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ABSTRACT 

Unmanned aerial vehicles (UAV) have revolutionized data collection in large scale agronomic 

field trials (10+ ha). Vegetative index (VI) maps derived from UAV imagery are a potential tool 

to characterize temporal and spatial treatment effects in a more efficient and non-destructive way 

compared to traditional data collection methods that require manual sampling. The overall 

objective of this study was to characterize and quantify maize responses to experimental treatments 

in field-scale research using UAV imagery. The specific objectives were: 1) to assess the 

performance of several VI as predictors of grain yield and to evaluate their ability to distinguish 

between fertilizer treatments, and the effects of removing soil and shadow background, 2) to assess 

the performance of VI and canopy cover fraction (CCF) as predictors of maize biomass at 

vegetative and reproductive growth stages under field-scale conditions, and 3) to compare the 

performance of VI derived from consumer-grade and multispectral sensors for predicting grain 

yield and identifying treatment effects. For the first objective, the results suggest that most VI were 

good indicators of grain yield at late vegetative and early reproductive growth stages, and that 

removing soil background improved the characterization of maize responses to experimental 

treatments. For objective two, overall, CCF was the best to predict biomass at early vegetative 

growth stages, while VI at reproductive growth stages. Finally, for objective three, performance 

of consumer-grade and multispectral derived VI were similar for predicting grain yield and 

identifying treatment effects. 
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 EFFECTS OF REMOVING SOIL AND SHADOW 

REFLECTANCE PIXELS FROM RGB AND NIR VEGETATIVE 

INDICES FOR ASSESSING MAIZE RESPONSES TO 

EXPERIMENTAL TREATMENTS 

1.1 Abstract  

In contrast to traditional data collection methods that require manual sampling, vegetative 

index (VI) maps derived from unmanned aerial vehicles (UAV) imagery are a potential tool to 

characterize temporal and spatial treatment effects in a more efficient and non-destructive way. 

Aerial imagery from a growing maize crop contains pixel values associated with the above-ground 

plant tissue (e.g., leaves, stalks, tassels) and the underlying soil features. Background soil 

reflectance data potentially reduces the effectiveness of VI for characterizing crop responses to 

experimental treatments. Masking background pixels from the larger image dataset should 

improve that effectiveness. The general objective of this study was to determine if masking of 

background pixels from VI derived from UAV imagery improved the characterization of crop 

responses to nutrient management practices in large-scale research plots. Seven large-scale field 

trials (16 to 40 ha) involving either sulfur or nitrogen fertilizer treatments during the growing 

seasons 2017, 2018, and 2019 in Indiana were used for the study. Either or both, visible (R-G-B) 

and Near-infrared (NIR), imagery was collected during the vegetative and reproductive period at 

the seven locations. Individual images were stitched into orthomosaic and image postprocessing 

was performed to calculate RGB (400-700 nm), and near-IR (700 to 1100 nm) based VI. Image 

classification was performed to separate plant from no-plant background pixels. Linear regression 

between grain yield and non-masked and masked VI, as well as treatment contrasts were performed 

to identify whether masking background improved the results. Overall, the results of our study 

suggest that removing soil background improves the characterization of maize responses to 

experimental treatments. The greatest effect of masking on significance and fit of the regression 

models between VI and yield was at vegetative growth stages. The greatest effect of masking 

during the vegetative period (V8-V15) was on the NIR-based VI, while the greatest effect of 

masking during the reproductive period (R1-R5) was on the RGB-based VI. Prior to application 

of the final sidedress nutrient treatment, background masking did not consistently improve 

statistical significance of contrasts. However, after the final sidedress treatment was applied, 
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contrasts based on the NIR-based VI - NDVI, MSAVI, OSAVI and SAVI, and the RGB-based VI 

- PPRB, VDVI, and VIg were likely to become significant or have a higher significance level after 

masking background. In contrast, masking was deleterious to the performance of GDNVI. 

1.2 Introduction 

Aerial imagery allows researchers to not only view the land areas under study, but also 

extract digital image data for further analysis. Depending on the platform where the image sensor 

is mounted, analyses can be conducted from local to global scales. Aerial imagery collected from 

satellites can be used for analyses over large extended areas, while imagery collected from 

Unmanned Aerial Vehicles (UAVs) is better suited for smaller areas. One of the main uses of aerial 

imagery in agriculture is for the mathematical calculation of vegetative indices (VI) from the 

digital data of the spectral bands available from a given sensor (Jackson & Huete, 1991).  

Reflectance of light from plants varies depending on the chemical and morphological 

characteristics of the plant species (Woolley, 1971). Chlorophyll in green leaves (“healthy” plants) 

strongly absorbs light in the Red (R) region (approximately 650 nm), while cell walls strongly 

reflect light in the Near-infrared (NIR) region (≥ 740 nm) (Glenn et al., 2008). Based on the 

spectral signature of maize (Figure 1.1), Green reflectance (approximately 550 nm) is greater than 

Red reflectance in healthy plants, while plants under stress reflect Red similarly or slightly greater 

than Green due to less Red absorption. On the other hand, Green reflectance is greater than Blue 

(approximately 450 nm) regardless of the plant status. Likewise, NIR reflectance is greater than 

Blue, Green, and Red regardless of the plant status. 

Most VI use the ratio of the reflection of light in the R (600–700 nm) and NIR (700–1100 

nm) wavelengths of the spectrum (Glenn et al., 2008). One of the most commonly used VI is the 

Normalized Difference Vegetation Index (NDVI = NIR-R/NIR+R), which normalizes values 

between -1 to +1 (Rouse et al., 1973). Green and healthy vegetation has higher NDVI values 

(greater absorption of R than less healthy vegetation). Soil tends to have low but positive NDVI 

values, while water has negative values due to water’s strong absorption of NIR. The first VI were 

defined almost five decades ago and newer indices have been developed over the years to address 

shortcomings of the original ones (Xue & Su, 2017). 

One of the key qualities of VI is that they characterize the vegetation fraction on the ground, 

while minimizing atmospheric effects, and solar illumination (Jackson & Huete, 1991; Kamenova 
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et al., 2018). In agriculture, VI have been used for the assessment of land use, biomass, water use, 

plant stress, plant health and crop production (Kamenova et al., 2018). Among the available VI, 

NDVI is the most widely used index, and is often used as a ‘standard’ to be compared with other 

VI (Xue & Su, 2017). However, the main limitation of NDVI is that it reaches saturation 

(maximum value) in dense vegetation canopies, which can lead to an underestimation of plant 

health status (Gu et al., 2013). In order to address that, the Green Normalized Difference 

Vegetation Index (GNDVI = NIR-G/NIR+G) was established (Gitelson et al., 1996), which is 

sensitive to a much wider range of chlorophyll concentration and dense vegetation canopies. 

GNDVI has been used to effectively predict maize (Zea mays L.) yield (Shanahan et al., 2001), as 

well as for estimating nitrogen (N) fertilizer requirements (Farrell et al., 2018) and controlling in‐

season application of N (Shanahan et al., 2004).  

With the availability of consumer UAVs equipped with RGB cameras, interest has increased 

in the potential for using RGB-based VI to assess and monitor vegetation status (Rasmussen et al., 

2016; Zhang et al., 2019). The Excess Green Index (ExG = 2G-R-B) (Woebbecke et al., 1995) has 

been used in several studies to discriminate plants from background. Yang et al. (2015) showed 

that ExG provided a clear contrast between maize seedlings and background, even when the image 

included soil, shadow, and crop residue. Lamm et al. (2002) and Mao et al. (2003) used ExG in a 

precision weed control system to distinguish grass–like weeds from cotton (Gossypium hirsutum 

L.) plants, and applied a chemical spray only to targeted regions. The ExG has also been used to 

determine and monitor rice growing stages for better nutrient management practices (Soontranon 

et al., 2014).  

Another RGB-based index is the Plant Pigment Ratio (PPRB = G-B/G+B), which was 

proposed by Metternicht (2003). This index differentiates between strongly and weakly pigmented 

foliage. Wang et al. (2004) tested eight VI, which were originally designed to estimate pigments 

and other biochemical components in plants, to predict wheat (Triticum aestivum L.) grain protein. 

They concluded that PPRB was the best predictor of wheat grain protein due to its significant 

correlation with leaf N concentration. Also, PPRB derived from manned aircraft imagery was 

highly correlated to maize yield at vegetative growth stages, particularly at V10 and V11, and early 

reproductive growth stages (Khanal et al., 2018). 

Like PPBR, Vegetation Index Green (VIg = G-R/G+R) (Tucker, 1978), was also shown to 

be sensitive to chlorophyll concentration. Because of this sensitivity to canopy color changes, 
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Motohka et al. (2010) used VIg to detect the early phase of leaf green-up and the middle phase of 

autumn coloring in four major ecosystems in Japan (paddy field, grassland, deciduous broadleaf 

forest, and deciduous coniferous forest). Elazab et al. (2016) compared the performance of VIg 

and NDVI in assessing yield and above-ground biomass of maize at maturity. They concluded that 

VIg exhibited higher correlations with yield and above-ground biomass than NDVI because VIg 

overcame saturation of NDVI at high leaf area index.  

Along with the VIg, the Visible-Band Difference Vegetation Index (VDVI= 2G-B-R / 

2G+B+R) (Wang et al., 2015) has also been used for vegetation cover estimation (Yang, 2018; 

Yuan et al., 2018). In addition, VDVI has been applied for temporal monitoring of wheat growth 

based on satellite and UAV imagery (Du et al., 2019), and for estimating N fertilizer requirements 

in cereal-based cropping systems (Orsini et al., 2019).  

Several VI have also been developed to minimize soil background effects. The Soil-

Adjusted Vegetation Index (SAVI) (Huete, 1988), the modified SAVI (MSAVI) (Qi et al., 1994), 

and the Optimized Soil-Adjusted Vegetation Index (OSAVI) (Baret et al., 1993) are among the 

most used soil-adjusted VI. The SAVI was developed to improve sensitivity of NDVI to vegetation 

coverage by including a canopy factor in its formula, which aims to compensate for soil 

background effects. The canopy factor goes from 0 to 1 depending on the canopy coverage, with 

1 being equivalent to total canopy coverage. A canopy factor of 0.5 has been define as appropriate 

for most common environmental conditions (Xue & Su, 2017). The MSAVI was proposed as a 

modification of SAVI by including the calculation of the canopy factor in the formula of MSAVI. 

In this way, the factor value will be unique for the vegetation of interest at a specific point in time 

(Qi et al., 1994). The OSAVI uses a factor value of 0.16, which was determined by using the 

Scattering from Arbitrarily Inclined Leaves (SAIL) model (Baret et al., 1993). The OSAVI has 

been mainly used for the estimation of above-ground biomass, as well as variation of leaf nitrogen 

and chlorophyll content within an area of interest (Xue & Su, 2017). More details about these and 

other soil adjusted VI are given by Qi et al., (1994), as well as Xue & Su (2017). 

The use of VI has become more common in agronomic experimental trials to evaluate crop 

reflectance responses to nutrient management and other agricultural practices. In maize, several 

studies have been conducted using VI to determine nutrient content, mostly focused on N. In these 

studies, VI were derived from hand-held devices (Hong et al., 2007; Yin & McClure, 2013; Li et 

al., 2014; Baio et al., 2019), ground-based digital imagery (Rorie et al., 2011; Vergara-Díaz et al., 
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2016; Gracia-Romero et al., 2017), airborne aerial imagery (Osborne et al., 2004; Sripada et al., 

2006; Cilia et al., 2014; Gabriel et al., 2017), satellite (Bagheri et al., 2012), and UAVs (Zermas 

et al., 2015; Maresma et al., 2016; Arroyo et al., 2017; Corti et al., 2019; Lang et al., 2019; 

Herrmann et al., 2020; Zhang et al., 2020b). In all these studies, VI values were commonly 

correlated with maize ground truth data, such as N content, above ground biomass, yield, or other 

variables of interest, but VI were not necessarily used to assess differences between nutrient 

experimental treatments. Furthermore, only two of these studies (Bagheri et al., 2012; Zhang et al., 

2020b) were conducted in large-scale fields (experimental area greater than 10 ha), while the rest 

were in small research plots. In the U.S., where commercial maize production is mainly practiced 

on an extensive scale (Cassman & Plant, 1992), experimental trials on larger areas are more 

representative of field-scale conditions. Finally, soil and shadow background pixels were masked 

(removed) from the original imagery in only five of the studies (Zermas et al., 2015; Gracia-

Romero et al., 2017; Corti et al., 2019; Lang et al., 2019; Zhang, 2020b), in which VI were derived 

from aerial imagery. Considering that the mean VI values of specific areas of interest are normally 

obtained to later correlate to specific ground truth measurements, not masking shadow and soil 

background pixels may result in artificially low correlations, especially at early vegetative growth 

stages, when plants are small, and the majority of the area is represented by soil.  

Shadows from elevated objects such as clouds, buildings, tress, and plants themselves have 

an impact on the performance of VI for characterizing plant health status. In a study conducted in 

a vineyard by Aboutalebi et al. (2018), the authors concluded that there was a reduction in 

reflectance from the plants under cloud shadow, and therefore a difference between VI derived 

from plants under sun and shade. Soil background reflectance can also impact VI estimations. 

Huete et al. (1985) observed soil background and cotton canopy spectral interactions for varying 

soil types and soil moisture conditions, and concluded that removal of background pixels greatly 

enhanced the assessment of the vegetative canopy component. Bausch (1993) made a similar 

conclusion after evaluating maize canopy reflectance at different soil brightness (light and dark 

colored soils) and moisture (dry and wet) combinations. Aerial imagery acquisition using UAVs 

in Indiana is usually conducted from two to four hours before solar noon to avoid shadows from 

cumulus clouds that develop around mid-day. However, shadows from plants are commonly 

visible when images are not collected close to solar noon (Figure 1.2). For such flights and when 
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plants are small, masking soil and shadow background might have the potential to improve the 

assessment of the vegetation component. 

Most approaches to minimize the effects of soil and shadow background on VI, particularly 

soil-adjusted VI, have focused on satellite imagery and not UAV imagery. Aboutalebi et al. (2018) 

emphasized that the impact of shadows is more pronounced in high-resolution imagery, and 

therefore the influence of shadows on UAV imagery should be even more significant than in 

satellite imagery. An alternative to developing VI that mathematically minimize the effects of soils 

and shadows is to simply remove the pixels associated with each prior to calculating VI. Several 

approaches have been developed to distinguish plant tissue from background pixels (Yang et al., 

2015) and extract the reflectance information from only plants for further analysis. This is an 

important step when imagery is used for assessing plant population and plant height, since plants 

are the object of interest. Therefore, good performance in this step is crucial for further analysis 

and effective action based on the results. In a review of image processing techniques for plant 

extraction and segmentation in the field, Hamuda et al. (2016) analyzed three primary plant 

extraction algorithms: (i) color index-based segmentation, (ii) threshold-based segmentation, and 

(iii) learning-based segmentation. These techniques differ in complexity, and their suitability 

differs for specific applications and cloud conditions. Color index-based approach techniques, are 

simple, but the accuracy is highly dependent on light conditions. For instance, on sunny days these 

techniques most likely yield poor segmentation results since the surface of some leaves (such as a 

maize leaf) acts as a mirror (specular reflection), which is not a problem on cloudy days. On the 

other hand, threshold and learning-based approach techniques are complex, but they can provide 

more accurate results whether cloudy, sunny, or overcast (Hamuda et al., 2016). One of the most 

popular learning-based segmentation techniques is the Iterative Self-Organizing Data Analysis 

Technique Algorithm (ISODATA), which automatically groups pixels of similar spectral features 

into unique clusters or classes (Abbas et al., 2016). The ISODATA is considered an unsupervised 

classification method, since prior knowledge of the area under study is not required before the 

segmentation process. Even though ISODATA can be computationally intensive and time 

demanding, it is effective at identifying spectral clusters and requires little user effort (Abbas et 

al., 2016).  

Soil and shadow background reflectance data potentially reduces the effectiveness of VI for 

characterizing crop responses to nutrient management practices. Masking out the background 
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pixels from the larger image dataset should improve the effectiveness of VI, particularly at 

vegetative stages when crop canopy coverage is limited and more soil is exposed. Nevertheless, 

improvement may vary depending on the VI evaluated. For instance, soil-adjusted VI that 

minimize soil background effects such as SAVI, MSAVI, and OSAVI should theoretically be less 

impacted by masking than other VI. Similarly, since ExG has previously shown to provide a clear 

contrast between maize seedlings and background, even when the image may include soil, shadow 

and crop residue, it would be also expected to be less impacted by masking. Holman et al. (2019) 

conducted a study to assess the effects of removing soil background pixels from NDVI maps 

derived from UAV imagery (1 cm spatial resolution) in 10 wheat cultivars grown at 4 different N 

rates. The threshold-based segmentation was used to distinguish plants from soil background, and 

then NDVI values from original and masked maps were compared for eight dates. Different 

temporal trends were observed between non-masked and masked NDVI, with smaller trends in 

NDVI when background was removed. The greatest influence of masking occurred early season 

when the percent of canopy cover was lower. There are no other studies to date that have focused 

on the effects of removing the background from VI derived from UAV imagery. Furthermore, 

Holman et al. (2019) only evaluated the effects of removing soil background from NDVI maps, 

not with other VI. The steps involved with masking background pixels from UAV image datasets 

and calculating modified VI require extra software and computing capabilities, plus the skill set to 

process the images. Agronomists need to know whether the potential benefits of masking 

background pixels on the accuracy and utility of commonly used VI are worth this extra effort and 

expense.  

Therefore, the general objective of this study was to determine if removal of soil and shadow 

background pixels from VI derived from UAV imagery increases the accuracy of characterizing 

crop responses to nutrient management practices in large-scale research plots. The specific 

objectives were: 1) to determine if removal of soil and shadow pixels improve the regressions 

(adjusted R-squared) between yield and VI, and 2) to identify if removal of soil and shadow pixels 

improve the level of statistical significance (based on P-values) of treatment contrasts.  
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1.3 Materials and Methods 

1.3.1 Site description  

Field experiments were conducted at the Pinney-Purdue Agricultural Center Mary S. Rice 

Farm (PPAC 41.3269, -86.8028, elevation 204 m above sea level) near La Crosse, IN and the 

Throckmorton-Purdue Agricultural Center (TPAC, 40.2699, -86.8797, elevation 226 m above 

sea level) near Lafayette, IN. Two on-farm locations were also used. The “Simpson” location 

(39.650777, -85.686539, elevation 269 m above sea level) was located near Morristown, IN and 

the “Vincent” location (40.5845, -85.9724, elevation 253 m above sea level) was located near 

North Grove, IN. Large scale field experiments were conducted during the 2017, 2018, and 2019 

growing seasons. Soil information is detailed in Table 1.1, while planting dates, hybrids, previous 

crop, and tillage practices are given in Table 1.2.  

Fields were planted using commercial planters. Maize rows were spaced 76 cm apart and 

oriented in a north-south direction at PPAC and Simpson (2019), and in an east-west direction at 

Simpson (2018), TPAC, and Vincent. Individual plot sizes among the locations ranged from 9.1 

to 12.2 m wide by 373 to 732 m long.  

1.3.2 Experimental trial information 

Sulfur (S) fertilizer response trials were conducted at all locations, except at Vincent, which 

was a N fertilizer rate response trial. In three of the S trials there was an additional boron (B) 

treatment. The 2018 Simpson trial included treatments involving the timing of sidedress S and N. 

A randomized complete block design was used in each experiment. Number of treatments, 

replications, and fertilizer timing and rates are detailed in Table 1.3.  

1.3.3 Yield data measurements 

Yield data were collected from harvest of the center 6 (TPAC) or 8 (PPAC, Simpson, 

Vincent) rows of each plot with commercial combines equipped with calibrated GPS-enabled yield 

monitors. Dates of harvest at each location are given in Table 1.4. All grain yields were adjusted 

to 150 g kg-1 moisture. The yield monitor data were processed and cleaned using Ag Leader® 

SMS™ Advanced (https://www.agleader.com) and QGIS (https://www.qgis.org/en/site) software.  

https://www.agleader.com/
https://www.qgis.org/en/site
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1.3.4 UAV image acquisition  

Aerial imagery using UAV sensors was acquired at two to four flight dates per location. 

The autonomous flight missions were planned and conducted using the DroneDeploy flight 

planning application (https://www.dronedeploy.com). In 2017, flights were conducted using a 

standard DJI FC6310 RGB camera mounted on a DJI Phantom 4 Pro (P4P). In 2018, flights were 

conducted using a standard Zenmuse X4S RGB camera and a modified Zenmuse X4S RG-NIR 

camera mounted on a DJI Matrice 200 (M200). In 2019, flights were conducted using either a 

standard Hasselblad L1D-20c RGB camera mounted on a DJI Mavic 2 Pro (M2P) or a standard 

Zenmuse X4S RGB camera mounted on a DJI M200. Mechanical problems with the M200 

prevented its frequent use in 2019. Specifications of the cameras are detailed in Table 1.5. 

The goal was to conduct the flights from two hours before to two hours after solar noon, 

which in Indiana varies from approximately 13:40 to 13:50 ET during the crop growing season. 

However, forecast or actual cloud development resulted in many flights being purposely conducted 

earlier in the day to avoid excessive cloud shadows over the field. Date, growth stage at the 

moment of image acquisition, sensor and platform used, time, and flight parameters (altitude and 

overlap) are detailed in Table 1.6. Images were recorded in JPEG format and geographic position 

data was included in each image. 

1.3.5 UAV image processing  

Orthomosaic generation and coregistration 

Each set of images per flight was uploaded and stitched by the DroneDeploy application. 

The resulting orthomosaic images were exported with a spatial resolution of 5.08 cm pixel -1. The 

RGB orthomosaic from the first date of UAV aerial imagery at each location was used as the 

master image to coregister the rest of the orthomosaics corresponding to the same location. The 

objective of coregistration is to ensure that the orthomosaics are spatially aligned, and any feature 

in one image overlaps its footprint in the master image (Leprince et al., 2012). Coregistration was 

conducted in ArcGIS Pro © 2018 Esri using the transformation method 1st Order Polynomial. 

Digital numbers (DN) from the orthomosaics, ranging from 0 to 256, were used for further 

processing. 
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Image classification 

The clustering method ISODATA (Iterative Self-Organizing data) was conducted to 

separate the plant pixels from the soil and shadow (“no plants”) pixels using ERDAS® IMAGINE 

2016 (https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine). Twenty 

classes, 10 iterations, and 0.98 convergence threshold were set as the parameters for the 

classification. Convergence threshold is the percentage of pixels that do not change classes 

between successive iterations, so 10 iterations were chosen to not limit the accuracy described by 

the established threshold. The first product of the process was a thematic raster layer with 20 

classes. Each layer was manually reclassified into “plants” and “no plants” using the original 

orthomosaic on the background as a reference. When the twenty classes were not able to separate 

properly “plants” from “no plants” pixels, the clustering method was run again with the following 

parameters: twenty-five classes, 30 iterations, and 0.97 as convergence threshold. Later, all the 

classes corresponding to “plants” were merged into one, and the classes corresponding to “no 

plants” were merged into another using the tool “Recode” in ERDAS® IMAGINE 2016. A binary 

raster layer with two classes, “plants” and “no plants” was generated for each orthomosaic as a 

final product from the classification. Overall accuracy (OA) (Story & Congalton, 1986) based on 

randomly selected 100 independent testing samples was used as validation metric to evaluate the 

accuracy of the binary layer to segment “plants” and “no plants” pixels. A threshold of OA≥80% 

was considered for using the binary layer to mask out the “no plants” pixels during the VI 

calculation. Classification accuracy assessment was conducted in ERDAS® IMAGINE 2016. 

Calculation of VI 

Four RGB-based and five NIR-based VI (Table 1.7) were calculated for each RGB and 

NIR orthomosaic, respectively, using the Model Builder tool in ERDAS® IMAGINE 2016. The 

binary layer was included during the VI calculation to mask out the “no plants” and create 

“masked” versions of each VI. As a result, all the pixel values corresponding to “no plants” in the 

index raster layers were equal to zero. Later, in ArcGIS Pro © 2018 Esri, zero-pixel values were 

set as “Null” using the command “Set Null” in the “Raster Calculator tool”. 

 

https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
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Data extraction per plot 

Data extraction of VI maps was based on the same plot area used for extraction of grain 

yield data. For each location, the field trial plot layer was imported into ArcGIS Pro © 2018 as a 

polygonal shapefile. To avoid border effects between adjacent treatments or the edges of the field, 

a buffer of 3 m between plots, and 23 m from the edges of the field was applied to the shapefile 

and removed in ArcGIS Pro © 2018 Esri. In addition, based on visual assessment, areas 

corresponding to weed patches and planter skips were removed from the plot layer shapefile too. 

