 2010). 

Finally, the transformed variables were combined with the original variables for further processing.   

After transformation, the features were selected to remove the irrelevant input of some 

environmental variables to reduce overfitting. This also lowered the difficulty of future 

applications, with fewer measurements required.  A single-factor correlation analysis was 

performed. Each of the original or transformed environment variables was fitted with the 

calculated environment-induced variation in phenotyping data (daily instant changes 𝐷𝑡 in Eq. 5.2) 
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in a linear regression model. The adjusted R2, which indicates the relevance of each feature to the 

estimated environmental variation, was calculated. A higher adjusted R2 means a variable is more 

relevant (Helland, 1987). By comparing the adjusted R2 of each variable, we determined the final 

list of input environmental variables for the model.   

5.2.4 Data quality check 

The training data quality is critically important for a supervised machine learning model. 

The data quality was checked before training the model, and the outlier data was removed 

(Schwertman and de Silva, 2007). For each phenotyping feature (NDVI and predicted RWC, etc.), 

the daily measurements between the upper inner fence (Q3+1.5IQR) and lower inner fence (Q1-

1.5IQR) were kept (Schwertman and de Silva, 2007). IQR is the interquartile range, which equals 

the difference between 75th (Q3) and 25th (Q1) percentiles. Meanwhile, image data before 10:00 

am and after 5:30 pm was also removed as it demonstrated extreme variance and noise (Ma et al., 

2020). Using the NDVI as an example, we employed the training data sizes shown in Table 5.3 for 

training the ANN model.   

Table 5.3. Data pool after data quality check. 

Datasets 
Number of samples before the 

quality check 

Number of samples after the 

quality check 

G1H 8,631 5,070 

G1M 8,631 5,092 

G1L 8,631 5,083 

G2H 8,631 5,108 

G2M 8,631 5,084 

G2L 8,631 5,093 

All 51,789 30,530 

 

5.2.5 Artificial Neural network (ANN) model 

5.2.5.1 Architecture 

The architecture of the proposed model is based on a feed-forward multi-layer perceptron 

(MLP) network, a class of ANN models (Fig. 5.2). Due to their adjustable architecture, MLP 

models are particularly flexible. This flexibility increases the suitability of MLP for regression 
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prediction problems where a real-valued quantity is predicted given a set of inputs such as time-

series data (Mellit and Pavan, 2010). In this study, after some speed-accuracy tradeoff pretests on 

model performance, the proposed ANN architecture is configured with a four-layer model 

containing an input layer, two hidden layers, and an output layer. After each hidden layer, the 

Leaky ReLU activation is performed to add non-linear properties to the function (Sharma V. 

Avinash, 2017). The selected environmental variables serve as input for the model, whereas the 

𝐷𝑡 environment-induced variation of selected phenotyping features is the output. To accelerate 

learning and lead to a faster convergence, both input and output data were normalized for modeling 

purposes (Zhang et al., 2018), while the final prediction results were denormalized back to the 

original scale of the phenotyping feature.  

 

 

Fig. 5.2. The ANN architecture: Input layer (15 neurons) - Hidden layer 1 (100 neurons, 

followed with Leaky ReLU) - Hidden layer 2 (1000 neurons, followed with Leaky ReLU) - 

Output layer (1 neuron). 

5.2.5.2 Training and optimization   

To train the network with minimum overfitting, the training process followed a five-fold 

cross-validation scenario. We randomly divided the whole dataset into five roughly equal subsets. 

In the first iteration, the first subset was used to test the model and the rest aided in training the 

model. This process was repeated until each subset has been used as the testing set. During training, 

the loss function was Mean Square Error (MSE). The network was initialized with the Kaiming 
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weights (Tonylins, 2019). All the ANN models were trained using the Adam optimizer (Le et al., 

2011).  

The accuracy of the model was optimized by adjusting the learning rate, batch size, and 

the number of epochs. The learning rate controls the rate or speed at which the model learns (Jacobs, 

1988). The batch size establishes the accuracy of the error gradient estimate when training neural 

networks (Gholamrezaei and Ghorbanian, 2007; Livingstone, 2008). The number of epochs 

impacts the ability of the model to be generalized by determining how many times the model trains 

on the same data. Finally, by comparing the accuracy (R2 and RMSE) of models with different 

combinations of the learning rate, batch size, and number of epochs, the model parameters with a 

batch size of 600 for 120 epochs with learning rate at 1e-3 were chosen for this study.   

5.2.6 Performance evaluation 

5.2.6.1 Evaluation metrics 

The performance of all the developed models was evaluated and compared with the 

coefficient of determination (R2) and root mean square error (RMSE) between the prediction 

results and the original measurements. Meanwhile, we also compared the daily variances of the 

selected phenotyping features (e.g., NDVI) before and after the model correction. A two-sample 

t-test was performed to check if daily variance in features fell significantly.   

5.2.6.2 Multi-model comparison analysis across genotypes and nitrogen treatments 

The impacts of nitrogen treatments and genotypes on the ANN modeling were also 

investigated to determine whether a separate ANN model was needed for each case or if one 

general ANN model could fit the different treatments and genotypes. The ANN model of each 

experimental plot was trained separately (Table 5.3) and was tested on the other treatments and 

genotypes. We also built a general ANN model containing the entire sample data to provide a 

unified and general “all-in-one” correction approach. With the group-to-group cross-validation on 

each of the datasets, the R2 and RMSE of each model’s performance in the other datasets were 

examined to evaluate the generalization of models across genotypes and nitrogen treatments. For 

example, if the ANN model (ALL) results in similar outcomes as the individual plot models (G1H, 

G1M, G1L, G2H, G2M, G2L) for each plant plot, this unified model would be adopted. Otherwise, 
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different models should be adopted separately for each different case. The aim was to find the most 

appropriate correction solution as the best balance between ease of use and accuracy. 

5.2.6.3 Phenotyping features for testing the model and workflow 

To demonstrate the detailed modeling procedures and performance evaluation, NDVI was 

chosen as the first example as it represents one of the most common plant features in remote 

sensing (Cabrera-Bosquet et al., 2011). We also then tested the same ANN architecture and 

workflow on the RWC to validate the generalization of the proposed method.   

5.2.7 Software and computation 

All the imaging processing work was implemented with Matlab R2018a software 

(MATLAB, 2018). The modeling work was performed in the Python version 3.7.2 software 

environment (Van Rossum and Drake, 2009). The ANN model was implemented in PyTorch 0.4.1 

(Paszke et al., 2017). The time-series data was analyzed and manipulated using Pandas 

(McKinney, 2010) and Numpy (Oliphant, 2006). The figures were drawn with Seaborn (Waskom 

et al., 2017) and Matplotlib (Hunter, 2007).  The Matlab and Python computations were all 

executed on a ThinkPad workstation P300 (Lenovo PC international, Morrisville, Morrisville, NC, 

USA) equipped with 16-gigabytes (GB) of random-access memory (RAM), a 3.70 GHz Intel® 

Xeon™ E1270 processor and Nvidia GTX 1070 GPU. 

5.3 Results and discussion 

5.3.1 Time series decomposition result 

The time-series data of raw NDVI was successfully decomposed into the day-to-day trend 

(𝑇𝑡) and daily instant changes (𝐷𝑡) (Fig. 5.3). The raw NDVI plot (row 1 in Fig. 5.3) captured the 

variation in NDVI over the daytime period with gaps indicating the time between 5:30 in the 

afternoon until 10:00 next day without imaging data. The raw NDVI plot showed a clear and 

repetitive V-shaped pattern for each day, which was caused by environment variation during 

imaging. The day-to-day trend 𝑇𝑡 (row 2 in Fig. 5.3) represented the changes of plant growth stage 

and plant health conditions. As plants mature, the NDVI was expected to increase until the 

reproductive stage. Meanwhile, the two big dips along the 𝑇𝑡 curve precisely captured the impacts 
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from two severe temperature drops in the West Lafayette area. This kind of long-term 

environmental impact was not included in the proposed analysis.  

