
DEVELOPMENT AND APPLICATION OF BIG DATA ANALYTICS AND

ARTIFICIAL INTELLIGENCE FOR STRUCTURAL HEALTH MONITORING

AND METAMATERIAL DESIGN

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rih-Teng Wu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mohammad R. Jahanshahi, Chair

Lyles School of Civil Engineering, School of Electrical and Computer Engi-

neering

Dr. Shirley J. Dyke

Lyles School of Civil Engineering, School of Mechanical Engineering

Dr. Edward J. Delp

School of Electrical and Computer Engineering

Dr. Elisa Bertino

Department of Computer Science

Dr. Ayhan Irfanoglu

Lyles School of Civil Engineering

Dr. Fabio Semperlotti

School of Mechanical Engineering

Approved by:

Dr. Dulcy Abraham

Head of Lyles School of Civil Engineering

iii

ACKNOWLEDGMENTS

The author appreciates the committee members, Dr. Jahanshahi, Dr. Dyke, Dr.

Delp, Dr. Bertino, Dr. Irfanoglu and Dr. Semperlotti for providing valuable insights

and comments to this dissertation. The author especially thanks Dr. Jahanshahi, Dr.

Bertino and Dr. Semperlotti for collaborating on part of the works in this dissertation.

The author also appreciates the Electric Power Research Institute (EPRI) in United

States and the National Center for Research on Earthquake Engineering (NCREE)

in Taiwan for providing datasets used in this dissertation. The views and opinions

of the author expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . xii

ABSTRACT . xix

1 INTRODUCTION . 1

1.1 Motivations . 1

1.2 Scope . 4

2 REVIEW OF DATA FUSION AND MACHINE LEARNING APPROACHES
IN STRUCTURAL HEALTH MONITORING AND SYSTEM IDENTIFI-
CATION . 6

2.1 Introduction . 6

2.1.1 Background . 6

2.1.2 Motivation . 7

2.1.3 Scope . 8

2.2 Data Fusion Techniques in SHM . 8

2.2.1 Prior to Data Fusion . 9

2.2.2 Bayesian Theory . 11

2.2.3 State Estimation Methods . 20

2.2.4 Dempster-Shafer Theory . 29

2.2.5 Fuzzy Logic . 33

2.2.6 Machine Learning Approaches 35

2.2.7 Weighted Combination and Voting 45

2.2.8 An Illustrative Example for Data Fusion in Structural Response
Estimation and Damage Detection 50

2.3 Challenges in Data Fusion and Machine Learning-based Approaches . . 53

v

Page

3 DEEP CONVOLUTIONAL NEURAL NETWORK FOR RESPONSE ES-
TIMATION AND SYSTEM IDENTIFICATION IN STRUCTURAL HEALTH
MONITORING . 77

3.1 Introduction . 77

3.1.1 Motivation and Related Work 77

3.1.2 Contribution and Scope . 80

3.2 Methodology . 81

3.2.1 Multilayer Perceptron (MLP) 81

3.2.2 Convolution Neural Network . 83

3.3 Single Degree of Freedom (SDOF) System 87

3.3.1 Linear SDOF System . 87

3.3.2 Nonlinear SDOF System . 96

3.4 Multi-Degree of Freedom (MDOF) System 104

3.4.1 Shake Table Test Setup . 107

3.4.2 Shake Table Test Results . 108

3.4.3 System Identification . 110

3.5 Physical Interpretation of Convolution Layer 113

3.5.1 Approximate the Integration Operator with the Convolution
Layer . 116

3.5.2 Dominant Feature Extraction 119

3.6 Concluding Remarks . 120

4 PRUNING DEEP CONVOLUTIONAL NEURAL NETWORK FOR EFFI-
CIENT DECISION MAKING IN STRUCTURAL HEALTH MONITOR-
ING . 126

4.1 Introduction . 126

4.1.1 Background and Motivation 126

4.1.2 Related Work in Network Pruning 128

4.1.3 Contribution and Scope . 130

4.2 Datasets and Computing Platforms 131

4.3 Methodology . 133

vi

Page

4.3.1 Network pruning . 134

4.3.2 An optimization for feature extraction in VGG16 138

4.4 Results and Discussions . 140

4.4.1 Conventional transfer learning without network pruning 140

4.4.2 Transfer learning with network pruning 141

4.4.3 Optimization for VGG16 feature extraction 153

4.5 Concluding Remarks . 154

5 DESIGN OF ONE-DIMENSIONAL ACOUSTIC METAMATERIALS US-
ING MACHINE LEARNING AND CELL CONCATENATION 156

5.1 Introduction . 156

5.1.1 Motivation and Relevant Works 156

5.1.2 Contribution and Scope . 159

5.2 Problem Description . 160

5.2.1 1D Diatomic Mechanical Lattice 160

5.2.2 1D Continuous Bar . 162

5.3 Methodology . 164

5.3.1 Framework for Periodic Metamaterial Design 164

5.3.2 Framework for Non-periodic Metamaterial Design 168

5.4 Results and Discussion . 172

5.4.1 Design of the 1D Diatomic Mechanical Lattice 172

5.4.2 Design of 1D Continuous Bar 174

5.5 Concluding Remarks . 178

6 A PHYSICS-CONSTRAINED DEEP LEARNING BASED APPROACH
FOR MULTI-OBJECTIVE INVERSE DESIGN OF ACOUSTIC WAVE
SCATTERING . 192

6.1 Introduction . 192

6.1.1 Motivation and Relevant Works 192

6.1.2 Contribution and Scope . 195

6.2 Problem Description . 196

vii

Page

6.2.1 Acoustic Wave Scattering . 196

6.2.2 Dataset Generation . 197

6.3 Methodology . 202

6.3.1 The Proposed Approach . 202

6.3.2 Network Training . 203

6.4 Results and Discussions . 207

6.4.1 Scenario 1: One Scatterer with Single Frequency 207

6.4.2 Scenario 2: Quadruple Scatterer with Single Frequency 208

6.4.3 Scenario 3: Quadruple Scatterer with Multiple Frequencies . . 211

6.4.4 Utilization of the Trained Network in Material Design Problem 212

6.4.5 Interpretation of the Trained Network 217

6.5 Concluding Remarks . 223

7 SUMMARY AND FUTURE WORKS . 225

7.1 Summary . 225

7.2 Future Works . 228

REFERENCES . 230

viii

LIST OF TABLES

Table Page

2.1 Applications using Bayesian approaches in structure damage identifica-
tion/quantification. (The acceleration, displacement and velocity mea-
surements are denoted as acc., disp. and vel., respectively.) 58

2.1 Continued . 59

2.1 Continued . 60

2.2 Applications using Bayesian approaches in structure system identifica-
tion/response estimation. 61

2.2 Continued . 62

2.2 Continued . 63

2.4 Applications using KF approaches in structure system identification/response
estimation. 63

2.4 Continued . 64

2.4 Continued . 65

2.4 Continued . 66

2.3 Comparison between various Kalman filter (KF) algorithms. (Algo.: al-
gorithm, DEKF: discontinuous EKF, DUKF: discontinuous UKF) 67

2.5 Applications using DS approaches in structure damage identification/quantification.68

2.5 Continued . 69

2.6 Applications using fuzzy logic approaches in structure damage identifica-
tion/quantification. 69

2.7 Applications using fuzzy logic approaches in structure system identifica-
tion/response estimation. 70

2.8 Applications using machine learning approaches in structure damage iden-
tification/quantification. (GPS: global positioning system; vel.: velocity;
acc.: acceleration; ANFIS: adaptive neuro-fuzzy inference system; ANN:
artificial neural network; IE: impact-echo; US: ultrasonic pulse echo; GPR:
ground penetration radar.) . 70

ix

Table Page

2.8 Continued . 71

2.8 Continued . 72

2.9 Applications using machine learning approaches in structure system iden-
tification/response estimation. (Disp.: displacement; vel.: velocity; ANN:
artificial neural network; acc.: acceleration.) 72

2.9 Continued . 73

2.10 Applications using weighting approaches in structure damage identifica-
tion/quantification. 73

2.10 Continued . 74

2.10 Continued . 75

2.11 Applications using weighting approaches in structure system identifica-
tion/response estimation. 75

2.11 Continued . 76

3.1 RMS Error - MLP-tanh Results (ẋ, ẍ, f ⇒ x) 92

3.2 RMS Error - CNN-tanh Results (ẋ, ẍ, f ⇒ x) 93

3.3 RMS Error - MLP-RELU Results (ẋ, ẍ, f ⇒ x) 93

3.4 RMS Error - CNN-RELU Results (ẋ, ẍ, f ⇒ x) 94

3.5 RMS Error - MLP-tanh Results (f ⇒ ẍ) 95

3.6 RMS Error - CNN-tanh Results (f ⇒ ẍ) 98

3.7 RMS Error - MLP-RELU Results (f ⇒ ẍ) 99

3.8 RMS Error - CNN-RELU Results (f ⇒ ẍ) 99

3.9 RMS Error - Nonlinear SDOF MLP-tanh Results 104

3.10 RMS Error - Nonlinear SDOF CNN-tanh Results 105

3.11 RMS Error - Nonlinear SDOF MLP-RELU Results 105

3.12 RMS Error - Nonlinear SDOF CNN-RELU Results 106

3.13 RMS Error - MLP and CNN . 110

3.14 Identified Natural Frequencies in Transverse Direction 115

3.15 Values of CNN Kernels for 1%, 5%, 10% and 30% Noisy Data 119

3.16 Model Training Time Comparison between MLP and CNN 124

x

Table Page

4.1 Scheme 3 damage detection results: VGG16 used as feature extractor and
KNN, SVC and SVMH as classifier. 142

4.2 Mean (µ) and standard deviation (σ) of detection accuracy before and
after network fine-tuning - VGG16 with crack datasets 153

4.3 Mean (µ) and standard deviation (σ) of detection accuracy before and
after network fine-tuning - VGG16 with corrosion datasets 154

5.1 Parameter ranges for the training samples. 172

5.2 Results for the design of the diatomic lattice. 173

5.3 Repeated trials for the design of the diatomic lattice. 174

5.4 Six cases of different continuous bars and their corresponding dynamic
response at the boundaries. 175

5.5 The displacement (u) and force (P) responses at each node for Case 1.
Prediction: the output from the network; target: the output from the
physical model. 179

5.6 The displacement (u) and force (P) responses at each node for Case 2.
Prediction: the output from the network; target: the output from the
physical model. 180

5.7 The displacement (u) and force (P) responses at each node for Case 3.
Prediction: the output from the network; target: the output from the
physical model. 181

5.8 The displacement (u) and force (P) responses at each node for Case 4.
Prediction: the output from the network; target: the output from the
physical model. 182

5.9 The displacement (u) and force (P) responses at each node for Case 5.
Prediction: the output from the network; target: the output from the
physical model. 183

5.10 The displacement (u) and force (P) responses at each node for Case 6.
Prediction: the output from the network; target: the output from the
physical model. 184

5.11 The normalized RMS error for displacement (u) and force (P) estimations. 188

xi

Table Page

5.12 The metamaterial design results from the concatenation of NNs, compared
with the responses of the physical model and the target responses. (1):
Responses of the network using the designed metamaterial, and (2) Re-
sponses of the physical model using the designed metamaterial. (Assuming
the objective is to design a metamaterial to achieve the responses of Case
1, 3 and 5, boundary condition fixed at the right end) 189

5.13 The metamaterial design results from the concatenation of NNs, compared
with the responses of the physical model and the target responses. (1):
Responses of the network using the designed metamaterial, and (2) Re-
sponses of the physical model using the designed metamaterial. (Assuming
the objective is to design a metamaterial to achieve the responses of Case
2, 4 and 6, boundary condition free at the right end) 190

5.14 The incremental design results from the concatenation of NNs, compared
with the responses of the physical model and the target responses. (1):
Responses of the network using the designed metamaterial, and (2) Re-
sponses of the physical model using the designed metamaterial. The in-
cremental design leads to a metamaterial with only 14 units instead of 20
units. (Assuming the objective is to design a metamaterial to achieve the
responses of Case 1, 3 and 5, boundary condition fixed at the right end) . 191

5.15 The incremental design results from the concatenation of NNs, compared
with the responses of the physical model and the target responses. (1):
Responses of the network using the designed metamaterial, and (2) Re-
sponses of the physical model using the designed metamaterial. The in-
cremental design leads to a metamaterial with only 15 units instead of 20
units. (Assuming the objective is to design a metamaterial to achieve the
responses of Case 2, 4 and 6, boundary condition free at the right end) . 191

6.1 Shape labels defined in Scenario 2 and 3 and their corresponding scale
factors. Label 5 refers to the condition in which no object exists at a
scatterer location. 201

6.2 The number of training, testing, and total samples in each design scenario. 202

6.3 The network architectures of the encoder and decoder. (Conv.: convolu-
tion; Conv. Trans.: convolution transpose.) 206

xii

LIST OF FIGURES

Figure Page

2.1 Schematic illustration of prior, likelihood, and the posterior distribution. . 12

2.2 1-D example for the best estimation between the predicted and the ob-
served measurements. 21

2.3 Flowchart for Kalman filter. See [99] for derivation in detail. 22

2.4 An illustration of ANN with one hidden layer. 36

2.5 SVM illustration: the original data are projected into a higher dimensional
feature space by a kernel function where a hyperplane separates the data. . 37

2.6 A sample for CNN Configuration. 38

2.7 A schematic configuration for CNN. 39

2.8 A sample for DAE configuration. 40

2.9 An illustrative example for data fusion: (a) displacement estimation using
Kalman filter and (b) damage detection using the estimated response. . . . 52

2.10 Damage dection using SVM with frequency-domain features: the ROC
curve of the validation data. (AUC: 0.9704) 52

3.1 A sample MLP configuration. 82

3.2 Illustration of a convolution layer. 84

3.3 An example of convolution operations. 85

3.4 Illustration of a pooling layer. 85

3.5 Typical CNN configuration. 85

3.6 Illustration of the SDOF system. 88

3.7 Vibration signals (i.e., displacement (Disp.), velocity (Vel.), acceleration
(Acc.) and excitation (Exc.)) of the linear SDOF system: (a) original
signals, and (b) signals contaminated with 10% noise. 88

3.8 Error variation for different MLP configurations: (a) training error, and
(b) test error. 89

3.9 CNN configuration for SDOF system. 90

xiii

Figure Page

3.10 MLP error histogram - tanh, 10% noise. (a) training error histogram, and
(b) test error histogram. 94

3.11 CNN error histogram - tanh, 10% noise. (a) training error histogram, and
(b) test error histogram. 95

3.12 MLP prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the
estimated displacement and (b) the first one second of the estimated response.96

3.13 CNN prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the
estimated displacement and (b) the first one second of the estimated response.97

3.14 Test RMS error variations for MLP and CNN (ẋ, ẍ, f ⇒ x; tanh). 98

3.15 MLP error histogram - 10% noise. (a) training error histogram, and (b)
test error histogram. 100

3.16 CNN error histogram - 10% noise. (a) training error histogram, and (b)
test error histogram. 100

3.17 MLP prediction versus ideal target (10% noise). 101

3.18 CNN prediction versus ideal target (10% noise). 101

3.19 Test RMS error variation (f ⇒ ẍ). 102

3.20 (a) Nonlinear restoring force versus displacement and (b) restoring force
versus velocity. 102

3.21 MLP error histogram - tanh, 10% noise. (a) training error histogram, and
(b) test error histogram. 106

3.22 CNN error histogram - tanh, 10% noise. (a) training error histogram, and
(b) test error histogram. 107

3.23 MLP prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the
estimated restoring force and (b) the first one second of the estimated
response. 108

3.24 CNN prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the
estimated restoring force and (b) the first one second of the estimated
response. 109

3.25 Test RMS error variation . 110

3.26 CNN prediction versus ideal target using measurements from new excita-
tion: (a) 10 (sec) of the estimated restoring force and (b) the first one
second of the estimated response. 111

3.27 CNN configuration for MDOF system. 112

xiv

Figure Page

3.28 Three-story steel frame at NCREE: (a) frame photo, (b) frame front view
and (c) frame side view, unit: (m). (Image (a) courtesy of NCREE) . . . 112

3.29 MLP error histogram. (a) training error histogram, and (b) test error
histogram. 113

3.30 CNN error histogram. (a) training error histogram, and (b) test error
histogram. 113

3.31 MLP prediction versus target. 114

3.32 CNN prediction versus target. 114

3.33 Frequency response of (a) NCREE data and (b) the CNN prediction. . . 115

3.34 Frequency responses of H2(ω) and HCNN(ω) for 1%, 5%, 10% and 30%
noise level in data. 118

3.35 Time series and frequency responses: (a) time series of CNN estimation
and ideal target, and (b) FFT of CNN estimation and ideal target. . . . 120

3.36 Time series and frequency responses: (a) time series of input signals, (b)
FFT of input, (c) FFT of layer 2 output. 121

3.37 FFT for the output of the 17th layer. 122

4.1 Crack dataset samples: (a) crack and (b) non-crack samples. 131

4.2 Corrosion dataset samples: (a) corrosion and (b) non-corrosion samples. . 132

4.3 Network pruning flowchart. 135

4.4 An illustration of a sample ResNet18 building block. 138

4.5 An optimization of feature extraction for VGG16: (a) pass each sliding
window into VGG16 separately, and (b) pass the whole image frame into
VGG16 to generate a convolutional feature map, then extract the feature
of each window from the corresponding location on the feature map. . . . 139

4.6 Detection performance of pruned VGG16 versus percentage of pruned fil-
ters: (a) accuracy of the 8, 887 test image patches from the crack dataset,
and (b) accuracy of the 10, 078 test image patches from the corrosion
dataset. (Refer to Section 4.4.2 for more discussion about the stopping
criterion for pruning and the effects of different fine-tuning datasets.) . . 143

4.7 VGG16 convolution feature map dimensions: (a) original dimension of
feature maps, and (b) reduced feature map dimension after pruning 84%
of the convolution kernels. 144

xv

Figure Page

4.8 The distribution of the percentage of the pruned kernels in each convo-
lution layer for the crack and corrosion datasets after 84% kernels being
eliminated in the VGG16 network. The dashed lines indicate the locations
of the pooling layers. 144

4.9 Inference time of VGG16 versus percentage of pruned filters: (a) crack
dataset, and (b) corrosion dataset. Inference time: the total time (sec)
required for the forward-pass of 3720 image patches of 224× 224 pixels. . 146

4.10 Effect of fine-tuning epochs on detection performance for VGG16 network:
(a) accuracy of the crack test dataset, and (b) accuracy of the corrosion
test dataset. 147

4.11 Repeated trials for damage detection with 1, 2, 5 and 10 fine-tuning epochs
for pruned VGG16 network: (a) F-score of the detection results for the
crack test data, and (b) F-score of the detection results for the corrosion
test data. 148

4.12 Effect of fine-tuning epochs on pruning time of VGG16: (a) crack dataset,
and (b) corrosion dataset. 148

4.13 Detection performance of pruned ResNet18 versus percentage of pruned
filters: (a) accuracy of 8, 887 test image patches from the crack dataset,
and (b) accuracy of 10, 078 test image patches from the corrosion dataset. 150

4.14 Inference time required for 3, 720 image patches operated on Jetson TX2
GPU for VGG16 and ResNet18 networks: (a) crack dataset, and (b) cor-
rosion dataset. 151

4.15 Mean detection accuracy from 5-fold cross-validation of pruned VGG16
versus percentage of pruned filters: (a) crack dataset, and (b) corrosion
dataset. 152

5.1 Schematic illustration of the 1D diatomic mechanical lattice. 161

5.2 Dispersion of the 1D diatomic mechanical lattice in the extended zone
scheme. 162

5.3 Schematic representation of the lumped transfer matrix model of a 1-D
continuous bar: (a) Material properties are functions of the x-coordinate,
(b) the bar is discretized into n elements, (c) the free body diagram of the
n-th element. 163

5.4 Flowchart presenting a schematic view of the design framework for periodic
metamaterials. 165

xvi

Figure Page

5.5 Schematic of the design framework for non-periodic metamaterial: (a)
train a NN to learn the behavior of a generic unit cell (defined as a class
of unit cells), (b) NN training inputs and outputs, and (c) design of the
material properties (e.g. cross-sectional area) using network concatenation. 170

5.6 Network estimations at each node for Case 1: (a) displacement and (b)
force. 185

5.7 Network estimations at each node for Case 2: (a) displacement and (b)
force. 185

5.8 Network estimations at each node for Case 3: (a) displacement and (b)
force. 186

5.9 Network estimations at each node for Case 4: (a) displacement and (b)
force. 186

5.10 Network estimations at each node for Case 5: (a) displacement and (b)
force. 187

5.11 Network estimations at each node for Case 6: (a) displacement and (b)
force. 187

5.12 Material design results using the concatenation of 20 NNs, assuming the
objective is to design a metamaterial to achieve: (a) the responses of Case
1, 3 and 5 (right end fixed), and (b) the responses of Case 2, 4 and 6 (right
end free). 188

6.1 Inverse design problems. 196

6.2 The inverse design problems considered in this study. Given the down-
stream pressure fields indicated in dash lines, the objective is to retrieve
the geometry of the scatterers. 198

6.3 (a) Samples of scatterer shapes (solid line curves). Circular markers show
the NURBS control points and are connected with the dashed line. In
Scenario 1, the weight factor of control points 2,4,6 and 8 are changed
to vary the scatterer shape from diamond to square with round corners.
(b) Shapes used in scenarios 2 and 3 at scatterer locations 1 to 4. The
scatterer geometry shown in this figure corresponds to a configuration
labeled as [1,2,3,4]. 199

6.4 The amplitudes of the scattered pressure fields at the four frequencies in
Scenario 3 for a scatterer configuration. 202

6.5 The proposed DAE-based approach trains the encoder, the decoder and
the geometry estimator jointly using the loss values computed from true
labels of scatterer geometries and input target responses. 204

xvii

Figure Page

6.6 Error histograms of (a) training dataset, and (b) testing dataset for esti-
mating the weight factors that control the shape of the scatterer in Sce-
nario 1. (Std.: standard deviation.). The solid line is the fitted normal
distribution. 208

6.7 Variations in the scatterer shape versus the weight factor w in Scenario
1. The markers shows the NURBS control points. For w > 2.8425, the
scatterer shapes change much less than the shapes generated in the range
0 6 w < 2.8425. 208

6.8 Real and imaginary parts of a sample network input and the correspond-
ing reconstructed real and imaginary parts of the input pressure field in
Scenario 1. (Unit: Pa) . 209

6.9 An sample of the input pressure field amplitude and its corresponding
reconstructed pressure field amplitude in Scenario 1. (Unit: Pa) 209

6.10 Real and imaginary parts of a sample network input and the correspond-
ing reconstructed real and imaginary parts of the input pressure field in
Scenario 2. (Unit: Pa) . 210

6.11 An example of the amplitude of input pressure field and the reconstructed
pressure field from a test sample in Scenario 2. (Unit: Pa) 211

6.12 Real and imaginary parts of a sample network input and the correspond-
ing reconstructed real and imaginary parts of the input pressure field in
Scenario 3. The first and the third column are the real and imaginary
parts of the input, respectively. The second and the fourth column are the
reconstructed real and imaginary parts of the input, respectively. (Unit:
Pa) . 213

6.13 An example of the amplitudes of the input pressure field and the recon-
structed pressure field from a test sample in Scenario 3. (Unit: Pa) . . . 214

6.14 Error distributions computed using the total 28,561 original scatterer con-
figurations for the four sample design cases: (a) and (b) are samples of
scatterer configuration returned by the network that have led to minimum
prediction error ε ; (c) and (d) are samples of the designed scatterer con-
figuration where the associated prediction error lies between 10% and 25%
error quantile. 216

6.15 (a) The 43rd, (b) the 81st and (c) the 183rd feature map generated from
the first layer of the encoder. 220

xviii

Figure Page

6.16 The frequency responses of the eight channels of (a) input, (b) the 43rd

kernel, (c) the 81st kernel and (d) the 183rd kernel, in the first layer of the
encoder. The top and the bottom row of (b) to (d) are associated with the
real and imaginary input channels shown in the top and the bottom row
of (a), respectively. The frequency responses of the channels of the kernel
indicate the dominant wavenumber patterns extracted from the input. . 221

6.17 The frequency responses of the decoder outputs associated with the re-
constructed real part of the pressure fields in the last layer of the decoder. 222

6.18 The frequency responses of F̂i(x, y) computed with varying number of
dominant channels being considered, using the kernel associated with the
real part of (a) 200 (Hz), (b) 796 (Hz), (c) 5000 (Hz) and (d) 12500 (Hz)
pressure fields. 222

xix

ABSTRACT

Wu, Rih-Teng Ph.D., Purdue University, December 2020. Development and Applica-
tion of Big Data Analytics and Artificial Intelligence for Structural Health Monitoring
and Metamaterial Design . Major Professor: Mohammad R. Jahanshahi.

Recent advances in sensor technologies and data acquisition platforms have led

to the era of Big Data. The rapid growth of artificial intelligence (AI), computing

power and machine learning (ML) algorithms allow Big Data to be processed within

affordable time constraints. This opens abundant opportunities to develop novel and

efficient approaches to enhance the sustainability and resilience of Smart Cities. This

work, by starting with a review of the state-of-the-art data fusion and ML techniques,

focuses on the development of advanced solutions to structural health monitoring

(SHM) and metamaterial design and discovery strategies. A deep convolutional neural

network (CNN) based approach that is more robust against noisy data is proposed

to perform structural response estimation and system identification. To efficiently

detect surface defects using mobile devices with limited training data, an approach

that incorporates network pruning into transfer learning is introduced for crack and

corrosion detection. For metamaterial design, a reinforcement learning (RL) and

a neural network based approach are proposed to reduce the computation efforts

for the design of periodic and non-periodic metamaterials, respectively. Lastly, a

physics-constrained deep auto-encoder (DAE) based approach is proposed to design

the geometry of wave scatterers that satisfy user-defined downstream acoustic 2D

wave fields. The robustness of the proposed approaches as well as their limitations are

demonstrated and discussed through experimental data or/and numerical simulations.

A roadmap for future works that may benefit the SHM and material design research

communities is presented at the end of this dissertation.

1

1. INTRODUCTION

1.1 Motivations

During the past decades, significant efforts have been dedicated to develop reli-

able methods in structural health monitoring (SHM) [1–11]. The health assessment

for the target structure of interest is achieved through the interpretation of collected

data. At the beginning of the 21st century, the rapid advances in sensor technolo-

gies and data acquisition platforms have led to the new era of Big Data, where a

huge amount of heterogeneous data is collected by a variety of sensors. The increas-

ing accessibility and diversity of the data resources provide new opportunities for

SHM while the aggregation of information obtained from multiple sensors to make

robust decisions remains a challenging problem. Recently, the rapid developments of

artificial intelligence (AI) techniques have brought a huge impact across numerous

disciplines, including but not limited to engineering applications, human-computer

interactions, biomedical sciences, intelligent gaming, and material discovery. Ad-

vances in machine learning (ML) algorithms and computing powers not only enable

the processing of Big Data within affordable time constraints, but also discover the

embedded patterns from the data automatically without imposing human subjective

judgements. By learning the information from various forms of data, e.g., 1-D time

series signals and 2-D images, the decision making is potentially more robust and can

be achieved more efficiently. In this work, data analysis tools are developed based

on ML techniques including multi-layer perceptron (MLP) [12], deep convolutional

neural network (CNN) [13] and reinforcement learning (RL) [14], for applications in

SHM and material design.

The current practices in building and bridge inspections are labor-intensive and

time-consuming. One viable solution is to infer the health state of the structure

2

based on the vibration measurements collected from the sensors instrumented on

the structure. Given the input ground excitation and structural output responses,

a numerical model of the structure is established based on a proposed CNN, as it

is often difficult to acquire a precise finite element model (FEM) for the structure

in real world. After training with the input and output response measurements, the

proposed CNN model is used to estimate the dynamic response and the fundamental

frequencies of the structure. The performance of the CNN model is compared with

a baseline model proposed in [15]. Comprehensive experiments including numerical

simulations and experimental data are used to validate the robustness of the proposed

CNN-based approach.

Another critical issue is how to develop efficient data analysis tools for SHM in

the notion of Internet of Things (IoT) [16]. The IoT consists of a set of edge sensors

and central server units. In IoT, data analysis can take place at the edge or at a

server, depending on the application’s requirements [17, 18]. For civil infrastructure,

the inspection target is usually enormous in size or length. In this context, data

analysis achieved by swarms of autonomous inspection robots, i.e., edge sensors, can

replace the current manual inspections and result in efficient decision making [19–22].

However, these small robots are typically limited in computing and memory resources.

The incorporation of deep learning-based approaches will be infeasible without appro-

priate considerations in the algorithm. To this end, this study introduces a solution

based on network pruning [23] to utilize pre-trained deep CNNs for efficient edge com-

puting. Results from comprehensive experiments on two pre-trained networks (i.e.,

VGG16 [24] and ResNet18 [25]) and two types of prevalent surface defects (i.e., crack

and corrosion) are presented and discussed in details with respect to performance,

memory demands, and the inference time for damage detection. It is demonstrated

that the proposed approach significantly enhances resource efficiency without decreas-

ing damage detection performance [26,27].

Besides applications in SHM, this work further proposes AI-based approaches for

material discovery and design. Conventional material design processes require pre-

3

cise physical modeling of the material along with the extensive use of optimization

methods to achieve target performance. This approach is computationally intensive

and severely limits the possibility to explore the vast design space offered by engi-

neered materials. In addition, these optimization techniques typically target proper-

ties defined in the physical space (e.g., displacements and stresses) and do not allow

direct access to properties in a transformed space. A typical example is the inability

to prescribe a target dynamic behavior in the reciprocal-space, where quantities like

frequency-wavenumber dispersion and band structure are defined. This study presents

two AI-based design frameworks for the design of periodic and non-periodic material

systems. For periodic materials, a RL-based approach is proposed in order to design

the unit-cell properties according to a user-defined dispersion behavior. For non-

periodic materials, a neural network based approach capable of learning the behavior

of individual material units is presented. In this case, the design of the engineered

material is achieved by assembling the neural network representation of individual

units within a general optimization framework that targets a user-defined material

response. Interestingly, this latter framework is capable of synthesizing different ma-

terial assemblies (based on the available cells) while requiring only one-time network

training. Numerical examples are provided for both the periodic and non-periodic

material designs to demonstrate the performance of the proposed framework.

Furthermore, a physics-constrained deep auto-encoder (DAE) based approach is

proposed to design the geometry of wave scatterers that satisfy the target down-

stream pressure fields. The control of acoustic and elastic waves via material design

has been an interesting subject with various applications such as non-destructive eval-

uation of structural components, biomedical devices, high-resolution imaging, radar,

and remote sensing. To date, there is still a lack of powerful and efficient design

methodologies since the conventional optimization-based approaches suffer from the

computation burden in parameter search whenever a design query is made. The pro-

posed network consists of a geometry estimator and a DAE that provides the geometry

estimator with physics constraints during the learning process. By joint optimization,

4

the estimation of scatterer geometry is strengthened with the latent representations of

the target pressure fields learned by the DAE. Once the training is finished, the design

inference is quasi-instantaneous given a target 2D pressure fields. The generalization

capability of the proposed network is further validated through a dataset generated

with new shapes of wave scatterers. Numerical simulations and design examples are

presented to demonstrate the robustness of the proposed approach.

1.2 Scope

Chapter 2 provides a comprehensive review for the state-of-the-art data fusion and

ML techniques for SHM applications. Challenges of each technique are addressed, and

a roadmap is provided for future research. In Chapter 3, a CNN-based approach is

introduced for the first time for structural dynamic response estimation and system

identification. The performance of the proposed approach as well as the physical

interpretation of the CNN network are discussed in detail. Chapter 4 proposes an

efficient damage detection approach for edge computing based on network pruning

combined with transfer learning. Case studies including crack and corrosion detection

are conducted to investigate the performance of the proposed approach in terms of

the required inference time, memory storage demands, and damage detection accu-

racy. In Chapter 5, two design frameworks for periodic and non-periodic materials

are proposed. For periodic materials, a RL-based approach is developed to deter-

mine the properties of each material unit, according to a user-defined behavior in a

transformed space, e.g., a dispersion with a band gap in the frequency domain. For

non-periodic materials, a fully-connected NN is used to model the material unit, and

the design of the metamaterial is achieved by the combination of the duplicated net-

works. Chapter 6 presents a DAE-based approach to design the geometry of acoustic

wave scatterers that achieve a user-defined downstream 2D pressure fields. The pro-

posed approach is the first demonstration of multi-objective inverse design for wave

5

scattering applications. A summary of conclusions and future works is provided in

Chapter 7.

6

2. REVIEW OF DATA FUSION AND MACHINE

LEARNING APPROACHES IN STRUCTURAL HEALTH

MONITORING AND SYSTEM IDENTIFICATION

2.1 Introduction

2.1.1 Background

All civil structures are inevitably faced with aging problems, possible excessive

loading conditions, inappropriate usages, or natural hazards such as earthquake and

hurricane. It is crucial to identify the current health condition of a target structure

periodically and after the strike of a natural hazard. In the recent decades, several

researchers have put their efforts in monitoring the health state of structural systems

to identify existing damage in structures. A damage in a structural system can be

the result of changes in material properties, geometric configuration, or boundary

conditions, which typically influences the performance of the structural system. In

2007, Farrar and Worden [28] defined SHM as “the process of implementing a dam-

age identification strategy for aerospace, civil and mechanical engineering.” Recent

advances in sensor and information technologies have led to the era of Big Data, that

have enhanced data acquisition and that inevitably lead to more opportunities in

SHM [29, 30]. The increasing availability of heterogeneous data (e.g., displacement,

acceleration, strain, global positioning system (GPS), LiDAR, depth [31, 32], ultra-

sonic, ground penetration radar (GPR), infrared, microwave, etc.) provides more

information to the scientists to deal with conventional problems. As a result, how

to integrate information from multiple sources and make a more robust decision for

applications in SHM is an important and yet challenging task. This chapter reviews

state-of-the-art ML and data fusion algorithms that can be used in SHM problems.

7

2.1.2 Motivation

Data fusion is the integration of various types of data to obtain more information

from the combined data instead of considering each dataset separately [33, 34]. It

can be used to generate new raw data or more informative new data based on the

original raw data. Once the new data is generated, it is often expected to be more

helpful in decision making process than using the original datasets. The concept of

data fusion has been widely applied in various disciplines including but not limited to

automated target recognition, environmental monitoring, robotics, medical applica-

tions, quality control of manufacturing process, and condition monitoring of complex

machinery [35]. For instance, in the case of traffic control, the traffic state for a cer-

tain area is monitored through the combination of acoustic, image, and other sensor

data measured near the road side. Discussions regarding the applications such as ad-

vanced traveler information systems, automatic incident detection, advanced driver

assistance, network control, crash analysis and prevention, traffic demand estimation,

traffic forecasting and traffic monitoring, and accurate position estimation are re-

viewed in [36]. In the context of SHM, data fusion is adopted to enhance the decision

making for the health evaluation of the structures. However, due to the complex

nature of the real world applications, the uncertainties and imperfections must be

considered during the data processing. In this regard, data fusion helps reduce the

uncertainty by increasing the information completeness [37, 38]. The outcome of a

decision making process is usually essential for risk analysis.

In general, data integration can be achieved in various levels of fusion depending

on the task being performed. There are three levels of data fusion commonly used:

data-level, feature-level, and decision-level [39–41]. In data-level fusion, the raw data

from multiple sources are directly combined before further process. These raw data

must have the same physical meaning (i.e., measuring the same physical quantities).

For instance, sound signal and image data cannot be integrated at data-level. In

feature-level fusion, the input data can be heterogeneous (i.e., measuring different

8

physical parameters). Statistical features or signatures are often extracted from the

original raw data, and these features are selected or concatenated prior to further

analysis. In decision-level fusion, the final assessment result is obtained by integrat-

ing the decisions, that are obtained from different data sources, through particular

combination rules.

In this study, the author presents a comprehensive review of popular data fusion

concepts and their applications in SHM. Among all these techniques, data registra-

tion, Bayesian probabilistic approaches, Dempster-Shafer evidential approach, fuzzy

reasoning, state estimation, machine learning algorithms, and weighted combinations

are the most common data fusion methods applied in SHM. Furthermore, challenges

and opportunities for using data fusion techniques are discussed.

2.1.3 Scope

The organization of the rest of this chapter is as following. In Section 2.2, the

theoretical basis and applications of common data fusion techniques in SHM are

provided. Section 2.3 discusses the challenges for data fusion in SHM as well as the

road map for future research.

2.2 Data Fusion Techniques in SHM

This section starts with the introduction of the benefits stemmed from data fusion,

the essential data preprocessing step before applying data fusion, followed by the

review of the popular techniques that have been used to integrate data for SHM

applications. For each data fusion technique, the basic concept of the technique as

well as its recent applications in SHM are presented. An illustrative example for data

fusion in structural response estimation and damage detection is provided at the end

of this section.

9

2.2.1 Prior to Data Fusion

Why Data Fusion? A Perspective from the Observability and Identifiabil-

ity of System

When dealing with a problem of interest, one would inevitably need to identify

whether a solution to the problem exists given the available information. There

could be too many unknowns in the system and, therefore, the augmentation of

data to help with problem solving might be required. This leads to the concepts of

observability and identifiability. The observability of a system is defined as whether

the states of a system can be identified by a set of measurements. On the other

hand, the identifiability of a system is defined as whether the measurements lead

to unique or finite solutions for the parameters of the system [42]. Obviously, the

question of observability is indivisible from identifiability since the state of the system

is determined by the parameters of the system.

In general, data fusion improves the observability and the identifiability of a sys-

tem by providing additional information for the decision makers. For instance, the

observability of a 2-DOF system is discussed under the availabilities of acceleration

and displacement measurements in [42]. It is shown that the system is observable

only when the displacement measurement of the first mode and the acceleration mea-

surement of the second mode are available. Moreover, it is demonstrated that using

multiple sensors with different characteristics is potentially more beneficial than using

one specific type of sensor alone. A particular sensor with its own inherent noise and

Nyquist frequency may prevent the sensor from measuring the signal outside its band-

width. For instance, GPS sensors for displacement measurements typically perform

better in low frequencies, while the accelerometers perform better in high frequencies.

By exploiting the measurements from both GPS and accelerometers, the accuracy of

displacement estimation is enhanced since the GPS measurements implicitly impose

constraints on the displacement computed from acceleration measurement, hence the

10

drifting in displacement induced by double integration is eliminated. This addresses

the underlying benefit of heterogeneous data fusion [43,44].

Preprocessing - Data Registration

When dealing with the aggregation of information from multiple sensors, the reg-

istration problem occurs if the sensors are not located at the same position [45]. For

instance, the same target point may appear at different pixel coordinates of the im-

ages captured from two cameras at different locations. Before further exploitation of

the data, the first step is to register the sensor readings into a common frame of ref-

erence [46–48]. In other words, the data registration is an essential step to transform

the data obtained from multiple sensors onto a common coordinate system.

Although the registration techniques often work with 2D or 3D data, they can be

applied to 1D data as well. In general, data registration is achieved by first searching

the best similarity between the recordings, and then the recordings are mapped to the

common frame of reference based on the similarity. The similarity can be determined

by finding the maximum correlation between the sensor readings, template matching,

regression, control points, or features invariant to the sensor location. Depending on

the data type, mapping functions like bilinear, warping, or least square optimization

could be employed if necessary. A survey of the sensor registration techniques is

presented in [49].

It is noted that data registration is not limited to the transformation of the orig-

inal sensor recording. The registration of higher level information onto a common

coordinate system can also be helpful for decision making as well. In [50], the aggre-

gation of detection results from different video frames improves the accuracy for crack

detection since a crack that is missed in a frame would be detected in other frames.

Instead of considering only one video frame, the crack detection results from different

video frames are registered into a global spatiotemporal coordinate system, and the

11

final detection result is enhanced by exploiting the underlying spatiocoherence of the

data.

2.2.2 Bayesian Theory

The basis of Bayesian theory is originated from conditional probability that ex-

presses the probability of occurrence of event x given event y, which is denoted as

P (x | y). For data fusion, Bayes’ rule gives an expression for the probability of a

hypothesis being true given some prior knowledge or observations [41, 51]. When it

comes to SHM, a hypothesis could be some specified damage states of a structure, or

whether a certain damage exists or not. An observation may come from a series of

experiments or a set of sensor measurements. By computing the probability of each

damage state given the available information, decision makers can make better deci-

sions about the retrofit plan for the structures. The fundamental equation of Bayes’

rule is given in Equation 2.1.

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)
=

P (D | Hi)P (Hi)∑
i

P (D | Hi)P (Hi)
, (2.1)

where P (Hi | D) is the posterior probability that hypothesis Hi is true given available

data D. P (D | Hi) is the likelihood function, and P (Hi) is the prior probability.

Figure 2.1 illustrates the schematic relationship between the prior, likelihood, and the

posterior distributions. In this example, the prior distribution is normally distributed

with mean 50 and standard deviation 15, and the likelihood function is normally

distributed with mean 70 and standard deviation 5. Since the variance of prior

distribution is high (i.e., not informative), the resulting posterior distribution tends

to be closer to the likelihood function.

12

0 10 20 30 40 50 60 70 80 90 100

H
i

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P
ro

ba
bi

lit
y

D
en

si
ty

Likelihood
Prior
Posterior

Fig. 2.1.: Schematic illustration of prior, likelihood, and the posterior distribution.

Assuming the data are collected independently from n different sensors, the pos-

terior probability of Hi given data D1 ∩D2 ∩ ... ∩Dn can be expressed as Equation

2.2, known as the Näıve Bayes rule:

P (Hi | D1 ∩D2 ∩ ... ∩Dn) =
P (D1 ∩D2 ∩ ... ∩Dn | Hi)P (Hi)∑
i

P (D1 ∩D2 ∩ ... ∩Dn | Hi)P (Hi)

=
P (D1 | Hi)P (D2 | Hi)...P (Dn | Hi)P (Hi)∑
i

P (D1 | Hi)P (D2 | Hi)...P (Dn | Hi)P (Hi)
, (2.2)

where Dn corresponds to the nth observation (i.e., declaration) made by the nth sensor,

and Hi is the ith hypothesis.

Prior Probability

There are two types of prior probabilities P (Hi). One is subjective (i.e., informa-

tive) prior while the other one is objective (i.e., non-informative) prior. The subjective

prior is established based on one’s subjective belief or prior knowledge about the hy-

pothesis while the objective prior is established based on little or indirect information

about the hypothesis. General rules for selecting prior probability are [52]: (a) in-

clude as many reasonable priors as possible; (b) eliminate unreasonable priors; (c)

13

confirm that the prior does not require information that is difficult to elicit; and (d)

verify the capability to compute measures of robustness without much difficulty.

To address the effects of priors/model selection, sensitivity analysis is essential

in Bayesian inference. The performances of the inference under different reasonable

choices of prior distribution or probability models should be investigated through

sensitivity analysis [52].

Posterior Probability

In general, there are two procedures for estimating the posterior probability P (Hi |

D) [52, 53]:

(a) Parametric Identification: Formulate a class of mathematical models for a

specific system or physical phenomenon, and identify the unknown parameters in

the model. In this step, the parameters of interest as well as their relation to the

problem are determined. For instance, whether a building is damaged or not can be

associated with the amount of reduction in the column stiffness, or changes in the

mode frequencies of the building.

(b) Model Selection: Select an appropriate class of mathematical models for para-

metric identification. The selection is usually determined by user’s judgement, which

involves the choice of the likelihood function and the prior distribution.

Considerations in Model Selection

The performance of Bayesian-based applications highly depends on the selection

of appropriate models. This requires a thorough uncertainty formulation and assump-

tions made with solid engineering knowledge. Without a fundamental understanding

of the underlying system or physical phenomenon, a suitable model class will be hard

to be constructed. For instance, the prior distribution of the yielding strength of

steel may follow a log-normal distribution with median and variance determined from

14

experimental data [54]. In general, the considerations for choosing an appropriate

model are:

(a) Prefer simpler model. A complicated model may work well on the training

data but fail to predict the outcome of the new data in the future.

(b) The prior should not be absorbed into the normalizing constant (i.e., the

denominator in Equation 2.2) when determining the model class.

(c) A more informative prior based on previous experience is preferred.

(d) Model selection favors a model with physical meaning. It is difficult to es-

timate the uncertain parameters of an empirical model prior to data acquisition.

Consequently, the number of choices of prior distribution are relatively higher for an

empirical model.

After the formulation of the likelihood function and the prior distribution, the

posterior distribution can be obtained from Equation (2.1). It is shown in [55] that

for globally identifiable cases, the posterior distribution has the asymptotic behavior

given a large amount of data [56] and therefore can be approximated accurately by

a Gaussian distribution. For the general cases where the posterior may not be ap-

proximate by Gaussian distribution, it is often computationally intensive to obtain

a close form expression of the posterior distribution when the dimensionality of the

parameter space is high. To deal with this issue, sampling algorithm such as Markov

Chain Monte Carlo (MCMC) and Gibbs sampler [57–60] are often adopted to gen-

erate the samples from the posterior distribution. The MCMC algorithm avoids the

computation of the denominator in (2.1) by exploiting the relative probability density

between two parameter vectors. For more discussion regarding model selection, the

reader is referred to [53].

Application

In [61, 62], a Bayesian framework is proposed for SHM. In their paper, the prob-

ability that the concerned model stiffness parameters would be less than a fraction

15

of the undamaged stiffness parameters given the available modal data is computed

based on Bayes theorem. The uncertainty of model parameters are introduced as

well. The damage state of the structure is evaluated through the probability of re-

duction in structural parameters (e.g., stiffness of the structure). In [63], the safety of

a bridge structure is updated with measured dynamic responses. In this study, mea-

surements of ground excitation and acceleration at the midspan of the bridge deck are

aggregated to infer the change in structural reliability. In [64], a Bayesian approach

is proposed for structural system identification and damage detection. By using the

simulated floor acceleration responses, the proposed approach is demonstrated to be

robust against measurement noise, and the uncertainty of the structural parameters

can be quantified. However, damage with little severity may not be detected. More-

over, the employed optimization algorithm is only applicable for globally identifiable

cases, and the identification performance depends on the selection of appropriate

structural model. In [65], model updating of building structures is achieved through

Bayesian methodology with noisy incomplete modal data. The proposed approach

uses a computationally efficient iterative scheme to avoid the convergence difficulties

faced in non-linear optimization problem. System natural frequencies, mode shapes

and stiffness are estimated through the proposed method using numerical examples.

In [66], the simulated acceleration measurements are employed to perform the system

identification of buildings. The issue of high-dimension optimization is relieved by

the transition MCMC algorithm, and the simulation results indicate decent perfor-

mances achieved by th proposed approach. However, the identification results could

be altered significantly due to poor knowledge about the damping in the structure.

In [67, 68], modal data computed from vibration measurements is used to quantify

and localize the damage in bridges. It is demonstrated though a laboratory test that

the proposed approach depends on the model classes, damage magnitudes and loca-

tions, as well as the configuration of sensor instrumentation. In [69], a Näıve Bayes

based approach is proposed to monitor the health condition of building structures un-

der various ground excitations. Acceleration measurements collected from the strong

16

ground motion and the velocity response recorded from the micro-vibrations are used

to detect damage in structures under the earthquake mode and the micro-vibration

mode, respectively. Although the performance in the earthquake mode is not as good

as the micro-vibration mode, experimental results have shown that the proposed ap-

proach is able to rapidly determine the condition and location of the damage. In [70],

the crack length of a steel specimen is estimated through Bayes theorem. Simulated

samples generated through Markov Chain Monte Carlo algorithm and the experi-

mental data are fused to derive the probability of a certain crack length at a specific

number of loading cycles. The failure probability is defined as the probability that the

crack length is larger than a user defined critical crack length. In [71], a theoretical

probability framework is proposed to estimate the reliability index of the composite

wing structure at future times. In this framework, Bayesian inference is employed

to evaluate the current damage state of the system and update the joint probability

density function (PDF) of the damage size at various locations. After that, prob-

abilistic models for future aerodynamic loads and damage propagation are used to

predict the joint PDF of damage extents at future times. Finally, the local and global

failure criteria are combined to compute the lower bound and the upper bound of the

probability of system failure at future times. In [72], an experimental validation is

conducted to test the proposed probability framework in [71]. Multiple crack prop-

agation trajectories recorded from a series of fatigue experiments are employed to

estimate the remaining fatigue life of the specimen. In [73], the health condition of a

rotating machine is monitored by means of a two-stage Bayesian inference data fusion

technique. Prior to data fusion, time domain features and frequency domain features

are extracted from the signals of interest including acceleration, current, voltage, and

temperature. The overall health assessment is achieved by first performing local data

fusion that integrates the information from specific components, then perform global

data fusion that combines the diagnostics results of the specific components.

In [74], recursive Bayesian framework is used to update the parameters for the

crack growth model, as well as the probability distribution of the crack size and

17

crack growth rate. Data from acoustic emission, periodic inspection, and the empir-

ical crack growth model are fused to update the crack information for better health

assessment. In [75], the accuracy of the load estimation for a cable-stayed bridge is

enhanced by Bayesian inference. The elongation recorded by the fiber optical sensors,

the load measured by the elasto-magnetic sensors as well as the thermal expansion

information are fused to give a better estimation of the cable load. In [76], a Bayesian

based model updating approach is proposed to refine the finite element model of a

coupled floor slab. In this study, the ambient acceleration measurements collected

through field test are used to update the structural model. It is demonstrated that

the model with partition walls achieves better performances in identifying the natural

frequencies and mode shapes. In [77], Bayesian fusion is employed in the scope of

masonry structures survey. The probability distribution for the elastic modulus of

the granite blocks is updated by integrating the information from prior knowledge,

the data from sonic test, the data from ultrasonic test, as well as the data from com-

pressive strength test. In [78], the acoustic emission source in plate-like structures is

localized based on a Bayesian approach. Multiple two-dimensional Gaussian distribu-

tions obtained from time difference data at different frequencies are merged to provide

the final probability distribution of the acoustic emission source location. In [79], a

Bayesian computational sensor network is proposed to perform SHM in a small scale

structure. The damage in an aluminum panel is mapped by a small mobile robot

equipped with vision and ultrasonic sensors. It is indicated that the fusion of vision

and ultrasonic information reduces the uncertainty in damage localization. In [80],

Bayesian inference is employed to perform damage detection and system identification

for a 4-DOF shear type building structure. In this study, only partial acceleration

measurements are used to update the posterior PDF of the structural parameters

(e.g., mass, damping and stiffness). Experimental results have demonstrated that

the proposed approach accurately estimates the parameter distributions in the pres-

ence of measurement noise and incomplete measurement data. In [81], a Bayesian

inference-based regularization approach is proposed to identify the unknown traffic

18

loads through the vibration measurements of the bridge. To this end, the accelera-

tions, strains and displacement measurements are fused through a state space model.

Results from a 27 bar truss bridge indicate the effectiveness and robustness of the

proposed approach against noisy data. In [82], an efficient approach for modal iden-

tification is proposed to relieve the problem of computation time and convergence

stability encountered by the method proposed in [83] when the number of measured

DOFs increases. Although fast computation is achieved by the proposed approach,

modal identification may fail for structures with no separated modes, e.g., a structure

with close stiffness in both the two principal directions. In [84–86], modal parameters

and structural parameters of buildings are identified through the aggregation of the

ambient acceleration measurements. Various setups of sensor instrumentation are

considered to test the proposed approach. Comprehensive experiments show that the

proposed approach fails to achieve good performance in some cases of sensor place-

ment. Also, identification performance depends on other factors such as modeling

error and the noise level. In [87], a frequency-domain fast Bayesian FFT approach

is proposed for modal identification through force vibration tests. By utilizing the

input excitation and the acceleration measurements, data from simulation and field

tests have demonstrated the robustness of the proposed approach. However, the in-

put excitation must be large enough to eliminate the bias in the identification results

due to the ambient responses of the structure. In [88], the stiffness parameters of

shear buildings are estimated through the incorporation of transmissibility matrix,

random matrix and Bayes’ theorem. Based on the acceleration measurements, the

proposed approach requires no evaluation of the inverse of the covariance matrix and

hence is computationally efficient. Although the proposed method only needs the

information from the structural responses, the number of independent measurements

must be larger than the number of independent inputs (excitations). Chen et al. [89]

use local binary patterns [90] and support vector machine [91] to autonomously de-

tect cracks on metallic surfaces. The inspection videos of a nuclear power plant are

recorded with an underwater camera system, and the frames of the videos are ex-

19

tracted to perform crack detection. Next, Bayes theorem is adopted to aggregate the

information from different frames. It is shown that the performance of the detection

algorithm is significantly enhanced with data fusion technique. In [92], Bayesian sys-

tem identification is employed to identify the reduction in structural stiffness through

the use of modal data (e.g., mode shapes and mode frequencies). The Gibbs sampling

algorithm [59, 93] is adopted to generate samples from the posterior distribution of

the stiffness scaling parameters. It is claimed that the proposed approach is capable

of incorporating all sources of uncertainties based on given available data. In [94], a

Bayesian based approach is proposed to provide one unified ground motion predic-

tion by combining the predictions from multiple earthquake early warning (EEW)

algorithms. The aggregation of information can be achieved even if these algorithms

do not have compatible source models. Results have demonstrated that the proposed

approach can operate in real-time and evaluate whether the prediction from these

algorithms is a false alarm. In [50], the detection of cracks for nuclear power plant

reactors is enhanced through the Näıve Bayes approach. By incorporating the spa-

tiotemporal coherence of cracks in the adjacent video frames, the proposed approach

outperforms other algorithms based on the fusion of multiple video frames.