The updated plot layers were used to extract the data corresponding to each plot from the VI-pixel 

layers (with and without soil and shadow “no plants” pixels background) using the tool “zonal 

statistics as a table” in ArcGIS Pro © 2018 Esri. The mean pixel values per plot were used for the 

statistical analysis. 

Before conducting the statistical analysis, VI plot means were multiplied by 1000 since 

original VI values rounded to two decimals places were the same among several plots within a 

field. In contrast to the rest of VI, the ExG is not a ratio-based index and their values do not range 

from -1 to 1. Thus, ExG plot means were not multiplied by 1000. 

1.3.6 Statistical analysis 

All statistical analyses were performed with the statistical software RStudio ® 1.1.4 

(https://rstudio.com/). Impact of sulfur (S) and nitrogen (N) fertilizer treatments on maize grain 

yield were subjected to analysis of variance, and differences between means were identified using 

a protected Fisher’s least significance difference (LSD) at α ≤ 0.10. The R package “agricolae” 

(https://cran.r-project.org/web/packages/agricolae/agricolae.pdf) was used for this purpose. 

For each date, all VI maps were used to analyze maize spectral responses to the different 

experimental treatments. Linear regression analysis between yield and VI plot means was 

performed to assess the ability of masked VI and non-masked VI to predict yield (dependent 

variable) at each of the image acquisition dates. Model significance was based on P-value ≤ 0.10.  

The fit of the regression model was assessed using adjusted R-squared (R2
adj) determination 

coefficient to identify the percentage of the response variable (yield) variation explained by the 

predictor variable (VI). Subjective ratings of VI as predictors of yield were characterized as 

follows: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent= R2

adj > 0.75.  

https://rstudio.com/
https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
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Finally, contrasts were constructed for the S trials to compare differences in maize spectral 

responses and grain yield between specific treatments (Table 1.8), using the R packages “lsmeans” 

(https://cran.r-project.org/web/packages/lsmeans/lsmeans.pdf) and “multcomp” (https://cran.r-

project.org/web/packages/multcomp/multcomp.pdf). Analysis of the N trial at Vincent used only 

regression. The P-values were chosen to be the indicators to assess the level of significance of 

masked VI and non-masked VI at distinguishing treatment effects. Subjective ratings of 

significance level were characterized as follows: Not significant (ns) = P-value >0.10, Significant 

(S) = P-value ≤ 0.10, Very Significant (VS) = P-value <0.01, and Highly Significant (HS) = P-

value <0.001.  

1.3.7 Weather data 

Monthly air temperature and precipitation from the 2017, 2018, and 2019 growing seasons 

were collected from automated weather stations located in close proximity to the growing sites. 

Weather data were obtained though the Midwestern Regional Climate Center’s cli-MATE online 

data portal (https://mrcc.illinois.edu/CLIMATE/). Monthly normals (1981-2010) computed by the 

National Centers for Environmental Information (NCEI) for each reporting station were subtracted 

from the monthly air temperature and precipitation of the months evaluated to calculate deviation 

from the normal. 

1.4 Results and Discussion 

1.4.1 Weather conditions during the years of evaluation 

Average monthly air temperature and accumulated precipitation from 1 May to 31 October 

for all study locations are summarized in Table 1.9. In 2017, May was cooler and wetter than 

normal (based on the 30-year average from 1981 to 2010), resulting in slower maize development 

compared to years with warmer temperatures. In contrast to May, temperature during June was 

near normal, but precipitation was below normal. Weather conditions in July and August were 

favorable for the beginning of the grain filling period. July and August were cooler than normal, 

and precipitation was higher in July and below normal in August. Finally, warmer temperatures in 

September and October contribute to the accumulation of Growing Degree Days (GDD) to reach 

kernel maturity. 

https://cran.r-project.org/web/packages/lsmeans/lsmeans.pdf
https://cran.r-project.org/web/packages/multcomp/multcomp.pdf
https://cran.r-project.org/web/packages/multcomp/multcomp.pdf
https://mrcc.illinois.edu/CLIMATE/
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In contrast to 2017, temperature in May 2018 was above normal across the three locations 

evaluated that year (PPAC, Simpson, and Vincent). Precipitation, however, was below normal at 

Simpson and Vincent, which was favorable for planting at Simpson. At PPAC, where rainfall was 

above normal, planting occurred later than at Simpson and Vincent. In June, during the vegetative 

period, temperature and precipitation was above normal across the locations. However, deviations 

from normal were higher at Simpson and Vincent compared to PPAC. In July, temperature for the 

three locations was about normal, but precipitation was below normal at PPAC and Simpson. 

Particularly, drier conditions at the beginning of the grain filling period at PPAC probably caused 

kernel abortion in areas with low water holding capacity. Rainfall in August was favorable for the 

remainder of the grain fill period. Nevertheless, temperature was slightly above average across the 

locations, which likely increased grain fill rates per day. Similarly, temperature in September and 

October was mostly above normal across the locations, while precipitation varied depending on 

the locations. 

Rainfall in spring of 2019 was excessive, delaying planting at all locations (PPAC, 

Simpson, and TPAC) and causing a shorter vegetative period. Temperature was above normal in 

July, and lower than average precipitation in July and August caused moisture stress at the 

beginning of the grain filling period. September was warmer than normal, which had a positive 

impact on the GDD accumulation to reach kernel maturity. 

1.4.2 Grain yield response to sulfur (S) and nitrogen (N) experimental treatments  

Five of the six sulfur (S) trials evaluated in this study had a significant grain yield response 

to S treatments (Table 1.10). Among the trials, application rates of S fertilizer across the locations 

ranged from 3 to 34 kg ha-1 (Table 1.3). Addition of 3 and 6 kg S ha-1 in starter fertilizer applied 

at PPAC 2017 and PPAC 2018, respectively, did not affect yield, while sidedress applications of 

8 to 34 kg S ha-1 improved maize grain yield an average of 1 Mg ha-1 regardless of rate and timing 

across the locations. Within each location, grain response to the lowest sidedress S rate had the 

same effect on yield as any higher S rate. The only location that did not show grain yield response 

to S was TPAC. Addition of 0.4 kg ha-1 boron (B) with 22 or 25 kg S ha-1 had no yield effect at 

any of the locations evaluated.  

Grain yield increased with higher N rates up to 146 kg ha-1 in the large-scale field trial at 

Vincent in 2018. Further addition of N did not increase yield.  
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1.4.3 Regression results between grain yield and vegetative indices 

Vegetative growth stages 

The significance of linear regression models between VI and grain yield during the 

vegetative period varied among the trials, dependent on whether background pixels were masked 

from the VI and the specific growth stage evaluated. Of the 24 RGB-based VI x location x date 

combinations, 42% and 58% of the regressions were significant based on the non-masked VI and 

masked VI, respectively (Tables 1.11 to 1.16). Of the 15 NIR-based VI x location x date 

combinations, 60% and 87% of the regressions were significant based on the non-masked VI and 

masked VI, respectively (Tables 1.12 to 1.14). The timing of the flights ranged from 14 to 27 days 

after nutrient treatments had been imposed with sidedress fertilizer applications.  

Vegetative indices at growth stages V8-V12 (Simpson 2018, Vincent 2018, PPAC 2019, 

TPAC 2019) were generally not strong predictors of grain yield (Tables 1.13 – 1.16). Only 46% 

of all the regressions (n=52) between RGB- or NIR-based VI (masked and non-masked) and yield 

were significant (P-value ≤ 0.10). Of those, 75% had R2
adj ≤ 0.25 (poor) and 25% had R2

adj ranging 

from 0.26-0.50 (fair). Masking resulted in significant models for 6 of the 13 non-significant non-

masked VI models.  

The regression relationships between VI and yield tended to be stronger at the later 

vegetative growth stages (PPAC 2017, PPAC 2018). Of the 26 regression models between yield 

and RGB- or NIR-based VI (masked and non-masked) at V12-V15 (Tables 1.11 and 1.12), 85% 

were significant. Of those, only 4% had R2
adj ≤ 0.25 (poor) while 42% were 0.26-0.50 (fair), and 

42% were 0.51-0.75 (good). Masking resulted in significant models for 2 of the 3 non-significant 

non-masked VI models. The stronger relationships between VI at V12-V15 and yield may be 

explained because of the effects of fertilizer treatments on crop reflectance after a longer time since 

they were imposed, and the greater canopy cover in comparison with earlier vegetative growth 

stages (Figure 1.3).  

Within each location, PPRB was one of the RGB-based VI with the highest R2
adj (Tables 

1.11 to 1.16), and its ability to predict yield at vegetative growth stages was comparable to the 

NIR-based VI. This supports Khanal et al. (2018), who showed that PPRB derived from manned 

aircraft imagery (35 cm spatial resolution) was highly correlated to maize yield at vegetative 

growth stages, especially at V10 and V11. While the Khanal et al. (2018) study included only non-

masked PPRB, our findings indicated that masking had an effect on regression results between 
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PPRB and yield, particularly at earlier vegetative growth stages. At Simpson 2018 (Table 1.13) 

and Vincent 2018 (Table 1.14), where maize plants were at V8-V10, regression models based on 

PPRB were significant only when background was masked. At PPAC 2017 (Table 1.11), 2018 

(Table 1.12), and 2019 (Table 1.15), where plants ranged from V11-V15, both masked and non-

masked PPRB had a significant relationship with yield. However, in 2 of the 3 locations (PPAC 

2017 and 2019), R2
adj values based on the masked PPRB were at least 0.10 greater compared to 

the non-masked PPRB. The spatial resolution of the imagery used by Khanal et al. (2018) was 

lower (35 cm) compared to that used in our study (5.08 cm), which probably lessened the impact 

of soil and shadow background in the regression results between PPRB and yield (Aboutalebi et 

al., 2018). 

In contrast, VIg was the RGB-based VI with the poorest performance. Linear regression 

between VIg and yield was significant only at 2 of 6 locations at vegetative growth stages, PPAC 

2017 (Table 1.11) and TPAC 2019 (Table 1.16).  

Across all vegetative growth stages, the NIR-based MSAVI, NDVI, OSAVI, and SAVI 

had similar R2
adj values within each location and a significant relationship with yield in most cases, 

while R2
adj values of GNDVI were generally different than the other NIR-based VI (Tables 1.12 

to 1.14). At Vincent 2018 (Table 1.14) and Simpson 2018 (Table 1.13), where plants ranged from 

V8 to V10, yield prediction based on NIR-based VI was either poor or not significant, regardless 

of whether background was masked. At PPAC 2018 (Table 1.12) at growth stages V14 to V15, 

yield prediction was fair for all non-masked VI and good for the masked VI, except GNDVI. These 

results are in agreement with Torino et al. (2014), who indicated that maize yield prediction based 

on NIR-based VI was low at V6, but improved at V10. Plus, these findings support the results of 

previous studies, in which NDVI derived from handheld devices (Teal et al., 2006) and UAV 

imagery (Yin & McClure, 2013; Maresma et al., 2016) showed a significant relationship with yield 

at vegetative growth stages. 

Among the RGB-based VI at the vegetative growth stages, 63% of the time differences 

between R2
adj of masked and non-masked VI was ±0.05 or regression models remained not 

significant, 13% of the R2
adj

 increased by 0.06 to 0.10, and 25% of the R2
adj increased by more than 

0.11 (Table 1.18). Masking ExG and VIg was not as beneficial compared to the other RGB-based 

VI. The ExG VI has been characterized as one that effectively distinguishes young maize plants 

from background reflectance without masking (Yang et al. 2015). Therefore, it was expected that 
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masking would not be as favorable with ExG compared to the other VI. On the other hand, VIg 

was already not significant in 4 of the 6 locations evaluated, and remained the same after masking. 

The greatest effect of masking was on PPRB and VDVI, particularly at growth stages after V8. 

Among the NIR-based VI at the vegetative growth stages, 47% of the time differences 

between R2
adj of masked from non-masked VI was ±0.05 or regression models remained not 

significant, 20% of the R2
adj

 increased by 0.06 to 0.10, and 33% of the R2
adj increased by more than 

0.11 (Table 1.18). At PPAC 2018 (Table 1.12) and Vincent 2018 (Table 1.14), the increase in R2
adj 

values after masking was ≥0.11 for all NIR-based VI, except GNDVI. In contrast to the rest of 

NIR-based VI evaluated, GNDVI does not use Red in its formula. Red is higher than Green 

reflectance in soil, while in green vegetation Red is absorbed by chlorophyll, so it is lower than 

Green reflectance, which may explain the different impact of masking on GNDVI versus the rest 

of NIR-based VI that used Red and not Green.  

 

TAKE HOME MESSAGE: 

For linear regression between VI and grain yield, the later vegetative growth stages, the higher 

R2
adj values. This is because of the longer time after treatment application and the greater canopy 

cover compared to earlier vegetative growth stages. 

PPRB masked was the best, and its results were comparable to the NIR-based VI. 

Masking had a higher impact on NIR-based VI than on RGB-based VI, particularly NIR indices 

that used Red due to the high reflectance of Red by soil.  

Reproductive growth stages 

Reproductive stages R1-R2 (5 locations)  

The timing of the flights for UAV imagery acquisition at reproductive growth stages R1-

R2 ranged from 37 to 41 days after sidedress fertilizer treatments were imposed. The majority of 

linear regression models between VI at these growth stages and grain yield were significant across 

the locations (Tables 1.12 to 1.17). Of the 20 RGB-based VI x location x date combinations, 75% 

and 90% of the regressions were significant based on the non-masked VI and masked VI, 

respectively (Tables 1.12 to 1.17). Of the 10 NIR-based VI x location x date combinations, 80% 

and 90% of the regressions were significant based on the non-masked VI and masked VI, 
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respectively (Tables 1.12 to 1.14). The fit of the models varied from poor to excellent depending 

on the specific VI and location evaluated (Table 1.18).  

Among the RGB-based VI, VIg had the lowest R2
adj in two of the three locations where the 

regression model between VIg and yield was significant (Simpson 2018, Vincent 2018, and 

Simpson 2019) (Tables 1.13, 1.14, and 1.17). In one of these three locations VIg was significant 

only when background was masked (Table 1.13). Among the NIR-based VI models, the GNDVI 

had lower R2
adj compared to the other NIR-based VI (Tables 1.12 to 1.14), and it was significant 

only when masked. Regression models between VI and grain yield at TPAC 2019 were either not 

significant or the R2
adj values were ≤ 0.25 (poor) regardless of the VI evaluated and whether or not 

the background was masked (Table 1.16). The results at this location are related to the fact that 

grain yield was also not influenced by the fertilizer treatments (Table 1.10). Consequently, there 

was minimal spatial variability for yield in this trial. Regression models between VI (non-masked 

and masked) and grain yield at PPAC 2019 (Table 1.15) had lower R2
adj (≤ 0.50) compared to the 

other locations. Based on visual assessment the day of UAV imagery acquisition at PPAC 2019, 

maize plants were actively shedding pollen, which may have potentially affected the relationship 

between the vegetative indices and yield. A study conducted by Lu et al. (2015) to detect maize 

pollen release using VI (including OSAVI and MSAVI), showed a continued decrease in all the 

VI values examined as pollen release was close to its peak. At the remaining three locations at 

reproductive growth stages R1-R2 (Simpson 2018, Vincent 2018, and Simpson 2019), the 

regression models between yield and the VI (non-masked and masked) evaluated had R2
adj greater 

than 0.50, except VIg and GNDVI (Tables 1.13, 1.14, and 1.17). In these three locations, VDVI 

was the RGB-based VI having the greatest improvement with masking after VIg. Nevertheless, 

regardless of background status, R2
adj values of VDVI were greater than 0.50. 

 

TAKE HOME MESSAGE:  

Most linear regression between VI and grain yield were significant at growth stages R1 and R2, 

and a higher percentage when VI was masked. 

VIg and GNDVI were not good predictors of grain yield compared to the other VI.  

Lack of response of yield to treatments affected regression results (TPAC), as well as pollen release 

at the moment of image acquisition. 
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The greatest effect of masking was on the regression models based on VIg and VDVI. Particularly 

on VIg, in which R2
adj values increased dramatically after masking. 

Practical applications: growth stages R1 and R2 are ideal growth stages to predict grain yield based 

on VI. However, avoid collecting imagery if pollen is being released. The VIg and GNDVI are not 

recommended. Nevertheless, if using VIg, masking is recommended. For the other VI, other than 

VDVI, masking is not necessary.  

Reproductive stages R3-R4 (2 locations) 

The timing of the flights for UAV imagery acquisition at R3-R4 ranged from 49 to 57 days 

after nutrient treatments had been imposed with sidedress fertilizer applications. Linear regression 

models between VI (non-masked and masked) at these growth stages and grain yield were 

significant at both PPAC 2017 (Table 1.11) and PPAC 2018 (Table 1.12), with R2
adj greater than 

0.50, except for VIg and GNDVI. The greatest effect of masking was on VIg and VDVI at PPAC 

2018. 

 

TAKE HOME MESSAGE: 

Linear regression between VI and grain yield at growth stages R3-R4 are likely to be good 

(R2
adj>0.50) if VIg and GNDVI are not used. If using VDVI or VIg, masking is recommended. 

Reproductive stage R5 (6 locations) 

The majority of the linear regression models between VI at growth stage R5 and grain yield 

were significant across the 6 locations (Tables 1.12 to 1.17). The timing of the flights for UAV 

imagery acquisition at these stages ranged from 73 to 92 days after nutrient treatments had been 

imposed with sidedress fertilizer applications. Of the 24 RGB-based VI x location x date 

combinations, 67% and 71% of the regressions were significant based on the non-masked VI and 

masked VI respectively (Tables 1.12 to 1.17). Of the 15 NIR-based VI x location x date 

combinations, 93% and 100% of the regressions were significant based on the non-masked VI and 

masked VI, respectively (Tables 1.12 to 1.14). Nevertheless, the fit of the models varied from poor 

to excellent depending on the specific VI and location evaluated. In contrast to earlier growth 

stages, performance of regression models based on VIg and GNDVI at growth stage R5 were 
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consistently significant across locations regardless of whether background was masked, except at 

TPAC 2019 (Table 1.16). In fact, none of the regression models between VI and yield were 

significant at TPAC 2019 at growth stage R5, which may be explained due to the lack of yield 

response to the sulfur fertilizer treatments imposed at sidedress and the subsequent spatially 

uniform yields in this field (Table 1.10, Figure 1.4).  

At PPAC 2018 (Table 1.12) and 2019 (Table 1.15), 62% of the regression models between 

VI and yield were either not significant or the fit of the model was poor (R2
adj ≤0.25) at growth 

stage R5, regardless of whether background was masked from VI. At these locations, yield 

response of the zero S (PPAC 2018 and PPAC 2019) and 6 kg S ha -1 (PPAC 2018) was 

significantly different than that of the higher sulfur rates, which did not differ in yield (Table 1.10). 

Differences between these treatments were also visible in color at PPAC 2018 (Figure 1.4) and 

PPAC 2019, but not drastically. Since most treatments had similar response to yield and did not 

show contrasting differences in color, the low variability/range in the data used for these locations 

potentially caused the poor regressions results obtained.  

Like at PPAC 2019, yield of zero sulfur treatment at Simpson 2019 was significantly 

different than that of the other four treatments, which had similar yield (Table 1.10). However, 

spatial variability at Simpson 2019 related to soil properties and topography accentuated the 

differences in color between the zero sulfur versus sulfur treatments in specific areas of the field 

(Figure 1.4). Thus, greater differences in plot yields due both to treatment and field variability led 

to better regression relationships. Three of the four regression models at Simpson 2019 were 

significant, and their fit was either good or excellent (R2
adj ≥ 0.51), regardless whether background 

was masked from VI (Table 1.17). 

At Simpson 2018, the two zero sulfur treatments were significantly different based on yield 

response compared to the other four treatments, which had comparable grain yields (Table 1.10). 

Plus, visual differences between the plots with zero sulfur from the plots with sulfur rates was 

contrasting (Figure 1.4). At Vincent 2018, visual differences between plots due to the different 

nitrogen treatments applied were also contrasting (Figure 1.4), and yield response was significantly 

different between the different nitrogen treatments (Table 1.10). The higher variability in yield and 

spectral response at Simpson 2018 and Vincent 2018 (Figure 1.4) might explain the better 

regression results obtained compared to the rest of locations (Tables 1.12 and 1.13). At these 

locations 100% of the regression models between VI and yield were significant regardless of 
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whether background was masked, and 89% of the time fit of the models was either good or 

excellent (R2
adj ≥ 0.51). 

 

TAKE HOME MESSAGE:  

The higher variability in field related to treatment effects, the more likely fit of regression models 

between VI and grain yield will be good to excellent (R2
adj≥0.50).  

General performance of VI at reproductive growth stages R1-R5  

In general, non-masked and masked PPRB had the highest R2
adj values across most 

locations compared to the rest of RGB-based VI (Tables 1.11 to 1.17). In fact, the fit of the linear 

regression models between PPRB (non-masked and masked) and grain yield were comparable to 

the NIR-based VI (except GNDVI) at five of the six locations where RGB and NIR-based VI were 

evaluated, with R2
adj≥0.51 (Table 1.18 – Section “Reproductive growth stages”). A study 

conducted by Vergara-Díaz et al. (2016) showed that yield prediction based on the visible spectrum 

can be as good as NDVI to predict yield at reproductive stages, which is supported by the findings 

of our study. Also, Khanal et al. (2018) showed that non-masked PPRB derived from manned 

aircraft imagery (35 cm spatial resolution) was highly correlated to maize yield at early 

reproductive growth stages.  

Results based on all the NIR-based VI (except GNDVI) were similar, and generally better 

than based on GNDVI, regardless of whether background was masked (Tables 1.12 to 1.14). 

However, at growth stage R5, fit of the models based on GNDVI improved (Table 1.18 – Section 

“Reproductive growth stages”) 

Among all the locations, except TPAC 2019, PPAC 2018 (Table 1.12) was the only 

location where the regression of PPRB and yield was not significant at growth stage R5. Based on 

visual assessment the day of image acquisition, maize plants at PPAC 2018 were already 

senescing. Moreover, soil and mostly shadow background was clearly more abundant at PPAC 

2018 compared to the other locations that had also begun to senesce (Figure 1.5), which may 

explain why results at PPAC 2018 were different. 

In general, performance of linear regression models between RGB and NIR-based VI and 

grain yield was better at reproductive stages ranging from R1 to R4, rather than at R5 (Table 1.18 

– Section “Reproductive growth stages”). All models based on the RGB-based VI (except VIg) 
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were significant at reproductive stages ranging from R1 to R4, whereas models at R5 were 

consistently significant at only two of six locations. Similarly, while R2
adj values of the NIR-based 

VI (except GNDVI) were consistently > 0.75 at reproductive stages R1 to R4, R2
adj decreased at 

R5. This is in line with the study conducted by Herrmann et al. (2020), who concluded that growth 

stage R2 was one of the most appropriate reproductive growth stages for maize yield assessment 

based on NIR-based VI.  

Effects of soil and shadow background from VI maps  

Masking background pixels from VI in regression models between VI and grain yield had 

different effects on significance (P-value) and fit of the models (R2
adj), dependent on the maize 

growth stage and the specific VI evaluated. 

At vegetative growth stages (V8-V15), of the 39 VI x location x date combinations, 69% 

of the regression models based on the masked VI were significant (P-value ≥ 0.10) compared to 

49% based on the non-masked VI (Table 1.18 – Section “Vegetative growth stages”). Of the 82 

VI x location x date combinations at reproductive growth stages (R1-R5), the percentage of 

significant regression models based on the masked VI was higher (87%) compared to the 

percentage based on the non-masked VI (79%) (Table 1.18 – Section “Reproductive growth 

stages”). Although regression models between masked VI and grain yield across the growing 

season were more likely to be significant compared to the models based on the non-masked VI, 

effects of masking varied dependent on whether RGB or NIR-based VI were evaluated, as well as 

the growth stage. 

During the vegetative period, of the 24 RGB-based VI x location x date combinations, 42% 

and 58% of the regression models were significant based on the non-masked VI and masked VI 

respectively. Of the 15 NIR-based VI x location x date combinations, 60% and 87% of the 

regression models were significant based on the non-masked VI and masked VI respectively 

(Table 1.18 – Section “Vegetative growth stages”). During the reproductive period, of the 52 RGB-

based VI x location x date combinations, 73% and 81% of the regression models were significant 

based on the non-masked VI and masked VI respectively. Of the 30 NIR-based VI x location x 

date combinations, 90% and 97% of the regression models were significant based on the non-

masked VI and masked VI respectively (Table 1.18 – Section “Reproductive growth stages”). 

