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ABSTRACT

Cao, Yuanzhi Ph.D., Purdue University, Dec 2020. Exploring Novel Human Smart-thing
Interaction through Augment Reality Framework Design. Major Professor: Karthik Ramani
Professor, School of Mechanical Engineering.

We have never felt so connected with the surrounding social and physical environment,

thanks to the increasingly populating mobile computing devices and rapidly developing

high-speed network. These technologies transform the everyday objects into smart-things

and make us accessible to a large amount of digital information and intelligence relating

closely to the physical reality. To bridge the gap between the digital interface and physical

smart-thing, Augmented Reality (AR) has become a promising media that allows users to

visually link the digital content to its physical target, with spatial and contextual awareness.

Thanks to the vast improvement to the personal computing devices, AR technologies are

emerging to popular realistic scenarios empowered by commercially available software

development kits (SDKs) and hardware platforms, which makes it easier for human users to

interact with the surrounding smart-things.

Due to the scope of this thesis, we are interested in exploring for the smart-things that

have physical interaction capabilities with the reality world, such as Machines, Robots, and

IoTs. Our overarching goal is to create better experience for users to interact with these

smart-things, that is visual, spatial, contextual, and embodied, and we try to achieve this

goal through novel augmented reality system workflow/framework design.

This thesis is based on our four published conference papers [1–4], which are described

in chapters 3-6 respectively. On a broader level, our works in this thesis focus on exploring

spatially situated visual programming techniques for human smart-thing interaction. In
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particular, we leverage contextual awareness in the AR environment with the interactivity of

physical smart-things. We explore (1) spatial and visual input techniques and modalities

for users to intuitively interact with the physical smart-things through interaction and

interface design, and (2) the ecology of human smart-thing through system workflow design

corresponding to the contextual awareness powered by the AR interface. In this thesis, we

mainly study the following spatial aware AR interactions with our completed work: (i)

Ani-Bot demonstrates Mixed-Reality (MR) interaction for tangible modular robotics through

a Head-Mounted Device (HMD) with mid-air gestures, (ii) V.Ra describes spatially situated

visual programming for Robot-IoT task planning, (iii) GhostAR has presented a time-space

editor for Human-Robot Collaborative (HRC) task authoring. (iv) while AvaTutAR-study

has presented an exploratory study that provided valuable design guidance for future AR

avatar-based tutoring systems.

We further develop the enabling techniques including a modular robotics kit with

assembly awareness and the corresponding MR features for the major phases of its lifecycle;

a lightweight and coherent ecosystem design that enables spatial and visual programming as

well as IoT interactive and navigatory task execution with a single AR-SLAM mobile device;

and a novel HRC task authoring workflow using robot programming by human demonstration

method within AR scene with avatar reference and motion mapping with dynamic time

warping (DTW). Primarily, we design system workflows and develop applications for

increasing the flexibility of AR content manipulation, creation, authoring, and intuitively

interacting with the smart environment visually and pervasively.

Based on our completed projects, we conclude this thesis by summarizing the overall

contributions of my Ph.D. works, and briefly providing my humble vision for the future of

AR.
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1. INTRODUCTION

We are entering an era where we will soon be surrounded by all kinds of smart-things

in our daily lives. These smart-things will enhance the living experience through digital

communication and physical interaction. We humans will be connected seamlessly to the

surrounding smart-thing network and form an ecosystem that is constantly absorbing and

generating new information with the environment. This human-centered ecology has the

potential to greatly increase the sensing capability and executive force of the human users,

and therefore augmenting their environmental awareness and influence. The development

and the technological advances in mobile personal computing devices and the high-speed

networks are demonstrating a path to the above-mentioned future, by increasingly providing

access to individual users of digital information and intelligence. This virtual information is

usually hard to be detected or generated directly by a human being’s sense and mind.

With the fast advancement pace of robotic technology, we can expect robots to come out

from the factory to the household environment in no time. As these robots are becoming

lower in cost, higher in flexibility and adaptability, and most importantly, smarter than ever,

they are ready to fit into the user’s home and work coherently with the rest of the stationary

smart-things, also known as Internet-of-Things (IoT). To this end, a new ecosystem will

soon be established where human users are augmented and enhanced by stationary IoTs and

mobile robots. This ecosystem is capable of performing network digital communication

(IoT) as well as physical interaction with the surrounding environment (Robot) and is

therefore comprehensive enough to exercise real-life tasks.

Under this broader context, my research is driven by the following questions: (1) How to

make the human user more intuitively and effectively expressive his/her will to communicate
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with this Human-Robot-IoT ecology, and (2) How to design the ecosystem so that each party

in the system works collaboratively and enhance each others’ capability to achieve compre-

hensive real-life task through mutual endeavors. Our works in this thesis aim to bring out the

strength of AR by designing both hardware and software workflow/framework/ecosystem

around it, to create novel user experiences for human smart-thing interaction. Overall, our

work is specifically designed to achieve the following features: Visual, Spatial, Contextual,

and Embodied. These can be considered as the high-level design goals of my Ph.D. thesis,

which are reflected throughout all my research projects.

1.1 Visual Interactions with Physical Smart-things

We have progressed a long way in controlling and programming physical devices via

a digital interface. The traditional command-line User Interface (UI) (i.e. scripting) is

unapproachable to novice users because it requires them to have a reasonable understanding

of electromechanical systems and programming [5]. As a result, researchers have developed

new approaches that require less cognitive load and pre-requisite knowledge. These new

approaches generally fall into two categories of control interfaces: the Graphical User

Interface (GUI), and the Tangible User Interface (TUI) [6–8]. The GUI is a graphical

substitute for a similar command-line UI. Instead of using computer languages, users can

drag and drop editable function blocks and link them in particular ways to program physical

devices. This approach is much easier than scripting, and it also maintains a high level of

control capability. Although GUIs tend to be more user-friendly than scripting, each GUI

has a different interface that a novice user must still devote time and effort to understand and

learn. Furthermore, like traditional scripting, the control interface of a GUI is in the virtual

environment (a computer, phone, tablet, etc.), which detaches the users from the physical

target they are attempting to control. Contrary to the GUI approach, many other construction

kits utilize TUIs for programming, where the physical devices are programmed by hands-on
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manipulation and the pattern of assembly. The TUIs tremendously reduces the gap between

the control interface and its target because everything happens in the physical environment.

Therefore, robotics kits that use TUIs are usually easy to use and, as a result, children with

little-to-no training can create animations with their DIY robots. Although easier to use than

the GUI approach, the TUI has its limitations in terms of control capability. TUI requires

hands-on manipulation in almost all its interactions, which makes teleoperation hard to

realize. Moreover, due to the nature of human hands-on manipulation and lack of digital

interfaces, precise movement can also be hard to achieve in a TUI-powered robots [9]. To

summarize, GUIs provide high control capability, but the gap between its control interface

and the target could make it hard to be intuitive and expressive. The TUIs are easy to use

but are limited in the control effectiveness.

To bridge the gap between the control interface and its target (TUI), while maintaining

high control capability (GUI), we seek to combine both their merits and propose to use

Augmented Reality (AR) or Mixed Reality (MR) technology as the control interface for

interacting with the physical devices. As augmented reality enables virtual imagery to be

seamlessly combined with the real world, it becomes a promising surrogate to bridge the

physical and the digital world. In an AR scene, digital information and intelligence are

usually represented in the form of graphical augmentations. The virtual images and the real

images are combined through a video see-through or an optical see-through display. Further,

the virtual imagery is registered with the real world in three-dimensional (3D) space and

remains interactive in real-time [10]. In short, the newly emerging AR and MR technology

enables the embedding of a versatile and malleable digital interface without impeding the

inherent tangibility. We seek a spatial and visual programming interface for controlling the

physical smart-things and therefore AR technology is serving as a major media in this thesis.

The use of AR interface to control physical IoTs and robots has been widely explored by

researchers [10, 11]. Contrary to the previous works, the works presented in this thesis aim
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to further explore the different modality of user interaction in the AR context, in terms of

controlling stationary IoT and mobile robot device. Moreover, we developed novel systems

that exploit the benefit of AR, which is visually active with spatial and contextual awareness.

1.2 Framework Design of Approaching AR Interaction

The essence of Augmented Reality is to enhance the physical reality with superimposed

virtual content. So that the embedded semantic information of the interesting physical object

can be directly and visually accessible by the user. Simply looking at the target object, and

its virtual information is floating above. Therefore the first key point of AR is visual, that

users do not need to rely on any external scripting or interfaces to access the digital content

and link with the target physical object, it’s already aligned with the physical object. This

characteristic allows users to naturally achieve point-to-point interaction without needing

to worry about if they have chosen the correct target. Another significant feature of AR

is the spatial and contextual awareness of the user. Because the digital interface is placed

into a physical reality, environmental information can be easily taken into consideration

when users want to program the devices for physical interactive tasks. For example, using

an AR interface with virtual representation, the user can easily program a robot arm to grab

objects from the nearby surrounding environment, by simply manipulating the virtual arm

and simulate the motion before execution. Because the location and the spatial information

of each smart-thing can be directly reviewed from the AR scene, the user can take advantage

of it and reference it with the context environment. For example, to create a 3D trajectory

for a robot arm to grab an object while avoiding the obstacles, or to set a collision-free path

for mobile robots to navigate around the room.

One of the core focus of this thesis is to explore the modality of user interaction in an

AR setup, which is determined by the framework design of the AR system. To have an

AR system, several key elements need to exist and the parameter regarding these elements
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defines the uniqueness of the AR framework. First of all, the virtual content that enhances

the corresponding physical target. How is the virtual content created? Is it automatically

generated based on the on-the-fly input data or is it pre-defined? Secondly, how is the virtual

content aligned with its corresponding physical target? Does it rely on a camera vision-based

image marker? Or Automatically perform the self-localization and registration? Thirdly,

what is the human’s role in the AR workflow? Is it only the data reader and command sender

through the AR interface? Or can it exploit its intuition and reduce the system workload by

participating in the AR content generation and registration/localization process.

1.3 Towards Collaborative Intelligence Through Human Smart-thing Interaction

There are three key elements in the ecosystem proposed in this thesis: Human, stationary

IoTs and Machines, and mobile robots. Humans are the command issuer, they tell the

system what do to based on the status of the system and the end goal. IoT devices and

Machines are mostly stationary and they are good at the local job that is pre-defined, like

turning the light on/off or start cooking food in the microwave. They can also actively sense

environmental data and share them across the digital network. Mobile robot, on the other

hand, is capable of physical object manipulation and room-level navigation. It serves as

a flexible and adaptable media that links multiple stationary IoT devices together to form

a physical network, that is capable of a more complex task than any of the IoT alone. In

our proposed system, all these three elements are bound together by the AR framework to

form an ecosystem. Traditionally, humans are only command givers, based on the available

information including the readings from the IoT sensors. They review the status of the

system remotely, press the button to issue a command, and observe the result then iterate the

process. Traditional human user does not participate in the execution cycle and that means

they have to give sequentially low-level command, to instruct the system to do one small

thing at a time. In that sense, they are more like a system operator which requires them to
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be highly skillful and familiar with the system. Otherwise, the system needs to be highly

autonomous to dissect and execute human user’s high-level command, this requires a series

of intelligent processes, which include and are not limited to task distribution, resource

scheduling, and so on. Compared to the previous approach, this is much harder in terms of

the system’s intelligence and is therefore not expected to exist anytime soon.

It has already been discovered by researchers that the proper collaboration between

humans and machines is capable of higher productivity than both humans and machines

alone. This might still hold even the level of machine intelligence further develop in the

future. Because the intuition and originality of a human can never be replaced by any

machine. In other words, even though machines are good at certain types of task, it is best

to leave some other type of the job to human beings, who are more flexible, adaptable,

and well, human. This is very similar to the collaboration between two people whose skill

set and personality are very different, and yet they can be highly productive partners if

working together and outperform each of them working individually. Therefore, the key

concept we want to bring out in this thesis is human smart-thing collaboration through

an AR framework. Why AR framework here? Because AR is capable to visually present

the status of the system, which is highly intuitive and effective, and it also provides high

spatial awareness for the user to make better contextual decisions. More importantly, with

an AR framework, human users can physically place themselves inside the AR scene and

perform as a special smart-thing device. Exploiting human being’s intuition, it can help

and dissect the otherwise very complex tasks for a fully autonomous system, for example,

navigator path planning in a highly cluster scene. To this end, complex tasks can be executed

through proper collaboration among human and smart-things. With the emergence of rapidly

developing artificial intelligence, we believe this concept will play a crucial role in numerous

future application scenarios like factory, office, and household environment.
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1.4 Overview of Contributions

The purpose of this thesis is to explore system framework design for visual, spatial,

contextual, and embodied interaction with smart-things. We seek novel user interaction in

the AR setup via designing workflows. These system frameworks are later generalized and

can be used by other researchers as guiding material towards the design for collaborative

intelligence for human smart-thing interaction. We here summarize the contributions as

follows:

• The design of system workflows that embeds Augmented Reality interaction with

various enabling technology to achieve DIY robotic animation authoring, sequential

task planning for mobile robots, Human-Robot Collaborative task authoring, and

human-human skill transfer for machine task applications.

• Develop the corresponding system that involves exploration of the hardware design

and the incorporated Augmented Reality features that promote novel interaction

experience.

• Investigate the role of human user and place it in the center of the interaction loop,

and aiming towards intelligent collaboration via human smart-thing interaction.

• Evaluate the technical performance and overall usability of proposed AR systems and

interactions.

We will discuss the above summary in greater details in the rest of this thesis. Chapter

2 will describe the state-of-the-art related work compared to each of our work. In Chapter

3, we will discuss a novel system design that Mixed-Reality Interaction for DIY modular

robotic. We will talk about the system workflow that achieves assembly awareness for the

proper virtual model to be generated corresponding to the physical assembled DIY robot.

We will discuss the hardware modular design as well as the incorporated mixed-reality
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feature that promotes novel DIY robotics experiences. In Chapter 4, we will introduce a

human centered approach for authoring sequential tasks for the Robot-IoT ecology. We will

describe the lightweight workflow that utilizes one single AR-SLAM device to perform

task authoring as well as robot execution. In Chapter 5, we will present a human-robot

collaborative task authoring system. We will describe the system workflow featuring on

embodied interaction (Programming-by-Demonstration) for HRC task authoring, using

the recorded AR ghost as time-space authoring reference and editing agents, and motion

mapping using DTW for acting out the HRC task. Chapter 6 will present an exploratory

study on AR presence for machine task tutoring. We conducted a series of user study to

compare the tutoring experience of the following AR presence: video, AR-only, AR with

half-body avatar, and AR with full-body avatar. By analyzing the quantitative and qualitative

results, we have extracted valuable design guidelines for future AR-avatar based tutoring

systems. Chapter 7 summarizes the overall contributions of this Ph.D. thesis work. In

Chapter 8, I will conclude this thesis by giving my prospective for the future of AR.
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2. RELATED WORK

The research works presented in this thesis are in the area of Human-Computer Interaction

(HCI) and Human-Robot Interaction (HRI). Specifically, we have intensively investigated

novel interaction metaphors regarding Augmented Reality for visual and spatial program-

ming. Our related work also covers construction robotics kit, mobile robot programming and

task planning, and skill transfer via embodied demonstration. We will discuss the related

work selectively for positioning our work in a broader background, and highlighting our

contributions with respect to existing works. The following content is primarily based on

the RELATED WORK section in our featured publications [1–4], with slight modification.

2.1 Modular Construction Robotic System with Embedded Mixed-Reality Interac-

tion (Ani-Bot)

2.1.1 Interacting with DIY Robots

Due to the inherent tangibility in the DIY robotics process, previous works have de-

veloped several TUI approaches. Topobo and VEX robotics adopted the Programming-

by-Demonstration method with kinetic memory to play back user-defined motions and

animate the robot [12, 13]. Since only actuation modules can be programmed, this approach

has a limited level of controllability. On the other hand, the Programming-by-Assembly

approach requires no further programming once the robot is constructed, thus encouraging

users to try different assembly configurations [14]. Therefore, this highly engaging TUI

approach has been widely used in the area of childhood robotics education by Cubelets,

LittleBits, MakerWear, etc. [15–19]. However, because each module is pre-programmed



10

for a specific function, complex robots require a large number of modules, which increases

both the physical size and the difficulty of assembling. Furthermore, since the TUI robots

are assembled and programmed for designated tasks, changing a task usually results in

re-assembling a new robot architecture, which lowers the versatility and malleability.

Due to the limitations in TUI’s controllability, many commercial robotics kits have

adopted an additional GUI to control the robot, such as Lego Mindstorms, Tinkerbots,

VEX Robotics, etc [13, 20–23]. However, most of these GUIs have been separated from

the physical robot targets, thereby creating a gap which results in an inconsistent user

experience. Alternatively, researchers have been exploring the merging of other interaction

methods with DIY robotics. KIWI used scannable image-target-covered cubes to tangibly

program the robot [24]. Handimate [25] and PuppetX [26] used hand and body gestures to

control the crafted DIY robots, respectively.But although these control modalities show good

interactivity, the lack of a fine level of controllability still remains an open issue. Mirror

Puppeteering achieved user-defined playback animation with hands-on manipulation [27],

yet it still required an external camera to track markers on the articulating parts. On the

other hand, Ani-Bot’s MRUI is superimposed onto the physical target that bridges the

gap by directly interacting with the target object. More importantly, a coherent MRUI

design preserves the tangibility of DIY robotics and the consistency of the user experience.

By exploiting the advantage of a digital user interface, our system Ani-Bot is capable of

achieving informative visualization and complex programming.

2.1.2 Assembly-Aware Construction

To effectively control modular robots, a virtual controller needs to be mapped with

the physical target. Both GUI designs and controller-enabled interactions require manual

correspondence for the mapping, which can be a tedious process for users. For example,

when using Handimate [25], users need to manually set the gesture-actuator mapping
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configurations on a mobile application before controlling the robot. This problem can be

solved if the modular kit can be made aware of its own assembly configuration and can

therefore accomplish the mapping automatically. Such an assembly-aware concept already

exists in many TUI construction kits, including Cubelets and MakerWear [15, 19]. However,

they address only electronic communication logics without geometric information of the

physical assembly. In our case, geometric assembly-awareness is essential for deploying a

mixed-reality user interface. Prior works have explored the subject via hardware connection

[28–30] and computer vision approaches [31]. But most of these works only applied

assembly-awareness to passive building blocks that involved no motions. In comparison,

the Ani-Bot system provides a virtual geometric model of robotic modules that update and

coincide with the physical assembly, thus allowing responsive interactions and active visual

feedback.

2.1.3 Assembly and Design Guidance with MRI

Utilizing MRI, different modalities of virtual guidance have been explored to assist users

in the assembly process. Henderson et al. overlaid instructions from the view of users’

Augmented Reality (AR) headset [32], while Makris et al. displayed the corresponding

virtual CAD model [33]. In terms of interaction media, some researchers used a virtual

interactive tool [34], while others chose to directly manipulate the virtual model with bare

hands for assembly guidance [35] and design simulation [36]. These works focused on

providing assembly guidance for robotics/machines with pre-defined designs. Furthermore,

without an external monitoring system on the assembly procedure, the guidance remained

non-interactive. By embedding an RFID tag in each of the construction modules, Zhang et

al. achieved real-time tracking and monitoring for non-mobile passive blocks that enabled

interactive guidance [37]. Moreover, researchers have been coupling MRI with interactive

design processes, including participatory design [38], decision making [39], and design
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evaluation [40]. Driven by the needs from the creation and tweaking phases, we focused

on incorporating suggestive design guidance for functional robot design. By achieving

assembly-awareness, Ani-Bot provides users with interactive mixed-reality assembly guid-

ance for re-configurable modular robotics construction.

2.1.4 Robot Operation with MRI

MRI has been investigated for interacting with robots. TouchMe and exTouch have

demonstrated the process with mobile robots [41, 42]. Utilizing MRI with robotics, re-

searchers have achieved human-robot collaboration for object manipulation [43], object

delivery [44], and household sequential task instruction [45]. Besides being viewed through

an AR tablet device [46–48], the control interface can also be projected directly onto [49] or

near the physical target [50, 51] for ease of mixed-reality interaction. Furthermore, MRI

is applied in industrial robotics for path planning [52, 53], spatial programming [54], and

trajectory planning [55]. However, the above work utilized mixed-reality primarily for

programming movements for robots with determined designs and configurations. Instead,

we aim at investigating an MRUI with higher malleability for DIYing a re-configurable robot

with both output and input modules. To the best of our knowledge, no prior work has at-

tempted to or explored embedding MRI with DIY robotics; this, is our primary contribution

of this paper.

2.2 In-Situ Visual Authoring System for Robot-IoT Task Planning with Augmented

Reality (V.Ra)

2.2.1 Workflow of Human-Robot System

Due to the limited on-board perception capabilities and underdeveloped artificial in-

telligence (AI), the ad-hoc tasks in our daily environment which we take for granted are
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still challenging for robots [56]. Thus, before it comes to an era of full autonomy and high

level AI, a sophisticated human-robot interface is the key to author the domestic robots to

accomplish any useful tasks. Within the authoring interface, users need to be spatially aware

of the physical environment and the mobile robots. Previous works introduced an external

vision system to track the robots and fed the live camera view to the interface [41,44,57–59].

However, this approach limits the authoring scene to the perspective of the camera only,

which is usually fixed. In contrast, Magic Cards proposed an implicit command authoring

workflow with human manually and spatially placing the task-representing paper tags [60].

Still, tracking from an overhanging infrastructured camera is prone to occlusion, espe-

cially in a cluttered scene such as a household environment. Further, recent researches

employed mobile AR interfaces and associated the robots within the AR scene, e.g., with

hand-held [61,62] or head-mounted [1] devices. Although the mobility allows users to move

around and author distributed tasks from different perspectives, the limited field-of-view

constrains the robots’ navigation range.

Other works separated the authoring interface and navigation by equipping robots with

on-board SLAM capabilities. This way, user referred to a scanned map of the real scene as

authoring context and the robot conducted tasks using the same map [63–65]. However, the

pre-scanned SLAM map, once created, remains static and cannot adapt to the changes in the

environment. In fact, for an ever-changing scenario such as user’s home, the system will

be hampered with outdated SLAM maps. Informed by these previous works, we propose

a mobile AR authoring interface with which users can spatially author the tasks by either

explicitly defining navigation paths or implicitly visiting the IoTs by just walking to each

of them. Moreover, we emphasize a transparent knowledge transfer between human and

the robots by allowing robots to use the same AR device as ‘eyes’ and ‘brain’ directly. We

further increase the adaptability of the robots against environment changes as we rely only

on on-the-fly updated SLAM maps.
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2.2.2 Robot-IoT Ecology within AR

An AR interface is spatially and physically aware of the environment by its nature [10].

Previous works have explored accessing and controlling IoTs through the digital representa-

tions superimposed in the AR scenes [66, 67]. But in these works, the augmentation relies

on keeping the IoTs in the AR camera view, thus only allow for local interactions in a

limited volume. Further, leveraging the SLAM embedded in mobile AR devices [68, 69],

researchers also investigated spatially registered IoTs in the SLAM map to support embodied

interactions in a larger space [70]. In addition, AR has been used to author and edit IoT

programs in-situ [47]. Moreover, recent works further emphasized on multiple IoTs in the

same environment, e.g., visualization of the data flow among sensors, logic programming

between devices [71], and visual analytics of the fetched data [72].