Although the Bayesian inference-based approaches seem to be more popular in

nondestructive testing [95], it requires reasonable assumptions to work properly.

In [96], the classical inference-based approach, which requires fewer assumptions,

is adopted to aggregate the data from ultrasonic and radiographic sensors to con-

duct nondestructive inspection. The detection accuracy is improved by the fusion of

all the individual data. Table 2.1 and 2.2 summarize the above applications using

Bayesian approaches in damage identification/quantification and system identifica-

tion/response estimation, respectively. The information of input data source, valida-

tion approach, and limitations/concerns are presented.

20

2.2.3 State Estimation Methods

In SHM, the displacement of a structural system can be the indicative of damage

extent within the structure [97]. Under controlled situations, the displacement of

a structure can be easily measured through linear variable displacement transducer

(LVDT) or optical sensors. In practice, the acquisition of displacement information is

much more difficult than the acceleration information due to the difficulty in finding

a reference plane for the displacement sensor. Double integrating the acceleration

to obtain displacement is not reliable because of the amplification of low-frequency

noise. Therefore, state estimation techniques are often dedicated to give a better es-

timation of the desirable information (e.g., displacement) given only limited available

information (e.g., acceleration).

Kalman Filter Concepts

Kalman filter [98] is a powerful mathematical tool that can be used to predict the

state of a dynamic system in the presence of uncertainty. It takes advantage of the

information regarding the previous state of the system, and it is suitable for real-time

implementation and embedded systems.

Consider a state vector xk is governed by linear stochastic differential equation:

xk = Akxk−1 +Bkuk + wk, (2.3)

with a measurement:

zk = Hkxk + vk, (2.4)

where variables wk and vk denote the process noise and measurement noise, respec-

tively. Matrix Ak defines the relationship between the state at time step k and the

state at time step k − 1 in the absence of driving function uk and process noise wk.

Matrix Bk defines the optional driving function uk. In Equation (2.4), zk is the actual

measurement acquired from sensors while Hkxk is the measurement one expects to

get based on the estimation xk (i.e., the predicted measurement).

21

The core concept of Kalman filter is that it aims to find the best weight between

the predicted and the observed measurements. Assume that the predicted and the

observed measurements belong to two Gaussian distributions [99]. The best estima-

tion between these two measurements would be the overlapping region of these two

Gaussian distributions. Figure 2.2 illustrates this concept with 1-D Gaussian distri-

butions. In this example, the best estimated state from Kalman filter would lie in

the overlapping region between the distributions of the predicted and the observed

measurements. During each time step, Kalman filter recursively updates the state

estimation and its uncertainty. Figure 2.3 illustrates the recursive update process.

0 5 10 15 20 25 30

State

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ro

ba
bi

lit
y

D
en

si
ty

Predicted Measurements
Observed Measurements
Best Estimates

Fig. 2.2.: 1-D example for the best estimation between the predicted and the observed

measurements.

Kalman Filter in Structural Dynamics

In the context of structural dynamics, consider the second-order linear equation

of motion [53]:

Mẍ(t) + Cẋ(t) +Kx(t) = T0F (t), (2.5)

22Kalman Filter Flowchart

State update

Error covariance update

Compute Kalman gain

Correct the state with
the observed measurement

Update error covariance

Fig. 2.3.: Flowchart for Kalman filter. See [99] for derivation in detail.

where M , C, K denote the mass, damping, and stiffness matrices, respectively. T0

denotes the force distribution matrix, and F denotes the excitation. In this case,

state vector can be defined as:

X(t) =

 x(t)

ẋ(t)

 . (2.6)

Consider discrete time series, equation (2.5) can be formulated as a state-space rep-

resentation:

Xk+1 = AXk +BFk, (2.7)

where A and B are the matrices define the state-space transition function. (See [53]

for derivation in detail.)

It is noted that Kalman filter is an estimator of Bayes’ theorem. The Kalman

filter estimates the posterior mean and covariance of the state vector (estimation)

conditioned on all the previous measurements. For nonlinear systems, the extended

Kalman filter, the unscented Kalman filter, or the particle filter should come into

practice instead of using the Kalman filter.

23

The Extended Kalman Filter (EKF)

The EKF has been the standard state-estimation method for dealing with non-

linear systems for the last several decades [100, 101]. Consider the state vector xk

governed by nonlinear stochastic differential equation:

xk = F(xk−1, uk, wk), (2.8)

with a measurement:

zk = H(xk, vk), (2.9)

where F and H stand for the functions that define the nonlinearity. For a nonlinear

system, the EKF applies the nonlinear transformations to the mean and covariance

estimates through the Taylor series expansion. In EKF, only the first two moments

of the conditional probability density function (PDF) are updated.

For the EKF to be reliable, it is only suitable for the systems that are almost

linear in the updating time intervals since the high order terms in the Taylor series

expansion are neglected. Several disadvantage are addressed in [102,103]:

(a) The linearized transformation (i.e., Taylor series expansion) is only applicable

if the error propagation can be well approximated by a linear fundtion during the

updating process.

(b) The Taylor series expansion requires the computation of the Jacobian matrices.

This could be difficult to compute and may induce additional computation efforts.

Therefore, the EKF may be inappropriate to be applied to higher order nonlin-

earities as it is often encountered in civil engineering applications.

The Unscented Kalman Filter (UKF)

Unlike the EKF method, the UKF algorithm do not require the computation of

Jacobian matrices [103, 104]. A set of sigma points is first selected deterministically

from the statistics of the transformation, and the mean and covariance estimates of

24

the state vector can be described by the weighted combination of these sigma points.

After the nonlinear transformation, the sigma points are able to estimate the posterior

mean and covariance accurately to the second order (third order for Gaussian inputs)

for any nonlinearity [102, 103]. Although the UKF is capable of dealing with higher

order nonlinearity than the EKF, it may not work well if the error distribution is not

Gaussian [102].

The Particle Filter (PF)

The PF (i.e, sequential Monte Carlo) methods is capable of dealing with the

nonlinear system with the state vector described as a non-Gaussian posterior PDF

[105–107]. In general, the PF method generates samples randomly to approximate the

posterior PDF based on the Monte Carlo simulation. Once the samples are obtained,

the posterior mean and the variance of the state vector can be computed through

optimization techniques (e.g., minimization of the mean squared error (MMSE)) [103].

However, PF method could suffer from the computation issue since it may require to

generate lots of samples depending on the problem of interest.

The Discontinous EKF and The Discontinuous UKF

Liu et al. [108] have shown that the EKF and UKF algorithms may fail to converge

because of the unobservable states or parameters. This problem lies in many non-

smooth systems such as the transition between the elastic and plastic responses, the

initiation of a crack, or the initiation of a sliding. Switching behavior upon these

discrete events makes the state-space equations non-differentiable. Recently, Chatzis

et al. [109,110] propose a D-modification version of the EKF and UKF, named as the

discontinuous EKF and the discontinuous UKF, to address the unidentifibility in non-

smooth systems. The D-modification ensures the unidentifiable parameters remain

invariant over such time intervals, and therefore the estimates will not diverge. Table

2.3 summarizes the comparison between various Kalman filter algorithms.

25

Application

Smyth et al. propose a multi-rate Kalman fiter approach to estimate the displace-

ment by the aggregation of acceleration and displacement measurements [111]. The

multi-rate kalman filter is used to account for the lower sampling rate of the displace-

ment sensors (e.g., LVDT, GPS) compared with the acceleration sensors. According

to the simulation results in a single degree of freedom (SDOF) system, it is demon-

strated that the displacement estimates of the proposed method is superior to the

single-rate kalman filter. Also, a smoothing technique is introduced to improve the

accuracy of the displacement estimates. However, this smoothing technique can only

by applied to offline estimation since it requires the filtering over the entire sequence

of the available measurements. In [112], Kalman filter-based approaches [111,113] are

used to determine the intrastride variation in speed for human running. Data from

GPS and the inertial measurement units (IMU) are fused to estimate the speed with

fluctuation induced by cyclic pedal strokes. It is shown that the data fusion scheme

achieves better estimates compared with the GPS and IMU used alone. In [114],

the displacement measurements from a camera and the acceleration signals from a

accelerometer are integrated through the multi-rate Kalman filter with smoothing

technique proposed in [111]. It is demonstrated that data fusion using kalman fil-

ter not only estimates the velocity response, but also improves the accuracy of the

estimated displacements and enlarges the frequency bandwidth of the displacement

estimates. In [115], an adaptive EKF is proposed to detect variations in the structural

parameters. Compared to the classical least-squares estimation (LSE) method, the

EKF approach requires only acceleration measurements and therefore avoids the error

induced from numerical integration. However, LSE is numerically more stable and

easy to converge than the EKF approach. In [116], the EKF formulation proposed

in [115] is modified to deal with systems with unknown excitations. Although the

EKF-based approach is able to perform system identification, it may suffer computa-

tion burden if the test structure has a large number of DOFs.

26

In [117], the ground excitation and the acceleration measurements are integrated

to estimate the vibration responses and structural parameters of a SDOF and a 2-DOF

system. To this end, the nonlinear hysteretic Bouc–Wen system [118] is introduced

to model the system nonlinearity. Based on the simulation results, it is demonstrated

that the UKF yields more accurate estimation than the EKF when the system is highly

nonlinear. Moreover, the UKF is more robust against the measurement noise than

the EKF. In [44], the non-collocated acceleration and displacement measurements

are fused to determine the displacement response and the hysteretic parameters of a

3-DOF system. The performance of the UKF, generic PF, and the Gaussian mixture

sigma point particle filter (GMSPPF) [119] are compared. According to the simu-

lation results, the UKF and GMSPPF are the most efficient techniques in terms of

validation with the final identified hysteretic parameters. Also, the GMSPPF method

achieves the best performance when estimating the time invariant model parameters.

In [120], the Kalman filter approach developed in [111] is employed to estimate the

displacement time history of a full-scale seven-story reinforced concrete wall building

based on collocated GPS and accelerometers. It is shown that the adopted data fusion

scheme is able to estimate the displacement time series with millimeter precision.

In [121], the fuzzy Kalman filter is used to reduce the failure risk of an integrated

vehicle health maintenance system. To this end, data from accelerometer, pressure

sensor, torque sensor, and liquid quality sensor are integrated through fuzzy logic and

state estimation. In [122], a new approach based on Kalman filter is developed to

estimate the displacement responses from the fusion of acceleration and displacement

measurements. This method considers the acceleration measurement bias explicitly

in the system dynamics of the Kalman filtering. The acceleration error is modeled as

a combination of an offset bias (e.g., mechanical hysteresis), installation error (e.g.,

misalignment), and a zero-mean stochastic noise process. Based on the data collected

from a small cantilever beam, it is claimed that the proposed approach is superior to

the methods developed in [111].

27

In [123], a dual implementation of the Kalman filter is proposed to estimate the

displacements and the velocities of a structure with only a limited number of noise-

contaminated acceleration measurements. Floor acceleration responses are fused to

obtain the displacements, velocities, and the input forces of the structure. It is

claimed that the proposed method eliminates the numerical problems caused by the

un-observability and rank deficiency of the augmented Kalman filter [124]. Addi-

tionally, the drift effect in the estimated displacements and input force observed in

the Gillijn and DeMoor filter [125] is reduced by the proposed method with a good

priori knowledge of the covariance of the unknown input force. In [126], a augmented

Kalman filter is proposed to circumvent the divergence problem encountered in the

estimation of input force when only the acceleration measurements are available. It is

claimed that by adding the dummy displacement measurements in the Kalman filter

updating process, the drift in the estimated response can be eliminated. However, the

proposed approach is only applicable when the steady-state position of the system is

known. In [127], the displacement response of a bridge is estimated through Kalman

filter. The acceleration and strain measurements are incorporated into the state-space

model. The proposed approach requires no reference points, which is necessary for

the conventional displacement transducers. In [128], a Kalman filter based approach

is proposed to identify the stiffness, mass and damping of a structure simultaneously.

The input force and output acceleration measurements of a structure are aggregated

to estimate the structural parameters in real-time operation. Although this approach

requires complete measurements from each model DOF, numerical simulations have

demonstrated that the proposed method is robust against noisy data and can be

operate online. In [129], a smoothing based Kalman filter approach is proposed to es-

timate the displacement time history by aggregating the velocity from a laser Doppler

vibrometer (LDV) and the displacement from a LiDAR sensor. Results from a series

of lab-scale tests show that the proposed approach outperform the method in [117]

with a lower estimation error and can be operated in real-time as well.

28

In [130], the seismic-induced damage in buildings is evaluated on the basis of a

probabilistic framework. Four Bayesian filters, including the EKF, UKF, ensemble

Kalman filter [131], and the PF are used to estimate the structural response as well as

the uncertainties of estimations and their performances are compared. The response

estimations are achieved by integrating the limited acceleration measurements and

the information of a nonlinear model. It is pointed out that the EKF is the most

suitable filter among all the filters being compared. In [132], a multi-rate UKF is im-

plemented to monitor the response of a high rise building with the fusion of GPS and

acceleration data. An artificial zero mean white noise measurement is added to avoid

the drifting of the displacement estimates induced by low frequency integration errors.

Through the data obtained from a densely instrumented building, it is shown that

the proposed approach yields accurate estimates of the structural response. In [133],

the dynamic response and physical representation of a structural system is estimated

through the transformed subspace state-space system identification (T-SSID) [134]

and the UKF. The acceleration and displacement signals are aggregated through T-

SSID and UKF separately, and the performances of the two algorithms are discussed.

The results indicate that T-SSID method is vulnerable to noise with low frequency

content. Also, the T-SSID method is unable to operate under a reduced observation

scheme (i.e, it requires the information from every floor in the form of either accel-

eration or displacement), and T-SSID needs offline implementation. Although the

UKF method overcomes the limitations of the T-SSID method, the variation in the

identified structural parameters for the UKF method is higher. This disadvantage is

resolved by the fusion of acceleration and displacement measurements.

In [103], it is pointed out that the UKF appears to be more robust than the EKF

when dealing with higher order nonlinearities. The EKF fails to give accurate esti-

mations when encountering non-Gaussian conditional probability density functions.

Finally, it is commonly seen that the state estimation approaches are incorporated

within the probability framework. A typical example is the application in [74] as afore-

mentioned. In [135], the UKF is used to perform the model calibration and response

29

estimation for a 7-DOF shear building model. Two modeling schemes are considered,

namely the cantilever and shear building models. The cantilever model outperforms

the shear building model in the identification process. It is claimed that the fusion of

acceleration and displacement measurements fails to enhance the response estimation

in the presence of large modeling error. In [109], the discontinuous EKF (DEKF) is

proposed to deal with the divergence problem in non-smooth dynamic systems. The

impact problem, the nonlinear hysteretic Bouc-Wen model, and the elasto-plastic sys-

tem are selected as case studies to validate the proposed algorithm. It is shown that

the DEKF outperforms the EKF in all the selected non-smooth systems. When com-

pared with the UKF algorithm, the proposed DEKF performs on a par with or better

than the UKF in some cases. However, the good performance of UKF may depend on

the initial estimates and the noise in the measurement signals. More recently, Chatzis

and Chatzi [110] have proposed the discontinuous UKF (DUKF) to enhance the pa-

rameter estimates in non-smooth dynamic systems. Similar case studies in [109] are

used to test the proposed algorithm. Results indicate that the DUKF improves the

estimates and behaves more consistently than the standard UKF for non-smooth sys-

tems. Also, the DUKF does not require the detection of the transition event, which

is an advantage over the DEKF algorithm. In [136], the DUKF algorithm is applied

to the identification of a rocking body subjected to ground motions. The DUKF

outperforms the UKF since the latter suffers from the divergence of the friction co-

efficient during the time periods of unidentifiability. Table 2.4 summarizes the above

applications using KF approaches in system identification/response estimation. The

information of input data source, validation approach, and limitations/concerns are

presented.

2.2.4 Dempster-Shafer Theory

Dempster-Shafer (DS) theory is an approach for combining degrees of belief based

on evidence. It is a generalized form of the Bayesian theory for considering multiple

30

unions of hypothesis which are mutually exclusive [137, 138]. Different from proba-

bility theory, DS allows the quantification of ignorance. For example, in probability

theory, the probabilities of the occurrences of all possible events sums to one. In the

DS theory, a specified degree of belief can be assigned to the hypothesis where it is

not knowing which event would occur. The elements for mathematical formulation

of the DS theory are introduced in [137].

In terms of data fusion using multiple sensors, the DS theory allows us to inte-

grate the beliefs derived from different sensors [138]. Suppose that the observations

from two sensors are available, and the two sensors could have different observations.

Denote mi is the mass function assigned to the observations based on sensor 1, mj is

the mass function assigned to the observations based on sensor 2, Ak is an observed

hypothesis from sensor 1, and Ak′ is an observed hypothesis from sensor 2. Then, the

belief in outcome A being true can be expressed as:

Belief(A) = mi ⊕mj(A) =

∑
Ak∩Ak′=A

mi(Ak)mj(Ak′)

1−K
, (2.10)

where

K =
∑

Al∩Al′=φ

mi(Al)mj(Al′), (2.11)

and mi⊕mj(A) stands for the combined proposition A, that is the intersection of the

observed hypothesis Ak from sensor 1 and the observed hypothesis Ak′ from sensor 2.

Conflicts

Conflicts may happen when the application’s frame of discernment is not well

defined. If the values of mass function is strongly skewed, the belief of the hypoth-

esis computed from Equation (2.10) would be unreasonable [138]. There are several

methods to solve the conflict problem proposed by researchers. Yager et. al. [139]

proposed a term as the ground probability mass assignment, that is the DS’s basic

probability mass assignment without the normalization by (1−K) (i.e., the denom-

inator of Equation (2.10)). The probability mass tends to be extremely small when

31

new conflicting observations are being introduced. Inagaki [140] introduced an ap-

proach to make a balance between DS’s method and Yager’s method by means of

a factor k. This factor helps to reduce conflicts and make DS theory more reliable.

However, how to choose the optimal value of k becomes an issue, and it is hard to be

generalized for different applications. In [138], a dynamic weight calibration scheme

is introduced to fuse the information from multiple sensors. The calibration scheme

tends to assign larger weights to the information that are acquired more recently.

Application

Bao et. al. [141] employed DS theory to identify the damage locations on a 3D

truss structure. The global stiffness matrix can be expressed as the sum of stiffness

matrices of its substructures. [142] developed a multi-sensor data fusion scheme to

perform the early detection of fire events. In this study, the DS theory was used

to estimate the probability of fire event by means of information from temperature,

humidity and vision sensors. In [143], the information from multiple piezoceramic

sensors located at different locations of a two-story concrete frame was fused based

on DS theory. A weighted fusion damage index was proposed to indicate the damage

states of different areas of the frame. In [144], the damage detection of a building

structure was performed by the combination of posterior probability support vector

machine and DS theory. Support vector machine output the posterior probabilities

from the recording of multiple sensors. These probabilities were fused to determine

whether the structure was damaged or not based on DS theory. Also, the performance

of data fusion at different levels were discussed. It was shown that fusion at decision

level achieved the best accuracy when data was subjected to disturbance. In [145], the

fault diagnosis of spark plug in an internal combustion engine was performed using

the combination of artificial neural network, least square support vector machine, and

the DS theory. Acoustic signals and vibration signals were fed into the two classifiers

separately to classify different types of damages. The result indicated that using the

32

DS theory to fuse the results of the two classifiers achieved better classification accu-

racy than the result of each individual classifier alone. In [146], the fault diagnosis of

an induction motor was performed based on neural network and the DS theory. The

motor stator current signal and two acceleration signals were fed into three neural

network separately. The outcomes of the three classifier were integrated by the DS

theory. The analysis results indicated that decision-level fusion enhanced the robust-

ness of fault diagnosis. In [147], a multi-stage data fusion approach was proposed

to detect damage in structural systems. Local damage indicators were built based

on the flexibility approach, which uses the change of the flexibility of the structural

element as a way to quantify damage. The DS theory was employed to integrate all

local decisions and make the final decision. In [148], the accuracy of pavement crack

detection was enhanced by the combination of 2D gray-scale image analysis and 3D

laser scanning method. The 2D method may fail to detect the cracks in the presence

of shadows and tire marks, while the 3D method is unable to quantify the cracks

when there is no obvious depth changes in the pavement. As a result, the 2D and

3D crack characteristics were fused based on the DS combination rules to perform

more accurate crack detection. However, the proposed approach is highly dependent

on the selection of the thresholds (e.g., the mass value for the 2D detection results).

In [149], the DS theory and the Hadamard product [150] approach are employed to

detect the honeycomb defects in concrete specimens. Measurements from the impact-

echo (IE), ultrasonic pulse echo (US) and ground penetrating radar (GPR) sensors

are used to perform feature-level fusion. Results demonstrate that both data fusion

approaches perform better than the best single sensor, and the Hadamard product

method outperform the DS theory when there is no nearly zero entries in the features.

Table 2.5 summarizes the above applications using DS approaches in damage iden-

tification/quantification. The information of input data source, validation approach,

and limitations/concerns are presented.

33

2.2.5 Fuzzy Logic

Different from classical set theory, fuzzy logic is often used to address vagueness

and imprecision that exists in real world events. It is particularly useful when the

boundaries between sets of categories are not well-defined, or the mathematical formu-

lation of the system of interest is not fully understood [41,151]. For instance, whether

a person is tall or short depends on subjective judgement of the observer, and there

is no valid boundary value between the definition of tall and short. Therefore, fuzzy

logic is applicable when the noise content of the data is high, or the measurement of

the sensor is not precise enough. The key elements in fuzzy set theory are the mem-

bership functions that define the boundaries between the fuzzy set variables. The

basic concept and procedure for fuzzy logic is introduced in the following section.

Analysis Procedure

Typically, each member in a fuzzy set consists of the variable value as well as the

associated membership functions of the variable in one or more sets. A membership

function provides a graphical representation of the boundaries between each set. The

values for the membership function of the variable lie in the interval between 0 and 1,

while zero means the variable is not a member of the set and one means the variable

is a member of the set. Values between 0 and 1 indicate the variable may be partially

a member of one or more sets. For instance, the temperature values could be a

variable in environmental monitoring, while the sets consist of cool, medium, warm,

and hot. The membership function is then used to point out the current temperature

belongs to which set. Originally, bell-shaped curves have been employed to define

membership function. However, they are replaced with triangle or trapezoid curves

in many applications for simplicity [41]. A general analysis procedure is described as

follows:

(a) Define the variable of interest and its characteristics.

(b) Define the membership functions associated with the variable.

34

(c) Define the production rules for aggregating the output from the membership

functions, and compute the fuzzy values of samples based on the production rules.

(d) Convert the fuzzy values to a fixed and discrete output that can be employed

to make inference about the characteristic of the sample.

Application

Jiang et. al. [152] combined fuzzy logic and neural network to detect damage in

a 7-story shear-beam type building model. The damage detection in the first stage

was performed separately by the use of fuzzy neural networks (FNN) with three types

of inputs: normalized damage signature index (NDSI), normalized frequency change

ratio (NFCR), and normalized mode change ratio (NMCR). In the second stage, the

results of FNN models were fed into a fusion center to create a new output for damage

pattern recognition. This was achieved by computing the weighting of the three FNN

models based on the results in the first stage, and the new output was determined

based on the weighted combination of different FNN models. It was concluded that

combining data fusion and FNN techniques would perform better than using single

FNN models alone. In [153], the false alarm rate for the detection of near-surface

crack was reduced based on the fusion of images from eddy current test, magnetic

flux leakage, and thermography test. The image fusion was achieved through the

fuzzy AND operator [154, 155], fuzzy OR operator, and the shift-invariant wavelet

transform [156]. In [157], fuzzy sets and the DS theory were employed to perform

stress identification of two real world structures. It was shown that the identification

results obtained from data fusion were more robust against the effect of noise than the

results without data fusion. In [158], the damage detection of a wind turbine gearbox

was conducted through fuzzy inference. The vibration data and the oil-debris data

served as inputs for fuzzy inference, and the output damage level was determined

using the defined membership functions. Table 2.6 and 2.7 summarize the above

applications using fuzzy logic approaches in damage identification/quantification and

35

system identification/response estimation, respectively. The information of input

data source, validation approach, and limitations/concerns are presented.

2.2.6 Machine Learning Approaches

Among all the machine learning techniques, artificial neural network (ANN) and

support vector machine (SVM) are the most popular techniques employed to perform

data fusion in SHM in the past decades. Usually, this type of fusion is achieved

through feature-level fusion. Features extracted from raw data or pre-processed data

are fed into machine learning algorithms to perform regression or classification tasks.

Recently, deep learning-based approaches have gain lots of attention due to their ca-

pability in automatically learning meaningful feature representations from the raw

data. The input to the learning model does not need to be the handcrafted features

as commonly seen in the conventional machine learning algorithms, and the general-

ization of the model is achieved through the use of large amount of data. The basic

concepts of ANN, SVM, and deep learning are introduced in the following sections.

Artificial Neural Network (ANN)

ANN is originally inspired by the human nervous system that consists of billions

of connected neurons [12]. It is a supervised learning method that is widely used

in various disciplines. A supervised learning means the algorithm is first provided

with a training dataset and the corresponding answers, then the parameters in the

network are updated (i.e., learned by means of the training data). Typically, an

ANN consists of multiple layers including an input layer, several hidden layers, and

an output layer. In each layer, there are a number of neurons (i.e., nodes, connected

with every nodes in the previous layer). Each node in the hidden layer and the output

layer can be formulated as a weighted combination of all the nodes (including a bias

term) in the previous layer, and the combination is further passed into a activation

function to model the nonlinearity. In ANN, all the layers are fully connected. Figure

36

2.4 shows a typical configuration for ANN with one hidden layer. The inputs xi are

weighted summed, and a bias term is added to obtain yj, and yj is passed through the

activation function f to get the output of node j (i.e., zj). The network is established

by providing a set of training samples, and its performance is verified by new test

data. A general analysis procedure for ANN is described as follows:

(a) Determine the input of the network. Usually, the inputs to the network are

the feature representations of the raw data.

(b) Design the network structure (i.e., the number of hidden layers and the number

of nodes in each layer).

(c) Train the network with sufficient number of training samples. Usually, the

parameters of the network is updated by back-propagation algorithms. This process

involves the optimization of a cost function.

(d) Evaluate the network using the test dataset that is not used during the training

stage.

ANN Formulation ‐ Improved

௝ݕ ൌ 	෍ሺݓ௜௝ݔ௜ ൅ ܾሻ

௝ݖ ൌ ݂ሺݕ௝ሻ

i
j

Input Hidden
layer

Output
layer

௜௝ݓ

௜ݔ

Fig. 2.4.: An illustration of ANN with one hidden layer.

37

Support Vector Machine (SVM)

SVM is a supervised machine learning algorithm as well. The fundamental concept

of SVM is that it aims to find the best hyperplane to separate the data [159, 160].

The original data points are projected by a kernel function into a higher dimension

feature space. An illustrative example is provided in Figure 2.5. In this space, SVM

tends to find the hyperplane that separates the data with the largest margin. The

hyperplane is defined by a subset of data points called support vectors that lie on the

margin. A general analysis procedure for SVM is described as follows:

(a) Determine the input of SVM. Usually, the inputs are the feature representa-

tions of the raw data.

(b) Train the SVM model with sufficient number of training samples. The sepa-

ration plane is determined by the optimization of a cost function.

(d) Evaluate the model using the test dataset that is not used during the training

stage.

SVM

Original Input Space Feature Space

Kernel Function

Fig. 2.5.: SVM illustration: the original data are projected into a higher dimensional

feature space by a kernel function where a hyperplane separates the data.

Deep Learning

Different from the conventional machine learning algorithms, a deep learning al-

gorithm uses a deeper (larger) network to conduct the regression or classification

38

tasks. Although it requires intensive computation to establish the network from a

large amount of training data, the network is able to learn the high level representa-

tions from the raw data autonomously. This is particularly useful since the selection

of handcrafted features is subjective and may not contain enough information for

the network to perform well. For instance, the deep convolution neural network

(CNN) leads to a great success in object classification using large amount of image

data [161, 162]. The spatial invariant features such as edges/contrast of an object is

automatically learned during the training stage. Figure 2.6 illustrates a CNN con-

figuration with one convolution layer followed by activation and one pooling layer.

In the convolution layer, the kernel w1
ij performs convolution operation on the input

data to generate the first feature map, the kernel w2
ij convolves with the input data

and generates second feature map. These feature map will be transformed using ac-

tivation such as RELU function [163], and the pooling layer extracts the dominant

features from the feature map by applying operations such as retaining only the max-

imum value in the window that slides over the feature map. These features can be

adopted to other classifiers to perform learning tasks. Figure 2.7 shows a schematic

configuration of CNN that consists of multiple convolution and pooling layers. The

convolution and pooling layers extract features from the input data, and the features

are employed to determine whether there is a damage present in the input data. CNN
∑

∑

௜௝ଵݓ

௜௝ଶݓ

Convolution Layer

Activation Pooling
Layer

Fully‐Connected
Layer

Feature Maps

Fig. 2.6.: A sample for CNN Configuration.

39CNN illustration 2

⋯ No damage

damage

Input Convolution + RELU Pooling Convolution + RELU Pooling Fully‐connected layers

Fig. 2.7.: A schematic configuration for CNN.

Another deep learning algorithm, named as the deep Auto-encoder (DAE) [164,

165], is categorized as an unsupervised learning approach. The DAE algorithm is

particularly useful when there is no enough training samples to conduct supervised

learning. During the training of a DAE, the output of the network is identical with

the input, and the network tries to minimize the difference between the input and

the output. Figure 2.8 shows a sample of DAE configuration. Usually, the DAE

consists of fully connected layers, and the output of the DAE is set to be the same as

the input. Therefore, the DAE aims to reconstruct the input data, and the hidden

nodes in the network become a high level representation of the input data. These

representations can be further applied to other classifiers or clustering methods for

learning tasks.

Application

Liu et al. [166] employ the wavelet packet transformation (WPT) algorithm [167,

168] and ANN to perform the detection of damage occurrence, location, and extent.

Data fusion is achieved by integrating the first 16 components of wavelet packet

relative energy (WPRE) computed from vibration signals. It is indicated that using

several ANN models performs better than using only one single ANN model. In [169–

174], the use of ANN to approximate nonlinear functions in engineering mechanics

is discussed. The nonlinear restoring force is estimated through the displacement

40
DAE ‐ improved

Input
Hidden
layer 2

Output
= Input

Bottleneck
layer

Hidden
layer 1

Hidden
layer 3

Hidden
layer 4

(All layers are fully connected)

Fig. 2.8.: A sample for DAE configuration.

and velocity inputs. In [175, 176], ANN is used to estimate the displacement and

acceleration transmissibility functions as well as the restoring force of a viscous fluid

damper. In [177], the ANN and the least square SVM (LS-SVM) [178] are employed

to detect the damage location and severity. The performance of these two algorithms

are evaluated separately, and the selection of input features are optimized by using

particle swarm harmony search (PSHS) algorithm [179, 180]. Similar to [166], data

fusion is conducted by fusing the first 6 components of WPRE of vibration signals as

well as the time-domain statistical features. It is shown that the learning model with

input features optimized by PSHS algorithm achieves a higher accuracy, and LS-SVM

performs better than ANN. Stramondo et al. [181] use maximum likelihood criterion

to detect damage area after earthquake. Two types of remote sensing sensors are

employed to rapidly construct the damage map of urban areas after a seismic event

happened. One is synthetic aperture radar (SAR) and the other one is optical satellite

data. Features such as the complex coherence of two images, the intensity correlation

of two images, pixel to pixel difference, and the normalized difference vegetation

index (NDVI) play an important role in the classification process. It is claimed that

the combination of SAR and optical data leads to better classification results than

41

using SAR or optical data alone. [182] compares the performances of different fusion

algorithms, such as supervised and unsupervised methods, when dealing with the

detection of flooded regions. Data sources in this application are multi-temporal

and multi-modal images. It is shown that the supervised algorithms (e.g., ANN or

SVM) do not always outperform the unsupervised method (fuzzy C-mean clustering

algorithm). The performance of the learning algorithm is highly dependent on the

input features, and the unsupervised method may be more favorable when there is

no enough training samples available in disaster scenarios.

In [183], a framework of data-driven model for real-time SHM is proposed. Vari-

ous machine learning algorithms including Näıve Bayes and AdaBoost are employed

to perform damage detection and localization. Damage in structure is simulated by

changes in stiffness and mass. Statistical features such as mean, standard deviation,

and skewness are extracted from the vibration time history signals. These features

are then selected and used to monitor the damage state of a multi-story shear building

structure. In [184], a new damage indicator is proposed for bridge health monitoring

based on image data. The vehicle types and the associated moving loads are first de-

termined by the AdaBoost [185] technique and the Cascade classifier [186], then the

unit influence surface of displacements is constructed based on images. The experi-

mental results from a four-span bridge demonstrate the effectiveness of the proposed

method in the damage detection and localization of the bridge. In [187], neural net-

work and fuzzy inference are combined to evaluate the structural condition of a cable

bridge. Heterogeneous data fusion is performed by integrating the GPS displacement

data and wind velocity data. The GPS and wind velocity data are first fed into the

neural network to generate features, and then these features serve as inputs to fuzzy

inference system to output the health index of the structure. However, this method

highly relies on the user defined fuzzy rules. For instance, the output would be risky

if the wind is identified as very strong and the GPS signal is identified as normal.

In [188], the corrosion cracking of a U-bend pipe is monitored by means of Bayesian

Gaussian process and multiple sensor fusion. The Bayesian Gaussian process aims

42

to find the posterior distribution of the test output given a random test input, avail-

able training samples, and the predefined likelihood and noise functions. The degree

of degradation of the structure element is determined through Bayesian Gaussian

process, and the results of multiple ultrasonic sensors are fused based on principal

component analysis to compute the final damage index of the element. In [189], the

health state of a truss-type structure is investigated by using multiple signal classi-

fication (MUSIC) ANN. The MUSIC algorithm produces a high-resolution spectral

estimation even when the noise content of the signal is high. The vibration signals ac-

quired from multiple sensors installed at different locations of the truss structure are

first processed by the MUSIC algorithm. The output of the MUSIC algorithm is then

inserted into a neural network to evaluate the damage location and damage severity

of the structure. In [190], ambient vibration signals from undamaged and damaged

structures are fused to perform damage detection and quantification. Wavelet features

are extracted from the vibration signals, and the dominant features are determined

through principal component analysis. The k-means clustering algorithm adopted in

this study is shown to be able to characterize the damage patterns correctly. In [191],

the state vector of a linear dynamic system with multiple sensors is estimated through

the combination of multiple Kalman filters and one ANN. Each sensor measurement

is fed into one individual Kalman filter, and the estimates from each Kalman filter

serve as inputs to the ANN to determine the final state vector of the system. Based

on the simulation results, the proposed network yields better performance than the

fusion scheme proposed in [192]. In [193], the ANN and an ordinary differential equa-

tion (ODE) solver are combined to predict the relative displacement and velocity time

history of a 12-story concrete frame. The ANN is adopted to model the soil-structure

interaction by the aggregation of the displacement, velocity and ground acceleration

information. Damage detection is achieved based on the difference between the pre-

diction of ANN and the measured response. Although the proposed approach detects

the damage accurately, it remains challenging to correlate the quantified detection

results with the visual observation in the specimen. In [194], the performances of

43

various supervised learning algorithms are compared for vision-based pavament crack

detection. Among the decision tree, the k-nearest neighbor (KNN), the ANN and the

adaptive neuro-fuzzy inference system (ANFIS) [195] algorithms, the ANN and AN-

FIS not only provide superior performance but also are more flexible in terms of the

output format than the other two algorithms. Although the ANFIS method requires

longer training time, it achieves comparable performances with the ANN and has

higher interpretability over ANN. In [196], the KNN classifier is used to perform fault

diagnosis of a fixed-axis gearbox. Features extracted from the vibration and sound

signals are fed into the KNN classifier to discriminate the normal and faulty condi-

tions. Results indicate that the aggregation of vibration and sound features achieves

better performance than using the individual signal alone. In [197], the detection

of honeycomb in concrete specimens is achieved through the machine learning-based

approach. Features computed from the measurements of impact-echo (IE), ultrasonic

pulse echo (US) and ground penetrating radar (GPR) sensors are aggregated through

the density based clustering algorithm (DBSCAN) [198]. Compared to the individual

evaluation methods, it is shown that data fusion enhances the detectability of the

honeycomb.

Recently, Cha et al. [199] has employed CNN to detect cracks on concrete surfaces.

The deep CNN achieves good performance without the use of handcrafted features.

Results demonstrate that CNN-based approach is capable of dealing with real world

challenges such as the varying illumination conditions. Abdeljaber et al. [200] have

developed a CNN-based damage detection approach for a planar steel frame. In this

study, the 1-D acceleration signals collected from 30 joints of the planar frame are used

to train 30 CNN networks. Each CNN model determines whether the corresponding

joint is damaged or not. It is shown that the CNN-based approach accurately detect

and localize the damage, although the proposed method fail to localize the damage

when the joints along the structure’s line of symmetry were damaged. In 2017, Chen

and Jahanshahi [50,201,202] have proposed a deep learning-based data fusion frame-

work to detect and localize cracks on the metallic surfaces of nuclear power plant

44

reactors. Deep CNN is used to detect cracks in the video frames, and the Näıve

Bayes method is incorporated to account for the inherent spatiotemporal coherence

of cracks in the adjacent video frames. It is shown that the proposed method outper-

forms other approaches with a higher hit rate by aggregating the information from

multiple video frames.

In terms of the applications using DAE, a deep convolutional selective Auto-

encoder is proposed to conduct the early detection of combustion instability [203].

The hi-speed video frames of the combustor are fed into the network to determine

whether the combustion is in the stable state or not. In [204], the DAE is employed

to characterize cracks in composite coupon specimens that frequently used in aircraft

applications. To this end, the DAE is trained by using only the images of intact

surface to reconstruct the input image. When an test image with crack is fed into

the DAE, the regions with higher reconstruction error indicate the crack locations.

In [205], DAE is used to perform the fault diagnosis for the flight data. Signals from 13

sensors (e.g., time, measured load, ambient temperature) are concatenated to form

the input to the DAE. The network is trained using the signals from the nominal

(healthy) state of the flight, and the fault diagnosis is achieved through the clustering

of the reconstruction errors of the 13 attributes. In [206], the detection of anomaly

in gas turbine is achieved through the use of DAE. The DAE serves as a feature

extractor for the input signals of exhaust gas temperature, and the features are fed

into a ANN for anomaly detection. Results demonstrate that using the DAE learned

features achieves better performance than the handcrafted features. Table 2.8 and 2.9

summarize the above applications using machine learning approaches in damage iden-

tification/quantification and system identification/response estimation, respectively.

The information of input data source, validation approach, and limitations/concerns

are presented.

45

2.2.7 Weighted Combination and Voting

A straightforward and simple approach for data fusion is the weighted combination

of data. This is often not applicable to the original data, but is achieved in feature-

level or decision-level data fusion. The simplest method is averaging all the data with

the same physical quantity from all the sources, which means each data source has

equal weight contribution. However, sometimes there are several health states inferred

from multiple sensors with different resolutions and precisions. The decision made

from the sensor with less precision and confidence might be assigned smaller weight

contribution prior to the fusion. For classification tasks, the selection of appropriate

thresholds is needed to assign the predicted damage pattern. Another method is

voting scheme that could be applied for data integration when there are multiple

decision makers. The rules of voting being applied is task-oriented and depends on the

nature of the output from individual decision makers. For instance, majority voting

is commonly seen when there are multiple classifiers used to perform classification

task. If the user prefers a model to make conservative decisions, then the voting rule

may be designed to be dominated by the most conservative decision made by all the

decision-makers [41].

Although voting based data fusion approach is straightforward in concept and

easy to implement, it is noted that the algorithm designer should be careful to avoid

the presence of dictatorship during the fusion process. In 1950, K. J. Arrow proposed

a theorem to address the difficulty in aggregating individual’s preference for social

welfare system [207]. This theorem is known as the Arrow’s impossibility theorem.

Without going into the mathematical details, an explanation quoted from [208] is

provided as follows: “Any constitution (people get together to come to a conclusion

of any sort) that respect the four conditions of unanimity, transitivity, independence

of irrelevant alternatives, and no dictator compromise a contradictory set for which

there is no mathematical resolution.” This implies that when the first three conditions

(i.e., unanimity, transitivity and independence of irrelevant alternatives) are satisfied,

46

there must be a dictator existing among all the individuals. Consider the following

example where there are three individuals given their preference over three events A,

B and C:

1. A > B > C

2. B > C > A

3. C > A > B

The objective is to find the best social choice of the event that satisfies all the above

three preferences. According to pairwise comparison, the social choice would prefer

A over B (from preferences of voters 1 and 3), prefer B over C (from preferences of

voters 1 and 2), and prefer C over A (from preferences of voters 2 and 3). In this

situation, the majority vote fails to give the best choice to satisfy the preference of all

individuals. In other words, if the majority vote choose event B as the best choice, it

is basically ignoring voter 3 and hence result in dictatorship. Back to the discussion

of data fusion, suppose there are three models that try to infer the potential damage

state of a structure. In this case, the fusion result could be unreliable if the algorithm

designer attempts to aggregate the decisions from the three models through majority

voting scheme.

Application

Lu and Michaels have applied feature and sensor fusion to detect damage in alu-

minum specimens [209]. To this end, different features are computed from the diffuse

ultrasonic signals, and the overall detection performance is improved by adopting

voting fusion schemes on multi-sensors. In [210], images generated from guided wave

signals are used to localize the damage in plates. Multiple images are obtained by

passing the wave signals through filters with various frequency bands, and the im-

ages are fused at pixel-level. Although the results indicate the fused image achieves

better localization performance than the individual images, the fused image may fail

to detect the damage under the employed fusion scheme if there is no damage shown

47

in the individual images. In [211], the maximum and the average data fusion strat-

egy are used to postprocess the phased-array ultrasonic inspection data. Results

indicate that the average fusion scheme produces a clearer visualization for the ul-

trasonic data. Bai et. al. [212] proposes an approach for detecting crack locations

in beams by obtaining the overall Katz’s fractal dimension (KFD) curve [213]. It is

demonstrated that the overall KFD curve, that is computed from averaging all the

single KFD curves, leads to a more reliable results for locating cracks compared to

a single KFD curve. In [214], the cracks on a metallic specimen is detected through

the aggregation of images. The images taken from the Eddy Current sensor, the

Giant Magnetoresistance (GMR) sensor, and the Thermography sensor are fused at

pixel-level to determine the presence of a crack. The performance of various fusion

schemes including the wavelet coefficient fusion, singular value decomposition fusion,

and the simple average method are compared and discussed. It is shown that the

simple average method achieves the best performance among all the fusion schemes

being considered. In [215], the damage diagnosis for a long-span suspension bridge

is conducted through the fusion of damage indices from changes in modal frequency,

eigenvalues of principal component, wavelet-packet energy, and changes in the co-

variance of covariance matrix of accelerations. The fusion techniques including the

weighted average method, Bayesian theory, and DS theory are used and their perfor-

mances are investigated. It is claimed that the weighted average method and the DS

theory are not sensitive to the conflicting evidences and hence achieve more robust

damage indicators. In [216], the damage localization for complex structures is en-

hanced through sensor fusion and statistical modeling. It is demonstrated that using

maximum-likelihood estimate to localize the damage may fail due to the sparsity of

sensor instrumentation in large structures. The localization is improved by means of

the Neyman-Pearson criterion, and the contribution of each sensor pair is weighted

according to the uncertainty (described by a Rayleigh-distributed random process) in

the estimate of localization.

48

In [217], the performance of fusion techniques at different levels (i.e., data, fea-

ture, and decision level) are investigated to find the best separability between the

undamaged and damaged regions of a fuselage rib. The Fisher’s discriminant ra-

tio [218] as well as simple voting schemes are utilized in this study. It is found that

the fusion technique with the best performance varies with different specimens and

features selected. In [219], the fault detection and the diagnosis of an industrial steam

turbine is achieved based on SVM and an adaptive neuro-fuzzy inference system (i.e.,

the combination of ANN and fuzzy logic) [220]. The results of these two systems

are integrated by ordered weighted averaging operator. It is demonstrated that the

performance of the fusion scheme is better than each individual system. In [221], the

information from a RGB sensor and a depth sensor are aggregated to measure the

3D displacement time history of a moving target. The coordinates of the desirable

target points are first extracted from the color image based on the corner detection

algorithm developed by Geiger et al. [222], and then they are mapped to the depth

image to acquire the depth measurement. Once the depth and the pixel coordinates

are obtained, the 3D world coordinates of the taget points relative to the sensor can

be computed based on the pinhole camera model [223]. In this study, the weights for

the information from the color image and the depth image are identical. By compar-

ing with the measurement of an LVDT sensor from the shaking table test, it is shown

that the proposed method is able to measure the displacements accurately. Also, the

effects of various test conditions (i.e., amplitude, frequency, sampling rate, spatial

distortion, and the relative motion between the target and the sensor) are compre-

hensively studied. In [224], an cost-effective autonomous data acquisition system is

developed to detect, localize, and quantify the defects (e.g., potholes) on the road sur-

faces. This system consists of four RGB-D cameras, a GPS sensor, and two triaxial

accelerometers. The RGB-D cameras aim to capture features (e.g., edges, corners, or

texture) for recognizing the defects as well as compute the 3D world coordinates of the

target points. The GPS sensor is used to record the location of defects and the speed

of the vehicle, while the accelerometers are employed for the alignment of the sensor

49

platform. Furthermore, the defect detection and quantification method is adopted

from the approach proposed in [29]. Based on several field tests, it is pointed out

that the developed system is able to monitor the pavement surfaces more frequently.

However, factors like sunlight interference, motion blur, and rolling shutter distortion

may affect the performance of the proposed system. In [225], the acceleration-based

method developed by Lee et al. [226] and the strain-based method proposed by Shin

et al. [227] are integrated to estimate the displacement responses of beam-like struc-

tures. According to the results of the numerical simulation and a full-scale field test,

the proposed method is able to estimate the nonzero mean displacement and reduce

the high-frequency noise. Moreover, there is no calibration technique required for the

proposed method since the scaling factor for the strain-displacement relationship can

be derived directly from the power spectral densities of the estimated displacements

from the acceleration and strain at the first mode frequency. In [227], the informa-

tion from the acceleration and strain sensor are equally weighted. In [228], the data

fusion method developed in [225] is adopted in a wireless sensing network to monitor

the displacement of a bridge. According to the laboratory and field tests, the pro-

posed sensing system enables the time synchronization of the strain and acceleration

measurements and further enhances the sensing precision of strain. In [229], the flex-

ibility matrix of a simply-supported beam is estimated through the aggregation of

the acceleration and angular velocity measurements. The proposed formulation is an

extension of the single measurement-based method developed by Bernal [230]. Re-

sults from the numerical simulations indicate that the proposed approach estimates

the flexibility matrix within a reasonable error tolerance. In [231], model updating of

a simply-supported beam is conducted through the incorporation of acceleration and

angular velocity measurements. The identifications of elastic modulus and boundary

conditions of the beam demonstrate the superior performance of the proposed data fu-

sion approach than using acceleration alone. In [232], the safety evaluation of railway

bridges is achieved through the aggregation of acceleration and strain measurements.

The displacements at every sensor location are first estimated using acceleration and

50

strain information. Then, the dense displacements of the bridge is computed using

mode shape approximation and modal expansion. Numerical and experimental re-

sults indicate a good agreement between the estimated dense displacements and the

measured displacements. In [233], a kernel density estimation [234] based approach

is proposed to perform crack localization for ferromagnetic metals. The joint density

of crack location is obtained by aggregating the partial density that includes only the

detected crack location from three individual test (i.e., eddy current test, magnetic

flux leakage, and thermography test). Results have shown that the proposed fusion

approach substantially reduces false alarms under various test conditions. In [235], the

estimation of displacements is enhanced by aggregating the displacements obtained

from time-synchronized image data and acceleration measurements. Complimentary

filters are used to achieve a better frequency response for the combined displace-

ments. It is demonstrated that the proposed approach is able to deal with various

noise level and signals with different frequency characteristics. Table 2.10 and 2.11

summarize the above applications using weighting approaches in damage identifica-

tion/quantification and system identification/response estimation, respectively. The

information of input data source, validation approach, and limitations/concerns are

presented.

2.2.8 An Illustrative Example for Data Fusion in Structural Response

Estimation and Damage Detection

Consider a linear SDOF system:

mẍ(t) + cẋ(t) + kx(t) = f(t), (2.12)

where the mass m = 1, the dampling c = 1.5, and the stiffness k = 1. f(t) is the

ground excitation. x(t), ẋ(t) and ẍ(t) are the displacement, velocity and accleration

response, respectively.

In this example, Kalman filter is employed to estimate the displacement response

of the system through the noise-contaminated displacement measurements and known

51

ground excitation. Following the procedure described in Section 2.2.3 with a discrete

time step ∆t = 0.005 (sec) , a state-space representation can be formulated as:

Xk+1 = AXk +Bfk, (2.13)

where A =

 1 0.005

−0.005 0.9925

, B =

 1.25× 10−5

0.005

. The process noise and the

measurement noise are assumed to be zero mean Gaussian white noise with covariance

0.01. The input excitation is zero mean Gaussian white noise with variance 1.

Figure 2.9(a) shows the Kalman filter estimation versus the true displacement re-

sponse. The Root-Mean-Square-Error (RMSE) between the true response and the es-

timated response is 0.0031, which indicates a decent performance achieved by Kalman

filter. Figure 2.9(b) depicts the estimated displacement response using k = 1 and

k = 0.8 to simulate the undamaged and damaged structure, respectively. The max-

imum absolute displacement of the damaged structure is 0.1360, which is 8% larger

than the undamaged structure (0.1259). This demonstrates that the damage detec-

tion can be achieved through the statistical measures of the discrepancy between the

structural behavior of the damaged and undamaged structure. Moreover, features

extracted from time-domain and frequency-domain responses can be further fed into

clustering or machine learning algorithms to detect the existence of damage, providing

that sufficient training data is generated either numerically or experimentally. As an

example for damage detection, the Kalman filter simulation is repeated 1000 times

for both the k = 1 and k = 0.8 cases. Damage detection is achieved through the

fusion of frequency-domain features computed from the 2000 estimated displacement

responses of the undamaged and damaged structure. The estimated response from

Kalma filter is decomposed by the wavelet analysis with the Haar wavelet at level 4,

and the 16 wavelet energy components are fed into a SVM classifier with linear kernel

for damage detection. The training data is selected based on random permutation

with 70% out of the 2000 samples, and the rest of the samples (not being seen by

the classifier during the training process) are used for validation. Figure 2.10 shows

the receiver operating characteristic (ROC) curve of the SVM classifier tested on the

52

validation data. The area under curve (AUC) is 0.9704, which indicates a satisfac-

tory performance in detecting the damage. According to the ROC curve, a detection

accuracy of 92.43% is achieved if the user-defined tolerance of false positive rate is

10%.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

D
is

pl
ac

em
en

t

true response
estimated response

(a)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
st

im
at

ed
 D

is
pl

ac
em

en
t R

es
po

ns
e damaged (k = 0.8)

undamaged (k = 1)

(b)

Fig. 2.9.: An illustrative example for data fusion: (a) displacement estimation using

Kalman filter and (b) damage detection using the estimated response.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

Fig. 2.10.: Damage dection using SVM with frequency-domain features: the ROC

curve of the validation data. (AUC: 0.9704)

53

Note that in this particular example, state estimation approach is applicable since

the state-space relationship is well-understood. For cases in which the state-space

representation is unknown, data-driven based approaches could be more favorable

than the model-based approaches. In addition, when comparing the performance of

different approaches/algorithms, one should consider the following aspects but not

limited to:

• Robustness against noise.