These results indicate that the greatest effect of masking was on the NIR-based VI at vegetative 
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growth stages. The difference between the percentage of significant models based on the masked 

versus non-masked RGB-based VI was 17% at vegetative growth stages, and 8% at reproductive 

growth stages, while the difference between the percentage of significant models based on the 

masked versus non-masked NIR-based VI was 27% at vegetative growth stages, and 7% at 

reproductive growth stages. 

As regards of the fit (R2
adj) of the regression models between VI and yield, across all 

locations and growth stages evaluated, 18% of the time the difference between R2
adj of masked 

from non-masked VI was ≥0.11 (Table 1.18). Nevertheless, the effects of masking on R2
adj varied 

dependent on growth stage. During the vegetative period (V8-V15), the greatest effect of masking 

was on the NIR-based VI. Of the 15 NIR-based VI x location x date combinations, 33% of the 

time difference between R2
adj of masked from non-masked VI was ≥0.11, while 25% in the case 

of the 24 RGB-based VI x location x date combinations (Table 1.18 – Section “Vegetative growth 

stages”). Conversely, during the reproductive period (R1-R5), the greatest effect of masking was 

on the RGB-based VI. Of the 52 RGB-based VI x location x date combinations, 27% of the time 

difference between R2
adj of masked from non-masked VI was ≥0.11, while only 3% in the case of 

the 30 RGB-based VI x location x date combinations (Table 1.18 – Section “Reproductive growth 

stages”). 

Overall, the greater effect of masking on significance and fit of the regression models 

between VI and yield was at vegetative growth stages. Difference in the percentage of significant 

models based on masked versus non-masked VI was greater at vegetative growth stages (21%) 

compared to reproductive stages (7%). Likewise, at vegetative growth stages, 28% of the time 

difference between R2
adj of masked from non-masked VI was ≥0.11, while 18% at reproductive 

stages. 

During the vegetative period, background reflectance was composed mainly by soil, 

shadow, and sometimes by crop residue. In soil and dry grass, Red reflectance is close to or greater 

than Green, which is the opposite for green grass (Figure 1.6). At vegetative growth stages plants 

are small, and most of the area is covered by soil. Therefore, the high Red reflectance of soil may 

artificially modify the calculated VI value. Masking the background in this situation should 

improve the accuracy of the VI by better isolating the vegetative fraction, which is supported by 

the results of this study. 
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At reproductive growth stages, when canopy cover was greater and background pixels were 

composed mainly by plant’s shadows, the effect of masking was lower compared to vegetative 

growth stages. Moreover, during the reproductive period, the NIR-based VI were less impacted 

than RGB indices. Although reflectance is lower in shaded than in sunlit canopy (Zhang et al., 

2015; Hsieh et al., 2016), NIR reflectance is still much greater than the reflectance in the visible 

spectrum (Figure 1.7), which might explain why the effect of masking was lower on NIR than 

RGB-based VI.  

Vegetative indices derived from UAV imagery as predictors of grain yield during the growing 

season 

Among the RGB-based VI, in most cases PPRB was one of the best predictors of yield 

across locations and growth stages, followed by ExG, VDVI, and VIg (Table 1.18). The main 

difference between PPRB and the other RGB-based VI is that PPRB includes only Green and Blue 

in its formula, and not Red. Reflectance in Red varies depending on plant health. In healthy plants, 

Red is lower than Green reflectance because of the absorption of Red light by the chloroplast. In 

plant under stress, Red reflectance is similarly or slightly greater than Green due to less Red 

absorption. Conversely, Blue reflectance is lower than Green regardless of plant status. Likewise, 

NIR reflectance is greater than Blue, Green, and Red independently of the plant status. These may 

explain why PPRB, which only use the Green and Blue bands, had similar results to the NIR-based 

VI across most locations and growth stages.  

On the other hand, the NIR-based MSAVI, NDVI, OSAVI, SAVI had similar R2
adj values, 

while GNDVI values were usually different. All the NIR-based VI include NIR and Red band in 

its formula, except GNDVI, which uses NIR and Green. This is the main reason why results based 

on GNDVI were different to the other NIR-based VI.  

1.4.4 Treatment contrasts 

Sulfur deficiency in maize can be identified visually when plants exhibit a general yellow-

green color from top to bottom and visible leaf striping (Camberato et al., 2020). In this section, 

RGB and NIR-based VI derived from UAV imagery were used to assess the effects of sulfur 

fertilizer treatments on crop reflectance during the growing season, and to determine whether 

removal of soil and shadow background pixels from the VI under analysis improved the 
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assessment of crop responses to experimental treatments. Since sulfur treatments at TPAC 2019 

did not significantly affect yield, this location was not included in this analysis.  

For the following analysis, the acronym of a VI without any notation (e.g., ExG) represents 

both masked and non-masked VI unless indicated. Masked version of a VI is followed by the letter 

m (e.g., ExGm), while the non-masked version is indicated by “non-masked” (e.g., non-masked 

ExG). All fertilizer rates are described in units of kg ha-1. For instance, 3S vs. 6S refers to 3 kg S 

ha-1 vs. 6 kg S ha-1. 

Effects of experimental treatments on VI derived from UAV imagery 

Crop response to at-planting treatments 

Two of the trials included planter-applied starter fertilizer S or starter S + N treatments 

(Tables 1.19 and 1.20). . For PPAC 2017, two contrasts were developed to compare 1) No starter 

fertilizer versus Starter N and 2) Starter N versus Starter N + S. At PPAC 2018, the single contrast 

was Starter N versus Starter N + S.  

Differences in crop reflectance at V6-V8 between these at-planting treatments, prior to 

additional sidedress fertilizer treatments, were significant at both locations for the RGB-based ExG, 

non-masked PPRB and VDVI (Tables 1.19 and Table 1.20). At PPAC 2017, both contrasts were 

significant for VIg, but at PPAC 2018 the single contrast for VIg was not significant.  

At PPAC 2018 (Table 1.20), where NIR imagery was available, the contrast between no 

starter fertilizer S and starter fertilizer 6S was significant for all NIR-based VI (masked and non-

masked), except GNDVI. 

Interestingly, even though most of the VI detected differences in crop reflectance for these 

starter fertilizer treatments at growth stages V6 – V8, grain yield at the end of the season was not 

affected by these same starter fertilizer treatments at either location. These results reinforce the 

results of previous research that often documents early season effects of starter fertilizer on plant 

appearance or development, but infrequent effects on grain yield (Lee et al., 2020).  

Crop responses to initial sidedress treatments (prior to second sidedress treatments) 

The Simpson 2018 trial included split-sidedress N and S fertilizer treatments (V3 and V12). 

Prior to the second sidedress set of treatments, the three contrasts of interest were the V3 
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applications of 1) 196N vs. 98N, 2) 23S vs. 34S, and 3) 11S vs. 17S. For crop reflectance from 

flights at growth stages V8-V9 (15 DAT), there were only 6 significant contrasts among the 

combined total of 54 for all the RGB and NIR-based VI (Table 1.21). In addition, none of the three 

contrasts were significant for grain yield.  

Crop responses after final sidedress fertilizer treatments 

Grain yield increased significantly in response to applied sulfur fertilizer at all five 

locations (Table 1.10). Not surprisingly, the single contrast comparing zero sulfur with all 

rates/timings of applied sulfur reinforced that significant response at each location (Tables 1.19 – 

1.23). Differences in crop reflectance during the growing season following the final sidedress 

application of treatments were also significant based on the VI derived from UAV imagery (Tables 

1.19 to 1.23). In locations at growth stages V11 to V15 (PPAC 2017, 2018, and 2019), where the 

timing of the flights for UAV imagery acquisition ranged from 18 to 27 days after sidedress 

fertilizer applications had been made, the same single contrast for the RGB-based ExG, PPRB, 

and VDVIm was consistently significant (Tables 1.19, 1.20, and 1.22). At PPAC 2018, where NIR 

imagery was available, all the NIR-based VI (except GNDVI) contrasts were significant too (Table 

1.20). At reproductive growth stages R1 to R4, the contrast between zero S and all S treatments 

was significant for ExG, PPRB, VDVI, and all the NIR-based VI (except GNDVI) across all 

locations (Tables 1.19 to 1.23). At reproductive growth stage R5 (dent), the same contrast was 

significant only for non-masked ExG, GNDVI, and the masked versions of the rest of NIR-based 

VI across all locations.  

While the comparison between the zero sulfur and all of the sulfur treatments was one of 

the main objectives in these trials, it is also of interest to agronomists and farmers to find out yield 

response to different S fertilizer rates. Across the five locations evaluated, the S rates ranged from 

3 up to 34 kg S ha-1.  

The two lowest S rates were 3 and 6 kg S ha-1, which were evaluated in the form of starter 

fertilizer applications in PPAC 2017 (Table 1.19) and PPAC 2018 (Table 1.20), respectively. Grain 

yield did not respond to either of these two starter fertilizer rates of S (Tables 1.10, 1.19, 1.20). 

However, differences in crop reflectance were detected at various times during the growing season. 

Particularly, the contrast between zero S and 3S at PPAC 2017 was significant based on the 

majority of RGB-based VI at V12-V13, and based on ExG at R3 (Table 1.19). At PPAC 2018, the 
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contrast between the zero S and 6S was significant only during the reproductive period based on 

the masked version of the NIR-based VI (except GNDVI) (Table 1.20). In 2019, a sidedress 

fertilizer application rate of 8 kg S ha-1 was evaluated at PPAC. In contrast to the lower S rates 

applied as starter fertilizer in 2017 and 2018 at PPAC, the contrast between zero S and 8S was 

significant for grain yield at PPAC 2019 (Table 1.22). Likewise, the contrast was significant for 

most of the RGB-based VI at V11-V12, but only specific VI during the reproductive period. 

Adding 8 kg S ha-1 at sidedress increased yield by 0.8 Mg ha-1 at PPAC 2019 compared to no S 

(Table 1.10). As expected, S rates higher than 8S also affected grain yield and crop reflectance 

compared to the zero S treatment. At PPAC 2018 (Table 1.20), for the two contrast of interest 1) 

0S vs. both 17S, and 2) 0S vs. both 28S, the difference was consistently significant across growth 

stages for ExG, VDVI, NDVIm, MSAVIm, OSAVIm, and SAVIm. 

At PPAC 2019 (Table 1.22) and Simpson 2019 (Table 1.23), the treatments with the lowest 

S rates (8S and 11S respectively) also resulted in higher grain yield than zero S, but no further 

yield increases occurred with higher S rates. Likewise, most VI across the locations and growth 

stages did not show a significant response to S rates higher than the lowest in the trial. Not 

surprisingly, contrasts between specific S rates (17S vs. 28S at PPAC 2018 and 23S vs. 34S at 

Simpson 2018) did not show a significant difference on yield and most VI across the growth stages 

either (Table 1.20 – 1.21). 

With respect to the effect of S application timing, contrasts between same S rate, applied 

once vs. split (17S vs split 17S at PPAC 2017, 23S vs. split 23S and 34S vs split 34S at Simpson 

2018), were not significant based on most VI across growth stages and neither on yield (Table 1.19 

– 1.20). Similarly, the contrast between 196N and split 196N at Simpson 2018 was not significant 

based on most VI during the reproductive period, and neither on yield (Table 1.21). 

Effects on background removal on treatment contrast analysis 

Contrasts prior to final sidedress 

None of the treatment contrasts focused on the effect of planter-applied starter S or starter 

S + N fertilizer treatments were significant for grain yield (Tables 1.19 and 1.20). Nevertheless, 

the effects of starter fertilizer treatments were significant for specific VI at growth stages V6 – V8. 

Masking background pixels from VI had minimal effects on the significance of the treatment 
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contrasts. At PPAC 2017 (Table 1.19), masking PPRB actually resulted in non-significant 

contrasts between 1) Zero starter and Starter N and 2) Starter N and Starter N+S, whereas the non-

masked PPRB contrasts were significant. At PPAC 2018 (Table 1.20), masking the VI had no 

effect on contrast significance at all.  

The Simpson 2018 trial included two sidedress fertilizer application timings. The 3 

contrasts constructed for the analysis of VI data prior to the final sidedress application focused on 

1) full N rate versus half N rate, 2) 23S versus 34S, and 3) 11S versus 17S (Table 1.21). Few of 

the contrasts among the VI were significant, which correlated with the absence of significant 

contrasts for yield. Masking did not have a consistent effect on the significance of the contrasts. 

The first contrast was significant only for PPRBm. The second contrast was significant for none of 

the VI. The third contrast was significant for non-masked PPRB, non-masked MSAVI, NDVIm, 

non-masked OSAVI, and non-masked SAVI. 

Contrasts after final sidedress 

Not all of the contrasts evaluated for post-sidedress treatments were significant for grain 

yield, and neither were they for the various VI. In fact, although some treatment contrasts were 

significant for specific VI during the vegetative or reproductive period, similar significant contrasts 

for yield were not observed (Tables 1.19 to 1.23). Since the main objective of conducting sulfur 

fertilizer trials is to assess the effects of different sulfur rates and timing application on grain yield, 

the following analysis is focused only on the treatment contrasts that were significant for grain 

yield. Data presented in this section is summarized in Table 1.25. 

Of the 84 contrasts conducted for the RGB-based VI, 11% became significant after 

masking, 17% increased their level of significance after masking, 58% remained significant, 1% 

decreased their level of significance after masking, 11% remained non-significant, and 2% 

changed from significant to non-significant after masking. RGB-based VI. In the case of the 55 

contrasts evaluated for the NIR-based VI, 16% became significant after masking, 22% increased 

their level of significance after masking, 49% remained significant, 6% decreased their level of 

significance after masking, 6% remained non-significant, and 2% changed from significant to non-

significant after masking. 

Overall, these results suggest that the effect of masking was greater for the NIR-based VI. 

Nevertheless, the effects varied dependent on growth stage and the specific VI of interest. Of the 
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55 contrasts conducted based on the NIR-based VI, 15 correspond to the vegetative period (V14-

V15) and 40 to the reproductive (R1-R5). Of the contrasts conducted at growth stages V14-V15, 

67% became significant or had a greater significance level with masking, while only 28% of the 

contrasts conducted at reproductive stages improved with masking. In fact, during the reproductive 

period, 10% of the contrasts for the NIR-based VI either became non-significant or decreased the 

level of significance.  

Overall, most treatment contrasts results for RGB-based or NIR-based VI remained the 

same after masking. Nevertheless, treatment contrasts based on NDVI, MSAVI, OSAVI and SAVI 

were likely to become significant or have a greater significance level (lower P-value) after masking 

background, and the opposite for contrasts based on GDNVI. As regard of the RGB-based VI, 

masking was likely beneficial for PPRB, VDVI, and VIg regardless of the growth stage evaluated, 

while changes in treatment contrasts based on ExG after masking varied depending on the growth 

stage. 

1.5 Conclusions 

Overall, the greatest effect of masking on significance and fit of the regression models 

between VI and yield was at vegetative growth stages. Differences in the percentage of significant 

models based on masked versus non-masked VI was greater at vegetative growth stages (21%) 

compared to reproductive stages (7%). Likewise, at vegetative growth stages, 28% of the time the 

difference between R2
adj of masked and non-masked VI was ≥0.11, while 18% at reproductive 

stages. Most of the area is covered by soil when plants are small, thus high Red reflectance of soil 

may artificially modify the calculated VI value. Masking the background in this situation improved 

the accuracy of VI by better isolating the vegetative fraction. The greatest effect of masking during 

the vegetative period (V8-V15) was on the NIR-based VI, while during the reproductive period 

(R1-R5), the greatest effect of masking was on the RGB-based VI. Although reflectance is lower 

in shaded than in sunlit canopy (Zhang et al., 2015; Hsieh et al., 2016), NIR reflectance is still 

much greater than the reflectance in the visible spectrum, which might explain why the effect of 

masking was lower on NIR than RGB-based VI at reproductive stages. 

Effects of background masking on treatment contrast analysis were not consistently 

beneficial for the contrasts conducted prior to final sidedress. After final sidedress, attention was 

focused on the treatment contrasts that were significant for grain yield. Results suggest that 
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treatment contrasts based on NDVI, MSAVI, OSAVI and SAVI were likely to become significant 

or have a greater significance level after masking background, and the opposite based on GDNVI. 

As regard of the RGB-based VI, masking was likely beneficial for PPRB, VDVI, and VIg 

regardless of the growth stage evaluated, while for ExG varied dependent on growth stage. 
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Figure 1.1. Spectral reflectance of maize canopies with different chlorophyll (Chl) and nitrogen 

(N) contents (g m-2). The solid line represents reflectance under the lowest canopy chlorophyll and 

nitrogen contents, when plants are under stress and starting to senescence. The heaviest dashed 

line represents reflectance under the highest canopy chlorophyll and nitrogen contents, when 

plants are green and “healthy”. Source: Schlemmer et al. (2013). 

 

 

Figure 1.2. Maize plants (vegetative growth stage V6) and their shadows in UAV image (91.4 m 

above ground level, 2 cm per pixel resolution) captured 3 hours before solar noon on June 22 at 

the Northeast-Purdue Agricultural Center near Columbia City, IN.  
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Table 1.1. Description of soils and percentage of field by soil type for field trials evaluated in this study. Data obtained from: WebSoilSurvey. 

Location Year 
Field ID 

and (area) 

% of field 

area 
Slope Soil series Family 

PPAC 2017 100 

(40 ha) 

61 

36 

3 

0-1% 

0-1% 

0-3% 

Gilford 

Maumee 

Brems 

Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls 

Sandy, mixed, mesic Typic Endoaquolls 

Mixed, mesic Aquic Udipsamments 
 

 

2018 100E 

(21 ha) 

55 

45 

0-1% 

0-1% 

Maumee 

Gilford 

Sandy, mixed, mesic Typic Endoaquolls 

Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls 
 

 

2019 100W 

(21 ha) 

76 

17 

7 

0-1% 

0-1% 

0-3% 

Gilford 

Maumee 

Brems 

Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls 

Sandy, mixed, mesic Typic Endoaquolls 

Mixed, mesic Aquic Udipsamments 

TPAC 2019 MS5 

(16 ha) 

45 

26 

16 

8 

3 

2 

1-3% 

0-2% 

0-2% 

0-2% 

2-6% 

0-2% 

Throckmorton 

Toronto-Millbrook 

Drummer 

Starks-Fincastle 

Lauramie 

Mellott 

Fine-silty, mixed, superactive, mesic Mollic Oxyaquic Hapludalfs 

Fine-silty, mixed, superactive, mesic Udollic Epiaqualfs 

Fine-silty, mixed, superactive, mesic Typic Endoaquolls 

Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs 

Fine-loamy, mixed, active, mesic Mollic Hapludalfs 

Fine-silty, mixed, superactive, mesic Mollic Hapludalfs 

Simpson 2018 Gordon 

(24 ha) 

57 

43 

0-2% 

0-2% 

Brookston 

Crosby 

Fine-loamy, mixed, superactive, mesic Typic Argiaquolls 

Fine, mixed, active, mesic Aeric Epiaqualfs 
 

 

2019 Marvin 

(21 ha) 

60 

40 

0-2% 

0-2% 

Brookston 

Crosby 
Fine-loamy, mixed, superactive, mesic Typic Argiaquolls 

Fine, mixed, active, mesic Aeric Epiaqualfs 

Vincent 2018 Home 

(27 ha) 

77 

23 

0-1% 

0-2% 

Pewamo 

Blount 
Fine, mixed, active, mesic Typic Argiaquolls 

Fine, illitic, mesic Aeric Epiaqualfs 
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Table 1.2. Planting date, hybrid, previous crop, and tillage practice for each field trial in 2017, 2018, and 2019. 

Location Year 
Field 

ID 

Planting 

date 
Hybrid 

Seeding 

rate 

seeds ha-1 

Previous 

crop 

Tillage 

practice 

PPAC 2017 100 15-May P0825AMXT 69,000 Soybean  No-till 

2018 100E 10-May P1197AMXT 74,000 Maize No-till 

2019 100W 20-May P1197AMXT 79,000 Soybean No-till 

TPAC 2019 MS5 3-June P1197AMXT 74,000 Soybean Conventional 

Simpson 2018 Gordon 5-May Channel 

210-26 

80,275 Soybean No-till 

2019 Marvin 29-May Channel 

209-15VT2TRIB 

80,275 Soybean No-till 

Vincent 2018 Home 27-April NuTech 5FB 6313 84,000 Wheat 

(cover crop) 

Strip-till 
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Table 1.3. Number of treatments, fertilizer rates, replications, date and crop growth stage at sidedress for each 

location. 

Location Year 

Treatments 

Reps 
Sidedress 

date 
Stage at 

sidedress  
At planting 

(kg S or N ha-1) 

At sidedress a 

(kg S, N, or B ha-1) 

PPAC 2017 1) 0 S; 0 N  

2) 0 S; 27 N  

3) 3 S; 27 N 

4) 0 S; 0 N 

5) 0 S; 27 N 

6) 3 S; 27 N 

1) 0 S  

2) 0 S  

3) 0 S 

4) 17 S 

5) 17 S 

6) 14 S 

6 20-June V6 

2018 1) 0 S  

2) 6 S 

3) 0 S 

4) 6 S 

5) 0 S 

6) 6 S 

1) 0 S  

2) 0 S 

3) 17 S 

4) 11 S 

5) 28 S 

6) 22 S 

6 13-June V6 

2019 None 1) 0 S + 0.4 B 

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 

5 26-June V5 

TPAC 2019 None 1) 0 S + 0.4 B 

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 

6 3-July V6 

Simpson 2018 None 1st / 2nd sidedress 

1) 0S/196N: 0S/0N 

2) 0S/98N:  0S/98N 

3) 23S/196N:  0S/0N 

4) 11S/98N:  12S/98N 

5) 34S/196N:  0S/0N 

6) 17S/98N:  17S/98N 

5 29-May 

25-Jun 

V3 

V12 

2019 None 1) 0  

2) 11  

3) 17  

4) 22 S 

5) 22 S + 0.4 B 

7 28-June V5 

Vincent 2018  

None 

1) 0 N  

2) 56 N 

3) 101 N 

4) 146 N 

5) 191 N 

4 4-June V6 

a In 2019, 0.4 kg ha-1of boron (B) was added to all sulfur treatments (except treatment 6) at PPAC and TPAC. At 

Simpson, only treatment number 5 included 0.4 kg B ha-1of boron. 
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Table 1.4. Dates of harvest at each location. 

Location Year Date  

PPAC 2017 8-November 

2018 22-October 

2019 5-November 

TPAC 2019 5-December 

Simpson 2018 20-September 

2019 23-October 

Vincent 2018 8-November 

 

 

 

Table 1.5. Specifications of cameras used for imagery acquisition. 

Camera make 

and model 

UAV 

make 

and 
model 

Spectral 

bands 
Megapixels 

Dynamic 

range 

Field of 

view (FOV) 
Aperture Sensor 

DJI FC6310 DJI 

Phantom 
4 Pro 

R-G-B 20 MP 8-bit 84° f/2.8-f/11 CMOS, 1-inch 

Zenmuse X4S DJI 

Matrice 

200 

R-G-B 20 MP 8-bit 84° f/2.8-f/11 CMOS, 1-inch 

Modified 

Zenmuse X4S 

DJI 

Matrice 

200 

R-G-NIR 20 MP 8-bit 84° f/2.8-f/11 CMOS, 1-inch 

Hasselblad L1D-

20c 

DJI 

Mavic 2 

Pro 

R-G-B 20 MP 10-bit 77° f/2.8-f/11 CMOS, 1-inch 
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Table 1.6. Date, maize growth stage, sensor, time, flight altitude, and flight path overlap for each flight.  