On the other hand, the daily instant changes (𝐷𝑡) (row 3 in Fig. 5.3) showed clear periodical 

changes with V shapes. Due to the extreme weather conditions, parts of the data were missing on 

DAP 36, 37, 58, 59, and 60. Overall, 𝐷𝑡 remained substantially consistent through 31 days, while 

amplitude and minor skewness differences existed among the 𝐷𝑡 from different imaging days. For 

example, the 𝐷𝑡  of DAP 42 demonstrates a smaller amplitude than that of DAP 56. These 

differences were caused by different environmental conditions, which would be addressed by the 

environmental correction model in this study.   

 

Fig. 5.3. The NDVI of the sample dataset (G1H) from the V4 stage to the R1 stage. The raw 

NDVI plot was decomposed into the day-to-day trend (𝑇𝑡) and the periodic change (𝐷𝑡). The red 

boxes are the days with incomplete data measurements due to the extreme weather conditions, 

which are DAP 36, 37, 58, 59 and 60. 

5.3.2 Environmental feature selection and range 

The results of the single-factor correlation analysis for NDVI are shown in Fig. 5.4. The 

environmental variables were all correlated with the environment-induced variation in NDVI, 

Severe 

temperature 

drops 
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except for humidity and its derivatives. The adjusted R2 values for humidity were almost 0, 

indicating no correlation found between humidity and NDVI changes. This confirmed the findings 

from the previous literature that while plant-sensing data were strongly impacted by environment 

factors such as air temperature, solar radiation, sun zenith angle, and diurnal time (de Souza et al., 

2010; Ishihara et al., 2015; Jones et al., 2009), humidity was rarely reported to demonstrate a 

similar impact. Thus, we removed humidity and its derivatives in the model. Finally, the input 

feature for each modeling sample is a 1-by-15 vector consisting of air temperature, solar radiation, 

wind speed, solar zenith angle, diurnal time and their square or square root values. Besides, the 

range in environmental conditions experienced by the modeling data was shown in Table 5.4. 

These ranges illustrate the appropriate environmental condition to apply the model.  

 

 

Fig. 5.4. Single-factor correlation analysis for NDVI. The x-axis is the environment factors and 

their squared or root squared formats. The y-axis is the adjusted R2 between each x variable and 

the calculated environment-induced variation in NDVI. Larger adjusted R2 value means the 

variable is more correlated to the NDVI variation. 
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Table 5.4. The ranges in environmental conditions experienced by the modeling data during the 

31 days.  

Environmental variables Min Max 

Sun radiation (W/m2) 85.76 954.23 

Diurnal time (min) 600 (at 10am) 1050 (at 5:30pm) 

Solar zenith angle (degree) 35.2 78.26 

Air temperature (℃) 11.79 33.27 

Wind speed (m/s) 0 8.3 

Humidity (%) 26.52 97.06 

Note: Diurnal time counts from midnight, so the value at midnight is 0 min.   

5.3.3 Performance of the ANN models 

5.3.3.1 Overall performance 

The R2 and RMSE measure the precision of the predicted environment-induced variation 

in NDVI. The environment-induced variation predicted by the ANN model for the sample dataset 

(G1H) showed a fairly accurate linear relationship with the coefficient of determination (R2) equal 

to 0.823 (Fig. 5.5). The RMSE also demonstrated a relatively low value of 0.00611. The prediction 

result was five-fold cross-validated.   

 

 

Fig. 5.5. The five-fold cross-validated prediction results of environment-induced variation in 

NDVI for the sample dataset (G1H). The ANN prediction values show a significant correlation 

with R2=0.823 and RMSE=0.006. 
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The predicted environmentally induced variation was further used to correct the noise 

caused by environmental effects in the raw NDVI signal. Fig. 5.6 shows the NDVI corrected by 

subtracting the predicted variation (Fig. 5.5) from the raw NDVI. In Fig. 5.6b, each box represents 

the NDVI changes within a day. The trained ANN model largely eliminated the daily variance in 

the NDVI, so the boxes of the corrected NDVI (Fig. 5.6b) were much more condensed compared 

with the original NDVI (Fig. 5.6a). To facilitate the comparison, we compared the variances of 

NDVI before and after model correction with a two-sample t-test (Fig. 5.7 and Table 5.5).  The 

result confirmed that the daily variances in NDVI were significantly reduced (p-value < 0.01) by 

79% on average, thereby confirming the ability of the proposed ANN model to effectively 

eliminate the environmentally induced effects on the raw signal. 

 
(a) 

 
(b) 

Fig. 5.6. Box plots for the five-fold cross-validated correction result of the sample dataset (G1H). 

(1). The raw NDVI with huge daily variances across 31 days. (2). The ANN model corrected 

NDVI with much more condensed boxes. 
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Fig. 5.7. Two-sample t-test between the variance of daily NDVI for the sample dataset (G1H) before and 

after ANN model correction. 

Table 5.5. The results of the two-sample t-test between the variance of daily NDVI before and 

after ANN model correction. 

Groups N Mean StDev SE Mean T-value P-value 

Raw NDVI 31 0.000230 0.000174 0.000031 
5.78 <0.01 

Corrected NDVI 31 0.0000472 0.0000248 0.0000045 

5.3.3.2 Multi-model comparison analysis across genotypes and nitrogen treatments 

The ANN models built for each dataset were tested on the other datasets to evaluate the 

drifts between different genotypes and nutrient treatments. For datasets from a different genotype 

or treatment, the ANN model demonstrated a weaker prediction performance compared to the 

results on dataset it had been trained with (Fig. 5.8). Notably, the predictions were least accurate 

when the ANN models trained with nitrogen-stressed plots (G1M, G2M, G1L, and G2L) were 

applied to the high-nitrogen groups (G1H and G2H), as shown within the red boxes in the Fig. 5.8. 

The results of the multi-model comparison indicate that the nitrogen stress levels on plants should 

be considered when modeling the environment-induced variation in phenotyping 

features. Compared to the nitrogen treatments, the genotype difference demonstrated a minor 

impact. The R2 between plots with the same nitrogen treatment but different genotypes were 

between 0.59-0.79 with RMSE between 0.009-0.013. The general ANN model (ALL) trained with 

the entire sample data performed well across the different genotypes and treatments with 

substantially high R2 (0.617-0.843) and low RMSE values (0.008-0.0010). This allowed us to 
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apply the same one ANN model (ALL) for diverse corn stages (already included in the modeling), 

genotypes, and treatments (validated in Fig 5.8). 

 

 
(a). R2 

 
(b). RMSE 

Fig. 5.8. Accuracy heatmaps of R2 and RMSE of ANN models for NDVI. Red boxes: the region 

with relatively poor predictive results. 

5.3.4 Modeling of environmentally induced variation in predicted RWC 

Besides NDVI, the environmentally induced variation in the predicted RWC was also 

modeled and predicted. In Fig. 5.9, the predicted and the measured variation were strongly 
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correlated, with a R2 of 0.791 and RMSE of 0.722%. With this model, the variance of the corrected 

RWC was significantly reduced (p-value <0.01) by 72% on average compared to the raw predicted 

RWC data (Fig. 5.10). The successful application of the same proposed ANN architecture and 

decomposition method on the predicted RWC and NDVI indicated that this method has the 

potential to be generally applied on other phenotyping features that can be further explored. 

Moreover, the corrected predicted RWC plot (Fig. 5.10b) demonstrates a more obvious day-to-day 

trend than the raw predicted RWC (Fig. 5.10a). Therefore, with the environmental effects removed, 

plant remote-sensing researchers can more accurately track the plant growth signals. 

  

Fig. 5.9. The five-fold cross-validated prediction results of environment-induced variation in 

predicted RWC for the sample dataset (G1H). The ANN prediction values show a significant 

performance with R2=0.791 and RMSE=0.722%.   
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(a) 

 
(b) 

Fig. 5.10. Box plots for the 5-fold cross-validated correction result of sample dataset (G1H). (1). 

The raw predicted RWC showed huge daily variances across 31 days. (2). The ANN model 

corrected predicted RWC has much more condensed boxes. 

5.4 Conclusions 

In this paper, a new modeling method was successfully proposed to precisely predict the 

environmental effects on the hyperspectral imaging results (such as NDVI and predicted RWC) in 

airborne crop remote sensing. Over 8,000 hyperspectral images, together with synchronized 

environment data were collected over 31 days for field corn plants with different nitrogen 

treatments and genotypes. Experimental results demonstrated that the proposed ANN method 

could accurately predict the environment-induced variations in the selected phenotyping features. 