• The underlying assumptions in each approach.

• Algorithm’s sensitivity against any modification in the assumption.

• Computation efficiency, which points to the applicability in real-time practice.

• Whether the hyper-parameters of the algorithm are tuned properly.

• Any fundamental limitation of the selected algorithm.

• Algorithm’s scalability towards real world problems.

2.3 Challenges in Data Fusion and Machine Learning-based Approaches

As more inexpensive sensors and data acquisition systems come into practice, the

availability of data and various categories of data source bring many possibilities to

SHM. Although there have been several research efforts in data science, how to aggre-

gate useful information from data and make robust decisions still remain challenging

problems. There is no universal data fusion technique that works fine in all the ap-

plications across disciplines [236]. The performance of data fusion approaches varies

with different applications and depends on the format and quality of the data as well

as the objective of fusion. During the data acquisition stage, the noise content in

the signal may be different even if all the sensors come from the same manufacturer

and are measuring the same physical quantities. Possible conflicts between types

54

of data, the incompleteness of data, and the lack of conciseness are the common

problems when the data source is heterogeneous. Misleading information may also

present in the recorded data if the sensors suffer from inappropriate usage or need to

be maintained. These are all related issues that exist in the nature of data.

In terms of the challenges in data fusion techniques, the Bayesian probability

framework and the state estimation method are capable of accounting for the uncer-

tainties of the parameters during the analysis process. However, these approaches

often require subjective decisions about the prior probabilities and model selections.

The performance may vary with the selection of models and hence a sensitivity anal-

ysis is crucial for examination of robustness. Similar to Bayesian approach, the DS

theory needs a subjective choice for the frame of discernment. Poor selection of frame

of discernment and inappropriate combination rules may lead to unreasonable fusion

results. Although Fuzzy logic is suitable for addressing vagueness and imprecision

between each judgement, it requires well-defined membership functions and produc-

tion rules to achieve acceptable inference. The lack of mathematical foundation could

lead to pros and cons when the domain of application changes. In regard to machine

learning approaches, the performance of the learning model is highly related to the

training data being used. The number of training samples needs to be sufficient,

and the training dataset should be able to capture the general characteristics of the

system. Additional test dataset is also necessary to avoid overfitting in the training

dataset. Lastly, eventhough the weighted combination and voting approaches are

easy to be implemented and fast for real-time computation, how to assign appropri-

ate weights to each sensor or decision maker is the key issue of these approaches.

So far, most of the applications use constant weights to aggregate information from

sources. But a dynamic weight calibration scheme is necessary when dealing with the

long term health monitoring. Also, the selection of appropriate thresholds for making

inference from the fused result is essential. A fixed threshold may become unreliable

when the input data varies a lot.

55

With the issues and challenges in data fusion and machine learning-based tech-

niques, the road map for future research is discussed as follows. Within the recent

few years, deep learning-based approaches have been quite popular across various

research fields due to the enhancement of computing capability. However, for the

deep learning-based approaches to work well, it is essential to have sufficient train-

ing data. This is sometimes intractable for real world problems. For instance, the

damage scenarios for a 30-story building are hard to define, not to mention the dif-

ficulties in collecting the data for all the damage scenarios from the real structure.

Therefore, the learning task should be conducted in an unsupervised manner to avoid

the need of large amount of labeled data. This means that the learning model should

be established using only the data from the nominal (healthy) state of the system,

and later on the model can be used to determine the damage scenario based on the

reconstruction performance. A typical example is the use of DAE to diagnose the

fault in flight data [205]. In terms of the network configuration for deep learning, the

generative models like Restricted Boltzmann Machines (RBM) [237] and deep belief

network [238] may outperform the discriminative models if the learning process is

performed in unsupervised manner [239]. The Long Short Term Memory (LSTM)

unit [240, 241] could also be adopted in the network and may have the potential to

enhance the performance due to its ability in learning long-term dependencies. More

recently, a new configuration named Capsule network is proposed to enhance the per-

formance in object recognition [242]. Unlike the pooling layer in CNN, which only

extracts the dominant feature based on the maximum operation, the routing between

capsules extracts the features more effectively. The dynamic routing mechanism be-

tween the lower and the higher level of capsules allows the learning model to recognize

multiple objects even if the objects overlap with each other. This could potentially

enhance the performance of vision-based data fusion approaches.

Although machine learning-based approaches often benefit from data augmen-

tation, one should be aware of the “curse of dimensionality” [243] that may occur

when the dimension of the data, i.e., the number of variables, increases rapidly. As

56

the number of variables increases, the complexity in algorithm grows exponentially,

which not only leads to the difficulty in finding the optimal solution but also requires

more training data to achieve convergence. Moreover, as the dimension increases,

some distance metrics such as Euclidean measure become uniform among the data

samples, resulting the poor performance of the similarity-based algorithms such as

clustering or nearest neighbor classification. One possible solution to this issue is to

search the optimal solution in a small subset of the full space. To this end, dimen-

sionality reduction algorithms such as principal component analysis [244] or singular

value decomposition [245] may be helpful, but one should be careful to select the

subspace appropriately to consider the situation where different clusters may lie in

different subspaces [246].

Another related issue that needs further investigation is the quality of data.

Whether the data quality is good or not often requires subjective judgement and

is task-oriented [247]. The quality metrics could be in terms of sensor resolution,

signal-to-noise ratio, correctness, completeness, accessibility, trustness, or timeliness.

For instance, an image that is perfect for one specific task may be inappropriate for

another. Most data fusion applications in the past do not consider the effect of data

quality, which could be problematic if the input data contains wrong information.

An example for considering the data quality is [110], where the unidentifiability of

the parameters in non-smooth systems are addressed to solve the divergence issue

in parameter estimates. Also, the early detection of sensor malfunction needs to be

incorporated into the data fusion framework and should be prior to any data process-

ing. Although the completeness in data is usually beneficial for decision making, this

is not always true in certain situations. For instance, in disaster response system,

how to use partial information to make decisions is crucial since the time constraint

is critical for saving lives. In this case, the data fusion algorithms that are capable

of operating in real-time are more favored, and the data transmission between the

sensor and the base station needs to be efficient. To this end, a reliable data re-

duction scheme is necessary. This may be achieved by the DAE established through

57

off-line operations, and then the DAE automatically extracts the dominant feature

representations in lower dimension for data transmission.

In summary, there is room for improvement of data fusion and machine learning-

based techniques as well as the unresolved problems. Note that the data fusion

approaches are not limited to the techniques presented in this chapter. For instance,

Game theory could be potentially applicable for data fusion in SHM. In [248], Game

theory is adopted to aggregate the hyperspectral images for groundcover classification

in precision agriculture. It is expected to see more extensive research in adopting data

fusion and machine learning techniques in SHM.

58

Table 2.1.: Applications using Bayesian approaches in structure damage identifica-

tion/quantification. (The acceleration, displacement and velocity measurements are

denoted as acc., disp. and vel., respectively.)

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[61,62] modal pa-

rameters

X no validation from real struc-

tures.

[63] acc. mea-

sure-

ments and

ground

excitations

X the employed structural model

is assumed to be identical to

the actual structure.

[64] acc. mea-

surements

X identification performance de-

pends on the selection of

appropriate strucutral model,

and small damage may not be

detected.

[67] modal

data com-

puted from

acc. mea-

surements

X X performance depends on the

sensor placements, damage

magnitudes and locations, as

well as the model classes and

the modeling errors.

[68] modal

data com-

puted from

acc. mea-

surements

X damage with small magnitudes

may not be detected.

59

Table 2.1.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[69] acc. from

ambient

vibration

and strong

motion

X less accurate for cases in strong

motions.

[70] crack

length

measure-

ments and

fatigue

cycle

X X simple polynomial assump-

tions are made for stress

intensity range.

[71] ultrasonic

guided

waves

X damage propagation is as-

sumed to be driven by fatigue

only.

[72] crack

propa-

gation

trajecto-

ries

X X uncertainties in loadings are

not considered.

[73] acc.,

current,

voltage,

and tem-

perature

signals

X performance depends on the

selection of optimal sensors

and engineered features.

60

Table 2.1.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[74] crack

informa-

tion from

acoustic

emission,

empirical

model and

digital

imaging

X performance depends on the

correlation between the fea-

tures and the crack growth

rate.

[78] PDFs of

time differ-

ence data

at multiple

frequencies

X modeling error and measure-

ment noise are assumed to be

Gaussian.

[79] image and

ultrasonic

data

X damage distant from the

robots is poorly localized.

[89] video

frames

X crack detection performance

depends on the environmental

conditions during data collec-

tion.

[50] video

frames

X the proposed crack detection

approach requires lots of train-

ing data and GPU computa-

tion.

61

Table 2.2.: Applications using Bayesian approaches in structure system identifica-

tion/response estimation.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[64] acc. mea-

surements

X identification performance de-

pends on the selection of

appropriate strucutral model,

and small damage may not be

detected.

[65] modal

data

X structural behavior is assumed

to be well approximated by lin-

ear dynamics.

[66] acc. mea-

surements

X poor understanding about the

damping in the structure may

lead to unsatisfactory identifi-

cation results.

[75] elongation,

load and

thermal

expansion

coefficient

measure-

ments

X load estimate performance de-

pends on appropriate data cal-

ibration and prior knowledge.

[76] ambient

acc. mea-

surements

X performance depends on the

selection of appropriate finite

element model.

62

Table 2.2.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[77] sonic, ul-

trasonic

and com-

pressive

strength

test mea-

surements

X subjective judgements are

made about the confidence

interval of different test

methods.

[80] acc. mea-

surements

X X Gaussian and inverse Gamma

distributions are assumed to

be the prior PDFs of structural

parameters and prediction er-

ror covariance, respectively.

[81] acc., disp.

and strain

measure-

ments

X noise levels are assumed to be

identical for different sets of

noisy sequences.

[82] ambient

acc. mea-

surements

X X the proposed approach only

applies to the structures with

separated modes.

[84–86] ambient

acc. mea-

surements

X X performance depends on the

sensor setups, modeling error

and signal-to-noise ratio.

63

Table 2.2.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[87] acc. mea-

surements

and input

excitations

X X ambient response is not mod-

eled in the proposed approach

and hence may lead to bias in

identification results.

[88] acc. mea-

surements

X X number of independent re-

sponse measurements must be

larger than the number of in-

dependent excitations.

[92] mode

shapes

and mode

frequencies

X X parameter identification is as-

sumed to be performed with

low-amplitude vibration data.

[94] predictions

from mul-

tiple EEW

systems

X ground motion intensity is as-

sumed to be log-normal dis-

tributed with fixed variance.

Table 2.4.: Applications using KF approaches in structure system identifica-

tion/response estimation.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[111] acc. and

disp. mea-

surements

X the proposed smoothing tech-

nique is only suitable for offline

estimation.

64

Table 2.4.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[114] disp. from

imaging

and acc.

measure-

ments

X reduction in the sampling rate

of the disp. from imaging may

induce slight drift in the fused

disp. estimates.

[115] acc. mea-

surements

X the proposed EKF approach

requires considerations in nu-

merical stability.

[116] acc. mea-

surements

X the proposed approach is com-

putation intensive if the struc-

ture has many DOFs.

[117] ground

acc. and

acc. re-

sponses

X the ground acc. and structural

acc. response are assumed to

be measurable.

[44] acc. and

disp. mea-

surements

X measurement noise is not con-

sidered.

[120] GPS and

acc. mea-

surements

X networks of densely collocated

GPS and seismic instruments

are necessary.

[122] acc. and

disp. mea-

surements

X performance depends on the

displacement sampling rates.

65

Table 2.4.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[123] floor acc.

measure-

ments

X performance depends on the

fine-tuning of the covariance of

the unknown input.

[126] acc. mea-

surements

X only applicable when the

steady-state position of the

system is available.

[127] acc. and

strain mea-

surements

X X performance may depend on

the amplitude of displacement

response.

[128] acc. and

force mea-

surements

X requires complete measure-

ments from each model DOF.

[129] vel. and

disp. mea-

surements

X time-varying bias is not consid-

ered in acc. measurements.

[130] limited

acc. mea-

surements

and output

from a

nonlinear

model

X optimized sensor placement is

not discussed for the proposed

approach.

[132] acc. and

GPS mea-

surements

X an artificial white noise obser-

vation is required for on-line

monitoring.

66

Table 2.4.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[133] acc. and

disp. mea-

surements

X performance depends on the

selection of noise matrices

and the assumption of known

structured model.

[135] acc. and

disp. mea-

surements

X performance depends on rea-

sonable modeling assumptions.

[109] ground

acc. input

and output

of model

X performance depends on the

initial estimates of the param-

eters. the initial condition re-

quires a pre-estimate.

[110] disp. and

output of

model

X parameters are assumed to be

invariant during unobservable

time intervals.

[136] ground

acc. and

disp. mea-

surements

X parameters are assumed to be

invariant during unobservable

time intervals.

67

Table 2.3.: Comparison between various Kalman filter (KF) algorithms. (Algo.: al-

gorithm, DEKF: discontinuous EKF, DUKF: discontinuous UKF)

Algo. Properties Applications

KF

[111], [112],

[114],

1. Real-time operation.
[120], [121],

[122],

2. Limited to linear system.
[123], [126],

[128],

and [129]

EKF
1. Can be used in nonlinear system. [117], [130],

2. Not suitable for system with higher order nonlinearity. and [103]

UKF

1. Applicable for system with high nonlinearity.
[117], [44],

[130],

2. Not appropriate for system with non-Gaussian error distribution.
[132], [133],

[103],

3. Performance depends on initial estimates of parameters. and [135]

PF
1. Applicable when state vector is non-Gaussian.

[44], and [130]
2. Computationally intensive and hence only for offline operation.

DEKF

1. Applicable for non-smooth systems.

[109]2. Capable of dealing with unobservable states or parameters.

3. Requires detection of transition events in non-smooth system.

DUKF
1. Applicable for non-smooth systems.

[110], and [136]
2. Capable of dealing with unobservable states or parameters.

68

Table 2.5.: Applications using DS approaches in structure damage identifica-

tion/quantification.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[141] damage

probability

assignment

functions

from dif-

ferent

datasets

X damage localization are as-

sumed to be completely char-

acterized by modal strain en-

ergy.

[143] recordings

from

multiple

piezo-

ceramic

sensors

X requires active sensing.

[144] acc. mea-

surements

X damage are assumed to be

characterized by wavelet fea-

tures.

[147] mode

shapes

X requires a finite element model.

[148] 2D im-

ages and

3D laser

scanning

X performance depends on the

selection of thresholds.

69

Table 2.5.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[149] IE, US and

GPR mea-

surements

X damage is assumed to be fully-

characterized by engineered

wave features.

Table 2.6.: Applications using fuzzy logic approaches in structure damage identifica-

tion/quantification.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[152] outputs of

three fuzzy

neural net-

works

X comprehensive training

dataset is required to find

the optimal weights for fusion.

[153] images

from eddy

current

test, mag-

netic flux

leakage

and ther-

mography

X combination rules are simple

and straightforward, could be

inadequate for complex data.

70

Table 2.7.: Applications using fuzzy logic approaches in structure system identifica-

tion/response estimation.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[157] strain mea-

surements

X requires transient time history

analysis on the finite element

model.

Table 2.8.: Applications using machine learning approaches in structure damage

identification/quantification. (GPS: global positioning system; vel.: velocity; acc.:

acceleration; ANFIS: adaptive neuro-fuzzy inference system; ANN: artificial neural

network; IE: impact-echo; US: ultrasonic pulse echo; GPR: ground penetration radar.)

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[166] acc. mea-

surements

X damage assessment is assumed

to be characterized by wavelet

energies.

[177] acc. mea-

surements

X damage assessment is assumed

to be characterized by wavelet

energies and time-domain sta-

tistical features.

[183] acc. and

disp. mea-

surements

X damage is assumed to be char-

acterized by time-domain sta-

tistical features.

[184] images X performance may depend on

the camera resolution.

71

Table 2.8.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[187] GPS and

wind vel.

X performance depends on user-

defined fuzzy rules.

[188] ultrasonic

measure-

ments

X damage index is determined by

the first principal component

only.

[189] acc. mea-

surements

X damage index is assumed to

be characterized by the ampli-

tudes of natural frequencies.

[190] acc. mea-

surements

X the proposed approach re-

quires a database of baseline

measurements for optimal sig-

nal selection.

[194] images X ANFIS algorithm is more in-

terpretable but requires longer

training time than ANN.

[197] IE, US and

GPR mea-

surements

X requires contact sensing.

[199] images X requires sufficient training

data and computing capabil-

ity.

[200] acc. mea-

surements

X damage localization may fail

when damage are presented in

symmetric joints.

72

Table 2.8.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[50] video

frames

X requires sufficient training

data and computing capabil-

ity.

[204] images X detection performance de-

pends on the selection of

threshold for reconstruction

error.

[205] 13 time

series data

(e.g., time,

temper-

ature,

loads)

X requires sufficient dataset for

undamaged structure.

Table 2.9.: Applications using machine learning approaches in structure system iden-

tification/response estimation. (Disp.: displacement; vel.: velocity; ANN: artificial

neural network; acc.: acceleration.)

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[169–

173]

disp. and

vel. mea-

surements

X only applicable for simple

ANN configuration.

73

Table 2.9.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[174] disp. and

vel. mea-

surements

X only applicable for simple

ANN configuration.

[175] disp. and

vel. mea-

surements

X the proposed approach is based

on heuristic methods rather

than rigorous mathematical

formulation.

[176] disp. and

vel. mea-

surements

X X the proposed prototype is only

adequate for specific nonlinear

function mapping.

[193] disp.,

vel. and

ground

acc.

X hard to correlate between the

estimated response and the ob-

served damage.

Table 2.10.: Applications using weighting approaches in structure damage identifica-

tion/quantification.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[209] ultrasonic

measure-

ments

X additional considerations may

be required if the wetting

area of aluminum specimens is

large.

74

Table 2.10.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[210] images X fusion scheme may fail if in-

dividual images fail to detect

damage.

[212] operating

deflection

shapes

X X equal weighting is assigned to

each data due to simple aver-

aging.

[214] images X equal weighting is assigned to

each data due to simple aver-

aging.

[215] mode fre-

quency

and acc.

measure-

ments

X no cases of strong motion, only

ambient vibration is consid-

ered.

[216] ultrasonic

measure-

ments

X damage pattern is assumed to

be point-like scatters.

[217] ultrasonic

measure-

ments

X the most appropriate statis-

tical feature may depend on

problem of interest.

[224] images,

GPS and

acc. mea-

surements

X performance may depend on

environmental factors, e.g., il-

lumination condition.

75

Table 2.10.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[233] images

from eddy

current

test, mag-

netic flux

leakage

and ther-

mography

test

X performance depends on fusion

rules.

Table 2.11.: Applications using weighting approaches in structure system identifica-

tion/response estimation.

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[225] acc. and

strain mea-

surements

X X heuristic approach is employed

to investigate the influence of

sensor quantity.

[228] acc. and

strain mea-

surements

X displacement estimation is

achieved through contact

sensing.

[229] acc. and

angular

vel. mea-

surements

X measurement noise is not con-

sidered.

76

Table 2.11.: Continued

literature data

source

numerically

validated

experimentally

validated

limitations/concerns

[231] acc. and

angular

vel. mea-

surements

X X only concentrated point excita-

tion is considered.

[232] acc. and

strain mea-

surements

X X large estimation errors may oc-

cur for beams with fixed-end

boundary condition.

[235] image and

acc. mea-

surements

X X performance depends on the

design of complementary fil-

ters.

77

3. DEEP CONVOLUTIONAL NEURAL NETWORK FOR

RESPONSE ESTIMATION AND SYSTEM

IDENTIFICATION IN STRUCTURAL HEALTH

MONITORING

3.1 Introduction

3.1.1 Motivation and Related Work

During the past decades, many scientists have made efforts to propose effective

structural health monitoring (SHM) techniques for civil buildings and structures.

The estimation of the structural vibration responses has been intensively investigated

since it provides useful information to infer the health state of the structure as well

as the inherent structural characteristics. Through the nonlinear time-history anal-

ysis, the performance level of the structure under various earthquake intensities can

be determined through the maximum drift estimation. For instrumented structures,

data recorded from the acceleration sensors can be employed to compute the funda-

mental frequencies and the mode shapes. Changes in the identified characteristics

serve as an indicator for health assessment. Recently, the advances in machine learn-

ing (ML) techniques have led to more opportunity for research in SHM. These ML

approaches attempt to learn the underlying mechanisms from the available measure-

ments and, subsequently, predict the possible outcomes given the new input. More

recently, the emergence of deep learning approaches provide new opportunities for

ML based researches. Contrary to the conventional ML techniques, deep learning is

usually referred to the establishment of a larger and deeper network with the aid of

large amount of data. Due to the recent developments in computation and sensor

technology, the accessibility in data acquisition is much easier compared to the past,

78

and therefore increases the applicability of deep learning approaches. This study

proposes a deep CNN to estimate the dynamic response of a linear SDOF system,

a nonlinear SDOF system, and a MDOF three-story steel frame. The conventional

MLP approach is adopted to serve as a reference for the performance of the proposed

deep CNN-based method.

The MLP has been widely used to estimate the dynamic response or the charac-

teristics of a system. Masri et al. [15] used MLP to model the dynamic response of a

linear and a nonlinear system. The network was trained using the simulated vibration

data to represent the behavior of the healthy structure, and the damage detection

was achieved later through the discrepancy between the network’s prediction and the

vibration response from a damaged structure. In Masri et al. [249], similar concept

in Masri et al. [15] was adopted to model a four degree of freedom dynamic system

using MLP. The damage identification was conducted through the least-square error

between the measured output from a damaged structure and the predicted response

from the trained MLP with the data from the healthy structure. Pei et al. [250]

addressed how to fit a nonlinear function with MLP, and employ MLP to model

a nonlinear dynamic system. In [169–172, 174], the ability of MLP to approximate

nonlinear functions in engineering mechanics was discussed. Also, these works were

dedicated to develop constructive methods for the initialization of the MLP configu-

ration where the MLPs were trained to predict the nonlinear restoring force by using

the displacement and velocity inputs. In [173, 175, 176], the authors demonstrated

the use of MLP to fit functions like first-order polynomial, exponential, and Gaussian

function. Data from laboratory test was used to validate the function fitting concept.

The approximations of the displacement and acceleration transmissibility functions

as well as the restoring force of a viscous fluid damper were presented. In [251], the

MLP was used to estimate the acceleration response of a four degree of freedom struc-

ture given the acceleration and excitation measurement at previous time steps. The

input-output relationship of MLP is then adopted to estimate the structural parame-

ters such as mass and stiffness of the structure based on an equivalent auto-regressive

79

moving average model. In [252], the damage in building structures was localized and

quantified through the use of a MLP to identify the stiffness reduction in the damaged

story given the changes in the natural frequency.

Cury and Crémona [253] presented a damage classification scheme for beam-type

structure using MLP. Data histograms from the vibration signals, natural frequencies,

and the mode shapes served as inputs to the network. The effect of noise contam-

inated signals was also discussed. Arangio and Beck [254] incorporated Bayesian

inference with MLP to achieve the damage detection, localization, and quantifica-

tion for bridge structures. Similar to the scheme in [15], the damage was detected

through the error between the measured data and the prediction of a MLP trained

by the undamaged structure. In [255], the active control of a base-isolated building

was conducted through the use of a MLP. The authors used MLP to approximate

the nonlinear control law of the active controller and reduced the vibration response

of the building by applying appropriate force achieved from the controller. Kao and

Loh [256] presented a health monitoring method for dam inspection using MLP. The

long-term deformation of the dam was estimated through MLP given the information

extracted from the water level and the temperature distribution of the dam body.

In [257], MLP was used to fit the load-deflection curve of a carbon fiber reinforced

polymer (CFRP) reinforced concrete (RC) slab. Derkevorkian et. al. [193] combined

the MLP and an ordinary differential equation (ODE) solver to predict the relative

displacement and velocity time history, where the MLP was adopted to model the

soil-structure interaction. The difference between the prediction of MLP and the

measured data served as a tool to detect damage.

CNN has been quite popular in speech recognition, image classification, and time-

series modeling [13]. For instance, there is significant achievement in CNN-based

approaches for speaker/gender identification and spoken words/music recognition us-

ing 1-D acoustic signals [258]. Due to the ability to learn the spatial invariant features

automatically, CNN leads to a great success in object classification using large amount

of image data [161, 162]. Recently, Cha et. al. [199] used CNN to detect cracks in

80

concrete surfaces. The results demonstrated that CNN-based approach is capable of

dealing with real world challenges such as the varying illumination conditions. Ab-

deljaber et. al. [200] proposed a CNN-based damage detection approach for a planar

steel frame. The CNN was employed to extract the dominant features from 1-D ac-

celeration signals to perform the damage detection and localization. Tompson et.

al. [259] adopted CNN to accelerate the 2D and 3D motion simulations of fluids and

smoke where the CNN was used to infer fluid pressure, which is the solution of the

Poisson equation that requires a large number of computation iterations. Chen and

Jahanshahi [50] used CNN to detect and localize cracks on the metallic surfaces of nu-

clear power plant components. The crack detection results from different video frames

are aggregated to enhance the final detection result. Atha and Jahanshahi [260] pro-

posed a CNN-based approach for corrosion detection on metallic surfaces. It is shown

that the CNN is capable of learning appropriate classification features automatically

without the need of human hand-crafted features.

Although CNN has been explored in many research fields, most of the studies

use CNN as a feature extractor to conduct classification/recognition tasks. Only a

few works use CNN to perform regression or function approximation problems. This

study presents a deep CNN-based approach for the response estimation in structural

dynamic systems. Results of CNN are compared with the results obtained from

a MLP-based approach. The robustness of the proposed approach against noise is

discussed through the use of various noise-contaminated vibration signals. Data em-

ployed in this study consists of both numerical simulation and laboratory test data.

Finally, the structural characteristics of the test steel frame is identified through the

response predicted by the CNN model.

3.1.2 Contribution and Scope

To the best understanding of the author, this chapter presents the first attempt

to adopt deep CNN for response estimation (regression) in structural dynamic prob-

81

lems. The deep CNN is employed to estimate the vibration responses of a linear

SDOF system, a nonlinear SDOF system, and a three-story steel frame. The results

of MLP-based approach serves as a reference for the proposed CNN method, and

the system identification of the steel frame is achieved through the estimations ob-

tained from the CNN model. The rest of the chapter is organized as follows: Section

“Methodology” presents the formulation and configuration of MLP and CNN. Sec-

tion “Single Degree of Freedom (SDOF) System” discusses the analysis results from

a linear and a nonlinear SDOF system. Section “Multi-Degree of Freedom (MDOF)

System” presents the results of vibration data collected from a shaking table test of a

three-story steel frame where the CNN model is used to conduct the system identifi-

cation of the frame. Section “Physical Interpretation of Convolution Layer” discusses

the physical interpretations for the convolution layer. The concluding remarks and

further discussions are addressed in the last Section.

3.2 Methodology

3.2.1 Multilayer Perceptron (MLP)

MLP, first inspired by the biological neural system, typically consists of one input

layer, multiple hidden layers, and one output layer [12]. Fig. 3.1 depicts a MLP

configuration with only one hidden layer. Each node in the hidden or output layer

is fully-connected with all the nodes in the previous layer, and these connections

stand for the weighted combination of the nodes in the previous layer. For instance,

consider the output value for node j indicated in Fig. 3.1 that is computed through

the following two equations:

zj =
∑

(wijxi + b) , (3.1)

yj = f(zj) . (3.2)

82

where xi stands for all the inputs, wij represents the weight between node i and j, b

is a bias term for regularization, zj is a temporary value, and yj is the output value

for node j, which is computed by passing zj through an activation function f(·).
ANN Formulation - improved

௝ݖ = 	෍(ݓ௜௝ݔ௜ + ௝ݕ(ܾ = (௝ݖ)݂

i

Input Hidden
layer

Output
layer

௜௝ݓ

௜ݔ

Fig. 3.1.: A sample MLP configuration.

The activation function allows MLP to deal with many problems across various

research fields. It has been demonstrated that MLP is capable of approximating

any linear or nonlinear function by providing appropriate constraints. There are two

activation functions considered in this study: hyperbolic tangent (tanh(x), Eq. 3.3)

and the rectified linear unit (RELU, Eq. 3.4).

f(x) = tanh(x) =
1− e−2x

1 + e−2x
, (3.3)

f(x) = max(0, x) . (3.4)

To establish a MLP model, a set of training data is required for the model to

learn the explicit or implicit relationship between the input and the output data.

The training of MLP is conducted through the minimization of the difference be-

tween the prediction of the model and the desirable target value. The weights are

usually optimized through the standard Levenberg–Marquardt backpropagation algo-

rithm [261,262]. The computation of gradients of the activation functions is involved

83

in the optimization process, and therefore the backpropagation may favor the acti-

vation function whose gradient is of simpler form due to computation efficiency. The

gradients of tanh(x) and RELU are given in Eq. 3.5 and 3.6, respectively. Although

the tanh(x) function is widely adopted in regression problems, the easy computation

of the gradient of RELU makes RELU popular to use in recent years. After the train-

ing stage, the MLP model is evaluated through the test dataset that is not included

in the training process.

f ′(x) = 1− (
1− e−2x

1 + e−2x
)2 = 1− tanh2(x) , (3.5)

f ′(x) =

1, if x > 0

0, otherwise
(3.6)

In this study, the vibration signals (i.e., the displacement, velocity, excitation,

and the acceleration time history) of the structures obtained from either numerical

simulations or experimental data are employed to be the input and output of the

MLP model. The choice of inputs, outputs, as well as the MLP configuration are

discussed in the following sections.

3.2.2 Convolution Neural Network

CNN, best known for its ability to extract features from raw data automatically

[161], usually consists of layers of convolution, activation, pooling, and fully-connected

layers. The major differences between MLP and CNN are the convolution and the

pooling layers. To illustrate how the convolution layer works, Fig. 3.2 shows an

example of 4×3 input convolved with two kernels with size 3×3. The kernels slide over

the whole input signal with a specified stride size (e.g., the stride size is 1 in Fig. 3.2),

perform point-wise multiplications, and sum up all the values to obtain the output.

For instance, the output of the first kernel is α = 1×a+2×b+3×c+4×d+5×e+6×f+

7×g+8×h+9×i, and β = 4×a+5×b+6×c+7×d+8×e+9×f+10×g+11×h+12×i,

resulting a 2 × 1 output vector. The second kernel does the same operation but

84

with different weight values, and hence the total output is of size 2 × 2. Fig. 3.3

demonstrates an example of convolution operations. The 6 × 3 input is convolved

with two kernels with size of 3×3, resulting a 4×2 output. The blue dashed window

and the red dotted window indicate the operations performed by kernels 1 and 2,

respectively. Typically, the output of each kernel is referred to as the feature map or

feature channel.

Convolution layer

′1ߚ	′ߙ	 2 3

4 5 6

7 8 9

10 11 12

a b c

d e f

g h i

Kernel 1

a' b' c'

d' e' f'

g' h' i'

Kernel 2

ߚ	ߙ	
Input (4x3)

Output (2x2)

Fig. 3.2.: Illustration of a convolution layer.

Depending on the size of the input and the kernel, there could be a large number

of feature maps obtained from the convolution layer. The pooling layer subsamples

the feature map and extracts the dominant information in the map. Fig. 3.4 shows

an example of max pooling layer. The max pooling operation extracts the maximum

value in the specified filter window, and hence reduces the size of the feature map.

For instance, in Fig. 3.4, the maximum value 6 in the 2× 2 window is extracted, and

the pooling filter slides over the whole feature map with a stride of size 2 to obtain

the 2× 2 output.

Fig. 3.5 shows the configuration of a typical CNN network. In Fig. 3.5, the

input data is convolved with three 3 × 3 filters. During the convolution, the filter

scans through the input data with a user-specified stride size [199]. The inputs

85

Convolution layer – ex. 2

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

9

12

15

18

1

2

2

2

Input (6x3)

1 1 1

1 1 1

1 1 1

0 0 0

0 0 0

0 0 1

Kernel 1 Kernel 2

Output (4x2)

Fig. 3.3.: An example of convolution operations.

Max Pooling layer

1 1 2

4 6 7

3 2 1

4

9

0

2 2 3 4

Feature map (4x4)

Max pooling with
2x2 filter and stride size 2 6 9

3 4

Fig. 3.4.: Illustration of a pooling layer.CNN Formulation

∑
∑

௜௝ଵݓ

௜௝ଷݓ

Convolution Layer

Activation
Layer

Pooling
Layer

Fully-Connected
Layer

Feature Maps

Fig. 3.5.: Typical CNN configuration.

86

within the filter window are multiplied with the weights (e.g., w1
ij) and summed

to obtain the feature value in the next layer. Therefore, all the inputs share the

same weights to form one feature map. As shown in Fig. 3.5, three feature maps are

obtained after the input layer is convolved with three filters. The pooling layer serves

as a subsampling mechanism, which is used to reduce the output dimensionality

but keep the most salient information at the same time. This information is then

passed into the fully-connected layer to conduct the classification or regression tasks.

Note that the configuration in Fig. 3.5 is just for illustration purposes. For deep

CNNs, the network usually consists of multiple convolution and pooling layers stacked

together to form a large network. Although pooling layer is usually required for image

classification tasks, it may not be necessary in the context of regression problem since

it only extracts the dominant information and eliminates the details that might be

crucial for the regression problem. Similar to MLPs, in order to introduce nonlinearity

in the system, activation functions are incorporated into CNNs. In this study, there

are two activation functions considered (tanh(x) Eq. 3.3 and RELU Eq. 3.4), and the

pooling layer is removed from the network.

Similar to the training of MLP, the establishment of CNN model is achieved

through the training and the test datasets. The weights in the filters are optimized

through the minimization of the difference between the prediction of the model and

the desirable target value. The optimization algorithm is the Backpropagation ap-

proach [263]. After the training, the CNN model is evaluated through the test dataset.

The differences between the configurations of MLP and CNN provide insights for

why CNN is potentially more suitable for response estimation in structure dynamics.

The convolution layers in CNN may serve as filters to remove noise more efficiently.

Moreover, contrary to MLP, CNN is capable of dealing with various sizes of inputs

while avoiding the drastically increasing in the number of weights in the network. For

instance, in a MLP with one hidden layer of 15 nodes, the number of weights will

increase from 45 to 1500 if the input size changes from 3 to 100. On the contrary,

87

the number of CNN weights will only depend on the size of convolution kernels, and

hence it is not sensitive to changes in the input size.

This study uses the vibration signals (i.e., the displacement, velocity, excitation,

and the acceleration time history) of the structures obtained from either numerical

simulation or experimental data as the input and output of the CNN model. The

choice of inputs, outputs, as well as the CNN configuration are discussed in detail in

the following sections.

3.3 Single Degree of Freedom (SDOF) System

In this section, MLP and CNN are used to estimate the response of a linear and a

nonlinear SDOF system adopted from Masri et. al. [15]. The performances of MLP

and CNN with respect to noise contaminated input and output signals are com-

pared and discussed. For linear SDOF system, there are two cases of input-output

relationship considered: (1) use acceleration, velocity and excitation to estimate dis-

placement; and (2) use only excitation to estimate acceleration. For nonlinear SDOF

system, the following input-output relationship is considered: use displacement and

velocity to predict restoring force. In this study, five noise levels (i.e., 1%, 2%, 5%,

10% and 30%) are added to the signal to investigate the robustness of MLP and CNN

against noisy data.

3.3.1 Linear SDOF System

Consider the following linear SDOF system:

mẍ+ cẋ+ kx = f , (3.7)

where m = 1.0 stands for mass, k = 200 stands for stiffness, c = 1.5 stands for damp-

ing, and f is the excitation. The input excitation is white noise with zero mean and

variance 1. Fig. 3.6 depicts an illustration of this SDOF system. The sampling fre-

quency and the data length is set to 200 (Hz) and 8300 (sec), respectively. Therefore,

88

a total of 1, 660, 000 data points are generated using the standard Newmark-Beta [264]

numerical integration method. Fig. 3.7 depicts an example of the generated original

vibration signals as well as the 10% noise-contaminated signals.

SDOF System

݂ ݉ = 1.0ܿ = 1.5݇ = 200
Fig. 3.6.: Illustration of the SDOF system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

D
is

p.

×10-3 Original Signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-0.1
0

0.1

V
el

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

A
cc

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

E
xc

.

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

D
is

p.

×10-3 Contaminated Signal with 10% Noise

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-0.1
0

0.1

V
el

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

A
cc

.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

-5
0
5

E
xc

.

(b)

Fig. 3.7.: Vibration signals (i.e., displacement (Disp.), velocity (Vel.), acceleration

(Acc.) and excitation (Exc.)) of the linear SDOF system: (a) original signals, and

(b) signals contaminated with 10% noise.

Preliminary test for MLP configuration

In this section, a preliminary test is conducted to determine the appropriate con-

figuration for MLP. In Masri et. al. [15], two hidden layers with 15 and 10 hidden

nodes, denoted as [15, 10], were selected as the configuration for MLP. To investigate

89

the sensitivity of different configurations, five configurations (i.e., [15, 10], [30, 25],

[30, 40], [40, 30], [50, 50]) are selected to perform ten repeated trials for each config-

uration. The preliminary test uses acceleration, velocity and excitation at time k

to estimate displacement at time k (i.e., ẋ(k), ẍ(k), f(k) ⇒ x(k), point-wise estima-

tion). The datasets are divided randomly into 70% training set and 30% test set.

Before training, the output signals are scaled to make it comparable to the inputs,

and the inputs are normalized to [−1, 1]. No noise is added for the preliminary test.

Root-mean-square (RMS) error indicator is selected for performance evaluation in

this study.

Fig. 3.8 shows the variations and box plots of training and testing errors of the

five MLP configurations using the ten repeated trials. The training and testing error

of each configuration are almost identical, which demonstrates the capability of gen-

eralization achieved by MLP. According to Fig. 3.8, it clearly indicates that [40, 30]

outperforms other configurations with a smaller variation and lower median of RMS

error for both training and test datasets. As a result, this study selects [40, 30] as the

MLP configuration to conduct point-wise prediction for SDOF systems.

[15,10] [30,25] [30,40] [40,30] [50,50]
Configuration

0

0.01

0.02

0.03

0.04

0.05

R
M

S
 e

rr
or

Box Plot for Training error (10 trials)

(a)

[15,10] [30,25] [30,40] [40,30] [50,50]
Configuration

0

0.01

0.02

0.03

0.04

0.05

R
M

S
 e

rr
or

Box Plot for Testing error (10 trials)

(b)

Fig. 3.8.: Error variation for different MLP configurations: (a) training error, and (b)

test error.

90

CNN configuration for SDOF system

Fig. 3.9 depicts the proposed CNN configuration for SDOF system. As mentioned

above, the pooling layer is deployed in this study for conducting response estimation.

The input to the network is three 100×1 vectors, which stand for velocity, acceleration,

and excitation, respectively. The output of network is a 100× 1 displacement vector.

Note that the first convolution layer is designed to be of size 9× 3× 3. The intuition

behind this is that the convolution layer can act as a filter to remove the noise from

the input signals. There is no overlap between each sample, and hence a total of

1, 660, 000/100 = 16600 samples are used for training and testing. The datasets

are divided randomly into 70% training set and 30% test set. Before training, the

outputs are scaled to make it comparable to the inputs, and the inputs are normalized

to [−1, 1]. For the case of using excitation to predict acceleration (f ⇒ ẍ), the input

to the network is a 100 × 1 vector, and the first and second convolution layers in

Fig. 3.9 are replaced with two filters size of 9× 1× 1 and 9× 1× 8, respectively.
CNN configuration 9 – version 3

3
ሶݔ ሷݔ ݂

3

9x3x8
Conv

Activation

9x8x8
Conv

Activation

9x8x8
Conv

Activation 1x8x1
Conv

9x8x8ݔ
Conv

Activation

9x8x8
Conv

Activation

9x8x8
Conv

Activation

9x3x3
Conv

Activation

9x8x8
Conv

Activation
100

100 100

8

100

8

100

8

100

8

100

8

100

8

100

8

100

1

Fig. 3.9.: CNN configuration for SDOF system.

Results and discussions

For real world problems, the presence of noise is inevitable during the data col-

lection process. The source of noise may come from sensor itself, ambient vibration,

91

or even temperature variations. It is impossible to have a clean (i.e., ideal) signal for

real world applications. In this study, there are five noise level (i.e., 1%, 2%, 5%, 10%

and 30%) considered to simulate the practical situations. The noise is added indepen-

dently to each vibration signal, and each noise signal is obtained by multiplying the

noise level with the standard deviation of each vibration signal [253]. Each network

is trained with the noisy input and noisy output data.

Table 3.1 to 3.4 shows the RMS error of using velocity, acceleration, and ex-

citation to predict the displacement, for MLP-tanh, CNN-tanh, MLP-RELU, and

CNN-RELU, respectively. The second and third columns show the error with respect

to the noisy target, and the fourth and fifth columns show the error with respect to

the ideal target. In general, both algorithms achieve good estimations with a low

RMS error even if the signal is contaminated with noise. The performances of the

two activation functions, tanh and RELU, are similar. Also, the training and testing

RMS errors for both MLP and CNN are very similar, which means that there is no

overfitting for the two models (overfitting occurs when the learning model performs

well on the training data but poor on the test data). Since the RMS errors with

respect to the ideal target are always smaller than the RMS errors with respect to

the noisy target, this demonstrates that both MLP and CNN are capable of learning

the “true response” given noisy input and output data. For ideal case (i.e., 0% noise),

MLP outperform CNN. However, for noisy cases, CNN achieves lower RMS errors for

all cases. Compared with the performance of MLP, Tables 3.1 and 3.2 show that CNN

reduces the test RMS error for 1%, 2%, 5%, 10% and 30% noisy cases by 22%, 56%,

75%, 80% and 82%, respectively. This indicates that CNN is more robust against

noise.

As a representative case, Fig. 3.10 and 3.11 show the error distribution of 10%

noise data, tanh, for MLP and CNN, respectively. The red solid line is the fitted

normal distribution curve superimposed on the histogram for comparison reasons.

The test error standard deviation for CNN is 0.0669, which is five times lower than

the test error standard deviation for MLP (i.e., 0.3319). In other words, the error

92

distribution of CNN is more centered to zero than that of MLP. Fig. 3.12 and Fig. 3.13

depict the prediction of 10% noisy data with tanh activation function for MLP and

CNN with respect to the ideal target, respectively. The blue dashed line indicates the

ideal target while the red line is the prediction from the learning model. The MLP

prediction captures the wave shape of the ideal target but there exists some small

unwanted high frequency oscillations. On the contrary, the CNN prediction almost

matches with the ideal target. Fig. 3.14 shows the test RMS error variation versus

different noise levels for both MLP and CNN. As the noise level increases, the RMS

error of CNN increases much slower than the MLP.

Table 3.1.: RMS Error - MLP-tanh Results (ẋ, ẍ, f ⇒ x)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.012 0.012 - -

1 0.037 0.037 0.035 0.035

2 0.073 0.073 0.069 0.069

5 0.181 0.181 0.170 0.170

10 0.356 0.356 0.332 0.332

30 0.812 0.812 0.730 0.730

Another case considered in the linear SDOF system is to use excitation f to

estimate the acceleration ẍ. This is of particular interest since it is difficult to acquire

the information of displacement responses in real world. Tables 3.5 to 3.8 present the

RMS error of using excitation to predict the acceleration for MLP-tanh, CNN-tanh,

MLP-RELU and CNN-RELU, respectively. In this case, there is still no overfitting for

both MLP and CNN model since the RMS errors for training and testing are similar.

Also, there is no obvious discrepancy between the performances of tanh and RELU

activation functions. The RMS error with respect to the ideal target is slightly smaller

93

Table 3.2.: RMS Error - CNN-tanh Results (ẋ, ẍ, f ⇒ x)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.027 0.026 - -

1 0.031 0.030 0.029 0.027

2 0.040 0.039 0.031 0.030

5 0.076 0.075 0.044 0.043

10 0.146 0.146 0.068 0.067

30 0.380 0.379 0.135 0.134

Table 3.3.: RMS Error - MLP-RELU Results (ẋ, ẍ, f ⇒ x)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.007 0.007 - -

1 0.049 0.049 0.047 0.047

2 0.072 0.072 0.068 0.068

5 0.176 0.176 0.165 0.165

10 0.356 0.356 0.332 0.332

30 0.817 0.817 0.736 0.736

than the error with respect to the noisy target. Compared with the performance of

MLP, Tables 3.5 and 3.6 show that CNN reduces the test RMS error for 1%, 2%, 5%,

10% and 30% noisy cases by approximately 6% to 8%. Although CNN outperforms

MLP, the reduction in the RMS error is not as significant as the case of using ẋ, ẍ, f to

predict x. As a representative case, Fig. 3.15 and 3.16 depict the error distribution of

10% noise data, using tanh activation function, for MLP and CNN, respectively. The

94

Table 3.4.: RMS Error - CNN-RELU Results (ẋ, ẍ, f ⇒ x)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.025 0.024 - -

1 0.029 0.029 0.026 0.026

2 0.044 0.043 0.036 0.036

5 0.081 0.081 0.052 0.052

10 0.146 0.146 0.069 0.069

30 0.381 0.381 0.139 0.138

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Error

0

1000

2000

3000

4000

5000

6000

In
st
an
ce
s

Mean=0.0004; Std. =0.3318

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Error

0

500

1000

1500

2000

2500

3000
In
st
an
ce
s

Mean=0.0008; Std. =0.3319

(b)

Fig. 3.10.: MLP error histogram - tanh, 10% noise. (a) training error histogram, and

(b) test error histogram.

red solid line is the fitted normal distribution curve superimposed on the histogram

for comparison reasons. The test error standard deviation of CNN is 0.4756, which is

lower than the test error standard deviation of MLP (i.e., 0.5133). Fig. 3.17 and 3.18

present the prediction of 10% noise data with tanh activation function for MLP and

CNN with respect to the ideal target, respectively. The blue dashed line indicates the

95

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Error

0

0.5

1

1.5

2

2.5

In
st
an
ce
s

×104 Mean=-0.0074; Std. =0.0677

(a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
Error

0

2000

4000

6000

8000

10000

12000

14000

In
st
an
ce
s

Mean=-0.0084; Std. =0.0669

(b)

Fig. 3.11.: CNN error histogram - tanh, 10% noise. (a) training error histogram, and

(b) test error histogram.

ideal target while the red line is the prediction from the learning model. In this case,

the CNN matches slightly better with the ideal target compared with the prediction

of MLP by a 7% reduction of test RMS error. Fig. 3.19 shows the test RMS error

variation versus different noise levels for both MLP and CNN. The RMS error for

CNN is always lower than MLP for all noise levels.

Table 3.5.: RMS Error - MLP-tanh Results (f ⇒ ẍ)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.531 0.531 - -

1 0.532 0.532 0.532 0.532

2 0.529 0.529 0.529 0.528

5 0.531 0.531 0.528 0.528

10 0.523 0.523 0.513 0.513

30 0.660 0.660 0.582 0.582

96

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-4

-3

-2

-1

0

1

2

3

4

D
is

pl
ac

em
en

t

Ideal Target
MLP Prediction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
is

pl
ac

em
en

t

Ideal Target
MLP Prediction

(b)

Fig. 3.12.: MLP prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the

estimated displacement and (b) the first one second of the estimated response.

3.3.2 Nonlinear SDOF System

Consider the following nonlinear SDOF system:

g(x, ẋ) = ax+ bx3 + cẋ , (3.8)

97

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-4

-3

-2

-1

0

1

2

3

4

D
is

pl
ac

em
en

t

Ideal Target
CNN Prediction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-1

-0.5

0

0.5

1

1.5

D
is

pl
ac

em
en

t

Ideal Target
CNN Prediction

(b)

Fig. 3.13.: CNN prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the

estimated displacement and (b) the first one second of the estimated response.

where a = (2π)2 is the linear stiffness coefficient, b = 10 is the nonlinear stiffness

coefficient, c = 1.25 stands for the damping coefficient, and g(x, ẋ) is the restoring

force. The input excitation is the white noise signal with zero mean and variance

large enough to drive the system into the nonlinear phase. Similar to the linear

98

0 5 10 15 20 25 30
Noise Level (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
 E

rr
or

Test RMS Error Variation

MLP RMS Error
CNN RMS Error

Fig. 3.14.: Test RMS error variations for MLP and CNN (ẋ, ẍ, f ⇒ x; tanh).

Table 3.6.: RMS Error - CNN-tanh Results (f ⇒ ẍ)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.492 0.490 - -

1 0.493 0.492 0.493 0.491

2 0.490 0.489 0.490 0.489

5 0.492 0.490 0.489 0.488

10 0.488 0.486 0.477 0.476

30 0.632 0.632 0.551 0.549

SDOF system, the sampling rate and the data length are 200 (Hz) and 8300 (sec),

respectively. Runge-Kutta method is employed to generate the numerical vibration

responses. Fig. 3.20 plots the restoring force versus the displacement and the velocity

time history. Nonlinear response behavior is observed from the response plot.

In this case, the displacement and the velocity are used to predict the restoring

force (i.e., x, ẋ⇒ g(x, ẋ)). Similar to the linear SDOF system, configuration [40, 30]

is selected for MLP model. The input to MLP is the displacement and velocity at

99

Table 3.7.: RMS Error - MLP-RELU Results (f ⇒ ẍ)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.531 0.531 - -

1 0.532 0.532 0.532 0.532

2 0.529 0.529 0.529 0.529

5 0.531 0.530 0.528 0.528

10 0.523 0.523 0.513 0.513

30 0.660 0.660 0.582 0.582

Table 3.8.: RMS Error - CNN-RELU Results (f ⇒ ẍ)

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.497 0.495 - -

1 0.498 0.496 0.498 0.496

2 0.496 0.494 0.495 0.494

5 0.497 0.495 0.494 0.493

10 0.493 0.491 0.482 0.481

30 0.637 0.637 0.557 0.555

time k, and the output of it is the restoring force at time k. The dataset is randomly

divided into 70% training and 30% test dataset. Before training, the output is scaled

to make it comparable to the inputs, and the inputs are normalized to [−1, 1].

In terms of the CNN model, the input to the network is two 100× 1 vectors, and

the first and second convolution layer in Fig. 3.9 are replaced with two filters with

size 9 × 2 × 2 and 9 × 2 × 8, respectively. There is no overlapping between each

100

-1.5 -1 -0.5 0 0.5 1 1.5
Error

0

1000

2000

3000

4000

5000

6000

7000

In
st
an
ce
s

Mean=-0.0001; Std. =0.5132

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
Error

0

500

1000

1500

2000

2500

3000

3500

In
st
an
ce
s

Mean=-0.0003; Std. =0.5133

(b)

Fig. 3.15.: MLP error histogram - 10% noise. (a) training error histogram, and (b)

test error histogram.

-1 -0.5 0 0.5 1
Error

0

1000

2000

3000

4000

5000

6000

7000

In
st
an
ce
s

Mean=0.0103; Std. =0.4769

(a)

-1 -0.5 0 0.5 1
Error

0

500

1000

1500

2000

2500

3000

3500

4000

In
st
an
ce
s

Mean=0.0119; Std. =0.4756

(b)

Fig. 3.16.: CNN error histogram - 10% noise. (a) training error histogram, and (b)

test error histogram.

sample, and hence a total of 1, 660, 000/100 = 16600 samples are used for training

and testing. The datasets are divided randomly into 70% training set and 30% test

101

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-3

-2

-1

0

1

2

3

A
cc

el
er

at
io

n

Ideal Target
MLP Prediction

Fig. 3.17.: MLP prediction versus ideal target (10% noise).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-3

-2

-1

0

1

2

3

A
cc

el
er

at
io

n

Ideal Target
CNN Prediction

Fig. 3.18.: CNN prediction versus ideal target (10% noise).

set. Before the training of CNN, the output is scaled to make it comparable to the

inputs, and the inputs are normalized to [−1, 1].

102

0 5 10 15 20 25 30
Noise Level (%)

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

R
M

S
 E

rr
or

Test RMS Error Variation

MLP RMS Error
CNN RMS Error

Fig. 3.19.: Test RMS error variation (f ⇒ ẍ).

(a) (b)

Fig. 3.20.: (a) Nonlinear restoring force versus displacement and (b) restoring force

versus velocity.