For stationary industrial robot arm programming, AR motion planning allows users to

preview the generated trajectories and examine potential discrepancies and collisions [52,53,

55]. In a robot-IoT context, the mobility of the robots is a critical complementary element.

We focus on authoring room scale navigatory tasks for visiting distributed IoTs and assume

that the local manipulation are handled by robot itself. While simple graphical augmentation

can be superimposed onto the video streamed from the external camera system [41,44,57–59]

or projected to the physical environment [50, 51], we follow a mobile AR approach because

a handheld [42, 61] or head-mounted AR device [1] allow users to freely move in the

environment and inspect the augmentations from multiple perspectives. Besides authoring

tasks for robots, researchers further explored using AR to debug robot behaviors [73, 74],

passing knowledge to robots through demonstrations [54, 75], and interacting with the

embedded AI decisions [76]. Although we do not develop these specific applications, our

workflow shows potential to create robust test-beds for a variety of human-robot-IoT studies.
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2.3 Human-Robot Collaborative Task Planning by Embodied Authoring with AR

(GhostAR)

2.3.1 Human-Robot Collaboration Model

Many cognitive frameworks and computational architectures have been proposed for

enabling and supporting teamwork between humans and robots [77]. One of the keywords

in human-robot collaboration (HRC) is adaption: a robot interacting with people needs

to reason over its uncertainty over the human internal state, as well as over how this state

may change, as humans adapt to the robot [78]. While some previous work took the

approach of human adapting to robot [79], and human-robot mutual adaption [80], the

largest body of current HRC works have been focusing on a lead-assist collaboration type

and empowering the robot to be an assistant and to adapt to human actions. Researchers have

presented different mathematical models and formulations focusing on task allocation and

communication via goal-oriented controller [81], on improving human-robot coordination

through cross-training [82], and on efficient learning with human inference with joint-

action demonstrations [83]. Other researchers emphasized on robot learning methods

and frameworks and proposed interactive primitive. Along this thread, a series of studies

demonstrated cooperative task learning with single [84] and multiple [85] primitives. Further,

probabilistic movement model has been introduced to improve human-robot coordination

[86] and action recognition [87]. These work primarily targeted at general mathematical

solutions and learning methods for specific collaborative scenarios. However, it is still

challenging to achieve applicable human-robot collaboration in real-world setups. In fact,

most of the HRC tasks were pre-defined and simplified versions of intended scenarios [77].

Also many of these work require offline training with pre-capture data, which is not desired

for on-site HRC.
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On the other hand, our system complements the previous works by focusing on providing

an in-situ HRC task authoring tool. We exploit the initiative of human users and enhance

their capabilities with embodied interactions and AR interfaces. To better support a smooth

workflow and rapid iteration of task plans, we adopt a real-time process for task authoring

and collaboration acting without offline training. Taking advantages of AR interface, we

also provide active visual feedback with spatial and contextual reference so that human and

robot are always aware of each other during the collaboration.

2.3.2 Robot Programming by Demonstration

Robot programming by demonstration (PbD), also referred to as imitation learning,

has become a popular method for programming and training robots. PbD reduces search

space complexity for learning, supports natural means of embodied user interaction, thus

enables flexible and user-friendly robot programming and training [88]. Extensive body

of works have been done in developing methods and algorithms for learning individual

motions [89–91] and compound motions [92, 93], as well as incremental teaching methods

[94, 95]. So far, PbD has shown great successes in training individual robots to do specific

tasks with offline data captures. When applying PbD into collaborative scenarios, additional

reference is needed since robot is no longer operating in isolation. Instead, robots need to

coordinate with the human partner, whose uncertainty depends on human’s internal states

upon actions. To achieve PbD for HRC tasks, previous works primarily relied on two people

demonstrating the tasks where one of them plays the robot’s role. The human demonstration

is captured with motion tracking system offline and fed a computational model to generate

robot policy at runtime [84–86, 96, 97]. The above approach is intuitive to practice and

has been used in HRC task authoring including object handover and joint manipulation.

However, this PbD approach is limited to simple and pre-determined task authoring due to

the lack of visual interface for sophisticated editing. Moreover, as the offline demonstrations
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usually happened in a controlled lab environment, the collaboration volume was constrained,

e.g., most of the presented collaboration tasks were executed using a stationary robot arm.

GhostAR, on the other hand, exploits a visual interface and displays the captured human

motion as ghost images in the AR scene. Using the AR ghost as time-space references, users

can author the HRC tasks by manipulating a virtual avatar of the real robot collaborators.

We emphasize instantiating PbD by supporting embodied authoring in our workflow. Our

system allows for collaboration authoring of robots with various types of configurations.

Further, when users perform the collaborations with robots, we allow users to use the same

self-contained AR interface for motion inference.

2.3.3 Human-Robot Interaction through Augmented Reality

An AR interface is spatially and contextually aware of the surrounding environment by

its nature [10]. Thus, it serves as an ideal media to bridge the digital interface and physical

reality. For example, it has been used for visual and spatial interactions with robots [1,41,42]

and smart devices [47,70]. AR for human-robot interaction has been widely explored across

industrial motion planning [52, 53, 55], mobile teleoperation [41, 42, 98, 99], sequential

task planning [44, 57–59, 100], and multi-robot controlling [101], analyzing [102], and

debugging [103]. Previous works primarily treated AR as an control interface for robots

operating in isolation. While AR was explored to display robot’s intent for user visualization

to achieve better collaboration [104–109], it has not been proposed to empower the entire

life-cycle of HRC, from task authoring to collaboration acting. To the best of our knowledge,

GhostAR is the first system that achieves incorporation of AR within a full HRC workflow,

enabling natural embodied authoring with context-aware visual programming.

The key of HRC task authoring is to provide reference of the collaboration partner in

a spatial and temporal manner during the authoring process, which in turn ensures correct

time-space coordination when the HRC task is in action. By further exploring into human-
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human scenarios, we have found several interesting AR works that achieve augmented

collaboration through interactively reconstructing the surrounding environment [110], spa-

tially visualizing the collaboration partners [111], and demonstratively externalizing user’s

body [112]. Informed and inspired by these recent works, we introduce a novel ghost

visualization serving in a human-robot scenario for collaboration reference, authoring and

editing, as well as simulation and preview of authored joint action plans.

2.4 An Exploratory Study of Augmented Reality Presence for Tutoring Machine

Tasks (AvaTutAR-study)

2.4.1 AR Tutorials for Machine-related Operation

AR naturally supports spatially and contextually aware instructions for interacting

with the physical environment. Researchers have explored various designs for AR-based

text instructions [113–116], including numerical values [117, 118] for precise operational

descriptions with quantitative real-time feedback. Symbolic visual guidance, such as

arrows [119, 120], pointers [121], circles [122], and boxes [123], are commonly used for

visualizing motion intent and guiding a user’s attention. Besides text and symbols, prior

works have also explored virtual 3D models of the interactive tools and machine components

for a more comprehensive and intuitive visual representation, in use cases such as object

manipulations and geometric orienting operations [124–127].

These means for creating AR instructions have been useful for tutoring physical tasks.

AR-based training systems have been thoroughly explored and applied to complex real-world

scenarios, such as vehicle maintenance training [114,122,128], facility monitoring [113,115,

125], machine tool operations [117,118,124], and mechanical parts assembly [116,120,123,

126]. However, most of these AR-based training systems are focused on local interactions

that involve very little spatial navigation and bodily movement as a part of the human-
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machine task itself. To incorporate human motion into the task instruction, we propose

virtual avatars for externalizing the human tutor. We acknowledge the necessity of the AR

instructions in the existing work and additionally propose an avatar as a supplementary

tutoring presence, mainly for the spatial and body-coordinated interactions in the machine

task scenarios. We are interested in finding out if the added avatar visualization would

improve the users’ machine task tutoring experience and provide additional benefits that

will inspire the future designs of intelligent tutoring systems.

2.4.2 Virtual Humanoid Avatar in AR/VR Training Systems

A virtual humanoid avatar is an animated human-like 3D model that embodies the human

user’s body movements, gestures, and voice information in VR and AR environments. It

has been adopted as an expressive visualization media for human motion training. Chua

et al. [129] built a Tai Chi training platform with a virtual instructor performing pre-

recorded movements, where the students follow and learn asynchronously. YouMove [130]

utilized an AR mirror to achieve full body gesture comparison with a projected tutor

avatar. In terms of providing a better comparison with the virtual instructor, previous

works [131–133] superimposed the virtual instructor together with the user’s perspective

in the AR view, enabling the user to align his/her body spatially with the virtual avatar.

Moreover, OutsideME [134] adopted virtual avatars to externalize the users themselves as a

real-time reference so that they can see their own bodies from a third-person view while

dancing. While differentiating from regular-sized avatars, Piumsomboon et al. [135, 136]

exploited a miniature avatar to empower collaboration between a local AR user and a remote

VR user. Most recently, Loki [137] has created a bi-directional mixed-reality telepresence

system for teaching physical tasks by facilitating both live and recorded remote instructions

via avatars and RGBD point cloud.
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These previous works reveal the virtual avatar’s advantages in enhancing bodily-expressive

human-human communication, for applications such as asynchronous learning, self-observing

and training, teleconference, and MR remote collaboration. Nevertheless, the usability of

the avatar as a tutor presence for training in physically interactive tasks has not been sys-

tematically explored. This paper proposes to use avatars for representing the human tutor’s

spatial and bodily movements in the machine task training scenario. A machine task is a

compound mixture of multiple types of interaction, and existing tutorial visualizations do

have their own advantages. Therefore, it is paramount for us to study when and how to use

avatars in order to apply it effectively in machine task tutoring.

2.4.3 Authoring by Embodied Demonstration

An embodied demonstration enables a user to use the shape, positioning, and kine-

matics of one’s body as spatial reference for digital content creation. Researchers have

achieved complex hand-related 3D sketching [138], design of personalized furniture [139],

and creative 3D modeling [140]. Additionally, the motion data of the demonstrations can

be extracted from videos to produce step-by-step training tutorials for human body ac-

tion [130, 141], first-aid procedure [142], and parts assembly [143]. Similarly, by mapping

extracted body motion to virtual characters, users can act out stories and generate animations

directly [144–147]. The embodied demonstration has also been applied in the area of

human-robot interaction. Vogt et al. [148] and Amor et al. [149] used motion data captured

from human-human demonstrations for programming human-robot collaboration (HRC)

tasks. Recently, GhostAR presented a workflow of authoring HRC tasks by externalizing

the human demonstration and using that as a time-space reference to program the robot

collaborators [3]. Further, Porfirio et al. [150] applied the method of human demonstration

for human-robot social interactions.
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To summarize, an embodied demonstration empowers rapid creation of complex and

dynamic content through intuitive and straightforward bodily interactions. It is, therefore,

suitable for machine task tutorial authoring especially in a fast-changing working environ-

ment. We envision the embodied demonstration to become the predominant method for

creating machine task tutorials in future factory scenarios. While we apply this method for

generating the tutor contents, we also emphasize the design space of the tutor presence in

AR.
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3. MODULAR ROBOTICS SYSTEM WITH MIXED REALITY

INTERACTION (ANI-BOT)

This chapter is a slightly modified version of "Ani-Bot: A Modular Robotics System Sup-
porting Creation, Tweaking, and Usage with Mixed-Reality Interactions" [1] published in
Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied
Interaction and has been reproduced here with the permission of the copyright holder.

Fig. 3.1. Ani-Bot system overview: Ani-Bot provides users with (1) a modular
kit that allows them to (2) assemble and construct robots with crafted DIY
objects, and (3) use mixed-reality interaction to perform direct manipulation,
sensor driven programming, and animation authoring. (4) The system can assist
users in the assembly process, and (5) help them tweak ineffective designs
through virtual tryout. (6) Taking advantage of mixed-reality, users can easily
program their robots to perform environmentally interactive tasks, such as
adding sugar to a teacup or shooting objects into a bowl.

Ani-Bot is a modular robotics system that allows users to control their DIY robots using

Mixed-Reality Interaction (MRI). This system takes advantage of MRI to enable users

to visually program the robot through the augmented view of a Head-Mounted Display
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(HMD). In this paper, we first explain the design of the Mixed-Reality (MR) ready modular

robotics system, which allows users to instantly perform MRI once they finish assembling

the robot. Then, we elaborate the augmentations provided by the MR system in the three

primary phases of a construction kit’s lifecycle: Creation, Tweaking, and Usage. Finally,

we demonstrate Ani-Bot with four application examples and evaluate the system with a

two-session user study. The results of our evaluation indicate that Ani-Bot does successfully

embed MRI into the lifecycle (Creation, Tweaking, Usage) of DIY robotics and that it does

show strong potential for delivering an enhanced user experience.

3.1 Introduction

DIY modular robotics has a strong appeal to makers and designers since it can be

used in quickly designing, building, and animating their own creation which opens the

thrilling possibility of bringing imagination to life. The physical modular units inherently

serve as tangible interactive interfaces within a DIY robotics process. Thus, developing

a robotics kit with embedded Tangible User Interface (TUI) shows the potential to allow

intuitive interaction in the DIY process [12,15]. However, the versatility and malleability

of such TUI’s are limited when it comes to programming complex tasks involving a fine

level of control [14]. To provide comprehensive controllability for the robotics kit, a

Graphical User Interface (GUI) design has been adopted by commercial products such as

Lego Mindstorms [20]. This separate digital interface, however, breaks the bridge between

the physicality and the virtuality which are built through the TUIs [151]. To prevent

inconsistent and fractured user experiences in the DIY robotics process, we seek for a

seamlessly integrated workflow in which the intuitive tangible interactions are enhanced by

a coherent spatially situated and contextually relevant digital interface.

The newly emerging Mixed-Reality (MR) technology enables the embedding of a

versatile and malleable digital interface in the DIY robotics process without impeding
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the inherent tangibility. Previous researches have attempted mainly in either assisting the

assembling of passive building blocks [33,34,37] or controlling a pre-defined robot/machine

[41, 42, 47, 48, 53]. Although we are inspired and motivated by these efforts, we focus

on extending mixed-reality interaction to the whole lifecycle of modular robotics, namely

Creation, Tweaking, and Usage [152]. Therefore, we propose Ani-Bot, a modular robotics

system embedded with MRI. As demonstrated in Figure 3.1, while users are building their

robots, the corresponding virtual model is automatically generated and superimposed with

the robot from the view of HMD. Users can then visually control the physical robot by

interacting with the virtual representation. With the Ani-Bot system, users can: (1) Create

robot constructions with virtual guidance; (2) Tweak ineffective designs and perform virtual

tryout; and (3) Utilize mixed-reality to make their DIY robots interact with the surrounding

environment. To summarize, the main contributions of this paper are:

1. System workflow, which embeds MRI with modular robotics.

2. Design of the Ani-Bot system, including the mixed-reality ready ‘plug-and-play’ hard-

ware and the incorporated MR features that promote a novel interaction experience.

3. Evaluation results, including the constructive feedback summary from our user studies

that guides future endeavors.

3.2 Design Process and Goals

To design and fabricate the Ani-Bot system, we followed a user centered design process.

We first developed a preliminary system with a few basic modules and MRI features. Then,

by conducting a participatory design study with the preliminary system, we elicited critical

design principles for our mixed-reality modular robotics system.
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3.2.1 Participatory Design Activity

Fig. 3.2. Preliminary modular kit for the Ani-Bot system.

Our preliminary system is demonstrated in Figure 3.2 with basic ‘on-target’ direct

manipulating UI. We recruited 5 participants (3 male) who had substantial experience in DIY

robotics and asked them to use the system. We encouraged the participants to think out loud.

Also, a semi-structured post-study interview was conducted. We focused on investigating

the design of a mixed-reality ready modular robotics kit, a coherent user interface, and

appropriate interactions. After the study, we found that participants unanimously requested

more modules with various structures and functionalities in order to fully support the element

of DIY. In terms of the design of UI and the interaction methods, users suggested that we

fully exploit the advantage of the digital interface by displaying more informative and

visually dynamic user interfaces with appropriate operations to interact with them.

3.2.2 System Design Goals

Based on the feedback about our participatory design activity as well as our own

experience in designing the preliminary prototype, we have synthesized the following key

design goals:



26

• Plug and play. The system should be mixed-reality ready for users as they play

with the modules, with no configuration/preparation time so as to ensure fluid user

experiences.

• Low floors and high ceilings. The MR system should be intuitive and easy to start,

but provide high a ceiling for the level of control capability.

• Visually intuitive. The system’s MRUI should be informative, provide active feed-

back, and be self-explanatory. Moreover, it should not be distractive and obstructive

between users and their robots.

• Support creative exploration As a DIY platform, the system should support users’

creative interactive exploration via both hardware and software designs.

3.3 The Ani-Bot System Design

3.3.1 System Workflow

Ani-Bot embeds MRI with DIY modular robotics; the workflow is illustrated in Figure

3.3. All modules in the system have processing power and can be physically connected

with each other to establish network communication. By organizing the configuration

data from each device, the robot is aware of its own assembly configuration and sends the

data to the AR headset (Microsoft HoloLens [153]) to generate the corresponding virtual

model. By detecting and tracking an image marker (Vuforia [154]) on the Base Module, the

virtual model is superimposed onto its physical target for the mixed-reality interaction. The

kinematics data of the virtual model are constantly transmitted to drive the physical robot.

In this way, users interact with the physical robot by manipulating the virtual representation

from the view of the AR headset.
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3.3.2 Module Design

As shown in Figure 3.4, we expanded our preliminary module library based on feedback

from the participatory design activity. Base Modules are the starting point of users’ DIY

construction, and they have three purposes: 1) realize tracking and detection of the virtual

model via the image marker; 2) organize and transfer data between devices and the AR

headset as a communication hub; and 3) provide a power supply for the connected devices.

Action Modules provide various types of actions for users to interact with the real world.

Structure Modules increase the structural diversity of the modular robot’s configuration.

They help the Ani-Bot system to better support users’ DIY creation process. Sensing

Modules read the environmental data, which are visualized in the MRI and used to program

Fig. 3.3. Ani-Bot system workflow.
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Fig. 3.4. Module library of the Ani-Bot system.

the robot behaviors. Together, all these modules compose the hardware modular kit that

works coherently with the corresponding software interface to constitute Ani-Bot’s mixed-

reality modular robotics system.

3.3.3 Hardware Implementations

The modular design is illustrated in Figure 3.5 (2), using the Hinge Module as an

example. The physical connection of the Ani-Bot’s module is a Male-Female surface

connection setup (42mm * 42mm), which is positioned by four cylindrical pins and secured

by two embedded magnets (K&J Magnetics: DC1-N52). Most of the modules in the

system have one pair of Male-Female connection surfaces to pass the power supply as well

as an electric signal via four pins. All modules in Ani-Bot have only one Male surface,

containing a customized PCB and a Bluetooth Microcontroller (RFduino). By reading from

the Sequence pin and Orientation pin, the MCU knows its current position and orientation

in the whole robot’s assembly. The Base Module, as shown in Figure 3.5 (1), contains a

Bluetooth MCU that receives the configuration data from all the connected devices. By

integrating the data from all the devices, the Base is aware of the whole robot’s assembly

configuration instantly. The assembly configuration data are then transmitted to the HMD
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via an on-board WIFI MCU (ESP8266) to generate the corresponding virtual representation

of the physical robot. When receiving action data from the HMD, the Base Module organizes

the incoming data and feeds them to the corresponding receiver device for action.

3.3.4 Interface and Interaction Design

The Ani-Bot system utilizes gesture-based interactions for most of its control and

programming. These interactions are supported by the HMD (Microsoft HoloLens) and they

require an air tap with one finger for clicking and selecting, and a drag and drop with two

fingers for continuous manipulation. The MRUI in the Ani-Bot system is superimposed or

floating nearby the physical robot for a seamless interaction experience. Our UI is designed

Fig. 3.5. Hardware design of Ani-Bot’s module. (1) Cuboid Base module design
setup. (2) Exploded view of the Hinge Module.
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Fig. 3.6. MRUI in the Ani-Bot system consists of (1) Manipulation UI for
actuators, (2) Action UI for the other action modules, and (3) Sensing UI for
visualizing and programming the sensing modules.

for three categories of interaction (Manipulation, Action, and Sensing) according to the

property of the physical module. For actuators such as Hinge, Rotator, Linear Actuator,
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and Gripper, we superimpose the corresponding semi-transparent virtual model directly

onto the physical module, as shown in Figure 3.6 (1). Users control these modules by

manipulating the virtual models. They can achieve one DOF motion by manipulating

each individual module or achieve multi-DOF motions by manipulating the auto-generated

Inverse-Kinematics (IK) end-effector on top of the assembly tree. For the other action

modules with discrete mode switching, a list-like UI is designed individually according to

the module’s function. As shown in Figure 3.6 (2), users can access these UIs to switch

on/off the Fan module, change the facial expression on the Face module, and change the

light color on the LED module, etc. In terms of the sensing modules, each environmental

sensing value (distance, temperature, weight, etc.) is dynamically displayed as shown in

Figure 3.6 (3). Moreover, users can program logic events by setting a user-defined threshold

value and accessing the currently connected action modules. An example is illustrated in

Figure 3.6 (3 right), where the user just programs the Fan module to turn ON when the

weight sensing value is above 5 and the Face module to display ‘happy’ when the value is

below 5.

Besides gesture-based interactions, the Ani-Bot system also exploits the HMD’s multi-

media capabilities to create immersive user experiences with active feedback. To avoid being

overwhelming and distracting, we utilize voice commands and audio feedback for functions

which have no explicit need to visualize, such as mode transition and menu navigation.

3.4 Modular Robotics With MRI

In this section, we demonstrate and discuss the augmentation offered by MRI in the

Ani-Bot system. Specifically, we illustrate the system’s designated features for the three

phases of a construction kit’s lifecycle: Creation, Tweaking, and Usage, respectively. We

showcase how these embedded MR features can enhance the user experience for DIY

robotics.
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3.4.1 Creation

The process of playing with a modular robotics kit begins with the assembly. Ani-Bot

encourages users to freely explore different assembly configurations by providing a rich

module library. In addition, the system can also fully or partially assist users in the assembly

process. Utilizing MRI, Ani-Bot provides users with mixed-reality assembly guidance for

existing designs (Figure 3.7 (1)). The virtual guidance is interactive and gives real-time

assembly feedback. For example, the color of the virtual model will change when the

corresponding physical module is correctly assembled. Besides the full assembly manual,

the system can also provide partial functional structure suggestions according to the key

input module. For example, in Figure 3.7 (2), upon detecting the ‘Distance Sensor,’ users

can activate the functional suggestion guidance by voice command, and the system will

display a 2-DOF thrower setup with default adjustable structure parameters.

Fig. 3.7. Creation with MRI: mixed-reality assembly guidance. (1) Full MR
assembly manual for existing design. (2) Suggestive guidance based on key
input device.
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3.4.2 Tweaking

When encountering ineffective designs, users will start the iterative process in order

to explore and find a working solution, namely Tweaking. Instead of physical tweaking,

which requires effort for iterations with real robots, Ani-Bot provides a virtual tryout feature

for users to tweak the ineffective designs into a working configuration. As demonstrated

in Figure 3.8, upon removing the end-effector, users can activate the ‘Tweaking Mode’

through a voice command. The system will then display a series of suggested derivative

configurations based on the current physical setup. Users can try different virtual assemblies

and compare their performance in the mixed-reality simulation to find better solutions.

Fig. 3.8. Tweaking with MRI: virtual tryout for functional improvement. Tweak-
ing a robot manipulator setup so that the spoon tip can reach inside the bowl.