For example, the trained model for NDVI achieved promising predictive results for the sample 

dataset with an R2 of 0.822 and an RMSE of 0.00611 compared with the measured variation. The 

predicted values were used to correct the raw phenotyping data, and the daily variance of NDVI 

was significantly reduced by 79%. The proposed method also achieved satisfactory results when 

tested on predicted RWC (daily variance reduced by 72%). The applicability of the proposed 

method on two different features highlighted its potential to correct the other phenotyping features 
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of interest. Based on these results, this proposed modeling method can help agricultural remote 

sensing researchers to effectively eliminate the signal drifts caused by the environment variation, 

which will drastically increase the accuracy of field plant sensing.   
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 SUMMARY AND FUTURE WORK 

6.1 Summary  

This thesis proposed methods for analyzing and ameliorating the environmental effects on 

hyperspectral images for improved phenotyping in greenhouse and field conditions. The proposed 

methods effectively minimized the unwanted noise in imaging results caused by the environment 

variation, which drastically improved the quality of plant phenotyping.   

A computational simulation model was built to study the greenhouse microclimate changes 

(such as the temperature and radiation distributions) through a 24-hour cycle in a research 

greenhouse. With the simulated temperature and radiation profiles over time and space, the 

heterogenous microclimate in the greenhouse was precisely estimated. The simulation results were 

validated by comparing them to the ground truth temperature and radiation measurements with the 

distributed environmental sensors in the greenhouse (R2=0.88 and 0.91, respectively). The 

simulation results of temperature and radiation distributions were then utilized to optimize the 

distance and frequency of pot movement in a greenhouse equipped with an automated conveyor 

system. The conveyor movement was changed from its original setting of continuous movement 

to the optimal setting of “10s running phase followed by 8min break in each cycle”, which saved 

98% of the conveyor motion while having the same reduction in the heterogenous microclimates. 

The details of the design and development of the automated phenotyping greenhouse were 

introduced. The novel design enables the hyperspectral imager in the greenhouse to scan each 

individual plant 15 times/day. This greenhouse was specially designed with a conveyor system to 

automatically shuffle the plants to reduce the heterogenous microclimate impacts. The comparison 

test between this conveyor greenhouse and a neighboring traditional greenhouse validated the 

effectiveness of the optimized conveyor movement solution. Plant feature (e.g., canopy size, 

NDVI, RWC) variances were significantly reduced by 28-83% in the conveyor greenhouse.  

Diurnal changing patterns in crop aerial remote sensing images were quantitatively 

investigated with the proposed novel modeling approach. Over 8000 hyperspectral images of two 

varieties of corn with three nitrogen treatments were taken by the field imaging gantry at Purdue 

University over the 2019 growing season. The imaging covered the plant stages from V4 to R1. 

Crop phenotyping features such as NDVI, RWC, and two individual spectral bands (Red and NIR) 
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were calculated from the imaging data. The proposed diurnal pattern modeling method 

successfully described the diurnal changes along the timeline for these phenotyping features. For 

example, the modeled diurnal changing pattern shows that the NDVI presents a repeatable V-

shaped diurnal changing pattern: it linearly decreases by 0.012/h before solar noon and increases 

by 0.010/h thereafter. Besides NDVI, predicted RWC and the NIR band display linear diurnal 

changing patterns as well, where predicted RWC changes in an inversed V-shaped pattern and NIR 

changes in a normal V-shaped pattern. The red band shows a quadratic diurnal changing pattern 

with an inversed V shape. With the modeling results of this work, remote sensing users can more 

precisely estimate the deviation or change in crop feature predictions at different imaging time of 

the day. The diurnal pattern model helps researchers in deciding upon an acceptable imaging time 

window, and it can also be used to correct/compensate the remote sensing results considering the 

time effect. 

To extend the study of environmental effects on aerial hyperspectral images, an ANN model 

was trained with synchronized hyperspectral imaging data and environmental data (including sun 

radiation, solar zenith angle, diurnal time, temperature and wind speed) to understand the 

correlation of the variations between the two datasets.  A time-series decomposition method was 

applied to extract the phenotyping data variation caused by the changing environments. By 

learning the relationship between the phenotyping data variation and environmental changes, the 

developed ANN model was able to precisely predict the environmental effects on remote sensing 

results (i.e., 82.3% for NDVI), and thus could be used to effectively eliminate the environment-

induced variation in the phenotyping features. The two-sample t-tests on the NDVI and predicted 

RWC of corn plants showed that the daily variances in NDVI and predicted RWC were 

significantly reduced by 79% and 72%, respectively. 

6.2 Future work 

Though the conveyor greenhouse has proven effective in eliminating the impact of 

microclimates on plants, further study is still needed to explore the conveyor movement’s 

disturbance on the plant’s growth. Future studies could investigate the level of disturbance by 

comparing the plants who are and are not moved by the conveyor system. Three groups of plants 

could be grown: one on the conveyor system, one on the ground beside the conveyor, and the last 

in the conventional greenhouse. Ground truth measurements, including leaf area, RWC, and 
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SPAD, could be collected and compared to estimate the influence of conveyor movement on plant 

growth. 

The applications of simulation results could also be further explored in the traditional 

greenhouse when pot movement is impractical. The simulation results could quantitatively 

estimate the severity of microclimate impact in a conventional greenhouse. Thus, researchers could 

avoid the locations with extreme environmental impacts on the plants.     

The proposed ANN-based method showed a promising performance in modeling the 

environment-induced variations in different plant phenotyping features. However, the data used in 

the model was drawn from one single field test whose imaging data was collected from Purdue’s 

field gantry system, which might induce systematic bias in the model. External validation data 

from the other remote sensing platforms such as UAVs are needed. In the 2020 growing season, 

the proposed method will be validated with the images from the field UAV system as well as the 

RGBN camera-based imaging sensor (Ncam) (Wang et al., 2020a). Furthermore, this modeling 

method was developed based on corn images, which might limit the scope of application. It is 

necessary to conduct more tests on more diverse plant species (e.g., soybean, wheat, and rice).  

This will help further validate the developed models, as well as improve the robustness of the 

prospective models. 

 In the future, I will also continue exploring training models for all the single spectral bands 

to adjust/correct the whole spectrum data considering environmental variations. Remote sensing 

users could benefit from the spectrum calibration model to correct the prediction results from any 

plant feature prediction models.   

  



 

 

113 

REFERENCES 

Aaslyng, J.M., Andreassen, A.U., Allee, H., Holst, N., 2007. Microclimate Prediction for Dynamic 

Greenhouse Climate Control 42, 272–279. 

Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A.E., Arshad, H., 2018. State-

of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938. 

https://doi.org/10.1016/j.heliyon.2018.e00938 

Ahemd, H.A., Al-Faraj, A.A., Abdel-Ghany, A.M., 2016. Shading greenhouses to improve the 

microclimate, energy and water saving in hot regions: A review. Sci. Hortic. (Amsterdam). 

201, 36–45. https://doi.org/10.1016/j.scienta.2016.01.030 

Ahonen, T., Virrankoski, R., Elmusrati, M., Box, P.O., 2008. Greenhouse Monitoring with 

Wireless Sensor Network. IEEE/ASME Int. Conf. Mechtronic Embed. Syst. Appl. 403–408. 

https://doi.org/10.1109/MESA.2008.4735744 

Alain, B., 1989. Greenhouse microclimate and its management in mild winter climates. Acta 

Hortic. 

Alamar, M.C., Bobelyn, E., Lammertyn, J., Nicolaï, B.M., Moltó, E., 2007. Calibration transfer 

between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids 

contents of apple. Postharvest Biol. Technol. 45, 38–45. 

https://doi.org/10.1016/j.postharvbio.2007.01.008 

An, N., Welch, S.M., Markelz, R.J.C., Baker, R.L., Palmer, C.M., Ta, J., Maloof, J.N., Weinig, C., 

2017. Quantifying time-series of leaf morphology using 2D and 3D photogrammetry methods 

for high-throughput plant phenotyping. Comput. Electron. Agric. 135, 222–232. 

https://doi.org/10.1016/j.compag.2017.02.001 

Ast, J.C., Dunlap, P. V, 2004. Phylogenetic analysis of the lux operon distinguishes two 

evolutionarily distinct clades of Photobacterium leiognathi. Arch. Microbiol. 181, 352–361. 