Results and discussions

Five noise levels (i.e., 1%, 2%, 5%, 10% and 30%) are considered for performance

evaluation purposes. Tables 3.9 to 3.12 show the RMS error of using displacement and

velocity to predict the restoring force, for MLP-tanh, CNN-tanh, MLP-RELU, and

CNN-RELU, respectively. In general, both MLP and CNN algorithms achieve small

103

RMS errors for estimating the restoring force under the presence of noise. There is

no overfitting phenomenon observed for both MLP and CNN models since the RMS

errors of training and test dataset are close. For the ideal case (i.e., noise level 0%),

MLP outperform CNN. For noise level greater than 1%, CNN is superior to MLP with

smaller RMS errors with respect to the ideal target. Compared with the performance

of MLP, Tables 3.9 and 3.10 show that CNN reduces the test RMS error for 2%, 5%,

10% and 30% noisy cases by 21%, 45%, 68% and 73%, respectively. According to the

comparison between the RMS errors with respect to the noisy target and the ideal

target, both MLP and CNN are capable of eliminating the effect of noise and learning

to estimate the ideal target. The performances of tanh and RELU function are also

close to each other.

As a representative case, Fig. 3.21 and 3.22 present the error distribution of 10%

noise data with tanh as activation function for MLP and CNN, respectively. The red

solid line is the fitted normal distribution curve superimposed on the histogram for

comparison reasons. The test error standard deviation for CNN is 0.1869, which is

three times lower than the test error standard deviation of MLP (i.e., 0.5810). This

means that the error distribution of CNN is more centered to zero than that of MLP.

Fig. 3.23 and 3.24 show the response prediction of 10% noise data, tanh activation

function, for MLP and CNN with respect to the ideal target, respectively. The red

line is the predicted response, and the blue dashed line is the ideal target. The CNN

prediction almost matches with the ideal target response while the MLP prediction

captures the target wave shape but exhibits some undesirable high frequency oscil-

lations. Fig. 3.25 depicts the test RMS error variation versus different noise levels

for both MLP and CNN. This figure indicates that the RMS errors of CNN increases

much slower than the RMS errors of MLP as the noise level increased.

To further test the ability of the proposed CNN approach in generalization, the

nonlinear SDOF responses are re-simulated using a random excitation with length

of 50 (sec). Similarly, the displacement, velocity and restoring force responses are

contaminated with 10% noise. The trained CNN model with 10% noisy measurements

104

are employed to predict the noise-free restoring force given the noisy displacement

and velocity measurements. Fig. 3.26 shows the prediction from CNN and the target

restoring force. The CNN model accurately captures the dynamic behavior of the

system even when the responses are generated using a new excitation. The overall

RMS error between CNN prediction and target response is 0.1706, which is close to

the test RMS error 0.188 indicated in Table 3.10. This further demonstrates the

trained CNN model generalizes very well on new data. Note that when applying new

data, the scaling factors for input and output measurements must be identical to the

scaling factors used during training stage.

Table 3.9.: RMS Error - Nonlinear SDOF MLP-tanh Results

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.060 0.059 - -

1 0.105 0.100 0.094 0.089

2 0.158 0.158 0.127 0.127

5 0.391 0.392 0.313 0.313

10 0.752 0.753 0.581 0.581

30 2.155 2.152 1.609 1.606

3.4 Multi-Degree of Freedom (MDOF) System

In this section, vibration responses from a three-story steel frame tested on a shake

table is used to establish the MLP and CNN models to predict the dynamic behavior

of the structural system. The objective is to predict the roof acceleration ẍ3 given

only the information of the ground excitation f . The prediction from CNN model is

further employed to perform the system identification of the steel frame.

105

Table 3.10.: RMS Error - Nonlinear SDOF CNN-tanh Results

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.213 0.179 - -

1 0.186 0.166 0.180 0.159

2 0.163 0.137 0.133 0.100

5 0.308 0.292 0.200 0.173

10 0.521 0.514 0.208 0.188

30 1.500 1.501 0.451 0.439

Table 3.11.: RMS Error - Nonlinear SDOF MLP-RELU Results

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.251 0.250 - -

1 0.104 0.104 0.093 0.092

2 0.249 0.249 0.231 0.230

5 0.399 0.398 0.323 0.322

10 0.788 0.788 0.626 0.626

30 2.181 2.175 1.644 1.640

To account for the complexity in the real MDOF system, the input to both MLP

and CNN models is a three seconds excitation signal, which is a 600 × 1 vector for

sampling frequency 200(Hz). The output of the network is a 1× 1 roof acceleration

signal at the end of the corresponding three-second time interval. Each input sample

has a overlapping of 599 points with each other. For instance, the input and output for

the first sample are f(600), f(599), ..., f(1) and ẍ3(600), respectively. The input and

106

Table 3.12.: RMS Error - Nonlinear SDOF CNN-RELU Results

Noise (%) Train Test Train (w.r.t Ideal) Test (w.r.t Ideal)

0 0.252 0.217 - -

1 0.140 0.140 0.132 0.132

2 0.150 0.150 0.117 0.117

5 0.279 0.279 0.152 0.151

10 0.517 0.519 0.198 0.200

30 1.500 1.504 0.451 0.450

-1.5 -1 -0.5 0 0.5 1 1.5
Error

0

0.5

1

1.5

2

2.5

In
st
an
ce
s

×104 Mean=-0.0017; Std. =0.5806

(a)

-1.5 -1 -0.5 0 0.5 1 1.5
Error

0

2000

4000

6000

8000

10000

12000

14000

16000
In
st
an
ce
s

Mean=-0.0015; Std. =0.5810

(b)

Fig. 3.21.: MLP error histogram - tanh, 10% noise. (a) training error histogram, and

(b) test error histogram.

output for the second sample are f(601), f(600), ..., f(2) and ẍ3(601), respectively.

Therefore, the first 599 points of roof acceleration is discarded during the training

and testing. The MLP configuration is selected as [40, 30], and the proposed CNN

configuration is shown in Fig. 3.27. The dataset consists of 197, 612 samples, and it is

107

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Error

0

2

4

6

8

10

12

In
st
an
ce
s

×104 Mean=-0.0189; Std. =0.2068

(a)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Error

0

0.5

1

1.5

2

2.5

3

3.5

In
st
an
ce
s

×104 Mean=-0.0198; Std. =0.1869

(b)

Fig. 3.22.: CNN error histogram - tanh, 10% noise. (a) training error histogram, and

(b) test error histogram.

randomly divided into 85% training and 15% test dataset. Before training, the input

and output are scaled to [−1, 1]. The tanh activation function is used in this case.

3.4.1 Shake Table Test Setup

Fig. 3.28 shows the full-scale three-story steel frame built at the National Center

for Research on Earthquake Engineering (NCREE) in Taiwan. The frame is designed

as a moment resisting frame with each floor height equal to 3(m). The length, width

and thickness of the steel floor slab are 3(m), 2(m) and 3(cm), respectively. The

dimensions of each beam and column is H150 × 150 × 7 × 10. Accelerometers and

linear variable differential transformer (LVDT) sensors are installed at each floor slab

to measure the floor acceleration and the floor displacements, respectively. The steel

frame is excited with the ElCentro earthquake, random excitation, and the TCU076

ground motion recorded during the 1999 Chi-Chi earthquake in Taiwan. In this study,

only the responses recorded in the transverse direction of the frame are used for the

analysis.

108

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-15

-10

-5

0

5

10

R
es

to
rin

g
Fo

rc
e

Ideal Target
MLP Prediction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

R
es

to
rin

g
Fo

rc
e

Ideal Target
MLP Prediction

(b)

Fig. 3.23.: MLP prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the

estimated restoring force and (b) the first one second of the estimated response.

3.4.2 Shake Table Test Results

Table 3.13 presents the training and test RMS error for both MLP and CNN

model. The RMS errors for CNN is 19.38% lower than the errors of MLP. Since

the errors for training and testing are the same, there is no overfitting for both the

109

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-15

-10

-5

0

5

10

R
es

to
rin

g
Fo

rc
e

Ideal Target
CNN Prediction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-7

-6

-5

-4

-3

-2

-1

0

1

R
es

to
rin

g
Fo

rc
e

Ideal Target
CNN Prediction

(b)

Fig. 3.24.: CNN prediction versus ideal target (tanh, 10% noise): (a) 10 (sec) of the

estimated restoring force and (b) the first one second of the estimated response.

MLP and CNN models. Fig. 3.29 and 3.30 show the error distribution for MLP and

CNN predictions, respectively. The red solid line is the fitted normal distribution

curve superimposed on the histogram for comparison reasons. The test error standard

deviation for CNN is 0.1042, which is 19% lower than the test error standard deviation

110

0 5 10 15 20 25 30
Noise Level (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
M

S
 E

rr
or

Test RMS Error Variation

MLP RMS Error
CNN RMS Error

Fig. 3.25.: Test RMS error variation

Table 3.13.: RMS Error - MLP and CNN

Method Train Test

MLP 0.129 0.129

CNN 0.104 0.104

of MLP (i.e., 0.1287). It is seen that the CNN prediction errors is more centered to

zero than that of MLP. Fig. 3.31 and 3.32 show a ten seconds predicted response

versus target response for MLP and CNN, respectively. The blue dashed line is the

target response while the red line is the estimation from the prediction models. The

CNN estimation matches slightly better with the target response.

3.4.3 System Identification

This section demonstrates that the prediction from the established CNN model

can be further used to perform system identification. Fig. 3.33 shows the frequency

response of the recorded NCREE roof acceleration data and the predicted roof accel-

eration from CNN. Table 3.14 presents the identified first three natural frequencies in

111

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-15

-10

-5

0

5

10

R
es

to
rin

g
Fo

rc
e

Ideal Target
CNN Prediction

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

R
es

to
rin

g
Fo

rc
e

Ideal Target
CNN Prediction

(b)

Fig. 3.26.: CNN prediction versus ideal target using measurements from new excita-

tion: (a) 10 (sec) of the estimated restoring force and (b) the first one second of the

estimated response.

the transverse direction from the NCREE measurements and the CNN estimations.

The identified mode frequencies from CNN is very close to the ones obtained from

112
CNN configuration 11 – version 3

݂
1

5x1x8
Conv

Activation

5x8x8
Conv

Activation

5x8x8
Conv

Activation 568x8x1
Conv

5x8x8
Conv

Activation

5x8x8
Conv

Activation

5x8x8
Conv

Activation

5x1x1
Conv

Activation

5x8x8
Conv

Activation
600

592

8

588

8

584

8

580

8

576

8

572

8

568

8

1

1

ሷݔ

1

596

Fig. 3.27.: CNN configuration for MDOF system.

NCREE frames – 3D

(a) (b) (c)

Fig. 3.28.: Three-story steel frame at NCREE: (a) frame photo, (b) frame front view

and (c) frame side view, unit: (m). (Image (a) courtesy of NCREE)

NCREE data. The identification error is below 8% for setting the NCREE data as

the ground truth.

113

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Error

0

5000

10000

15000

In
st
an
ce
s

Mean=0.0003; Std. =0.1289

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Error

0

500

1000

1500

2000

2500

3000

In
st
an
ce
s

Mean=-0.0012; Std. =0.1287

(b)

Fig. 3.29.: MLP error histogram. (a) training error histogram, and (b) test error

histogram.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Error

0

2000

4000

6000

8000

10000

12000

In
st
an
ce
s

Mean=0.0001; Std. =0.1041

(a)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Error

0

500

1000

1500

2000

2500

3000

3500

4000

4500

In
st
an
ce
s

Mean=-0.0007; Std. =0.1042

(b)

Fig. 3.30.: CNN error histogram. (a) training error histogram, and (b) test error

histogram.

3.5 Physical Interpretation of Convolution Layer

Although the learning capability of conventional MLP has been demonstrated in

several studies, how to interpret the physical meaning of the MLP model remains a

114

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-1

-0.5

0

0.5

1

1.5

A
cc

el
er

at
io

n

Target
MLP Prediction

Fig. 3.31.: MLP prediction versus target.

0 1 2 3 4 5 6 7 8 9 10
Time(s)

-1

-0.5

0

0.5

1

1.5

A
cc

el
er

at
io

n

Target
CNN Prediction

Fig. 3.32.: CNN prediction versus target.

challenging problem, and hence the MLP is often considered as a “black box” method-

ology. The CNN, however, has a higher interpretability over the MLP algorithm. For

instance, studies in image classifications have shown that the convolution layer in

CNN acts as a feature detector to extract spatial invariant features like edges and

color contrast [162]. The convolution kernels become useful filters after the network

is trained using large amount of data. In this section, the physical interpretation

115

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

0.12

A
m

pl
itu

de

Frequency Response of NCREE Data

(a)

0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
m

pl
itu

de

Frequency Response of CNN Prediction

(b)

Fig. 3.33.: Frequency response of (a) NCREE data and (b) the CNN prediction.

Table 3.14.: Identified Natural Frequencies in Transverse Direction

Mode NCREE (Hz) CNN (Hz) Error (%)

1 1.113 1.140 2.43

2 3.297 3.297 0.00

3 5.513 5.081 -7.84

of the convolution layer for regression problem is provided. The authors show that

the integration operator can be approximated through the convolution kernels. Also,

the outputs of the convolution layer preserve the dominant signature in frequency

domain. The CNN models trained using 1%, 5%, 10% and 30% noisy data with

tanh activation function in Section “Single Degree of Freedom (SDOF) System” are

selected as examples to illustrate the interpretation.

116

3.5.1 Approximate the Integration Operator with the Convolution Layer

In this section, it will be shown that for cases where integration is involved in

the response estimation (e.g., ẋ, ẍ, f ⇒ x), the convolution layer acts as an integra-

tion operator. Consider the example in Section “Single Degree of Freedom (SDOF)

System”, where the velocity, acceleration and excitation are used to estimate the dis-

placement (i.e., ẋ, ẍ, f ⇒ x). It is reasonable to assume that the CNN model attempts

to conduct the numerical integration given the available data. The integration of a

time series signal s(t) over a time interval T is given as follows:

g(t) =

∫ t

t−T
s(τ)dτ , (3.9)

where g(t) stands for the integration of s(t). Note that Eq. 3.9 can be written in

terms of convolution operation:

g(t) =

∫ t

t−T
s(τ)dτ =

∫ ∞
−∞

s(τ)1[t−T,t]dτ = s(t) ∗ h(t), (3.10)

where 1[t−T,t] is the indicator function, h(t) = 1[t−T,t], and ∗ denotes the convolution

operation. Applying the Fourier transform to g(t):

F{g(t)} = F{s(t)}F{h(t)} = S(ω)H(ω) , (3.11)

where F denotes the Fourier transform, S(ω) and H(ω) are the Fourier transforms

of s(t) and h(t), respectively. Notice that convolution in time domain equals to the

multiplication in frequency domain. The theoretical displacement time series x(t)

can be derived from setting the signal s(t) as the acceleration ẍ(t) and applying the

convolution operation twice:

x(t) = ẍ(t) ∗ h(t) ∗ h(t) . (3.12)

Next, consider the first output channel in the first convolution layer shown in Fig. 3.9.

The authors assume that the convolution layers in CNN attempt to estimate the

ground truth displacement time history. The estimated displacement time series x̂(t)

from CNN is expressed as:

x̂(t) = ẋ(t) ∗ w1 + ẍ(t) ∗ w2 + f(t) ∗ w3 , (3.13)

117

where w1(9×1), w2(9×1) and w3(9×1) are the first, second and the third column of

the first kernel in the convolution layer, respectively. By using the equation of motion

(i.e., Eq. 3.7) and Eq. 3.10, Eq. 3.13 can be arranged as:

x̂(t) = ẍ(t) ∗ (h(t) ∗ w1 + w2) + f(t) ∗ w3

= ẍ(t) ∗ (h(t) ∗ w1 + w2) + [ẍ(t) ∗ (m+ ch(t)) + kx̂(t)] ∗ w3

= ẍ(t) ∗ [h(t) ∗ w1 + w2 +mw3 + ch(t) ∗ w3] + kx̂(t) ∗ w3.

(3.14)

Introducing the delta function δ(t) for the left of Eq. 3.14:

x̂(t) ∗ [δ(t)− kw3] = ẍ(t) ∗ [h(t) ∗ w1 + w2 +mw3 + ch(t) ∗ w3] . (3.15)

To see whether or not the convolution operation in our CNN model is able to

approximate the integration operator, Fourier transform is applied to both Eqs. 3.12

and 3.15. The Fourier transform of Eq. 3.12 is:

X(ω) = Ẍ(ω)H2(ω) , (3.16)

and the Fourier transform of Eq. 3.15 is:

X̂(ω) = Ẍ(ω)
[H(ω)W1(ω) +W2(ω) +mW3(ω) + cH(ω)W3(ω)]

1− kW3(ω)
≡ Ẍ(ω)HCNN(ω) ,

(3.17)

where all the capital letters denote the corresponding functions after the transforma-

tion, ω in rads is the variable in the frequency domain, and HCNN(ω) denotes the

filter corresponding to the CNN kernel.

As a result, the authors compare H2(ω) with HCNN(ω) in the frequency domain,

and see if they have similar frequency responses. The trained values of w1, w2 and

w3 of the CNN kernels for 1%, 5%, 10% and 30% noise levels are listed in Table 3.15.

Since the kernels are not flipped during the operation in the convolution layer, set

h(t) = 1[t−9,t] and flip h(t) to compute H2(ω). Fig. 3.34 shows the frequency responses

H2(ω) and HCNN(ω) computed using 256-point Fourier transform. The black solid

line is the H2(ω), and the other lines are the HCNN(ω) obtained using 1%, 5%, 10%

and 30% noise levels in data. The correlation coefficient R between each HCNN(ω)

118

and H2(ω) is listed in the figure. It is demonstrated that HCNN(ω) is similar to

H2(ω), which means that CNN kernel is performing operations to approximate the

integration operator. The HCNN(ω) for 1% noise data has the highest correlation

coefficient (i.e., R = 0.98) with the theoretical H2(ω). As the noise level increases,

HCNN(ω) gradually deviates from the analytical frequency response that leads to the

decreasing of R values (i.e., R = 0.93, R = 0.90 and R = 0.85 for 5%, 10% and

30% noise data, respectively). This is expected since the convolution layer needs

to perform filtering in addition to the integration operation to eliminate noise. The

subsequent layers will further fine-tune the processed data. As shown in Fig. 3.34, the

CNN kernel HCNN(ω) filters out more high frequency signal than the H2(ω). Note

that the authors are discussing about the first output channel of the first convolution

layer in the CNN model. The displacement x̂(t) is not the final estimation of the CNN

model, and hence HCNN(ω) is not identical to H2(ω). The x̂(t) is passed through all

the other layers in CNN to obtain the final estimation.

0 0.5 1 1.5 2 2.5 3 3.5

ω (rads)

0

0.1

0.2

0.3

0.4

0.5

0.6

A
m

pl
itu

de

H2(ω)
HCNN(ω) - 1% noise (R=0.98)

HCNN(ω) - 5% noise (R=0.93)

HCNN(ω) - 10% noise (R=0.90)

HCNN(ω) - 30% noise (R=0.85)

Fig. 3.34.: Frequency responses of H2(ω) and HCNN(ω) for 1%, 5%, 10% and 30%

noise level in data.

119

Table 3.15.: Values of CNN Kernels for 1%, 5%, 10% and 30% Noisy Data

Noise Level

1% 5% 10% 30%

w1 w2 w3 w1 w2 w3 w1 w2 w3 w1 w2 w3

0.23 0.14 -0.36 0.21 0.15 -0.34 0.17 0.17 -0.31 0.11 0.17 -0.27

0.07 0.06 -0.01 0.06 0.07 0.01 0.03 0.08 0.02 -0.04 0.10 0.05

0.52 0.12 -0.05 0.51 0.13 -0.03 0.50 0.14 -0.02 0.43 0.10 -0.01

0.15 0.35 -0.27 0.15 0.35 -0.26 0.15 0.36 -0.25 0.15 0.33 -0.24

0.26 -0.33 0.12 0.26 -0.33 0.12 0.28 -0.34 0.10 0.35 -0.37 0.06

0.12 -0.07 0.25 0.13 -0.07 0.26 0.15 -0.08 0.25 0.21 -0.11 0.23

0.39 -0.05 0.06 0.40 -0.05 0.07 0.41 -0.06 0.07 0.42 -0.05 0.07

-0.22 0.14 -0.22 -0.21 0.14 -0.21 -0.21 0.14 -0.20 -0.17 0.15 -0.18

-0.11 -0.41 0.23 -0.10 -0.40 0.24 -0.10 -0.41 0.24 -0.04 -0.39 0.25

3.5.2 Dominant Feature Extraction

In this section, the authors show that the CNN extracts the useful information

from the input and preserves the dominant characteristic of the signal throughout the

whole network. Fig. 3.35 depicts the time series of the CNN estimation, the ideal tar-

get, and their corresponding Fast Fourier transform (FFT). Five seconds of the time

series with a 200(Hz) sampling rate is shown, and hence there is a total of 1000 data

points. The ideal target signal has a dominant frequency located at 2.15(Hz), and so

does the estimation from CNN. The authors observe that this frequency signature is

preserved in every output of the convolution layers. Fig. 3.36 shows the time series

of input signals, the FFT of the input signals, and the FFT of the first convolution

layer (i.e., layer 2) output. Fig. 3.37 shows the FFT of the second last convolution

layer (i.e., layer 17) output. According to Fig. 3.36, the input signals have the same

dominant frequency feature observed in the ideal target except for the third input

120

signal (i.e., excitation). During the network training, CNN tries to extract the useful

feature and eliminate the irrelevant information. As shown in Fig. 3.36 and 3.37,

every output channel in layers 2 and 17 has exhibited the dominant frequency signa-

ture. From the inputs to the output, the network maintains the useful signature and

eliminate the irrelevant high frequency signals to achieve the estimation.

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4
CNN Estimation

0 100 200 300 400 500 600 700 800 900 1000

Data Points

-4

-2

0

2

4
Ideal TargetD

is
p.

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
FFT of CNN Estimation

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

0

0.5

1

1.5
FFT of Ideal TargetA

m
pl

itu
de

(b)

Fig. 3.35.: Time series and frequency responses: (a) time series of CNN estimation

and ideal target, and (b) FFT of CNN estimation and ideal target.

3.6 Concluding Remarks

This chapter presents a deep CNN-based approach for the vibration response

estimation of a linear SDOF system, a nonlinear SDOF system, and a three-story

steel frame tested by NCREE in Taiwan. For the SDOF system, five noise levels

(i.e., 1%, 2%, 5%, 10% and 30%) are considered to account for the measurement

in real world conditions. According to the linear SDOF results of using velocity,

acceleration, and excitation to predict displacement, the proposed CNN approach

achieves lower RMS errors for all noisy levels compared with the MLP model that is

proposed in previous studies. There is no overfitting phenomenon for both MLP and

121

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

V
el

.

Input

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

A
cc

.

0 100 200 300 400 500 600 700 800 900 1000

Data Points

-1

0

1

E
xc

.

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4
FFT of 1st Input

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2
FFT of 2nd Input

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

0

0.02

0.04
FFT of 3rd Input

A
m

pl
itu

de

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4
FFT of 1st Output of layer 2

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2
FFT of 2nd Output of layer 2

0 10 20 30 40 50 60 70 80 90 100

Frequency (Hz)

0

0.1

0.2
FFT of 3rd Output of layer 2

A
m

pl
itu

de

(c)

Fig. 3.36.: Time series and frequency responses: (a) time series of input signals, (b)

FFT of input, (c) FFT of layer 2 output.

CNN methods, and both methods are capable of predicting the ideal target given

the noisy input and output training data. The error distribution of CNN is more

centered to zero compared to MLP. The CNN predicted time history matches with

the ideal target pretty well while the MLP predicted time history captures the general

trend but exhibits some undesirable high frequency oscillations. As the noise level

is increased, the prediction errors increase faster for MLP with respect to the CNN,

122

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 1st Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 2nd Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 3rd Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 4th Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5
FFT of 5th Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4
FFT of 6th Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 7th Output of layer 17

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
FFT of 8th Output of layer 17

A
m

pl
itu

de

Frequency (Hz)

Fig. 3.37.: FFT for the output of the 17th layer.

which means CNN is more robust than the conventional MLP. In the case of using

excitation to predict acceleration, the CNN RMS error is slightly lower than the MLP

RMS error.

For the results of nonlinear SDOF system, the CNN-based approach works better

than the MLP for noise levels greater than 1%. Similarly, no overfitting is observed

123

for both MLP and CNN methods, and the two approaches are able to learn the true

behavior from the noisy training data. The error distribution of the CNN prediction

is more centered to that of MLP prediction, and the predicted response time history

from CNN matches better with the ideal response. The RMS error for CNN increases

much slower than the error for MLP as the noise level increases. In the case of MDOF

system, the proposed CNN approach is validated through the shake table test on a

full-scale three-story steel frame. The ground excitation is used to estimate the roof

acceleration response. From the RMS error of CNN and MLP, it is shown that the

CNN prediction error is lower than the MLP by 19.38%. The error distribution of

CNN prediction is more centered to zero, and the predicted time history from CNN

matches slightly better with the target response. Further, the established CNN model

is used to identify the natural frequencies of the steel frame. The difference between

the identified frequencies from the CNN prediction and the NCREE measurements is

below 8%.

In terms of the training time for model establishment, the conventional MLP is

more computational efficient than the deep CNN. Table 3.16 tabulates the train-

ing times of MLP and CNN models for one noise level. The conventional MLP

runs roughly ten times faster than the CNN. Although there is no significant effect

observed for the selection of activation functions, RELU runs faster than tanh by

approximately 25%. The MLP algorithm is implemented in MATLAB R2016a, and

the CNN algorithm is implemented using the MatConvNet [265] library. NVIDIA’s

GeForce GTX 1070 GPU is employed to enhance the computation efficiency for both

the MLP and the CNN. Note that as discussed previously, if the network configura-

tion is fixed, the number of weights in MLP will increase drastically as the number

of input increases, while the number of weights in CNN will remain the same. This

illustrates a potential advantage of CNN over MLP when implementing in a sensor

network for field application. As the number of sensor increases, the increasing in

MLP training time should be more prominent and eventually exceeds the training

time required by CNN. This will need further justification since there are other fac-

124

tors that may affect the training time, e.g., the number of multiplication operations,

the network configuration, and the chosen optimization algorithm.

Table 3.16.: Model Training Time Comparison between MLP and CNN

CNN-tanh CNN-RELU MLP-tanh MLP-RELU

Case
Training

time

Training

time

Training

time

Training

time

(hr) (hr) (hr) (hr)

SDOF

(ẋ, ẍ, f ⇒ x)
2.0 1.6 0.2 0.1

SDOF (f ⇒ ẍ) 1.9 1.5 0.1 0.05

Nonlinear

SDOF (x, ẋ⇒

g(x, ẋ))

2.0 1.5 0.2 0.14

MDOF

(f ⇒ ẍ3)
13.0 - 1.5 -

In Section “Physical Interpretation of Convolution Layer”, the physical inter-

pretation of the convolution layer is discussed. The authors have shown that the

integration operator can be approximated by the convolution layer. This is achieved

through the comparison between the frequency responses of the theoretical integra-

tion operator and the convolution kernel. The frequency response of the convolution

kernel appears to be similar to the integration operator, and the convolution kernel at-

tempts to eliminate more high frequency signals since the CNN model is trained using

noise-contaminated data. Moreover, the convolution layers eliminate the irrelevant

information and preserve the dominant frequency signature throughout the whole

network. All the output signals from the convolution layers exhibit the dominant

frequency component that appears in the ideal target signal.

125

In general, while both MLP and the proposed CNN approach estimate the dynamic

response for the systems of interest, the proposed CNN approach is more robust

against noise-contaminated data. The convolution layers act as filters, which is an

advantage of using CNN. Therefore, the proposed CNN is more desirable for the

response estimation of an real structure. Although the conventional MLP is more

computational efficient, it remains challenging to interpret the physical meaning in

the MLP model. The CNN, however, has a higher interpretability to understand the

underlying mechanism during the training process, and therefore it is more favorable

than the conventional MLP algorithm. As part of the future work, the authors plan

to interpret the performance of convolution layers for MDOF system.

126

4. PRUNING DEEP CONVOLUTIONAL NEURAL

NETWORK FOR EFFICIENT DECISION MAKING IN

STRUCTURAL HEALTH MONITORING

4.1 Introduction

4.1.1 Background and Motivation

According to the 2017 ASCE infrastructure report [2], the estimated cost for

infrastructure rehabilitation such as bridges, dams and levees, requires billions of

dollars. Early detection of deficiencies in structural components and surface defects

can help in reducing the retrofit costs [3–10,266–273], but current practice in structure

health monitoring (SHM) still requires manual inspection which is labor-intensive and

time-consuming. The development of cost-effective and autonomous SHM approaches

is an urgent need in order to enhance the efficiency of inspection processes [274].

Recent advances in sensor technology and artificial intelligence provide opportuni-

ties for developing novel SHM approaches. The employment of sensor networks along

with the communication capabilities among sensors have established the notion of

Internet of Things (IoT) [16]. The IoT consists of a set of edge sensors and central

server units. In an IoT system, decision making can take place at the edge or at a

server, depending on the application’s requirements [17, 18]. For civil infrastructure,

the inspection target is usually enormous in size or length. A decision making scheme

where all the data collected at the edge sensor are transmitted to a server and the

decisions made on the server are sent back to the edge device would be extremely

inefficient, particularly that the transmission bandwidth is often limited. A preferable

solution, which is referred to as edge computing [17], is to deploy edge devices that

have the capability to analyze data and make decisions about data acquisition with-

127

out the support of a remote server. For instance, a self-driving vehicle is equipped

with sensors such as GPS, the ultrasonic sensor, the camera and the Light Detection

and Ranging (LiDAR) sensor. The information acquired from the sensors enables the

vehicle to make real-time decision without central control unit. For the foreseeable

future, with the development of swarm robotics [275] being mature, an autonomous

inspection system will leverage the coordination between robots. Each individual

robot, as an edge device, can make its own decision and communicate with other

robots to find any potential presence of damage efficiently. In this way, the band-

width and time spent on the data transmission are saved and more rapid inspections

are achieved. However, such an approach requires the optimization in memory and

computing costs of SHM algorithms deployed at the edge devices as these devices

may have limited memory and computational resources.

Deep convolutional neural networks (DCNN), due to their ability to automati-

cally extract features, have been successfully used in computer vision since the break-

through of the 2012 ImageNet challenge [162]. The convolution kernels in DCNN

capture the spatial invariant characteristics such as edges and contrast from the input

image where these features are then used to make inference about the image. Since

2017, the rapid growth of DCNN-based approaches for damage detection in civil engi-

neering has shown huge potential [50,199,260,276–285]. However, the high computa-

tion and memory demands required for DCNN make it inappropriate for deployment

on mobile inspection devices, such as UAVs and robots. Furthermore, a DCNN needs

a large volume of training data, which is sometimes not feasible for a newly discovered

damage pattern, to avoid network overfitting. To address these issues, the concepts

of transfer learning and network pruning have been introduced [23,260,284,286].

In general, there are four schemes to perform image-based damage detection using

machine learning techniques. Scheme 1: Extract handcrafted features, e.g., local

binary patterns [287] and histogram of gradients [288], from the input images. Use

these features to train a classifier, e.g., support vector machine (SVM) [89]. Scheme

2: Design a DCNN from scratch and train it using sufficient labeled training data,

128

e.g., the NB-CNN network by [50]. Scheme 3: Start from a pre-trained network,

e.g., VGG16 [24], replace the fully-connected (FC) layers with new FC layers or other

classifiers like SVM and k-nearest neighbor (KNN). The pre-trained network serves

as an autonomous feature extractor. Scheme 4: Start from a pre-trained network,

fine-tune the network and reduce its size by pruning technique [23]. The first scheme

is able to classify the images with low memory demands and fast inference time,

but it may fail to achieve good performance when the images are collected under

various environmental conditions, e.g., illumination, due to the use of engineered

features. Depending on the size of the designed DCNN, scheme 2 could be deployed

onto computing platforms with small memory and low computing power. However,

it is necessary to have enough labeled data for training. To address the problem of

insufficient training data, scheme 3, referred to as transfer learning, can be adapted

to a new classification problem with a small amount of training data by using a

pre-trained network. However, pre-trained networks are usually quite large in size,

and hence suffer from high memory and computation costs. The proposed scheme 4

exploits the advantages of transfer learning, and enhances the efficiency in memory

cost and inference time for field applications by the Taylor expansion-based network

pruning technique [23].

4.1.2 Related Work in Network Pruning

Recently, there have been some efforts in the area of network pruning. The work

in [286] removed the filters if their values were below a pre-defined threshold after

fine-tuning with a strong regularization term. This approach requires a long time

for network fine-tuning. In [289], an approach called dynamic surgery network is

proposed to evaluate the connections between neurons where the network structure

was continuously maintained during the process of determining the least important

connections. In [290], a three-stage pruning pipeline is proposed: pruning, K-means

quantization, and Huffman coding. The first stage removed the unimportant con-

129

nections between neurons, while the last two stages reduced the memory demands

of the network by the quantization of the weight values and Huffman encoding for

lossless data compression. The work in [291] implemented network pruning by solv-

ing a convex optimization problem, in which the sparsest set of weights for each layer

were identified and then set to zero. In [292], an incremental network quantization ap-

proach was proposed to reduce the memory storage. Instead of using the full-precision

(i.e., 32-bit floating-point), the proposed approach converted the weight values to be

either powers of two or zero to enhance the storage efficiency. In [293], a network

pruning approach is proposed based on the capability of parallelism of the computing

units. The work in [294] evaluated whether a filter can be removed or not based on

the outputs of its next layer rather than its own layer.

In [295], an iterative pruning approach is proposed to perform multi-tasks clas-

sification from a single network. Starting with a network trained for one task, the

neurons with weights of smaller absolute magnitude were set to zeros, and these neu-

rons were re-trained for another classification task. Following this iterative pruning

and re-training process, the resulting network was able to deal with multi-tasks at the

same time. In [296], the existing pruning algorithms are evaluated in terms of clas-

sification accuracy. Extensive experiments showed that for pruning algorithms that

use a predefined target network architecture, similar performance can be achieved by

training the target architecture from scratch. For pruning algorithms that automati-

cally determine the target architecture by the evaluation of the global importance of

the filters, the value of these algorithms lie in the searching of efficient architectures

or sparsity patterns. In [297], the filters with high percentage of zero activations were

removed from the network by evaluating the network on the validation dataset. Most

recently, [298] proposed a reinforcement learning-based pruning algorithm to reduce

the computation costs of deep neural networks. The proposed algorithm removed the

filters through the rewards obtained from the predictions of the network. It is noted

that some of the aforementioned approaches were relatively naive and none of the

130

them have been focusing on efficient edge computing for filed applications related to

civil infrastructure condition assessment.

In this chapter, the VGG16 [24] network is first analyzed to demonstrate the ef-

ficiency of inference before and after network pruning. Two types of surface defects,

i.e., crack and corrosion, are considered to show the effectiveness of the proposed ap-

proach for damage detection. NVIDIA TITAN X GPU and Nvidia Jetson TX2 GPU

development kit are selected as the computing platforms representing the server and

the edge device, respectively. The ResNet18 [25] network, which has a size smaller

than VGG16, is then used for comparison with VGG16 in terms of damage detec-

tion performance, memory demands and inference time. Moreover, an optimization

method is proposed to further reduce the inference time of VGG16 by enhancing the

efficiency in feature computation.

4.1.3 Contribution and Scope

The contribution of this work is as follows. (1) Efficient DCNNs are designed and

developed by using transfer learning and network pruning. (2) Experimental results

on crack and corrosion detection with different computing platforms are presented to

show the efficiency of the proposed DCNNs with respect to memory cost and inference

time. (3) Two pre-trained networks, i.e, VGG16 and ResNet18, are experimentally

tested for damage detection to show the effect of different pre-trained networks on de-

tection performance, memory demands and inference time. (4) An optimized feature

extraction approach is proposed to further reduce the inference time of VGG16.

The rest of the chapter is organized as follows. Section 4.2 describes the image

datasets and computing platforms used in this work. Section 4.3 elaborates on the

concept and formulation of the network pruning technique as well as the proposed

optimization method for the VGG16 feature extraction. The results and discussions

about the conventional transfer learning approaches and the proposed efficient DCNN

are provided in Section 4.4. Section 4.5 outlines conclusions and final remarks.

131

4.2 Datasets and Computing Platforms

There are two types of common surface defects investigated in this work, i.e., the

crack and corrosion damage. The crack images are collected from the underwater

inspection videos of internal nuclear power plant components [299]. The image pixel

resolution is 720×540, and a total of 147, 344 and 149, 460 crack and non-crack image

patches with size 120×120 pixels are cropped from the original images [50]. Figure 4.1

shows the crack and non-crack samples of the dataset. Due to the nature of metallic

surfaces, the non-crack samples contain welds and grind marks, which makes it hard to

differentiate them from the crack samples even for human inspectors. Implementing

the proposed approach (i.e., Scheme 4) requires significantly less training data than

a scheme that would train a DCNN from scratch (i.e., Scheme 2). To this end,

only 29, 468 crack (training: 25, 048, testing: 4, 420) and 29, 780 non-crack (training:

25, 313, testing: 4, 467) image patches are used in this study. All the image patches

are scaled to size 224× 224 pixels for the pre-trained networks.

Crack dataset

(a)

Crack dataset

(b)

Fig. 4.1.: Crack dataset samples: (a) crack and (b) non-crack samples.

Figure 4.2 shows corrosion and non-corrosion samples from the corrosion dataset

collected on metallic surfaces. The image patches with size of 128 × 128 pixels are

cropped from a total of 926 images captured using different digital cameras [260].

This dataset contains a total of 33, 039 corrosion (training: 28, 083, testing: 4, 956)

and 34, 148 non-corrosion (training: 29, 026, testing: 5, 122) image patches. Note that

132

the underlying characteristics of the two datasets used in this study are completely

different. A crack damage is usually thin in width, long in length, and darker than

the background image. The crack data set belongs to metallic submerged under

water. Crack detection on metallic surfaces is quite challenging since the cracks are

tiny and there is less contrast between the crack and its background compared to

concrete surfaces. Furthermore, the existence of scratches, welds, grind marks, and

varying light condition as well as light reflection make the crack detection task more

challenging. The corrosion data set consists of online images as well as images that

are captured by using different cameras by the research team. A corrosion damage

often covers a large area with contrast in color and texture. The use of datasets

varying in nature demonstrates that the proposed approach is quite flexible.

Corrosion dataset

(a)

Corrosion dataset

(b)

Fig. 4.2.: Corrosion dataset samples: (a) corrosion and (b) non-corrosion samples.

Two different computing setups are used for experiments. The first is a server

setup with high computing power and the second is an embedded chipset to represent

the reduced computation capacity of an edge device. The experimental server setup

includes an Intel Xeon processor E52620, 2.1 GHz with 16 GB RAM and an NVIDIA

Titan X GPU with 3584 CUDA cores at a base clock rate of 1417 MHz and 12 GB

GDDR5X memory. For the embedded chipset, the NVIDIA Jetson TX2 GPU is

chosen as the platform since NVIDIA has demonstrated its capability of performing

integrated operation for GPU computation and navigation [300, 301]. The Jetson

TX2 is a developer kit equipped with a GPU with 256 CUDA cores and a combined

133

8GB LPDDR4 RAM along with a CPU with dual-core NVIDIA Denver2 + quad-core

ARM Cortex-A57. Note that the main concerns are the inference time performance

and the accuracy, not the training time, of the DCNN models.

4.3 Methodology

Although the proposed approach is validated through the detection of crack and

corrosion damage, it can be applied to any vision-based decision making problem. As

usually numerous types of damage exist (e.g., pavement pothole, concrete spalling,

exposed rebars), it is often very difficult to acquire sufficient data for network training

at the beginning. Whenever a DCNN needs to be used to deal with a new damage

detection problem from images, transfer learning is usually the best choice due to the

limited available training data. However, as discussed in Section 4.1, such transfer

learning-based methods are inappropriate when the decision making processes are

required to be made on edge devices. The use of network pruning is introduced to

enhance the resource efficiency for on-board computations, and thus allows one to

deploy DCNNs that are very accurate, have low storage and computing costs, and

make decisions very quickly at the edge. Network pruning can be executed on the

server machine, and the pruning terminates when either the detection performance

on the test dataset starts to decrease or drops below a user-defined performance

tolerance.

Figure 4.3 illustrates the pruning flowchart for constructing an efficient DCNN

through transfer learning and network pruning. The methodology starts with a pre-

trained network (e.g., VGG16), then modifies its fully-connected (FC) layers and

re-trains the network with a training dataset. As the network is originally designed

for the ImageNet dataset consisting of 1000 image categories, it is very large in size

and may contain redundant convolution kernels that do not contribute to the new

detection problems considered herein, i.e., the detection of crack and corrosion. To

reduce the network size, the importance of convolution kernels are evaluated through

134

training data, and the kernels are removed based on their ranking in importance.

Next, the pruned network is fine-tuned again to ensure its performance for damage

detection. Based on the detection performance, the user can determine whether

or not to further prune the network following the same procedure. Section 4.3.1

elaborates on the pruning technique that is used, and Section 4.3.2 describes the

proposed optimization method for feature extraction in VGG16.

4.3.1 Network pruning

Network pruning is closely related to the biological brain behavior. At the be-

ginning, the brain learns to handle multi-tasks, and it becomes more efficient by

disconnecting some of the neurons if it is asked to focus on a specific task. The

concept of network pruning can be traced back to the work done by LeCun et al. in

1990 [302], in which the generalization of a neural network is enhanced by the removal

of the parameters selected using a second-order Taylor expansion.

To evaluate the parameters’ contribution in the network, the existing techniques

include, but not limited to, the investigation of the statistical values of activations,

the absolute value of kernel weights, the mutual information between the activations

and the network predictions [286,303,304], regularization-based techniques [305–307],

and the Taylor expansion-based approaches [23]. In this work, the Taylor expansion-

based algorithm is adopted for the following two reasons [23]: (1) Compared to the

regularization-based approaches, the Taylor expansion-based approach uses the global

rescaling of criteria and therefore no computation on per layer sensitivity analysis is

needed, and (2) The Taylor expansion-based algorithm is demonstrated to be more ro-

bust against other pruning methods in the sense that the algorithm keeps maintaining

higher classification accuracy as the pruning proceeds.

Intuitively, the pruning algorithm aims to find the set of kernel weights W ′ that

leads to the minimum changes in the cost function C(·):

min |∆C(W)| = min |C(D|W ′)− C(D|W)| , s.t. ||W ′|| ≤ B. (4.1)

135
Prune Flowchart V2

Original Network

Evaluate the
Importance of
Neurons/Filters

Remove the Least
Important

Neurons/Filters

Fine‐tuning

More
Pruning?

Stop
Pruning

Ye
s

No

Fig. 4.3.: Network pruning flowchart.

where D denotes the training data, and W denotes the set of the kernel weights

obtained after network training is finished. B is the number of non-zero elements

in W ′. Notice that it requires 2|W | evaluations on the kernel weights to solve Eq.

4.1 if considering all the combinations among the elements in W . To reduce the

computational costs for solving W ′, a greedy method is employed that iteratively

searches among all the subsets of W ′ to be removed. Thus, such method removes

subsets one at a time, as shown in Figure 4.3.

For DCNNs, the convolution feature maps can be considered as the elements of

W ′. Let hi denote the ith feature map in a DCNN, i = 1, ..., L, where L is the total

number of feature maps in the DCNN. By assuming independence of parameters, the

cost function C(D|W) can be written as:

C(D|W) ≈ C(D|hi) = C(D, hi) . (4.2)

Let C(D, hi = 0) denotes the cost function C(·) where the feature map hi is being

removed. Then, the difference in cost function is:

|∆C(hi)| = |C(D, hi = 0)− C(D, hi)| . (4.3)

136

Using Taylor expansion, the term C(D, hi = 0) is approximated as:

C(D, hi = 0) = C(D, hi)−
∂C

∂hi
hi +R1(hi = 0) , (4.4)

where R1(hi = 0) is the first-order remainder, i.e., the higher-order terms. By ignoring

R1(hi = 0) and substituting Eq. 4.4 into Eq. 4.3, the change in the cost function is

estimated as:

|∆C(hi)| =
∣∣∣∣∂C∂hihi

∣∣∣∣ . (4.5)

Conceptually, the pruning algorithm removes the feature map hi that leads to a near-

zero gradient of the cost function. The difference in cost function can be computed

through the standard back-propagation approach [308]. The pruning algorithm is

implemented in Python 2 using PyTorch [309] version 0.2 with CUDA 8.0, cuDNN

6.0.21, and Ubuntu 16.04.

Pruning VGG16 Network

VGG16 has been widely adopted for SHM applications in recent two years [260,

310–312]. As the winner of the 2014 ImageNet challenge, VGG16 is the first network

that introduces the concept of deep neural networks. It has a total of 120, 000, 000

parameters, and the network architecture consists of simple concatenation of convo-

lution and pooling layers [24].

To use VGG16 for crack detection, the last FC layer in VGG16 is replaced with

a binary output layer to indicate the presence of cracks in the input image patch.

The stochastic gradient decent (SGD) algorithm [308] with learning rate 0.001 and

momentum 0.9 is used for network fine-tuning. The parameters of the whole original

network are first fine-tuned with the crack training dataset, and the convolutional

feature maps are removed based on the pruning steps illustrated in Figure 4.3. At

each pruning iteration, the contributions of the convolutional kernels are ranked using

training data, and 512 kernels are removed from a total of 4, 224 convolution kernels in

VGG16. Next, the whole pruned network is again fine-tuned using the same learning

137

rate with the training data to enhance its detection performance, and the user decides

whether to further prune the network or not. In this work, the number of fine-tuning

epochs for the original network is 20, and the number of fine-tuning epochs for the

pruned network is 10. Seven pruning iterations are conducted for VGG16 to remove

84% of the convolution kernels. Following the same procedure, another DCNN is

constructed for corrosion detection using the corrosion dataset.

Pruning ResNet18 Network

As the winner of the 2015 ImageNet challenge, ResNet18 introduces the concept

of residual learning to make easier inference on the mapping between the input and

output [25]. The network consists of the concatenations of residual learning blocks,

as shown in Figure 4.4, to enhance network training through identity mapping. The

total number of parameters in ResNet18 is 9, 000, 000, which is approximately 13

times less than VGG16.

To adopt ResNet18 for crack detection, the FC layer is replaced with a binary

output layer. Using the same network fine-tuning and pruning procedure as VGG16,

six pruning iterations are conducted for ResNet18 to remove 79% of the convolution

kernels from a total of 3, 904 kernels.

It is noted that the residual learning block requires the input and output dimen-

sions to be identical, as shown in Figure 4.4. During the training phase, the output

F (x) of a residual learning block consists of weight layers and nonlinear activations

is added to the input x. The resulting F (x) + x is then passed to the subsequent

layers for further processing. Since the convolution kernels are removed based on

ranking of importance, the dimension compatibility of the input and output of the

residual learning blocks is not guaranteed. For instance, given an input x of dimen-

sion 224 × 224 × 32, the output F (x) after two convolution layers with kernel sizes

of 3 × 3 × 32 × 32 is still 224 × 224 × 32 by zero-padding. After pruning, the two

convolution layers could have kernels with different sizes, e.g., 3 × 3 × 32 × 32 and

138

3× 3× 32× 16, resulting in an output dimension of 224× 224× 16 for F (x). There-

fore, the residual learning blocks are disabled during the fine-tuning of the pruned

networks.

ResNet18

activation

Weight layer

Weight layer

x

activation

()F x

()F x x

Fig. 4.4.: An illustration of a sample ResNet18 building block.

4.3.2 An optimization for feature extraction in VGG16

To detect and locate the presence of damage given an input image frame, one

common approach is to first scan the whole frame by sliding windows of the same size

of the patch size used in network training. Next, each window is passed to the network

for damage identification, and the damage in the input image is localized by grouping

the overlapping/neighboring sliding windows identified as damage patches [50]. The

step size between adjacent windows is user-defined. For instance, a step size of 8

pixels between each sliding window is used by [50]. A smaller step size will enhance

the spatial resolution of the damage detection result while the time required to process

the whole image will increase due to higher number of image patches to be processed.

Notice that the overlapping regions between adjacent sliding windows will be large

if the chosen step size is small, which means that the two adjacent windows share a

large number of features, as shown in Figure 4.5(a). The time required to compute the

features can be reduced by eliminating the redundant computations in the overlapping

regions.

139

To reduce the computation in processing the whole image, an optimization ap-

proach inspired by SPPNet [313] is proposed to compute the VGG16 features. Figure

4.5(b) illustrates the proposed approach. Given an input image, the image is passed

to the network for processing up to the layer before the FC layers. The resulting

convolutional feature map is then used to extract the features of the sliding windows

in the original image according to their corresponding locations in the map. For

instance, a step size of 8 pixels between the sliding windows in the original image

corresponds to a step size of 1 pixel in the convolutional feature map after three

executions of pooling operations. Therefore, repetitive convolution operations are

saved and the inference time for the whole frame greatly decreases. This can fur-

ther improve the efficiency of DCNNs for deployment onto edge devices. Note that

the proposed optimization approach can be applied to any network that consists of

concatenations of convolution and pooling layers, e.g., AlexNet [162]. For networks

with more complicated configuration, other optimization schemes may be required to

eliminate the repetitive computation.
Speed‐up feature extraction

VGG16
conv.

operations

Conv. feature map

FC layers

(a)

Speed‐up feature extraction

VGG16
conv.

operations

Conv. feature map

FC layers

(b)

Fig. 4.5.: An optimization of feature extraction for VGG16: (a) pass each sliding

window into VGG16 separately, and (b) pass the whole image frame into VGG16 to

generate a convolutional feature map, then extract the feature of each window from

the corresponding location on the feature map.

140

4.4 Results and Discussions

This section evaluates the damage detection performance, the inference time, and

the memory requirement of the conventional transfer learning-based approaches (i.e.,

Scheme 3 in Section 4.1) compared to the proposed network pruning (i.e., Scheme

4 in Section 4.1) approach. The results on the crack and corrosion datasets are

presented. In the experimental evaluation, the server setup and the edge device are

used as computing setups with different computational capacities. During the training

phase, only the server setup is used since all the heavy computations can be executed

at a cloud server in practice. In the network testing phase, both the server setup and

the edge device are used to compare the inference time and memory demands. The

recorded inference time is the time required to classify 3, 720 image patches with size

224 × 224, assuming that one 720 × 540 image has 3, 720 sliding windows. Instead

of using only 3, 720 test image patches, the detection performance is based on the

detection accuracy for all the image patches in the test datasets (i.e., 8, 887 patches

for crack and 10, 078 patches for corrosion) to avoid any biased judgement.

4.4.1 Conventional transfer learning without network pruning

Conventional transfer learning approaches use a pre-trained network as a feature

extractor, and train a new classifier based on these input features and the corre-

sponding image labels. In this section, VGG16 [24] is adopted to extract 1 × 4, 096

features given an input image patch of 224× 224. The last two FC layers of VGG16

are replaced with a SVM or a KNN classifier. Three types of classifiers are consid-

ered, i.e., KNN, the C-Support vector classifier (SVC), and the linear support vector

classifier (SVMH). The Scikit-Learn library [314] is used, where the SVC classifier is

implemented using libsvm [315] and SVMH classifier using liblinear [316]. The feature

generation is implemented using Tensorflow library [317] with Keras wrapper [318].

Table 4.1 presents the experimental results for image-based damage assessment

based on Scheme 3. The detection accuracy of the KNN classifier is slightly better

141

than the SVC and the SVMH classifiers for the crack dataset while the SVC classifier

achieves better accuracy for the corrosion dataset. Among the three classifiers, the

SVMH classifier has the least memory demand (i.e., 0.03 (MB)) and the smallest

inference time (i.e., 234.8 (sec) and 245.7 (sec) for crack and corrosion data, respec-

tively) when deployed on the edge device. This means that it takes approximately

4 minutes to process one 720 × 540 image on the edge device which is inefficient for

practical applications. For both crack and corrosion datasets, even with the server

setup, it takes roughly 29 seconds to process one image for the SVMH classifier. Note

that 99% of the inference time is spent on the feature extraction due to the heavy

architecture of the network, which demonstrates the necessity of network pruning for

efficient inference.