3.4.3 Usage

One of the main advantages of mixed-reality is its ability to the merge of a virtual

interface with its corresponding physical target. By exploiting this property, Ani-Bot allows

users to easily control their robots to effectively interact with the surrounding environment.
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For instance, Ani-Bot’s sensing modules expressively visualize the input data ( temperature,

distance, force, etc. ) from the surrounding environment (Figure 3.1 (3,6)). In addition,

each sensing module offers the ability to program sensor-driven logic events with the

programming UI (Figure 3.1 (3)). In this case, the user just programs the ‘Fan Module’

to turn on when the weight exceeds the set value, otherwise the ‘Face Module’ displays a

smiling expression.

Fig. 3.9. Mixed-reality animation authoring and management.

Besides the sensing programming, Ani-Bot allows users to create and manage keyframe

animations that enable their robots to execute automatic actions. As illustrated in Figure

3.9, after activating the ‘Animation Mode,’ users can manipulate the virtual model to set

the keyframes (the physical robot will not move in ‘Animation Mode’). Upon playing the

animation, the robot will automatically transit through the defined keyframe positions and

complete the action. Each animation can then be saved as an interactive ‘Action Sphere,’

which floats near the physical robot and plays back the animation when tapped. Users can

create multiple animations and intuitively manage them. By dragging an ‘Action Sphere’

into another one, users can merge them together and create a new ‘Action Sphere’ which has

the combined animation. In this way, users can easily achieve complex animation authoring

to create environmentally interactive and storytelling like animations.
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3.5 Example Applications

Figure 3.10 demonstrates the four use cases we have created to showcase the diversity

and controllability of our system, including two service robots (1,3) assisting environmen-

tally interactive daily practice and two storytelling robots (2,4) with expressive emotions and

stylish actions. The Robot Thrower (1) is able to display the predicted shooting projectile

to guide users to manually hit the targets with pinpoint accuracy. The thrower can also

utilize the distance sensor to automatically adjust the shooting angle based on the distance

reading from the target. The Emotional Fire Fighter (2) is a fully equipped vehicular robot

with a front temperature sensor for detecting candle fire. He is never too shy to show his

emotions via the face modules and he shows no hesitation in using his head-mounted fan and

hanging hammer to put out a fire. The Tea Maker (3) is a smart service robot with an arm.

By visualizing the temperature and weight of the teacup, users can customize their favorite

beverage by programming the Tea Maker to automatically add sugar and keep stirring until

the tea is ready to serve, which is detected by the temperature sensor and indicated by the

blinking LED and the smiling face. The Dancing Robot (4) is a DIY character with a big

head and gloomy expression. Users can program him to make numerous amazing dance

moves.

3.6 System Evaluation

To evaluate the Ani-Bot system, we invited 20 users to participate in our two-session

user study (10 for each).

3.6.1 Session 1: System Usability Evaluation

We designed four tasks for the first study session featuring the key functions of the

system. We invited 10 users (7 male), 7 of them in the 20-25 age range and 3 in the 25-30
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Fig. 3.10. Use cases demonstration of the Ani-Bot system. (1) The Robot
Thrower. (2) The Emotional Fire Fighter. (3) The Smart Tea Maker. (4) The
Dancing Robot.

age range, with varies backgrounds. The goal of this study session was to evaluate the

usability of the Ani-Bot system and explore the user experience of DIY robotics with MRI.

Procedure. Session 1 took about 1.5 hours for each user, including a tutorial to introduce

the HMD device and the Ani-Bot system (20 mins). We adopted one of our use cases (‘Tea

Maker’) as the evaluation prototype due to the comprehensiveness of its functionality and

the complexity of its physical structure. We dissected the prototype into four manageable

tasks focusing on the three phases: Creation, Tweaking, and Usage. Users were given a

questionnaire with Likert-type items and subjective questions after each task. Some of the

more representative results are intuitively displayed as a colored scale bar for each task.

Each Likert-type item is graded by users from 1 to 5, where 1 means strongly disagree and

is colored in red, while 5 means strongly agree and is colored in green. The scale bars are
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aligned with positive answers (yellow, yellowgreen, green) on the right and negative answers

on the left (red, orange). (N = number, U = user)

Task 1: Assembly Guidance, Paper Manual vs MR Manual

For a design configuration with seven modules (Figure 3.11), we asked users to complete

the assembly using both a paper manual and an MR manual as a guidance (random order).

Fig. 3.11. Task 1: Assembly guidance. Paper manual vs MR manual.

Feedback and Discussion. Due to the simplicity of this design, users were able to

complete the assembly almost equally rapidly (less than 30 s) and accurately with both

manuals. It is noted that the point of this task was not to systematically study the time

efficiency and accuracy between the two approaches. Rather, we tried to focus on exploring

the user experience of MR assembly guidance and compare it with the most commonly used

paper manual method. From the post-study survey, most users (N=8) preferred the MR

manual over the paper manual for assembly guidance. The two users who disagreed felt

that the overlaying virtual model was distracting and they suggested a switch function to

toggle the MR interface. “I am having some trouble differentiating the virtual model from

the real one (U2).” However, they still admitted that the MR guidance for the DIY robot

was useful (reporting 5 and 4). The assembly process included identifying the right module

and putting it in the right location. Ani-Bot’s MR system allows users to freely observe
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the guidance virtual model from different perspectives for module identification. One user

disagreed with this because of the limited field-of-view of the HMD device. “It is hard for

me to see the whole guidance model without moving my head (U7).” We found that the

virtual feedback for confirming the assembly correctness was particularly appreciated by

the users. “The color change feedback really assures me about my assembly and makes me

confident.” Overall, we found that the expressive visual feature as well as the interactivity of

the MR guidance provided an engaging and entertaining assembly experience. “I really like

it, it’s fun and makes me want to try more. (U5)”

Task 2: Design Tweaking, Physical vs Virtual Tryout

In this task, users were asked to improve the performance of the initially ineffective

robot design by changing its assembly configuration. The goal was for the robot arm’s

end-effector (spoon) to get inside the bowl (Figure 3.12). Users were asked to perform

tweaking in both ways with a randomized sequence.

Fig. 3.12. Task 2: Hands-on tweaking vs virtual tryout.

Feedback and Discussion. After this task, most users reported that they preferred

MR tweaking over the physical tweaking (N=8). They particularly liked the grafting of

the virtual model on the physical modules, while both moved together corresponding to
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users’ simulating manipulation. “I think the virtual/reality simulation really helps me to

understand the dynamics of the robot (U7).”. According to the survey and our observation,

users generally enjoyed the MR tweaking due to its time-saving effectiveness and risk-free

characteristics. “MR is fast and easy to try. I enjoy testing different options (U4).”. “The

MR tweaking reduces the cost and risk for revising physical robots (U1).”. As for the two

users who preferred hands-on tweaking, they believed the added complexity of the MR

tweaking was unnecessary, but they still appreciated the visualization and simulation ability

offered by the MR tweaking. To summarize, the system’s virtual tryout feature effectively

helped users to identify the configuration for performance improvement. “With MR, I know

it works and I do not need to finish assembling something to test (U8).”

Task 3: Programming Sensor Driven Events

During this task (Figure 3.13), users were given a simple setup with two action modules

(Fan, Face) and two sensing modules (distance, weight). They were asked to interact with

the sensing modules and define the logic events triggered by the environmental data to drive

the action modules. Users were first given a brief demonstration and then asked to freely

explore the feature and define the logic events by themselves.

Fig. 3.13. Task 3: Programming sensor driven events.
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Feedback and Discussion. All the users found it easy to program a logic event except

for U4, who answered 1 in this question. She initially struggled to understand the working

mechanism and suggested adding more text or audio instructions to guide users. Despite

this, she still agreed that the feature was useful for DIY robotics (score=5). Users generally

enjoyed the sensing visualization, which presented the environmental information in a

tangible and interactive way. “This feature makes reading from a sensor so intuitive and

entertaining (U3)!” From the survey results as well as the subjective comments, we found

users particularly appreciated the system’s fast and easy approach to programming fairly

complex events (N=9), which could even elicit and promote interest in DIY robotics. (“I

like this instant programming. It is easy and can make people more interested in DIY robots

(U8).”)

Task 4: Creating Environmentally Interactive Animations

In this task, users evaluated the animation authoring feature in the system. They were

asked to define the keyframe animations that facilitated the 3-DOF robot arm with a spoon

end-effector to automatically add sugar to the teacup (Figure 3.14). The average time cost

for this task was about 15 min.

Fig. 3.14. Task 4: Creating mixed-reality keyframe animations.
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Feedback and Discussion. Considering the difficulty of task 4, we were surprised

to find that most users (7/10) successfully accomplished the task with just one shot. We

observed great excitement from the users when they have achieved this complex animation

with just a few operations. “I have never programmed a robotic arm so quickly and easily

(U10)!”. Based on the survey results, we found that users were highly satisfied with the MR

animation authoring feature in the system. They appreciated the system’s ability to create

automatic actions “Animation is useful to do repetitive work (U1)” that enabled them to

quickly explore their ideas with physical robotic movements. “I like to set several actions

at one time and make it keep doing what I want it to do (U9).” Furthermore, they found

the system to be very helpful for programming environmentally interactive tasks due to the

active visual feedback from the mixed-reality view. “I can use the surrounding objects as

references when I define the animations; this makes it so easy for me to program my robot

around them (U1).”

Summary. After this session, users generally agreed that the interaction of the system

was intuitive and effective (avg=4.6) with well integrated functions that help to provide

elevated user experiences in DIY modular robotics (avg=4.56). The System Usability Scale

(SUS) survey was also deployed after the study session to evaluate the system with an

average score of 83.25 and a standard deviation of 6.8, which indicated high usability of the

proposed system.

3.6.2 Session 2: Creating and Animating DIY Robots

The element of DIY is significant to Ani-Bot as the system is designed to support add-on

DIY creativity by providing a modular platform and an effective method for controlling

and programming. To evaluate this, we invited 10 users from diverse backgrounds for the

second session of the study (7 male), with 8 of which in the 20-25 age range and 2 in the

25-30 age range.
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Process. Session 2 lasted about 80 min including a 20 min system tutorial. Users had

full access to the system’s modular kit, as well as various DIY crafting tools and materials

to create their own robot. During the session, they were asked to design, craft, assemble,

and animate their own DIY robot.

Fig. 3.15. Results from the open creation study session showcasing users’ DIY
robot. (1) Mr. Destroyer (2) Box Porter (3) Peru Totem (4) 3-head Nezha (5)
Robot Bandit (6) The Whomping Willow (7) Sun-eye Monster (8) Cheerleader
(9) Robo-Cop (10) The Hulk
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Results. Figure 3.15 showcases all the DIY robots created by the users during the open

creation session. We observed a large variety from the end results, ranging from humanoid

characters (4,8,10), to mechanical characters (1,2,5,9), to object-based characters (3,6,7).

Each user’s DIY robot consisted of 7-9 modules, which indicated high complexity involving

multiple degree-of-freedom movements. All animations were created by the users uniquely

for their characters which truly brought the robots to life. For example, Mr. Destroyer (1)

does not hesitate for one bit to shred anything he sees (detected by the distance sensor)

with his blade, claw, and drill bit. The Box Porter (2) is a diligent fellow that specializes in

moving anything delivered to him (activated by the weight sensor) to the designated area.

The Cheerleader (8) is a lovely girl waving ‘De-Fence’ for her team, while the Whomping

Willow (6) furiously bashes the ‘flying car’ trapped on its trunk.

Feedback and Discussion. From the post-study survey, we found that most users

appreciated the system’s coherent work-flow to create and animate the DIY robots. “It was

especially fun to make the cheerleader and then see her actually move and do things.” From

our observation, we found that the idea of combining DIY with robotics really promotes

users’ interest in exploring more features and functionalities of the system. “Just being

able to add skin for a better appearance on my robots also encourages me to explore more

designs and shapes.” During the ideation process, many users liked to test-play with multiple

modules and put on the HMD to quickly test the animation performance.“It responded

well to what I wanted it to do.” The plug-and-play seamless user experience as well as the

real-time responsive mechanism was highly appreciated by the users.“You don’t need to

worry how you are going to articulate your model for creating the control code. You just

plug and play.”
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3.7 Limitation and Discussion

During our user study, the most common complaints we received were about the HMD

device, specifically, its form factor and interaction modality. “It is too heavy and makes me

feel dizzy after some time.” “The display view is too small that I have to move my head to

see the whole scene.” “I don’t like the mid-air gesture interaction; it feels awkward and is

not very accurate.” Because our system was built on the HMD device (Microsoft Hololens),

the limitation of the device became the limitation of our system. Furthermore, the device

confined the mixed-reality experience exclusively to the headset wearers, which inevitably

impeded the distribution and social impact of the system. This suggests that we need a better

MR platform with a user-friendly form factor, intuitive interaction, and most importantly,

public viewing and/or accessibility.

Another limitation of the system is caused by the MR tracking mechanism. The Ani-Bot

system is currently implemented with an image marker on the Base Module. This requires an

initializing detection and tracking process each time users start a new assembly. Moreover,

the tracking results can be corrupted by occlusion from other connected modules. “The

virtual model is sometimes mis-aligned with the robot.” The tracking mechanism is the key

reason for requiring the Base Module, which constrains the physical structure design of the

modular system. This limitation can potentially be addressed by incorporating markerless

tracking in the future.

It is interesting to note from the evaluation that users were always asking for more

feedback (audio, visual, tactile) and natural control methods (gesture, voice). Future

endeavors should therefore focus more on the modality of the interaction approaches to

achieve comprehensive control with minimum cognitive load. Furthermore, the system

should better understand its users and execute low level operations automatically. With

the rapid development of AI technology, a new balance can be established and constantly

adjusted between robot intelligence and user-involved controllability.
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3.8 Conclusion

In this paper, we present a novel mixed-reality modular robotics system, called Ani-Bot.

We explore and investigate embedding a coherent MRI for DIYing a modular robot. Our use

cases as well as the system usability study have evaluated and verified the augmentations

for modular robotics by embedding the mixed-reality interaction. The results from the

open creation study have demonstrated the Ani-Bot system’s capability to support both

creating and animating DIY robotics. To this end, our system has shown a strong potential

for delivering in-situ and novel user experiences for DIY robotics.
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4. SPATIALLY AND VISUAL PROGRAMMING FOR ROBOT

TASK PLANNING (V.RA)

This chapter is a slightly modified version of "V. Ra: An In-Situ Visual Authoring System
for Robot-IoT Task Planning with Augmented Reality" [2] published in Proceedings of
the 2019 on Designing Interactive Systems Conference and has been reproduced here with
the permission of the copyright holder.

Fig. 4.1. V.Ra system workflow. Using an AR-SLAM mobile device, the user
first spatially plan the task in the AR interface, then place the device onto the
mobile robot for execution. The room-level navigation of the robot is guided by
the SLAM feature on mobile device.

V.Ra - Virtual Robotic assistant, is a visual and spatial programming system for robot-

IoT task authoring. In V.Ra, programmable mobile robots serve as binding agent to link the

stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently

connects the three key elements of robot task planning (human-robot-IoT) with one single

smartphone device. Users can perform visual task authoring in an analogous manner to

the real tasks that they would like the robot to perform with the Augmented Reality (AR)

interface. Then placing the device onto the mobile robot performs the same tasks the

users did in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device

mediates the interaction between the user, robot and IoT oriented tasks, guiding the path
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planning execution with Simultaneous Localization and Mapping (SLAM). Our use cases

and evaluation results have demonstrated V.Ra’s capability of enabling robust room-scale

navigatory and interactive task authoring.

4.1 Introduction

The vision of ubiquitous computing has been emerging rapidly as the Internet of Things

(IoT) based electronics are getting smaller, lower in cost, proliferating and being embedded in

our everyday environment. Typically, human-IoT interactions take the form of transforming

IoT data into informative knowledge, augmenting human sensory capabilities, and assisting

humans to make correct and efficient decisions [155]. However, the IoT devices are mostly

stationary and have limited physical interactions particularly with each other. In conjunction,

the concept of Internet of Robotic Things (IoRT) has not been widely explored in practice

across the IoT and robotics communities [156], and an authoring system for such robot-

IoT interactive task planning is underdeveloped [157]. We envision the emergence of

programmable mobile robots in a near future to serve as key medium to conduct coordinated

and collaborative tasks with surrounding IoTs. In this vision, the mobile robots are combined

with the embedded multiple stationary IoTs to create new types of workflows and in addition

also extend humans’ motor capabilities.

Current user interfaces are often designated to either IoT or robots only, without consid-

ering the robot-IoT ecology. Contemporary IoT devices allow access and control through

offloaded mobile interfaces. With additional web-based services such as IFTTT [158],

users can also coordinate multiple devices working with other productivity tools or social

medias via active human-IoT communication [155, 159]. Even in these coordinated works,

the IoT tasks are rather spatially independent. In these cases, conventional graphical user

interfaces (GUI) mostly suffice the IoT-only interactions which are insensitive to their spatial

distributions. In contrast, to command mobile robots to complete distributed tasks, the
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significance of spatial-awareness for authoring interfaces varies depending on the level of

the robots’ autonomy. For highly autonomous robots driven by embedded intelligence, users

simply need to assign tasks using high level instructions requiring less spatial information,

e.g., instruct a Roomba [160] to clean the room. However, besides the simple specific tasks,

the robots’ intelligence remain underdeveloped for a majority of the ac-hoc tasks in less

controlled environments including our daily household environment [161]. Therefore, we

develop interfaces and workflows to program robots that bridge the mediation between IoT

embeddings and overcome these complexities by exploiting users’ innate capabilities. From

this perspective, the contextual visualization and spatial awareness of the environment are

essential and utilized by us to ensure the efficiency of the authoring UI [10].

In the context of robots-IoT ecology [156], we design, prototype, and demonstrate a

coherent authoring interface specializing at robot-IoT interactions with human-in-the-loop

through: (i) the pervasive sensing capabilities and the knowledge embedded within the IoTs

that facilitate the robots to complete tasks at a semantic level; (ii) IoT devices serve as spatial

landmarks to navigate the robots around, and (iii) in addition the robots manipulate the

IoT devices or interact with the machines and objects physically. These newly introduced

aspects have not been developed, to the best of our knowledge, in the existing human-IoT or

human-robots programming UIs.

The emerging augmented reality (AR) shows promise towards augmenting and interfac-

ing with the physical world. In fact, AR interfaces have been introduced for IoT and robots

respectively. For example, Reality Editor allows users to visually program the stationary IoT

devices which are affixed with fiducial markers [47]. In a similar manner, robots have been

attached with tags and tracked through the users’ AR camera view [1, 42, 61]. However,

the robots and the IoTs remain locally registered in the AR only, e.g., to resolve the spatial

relationship between a robot and an IoT, a user has to keep both of them in the same AR

camera view. To register multiple agents globally and coordinate them spatially, some alter-
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natives including external tracking systems (e.g., infrastructured cameras [41,44,58,60]) and

pre-scanned and manually tagged environment maps [63–65] have been proposed. But these

approaches further constrain deploying robots to ad-hoc tasks in our daily environment.

On the other hand our approach leverages the advancing SLAM techniques to globally

associate the user, IoTs, and robots together. Users first freely examine and explore the IoT

environment within a mobile AR. Then within the same AR scene, users seamlessly transfer

their insight about the tasks regarding the environmental factors such as the path planning,

as well as the semantic knowledge such as the situational awareness from IoTs to the

robots. Further, SLAM also enables a novel embodied programming modality, namely, users

demonstrate a sequential chaining of distributed tasks to the robots by physically visiting

the IoTs. In addition, since both AR and the robots’ navigation share large commonalities in

terms of spatial awareness of the environment, we support a smooth exchange of human

knowledge between the AR device and the navigation module of the robots. The robot now

has perceptive knowledge of the physical environment, the interactive knowledge for the

IoTs, and is ready to execute the planned task from the user. To this end, we present V.Ra,

an in-situ authoring interface for robot-IoT task planning using a mobile AR-SLAM device.

The key contributions of this paper are as follows:

1. V.Ra workflow that uses one AR-SLAM mobile device for robot-IoT task authoring

and execution, so that the human-robot-IoT interaction is bound together synergisti-

cally.

2. Authoring interface design that enables path planning, logic driven event scheduling,

task chaining, and knowledge transfer to the robots, as well as spatial awareness and

contextual feedback.
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3. Use cases and evaluations demonstrating and verifying that V.Ra supports robust

room-scale household navigatory and interactive task authoring within our prototyped

robot-IoT ecosystem.

4.2 Design Goal

We followed a user-centered design approach to derive the design goals of our system.

We conducted conversational style informative interviews for our study. We first explained

the context of a household robot-IoT ecology to the interviewees, then we asked them

to think about a scenario where users author multiple tasks to the robots and reveal their

considerations and requirements for the system. We interviewed 42 people totally, including

students, staff, and professors in the university with various backgrounds. Each interview

took 6-10 minutes with the conversation recorded in audio. After analyzing the interview

records, we identified the requirements and preferences from the participants. Combining

the interview analysis with our vision of robot-IoT ecology, we propose the following four

Design Goals (DG).

DG1: Easy and Instant Deployment. Less dependencies on the environment is preferred

so that the system can be used instantly even for a new environment. Especially for the

tasks handling chores, if the preparation takes even longer than finishing the chores by

users themselves, the acceptability of the robot would be severely decreased. Thus, our

system should be developed in a self-contained and plug-and-play manner to avoid the

environmental dependencies and allow for in-situ authoring.

DG2: Physical and Spatial Awareness. We aim towards leveraging users’ innate knowl-

edge of the environment to instruct the robots to accomplish tasks in a household environment

which are unstructured and ever changing. A physical and spatial aware authoring interface

would allow users conveniently and accurately express their intents and transfer them to the

robots.
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DG3: Iterative Process with Feedback. Many participants unanimously required the

system to keep them informed about its operating status during the entire process with

active feedback. Further, our system should support users to visually preview and iterate the

authored actions so that the efficiency of a sequence of distributed tasks can be improved.

DG4: Low learning curve. Participants suggested to develop the system based on easy-

to-access devices and tools so that the basic interaction modalities remain familiar to novice

users. Compared to abstracted task planning tools for professionals, the system should

emphasize low cognitive load by closely associating planning interactions with actions of

the robots in the physical world.

4.3 V.Ra Ecosystem Workflow

4.3.1 Choice of Approach

We want to develop an ecology where robots and IoTs are complementary to each

other’s role. As illustrated in Figure 4.2, Our workflow supports users to coordinate

robots and IoTs temporally and spatially to accomplish multiple tasks synergistically in

our daily surroundings. We deploy our AR authoring interface to a SLAM capable mobile

device which is easy to access thanks to commercial AR SDKs such as ARCore [68] and

ARKit [69]. Within a mobile AR scene, users simply register IoTs with the SLAM map.

By referring to the spatial distribution of the IoTs and the geometry of the environment,

users then plan, preview, and iterate the robot-IoT interactions in-situ. Further, the same

AR device can be employed as the the ‘eye’ and ‘brain’ of the robot to execute the authored

task. Such interchangeability between an authoring interface and robot navigation module

promotes an transparent knowledge transfer from the users to the robots. As the SLAM

map is constructed on-the-fly, our workflow does not rely on external tracking systems or an
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existing spatial map a priori, our system is therefore easy-to-install in a new environment

and ready-to-use instantly.

Fig. 4.2. V.Ra ecosystem design coherently connects the three key elements
of robot-IoT task planning with one AR-SLAM mobile device (1), the spatial
information for robot navigation and IoT interaction are stored in the on-the-fly
generated SLAM map (2).