Atkin, O.K., Holly, C., Ball, M.C., 2000. Acclimation of snow gum (Eucalyptus pauciflora) leaf 

respiration to seasonal and diurnal variations in temperature: The importance of changes in 

the capacity and temperature sensitivity of respiration. Plant, Cell Environ. 23, 15–26. 

https://doi.org/10.1046/j.1365-3040.2000.00511.x 

Atrashevskii, Y.I., Sikorskii, A. V, Sikorskii, V. V, Stel’makh, G.F., 1999. The reflection and 

scattering of light by a plant leaf. J. Appl. Spectrosc. 66, 105–114. 



 

 

114 

Baille, A., Kittas, C., Katsoulas, N., 2001. Influence of whitening on greenhouse microclimate and 

crop energy partitioning. Agric. For. Meteorol. 107, 293–306. https://doi.org/10.1016/S0168-

1923(01)00216-7 

Barbedo, J.G.A., 2019. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors 

for Monitoring and Assessing Plant Stresses. Drones 3, 40. 

https://doi.org/10.3390/drones3020040 

Bassi, F.M., Bentley, A.R., Charmet, G., Ortiz, R., Crossa, J., 2015. Breeding schemes for the 

implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242, 23–36. 

https://doi.org/10.1016/j.plantsci.2015.08.021 

Baxevanou, C., Fidaros, D., Bartzanas, T., Kittas, C., 2010. Numerical simulation of solar radiation, 

air flow and temperature distribution in a naturally ventilated tunnel greenhouse. Agric. Eng. 

Int. CIGR J. 12, 48–67. 

Bellvert, J., Girona, J., 2012. The use of multispectral and thermal images as a tool for irrigation 

scheduling in vineyards. Om.Ciheam.Org 137, 131–137. 

Beneduzzi, H.M., Souza, E.G., Bazzi, C.L., Schenatto, K., 2017. Temporal variability in active 

reflectance sensor-measured NDVI in soybean and wheat crops. Eng. Agric. 37, 771–781. 

https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p771-781/2017 

Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., Hank, T., 2018a. 

Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: 

A review study. Remote Sens. 10. https://doi.org/10.3390/rs10010085 

Berger, K., Atzberger, C., Danner, M., Wocher, M., Mauser, W., Hank, T., 2018b. Model-based 

optimization of spectral sampling for the retrieval of crop variables with the PROSAIL model. 

Remote Sens. 10. https://doi.org/10.3390/rs10122063 

Berndt, D., Clifford, J., 1994. Using dynamic time warping to find patterns in time series. Work. 

Knowl. Knowl. Discov. Databases 398, 359–370. 

Boos, D.D., Stefanski, L.A., 2011. P-value precision and reproducibility. Am. Stat. 65, 213–221. 

Brien, C.J., Berger, B., Rabie, H., Tester, M., 2013. Accounting for variation in designing 

greenhouse experiments with special reference to greenhouses containing plants on conveyor 

systems. Plant Methods 9. https://doi.org/10.1186/1746-4811-9-5 

 

 



 

 

115 

Broge, N.H., Leblanc, E., 2001. Comparing prediction power and stability of broadband and 

hyperspectral vegetation indices for estimation of green leaf area index and canopy 

chlorophyll density. Remote Sens. Environ. 76, 156–172. https://doi.org/10.1016/S0034-

4257(00)00197-8 

Cabrera-Bosquet, L., Molero, G., Stellacci, A., Bort, J., Nogués, S., Araus, J., 2011. NDVI as a 

potential tool for predicting biomass, plant nitrogen content and growth in wheat genotypes 

subjected to different water and nitrogen conditions. Cereal Res. Commun. 39, 147–159. 

https://doi.org/10.1556/CRC.39.2011.1.15 

Çakir, U., Sahin, E., 2015. Using solar greenhouses in cold climates and evaluating optimum type 

according to sizing, position and location: A case study. Comput. Electron. Agric. 117, 245–

257. 

Carter, G.A., 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. 

Int. J. Remote Sens. 15, 517–520. https://doi.org/10.1080/01431169408954109 

Castro, V., Isard, S.A., Irwin, M.E., 1991. The microclimate of maize and bean crops in tropical 

America: a comparison between monocultures and polycultures planted at high and low 

density. Agric. For. Meteorol. 57, 49–67. https://doi.org/10.1016/0168-1923(91)90078-5 

Causse, M., Derivot, L., Pascual, L., Diouf, I.A., Bitton, F., 2018. Water Deficit and Salinity Stress 

Reveal Many Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Front. Plant 

Sci. 9, 1–13. https://doi.org/10.3389/fpls.2018.00279 

Chappelle, E.W., Kim, M.S., McMurtrey, J.E., 1992. Ratio analysis of reflectance spectra (RARS): 

An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll 

B, and carotenoids in soybean leaves. Remote Sens. Environ. 39, 239–247. 

https://doi.org/10.1016/0034-4257(92)90089-3 

Cho, M.A., Ramoelo, A., Koch, S., Main, R., Mathieu, R., O’Kennedy, M.M., 2011. An 

investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. 

Photogramm. Remote Sens. 66, 751–761. https://doi.org/10.1016/j.isprsjprs.2011.08.001 

Choab, N., Allouhi, A., El Maakoul, A., Kousksou, T., Saadeddine, S., Jamil, A., 2019. Review 

on greenhouse microclimate and application: Design parameters, thermal modeling and 

simulation, climate controlling technologies. Sol. Energy 191, 109–137. 

https://doi.org/10.1016/j.solener.2019.08.042 

 



 

 

116 

Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I., 1990. STL: A seasonal-trend 

decomposition. J. Off. Stat. 6, 3–73. 

Clevers, J.G.P.W., Kooistra, L., Schaepman, M.E., 2008. Using spectral information from the NIR 

water absorption features for the retrieval of canopy water content. Int. J. Appl. Earth Obs. 

Geoinf. 10, 388–397. https://doi.org/10.1016/j.jag.2008.03.003 

Conceição, P., Mendoza, R.U., 2009. Anatomy of the global food crisis. Third World Q. 30, 1159–

1182. https://doi.org/10.1080/01436590903037473 

Danner, M., Berger, K., Wocher, M., Mauser, W., Hank, T., 2019. Fitted PROSAIL 

parameterization of leaf inclinations,water content and brown pigment content for winter 

wheat and maize canopies. Remote Sens. 11. https://doi.org/10.3390/rs11101150 

Datt, B., 1999. A new reflectance index for remote sensing of chlorophyll content in higher plants: 

Tests using Eucalyptus leaves. J. Plant Physiol. 154, 30–36. https://doi.org/10.1016/S0176-

1617(99)80314-9 

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., De Colstoun, E.B., McMurtrey Iii, J.E., 2000. 

Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote 

Sens. Environ. 74, 229–239. 

de Souza, E.G., Scharf, P.C., Sudduth, K.A., 2010. Sun position and cloud effects on reflectance 

and vegetation indices of corn. Agron. J. 102, 734–744. 

https://doi.org/10.2134/agronj2009.0206 

Di Gennaro, S.F., Rizza, F., Badeck, F.W., Berton, A., Delbono, S., Gioli, B., Toscano, P., Zaldei, 

A., Matese, A., 2018. UAV-based high-throughput phenotyping to discriminate barley vigour 

with visible and near-infrared vegetation indices. Int. J. Remote Sens. 39, 5330–5344. 

https://doi.org/10.1080/01431161.2017.1395974 

Duan, S.B., Li, Z.L., Wu, H., Tang, B.H., Ma, L., Zhao, E., Li, C., 2014. Inversion of the PROSAIL 

model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial 

vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 26, 12–20. 

https://doi.org/10.1016/j.jag.2013.05.007 

Dunford, R.P., Yano, M., Kurata, N., Sasaki, T., Huestis, G., Rocheford, T., Laurie, D.A., 2002. 

Comparative mapping of the barley Ppd-H1 photoperiod response gene region, which lies 

close to a junction between two rice linkage segments. Genetics 161, 825–834. 