The feature extraction part is implemented using the Tensorflow python library

[317], which utilizes the parallel processing capabilities of a GPU when available. The

classifiers on the other hand use the Scikit Learn library [319] which is a CPU-only

implementation. Due to the powerful TITAN X GPU in the server setup, the feature

extraction part is eight times faster on the server when compared to the edge device.

However, the classifier part does not get similar speed-up on the server since it utilizes

only the CPU.

4.4.2 Transfer learning with network pruning

Pruning VGG16

To achieve efficient inference on the edge devices, the Taylor expansion-based net-

work pruning technique described in Section 4.3.1 is used to reduce the size of the

pre-trained VGG16 network. Pruning is conducted on the server as it requires compu-

tations for ranking the convolution kernels. The pruned networks are then deployed

to both the server and the edge device to test the inference time and the memory

demands. Whenever the pruning algorithm removes 512 convolution kernels in each

pruning iteration, the network is fine-tuned with 10 epochs. Figure 4.6 shows the

142

Table 4.1.: Scheme 3 damage detection results: VGG16 used as feature extractor and

KNN, SVC and SVMH as classifier.

Classifier Data Model size Server setup Edge device Accuracy

(MB) inference time inference time (%)

(Sec) (Sec)

KNN crack 3355 96.1 587.6 94.6

SVC crack 169 124.6 417.7 89.3

SVMH crack 0.03 29.5 234.8 85.5

KNN corrosion 3787 89.0 548.4 82.8

SVC corrosion 191 131.7 492.5 89.8

SVMH corrosion 0.03 29.3 245.7 84.0

detection performance before and after fine-tuning for both the crack and corrosion

datasets. In general, the detection performance drops immediately when the number

of convolution kernels is reduced, and then the accuracy is improved by fine-tuning

with the training data. For the crack dataset, the accuracy before fine-tuning ranges

from 56.9% to 98.0% while the accuracy after fine-tuning lies in the range between

95.3% and 98.5%, for the pruned networks. It is noted that the detection accuracy af-

ter fine-tuning does not exhibit a monotonic decreasing behavior. This demonstrates

that after pruning, the network still has the capacity to detect damage adequately

since the original network is designed for ImageNet challenge to classify 1,000 cate-

gories. Also, a small oscillation is observed in the accuracy after fine-tuning because

the number of fine-tuning epochs is fixed, and the experiment is conducted under the

assumption that there is no sufficient training data. With enough fine-tuning and

training data, the oscillation in detection accuracy should be reduced. For corrosion

dataset, the accuracy before fine-tuning ranges from 79.4% to 90.0% while the ac-

curacy after fine-tuning lies in the range between 90.7% to 93.6%, for the pruned

143

networks. This indicates that network fine-tuning is crucial to ensure good detection

performance after pruning convolution kernels.

0 12 24 36 48 60 72 84

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(a)

0 12 24 36 48 60 72 84

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(b)

Fig. 4.6.: Detection performance of pruned VGG16 versus percentage of pruned filters:

(a) accuracy of the 8, 887 test image patches from the crack dataset, and (b) accuracy

of the 10, 078 test image patches from the corrosion dataset. (Refer to Section 4.4.2

for more discussion about the stopping criterion for pruning and the effects of different

fine-tuning datasets.)

Figure 4.7 depicts the original VGG16 convolution feature maps versus the pruned

network where 84% of convolution kernels are removed for crack detection. The

numbers of the removed kernels in each convolution layer are: {1: 43; 2: 47; 3: 86;

4: 89; 5: 195; 6: 200; 7: 200; 8: 441; 9: 452; 10: 460; 11: 459; 12: 465; 13: 447}

, where i: j denotes that j convolution kernels are removed in the ith convolution

layer. As shown in Figure 4.7, after pruning the network size is significantly reduced,

and the memory demands of VGG16 drops from 525 (MB) to 125 (MB), which is

approximately an 80% reduction in memory. Figure 4.8 presents the distribution of

the percentage of the pruned kernels in each convolution layer for both the crack

and corrosion data using VGG16 network. According to the figure, the following

observations are made: (1) The distribution for the corrosion data is close to the

144

crack data, (2) A similar number of pruned kernels are deleted in the convolution

layers between pooling layers, and (3) Network pruning removes more percentage of

kernels in the deeper layer. This demonstrates that when using transfer learning for

a new task very different from the original task, lower-level feature representations

extracted from the first few layers could be more useful than the higher-level features

in the deeper layer. MRJ
224x224x64

112x112x128

56x56x256
28x28x512 14x14x512

224x224x64 112x112x128

56x56x256 56x56x256

28x28x512 14x14x512 14x14x512

224x224x3

28x28x512

(a)

14x14x47

14x14x65

56x56x61

MRJ-RT revised
224x224x3

224x224x17

112x112x39

56x56x56
28x28x52

224x224x21 112x112x42

56x56x56

28x28x71

28x28x60 14x14x53

(b)

Fig. 4.7.: VGG16 convolution feature map dimensions: (a) original dimension of

feature maps, and (b) reduced feature map dimension after pruning 84% of the con-

volution kernels.

1 2 3 4 5 6 7 8 9 10 11 12 13

Convolution Layer Number

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 P

ru
ne

d
K

er
ne

ls
 (

%
) Crack

Corrosion

Fig. 4.8.: The distribution of the percentage of the pruned kernels in each convolution

layer for the crack and corrosion datasets after 84% kernels being eliminated in the

VGG16 network. The dashed lines indicate the locations of the pooling layers.

145

Figure 4.9 shows the variation of the inference time when using pruned networks

for damage detection. For crack dataset, the inference time on edge device decreases

from 279.7 (sec) to 31.6 (sec) that corresponds to a reduction factor of 8.9. For the

corrosion dataset, the inference time on edge device drops from 275.7 (sec) to 30.6

(sec) that corresponds to a reduction factor of 9.0. This demonstrates how network

pruning enhances the time efficiency on the edge. For the server setup, the inference

time of crack and corrosion datasets decreases from 13.1 (sec) to 4.0 (sec) and 13.2

(sec) to 3.7 (sec), respectively. The corresponding reduction factors are 3.3 and 3.5,

which is approximately 0.38 times of the reduction factors on the edge device. The

main reason for this difference is the cudaMalloc function which allocates the memory

on the GPU. The time taken by this function does not vary significantly when the

size of the model changes. For our implementation, cudaMalloc takes 2.3 (sec) on

the server setup, i.e., approximately 60% of the total inference time in case of the

pruned model, which makes the speedup less considerable. In case of the edge device,

however, cudaMalloc takes 9.9 (sec) which is only 33% of the inference time for a

pruned network.

In addition, a CNN network (i.e., Scheme 2 in Section 4.1), which is a specialized

network developed for crack detection by [50], is deployed on the server setup for

comparison with the pruned VGG16 network. The specialized CNN takes 32.0 (sec)

to complete the inference, which is quite close to the time 31.6 (sec) achieved by the

VGG16 network with 84% kernels pruned. It is noted that the NB-CNN network

uses an smaller input patch size of 120×120 pixels, meaning that the pruned VGG16

would be more efficient in inference time than the specialized CNN if using the same

input size. This shows that network pruning provides a resource-efficient solution

when using a large network with several layers and parameters at the beginning.

However, the specialized CNN network is superior to the pruned VGG16 network in

terms of memory demands and damage detection performance. The specialized CNN

requires only 11.1 (MB) memory, and its detection accuracy is 99.5% due to the use

of larger training data (i.e., 240, 000 image patches).

146

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

50

100

150

200

250

300

In
fe

re
nc

e
T

im
e

(s
ec

)

Server setup
Edge device

(a)

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

50

100

150

200

250

300

In
fe

re
nc

e
T

im
e

(s
ec

)

Server setup
Edge device

(b)

Fig. 4.9.: Inference time of VGG16 versus percentage of pruned filters: (a) crack

dataset, and (b) corrosion dataset. Inference time: the total time (sec) required for

the forward-pass of 3720 image patches of 224× 224 pixels.

It is shown that the pruned networks need fine-tuning with the training data to

improve the detection performance. The more the fine-tuning is performed on a net-

work, the longer it takes to complete the pruning on the server machine. Therefore,

a sensitivity analysis is performed on the required number of fine-tuning epochs for

both the crack and the corrosion datasets. Figure 4.10 shows the detection perfor-

mance when fine-tuning the network with 1, 2, 5, and 10 epochs. As shown in the

figure, there is no significant difference in the detection accuracy when using different

numbers of fine-tuning epochs. For the crack dataset, the detection accuracy of the

network with 84% kernels pruned is 94.9% and 98.5% when using 1 and 10 fine-tuning

epochs, respectively. Similarly, for the corrosion dataset, the detection performance

of the pruned network with 84% kernel removal is 92.2% and 90.7% when using 1 and

10 fine-tuning epochs, respectively. To eliminate the effects of random initialization,

five repeat trials are conducted for each case of fine-tuning epochs when pruning 84%

of the convolution kernels. The boxplots shown in Figure 4.11 are used to show the

variation of the F-Score in damage detection.

147

According to Figure 4.11, the variation in F-score is the smallest for both the

crack and corrosion datasets when using 5 fine-tuning epochs. The median F-Score

for crack dataset is 0.963 and 0.981 for 1 and 10 fine-tuning epochs, respectively.

The median F-Score for corrosion dataset is 0.905 and 0.931 for 1 and 10 fine-tuning

epochs, respectively. These results show that using 10 epochs to fine-tune the network

may achieve slightly better performance than using 1 epoch. Figure 4.12 illustrates

the variation of time spent on network pruning. For the crack dataset, it takes a total

of 1.55 (hr) and 7.16 (hr) to prune 84% of kernels using 1 and 10 fine-tuning epochs,

respectively. For the corrosion dataset, it takes 1.65 (hr) and 7.75 (hr) to prune 84%

of kernels with 1 and 10 fine-tune epochs, respectively. This demonstrates that using

a smaller number of fine-tuning epochs reduces the time required for pruning on the

server machine, and doing this does not lead to a significant decrease in the detection

performance.

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

10 fine-tuning epochs
5 fine-tuning epochs
2 fine-tuning epochs
1 fine-tuning epoch

(a)

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

10 fine-tuning epochs
5 fine-tuning epochs
2 fine-tuning epochs
1 fine-tuning epoch

(b)

Fig. 4.10.: Effect of fine-tuning epochs on detection performance for VGG16 network:

(a) accuracy of the crack test dataset, and (b) accuracy of the corrosion test dataset.

148

1 2 5 10

Number of Fine-tuning Epochs

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F
-S

co
re

Pruned Network - (84% Filters Pruned)

(a)

1 2 5 10

Number of Fine-tuning Epochs

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F
-S

co
re

Pruned Network - (84% Filters Pruned)

(b)

Fig. 4.11.: Repeated trials for damage detection with 1, 2, 5 and 10 fine-tuning epochs

for pruned VGG16 network: (a) F-score of the detection results for the crack test data,

and (b) F-score of the detection results for the corrosion test data.

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
(h

r)

10 fine-tuning epochs
5 fine-tuning epochs
2 fine-tuning epochs
1 fine-tuning epoch

(a)

0 12 24 36 48 60 72 84

Percentage of Filters Pruned (%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
(h

r)

10 fine-tuning epochs
5 fine-tuning epochs
2 fine-tuning epochs
1 fine-tuning epoch

(b)

Fig. 4.12.: Effect of fine-tuning epochs on pruning time of VGG16: (a) crack dataset,

and (b) corrosion dataset.

Pruning ResNet18

Besides VGG16, the pre-trained ResNet18 network is also adopted for detecting

surface defects. The original ResNet18 network is 44 (MB), which is 8.4% of the

149

original VGG16 network size (525 (MB)) and therefore should be more efficient with

respect to inference time and memory costs. Figure 4.13 shows the detection per-

formance of ResNet18 for the crack and corrosion datasets. Similar to VGG16, the

detection accuracy decreases every time the algorithm removes 512 convolution ker-

nels. For the crack dataset, the accuracy before fine-tuning is 49.7% while for the

corrosion dataset, the accuracy before fine-tuning ranges from 49.2% to 50.8%, for

the pruned networks. After fine-tuning on the pruned networks, the accuracy im-

proves and lies between 94.2% and 97.6% for the crack dataset. For the corrosion

dataset, the detection accuracy increases to values between 91.8% and 93.1% after

network fine-tuning. This again demonstrates that it is essential to fine-tune the

network after network pruning. Figure 4.14 compares the inference time of VGG16

and ResNet18 when deployed on the edge device for damage detection. By removing

84% and 79% of the convolution kernels from VGG16 and ResNet18, the inference

time for crack detection decreases from 279.7 (sec) to 31.6 (sec) for VGG16 and 36.8

(sec) to 8.9 (sec) for ResNet18. For the corrosion dataset, the inference time de-

creases from 275.7 (sec) to 30.6 (sec) and from 34.1 (sec) to 9.0 (sec) for VGG16 and

ResNet18, respectively. As expected, ResNet18 is more efficient with respect to the

inference time (approximately 3.55 times faster than VGG16 at the end of network

pruning). The ResNet18 size decreases from 44 (MB) to 2 (MB), which is a 95%

reduction compared to the original network size. Notice that VGG16 achieves a 89%

reduction in inference time and 80% reduction in memory while ResNet18 achieves a

76% reduction in inference time and 95% reduction in memory demands. This means

that through network pruning, the gain for VGG16 is more prominent with respect

to the inference time while the gain for ResNet18 is more prominent with respect to

memory requirement.

Although ResNet18 is more efficient than VGG16 in terms of inference time and

memory costs, VGG16 has higher adaptability for new classification problems due to

being a larger network. As shown in Figures 4.6 and 4.13, the detection performance

of VGG16 drops approximately from 10% to 20% each time the network is pruned.

150

For instance, in Figure 4.6(a), the accuracy is 98.4% after fine-tuning when 24% of

filters are removed, and the accuracy is 81.7% before fine-tuning when 36% of filters

are removed. There is a 16.7% drop in accuracy because of pruning. Once the fine-

tuning is applied, the accuracy reaches 97% although 36% of the filters are removed.

However, the accuracy of ResNet18 drops significantly, i.e., more than 30%, in each

pruning iteration. Such result indicates that ResNet18 is more sensitive to changes

in the network.

0 13 26 39 52 66 79

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(a)

0 13 26 39 52 66 79

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(b)

Fig. 4.13.: Detection performance of pruned ResNet18 versus percentage of pruned

filters: (a) accuracy of 8, 887 test image patches from the crack dataset, and (b)

accuracy of 10, 078 test image patches from the corrosion dataset.

Cross-validation and stopping criterion for pruning

As discussed in Section 4.3, network pruning may terminate when the detection

performance on test datasets starts to decrease. In this section, pruning is conducted

on VGG16 for both crack and corrosion datasets, and it is stopped if the detection

accuracy after fine-tuning drops more than 3%. Five-fold cross-validation with the

whole dataset is used to show the statistics of the detection performance and therefore

151

0 10 20 30 40 50 60 70 80 90

Percentage of Filters Pruned (%)

0

50

100

150

200

250

300

In
fe

re
nc

e
T

im
e

(s
ec

)

VGG16
ResNet18

(a)

0 10 20 30 40 50 60 70 80 90

Percentage of Filters Pruned (%)

0

50

100

150

200

250

300

In
fe

re
nc

e
T

im
e

(s
ec

)

VGG16
ResNet18

(b)

Fig. 4.14.: Inference time required for 3, 720 image patches operated on Jetson TX2

GPU for VGG16 and ResNet18 networks: (a) crack dataset, and (b) corrosion dataset.

eliminates the bias induced by fine-tuning and testing on a particular training/testing

dataset. In other words, five repeated trials are conducted for both crack and cor-

rosion datasets. Each trial uses different training data, and the test datasets in the

five trials are completely independent. Figure 4.15 reports the mean of the damage

detection accuracy for both crack and corrosion data from five-fold cross-validation.

Tables 4.2 and 4.3 report the mean (µ) and standard deviation (σ) of the accuracy

before and after fine-tuning for crack and corrosion datasets, respectively. Up to

84% filters being pruned, the mean detection accuracy after fine-tuning for crack and

corrosion is approximately 99% with a standard deviation below 0.5%. This demon-

strates the robustness of the proposed approach as the variations in the performance

are extremely small when the pruned network still has the capacity to deal with the

detection task. When 97% of the filters are removed (i.e., only 128 filters left in

VGG16), the mean accuracy of crack detection drops to 84.7% with a standard de-

viation 19.86%, and the mean accuracy of corrosion detection drops to 96.0% with a

standard deviation 0.95%. This indicates that the pruning should terminate due to

the increasing variation and decreasing accuracy in the detection performance. For

152

the accuracy before fine-tuning, the mean exhibits a monotonic decreasing behavior

as the pruning proceeds. The standard deviation before fine-tuning is quite high,

which is due to the quality of random optimization for the remaining parameters in

the network. For instance, if the values of the remaining filters are not fine-tuned

very well, the accuracy before fine-tuning may drop more significantly, compared to

the situation in which the remaining parameters are fine-tuned better. This explains

why the accuracy before fine-tuning shown in Figure 4.6 exhibits an oscillation be-

havior. Notice that the variation in the accuracy before fine-tuning is very small

when 97% of filters are removed, since the mean accuracy is 50%, meaning that the

network performance is equal to random guesses. Lastly, while conventional transfer

learning usually fine-tunes only the FC layers when there is no sufficient training

data, the authors observe that fine-tuning the whole network leads to better detec-

tion performance for new tasks very different from the original task. It is noted that

cross-validation is not necessary for deep learning if there exists sufficient available

data. However, as transfer learning-based approaches usually use a small amount of

data, cross-validation may enhance the reliability in the capability of generalization.

0 12 24 36 48 60 72 84 97

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(a)

0 12 24 36 48 60 72 84 97

 Percentage of Filters Pruned (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Before fine-tuning
After fine-tuning

(b)

Fig. 4.15.: Mean detection accuracy from 5-fold cross-validation of pruned VGG16

versus percentage of pruned filters: (a) crack dataset, and (b) corrosion dataset.

153

Table 4.2.: Mean (µ) and standard deviation (σ) of detection accuracy before and

after network fine-tuning - VGG16 with crack datasets

Pruned µ (%) σ (%)

filters (%) before after before after

0 99.9 99.9 0.11 0.11

12 91.1 99.7 2.43 0.12

24 98.8 99.7 1.33 0.11

36 95.6 99.8 4.05 0.06

48 93.0 99.9 8.95 0.05

60 82.5 99.7 9.12 0.09

72 73.3 99.8 19.67 0.10

84 53.8 99.4 4.59 0.19

97 50.3 84.7 0.52 19.86

4.4.3 Optimization for VGG16 feature extraction

To further reduce the inference time, the optimization approach described in Sec-

tion 4.3.2 is implemented to eliminate the repetitive computation due to the over-

lapping regions between adjacent sliding windows. For demonstration purposes, the

pruned VGG16 network where 84% of kernels are removed is selected for crack de-

tection, and the server setup is used as the computing platform. Since the pruned

network is trained using 224× 224 image patches as input, it is necessary to re-train

the network by removing zero-paddings in the convolution layers for consistency. The

reason is that the optimized approach takes the whole image as input, and the patches

in the image must be no zero-padding. As shown in Section 4.4.2, it takes 4.04 (sec)

154

Table 4.3.: Mean (µ) and standard deviation (σ) of detection accuracy before and

after network fine-tuning - VGG16 with corrosion datasets

Pruned µ (%) σ (%)

filters (%) before after before after

0 99.7 99.7 0.28 0.28

12 95.3 99.1 1.76 0.12

24 98.4 99.3 0.27 0.21

36 97.1 99.5 1.40 0.11

48 95.6 99.4 1.20 0.05

60 87.2 99.3 6.26 0.13

72 77.0 99.0 16.98 0.20

84 65.0 98.4 10.20 0.31

97 49.5 96.0 0.74 0.95

to process 3, 720 patches for the pruned VGG16 network when 3, 720 patches are

passed to the network separately. By using the whole image as input and extracting

features based on the proposed optimization approach, it takes only 0.62 (sec), which

is 6.5 times faster than the approach without optimization.

4.5 Concluding Remarks

This study presents an approach for developing efficient DCNNs for damage de-

tection in SHM. This is critical since an effective inspection system requires rapid

inference and on-board deployment on mobile inspection devices, especially for large-

scale civil infrastructures. The results in Section 4.4.1 show that the conventional

transfer learning-based approach alone is not adequate for rapid inference as the re-

sulting network spends the majority of time on computing the features. Section 4.4.2

155

demonstrates that by network pruning, the inference time of the pruned VGG16

network is nine times faster than the original network, and the memory demand is

reduced by 80% without trading the detection performance. To reduce the pruning

time spent on the server machine, a sensitivity analysis is conducted. The analysis

indicates that using a smaller number of fine-tuning epochs during pruning reduces

the pruning computation time and does not lead to a significant drop in detection

accuracy. In addition, pruning ResNet18 reduces the inference time on the edge

device to 8.9 (sec), which is 3.55 times faster than VGG16. Results from five-fold

cross-validation demonstrate the robustness of the proposed approach, as the mean

detection accuracy is 99% with a standard deviation below 0.5%. Network pruning

should stop when 97% of the filters are removed from VGG16. Finally, Section 4.4.3

shows that the inference time is reduced by a factor of 6.5 through the proposed

optimization approach for feature computing.

As data availability and resource efficiency are critical issues for field applications,

when designing a DCNN to solve a specific domain problem, one should consider

whether it is necessary to construct a large network. By exploiting transfer learning

and network pruning, one can construct DCNNs without the need of a huge amount

of training data. The efficiency in memory requirement and inference time is achieved

without losing performance in damage detection through the reduction of the network

size. It is worth mentioning that in some applications, such as nuclear power plant

domes, structural and non-structural cracks are both critical since the non-structural

cracks can lead to deterioration of underneath surfaces due to infiltration of water

and air. For some other applications, however, such as earthquake reconnaissance

where the non-structural cracks are not important, one needs to develop approaches

to differentiate between structural and non-structural cracks.

156

5. DESIGN OF ONE-DIMENSIONAL ACOUSTIC

METAMATERIALS USING MACHINE LEARNING AND

CELL CONCATENATION

5.1 Introduction

5.1.1 Motivation and Relevant Works

Acoustic metamaterials are artificial functional materials that offer unique dy-

namic properties. Either acoustic or elastic waves propagating through a meta-

material could experience effects including, just to name a few, frequency band

gaps [320–323], anomalous refraction [324–327], lensing [328], cloaking [329–332],

robust wave-guiding [333–336]. These effects are typically not achievable in ordi-

nary (i.e., non-engineered) materials. Acoustic metamaterials are typically assem-

bled based on a combination of spatially distributed subwavelength scatterers that

can span a variety of materials, shapes, and dimensions [337]. Most classes of meta-

materials typically exhibit spatial periodicity, i.e., translational symmetry in space,

and can be designed based on their frequency-wavevector band structure. Acoustic

metamaterials can also be non-periodic. Examples include functionally graded mate-

rials [329], graded index phononic crystals [328], and acoustic black holes [338, 339].

The selection of optimal values of the different design parameters to ensure the ma-

terial exhibit selected dynamic properties (e.g. band gaps in a given operational

frequency range) is a very challenging task given that many possible combinations of

parameters could potentially result in similar performance; this is a well-known issue

in inverse problems due to the non-uniqueness of the solution. In material design, this

non-uniqueness is often due to the fact that the dynamic response is not an explicit

157

function of the design parameters, hence the inverse design problems often have no

closed-form solutions.

Since the emergence of the concept of metamaterials, several approaches have been

proposed in order to efficiently optimize design parameters. The initial, and probably

still the most widely adopted, design methodology for metamaterial systems con-

sisted in a physics-driven approach where analytical and numerical tools were used,

in an iterative (trial-and-error) fashion, to synthesize materials exhibiting prescribed

dynamic properties such as phase and group velocities, wave polarization, and band

gaps [327,328,340–344]. Although an effective method to understand the underlying

physical behavior and to predict performance, this approach heavily depends on de-

signers’ insights about the system and on a trial and error process. Such an approach

quickly breaks down when a large number of material and geometric parameters are

involved or when multiple functionalities are required. More recently, systematic

optimization approaches have been used in metamaterial design problems. Among

them, topology optimization combined with level set methods has been widely used

in optimizing geometrical configurations [345–348]. However, the level set function is

usually formulated in the physical space that defines the geometry, such method is

not appropriate for the optimization of properties in a transformed space such as the

frequency-wavenumber spectrum. In acoustic metamaterial design, level set methods

were limited to optimizing the geometry only for a selected target frequency [349]. Be-

sides the level set based approaches, topology optimization [350–355] combined with

conventional gradient-based optimizers [356,357] or genetic algorithm (GA) [358–364]

were also explored. The target properties in a transformed space such as group ve-

locity, equi-frequency contours, and frequency band gaps, can be formulated with

cost functions for optimization. Having higher chance to reach the global optimum,

GA surpasses the performance of gradient-based optimizer which is very sensitive to

initial guesses. However, GA algorithms are quite computationally intensive since

the evolution of generations scales exponentially with the size of the design space.

158

Therefore, the developments of new design tools are certainly a critical need for the

metamaterial community.

Recently, advances in artificial intelligence (AI) and machine learning (ML) algo-

rithms have significantly impacted numerous fields of research and stimulated many

interdisciplinary applications. In the frame of metamaterial design, an increasing

number of studies have demonstrated the potential of these ML-based approaches

[365–368]. The use of ML techniques leads to more accurate estimates and reduces

computation time in forward inferences after training. For instance, the multi-layer

perceptron (MLP) or equivalently, the fully-connected neural network (NN), has been

shown to be capable of approximating any non-linear function [12,172,174,249]. Based

on sensor measurements, the NN learns the mapping between the inputs and the out-

puts implicitly and serves as a surrogate model of the precise physical model [369].

Compared to purely physics-based approaches, the incorporation of a data-driven

model brings more flexibility to design frameworks since an exact model is usually

difficult to obtain in real practices.

In addition to NN-based approaches, reinforcement learning (RL) is another cat-

egory of ML techniques that differs from both the supervised and unsupervised ML

algorithms. Inspired by how humans learn new tasks, RL attempts to determine

the optimal decision strategy by interacting with the environment [370]. In other

words, an agent is trained to find the decision policy that maximizes the cumula-

tive future rewards. In recent years, there have been many successful applications

in robotic navigation, control, and AI gaming that demonstrate the potential of RL-

based approaches [215, 371–374]. During the training stage, the agent receives a

reward assigned from the environment immediately after choosing an action at the

current state. The agent is allowed to select the greedy action (i.e., exploitation)

or the exploratory action in order to evaluate more possibilities in the state-space

for better decision making. In the context of designing metamaterials, conventional

optimization-based approaches may reach local solutions since the design parameter

space is extremely vast. The incorporation of RL into the metamaterial design frame-

159

work is expected to reduce computation efforts due to the reward mechanism and its

ability in exploration.

This study presents two ML-based frameworks that enable the design of one-

dimensional periodic and non-periodic metamaterials. For periodic metamaterials, a

RL-based approach is proposed in order to design the materials capable of achieving

user-desired frequency band gaps. As the major computational burden lies in the for-

ward simulation of the physical model, it is crucial to evaluate how many executions

of the forward simulation are required in a design process. The GA algorithm serves

as a baseline reference for the proposed approach since GA avoids the computation

of gradients and can be formulated with target properties defined in the frequency

domain. For non-periodic metamaterials, a NN-based approach that unifies the sim-

ulation of the physical behavior and the optimization of the design parameters is

proposed. First, the NN unit learns the behavior of the material unit cell, then

the dynamic response of the entire metamaterial is predicted by the concatenation

of identical NN units. This is the first demonstration that uses NN as the numeri-

cal model with the concatenated networks serving as the discretized elements in the

physical domain to solve structural mechanics problems. The design parameters of

each individual material element are then determined through standard optimization

algorithms.

It is worth mentioning that the proposed NN-based approach requires only a one-

time network training to model the entire metamaterial. Both design techniques will

be validated via numerical simulations.

5.1.2 Contribution and Scope

This work develops two novel frameworks for the design of periodic and non-

periodic metamaterials. For periodic metamaterials, the proposed RL-based approach

leverages a reward mechanism and the exploration over the design space and therefore

leads to a more efficient search for optimal designs. Moreover, the proposed approach

160

can be applied to the efficient solution of various inverse design problems since it does

not require the evaluation of gradients. For non-periodic metamaterials, the proposed

NN-based approach builds a surrogate model of the metamaterial with the concate-

nation of identical NN units trained to describe the dynamic behavior of the material

unit. It is worth mentioning that this is the first demonstration of NN being used

in the discretization of a continuous media. Without the demand of a precise phys-

ical model, the proposed surrogate model is able to accurately predict the dynamic

response of the metamaterial with only one-time network training, and the design of

each material unit is accomplished through standard optimization algorithms.

The structure of this paper is described as follows. Section 5.2 introduces the

two design problems considered in this study along with some fundamental physical

details. In Section 5.3, the two proposed frameworks for the periodic and non-periodic

metamaterial design are introduced. For each design problem, a numerical example

and the corresponding formulations are discussed in detail. Section 5.4 presents the

results as well as the discussion about the metamaterial design. A summary and

future work are provided in Section 5.5.

5.2 Problem Description

5.2.1 1D Diatomic Mechanical Lattice

The classical configuration of an acoustic metamaterial includes a fundamental

unit cell that is periodically repeated in space to form the final structure. The dynamic

behavior of the periodic medium can be obtained based on the fundamental response

of the unit, that is exploiting the knowledge of the underlying periodicity of both

material and geometric properties. This characteristic makes the design and simula-

tion of periodic metamaterials more systematic and computationally efficient. A key

feature for the dynamic characterization of the unit cell is the frequency-wavenumber

(or wavevector in higher dimensions) dispersion relation. In metamaterial design, this

is typically referred to as band structure. Based on this dispersion structure, quanti-

161

ties such as the passing bands and the band gaps (i.e., ranges of frequencies in which

propagating waves are not supported) are known, and the phase and group velocities

can be derived. In this section, we briefly describe the mathematical model of a sim-

ple diatomic one-dimensional mechanical chain and the corresponding optimization

problem to be solved.

Consider a 1D diatomic mechanical lattice assembled by a periodic distribution of

masses m1 and m2 connected by springs with stiffness constant k, as shown in Figure

5.1. The fundamental unit cell contains two masses and two springs, and has a lattice

constant a.

...... k

m1 m2

k

unit cell

a

Fig. 5.1.: Schematic illustration of the 1D diatomic mechanical lattice.

Solving the equations of motion with Bloch boundary conditions [375] yields the

frequency ω± as a function of the wavenumber K:

ω± =
(
k

(
1

m1

+
1

m2

)
± k

((1

m1

+
1

m2

)2

− 4 sin2(Ka)

m1m2

))1/2)1/2

. (5.1)

The frequency is a periodic function of K with period π/a, and has two branches

denoted by subscriptions + and −. They are separated by a band gap delimited by

the frequency values ω1 to ω2 where:

ω1,2 =
√

2k/m1,2 . (5.2)

An example of the dispersion curves in the extended zone scheme with the band gap

is plotted in Figure 5.2. In this example, m2/m1 = 2.

A classical design problem in mechanical lattices is to find the value of the con-

stitutive parameters to achieve specific band gap ranges. From Eq. (5.2), it is easily

found that m1,2 = 2k/ω2
1,2. To this end, in Section 5.3.1, a proposed approach based

162

Fig. 5.2.: Dispersion of the 1D diatomic mechanical lattice in the extended zone

scheme.

on RL is used to optimize m1 and m2 to attain the desired band gap range ω1 and

ω2, and the estimated values are compared with the exact answer to evaluate the

performance of the proposed approach. Although in this study the method is devel-

oped for simple lattice structures, this approach could be generalized to optimize the

reciprocal space properties in complex phononic structures.

5.2.2 1D Continuous Bar

In this section, we illustrate the mathematical model to design and simulate an

elastic periodic bar under longitudinal vibrations. In its most general form, the bar is

made of multiple materials (assumed isotropic), therefore it has a piece-wise variable

Young’s modulus E, mass density ρ, and cross-sectional area A along its longitudinal

axis x, as shown in Figure 5.3(a). Suppose the bar is designed to forbid the propa-

gation of the wave in the forward direction (positive x-direction), the corresponding

constraint would impose a null displacement at the right end. Clearly, depending

on users’ specified performance, different constraints may be imposed. In this de-

sign example, the main objective is to identify the optimal values of these material

163

parameters (e.g., A or E) in order to satisfy given vibration constraints. A transfer

matrix model [376] is adopted for the approximate numerical solution of the wave

equation in the bar. The bar is divided into n elements (element number from 1 to

n) with n+1 associated nodes (node number from 0 to n), as shown in Figure 5.3(b).

Since the cross-sectional area A varies smoothly with range much larger than the

thickness, Saint-Venant’s principle [377] suggests that the normal stress distributes

uniformly and can be represented as a normal internal force Pi, at the i-th node.

Under harmonic vibrations, the equilibrium of the i-th element yields the transfer

matrix equation relating the states at the (i− 1)-th and the i-th nodes,u

P


i

=

1− ω2(∆xi)
2(ρ
E

)i −(∆x
EA

)i

ω2(ρA∆x)i 1

u

P


i−1

, (5.3)

where ui is the x-displacement of the i-th node; Ei, ρi, Ai are the discretized param-

eters of the i-th element (see Figure 5.3(c)), ω is the circular frequency (in rad/s),

and ∆xi = xi − xi−1.

x

E(x), ρ(x), A(x)

(a)

0 1 2 3 4node #

element # 1 2 3 4 ...

...

n

n...

...

(b)

xixi−1

uiui−1

Pi−1 Pi

Ei, ρi, Ai

(c)

Fig. 5.3.: Schematic representation of the lumped transfer matrix model of a 1-D

continuous bar: (a) Material properties are functions of the x-coordinate, (b) the bar

is discretized into n elements, (c) the free body diagram of the n-th element.

Assume the bar is made of aluminum with material constants E = 69GPa and

ρ = 2700kg/m3. We divide the bar into 20 units of equal length and assign the target

cross-sectional area Ai for each unit as:

Ai = [2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2, 2, 4, 6, 4, 2]× 10−3 (m2), i = 1 ∼ 20 (5.4)

Then, a harmonic axial load is applied at the left end of the bar while the right

end is set to be either (a) fixed or (b) free. These two conditions are equivalent to a

164

statement of continuity with the adjacent end having either infinite or zero mechanical

impedance, respectively. Of course, any other boundary condition can be considered

as a linear combinations of these two states. The model can be solved for the steady

state response. Specifically, we solve it for the low, mid, and high frequency ranges,

ultimately producing six responses.

With the dynamics of the medium being fully characterized by the transfer matrix

model, the design problem can now be formulated. Such problem can be stated as

follows: given the six responses in terms of degrees of freedom at the left end and

right end (i.e., (ul, Pl) and (ur, Pr)), and the corresponding actuation frequencies,

we want to determine the twenty cross-sectional areas Ai that allow satisfying (in

an optimal sense) the target dynamic conditions. A further extension of this design

problem would also consider the determination of these cross-sectional areas in order

to achieve the target dynamics while using a minimum number of different sections.

The above two questions identify, in a simple setting, the typical problem that

arises in the design of metamaterials and structures having desired frequency depen-

dent characteristics.

5.3 Methodology

5.3.1 Framework for Periodic Metamaterial Design

The proposed framework for the design of periodic metamaterials is schematically

illustrated in Figure 5.4. Given a user-defined target dynamic behavior specified in

the reciprocal-space (e.g. a frequency-wavenumber dispersion relation or band struc-

ture), the proposed approach uses reinforcement learning to estimate the material

properties capable of achieving the target behavior. Starting with an initial guess for

the material properties, the RL algorithm iteratively searches for the optimal proper-

ties based on the rewards estimated on the basis of the physical response calculated

via numerical models (e.g., finite element analysis). During the design process, the

RL agent selects the design parameters and interacts with the environment (i.e., the

165

physical model in the case of metamaterial design). A reward is then assigned to

the agent based on the selected parameters. The process is implemented iteratively

and the agent will continue exploring the design space until the termination condi-

tion is reached. The design process is completed once the dynamic behavior of the

synthesized metamaterial satisfies a user-defined tolerance.
Periodic material design framework v2

User-defined
behavior in

reciprocal-space

Physical model
(environment)

Initial guess

Intermediate
design

Finish
design

Yes

Reward
mechanism

Terminate
condition
reached?

No

Reinforcement
learning

Fig. 5.4.: Flowchart presenting a schematic view of the design framework for periodic

metamaterials.

Application to the Design of a 1D Diatomic Mechanical Lattice

The design framework was validated on a simple case study consisting in the design of

a 1D diatomic lattice (as described in Section 5.2.1). The objective was to determine

the value of the masses m1 and m2 to achieve a specified dynamic behavior in the

frequency domain:

∆ω = ω2 − ω1 (5.5)

ω2 =

√
2k

m2

(5.6)

ω1 =

√
2k

m1

(5.7)

166

where ∆ω is the user-defined frequency difference between the diatomic resonant

frequencies. The proposed RL approach starts with an initial guess of (m1,m2),

or equivalently, an initial state S0, and attempts to find the optimal state Sopt by

selecting actions to increase or decrease the values of (m1,m2). In this context, the

state-action pairs are formulated as:

S = {(m1,m2) | α1 ≤ m1 ≤ β1, α2 ≤ m2 ≤ β2} (5.8)

A = {aj ∈ {m1 + d,m1 − d,m2 + d,m2 − d, φ}}

, j = 1 ∼ 5, d > 0 (5.9)

where α1, α2, β1, and β2 are the lower and the upper bounds of the mass values m1

and m2. d is the increment, that is the step size that determines the precision of the

estimation. In the action space A, we consider five actions, where the first four actions

allow the adjustment of the mass values and the fifth action stands for “do nothing,”

or equivalently, “stay at the current state.” The ultimate goal is to determine the best

action given a current state value. To this end, the proposed approach implements

the Q-learning algorithm to update the Q-score of each state-action pair using the

bellman equation [378]:

Q(Si, aj)← (1− α(n))Q(Si, aj) + α(n)[R(Si, aj, Si+1)

−ρ(n)t(Si, aj, Si+1) + γ max
b∈A(Si+1)

Q(Si+1, b)] (5.10)

where Q(Si, aj) is the Q-score of picking action aj at state Si, R(Si, aj, Si+1) is the

immediate reward after choosing action aj at state Si, t(Si, aj, Si+1) is the transition

time from state Si to Si+1, maxb∈A(Si+1) Q(Si+1, b) is the maximum Q-score among

all the actions b ∈ A(Si+1) in the next state Si+1, n is the iteration number, α(n) is

the learning rate at iteration n, ρ(n) is the average reward at iteration n, and γ is the

discount factor for the expected future rewards. In this study, the immediate reward

167

is defined as a function of the difference between the vibration frequencies computed

using the intermediate design parameters and the target frequencies:

∆(%) =

∣∣∣∣ ω̂ − ωtωt

∣∣∣∣× 100% (5.11)

R(Si, aj, Si+1) =


1
∆
, if ∆ 6= 0

1, if ∆ = 0

(5.12)

where ω̂ is the frequencies of the diatomic computed using Eqs. (5.6) and (5.7) with

the intermediate values of (m1,m2), and ωt = (ω1t, ω2t) is the target frequencies. Note

that the lower the ∆ value the higher the reward.

During the learning process, the agent is allowed to select the greedy action (ex-

ploitation) that has the maximum Q-score at current state, or to pick the exploratory

actions (exploration) to visit the states that have not been visited. This is essential

since the agent could be trapped in local loops without having the chance to explore

an action that leads to a higher expected future reward if the agent always picks the

greedy action. The exploration probability should be high enough at the beginning

for the agent to explore sufficiently, and decay with the iteration number so that the

agent selects the greedy actions at the end of learning. After sufficient number of

learning iterations, the best action at each state Si can be determined by picking the

action with the highest Q-score. The optimal policy corresponds to the set of best

actions for all the states.

For demonstration purpose, the target frequency difference ∆ω is set to 0.2.

Assuming the spring constant k = 1 and the target frequency of the diatomic is

ωt = (ω1t, ω2t) = (1.3, 1.5), the corresponding target design parameters (m1t,m2t) =

(1.1834, 0.8889). The lower and the upper bounds of the mass values are α1 = α2 =

0.5 and β1 = β2 = 1.5, respectively. In terms of the hyper-parameters of the Q-

learning algorithm, the learning rate α(n) at iteration n is log(n)/n, the discount

factor γ = 0.99, and the transition time t(Si, aj, Si+1) is set to unity. Initially, the

168

Q-scores Q(Si, aj) are set to zero, and the exploration probability is 1 with a decay

rate of 0.999.

For the searching increment d, it is noted that the selection of d requires careful

considerations. A small value of d may lead to higher precision in the estimation

while increases the chance of reaching local solutions. A large d value is more likely

to achieve the global solution while losing the precision of the estimations. To address

these issues, an adaptive searching scheme is proposed to explore the design space

more efficiently. The searching scheme consists of three epochs with decreasing d

values. In the first epoch, d is set to 0.1 with 100, 000 iterations used to update the Q-

scores. For the second and the third epoch, the d value is divided by a factor of 10 and

100, respectively, to enhance the precision in the estimation of the design parameters.

The number of iteration is 10, 000 for both the second and the third epoch. It is noted

that the selection of d can be tied with the user-defined tolerance in the estimates

of the design parameters. To demonstrate the robustness of the proposed approach

against the selection of initial estimates, the initial state is assumed to be S0 =

(0.5, 0.5), which is far away from the target design values (1.1834, 0.8889). The design

results are discussed in Section 5.4.1.

5.3.2 Framework for Non-periodic Metamaterial Design

The proposed framework for the design of non-periodic 1D metamaterials is illus-

trated in Figure 5.5. The proposed approach aims at designing an inhomogeneous

material consisting of multiple, interconnected, and potentially dissimilar unit cells

capable of achieving user-defined dynamic performance. In addition, we assume that

the dynamics of the different units can be described by the same neural network, as

shown in Figure 5.5(a). Then, the entire assembly is obtained by combining together

(an operation labeled here below “concatenation”) multiple version of the same NN.

A critical advantage of such an approach is that the NN does not require to undergo

a new training phase every time the dynamic response of a new system (i.e., a new

169

sequence of elements) is sought. The latter statement, of course, assumes that the

system can be assembled from the available pre-trained elements.

Note also that, in this approach, instead of using a mathematical model to sim-

ulate the dynamics of the unit cell, a NN is previously trained to learn the complex

mapping between the input and output responses of a class of unit cells. This is

particularly useful when only the vibration measurements of the unit cell is available,

or the physical model of the unit cell is not well understood. During the training

phase, the NN is trained with the input and output responses, as well as the material

properties of the unit cell (Figure 5.5(b)). The training data can be obtained from

either numerical simulations, provided that the physical model of the cell is available,

or the experimental data. Once the training is completed, the NN is capable of mod-

eling the dynamic behavior of the unit cell, and the NN is ready for applications to

prediction and design.

In the design phase, the user specify a desired output for a given input and the

network assembles a sequence of cells to form an inhomogeneous structure capable

of achieving the desired output. The proposed approach synthesizes the structure of

the inhomogeneous system simply based on the concatenation of multiple NN units

belonging to the same class of pre-trained NN discussed above. The term class is used

to indicate that the NN represents the same dynamics of a specific type of structural

elements (e.g. longitudinal waves in thin rods). Within the same class, different

geometric parameters describing the finer details of the class are still possible and

can be used to represent the dynamics of different elements (e.g. rods with different

cross-sectional areas, and material properties).

Given that each NN receives the input from the output of its preceding element

(i.e., NN), this condition dictates that input and output parameters must be consis-

tent with each other, that is they must represent the same physical quantities. As

shown in Figure 5.5(c), the number of required material units as well as the properties

of the unit cells are not known a priori and must be determined by means of opti-

mization algorithms. More specifically, the approach starts from a reduced number

170

of units and keep adding new units until a prescribed user-defined tolerance on the

target response is satisfied.
Non-periodic Metamaterial Design

1

Input
responses

Output
responses

NN

Material properties Output responsesNN
Input responses

𝐴𝐴1

Input responses NN NN ⋯ NN Output responses

𝐴𝐴2 𝐴𝐴𝑛𝑛

(a)

Non-periodic Metamaterial Design

1

Input
responses

Output
responses

NN

Material properties Output responsesNN
Input responses

𝐴𝐴1

Input responses NN NN ⋯ NN Output responses

𝐴𝐴2 𝐴𝐴𝑛𝑛(b)

Non-periodic Metamaterial Design

1

Input
responses

Output
responses

NN

Material properties Output responsesNN
Input responses

𝐴𝐴1

Input responses NN NN ⋯ NN Output responses

𝐴𝐴2 𝐴𝐴𝑛𝑛

(c)

Fig. 5.5.: Schematic of the design framework for non-periodic metamaterial: (a)

train a NN to learn the behavior of a generic unit cell (defined as a class of unit cells),

(b) NN training inputs and outputs, and (c) design of the material properties (e.g.

cross-sectional area) using network concatenation.

Application to the Design of a 1D Continuous Bar

The proposed framework was tested on the design of the 1D continuous bar described

in Section 5.2.2. Given a user-defined set of input and output responses of the bar,

the objective is to design the material properties of each unit shown in Figure 5.3.

The Young’s modulus, mass density, and the element length are assumed fixed to the

values E = 69GPa, ρ = 2700kg/m3, and ∆x = 0.01m, respectively. In this example,

the only design parameters are the cross-sectional areas A of each material unit.

In order to build a NN capable of modeling the dynamic behavior of the individual

unit, training samples are generated using Eq. 5.3, where the upper and lower bounds

of the parameters are listed in Table 5.1. The NN is expected to take the cross-

171

sectional area A of the unit cell, the vibration frequency ω, the displacement u, and

the force P as inputs, and estimate the response in terms of output displacement and

force. A total of 10, 000 equally spaced values are first generated within the interval

for each parameter, and each parameter array is randomly shuffled to obtain 10, 000

pairs of input arrays [A, ω, u, P] to the network. The input arrays are passed into

Eq. 5.3 to generate the target output arrays [u, P]. As a result, instead of using a

total of 104 × 104 × 104 × 104 = 1016 sample permutations, the NN is trained with

85% samples randomly chosen within the set of 10, 000 samples, which greatly reduces

the computation cost. The remaining 15% samples are used as validation dataset to

ensure the generalization capability of the network. The NN consists of four layers,

i.e., one input layer, two hidden layers with 15 and 10 nodes, and one output layer.

The network training is achieved through standard back-propagation algorithm [263].

Once the NN representing the material unit class is established, the 1D continuous

bar is designed via a network concatenation strategy. Assuming the bar consists of n

units, given the user-defined input responses at the left end of the bar, the vibration

frequency, and the output responses at the right end of the bar, the design parameters

(i.e., the cross-sectional area of each unit in this example) are obtained by solving the

following equation:

arg min
Ai

∑
j

‖yj(A1, ..., Ai, ..., An)− yt,j‖2 , i = 1 ∼ n (5.13)

where Ai is the cross-sectional area of the ith material unit, yj(A1, A2, ..., An) is the

estimated response of the right end of the bar from the concatenated NNs in the

jth vibration constraint, and yt,j is the target response defined by the user in the jth

vibration constraint. The interior-point algorithm [379] is used to solve Eq. (5.13). In

this algorithm, there are two main steps in each iteration. The first step computes the

Hessian of the Lagrangian of the cost function. If the Hessian is not positive definite,

the algorithm proceeds with the second step by optimizing a quadratic approximation

to the problem in a trust region.

172

Table 5.1.: Parameter ranges for the training samples.

Parameter Unit Lower bound Upper bound

A (m2) 0.0015 0.009

ω (MHz) 0.015 0.1

u (nm) -1 1

P (N) -10 10

In Section 5.4.2, the proposed approach is tested through the design of a bar

with n = 20 material units. Furthermore, we show that the design of the bar can

be achieved by incrementally adding material units, without needing to define the

number of units n in advance. This is particularly beneficial when a less complicated

design is critical to the user, as the desirable behavior of the bar may be achieved by

using less number of units.

5.4 Results and Discussion

5.4.1 Design of the 1D Diatomic Mechanical Lattice

Table 5.2 shows the design results for the 1D diatomic lattice. The target mass

values, as described in Section 5.3.1, are (m1t,m2t) = (1.1834, 0.8889) to achieve the

user desired frequency band gap width ∆ω = 0.2. The design error between the

optimal (achieved via the RL-based approach) and the target designs is computed as:

Err =
‖m̂−mt‖
‖mt‖

× 100% (5.14)

where m̂ is the mass estimates vector obtained from the proposed approach, and mt

is a vector representing the target mass values of the diatomic lattice. As indicated

in Table 5.2, the proposed approach achieves a design error of 1.35%, when using

a search increment of d = 0.1. The design estimates improve while decreasing the

search increment d, resulting in smaller design errors 0.87% and 0.56% for d = 0.01

173

and d = 0.001, respectively. This demonstrates the effectiveness of the proposed

adaptive searching scheme to enhance the precision of the estimates as well as reduce

the chance of being trapped in local minima.

Due to the nature of the random walk in the Q-learning algorithm, we conduct

three repeated trials to investigate the robustness of the proposed approach. Table 5.3

shows the design estimates and the design errors of the three repeated trials compared

with the target values. Although trial 2 has a slightly higher design error of 2.44%,

the design estimates of the three trials are very close to the target values. All the

three trials achieve design errors below 3%, which again demonstrates the reliability

of the proposed framework for periodic metamaterial design.

Furthermore, the GA algorithm [358] is implemented to serve as a baseline ref-

erence for the proposed approach. As previously mentioned, the computation cost

highly depends on the number of executions at the forward simulation since the com-

putation scales rapidly with the complexity of the physical model (e.g., finite element

analysis). In this design example, both the GA and the proposed approach achieve

comparable performances for designing the mass parameters. However, the proposed

RL-based approach requires only 691 executions of the forward simulation. This is

97% less than the 22, 600 executions required by the GA algorithm. The population

size and the maximum of generations are both set to 200 according to the suggestions

provided in [358].

Table 5.2.: Results for the design of the diatomic lattice.

Increment Initial RL estimates Target Error

d m1 m2 m1 m2 m1 m2 (%)

0.1 0.5000 0.5000 1.2000 0.9000 1.1834 0.8889 1.35

0.01 1.2000 0.9000 1.1900 0.9000 1.1834 0.8889 0.87

0.001 1.1900 0.9000 1.1810 0.8810 1.1834 0.8889 0.56

174

Table 5.3.: Repeated trials for the design of the diatomic lattice.

Trial RL estimates Target Error

m1 m2 m1 m2 (%)

1 1.1810 0.8810 1.1834 0.8889 0.56

2 1.1490 0.9000 1.1834 0.8889 2.44

3 1.2010 0.8890 1.1834 0.8889 1.19

5.4.2 Design of 1D Continuous Bar

To validate the proposed framework for the design of a non-periodic metamaterial

(see Section 5.3.2), we consider the design of a 1D continuous bar with 20 material

units, i.e., n = 20, as shown in Figure 5.3(b). The vibration response of the bar

is dependent on external constraints (e.g. frequency of excitation and boundary

conditions) determined by the user. A total of six cases, including three vibration

frequencies (i.e., ω = 0.02, 0.05, 0.09 (MHz)) and two boundary conditions (the right

end of the bar is fixed or free), are considered in this design example. The target

design parameters are the cross-sectional areas of each material unit given in Eq.

(5.4). Using the information about the actuation frequency, the boundary conditions

(BC), and the cross-sectional areas, the responses at the boundaries of the bar can

be obtained analytically.

Before proceeding to the design stage, it is essential to investigate the performance

of the network in terms of its ability to represent the dynamics of the material unit.

When used in a concatenated form small errors can propagate and get amplified hence

leading to a rapid drop in accuracy. To this end, the theoretical displacement and force

responses at each node of the bar are first computed by passing the left end responses

(shown in Table 5.4) to the transfer matrix (shown in Eq. (5.3)) where the cross-

sectional area of each unit is given in Eq. (5.4). Next, following the training scheme

described in Section 5.3.2, the NN is established to model the dynamic behavior of

175

Table 5.4.: Six cases of different continuous bars and their corresponding dynamic

response at the boundaries.