4.3.2 V.Ra System Walk-Through

As illustrated in Figure 4.1, we walk through our workflow with a typical use scenario.

In a household environment, users first select a robot for the desired tasks from the available

nearby ones. This allows an AR authoring interface to be specialized based on the capabilities

of this particular robot. The spread IoTs can be registered into the SLAM map through

a one-time QR code scanning. Users then access the embedded knowledge from the

IoTs in AR view. Using our authoring interface, users formulate a group of navigation

paths, IoT interactions, and other time and logic constructs to achieve the desired robot-IoT

coordination. After the authoring is finished, users physically place the authoring device onto
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the modular slot of the robot, and the system guides the robot to execute the tasks. Because

of the transparency between the users’ intents and robots’ actions in the AR authoring phase,

we achieve programming a robot in a WYDWRD fashion.

4.4 Authoring Interface Design

4.4.1 Task Planning Construct

To start designing the authoring interface for mobile robot task planning, we first extract

the basic elements of the task. The nature of our work is robot planning for physical

tasks that involves interaction with different devices at various locations. The planned task

may take a long period of time to execute, and it involves logic conditions that handle

unexpected situations dynamically. By referring to previous programming protocols for IoTs

and robots [158, 162] and catering them to our system specifics, we develop the following

Nodes to represent task elements and construct a task sequence.

Navigation Node : represents the path for the robot to travel through. It contains 3D

coordinate information that can guide the robot’s navigation during the Play mode.

Action Node : defines an action event that relates to the robot and/or the IoT device.

The most common Action Node in our system is a robot-IoT interaction Node.

Time Node : contains information that allows the system to perform time based

behaviours. For example, keep doing this for some time, or wait until that happens, etc.

Logic Node : contains a user defined check condition that allows the system to perform

logic driven tasks such as if Condition A then Action B.

These Nodes are the basic abstractions that form any user authored task in V.Ra, namely, a

construct array in our system, called TaskSequence. User can add new Nodes or manipulate

the existing Nodes in the TaskSequence. When executing in the Play mode, the system

guides the robot to run through each Node sequentially thus accomplish the authored task.
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Fig. 4.3. User authored tasks are represented by TaskSequence in V.Ra system,
and they are formed by four types of Nodes. Logic driven event is represented
by multiple TaskSequences.

The logic driven events are realized by multiple TaskSequences with each one representing

one task line. Figure 4.3 illustrates a logic event with its corresponding TaskSequences. The

robot checks the condition at the Logic Node and decides which path to take. If the battery

is low, it will continue on TaskSequence(1) and go to the Charging Station; otherwise it will

proceed on TaskSequence(2) and go pick up the 3D printed part when it is finished. Note

that the wait...until function is realized by the blue Time Node.

4.4.2 V.Ra Interface and Interaction

The interface design of V.Ra system is shown in Figure 4.4. We exercise simple and

clean style for the UI design, while maintaining the accessibility of the primary features and

functions. Users can create TaskSequence and preview it in the AR view and also in the

EventLine, which is an interactive abstraction of the task.
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Fig. 4.4. Main interface design of V.Ra system (top). An icon reference list for
interactive functions in the system (bottom).

To start a new task planning after selecting a robot, a user first defines the robot path

with AddPath function by spatially walking around or hand-drawing on the AR view. When

interacting with an IoT device, a user first uses the IoTScan function to scan its QR code

and register it into the AR scene, then touches on its function list to add new robot-IoT

interactions. User can preview the authored task by dragging the yellow handlebar on the

EventLine, he can Insert new IoT function, time delay, or alternative TaskSequence at the
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Fig. 4.5. Authoring Navigation Node with (1) spatial movement, (2) hand-drawn
segment line, and (3) hand-drawn curve.

position of his choice. He can also partially loop, mirror, or delete the selected EventLine

using the Edit function. The user has the option to create periodic robot tasks (i.e. repeat

everyday) using the Repeat function. When the user is happy with the planned task and

ready to execute, he can activate the Play Mode and place the mobile device onto the robot.

The robot then starts the execution of the planned tasks by sequentially running all the Nodes

in the TaskSequence.

4.4.3 Basic task generation

Add robot path. Navigation Nodes are the majority Nodes that form the TaskSequence

in our system as it defines the path for the robot to navigate in the environment. There are

two ways to add navigation nodes: 1) record spatial movement (REC), or 2) hand-draw

the path on the screen, as illustrated in Figure 4.5. The hand-drawn method are suitable

for path planning in a smaller area, while the REC is designed for conveniently creating

large room-level navigation paths through embodied spatial movement. Each created path

is broken into a series of Navigation Nodes and are added to the end of the TaskSequence.

After a navigation node is added, a green path will be displayed in the AR scene giving the

user active visual feedback.
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Fig. 4.6. The process to add IoT interaction Node. (1) First scan its QR code to
(2) register it into the AR scene. (3) Then touch on its virtual icon (4) to access
the function list. (5) When finished, a green arrow path will appear for visual
confirmation.

Add IoT interaction. Robot-IoT interaction encompasses the majority of the Action

Node in the system. Other Action Nodes include IoT-only and robot-only functions. To

add a new robot-IoT interaction Node, the user first needs to register the IoT device into

the AR scene, which is achieved through a one-time scan of the IoT’s QR code (Figure 4.6

(1-2)). This not only brings an interactive 3D virtual model into the AR scene (Figure 4.6

(3)), but also imports semantic information into the system, like IP address and interaction

protocol. After the IoT registration, user can press its virtual icon to access its function list

and select to add an Action Node (Figure 4.6 (4)), to the end of the TaskSequence. When a

robot-IoT interaction Action Node is added, a green arrow path appears, pointing towards

the IoT device as a visual indicator (Figure 4.6 (5)). Other types of Action Nodes can be

added using the Insert function, which will be described later.

EventLine task visualization. While the AR view is good for spatial task visualization,

it is constrained by the view of the display, which makes it difficult for user to perform global
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Fig. 4.7. (1) EventLine represents the task in a linear and compact format. (2)
User can drag the handlebar to preview with a virtual robot. (3) User can tap on
the icon to review its detailed information, and to edit or delete it.

monitoring and manipulation of the entire task, especially when the task is authored in a

large cross-room environment. To compensate for this on a handheld device, we introduce

an abstract visualization of the task, called EventLine. The design of EventLine is inspired

by the timeline concept used commonly in the animation industry. The difference being that,

in our case, the task is governed by events, such as robot navigation and IoT interaction.

As is illustrated in Figure 4.7 (1), the EventLine has all the non-navigation Nodes shown

on it as icons, and the user can tap on it to view its details, edit it or delete it (Figure 4.7

(3)). By dragging the handle on the EventLine, the user can preview the task with a virtual

robot (Figure 4.7 (2)). This is designed to help users simulate the robot path execution to

avoid unexpected errors. When multiple task lines exist, only the currently selected task line

will show its EventLine on the screen, to keep the screen view clean. User can switch the

selected task line by tapping on it in the AR view. The selected task line will be highlighted

with the white indicator flowing through it.
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4.4.4 Task manipulation

The use of EventLine not only helps one to visualize the task in a linear abstract form, it

also provides users with an editing tool to access the task details visually and manipulate

them.

Insert. By dragging the handle, users can insert new Nodes into the designated position

in the TaskSequence, which is illustrated by the position of the virtual robot (Figure 4.8 (1)).

These Nodes are 1) non-robotic IoT Action Nodes, 2) Time Nodes, and 3) Logic Nodes. To

insert an IoT function, the system provides the user with a list of all the IoT devices that are

connected to the system (Figure 4.8 (2)). Users then select from the list, access the function

of that IoT, and insert it into the TaskSequence. To insert a Time Node, users either set a

fixed wait time (Figure 4.8 (3)), or define a wait...until condition that is triggered by the

IoT working status or sensing values. User can repeat the process and create composite

AND/OR boolean conditions. In terms of the Logic Node, upon selecting, an alternative

TaskSequence will be created and user will be asked to define the trigger condition, which

is the same condition definer interface for the Time Node (Figure 4.8 (4)). The newly

created TaskSequence has all the Nodes prior to the insert point copied from the original

TaskSequence. This allows users to define new task line that branches from the Logic Node

position (Figure 4.8 (5)). When executing a task with multiple TaskSequences, the system

will run from the default TaskSequence (the first created TaskSequence) and decides which

TaskSequence to continue at an Logic Node, based on the condition check.

Edit. By utilizing the EventLine, V.Ra allows user to edit their authored task by looping,

mirroring, or deleting part of the selected EventLine. The copy and mirror functions are

designed to increase the authoring efficiency for scenarios like repeat this floor sweeping

path 10 times (loop), or go back to where you came from (mirror). When accessing the Edit

mode, two interactive markers will appear on the EventLine with the middle part highlighted.
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Fig. 4.8. The Insert function. (1) User can drag the EventLine handlebar and
choose a location to insert (2) non-robotic IoT function Action Node, (3) Time
Node, or (5) Logic Node that represents logic driven event with an alternative
task line. (4) It’s trigger condition is defined from the working and sensing
status of the connected devices.

Users can drag the markers to define the edit range, and the corresponding part in the AR

view will also be highlighted (Figure 4.9).
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4.4.5 Post-play features

V.Ra’s system interaction does not end at the Play mode. Guided by DG3, we want to

keep the user in the loop during the entire process. Even during and after the robot execution.

As illustrated in Figure 4.10 (1), our system allows users to live monitor the task execution

using an external smartphone, by video streaming via the front camera of the authoring

device (the rear camera is used for SLAM tracking). User can stop the whole operation via

the STOP button if he notices something goes wrong or simply changes his mind. During

the play mode, our system will automatically record the video feed from the front camera

and generate an event-icon-embedded video log and stores inside the device (Figure 4.10

(2)). User can later access this video log to review what have happened during the Play

mode, for process analysis and debugging.

Fig. 4.9. The Edit function for partially loop, mirror, or delete the authored task.
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Fig. 4.10. Post-play features of V.Ra system. (1) User can monitor the robot
execution during its Play mode using an external smartphone. (2) Our system
also creates video log that records the robot’s execution.

4.5 Implementation

4.5.1 Software platform

Our software interface is implemented as an application that runs on ASUS Zenfone AR

mobile device. The AR SLAM feature is achieved using Google’s software SDK - Tango

Core, and the application is built with Unity3D engine. The live task monitor feature is

implemented with the WebRTC video stream service. It is noted that Tango Core relies a

built-in depth camera to produce point cloud based user interaction. We chose this device

due to the technology availability at the time of our initial development. However, our

system is not limited to depth camera based Tango device. V.Ra is fully compatible with

the latest AR-SLAM platforms which use RGB cameras of the regular smart phones (e.g.,

ARCore [68], ARKit [69]) for SLAM an plane detection.
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Fig. 4.11. Prototyped robots and IoTs in V.Ra system. (1) TowerBot (2)
GripperBot (3) SweeperBot (4) WaterBot (5) Charging Station (6) Painting
Machine (7) 3D printer (8) Sorting Box (9) Storage Station (10) Water Station

4.5.2 Hardware prototyping

To showcase the concept of V.Ra system, we prototyped four robots (Figure 4.11 (1-4))

and six different kinds of IoTs (Figure 4.11 (6-10)) for our use case demonstrations. All

the robots and IoTs are equipped with wifi communication capability using UDP protocol,

which is implemented using ESP8266 and Arduino Mega microcontroller. The motor

functions of some robots and IoTs are provided by the HerkuleX servo and Arduino Braccio

robot arm. All of our robots and IoTs are designed to prove the concept of our proposed

human-robot-IoT task authoring ecosystem, and therefore they are mockup prototypes with

fairly low fidelity.

4.5.3 Robot navigation and IoT interaction

During the play mode, the authoring device instructs the robot to perform navigation

and interaction activities. To navigate the robot along a user-defined path, the device
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constantly checks its current position and orientation in the SLAM map coordinate system,

and compares with the target Node’s coordinate information to guide the robot’s movement.

In other words, the SLAM device is the ‘eyes’ for the robot to navigate. To interact with an

IoT, the robot first docks into the interaction position of the IoT by going through a short

docking path embedded within the interaction Node. All the IoTs have similar docking

target which is a red rounded object. At the end of the docking path, the robot reaches close

enough to the docking target and it can finalize the docking process using the front color

detection camera (Pixy CMUcam5). Once the robot is docked with an IoT device, precise

manipulation (like grabbing an object from the Storage Station) can be ensured and the

interaction is proceeded via a three-way communication among the authoring device, robots

and IoTs. For example, to grab from the storage station, after successful docking, the robot

first asks the Storage Station about how many objects are currently stacking on it, and based

on the answer it grabs at different positions and then completes this Robot-IoT interaction.

Fig. 4.12. Communication among the robot, IoT, and the authoring device
during navigation and robot-IoT interaction.
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4.6 Use Cases

In this section, we demonstrate three different use cases that showcase the potential use

of V.Ra system in household scenarios. For better visualization of the use cases, please refer

to our demo video.

4.6.1 Case 1: SweeperBot for smart floor cleaning

Fig. 4.13. Use case 1. (1) Battery charging for 20 minute. (2) Using the
spotSweeping feature to author floor cleaning. (3) Using the Mirror and Loop
feature to author repeated sweeping path under the table. (4) SweeperBot
cleaning the floor. (5) Robust navigation under the table with poor lighting
condition.

Our first use case features SweeperBot as a mock-up representation of the commercial

sweeping robots, for user defined smart floor sweeping. As opposed to commercial products

that try to survey the entire room with very little user interaction, our system allows user to

pinpoint the area that needs cleaning, thus greatly increase the cleaning efficiency. In this

demo, the user programs the SweeperBot to clean the paper debris on the floor and perform
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an intensive sweeping under the table. Before the user starts, he notices the power LED

on the SweeperBot blinking, indicating a low battery status. While trying to finish the task

authoring without any delay, the user programs the robot to go into the Charging Station to

charge for 20 mins using the Timer delay function (Figure 4.13 (1)), then pinpoints the area

for cleaning using the SpotSweeping robot function (Figure 4.13 (2)). The user also authors

the curved sweeping route under the table and uses Mirror and Loop functions to repeatedly

clean that area. This use case demonstrates how V.Ra system can increase the household job

efficiency by providing smart human instructions. It also showcases the robustness of the

system’s navigation capability, that the robot is able to successfully cruise under the table

with poor lighting conditions (Figure 4.13 (5)).

Fig. 4.14. Use case 2. (1) Navigation in a large clustered room. (2) Waiting for
the 3D printer to finish its current printing job, and then pick it up. (3) Surface
coat the part in the Painting Machine. (4) Placing the part inside the Sorting
box.
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4.6.2 Case 2: TowerBot for automated fabrication

Our second use case features TowerBot in a large clustered room (Figure 4.14 (1)),

helping makers with automated fabrication process. In this demo, the user wants to fabricate

a few parts through the following process. Each part is 3D printed, surface coated in the

Painting Machine and then placed into the Sorting Box. The part needs to be printed one

by one and each printing takes 3 hours to finish. To automate the above task and fabricate

three parts, he first uses a triggered Time delay for the robot to wait until the 3D printer

finishes printing the current part, then picks it up (Figure 4.14 (2)). The user then authors

the 3D printer to start printing another part. After that, he plans the path for the TowerBot to

navigate through the clustered room and interact with the Painting Machine (Figure 4.14 (3))

and the Sorting Box (Figure 4.14 (4)), then comes back to the rest area to charge the battery.

Before executing, the user authors a Repeat function upon the entire task for three time with

an interval of 1 hour for battery charging. This use case demonstrates V.Ra system’s robust

navigation capability in a large cluster room environment with a human-scale robot. It also

demonstrates the real life application of logic triggered timer and periodically repeated task

planning.

4.6.3 Case 3: WaterBot for daily plant watering

Our third use case features WaterBot for automatic daily watering of home plants

(Figure 4.15). The user is leaving for a long vacation and he wants to make sure that his

two favorite plants (Flower and Grass) are well taken care of. The Flower needs regular

watering everyday, while the Grass needs much less water, and over watering would be

harmful. To cater to the two plants with different watering frequency needs, the user first

authors the WaterBot to water the flower and then comes back to the Charging Station, then

repeat the task everyday. On the way back to the Charging Station, he Insert(s) an alternate
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task line which is triggered by the moisture sensor planted in the Grass, to water it when

needed. He also Insert(s) another alternate task line triggered by the WaterBot water level

sensor, to go to the Watering Station and refill its tank when it’s running out of water. This

use case demonstrates our system’s ability to author flexible logic driven events and shows

the potential for home environment automatic plant and pet care taking.

4.7 Preliminary User Study

To evaluate the navigation and overall usability of our system, we invited 10 users (7

male) from various backgrounds to our two-session preliminary user study. None of them

had prior experiences with our system and their age ranged from 22 to 30. The two-session

Fig. 4.15. Use case 3. (1) Use authors multiple task lines to handle different
scenarios and set the task to repeat on a daily basis. (2) The Flower needs
watering every day, while (3) the Grass only needs water indicated by the
moisture sensor. (4) The robot goes to refill the tank when it’s running out of
water. (5) And returns to the Charging Station after.
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Fig. 4.16. (1) Illustration of the ground setup for session 1. (2) User authors
navigation paths for the robots to travel within the track. Result of session 1 are
shown as (3) authoring time, and (4) navigation accuracy.

study was conducted in a 6.5x5 meter room using the GripperBot, and the entire process

was video recorded. Each user was given a 15 min tutorial before proceeding to the task

in session 1. After each session, the user was given a survey to answer subjective and

objective Likert-type questions. Each Likert-type item is graded by users from 1 to 5, on the

usefulness of the feature and the level of agreement.

4.7.1 Session 1: Navigation Accuracy Evaluation

Using a SLAM embedded AR interface, our system is capable of fast and accurate

in-situ navigation authoring, which is one of the system’s core features. The first session of

the study is designed to evaluate this.
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Procedure. The setup for study session 1 is illustrated in Figure 4.16 (1). We have

drawn an ‘S’ shaped track on the floor and asked the participants to author navigation path(s)

for the robot to go through it while trying to maintain within the track. The participants were

asked to use all three methods (spatial RECord movement, hand-draw segment, hand-draw

curve) to author the path at a normal speed. The navigation accuracy was measured visually

as distance the robot traveled within the track / the overall length of the track. The width of

the track is 40 cm, which is only 40% wider than the robot. If any part of the robot goes out

of the track, the condition was recorded as not met.

Result and Discussion. The result of the task in session 1 is shown in Figure 4.16

(3-4). All users were able to complete the authoring within 36 seconds using any of the

three methods. All three methods were able to achieve high navigation accuracy with

stable performance (low SD). Among the three methods, REC mode is the fastest to author

navigation path, while still maintaining a good accuracy. It is noted that the accuracy of the

off-the-shell SLAM tracking (Tango Core) is within a few mm. However, the real navigation

accuracy applied on a physical robot is affected highly by the driving mechanism of the

robot itself. Therefore the purpose of this study is to develop a qualitative preliminary

accuracy test for our system. For example, if a user plans a room-scale path to go around the

obstacles, how well will it actually turn out? In fact, even a perfect trajectory (in the middle

of the track) still only has 90%-95% accuracy according to the above criteria.

Most participants stated that their most handy method to author robot path is through

using a Segment Line. This is because the segment method is the easiest means for a small

room-scale area. “The segment method is my favorite, I can simply tap on the screen and

create a path without needing to move my body (P2).” “I like the segment method, it is

fast and intuitive, just touching a few times on the screen (P8).” The second favorite is the

curve method, especially at a corner region. While its feature is beneficial to create curved

trajectory with ease, some users found it hard to master. “I think drawing on the screen to
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Fig. 4.17. Results of study session 2 on a comprehensive task with different
approaches from the users.

create a path is interesting, even though it needs steady hands (P7).” It is noted that not many

users appreciate the REC mode for this task, due to the relatively small area of the study

room, they preferred to avoid walking in the cluttered scene setup. However, most users

admitted that REC mode is more suitable for larger area cross-room navigation authoring,

where looking at and tapping on the screen along the way would be very inconvenient.

4.7.2 Session 2: System Usability Evaluation

The second part of the study is to evaluate the overall usability of our system by asking

the participants to complete a comprehensive task.
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Procedure. The setup for this session of the study is illustrated in Figure 4.17 (2).

Where the Storage Station 1 (S1) is stacked with orange objects, while S2 and S3 are empty.

The Painting Machine (P) can paint one object at a time, into red color, using 3 minutes.

There is a Doorway (D) in the setup that periodically opens and closes. The task is to stack

two red objects onto S3. To achieve this, participants need to author the robot to navigate in

the scene, first get the orange object from S1, paint it to red in P, then place it onto S3. Each

participant was given 30 mins for this task and they were encouraged to explore as many

different approaches as they like to complete the task. Participants were given full access to

all the functions of the system, including the post-play features, to thoroughly experience

the usability of V.Ra system.

Results and Discussion. All participants were able to successfully complete the tasks.

The average authoring time for each approach is 2 min 16 s. Figure 4.17 (1) illustrate the

most commonly used approach, which have been tried by 8 out of 10 participants. Though

it is the most straightforward method, it is not the most efficient authoring approach in

terms of robot travel distance and execution time for this task setup. Many participants were

interested in trying different approaches after the basic solution. Figure 4.17 (2-4) illustrates

some of the more exciting task authoring. P4 has created alternative TaskSequence that

allows the robot to take the shortcut if the Doorway is open, otherwise take the detour

(Figure 4.17 (2)). While P7 determines to take the shortcut no matter what, if the Doorway

is closed, the user authored the robot to wait at the entrance until it opens (Figure 4.17

(3)). Since this task requires two objects to be stacked onto S3, most participant use Loop

and/or Repeat function to automate the authoring for the second object. However, P11 had a

different and interesting approach. While the Painting Machine is processing the first object,

instead of waiting idly, the user programed the robot to go take the second object and put it

onto S2 temporarily (Figure 4.17 (4)). It is worth mentioning that this method takes less

time for robot to execute, but it did take more time for the user to author (5 min 27 s).
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4.7.3 Observation and feedback: meeting the design goals

The Likert-type result from the two-session preliminary user study is shown in Fig-

ure 4.18. From our observation, participants could quickly learn the features and interactions

of V.Ra, the 15 min tutorial was more than enough to shake off the cold feet for a novice user

and they are generally excited to try V.Ra on their own. The decision of using an app-based

smartphone device (Q1) greatly lowers the cognitive load for a novice user because they

feel they are already familiar with the system. “I like the idea of using my own smartphone

to control the robots and IoTs, makes me feel more comfortable about using the technology

(P12).” The clean style of our UI design (Q2) and the nature of physical spatial authoring

(Q4) also helps users boost up a quick start by creating a basic robot task within a minute.

“It’s very easy to plan a task, just walk around to the device and click a few buttons (P3).”

This indicated that our prototype system is accessible and ready-to-use for a new user, with

a fairly low skill floor to get started, which meets our DG1 and DG4.

Participants were generally receptive to the features and functions embedded within

V.Ra. some of the task manipulation functions were highly appreciated by the participants.

“I really like the edit function, it’s so simple and effective to create repetitive robot task.

(P9)” On the other hand, the Insert function received mixed feedback from the user. While

most users acknowledged that the feature of time and logic based events has the potential

to increase the level of task complexity and real-life usefulness (Q7) “I think the Insert-

alternative-task function is very useful to create real-life comprehensive robotic jobs (P7)”.