Year 
Field 

ID 
Date 

Maize 

growth 

stage 

Days after 

treatment 

application 

(DAT) 

Sensor and 

platform 

Time of 

flight 

Flight altitude and flight 

path overlaps 

PPAC 

2017 100 21-Jun V7-8 1 RGB - P4P 13:07 120 m; 65% side - 75% front  

8-Jul V12-13 18 RGB - P4P 13:29 120 m; 75% side - 90% front 

8-Aug R3 49 RGB - P4P 11:23 120 m; 85% side - 85% front 

2018 100E 11-Jun V6 NAa RGB - M200 

NIR - M200 

14:04 

14:26 

120 m; 75% side - 85% front 

10-Jul V14-15 27 RGB - M200 

NIR - M200 

10:00 

10:25 

120 m; 75% side - 85% front 

9-Aug R3 57 RGB - M200 

NIR - M200 

11:54 

12:19 

120 m; 75% side - 85% front 

12-Sep R5 91 RGB - M200 

NIR - M200 

09:12 

09:34 

120 m; 75% side - 85% front 

2019 100W 15-Jul V10-11 19 RGB - M2P 13:00 120 m; 75% side - 75% front 

2-Aug R1 37 RGB - M2P 11:53 120 m; 75% side - 75% front 

19-Sep R5 85 RGB - M2P 13:06 120 m; 75% side - 80% front 

TPAC 

2019 MS5 13-Jul V10 11 RGB - M2P 13:01 60 m; 70% side - 70% front 

9-Aug R2 37 RGB - M2P 17:22 90 m; 75% side - 75% front 

14-Sept R5 73 RGB - M2P 10:26 120 m; 80% side - 85% front 

Simpson 

2018 

 

Gordon 13-Jun V8-9 15 

after 1st 

sidedress 

RGB - M200 

NIR - M200 

11:00 

11:31 

120 m; 75% side - 85% front 

13-Jul R2 18 

after 2nd 

sidedress 

RGB - M200 

NIR - M200 

09:25 

10:00 

120 m; 75% side - 85% front 

29-Aug R5 65 

after 2nd 

sidedress 

RGB - M200 

NIR - M200 

10:35 

11:16 

120 m; 75% side - 85% front 

2019 Marvin 8-Aug R2 41 RGB - M200 11:16 120 m; 75% side - 75% front 

18-Sep R5 82 RGB - M2P 11:36 120 m; 80% side - 75% front 

Vincent 

2018 Home 18-Jun V8-10 14 RGB - M200 

NIR - M200 

10:09 

10:36 

120 m; 75% side - 85% front 

11-Jul R1 37 RGB - M200 

NIR - M200 

10:55 

11:31 

120 m; 75% side - 85% front 

14-Aug R5 92 RGB - M200 

NIR - M200 

12:12 

11:37 

120 m; 75% side - 85% front 

a Does not apply (NA) indicates that sidedress treatments were not yet applied. 
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Table 1.7. Vegetative indices (VI) evaluated in this study, their formulas, and the researchers who first developed 

each VI. 

Vegetative 

index 
Index full name Formula Reference 

RGB-based VI 

ExG Excess Green Index [2G-R-B] Woebbecke et al. (1995) 

PPBR Plant Pigment Ratio [(G-B)/(G+B)] Metternicht (2003) 

VDVI 
Visible-band Difference Vegetation 

Index 
[(2G-B-R)/(2G+B+R)] 

Wang Xiaoqin et al. 

(2015) 

VIg Vegetation Index Green [(G-R)/(G+R)] Tucker (1978) 

NIR-based VI 

NDVI 
Normalized Difference Vegetation 

Index 
[(NIR-R)/(NIR+R)] Rouse et al. (1973) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
[(NIR-G)/(NIR+G)] Gitelson et al. (1996) 

SAVI Soil-Adjusted Vegetation Index [(NIR-R)/(NIR+R+L)]x(1+L) Huete (1988) 

OSAVI 
Optimized Soil-Adjusted Vegetation 

Index 
[(NIR-R)/(NIR+R+0.16)] Baret et al. (1993) 

MSAVI 
Modified Soil-Adjusted Vegetation 

Index 

[2xNIR+1-[√(2xNIRx1)2 -

8x(NIR-R))]]/2 
Qi et al. (1994) 
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Table 1.8. Treatment contrast per each location. 

Location Year 

Treatments Contrast 

At planting 

(kg S or N ha-1) 

At sidedress 

(kg S, N, or B ha-1) 
Prior sidedress After sidedress 

PPAC 2017 1) 0 S; 0 N  

2) 0 S; 27 N  

3) 3 S; 27 N 

4) 0 S; 0 N 
5) 0 S; 27 N 

6) 3 S; 27 N 

1) 0 S  

2) 0 S  

3) 0 S 

4) 17 S 
5) 17 S 

6) 14 S 

T1&4 vs. T2&T5 

T2&T5 vs. T3&T6 

 

T1&T2 vs. T3-T6 

T2 vs. T3 

T5 vs. T6 

T1 vs. T2 

2018 1) 0 S  

2) 6 S 

3) 0 S 

4) 6 S 

5) 0 S 
6) 6 S 

1) 0 S  

2) 0 S 

3) 17 S 

4) 11 S 

5) 28 S 
6) 22 S 

T1&T3&T5 vs. 

T2&T4&T6 

T1 vs. T2-T6 

T1 vs. T2 

T1 vs. T3&T4 

T1 vs. T5&T6 

T3&T4 vs. T5&T6 

2019 None 1) 0 S + 0.4 B 

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 

None T1 vs. T2-T5 

T2 vs. T3-T5 

T1 vs. T2 

T4 vs. T6 

TPAC 2019 None 1) 0 S + 0.4 B 

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 

None T1 vs. T2-T5  

T2 vs. T3-T5  

T4 vs. T6 

Simpson 2018 None 1st / 2nd sidedress 

1) 0S/196N: 0S/0N 

2) 0S/98N: 0S/98N 

3) 23S/196N: 0S/0N 

4) 11S/98N: 12S/98N 

5) 34S/196N: 0S/0N 

6) 17S/98N: 17S/98N 

Prior 2nd sidedress: 

T1 vs T2  

T3 vs T5  

T4 vs T6 

After 2nd sidedress 

T1 vs. T2 

T1&T2 vs. T3-T6 

T3&T4 vs. T5-T6 

T3 vs. T4 

T5 vs. T6 

2019 None 1) 0 S  

2) 11 

3) 17  

4) 22 S 

5) 22 S + 0.4 B 

None T1 vs. T2-T4 

T2 vs. T3&T4 

T4 vs. T5 
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Table 1.9. Average monthly air temperature and accumulated precipitation from 1 May to 31 October for all study locations. Values in parentheses represent the 

deviation from the 30-year average (1981-2010). 

Year Location 
Air temperature (°C) a   Precipitation (mm) b 

May Jun Jul Aug Sept Oct   May Jun Jul Aug Sept Oct 

2017 PPAC 13.9 21.4 22.0 19.8 18.3 13.8   140 68 199 56 37 153 

(-2.2) (+0.4) (-0.5) (-2.1) (+0.3) (+1.7)   (+39) (-36) (+85) (-56) (-49) (+61) 

2018 PPAC 19.2 21.6 22.3 22.5 19.5 11.4   115 109 38 145 64 147 

(+3.1) (+0.6) (-0.2) (+0.6) (+1.4) (-0.7)  (+13) (+5) (-76) (+33) (-22) (+56)  
Simpson 21.6 23.2 23.9 23.3 21.7 13.4  48 142 117 178 152 27 

(+5.1) (+1.4) (+0.4) (+0.6) (+2.9) (+1.3)  (-83) (+26) (+2) (+87) (+69) (-56)  
Vincent 20.1 22.4 22.7 22.5 20.2 11.6  35 171 98 282 167 91 

(+4.2) (+1.2) (-0.2) (+0.6) (+2.1) (+0.2)   (-77) (+61) (-24) (+182) (+80) (+10) 

2019 PPAC 15.0 19.9 23.6 21.0 19.7 11.3   168 121 74 54 158 93 

(-1.1) (-1.2) (+1.1) (-0.9) (+1.6) (-0.8)  (+67) (+17) (-40) (-58) (+73) (+2)  
Simpson 17.2 21.2 25.1 22.5 21.4 12.7  104 155 139 80 21 119 

(+0.6) (-0.6) (+1.6) (-0.2) (+2.6) (+0.6)  (-27) (+39) (+23) (-11) (-63) (+36)  
TPAC 16.7 21.2 24.7 21.9 21.1 12.9  129 97 74 84 62 102 

(+0.1) (-0.6) (+1.3) (-0.5) (+2.3) (+0.8)   (+11) (-18) (-30) (-16) (-9) (+34) 
a For air temperature, blue and red shadows represent deviations below and above the 30-yr monthly average respectively. Darker shading indicates a greater 

deviation. 
b For precipitation, yellow and blue shadows represent deviations below and above the 30-yr monthly average respectively. Darker shading indicates a greater 

deviation. 
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Table 1.10. Mean grain yield and coefficient of variation (CV%) per location, mean grain yield per fertilizer 

treatment, analysis of variance results, and Fisher's least significant difference (LSD) between treatments for each of 

the locations evaluated. 

Year 

Mean 

grain yield 

(Mg ha-1) 
CV% 

 

Treatments Mean grain 

yield per 

treatment 

(Mg ha-1) 

P-value a LSD b 
At planting At sidedress 

(kg S or N, ha-1) (kg S, N, or B ha-1) 

PPAC        

2017 14.1 2.3 1) 0 S; 0 N 1) 0 S 13.6 <0.0001 0.3  
 2) 0 S; 27 N 2) 0 S 13.7    
 3) 3 S; 27 N 3) 0 S 13.7    
 4) 0 S; 0 N 4) 17 S 14.4    
 5) 0 S; 27 N 5) 17 S 14.5    
 6) 3 S; 27 N 6) 14 S 14.6   

2018 12.4 3.2 1) 0 S 1) 0 S 11.4 <0.0001 0.4  
 2) 6 S 2) 0 S 11.6    
 3) 0 S 3) 17 S 12.9    
 4) 6 S 4) 11 S 12.6    
 5) 0 S 5) 28 S 12.9    
 6) 6 S 6) 22 S 12.7   

2019 12.0 1.2 None 1) 0 S + 0.4 B 11.3 <0.0001 0.2  
  2) 8 S + 0.4 B 12.1    
  3) 17 S + 0.4 B 12.2    
  4) 25 S + 0.4 B 12.1    
  5) 34 S + 0.4 B 12.2    
  6) 25 S 12.1   

TPAC        

2019 14.1 1.8 None 1) 0 S + 0.4 B 14.1 0.21 ns  
  2) 8 S + 0.4 B 13.9    
  3) 17 S + 0.4 B 14.3    
  4) 25 S + 0.4 B 13.9    
  5) 34 S + 0.4 B 14.0    
  6) 25 S 14.1   

Simpson        

2018 13.5 3.0 None 1) 0S/196N: 0S/0N 12.4 <0.0001 0.4  
  2) 0S/98N:  0S/98N 12.7    
  3) 23S/196N:  0S/0N 14.0    
  4) 11S/98N:  12S/98N 13.9    
  5) 34S/196N:  0S/0N 13.9    
  6) 17S/98N:  17S/98N 14.0   

2019 12.7 7.1 None 1) 0 S 11.5 0.01 0.8  
  2) 11 13.1    
  3) 17 13.2    
  4) 22 S 12.6    
  5) 22 S + 0.4 B 13.1   

Vincent        

2018 12.8 2.7 None 1) 0 N 8.2 <0.0001 0.4  
  2) 56 N 12.6    
  3) 101 N 13.9    
  4) 146 N 14.6    
  5) 191 N 14.9   

a P-value ≤ 0.10 indicate that there was a significant yield response to fertilizer treatments. 
b LSD= Least significant difference is the minimal difference between any two treatment means that is statistically 

significant (α=0.10).  
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Table 1.11. Regression analysis results between RGB-based vegetative indices (VI) and yield (Mg ha-1) at vegetative 

growth stages V12-V13 and reproductive stage R3 at PPAC 2017.  

VI a 

V12-V13, 18 DAT b R3, 49 DAT 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

ExGm <0.0001 0.51 0.4 <0.0001 0.76 0.3 

ExG <0.0001 0.53 0.4 <0.0001 0.75 0.3 

PPRBm <0.0001 0.57 0.4 <0.0001 0.80 0.2 

PPRB <0.0001 0.45 0.4 <0.0001 0.82 0.2 

VDVIm 0.0002 0.31 0.5 <0.0001 0.69 0.3 

VDVI 0.12 0.04 0.5 <0.0001 0.71 0.3 

VIgm 0.0001 0.34 0.4 0.41 -0.01 0.6 

VIg 0.001 0.27 0.5 0.38 -0.01 0.3 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed biomass values and those predicted 

by the model.  
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Table 1.12. Regression analysis results between RGB and NIR-based vegetative indices (VI) and yield (Mg ha-1) at 

vegetative growth stages V14-V15, and reproductive stages R3-R4, and R5 at PPAC 2018.  

VI a 

V14-V15, 27 DAT b R3-R4, 57 DAT R5, 91 DAT 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

RGB-based VI 

ExGm <0.0001 0.38 0.6 <0.0001 0.78 0.3 <0.0001 0.42 0.6 

ExG 0.0001 0.33 0.6 <0.0001 0.75 0.4 0.002 0.22 0.6 

PPRBm <0.0001 0.52 0.5 <0.0001 0.88 0.2 0.54 -0.02 0.7 

PPRB <0.0001 0.51 0.5 <0.0001 0.85 0.3 0.91 -0.03 0.7 

VDVIm <0.0001 0.56 0.5 <0.0001 0.85 0.3 <0.0001 0.49 0.5 

VDVI <0.0001 0.44 0.5 <0.0001 0.59 0.5 <0.0001 0.49 0.5 

VIgm 0.20 0.02 0.7 0.0003 0.31 0.6 <0.0001 0.58 0.5 

VIg 0.39 -0.01 0.7 0.09 0.06 0.7 <0.0001 0.63 0.4 

NIR-based VI 

GNDVIm 0.05 0.08 0.7 <0.0001 0.41 0.6 <0.0001 0.68 0.4 

GNDVI 0.15 0.03 0.7 <0.0001 0.42 0.6 <0.0001 0.78 0.3 

MSAVIm <0.0001 0.64 0.4 <0.0001 0.82 0.3 0.02 0.12 0.7 

MSAVI <0.0001 0.45 0.5 <0.0001 0.83 0.3 0.14 0.03 0.7 

NDVIm <0.0001 0.63 0.4 <0.0001 0.82 0.3 0.03 0.11 0.7 

NDVI <0.0001 0.42 0.5 <0.0001 0.82 0.3 0.06 0.07 0.7 

OSAVIm <0.0001 0.62 0.4 <0.0001 0.82 0.3 0.02 0.13 0.7 

OSAVI <0.0001 0.43 0.5 <0.0001 0.82 0.3 0.05 0.08 0.7 

SAVIm <0.0001 0.64 0.4 <0.0001 0.82 0.3 0.02 0.11 0.7 

SAVI <0.0001 0.42 0.5 <0.0001 0.82 0.3 0.06 0.08 0.7 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green) and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, 

MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, 

OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed biomass values and those predicted 

by the model.  
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Table 1.13.  Regression analysis results between RGB and NIR-based vegetative indices (VI) and yield (Mg ha-1) at 

vegetative growth stages V8-V9, and reproductive stages R2, and R5 at Simpson 2018. 

VI a 

V8-V9, 15 DAT-1 b R2, 45 DAT-1 / 11 DAT-2 R5, 92 DAT-1 / 65 DAT-2 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

RGB-based VI 

ExGm 0.30 0.00 0.8 <0.0001 0.85 0.3 <0.0001 0.73 0.4 

ExG 0.77 -0.03 0.8 <0.0001 0.87 0.3 <0.0001 0.75 0.4 

PPRBm 0.06 0.09 0.8 <0.0001 0.89 0.3 <0.0001 0.77 0.4 

PPRB 0.87 -0.03 0.8 <0.0001 0.89 0.3 <0.0001 0.74 0.4 

VDVIm 0.34 0.00 0.8 <0.0001 0.87 0.3 <0.0001 0.72 0.4 

VDVI 0.55 -0.02 0.8 <0.0001 0.76 0.4 <0.0001 0.68 0.5 

VIgm 0.84 -0.03 0.8 <0.0001 0.71 0.4 <0.0001 0.53 0.5 

VIg 0.43 -0.01 0.8 0.17 0.03 0.8 <0.0001 0.52 0.5 

NIR-based VI 

GNDVIm 0.08 0.08 0.8 0.98 -0.04 0.8 <0.0001 0.44 0.6 

GNDVI 0.06 0.09 0.8 1.00 -0.04 0.8 <0.0001 0.49 0.6 

MSAVIm 0.11 0.06 0.8 <0.0001 0.88 0.3 <0.0001 0.70 0.4 

MSAVI 0.13 0.05 0.8 <0.0001 0.83 0.3 <0.0001 0.68 0.4 

NDVIm 0.09 0.07 0.8 <0.0001 0.88 0.3 <0.0001 0.70 0.4 

NDVI 0.14 0.04 0.8 <0.0001 0.82 0.3 <0.0001 0.66 0.5 

OSAVIm 0.09 0.06 0.8 <0.0001 0.87 0.3 <0.0001 0.70 0.4 

OSAVI 0.15 0.04 0.8 <0.0001 0.82 0.3 <0.0001 0.66 0.5 

SAVIm 0.10  0.06 0.8 <0.0001 0.88 0.3 <0.0001 0.70 0.4 

SAVI 0.16 0.04 0.8 <0.0001 0.82 0.3 <0.0001 0.66 0.5 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green) and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, 

MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, 

OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index). 
b DAT-1= Days after treatment application at V3; DAT-2= Days after treatment application at V12. 
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed biomass values and those predicted 

by the model.  
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Table 1.14. Regression analysis results between RGB and NIR-based vegetative indices (VI) and yield (Mg ha-1) at 

vegetative growth stages V8-V10, and reproductive stages R1-R2, and R5 at Vincent 2018. 

VI a 

V8-V10, 14 DAT b R1-R2, 37 DAT R5, 92 DAT 

P-value c R2
adj 

d 
RMSE e, 
Mg ha-1 

P-value R2
adj 

RMSE, 
Mg ha-1 

P-value R2
adj 

RMSE, 
Mg ha-1 

RGB-based VI 

ExGm 0.02 0.24 2.2 <0.0001 0.97 0.5 <0.0001 0.96 0.5 

ExG 0.05 0.16 2.3 <0.0001 0.97 0.5 <0.0001 0.96 0.5 

PPRBm 0.02 0.24 2.2 <0.0001 0.96 0.5 <0.0001 0.97 0.5 

PPRB 0.18 0.05 2.5 <0.0001 0.95 0.6 <0.0001 0.95 0.6 

VDVIm 0.18 0.05 2.5 <0.0001 0.97 0.5 <0.0001 0.96 0.5 

VDVI 0.63 -0.04 2.6 <0.0001 0.91 0.8 <0.0001 0.80 1.1 

VIgm 0.73 -0.05 2.6 <0.0001 0.89 0.8 0.001 0.42 1.9 

VIg 0.93 -0.06 2.6 0.001 0.42 1.9 0.02 0.24 2.2 

NIR-based VI 

GNDVIm 0.91 -0.05 2.6 0.05 0.16 2.4 <0.0001 0.79 1.2 

GNDVI 0.60 -0.04 2.6 0.40 -0.01 2.6 <0.0001 0.79 1.2 

MSAVIm 0.01 0.29 2.2 <0.0001 0.96 0.5 <0.0001 0.96 0.5 

MSAVI 0.03 0.19 2.3 <0.0001 0.93 0.7 <0.0001 0.92 0.7 

NDVIm 0.01 0.29 2.2 <0.0001 0.96 0.5 <0.0001 0.96 0.5 

NDVI 0.03 0.19 2.3 <0.0001 0.93 0.7 <0.0001 0.91 0.8 

OSAVIm 0.01 0.28 2.2 <0.0001 0.96 0.5 <0.0001 0.96 0.5 

OSAVI 0.03 0.19 2.3 <0.0001 0.93 0.7 <0.0001 0.91 0.8 

SAVIm 0.01 0.29 2.2 <0.0001 0.96 0.5 <0.0001 0.96 0.5 

SAVI 0.03 0.19 2.3 <0.0001 0.92 0.7 <0.0001 0.91 0.8 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green) and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, 

MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, 

OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed biomass values and those predicted 

by the model. 
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Table 1.15. Regression analysis results between RGB-based vegetative indices (VI) and yield (Mg ha-1) at vegetative 

growth stages V11-V12, and reproductive stages R1, and R5 at PPAC 2019. 

VI a 

V11-V12, 19 DAT b R1, 37 DAT R5, 85 DAT 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

ExGm 0.005 0.22 0.3 0.01 0.18 0.3 0.58 -0.02 0.4 

ExG 0.01 0.19 0.3 0.01 0.19 0.3 0.21 0.02 0.4 

PPRBm <0.0001 0.50 0.3 0.002 0.26 0.3 <0.0001 0.50 0.3 

PPRB 0.002 0.28 0.3 0.02 0.14 0.3 0.004 0.23 0.3 

VDVIm 0.01 0.17 0.3 0.01 0.20 0.3 0.22 0.02 0.4 

VDVI 0.12 0.05 0.4 0.12 0.05 0.4 0.70 -0.03 0.4 

VIgm 0.54 -0.02 0.4 0.22 0.02 0.4 0.01 0.19 0.3 

VIg 0.65 -0.03 0.4 0.86 -0.03 0.4 0.02 0.16 0.3 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed yield values and those predicted by 

the model.  
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Table 1.16. Regression analysis results between RGB-based vegetative indices (VI) and yield (Mg ha-1) at vegetative 

growth stage V10, and reproductive stages R2 and R5 at TPAC 2019. 

VI a 

V10, 11 DAT b R2, 37 DAT R5, 73 DAT 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

ExGm 0.46 -0.01 0.3 0.02 0.13 0.3 0.72 -0.03 0.3 

ExG 0.23 0.01 0.3 0.05 0.08 0.3 0.86 -0.03 0.3 

PPRBm 0.32 0.00 0.3 0.02 0.12 0.3 0.51 -0.02 0.3 

PPRB 0.48 -0.01 0.3 0.19 0.02 0.3 0.92 -0.03 0.3 

VDVIm 0.46 -0.01 0.3 0.08 0.06 0.3 0.95 -0.03 0.3 

VDVI 0.11 0.05 0.3 0.43 -0.01 0.3 0.58 -0.02 0.3 

VIgm 0.03 0.10 0.3 0.53 -0.02 0.3 0.60 -0.02 0.3 

VIg 0.01 0.15 0.3 0.91 -0.03 0.3 0.40 -0.01 0.3 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 
RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed yield values and those predicted by 

the model. 

 

 

 

 

 

Figure 1.3. Canopy cover at different vegetative growth stages. Soil background is lower at earlier 

(Simpson 2018 and TPAC 2019) than at later vegetative growth stages (PPAC 2017). 
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Table 1.17. Regression analysis results between RGB-based vegetative indices (VI) and yield (Mg ha-1) at 

reproductive stages R2 and R5 at Simpson 2019.  

VI a 

R2, 41 DAT b R5, 82 DAT 

P-value c R2
adj 

d 
RMSE e, 

Mg ha-1 
P-value R2

adj 
RMSE, 

Mg ha-1 

ExGm <0.0001 0.59 1.0 <0.0001 0.56 1.0 

ExG <0.0001 0.53 1.0 <0.0001 0.60 1.0 

PPRBm <0.0001 0.60 1.0 <0.0001 0.85 0.6 

PPRB <0.0001 0.61 0.9 <0.0001 0.71 0.8 

VDVIm <0.0001 0.72 0.8 0.02 0.12 1.4 

VDVI <0.0001 0.55 1.0 0.12 0.04 1.5 

VIgm <0.0001 0.68 0.9 <0.0001 0.65 0.9 

VIg <0.0001 0.38 1.2 <0.0001 0.69 0.8 
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
b DAT= Days after treatment application.  
c P-values marked in bold indicate that the relationship between the predictor variable (vegetative index) and yield 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed yield values and those predicted by 

the model.   
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Table 1.18. Changes in R2
adj values of regression models due to masking for RGB or NIR-based vegetative indices 

(VI) derived from UAV imagery and yield and change in rating (Poor “P” = R2
adj≤0.25, Fair “F” = 0.26 - 0.50, Good 

“G” = 0.51 - 0.75, and Excellent “E” = R2
adj>0.75). Gray cells indicate that difference in R2

adj was less than ±0.05 or 

the model remained as not significant (ns), blue indicate an increase in R2
adj ≥0.06, and orange a decrease in R2

adj 

≥0.06. Darker shading indicates a greater difference. 