Case ω BC ul Pl ur Pr

(MHz) at right end (nm) (N) (nm) (N)

1 0.02 fixed −0.1257 1 0 1.2087

2 0.02 free 0.1588 1 0.2354 0

3 0.05 fixed 0.1295 1 0 0.0530

4 0.05 free 0.1298 1 0.0053 0

5 0.09 fixed −0.1277 1 0 1.1049

6 0.09 free −0.0737 1 0.0489 0

the material unit. By concatenating the same NN 20 times, the vibration responses

of the bar at each node are estimated by passing the left end responses, the vibration

frequency, and the cross-sectional area of the units to the concatenated NNs. Figures

5.6 to 5.11 show the comparison of the analytical response at each node with the

response estimated from the proposed approach. Cases 1 through 6 are shown. For

all cases, the estimations from the concatenated NNs match well with the target

responses both in terms of displacement and force profiles. Tables 5.5 to 5.10 report

the estimated response values from the network as well as the target response values

obtained from the physical model at each node for Cases 1 to 6, respectively. The

error between the network estimation and the target value is computed using the

following equation to avoid the division by zero:

error =
r̂ − rt

max(|rt,i|)
× 100% (5.15)

where r̂ is the estimation from the network, rt is the target response, and max(|rt,i|) is

the maximum of the absolute values of the target responses in the ith case, i = 1 ∼ 6.

According to Tables 5.5 to 5.10, the estimation errors are within ±0.5% where a

significant portion of the errors are below ±0.1%. Moreover, the estimation errors are

176

not accumulated or amplified during the concatenation process, meaning that there

is no limitation with regard to the number of material units that can be used. Table

5.11 shows the normalized root-mean-square (RMS) error of the displacement and

force estimations for all cases. The largest RMS error occurs in Case 3 and 4 where

the RMS values are 0.00090 and 0.00114 for the displacement and force estimations,

respectively. This result demonstrates the robustness of the proposed approach in

estimating the vibration responses of the bar using network concatenation.

In the design stage, the cross-sectional area of each material unit is treated as a

design parameter. Assume that the objective is to design a bar made of n = 20 units

and capable of achieving the right-end responses identical to Cases 1, 3 and, 5 (Table

5.4). This case is equivalent to designing the bar with boundary condition fixed at

right end. In other words, the desirable right-end responses of the bar would be

[ur, Pr] = [0, 1.2087], [0, 0.0530] and [0, 1.1049], when the bar receives inputs [ul, Pl] =

[−0.1257, 1], [0.1295, 1] and [-0.1277,1], respectively. The corresponding operating

frequencies for these three cases are ω = 0.02, 0.05 and 0.09 (MHz), and the associated

target values of cross-sectional areas are shown in Eq. (5.4). At this point, 20 identical

NNs are concatenated to model the dynamic behavior of the bar, and the cross-

sectional areas are determined by solving Eq. (5.13). In this example, j = 3 is

the number of vibration constraints defined by the user. Figure 5.12 depicts both

the target and the design values of the 20 cross-sectional areas of the bar, when

considering two boundary conditions (i.e., fixed or free at the right end). The design

results do not necessarily match well with the target values for both cases, since

there exist non-unique solutions for the cross-sectional areas capable to provide the

desirable responses. However, compared to the target cross-sectional areas which are

distributed periodically and thus having a band gap around 0.05 (MHz) (resulting

in strong attenuation along +x direction in both Cases 3 and 4, see Figures 5.8

and 5.9), the target design exhibit similar periodicity in terms of design parameter

values. To investigate whether the design values indeed lead to the user-defined

responses, the optimal parameters (i.e., the cross-sectional area values) are used into

177

the physical model (i.e., Eq. (5.3)) to generate the dynamic response of the bar.

As indicated in Table 5.12 and 5.13, the fourth column is the response at the right

end estimated from the concatenated NNs using the designed material, and the fifth

column is the response at the right end obtained from the physical model using

the design parameters. Note that the responses from the network are very close

to the target responses. According to Table 5.12, the exact design errors for fixed

boundary condition at the right end, which are the differences between the responses

of the physical model and the target, are extremely small compared to the maximum

absolute target values, i.e., |umax| = 0.21 (nm) and |Pmax| = 3.60 (N) among Cases

1, 3, and 5. The maximum difference in the estimation of right-end displacement is

0.0012 (nm), while the maximum difference in the estimation of right-end force is

0.0139 (N). Moreover, for free boundary condition at the right end (Table 5.13), the

maximum difference in the estimation of right-end displacement is 0.0002 (nm), while

the maximum difference in the estimation of right-end force is 0.0019 (N). Compared

to the maximum absolute target values |umax| = 0.26 (nm) and |Pmax| = 2.14 (N)

among Case 2, 4, and 6, the estimation errors are negligible. This set of results

demonstrates the robustness of the proposed approach for non-periodic metamaterial

design.

Furthermore, the proposed approach is employed to design metamaterials by using

less number of material units which, in turns, reduces the complexity of the resulting

material and of the associated manufacturing. Without determining the number of

material units in advance, the design of metamaterial can be achieved by incremen-

tally adding material units to satisfy a user-defined tolerance in the target responses.

For the proposed approach, we start with one NN that represents one material unit,

and concatenate one additional identical NN if the design parameters cannot achieve

the target responses within a user-defined tolerance (e.g., the value of the objective

function shown in Eq. (5.13) is required to be less than 0.001). Similarly, assuming a

user would like to design a bar with the least number of units to achieve the right-end

responses identical to Cases 1, 3, and 5 shown in Table 5.4. By incrementally adding

178

NNs, the target right-end responses can be achieved by using only 14 units rather

than 20 units to satisfy the tolerance of 0.001. The designed cross-sectional areas of

the 14 units are listed as follows:

A = [1.9, 8.7, 8.6, 7.4, 1.6, 1.5, 1.6, 8.3, 8.5, 7.3, 3.3, 1.7, 5.7, 8.3]× 10−3 (m2)

Table 5.14 shows the responses at the right end estimated from the concatenated

NNs using the designed material, and the responses obtained from the physical model

using the designed material. Comparing the fifth column with the target responses,

the maximum difference in the estimation of right-end displacement is 0.0027 (nm),

while the maximum difference in the estimation of right-end force is 0.0144 (N). These

estimation errors are quite small with respect to the maximum absolute values in the

target responses. According to Table 5.15, consistent observations are made when

the boundary condition at the right end is changed to free. By incrementally adding

NNs, the target right-end responses can be achieved with negligible errors by using

only 15 units. The maximum difference in the estimation of right-end displacement

is 0.0067 (nm), while the maximum difference in the estimation of right-end force is

0.0099 (N). The study presented above clearly indicates that the proposed approach

is capable of achieving accurate and less complicated metamaterial design.

5.5 Concluding Remarks

This study presents two frameworks based on machine learning algorithms for

the efficient design of acoustic metamaterials. The two frameworks are conceived to

achieve user-defined dynamic properties (either in terms of dispersion or responses)

and target the design of periodic and non-periodic acoustic metamaterials. The first

framework leverages a reinforcement learning (RL) approach in order to optimize the

frequency band gap of a phononic lattice. In particular, it is applied to a 1D diatomic

chain where the value of the two masses has to be determined to achieve prescribed

band gap properties. The proposed RL-based approach leverages a reward mechanism

to efficiently explore the space of design parameters and obtain the optimal design.

179

Table 5.5.: The displacement (u) and force (P) responses at each node for Case 1.

Prediction: the output from the network; target: the output from the physical model.

Case 1 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 -0.1257 -0.1257 0.00 1.0000 1.0000 0.00

1 -0.1904 -0.1904 -0.01 0.8927 0.8928 -0.01

2 -0.2110 -0.2110 -0.01 0.5678 0.5682 -0.03

3 -0.2116 -0.2116 0.00 0.0282 0.0285 -0.02

4 -0.1996 -0.1996 0.00 -0.3329 -0.3325 -0.04

5 -0.1632 -0.1632 0.01 -0.5033 -0.5027 -0.05

6 -0.1166 -0.1167 0.02 -0.6425 -0.6418 -0.06

7 -0.0861 -0.0862 0.03 -0.8416 -0.8408 -0.07

8 -0.0605 -0.0606 0.04 -1.0619 -1.0613 -0.05

9 -0.0183 -0.0184 0.04 -1.1653 -1.1646 -0.05

10 0.0673 0.0672 0.05 -1.1809 -1.1803 -0.05

11 0.1487 0.1485 0.06 -1.1234 -1.1230 -0.03

12 0.1802 0.1800 0.06 -0.8701 -0.8697 -0.04

13 0.1901 0.1899 0.06 -0.4092 -0.4091 -0.01

14 0.1931 0.1930 0.06 -0.0853 -0.0852 -0.01

15 0.1874 0.1873 0.04 0.0796 0.0794 0.01

16 0.1700 0.1699 0.03 0.2395 0.2391 0.03

17 0.1508 0.1508 0.02 0.5291 0.5289 0.02

18 0.1287 0.1287 0.01 0.9150 0.9146 0.03

19 0.0876 0.0876 0.00 1.1343 1.1341 0.02

20 0.0000 0.0000 -0.02 1.2090 1.2087 0.02

180

Table 5.6.: The displacement (u) and force (P) responses at each node for Case 2.

Prediction: the output from the network; target: the output from the physical model.

Case 2 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 0.1588 0.1588 0.00 1.0000 1.0000 0.00

1 0.0765 0.0765 -0.01 1.1355 1.1354 0.01

2 0.0306 0.0307 -0.01 1.2658 1.2660 -0.01

3 -0.0018 -0.0018 -0.01 1.3443 1.3444 -0.01

4 -0.0504 -0.0504 -0.01 1.3411 1.3414 -0.02

5 -0.1445 -0.1445 -0.01 1.2980 1.2984 -0.03

6 -0.2297 -0.2296 0.00 1.1746 1.1752 -0.04

7 -0.2580 -0.2580 0.01 0.7828 0.7835 -0.05

8 -0.2610 -0.2610 0.01 0.1228 0.1234 -0.04

9 -0.2493 -0.2494 0.02 -0.3224 -0.3217 -0.05

10 -0.2106 -0.2106 0.03 -0.5352 -0.5344 -0.06

11 -0.1588 -0.1589 0.05 -0.7150 -0.7140 -0.07

12 -0.1231 -0.1232 0.06 -0.9859 -0.9850 -0.06

13 -0.0916 -0.0918 0.06 -1.3007 -1.3002 -0.03

14 -0.0389 -0.0390 0.06 -1.4571 -1.4568 -0.03

15 0.0691 0.0689 0.06 -1.4903 -1.4900 -0.02

16 0.1728 0.1727 0.06 -1.4313 -1.4312 0.00

17 0.2140 0.2138 0.05 -1.1368 -1.1368 0.00

18 0.2282 0.2281 0.05 -0.5894 -0.5897 0.02

19 0.2355 0.2354 0.04 -0.2004 -0.2007 0.02

20 0.2354 0.2354 0.02 0.0006 0.0000 0.04

181

Table 5.7.: The displacement (u) and force (P) responses at each node for Case 3.

Prediction: the output from the network; target: the output from the physical model.

Case 3 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 0.1295 0.1295 0.00 1.0000 1.0000 0.00

1 0.0070 0.0070 0.00 1.6908 1.6902 0.03

2 -0.0569 -0.0569 -0.02 1.7658 1.7651 0.04

3 -0.0776 -0.0776 -0.02 0.8551 0.8549 0.01

4 -0.0786 -0.0786 -0.02 0.0281 0.0280 0.00

5 -0.0503 -0.0503 -0.01 -0.3901 -0.3908 0.04

6 -0.0026 -0.0025 -0.05 -0.6573 -0.6588 0.09

7 0.0222 0.0223 -0.07 -0.6848 -0.6858 0.06

8 0.0302 0.0303 -0.06 -0.3297 -0.3290 -0.04

9 0.0305 0.0305 -0.02 -0.0079 -0.0065 -0.08

10 0.0193 0.0192 0.06 0.1552 0.1560 -0.04

11 0.0006 0.0005 0.08 0.2587 0.2583 0.02

12 -0.0090 -0.0091 0.04 0.2650 0.2633 0.10

13 -0.0119 -0.0119 -0.01 0.1207 0.1183 0.14

14 -0.0117 -0.0116 -0.07 -0.0064 -0.0088 0.14

15 -0.0067 -0.0065 -0.18 -0.0679 -0.0707 0.16

16 0.0008 0.0011 -0.27 -0.1030 -0.1052 0.13

17 0.0042 0.0045 -0.23 -0.0943 -0.0931 -0.07

18 0.0049 0.0050 -0.12 -0.0270 -0.0209 -0.34

19 0.0040 0.0038 0.10 0.0251 0.0326 -0.42

20 0.0006 0.0000 0.48 0.0470 0.0530 -0.34

182

Table 5.8.: The displacement (u) and force (P) responses at each node for Case 4.

Prediction: the output from the network; target: the output from the physical model.

Case 4 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 0.1298 0.1298 0.00 1.0000 1.0000 0.00

1 0.0072 0.0072 0.00 1.6923 1.6917 0.03

2 -0.0569 -0.0569 -0.02 1.7691 1.7684 0.04

3 -0.0777 -0.0776 -0.02 0.8592 0.8591 0.01

4 -0.0788 -0.0788 -0.02 0.0317 0.0316 0.00

5 -0.0507 -0.0506 -0.01 -0.3874 -0.3882 0.04

6 -0.0030 -0.0030 -0.05 -0.6566 -0.6581 0.09

7 0.0219 0.0220 -0.07 -0.6886 -0.6896 0.06

8 0.0301 0.0302 -0.06 -0.3380 -0.3374 -0.04

9 0.0307 0.0307 -0.02 -0.0171 -0.0157 -0.08

10 0.0201 0.0200 0.06 0.1474 0.1482 -0.04

11 0.0017 0.0015 0.08 0.2552 0.2548 0.02

12 -0.0082 -0.0083 0.04 0.2730 0.2713 0.10

13 -0.0116 -0.0116 -0.01 0.1412 0.1388 0.14

14 -0.0123 -0.0122 -0.07 0.0172 0.0148 0.14

15 -0.0088 -0.0085 -0.18 -0.0473 -0.0501 0.16

16 -0.0020 -0.0016 -0.27 -0.0933 -0.0956 0.13

17 0.0022 0.0025 -0.23 -0.1141 -0.1128 -0.07

18 0.0041 0.0042 -0.12 -0.0793 -0.0733 -0.34

19 0.0054 0.0053 0.10 -0.0355 -0.0281 -0.42

20 0.0059 0.0053 0.48 -0.0061 0.0000 -0.34

183

Table 5.9.: The displacement (u) and force (P) responses at each node for Case 5.

Prediction: the output from the network; target: the output from the physical model.

Case 5 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 -0.1277 -0.1277 0.00 1.0000 1.0000 0.00

1 -0.0404 -0.0404 0.00 -1.2049 -1.2050 0.00

2 0.0538 0.0538 0.00 -2.5996 -2.5994 -0.01

3 0.0493 0.0493 0.01 0.1873 0.1879 -0.02

4 -0.0192 -0.0192 0.01 1.8887 1.8894 -0.02

5 -0.1320 -0.1321 0.04 1.5575 1.5580 -0.01

6 -0.0797 -0.0797 0.02 -0.7224 -0.7229 0.01

7 0.0462 0.0462 -0.02 -3.4747 -3.4756 0.03

8 0.0723 0.0723 -0.01 -1.0817 -1.0812 -0.01

9 0.0210 0.0210 0.01 1.4156 1.4170 -0.04

10 -0.1079 -0.1080 0.07 1.7783 1.7796 -0.03

11 -0.1018 -0.1018 0.05 -0.0842 -0.0846 0.01

12 0.0286 0.0287 -0.03 -3.5988 -3.6012 0.07

13 0.0797 0.0798 -0.04 -2.1164 -2.1168 0.01

14 0.0566 0.0566 0.00 0.6370 0.6386 -0.05

15 -0.0604 -0.0605 0.09 1.6148 1.6168 -0.05

16 -0.1018 -0.1020 0.09 0.5720 0.5719 0.00

17 0.0049 0.0049 -0.03 -2.9455 -2.9491 0.10

18 0.0699 0.0700 -0.06 -2.6936 -2.6953 0.05

19 0.0800 0.0801 -0.03 -0.2790 -0.2777 -0.04

20 0.0001 0.0000 0.08 1.1024 1.1049 -0.07

184

Table 5.10.: The displacement (u) and force (P) responses at each node for Case 6.

Prediction: the output from the network; target: the output from the physical model.

Case 6 u (nm) P (N)

node prediction target error(%) prediction target error(%)

0 -0.0737 -0.0737 0.00 1.0000 1.0000 0.00

1 -0.0540 -0.0540 0.00 -0.2719 -0.2719 0.00

2 0.0234 0.0234 0.00 -2.1356 -2.1352 -0.02

3 0.0457 0.0457 0.01 -0.9232 -0.9225 -0.03

4 0.0220 0.0219 0.02 0.6549 0.6555 -0.03

5 -0.0530 -0.0530 0.06 1.0339 1.0344 -0.03

6 -0.0616 -0.0616 0.04 0.1191 0.1190 0.01

7 0.0112 0.0112 -0.02 -2.0089 -2.0097 0.04

8 0.0457 0.0457 -0.02 -1.4308 -1.4306 -0.01

9 0.0403 0.0403 0.01 0.1478 0.1489 -0.05

10 -0.0208 -0.0209 0.10 0.8443 0.8454 -0.05

11 -0.0559 -0.0560 0.09 0.4842 0.4841 0.00

12 -0.0035 -0.0035 -0.03 -1.4482 -1.4501 0.09

13 0.0359 0.0359 -0.05 -1.6290 -1.6297 0.03

14 0.0500 0.0500 -0.03 -0.3910 -0.3899 -0.05

15 0.0158 0.0157 0.11 0.4723 0.4739 -0.08

16 -0.0382 -0.0383 0.13 0.7444 0.7447 -0.02

17 -0.0174 -0.0174 -0.02 -0.5747 -0.5773 0.12

18 0.0183 0.0183 -0.08 -1.4751 -1.4768 0.08

19 0.0489 0.0489 -0.07 -0.8452 -0.8445 -0.03

20 0.0490 0.0489 0.08 -0.0018 0.0000 -0.09

185

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-1.5

-1

-0.5

0

0.5

1

1.5

F
or

ce
 (

N
)

Force Estimation

prediction
target

(b)

Fig. 5.6.: Network estimations at each node for Case 1: (a) displacement and (b)

force.

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-1.5

-1

-0.5

0

0.5

1

1.5
F

or
ce

 (
N

)
Force Estimation

prediction
target

(b)

Fig. 5.7.: Network estimations at each node for Case 2: (a) displacement and (b)

force.

Direct comparison with the exact solution showed the very good performance of the

design approach which was capable of identifying the value of the parameters within

a margin of error of 0.56%. Three repeated trials were conducted to address the

randomness in the exploration of RL algorithm. All the design errors were found to

be below 3%, which indicated the reliability of the proposed approach. In order to

186

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.1

-0.05

0

0.05

0.1

0.15

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-1

-0.5

0

0.5

1

1.5

2

F
or

ce
 (

N
)

Force Estimation

prediction
target

(b)

Fig. 5.8.: Network estimations at each node for Case 3: (a) displacement and (b)

force.

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.1

-0.05

0

0.05

0.1

0.15

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-1

-0.5

0

0.5

1

1.5

2
F

or
ce

 (
N

)
Force Estimation

prediction
target

(b)

Fig. 5.9.: Network estimations at each node for Case 4: (a) displacement and (b)

force.

put the proposed methodology in perspective with other established techniques, a

comparison with the GA algorithm was performed. The comparison showed that the

proposed approach achieves a 97% reduction in computational cost, mostly driven by

the large reduction in forward simulations.

187

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.15

-0.1

-0.05

0

0.05

0.1

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-4

-3

-2

-1

0

1

2

F
or

ce
 (

N
)

Force Estimation

prediction
target

(b)

Fig. 5.10.: Network estimations at each node for Case 5: (a) displacement and (b)

force.

0 2 4 6 8 10 12 14 16 18 20

Node number

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

D
is

pl
ac

em
en

t (
nm

)

Displacement Estimation

prediction
target

(a)

0 2 4 6 8 10 12 14 16 18 20

Node number

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
F

or
ce

 (
N

)
Force Estimation

prediction
target

(b)

Fig. 5.11.: Network estimations at each node for Case 6: (a) displacement and (b)

force.

The second design framework is developed for non-periodic metamaterials. In this

case, a machine learning based approach was used to learn the dynamic behavior of

a class of material units so that the prediction of the dynamic response for any unit

in such class could be obtained without the need for a numerical model. This kind of

approach enabled also the unique concept of network concatenation in which complex

188

Table 5.11.: The normalized RMS error for displacement (u) and force (P) estima-

tions.

Case u P

1 0.00018 0.00018

2 0.00020 0.00018

3 0.00090 0.00114

4 0.00090 0.00114

5 0.00027 0.00026

6 0.00036 0.00035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Material Unit

0

1

2

3

4

5

6

7

8

9

C
ro

ss
-s

ec
tio

n
A

re
a

(m
2
)

×10-3

Target
Design

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Material Unit

0

1

2

3

4

5

6

7

8

9

C
ro

ss
-s

ec
tio

n
A

re
a

(m
2
)

×10-3

Target
Design

(b)

Fig. 5.12.: Material design results using the concatenation of 20 NNs, assuming the

objective is to design a metamaterial to achieve: (a) the responses of Case 1, 3 and 5

(right end fixed), and (b) the responses of Case 2, 4 and 6 (right end free).

systems can be assembled and simulated by simply combining pre-trained networks.

The most remarkable characteristic of this approach lies in the ability to build predic-

tive models of complex dynamical systems from the use of basic (previously trained)

networks that capture the dynamics of a single class of units. To the best of the

authors’ knowledge, this is the first demonstration that uses NN as surrogate models

189

Table 5.12.: The metamaterial design results from the concatenation of NNs, com-

pared with the responses of the physical model and the target responses. (1): Re-

sponses of the network using the designed metamaterial, and (2) Responses of the

physical model using the designed metamaterial. (Assuming the objective is to design

a metamaterial to achieve the responses of Case 1, 3 and 5, boundary condition fixed

at the right end)

Case Parameter Unit (1) (2) Target responses

1
ur (nm) 0.0000 0.0000 0

Pr (N) 1.2087 1.2090 1.2087

3
ur (nm) 0.0016 0.0012 0

Pr (N) 0.0530 0.0669 0.0530

5
ur (nm) 0.0000 -0.0002 0

Pr (N) 1.1049 1.1069 1.1049

of individual components that can be assembled, by concatenation, to form complex

structures. In this approach, the NN replaces the concept of element in conventional

discretization methods, such as the finite elements or finite differences, used to solve

differential equations. Once the NNs are concatenated, the response of the whole

system can be obtained following assigned input conditions without the need to re-

train the network with specific material configurations. This approach was tested on

a system consisting in a 1D continuous bar. A fully-connected NN was used to model

the dynamic behavior of the specific class of the material unit, that is the longitudi-

nal dynamics of a thin bar. The NN accepts the material properties, the actuation

frequency, and the external loads as inputs, and estimates the corresponding dynamic

response as output. After an initial training for the class of structural elements, the

NNs were concatenated to form a chain capable of modeling a 1D metamaterial. The

units do not require to be periodic and the material properties are treated as design

parameters. The main objective was to determine the necessary configuration and

190

Table 5.13.: The metamaterial design results from the concatenation of NNs, com-

pared with the responses of the physical model and the target responses. (1): Re-

sponses of the network using the designed metamaterial, and (2) Responses of the

physical model using the designed metamaterial. (Assuming the objective is to design

a metamaterial to achieve the responses of Case 2, 4 and 6, boundary condition free

at the right end)

Case Parameter Unit (1) (2) Target responses

2
ur (nm) 0.2354 0.2354 0.2354

Pr (N) 0.0000 0.0002 0

4
ur (nm) 0.0055 0.0055 0.0053

Pr (N) 0.0000 0.0019 0

6
ur (nm) 0.0489 0.0489 0.0489

Pr (N) 0.0000 0.0005 0

number of units to achieve a user-defined dynamic response. Numerical simulations

showed that with only one-time network training, the concatenated NNs strategy

accurately estimated the dynamic response of the non-periodic material while never

requiring any additional training (beyond the initial one necessary to characterize the

class of units). This result also highlights the potential of the approach to explore

large design spaces as well as the propensity to produce highly scalable framework.

Although this study considered only 1D systems as benchmark examples, the

proposed design frameworks are completely general and can be extended to higher

dimensional systems. Indeed, it is expected that the advantages put forward by this

design methodology over existing methods will become even more pronounced when

approaching increasingly more complex systems for which the computational burden

scales up very rapidly.

191

Table 5.14.: The incremental design results from the concatenation of NNs, compared

with the responses of the physical model and the target responses. (1): Responses of

the network using the designed metamaterial, and (2) Responses of the physical model

using the designed metamaterial. The incremental design leads to a metamaterial with

only 14 units instead of 20 units. (Assuming the objective is to design a metamaterial

to achieve the responses of Case 1, 3 and 5, boundary condition fixed at the right

end)

Case Parameter Unit (1) (2) Target responses

1
ur (nm) 0.0000 0.0000 0

Pr (N) 1.2087 1.2082 1.2087

3
ur (nm) -0.0027 -0.0027 0

Pr (N) 0.0530 0.0545 0.0530

5
ur (nm) -0.0001 -0.0004 0

Pr (N) 1.1049 1.1193 1.1049

Table 5.15.: The incremental design results from the concatenation of NNs, compared

with the responses of the physical model and the target responses. (1): Responses of

the network using the designed metamaterial, and (2) Responses of the physical model

using the designed metamaterial. The incremental design leads to a metamaterial with

only 15 units instead of 20 units. (Assuming the objective is to design a metamaterial

to achieve the responses of Case 2, 4 and 6, boundary condition free at the right end)

Case Parameter Unit (1) (2) Target responses

2
ur (nm) 0.2354 0.2354 0.2354

Pr (N) 0.0000 0.0007 0

4
ur (nm) -0.0020 -0.0014 0.0053

Pr (N) -0.0005 -0.0099 0

6
ur (nm) 0.0489 0.0491 0.0489

Pr (N) 0.0000 -0.0022 0

192

6. A PHYSICS-CONSTRAINED DEEP LEARNING

BASED APPROACH FOR MULTI-OBJECTIVE INVERSE

DESIGN OF ACOUSTIC WAVE SCATTERING

6.1 Introduction

6.1.1 Motivation and Relevant Works

Manipulation and design of acoustic and electromagnetic wave fields is the study

of controlling amplitude, phase, and propagation direction of waves. The common

approach to the design of wave fields is to use artificially designed material systems,

known as metamaterials and metasurfaces [380–386]. Manipulation of wave via meta-

materials introduced different features, that are unobtainable via a regular material,

such as minimizing wave scattering by an object to make it invisible to the incident

wave (cloaking) [381, 387], wave focusing [382, 383], and aligning the propagation di-

rection of the wave (collimation) [384, 385]. While some of these properties are the

result of a multi-material domain [388], some researchers utilize a tailored array of

scattering objects to design the wave propagation behavior in the material [384,389]

and fulfil the target properties. The traditional procedure of designing the scatterers

inside the material is performed by an optimization process [390–392]. This process

typically requires the iteration over a large parameter space to determine the optimum

material parameters, e.g location and geometry of scatterers inside the material, and

hence repeatedly solving the wave equation numerically. Thus, the design process

generally require a large amount of computational resources and time. Additionally,

as the complexity and dimension of the design parameter space increase, such as a

domain with an array of many scatterers, the chance of convergence to the optimal

solution for the conventional methodologies reduces. Therefore, it appears that novel,

193

efficient and reliable design approaches for acoustic wave control are still needed to

address these design challenges.

Recent advances in the capability of generating large datasets have opened the

era of Big Data. The idea of leveraging abundant information with the aid of ar-

tificial intelligence (AI) techniques have introduced more opportunities to develop

novel solutions for many application domains. In the field of material design, ma-

chine learning (ML) algorithms such as support vector machine [159, 160], artificial

neural network [12], decision tree [393], and the näıve Bayes [41] algorithms have been

widely used in material property predictions and new material discoveries [394]. For

instance, ML-based approaches for the material synthesis of layered double hydrox-

ide, battery materials, and thermoelectric materials are reviewed in [395]. In these

studies, the structures of materials are determined to satisfy the target material re-

actions. However, the selection of engineered features is necessary to transform the

target responses into a set of quantitative descriptors for processing, which limits

the generalization of these approaches. More recently, a lot of attention has been

given to research efforts dedicated to deep learning (DL) based approaches. One ma-

jor advantage of these approaches is the ability to extract meaningful features from

the raw data without human intervention, as opposed to the conventional ML-base

approaches. A well-known example is the development of deep convolution neural net-

works (CNN) that has led to breakthroughs in computer vision and natural language

processing [161, 162]. Another merit of deep neural networks (DNN) is the relieving

of computation burdens. Compared to optimization-based approaches which take

a prohibitive amount of time for every query, the design inference of DL-based ap-

proaches is quasi-instantaneous once the training process is completed. Moreover,

generative models such as auto-encoder [396], variational auto-encoder (VAE) [397],

and deep auto-encoder (DAE) [398] have enabled the learning of latent representa-

tions of the data. The latent representations are a form of abstract features derived

through training a network to reconstruct the inputs. Therefore, these representa-

tions approximate the distribution of the input data, and they can be employed to a

194

variety of inference tasks. A review of DL-based relevant works in material design is

provided as follows.

In nanophotonics research, DNN-based approaches have been proposed to de-

sign the materials that target to generate specific optical responses. The geometry

of the plasmonic nanostructures is determined based on a desirable far field opti-

cal spectrum [399]. Similarly, parameters that control the geometry of the chiral

metamaterial unit are estimated to satisfy a target optical reflection spectrum [366].

Using an adaptive DNN, the thickness of each nanostructure layer is determined to

achieve the given optical absorbance spectrum [400]. The topology pattern of a 2D

integrated nanophotonic Devices can be designed with DNN as well [401]. In addition

to deterministic approaches, the incorporation of generative models into the design

framework has revealed a great potential for material inverse design. An example is

the use of VAE to learn the latent distribution of the material geometries where the la-

tent features are employed to train the mapping between the target optical responses

and the material geometries [367]. Also, the geometry of the metasurface unit cell

can be retrieved based on generative models to satisfy the target optical transmission

spectra [402]. In terms of the manipulation of acoustic waves, a DAE-based approach

is proposed to design the geometry of phononic crystal that results in an anticipated

wave dispersion behavior [368].

In this work, a DAE-based approach is proposed to design the geometry of acoustic

wave scatterers that achieve the target downstream pressure fields at single or multi-

ple wave frequencies. Compared to the existing studies which only aim at 1D signal

of either optical responses or band gap distributions, the proposed approach tackles

a more sophisticated inverse design of the scatterers satisfying 2D target responses.

Instead of building separate networks, the proposed approach jointly optimizes a ge-

ometry estimator with a DAE that provides the estimator with physics constraints

during training. The DAE attempts to reconstruct the input target pressure field

while the geometry estimator leverages the latent representations of the target re-

sponses to design the scatterer geometry. Moreover, the existing studies solve the

195

inverse design that achieves only one objective (e.g., a specific optical response or

dispersion curve) at a time. The proposed approach, however, is able to design with

multiple objectives since the target downstream pressure fields of the same scatterer

geometry vary with the associated wave frequencies. This is referred to the situation

where a user specifies different preferences of target response at different wave fre-

quencies. In other words, multiple target responses exist when considering more than

one wave frequency. It is worth mentioning that this is the first demonstration of the

multi-objective inverse design of wave scatterers using DAE-based approaches. The

proposed approach is validated with numerical simulations, and design examples are

provided to further demonstrate the robustness of the proposed approach.

6.1.2 Contribution and Scope

This study presents a physics-constrained DAE-based approach to design the topo-

logical structures of materials based on the user-defined target downstream acoustic

pressure fields. The proposed approach integrates a DAE and a topology estimator to

solve the inverse design with aid of the latent representations of the target responses

learned by the DAE. By treating the full 2D target pressure fields as an input image,

the proposed approach builds a network that designs the topology of wave scatter-

ers and reconstructs the input pressure fields simultaneously. Once the network is

trained, individual material units can be designed with different geometries, and the

design phase is quasi-instantaneous. The proposed multi-objective design methodol-

ogy is applicable to numerous state of the art problems including but not limited to

holographic tweezers [403]and acoustic trap displays [404].

The rest of the paper is organized as follows. Section 6.2 describes the inverse

design problems interested in this study. Section 6.3 discusses the proposed method-

ology as well as the details of dataset generation and network training. Section 6.4

reports the results and the associated discussions. The concluding remarks and future

works are addressed in Section 6.5.

196

6.2 Problem Description

6.2.1 Acoustic Wave Scattering

Consider an acoustic source generating a plane wave that passes through a set of

wave scatterers, the objective is to design the topological structure of the scatterers

which leads to the user-defined downstream pressure fields. The target pressure fields

can be determined by the users based on the application of interest such as wave

focusing and cloaking. This falls into the domain of inverse design problems, in which

the problem involves a forward simulation and an inverse inference, as indicated in

Figure 6.1. The forward process takes a set of parameters such as material properties,

geometry or boundary conditions as input, and generates the output responses using

a mathematical model that typically is a finite element simulation. Given a set

of target responses such as vibration control, wave guide or impact reduction, the

corresponding input parameters can be achieved by solving the backward inference.
Inverse Design 2

Input parameters Mathematical
model Output responses

Inverse
design

Material properties
Geometry conditions
Boundary conditions

Finite element
simulations

Vibration control
Wave guide

Impact reduction

Fig. 6.1.: Inverse design problems.

Figure 6.2 shows two samples demonstrating the resulting downstream pressure

fields after the incident acoustic wave is scattered by the scatterers. The topological

structure of the material (i.e incident wave propagation medium) is defined as the

geometry of the wave scatterers. Given the user-defined target downstream pressure

fields, indicated by the dashed line region, the objective is to design the correspond-

ing shapes of the scatterer units that lead to the target downstream responses. In

197

this study the proposed DAE-based material design methodology is applied to three

different design scenarios:

1. One scatterer with single frequency: This scenario considers one scatterer, and

the acoustic source generates waves with one frequency. The design parameter

is one weight factor that controls the scatterer shape varying from a diamond

to a rectangle.

2. Quadruple scatterer with single frequency: This scenario increases the number

of scatterer from one to four, and the acoustic source generates waves with one

frequency. The design parameters are the geometric choices of each scatterer.

3. Quadruple scatterer with multiple frequencies: In this scenario, the acoustic

source is allowed to generate waves with different frequencies. Therefore, this

inverse problem is a multi-objective design task in which the geometry of the

scatterers must lead to all the target downstream responses induced by the

waves generated with different frequencies at the same time. The design pa-

rameters are the geometric choices of each scatterer.

These scenarios are designed to demonstrate the generalizability and robustness of

the proposed approach. While Scenario 1 targets the inverse problem of single scat-

tering, the complexity of the inverse design problem gradually increases with multiple

scatterers and wave frequencies being considered in Scenario 2 and 3.

6.2.2 Dataset Generation

Scenario 1

In this scenario, an incident plane wave with wavelength λ0 traveling in horizon-

tal direction x, is scattered by the a single scatterer. The center of this scatterer is

located at point (0, 0). The shapes are generated using non-uniform rational B-spline

(NURBS) [405] (see Appendix for the detailed formulation of NURBS) with quadratic

198

Fig. 6.2.: The inverse design problems considered in this study. Given the downstream

pressure fields indicated in dash lines, the objective is to retrieve the geometry of the

scatterers.

B-spline basis functions and knot vector (0, 0, 0, 0.25, 0.25, 0.5, 0.5, .75, .75, 1, 1, 1). The

coordinates of control points 1 to 9 (Figure 6.3) are x = [1, 1, 0,−1,−1,−1, 0, 1, 1]×λ0

and y = [0, 1, 1, 1, 0,−1,−1,−1, 0] × λ0, where the first and the last point have the

same coordinates. The weights of the control points 1 to 9 are defined by the vector

[1, w, 1, w, 1, w, 1, w, 1]. Hence, the weight factors of control points 1, 3, 5, 7, and 9

are fixed and set to 1. The value of w, which is the weight factor corresponding to

control points 2, 4, 6, and 8, ranges from 0 to 6√
2

and the associated shape gradually

varies from a diamond (Figure 6.3a), obtained by w = 0, to square which is obtained

by setting w = 6√
2

= 4.2426.

The scatterer length scale l0 is defined as the distance between the shape center

point (x, y) = (0, 0) and the control point 3. This control point is fixed and conse-

quently all of the shapes in this scenario have the same length scale equal to incident

wave wavelength, i.e l0 = λ0. It should be noted that, the parameter that controls

the scattering regime is the dimensionless size parameter β defined by:

β = l0k = l0
2πf

c
= l0

2π

λ0

(6.1)

199

where k is the wavenumber, f is the frequency, and c is the speed of the incident

wave. Since in Scenario 1 it is assumed that l0 = λ0, for any given incident wave

speed and frequency the value of β is fixed and equal to:

β = l0
2π

λ0

= λ0
2π

λ0

= 2π (6.2)

Thus, in this scenario the scattering regime is the same for all the scatterer shapes.

The values of λ0 and l0 are determined based on an arbitrary incident wave propaga-

tion domain properties and frequency. Without loss of generality, in this study it is

assumed that the incident wave is traveling with 5000 (Hz) frequency in air medium

in which the wave speed and density are 343.21 (m/s) and 1.24 (kg/m3), respec-

tively. Using the assumed frequency and wave speed, the wavelength is calculated as

λ0 = l0 = 0.0686 (m).

Fig. 6.3.: (a) Samples of scatterer shapes (solid line curves). Circular markers show

the NURBS control points and are connected with the dashed line. In Scenario 1, the

weight factor of control points 2,4,6 and 8 are changed to vary the scatterer shape

from diamond to square with round corners. (b) Shapes used in scenarios 2 and 3 at

scatterer locations 1 to 4. The scatterer geometry shown in this figure corresponds

to a configuration labeled as [1,2,3,4].

To generate the dataset that consists of different scatterer shapes, the weight factor

w ∈ [0, 4.2426] is uniformly divided into 42,000 steps and the corresponding shapes

are generated via NURBS approach. For each scatterer shape, the wave scattering is

200

simulated with the finite element method (FEM) in COMSOL Multiphysics software.

The real and imaginary parts of the downstream scattered wave field in the window

5.5λ0 ≤ x ≤ 22.5λ0 and −11.25λ0 ≤ y ≤ 11.25λ0 (illustrated by the dashed lines

in Figure 6.2) are saved using a 2D grid of size 210× 270. Note that the selection of

grid size depends on the wavelength. In this study, the grid size is chosen to ensure

that at least 10 data points per incoming wave wavelength in each x and y directions

exist to avoid any aliasing. Same logic applies to the data recording in Scenario 3

when considering multiple wave frequencies. The training dataset consists of 85%

randomly selected samples from the aforementioned dataset, and the remaining 15%

samples are used for testing.

Scenario 2

In this scenario, four scatterers exist in the field at locations 1 to 4 shown in

Figure 6.3(b). Discrete choices of scatterer geometry at each location are defined

using four basic shapes and three scaling factors. The basic scatterer shapes (i.e.,

circle, diamond, ellipse and star) are plotted in Figure 6.3(b), where the circle and

diamond are obtained by using w = 1√
2

and w = 0 in the shape configuration described

in Scenario 1. The ellipse is defined by horizontally scaling the circle by a factor of 0.5.

The star is obtained using the knot vector defined in scenario 1 using the control points

x = [1, 0.1, 0,−0.1,−1,−0.1, 0, 0.1, 1]×λ0, y = [0, 0.1, 1, 0.1, 0,−0.1,−1,−0.1, 0]×λ0,

and w = 1√
2
. All the basic objects have length scale λ0 and their centers are located

at a distance of 4λ0 from the origin in both x and y directions.

In this scenario, three scale factors s0 = 1.0, s1 = 1.25, and s2 = 0.8 are used to

scale the basic scatterer shapes, leading to 12 different shapes. By incorporating the

option of no scatterer, a total of 13 choices, labeled from 1 to 13, can be placed at

each scatterer location. The definition of labels and their corresponding shapes are

presented in Table 6.1. The wave scattering is simulated in COMSOL Multiphysics

using the domain parameters defined in Scenario 1. Also, the dataset is recorded

201

with the same scheme in Scenario 1. 85% of the total 134 = 28, 561 scatterer geom-

etry configurations are used for network training, and the rest 15% are employed for

testing.

Table 6.1.: Shape labels defined in Scenario 2 and 3 and their corresponding scale

factors. Label 5 refers to the condition in which no object exists at a scatterer location.

Scale factor 1.0 1.25 0.8

Circle 1 6 10

Ellipse 2 7 11

Diamond 3 8 12

Star 4 9 13

Scenario 3

In this scenario, all the conditions are the same as Scenario 2, except that the

incident wave frequency is allowed to have four different choices, leading to a multi-

objective inverse design problem. The frequencies are selected to cover from ultra-

low to ultra-high frequency ranges. Using l0 = 0.0686, that is the length scale of

basic shapes with unity scale factor, the size parameter β of the four frequencies

are set as β = 0.2513 (ultra-low), β = 1, β = 2π, and β = 5π (ultra-high). Using

air properties as the wave propagation medium, the corresponding incident wave

frequencies are 200 (Hz), 796 (Hz), 5000 (Hz), and 12500 (Hz), respectively. The

wave scattering is simulated for all the 134 scatterer configurations at all the four

frequencies to generate the dataset. The simulation procedure and the recording

of downstream pressure fields are identical to the previous scenario. Note that the

scattered field distributions shown in Figure 6.4 are significantly different among the

four frequencies. These variations in the pressure fields highly increase the complexity

of the material design problem. It is worth mentioning that these four frequencies

202

are selected to cover both low and high values of length scales for the purpose of

demonstration. The proposed approach in this study applies to any wave frequency

(i.e., size parameter β) combinations for other applications. Table 6.2 reports the

numbers of training, testing and total samples in design scenarios 1, 2 and 3.

Fig. 6.4.: The amplitudes of the scattered pressure fields at the four frequencies in

Scenario 3 for a scatterer configuration.

Table 6.2.: The number of training, testing, and total samples in each design scenario.

Scenario Training Testing Total

1 35,700 6,300 42,000

2 24,277 4,284 28,561

3 24,277 4,284 28,561

6.3 Methodology

6.3.1 The Proposed Approach

Given a target downstream pressure field to estimate the corresponding geometry

of the scatterers, the objective is to train an inverse model that consists of a geometry

estimator and a DAE. As shown in Figure 6.5, the DAE consists of an encoder and

a decoder, and it learns to reconstruct the input target pressure field [398]. The

geometry estimator and the decoder share the latent representations produced by the

encoder, and all the three components are optimized jointly during training. Denote

203

We, Wg and Wd as the parameter sets of the encoder, the geometry estimator and

the decoder, respectively. The training is achieved by solving the following equation:

arg min
We,Wg ,Wd

J1 (ŷs(We,Wg, yp), ys) + α · J2 (ŷp(We,Wd, yp), yp) (6.3)

where ŷs denotes the predicted scatterer geometry that is a function of We and Wg, ys

is the true value of the scatterer geometry, ŷp denotes the reconstructed downstream

pressure fields that is a function of We and Wd, yp is the input downstream pressure

field, J1(·) and J2(·) are the loss functions used for the geometry estimator and the

decoder, respectively, and α is a hyperparameter that controls the weighting between

J1(·) and J2(·) during joint training. It is worth mentioning that the training of such

a delicate network requires a thoughtful implementation in order to optimize the

geometry estimator and the DAE jointly. The encoder and decoder are implemented

using fully-convolutional network (FCN) [406, 407], and the geometry estimator is

implemented with fully-connected neural networks [12].

Compared to training a network with the encoder and the geometry estimator

alone, the proposed hybrid network learns the inverse inference with the reinforce-

ment of the encoder that generates the latent representations able to produce the

forward inference of the downstream pressure fields. In other words, the training of

the geometry estimator is guided by the constraints provided from the DAE. These

constraints are imposed based on the physics of the target pressure field. Although

the proposed approach is validated through the material design with acoustic waves,

it can be applied to the broad domain of other inverse design problems. The details

of network architecture and training are provided in the next section.

6.3.2 Network Training

Network input and output

A series of preliminary experiments have indicated that using purely the amplitude

of the downstream pressure fields as the input for the proposed hybrid network fails

204

Target response

Geometry estimator

Encoder

Decoder Target response

Fig. 6.5.: The proposed DAE-based approach trains the encoder, the decoder and

the geometry estimator jointly using the loss values computed from true labels of

scatterer geometries and input target responses.

to converge during training. Therefore, the inputs to the network are the real and

imaginary part of the pressure fields, which contain the information of both phase

and amplitude. Prior to training, the real and imaginary parts are scaled linearly to

[0, 1] according to their maximum and minimum values among all the pressure fields.

For Scenario 3, the pressure fields from the same wave frequency are scaled to [0, 1]

according to their maximum and minimum values in the associated frequency. The

resulting inputs to the network are two image channels of size 270×210×2 for design

scenarios 1 and 2. In design scenario 3, the inputs are eight image channels with size

270 × 210 × 8 corresponding to 200 (Hz), 796 (Hz), 5000 (Hz) and 12500 (Hz) wave

frequencies. The network output in design scenario 1 is a weight factor that controls

the shape of the single scatterer ranging from 0 to 4.2426. Note that the weight factor

is scaled to [0, 1] before training. In the testing phase, the network output is scaled

back accordingly for error quantification. For design scenarios 2 and 3, the geometry

estimator produces four categorical outputs that characterize the shapes of the four

scatterers. The dimension of the decoder output is identical to the input dimension

since the decoder attempts to reconstruct the input.

205

Network architecture

Table 6.3 reports the FCN architectures of the encoder and the decoder used in

this study. The encoder consists of five convolution layers and two pooling layers.

Accordingly, the decoder has five convolution transpose layers and two upsampling

layers. The convolution transpose layer applies an approximate deconvolution opera-

tion, and the upsampling layer uses bilinear interpolation to enlarge the feature maps

by a factor of 2 as opposed to the pooling operation. Each convolution or convolution

transpose layer is followed by the nonlinear ReLU activation layer. Depending on

the number of image channels of the target inputs, the number of kernel in the last

layer of the decoder is adjusted appropriately to reconstruct the inputs. In Scenario

3, the architectures of the encoder and the decoder are slightly tailored to account for

the large variations in the pressure fields generated with different wave frequencies.

Supported by a series of heuristic experiments, the number of kernels in Layer 1 of

the encoder and Layer 6 of the decoder has been increased from 64 to 256, allowing

a larger capacity for network learning.

The architectures of the geometry estimator are dependent on the geometric pa-

rameters to be estimated. For Scenario 1, the geometry estimator is a fully-connected

neural network that has two hidden layers with 70 and 60 hidden nodes in each hid-

den layer. The output layer is one node followed by the Sigmoid activation function

to estimate the weight factor. In Scenario 2 and 3, the geometry estimator has four

fully-connected neural networks that characterize the shape of the four scatterers sep-

arately. Each fully-connected neural network consists of two hidden layers with 18

and 15 hidden nodes, and the output layer has 13 nodes to estimate the probability

of each class out of the 13 choices of shapes as shown in Table 6.1.

To train the whole network jointly, it is noted that the hyperparameter α, shown

in Eq. (6.3), must be selected appropriately to control the weighting between the

loss values contributed from the geometry estimator and the decoder. For Scenario

1, the loss functions J1(·) and J2(·) are the same and the mean square error (MSE)

206

function is used to compute the loss. For Scenario 2 and 3, the loss function of the

geometry estimator J1(·) is the cross entropy loss function while the loss function of

the decoder J2(·) is the MSE function. To determine the α value for each design

scenario, a series of experiments have been conducted by tuning α with a factor of

10 to ensure the convergence of both the geometry estimator and the decoder. The

α value is set to 100 for Scenario 1 and 20 for Scenario 2 and 3. During training, the

stochastic gradient descent algorithm [308] is used to optimize the parameters of the

network with a learning rate 0.0001 and momentum 0.9. The training proceeds until

the loss values converge. The proposed network is implemented in Python 2 using

PyTorch [309] version 0.2 with CUDA 8.0, cuDNN 6.0.21, and Ubuntu 16.04. The

NVIDIA Titan X GPU, which has 3584 CUDA cores at a base clock rate of 1417

MHz and 12 GB GDDR5X memory, is used for network training.

Table 6.3.: The network architectures of the encoder and decoder. (Conv.: convolu-

tion; Conv. Trans.: convolution transpose.)

Encoder Decoder

Layer # Layer Kernel size # of kernel Layer Kernel size # of kernel

1 Conv. 3× 3 64 Conv. Trans. 3× 3 16

2 Conv. 3× 3 64 Upsampling - -

3 Pooling 2× 2 - Conv. Trans. 3× 3 32

4 Conv. 3× 3 32 Conv. Trans. 3× 3 64

5 Conv. 3× 3 16 Upsampling - -

6 Pooling 2× 2 - Conv. Trans. 3× 3 64

7 Conv. 3× 3 8 Conv. Trans. 3× 3 2 or 8

207

6.4 Results and Discussions

6.4.1 Scenario 1: One Scatterer with Single Frequency

Figure 6.6 shows the histogram of the errors between the predicted weight factors

and the target weight factors for the training and testing dataset. The mean and

standard deviation of the training errors are -0.0022 and 0.0707, respectively. For

testing errors, the mean and standard deviation are -0.0027 and 0.0714, respectively.

The similarity between the training and testing performance indicates that the net-

work learns to generalize well on the unseen data. Another interesting phenomenon

observed in Figure 6.6 is that both the training and testing error histograms have

a small flat region in the left tail of the distribution. This means that the network

has a slight tendency to underestimate the weight factor since the shapes of the scat-

terer vary much more when being generated with weight factors in [0, 2.8425] than

in [2.8425, 4.2426], as shown in Figure 6.7. Given the weight factor ranges from 0 to

4.2426, these error statistics suggest that more than 99.7% of the predictions from the

network achieve an estimation error within ±3× 0.07± 0.21, since the error distribu-

tions are more centered compared to the normal distributions shown with solid lines.

The normalized root mean square errors (RMSE) for training and testing data are

1.67% and 1.68%, respectively. These results confirm the outstanding performance of

the proposed approach in solving the inverse design.

Figure 6.8 depicts an example of the network inputs and the corresponding recon-

structed outputs by the proposed DAE. The reconstructed real and imaginary parts

of the downstream pressure fields match well with the network inputs. Using the real

and imaginary parts, the amplitudes of the pressure fields are computed and shown in

Figure 6.9, demonstrating a decent input field reconstruction performance achieved

by the DAE.

208

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Error

0

200

400

600

800

1000

1200

1400

1600

1800

In
s
ta

n
c
e

s

Training Error Histogram: Mean = -0.0022; Std. = 0.0707

Number of samples: 35700

(a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Error

0

50

100

150

200

250

300

350

400

450

In
s
ta

n
c
e

s

Test Error Histogram: Mean = -0.0027; Std. = 0.0714

Number of samples: 6300

(b)

Fig. 6.6.: Error histograms of (a) training dataset, and (b) testing dataset for esti-

mating the weight factors that control the shape of the scatterer in Scenario 1. (Std.:

standard deviation.). The solid line is the fitted normal distribution.

Fig. 6.7.: Variations in the scatterer shape versus the weight factor w in Scenario 1.

The markers shows the NURBS control points. For w > 2.8425, the scatterer shapes

change much less than the shapes generated in the range 0 6 w < 2.8425.

6.4.2 Scenario 2: Quadruple Scatterer with Single Frequency

In Scenario 2, the proposed approach predicts the shapes of four scatterers given

a target downstream pressure field. To evaluate the performance of the network, a

successful prediction is considered only when all the shapes of the four scatterers

209

Fig. 6.8.: Real and imaginary parts of a sample network input and the corresponding

reconstructed real and imaginary parts of the input pressure field in Scenario 1. (Unit:

Pa)

Fig. 6.9.: An sample of the input pressure field amplitude and its corresponding

reconstructed pressure field amplitude in Scenario 1. (Unit: Pa)

210

are predicted correctly by the network. In other words, even if only one of the

predicted scatterer shapes is predicted incorrectly, the prediction would be treated as

a failed design. Figure 6.10 shows the network inputs and the reconstructed outputs

obtained from the proposed DAE for a test sample. The reconstructed real and

imaginary parts of the pressure fields match well with the target inputs, and the

corresponding amplitudes of the pressure fields shown in Figure 6.11 also demonstrate

a high similarity between the original and the reconstructed pressure fields. Note that

the network is trained to reconstruct the real and imaginary parts of the pressure field,

not its amplitude. A small phase inconsistency between the two fields introduces

perturbations into the pressure amplitude fields. The proposed network achieves

99.1% and 95.5% accuracy in 24,277 training samples and 4,284 testing samples,

respectively.