Two users (P4, P6) felt that the interaction flow of authoring the logic as well as the capability

of the programming can be further improved. “It took me some moment to figure out how

to make an if...else task, I think the UI and interaction about this part can use some more

work (P6).” Overall, the participants agreed that the features and function of V.Ra are well

integrated (Q6) and the system has a high skill ceiling that allows users to evolve through

iteration and produce complex robot task authoring, therefore meeting our DG3 and DG4.
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Survey responses were positive about the visual feedback of the planned task provided by

our system. The AR view of planned robot path with IoT interaction was highly appreciated

by most users (Q5), “I think it’s a really cool idea to use augmented reality to visualize the

robot task in 3D environment, helps me to simulate what’s going to happen and remove my

doubt (P2).” the same appreciation was received for other task visualization features like

the EventLine (Q8) and post-play feature (Q9). “My favorite thing about V.Ra is that I can

know what’s going on through the entire process, even after the programming (P11).” We

believe these feedbacks have confirmed that our system has engaged the user-in-the-loop

during the robot-IoT task planning lifecycle (DG2 and DG3).

4.8 Limitation and Future Work

SLAM tracking. The current system relies solely on SLAM to navigate at room-scale

level during the execution. Though fairly robust, the tracking can be lost when the camera

view lacks sufficient features for a short period of time, i.e. facing towards a white wall for

Fig. 4.18. Likert-type result after the two-session study.
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a few seconds. Current system has no way of recovery in the event of lost tracking, and is

therefore handicapped. To deal with this issue, a future system can embed a lost-tracking

response protocol that allows the robot to automatically restore the tracking.

Logic interaction. Current system allows users to create logic driven events based on the

boolean value from the robot’s or IoT’s working status and sensing value. This is designed

to lower the user’s interaction cognitive load, but also limits the level of task complexity. We

believe this limitation is partly due to the mobile platform, which is better suited for touch-

based toggle interaction. Future endeavors should explore other interaction modalities, with

different platforms like head-mounted ones, to achieve high level of complex programming

with intuitive interactions.

Robotic capability. The robots demonstrated in this work are proof-of-concept pro-

totypes and are very limited in their functional capabilities. Since successful robot pro-

gramming requires the balance of human interaction with robot automation, the level of

intelligence for the robot does make a difference in terms of the authoring system design.

With more advanced robots, we can expect future robotic authoring systems to focus more

on high-level user intent authoring, and leave the execution of middle processes to the robots

to deal with.

Single device approach. In current system, we use one single mobile device for user

interaction and robot execution, which is designed based on the household application

scenario. Despite the advantages of this approach, we would like to point out that the nature

of the current approach limits the task to only one mobile robot at a time. If multiple authors

want to collaborate on developing multi-robot collaborative task authoring, each robot needs

individual navigation capability and their navigation map needs to be synchronized through

some kind of a mechanism.

Human-robot-IoT ecosystem. We propose an envisioned ecology in this paper and

develop a proof-of-concept prototype system. Currently we are focusing on the initial design
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of the system workflow and the authoring interface, yet much more needs to be explored

and developed for future endeavors. For example, a cloud based data management system

needs to be setup with a new protocol created for the human-robot-IoT communication.

This enables better handling of more complex tasks that requires coordinated scheduling

among multiple devices, through efficient distribution of available resource, and intelligent

control of information flow. The expandability of the system also needs to be considered.

For example, new devices and can easily be developed to be connected into the ecosystem

in a plug-and-play manner.

4.9 Conclusion

This paper has presented V.Ra, a spatially situated visual programming system for

household robot task planning. We have explained our design rationale and demonstrated

our user-oriented system design process. We adopted a workflow approach of one single

AR-SLAM device for task authoring and robot execution, and developed our authoring

interface for robot-IoT in-situ visual programming. We have shown three different use cases

for household applications, featuring floor cleaning chores, DIY maker fabrication, and

daily plant watering. Finally, the promising results from our 2-session preliminary user

study have validated the navigation robustness and the system useability, showing that the

prototype system has reached our design goals. In V.Ra, humans and smartthings enhance

each other’s capability within the fluidly connected ecology, such that spatially oriented

collaborative tasks can be operated with lightweight system requirements. We believe that

V.Ra opens an inspiring perspective for researchers to reconsider human’s role in the coming

era of Internet-of-Robotic-Things.
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5. TIME-SPACE EDITING FOR HUMAN-ROBOT

COLLABORATIVE TASK AUTHORING (GHOSTAR)

This chapter is a slightly modified version of "GhostAR: A Time-space Editor for Embodied
Authoring of Human-Robot Collaborative Task with Augmented Reality" [3] published
in Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology and has been reproduced here with the permission of the copyright holder.

Fig. 5.1. GhostAR workflow. To author HRC tasks that achieve time-space coor-
dination, (1) user first authors a human ghost by recording his body movement,
(2) then using the ghost as a visual reference, (3) he authors collaborative robot
actions. (4) When acting the task, our system’s collaborative model captures the
body movement as input, maps it with the authored human motion, and outputs
the corresponding collaborative robot motion.

We present GhostAR, a time-space editor for authoring and acting Human-Robot Col-

laborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in

Augmented Reality (AR), for spatially editing the actions and programming the robots

through demonstrative role-playing. We propose a novel HRC workflow that externalizes

user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated

visual referencing, realistic animated simulation, and collaborative action guidance. We de-

velop a dynamic time warping (DTW) based collaboration model which takes the real-time

captured motion as inputs, maps it to the previously authored human actions, and outputs
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the corresponding robot actions to achieve adaptive collaboration. We emphasize an in-situ

authoring and rapid iterations of joint plans without an offline training process. Further, we

demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a

three-session user study.

5.1 Introduction

Robotics has been extensively used to automate a large number of particular and repeti-

tive tasks with high accuracy and throughput in manufacturing environments. The tremen-

dous economics and social impacts projected by robotics will likely to expand in our future

by infiltrating into broader fields in both commercial and consumer markets [163]. Unlike

the traditional manufacturing environments, these new segments including medical, health-

care, and services, usually heavily involve human activities in the working environments.

Thus, enabling robots to co-work with humans in collaborative tasks has become a major

pillar of the next generation robotics technology.

A typical human-robot-collaborative (HRC) task involves generating a joint intention,

planning actions, and acting cooperatively [164]. In a human-centered task, the joint inten-

tion usually aligns with humans’ implicit or explicit expressions. Explicit communications

such as speech and gestures have been widely studied for commanding robots [165,166]. But

using these modalities may cause inefficiencies and ambiguities in spatially and temporally

coordinated collaborations which require comprehensive understanding of the contexts. On

the other hand, embodied demonstrations from humans directly convey the intentions to the

robots. More importantly, to avoid programming robots’ behaviours for the highly dynamic

human robot interactions, researchers propose programming by demonstrations (PbD) to

generate task and action plans for the robots [167]. Further, to safely and robustly execute

the action plans in a coordinated manner, humans and robots need to timely communicate

with their status, actions and intentions [168]. To this end, we primarily endeavor to explore
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the design of an embodied authoring workflow to support real-time human motion inference,

demonstrating examples actions to robots and creating joint plans.

The advents of mobile computing foster the evolution of authoring workflows in an in-

situ and ad-hoc fashion [57,58]. However, existing workflows primarily target at pre-defined

and rigorous tasks where robots operate in isolation and interact with the environment

only. To enable novice user friendly PbD in the authoring workflow, we need to support

human motion capture and inference which traditionally involve a motion capture system.

Since a body-suit [169] or an external-camera [170] based capture system requires heavy

dependencies, demonstrations are often only captured off-line [84]. Moreover, for ad-hoc

tasks, demonstrating with users’ own body is preferable [167]. Recently, the emerging

augmented/virtual reality (AR/VR) technologies, e.g., head-mounted AR/VR devices [153,

171], show a strong potential to enable embodied authoring [172]. Further, in HRC tasks,

robot partners are desired to adapt to and coordinate with humans actions. Thus, to create a

joint action plan, the counterpart motions of the robots can only be demonstrated with the

humans’ part as contexts. In this work, we promote a critical advantage of using AR/VR

authoring, namely externalizing the users’ body asynchronously [110, 112]. This way, the

teachers can always view, manipulate, and edit their own recorded actions, and use them as

contexts when demonstrating the counterpart motions for robots.

We promote an embodied authoring in AR for HRC tasks in this work because of the

following reasons: (i) realistic visualization with contextual and spatial awareness, enabling

creating, editing, and previewing the collaborative flow intuitively, (ii) easy programming

with natural embodied interaction through real human demonstration via role-playing to

establish time-space correspondence, (iii) supporting real-time motion inference, activity

detection, and visual feedback on robots’ intents when conducting the HRC. We present

GhostAR workflow which uses AR with body-tracking to enable visual, spatial, and embod-

ied HRC tasking authoring, as illustrated in Figure 5.1. A typical authoring session starts
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when users role-play the human’s actions. We render the recordings as AR ghost. Users

can freely observe, edit and infer the actions and use it as reference when role-playing the

robot’s counterpart actions. Then, users designate correspondences between humans’ own

action plan and the demonstrated actions for robots. Further, GhostAR provides visual

preview with AR simulation in-situ. When users act the HRC tasks, GhostAR continues

to capture user’s motion and use it to derive the robot’s motion plan. Also, users can refer

to the next-step guidance and robot’s intentions with AR visual feedback. In summary, we

highlight our contribution as follows.

• A system workflow for authoring human-robot collaborative task through AR ghost

as contextual references and role-playing with natural embodied interaction.

• A collaboration model that achieves time-space correlation for the human-lead-robot-

assist adaptive collaboration task based on dynamic time warping (DTW) algorithm.

• An AR interface and interaction design for human-robot ghost creation and visual-

ization, editing and manipulation, previewing and simulation, and guidance throughout

a successful collaborative action.

5.2 Design Goals

Based on the knowledge acquired from the previous works as well as our own experience

on the subject of human-robot-interaction (HRI) and robot task planning and programming,

we have extracted the following Design Goals (DG) as guidelines of our HRC authoring

system design. The practice of these DGs is reflected throughout our system design and

implementation.

DG1: Adapting robot behavior to human. Author human-lead-robot-assist typed col-

laborative tasks that are initiated by human, where the robot always act adaptively to the

human partner’s actions.
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DG2: Programming with natural interaction. Lower the barrier for users to effectively

program complex HRC tasks, with natural body movement and intuitive interactions.

DG3: Authoring with contextual awareness. Provide spatial and contextual awareness

that is important for Human-Robot task authoring. Both parties need to be aware of each

other’s position and status as well as the surrounding environment.

DG4: Visualizing with realistic simulation. Give active and accurate visual feedback

about what the user has authored, to ensure efficiency and correctness of the authoring

through realistic simulations.

DG5: Iterating with real-time feedback. Enable a real-time process and rapid iterations

from collaborative task authoring to action, with no need for offline programming and

testing.

5.3 GhostAR

5.3.1 Human-Robot Collaboration Model

It is important to first define the meaning of collaboration in our work as it touches a

wide range of aspects, even just for tasks between humans and robots. In GhostAR, we

essentially present a robot programming tool that controls robots’ action based on its human

partner’s body movement. In other words, the robot collaborates with the human in the

sense that it must act adaptively according to its human partner. In order to achieve this, we

present a collaboration model that is dynamically generated based on user’s authoring and is

able to output robot action corresponding to the input human motion.

In a human-lead-robot-assist HRC task, we achieve the motion coordination by defining

user’s action segments first. Our system allows users to record their body movement as a

Human Motion Clip (a sequence of Motion Frames with different timestamps) and to use it

to create HRC tasks. Note that the authored human motion could consist several meaningful
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movements and user can put them into Groups to author HRC tasks correspondingly. For

example, the human character in Figure 5.2 records the following motion: he walks, stops

and waves his hand, then walks for some distance and waves again. The HRC task he wishes

to author is to make the robot come over when he first waves, follow him and shoot videos

for him as he walks, and then leave when he waves hand again. To achieve this, he needs to

put the two hand wavings and a walking into three Groups and author the robot to behave

as come over, follow and shoot videos, and leave correspondingly in these three Groups.

For each Group of human motion, our system provides two types of collaborative tasks for

user to author. They are Synchronize and Trigger tasks.

• A Synchronize task authors a robot action to take place at the same pace of the

reference human group. In this type of HRC task, robot and human will perform their

own task, but at the same speed or progress, i.e. if the human moves faster, the robot

will move faster to keep up, and vice versa. This is applicable to HRC tasks such

as joint object manipulation, motion following for lighting or camera shooting, and

coordinated movements like hand-shaking, etc.

Fig. 5.2. Authoring collaborative robot actions using Groups.
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• A Trigger task authors a robot action to take place after the human group. In this type,

the robot starts executing its authored task right after the human has completed the

reference group, i.e. human snaps his finger and the robot starts sweeping the floor.

This is applicable to HRC scenarios such as sequential joint assembly, and gesture

signalling, etc.

As for the example in Figure 5.2, the user will author the come over and leave robot

action as Trigger tasks for the two hand-wave Groups, and author the follow and shoot video

as a Synchronize task for the walk Group.

So far the user has been preparing the collaboration by creating the HRC TaskSequence.

As shown in Figure 5.3, the HRC TaskSequence is a list of Groups that represents the

authored task in an accessible and manageable manner. Note that adjacent ungrouped human

Motion Frames will be automatically grouped as Empty Groups. The HRC TaskSequence

Fig. 5.3. GhostAR collaboration model.
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together with the Motion Mapping module, form the collaboration model of GhostAR.

When the HRC action is started, user needs to repeat his authored motion in the sequential

order. Meanwhile our system will activate the first Group and start the motion mapping

between the real-time captured human motion and the grouped Human Motion Clip. When

the mapping progress indicates the current Group is completed, our system activates the

next one and repeats this process until all Groups in the HRC TaskSequence are completed.

For a Synchronize task, the system calculates the progress and output robot behaviour at

the corresponding timestamp. For Trigger task (which is generally shorter), system focuses

on recognizing the completion of the human movement, and then issues commencement

instructions for the authored robot actions. Note that Empty Group will be treated the same

way as a Synchronize Group, for proper progress monitoring and activation of the next

Group.

5.3.2 Motion Mapping using Dynamic Time Warping

We describe how our system achieves motion mapping for both Synchronize and Trigger

tasks. Essentially, in order to recognize user’s status, we rely on positions of the user’s head

and both hands which are provided by our AR interface. We then introduce DTW to infer

the user’s activities using the 9 degree-of-freedom (DOF) inputs. At time ti, the user’s state

is represented by an R9 vector:

vti = [xhead
ti ,yhead

ti ,zhead
ti ,xle f t

ti ,yle f t
ti ,zle f t

ti ,xright
ti ,yright

ti ,zright
ti ]T

In this manner, each Human Motion Clip derives an R9 curve as: LLLrecord = [v1,v2,v3, · · · ,vN ].

And we denote the human motion in Group Gi as lGi which is a continuous segment within

LLLrecord .
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To reduce the DOF of inputs and keep the most relevant information from the raw gesture

data lllGi , we apply principal component analysis (PCA) [173] to project this R9 curve onto

a R2 plane. A projected curve fff Gi
and a projection matrix PGi are derived as well as in

Algorithm 1. For each activated Group Gi, the real time data vtnow is projected by PGi and

then compared with the fff Gi
to acquire the corresponding progress in Gi.

Algorithm 1 Calculate Projected Curve and Projection Matrix
1: procedure PCAPROJECTION(lllGi[1 . . .n])
2: lllGi ← (ΣlllGi)/(9∗n)
3: VVV ← (lllGi− lllGi)(lllGi− lllGi)

T

4: Let vvv111 and vvv222 be two eigen vectors associated with the largest eigen values of VVV .
5: output PPPGi ← [vvv111,vvv222]

T

6: output fff Gi
← PPPTilllTi

Trigger Task Detection. Assume that an activited Group Gi is a trigger Group and we

want to determine whether the user has finished performing the human motion lGi . We first

collect the motion that the user has just performed: lllrealtime = [vtnow−n+1, · · · ,vtnow−1,vtnow ]

where n is the length of lGi . After that we get the projected curve fff realtime = PPPGilllrealtime

and compare it with fff Gi
. This method is close to a conventional human action recognition

problem [174]. We use Dynamic Time Warping (DTW) algorithm [175] to calculate the

similarity. DTW is an algorithm to find the alignment between two time series data. Given

two time series sss = [s1,s2, · · · ,sn] and ttt = [t1, t2, · · · , tm] with length n and m, a distance

matrix DDD is calculated using Algorithm 2. Each element DDD[i, j] in the distance matrix DDD

is the distance between sss[1 : i] and ttt[1 : j] with best alignment. And we define DDD[n,m] as

DTW distance between sss and ttt, note as < sss, ttt >. In our specific case, if < fff realtime,,, fff Gi
>

reaches its global minimum, we assume that user finishes performing Gi at the current time.

However, the future behaviour of the user is unavailable, so it is hard to identify when

the global minimum is achieved. To this end, we use a threshold ε to conclude a global

minimum given the existing behaviours of the user. Basically, if < fff realtime,,, fff Gi
,> reaches
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Algorithm 2 Calculate DTW Distance Matrix
1: procedure DTWDISTANCEMATRIX(sss[1 . . .n],ttt[1 . . .m])
2: DDD← array[0 . . .n,0 . . .m]
3: for i← 1,n do DDD[i,0]← ∞

4: for i← 1,m do DDD[0, i]← ∞

5: for i← 1,n do
6: for j← 1,m do
7: DDD[i, j]←‖s[i]− t[ j]‖+min(D[i−1, j],D[i−1, j−1],D[i, j−1])
8: return DDD

a local minimum and this minimum value is smaller than ε , we assume that this minimum

value is the global value and report to the system that Gi is triggered by the user. To adapt

this threshold for different fff Gi
with various lengths, we set ε = a ∗ n where a is a fixed

coefficient.

Synchronize Task Progress Estimation. If an activited Group Gi is a Synchronize task,

we need the user’s progress (0% ∼ 100%) in order to temporally coordinate the robots’

motions. We propose to compare the the real time data lllrealtime = [vtstart , · · · ,vtnow−1,vtnow ]

with the subsequence of lllGi: lllGi[1], lllGi[1 : 2], · · · , lllGi[1 : n], where tstart is the time when

Gi is activated. And we derive the user’s progress as n∗/n if the subsequence lllGi[1 : n∗]

approximates lllrealtime the most. In another word, we first project lllrealtime to fff realtime using

Algorithm 3 Progress Estimation Using DTW
1: dddold ← array[0 . . .n], dddnew← array[0 . . .n]
2: for i← 0,n do dddold[i,0]← ∞

3: for i← 0,n do dddnew[i,0]← 0
4: while Synchronized Task Si has started do
5: if vtnow is updated then
6: ftnow ← PPPSivtnow

7: for i← 1,n do
8: dddnew[i]←‖ fff Si

[i]− ftnow‖+min(dddnew[i−1],dddold[i−1],dddnew[i])

9: n∗← argmin1≤i≤n(dddnew[i]/
√

i)
10: dddold ← dddnew
11: output progress← n∗/n
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PPPGi and calculate the DTW distances between fff realtime and the sub-sequences of fff Gi
: fff Gi

[1],

fff Gi
[1 : 2], · · · , fff Gi

[1 : n], noted as d1,d2, · · · ,dn. And find n∗ = argmin1≤i≤n(di). However,

we note that the scale of di is influenced by the length of sub-sequence fff Gi
[1 : i]. To

eliminate this influence, a modified DTW distance d′i = di/
√

i (i = 1,2, · · · ,n) is introduced.

Then we determine a sub-sequence fff Gi
[1 : n∗] that is best aligned with fff realtime while n∗ is

given by n∗ = argmin1≤i≤n(d
′
i), and thus the user’s progress is n∗/n. Recall the property of

DTW distance matrix DDD, d1,d2, · · · ,dn are actually the last row of DDD, so in practice, we use

Algorithm 3 to calculate DDD and n∗ iteratively.

5.3.3 Embodied Authoring with Augmented Reality

Our system’s interaction workflow is implemented as a state machine, where a HRC

task is authored with the following five modes: Human Authoring Mode, Robot Authoring

Mode, Observation Mode, Preview Mode, and Action Mode. At the beginning of a new

task authoring session, a user is first asked to choose the robot collaborator(s). Note that in

case of simultaneously collaborating with multiple robots, each robot will share the same

Human Motion Clip but has its own HRC TaskSequence. After initialization, the user will

be promoted to the Human Authoring Mode to create the first Human Motion Clip. After

finishing the creation, the current tasks are displayed as AR ghost for visualization and

manipulation in the Observation Mode. The user uses the cursor to perform Grouping

operation, and authors robot tasks for the selected Group in the Robot Authoring Mode. In

the Observation Mode, user can choose to enter Preview Mode to visualize the entire HRC

task simulation with AR ghost animation. Once the user is satisfied with the authored task,

he/she can act out the authored HRC tasks by entering the Action Mode. The system utilizes

the dynamically generated collaboration model to derive the corresponding robot behaviours

based on user’s real-time motions.
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Fig. 5.4. GhostAR system interface in (1) Human Authoring Mode, (2) Obser-
vation Mode, (3) Robot Authoring Mode, and (4) Action Mode.

Human Authoring Mode. The Human Motion Clip is the baseline of the HRC task

authoring. It contains the human motions that robot will collaborate with, as well as the

movement that the user needs to repeat during the Action Mode. When authoring human

motion, the system records the user’s body motion by tracking the position and orientation

of the AR headset and two hand-held controllers. Then the Human Motion Clip will be

represented by segmented ghost avatars and displayed in the user’s AR view, as illustrated

in Figure 5.4-(1). The ghost avartar also plays the authored human movement repeatedly as

an animation in real time scale for review. To extend the Human Motion Clip, the user first

needs to trigger the last pose in the recorded clip and then act new human motion, which

will automatically be tailed to the end of the current Human Motion Clip.

Robot Authoring Mode. Once the Human Motion Clip is created, user can pick a

segment from it and generate a Group, then author a Synchronize or Trigger robot task

for it. For each selected robot collaborator, there exists a virtual robot avatar in GhostAR
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that mimics the behaviour of the real robot. User can control the virtual robot, with the

hand-held controllers and physical movements, to facilitate the robot motion authoring. For

a Synchronize task, the time-length of the robot clip is the same with the human group. As

the user is authoring robot and progressing, the human ghost with the same timestamp will

be displayed as AR reference to assist the user, as illustrated in Figure 5.4-(3). The user can

pause/resume and walk around anytime during the authoring process, in order to observe

and operate the robot avatar from the optimal perspective. In terms of a Trigger task, the

user authors robot actions independently which will be placed after the Trigger Group. Once

robot authoring is finished, the authored HRC task will be animating repeatedly, with both

human and robot ghosts, to visualize and preview the task before the user decides to accept

or redo.

Ghost Visualization and Manipulation. Our system provides in-situ authoring expe-

rience by exploiting the advantage of AR interfaces. In the Action Mode, the authored

tasks are displayed as AR ghosts for user to preview and manipulate. The ungrouped raw

human ghosts are displayed as transparent segmented snapshots while the grouped ghosts are

displayed with Start/End Motion Frames with a uniquely assigned color and a floating 3D

icon indicating its collaboration type, as illustrated in Figure 5.4-(2). Using the interactive

cursor, user can edit the Human Motion Clip and perform operations such as Grouping,

unGrouping, ‘trimming’, etc. If the cursor is pointing at any unGrouped raw human ghost,

the pointed ghost Human Frame will be highlighted. Otherwise if the cursor is inside a

Group, the Human-Robot task of that group will animate repeatedly until the cursor is

moved outside. Note that user can also enter the Preview Mode and visualize the entire task

as a continuous simulated AR ghost animation.