Stage Location DAT a 
RGB-based VI b NIR-based VI c 

ExG PPRB VDVI VIg GNDVI MSAVI NDVI OSAVI SAVI 

Vegetative growth stages 

V8-V9 
Simpson 

2018 
15 ns 

0.09d 

ns-P 
ns ns 

0.01 

P-P 
ns 

0.03 

ns-P 

0.02 

ns-P 

0.02 

ns-P 

V10 
TPAC 

2019 
11 ns ns ns 

-0.05 

P-P 
- - - - - 

V8-V10 
Vincent 

2018 
14 

0.08 

P-P 
0.19 

ns-P 
ns ns ns 

0.10 

P-P 

0.10 

P-P 

0.11 

P-P 

0.10 

P-P 

V11-

V12 

PPAC 

2019 
19 

0.03 

P-P 

0.22 

P-F 
0.12 

ns-P 
ns - - - - - 

V12-

V13 

PPAC 

2017 
18 

0.02 

G-G 

0.12 

F-G 
0.27 

ns-F 

0.07 

F-F 
- - - - - 

V14-

V15 

PPAC 

2018 
27 

0.05 

F-F 

0.01 

G-G 

0.12 

F-G 
ns 

0.05 

ns-P 

0.19 

F-G 

0.21 

F-G 

0.19 

F-G 

0.22 

F-G 

Reproductive growth stages 

Reproductive Stages R1 – R2 

R1 
PPAC 
2019 

37 
-0.01 
P-P 

0.12 
P-F 

0.15 
P-P 

ns - - - - - 

R1 
Vincent 

2018 
37 

0.00 

E-E 

0.01 

E-E 

0.06 

E-E 

0.47 

F-E 
0.17 

ns-P 

0.03 

E-E 

0.03 

E-E 

0.03 

E-E 

0.04 

E-E 

R2 
TPAC 

2019 
37 

0.05 

P-P 
0.10 

ns-P 

0.07 

ns-P 
ns - - - - - 

R2 
Simpson 

2018 
45 

-0.02 

E-E 

0.00 

E-E 

0.11 

E-E 
0.68 

ns-G 
ns 

0.05 

E-E 

0.06 

E-E 

0.05 

E-E 

0.06 

E-E 

R2 
Simpson 

2019 
41 

0.06 

G-G 

-0.01 

G-G 

0.17 

G-G 

0.30 

F-G 
- - - - - 

Reproductive Stages R3 – R4 

R3 
PPAC 

2017 
49 

0.01 

G-E 

-0.02 

E-E 

-0.02 

G-G 

ns 

 
- - - - - 

R3-R4 
PPAC 
2018 

57 
0.03 
G-E 

0.03 
E-E 

0.26 
G-E 

0.25 
P-F 

-0.01 
F-F 

-0.01 
E-E 

0.00 
E-E 

0.00 
E-E 

0.00 
E-E 

Reproductive Stage R5 e 

R5 
(early) 

TPAC 
2019 

73 ns ns ns ns - - - - - 

R5 (mid) 
Simpson 

2019 
82 

-0.04 

G-G 

0.14 

G-E 
0.08 

ns-P 

-0.04 

G-G 
- - - - - 

R5 (mid) 
PPAC 

2019 
85 ns 

0.27 

P-F 
ns 

0.03 

P-P 
- - - - - 

R5 (late) 
PPAC 

2018 
91 

0.20 

P-F 
ns 

0.00 

F-F 

-0.05 

G-G 

-0.10 

E-G 
0.09 

ns-P 

0.04 

P-P 

0.05 

P-P 

0.03 

P-P 

R5 (late) 
Vincent 

2018 
92 

0.00 

E-E 

0.02 

E-E 

0.16 

E-E 

0.18 

P-F 

0.00 

E-E 

0.04 

E-E 

0.05 

E-E 

0.05 

E-E 

0.05 

E-E 

R5 (late) 
Simpson 

2018 
92 

-0.02 

G-G 

0.03 

G-E 

0.04 

G-G 

0.01 

G-G 

-0.05 

F-F 

0.02 

G-G 

0.04 

G-G 

0.04 

G-G 

0.04 

G-G 
a DAT = Days after treatment application. 
b RGB VI: ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green.  
c NIR VI: GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation Index, 
NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted 

Vegetation Index. 
d Numeric values: differences in R2

adj values of regression models based on masked vs. non-masked VI. Cells in bold indicate that 

masking resulted in significant model vs non-significant (ns) non-masked model.  
e R5 (early) = 0 to ¼ milk line, R5 (mid) = from ¼ to ½ milk line, R5 (late) = greater than ½ milk line. 
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Figure 1.4. RGB orthomosaics of field trials evaluated at reproductive growth stage R5.    
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Figure 1.5. Locations in where maize plants were at reproductive growth stage R5. At PPAC 2018, 

soil and mostly shadow background was clearly more visible compared to the other locations. 

 

 

 

 

Figure 1.6. Spectral signatures of water, green grass, dry grass, and soil. Source: National 

Ecological Observatory Network (NEON). 
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Figure 1.7. Spectral signatures of sunlit and shaded leaves. Source: Zhang et al. (2015). 
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Table 1.19. Treatment contrasts among sulfur (S) or nitrogen (N) fertilizer treatments for yield and RGB-based 

vegetative indices (VI) at vegetative growth stages V7-V8, V12-V13, and reproductive stage R3 at PPAC 2017. 

Growth stage a Yield or VI b 

  P-value of treatment contrasts c d 

0N vs. 

27N 

0S vs. 

3S 

0S vs  

S rates 

0S vs.  

3S 

17S vs.  

split17S 

0N vs. 

27N 

T1&T4 

vs. 

T2&T5 

T2&T5  

vs.  

T3&T6 

T1&T2  

vs.  

T3-T6 

T2vs.T3 T5vs.T6 T1vs.T2 

 Yield (Mg ha-1) 0.40 0.79 <0.0001 0.81 0.53 0.39 

Crop response to at-planting treatments 

V7-V8 ExGm 0.01 0.07 - - - - 

(1 DAT) ExG <0.0001 0.03 - - - - 
 PPRBm 0.66 0.19 - - - - 
 PPRB <0.0001 0.01 - - - - 
 VDVIm 0.0001 0.001 - - - - 
 VDVI <0.0001 <0.0001 - - - - 
 VIgm <0.0001 <0.0001 - - - - 
 VIg <0.0001 <0.0001 - - - - 

Crop responses after final sidedress fertilizer treatments 

V12-V13 ExGm - - <0.0001 0.003 0.28 0.0001 

(18 DAT) ExG - - <0.0001 0.0002 0.16 <0.0001 
 PPRBm - - <0.0001 0.01 0.11 0.002 
 PPRB - - <0.0001 0.02 0.26 0.0003 
 VDVIm - - 0.0003 0.84 0.19 0.001 
 VDVI - - 0.75 0.57 0.96 0.003 
 VIgm - - <0.0001 0.0002 0.35 0.88 
 VIg - - <0.0001 0.004 0.17 0.34 

R3 ExGm - - <0.0001 0.03 0.27 0.53 

(49 DAT) ExG - - <0.0001 0.04 0.35 0.51 
 PPRBm - - <0.0001 0.10 0.32 0.60 
 PPRB - - <0.0001 0.14 0.25 0.57 
 VDVIm - - <0.0001 0.11 0.15 0.65 
 VDVI - - <0.0001 0.21 0.07 0.60 
 VIgm - - 0.16 0.34 0.01 0.90 
 VIg - - 0.64 0.93 0.002 1.00 

a DAT= Days after treatment application.  
a Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
c For the VI determined at V7-V8, the treatments (T) applied 1 day prior were assumed to have not yet affected the 

crop. Therefore, at this time treatments applied in 2x2 placement at planting were: 1&4) 0S&0N: no sulfur (S) and 

nitrogen (N) applied, 2&5) 0S&27N: no S and 27 kg N ha-1 applied, 3&6) 3.4S&27N: 3.4 kg S ha-1 and 27 kg N ha-

1applied. For VI determined at later growth stages, treatments applied at planting/sidedress were: 1) 

0S&0N/0S&0N, 2) 0S&27N/0S&0N, 3) 3.4S&27N/0S&0N, 4) 0S&0N/16.9S&0N, 5) 0S&27N/16.9S&0N   and 6) 

3.4S&27N/13.5S&0N. Treatment units are kg ha-1. 
d Treatment contrasts with P-value ≤ 0.10 and marked in bold are significant. 
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Table 1.20. Treatment contrasts among sulfur (S) fertilizer treatments for yield, RGB-based vegetative indices (VI), 

and NIR-based VI at vegetative growth stages V6, V14-V15, and reproductive stages R3-R4, and R5 at PPAC 2018. 

Growth stage a 
Yield or  

VI b 

P-value of treatment contrasts c d 

0S vs. 

6S 

0S vs.  

S rates 

0S vs. 

6S 

0S vs. 

17S 

0S vs. 

28S 

17S vs. 

28S 

T1&T3&

T5 

vs. 

T2&T4&

T6 

T1  

vs.  

T2-T6 

T1  

vs.  

T2 

T1  

vs. 

T3&T4 

T1 

vs. 

T5&T6 

T3&T4 

vs. 

T5&T6 

 Yield (Mg ha-1) 0.57 <0.0001 0.56 <0.0001 <0.0001 0.86 

Crop response to at-planting treatments 

V6 
(no sidedress 

application yet) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RGB ExGm 0.07 - - - - - 

ExG 0.002 - - - - - 

PPRBm 0.08 - - - - - 
PPRB 0.07 - - - - - 
VDVIm 0.10 - - - - - 

VDVI 0.09 - - - - - 
VIgm 0.38 - - - - - 

VIg 0.21 - - - - - 

NIR GNDVIm 0.14 - - - - - 

GNDVI 0.47 - - - - - 

MSAVIm 0.07 - - - - - 
MSAVI 0.03 - - - - - 

NDVIm 0.07 - - - - - 
NDVI 0.02 - - - - - 
OSAVIm 0.08 - - - - - 

OSAVI 0.03 - - - - - 
SAVIm 0.08 - - - - - 

SAVI 0.02 - - - - - 

Crop responses after final sidedress fertilizer treatments 

V14-V15 

(27 DAT) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

RGB ExGm - 0.01 0.85 0.005 0.003 0.89 

ExG - 0.02 0.63 0.01 0.01 0.68 

PPRBm - 0.0003 0.71 0.0002 0.0001 0.58 

PPRB - 0.0002 0.66 0.0002 <0.0001 0.42 

VDVIm - 0.001 1.00 0.001 0.0001 0.25 

VDVI - 0.001 0.81 0.002 <0.0001 0.08 

VIgm - 0.59 0.31 0.34 0.71 0.11 

VIg - 0.73 0.88 0.70 0.23 0.06 

NIR GNDVIm - 0.11 0.28 0.32 0.05 0.22 

GNDVI - 0.21 0.28 0.88 0.05 0.03 
MSAVIm - 0.002 0.83 0.0004 0.001 0.72 

MSAVI - 0.01 0.70 0.002 0.01 0.34 

NDVIm - 0.002 0.73 0.001 0.001 0.67 

NDVI - 0.01 0.76 0.003 0.01 0.46 

OSAVIm - 0.002 0.72 0.001 0.001 0.61 

OSAVI - 0.01 0.66 0.002 0.01 0.45 

SAVIm - 0.001 0.67 0.0004 0.001 0.70 

SAVI - 0.01 0.80 0.003 0.02 0.41 

R3-R4 

(57 DAT) 

 

 

RGB ExGm - <0.0001 0.57 <0.0001 <0.0001 0.87 

ExG - <0.0001 0.66 <0.0001 <0.0001 0.94 

PPRBm - <0.0001 0.50 <0.0001 <0.0001 0.92 

PPRB - <0.0001 0.60 <0.0001 <0.0001 0.88 
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Table 1.20 continued 
  

VDVIm - <0.0001 0.75 <0.0001 <0.0001 0.58 

VDVI - 0.001 0.93 0.001 0.0001 0.33 

VIgm - 0.09 0.36 0.06 0.02 0.51 

VIg - 0.04 0.18 0.02 0.15 0.24 

NIR GNDVIm - 0.05 0.74 0.004 0.14 0.05 
GNDVI - 0.01 0.79 0.001 0.02 0.10 
MSAVIm - <0.0001 0.07 <0.0001 <0.0001 0.87 

MSAVI - <0.0001 0.15 <0.0001 <0.0001 0.71 

NDVIm - <0.0001 0.07 <0.0001 <0.0001 0.89 

NDVI - <0.0001 0.17 <0.0001 <0.0001 0.74 

OSAVIm - <0.0001 0.08 <0.0001 <0.0001 0.78 

OSAVI - <0.0001 0.19 <0.0001 <0.0001 0.81 

SAVIm - <0.0001 0.07 <0.0001 <0.0001 0.92 

SAVI - <0.0001 0.15 <0.0001 <0.0001 0.70 

R5  

(91 DAT) 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

RGB ExGm - 0.01 0.89 0.01 0.001 0.42 

ExG - 0.02 0.44 0.04 0.004 0.24 

PPRBm - 0.84 0.67 0.60 0.46 0.13 

PPRB - 0.97 0.69 0.94 0.70 0.57 

VDVIm - 0.002 1.00 0.001 0.0003 0.62 

VDVI - 0.005 0.83 0.004 0.001 0.58 

VIgm - 0.0004 0.78 0.001 <0.0001 0.13 

VIg - 0.001 0.95 0.001 0.0001 0.32 

NIR GNDVIm - 0.005 0.38 0.001 0.002 0.53 

GNDVI - <0.0001 0.80 <0.0001 <0.0001 0.35 

MSAVIm - 0.01 0.40 0.03 0.005 0.33 

MSAVI - 0.53 0.83 0.96 0.12 0.06 
NDVIm - 0.01 0.34 0.03 0.004 0.34 

NDVI - 0.37 0.81 0.85 0.06 0.04 
OSAVIm - 0.02 0.44 0.03 0.01 0.38 

OSAVI - 0.37 0.81 0.83 0.06 0.04 

SAVIm - 0.01 0.37 0.03 0.005 0.34 

SAVI - 0.35 0.85 0.84 0.05 0.04 
a DAT= Days after treatment application.  
b Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green) and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, 

MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, 

OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index). 
c For the VI determined at V6, the sidedress treatments were not applied yet. Therefore, at this time treatments (T) 

applied in 2x2 placement at planting were: 1&3&5) 0S: no sulfur (S) applied, 2&4&6) 5.6S: 5.6 kg S ha-1applied. 

For VI determined at later growth stages, treatments applied at planting/sidedress were: 1) 0S/0S, 2) 5.6S/0S, 3) 

0S/16.9S, 4) 5.6S/11.2S, 5) 0S/28S, 6) 5.6S/22.5S. Treatment units are kg ha-1. 
d Treatment contrasts with P-value ≤ 0.10 and marked in bold are significant. 
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Table 1.21. Treatment contrasts among sulfur (S) and nitrogen (N) fertilizer treatments for yield, RGB-based 

vegetative indices (VI), and NIR-based VI at vegetative growth stages V8-V9, and reproductive stages R2, and R5 

at Simpson 2018. 

Growth stage a Yield or VI b 

P-value of treatment contrasts c d 

196N  

vs. 

98N 

23S 

vs. 

34S 

11S 

vs. 

17S 

0S  

vs. 

S rates 

23S  

vs. 

34S 

23S  

vs.  

Split 17S 

34S  

vs.  

Split 34S 

T1  

vs.  

T2 

T3 

vs. 

T5 

T4 

vs. 

T6 

T1&T2  

vs. 

T3-T6 

T3&T4 

vs. 

T5-T6 

T3 

vs. 

T4 

T5 

vs. 

T6 

R6 Yield (Mg ha-1) 0.35 0.71 0.45 <0.0001 0.78 0.52 0.63 

Crop responses to initial sidedress treatments (prior to second sidedress treatments) 

V8-V9 

15 DAT 1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RGB ExGm 0.17 0.82 0.82 - - - - 

ExG 0.46 0.71 0.27 - - - - 

PPRBm 0.08 0.72 0.35 - - - - 

PPRB 0.48 0.77 0.08 - - - - 

VDVIm 0.33 0.73 0.12 - - - - 

VDVI 0.84 0.74 0.12 - - - - 

VIgm 0.71 0.76 0.13 - - - - 

VIg 0.98 0.75 0.13 - - - - 

NIR GNDVIm 0.68 0.68 0.92 - - - - 

GNDVI 0.24 0.38 0.77 - - - - 

MSAVIm 0.93 0.46 0.11 - - - - 

MSAVI 0.29 0.84 0.09 - - - - 

NDVIm 1.00 0.42 0.09 - - - - 

NDVI 0.21 1.00 0.11 - - - - 

OSAVIm 1.00 0.48 0.12 - - - - 

OSAVI 0.24 0.88 0.10 - - - - 

SAVIm 0.90 0.48 0.13 - - - - 

SAVI 0.24 0.88 0.09 - - - - 

Crop responses after final sidedress fertilizer treatments 

R2 

45 DAT 1 

18 DAT 2 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

RGB ExGm 0.58 - - <0.0001 0.63 0.89 0.28 

ExG 0.26 - - <0.0001 0.61 0.67 0.39 

PPRBm 0.12 - - <0.0001 0.49 0.48 0.48 

PPRB 0.41 - - <0.0001 0.83 0.84 0.68 

VDVIm 0.47 - - <0.0001 0.40 0.65 0.58 

VDVI 0.64 - - <0.0001 0.42 0.26 0.64 

VIgm 0.40 - - <0.0001 0.48 0.61 0.61 

VIg 0.08 - - 0.04 0.25 0.08 0.78 

NIR GNDVIm 1.00 - - 0.25 0.10 0.38 0.14 

GNDVI 0.73 - - 0.21 0.15 0.86 0.13 

MSAVIm 0.26 - - <0.0001 0.23 0.19 0.29 

MSAVI 0.29 - - <0.0001 0.37 0.47 0.65 

NDVIm 0.33 - - <0.0001 0.16 0.19 0.29 

NDVI 0.32 - - <0.0001 0.40 0.50 0.79 
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Table 1.21 continued 
  

OSAVIm 0.24 - - <0.0001 0.14 0.17 0.27 

OSAVI 0.31 - - <0.0001 0.41 0.54 0.68 

SAVIm 0.29 - - <0.0001 0.23 0.14 0.29 

SAVI 0.26 - - <0.0001 0.39 0.50 0.72 

R5 

92 DAT 1 

65 DAT 2 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

RGB ExGm 0.79 - - <0.0001 0.45 0.42 0.14 

ExG 0.83 - - <0.0001 0.50 0.40 0.12 

PPRBm 0.92 - - <0.0001 0.61 0.86 0.46 

PPRB 0.71 - - <0.0001 0.65 0.79 0.37 

VDVIm 0.81 - - <0.0001 0.47 0.44 0.12 

VDVI 0.73 - - <0.0001 0.38 0.28 0.08 

VIgm 0.62 - - <0.0001 0.39 0.17 0.03 

VIg 0.82 - - <0.0001 0.32 0.15 0.06 

NIR GNDVIm 0.74 - - <0.0001 0.08 0.02 0.26 

GNDVI 0.76 - - <0.0001 0.08 0.13 0.13 

MSAVIm 0.59 - - <0.0001 0.49 0.04 0.56 

MSAVI 0.64 - - <0.0001 0.56 0.42 0.38 

NDVIm 0.63 - - <0.0001 0.50 0.04 0.52 

NDVI 0.70 - - <0.0001 0.59 0.56 0.37 

OSAVIm 0.67 - - <0.0001 0.53 0.05 0.60 

OSAVI 0.72 - - <0.0001 0.54 0.56 0.39 

SAVIm 0.62 - - <0.0001 0.50 0.05 0.55 

SAVI 0.70 - - <0.0001 0.56 0.54 0.37 
a DAT-1= Days after treatment application at V3; DAT-2= Days after treatment application at V12. 
b Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 
RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green) and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, 

MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, 

OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index). 
c Sulfur (S) treatments applied at V3 were: 1) 0S&196N: no sulfur (S) and 196 kg N ha-1 applied, 2) 0S&98N: no S 

and 98 kg N ha-1 applied, 3) 23S&196N: 23 kg S ha-1 and 196 kg N ha-1applied, 4) 11.5S&98N: 11.5 kg S ha-1 and 

98 kg N ha-1applied, 5) 34S&196N: 34 kg S ha-1 and 196 kg N ha-1applied, 6) 17S&98N: 17 kg S ha-1 and 98 kg N 

ha-1applied.  

Treatments applied at V3/V12 were: 1) 0S&196N/0S&0N, 2) 0S&98N/0S&98N, 3) 23S&196N/0S&0N, 4) 

11.5S&98N/11.5S&98N, 5) 34S&196N/0S&0N, and 6) 17S&98N/17S&98N. Treatment units are kg ha-1. 
d Treatment contrasts with P-value ≤ 0.10 and marked in bold are significant. 
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Table 1.22. Treatment contrasts among sulfur (S) fertilizer treatments for yield and RGB-based vegetative indices 

(VI) at vegetative growth stages V11-V12, and reproductive stages R1, and R5 at PPAC 2019. 

Growth stage a Yield or VI b 

P-value of treatment contrasts c d 

0S vs.  

S rates 

0S vs.  

8S 

8S vs  

>8 S rates 

25S vs.  

25S+B 

T1 vs. T2-T5 T1 vs. T2 T2 vs. T3-T5 T4 vs. T6 
 Yield (Mg ha-1) <0.0001 <0.0001 0.78 0.71 

V11-V12 

(19 DAT) 
ExGm 0.001 0.01 0.73 0.67 

ExG 0.001 0.004 0.92 0.38 

PPRBm <0.0001 <0.0001 0.40 0.66 

PPRB 0.0002 0.01 0.29 0.73 

VDVIm 0.002 0.02 0.79 0.85 

VDVI 0.12 0.38 0.54 0.80 

VIgm 0.01 0.06 0.51 0.83 

VIg 0.06 0.13 0.98 0.91 

R1  

(37 DAT) 
ExGm <0.0001 <0.0001 0.43 0.48 

ExG <0.0001 <0.0001 0.83 0.72 

PPRBm <0.0001 <0.0001 0.11 0.84 

PPRB <0.0001 0.001 0.14 0.64 

VDVIm <0.0001 0.0001 0.44 0.55 

VDVI 0.0001 0.004 0.41 0.37 

VIgm 0.002 0.01 0.80 0.27 

VIg 0.10 0.17 0.93 0.15 

R5 

(85 DAT) 
ExGm 0.38 0.11 0.13 0.41 

ExG 0.08 0.10 0.66 0.39 

PPRBm <0.0001 0.001 0.22 0.82 

PPRB 0.01 0.04 0.65 0.37 

VDVIm 0.05 0.05 0.43 0.20 

VDVI 0.89 0.77 0.77 0.17 

VIgm 0.01 0.29 0.05 0.09 

VIg 0.02 0.18 0.38 0.14 
a DAT= Days after treatment application.  
b Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
c Experimental treatments applied at vegetative growth stage V5: 1) 0S&0.4B: no sulfur (S) applied and 0.4 kg ha-1  

of boron (B); 2) 8.4S&0.4B: 8.4 kg S ha-1  and 0.4 kg B ha-1; 3) 16.9S&0.4B: 16.9 kg S ha-1  and 0.4 kg B ha-1; 4) 

25.3S&0.4B: 25.3 kg S ha-1  and 0.4 kg B ha-1; 5) 33.7S&0.4B: 33.7 kg S ha-1  and 0.4 kg B ha-1; 6) 25.3S&0B: 25.3 

kg S ha-1, no B applied.. 
d Treatment contrasts with P-value ≤ 0.10 and marked in bold are significant. 
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Table 1.23. Treatment contrasts among sulfur (S) fertilizer treatments for yield and RGB-based vegetative indices 

(VI) at reproductive stages R2 and R5 at Simpson 2019. 

Growth stage a Yield or VI b 

P-value of treatment contrasts c d 

0S vs.  

S rates 

11S vs  

>11 S rates 

22S vs.  

22S+B 

T1 vs. T2-T4 T2 vs. T3&T4 T4 vs. T5 

 Yield (Mg ha-1) 0.001 0.50 0.26 

R2 

(41 DAT) 
ExGm <0.0001 0.39 0.11 

ExG <0.0001 0.48 0.12 

PPRBm <0.0001 0.59 0.15 

PPRB <0.0001 0.67 0.52 

VDVIm <0.0001 0.45 0.10 

VDVI 0.0002 0.51 0.59 

VIgm 0.001 0.39 0.10 

VIg 0.05 0.52 0.69 

R5  

(82 DAT) 
ExGm 0.0004 0.29 0.19 

ExG 0.0003 0.34 0.21 

PPRBm <0.0001 0.79 0.33 

PPRB <0.0001 0.29 0.91 

VDVIm 0.01 0.20 0.67 

VDVI 0.18 0.10 0.47 

VIgm 0.18 0.26 0.63 

VIg 0.13 0.21 0.40 
a DAT= Days after treatment application.  
b Vegetative index (VI) followed by “m” indicates that background pixels (soil and shadow mostly) were masked out. 

RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green). 
c Experimental treatments applied at vegetative growth stage V5: 1) 0S&0B: no sulfur (S) applied; 2) 11.2S&0B: 

11.2 kg S ha-1; 3) 16.9S&0B: 16.9 kg S ha-1; 4) 22.5S&0B: 22.5 kg S ha-1; 5) 22.5S&0.4B: 22.5 kg S ha-1  and 0.4 kg 

ha-1  of boron (B). 
d Treatment contrasts with P-value ≤ 0.10 and marked in bold are significant. 
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Table 1.24. Effects of masking on the level of significance (No significant “ns” = P-value >0.1, Significant “S” = P-value ≤ 0.1, Very Significant “VS” = P-value 

<0.01, and Highly Significant “HS” = P-value <0.001) of treatment contrast for RGB-based and NIR-based VI derived from UAV imagery acquired prior to final 

sidedress fertilizer applications at PPAC 2017, PPAC 2018, at Simpson 2018. Gray cells indicate that level of significance remained the same after masking VI, 

blue cells indicate the change to a higher level of significance, and orange cells a change to a lower level. Darker shading indicates a greater difference. 

Contrast Yield 
RGB-based VI a NIR-based VI b 

ExG PPRB VDVI VIg GNDVI MSAVI NDVI OSAVI SAVI 

PPAC 2017 | V7-V8 

0N vs. 27N, all with 0S ns HS - S HS - ns HS HS - - - - - 

0S vs. 3S, all with 27N ns S S - ns HS - VS HS - - - - - 

PPAC 2018 | V6 

0S vs. 6S ns VS - S S S ns ns S S S S 

Simpson 2018 | V8-V9, 15 DATc (applied at V3) 

196N vs. 98N  ns ns ns - S ns ns ns ns ns ns ns 

23S vs. 34S  ns ns ns ns ns ns ns ns ns ns 

11S&98N vs. 17S&98N ns ns S- ns ns ns ns S - ns ns - S S - ns S - ns 
a RGB VI: ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green.  
b NIR VI: GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation 

Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index. 
c DAT = Days after treatment application. 
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Table 1.25. Effects of masking on the level of significance (No significant “ns” = P-value >0.1, Significant “S” = P-

value ≤ 0.1, Very Significant “VS” = P-value <0.01, and Highly Significant “HS” = P-value <0.001) of treatment 

contrast based on non-masked vs. masked RGB and NIR-based VI derived from UAV imagery after sidedress at 

PPAC 2017, PPAC 2018, PPAC 2019, Simpson 2018, and Simpson 2019. Gray cells indicate that level of 

significance remained the same after masking VI, blue cells indicate the change to a higher level of significance, and 

orange cells a change to a lower level. Darker shading indicates a greater difference. 

Contrast 
Yiel

d 
Stage 

RGB-based VI a NIR-based VI b 

ExG PPRB VDVI VIg 
GNDV

I 

MSAV

I 

NDV

I 

OSAV

I 
SAVI 

PPAC 2017 | V12-V13 (18 DAT c) & R3 (49 DAT) 

0S vs. S rates  HS 

V12-

V13 
HS HS 

ns - 

HS 
HS - - - - - 

R3  HS HS HS ns - - - - - 

PPAC 2018 | V14-V15 (27 DAT), R3-R4 (57 DAT), & R5 (91 DAT) 

0S vs. S rates HS 

V14-

V15 
S HS VS ns ns S - VS 

S - 

VS 
S - VS S - VS 

R3-R4 HS HS 
VS - 

HS 
S S HS HS HS HS 

R5  S ns VS 
VS - 

HS 

HS - 

VS 
ns - S ns - S ns - S ns - S 

0S vs. both 
17S 

HS 

V14-

V15 

S - 

VS 
HS VS ns ns 

VS - 

HS 
VS VS 

VS - 

HS 

R3-R4 HS HS 
VS - 
HS 

S VS HS HS HS HS 

R5 S ns VS VS 
HS - 
VS 

ns - S ns - S ns - S ns - S 

0S vs. both 

28S 
HS 

V14-

V15 

S - 

VS 
HS HS ns S S - VS 

S - 

VS 
S - VS S - VS 

R3-R4 HS HS HS ns - S S - ns HS HS HS HS 

R5 VS ns 
VS - 

HS 
HS 

HS - 

VS 
ns - VS 

S - 

VS 
S S - VS 

PPAC 2019 | V11-V12 (19 DAT), R1 (37 DAT), & R5 (85 DAT) 

0S vs. S rates HS 

V11-
V12  

VS HS ns - VS S - - - - - 

R1 HS HS HS S - VS - - - - - 

R5 S - ns S - HS ns - S S - - - - - 

0S vs. 8S HS 

V11-

V12  

VS – 

S 
S - HS ns - S ns - S - - - - - 

R1 HS 
VS - 
HS 

VS - 
HS 

ns - S - - - - - 

R5 S - ns S - VS ns - S ns - - - - - 

Simpson 2018 | R2 (45 DAT 1; 18 DAT 2) & R5 (92 DAT 1; 65 DAT 2) 

0S vs. S rates HS 
R2 HS HS HS S - HS ns HS HS HS HS 

R5 HS HS HS HS HS HS HS HS HS 

Simpson 2019 | R2 (41 DAT) & R5 (82 DAT) 

0S vs. S rates VS 
R2 HS HS HS S - VS - - - - - 

R5 HS HS ns - S ns - - - - - 
a RGB VI: ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green.  
b NIR VI: GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation Index, 
NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted 

Vegetation Index. 
c DAT = Days after treatment application. At Simpson 2018, DAT-1= Days after treatment application at V3; DAT-2= Days 

after treatment application at V12. 
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 MAIZE BIOMASS PREDICTION BASED ON UAV 

AERIAL IMAGERY IN FIELD-SCALE TRIALS 

2.1 Abstract 

Traditional methods of manual data collection can be challenging in large scale (e.g., 10 

ha or larger) field trials. Large plot sizes are difficult to sample adequately to document variability 

in the field without numerous observations and/or samples, which substantially increases the cost 

of an experiment. The general objectives of this study were to 1) determine if in-situ plant height 

measurement technique impacts the relationship between plant height and maize biomass at 

vegetative and reproductive growth stages, 2) assess the relative performance of UAV-derived VI 

and canopy cover fraction (CCF) as predictors of maize biomass at vegetative and reproductive 

growth stages under field-scale conditions, and 3) determine if masking out soil and shadow 

background image pixels improved biomass prediction by several VI at reproductive growth stage 

R5. Five large scale field trials (4 to 20 ha) involving either sulfur or nitrogen fertilizer treatments 

during the 2019 crop growing season in Indiana were used for the study. Multispectral aerial 

imagery (MicaSense Altum on DJI Matrice 200) was acquired at early maize growth stages (V3 

to V5) prior to the sidedress application of fertilizer treatments, and at growth stage R5. Imagery 

was post-processed in Pix4D (V4.2.27) and ArcGIS (V10.7.1) to calculate Red (668 ± 16 nm), 

Green (560 ± 27 nm), Blue (475 ± 32 nm), near-IR (842 ± 57 nm), and Red-edge (717 ± 12 nm) 

based vegetative indices. Biomass samples and plant height data were collected from pre-

determined sampling areas (3.05 m2). At early vegetative growth stages (V3-V5), height was 

consistently the best predictor of biomass, followed by CCF, and the VI evaluated. Height 

corresponding to the distance from the soil surface to the tip of the uppermost outstretched leaf 

(H3) consistently had the highest R2 at early vegetative growth stages, while at growth stage R5 

the technique used to measure height did not have a substantial effect on the prediction of biomass. 

Taking in consideration the practicability, time efficiency, and simplicity, CCF was the best to 

predict biomass at early vegetative growth stages, while NIR and Red-edge-based VI were the best 

methods for predicting biomass at reproductive growth stages. Removal of background pixels 

corresponding to soil and shadow from VI at growth stage R5 did not consistently improve biomass 

prediction. Most of the time the time difference between R2 of masked and non-masked VI was 

less than ±0.05.  
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2.2 Introduction 

Even though commercial maize (Zea mays L.) production in the USA is mainly practiced on 

an extensive scale (Cassman & Plant, 1992), agronomic experimental trials were originally 

restricted to small plots (Pringle et al., 2004). Later, precision farming technologies enabled 

research to be conducted on much larger areas (Griffin et al., 2008), which has the advantage of 

being less sensitive to human and mechanical error and treatment edge effects (Wolkowski et al., 

1988; Griffin et al., 2008). Experimental trials on larger areas have helped to develop agronomic 

recommendations that are more representative of field-scale conditions and strengthen producers’ 

confidence in the quality of the data generated (Posner et al., 1995). Nevertheless, limited access 

to land and financial resources are important challenges for agronomic researchers conducting 

field-scale experiments on university research farms (Koenig et al., 2000). This situation has 

encouraged researchers to conduct experiments on farmers’ fields, which has additional benefits 

of working under conditions that normally occur at the farm level and getting feedback from 

farmers to refine current agronomic recommendations (Kyveryga & Blackmer, 2012; Mueller et 

al., 2012). On-farm trials also allow Extension agents to help train and educate farmers on how to 

take advantages of tools and data available at the farm (Coble et al., 2018), and provide an outdoor 

classroom to educate other farmers (Posner et al., 1995).  

Fertilizer application, planting date, seeding rate, row spacing, and pesticide application are 

some of the practices typically evaluated in agronomic field experiments (Laurent et al., 2019). 

Even though yield is the most frequently measured variable to assess treatment effects (Koenig et 

al., 2000), there are other variables measured before harvest that help researchers to monitor and 

understand crop response to the applied treatments. Plant population, plant height, leaf area index 

(LAI), and biomass are some of the more common variables measured (Yu et al., 2016). Plant 

population is used to evaluate treatment effects on seed germination and seedling establishment, 

while plant height and LAI are indicators of plant growth (Khaliq et al., 2018; Lu et al., 2019). 

Biomass is a key variable for characterizing crop growth, nutrient uptake, and as a predictor of 

grain yield (Varela et al., 2017; Rossini et al., 2018).  

One of the challenges of conducting field-scale agronomic research is manually sampling 

large plots during the crop growing season for these variables and accurately estimating the true 

plot means, especially biomass. Traditionally, destructive sampling has been the most widely used 

and most accurate approach to estimate biomass (Reyes, 2019). In large-scale trials, in which fields 
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range from 10 to 40 hectares, this approach is often not practical since it is intensive, time-

consuming, and expensive (Varela et al., 2017). Nevertheless, getting biomass information during 

the growing season is important to document growth limiting conditions or experimental treatment 

effects that may affect final yield (Liu et al., 2010). Because of this necessity, researchers have 

adopted new technologies and developed approaches to estimate biomass and other crop variables. 

For instance, remote sensing has been adopted for data collection and has a huge potential in field-

scale experiments (Kyveryga & Blackmer, 2012). The main concept behind the use of remote 

sensing for the estimation of canopy crop variables is that reflectance of light from plants varies 

depending on the chemical and morphological characteristics of the leaves and the canopy 

structure (Woolley, 1971). Chlorophyll in green leaves (“healthy” plants) strongly absorbs light in 

the Red (R) region, while cell walls strongly reflect light in the Near-infrared (NIR) region (Glenn 

et al., 2008). 

Vegetative indices (VI), which are mathematically calculated from the digital data of the 

spectral bands available from any given sensor (Jackson & Huete, 1991), have been proven 

effective for quantitative estimation of different canopy crop variables, such as crop cover fraction, 

green leaf area index, and leaf chlorophyll content (Liu et al., 2010). The Normalized Difference 

Vegetation Index (NDVI = NIR-R/NIR+R) (Rouse et al., 1973) is the most widely used index, and 

it is often used as a reference to be compared with other VI (Xue & Su, 2017). However, the main 

limitation of NDVI is that it reaches saturation (maximum value) in dense vegetation canopies (Gu 

et al., 2013). Conversely, the Green Normalized Difference Vegetation Index (GNDVI = NIR-

G/NIR+G) (Gitelson et al., 1996) is sensitive to a much wider range of dense vegetation canopies, 

and it has been used to effectively predict maize (Zea mays L.) yield (Shanahan et al., 2001), 

estimate nitrogen (N) fertilizer requirements (Farrell et al., 2018) and control in‐season application 

of N (Shanahan et al., 2004).  

While NDVI and GNDVI involve the use of NIR, there are also VI based solely on the light 

reflected in the visible region of the spectrum, specifically the Blue, Green, and Red regions. For 

instance, the Excess Green Index (ExG = 2G-R-B) (Woebbecke et al., 1995) has been used in 

several studies to discriminate plants from background (Lamm et al., 2002; Mao et al., 2003) and 

assess nutrient status (Soontranon et al., 2014). Similarly, the Visible-Band Difference Vegetation 

Index (VDVI= 2G-B-R / 2G+B+R) (Wang et al., 2015) has also been used for vegetation cover 

estimation (Yang, 2018; Yuan et al., 2018) and assessment of nutrient status in cereal based 
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cropping systems (Orsini et al., 2019). The Plant Pigment Ratio (PPRB = G-B/G+B) (Metternicht, 

2003) is known for differentiating between strongly and weakly pigmented foliage, and it has been 

used to predict wheat grain protein (Wang et al., 2004) and maize grain yield (Khanal et al., 2018). 

Likewise, the Vegetation Index Green (VIg = G-R/G+R) (Tucker, 1978) has also shown to be 

sensitive to chlorophyll concentration and overcome the saturation of NDVI with denser canopies 

(Elazab et al., 2016). Vegetative indices that use the light reflected in the Red-edge (RE) region, 

such as the Normalized Difference Red Edge Index (NDRE = NIR-RE / NIR+RE) (Fitzgerald et 

al., 2010), the MERIS Terrestrial Chlorophyll Index (MTCI = NIR-RE / RE-R) (Dash & Curran, 

2004), and the Inverse Simple Ration (ISR = RE / NIR) (Peng Gong et al., 2003) have been also 

used for crop assessment, showing high correlation with plant status variables such as leaf area 

index, N content, biomass, and yield (Li et al., 2014; Torino et al., 2014; Olson et al., 2019).  

Satellites, aircraft, hand-held or equipment-mounted platforms, and unmanned aerial 

vehicles (UAVs) are the principal platforms used for remote sensing data collection (Niu et al., 

2019). At the regional level, satellites have been an important data source to estimate biomass 

(Hosseini et al., 2019). However, at the field level, satellite data has limitations. Image acquisition 

is restricted to the specific satellite schedule and not the researcher or farmer needs, spatial 

resolution is low, cloud cover limits usefulness of imagery, and most satellite images do not 

provide vertical structure information of vegetation canopy (Li et al., 2016). Aircraft platforms are 

more flexible than satellites with regard to frequency of image acquisition and spatial resolution, 

but aircraft imagery tends to be expensive. Remote sensing data can also be collected at the ground 

level, either with sensors mounted on tractors or with handheld sensors. However, these may be 

unsuitable for monitoring large areas (Lu et al., 2019). Since about 2008, the use of UAVs to 

collect imagery has increased due to their affordability, ease of operation, high spatial image 

resolution, flexibility to acquire imagery when needed, potential for mounting different sensors 

(Corti et al., 2018), and the possibility of getting spectral data and vertical growth information, 

such as crop height (Yue et al., 2018).  

One of the advantages of UAVs is the feasibility of mounting the sensor of preference for 

the researcher to collect the data of interest. Depending on the light source used by the sensor, 

sensors are classified as either active or passive (Kumar, 2005). Active sensors, like the light 

detection and ranging (LiDAR), have their own source of light, while passive sensors, such as 

RGB consumer cameras, measure the sunlight reflected by the object of interest. Both passive and 
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active sensors have been used to estimate biomass (Yue et al., 2018). LiDAR sensors have been 

useful in estimating the canopy height and biomass of maize due to its accuracy and ability to build 

3D point clouds (Li et al., 2016; Reyes, 2019). Nevertheless, the high cost of LiDAR systems and 

the complexity in data handling limit its application. On the other hand, RGB consumer cameras 

can also generate a 3D point cloud, which make them a low-cost alternative to LiDAR for 

agronomists (Reyes, 2019). Using photogrammetry techniques, crop surface models can be 

obtained from the 3D point cloud and be used to calculate crop height, while the spectral data can 

be used to extract vegetation indices (VI) from the visible and Near-infrared (NIR) spectral regions. 

Crop descriptors, such as biomass, leaf area index, green vegetation fraction, and chlorophyll 

content can be estimated later using the VI (Liu et al., 2010).  

There are numerous studies in which UAV technology has been used to estimate biomass of 

different crops such as barley (Hordeum vulgare L.) (Bendig et al., 2014, 2015; Brocks & Bareth, 

2018; Näsi et al., 2018), rice (Oryza sativa L.) (Cen et al., 2019; Devia et al., 2019; Zheng et al., 

2019), wheat (Triticum aestivum L.) (Schirrmann et al., 2016; Fengabcd et al., 2018; Na et al., 

2018; Sharifi, 2018; Lu et al., 2019; Yue et al., 2017, 2019), Sorghum (Sorghum bicolor L.) (Shi 

et al., 2016; Zhang et al., 2017; Li et al., 2018; Masjedi et al., 2018; Spindel et al., 2018), soybean 

(Glycine max L.) (Maimaitijiang et al., 2017, 2019), cover crops (Roth & Streit, 2018; Yuan et al., 

2019), and maize (Hunt et al., 2005; Elazab et al., 2016; Li et al., 2016; Calou et al., 2019; Corti 

et al., 2019; Han et al., 2019; Michez et al., 2018; Niu et al., 2019; Zhu et al., 2019a; Zhu et al., 

2019b). In a review of applications of UAVs in agriculture (Hassler & Baysal-Gurel, 2019), the 

authors emphasized that studies focused on biomass prediction most commonly used vegetation 

indices, followed by plant height. A few studies used radiative transfer models, which simulate 

canopy reflectance and transmittance, permitting the calculation of the fraction of absorbed 

photosynthetically active radiation, which is later used for the estimation of biomass. 

Vegetative indices have been used to estimate biomass since they provide information about 

crop growth based on the spectral characteristics of the upper canopy (Xue & Su, 2017), and plant 

height because it provides information about the vertical structure properties of the entire canopy 

(Yue et al., 2018; Niu et al., 2019). Studies in maize have shown the effects of crop and soil 

management practices on height, especially during early to mid-season (Machado et al., 2002; Yin 

et al., 2011; Varela et al., 2017). Plant height can be measured manually, or it can also be estimated 

using photogrammetry techniques. Crop surface models (CSM) derived from UAV high resolution 
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imagery have been used to extract plant height information from different crops by subtracting the 

digital elevation model (DEM), also called digital terrain model (DTM), from the digital surface 

model (DSM) (Bendig et al., 2014; Geipel et al., 2014; Li et al., 2016; Shi et al., 2016; Varela et 

al., 2017; Yue et al., 2017, 2018; Ballesteros et al., 2018; Khaliq et al., 2018; Viljanen et al., 2018; 

Lu et al., 2019; Wang et al., 2019; Zhu et al., 2019a).  

Niu et al. (2019) assessed the potential of using vegetative indices and plant height derived 

from RGB imagery collected at 30 m above the ground level (AGL) (0.8 cm spatial resolution) 

over a 1.12 ha field to estimate maize biomass at early vegetative growth stages (V5-V7). The 

results showed that plant height alone had a high correlation with fresh and dry biomass, with R2 

values of 0.77 and 0.76 respectively. Similar results were obtained by Li et al. (2016) at 

reproductive growth stages based on height derived from RGB imagery collected at 150 m AGL 

(2.0 cm spatial resolution). Elazab et al. (2016) compared the performance of the normalized 

difference vegetation index (NDVI = NIR-R / NIR+R) and the Vegetation Index Green (VIg = G-

R / G+R)) to assess biomass at late reproductive growth stages, and concluded that VIg was a 

better predictor of biomass compared to NDVI. Both indices were derived from UAV imagery 

collected at 80 m AGL (4.3 cm spatial resolution) over a field with an area of less than 1 ha. Corti 

et al. (2019) used NIR imagery collected at 35 m (1.5 cm spatial resolution) to estimate maize 

nitrogen related variables, including biomass. The study was conducted in small plots (8 m long 

and 7.5 m wide) when maize plants were at V6 and V9 vegetative growth stages. The results 

showed that canopy cover fraction (fraction of the area of interest covered by maize) was the best 

predictor of biomass, as well as the Green NDVI (GNDVI = NIR-G / NIR+G), but only when the 

background pixels corresponding to soil and shadow were masked out. Since this study was 

conducted at early growth stages, it is uncertain if the same conclusions apply at reproductive 

growth stages. In addition to these, other experiments have been carried out to assess vegetative 

indices derived from UAV imagery and plant height as predictors of maize biomass (Calou et al., 

2019 et al.; Han et al., 2019; Hunt et al., 2005; Michez et al., 2018; Zhu et al., 2019a; Zhu et al., 

2019b). Nevertheless, most of these studies have been conducted in small-scale research plots, and 

not in large-scale agronomic trials.  

One of the main reasons for using UAV imagery as a data source to estimate maize biomass 

is that this technology might be a viable alternative to the traditional biomass destructive sampling, 

which in field-scale agronomic research is intensive, time-consuming, and expensive. While most 
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studies have shown the potential for estimating maize biomass in small-scale research plots, there 

is a concern about the practical applications of using UAVs for estimating biomass at the field-

scale level. In the real world, one of the challenges for agronomy researchers to adopt UAVs as a 

tool for data collection is the logistics needed to conduct UAV imagery acquisition in large-scale 

fields. First, in order to cover the whole field (10 to 40 ha) as quickly as possible to maintain 

consistent light conditions, it is necessary to fly at the highest altitude approved by law. In the 

USA, the maximum allowable flight altitude is 122 meters AGL according to the Federal Aviation 

Administration (FAA). Therefore, it means that researchers working in large-scale trials need to 

make a trade-off between flight altitude and spatial resolution. Most of the studies stated earlier 

were conducted in fields with an area no greater than 2 ha, with UAV imagery acquired at altitudes 

ranging from 30 to 60 meters. 

Plant height estimates derived from UAV imagery have been well correlated with ground 

truth plant height and biomass (Han et al., 2019; Li et al., 2016; Niu et al., 2019; Varela et al., 

2017). However, most studies describe plant height as the distance between the soil surface and 

the top region of the plant, in which “top of the plant” can be a subjective concept for people 

measuring plant height of maize at the field. None of the studies mentioned above have explored 

the correlation between height derived from UAV imagery and other definable measures of height, 

such as height measured from the soil surface to the most recent developed leaf collar, from the 

soil surface to the tip of the uppermost outstretched leaf (at early growth vegetative stages), or to 

the tip of tassel (at reproductive growth stages). It is important to characterize if the technique used 

to measure height has an impact in its ability to predict biomass. If so, the results could be used in 

future studies to calibrate height derived from UAV imagery for maize biomass prediction.  

Finally, in most of the studies focused on maize, background pixels corresponding to soil 

and shadow are either not masked from the vegetative index maps or the step is not mentioned in 

the methodology. Only Corti et al. (2019) specified that removing background pixels from the 

vegetative indices improved maize biomass prediction. However, since this study was conducted 

at early growth stages (V6 and V9), it is uncertain if the same conclusions apply at reproductive 

growth stages. Plus, it is also unknown whether the results will be VI dependent, since there are 

soil-adjusted VI, such as the Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988), the modified 

SAVI (MSAVI) (Qi et al., 1994), and the Optimized Soil-Adjusted Vegetation Index (OSAVI), in 

which masking may have less impact than on other VI. 
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The general objectives of this study were to 1) determine if in-situ plant height measurement 

technique impacts the relationship between plant height and maize biomass at vegetative and 

reproductive growth stages, 2) assess the relative performance of UAV-derived VI and canopy 

cover fraction (CCF) as predictors of maize biomass at vegetative and reproductive growth stages 

under field-scale conditions, and 3) determine if masking out soil and shadow background image 

pixels improves biomass prediction by several VI at reproductive growth stage R5. 

2.3 Materials and Methods 

2.3.1 Site description 

Field experiments were conducted in 2019 at the Pinney-Purdue Agricultural Center Mary 

S. Rice Farm (PPAC 41.3269, -86.8028, elevation 204 m above sea level) near La Crosse, IN; 

the Throckmorton-Purdue Agricultural Center south of Lafayette, IN (TPAC, 40.2699, -86.8797, 

elevation 226 m above sea level); the Agronomy Center for Research and Education northwest of 

West Lafayette, IN (ACRE, 40.4835, -87.0081, elevation 216 m above sea level), and at an on-

farm location (“Simpson”) (39.650777, -85.686539, elevation 269 m above sea level), near 

Morristown, IN. Soil information for each location is detailed in Table 2.1 and planting dates, 

hybrids, previous crop, and tillage practices are given in Table 2.2. 