 



 

 

117 

Eck, R. Van, Klep, M., Schijndel, J. Van, 2016. Surface to Surface Radiation Benchmarks. Proc. 

2016 COMSOL Conf. Munich. 

Ehrlich, P.R., Harte, J., 2016. Opinion: To feed the world in 2050 will require a global revolution. 

Proc. Natl. Acad. Sci. 112, 14743–14744. https://doi.org/10.1073/pnas.1519841112 

Fiorani, F., Rascher, U., Jahnke, S., Schurr, U., 2012. Imaging plants dynamics in heterogenic 

environments. Curr. Opin. Biotechnol. https://doi.org/10.1016/j.copbio.2011.12.010 

Fiorani, F., Schurr, U., 2013. Future Scenarios for Plant Phenotyping. Annu. Rev. Plant Biol. 64, 

267–291. https://doi.org/10.1146/annurev-arplant-050312-120137 

Frei, W., 2016. Thermal Modeling of the Air Flow Inside and Around Your House [WWW 

Document]. URL https://www.comsol.com/blogs/thermal-modeling-of-the-air-flow-inside-

and-around-your-house/ 

Gamon, J.A., Kovalchuck, O., Wong, C.Y.S., Harris, A., Garrity, S.R., 2015. Monitoring seasonal 

and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors. 

Biogeosciences 12, 4149–4159. https://doi.org/10.5194/bg-12-4149-2015 

Garaba, S.P., Dierssen, H.M., 2018. An airborne remote sensing case study of synthetic 

hydrocarbon detection using short wave infrared absorption features identified from marine-

harvested macro- and microplastics. Remote Sens. Environ. 205, 224–235. 

https://doi.org/10.1016/j.rse.2017.11.023 

Gardner, B.R., 1985. TECHNIQUES FOR REMOTELY MONITORING CANOPY 

DEVELOPMENT AND ESTIMATING GRAIN YIELD OF MOISTURE STRESSED 

CORN (LANDSAT, SENSED). 

Gatebe, C.K., King, M.D., 2016. Airborne spectral BRDF of various surface types (ocean, 

vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing 

applications. Remote Sens. Environ. 179, 131–148. 

Ge, Y., Bai, G., Stoerger, V., Schnable, J.C., 2016. Temporal dynamics of maize plant growth , 

water use , and leaf water content using automated high throughput RGB and hyperspectral 

imaging. Comput. Electron. Agric. 127, 625–632. 

https://doi.org/10.1016/j.compag.2016.07.028 

 

 

 



 

 

118 

Gehan, M.A., Fahlgren, N., Abbasi, A., Berry, J.C., Callen, S.T., Chavez, L., Doust, A.N., Feldman, 

M.J., Gilbert, K.B., Hodge, J.G., Hoyer, J.S., Lin, A., Liu, S., Lizárraga, C., Lorence, A., 

Miller, M., Platon, E., Tessman, M., Sax, T., 2017. PlantCV v2: Image analysis software for 

high-throughput plant phenotyping. PeerJ 5, e4088. https://doi.org/10.7717/peerj.4088 

Gewali, U.B., Monteiro, S.T., Saber, E., 2018. Machine learning based hyperspectral image 

analysis: A survey. 

Gholamrezaei, M., Ghorbanian, K., 2007. Rotated general regression neural network. IEEE Int. 

Conf. Neural Networks - Conf. Proc. 2, 1959–1964. 

https://doi.org/10.1109/IJCNN.2007.4371258 

Gitelson, A., Merzlyak, M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance 

spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B 

Biol. 22, 247–252. https://doi.org/10.1016/1011-1344(93)06963-4 

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote sensing 

of global vegetation from EOS- MODIS. Remote Sens. Environ. 58, 289–298. 

https://doi.org/10.1016/S0034-4257(96)00072-7 

Glenn, K.C., Ward, J.M., Goley, M., Vicini, J.L., Bell, E., Parrott, W., Alsop, B., Martin, C., 

Sparks, O., Liu, B., Souder, C., Urquhart, W., Jenkinson, J., 2017. Bringing New Plant 

Varieties to Market: Plant Breeding and Selection Practices Advance Beneficial 

Characteristics while Minimizing Unintended Changes. Crop Sci. 57, 2906. 

https://doi.org/10.2135/cropsci2017.03.0199 

Golzarian, M.R., Frick, R.A., Rajendran, K., Berger, B., Roy, S., Tester, M., Lun, D.S., 2011. 

Accurate inference of shoot biomass from high-throughput images of cereal plants 1–11. 

Gonzalez-Real, M.M., Baille, A., 2000. Changes in leaf photosynthetic parameters with leaf 

positon and nitrogen content within a rose plant canopy (Rosa hybrida). Plant Cell Environ. 

23, 351–363. 

Gracia-Romero, A., Kefauver, S.C., Fernandez-Gallego, J.A., Vergara-Díaz, O., Nieto-Taladriz, 

M.T., Araus, J.L., 2019. UAV and ground image-based phenotyping: A proof of concept with 

durum wheat. Remote Sens. 11. https://doi.org/10.3390/rs11101244 

Greenham, K., Lou, P., Remsen, S.E., Farid, H., McClung, C.R., 2015. TRiP: Tracking Rhythms 

in Plants, an automated leaf movement analysis program for circadian period estimation. 

Plant Methods 11, 1–11. https://doi.org/10.1186/s13007-015-0075-5 



 

 

119 

Gupta, R.K., 2001. New Hyperspectral Vegetation. Ratio 201–206. 

Gupta, R.K., Vijayan, D., Prasad, T.S., 2003. Comparative analysis of red-edge hyperspectral 

indices. Adv. Sp. Res. 32, 2217–2222. https://doi.org/10.1016/S0273-1177(03)90545-X 

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. Hyperspectral 

vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling 

and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352. 

https://doi.org/10.1016/j.rse.2003.12.013 

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. Integrated 

narrow-band vegetation indices for prediction of crop chlorophyll content for application to 

precision agriculture. Remote Sens. Environ. 81, 416–426. https://doi.org/10.1016/S0034-

4257(02)00018-4 

Hartung, J., Wagener, J., Ruser, R., Piepho, H.P., 2019. Blocking and re-arrangement of pots in 

greenhouse experiments: which approach is more effective? Plant Methods 15, 1–11. 

https://doi.org/10.1186/s13007-019-0527-4 

Helland, I.S., 1987. On the interpretation and use of R2 in regression analysis. Biometrics 61–69. 

Herve, D., Berrios, E., Leroux, N., Chaarani, G. Al, Planchon, C., Sarrafi, A., Gentzbittel, L., 2001. 

QTL analysis of photosynthesis and water status traits in sunflower (Helianthus annuus L.) 

under greenhouse conditions. J. Exp. Bot. 52, 1857–1864. 

Hickey, J.M., Chiurugwi, T., Mackay, I., Powell, W., 2017. Genomic prediction unifies animal 

and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49, 

1297–1303. https://doi.org/10.1038/ng.3920 

Honkavaara, E., Arbiol, R., Markelin, L., Martinez, L., Cramer, M., Bovet, S., Chandelier, L., Ilves, 

R., Klonus, S., Marshal, P., Schläpfer, D., Tabor, M., Thom, C., Veje, N., 2009. Digital 

airborne photogrammetry-a new tool for quantitative remote sensing?-a state-of-the-art 

review on radiometric aspects of digital photogrammetric images. Remote Sens. 1, 577–605. 

https://doi.org/10.3390/rs1030577 

Houle, D., Govindaraju, D.R., Omholt, S., 2010. Phenomics: The next challenge. Nat. Rev. Genet. 

11, 855–866. https://doi.org/10.1038/nrg2897 

Huete, A., Justice, C., Liu, H., 1994. Develpmeclassification and soil indices for MODIS-EOS. 

Remote Sens. Environ. 49, 224–234. https://doi.org/Doi 10.1016/0034-4257(94)90018-3 

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95. 



 

 

120 

Ishida, H., Oishi, Y., Morita, K., Moriwaki, K., Nakajima, T.Y., 2017. Remote Sensing of 

Environment Development of a support vector machine based cloud detection method for 

MODIS with the adjustability to various conditions. 

Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., Matsuura, S., 2015. The impact of sunlight 

conditions on the consistency of vegetation indices in croplands-Effective usage of vegetation 

indices from continuous ground-based spectral measurements. Remote Sens. 7, 14079–14098. 

https://doi.org/10.3390/rs71014079 

Jackson, R.D., Pinter, P.J., Jr., S.B.I., R.H.Reginato, 1979. Wheat spectral reflectance: Interactions 

between crop configuration, sun elevation, and azimuth angle. Appl. Opt. 18, 3730–3732. 

Jacobs, R.A., 1988. Increased rates of convergence through learning rate adaptation. Neural 

networks 1, 295–307. 

Jacquemoud, S., Baret, F., 1990. PROSPECT: A model of leaf optical properties spectra. Remote 

Sens. Environ. 34, 75–91. https://doi.org/10.1016/0034-4257(90)90100-Z 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., 

Ustin, S.L., 2009. PROSPECT + SAIL models: A review of use for vegetation 

characterization. Remote Sens. Environ. 113, S56–S66. 

https://doi.org/10.1016/j.rse.2008.01.026 

Jannink, J.L., Sorrells, M.E., Lorenz, A.J., Heffner, E.L., 2010. Plant breeding with genomic 

selection: Gain per unit time and cost. Crop Sci. https://doi.org/10.2135/cropsci2009.11.0662 

Ji, W., Viscarra Rossel, R.A., Shi, Z., 2015. Improved estimates of organic carbon using 

proximally sensed vis-NIR spectra corrected by piecewise direct standardization. Eur. J. Soil 

Sci. 66, 670–678. https://doi.org/10.1111/ejss.12271 

Jones, H.G., Serraj, R., Loveys, B.R., Xiong, L., Wheaton, A., Price, A.H., 2009. Thermal infrared 

imaging of crop canopies for the remote diagnosis and quantification of plant responses to 

water stress in the field. Funct. Plant Biol. 36, 978–989. 

Kate, R.J., 2016. Using dynamic time warping distances as features for improved time series 

classification. Data Min. Knowl. Discov. 30, 283–312. 

Kattenborn, T., 2019. Linking Canopy Reflectance and Plant Functioning through Radiative 

Transfer Models. 

Kimball, B.A., 1973. Simulation of the energy balance of a greenhouse. Agric. Meteorol. 11, 243–

260. https://doi.org/10.1016/0002-1571(73)90067-8 



 

 

121 

Kitchen, N.R., Goulding, K.W.T., Follett, R.F., Hatfield, J.L., 2001. On-farm technologies and 

practices to improve nitrogen use efficiency. Nitrogen Environ. Sources, Probl. Manag. 

Elsevier, Amsterdam, Netherlands. 

Kläring, H.-P., Hauschild, C., Heißner, A., Bar-Yosef, B., 2007. Model-based control of CO2 

concentration in greenhouses at ambient levels increases cucumber yield. Agric. For. 

Meteorol. 143, 208–216. 

Kloosterman, B., Abelenda, J.A., Gomez, M.D.M.C., Oortwijn, M., De Boer, J.M., Kowitwanich, 

K., Horvath, B.M., Van Eck, H.J., Smaczniak, C., Prat, S., Visser, R.G.F., Bachem, C.W.B., 

2013. Naturally occurring allele diversity allows potato cultivation in northern latitudes. 

Nature 495, 246–250. https://doi.org/10.1038/nature11912 

Korioth, T.W.P., Versluis, A., 1997. Modeling the Mechanical Behavior of the Jaws and Their 

Related Structures By Finite Element (Fe) Analysis. Crit. Rev. Oral Biol. Med. 8, 90–104. 

https://doi.org/10.1177/10454411970080010501 

Körner, O., Aaslyng, J.M., Andreassen, A.U., Holst, N., 2007. Microclimate prediction for 

dynamic greenhouse climate control. HortScience. 

Krishna, K.R., 2018. Agricultural drones: a peaceful pursuit. Taylor & Francis. 

Kristan, M., Leonardis, A., Skočaj, D., 2011. Multivariate online kernel density estimation with 

Gaussian kernels. Pattern Recognit. 44, 2630–2642. 

https://doi.org/10.1016/j.patcog.2011.03.019 

Kusiak, A., 2001. Feature transformation methods in data mining. IEEE Trans. Electron. Packag. 

Manuf. 24, 214–221. 

Le, Q. V, Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y., 2011. On optimization 

methods for deep learning. 

Lee, G.J., Boerma, H.R., Villagarcia, M.R., Zhou, X., Carter, T.E., Li, Z., Gibbs, M.O., 2004. A 

major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor. 

Appl. Genet. 109, 1610–1619. https://doi.org/10.1007/s00122-004-1783-9 

LI, J., ZOU, Z., YANG, X., CHEN, X., 2003. Analysis and discussion and application on solar 

greenhouse about azimuth angle and lighting surface angles. Acta Agric. Boreali-occidentalis 

Sin. 2. 

Li, L., Zhang, Q., Huang, D., 2014. A Review of Imaging Techniques for Plant Phenotyping 

20078–20111. https://doi.org/10.3390/s141120078 



 

 

122 

Li, X., Cai, W., Shao, X., 2015. Correcting multivariate calibration model for near infrared spectral 

analysis without using standard samples. J. Near Infrared Spectrosc. 23, 285–291. 

https://doi.org/10.1255/jnirs.1165 

Liang, L., Di, L., Zhang, L., Deng, M., Qin, Z., Zhao, S., Lin, H., 2015. Estimation of crop LAI 

using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 

165, 123–134. https://doi.org/10.1016/j.rse.2015.04.032 

Liang, S., Strahler, A.H., 1994. Retrieval of surface BRDF from multiangle remotely sensed data. 

Remote Sens. Environ. 50, 18–30. 

Lindquist, J.L., Arkebauer, T.J., Walters, D.T., Cassman, K.G., Dobermann, A., 2005. Maize 

radiation use efficiency under optimal growth conditions. Agron. J. 97, 72–78. 

https://doi.org/10.2134/agronj2005.0072 

Livingstone, D.J., 2008. Artificial neural networks: methods and applications. Springer. 

Ma, D., Carpenter, N., Amatya, S., Maki, H., Wang, L., Zhang, L., Neeno, S., Tuinstra, M.R., Jin, 

J., 2019a. Removal of greenhouse microclimate heterogeneity with conveyor system for 

indoor phenotyping. Comput. Electron. Agric. 166, 104979. 

https://doi.org/10.1016/j.compag.2019.104979 

Ma, D., Carpenter, N., Maki, H., Rehman, T.U., Tuinstra, M.R., Jin, J., 2019b. Greenhouse 

environment modeling and simulation for microclimate control. Comput. Electron. Agric. 

162, 134–142. https://doi.org/10.1016/j.compag.2019.04.013 

Ma, D., Rehman, T.U., Zhang, L., Jin, J., 2020. Modeling of diurnal changing patterns in airborne 

crop remote sensing images. Remote S 1–18. 

Maji, S., Chandra, B., Viswavidyalaya, K., 2014. Diurnal Variation in Spectral Properties of Potato 

under Different Dates of Planting and N-Doses Diurnal Variation in Spectral Properties of 

Potato under Different Dates of Planting and N-Doses. 

Manea, D., Calin, M.A., 2015. Hyperspectral imaging in different light conditions. Imaging Sci. J. 

63, 214–219. https://doi.org/10.1179/1743131X15Y.0000000001 

Marshak, A., Knyazikhin, Y., Davis, A.B., Wiscombe, W.J., Pilewskie, P., 2000. Cloud - 

vegetation interaction: Use of normalized difference cloud index for estimation of cloud 

optical thickness. Geophys. Res. Lett. 27, 1695–1698. 

https://doi.org/10.1029/1999GL010993 

MATLAB, 2018. version 9.4.0.813654 (R2018a). The MathWorks Inc., Natick, Massachusetts. 



 

 

123 

McCartney, L., Orsat, V., Lefsrud, M.G., 2018. An experimental study of the cooling performance 

and airflow patterns in a model Natural Ventilation Augmented Cooling (NVAC) greenhouse. 