Fig. 6.10.: Real and imaginary parts of a sample network input and the corresponding

reconstructed real and imaginary parts of the input pressure field in Scenario 2. (Unit:

Pa)

211

Fig. 6.11.: An example of the amplitude of input pressure field and the reconstructed

pressure field from a test sample in Scenario 2. (Unit: Pa)

6.4.3 Scenario 3: Quadruple Scatterer with Multiple Frequencies

In this section, a multi-objective inverse design problem is considered by pre-

dicting the shapes of the four scatterers that satisfy the target downstream responses

generated with four different wave frequencies (i.e., 200 (Hz), 796 (Hz), 5000 (Hz) and

12500 (Hz)) all at once. Figure 6.12 shows the network inputs and the reconstructed

outputs from the DAE using a test sample. The reconstructed real and imaginary

parts of the pressure field match well with the inputs even though the patterns of

data vary significantly from ultra-low to ultra-high wave frequencies. Figure 6.13

presents a respectable result of the reconstructed amplitudes of the pressure fields.

For all the four frequencies, the DAE captures the high amplitude signatures quite

well. However, small disturbances exist in low amplitude regions due to minor errors

in the reconstructed real and imaginary parts of the pressure field. Using the same

evaluation method described in Scenario 2, the proposed network achieves 100% and

99.9% accuracy in 24,277 training and 4,284 testing samples, respectively. Notice

that the proposed approach achieves higher accuracy in Scenario 3 than Scenario 2

212

since the network received more information contributed from more than one wave

frequency during training. In terms of costs in computation time after training, it

takes approximately 0.01 (hr) for the network to finish 30 design queries in CPU

mode. However, the genetic algorithm (GA), which is commonly used in conven-

tional design approaches, spends approximately 1.95 (hr) to finish the same 30 design

queries. Compared to GA, the proposed approach reduces the computation time by a

factor of 195 in design stage. For both GA and the proposed network, the computa-

tion time is reported using a Intel Xeon processor E52620 CPU, 2.1 GHz with 16 GB

RAM. The maximum value of generations and the population size for GA are both

set to 200 according to the suggestions provided in [358]. The results demonstrate

an outstanding performance of the network in predicting the topology of the wave

scatterers accurately and quasi-instantaneously.

6.4.4 Utilization of the Trained Network in Material Design Problem

In this section, application of the trained networks for material design problems

are discussed. Although the inverse design is demonstrated using only the network

trained in Scenario 3, same procedure applies when conducting material design in

other scenarios.

In the design phase, suppose a user attempts to design the shapes of the scatterers

that satisfy multiple given target responses, such as the multi-objective problem con-

sidered in Scenario 3. It is true that the user may or may not be aware of whether the

multiple target responses are resulted from a consistent scatterer configuration or not.

For instance, the desirable four target responses at different frequencies may come

from different scatterer configurations, e.g., [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], and

[13, 1, 2, 3] in Scenario 3. Such a case is then defined as “no physics-informed user de-

mands” since a consistent solution to the scatterer configuration might be physically

impossible. The proposed network, which is trained with consistent scatterer configu-

rations, is therefore established with target demands that are physics-informed. The

213

Fig. 6.12.: Real and imaginary parts of a sample network input and the corresponding

reconstructed real and imaginary parts of the input pressure field in Scenario 3. The

first and the third column are the real and imaginary parts of the input, respectively.

The second and the fourth column are the reconstructed real and imaginary parts of

the input, respectively. (Unit: Pa)

design capability of the proposed approach is demonstrated with these two types of

user demands by considering Scenario 3, which is the most sophisticated case, in the

next two sections.

Design with physics-informed user demands

To further evaluate how the proposed approach performs on the unseen data, a

new test dataset is created by varying the scale factors described in Section 6.2.2 to

generate new samples. Two scale factors are changed as s1 = 1.11 and s2 = 0.9,

resulting in eight new choices of shapes out of the original 13 choices. Using these

new shapes, a total of 1,000 target downstream pressure fields that have consistent

214

Fig. 6.13.: An example of the amplitudes of the input pressure field and the recon-

structed pressure field from a test sample in Scenario 3. (Unit: Pa)

solutions to the scatterer configuration are employed to evaluate the established net-

work discussed in Section 6.4.3. Noticing that the network is trained to predict the

original choices of shapes, it is anticipated that the scatterer configuration returned

by the network will be a near-optimal solution. This is analogous to real-world design

examples in which a factory only has a fixed choices of molds and the manufacturer at-

tempts to find the best choice to approximate the responses resulted from an unknown

mold. Using the predicted scatterer configuration from the network to generate the

downstream pressure fields, the prediction error ε is computed by summing up the

RMSE between the predicted and the target amplitudes of pressure fields at the four

frequencies. The confidence of the network performance is quantified by comparing

with the exhaustive search, or equivalently, the prediction errors calculated using the

total 28,561 combinations of the original scatterer configurations . Figure 6.14 shows

four samples of the error distributions computed with exhaustive search in four de-

sign cases. The solid line indicates the fitted normal distribution. In Figure 6.14(a)

215

and 6.14(b), the network returns the optimal scatterer configuration among all the

28,561 choices, leading to a minimum prediction error for the pressure fields. In Fig-

ure 6.14(c) and 6.14(d), two mediocre designs and the corresponding prediction errors

are illustrated with errors located in between the 10% and 25% error quantiles. By

locating the prediction error obtained from the network design in the distribution, the

confidence of the proposed network is evaluated by measuring how many times the

network leads to an error that is smaller than the 5%, 10% and 25% error quantiles

in all design cases. Among the 1,000 design cases, there are 991, 998 and 1,000 times

that the network achieves a prediction error less than the 5%, 10% and 25% quantiles,

respectively. This implies that there is a 99.1%, 99.8% and 100% probability that

the prediction errors from the network are smaller than the 5%, 10% and 25% error

quantiles, respectively, when the network deals with new and unseen datasets. This

demonstrates the generalization capability of the proposed approach when the user

demands are physics-informed.

Design with no physics-informed user demands

In this section, target responses originated from inconsistent scatterer configura-

tions are used to test the established network in Scenario 3. Although there exists no

physically possible solution to perfectly match with the target responses, the proposed

network could still manage to return a scatterer configuration that leads to superior

approximation in the predicted pressure fields. The target downstream pressure field

at each frequency is generated by using a randomly selected scatterer configuration

out of the total 28,561 combinations. Therefore, the target pressure fields at the

four frequencies correspond to four different scatterer configurations. Using the same

evaluation method described in the previous section, the prediction errors from the

network in 1,000 design cases are compared with the exhaustive search over the total

28,561 scatterer configurations. Among the 1,000 design cases, there are 345, 519

and 779 times that the network achieves prediction errors below the 5%, 10% and

216

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ε

0

200

400

600

800

1000

1200

1400

1600

In
s
ta

n
c
e

s

All combinations

Fitted distribution

Network design

5% quantile

10% quantile

25% quantile

(a)

0 0.2 0.4 0.6 0.8 1 1.2

ε

0

100

200

300

400

500

600

700

800

900

1000

In
s
ta

n
c
e

s

All combinations

Fitted distribution

Network design

5% quantile

10% quantile

25% quantile

(b)

0 0.2 0.4 0.6 0.8 1 1.2

ε

0

200

400

600

800

1000

1200

In
s
ta

n
c
e

s

All combinations

Fitted distribution

Network design

5% quantile

10% quantile

25% quantile

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ε

0

200

400

600

800

1000

1200

1400

In
s
ta

n
c
e

s

All combinations

Fitted distribution

Network design

5% quantile

10% quantile

25% quantile

(d)

Fig. 6.14.: Error distributions computed using the total 28,561 original scatterer

configurations for the four sample design cases: (a) and (b) are samples of scatterer

configuration returned by the network that have led to minimum prediction error ε ;

(c) and (d) are samples of the designed scatterer configuration where the associated

prediction error lies between 10% and 25% error quantile.

25% error quantiles, respectively. This suggests that although the network is trained

with the target responses generated with consistent scatterer configurations, there is

a 34.5%, 51.9% and 77.9% probability that the prediction errors from the network

are smaller than the 5%, 10% and 25% error quantiles, respectively, when receiving

217

random targets as inputs. These evidences further demonstrate the robustness and

flexibility of the proposed DAE-based approach.

6.4.5 Interpretation of the Trained Network

The interpretation of deep neural networks has been recognized as a challenging

task [279]. This section provides an insight into the functionality of the convolution

layers after the training is finished. Compared to the early layers in the network,

the deeper layers usually generate more abstract representations that are difficult to

interpret. Therefore, the first layer of the encoder and the last layer of the decoder

are selected to be investigated since the inputs of the former and the outputs of the

latter are known. In general, all the layers in the encoder and the decoder operate

with the principle of convolution:

Fi(x, y) =

NI∑
j=1

Kij(u, v) ∗ Ij(x, y)

=

NI∑
j=1

n∑
u=−n

n∑
v=−n

Kij(u, v)Ij(x− u, y − v) (6.4)

where Fi(x, y) is the ith feature map generated from the layer, NI is the number

of input channels of the layer, Ij(x, y) is the jth channel of the inputs, Kij(u, v)

is the jth channel of the ith kernel in the layer, x and y are the variables of the

spatial coordinates, and n is a positive integer determined from the size of the kernel.

Conceptually, each resulting feature map of the layer has an associated kernel. The

feature map is obtained from the channel-wise convolution between the inputs and

the kernel followed by a summation. For the first layer of the encoder, the kernels in

the convolution layer are not flipped:

Fi(x, y) =

NI∑
j=1

Kij(−u,−v) ∗ Ij(x, y)

=

NI∑
j=1

n∑
u=−n

n∑
v=−n

Kij(−u,−v)Ij(x− u, y − v) (6.5)

218

However, for the last layer of the decoder, the kernels in the convolution transpose

layer are flipped and hence lead to a valid convolution operation given in Eq. (6.4).

Using the network trained in Scenario 3, the interpretation of these two layers is

discussed below based on Eq. (6.4) and (6.5).

As shown in Figure 6.12, the first layer of the encoder takes eight channels of

inputs. A total of 256 feature maps are generated by 256 kernels, and each kernel has

eight channels of size 3× 3. Therefore, for this layer, NI = 8 and n = 1. According to

Eq. (6.5), the frequency response of the ith feature map, F{Fi(x, y)}, can be computed

using
∑NI

j=1F{Kij(−u,−v)}F{Ij(x, y)}. By investigating the frequency response of

the input and the kernel channel by channel, the resulting patterns of the feature map

can be inferred. Figure 6.15 shows the 43rd, 81st and 183rd feature map generated

from the first layer of the encoder using a test sample. These feature maps exhibit

patterns very similar to the 796 (Hz), 5000 (Hz) and 12500 (Hz) frequency input (i.e.,

shown in Figure 6.10), respectively. This indicates that the associated kernels must

extract primarily the pressure fields of a specific wave frequency. Figure 6.16 depicts

the frequency responses of the eight channels of the input and the 43rd, 81st and the

183rd kernel. The top and the bottom row of Figure 6.16(b) to 6.16(d) are associated

with the real and imaginary input channels, respectively. The frequency spectrum

is presented in wavenumber coordinates kx and ky, with kx = ky = ω/c = 2πf/c,

where c = 343.21 (m/s) is the wave speed. Note that Figure 6.16(a) is plotted in log-

amplitudes for better visualization. According to Figure 6.16(a) and 6.16(b), the 43rd

kernel mainly extracts the wavenumber signature possessed by the real part of the

796 (Hz) input, leading to a feature map that is dominated by the 796 (Hz) pressure

fields. On the other hand, as shown in Figure 6.16(c) and 6.16(d), the 81st and 183rd

kernel dominantly extract the real part of the 5000 (Hz) input and the imaginary

part of the 12500 (Hz) input, respectively. This demonstrates that after training, in

some cases, the kernels act as wavenumber band-pass filters to generate feature maps

composed of various wavenumber patterns.

219

For the last layer of the decoder, it is expected that the layer outputs would be

similar to the eight input channels of the encoder since the decoder is trained for

reconstruction. In this layer, there are 256 input feature maps and eight kernels

responsible for the resulting eight outputs. Each kernel has 256 channels of size 3×3.

Therefore, for this layer, NI = 256 and n = 1. Figure 6.17 shows the frequency

responses of the outputs that reconstruct the real part of the pressure fields for the

four wave frequencies. It is noted that the exhibited wavenumber signatures are

similar to the ones shown in the top row of Figure 6.16(a). To generate an output that

contains a specific wavenumber signature, an intuitive assumption would be that every

channel of the associated kernel learns to extract the particular wavenumber pattern

of the corresponding wave frequency from the 256 input feature maps. However, this

hypothesis turns out to be invalid after careful scrutiny. Instead, some channels of the

kernel extract the patterns that do not belong to the associated wave frequency, and

these irrelevant wavenumber patterns are cancelled out due to the coupling effects of

phase difference in the summation process. This phenomenon is demonstrated via the

frequency response of outputs computed with varying number of channels considered

in the kernel. By rearranging the order of the channels of the kernel based on their

maximum amplitudes in frequency spectrum, the output with varying number of

dominant channels is computed using:

F̂i(x, y) =

Nd∑
j=1

Kij(u, v) ∗ Ij(x, y) (6.6)

where Nd is the number of dominant channels being considered, and F̂i(x, y) is the

associated intermediate output computed using the Nd dominant channels out of

the total 256 channels of the kernel. It is noted that the computing of F̂i(x, y)

requires the retrieval of Kij(u, v) and Ij(x, y) from the network, and F̂i(x, y) should

be identical to the decoder output when Nd is set to 256. Figure 6.18 illustrates

the frequency responses of F̂i(x, y) computed with the number of dominant channels

varied at an increment of 32, using the kernel associated with the real part of 200

(Hz), 796 (Hz), 5000 (Hz) and 12500 (Hz) pressure fields, respectively. According to

220

Figure 6.18, the irrelevant wavenumber signatures are reduced and the corresponding

wavenumber signature are more prominent when computing F̂i(x, y) with increasing

Nd. The most visually recognizable one is the real part of the 12500 (Hz) pressure

fields shown in Figure 6.18(d), where other low frequency wavenumber signatures

are reducing and the 12500 (Hz) signature emerges more as Nd is increased. For

all the four frequencies, the frequency response of F̂i(x, y) becomes almost identical

to the ones shown in Figure 6.17 when Nd ≥ 160. As a result, after training, the

kernels in the last layer of decoder learn to preserve the significant wave patterns

corresponding to each wave frequency while eliminating the irrelevant wavenumber

signatures. Although the discussion here focuses on the real part of the pressure

fields, consistent observations are made for the outputs of imaginary parts as well.

(a) (b) (c)

Fig. 6.15.: (a) The 43rd, (b) the 81st and (c) the 183rd feature map generated from

the first layer of the encoder.

221

(a) (b)

(c) (d)

Fig. 6.16.: The frequency responses of the eight channels of (a) input, (b) the 43rd

kernel, (c) the 81st kernel and (d) the 183rd kernel, in the first layer of the encoder. The

top and the bottom row of (b) to (d) are associated with the real and imaginary input

channels shown in the top and the bottom row of (a), respectively. The frequency

responses of the channels of the kernel indicate the dominant wavenumber patterns

extracted from the input.

222

Fig. 6.17.: The frequency responses of the decoder outputs associated with the re-

constructed real part of the pressure fields in the last layer of the decoder.

(a) (b)

(c) (d)

Fig. 6.18.: The frequency responses of F̂i(x, y) computed with varying number of

dominant channels being considered, using the kernel associated with the real part of

(a) 200 (Hz), (b) 796 (Hz), (c) 5000 (Hz) and (d) 12500 (Hz) pressure fields.

223

6.5 Concluding Remarks

This study presents a physics-constrained DAE-based approach for multi-objective

inverse design of acoustic wave scatterers that lead to the target downstream pressure

fields. As the first demonstration of multi-objective inverse wave scattering applica-

tion, the proposed approach is validated through three design scenarios with varying

numbers of wave scatterers and wave frequencies. The proposed network succeeds

in decent training and testing performance for all the three scenarios. To further

evaluate how the network generalizes on the unseen data, a dataset generated with

new shapes of wave scatterers is used to produce additional design cases. Compared

with exhaustive search in the design space, the design confidence of the proposed

approach is quantified with statistic measures, and an outstanding performance is

achieved by the proposed network. Moreover, the proposed approach enables the

user to retrieve the scatterer geometry even when the target demands have no physi-

cally consistent solutions. The flexibility and the efficiency of the proposed approach

lead to a promising future in the community of acoustic wave scattering. Lastly, the

proposed DAE-based approach can be extended to other research domains with little

efforts. Future work will be dedicated to expanding the proposed approach with the

ability to design arbitrary geometries of the wave scatterers.

224

Appendix A: NURBS Description:

A Non-uniform rational basis spline (NURBS) curve C(t) is defined by

C(t) =
n∑
i=1

Ri,qPi; Ri,q =
ωiNi,q(t)∑n
i=1 ωiNi,q(t)

(6.7)

where ωi are the weight factors, Pi ∈ P = {P0,P1, ...,Pn} are the control points

with predefined (x, y) coordinates, q is the order, Ri,q is called the rational basis

function, and Ni,q(t) is the B-spline basis function of order q given by

Ni,0(t) =

1 ti ≤ t < ti+1 and ti < ti+1

0 otherwise

Ni,j(t) =
t− ti
ti+j − ti

Ni,j−1(t) +
ti + j + 1− t
ti+j+1 − ti + 1

Ni+1,j−1(t), j = 0, 1, 2, ..., q

(6.8)

where ti ∈ [0, 1] is the i-th member of a non-descending vector called knot vector

T = {t0, t1, ..., tm}, and the order q = m− n− 1. In order to find the coordinates of

N points that forms a specific shape, the range [t0, tm] is divided into N points and

substituted as t in Eq. 6.7.

225

7. SUMMARY AND FUTURE WORKS

7.1 Summary

This study proposes AI-based approaches for SHM applications and metamaterial

design. In Chapter 2, a comprehensive review for the state-of-the-art data fusion and

ML techniques are provided. The theoretical basis of each algorithm is reviewed, fol-

lowed by applications in SHM discussed in aspects of data source, underlying assump-

tions, and limitations. Challenges of each algorithm are addressed, and a roadmap is

provided for future research.

In Chapter 3, a deep CNN-based approach is proposed for structural dynamic

response estimation and system identification. Three case studies including a linear

SDOF system, a nonlinear SDOF system and a full-scale three-story MDOF steel

frame, are considered. Various cases of noise-contaminated signals are used in this

study, and the conventional MLP algorithm serves as a reference for the proposed

CNN approach. According to both the results from numerical simulations and exper-

imental data, the proposed CNN approach is able to predict the structural responses

accurately, and it is more robust against noisy data compared to the MLP algorithm.

Moreover, the physical interpretation of CNN model is discussed in the context of

structural dynamics. It is demonstrated that in some special cases the convolution

kernel has the capability of approximating the numerical integration operator, and the

convolution layers attempt to extract the dominant frequency signature observed in

the ideal target signal while eliminating the irrelevant information during the training

process.

Chapter 4 introduces a vision-based damage detection approach based on network

pruning and deep transfer learning for efficient inference in edge devices. Results from

comprehensive experiments on two pre-trained networks (i.e., VGG16 and ResNet18)

226

and two types of prevalent surface defects (i.e., crack and corrosion) are presented

and discussed in details with respect to damage detection performance, memory de-

mands, and the inference time for damage detection. The experiments show that by

using the NVIDIA Jetson TX2 GPU, simulating the on-board computing platform,

the approach achieves an inference time which is nine and four times faster than the

original VGG16 and ResNet18 networks, respectively. Furthermore, the network size

is reduced by 80% and 95% for the VGG16 and ResNet18 networks, respectively.

Cross-validation and stopping criterion for pruning are addressed, and an optimiza-

tion scheme is proposed for VGG16 feature extraction. Results demonstrate that

the proposed approach significantly enhances resource efficiency without decreasing

damage detection performance.

Chapter 5 proposes two design frameworks for periodic and non-periodic mate-

rials. Conventional material design processes are computationally intensive which

severely limits the possibility to explore the vast design space offered by engineered

materials. For the periodic material design, a RL-based framework is developed to

determine the material properties of a 1-dimensional diatomic lattice, given a user-

defined vibration characteristics in the frequency domain. Results from numerical

simulation show that the design error of the proposed approach is 0.56% compared

with the target values. Also, to address the randomness in the RL exploration, three

repeated trials are conducted where the achieved design errors are below 3%. Com-

pared to a conventional GA algorithm that requires 22, 600 executions of the forward

simulation, the proposed approach reaches the solution with only 691 executions,

which reduces 97% of the computation efforts. For the non-periodic material design,

a fully-connected NN is used to model the dynamic behavior the material unit. After

training, the same networks are concatenated to form a chain model of the meta-

material, and the material properties are treated as design parameters determined

by minimizing the differences between the estimated responses and the user-defined

target responses. This is the first demonstration of NN being used in the discretiza-

tion of a continuous media. With only one-time network training, the concatenated

227

networks accurately estimate the right-end responses of a bar consists of 20 units

without error propagation, indicating the scalability of the proposed approach when

designing a metamaterial made of numerous units. Moreover, the cross-section areas

of each material unit are designed to achieve a user-specified left-end and right-end

responses of the bar. Also, the proposed approach is demonstrated to design metama-

terials with less units by incrementally adding material units to satisfy the desirable

user tolerance in the response estimation.

In Chapter 6, a physics-constrained DAE based approach is developed to design

the geometry of acoustic wave scatterers that achieve user-defined target downstream

2D pressure fields. This is the first demonstration of the multi-objective inverse design

of wave scatterers using DAE-based approaches. By joint learning, the proposed

network leverages the latent representations of the target pressure fields to strengthen

the estimation of the scatterer geometry. In the most sophisticated design scenario

(i.e., Scenario 3), the proposed approach achieves 99.91% accuracy in testing samples.

To further evaluate how the network generalizes on the unseen dataset, a new dataset

with new shapes of wave scatterers is generated. Compared with the exhaustive

search over all choices of scatterer configuration, the proposed approach achieves

99.1%, 99.8% and 100.0% probability that the design returned by the network is

superior to 95%, 90% and 75% choices of all configurations. Furthermore, the kernels

of DAE are interpreted mathematically using the principle of convolution. In the

first layer of the encoder, it is found that the kernels in the convolution layer serve as

wavenumber bandpass filters to extract the characteristics of different wave frequency

inputs. In the last layer of the decoder, the kernels in the convolution transpose layer

attempt to reconstruct the target pressure fields. As a result, the kernels learn to

preserve the significant wave patterns corresponding to each wave frequency while

eliminating the irrelevant wavenumber signatures.

228

7.2 Future Works

In this dissertation, novel solutions to applications in SHM and metamaterial de-

sign are developed based on the state-of-the-art AI and ML techniques. Although the

proposed approaches are demonstrated to be more robust against conventional tools,

there still exists interesting and yet challenging problems that need to be addressed

in future research. In this section, a roadmap for future works that may benefit the

SHM and material design research communities is presented.

First of all, one major concern for data-driven approaches is whether these ap-

proaches are indeed able to generalize well and conduct prediction using new data.

In SHM applications, it is common that the ML models are trained with a predefined

damage scenarios and evaluated using data that belong to these scenarios. However,

the damage patterns could vary case by case in practice. It is therefore reasonable to

question the performance of the trained models when receiving new data that come

from a damage scenario not considered during training. In other words, how the

established models can be effectively augmented with these data remains an open

question. Moreover, one should consider where the knowledge in physics stands in

a decision making framework or how the physics reasoning can potentially be ben-

eficial for AI-based approaches. Since the training of a deep network relies on high

dimensional optimization that typically has no unique solution to the training param-

eters, a physics-guided optimization method can generate a better network. Also, the

incorporation of physics models into data-driven based approaches may be favored

in prognostic tasks such as the estimation of remaining service life of civil infras-

tructure. A hybrid approach that integrates data-enabled and physics-informed ap-

proaches needs further investigation. In addition, the metamaterial design approaches

developed in this dissertation are demonstrated with one dimensional metamaterials.

Extensions of the proposed approach are necessary to account for more complex cases

and geometric conditions. Lastly, although this dissertation manages to provide an

interpretation of deep neural networks, the discussions and mathematical derivations

229

are limited to one or two layers. The interpretation of intermediate layers or deep

layers still remains challenging due to the lack of more powerful mathematical tools

to express the interconnecting relationships between the layers. As a result, more

explorations in deep neural networks is another future intriguing research topic.

REFERENCES

230

REFERENCES

[1] M. R. Jahanshahi, “Vision-based studies for structural health monitoring and
condition assessment,” Ph.D. dissertation, University of Southern California,
2011.

[2] ASCE, “2017 report card for america’s infrastructure,” 2017.

[3] M. H. Rafiei, W. Khushefati, R. Demirboga, and H. Adeli, “Supervised deep
restricted boltzmann machine for estimation of concrete compressive strength,”
ACI Materials Journal, vol. 114, no. 2, pp. 237–244, 2017.

[4] M. H. Rafiei and H. Adeli, “A novel machine learning based algorithm to detect
damage in highrise building structures,” The Structural Design of Tall and
Special Buildings, vol. 26, no. 18, p. DOI: 10.1002/tal.1400, 2017.

[5] X. Kong and J. Li, “Vision-based fatigue crack detection of steel structures using
video feature tracking,” Computer-Aided Civil and Infrastructure Engineering,
vol. 33, no. 9, p. 783–799, 2018.

[6] H. Qarib and H. Adeli, “Recent advances in health monitoring of civil struc-
tures,” Scientia Iranica - Transaction A: Civil Engineering, vol. 21, no. 6, pp.
1733–1742, 2014.

[7] S. W. Park, H. S. Park, J. Kim, and H. Adeli, “3d displacement measurement
model for health monitoring of structures using a motion capture system,”
Measurement, vol. 59, pp. 352–362, 2015.

[8] J. Amezquita-Sanchez and H. Adeli, “Synchrosqueezed wavelet transform-
fractality model for locating, detecting, and quantifying damage in smart high-
rise building structures,” Smart Materials and Structures, vol. 24, p. 065034,
2015.

[9] Z. Li, H. Park, and H. Adeli, “New method for modal identification and
health monitoring of superhighrise building structures using discretized syn-
chrosqueezed wavelet and hilbert transforms,” The Structural Design of Tall
and Special Buildings, vol. 26, no. 3, p. DOI: 10.1002/tal.1312, 2017.

[10] B. K. Oh, K. Kim, Y. Kim, H. S. Park, and H. Adeli, “Evolutionary learning
based sustainable strain sensing model for structural health monitoring of high-
rise buildings,” Applied Soft Computing, vol. 58, pp. 576–585, 2017.

[11] M. Abdelbarr, Y. L. Chen, M. R. Jahanshahi, S. F. Masri, W.-M. Shen,
and U. A. Qidwai, “3d dynamic displacement-field measurement for structural
health monitoring using inexpensive RGB-d based sensor,” Smart Materials
and Structures, vol. 26, no. 12, p. 125016, nov 2017.

231

[12] I. A. Basheer and M. Hajmeer, “Artificial neural networks: fundamentals, com-
puting, design, and application,” Journal of Microbiological Methods, vol. 43,
no. 1, pp. 3–31, 2000.

[13] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and
time-series,” in The Handbook of Brain Theory and Neural Networks, 1995.

[14] R. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The
MIT Press, 1998.

[15] S. F. Masri, M. Nakamura, A. G. Chassiakos, and T. K. Caughey, “Neural
network approach to detection of changes in structural parameters,” JOURNAL
OF ENGINEERING MECHANICS, vol. 122, no. 4, pp. 350–360, 1996.

[16] J. Tang, D. Sun, S. Liu, and J. L. Gaudiot, “Enabling deep learning on iot
devices,” Computer, vol. 50, no. 10, pp. 92–96, 2017.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016.

[18] D. C. Verma and G. D. Mel, “Measures of network centricity for edge deploy-
ment of iot applications,” 2017 IEEE International Conference on Big Data
(Big Data), no. 10.1109/BigData.2017.8258505, 2017.

[19] M. R. Jahanshahi, W.-M. Shen, T. G. Mondal, M. Abdelbarr, S. F. Masri, and
U. A. Qidwai, “Reconfigurable swarm robots for structural health monitoring:
a brief review,” International Journal of Intelligent Robotics and Applications,
vol. 1, no. 3, pp. 287–305, 2017.

[20] M. R. Jahanshahi, F.-C. Chen, A. Ansar, C. Padgett, D. Clouse, and D. Bayard,
“Accurate and robust scene reconstruction in the presence of misassociated
features for aerial sensing,” Journal of Computing in Civil Engineering, vol. 31,
11 2017.

[21] T. G. Mondal and M. R. Jahanshahi, “Autonomous vision-based damage
chronology for spatiotemporal condition assessment of civil infrastructure using
unmanned aerial vehicle,” Smart Structures and Systems, vol. 25, pp. 733–749,
06 2020.

[22] T. G. Mondal, M. R. Jahanshahi, R.-T. Wu, and Z. Y. Wu, “Deep learning-
based multi-class damage detection for autonomous post-disaster reconnais-
sance,” Structural Control and Health Monitoring, vol. 27, no. 4, p. e2507,
2020, e2507 stc.2507.

[23] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” arXiv preprint, no.
arXiv:1611.06440v2, 2017.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint, no. arXiv:1409.1556, 2014.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” arXiv preprint, no. arXiv:1512.03385, 2015.

232

[26] R.-T. Wu, A. Singla, M. R. Jahanshahi, E. Bertino, B. J. Ko, and D. Verma,
“Pruning deep convolutional neural networks for efficient edge computing in
condition assessment of infrastructures,” Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 34, no. 9, pp. 774–789, 2019.

[27] R.-T. WU, A. SINGLA, M. Jahanshahi, and E. Bertino, “Pruning deep neural
networks for efficient edge computing in internet of things: A structural health
monitoring case study,” 11 2019.

[28] C. R. Farrar and K. Worden, “An introduction to structural health monitoring,”
Philosophical Transactions of the Royal Society, A, vol. 365, pp. 303–315, 2007.

[29] M. R. Jahanshahi, F. Jazizadeh, S. F. Masri, and B. Becerik-Gerber, “Unsu-
pervised approach for autonomous pavement-defect detection and quantification
using an inexpensive depth sensor,” Journal of Computing in Civil Engineering,
vol. 27, no. 6, pp. 743–754, November 2013.

[30] Y. Mizuno, M. Abe, Y. Fujino, and M. Abe, “Development of interactive sup-
port system for visual inspection of bridges,” Proceedings of SPIE - The Inter-
national Society for Optical Engineering, vol. 4337, pp. 155–166, March 2001.

[31] A. Mahmoudzadeh, A. Golroo, M. R. Jahanshahi, and S. F. Yeganeh, “Esti-
mating pavement roughness by fusing color and depth data obtained from an
inexpensive rgb-d sensor,” Sensors, vol. 19, no. 7, 2019.

[32] S. F. Yeganeh, A. Golroo, and M. R. Jahanshahi, “Automated rutting mea-
surement using an inexpensive rgb-d sensor fusion approach,” Journal of Trans-
portation Engineering, Part B: Pavements, vol. 145, no. 1, p. 04018061, 2019.

[33] D. L. Hall and J. Llinas, “An introduction to multi-sensor data fusion,” Proc.
IEEE, vol. 85, pp. 6–23, 1997.

[34] E. Waltz and J. Llinas, “Multisensor data fusion (vol. 685),” Boston: Artech
house, 1990.

[35] M. E. Liggins, D. L. Hall, and J. Llinas, Multisensor data fusion: Theory and
practice., 2nd ed. Boca Raton, FL: CRC Press., 2009.

[36] N.-E. E. Faouzi, H. Leung, and A. Kurian, “Data fusion in intelligent trans-
portation systems: Progress and challenges-a survey,” Information Fusion,
vol. 12, pp. 4–10, 2011.

[37] D. L. Hall and J. Llinas, “Handbook of multisensor data fusion,” CRC Press
LLC, 2001.

[38] I. Lopez and N. Sarigul-Klijn, “A review of uncertainty in flight vehicle struc-
tural damage monitoring, diagnosis and control: Challenges and opportunities,”
Progress in Aerospace Sciences, vol. 46, pp. 247–273, 2010.

[39] J. Llinas and D. L. Hall, “An introduction to multi-sensor data fusion,” Circuits
and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International
Symposium on, vol. 6, 1998.

[40] J. Hu, Data Fusion: A First Step in Decision Informatics. Proquest, Umi
Dissertation Publishing, 2011.

233

[41] L. A. Klein, Sensor and Data Fusion: A Tool for Information Assessment and
Decision Making, 2nd ed. SPIE Press, 2012.

[42] M. N. Chatzis, E. N. Chatzi, and A. W. Smyth, “On the observability and iden-
tifiability of nonlinear structural and mechanical systems,” Structural Control
and Health Monitoring, vol. 22, no. 3, p. 574–593, 2015.

[43] M. G. Kogan, W.-Y. Kim, Y. Bock, and A. W. Smyth, “Load response on a large
suspension bridge during the nyc marathon revealed by gps and accelerometers,”
Seismological Research Letters, vol. 79, no. 1, p. 12–19, 2008.

[44] E. N. Chatzi and A. W. Smyth, “The unscented kalman filter and particle
filter methods for nonlinear structural system identification with non-collocated
heterogeneous sensing,” Structural Control and Health Monitoring, vol. 16, p.
99–123, 2009.

[45] D. D. Freedman and P. A. Smyton, “Overview of data fusion activities,” Amer-
ican Control Conference, IEEE, 1993.

[46] R. C. Gonzalez and R. E. Woods, “Digital image processing,” Addison-Wesley,
Reading, vol. 302, 1993.

[47] L. G. Brown, “A survey of image registration techniques,” ACM Computing
Surveys, vol. 24, no. 4, p. 325–376, 1992.

[48] Z. Liu, D. S. Forsyth, J. P. Komorowski, K. Hanasaki, and T. Kirubarajan,
“Survey: State of the art in nde data fusion techniques,” Instrumentation and
Measurement, vol. 56, no. 6, p. 2435–2451, 2007.

[49] M. E. Liggins, D. L. Hall, and J. Llinas, “Handbook of multisensor data fusion:
theory and practice,” CRC Press, 2017.

[50] F. C. Chen and M. R. Jahanshahi, “Nb-cnn: Deep learning-based crack detec-
tion using convolutional neural network and näıve bayes data fusion,” IEEE
Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4392–4400, 2018.

[51] J. Bernardo and A. Smith, Bayesian Theory. Wiley, Chichester, 1994.

[52] J. K. Ghosh, M. Delampady, and T. Samanta, An Introduction to Bayesian
Analysis Theory and Methods. Springer, 2006.

[53] K.-V. Yuen, Bayesian Methods for Structural Dynamics and Civil Engineering.
John Wiley & Sons, 2010.

[54] F. Jalayer, R. D. Risi, and G. Manfredi, “Bayesian cloud analysis: efficient
structural fragility assessment using linear regression,” Bulletin of Earthquake
Engineering, vol. 13, p. 1183–1203, 2015.

[55] J. L. Beck and L. S. Katafygiotis, “Updating models and their uncertainties.
i: Bayesian statistical framework,” Journal of Engineering Mechanics, vol. 124,
no. 4, p. 455–461, 1998.

[56] D. V. Lindley, “Introduction to probability and statistics from a bayesian view-
point,” Cambridge University Press, 1965.

234

[57] J. L. Beck and S.-K. Au, “Bayesian updating of structural models and reliability
using markov chain monte carlo simulation,” Journal of Engineering Mechanics,
vol. 128, no. 4, p. 380–391, 2002.

[58] J. Ching, M. Muto, and J. L. Beck, “Bayesian linear structural model updating
using gibbs sampler with modal data,” Proceedings of the 9th International
Conference on Structural Safety and Reliability, pp. 2609–2616, 2005.

[59] ——, “Structural model updating and health monitoring with incomplete modal
data using gibbs sampler,” Comput.-Aided Civ. Inf., vol. 21, no. 4, p. 242–257,
2006.

[60] J. L. Beck, “Bayesian system identification based on probability logic,” Struc-
tural Control and Health Monitoring, vol. 17, p. 825–847, 2010.

[61] M. W. Vanik, J. L. Beck, and S. K. Au, “Bayesian probabilistic approach
to structural health monitoring,” Journal of Engineering Mechanics, vol. 126,
no. 7, pp. 738–745, 2000.

[62] J. L. Beck, S. K. Au, and M. W. Vanik, “Monitoring structural health using a
probabilistic measure,” Computer-Aided Civil and Infrastructure Engineering,
vol. 16, pp. 1–11, 2001.

[63] C. Papadimitriou, J. L. Beck, and L. S. Katafygiotis, “Updating robust relia-
bility using structural test data,” Probabilistic Engineering Mechanics, vol. 16,
pp. 103–113, 2001.

[64] K.-V. Yuen, S. K. Au, and J. L. Beck, “Two-stage structural health monitoring
approach for phase i benchmark studies,” Journal of Engineering Mechanics,
vol. 130, no. 1, pp. 16–33, 2004.

[65] K.-V. Yuen, J. L. Beck, and L. S. Katafygiotis, “Efficient model updating and
health monitoring methodology using incomplete modal data without mode
matching,” Structural Control and Health Monitoring, vol. 13, p. 91–107, 2006.

[66] M. Muto and J. L. Beck, “Bayesian updating and model class selection for
hysteretic structural models using stochastic simulation,” Journal of Vibration
and Control, vol. 14, no. 1-2, p. 7–34, 2006.

[67] E. Ntotsios, C. Papadimitriou, P. Panetsos, G. Karaiskos, K. Perros, and
P. C. Perdikaris, “Bridge health monitoring system based on vibration mea-
surements,” Bulletin of Earthquake Engineering, vol. 7, p. 469–483, 2009.

[68] C. Papadimitriou and E. Ntotsios, “Bayesian methodology for structural dam-
age identification and reliability assessment,” 3rd International Operational
Modal Analysis Conference, 2009.

[69] T.-K. Lin, L.-C. Yu, C.-H. Ku, K.-C. Chang, and A. Kiremidjian, “Implemen-
tation of a bio-inspired two-mode structural health monitoring system,” Smart
Structures and Systems, vol. 8, no. 1, p. 119–137, 2011.

[70] B. A. Zárate, J. M. Caicedo, J. Yu, and P. Ziehl, “Bayesian model updating and
prognosis of fatigue crack growth,” Engineering Structures, vol. 45, pp. 53–61,
2012.

235

[71] M. Gobbato, J. P. Conte, J. B. Kosmatka, and C. R. Farrar, “A reliability-
based framework for fatigue damage prognosis of composite aircraft structures,”
Probabilistic Engineering Mechanics, vol. 29, pp. 176–188, 2012.

[72] M. Gobbato, J. B. Kosmatka, and J. P. Conte, “A recursive bayesian approach
for fatigue damage prognosis: An experimental validation at the reliability com-
ponent level,” Mechanical Systems and Signal Processing, vol. 45, pp. 448–467,
2014.

[73] V. H. Jaramilloa, J. R. Ottewilla, R. Dudek, D. Lepiarczyk, and P. Pawlik,
“Condition monitoring of distributed systems using two-stage bayesian inference
data fusion,” Mechanical Systems and Signal Processing, vol. 87, pp. 91–110,
2016.

[74] M. Rabiei and M. Modarres, “A recursive bayesian framework for structural
health management using online monitoring and periodic inspections,” Relia-
bility Engineering and System Safety, vol. 112, pp. 154–164, 2013.

[75] D. Zonta, F. Bruschetta, R. Zandonini, M. Pozzi, M. Wang, B. Glisic, D. In-
audi, D. Posenato, and Y. Zhao, “Sensor fusion on structural monitoring data
analysis: Application to a cable-stayed bridge,” Key Engineering Materials, vol.
569-570, pp. 812–819, 2013.

[76] H. F. Lam, H. Y. Peng, and S. K. Au, “Development of a practical algorithm
for bayesian model updating of a coupled slab system utilizing field test data,”
Engineering Structures, vol. 79, p. 182–194, 2014.

[77] L. F. Ramos, T. Miranda, M. Mishra, F. M. Fernandes, and E. Manning, “A
bayesian approach for ndt data fusion: The saint torcato church case study,”
Engineering Structures, vol. 84, pp. 120–129, 2015.

[78] G. Yan and J. Tang, “A bayesian approach for localization of acoustic emis-
sion source in plate-like structures,” Mathematical Problems in Engineering, no.
247839, 2015.

[79] W. Wang, A. Joshi, N. Tirpankar, P. Erickson, M. Cline, P. Thangaraj, and
T. C. Henderson, “Bayesian computational sensor networks: Small-scale struc-
tural health monitoring,” ICCS 2015 International Conference On Computa-
tional Science, vol. 51, pp. 2603–2612, 2015.

[80] H. Sun and R. Betti, “A hybrid optimization algorithm with bayesian inference
for probabilistic model updating,” Computer-Aided Civil and Infrastructure En-
gineering, vol. 30, p. 602–619, 2015.

[81] H. Sun and O. Büyüköztürk, “Identification of traffic-induced nodal excita-
tions of truss bridges through heterogeneous data fusion,” Smart Materials and
Structures, vol. 24, p. 075032, 2015.

[82] S. K. Au, “Fast bayesian fft method for ambient modal identification with
separated modes,” Journal of Engineering Mechanics, vol. 137, no. 3, pp. 214–
226, 2011.

[83] K. V. Yuen and L. S. Katafygiotis, “Bayesian fast fourier transform approach
for modal updating using ambient data,” Advances in Structural Engineering,
vol. 6, no. 2, p. 81–95, 2003.

236

[84] S. K. Au and F. L. Zhang, “Fast bayesian ambient modal identification incor-
porating multiple setups,” Journal of Engineering Mechanics, vol. 138, no. 7,
pp. 800–815, 2012.

[85] F.-L. Zhang, S.-K. Au, and H.-F. Lam, “Assessing uncertainty in operational
modal analysis incorporating multiple setups using a bayesian approach,” Struc-
tural Control and Health Monitoring, vol. 22, p. 395–416, 2015.

[86] F.-L. Zhang and S.-K. Au, “Fundamental two-stage formulation for bayesian
system identification, part ii: Application to ambient vibration data,” Mechan-
ical Systems and Signal Processing, vol. 66-67, p. 43–61, 2016.

[87] S. K. Au and Y.-C. Ni, “Fast bayesian modal identification of structures us-
ing known single-input forced vibration data,” Structural Control and Health
Monitoring, vol. 21, p. 381–402, 2014.

[88] W.-J. Yan and L. S. Katafygiotis, “Application of transmissibility matrix and
random matrix to bayesian system identification with response measurements
only,” Smart Materials and Structures, vol. 25, no. 105017, 2016.

[89] F. C. Chen, M. R. Jahanshahi, R. T. Wu, and C. Joffe, “A texture-based
video processing methodology using bayesian data fusion for autonomous crack
detection on metallic surfaces,” Computer-Aided Civil and Infrastructure Engi-
neering, vol. 32, p. 271–287, 2017.

[90] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, p. 971–987,
2002.

[91] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, p. 273–297, 1995.

[92] Y. Huang, J. L. Beck, and H. Li, “Bayesian system identification based on
hierarchical sparse bayesian learning and gibbs sampling with application to
structural damage assessment,” Comput. Methods Appl. Mech. Engrg., vol. 318,
p. 382–411, 2017.

[93] S. Geman and D. Geman, “Stochastic relaxation, gibbs distribution and the
bayesian restoration of images,” IEEE Trans. Pattern Anal., vol. 6, p. 721–741,
1984.

[94] S. E. Minson, S. Wu, J. L. Beck, and T. H. Heaton, “Combining multiple
earthquake models in real time for earthquake early warning,” Bulletin of the
Seismological Society of America, vol. 107, no. 4, p. 1868–1882, 2017.

[95] X. E. Gross, “NDT data fusion,” 1997.

[96] N. Brierley, T. Tippetts, and P. Cawley, “Data fusion for automated non-
destructive inspection,” Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, vol. 470, no. 2167, 2014.

[97] BSSC, NEHRP guidelines for the seismic rehabilitation of buildings. Washing-
ton, D.C.: FEMA-273, 1997.

237

[98] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
J. Basic Eng., vol. 82, no. 1, pp. 35–45, 1960.

[99] R. Faragher, “Understanding the basis of the kalman filter via a simple and
intuitive derivation,” IEEE Signal Process. Mag., vol. 29, no. 5, pp. 128–132,
2012.

[100] A. H. Jazwinski, “Stochastic processes and filtering theory,” San Diego, CA:
Academic, 1970.

[101] E. H. W. Sorenson, “Kalman filtering: Theory and application,” Piscataway,
NJ: IEEE, 1985.

[102] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”
PROCEEDINGS OF THE IEEE, vol. 92, no. 3, p. 401–422, 2004.

[103] A. W. Smyth, T. Kontoroupi, and P. T. Brewick, “Efficient data fusion and
practical considerations for structural identification,” CISM International Cen-
tre for Mechanical Sciences, vol. 567, pp. DOI: 10.1007/978–3–319–32 077–9 2,
2016.

[104] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman fil-
ter to nonlinear systems,” Proceedings of the International Symposium on
Aerospace/Defense Sensing, Simulation and Controls, p. 32, 1991.

[105] P. D. Moral, “Non linear filtering: Interacting particle solution,” Markov Pro-
cesses and Related Fields, vol. 2, no. 4, p. 555–580, 1996.

[106] J. S. Liu and R. Chen, “Sequential monte carlo methods for dynamic systems,”
Journal of the American Statistical Association, vol. 93, no. 443, p. 1032–1044,
1998.

[107] T. Khan, P. Ramuhalli, and S. C. Dass, “Particle-filter-based multisensor fusion
for solving low-frequency electromagnetic nde inverse problems,” Instrumenta-
tion and Measurement, IEEE Transactions, vol. 60, no. 6, p. 2142–2153, 2011.

[108] P.-T. Liu, F. Li, and H. Xiao, “A state decoupling approach to estimate unob-
servable tracking systems,” IEEE J. Oceanic Eng., vol. 21, no. 3, pp. 256–259,
1996.

[109] M. N. Chatzis, E. N. Chatzi, and S. Triantafyllou, “A discontinuous extended
Kalman filter for non-smooth dynamic problems,” Mechanical Systems and Sig-
nal Processing, vol. 92, pp. 13–29, 2017.

[110] M. N. Chatzis and E. N. Chatzi, “A discontinuous unscented Kalman filter for
non-smooth dynamic problems,” Front. Built Environ., vol. 3, no. 56, pp. 1–15,
2017.

[111] A. Smyth and M. Wu, “Multi-rate kalman filtering for the data fusion of dis-
placement and acceleration response measurements in dynamic system moni-
toring,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 706–723,
2007.

[112] H. Tan, A. M. Wilson, and J. Lowe, “Measurement of stride parameters using a
wearable gps and inertial measurement unit,” Journal of Biomechanics, vol. 41,
no. 7, p. 1398–1406, 2008.

238

[113] F. Caron, E. Duflos, E. Pomorski, and P. Vanheeghe, “Gps/imu data fusion
using mutli-sensor kalman filtering: introduction of contextual aspects,” Infor-
mation Fusion, vol. 7, p. 221–230, 2006.

[114] C. C. Chang and X. H. Xiao, “Accurate displacement measurement from fusion
of vision-based displacement and acceleration with Kalman filter,” 20th Int.
Conf. on Adaptive Structures and Technologies, 2009.

[115] J. N. Yang, S. Lin, H. Huang, and L. Zhou, “An adaptive extended kalman filter
for structural damage identification,” Structural Control and Health Monitoring,
vol. 13, no. 4, p. 849–867, 2006.

[116] J. N. Yang, S. Pan, and H. Huang, “An adaptive extended kalman filter for
structural damage identifications ii: unknown inputs,” Structural Control and
Health Monitoring, vol. 14, no. 3, p. 497–521, 2007.

[117] M. Wu and A. W. Smyth, “Application of the unscented Kalman filter for real-
time nonlinear structural system identification,” Structural Control and Health
Monitoring, vol. 14, p. 971–990, 2007.

[118] Y. K. Wen, “Method for random vibration of hysteretic systems,” Journal of
the Engineering Mechanics Division, vol. 102, no. 2, pp. 249–263, 1976.

[119] R. van der Merwe and E. Wan, “Gaussian mixture sigma-point particle fil-
ters for sequential probabilistic inference in dynamic state-space models,” In
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2003.

[120] Y. Bock, D. Melgar, and B. W. Crowell, “Real-time strong-motion broadband
displacements from collocated GPS and accelerometers,” Bulletin of the Seis-
mological Society of America, vol. 101, no. 6, p. 2904–2925, 2011.

[121] J. A. Rodger, “Toward reducing failure risk in an integrated vehicle health
maintenance system: A fuzzy multi-sensor data fusion kalman filter approach
for ivhms,” Expert Systems with Applications, vol. 39, pp. 9821–9836, 2012.

[122] J. Kim, K. Kim, and H. Sohn, “Autonomous dynamic displacement estimation
from data fusion of acceleration and intermittent displacement measurements,”
Mechanical Systems and Signal Processing, vol. 42, pp. 194–205, 2014.

[123] S. E. Azam, E. Chatzi, and C. Papadimitriou, “A dual Kalman filter approach
for state estimation via output-only acceleration measurements,” Mechanical
Systems and Signal Processing, vol. 60-61, pp. 866–886, 2015.

[124] E. Lourens, E. Reynders, G. DeRoeck, G. Degrande, and G. Lombaert, “An
augmented kalman filter for force identification in structural dynamics,” Me-
chanical Systems and Signal Processing, vol. 27, pp. 446–460, 2012.

[125] S. Gillijns and B. DeMoor, “Unbiased minimum-variance input and state esti-
mation for linear discrete-time systems with direct feedthrough,” Automatica,
vol. 43, p. 934–937, 2007.

[126] F. Naets, J. Cuadrado, and W. Desmet, “Stable force identification in struc-
tural dynamics using kalman filtering and dummy-measurements,” Mechanical
Systems and Signal Processing, vol. 50-51, p. 235–248, 2015.

239

[127] S. Cho, J.-W. Park, R. P. Palanisamy, and S.-H. Sim, “Reference-free displace-
ment estimation of bridges using kalman filter-based multimetric data fusion,”
Journal of Sensors, vol. 2016, no. 3791856, 2016.

[128] X.-H. Huang, S. Dyke, Z. Sun, and Z.-D. Xu, “Simultaneous identification of
stiffness, mass, and damping using an on-line model updating approach,” Struct.
Control Health Monit., vol. 24, 2017.

[129] K. Kim and H. Sohn, “Dynamic displacement estimation by fusing ldv and lidar
measurements via smoothing based kalman filtering,” Mechanical Systems and
Signal Processing, vol. 82, pp. 339–355, 2017.

[130] K. Erazo and E. M. Hernandez, “Bayesian model-data fusion for mechanistic
postearthquake damage assessment of building structures,” Journal of Engi-
neering Mechanics, vol. 142, no. 9, p. 04016062, 2016.

[131] G. Evensen, “The ensemble kalman filter: Theoretical formulation and practical
implementation,” Ocean Dyn., vol. 53, no. 4, p. 343–367, 2003.

[132] E. N. Chatzi and C. Fuggini, “Structural identification of a super-tall tower
by GPS and accelerometer data fusion using a multi-rate Kalman filter,” Life-
Cycle and Sustainability of Civil Infrastructure Systems: Proceedings of the
Third International Symposium on Life-Cycle Civil Engineering (IALCCE’12),
2012.

[133] M. N. Chatzis, E. N. Chatzi, and A. W. Smyth, “An experimental validation of
time domain system identification methods with fusion of heterogeneous data,”
Earthquake Engineering & Structural Dynamics, vol. 44, p. 523–547, 2015.

[134] O. P. Van and M. B. De, “Subspace algorithms for the identification of combined
deterministic-stochastic systems,” Automatica, vol. 30, no. 1, pp. 75–93, 1994.

[135] E. Asgarieh, B. Moaveni, A. R. Barbosa, and E. Chatzi, “Nonlinear model
calibration of a shear wall building using time and frequency data features,”
Mechanical Systems and Signal Processing, vol. 85, p. 236–251, 2017.

[136] M. N. Chatzis and E. N. Chatzi, “Online bayesian identification of non-smooth
systems,” Procedia Engineering, vol. 199, pp. 918–923, 2017.

[137] G. Shafer, “A mathematical theory of evidence,” Princeton University Press,
1976.

[138] H. Wu, “Sensor data fusion for context-aware computing using dempster-shafer
theory,” Ph.D. dissertation, The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 2003.