Action Mode. The Action Mode is where the user carries out the collaboration tasks.

In this mode, the system captures the real-time movement of the user and maps it with the

recorded Human Motion Clip, then issues corresponding instructions to drive the robot and
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perform the collaborative task. To help user repeat his authored motion and alleviate the

mental burden of memorization, the system provides numerous AR guidance to assist the

user. As illustrated in Figure 5.4-(4), our system not only projects a dotted trail for the

user to follow, but also plays the next-to-act Group’s animation to refresh user’s memory.

Therefore, user only needs to focus on the current task and the system is guiding him/her

step-by-step. Besides, our system also provides numeric progress information for user to

keep track of him/herself as well as the robot’s working status.

5.4 Implementation

5.4.1 System Setup and Development

We build our see-through AR platform by attaching a stereocamera (ZED Dual 4MP

Camera (720p)) in front of a VR headset (Oculus Rift). The human body motion is tracked by

four external Oculus IR-LED Sensors with an effective working area of 5mx5m. Interactions

used in the system are enabled by two Oculus Touch Controllers. The major part of

GhostAR software system is developed with Unity3D engine and Robot Operating System

(ROS) [176], including the AR interface and embodied interaction, motion recording and

DTW calculation, etc. The authored Human Motion Clip and robot clips are recorded at

the rate of 90Hz. It’s worth to note that this prototyped AR platform still relies on external

tracking and tethered computer which limits the interaction volume. However, with the

newly developed mobile AR/VR technologies, e.g., Hololens [153] and Oculus Quest [171],

we believe that implementing GhostAR with stand alone devices is effortless.

5.4.2 Robot Simulation and Prototyping

We have prototyped several robots, including three physical robots (GripperBot, CamBot,

Armbot) and a virtual robot drone, for the purpose of use case demonstration and studying
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Fig. 5.5. Robot implementation workflow with ROS-Gazebo for realistic back-
end simulation and Unity for front-end interaction and visualization.

the robot authoring user interaction effectiveness. The CamBot is an omni-mobile robot with

a camera mounted. The ArmBot is a fixed 6-DOF robot arm (Arduino Tinkerkit Braccio).

The GripperBot is an omni-mobile robot with the 6-DOF robot arm sitting on top of it. As is

illustrated in Figure 5.5, the mobile robot base is powered by 3 DC motors (locally controlled

by Arduino) driven by omni wheels that are capable of moving towards any direction while

rotating. The robot is equipped with an NVIDIA Jetson TX1 Development Kit running ROS

as robot’s central controller and with a SICK TiM 561 2D LIDAR for SLAM navigation. The

robot is powered by four LiPo batteries (11.1V, 5000mAh for each battery). During the Robot

Authoring Mode, in order to deliver realistic virtual robot simulation that closely resembles

the dynamics and physical behaviour of the real robot, we adopt ROS-Gazebo [177] as

back-end robot simulator, the workflow is illustrated in Figure 5.5. In details, the controller

inputs are sent to ROS-Gazebo using ROS#-Unity protocol [178] via WiFi communication.

ROS-Gazebo then simulates the motion of robot under dynamic and physical constraints
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(maximum torque, speed, acceleration, etc). Meanwhile, it simultaneously pushes the

real-time robot status back to Unity3D where the virtual robot is then rendered accordingly

in user’s AR view. In this way, users are able to experience realistic robot manipulation

and visualization with virtual robot avatars. Within the Action Mode, our collaboration

model derives the corresponding robot behaviour into ROS-Gazebo, which then instructs

the physical robot to act accordingly.

5.5 Use Case Scenarios

Figure 5.6 illustrates four use case scenarios of GhostAR. Figure 5.6-(1) demonstrates

a HRC task where user carries an object and delivers it on the table, then the ArmBot put

it into a basket (Trigger). The whole process is videotaped by the CamBot which follows

the user (Synchronize) to get the best shooting angle. Figure 5.6-(2) demonstrates a joint

assembly task with the ArmBot where user provides the bottom part of the assembly and the

ArmBot grabs the top part and assemble them together. The task is authored as a Trigger

action and can be performed repeatedly. Figure 5.6-(3) demonstrates a scenario where a

drone is providing spot light for the user while he/she walks towards the couch, sits down,

and puts the round object into the container. The entire HRC action is authored as one

Synchronize task. Figure 5.6-(4) demonstrates a Synchronize hand-shaking scenario where

the robot reaches out its gripper at the same pace as the human reaches out his/her hand,

e.g., it pauses if the human pauses, and proceeds when the human proceeds.
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Picture 5.6. Use cases. (1) Object handover with CamBot videotaping and
following. (2) Joint assembly with ArmBot. (3) Object manipulation with drone
providing spot light. (4) Hand shaking with GripperBot.
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5.6 User Study

To evaluate our collaboration model accuracy, robot authoring interactivity, and overall

usability of our system, we invited 12 users with various backgrounds to our three-session

preliminary user study. None of them had prior experiences with our system and their ages

ranged from 19 to 31. The study was conducted in a 5mx5m area using only virtual robots

(the GripperBot and the Drone) for safety concerns. The entire process was video recorded

for post-study analysis. Each user was given a 15 min tutorial about the background of

the project before proceeding to the task in session 1. After each session, each user was

given a survey to answer objective Likert-type questions. Each Likert-type item is graded

by users from 1 to 5, on the usefulness of the feature and the level of agreement. After all

the sessions, a conversation-style interview was conducted to acquire subjective feedback

and a standard System Usability Scale (SUS) questionnaire was also given to each user. (P

= participant)

5.6.1 Session 1: Human Authoring and Motion Mapping

One of the core features of GhostAR is to recognize user’s body gestures and map it with

previous authoring to output the corresponding robot behaviour. This is achieved by our

in-situ generated collaboration model using DTW based algorithm. The first session of the

study is designed to evaluate this with novice users.

Procedure. Users were asked to perform a continuous motion in the Human Authoring

Mode that included six regular gestures (Figure 5.7-(1)): stand up from a chair (G1), wave

hand (G2), pick up a virtual item (G3), walk to another place and put down the virtual item

(G4), bow and reach out to the handles of a chair (G5), push the chair a short distance and

stand up straight (G6). The whole motion series took approximately 30 seconds. The users

then forwarded into the Observation Mode and put each of the above gesture into a Trigger
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Fig. 5.7. User study setup. (1) Session 1: Human authoring and motion mapping.
(2) Session 2: Robot authoring interactivity. (3) Session 3: System usability
evaluation.

Group Ti,(i = 1, · · · ,6). Also, the object-moving motion between G3 and G4, and the chair

pushing motion between G5 and G6 are Grouped as two Synchronize tasks Si,(i = 1,2),

respectively. Each user repeated the above process 4 times and all data set were recorded

for a cross validation: using 1 set of data as authoring and 1 set as acting, to acquire large

amount of evaluation results. For each Trigger task Ti, we collected the detection time from

the collaboration model, tTi . For each Synchronize task Si, we collect the estimated progress

at time t by the collaboration model instead, noted as Pest
Si

(t). The end time, tG
Ti

of each

Trigger gesture Gi, as well as the start time tstart
Si

and end time tend
Si

of each Synchronize task

Si were manually labeled as ground truth.

Evaluation of Trigger task detection accuracy. Figure 5.8-(top) shows an example

of the DTW distance values of a user (P4) in the Action Mode. All 12 users authored
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846 valid Trigger tasks in total (6 gestures × 12 comparisons × 12 users), 840 of which

were successfully detected (99.3%). For every detected Trigger task, we calculated the

error of detection time |tG
Ti
− tTi| and display the distribution in Figure 5.8-(Bottom). To

better illustrate the Trigger detection accuracy, we calculate the 80% medians of the errors

associated each gesture: G1 : 375ms,G2 : 358ms,G3 : 857ms,G4 : 685ms,G5 : 642ms,G6 :

517ms. These results indicate that in most of the cases (> 80%), GhostAR system was able

to detect the Trigger task within 1 second before or after the user had completed that gesture.

We also observed that the accuracy of detecting the pick-up (G3) and put-down (G4) gesture

was lower than that of the stand-up (G1) and wave-hand (G2). This is because of the motion

involved in G3 and G4 has less amplitude, with only one hand moving in relatively smaller

distance, resulting in lower detection accuracy.

Fig. 5.8. Trigger task detection test. Top: DTW distance example from P4.
Bottom: The distribution of Trigger task detection time error.
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Fig. 5.9. Synchronize task progress estimation. Left: A progress estimation
example from P4. Right: The distribution of estimation error.

Evaluation of Synchronize task progress estimation. We used the timestamp values

t to characterize a user’s progress in the Synchronize task. The actual progress is defined

as Pact
Si

(t) = (t− tstart
Si

)/(tend
Si
− tstart

Si
) (tstart

Si
< t < tend

Si
). Figure 5.9-(Left) shows an example

of the Pact
Si

(t) - Pest
Si

(t) curve. For each Synchronize task Si, we uniformly selected 100

data points from the Pact
Si

(t) - Pest
Si

(t) curve (Pact
Si

(t) = 1%,2%, · · · ,100%) and calculate the

estimation error |Pact
Si

(t)−Pest
Si

(t)|. All 12 users contributed 14400 data points (2 Synchronize

tasks × 100 data points × 6 comparison × 12 users) in total. The distributions of the

estimation errors are shown in Figure 5.9-(Right). The 80% medians are 12.24% (object

moving) and 11.73% (chair pushing), which implies that in most of the time (> 80%), the

robot will not surpass or fall behind a user for more than 15% of overall progress. Based on

our observation during the user study, we suspect that the error may come from the minor

inconsistency (e.g. irregular pause) of the user’s behaviour during some of the motions.
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Fig. 5.10. Robot authoring interactivity test. Top: The distribution of robot
authoring error. Bottom: Average error of novice users and an experienced user.

5.6.2 Session 2: Robot Authoring Interactivity

Another highlighted feature of GhostAR is to author robot to perform spatially and

temporally synchronized motion with the human reference. In this session, we tested the

robot interactivity and system interface towards authoring a Synchronize HRC task.

Procedure. A user first defined the human motion ghost by traveling through two routes:

a straight-line and a circular path within the 5mx5m arena. Then we asked the user to author

two virtual robots to travel alone with the human ghost while trying to coincide with the

footprint (for the GripperBot) and the head position (for the Drone) of the human ghost, as

illustrated in Figure 5.7-(2). The authoring data was recorded for accuracy analysis, and

each user repeated the process twice.

Result and Discussion. In general, users were able to understand the robot authoring

interaction quickly and all users successfully authored the described task. Many users

frequently use the “pause/resume” feature to adjust themselves for better observing and
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maneuvering perspective during the authoring. The histogram in Figure 5.10-(Top) shows

the distributions of the robot authoring errors. Since the GripperBot and the Drone both has

a radius of 25cm, we consider that the human ghost and the robot are aligned if the captured

distance is shorter than 25cm. Based on this criteria, we calculated an alignment rate which

is defined by the percentage of errors which are smaller than 25cm. The values of alignment

rate are 89.57% (the GripperBot following a line), 86.87% (the Drone following a line),

84.29% (the GripperBot followed a circle) and 81.46% (the Drone following a circle). This

result indicates that in most of the time (> 80%), the users were able to author the robot to

be precisely aligned with the human ghost for this Synchronize task.

By observing the study and analyzing the results, we find that keeping the error below

10cm was generally a hard task for regular users, especially for the Drone which has one

added DOF than the GripperBot. We believe this is mainly because the users were not

familiar with the kinetics mechanism of the robots. Restricted by the physical principals,

the robots had large inertia and could not strictly follow the users’ authoring behaviors as

assumed. So that many users tended to overshoot while controlling the robots. Additionally,

the Drone is always swinging due to its aerodynamics properties (simulated by ROS-Gazebo),

which makes it even harder for maneuvering. Besides, the circular route evidently produced

more error than the straight-line, which we assume is caused by the lack of next-position

reference. We also compare the novice users with an experienced user who had practiced

the authoring process 5 times. And display their average error in Figure 5.10-(Bottom). The

result shows that the experienced user achieved much better accuracy result than the novice

users. This indicates that the proposed robot interaction can be easily mastered with a few

rounds of practise, and therefore better Synchronize performance can be achieved.
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5.6.3 Session 3: System Usability Evaluation

In this session, we evaluated the overall usability of our system by asking users to author

an HRC task, then act out the collaboration.

Procedure. The users were asked to complete a joint assembly task with the GripperBot,

during which the user and the robot each picked up one part and met in the middle to put

them together. The HRC task consists of a Synchronize action and two Trigger actions. As

illustrated in Figure 5.7-(3), the collaboration scenario is described as follow: the users

picked up his green part, Triggering the robot to pick up the red part; then they traveled

towards the middle workstation at a Synchronize pace; when met, the users put down their

parts first, Triggering the robot to place its red object and complete the assembly.

Result and Discussion. All participants were able to successfully act out the collabo-

ration task with our system issuing the correct robot behaviour according to the authoring.

The average task authoring time for task completions is 2 min 16 s.

The system feature related Likert-type results collected from the 3-session study are

shown in Figure 5.11. After the tutorial, participants were generally confident to author the

HRC task and agreed on the smoothness of our system workflow (Q9: avg = 4.25, sd = 0.62).

“It’s fast and easy to plan a task, just role-plays your action and use the ghost reference to

play the robot part. (P2)” The timely authoring process and rapid iteration were appreciated

by the users. “I like how fast it is from planning the task to acting it out, encourages me

to try more. (P4)” We believe these feedbacks indicate that our system enables real-time

and in-situ authoring, meeting our DG5. Users are also impressed with the motion mapping

accuracy and robustness of our system during the Action Mode. “I thought my acting was

not that consistent with multiple pauses, but surprisingly your system recognized it and

issues the correct robot behaviours. (P3)” This comment indicates that we have achieved

robot collaborative adaption in terms of coping with human partner’s uncertainty (DG1).
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The embodied authoring and interaction method (referred to as ‘role-playing’) is recep-

tive to our participants, for both human ghost authoring (Q1: avg = 4.17, sd = 0.94) and

robot avatar control (Q7: avg = 4.08, sd = 0.79). “Moving a virtual robot in AR space was

much easier than I thought. (P4)” These comments have reflected positively to our DG2.

The visualization accuracy of the ghost in terms of time-space reference is high according

to (Q3: avg = 4.5, sd = 0.67). Further, the realistic robot simulation used for robot avatar

interaction and visualization is also generally appreciated (Q6: avg = 3.83, sd = 0.94). “That

drone was kind of difficult to control. But I think the interaction method you provide is

super realistic. The robot didn’t move to where you were pointing to, it moved slowly to

the target like a real robot. And for the drone, it was swinging and tilting when moving.

(P7)” We believe these comments confirm the necessity of adopting professional robotics

Fig. 5.11. Likert-type result after the three-session study.
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engine (ROS-Gazebo) to enhance user interaction experience by providing back-end realistic

simulation, meeting our DG4.

Survey responses were positive about the AR ghost to display the authored task in a

spatially situated manner (Q4: avg = 4.5, sd = 0.52) with intuitive visual representation (Q5:

avg = 4, sd = 0.85). The ghost images are welcomed as a time-space context for authoring

collaborative robot task (Q8: avg = 4.33, sd = 0.78), as well as a visual guidance during the

Action Mode for successful collaboration execution (Q11: avg = 4.08, sd = 1.24) “It’s very

interesting like Sci-Fi, when I’m able to see what I have done with ghosts. (P3)” The most

popular feature of our system is the animation preview capability for the newly authored

ghost (Q2: avg = 4.25, sd = 0.62) and the entire HRC task before action (Q10: avg = 4.58,

sd = 0.51). “The ghost animation is definitely my favourite part of the system, I can see so

many potential applications for this technique. (P12)” We believe these feedback match

our goal of providing contextual aware authoring experience (DG3). The SUS survey was

also deployed after the study, the response result is 80 with a standard deviation of 6.75,

indicating high usability of the proposed system.

5.7 Discussion and Future Work

While users all appreciated the usefulness of AR ghost in terms of contextual visualiza-

tion and task simulation, they have almost unanimously raised one interestingly conflicting

problem. 6 out of 12 users have mentioned in one way or another that, the AR ghosts can

occasionally become distracting and obtrusive. “There are too many ghosts in front of me

when I am trying to see and act. (P10)” This feedback emerges after user get familiar with

the system and they start feeling not needing the AR guidance all the time. This finding

brings out an important question when designing such systems: how shall we balance

between demonstrative ghost reference and clear authoring view, and provide both for

the user? While this may be a research question for future endeavor, we have some initial
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thoughts. A quick fix could be giving user the ability to manually toggle all the AR ghost.

However if user only wants to hide some of the ghost images, the added interaction could

increase the cognitive load of the user. Another potential solution involves intelligently

detecting user’s intention and only display the most relevant and needed ghost. For example,

during the Action Mode, the ghost appears only when user is about to go off-track.

In this work, we prototyped our system with see-through HMD AR and achieved body

externalization with IR-based tracking device. The current hardware setup provides only

3-joints tracking (head and 2 hands) and we utilized only the position value, resulting in

a 9-dimensional input data for our collaboration model. Note that this setup is largely

limited by the currently available hardware platform, and is likely to change. For example,

future AR-based body tracking technique is expected to have multiple-joints and provides

more realistic humanoid ghost. Furthermore, with additional sensory input embedded, such

as tactile force feedback, we can achieve force sensitive collaborative authoring with our

system, such as joint object carrying.

Although the GhostAR system is able to detect the user’s motion status with fair accuracy,

the DTW algorithm we are currently using largely relies on user’s consistency in order

to achieve satisfying performance. As a result, the user in Action Mode is constrained to

the previously authored motions and has very limited flexibility. To tackle this problem in

the future, our initial guess could be utilizing the state-of-the-art human action recognition

approaches, such as probabilistic methods and deep neural networks, to capture the key

features in the user’s motion. Thus granting more freedom to the user and enabling for

intuitive authoring and acting behaviour while maintaining collaborative accuracy.

It is worth emphasizing that GhostAR is a HRC task authoring and acting platform

designed as complimenting workflow for the more advanced human-robot-collaborative

learning frameworks, as discussed in the Related Work section. Our system can essentially

be applied to many other HRC models specializing in different applications, to achieve
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higher level of collaborative intelligence while empowering users with real-time, spatially

situated visual task authoring capability.

5.8 Conclusion

We have presented GhostAR, a human-robot-collaborative task authoring system fea-

turing role-playing embodied interaction and contextually situated visual editing. In this

paper, we have demonstrated how an AR interface can be synergistically integrated with

embodied authoring to create elevated HRC experience. We have proposed key guidelines

for HRC authoring system design, highlighting 1) robust motion adaption, 2) natural em-

bodied interaction, 3) contextual authoring reference, 4) realistic visual simulation, and

5) fluid real-time iteration. Our three-session system evaluation received positive results,

indicating that the proposed system has reached the design goals, while also unveiling the

potential directions for future endeavors. GhostAR has created a brand new perspective to

solve the balancing problem between sophisticated functionality and intuitive interaction

in an adaptive collaboration context, thus offering future inspirations to the HCI and HRI

community.
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6. AN EXPLORATORY STUDY OF AUGMENTED REALITY

PRESENCE FOR TUTORING MACHINE TASKS

(AVATUTAR-STUDY)

This chapter is a slightly modified version of "An Exploratory Study of Augmented Reality
Presence for Tutoring Machine Tasks" [4] published in Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems and has been reproduced here with
the permission of the copyright holder.

Fig. 6.1. An overview of our exploratory study setup. An expert first gener-
ates a tutorial of a machine task on the mockup machine through embodied
demonstration (1). Later a student tries to repeat the task by following this
tutorial through an augmented reality (AR) headset (2). We propose to explore
four tutor presence options for machine task tutoring, including: video (3)-a,
non-avatar-AR (3)-b, half-body+AR (3)-c and full-body+AR (3)-d.

Machine tasks in workshops or factories are often a compound sequence of local,

spatial, and body-coordinated human-machine interactions. Prior works have shown the

merits of video-based and augmented reality (AR) tutoring systems for local tasks. However,

due to the lack of a bodily representation of the tutor, they are not as effective for spatial
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and body-coordinated interactions. We propose avatars as an additional tutor representation

to the existing AR instructions. In order to understand the design space of tutoring presence

for machine tasks, we conduct a comparative study with 32 users. We aim to explore

the strengths/limitations of the following four tutor options: video, non-avatar-AR, half-

body+AR, and full-body+AR. The results show that users prefer the half-body+AR overall,

especially for the spatial interactions. They have a preference for the full-body+AR for

the body-coordinated interactions and the non-avatar-AR for the local interactions. We

further discuss and summarize design recommendations and insights for future machine

task tutoring systems.

6.1 Introduction

Contemporary manufacturing facilities are changing to focus on flexible, modular, and

self-configuring production, a trend that is sometimes called Industry 4.0 [179]. Human

workers, as the most adaptive part of the production process, are expected to operate various

machinery and equipment in a constantly changing working environment [180]. This

creates a new challenge that requires workers to rapidly master new machine operations

and processes, what we refer to in this paper as machine tasks. Researchers have proposed

low-cost, easy-to-distribute, and highly-scalable machine task tutoring systems as a way

to resolve this challenge. Recent novel tutoring systems show potential to reduce and

eventually eliminate real-human one-on-one tutoring [181].

Machine tasks in a workshop or factory environment are usually a mixed sequence

of various types of interactive steps. Based on our observations and literature reviews,

we categorize the steps of the machine tasks into three types: local, spatial, and body-

coordinated [182, 183]. A local step refers to one-hand interactions in the user’s immediate

vicinity (i.e., within arms reach), which involves no spatial movement. A spatial step

requires a large spatial navigation before proceeding to interact with the target machine
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interface. And in a body-coordinated step, an operator must coordinates his/her body, hands,

and eyes to complete the interaction.

Video content has been widely adopted into modern tutoring systems because they are

capable of illustrating the fine details of operations [184–188]. Despite their popularity,

video tutorials fundamentally suffer from the lack of a spatial connection between the digital

representation and the user’s physical presence. This flaw of video tutorials can lead to a

fractured learning experience, especially for physically interactive tasks. To address this

challenge, augmented reality (AR) approaches have been proposed that superimpose virtual

tutorial guidance directly onto the interaction target in-situ [189]. Due to this advantage,

AR tutoring systems have been particularly favored for interactive tasks within the physical

environments, such as in machine-related operations [117, 120, 123, 124].

However, existing AR tutoring systems for machine-related operations predominantly

focus on local interactions. The virtual tutoring contents in these works usually apply visual

illustrations, such as static and dynamic symbols and text, to represent the operations within

the local regions of interest. Previous works have shown their effectiveness for highly-

complex local instructions, such as computer assembly [123], machinery diagnosis [113],

and vehicle maintenance [114]. However, due to the lack of an explicit visual representation

of the human tutor for spatial and bodily movements, these symbol-only AR illustrations

are inadequate to provide clear cues for interactions that require large spatial navigation

movements and full body coordinative operations, such as the machine tasks.