Fields were planted using commercial planters. Maize rows were spaced 76 cm apart and 

oriented in an east-west direction at TPAC, and in a north-south direction at PPAC, ACRE, and 

Simpson. Planting dates were later than normal because of an excessively wet early planting season. 

Individual plot sizes among the locations ranged from 9.1 to 12.2 m wide by 373 to 432 m long, 

except at ACRE, where plots were approximately 76 m long.  

Starter fertilizer was applied 5 cm below and 5 cm to the side of the seed at planting at a 

rate of 45 kg ha-1 N as 28-0-0 urea-ammonium-nitrate (UAN) at PPAC, and as 19-17-0 at TPAC. 

Starter fertilizer was not used at ACRE and Simpson. However, 20 kg ha-1 N as 28-0-0 UAN was 

broadcast applied at Simpson prior to planting. 

2.3.2 Experimental trials information 

Sulfur (S) and boron (B) fertilizer trials were conducted at PPAC, Simpson, and TPAC. 

Two nearly identical plant population and nitrogen (N) fertilizer rate trials were conducted in 
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adjacent fields at ACRE. One field was a long-term maize/soybean rotation system and the other 

had been continuous maize since 2006. A randomized complete block design was used in each 

experiment. Number of treatments, replications, and fertilizer timing and rates per location are 

detailed in Tables 2.3. and 2.4. 

2.3.3 UAV image acquisition 

Aerial imagery was acquired immediately prior to plant biomass sampling during 

vegetative (prior to sidedress fertilizer treatment applications) and reproductive maize 

development stages, using a multispectral sensor MicaSense® Altum (Micasense Inc., Seattle, WA, 

https://www.micasense.com/altum) mounted on a DJITM Matrice 200 UAV. In addition to 

capturing LWIR thermal IR 8-14 m (not used in this study), the sensor captures individual images 

for Blue-475 nm (32 nm bandwidth), Green-560 nm (27 nm), Red-668 nm (16 nm), Red-edge-717 

nm (12 nm), and Near-infrared-842 nm (57 nm), each at a resolution of 2064 x 1544 (3.2MP). The 

Ground Sample Distance (GSD) is 5.2 and 2.6 cm per pixel at 120 m and 60 m AGL flight altitudes, 

respectively. The sensor captures 1 image sec-1 in 12-bit RAW and the field of view is 48o x 37o.  

Flight missions were planned and conducted using the MicaSense Atlas flight planning 

application (https://micasense.com/atlas-flight/). At early growth stages (PPAC and Simpson), 

flight parameters were 60 m AGL altitude (2.6 cm spatial resolution), 75% overlap (side and front), 

and 9 m s-1 flight speed. At reproductive stages (ACRE, PPAC, TPAC), flight parameters were 

120 m AGL altitude (5.2 cm spatial resolution), 75% overlap, and 10 m s-1 flight speed. The lower 

flight altitude (60 m) was defined for image acquisition at early growth stages due to the small 

plant size of maize at V3 to V5. Flight direction was parallel to the maize rows at all the locations. 

One or more images were taken of a reflectance calibration panel (MicaSense®) immediately prior 

to each mission and used later for radiometric calibration of the imagery collected. Individual 

images for each wavelength were recorded in TIFF format by the sensor and geographic position 

data was included in each image from the internal GPS of the sensor. Detailed information on 

flights is given in Table 2.5.  

A second flight mission was conducted within two to four weeks after each plant biomass 

harvest in order to identify and delineate the harvested biomass locations for subsequent image 

analyses. These flights were planned and conducted using the DroneDeploy 

(https://www.dronedeploy.com) flight planning application. All flight missions were conducted at 

https://www.micasense.com/altum
https://micasense.com/atlas-flight/
https://www.dronedeploy.com/
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120 m AGL altitude at either 70 or 75% front and side overlap, using a DJITM Mavic 2 Pro UAV 

with its default RGB camera. The RGB images were recorded in JPEG format and geographic 

position data from the UAV’s internal GPS was included in each image.  

Prior to the initial UAV flights, five ground control points (GCP), one on each corner and 

one in the middle of each field, were installed at all locations and used later for coregistration of 

images between flights Coordinates and ellipsoid height, which is the distance from the ground to 

the ellipsoid, were captured using a Trimble AgGPS 542 RTK (https://www.trimble.com/) at 

PPAC, TPAC, and ACRE. All the GCP were constructed using a white 20-liter bucket lid, black 

spray paint, and 0.3 m steel stakes (Figure 2.1).  

Initially, imagery from Simpson location were going to be used for the analysis at both 

vegetative and reproductive growth stages. However, front overlap specified in the fight planning 

app at Simpson was not achieved during flight acquisition at growth stage R5, which resulted in 

issues during the orthomosaic generation and compromised the validity of the imagery. Therefore, 

ACRE and TPAC were selected to replace Simpson for the analysis at reproductive stages.  

2.3.4 Ground truth measurements 

Delineation of sampling zones based on NDVI satellite imagery 

Prior to the biomass harvests, sampling zones for collecting ground truth data were 

delineated using multi-year average NDVI calculated from Landsat 8 satellite imagery, available 

from the United States Geological Survey (https://earthexplorer.usgs.gov/). Selection of the 

satellite imagery to use for the zone delineation was predicated on cloud-free imagery available 

primarily in August, when maize and soybean generally have already reached reproductive growth 

stages. In 2 of 22 instances, the best available imagery was in September, and in one instance, the 

best imagery was in late July. Imagery from 2013 to 2018 was downloaded for all locations, except 

Simpson where imagery from 2014 and 2015 were excluded due to dense cloud cover over the 

area of interest. Exact dates of each satellite image used in the zone delineation process are given 

in Table 2.6. 

Landsat imagery collected with the Operational Land Imager (OLI) sensor have 30-meter 

multi-spectral spatial resolutions and 15-meter panchromatic resolutions. Bands number 4 (Red; 

636–673 nm) and 5 Near-infrared; 851–879 nm) were used for NDVI calculation, and band 

https://www.trimble.com/
https://earthexplorer.usgs.gov/
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number 8 (Panchromatic; 500–680 nm) was used to perform pan sharpening in order to increase 

the spatial resolution of bands 4 and 5 (Garzelli et al., 2004), which were previously layer stacked. 

Calculation of NDVI (Fig. 2.2) was conducted after the pan sharpening process using the Model 

Builder tool in ERDAS® IMAGINE 2016 (https://www.hexagongeospatial.com/products/power-

portfolio/erdas-imagine). Individual NDVI maps had a spatial resolution of 15 m.  

Normalized NDVI maps (Fig 2.2) were created at all locations in ArcGIS Pro © 2018 Esri 

(https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview) to create values from 0 to 1 to 

account for the different crops among years at individual fields. The normalized NDVI maps were 

averaged over the years, and then clustered into 3 to 4 zones using the “natural breaks” method in 

ArcGIS Pro © 2018. The number of zones were defined depending on how they were distributed 

in the field, and if their area was at least 10% of the field. Otherwise, it was merged with the 

adjacent zone. The delineation zone process is detailed in Figure 2.2. 

Identification of ground-truth sampling locations 

Prior to the sidedress application of the fertilizer treatments, establishment of ground-truth 

sampling locations was determined based on the multi-year NDVI zones to take into consideration 

the spatial variability of each field. A total of 96 and 54 sampling locations were randomly 

established at PPAC and Simpson respectively, trying to include six sampling locations per multi-

year NDVI zone in each replication (Figure 2.3). Since PPAC had an additional replication and 

multi-year NDVI zone than Simpson, it had a greater number of sampling locations. Individual 

sampling locations were defined as two maize rows wide (1.52 m) by 2 m long (3.04 m2) and were 

located either in the first and second, or in the last and next to last row of each plot to avoid 

influencing the subsequent grain yield harvest of the center 6 or 8 rows of each plot. To illustrate, 

for a 12-row plot sampling locations would be located either in rows #1-2 or 11-12. 

At reproductive growth stages, when fertilizer treatments had already been applied at 

sidedress, three transects perpendicular to the maize rows were established at PPAC and TPAC, 

and only one at ACRE 92 and 94 respectively due to the long rectangular shape of both fields. In 

all these locations, plot width was equivalent to 12 rows (9.1 m). Sampling locations were 

identified for every plot within each transect and established in rows 8 and 9. A total of 90, 72, 

and 63 sampling locations were set up at PPAC, TPAC, and ACRE respectively (Figure 2.4), 

https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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which were marked using a flag and a garden stake with the corresponding identification (ID) 

number.  

Ground truth data collection 

Early vegetative growth stages prior to sidedress treatment applications 

The purpose of the ground truth data collection at early vegetative growth stages was to 

determine if in-situ plant height measurement technique impacted the relationship between plant 

height and biomass, and to assess the performance of UAV-derived VI and canopy cover fraction 

(CCF) as predictors of maize biomass. Prior to UAV image acquisition at PPAC (June 14) and 

Simpson (June 26), average growth stage and height were estimated from six plants at each 

sampling location (Figure 2.5). Three different methods for measuring plant height were used: 

Height 1 (H1) = distance from soil surface to most recent visible leaf collar, Height 2 (H2) = 

distance from soil surface to imaginary horizontal plane at tops of plants, and Height 3 (H3) = 

distance from soil surface to tip of stretched out uppermost leaf (Figure 2.6). 

Plant biomass samples were collected after recording growth stages and plant heights by 

harvesting all the above-ground plant material within each sampling location. Samples were dried 

in an oven at 60 °C for approximately 4 days until the weight stabilized and then final weight was 

recorded. Unless otherwise indicated, the term “biomass” will refer to the weight of the dried plant 

material.  

Reproductive growth stages 

At PPAC, TPAC and ACRE, average plant height was calculated from six plants at every 

sampling location when maize plants were at reproductive growth stages ranging from R3 to R4. 

Three plants from each row were chosen following the same pattern showed in Figure 2.5. Three 

methods for measuring heights were used: Height 1 (H1) = distance from soil surface to uppermost 

visible leaf collar, Height 2 (H2) = distance from soil surface to imaginary horizontal plane of the 

uppermost leaf, and Height 3 (H3) = distance from soil surface to tip of tassel (Figure 2.7).  

Fresh weight biomass samples were collected at reproductive growth stage R5 in situ by 

destructively harvesting all the plants within a sampling location and weighing them using a scale 
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and a tripod (Figure 2.8). Additional information about plant height measurement and plant harvest 

is detailed in Table 2.7. 

2.3.5 UAV image processing 

Orthomosaic generation and coregistration 

The multispectral imagery from each flight was post-processed in Pix4D V4.2.27 

(https://www.pix4d.com/) to stitch the individual images per flight to generate orthomosaic field 

images and for radiometric calibration. Imagery from post-sampling UAV flights was stitched 

using DroneDeploy. The resulting RGB orthomosaics were exported from DroneDeploy with a 

spatial resolution of 5.1 cm pixel-1 and coregistered with the multispectral orthomosaics, using the 

RGB orthomosaic as the slave. Coregistration was conducted in ArcGIS Pro © 2018 Esri using 

the transformation method 1st Order Polynomial.  

Image classification  

Red (R), Green (G), and Blue (B) reflectance raster bands were composited in ArcGIS Pro 

© 2018 Esri to generate the true-color images. For the purpose of segmenting pixels into plant and 

“no plants”, two segmentation masks were produced. The first mask, based on the Vegetation 

Index Green (VIg), was used to mask out pixels corresponding to soil. The second segmentation 

mask, based on the Red (R) reflectance raster band, was used to filter out shaded areas. Optimal 

thresholds for both segmentation masks at each specific location and date were determined using 

the tool “Region of Interest (ROI)” in ENVI 5.5 Harris ® Geospatial Solutions 

(https://www.harrisgeospatial.com/) by visually comparing the VIg and R raster layers with the 

true-color image on the background. Two binary raster layers from the VIg and R rasters 

respectively were produced based on the previously defined thresholds using the tool “Reclassify” 

in ArcGIS. For each binary layer, pixels corresponding to plants were assigned a pixel value of 

one, and pixels corresponding to “no plants” (soil and shadow) a value of zero. Both binary layers 

were multiplied using the tool “Raster calculator” in ArcGIS Pro © 2018 Esri to generate the final 

binary layer, which was used to exclude “no plants” pixels from all the vegetative indices raster 

layers for further processing. Overall accuracy (OA) (Story & Congalton, 1986) based on 

randomly selected 100 independent testing samples was used as validation metric to evaluate the 

https://www.pix4d.com/
https://www.harrisgeospatial.com/
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accuracy of the binary layer to segment “plants” and “no plants” pixels. A threshold of OA≥80% 

was considered for using the binary layer to mask out the “no plants” pixels during the VI 

calculation. Classification accuracy assessment was conducted in ERDAS® IMAGINE 2016. 

Vegetative indices used for analyses 

A set of thirteen previously published RGB, NIR and Red-edge-based vegetative indices 

previously documented to be good indicators of the spectral variability and biomass were analyzed 

in this study (Table 2.8). Vegetative indices were calculated using the Model Builder tool in 

ERDAS® IMAGINE 2016 (Figure 2.9). The binary layer was included during the VI calculation 

to mask out the “no plants” by multiplying the resulting index raster and the binary layer. 

Consequently, all the pixel values corresponding to “no plants” in the index raster layers were 

equal to zero. Later, in ArcGIS Pro © 2018 Esri, the zero pixel values were set as “Null” using the 

command “Set Null” in the “Raster Calculator” tool. Due to the small size of maize plants at 

growth stages V3 to V5 (Figure 2.10), and the potential impact of soil background (“no plant” 

pixels) on vegetative indices (VI), only masked VI maps were used for the analysis of biomass 

prediction during vegetative growth stages. For analyses at reproductive stage R5, both non-

masked and masked VI maps were used to accomplish Objective 3 of this study. 

Data extraction per plot 

For each biomass sampling event in each trial, a polygon vector layer that identified the 

individual biomass harvest locations was created in ArcGIS Pro © 2018 Esri using the orthomosaic 

image generated from the post-sampling UAV flights. The polygon vector layer was used to 

identify and delineate the harvested areas of the trial that were now void of plants. Later, the “zonal 

statistics as a table” tool in ArcGIS Pro © 2018 was used to estimate the mean VI value for the 

crop canopy in each harvested area prior to sampling by using the aforementioned vector layer and 

each VI raster layer, generated from pre-sampling UAV flights, as inputs.  

Canopy cover fraction (CCF) of the area within each sampling location was calculated 

based on the binary layer, previously generated using the VIg index and the Red band, in which 

“plant” pixels had a value of one, and the “no plants” pixels were set as “Null”. The “zonal statistics 

as a table” tool and the polygon vector layer of the harvested sample areas were used to obtain the 
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sum of all pixel values and the total number of pixels within each sampling location. These two 

values were used to calculate the CCF by dividing the sum of all pixels by the total number of 

pixels, and multiplying the result by one hundred. 

2.3.6 Statistical analysis 

Data corresponding to each location evaluated at vegetative growth stages (PPAC and 

Simpson) was evaluated individually and combined. Likewise, data corresponding to each location 

evaluated at reproductive stages (PPAC, ACRE, and TPAC) was evaluated individually and 

combined. Statistical analyses were performed using RStudio ® 1.1.4 (https://rstudio.com/). Four 

linear models were defined based on the main objectives (Table 2.9). Above ground biomass (AGB) 

was considered as the dependent variable, while height, VI, and canopy cover fraction (CCF) were 

considered as independent variables (predictors). Pearson correlation coefficients were calculated 

using the R package “sjstats” (https://cran.r-project.org/web/packages/sjstats/sjstats.pdf) to assess 

the collinearity of the independent variables and identify which VI were correlated to CCF. If the 

Pearson correlation coefficient (r) between a specific VI and CCF was equal to or higher than |0.6|, 

the combination of the two variables was discarded to avoid an unstable model and problems in 

the interpretation of the results (Dormann et al., 2013). 

Based on the defined linear models, k-fold cross validation was conducted to measure the 

performance of the models predicting biomass, using the R package “caret” (https://cran.r-

project.org/web/packages/caret/caret.pdf). In general, cross-validation methods are the most 

commonly used to evaluate the predictive performances of a model (Yadav & Shukla, 2016). For 

this study, k was equal to 10 since it is the number recommended for this method based on the 

number of observations available per each location (Zhang & Yang, 2015). The data set was 

randomly split into 10-subsets, one was reserved, and the others were used to train the model. 

Later, the model was tested on the reserved subset, and the prediction error or the model was 

recorded. The process was repeated until each of the 10 subsets served as the test set, and then the 

average prediction error rate was calculated. The statistical metrics R-squared (R2) and root mean 

square error (RMSE) resulting from the k-fold cross validation analysis were used as quality 

indicators of the models. The R-squared represents the squared correlation between the observed 

biomass values and the predicted values by the model, and RMSE represents the average difference 

between the observed biomass values and the predicted by the model (Yadav & Shukla, 2016). 

https://rstudio.com/
https://cran.r-project.org/web/packages/sjstats/sjstats.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/caret/caret.pdf


 

 

93 

The resulting R-squared values were subjectively characterized for how well the model predicted 

biomass as: 0 - 25 = Poor, 0.26 - 0.50 = Fair, 0.51 - 0.75 = Good, > 0.75 = Excellent. Since average 

biomass per square meter was different in each location evaluated, RSME values were expressed 

as percentages for an easier comparison among locations. To achieve this, RSME was divided by 

the average biomass per square meter corresponding to each location.  

2.3.7 Weather data 

Monthly air temperature and precipitation from 2019 growing season were collected from 

automated weather stations located in close proximity to the growing sites. Weather data were 

obtained through the Midwestern Regional Climate Center’s cli-MATE online data portal 

(https://mrcc.illinois.edu/CLIMATE/). Monthly normals (1981-2010) computed by the National 

Centers for Environmental Information (NCEI) for each reporting station were subtracted from the 

monthly air temperature and precipitation of the months evaluated to identify deviation from the 

normal. 

2.4 Results and Discussion 

2.4.1 Weather conditions during the year of evaluation 

Average monthly air temperature and accumulated precipitation from 1 May to 31 October 

for all study locations are summarized in Table 2.10. Rainfall in spring of 2019 was excessive, 

delaying planting at all locations (PPAC, TPAC, ACRE, and Simpson) and causing a shorter 

vegetative period. Temperatures above normal in July, and lower than average precipitation in July 

and August caused moisture stress at the beginning of the grain filling period. September was 

characterized by warmer than normal temperatures, which probably had a positive impact on the 

GDD accumulation to reach kernel maturity. 

2.4.2 Plant biomass prediction at early growth stages  

Height as a predictor of biomass during vegetative growth stages 

In general, plant height was a good to excellent predictor of biomass at early vegetative 

growth stages. Relationships between three plant height measurement techniques and biomass 

https://mrcc.illinois.edu/CLIMATE/
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were statistically significant at PPAC (growth stage V3-4), Simpson (V4-5), and averaged over 

the two locations (Table 2.11, Figure 2.11).  

Prediction of biomass based on plant height was excellent at Simpson, while fair to good 

at PPAC. Differences among sites were likely related to differences in growth stage and biomass 

at the time of image collection and sampling. The mean biomass of the V4-V5 plants at Simpson 

(10.5 g m-2) was greater than that of the V3-V4 plants at PPAC (6.5 g m-2), and plants were also 

taller at Simpson (Table 2.11, Figure 2.12).  

Although biomass prediction models for all three plant height methods were significant, 

the techniques used to measure height in-situ influenced the performance (R2) of the models, 

especially at PPAC where the R2 values among the three height methods ranged from 0.35 (H2) to 

0.70 (H3) (Table 2.11). There was less variability for R2 among the three height methods at 

Simpson, where growth stage was slightly more advanced than at PPAC. At Simpson, performance 

of biomass prediction models based on H2 and H3 were slightly better (R2 = 0.94 and 0.95, 

respectively) than based on H1 (R2 = 0.89). Averaged across both locations, plant height measured 

from the soil surface to the tip of the uppermost outstretched leaf (H3) was better at predicting 

plant biomass than the other two height measurement methods.  

Crop Surface Models (CSM) derived from UAV imagery have been used to extract plant 

height information. Our results based on in-situ measured height support studies that have 

evaluated the performance of height derived from UAV imagery at estimating maize biomass at 

early growth stages (Han et al., 2019; Michez et al., 2018; Niu et al., 2019; Varela et al., 2017; W. 

Zhu et al., 2019). Niu et al. (2019) estimated biomass of maize at growth stages V5-V7 based on 

height derived from RGB imagery collected at 30 m AGB over a small field (< 2 ha). R2 of 

estimated height versus biomass was 0.76. Niu et al. (2019) described ground truth height as the 

vertical distance between the base of stem and the top region of the plant where leaves reach 

maximum height without any external intervention, which is comparable to height 2 (H2) of our 

study. Similarly, Han et al. (2019) correlated plant height derived from RGB imagery collected at 

60 m AGL over a small field (<1 ha) with maize biomass collected at growth stages V8 and V11. 

Pearson correlation coefficient of estimated height versus biomass was 0.82. Michez et al. (2018) 

used RGB imagery collected at 50 m AGL over a field of approximately 2.5 ha to estimate height 

of maize during the vegetative and reproductive period. Conversely to the previous cited studies, 

the highest R2 of estimated height versus biomass during the vegetative period was 0.50, with the 
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smallest R2 during early growth stages, which was attributed to the lower height differences 

between individual crops at the beginning of crop growth. In all these studies image acquisition 

was conducted in a range of 30 to 60 m AGL. Zhu et al. (2019a) conducted a study to assess the 

effects of flight altitude and spatial resolution on the estimation of biomass using height derived 

from UAV imagery. The authors concluded that better spatial resolution resulted in more accurate 

estimation of height, and therefore a better estimation of biomass. At 120 m AGL R2 of estimated 

height with dry biomass was 0.45, while at 60 m R2 was about 0.70.  

While height derived from UAV imagery has been proven a good estimator of biomass at 

early growth stages, all these studies assessed only one type of height. The results of our study 

suggest that accuracy to estimate biomass at growth stages can be affected by the method used to 

measure height. Particularly at growth stages V3-V4 where the difference between the height 

measured with different methods was the largest. Future work will concentrate on assessing 

potential ways to calibrate height derived from UAV imagery for a better estimation of biomass. 

Especially with imagery collected at 120 m AGL, which is the altitude most likely used in large 

scale fields and the one with the highest potential to get lower R2 of estimated height versus ground 

truth height (Zhu et al., 2019a). 

Vegetative indices as predictors of biomass during vegetative growth stages 

In general, biomass prediction based on VI had greater R2 values at Simpson (V4-V5) than 

at PPAC (V3-V4) (Table 2.12). Most VI at Simpson were excellent predictors of biomass 

(R2>0.75), while most VI at PPAC were either fair (R2 = 0.26 - 0.50) or good (R2 = 0.51 - 0.75). 

Overall, RGB-based VI had a poorer relationship with biomass compared to the NIR and Red-

edge-based VI (Figures 2.13 to 2.15). At PPAC, biomass predictions based on RGB-based VI were 

either poor (R2 ≤ 0.25) or not significant while at Simpson, only VDVI and VIg were fair and 

excellent predictors of biomass, respectively.  

Biomass prediction based on VIg had the highest R2 among the RGB-based VI at PPAC 

(R2 = 0.20) and Simpson (R2 = 0.76). Results similar to those from Simpson were obtained by Niu 

et al. (2019), in which VIg had a high correlation (r = 0.68) with dry biomass at vegetative growth 

stages V5-V7. In their study, RGB imagery was collected at 30 m AGL over a small maize field 

(< 2 ha) with a spatial resolution of 0.80 cm, which was greater than the spatial resolution achieved 

in our study (2.59 cm). Likewise, VIg had a high correlation (r = 0.82) with biomass at growth 
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stages V8 and V11 in a study conducted by Han et al. (2019). In their study imagery was collected 

at 60 m AGL over a small maize field (<1 ha) using a multispectral sensor, and datasets 

corresponding to the two dates of image acquisition (V8 and V11) were combined prior to 

statistical analysis. Similarly, in a study conducted by Michez et al. (2018) using RGB imagery 

collected at 50 m AGL over a field of 2.4 ha, VIg was superior to other RGB-based VI, including 

PPRB. However, R2 values based on the RGB-based VI evaluated and biomass were not greater 

than 0.40. Among the studies presented, only Han et al. (2019) specified in their methodology that 

soil and shadow background pixels were masked prior to statistical analysis. 