[139] R. R. Yager, J. Kacprzyk, and M. Fedrizzi, Eds., Advances in the Dempster-
Shafer Theory of Evidence. John Wiley & Sons, 1994.

[140] T. Inagaki, “Interdependence between safety-control policy and multiple-sensor
schemes via dempster-shafer theory,” IEEE Transactions on Reliability, vol. 40,
no. 2, pp. 182–188, 1991.

[141] Y. Bao, H. Li, Y. An, and J. Ou, “Dempster-shafer evidence theory approach
to structural damage detection,” Structural Health Monitoring, vol. 11, no. 1,
pp. 13–26, 2011.

240

[142] E. Zervas, A. Mpimpoudis, C. Anagnostopoulos, O. Sekkas, and S. Had-
jiefthymiades, “Multisensor data fusion for fire detection,” Information Fusion,
vol. 12, pp. 150–159, 2011.

[143] X. Zhao, R. Wang, H. Gu, G. Song, and Y. L. Mo, “Innovative data fusion
enabled structural health monitoring approach,” Mathematical Problems in En-
gineering, no. 369540, 2014.

[144] Q. Zhou, H. Zhou, Q. Zhou, F. Yang, L. Luo, and T. Li, “Structural damage
detection based on posteriori probability support vector machine and Dempster-
Shafer evidence theory,” Applied Soft Computing, vol. 36, pp. 368–374, 2015.

[145] A. Moosavian, M. Khazaee, G. Najafi, M. Kettner, and R. Mamat, “Spark
plug fault recognition based on sensor fusion and classifier combination us-
ing Dempster-Shafer evidence theory,” Applied Acoustics, vol. 93, pp. 120–129,
2015.

[146] L. Hou and N. W. Bergmann, “Novel industrial wireless sensor networks for
machine condition monitoring and fault diagnosis,” IEEE Transactions on In-
strumentation and Measurement, vol. 61, no. 10, pp. 2787–2798, 2012.

[147] E. Grande and M. Imbimbo, “A multi-stage approach for damage detection in
structural systems based on flexibility,” Mechanical Systems and Signal Pro-
cessing, vol. 76-77, pp. 455–475, 2016.

[148] J. Huang and W. Liu, “A pavement crack detection method combining 2D with
3D information based on Dempster-Shafer theory,” Computer-Aided Civil and
Infrastructure Engineering, vol. 29, pp. 299–313, 2014.

[149] C. Völker and P. Shokouhi, “Multi sensor data fusion approach for automatic
honeycomb detection in concrete,” NDT & E International, vol. 71, pp. 54–60,
2015.

[150] F. Zhang, “The schur complement and its applications,” Science + Business
Media, Inc, Springer, 2005.

[151] L. A. Zadeh, “Fuzzy logic,” IEEE Computer, pp. 83–93, 1988.

[152] S.-F. Jiang, C.-M. Zhang, and S. Zhang, “Two-stage structural damage detec-
tion using fuzzy neural networks and data fusion techniques,” Expert Systems
with Applications, vol. 38, pp. 511–519, 2011.

[153] R. Heideklang and P. Shokouhi, “Multi-sensor image fusion at signal level for
improved near-surface crack detection,” NDT and E International, vol. 71, pp.
16–22, 2015.

[154] X. Lou and K. A. Loparo, “Bearing fault diagnosis based on wavelet transform
and fuzzy inference,” Mechanical Systems and Signal Processing, vol. 18, pp.
1077–1095, 2004.

[155] M. Sugeno, “Fuzzy measures and fuzzy integrals: a survey,” In: Gupta M. M.,
Saridis G. N., Gains B. R., editors. Fuzzy automata and decision processes.
Amsterdam: NorthHollan, pp. 89–102, 1977.

241

[156] K. Amolins, Y. Zhang, and P. Dare, “Wavelet based image fusion tech-
niques—an introduction, review and comparison,” ISPRS J Photogramm Re-
mote Sens, vol. 62, pp. 249–263, 2007.

[157] J. Teng, W. Lu, R. Wen, and T. Zhang, “Instrumentation on structural health
monitoring systems to real world structures,” Smart Structures and Systems,
vol. 15, no. 1, pp. 151–167, 2015.

[158] P. J. Dempsey and S. Sheng, “Investigation of data fusion applied to health
monitoring of wind turbine drivetrain components,” Wind Energy, vol. 16, pp.
479–489, 2013.

[159] B. E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal mar-
gin classifiers,” Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pp. 144–152, 1992.

[160] V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-
Verlag, 1995.

[161] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, p.
436–444, 2015.

[162] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” NIPS, p. 1106–1114, 2012.

[163] R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. Seung,
“Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit,” Nature, vol. 405, p. 947–951, 2000.

[164] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, p. 504–507, 2006.

[165] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise
training of deep networks,” Advances in neural information processing systems,
vol. 19, no. 153, 2007.

[166] Y.-Y. Liu, Y.-F. Ju, C.-D. Duan, and X.-F. Zhao, “Structure damage diagnosis
using neural network and feature fusion,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 1, pp. 87–92, 2011.

[167] R. Ogden, Essential Wavelets for Statistical Applications and Data Analysis.
Boston: Birkhäuser, 1997.

[168] R. R. Coifman and M. Wickerhauser, “Entropy-based algorithms for best basis
selection,” IEEE Trans. Inform. Theory, vol. 38, pp. 713–718, 1992.

[169] J.-S. Pei, J. P. Wright, and A. W. Smyth, “Neural network initialization with
prototypes - a case study in function approximation,” Proceedings of Interna-
tional Joint Conference on Neural Networks, July 31 - August 4, Montreal,
Canada 2005.

[170] J.-S. Pei and A. W. Smyth, “New approach to designing multilayer feedforward
neural network architecture for modeling nonlinear restoring forces. i: Formu-
lation,” JOURNAL OF ENGINEERING MECHANICS, vol. 132, no. 12, pp.
1290–1300, 2006.

242

[171] ——, “New approach to designing multilayer feedforward neural network archi-
tecture for modeling nonlinear restoring forces. ii: Applications,” JOURNAL
OF ENGINEERING MECHANICS, vol. 132, no. 12, pp. 1301–1312, 2006.

[172] J.-S. Pei, E. C. Mai, J. P. Wright, and A. W. Smyth, “Neural network initial-
ization with prototypes - function approximation in engineering mechanics ap-
plications,” Proceedings of International Joint Conference on Neural Networks,
August 12-17, Orlando, Florida, USA 2007.

[173] J.-S. Pei and E. C. Mai, “Constructing multilayer feedforward neural networks
to approximate nonlinear functions in engineering mechanics applications,”
Journal of Applied Mechanics, vol. 75, no. 061002, 2008.

[174] J.-S. Pei, J. P. Wright, S. F. Masri, E. C. Mai, and A. W. Smyth, “Toward
constructive methods for sigmoidal neural networks - function approximation
in engineering mechanics applications,” Proceedings of International Joint Con-
ference on Neural Networks, July, San Jose, USA 2011.

[175] J.-S. Pei, E. C. Mai, J. P. Wright, and S. F. Masri, “Mapping some basic
functions and operations to multilayer feedforward neural networks for modeling
nonlinear dynamical systems and beyond,” Nonlinear Dyn, vol. 71, p. 371–399,
2013.

[176] J.-S. Pei and S. F. Masri, “Demonstration and validation of constructive initial-
ization method for neural networks to approximate nonlinear functions in en-
gineering mechanics applications,” Nonlinear Dyn, vol. 79, p. 2099–2119, 2015.

[177] R. Ghiasi, P. Torkzadeh, and M. Noori, “Structural damage detection using
artificial neural networks and least square support vector machine with particle
swarm harmony search algorithm,” Int. J. Sustain. Mater. Struct. Syst., vol. 1,
no. 4, pp. 303–320, 2014.

[178] J. A. Suykens, J. D. Brabanter, L. Lukas, and J. Vandewalle, “Weighted least
squares support vector machines: robustness and sparse approximation,” Neu-
rocomputing, vol. 48, pp. 85–105, 2002.

[179] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”
In Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, MHS’95, IEEE, p. 39–43, 1995.

[180] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic optimization
algorithm: harmony search,” Simulation, vol. 76, no. 2, p. 60–68, 2001.

[181] S. Stramondo, C. Bignami, M. Chini, N. Pierdicca, and A. Tertulliani, “Satellite
radar and optical remote sensing for earthquake damage detection: results from
different case studies,” International Journal of Remote Sensing, vol. 27, no. 20,
pp. 4433–4447, 2006.

[182] N. Longbotham, T. Glenn, A. Zare, M. Volpi, D. Tuia, E. Cristophe, J. Michel,
J. Inglada, J. Chanussot, Q. Du, and F. Pacifici, “Multi-modal change detection,
application to the detection of flooded areas: Outcome of the 2009-2010 data
fusion contest,” IEEE J. Sel. Topics Appl. Earth Observ., vol. 5, no. 1, pp.
1–12, 2012.

243

[183] S. Khazaeli, A. G. Ravandi, S. Banerji, and A. Bagchi, “The application of data
mining and cloud computing techniques in data-driven models for structural
health monitoring,” Health Monitoring of Structural and Biological Systems, p.
98052M, 2016.

[184] T. Khuc and F. N. Catbas, “Structural identification using computer vi-
sion–based bridge health monitoring,” Journal of Structural Engineering,
ASCE, vol. 144, no. 2, p. 04017202, 2018.

[185] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1,
p. 119–139, 1997.

[186] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” Proceeding of Computer Vision and Pattern Recognition, vol.
511, 2001.

[187] D. Sun, V. C. Lee, and Y. Lu, “An intelligent data fusion framework for struc-
tural health monitoring,” 2016 IEEE 11th Conference on Industrial Electronics
and Applications (ICIEA), p. DOI: 10.1109/ICIEA.2016.7603550, 2016.

[188] S. Mohanty, B. Jagielo, C. B. Bhan, S. Majumdar, and K. Natesan, “Online
stress corrosion crack monitoring in nuclear reactor components using active
ultrasonic sensor networks and nonlinear system identification - data fusion
based big data analytics approach,” Proceedings of the ASME 2015 Pressure
Vessels and Piping Conference, July 19-23, Boston, USA 2015.

[189] R. A. Osornio-Rios, J. P. Amezquita-Sanchez, R. J. Romero-Troncoso, and
A. Garcia-Perez, “Music-ann analysis for locating structural damages in a truss-
type structure by means of vibrations,” Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 27, pp. 687–698, 2012.

[190] K. N. Kesavan and A. S. Kiremidjian, “A wavelet-based damage diagnosis al-
gorithm using principal component analysis,” Struct. Control Health Monit.,
vol. 19, p. 672–685, 2012.

[191] S. Safari, F. Shabani, and D. Simon, “Multirate multisensor data fusion for
linear systems using Kalman filters and a neural network,” Aerospace Science
and Technology, vol. 39, p. 465–471, 2014.

[192] L. P. Yan, B. S. Liu, and D. H. Zhou, “Multirate multisensor data fusion for
linear systems using Kalman filters and a neural network,” Aerospace Science
and Technology, vol. 39, p. 465–471, 2006.

[193] A. Derkevorkian, M. Hernandez-Garcia, H.-B. Yun, S. F. Masri, and P. Li,
“Nonlinear data-driven computational models for response prediction and
change detection,” STRUCTURAL CONTROL AND HEALTH MONITOR-
ING, vol. 22, p. 273–288, 2015.

[194] S. Mokhtari, L. Wu, and H.-B. Yun, “Comparison of supervised classification
techniques for vision-based pavement crack detection,” Journal of the Trans-
portation Research Board, vol. 2595, pp. 119–127, 2016.

[195] S. Terzi, “Terzi, s. modeling for pavement roughness using the anfis approach,”
Advances in Engineering Software, vol. 57, p. 59–64, 2013.

244

[196] S. D. Vanraj and B. Pabla, “Hybrid data fusion approach for fault diagnosis
of fixed-axis gearbox,” Structural Health Monitoring, vol. 00, no. 0, pp. 1–10,
2017.

[197] C. Völker, S. Kruschwitz, C. Boller, and H. Wiggenhauser, “Feasibility study
on adapting a machine learning based multi-sensor data fusion approach for
honeycomb detection in concrete,” NDE/NDT for Highways & Bridges: SMT
2016, 2016.

[198] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining
(KDD-96), 1996.

[199] Y.-J. Cha, W. Choi, and O. Büyüköztürk, “Deep learning-based crack dam-
age detection using convolutional neural networks,” Computer-Aided Civil and
Infrastructure Engineering, vol. 32, p. 361–378, 2017.

[200] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman, “Real-
time vibration-based structural damage detection using one-dimensional convo-
lutional neural networks,” Journal of Sound and Vibration, vol. 388, p. 154–170,
2017.

[201] F.-C. Chen and M. R. Jahanshahi, “Arf-crack: rotation invariant deep fully
convolutional network for pixel-level crack detection,” Machine Vision and Ap-
plications, vol. 31, p. 47, 07 2020.

[202] ——, “Nb-fcn: Real-time accurate crack detection in inspection videos using
deep fully convolutional network and parametric data fusion,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 69, no. 8, pp. 5325–5334,
2020.

[203] A. Akintayo, K. G. Lore, S. Sarkar, and S. Sarkar, “Prognostics of combus-
tion instabilities from hi-speed flame video using a deep convolutional selective
autoencoder,” International Journal of Prognostics and Health Management,
vol. 7, 2016.

[204] S. Sarkar, K. K. Reddy, M. Giering, and M. R. Gurvich, “Deep learning for
structural health monitoring: A damage characterization application,” Annual
Conference of The Prognosis and Health Management society, 2016.

[205] K. K. Reddy, S. Sarkar, V. Venugopalan, and M. Giering, “Anomaly detection
and fault disambiguation in large flight data: A multi-modal deep auto-encoder
approach,” Annual Conference of The Prognosis and Health Management soci-
ety, 2016.

[206] W. Yan and L. Yu, “On accurate and reliable anomaly detection for gas turbine
combustors: A deep learning approach,” Annual Conference of The Prognosis
and Health Management society, 2015.

[207] K. J. Arrow, “A difficulty in the concept of social welfare,” The Journal of
Political Economy, vol. 58, no. 4, p. 328–346, 1950.

[208] G. A. Hazelrigg, “Fundamentals of decision making for engineering design and
systems engineering,” ISBN: 978-0-9849976-0-2, 2012.

245

[209] Y. Lu and J. E. Michaels, “Feature extraction and sensor fusion for ultrasonic
structural health monitoring under changing environmental conditions,” Sen-
sors Journal, IEEE, vol. 9, no. 11, p. 1462–1471, 2009.

[210] J. E. Michaels and T. E. Michaels, “Guided wave signal processing and im-
age fusion for in situ damage localization in plates,” Wave Motion, vol. 44, p.
482–492, 2007.

[211] X. Guan, J. Zhang, S. K. Zhou, E. Rasselkorde, and W. Abbasi, “Post-
processing of phased-array ultrasonic inspection data with parallel computing
for nondestructive evaluation,” Journal of Nondestructive Evaluation, vol. 33,
no. 3, p. 342–351, 2014.

[212] R. Bai, X. Song, M. Radzieński, M. Cao, W. Ostachowicz, and S. Wang, “Crack
location in beams by data fusion of fractal dimension features of laser-measured
operating deflection shapes,” Smart Structures and Systems, vol. 13, no. 6, pp.
975–991, 2014.

[213] M. Katz, “Fractals and the analysis of waveforms,” Comput. Biol. Med., vol. 18,
no. 3, pp. 145–156, 1988.

[214] R. Heideklang and P. Shokouhi, “Application of data fusion in nondestructive
testing (NDT),” In: Proceedings of 16th international conference on informa-
tion fusion, 2013.

[215] J. Zhu, L. Wang, and H. Jiang, “Study on damage diagnosis indices fusion for
long-span suspension bridges under ambient vibration,” Mechanics of Structures
and Materials: Advancements and Challenges, pp. ISBN 978–1–138–02 993–4,
2016.

[216] C. Haynes and M. Todd, “Enhanced damage localization for complex structures
through statistical modeling and sensor fusion,” Mechanical Systems and Signal
Processing, vol. 54-55, pp. 195–209, 2015.

[217] C. Haynes, M. D. Todd, E. Flynn, and A. Croxford, “Statistically-based damage
detection in geometrically-complex structures using ultrasonic interrogation,”
Structural Health Monitoring, vol. 12, no. 2, pp. 141–152, 2012.

[218] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Ann.
Eugenics, vol. 7, pp. 111–132, 1936.

[219] K. Salahshoor, M. Kordestani, and M. S. Khoshro, “Fault detection and diagno-
sis of an industrial steam turbine using fusion of svm (support vector machine)
and anfis (adaptive neuro-fuzzy inference system) classifiers,” Energy, vol. 35,
pp. 5472–5482, 2010.

[220] J.-S. Jang, “Anfis: adaptive network-based fuzzy inference systems,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–685,
1993.

[221] Y. L. Chen, M. Abdelbarr, M. R. Jahanshahi, and S. F. Masri, “Color and
depth data fusion using an rgb-d sensor for inexpensive and contactless dynamic
displacement-field measurement,” Structural Control and Health Monitoring,
vol. 24, no. 11, p. e2000, 2017, e2000 stc.2000.

246

[222] A. Geiger, F. Moosmann, O. Car, and B. Schuster, “Automatic camera and
range sensor calibration using a single shot,” in 2012 IEEE Int. Conf. Rob.
Autom., p. 3936–3943, 2012.

[223] G. Bradski and A. Kaehler, “Learning opencv: Computer vision with the opencv
library,” OReilly Media Inc, Sebastopol, 2008.

[224] Y. L. Chen, M. R. Jahanshahi, P. Manjunatha, W. Gan, M. Abdelbarr, S. F.
Masri, B. Becerik-Gerber, and J. P. Caffrey, “Inexpensive multimodal sensor fu-
sion system for autonomous data acquisition of road surface conditions,” IEEE
SENSORS JOURNAL, vol. 16, no. 21, pp. 7731–7743, 2016.

[225] J. W. Park, S. H. Sim, and H. J. Jung, “Displacement estimation using multi-
metric data fusion,” IEEE/ASME Transactions On Mechatronics, vol. 18, no. 6,
pp. 1675–1682, 2013.

[226] H. S. Lee, Y. H. Hong, and H. W. Park, “Design of an fir filter for the displace-
ment reconstruction using measured acceleration in low-frequency dominant
structures,” Int. J. Numer. Methods Eng., vol. 82, no. 4, p. 403–434, 2010.

[227] S. Shin, S.-U. Lee, Y. Kim, and N.-S. Kim, “Estimation of bridge displacement
responses using fbg sensors and theoretical mode shapes,” Struct. Eng. Mech.,
vol. 42, no. 2, p. 229–245, 2012.

[228] J. W. Park, S. H. Sim, and H. J. Jung, “Wireless displacement sensing system
for bridges using multi-sensor fusion,” Smart Mater. Struct., vol. 23, p. 045022,
2014.

[229] S. H. Sim, “Estimation of flexibility matrix of beam structures using multisensor
fusion,” Journal of Structural Integrity and Maintenance, vol. 1, no. 2, p. 60–64,
2016.

[230] D. Bernal, “Extracting flexibility matrices from state-space realizations,” In
COST F3 Conference, vol. 1, p. 127–135, 2000.

[231] H. Kim, S. Cho, and S.-H. Sim, “Data fusion of acceleration and angular velocity
for improved model updating,” Measurement, vol. 91, p. 239–250, 2016.

[232] J.-W. Park, K.-C. Lee, S.-H. Sim, H.-J. Jung, and B. F. S. Jr., “Traffic
safety evaluation for railway bridges using expanded multisensor data fusion,”
Computer-Aided Civil and Infrastructure Engineering, vol. 31, pp. 749–760,
2016.

[233] R. Heideklang and P. Shokouhi, “Decision-level fusion of spatially scattered
multi-modal data for nondestructive inspection of surface defects,” Sensors,
vol. 16, no. 105, 2016.

[234] E. Parzen, “On estimation of a probability density function and mode,” Ann.
Math. Stat., vol. 33, p. 1065–1076, 1962.

[235] J.-W. Park, D. Moon, H. Yoon, F. Gomez, B. F. S. Jr., and J. R. Kim, “Vi-
sual–inertial displacement sensing using data fusion of vision-based displace-
ment with acceleration,” Struct Control Health Monit., 2017.

247

[236] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data
fusion: A review of the state-of-the-art,” Information Fusion, vol. 14, no. 1, pp.
28–44, 2013.

[237] G. E. Hinton, “A practical guide to training restricted boltzmann machines,”
2010.

[238] P. Tamilselvan and P. Wang, “Failure diagnosis using deep belief learning based
health state classification,” Reliability Engineering and System Safety, vol. 115,
pp. 124–135, 2013.

[239] A. Y. Ng and M. I. Jordan, “On discriminative versus generative classifiers:
a comparison of logistic regression and näıve bayes.” Neural Inform. Process.
Syst., vol. 14, p. 605–610, 2001.

[240] S. Hochreiter and J. Schmidhuber, “Long short term memory,” Neural compu-
tation, vol. 9, no. 8, p. 1735–1780, 1997.

[241] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff,
“Lstm-based encoder-decoder for multi-sensor anomaly detection,” ICML 2016
Anomaly Detection Workshop, 2016.

[242] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between capsules,”
31st Conference on Neural Information Processing Systems, 2017.

[243] R. E. Bellman, Dynamic Programming. Princeton University Press, 1957.

[244] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemo-
metrics and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37–52, 1987.

[245] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares
solutions,” Numer. Math., vol. 14, no. 5, p. 403–420, 1970.

[246] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high
dimensional data,” New Directions in Statistical Physics, pp. 273–309, 2004.

[247] C. Batini and M. Scannapieco, “Data and information quality,” Springer, 2016.

[248] L. M. Bruce and D. Reynolds, “Game theory based data fusion for pre-
cision agriculture applications,” Geoscience and Remote Sensing Symposium
(IGARSS), 2016 IEEE International, 2016.

[249] S. F. Masri, A. W. Smyth, A. G. Chassiakos, T. K. Caughey, and N. F. Hunter,
“Application of neural networks for detection of changes in nonlinear systems,”
JOURNAL OF ENGINEERING MECHANICS, vol. 126, no. 7, pp. 666–676,
2000.

[250] J.-S. Pei, J. P. Wright, and A. W. Smyth, “Mapping polynomial fitting into
feedforward neural networks for modeling nonlinear dynamic systems and be-
yond,” Comput. Methods Appl. Mech. Engrg., vol. 194, no. 42–44, p. 4481–4505,
2005.

248

[251] B. Xu, A. Gong, J. He, and S. F. Masri, “A novel time-domain structural para-
metric identification methodology based on the equivalency of neural networks
and arma model,” Proceedings of the 5th international conference on Emerging
intelligent computing technology and applications, vol. 79, pp. 888–897, Septem-
ber, Ulsan, South Korea 2009.

[252] B.-S. Wang, “Identifying damage of the benchmark structure by using artificial
neural network methods,” Advanced Materials Research, vol. 219-220, pp. 312–
317, 2011.

[253] A. Cury and C. Crémona, “Pattern recognition of structural behaviors based on
learning algorithms and symbolic data concepts,” STRUCTURAL CONTROL
AND HEALTH MONITORING, vol. 19, pp. 161–186, 2012.

[254] S. Arangio and J. L. Beck, “Bayesian neural networks for bridge integrity assess-
ment,” STRUCTURAL CONTROL AND HEALTH MONITORING, vol. 19,
pp. 3–21, 2012.

[255] S. Suresh, S. Narasimhan, and S. Nagarajaiah, “Direct adaptive neural con-
troller for the active control of earthquake-excited nonlinear base-isolated build-
ings,” STRUCTURAL CONTROL AND HEALTH MONITORING, vol. 19, p.
370–384, 2012.

[256] C.-Y. Kao and C.-H. Loh, “Monitoring of long-term static deformation data
of fei-tsui arch dam using artificial neural network-based approaches,” STRUC-
TURAL CONTROL AND HEALTH MONITORING, vol. 20, p. 282–303, 2013.

[257] S. V. Razavi, M. Jumaat, and H. E.-S. Ahmed, “Load-deflection analysis of cfrp
strengthened rc slab using focused feed-forward time delay neural network,”
Concrete Research Letters, vol. 5, no. 3, p. 858–872, 2014.

[258] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature
learning and deep learning for time-series modeling,” Pattern Recognition Let-
ters, vol. 42, p. 11–24, 2014.

[259] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating eu-
lerian fluid simulation with convolutional networks,” Proceedings of the 34 th
International Conference on Machine Learning, June, Sydney, Australia 2017.

[260] D. J. Atha and M. R. Jahanshahi, “Evaluation of deep learning approaches
based on convolutional neural networks for corrosion detection,” Structural
Health Monitoring, vol. 17, no. 5, pp. 1110–1128, 2018.

[261] K. Levenberg, “A method for the solution of certain non-linear problems in
least squares,” Quarterly of Applied Mathematics, p. 164–168, 1944.

[262] D. Marquardt, “An algorithm for least-squares estimation of nonlinear param-
eters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, p. 431–441, 1963.

[263] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE 86, vol. 11, p.
2278–2324, 1998.

[264] N. M. Newmark, “A method of computation for structural dynamics,” Journal
of the Engineering Mechanics Division, vol. 85, no. 3, 1959.

249

[265] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural networks for mat-
lab,” in Proceeding of the ACM Int. Conf. on Multimedia, 2015.

[266] M. R. Jahanshahi and S. Masri, “Adaptive vision-based crack detection using
3d scene reconstruction for condition assessment of structures,” Automation in
Construction, vol. 22, pp. 567–576, 03 2012.

[267] M. R. Jahanshahi and S. F. Masri, “Parametric performance evaluation of
wavelet-based corrosion detection algorithms for condition assessment of civil
infrastructure systems,” Journal of Computing in Civil Engineering, vol. 27,
no. 4, pp. 345–357, 2013.

[268] M. R. Jahanshahi, F. Jazizadeh, S. F. Masri, and B. Becerik-Gerber, “Unsu-
pervised approach for autonomous pavement-defect detection and quantification
using an inexpensive depth sensor,” Journal of Computing in Civil Engineering,
vol. 27, no. 6, pp. 743–754, 2013.

[269] M. R. Jahanshahi, F. J. Karimi, S. F. Masri, and B. Becerik-Gerber, “Au-
tonomous pavement condition assessment,” U.S. Patent 9 196 048, Nov. 2015.

[270] M. H. Rafiei and H. Adeli, “A novel unsupervised deep learning model for global
and local health condition assessment of structures,” Engineering Structures,
vol. 156, no. 1, pp. 598–607, 2018.

[271] K. Park, M. Torbol, and S. Kim, “Vision-based natural frequency identification
using laser speckle imaging and parallel computing,” Computer-Aided Civil and
Infrastructure Engineering, vol. 33, no. 1, pp. 51–63, 2018.

[272] J. Choi, C. M. Yeum, S. J. Dyke, and M. R. Jahanshahi, “Computer-aided
approach for rapid post-event visual evaluation of a building facade,” Sensors,
vol. 18, no. 9, p. doi: 10.3390/s18093017, 2018.

[273] R.-T. Wu and M. R. Jahanshahi, “Data fusion approaches for structural health
monitoring and system identification: Past, present, and future,” Structural
Health Monitoring, vol. 19, no. 2, pp. 552–586, 2020.

[274] E. Bertino and M. R. Jahanshahi, “Adaptive and cost-effective collection of
high-quality data for critical infrastructure and emergency management in
smart cities—framework and challenges,” Journal of Data and Information
Quality, vol. 10, pp. 1–6, 05 2018.

[275] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a
review from the swarm engineering perspective,” Swarm Intelligence, vol. 7,
no. 1, pp. 1–41, Mar 2013. [Online]. Available: https://doi.org/10.1007/s11721-
012-0075-2

[276] C. M. Yeum, S. Dyke, J. Ramirez, and B. Benes, “Big visual data analytics
for damage classification in civil engineering,” Proceedings of the International
Conference on Smart Infrastructure and Construction, 2016.

[277] C. M. Yeum, S. J. Dyke, and J. Ramirez, “Visual data classification in post-
event building reconnaissance,” Engineering Structures, vol. 155, p. 16–24, 2018.

250

[278] S. S. Kumar, D. M. Abraham, M. R. Jahanshahi, T. Iseley, and J. Starr, “Au-
tomated defect classification in sewer closed circuit television inspections using
deep convolutional neural networks,” Automation in Construction, vol. 91, pp.
273–283, 2018.

[279] R. T. Wu and M. R. Jahanshahi, “Deep convolutional neural network for struc-
tural dynamic response estimation and system identification,” Journal of Engi-
neering Mechanics (ASCE), vol. 145, no. 1, pp. DOI: 10.1061/(ASCE)EM.1943–
7889.0 001 556, 2019.

[280] Y. Z. Lin, Z. H. Nie, and H. W. Ma, “Structural damage detection with au-
tomatic feature-extraction through deep learning,” Computer-Aided Civil and
Infrastructure Engineering, vol. 32, no. 12, pp. 1025–1046, 2017.

[281] A. Zhang, K. C. P. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu,
J. Q. Li, and C. Chen, “Automated pixel-level pavement crack detection on
3d asphalt surfaces using a deep-learning network,” Computer-Aided Civil and
Infrastructure Engineering, vol. 32, no. 10, pp. 805–819, 2017.

[282] Y. D. Xue and Y. Li, “A fast detection method via region-based fully convolu-
tional neural networks for shield tunnel lining defects,” Computer-Aided Civil
and Infrastructure Engineering, vol. 33, no. 8, pp. 638–654, 2018.

[283] Y. Cha, W. Choi, G. Suh, S. Mahmoudkhani, and O. Büyüköztürk, “Au-
tonomous structural visual inspection using region-based deep learning for de-
tecting multiple damage types,” Computer-Aided Civil and Infrastructure En-
gineering, vol. 33, no. 9, pp. 731–747, 2018.

[284] Y. Gao and K. Mosalam, “Deep transfer learning for image-based structural
damage recognition,” Computer-Aided Civil and Infrastructure Engineering,
vol. 33, no. 9, pp. 748–768, 2018.

[285] S. S. Kumar, M. Wang, D. M. Abraham, M. R. Jahanshahi, T. Iseley, and
J. C. P. Cheng, “Deep learning–based automated detection of sewer
defects in cctv videos,” Journal of Computing in Civil Engineering, vol. 34,
no. 1, p. 04019047, 2020.

[286] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and con-
nections for efficient neural networks,” arXiv preprint, no. arXiv:1506.02626v3,
2015.

[287] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[288] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), vol. 1, Jun. 2005, pp. 886–893 vol. 1.

[289] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,”
arXiv preprint, no. arXiv:1608.04493v2, 2016.

251

[290] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding,” arXiv
preprint, no. arXiv:1510.00149v5, 2016.

[291] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg, “Net-trim: Convex prun-
ing of deep neural networks with performance guarantee,” arXiv preprint, no.
arXiv:1611.05162v4, 2017.

[292] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quanti-
zation: Towards lossless cnns with low-precision weights,” arXiv preprint, no.
arXiv:1702.03044v2, 2017.

[293] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware parallelism,”
in Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 548–560.
[Online]. Available: http://doi.acm.org/10.1145/3079856.3080215

[294] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” arXiv preprint, no. arXiv:1707.06342v1, 2017.

[295] A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network
by iterative pruning,” arXiv preprint, no. arXiv:1711.05769v2, 2018.

[296] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of
network pruning,” arXiv preprint, no. arXiv:1810.05270v1, 2018.

[297] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures,” arXiv preprint,
no. arXiv:1607.03250v1, 2018.

[298] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “AMC: AutoML for
model compression and acceleration on mobile devices,” arXiv preprint, no.
arXiv:1802.03494v4, 2019.

[299] M. R. Jahanshahi, F.-C. Chen, C. Joffe, and S. F. Masri, “Vision-based quan-
titative assessment of microcracks on reactor internal components of nuclear
power plants,” Structure and Infrastructure Engineering, vol. 13, no. 8, pp.
1013–1026, 2017.

[300] “Nvidia jetson solutions for drones and uavs,” https://www.nvidia.com/en-
us/autonomous-machines/uavs-drones-technology/, accessed: 2018-09-27.

[301] M. A. Akbar, U. Qidwai, and M. R. Jahanshahi, “An evaluation of image-
based structural health monitoring using integrated unmanned aerial vehicle
platform,” Structural Control and Health Monitoring, vol. 26, no. 1, p. e2276,
2019, e2276 STC-17-0270.R1.

[302] Y. LeCun, J. S. Denker, S. Solla, R. E. Howard, and L. D. Jackel, “Optimal
brain damage,” Advances in Neural Information Processing Systems (NIPS),
1990.

[303] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“Eie: Efficient inference engine on compressed deep neural network,” Proceed-
ings of the 43rd International Symposium on Computer Architecture, pp. 243–
254, 2016.

252

[304] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Eie: Efficient inference engine on
compressed deep neural network,” arXiv preprint, no. arXiv:1607.03250, 2016.

[305] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact cnns,”
European Conference on Computer Vision, p. 662–677, 2016.

[306] J. M. Alvarez and M. Salzmann, “Learning the number of neurons in deep
networks,” Advances in Neural Information Processing Systems, vol. 29, p.
2262–2270, 2016.

[307] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, p. 2554–2564, 2016.

[308] L. Bottou, “Large-scale machine learning with stochastic gradient descent,”
Proceedings of COMPSTAT’ 2010, pp. 177–186, 2010.

[309] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
in NIPS-W, 2017.

[310] K. Gopalakrishnan, H. Gholami, A. Vidyadharan, A. Choudhary, and
A. Agrawal, “Crack damage detection in unmanned aerial vehicle images of
civil infrastructure using pre-trained deep learning model,” International Jour-
nal for Traffic and Transport Engineering, vol. 8, no. 1, pp. 1–14, 2018.

[311] Q. D. Cao and Y. Choe, “Deep learning based damage detection on post-
hurricane satellite imagery,” arXiv preprint, no. arXiv:1807.01688v1, 2018.

[312] H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata, “Road damage
detection using deep neural networks with images captured through a smart-
phone,” arXiv preprint, no. arXiv:1801.09454v2, 2018.

[313] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-
tional networks for visual recognition,” arXiv preprint, no. arXiv:1406.4729v4,
2015.

[314] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[315] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–
27:27, 2011, software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[316] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin., “Liblinear:
A library for large linear classification,” Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[317] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

253

[318] F. Chollet, “keras,” GitHub, 2015, https://github.com/fchollet/keras.

[319] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in python,” Journal of machine learning research, vol. 12, no. Oct, pp.
2825–2830, 2011.

[320] J. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and
D. Prevost, “Experimental and theoretical evidence for the existence of absolute
acoustic band gaps in two-dimensional solid phononic crystals,” Physical Review
Letters, vol. 86, no. 14, p. 3012, 2001.

[321] T.-T. Wu, L.-C. Wu, and Z.-G. Huang, “Frequency band-gap measurement
of two-dimensional air/silicon phononic crystals using layered slanted finger
interdigital transducers,” Journal of Applied Physics, vol. 97, no. 9, p. 094916,
2005.

[322] M. Oudich, M. Senesi, M. B. Assouar, M. Ruzenne, J.-H. Sun, B. Vincent,
Z. Hou, and T.-T. Wu, “Experimental evidence of locally resonant sonic band
gap in two-dimensional phononic stubbed plates,” Physical Review B, vol. 84,
no. 16, p. 165136, 2011.

[323] T.-W. Liu, Y.-C. Lin, Y.-C. Tsai, T. Ono, S. Tanaka, and T.-T. Wu, “Evidence
of a love wave bandgap in a quartz substrate coated with a phononic thin layer,”
Applied Physics Letters, vol. 104, no. 18, p. 181905, 2014.

[324] A. Sukhovich, B. Merheb, K. Muralidharan, J. Vasseur, Y. Pennec, P. A.
Deymier, and J. Page, “Experimental and theoretical evidence for subwave-
length imaging in phononic crystals,” Physical review letters, vol. 102, no. 15,
p. 154301, 2009.

[325] X. Zhang and Z. Liu, “Negative refraction of acoustic waves in two-dimensional
phononic crystals,” Applied Physics Letters, vol. 85, no. 2, pp. 341–343, 2004.

[326] Y. Xie, W. Wang, H. Chen, A. Konneker, B.-I. Popa, and S. A. Cummer,
“Wavefront modulation and subwavelength diffractive acoustics with an acous-
tic metasurface,” Nature communications, vol. 5, p. 5553, 2014.

[327] H. Zhu and F. Semperlotti, “Anomalous refraction of acoustic guided waves
in solids with geometrically tapered metasurfaces,” Physical review letters, vol.
117, no. 3, p. 034302, 2016.

[328] S.-C. S. Lin, T. J. Huang, J.-H. Sun, and T.-T. Wu, “Gradient-index phononic
crystals,” Physical Review B, vol. 79, no. 9, p. 094302, 2009.

[329] S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal
of Physics, vol. 9, no. 3, p. 45, 2007.

[330] H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic
metamaterials,” Applied physics letters, vol. 91, no. 18, p. 183518, 2007.

[331] B.-I. Popa, L. Zigoneanu, and S. A. Cummer, “Experimental acoustic ground
cloak in air,” Physical review letters, vol. 106, no. 25, p. 253901, 2011.

254

[332] H. Zhu and F. Semperlotti, “Double-zero-index structural phononic waveg-
uides,” Physical Review Applied, vol. 8, no. 6, p. 064031, 2017.

[333] P. Wang, L. Lu, and K. Bertoldi, “Topological phononic crystals with one-way
elastic edge waves,” Physical review letters, vol. 115, no. 10, p. 104302, 2015.

[334] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P. Liu, and Y.-F.
Chen, “Acoustic topological insulator and robust one-way sound transport,”
Nature Physics, vol. 12, no. 12, p. 1124, 2016.

[335] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, “Topologically protected elastic
waves in phononic metamaterials,” Nature communications, vol. 6, p. 8682,
2015.

[336] T.-W. Liu and F. Semperlotti, “Experimental evidence of robust acoustic valley
hall edge states in a nonresonant topological elastic waveguide,” Physical Review
Applied, vol. 11, no. 1, p. 014040, 2019.

[337] H. Huang, C. Sun, and G. Huang, “On the negative effective mass density in
acoustic metamaterials,” International Journal of Engineering Science, vol. 47,
no. 4, pp. 610–617, 2009.

[338] L. Zhao, S. C. Conlon, and F. Semperlotti, “Broadband energy harvesting using
acoustic black hole structural tailoring,” Smart materials and structures, vol. 23,
no. 6, p. 065021, 2014.

[339] L. Zhao and F. Semperlotti, “Embedded acoustic black holes for semi-passive
broadband vibration attenuation in thin-walled structures,” Journal of Sound
and Vibration, vol. 388, pp. 42 – 52, 2017.

[340] K. T. Tan, H. Huang, and C. Sun, “Optimizing the band gap of effective mass
negativity in acoustic metamaterials,” Applied Physics Letters, vol. 101, no. 24,
p. 241902, 2012.

[341] T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin, and T. J. Huang, “Focusing
of the lowest antisymmetric lamb wave in a gradient-index phononic crystal
plate,” Applied Physics Letters, vol. 98, no. 17, p. 171911, 2011.

[342] T.-W. Liu, Y.-C. Tsai, Y.-C. Lin, T. Ono, S. Tanaka, and T.-T. Wu, “Design
and fabrication of a phononic-crystal-based love wave resonator in ghz range,”
AIP Advances, vol. 4, no. 12, p. 124201, 2014.

[343] P. A. Feurtado, S. C. Conlon, and F. Semperlotti, “A normalized wave num-
ber variation parameter for acoustic black hole design,” The Journal of the
Acoustical Society of America, vol. 136, no. 2, pp. EL148–EL152, 2014.

[344] C.-M. Lin, J.-C. Hsu, D. G. Senesky, and A. P. Pisano, “Anchor loss reduction
in aln lamb wave resonators using phononic crystal strip tethers,” in 2014 IEEE
International Frequency Control Symposium (FCS). IEEE, 2014, pp. 1–5.

[345] M. Y. Wang, X. Wang, and D. Guo, “A level set method for structural topology
optimization,” Computer methods in applied mechanics and engineering, vol.
192, no. 1-2, pp. 227–246, 2003.

255

[346] G. Allaire, F. Jouve, and A.-M. Toader, “A level-set method for shape opti-
mization,” Comptes Rendus Mathematique, vol. 334, no. 12, pp. 1125–1130,
2002.

[347] ——, “Structural optimization using sensitivity analysis and a level-set
method,” Journal of computational physics, vol. 194, no. 1, pp. 363–393, 2004.

[348] Y. Wang, Z. Luo, N. Zhang, and Z. Kang, “Topological shape optimization of
microstructural metamaterials using a level set method,” Computational Mate-
rials Science, vol. 87, pp. 178–186, 2014.

[349] L. Lu, T. Yamamoto, M. Otomori, T. Yamada, K. Izui, and S. Nishiwaki,
“Topology optimization of an acoustic metamaterial with negative bulk modulus
using local resonance,” Finite Elements in Analysis and Design, vol. 72, pp. 1–
12, 2013.

[350] O. Sigmund and J. Søndergaard Jensen, “Systematic design of phononic band–
gap materials and structures by topology optimization,” Philosophical Trans-
actions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 361, no. 1806, pp. 1001–1019, 2003.

[351] C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, “Design of phononic ma-
terials/structures for surface wave devices using topology optimization,” Struc-
tural and Multidisciplinary Optimization, vol. 34, no. 2, pp. 111–121, 2007.

[352] H.-W. Dong, S.-D. Zhao, Y.-S. Wang, and C. Zhang, “Topology optimization of
anisotropic broadband double-negative elastic metamaterials,” Journal of the
Mechanics and Physics of Solids, vol. 105, pp. 54–80, 2017.

[353] J. H. Oh, Y. K. Ahn, and Y. Y. Kim, “Maximization of operating frequency
ranges of hyperbolic elastic metamaterials by topology optimization,” Structural
and Multidisciplinary Optimization, vol. 52, no. 6, pp. 1023–1040, 2015.

[354] J. S. Jensen and O. Sigmund, “Phononic band gap structures as optimal de-
signs,” in IUTAM symposium on asymptotics, singularities and homogenisation
in problems of mechanics. Springer, 2003, pp. 73–83.

[355] G. Yi and B. D. Youn, “A comprehensive survey on topology optimization
of phononic crystals,” Structural and Multidisciplinary Optimization, vol. 54,
no. 5, pp. 1315–1344, 2016.

[356] M. Wormser, F. Wein, M. Stingl, and C. Körner, “Design and additive man-
ufacturing of 3d phononic band gap structures based on gradient based opti-
mization,” Materials, vol. 10, no. 10, p. 1125, 2017.

[357] J. H. Park, P. S. Ma, and Y. Y. Kim, “Design of phononic crystals for self-
collimation of elastic waves using topology optimization method,” Structural
and Multidisciplinary Optimization, vol. 51, no. 6, pp. 1199–1209, 2015.

[358] G. A. Gazonas, D. S. Weile, R. Wildman, and A. Mohan, “Genetic algorithm
optimization of phononic bandgap structures,” International journal of solids
and structures, vol. 43, no. 18-19, pp. 5851–5866, 2006.

256

[359] H.-W. Dong, X.-X. Su, Y.-S. Wang, and C. Zhang, “Topological optimization of
two-dimensional phononic crystals based on the finite element method and ge-
netic algorithm,” Structural and Multidisciplinary Optimization, vol. 50, no. 4,
pp. 593–604, 2014.

[360] H. Meng, J. Wen, H. Zhao, and X. Wen, “Optimization of locally resonant
acoustic metamaterials on underwater sound absorption characteristics,” Jour-
nal of Sound and Vibration, vol. 331, no. 20, pp. 4406–4416, 2012.

[361] Z.-f. Liu, B. Wu, and C.-f. He, “Band-gap optimization of two-dimensional
phononic crystals based on genetic algorithm and fpwe,” Waves in Random
and Complex Media, vol. 24, no. 3, pp. 286–305, 2014.

[362] O. R. Bilal and M. I. Hussein, “Ultrawide phononic band gap for combined
in-plane and out-of-plane waves,” Physical Review E, vol. 84, no. 6, p. 065701,
2011.

[363] D. Li, L. Zigoneanu, B.-I. Popa, and S. A. Cummer, “Design of an acoustic
metamaterial lens using genetic algorithms,” The Journal of the Acoustical So-
ciety of America, vol. 132, no. 4, pp. 2823–2833, 2012.

[364] M. I. Hussein, K. Hamza, G. M. Hulbert, and K. Saitou, “Optimal synthesis
of 2d phononic crystals for broadband frequency isolation,” Waves in Random
and Complex Media, vol. 17, no. 4, pp. 491–510, 2007.

[365] A. Bacigalupo, G. Gnecco, M. Lepidi, and L. Gambarotta, “Machine-learning
techniques for the optimal design of acoustic metamaterials,” Journal of Opti-
mization Theory and Applications, 2019.

[366] W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of
chiral metamaterials,” ACS Nano, vol. 12, no. 6, pp. 6326–6334, 2018, pMID:
29856595. [Online]. Available: https://doi.org/10.1021/acsnano.8b03569

[367] W. Ma, F. Cheng, Y. Xu, Q. Wen, and Y. Liu, “Probabilistic representation and
inverse design of metamaterials based on a deep generative model with semi-
supervised learning strategy,” Advanced Materials, vol. 31, no. 35, p. 1901111,
2019.

[368] X. Li, S. Ning, Z. Liu, Z. Yan, C. Luo, and Z. Zhuang, “Designing phononic
crystal with anticipated band gap through a deep learning based data-driven
method,” Computer Methods in Applied Mechanics and Engineering, vol. 361,
p. 112737, 2020.

[369] D. A. White, W. J. Arrighi, J. Kudo, and S. E. Watts, “Multiscale topology
optimization using neural network surrogate models,” Computer Methods in
Applied Mechanics and Engineering, vol. 346, pp. 1118 – 1135, 2019.

[370] A. Gosavi, Simulation-Based Optimization: Parametric Optimization Tech-
niques and Reinforcement Learning. New York: Springer, 2015.

[371] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” arXiv preprint, no. arXiv:1509.06461v3, 2015.

[372] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Fre-
itas, “Dueling network architectures for deep reinforcement learning,” arXiv
preprint, no. arXiv:1511.06581v3, 2016.

257

[373] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforcement
learning,” arXiv preprint, no. arXiv:1609.05521v2, 2018.

[374] K. Adil, F. Jiang, S. Liu, A. Grigorev, B. Gupta, and S. Rho, “Training an agent
for fps doom game using visual reinforcement learning and vizdoom.” in In-
ternational Journal of Advanced Computer Science and Applications, IJACSA
2017, Vol. 8, No. 12, 2017.

[375] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics. Wiley
New York, 1996, vol. 8.

[376] L. Meirovitch, Analytical methods in vibrations, ser. Macmillan series in ad-
vanced mathematics and theoretical physics. Macmillan, 1967.

[377] S. Chirită and R. Quintanilla, “On saint-venant’s principle in linear elastody-
namics,” Journal of elasticity, vol. 42, no. 3, pp. 201–215, 1996.

[378] R. Bellman, “On the theory of dynamic programming,” Proceedings of the Na-
tional Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[379] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for
large-scale nonlinear programming,” SIAM Journal on Optimization, vol. 9,
no. 4, p. 877–900, 1999.

[380] H. Zhu and F. Semperlotti, “Anomalous refraction of acoustic guided waves
in solids with geometrically tapered metasurfaces,” Physical review letters, vol.
117, no. 3, p. 034302, 2016.

[381] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, “An ultrathin invisibility
skin cloak for visible light,” Science, vol. 349, no. 6254, pp. 1310–1314, 2015.

[382] Y. Li, B. Liang, X. Tao, X.-f. Zhu, X.-y. Zou, and J.-c. Cheng, “Acoustic focus-
ing by coiling up space,” Applied Physics Letters, vol. 101, no. 23, p. 233508,
2012.

[383] S. Guenneau, A. Movchan, G. Pétursson, and S. A. Ramakrishna, “Acoustic
metamaterials for sound focusing and confinement,” New Journal of physics,
vol. 9, no. 11, p. 399, 2007.

[384] H. Zhu and F. Semperlotti, “Two-dimensional structure-embedded acoustic
lenses based on periodic acoustic black holes,” Journal of Applied Physics, vol.
122, no. 6, p. 065104, 2017.

[385] O. A. Kaya, A. Cicek, and B. Ulug, “Self-collimated slow sound in sonic crys-
tals,” Journal of Physics D: Applied Physics, vol. 45, no. 36, p. 365101, 2012.

[386] J. Bucay, E. Roussel, J. Vasseur, P. A. Deymier, A. Hladky-Hennion, Y. Pennec,
K. Muralidharan, B. Djafari-Rouhani, and B. Dubus, “Positive, negative, zero
refraction, and beam splitting in a solid/air phononic crystal: Theoretical and
experimental study,” Physical Review B, vol. 79, no. 21, p. 214305, 2009.

[387] H. Chen and C. Chan, “Acoustic cloaking in three dimensions using acoustic
metamaterials,” Applied physics letters, vol. 91, no. 18, p. 183518, 2007.

[388] T. J. Cui, D. R. Smith, and R. Liu, Metamaterials. Springer, 2010.

258

[389] M. Dubois, C. Shi, X. Zhu, Y. Wang, and X. Zhang, “Observation of acoustic
dirac-like cone and double zero refractive index,” Nature communications, vol. 8,
no. 1, pp. 1–6, 2017.

[390] M. V. Zhelyeznyakov, A. Zhan, and A. Majumdar, “Design and optimization of
ellipsoid scatterer-based metasurfaces via the inverse t-matrix method,” OSA
Continuum, vol. 3, no. 1, pp. 89–103, 2020.

[391] P. Packo, A. N. Norris, and D. Torrent, “Inverse grating problem: Efficient
design of anomalous flexural wave reflectors and refractors,” Physical Review
Applied, vol. 11, no. 1, p. 014023, 2019.

[392] Z. Lu, L. Sanchis, J. Wen, L. Cai, Y. Bi, and J. Sánchez-Dehesa, “Acoustic
cloak based on bézier scatterers,” Scientific reports, vol. 8, no. 1, pp. 1–10,
2018.

[393] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3,
pp. 660–674, 1991.

[394] Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discov-
ery and design using machine learning,” Journal of Materi-
omics, vol. 3, no. 3, pp. 159 – 177, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352847817300515

[395] W. Lu, R. Xiao, J. Yang, H. Li, and W. Zhang, “Data
mining-aided materials discovery and optimization,” Journal of Mate-
riomics, vol. 3, no. 3, pp. 191 – 201, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352847817300618

[396] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[397] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv e-
prints, p. arXiv:1312.6114, Dec. 2013.

[398] N. Zeng, H. Zhang, B. Song, W. Liu, Y. Li, and A. M. Dobaie,
“Facial expression recognition via learning deep sparse autoencoders,”
Neurocomputing, vol. 273, pp. 643 – 649, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231217314649

[399] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, “Plas-
monic nanostructure design and characterization via deep learning,” Light: Sci-
ence and Applications, vol. 7, no. 60, 2018.

[400] Y. Chen, J. Zhu, Y. Xie, N. Feng, and Q. H. Liu, “Smart inverse design
of graphene-based photonic metamaterials by an adaptive artificial neural
network,” Nanoscale, vol. 11, pp. 9749–9755, 2019. [Online]. Available:
http://dx.doi.org/10.1039/C9NR01315F

[401] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, and
K. Parsons, “Deep Neural Network Inverse Design of Integrated Photonic Power
Splitters,” Scientific Reports, vol. 9, p. 1368, Feb. 2019.

259

[402] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, “Generative
model for the inverse design of metasurfaces,” Nano Letters, vol. 18,
no. 10, pp. 6570–6576, 2018, pMID: 30207735. [Online]. Available:
https://doi.org/10.1021/acs.nanolett.8b03171

[403] A. Marzo and B. W. Drinkwater, “Holographic acoustic tweezers,” Proceedings
of the National Academy of Sciences, vol. 116, no. 1, pp. 84–89, 2019.

[404] R. Hirayama, D. M. Plasencia, N. Masuda, and S. Subramanian, “A volumet-
ric display for visual, tactile and audio presentation using acoustic trapping,”
Nature, vol. 575, no. 7782, pp. 320–323, 2019.

[405] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business Media,
2012.

[406] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[407] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” arXiv e-prints, p. arXiv:1603.07285, Mar. 2016.