To guide the development of improved AR tutoring systems, we propose to use avatars

as an enhanced tutoring presence to the existing AR instructions. In our approach, the

embodied demonstration of the tutor is presented in the operator’s AR view while they

interact with the physical machines in-situ. Virtual avatars have been broadly used to

represent the embodiment of the human users in various virtual reality (VR) consumer

applications, such as VR-chat [190]. Avatars have also been explored and adopted in the
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area of mixed reality (MR) remote assistance [135, 136, 191], body movement guidance

and training [130, 134, 141], and telepresence AR conference [192, 193]. Most recently,

Loki [137] has demonstrated the avatar’s potential for facilitating physical tasks via remote

instructions. However, a systematic study of an avatar based AR presence is still lacking,

especially in the context of machine task tutoring.

To this end, we investigate two research questions to reveal future research directions for

the design of machine task tutoring systems. (i) Is the additional avatar presence beneficial

to the user’s experience and performance in a comprehensive machine task tutoring scenario,

compared with the non-avatar-AR and video tutorial options? (ii) How to optimize the

design of the tutor presence to achieve improved tutoring experience for future machine task

applications?

To answer these questions, we develop two different avatar tutor presentations: half-body

and full-body. Together we compare the following four tutor presence options: video, non-

avatar-AR, half-body+AR, full-body+AR. Along these options, we gradually increase the

guidance visualization levels, aiming to provide insights for an ideal design. All four options

of the machine task tutorials are created from one single source, which is the embodied

physical demonstration of the expert human tutor, as illustrated in Figure 1. We conduct

a study with 32 users across four different tutor options, with a specially created mockup

machine as the machine task testbed. The contributions of our paper are as follows.

• Study System Design and Implementation of a machine task scenario to compare

all four tutor options in parallel, where local, spatial, and body-coordinated interac-

tions are composed into multi-step tutorial sessions.

• Quantitative and Qualitative Results showing users’ objective/subjective responses

and tutor preferences after completing the sessions of machine tasks while following

different tutor options.
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• Design Recommendations and Insights summarized from the results and discus-

sions of the study, providing valuable guidance for future machine task tutoring system

design.

6.2 Machine Task tutoring

6.2.1 3.1 Machine Task: Local, Spatial, and Body-coordinated

This paper presents a study of AR presence for machine tasks tutoring system design.

We define a machine task as a sequence of steps involving machine operations and spatial

navigation, particularly for applications in production. A machine task is commonplace in

workshop and factory environments, for the purposes of parts manufacturing, assembly, and

equipment maintenance, repair, and overhaul. A step is the unit of a machine task sequence,

which represents a meaningful inseparable action of the human-machine interaction. The

steps in a machine task are usually a mixture of various types of interactions. In this

paper, we focus on transferring knowledge regarding human actions. Therefore we elect to

categorize the machine task steps by the level of movement required for the human-machine

interaction. Based on our observation and engineering knowledge, as well as reviews from

prior literature [182, 183], we classify the steps into the following three categories:

• A local step is a one-hand human-machine interaction in the user’s current location and

perspective. The user does not need body-scale spatial movements before interacting

with the machine, nor does he/she need compound body-hands-eyes coordination for

the action. Example local steps are simple actions with machine interfaces, such as

with buttons, sliders, handles, knobs, and levers.

• A spatial step requires the user to perform noticeable spatial navigation before the

machine interaction. The key challenge of this type of action is locating the target

interface. Example spatial steps are tool change tasks during the machining operation
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Fig. 6.2. An example real-life machine task scenario involving local (1), body-
coordinated (2), and spatial (3) interactions.

that require the user to navigate to the designated area and find the right tool; or

interactions with the machine interfaces that are away from the user’s current location.

• A body-coordinated step is usually a two-hand action that requires the user to coordi-

nate his/her body, hands, and eyes to complete the task. Example body-coordinated

steps are the actions that operate two machine interfaces with two hands, respectively,

in a synchronized or cooperative manner.

Figure 6.2 illustrates an example machine task using a band saw machine to manufacture

a part. The user first needs to configure the machining parameters through a button and

a knob, which are local steps (Figure 6.2-(1)). The user also needs to adjust the cutting

angle and cutting-saw height using both hands in a coordinated manner, which is a body-

coordinated step (Figure 6.2-(2)). Before starting the machine, he needs to choose a base

material meeting his production requirement from the material storage station, which is a

spatial step (Figure 6.2-(3)). Note that in this study we focus on human-machine operations

performed by the hands only, machine operations involving the feet are outside of the scope

of this study.
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6.2.2 Tutor Design from Embodied Authoring

When an apprentice is trying to learn a new machine task in a factory, the most effective

way is to observe and follow the demonstration of an experienced master. We take the

master-apprentice paradigm as an inspiration for our tutoring system design. The machine

task tutorials in this paper are created from recording the physical demonstration of an expert

(Figure 1-(1)), and it is displayed to users with the different visual presentations of the tutor

(Figure 1-(2,3)). This paper focuses on exploring the tutor’s visual representation only and

does not include input to other senses, such as audio and tactile. We explore a design space

of tutor presence in AR which involves spatial recording of the embodied authoring from an

expert (i.e., the expert creates the tutorial by demonstrating the procedure).

Video. This tutor option mainly serves as a benchmark, since video is a popular tutoring

media. To adapt video to fit our design space of embodied AR authoring, this option uses

a video recording of the expert’s first-person view while they demonstrate the task. The

video recording is displayed to the user in a picture-in-picture style (Figure 1-(3)-a) at a

fixed location and orientation in their visual field. Similar approaches have been used in

prior work [185, 194].

Non-avatar-AR. This tutor option is similar to the existing AR instructions found in

the machine-related tutoring systems discussed in our review of related work. It utilizes

animated superimposed virtual models to represent the movement of the real part, aided with

guiding symbols like arrows and text (Figure 1-(3)-b). A red circle on the ground indicates

the spatial location of the tutor when they were recording. This tutor option represents the

baseline of the existing AR instructions. A more detailed demonstration list for various

machine interfaces can be found in Figure 6.3.

Half-body+AR. This tutor option displays an additional half-body avatar on top of the

non-Avatar-AR option. The half-body avatar only has a visualization of the upper body and

two arm-less hands, with the red circle indicating the ground position (Figure 1-(3)-c). Since
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all of the human-machine interactions in this paper are hands-only, we expect the virtual

hands of this avatar to be sufficient for expressing the interaction. The head model indicates

where to look and pay attention, while the upper-body plus the ground circle represent the

spatial location of the tutor. This style of the avatar visualization focuses on simplicity and

is similar to the approaches used in prior research and commercial products [137, 171].

Full-body+AR. This tutor option displays an additional full-body avatar on top of the

non-avatar-AR option. The avatar has a complete humanoid body structure, including

arms and legs (Figure 1-(3)-d). Even though our tasks do not involve feet interactions, we

choose the style of this avatar visualization due to its higher similarity to a real human

tutor. The full-body avatar has already been widely adopted by prior work in various

applications, such as ballet [195] and tennis training [196], Tai-Chi practice [197], MR

remote collaboration [135], and telepresence meeting [192]. In our case, we are particularly

interested in finding out whether and in what way the added avatar visualization would

improve the user’s understanding of the tutor’s bodily movement.

Fig. 6.3. Example AR instructions for various machine interfaces: (1) button,
(2) switch, (3) knob, (4) slider, (5) lever, (6) side-shift, (7) back-shift and
(8) 2-DOF curve handle.
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Both the avatar tutor options include the AR instruction of the non-avatar-AR. While we

agree on the necessity for intuitive and accurate instructions, our interests lie in understanding

the effect of the added avatar visualization in the machine task tutoring scenarios. The four

proposed tutor options represent the current mainstream AR-avatar related tutorial media.

We design them to present the same instruction accurately while gradually incrementing

their levels of guidance visualization. By studying the users’ reactions under these four

conditions, we aim to scale the weight of avatars in the AR tutoring systems and reveal

the potential strengths and limitations of using them. Further, based on the study results,

we seek the balance points in the level of visualization details for practical AR tutoring

scenarios.

6.2.3 Implementation

Our see-through AR system is developed by attaching a stereo camera (ZED Dual 4MP

Camera with a 2560 × 720 resolution at 60 fps and a field of view (FOV) of 90◦ (H) ×

60◦ (V) × 110◦ (D) [198]) in front of a VR headset (Oculus Rift [171]), which is connected

to a PC (Intel Core i7-9700K 3.6GHz CPU, 48GB RAM, NVIDIA GTX 1080). The

positional tracking is enabled by four external sensors (Oculus IR-LED cameras), covering

an effective area of 3 × 3m. To represent our half-body and full-body avatar, we choose a

robotic humanoid avatar created by Noitom [199] due to its unbiased sexuality. We also

adopt the hands model from Oculus Avatar SDK due to an expressive gesture visualization.

Our system is developed using Unity3D (2018.2.16f1) [200] for both tutorial authoring and

playback. The full-body avatar is estimated from the three-point tracking (head and two

hands) via inverse kinematics powered by a Unity3D plugin (FinalIK [201]).
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6.3 Exploratory User Study

6.3.1 Study Setup: the Mockup Machine

In order to conduct our study, we first need to create a study scene to simulate machine

tasks, that is capable of local, spatial, and body-coordinated human-machine interactions.

We therefore created a mockup machine as the testbed for our study. The design of the

mockup machine is guided by the following considerations: 1) The mockup machine should

mimic real-life machine operation with realistic physical interfaces. 2) The size of the

machine should be large enough to facilitate spatial navigation and bodily movement. 3) The

machine should be designed with enough complexity to support the test sequence designed

for the machine tasks. 4) Each interface on the mockup machine should provide multiple

interaction possibilities in order to test and measure the user’s performances.

Figure 6.4-Top illustrates the detailed design of our mockup machine (0.7×0.7×0.7 m),

which is placed in the center of the study area (Figure 6.4-(f)), on top of a table (height

= 0.78 m). The mockup machine can support local interactions via the following five

interfaces: button, switch, knob, slider, and lever. It can support spatial interactions by

asking the users to operate an interface on another side of the machine, which requires

the users to first navigate spatially then locate the target interface before the interaction.

We also designed a spatial ‘key’ interaction, simulating real-life tool change and assembly

operation. In this interaction, users first need to go to the key station (Figure 6.4-(e))

and find the correct key, then walk back and insert it into a designated keyhole. As for

body-coordinated interactions, we present a list of example interactions in Figure 6.4-(a-

d). The first type of body-coordinated interaction supported by the mockup machine is

operating two interfaces (slider-slider, slider-lever, lever-lever) with two hands respectively,

in a synchronized manner (Figure 6.4-(a)). We’ve also specially designed three body-

coordinated interfaces, including two ‘shift’ interfaces (Figure 6.4-(b,c)) that require user’s
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both hands to operate in a cooperative manner; and a ‘curve’ interface requiring user’s

body-hands-eye coordination while operating the 2-DOF handle to repeat the trajectory in

the tutorial (Figure 6.4-(d)).

6.3.2 Study Design

During the study, each user was asked to follow the tutor and complete four sessions of

machine-operating task sequences. For each different session, the user followed a different

tutor option to complete a different task sequence.

Sequence design. Each machine task sequence in the study consists of 36 steps, that

are roughly evenly-distributed into three interaction categories: 1) local (10 steps including

2*button, 2*switch, 2*knob, 2*slider, and 2*lever), 2) spatial (14 steps including 2*button,

2*switch, 2*knob, 2*slider, 2*lever, and 4*‘key’; these steps require large spatial navigation

before interacting with the target interface), and 3) body-coordinated (12 steps including

2*slider-slider, 2*slider-lever, 2*lever-lever, 2*‘side-shift’, 2*‘back-shift’, and 2*‘top-

curve’). The four sequences are designed with the same step composition and execution

order, to ensure the same task difficulty. To avoid memorization from previous sequences,

the corresponding steps across different sequences have different detailed interactions. For

example, step-1 on sequence-3 asks the user to twist the right knob to position-3, while the

same step on sequence-4 asks the user to twist the left knob to position-4 instead.

Tutorial length normalization. It’s likely that the duration of a tutorial demonstration

will affect users’ task completion time. Since we created the tutorial for each of the four

machine task sequences separately, the duration of corresponding steps across the different

tasks are different. To enable a direct comparison of task completion time for corresponding

steps across tasks, we scaled each step’s duration to the average duration across the four

corresponding steps, by slowing down or speeding up their playback. This procedure was

performed for each set of four corresponding steps across the 36 steps in each sequence.
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Picture 6.4. Top: The mockup machine detail design. Middle: example Body-
coordinated machine interaction, including (a) two-interface synchronized oper-
ation, (b) back-shift, (c) side-shift, (d) top curve. Bottom: (e,f) study area setup
layout.
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Data counterbalancing. To mitigate learning effects, the order in which participants

used the different tutor options was counterbalanced across participants, such that each

tutor option was tested on each ordinal position (first, second, third, fourth) with equal

frequency. This was achieved by shuffling tutor options evenly with respect to the session

order, resulting in a pre-arranged rotation list of 4 (sessions) * 4 (tutor options) = 16

participants. In total, we invited 16*2 = 32 participants for a balanced data acquisition.

6.3.3 Participants

We recruited 32 users from our university via emails, posters, and networks (22 male

and 10 female students between the ages of 18 and 35, M = 23.8,SD = 3.64). Each user

was compensated $10. We did not particularly seek participants with AR/VR experience or

machine operation skills for unbiased potential insights. We measured their familiarity with

AR/VR on a 7-point Likert scale, with 1 being a total non-experienced user and 7 being an

expert developer, yielding a result of M = 3.63,SD = 1.43. We also surveyed their general

experience with hands-on interactions with machine-like objects (M = 3.47,SD = 1.54).

Further, we asked users to rate their familiarity of self-teaching using any forms of tutorials

(M = 4.03,SD = 1.57). An illustration of the user’s demography survey results can be found

in Figure 6.5.

6.3.4 Procedure

After completing the demographic survey, each user received a 5 minute introduction

about the study background and a brief demonstration of how to interact with each interface

on the mockup machine. The users then proceeded to the four sessions one by one, each

session took the user about 10 minute to interact with the mockup machine and 5 minute

afterward to fill out a user experience survey questionnaire. During each session, users
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Fig. 6.5. Demography of 32 participants.

were asked to wear the AR HMD and follow the machine task tutorial step by step. Users

were asked to perform the machine operations at the comfortable speed of their choices,

with no need to hurry or drag. A researcher monitored the entire process through the users’

first-person AR view. If the researcher observed the user had completed the current step,

he would switch to the next step and notify the user verbally. After completing the four

sessions, users filled out a preference survey comparing the four tutor options, then finished

up the study with a conversational interview.

6.3.5 Data Collection

Each user’s study result contains three types of data: (1) tutorial following performance,

(2) 7-point Likert subjective rating and user preference survey, and (3) conversational

feedback.

Video Analysis. We recorded the entire study process using three cameras. The main

source of objective data came from the video record of users’ first-person AR view during

the human-machine operation. We segmented this video into steps and manually coded
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Fig. 6.6. User experience survey questionnaire.

the completion time and correctness of each step. Here we consider a step as completed if

the user finished interacting with the interface and retrieved his/her hand. Also, we regard

a step as completed correctly if the user interacted with the correct target interface and

performed the correct positional manipulation (for slider, knob, lever, etc.), according to the

corresponding tutor’s demonstration. This yielded a total of 32(users)*4(sessions)*36(steps)

= 4608 steps of objective analysis data across the entire study. We also had a top-view camera

capturing the trajectory of the ‘curve’ interaction for accuracy analysis and a third-view

camera recording from the top corner of the study scene for additional references.

Questionnaire. After each session, users rated their experience and subjective feelings

for this session’s tutor option using a 7-point Likert survey. The design of the survey question

was derived from the standard user experience surveys, including Single Ease Question

(SEQ) [202], Subjective Mental Effort Question (SMEQ) [203], System Usability Scale

(SUS) [204], and Networked Mind Measure of Social Presence (NMMSP) [205], with added

machine task elements and fine tuned specifically to our application scenario. The detailed

questions are shown in Figure 6.6.
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Interview. We audio-recorded all the subjective comments and suggestions from the

users for post-study analysis and summary. During the study, we encouraged the users to

‘Think Out-loud’ to capture any on-the-fly insights as they were following the machine-

operating tutorial. After the four sessions, we interviewed the users by asking their prefer-

ence comparing all the tutor options for the machine task overall, as well as specifically for

local, spatial, and body-coordinated interactions. The subjective feedback is later used in

the paper to explain the study results and inspire for future design insights.

6.4 Results

In this section, we present the results of this study. We first show the users’ objective per-

formances and subjective ratings, as well as tutor preferences. Then we provide a summary

and explanatory analyses for the results using interview feedback and our observation.

6.4.1 Objective Performance

We first demonstrate the overall user performance by comparing four different tutor

options. Then we present detailed user performances regarding each interaction category:

local, spatial, and body-coordinated. We measure the completion time and accuracy, which

reveals how efficiently and accurately the users understand the tutorials. Since the tutorial

for each step has a different duration, we normalize the completion time of each step as:

actual step completion time divided by the duration of the step demonstration in the tutorial.

The tutorial duration for a machine task sequence (36 steps) is: 6 minutes 15 seconds, with

each step’s length ranges between 4.9 to 19.3 seconds, while the average completion time of

a sequence is: 7 minutes 21 seconds. The accuracy of a category of steps is calculated as: the

number of correct steps divided by the total step number. To characterize the accuracy of the

2D ‘curve’ operation, we calculate the Modified Hausdorff Distance (MHD) [206] between
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the trajectory performed by the user and the one in the corresponding tutorial, with a smaller

distance indicating more similarity and higher accuracy. The normal distribution assumption

is violated by our dataset as indicated by Shapiro-Wilk normality test (p < 0.005). Hence to

examine the statistical significance across the four tutorial options, we conduct a Friedman

test with a Wilcoxon signed-rank, rather than the repeated ANOVA measures. All results

are presented in Figure 6.7.

Overall performance. The average normalized completion time shows that the users

spend the longest amount of time following the video tutorials (M = 1.58,SD = 0.70)

and is significantly slower than non-avatar-AR tutor option (M = 1.16,SD = 0.57) (Z =

−18.416, p < 0.0005). Among all the AR options, the half-body+AR tutorials (M =

1.14,SD = 0.55) shows marginally shorter completion time than non-avatar-AR ones, with

Fig. 6.7. Tutorial following performance. (***=p<.0005, **=p<.005, *=p<.05.
If not specified, *** between the video options and other three tutor options.)
Error bars represent standard deviations.
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no significant edge (Z = −0.854, p = 0.393). Meanwhile, users with full-body+AR tu-

torials (M = 1.15,SD = 0.47) perform slightly slower than the ones with half-body+AR

(Z =−2.527, p < 0.05). The accuracy result reveals the same trend as the completion time.

The video tutorials has the lowest accuracy (M = 85.4%,SD = 6.28%) while the accuracy of

non-avatar-AR (M = 95.6%,SD = 3.82%), half-body+AR (M = 96.3%,SD = 2.82%) and

full-body+AR (M = 95.8%,SD = 2.87%) options are approximately equally high (pairwise

p > 0.05).

Local steps performance. Similar to the overall performance, the video option still

has the poorest performance in terms of task completion time (M = 1.09,SD = 0.21) and

accuracy (M = 92.5%,SD = 3.36%). Interestingly, users with non-avatar-AR tutor option

(M = 0.80,SD = 0.24) are significantly faster than the ones with half-body+AR tutor (M =

0.87,SD = 0.23) and full-body+AR tutor (M = 0.93,SD = 0.26) (Z =−4.487, p < 0.0005

and Z =−6.189, p < 0.0005 respectively), which implies that the existence of an avatar may

have negative influence on the user’s perception for local task understanding. In terms of

the accuracy, no significant difference was found among non-avatar-AR (M = 99.1%,SD =

1.48%), half-body+AR (M = 97.5%,SD = 2.54%), and full-body+AR (M = 98.4%,SD =

1.84%) (pairwise p > 0.05).

Spatial steps performance. The video option takes the longest time to complete (M =

1.62,SD = 0.52) and receives the lowest accuracy (M = 86.2%,SD = 5.05%). While the

half-body+AR tutorials achieves relatively shorter completion time (M = 1.02,SD = 0.22)

than non-avatar-AR (M = 1.15,SD = 0.38) and full-body+AR (M = 1.07,SD = 0.25) (Z =

−2.19, p < 0.028 and Z =−2.750, p < 0.006 respectively). On the other hand, the accuracy

of non-avatar-AR (M = 95.5%,SD = 2.53%), half-body+AR (M = 94.9%,SD = 3.17%),

and full-body+AR (M = 93.7%,SD = 3.36%) are roughly the same (pairwise p > 0.05).

Body-coordinated steps performance. The video tutorials received the worst perfor-

mance in both completion time (M = 1.62,SD = 0.58) and accuracy (M = 77.5%,SD =
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7.4%). Users with half-body+AR tutor option (normalized completion time: M = 1.00,SD=

0.22, accuracy: M = 97.2%,SD = 2.61%) are able to perform significantly faster (Z =

−2.19, p < 0.05) with less mistakes (p < 0.05) than the ones with non-avatar-AR tutorials

(normalized completion time: M = 1.13,SD = 0.37, accuracy: M = 92.4%,SD = 5.54%),

which indicates the strengths of the avatar in demonstrating bodily movement. Between the

two avatar options, the full-body+AR (normalized completion time: M = 1.05,SD = 0.25,

accuracy: M = 96.2%,SD = 2.77%) has longer completion time (Z = −2.75, p = 0.005)

and roughly the same accuracy (p > 0.05) compared with half-body+AR tutor option. For

the 2D ‘curve’ operation, the half-body+AR tutor achieves the shortest average MHD

(M = 42.5 cm,SD = 13.7 cm), followed by non-avatar-AR (M = 46.1 cm,SD = 21.0 cm)

and full-body+AR (M = 46.6 cm,SD = 20.0 cm), while the video tutor option achieves

the longest average MHD (M = 50.7cm,SD = 18.25cm). Yet the Friedman test (χ2(3) =

5.81, p = 0.121) does not reveal any significant difference among the four options.

6.4.2 Subjective Rating and User Preference

Figure 6.8 shows the user experience subjective ratings with the 7-point Likert ques-

tionnaire. To reveal the differences among the tutor options, we conduct a Friedman test

followed by a Wilcoxon signed-rank test on each of the eight questions individually. We first

look into the effectiveness of AR in the tutorial systems by comparing video and non-avatar-

AR. The result shows that the latter option achieves significantly higher ratings (p < 0.0005)

in ‘Understanding’, ‘Accuracy’, ‘Confidence’ and ‘Satisfaction’, while no significant dif-

ference is found in ‘Attention’ (p = 0.22), ‘Spatial’ (p = 0.124), ‘Bodily’ (p = 0.167) and

‘Social’ (p = 0.355). Secondly, we examine whether the existence of an avatar affects the

user experience. The result reveals that in all eight ratings, the non-avatar-AR option has

significant lower scores (p < 0.05) than either the half-body+AR or the full-body+AR. Thus,

we believe the overall machine task user experience is improved by the presence of an avatar.
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Fig. 6.8. User experience ratings. (***=p<.0005, **=p<.005, *=p<.05. If not
specified, *** between the video options and other three tutor options.) Error
bars represent standard deviations.

Finally, we inspect how the visual guidance level of avatar influences the user experience

by comparing the ratings between half-body+AR and full-body+AR. We find no significant

difference between the two tutor options except the ‘Social’ rating where full-body+AR is

slightly higher (p = 0.05) than half-body+AR.