Biosyst. Eng. 174, 173–189. 

McKinney, W., 2010. Data structures for statistical computing in python, in: Proceedings of the 

9th Python in Science Conference. pp. 51–56. 

Mellit, A., Pavan, A.M., 2010. A 24-h forecast of solar irradiance using artificial neural network: 

Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. 

Energy 84, 807–821. https://doi.org/10.1016/j.solener.2010.02.006 

Meyer, G.E., Neto, J.C., 2008. Verification of color vegetation indices for automated crop imaging 

applications. Comput. Electron. Agric. 63, 282–293. 

https://doi.org/10.1016/j.compag.2008.03.009 

Miklas, P.N., Delorme, R., Riley, R., 2019. Identification of QTL Conditioning Resistance to 

White Mold in Snap Bean. J. Am. Soc. Hortic. Sci. https://doi.org/10.21273/jashs.128.4.0564 

Miura, T., Huete, A.R., 2009. Performance of three reflectance calibration methods for airborne 

hyperspectral spectrometer data. Sensors 9, 794–813. https://doi.org/10.3390/s90200794 

Mokarram, M., Bijanzadeh, E., 2016. Prediction of biological and grain yield of barley using 

multiple regression and artificial neural network models. Aust. J. Crop Sci. 10, 895–903. 

https://doi.org/10.21475/ajcs.2016.10.06.p7634 

Neuwirthová, E., Lhotáková, Z., Albrechtová, J., 2017. The effect of leaf stacking on leaf 

reflectance and vegetation indices measured by contact probe during the season. Sensors 

(Switzerland) 17. https://doi.org/10.3390/s17061202 

Ni, Z., Liu, Z., Huo, H., Li, Z.L., Nerry, F., Wang, Q., Li, X., 2015. Early water stress detection 

using leaf-level measurements of chlorophyll fluorescence and temperature data. Remote 

Sens. 7, 3232–3249. https://doi.org/10.3390/rs70303232 

Norton, T., Sun, D.-W., Grant, J., Fallon, R., Dodd, V., 2007. Applications of computational fluid 

dynamics (CFD) in the modelling and design of ventilation systems in the agricultural 

industry: A review. Bioresour. Technol. 98, 2386–2414. 

Oliphant, T.E., 2006. A guide to NumPy. Trelgol Publishing USA. 

Oliveira, L.F., Scharf, P.C., 2014. Diurnal variability in reflectance measurements from cotton. 

Crop Sci. 54, 1769–1781. https://doi.org/10.2135/cropsci2013.04.0217 

 



 

 

124 

Ollinger, S. V., 2011. Sources of variability in canopy reflectance and the convergent properties 

of plants. New Phytol. 189, 375–394. https://doi.org/10.1111/j.1469-8137.2010.03536.x 

Padilla, F.M., de Souza, R., Peña-Fleitas, M.T., Grasso, R., Gallardo, M., Thompson, R.B., 2019. 

Influence of time of day on measurement with chlorophyll meters and canopy reflectance 

sensors of different crop N status. Precis. Agric. 20, 1087–1106. 

https://doi.org/10.1007/s11119-019-09641-1 

Pandey, P., Ge, Y., Stoerger, V., Schnable, J.C., 2017. High throughput in vivo analysis of plant 

leaf chemical properties using hyperspectral imaging. Front. Plant Sci. 8, 1–12. 

https://doi.org/10.3389/fpls.2017.01348 

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., 

Antiga, L., Lerer, A., 2017. Automatic differentiation in PyTorch, in: NIPS-W. 

Peirone, L.S., Pereyra Irujo, G.A., Bolton, A., Erreguerena, I., Aguirrezábal, L.A.N., 2018. 

Assessing the efficiency of phenotyping early traits in a greenhouse automated platform for 

predicting drought tolerance of soybean in the field. Front. Plant Sci. 9, 1–14. 

https://doi.org/10.3389/fpls.2018.00587 

Prasad, A.K., Chai, L., Singh, R.P., Kafatos, M., 2006. Crop yield estimation model for Iowa using 

remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 8, 26–33. 

https://doi.org/10.1016/j.jag.2005.06.002 

Preuss, S.B., Meister, R., Xu, Q., Urwin, C.P., Tripodi, F.A., Screen, S.E., Anil, V.S., Zhu, S., 

Morrell, J.A., Liu, G., Ratcliffe, O.J., Reuber, T.L., Khanna, R., Goldman, B.S., Bell, E., 

Ziegler, T.E., McClerren, A.L., Ruff, T.G., Petracek, M.E., 2012. Expression of the 

Arabidopsis thaliana BBX32 gene in soybean increases grain yield. PLoS One 7. 

https://doi.org/10.1371/journal.pone.0030717 

Qi, J., Kerr, Y.H., Moran, M.S., Weltz, M., Huete, A.R., Sorooshian, S., Bryant, R., 2000. Leaf 

area index estimates using remotely sensed data and BRDF models in a semiarid region. 

Remote Sens. Environ. 73, 18–30. 

Quemada, M., Gabriel, J.L., Zarco-Tejada, P., 2014. Airborne hyperspectral images and ground-

level optical sensors as assessment tools for maize nitrogen fertilization. Remote Sens. 6, 

2940–2962. https://doi.org/10.3390/rs6042940 

 

 



 

 

125 

Rahman, M.M., Lamb, D.W., Stanley, J.N., 2015. The impact of solar illumination angle when 

using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agric. For. 

Meteorol. 202, 39–43. https://doi.org/10.1016/j.agrformet.2014.12.001 

Ranson, K.J., Daughtry, C.S.T., Biehl, L.L., Bauer, M.E., 1985. Sun-view angle effects on 

reflectance factors of corn canopies. Remote Sens. Environ. https://doi.org/10.1016/0034-

4257(85)90045-8 

Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield Trends Are Insufficient to Double 

Global Crop Production by 2050. PLoS One 8. https://doi.org/10.1371/journal.pone.0066428 

Reflectance, S., 1973. Materials, 2: Application and Results 12. 

Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J., 2019. Current and future applications 

of statistical machine learning algorithms for agricultural machine vision systems. Comput. 

Electron. Agric. 156, 585–605. https://doi.org/10.1016/j.compag.2018.12.006 

Ribaut, J.-M., Ragot, M., 2019. Modernising breeding for orphan crops: tools, methodologies, and 

beyond. Planta 250, 971–977. https://doi.org/10.1007/s00425-019-03200-8 

Rojo, J., Rivero, R., Romero-Morte, J., Fernández-González, F., Pérez-Badia, R., 2017. Modeling 

pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. 

Int. J. Biometeorol. 61, 335–348. https://doi.org/10.1007/s00484-016-1215-y 

Roman, A., Ursu, T.-M., 2016. Multispectral Satellite Imagery and Airborne Laser Scanning 

Techniques for the Detection of Archaeological Vegetation Marks. Landsc. Archaeol. North. 

Front. Rom. Emp. Porolissum 141–152. 

Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation indices. 

Remote Sens. Environ. 55, 95–107. https://doi.org/10.1016/0034-4257(95)00186-7 

Roujean, J.L., Breon, F.M., 1995. Estimating Par Absorbed By Vegetation From Bidirectional 

Reflectance Measurements. Remote Sens. Environ. 51, 375–384. 

https://doi.org/10.1016/0034-4257(94)00114-3 

Sadeghi, S., Sohrabi, H., 2019. the Effect of Uav Flight Altitude on the Accuracy of Individual 

Tree Height Extraction in a Broad-Leaved Forest. Int. Arch. Photogramm. Remote Sens. Spat. 

Inf. Sci. XLII-4/W18, 1168–1173. https://doi.org/10.5194/isprs-archives-xlii-4-w18-1168-

2019 

 

 



 

 

126 

Sagan, V., Maimaitijiang, M., Sidike, P., Maimaitiyiming, M., Erkbol, H., Hartling, S., Peterson, 

K.T., Peterson, J., Burken, J., Fritschi, F., 2019. Uav/satellite multiscale data fusion for crop 

monitoring and early stress detection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - 

ISPRS Arch. 42, 715–722. https://doi.org/10.5194/isprs-archives-XLII-2-W13-715-2019 

Schafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., Domínguez, A., 

Tincopa, L., Alvarado, C., Numberto, G., Bonierbale, M., 2007. Field screening for variation 

of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic 

analysis. Potato Res. 50, 71–85. https://doi.org/10.1007/s11540-007-9030-9 

Schultz, B.B., Schultz, B.B., 1985. Levene’s test for relative variation. Syst. Zool. 34, 449–456. 