Figure 6.9 illustrates the user preference survey results for the overall machine task

tutoring experience, regarding the local, spatial, and body-coordinated interactions, respec-

tively. For each type of interaction, users are allowed to choose one or more tutor options

as their favorite. Overall, the half-body+AR is most preferred tutor option (21 out of 39),

followed by the full-body+AR (13 out of 39) and the non-avatar-AR (5 out of 39), while

no users choose the video as their favorite tutor option. In terms of the local interactions,

the non-avatar-AR option is the most favored (21 out of 45). The half-body+AR and the

full-body+AR are tied in the second place (12 out of 45). Again, no users choose the

video. In terms of the spatial interactions, the half-body+AR tutor option comes to the first

place (20 out of 42). The full-body+AR option takes the second place with 14 out of 42

users, while non-avatar-AR (5 out of 42) and video (3 out of 42) are less preferred. As
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for the Body-coordinate interactions, full-body+AR is the most popular choice (20 out of

45), that is followed closely by half-body+AR (18 out of 45). Only a few users choose the

non-avatar-AR (4 out of 45) and the video (3 out of 45) tutor option as their favorite.

6.4.3 Result Summary and Analysis

We now summarize the main results and present explanatory analysis using our observa-

tion during the study as well as findings that come out from the interview.

Overall favorite: half-body vs. full-body

The ratings for the two proposed avatar tutor options are found to be similar across

all categories, and are significantly better than the non-avatar-AR and the video options

(Figure 6.8). Interestingly, when the users’ are asked to pick their favorite tutor option

overall, the half-body has a clear preference edge over the full-body (21 vs 13). From the

post-study interview, we find that many users believe these two tutor options are functionally

equal, while the half-body has less occlusion to the users’ views. “I think the half-body is the

best because it can show me where to go and what to do without blocking too much of my

sight (P7).” The increased visual access to the physical machine in half-body as compared

to full-body may also have resulted in lower mental effort (“The full-body avatar tutor

shows too many things, and sometimes is too exhausting for me (P8)”), and less attention

distraction (“A full-body human is not necessary, its arms and legs distract my attention from

the machine, half-body is cleaner and less distracting (P16)”). This is also reflected in the

objective performance result (Figure 6.7) where the half-body achieves similar accuracy with

less time, compared with the full-body. The above discussion also explains the preference

result for the spatial interactions, where the half-body is enough for instructing spatial

navigation and target finding, with a cleaner observing view.
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Fig. 6.9. User preference result.

As observed from the user preference result, the additional body features become helpful

in the body-coordinated interactions. The users feel that the added limb representations,

especially the arms, do provide a better understanding of the two-hand coordinated tasks.

“For the bodily tasks, I prefer full-body, because full-body gives me more spatial and

embodied evidence. Just a hand is not enough sometimes. I feel like needing the extra arm

information (P15).” Another preference of the full-body over the half-body is on social

presence, which is also reflected by the ‘Social’ subjective rating results. According to

the feedback from the interview, the full-body is better than the half-body at representing a

human tutor, which makes it a more friendly, believable, and reliable option. “ The full-body

feels more like a human, like a real tutor and more friendly. In comparison, the half-body is

obviously a robotic indicator (P26).”

Local favorite: non-avatar-AR

Despite the lack of spatial and bodily presentations, the non-avatar-AR is selected as

the favorite tutor option for the local interactions. This is because the local interactions

does not require substantial spatial and body movements. The attention of the user does
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not need to be directed effectively to locate the target interface, nor does a particular body

gesture play an important role in terms of interaction execution. Therefore, the presence of

a human avatar in local interactions does not provide extra benefits in most cases. “I don’t

think avatar is useful for local tasks because AR instruction is enough, and I usually cannot

see the avatar anyways because I am standing inside the avatar (P5).” Several participants

report that the avatar encumbers and slows down their actions, which is consistent with our

finding that the non-avatar-AR is fastest for local tasks with equal accuracy (Figure 6.7).

Least preferred: video

It is clear that the video is the least popular tutor option among the four. According

to our observation, the main problem for video tutoring is caused by the two separate

dimensions of the tutoring and the application: users have to receive the instruction from the

digital world, interpret it into his/her physical world, and then apply it to the corresponding

machine interfaces. This translation gap causes many problems such as distracted attention,

fractured spatial mapping, high mental effort from memorization, and a non-optimized

observation perspective. “My attention is changing from video content to reality all the

time, and sometimes I need to think very hard to interpret what it means in the video (P1).”

However, the video still demonstrates some values from the user preference survey on

spatial and body-coordinated categories. Some users have mentioned that the video option

can occasionally be more expressive than the other options. “To me, video is the best for

spatial and embodied task, because you can best understand the body motion right away.

The avatar is not obvious because I was standing inside the avatar, and I cannot notice the

avatar (P2).”
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6.5 Discussion

Here we discuss the primary results of the study and contrast them with prior works. We

also provide design recommendations and insights for future AR tutoring systems.

6.5.1 Benefits of Avatars for Tutoring

Our first research question focuses on understanding whether the proposed AR avatar

presentations improve the machine task tutoring experience, and how they do so. Our

findings indicate that the AR avatars receive significantly more positive feedback than the

non-avatar and video tutor options, and provide several insights into why. We summarize

these reasons below, and distill our findings into design recommendations for avatar-based

tutoring systems.

Spatial Attention Allocation. When trying to follow a comprehensive machine task

tutorial, one of the major challenges for a user is to know where to pay attention, especially

during constant spatial movements that easily cause disorientation. Compared to the non-

avatar tutor presence, the additional avatar provides more noticeable in-situ visual hints to

guide the user’s attention. “Sometimes I cannot find the machine target until the human

avatar moves over there and starts reaching out his hand. (P7)” This result is aligned with

prior works on mixed reality assistant, where a remote expert provides live guidance for a

local learner via the presence of an AR avatar [135–137]. The avatars in these works are

usually controlled by a remote human, thus are capable of communicating and responding

to the user’s action adaptively. However, when applying the avatars to recorded tutoring

with no remote human involvement, we recommend that future system provide a feedback

mechanism for user-responsive tutoring. For example, the recorded tutor should act only

when the learner is paying attention to it [207]. The above finding inspires us to design

attention indicators in the future to explicitly guide users’ attention and reduce mental effort.
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Bodily Movement Expression. The digital tutor is capable of intuitively expressing

the human body in the context of a physical interactive target. This enables the users to

understand the movement accurately and anticipate the tutor’s actions, especially for the

tasks involving head-hand-body coordination. “Seeing the human tutor move in the space

allows me to predict where he is going and what he is going to do next, and it prepares me

to get ready for the task in advance (P20).” This advantage of avatars is consistent with

prior research on body movement training, such as the YouMove system [130]. While prior

works on body movement training [130, 141, 208] have primarily focused on physical tasks

being performed by humans in isolation, we show that these advantages have benefits for

tasks where spatial and temporal connections must be made between virtual avatars and

physical objects (in our case, the machine being manipulated).

Higher Social Presence. Due to the human-like visual presence, user feedback suggests

that following the avatar resembles the tutoring experience of following a human teacher.

This improves the user’s confidence, which leads to a higher efficiency in tutoring informa-

tion transfer. “The human avatar is easy to follow, as long as you do that, you feel confident,

and nothing is going to be wrong, it gives me less mental pressure (P24).” Mini-Me [135]

has a similar finding that the avatar option in their study yields a higher aggregated social

presence and awareness score for task transfer collaboration than the non-avatar options,

resulting in the reduced mental effort and improved performance.

6.5.2 Adaptive Tutoring

In the second research question, we explore how to optimize the tutoring experience in

a comprehensive machine task scenario involving multiple interaction categories. In this

paper, we study four tutor options with gradually increased guidance visualization level,

aiming to provide insights for the ideal design. Our results do not show any one presentation

method to be clearly superior, but rather reveal a number of considerations that must be
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balanced to create a good avatar-based tutoring experience. In particular, we discuss three

factors in the sections that follow: level of visual detail, tutor following paradigm, and

playback progress. As some of these factors reflect individual preferences, we believe there

is an opportunity for adaptive and personalized tutoring experiences that dynamically tailor

the experience to individual users.

Level of Visual Detail. According to our results, users acknowledge the usefulness

of avatars, but more visual details also cause confusion and occlusion of the physical

world. Therefore the level of visual guidance details should be contextually adaptive to

the interaction type and task difficulty. This also explains why the users prefer half-body

avatar for the overall machine task and non-avatar for the local interactions. “It should not

display the whole action animation, only the key part should be played; otherwise, it is

too distracting (P1).” This finding aligns with a study conducted by Lindlbauer D, et al.

[207] where they find that the dynamically adjusted AR contents lead to less distraction

and higher performance. Further, the tutor’s presence should also adapt to the learner’s

reliance on instructions. We have observed that some users were able to complete most

steps fast and accurately by only following non-avatar-AR option, while some others needed

full-body+AR instead.

Tutor Following Paradigm. Currently, the position of the AR tutor is connected to

the physical interactive machine, and it is up to the learners to decide where to observe

the tutor and how to follow it. We noticed that some users prefer to stand inside the tutor

avatar and follow it in synchronization to achieve higher efficiency and accuracy. “I like

to stand inside of the avatar and follow its movement, makes me feel confident about my

accuracy (P29).” This paradigm has been acknowledged and adopted by an arm motion

training system where the virtual guiding arms are superimposed in the user’s egocentric

AR view [131]. On the other hand, some users prefer to stand on the side of the avatar tutor

because they consider it uncomfortable to collide into a virtual humanoid. “I do not feel
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like standing inside the avatar, because it feels like a person and I don’t want to crash into

him (P6).” This can be explained by a study conducted by Kim et al. [209] on the physical

presence of the avatar. They find that the conflicts between humans and virtual avatars

reduce the sense of co-presence and should be avoided if possible. The above findings

demonstrate the importance of providing spatially aware instructional contents based on the

user’s physical location and observation perspective.

Playback Progress. In our study setup, the playback speed of each tutorial step is fixed

and determined by the authored demonstration. Also, the progress of the user is manually

monitored and manipulated by the researchers. If a learner misses critical information of the

step, he/she has to wait for the step animation to play again, leading to low learning efficiency.

Based on our observation and feedback, we believe the future systems should incorporate an

adaptive tutorial playback speed based on users’ innate capability and task difficulty. This

finding is aligned with the study done by Rajinder et. al [210], where they study projected

visualizations for hand movement guidance and find that dynamically adjusted guiding speed

has the potential of improving training efficiency. Further, an adaptive playback helps the

users to preview the tutor’s intent, such as using slow-motion to forecast the avatar’s actions.

“I need to know what the avatar is about to do and where to pay attention, sometimes the

avatar makes a sudden turn, and it’s very hard to notice (P23).”

6.6 Study Limitations

The hardware and performance of the AR headset may have influenced participants’

experience in several ways. Though we used state-of-the-art technology (VR headset with

a front-attached stereo camera to achieve see-through AR with a high-resolution and full

eye-sight field of view), several participants reported minor motion sickness, and the inability

for the cameras to fully simulate stereo vision that caused some participants to bump into

the machine while trying to manipulate it. As the headset was tethered to a computer, cords
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sometimes needed to be untangled, which may have slowed spatial and bodily movements

as compared to operating the machine free from tethers. While we acknowledge that the

above conditions may have impacted the user experience, they were consistent across the

three tutor options we tested.

To conduct our study, we have created an interactive mockup machine capable of all

three types of steps. Therefore the study result that we collected is largely based on the users’

interaction performance on this mockup machine. Even though we designed the mockup

machine based on the real-world machine interfaces and interactions, it is still a testbed. The

mockup machine can only represent a portion of the real-world machine tasks, including

the three interaction steps. We would like to acknowledge explicitly that the result of this

study should be used mainly as a comparative reference among the four tutor options as an

elicitation or informative study for future tutoring system design.

6.7 Conclusion

In this paper, we have presented an exploratory study of augmented reality presence

for machine task tutoring system design. We created an AR-based embodied authoring

system capable of creating tutorials with four types of tutor options: video, non-avatar-AR,

half-body+AR, and full-body+AR. In order to conduct our study, we have designed and

fabricated a mockup machine capable of supporting local, spatial, and body-coordinated

human-machine interactions. We invited 32 users, each for a 4-session study experiencing

all four tutor options for comparative feedback. From the quantitative and qualitative results

of the study, we have discussed and summarized the design recommendations for future

tutoring systems. These design insights form an important stepping stone to help the future

researchers create a comprehensive and intelligent machine task tutoring system, that will

enable fluid machine task skill transfer and empower an efficient, flexible, and productive

workforce.
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7. SUMMARY OF CONTRIBUTION

As is stated earlier, the theme of this Ph.D. thesis is to explore novel interactions for human

smart-things interaction through the approach of augmented reality system framework design.

In our completed research work, we have developed a modular robotic-IoT system for mixed

reality interaction with content creation, editing, and animation authoring (Ani-Bot); an

workflow design for human authored Robot-IoT collaborative task planning powered by

one single AR-SLAM device (V.Ra); a time-space editor for Human-Robot Collaborative

task authoring through AR embodied interaction (GhostAR); and an exploratory study

on augmented reality tutor presence for machine task tutoring (AvaTutAR-study). In this

chapter of the thesis, we are going to summarize the core contributions of this thesis, the

knowledge generated from each project, and how they are connected to the central theme.

7.1 Thesis central theme

During my Ph.D., I have been working on 8 paper projects, and they can be connected to

the central theme and visualized in this research road-map (Figure 7.1). The core contribution

of this thesis is to explore the strength of AR and design system workflows around it, in

order to answer questions like: When and where should we use AR, and how do we make

the best of it in future smart-thing applications? And the answer can be summarized into

four keyword: visual, spatial, contextual, and embodied.

From my thesis work, it has been demonstrated that AR is ultimately a visual interface,

it has the advantage of traditional GUI, but not bond by a stationary monitor on a flat screen.

Instead, the visual content can be projected anywhere, in any 3D format. Therefore AR is a
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Fig. 7.1. PhD research road-map including lead-author and co-author paper
projects.

spatially situated visual interface, which is especially useful for enhancing mobile targets,

like robots, and interface crowded objects, like complex machines.

Furthermore, AR automatically include the nearby reality into the visual interface as

contextual references, this makes it easy for users to interact their object targets with the

surrounding environment. Besides, user can explicitly create virtual reference of their

target objects in the AR view to leave an editable trace, allowing for sophisticated logic

programming in both the temporal and spatial domain.

Finally, since AR is not limited by a physical screen, it supports embodied interaction

which takes natural inputs from user’s body gestures. This allows the users to transfer human

intent to smart-thing behavior more easily by intuitively acting it out, hence programming-

by-demonstration. Plus, the embodied demonstration can also be used for authoring human

into a time-space visual reference for a variety of applications.
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In my opinion, the development of AR for real-world application is still at a very early

stage, if you ask a random person what is AR, he/she is probably gonna tell you: Pokémon

GO.

There is no doubt that we should all thank Pokémon GO for preaching the idea of AR to

the general public, however, is it the true use of AR though? I think not.

Because literally speaking, augmented reality, in order for AR to make sense, you first

need to have a reality that is worth the augmentation, placing a virtual Pokémon in my

camera view is not augmenting anything. In other words, we need to have a direct feed

forward and feedback loop connection between the AR interface and the target object, in

order to truly bring out the strength of AR.

And that is what I believe the core contribution of this thesis, to explore the use of AR,

its application scenario, and its target use cases. During this process, we define the problems

in AR applications and we try to find solutions via system framework design. That aims at

delivering a visual, spatial, contextual, and embodied AR experience.

7.2 Virtual-physical diagram of each work

Ani-Bot’s virtual-physical diagram can be illustrated in Figure 7.2. The workflow starts

from user tangibly put together a DIY robot from a variety of provided modules, or disas-

sembling the existing modular robotics into the parts in an iterative manner. Meanwhile, in

the augmented reality domain, a virtual representation of the physical robot is automatically

generated based on the assembly configuration. The AR UI are reflecting the indivisual

property of each module, in a spatially-situatted manner. Because of assembly awareness,

we can also take advantage of the contextual information and visual cues for assembly

guidance and virtual-physical tryout. Furthermore, we also support embodied animation

authoring through programming-by-demonstration. In this way, user can control the physical

robot buy directly interacting with its corresponding virtual representation in-situ, hence
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Fig. 7.2. Ani-Bot virtual-physical diagram.

completing the feed-forward and feedback loop and give users an interactive virtual-physical

experience.

In this project, we have discovered a new method to apply augmented reality in modular

robotics application. The key lies within the achievement of assembly awareness of the sys-

tem, and also the balance between individual modular interface and combined functionality

control. Each individual module in the assembly should be visually accessible if needed,

however, users would probably prefer a higher level control in most of the occasions to

achieve higher efficiency and better understanding of the constructed robot overall. The

limitation of the current system is the way of achieving the auto virtual reconstruction

from the physical via physical-electrical connection, and the alignment of the virtual onto

the physical via image marker. This indicates future system should investigate more into

marker-less tracking with computer-vision based virtual reconstruction, thus supporting a

larger variety of DIY creating with more robust spatial tracking.

V.Ra’s virtual-physical diagram can be illustrated in Figure 7.3. The workflow starts

from the user embodied demonstrating the task by spatially walking around with the mo-
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Fig. 7.3. V.Ra virtual-physical diagram.

bile SLAM-AR device, for the robot path planning and IoT interaction tasks. The user

then visually edit the tasks and preview the planned task with virtual simulations in the

contextually-aware AR interface. When finished, the device is placed onto the physical

robot to begin the task execution in a what-you-do-is-what-robot-does manner

In this project, we have created a new concept of utilizing the mobile AR-SLAM device

for both task planning and robot executing, in a lightweight self-dependent way. The work

opens new ways to look at a mobile AR-SLAM device and its potential applications when

cohesively interacting with humans, IoTs, and robots. V.Ra creates a new way to inspire

future researchers to rethink the balance between human authoring and robot automation

in the coming era of Internet-of-robotic-things. Since the current system is limited to one

AR-SLAM device and one robot only, we encourage future researchers to focus on exploring

a collaboration scenario including multiple robots and human users.

GhostAR’s virtual-physical diagram can be illustrated in Figure 7.4. The workflow

starts from user physically demonstrating the human part of the collaboration. Then our

system visualizes the demonstration into an animating AR ghost. Using this ghost as a
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Fig. 7.4. GhostAR virtual-physical diagram.

time-space contextual reference, user can perform visual editing and author the human-robot

collaboration tasks. When acting out the collaboration with real robot, the user simply need

to repeat the demonstration physically, in order to complete the task.

In this project, we have invented a new way of creating HRC tasks by fully utilizing

embodied demonstration, contextual reference, and AR visualization of time-space editing.

This work truly emphasizes the strength of augmented reality and cohesively incorporated

them into one system fluidly. GhostAR points out a promising direction for future researchers

in terms of human smart-thing interaction, that leverage the advantage from both human’s

innate bodily movement and an AR interface’s contextual visualization in the temporal and

spatial domain.

AvaTutAR’s virtual-physical diagram can be illustrated in Figure 7.5. The workflow

starts from the expert physically demonstrating the task via embodied interaction with the

machines. The demonstration of the task will be recorded and visualize into various types of

tutor presence. In a remote AR view, the learners can physically follow the AR virtual tutor

and repeat the machine task in-situ, with the real machine scenarios as contextual references.
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Fig. 7.5. AvaTutAR virtual-physical diagram.

In this project, we have learned the importance of customization in tutorial system design.

Which points future researchers to the direction of adaptive tutoring. A future tutorial system

should be constantly aware of the user’s status: how well has he been doing so far? what is

he doing currently? what is he going to do next? The system should know these answers by

actively monitoring the user and the surrounding physical environment, in order to adjust

the visual presence of the virtual tutor for optimized tutoring experiences.
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8. FUTURE VISION

In this thesis, we have presented our research work in terms of exploring novel human

smart-thing interaction enabled by the newly emerging Augmented Reality technology. I

personally truly believe that AR is the future of digital interface, especially personal display.

In the last part of this thesis, I will humbly present my own vision for the future of AR.

8.1 AR ecosystem: wearable, handheld, and environmental

In terms of devices that enable AR experience, currently there are three major categories:

wearable (Head-Mounted-Device, etc), handheld (Mobile smartphone, etc), and environ-

mental (AR projection on canvas with body tracking, etc). Each of these three categories

has its own strength and unique characteristics.

Wearable is good at unintrusive and immersive experience. With the future development

of hardware form factor, the AR enabling wearables will merge within user’s daily life, like a

pair of glasses, a wrist watch, or a piece of clothing. The key about wearable AR devices lie

within the input and output modality. The devices need to effectively sense the status of the

user and the surrounding environment in order to provide in-situ decision making assistance.

Furthermore, it should support all natural human interactions, including but not limited to:

touch, speech, gaze, and gesture. With the fast development of sensing technology, battery,

and cloud computing, we can expect future AR wearable devices to shrink the size merge

into user’s daily life unnoticed.

Handheld is a different modality of AR interaction experience because it is an external

device. The unique feature about a handheld device is that it is not only a display for AR

content but also an input controller for the user. By interacting with the device, users can
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achieve more specific and complex interaction than wearables. Also the mobility of the

wearable device can be utilized, because it can be detached from the human user, it can serve

as an independent operating mobile device for a variety of applications, such as robotics

navigation, remote sensing, terrain exploration, etc.

Environmental AR is able to achieve the so-called ‘naked-eye AR’, meaning the re-

cipients of the AR content do not need to be wearing or holding any special devices. This

type of AR can be deployed in public areas for a large audience, or it can be applied into a

controlled environment, such as smart car interior or personal theater for tailored experience.

This type of system should also support natural interactions such as speech and gesture for

users to interact with the AR content. Different from wearable and handheld AR platform,

the environmental is focused on stationary and large-scale AR projection.

I believe the future of AR should consist of all these three types of AR platform, and

they should be connected into one ecosystem to share and update data, in order to become

smart and adaptive. Therefore, a major challenge for the future of AR is to create this AR

ecosystem or operating system. With it, we will be able to apply AR to augment every

aspects of our life.

8.2 Real-World AR: Stepping from local to global augmentation

Augmented reality is to use superimposing virtual content to augment the corresponding

physical object. Therefore, before a physical object can be augmented, a virtual represen-

tation of the object needs to be created in the first place. For example, in our past work

that uses AR to control and program robots and IoTs, we would need to create the virtual

3D model of the robots and IoT devices and use them as the interaction media in the AR

environment.

Creating the virtual representation of the physical object is doable in a local environment

with a finite number of known devices. However, if we want to extend the usage of AR in the
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future and apply it on the global level, we will need to have a new way to achieve digitization

of the physical world. Manually modeling the world is certainly not an viable option, since

it is extremely time and resource consuming, plus our world is always changing, and it will

require constant remodeling to keep up with the update.

Therefore we will need to find a way to digitize the physical world in-situ, and update on-

the-fly, while also establishing the connection between the virtual content and its physical

target. I believe this will be another major challenge we will face in the future of AR,

and I think we might find inspirations from the emerging technology of crowd-sourcing,

cloud computing, and 3D scanning and reconstruction. For example, I envision a possible

workflow as follows: In the future, everyone is wearing lightweight AR glasses, these

glasses are constantly scanning the surrounding environment. Due to the advanced on-board

sensing capability, they can see well beyond what the users are seeing. All of the AR glasses

are connected to the cloud ecosystem, which processes the uploaded sensing data and use

computer vision and machine learning algorithm to reconstruct the scanned reality in 3D

virtually. Since each user also upload the geometric position and orientation information,

the cloud server is able to weave a global 3D map from all the collected information with

real-time update capability. This 3D map is then accessible to the user on demand to achieve

real-world in-situ augmentation.
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