Schwertman, N.C., de Silva, R., 2007. Identifying outliers with sequential fences. Comput. Stat. 

Data Anal. https://doi.org/10.1016/j.csda.2006.01.019 

Sharma V. Avinash, 2017. Understanding Activation Functions in Neural Networks. Medium 4, 

1–10. 

Sticksel, E., Schächtl, J., Huber, G., Liebler, J., Maidl, F.X., 2004. Diurnal variation in 

hyperspectral vegetation indices related to winter wheat biomass formation. Precis. Agric. 5, 

509–520. https://doi.org/10.1007/s11119-004-5322-0 

Stone, P.J., Sorensen, I.B., Wilson, D.R., 1998. Radiation interception accounts for the effects of 

plant population on maize yield. Proc. 28th Annu. Conf. Agron. Soc. New Zeal. 28, 9–10. 

Stone, V., Montoya, C., Beaver, J.S., Johnson, E., Miklas, P.N., Zapata, M., 2010. Selective 

Mapping of QTL Conditioning Disease Resistance in Common Bean. Crop Sci. 

https://doi.org/10.2135/cropsci1996.0011183x003600050044x 

Stylinski, C., Gamon, J., Oechel, W., 2002. Seasonal patterns of reflectance indices, carotenoid 

pigments and photosynthesis of evergreen chaparral species. Oecologia 131, 366–374. 

Taki, M., Ajabshirchi, Y., Ranjbar, S.F., Rohani, A., Matloobi, M., 2016. Modeling and 

experimental validation of heat transfer and energy consumption in an innovative greenhouse 

structure. Inf. Process. Agric. 3, 157–174. https://doi.org/10.1016/j.inpa.2016.06.002 

Tanaka, J., Hayashi, T., Iwata, H., 2016. A practical, rapid generation-advancement system for 

rice breeding using simplified biotron breeding system. Breed. Sci. 66, 542–551. 

https://doi.org/10.1270/jsbbs.15038 

 

 



 

 

127 

Thenkabail, P.S., Smith, R.B., Pauw, E. De, De Pauw, E., 1997. Hyperspectral Vegetation Indices 

and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 4257, 

158–182. https://doi.org/10.1016/S0034-4257(99)00067-X 

Tian, J., Philpot, W.D., 2015. Relationship between surface soil water content, evaporation rate, 

and water absorption band depths in SWIR reflectance spectra. Remote Sens. Environ. 169, 

280–289. https://doi.org/10.1016/j.rse.2015.08.007 

Tindall, A.J., Waller, J., Greenwood, M., Gould, P.D., Hartwell, J., Hall, A., 2015. A comparison 

of high-throughput techniques for assaying circadian rhythms in plants. Plant Methods 11, 1–

7. https://doi.org/10.1186/s13007-015-0071-9 

Tonylins, 2019. A PyTorch implementation of MobileNetV2 1–9. 

Torada, A., Ikeguchi, S., Koike, M., 2005. Mapping and validation of PCR-based markers 

associated with a major QTL for seed dormancy in wheat. Euphytica 143, 251–255. 

https://doi.org/10.1007/s10681-005-7872-2 

Turner, A., 2007. The Pseudo-Response Regulator Ppd-H1 Provides The Pseudo-Response 

Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science (80-. ). 1031, 1031–

1035. https://doi.org/10.1126/science.1117619 

Turner, N.C., 1981. Techniques and experimental approaches for the measurement of plant water 

status. Plant Soil 58, 339–366. 

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA. 

Vásquez, L., Iriarte, A., Almeida, M., Villalobos, P., 2015. Evaluation of greenhouse gas emissions 

and proposals for their reduction at a university campus in Chile. J. Clean. Prod. 108, 924–

930. https://doi.org/10.1016/j.jclepro.2015.06.073 

Vogelmann, J.E., Rock, B.N., Moss, D.M., 1993. Red edge spectral measurements from sugar 

maple leaves. Int. J. Remote Sens. 14, 1563–1575. 

https://doi.org/10.1080/01431169308953986 

Wang, L., Jin, J., Song, Z., Wang, J., Zhang, L., Rehman, T.U., Ma, D., Carpenter, N.R., Tuinstra, 

M.R., 2020. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Comput. 

Electron. Agric. 169, 105209. https://doi.org/10.1016/j.compag.2019.105209 

Wang, R., Cherkauer, K., Bowling, L., 2016. Corn Response to Climate Stress Detected with 

Satellite-Based NDVI Time Series. https://doi.org/10.3390/rs8040269 

 



 

 

128 

Wang, T., Rostamza, M., Song, Z., Wang, L., McNickle, G., Iyer-Pascuzzi, A.S., Qiu, Z., Jin, J., 

2019. SegRoot: A high throughput segmentation method for root image analysis. Comput. 

Electron. Agric. 162, 845–854. https://doi.org/10.1016/j.compag.2019.05.017 

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Lukauskas, S., Gemperline, D.C., 

Augspurger, T., Halchenko, Y., Cole, J.B., Warmenhoven, J., de Ruiter, J., Pye, C., Hoyer, 

S., Vanderplas, J., Villalba, S., Kunter, G., Quintero, E., Bachant, P., Martin, M., Meyer, K., 

Miles, A., Ram, Y., Yarkoni, T., Williams, M.L., Evans, C., Fitzgerald, C., Brian, Fonnesbeck, 

C., Lee, A., Qalieh, A., 2017. mwaskom/seaborn: v0.8.1 (September 2017). 

https://doi.org/10.5281/zenodo.883859 

Weatherley, P.E., 1951. Studies in the Water Relations of the Cotton Plant. II. Diurnal and 

Seasonal Variations in Relative Turgidity and Environmental Factors. New Phytol. 50, 36–

51. 

Yilmaz, I., Kaynar, O., 2011. Multiple regression, ANN (RBF, MLP) and ANFIS models for 

prediction of swell potential of clayey soils. Expert Syst. Appl. 38, 5958–5966. 

https://doi.org/10.1016/j.eswa.2010.11.027 

Zhang, L., Maki, H., Ma, D., Sánchez-Gallego, J.A., Mickelbart, M. V., Wang, L., Rehman, T.U., 

Jin, J., 2019a. Optimized angles of the swing hyperspectral imaging system for single corn 

plant. Comput. Electron. Agric. 156, 349–359. https://doi.org/10.1016/j.compag.2018.11.030 

Zhang, L., Wang, L., Wang, J., Song, Z., Rehman, T.U., Bureetes, T., Ma, D., Chen, Z., Neeno, 

S., Jin, J., 2019b. Leaf Scanner: A portable and low-cost multispectral corn leaf scanning 

device for precise phenotyping. Comput. Electron. Agric. 167, 105069. 

https://doi.org/10.1016/j.compag.2019.105069 

Zhang, X., Sugano, Y., Bulling, A., 2018. Revisiting data normalization for appearance-based gaze 

estimation. Eye Track. Res. Appl. Symp. https://doi.org/10.1145/3204493.3204548 

Zhang, Z., Masjedi, A., Zhao, J., Crawford, M.M., 2017. Prediction of sorghum biomass based on 

image based features derived from time series of UAV images. Int. Geosci. Remote Sens. 

Symp. 2017-July, 6154–6157. https://doi.org/10.1109/IGARSS.2017.8128413 

Zhao, L., Liu, Z., Xu, S., He, X., Ni, Z., Zhao, H., Ren, S., 2018. Retrieving the diurnal FPAR of 

a maize canopy from the jointing stage to the tasseling stage with vegetation indices under 

different water stresses and light conditions. Sensors (Switzerland) 18. 

https://doi.org/10.3390/s18113965 



 

 

129 

Zhou, X., Xu, Y., Zhang, F., 2017. Evaluation of effect of diurnal ambient temperature range on 

solar chimney power plant performance. Int. J. Heat Mass Transf. 115, 398–405. 

https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.051 

 

 

 