Even at a higher flight altitude, which is required most times in field scale experimental 

trials due to the large area of the fields, results from our study were similar to those obtained from 

imagery collected at lower flight altitudes. Nevertheless, in contrast to the results obtained by Han 

et al. (2019), VIg did not have a significant relationship with biomass in our study when data from 

both locations (PPAC and Simpson) were analyzed together (Table 2.13; Figure 2.13). The 

difference in color, size, and biomass between the plants at PPAC and Simpson (Figure 2.12) might 

have caused the poor relationship when combining data across fields. Plus, earlier growth stages 

were evaluated in our study (V3-V5) compared to Han et al. (2019) (V8 and V11). 

Biomass predictions based on the NIR and Red-edge-based VI were fair to good at PPAC 

(R2 from 0.41 to 0.65), excellent at Simpson (R2 from 0.79 to 0.92), and fair to excellent when 

both locations were combined (R2 from 0.31 to 0.78) (Table 2.12). Vegetative indices within each 

group of NIR and Red-edge-based VI had similar R2 when predicting biomass, except NDVI when 

both locations were analyzed together. In that case, NDVI had an R2 of 0.31, while the others 

ranged from 0.60 to 0.78. Among the NIR-based VI, GNDVI was consistently either a good or 

excellent predictor of biomass across locations with R2 values ranging from 0.65 to 0.82. This 

outcome is similar to that of Corti et al. (2019), in which GNDVI derived from UAV imagery was 

the best predictor of biomass when maize plants were at V6 (R2 = 0.69) and V9 (R2 = 0.71). Similar 

to our study, Corti et al. (2019) masked soil and shadow background pixels from the VI evaluated 

prior to statistical analysis. On the other hand, in the study conducted by Han et al. (2019), VIg 

had greater correlation with biomass (r = 0.82) compared to NDVI (r = 0.59) and NDRE (r = 0.41), 

which does not agree with our results that show that the R2 values for regressions involving NIR 

and Red-edge-based VI were greater than those using RGB-based VI. In contrast to our study, Han 

et al. (2019) combined information from two dates prior to analysis, while in our study information 
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per each date/field was evaluated individually. Furthermore, although data from PPAC and 

Simpson was combined and analyzed too, the difference between fields could have impacted the 

results obtained compared to analyzing information from two dates corresponding to the same 

field. Finally, earlier growth stages were evaluated in our study (V3-V5) compared to Han et al. 

(2019) (V8 and V11) which might explain the difference in our results too.  

Vegetative indices compared to plant height as predictors of biomass 

Biomass predictions based on the NIR and Red-edge-based VI (Table 2.12) derived from 

UAV imagery were comparable but no greater than those based on manual measurement plant 

height, especially height as measured by method H3 (Table 2.11). At PPAC and Simpson, linear 

regression between H3 and biomass had a R2 of 0.70 and 0.95 respectively, while the R2 of the 

regressions involving NIR and Red-edge-based VI versus biomass ranged from 0.41 to 0.65 at 

PPAC, and from 0.79 to 0.92 at Simpson. Comparable results were obtained when both locations 

were analyzed together, H3 had a R2 of 0.87, while the R2 of the NIR and Red-edge-based VI 

ranged from 0.31 to 0.78 (Table 2.12). These results support previous studies in which height 

derived from UAV imagery performed better than VI at predicting biomass at early growth stages 

(Han et al., 2019; Michez et al., 2018; Niu et al., 2019).  

Correlation among vegetative indices 

At both locations, there was a high correlation between the VI within each group of NIR 

and Red-edge-based VI (Figure 2.16), which is mainly related to the common use of the Red, Red-

edge, and NIR bands in the VI calculation. This correlation may explain why the R2 values for the 

regression models based on the VI were similar to each other within each group. Pearson 

correlation coefficients (r) among the NIR-based VI ranged from 0.75 to 0.95 at PPAC, and from 

0.90 to 0.99 at Simpson. Similarly, r among the Red-edge-based VI ranged from |0.91| to |0.99| 

across the two locations. There was also correlation between the NIR and Red-edge-based VI, 

which had r values that ranged from |0.57| to |0.89| at PPAC, and from |0.90| to |0.99| at Simpson. 

In general, ISR had a negative relationship with all the NIR and Red-edge-based VI. Similar results 

were obtained when data from both locations were analyzed together. 
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Regarding the RGB-based VI, VDVI was highly correlated with both PPRB and VIg. At 

both locations r between these VI ranged from 0.71 to 0.88 (Figure 2.16). On the other hand, PPRB 

was the only RGB-based VI that did not have r value higher than 0.32 with the NIR and Red-edge-

based VI, and at the same time, PPRB consistently did not have a significant relationship with 

biomass at early vegetative growth stages across the locations (Table 2.12). In general, the inter-

correlation among the VI was mainly due to the similar mathematical operations based on R, G, 

B, NIR, and Red-edge bands. 

Even though most of the regression models for VI versus biomass at these early vegetative 

stages were significant, the regressions involving VI derived from NIR and Red-edge wavelengths 

were generally stronger (greater R2 values) than those involving VI derived from RGB 

wavelengths. The similarity in their R2 values plus the high correlation among VI within a 

wavelength category (NIR and Red-edge) suggests that any of the VI would predict biomass at 

early vegetative stages similarly.  

Vegetative indices compared to canopy cover fraction (CCF) as predictors of biomass  

At early vegetative growth stages at PPAC (V3-V4) and Simpson (V4-V5), mean canopy 

cover fraction (CCF) corresponding to maize was 0.13 and 0.19 respectively. Such low CCF values 

reinforce the fact that at early growth stages, most of the area was covered by soil. Regression 

models evaluating CCF versus biomass were significant with good to excellent R2 values at PPAC 

(R2 0.56) and Simpson (R2 0.90) at early vegetative growth stages (Table 2.12). Similar to the 

regressions involving NIR and Red-edge-based VI, the R2 of regressions involving CCF were 

comparable but still lower than the regressions involving plant height (Table 2.11).  

Combining the VI and CCF in a regression model to predict biomass did not improve the 

R2 values substantially, compared to either the VI or the CCF alone (Table 2.12). Most of the VI 

had a Pearson’s correlation coefficient equal or higher than |0.60| with CCF, so the models with 

collinearity among the two variables (VI and CCF) were not considered for further analysis. The 

R2 values for the rest of combined regressions were good at PPAC (from 0.58 to 0.68), and 

excellent at Simpson (from 0.91 to 0.92) (Table 2.12). These values were not markedly different 

from either the best VI to predict biomass or CCF alone. Similar results were obtained when both 

locations were analyzed together. These results are in line with the study conducted by Corti et al. 

(2019), in which canopy cover fraction derived from NIR imagery collected at 35 m AGL over a 
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small maize field (< 1 ha) was among the best predictors of biomass at growth stages V6 (R2 0.64) 

and V9 (R2 0.68). 

Practical consequences of the results for field-scale research 

In these large-scale experimental trials, NIR and the Red-edge-based VI were strongly 

related to biomass, but RGB-based VI were not. Manually measured plant height was better related 

to biomass than were the VI, but not dramatically so. Regression models combining VI with CCF 

did not improve biomass prediction versus VI or CCF alone.  

Even though manually measured plant heights were better predictors of biomass, 

relationships between biomass and VI (or CCF) calculated from UAV imagery were strong enough 

to justify the compromise between slightly less precise biomass estimation and the greater ease in 

estimating whole field biomass by using UAV imagery.  

2.4.3 Biomass prediction at reproductive growth stages  

Height as a predictor of biomass at reproductive growth stages 

Plant height relationships with biomass at reproductive growth stages were significant 

regardless of height measurement method (Figure 2.17). The goodness of fit between height and 

biomass was poorer at PPAC than at TPAC and ACRE, which had comparable R2 values (Table 

2.13). The height models were fair at PPAC at predicting fresh biomass, with R2 that ranged from 

0.28 to 0.32, while good at TPAC and ACRE with R2 from 0.51 to 0.68 across both locations. 

These results agree with previous studies that evaluated the performance of height derived from 

UAV imagery at estimating maize biomass during the reproductive period (Li et al., 2016; Varela 

et al., 2017; Zhu et al., 2019b). Among these studies, Li et al. (2016) estimated biomass of maize 

early in the reproductive period using RGB imagery collected at 150 m AGL, with a spatial 

resolution of 2 cm. The R2 of estimated height versus measured biomass was 0.73. On the other 

hand, Varela et al. (2017) and Zhu et al. (2019b) used RGB imagery collected at 65 m and 15 m 

AGL, respectively, to derive height; and R2 values of estimated height versus measured biomass 

were 0.84 and 0.79, respectively. 

Visual appearance of kernels the day of biomass sampling harvest at PPAC was different 

compared to appearance of kernels at TPAC and ACRE (Figure 2.18). Although growth stage was 
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R5 across the three locations, PPAC was at early R5, while TPAC and ACRE at late R5. These 

results suggest that plant height was a better predictor of maize approaching maturity (late R5) 

than at early R5 when kernel dry matter content is about 45% of the eventual final accumulation 

(Nielsen, 2019). 

Effects of removing soil and shadow background pixels from VI on the relationships between 

VI and fresh biomass of late reproductive stage maize 

When maize plants were at early vegetative growth stages at PPAC (V3-V4) and Simpson 

(V4-V5), mean canopy cover fraction (CCF) corresponding to maize was 0.13 and 0.19 

respectively, so most of the area was covered by soil. The opposite situation occurred later in the 

season because the plant canopy covered most of the soil. The three locations evaluated at 

reproductive stage R5 (PPAC, TPAC, and ACRE) had a mean CCF ranging from 0.72 to 0.84.  

Masking soil and shadow background image pixels from the VI evaluated did not 

consistently affect R2 at growth stage R5 (Tables 2.14 and 2.15). The majority of VI evaluated 

across the locations remained in the same R2 category rating (poor, fair, good, and excellent) after 

masking. Sixty percent of the time the difference between R2 of masked from non-masked VI was 

±0.05 or less, 25% of the time R2 decreased by >0.05, and only 15% of the time R2 increased by 

>0.05. In Chapter 1, for the regression models between grain yield and VI (RGB and NIR-based) 

that were significant at growth stage R5, 75% of the time difference between R2
adj of masked from 

non-masked VI was ±0.05, 22% of the time R2
adj increased in a range from 0.08 up to 0.27, and 

only 3% R2
adj decreased by >0.05 (Table 1.18). While 25% of the time R2 decreased by >0.05 in 

Chapter 2, only 3% in Chapter 1. 

The larger differences in R2 values occurred with VIg, although the changes were positive 

at PPAC and negative at ACRE (Table 2.15). At PPAC, ACRE, and the three locations combined, 

variation in R2 ranged from |0.12| to |0.16| after masking, and at TPAC the regression model based 

on VIg was significant only when background was masked. In contrast to these results, the greatest 

effect of masking in Chapter 1 was not consistently on VIg at growth stage R5, and it varied 

depending on the specific RGB-based VI and the location evaluated. Nevertheless, in Chapter 1, 

masking had the greatest effect on VIg at growth stages R1 to R4 compared to the rest of RGB and 

NIR-based VI evaluated, with R2
adj values that increased in a range from 0.25 to 0.68 (Table 1.18). 

Although yield regression models were based on the mean VI value per each plot, and biomass 
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regression models were based on sampling areas, masking VIg improved yield and biomass 

prediction during the reproductive period. The formula of VIg is the only one that includes 

exclusively Red and Green bands (Table 2.8). Red reflectance by soil is greater than Green, while 

in green vegetation Red is absorbed by chlorophyll, so it is lower than Green reflectance. This may 

explain why VIg was more sensitive than the rest of VI to background masking.  

Because masking soil and shadow background image pixels from the VI did not have a 

consistent positive effect on biomass prediction at growth stage R5, the discussion that follows is 

based on the results using the non-masked VI.  

Vegetative Indices as predictors of fresh biomass at reproductive growth stages 

The R2 of regressions between the various non-masked VI and fresh biomass ranged from 

poor to good, with the majority characterized as only “fair” (Table 2.16). Among the RGB, NIR, 

and Red-edge-based VI models, the RGB-based models generally had the lowest R2 values (Table 

2.16, Figures 2.19 to 2.21).  

Across the three locations, the RGB-based VI models were either poor or fair at predicting 

fresh biomass, with R2 values that ranged from 0.15 to 0.46, while the NIR and Red-edge-based 

VI were either fair or good, with R2 from 0.36 to 0.67. When data from all locations were combined 

and analyzed together, R2 values based on the RGB-based VI were the lowest ranging from 0.16 

to 0.25, while for NIR ranged from 0.34 to 0.74, and for the Red Edge VI from 0.73 to 0.77.  

Regression models involving the RGB-based ExG, PPRG, and VDVI were significant at 

each individual location, while the model involving VIg was significant at PPAC and ACRE, but 

not at TPAC. Previous studies have also used RGB-based VI derived from UAV imagery to 

estimate maize biomass during the reproductive period (Li et al., 2016; Zhu et al., 2019b). In the 

study conducted by Li et al. (2016), VIg and ExG derived from RGB imagery collected at 150 m 

AGL was used to estimate biomass. Resulting R2 values of VIg and ExG versus dry biomass were 

0.68 and 0.56 respectively. Although imagery acquisition was conducted at a higher flight altitude 

(150 m) than in our study (120 m), spatial resolution from the RGB camera was higher (2 cm) than 

the obtained from the multispectral sensor used in our study (5.2 cm). Also, imagery used in the 

study of Li et al. (2016) was collected before growth stage R5, which might explain the different 

outcome in our study. Similarly, in the study conducted by Zhu et al., (2019b), VIg derived from 

multispectral imagery collected at 15 m (1.3 cm spatial resolution) was used to estimate maize 
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biomass during the reproductive period. Like Li et al. (2016), VIg showed to be a good predictor 

of biomass with a R2 of 0.75. These results emphasize the important role of spatial resolution in 

the performance of VI at predicting biomass. 

Correlation among vegetative indices  

  There were high correlations among the RGB-based VI, the NIR-based VI, and the Red-

edge-based VI (Figure 2.22), which indicates that any VI within each group would predict biomass 

at growth stage R5 similarly. In most cases, PPRB, VDVI, and VIg had Pearson correlation 

coefficients (r) ≥0.90. Similarly, the NIR-based VI, MSAVI, OSAVI, and SAVI were consistently 

correlated between each other (r ≥ 0.90), while NDVI and GNDVI varied depending on the 

location. Finally, Red-edge-based VI were correlated to each other (r ≥ 0.90) too. The inter-

correlation among the VI was mainly due to the similar mathematical operations based on R, G, 

B, NIR, and Red-edge bands.  

Vegetative indices compared to height and canopy cover fraction (CCF) 

  As discussed earlier, the regression models based on height (independent of the 

measurement method) were either fair or good at predicting fresh biomass across locations, with 

R2 values that ranged from 0.28 up to 0.68 (Table 2.13). Conversely, models based on CCF had 

lower R2 values, 0.17 (TPAC), 0.25 (PPAC), and 0.30 (ACRE) (Table 2.16). The higher R2 at 

ACRE may be attributed to the plant population trial conducted in that location. In contrast to 

PPAC and TPAC with uniform plant populations, the trial at ACRE included three different 

seeding rates (Table 2.4). Sampling areas in the plots with the lowest seeding rate had lower CCF 

and lower fresh biomass, compared to sampling areas located in plots with the highest seeding rate.  

The greater range in CCF at ACRE (0.53 to 0.95), compared to PPAC (0.63 to 0.86) and TPAC 

(0.53 to 0.88) might have resulted in slightly greater R2 values with biomass.  

 Among the VI evaluated, NIR and Red-edge-based VI were either fair or good predictors 

of biomass, while RGB-based VI were either poor or fair (Table 2.16). Overall, the NIR and Red-

edge-based VI models had greater R2 values than models involving RGB-based VI, and their 

ability to predict fresh biomass based on their R2 values was similar to those based on height. Only 

at TPAC height was a better predictor of fresh biomass than the VI. In contrast to PPAC and ACRE, 
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the fertilizer treatments applied at TPAC did not have a significant effect on yield (Chapter 1, 

Table 1.10), and maize canopy at TPAC did not show visual differences between fertilizer 

treatments across the field during the growing season. In contrast to our results, results from 

previous studies have shown that height derived from UAV imagery was consistently a better 

predictor of biomass at reproductive stages than VI (Li et al., 2016; Michez et al., 2018; Varela et 

al., 2017; Zhu et al., 2019b). We evaluated biomass prediction at growth stage R5, while the 

previous studies examined earlier reproductive growth stages, which may have caused the 

differences in our results. 

  Including VI and CCF as predictors of biomass in the same regression model did change 

the R2 values compared to either the specific VI or CCF alone (Table 2.16). However, the changes 

in R2 were not consistent across VI and locations. In addition, Pearson correlation coefficients 

between specific VI and CCF were higher than |0.60|. In those cases, including both predictor 

variables in the same model was not valid since they were not independent from each other. These 

results suggest that at reproductive growth stage R5, it was more convenient to utilize VI alone, 

since using VI and CCF together did not consistently improve the derived R2 values. 

2.5 Conclusions  

At early vegetative growth stages (V3-V5), plant height was consistently the best predictor 

of biomass, followed by CCF, and the VI evaluated. The technique to measure height in-situ had 

an impact on its ability to predict biomass. Across the locations, height corresponding to the 

distance from the soil surface to the tip of the uppermost outstretched leaf (H3) consistently had 

the highest R2, whereas R2 values of H2 and H1 were lower and varied depending on the location. 

In contrast, at reproductive growth stages, results obtained based on height were comparable to 

those obtained by NIR and Red-edge-based VI, which were consistently better than the RGB-

based VI across location and growth stages. Plus, the technique used to measure height did not 

have a drastic effect on the prediction of biomass during reproductive growth stages. In a similar 

manner to height, CCF was a better predictor of biomass at early growth stages than at reproductive 

stages. Combining the VI with CCF did not improve biomass prediction drastically neither at 

growth stages V3-V5 nor at R5 compared to either the best VI to predict biomass or CCF alone. 

Furthermore, several of the biomass prediction models including the VI and CCF presented 

collinearity between the two variables, so the models were not valid. Removal of background 
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pixels corresponding to soil and shadow from VI at growth stage R5 did not have a consistent 

effect in improving biomass prediction at this growth stage. Most of the time the time difference 

between R2 of masked from non-masked VI was ±0.05. 

In summary, height was the best predictor of biomass at early vegetative growth stages 

compared to the VI and the CCF, which had similar results depending on the specific VI examined. 

Nevertheless, taking in consideration the practicability, time efficiency, and simplicity, CCF was 

the best to predict biomass at early vegetative growth stages. On the other hand, at reproductive 

growth stages, NIR and Red-edge-based VI were the best methods for predicting biomass. 
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Table 2.1. Soil classification and percent of field area by soil type for maize response trials conducted in 2019 and used in the evaluation of maize biomass 

prediction based on UAV aerial imagery. Data obtained from: WebSoilSurvey. 

Location and (area) 
% of field 

area 
Slope Soil series Family 

PPAC 
(20 ha) 

76 
17 

7 

0-1% 
0-1% 

0-3% 

Gilford 
Maumee 

Brems 

Coarse-loamy, mixed, superactive, mesic Typic Endoaquolls 
Sandy, mixed, mesic Typic Endoaquolls 

Mixed, mesic Aquic Udipsamments 

TPAC 

(15 ha) 

45 

26 

16 

8 

3 
2 

1-3% 

0-2% 

0-2% 

0-2% 

2-6% 
0-2% 

Throckmorton 

Toronto-Millbrook 

Drummer 

Starks-Fincastle 

Lauramie 
Mellott 

Fine-silty, mixed, superactive, mesic Mollic Oxyaquic Hapludalfs 

Fine-silty, mixed, superactive, mesic Udollic Epiaqualfs 

Fine-silty, mixed, superactive, mesic Typic Endoaquolls 

Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs 

Fine-loamy, mixed, active, mesic Mollic Hapludalfs 
Fine-silty, mixed, superactive, mesic Mollic Hapludalfs  

ACRE - Field 92 

(4 ha) 

88 

9 

3 

0-2% 

0-1% 

Pothole 

Chalmers 

Raub-Brenton 

Milford 

Fine-silty, mixed, superactive, mesic Typic Endoaquolls 

Fine-silty, mixed, superactive, mesic Aquic Argiudolls 

Fine, mixed, superactive, mesic Typic Endoaquolls 

ACRE - Field 94 

(4 ha) 

56 

44 

0-1% 

0-2% 

Raub-Brenton Chalmers Fine-silty, mixed, superactive, mesic Aquic Argiudolls 

Fine-silty, mixed, superactive, mesic Typic Endoaquolls 

Simpson 

(17 ha) 

60 

40 

0-2% 

0-2% 

Brookston 

Crosby 

Fine-loamy, mixed, superactive, mesic Typic Argiaquolls 

Fine, mixed, active, mesic Aeric Epiaqualfs 
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Table 2.2. Planting date, hybrid, previous crop, and tillage practice for each field trial conducted in 2019 used in this 

study. 

Location Planting date Hybrid 
Seeding rate 

seeds ha-1 

Previous 

crop 

Tillage 

practice 

PPAC 20-May P1197AMXT 79,000 Soybean No-till 

TPAC 3-June P1197AMXT 74,000 Soybean Conventional 

ACRE - Field 92 10-June Becks 5113AM 45,000 

79,000 

95,000 

 

 

Soybean No-till 

ACRE - Field 94 10-June Becks 5113AM 45,000 

79,000 

95,000 

 

 

Maize No-till 

Simpson 29-May Channel 210-26 80,275 Soybean No-till 

 

 

 

Table 2.3. Number of sidedress-applied treatments, fertilizer rates, replications (Reps), and sidedress information of 

sulfur (S) and boron (B) fertilizer trials conducted at 3 locations in Indiana in 2019.  

Location 

Treatments applied with 

sidedress N 

(kg S or B ha-1) 

Fertilizer analysis Reps Sidedress date 

Stage at 

sidedress 

application 

PPAC 1) 0 S + 0.4 B  

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 

 

 

12-0-0-26S  

Solubor – 20.5% B 

5 26-June 

(38 days after 

planting (DAP)) 

V5 

TPAC 1) 0 S + 0.4 B  

2) 8 S + 0.4 B 

3) 17 S + 0.4 B 

4) 25 S + 0.4 B 

5) 34 S + 0.4 B 

6) 25 S 
 

 

12-0-0-26S 

Solubor – 20.5% B  

6 3-July 

(31 DAP) 

V6 

Simpson 1) 0 S  

2) 11 S  

3) 17 S 

4) 22 S 

5) 22 S + 0.4 B 

12-0-0-26S 

Solubor – 20.5% B 

7 28-June  

(31 DAP) 

V4 
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Table 2.4. Seeding rate and nitrogen (N) fertilizer rate treatments for trial conducted in two fields at ACRE in 2019. 
Nitrogen was applied on 28-June, 19 days after planting, at the V3 growth stage, as liquid urea ammonium nitrate 

(28-0-0). Each treatment was replicated 3 (Field 92) or 4 (Field 94) times in a randomized complete block design 

arranged in a split-plot layout with seeding rate as the main plot. 

Treatments 

Seeding rate 

(seeds ha-1) 

Sidedress N rate 

(kg N ha-1) 

45,000 

45,000 

45,000 

70,000 
70,000 

70,000 

95,000 

95,000 

95,000 

112 

168 

224 

112 
168 

224 

112 

168 

224 

 

 

 

Table 2.5. Flight date, maize growth stage, flight interval, cloud conditions, and solar noon for each flight mission. 

Location Date Growth stage Time interval Cloud conditions Solar noon 

PPAC 
14-June 

5-Sept 

V4 

R5 

9:35 – 10:05 

9:53 – 10:12 

Clear 

Cloudy 

13:48 

13:47 

TPAC 19-Sept R5 10:48 – 11:04 Clear 13:42 

ACRE 19-Sept R5 12:45 – 13:02 Clear 13:42 

Simpson 26-June V5 10:27 – 11:56 Clear 13:46 

Note: Vegetative stages were determined based on the leaf collar method, and reproductive stages based on visual 

indicators of kernel development (Abendroth et al., 2011). 

 

 

 

 

Figure 2.1. Ground Control Points (GCP) installed at PPAC, TPAC, ACRE and Simpson, and 

used for coregistration of images between flights. 
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Table 2.6. Date of acquisition of Landsat 8 satellite imagery considered in the delineation of multi-year normalized 

NDVI zones, and crop grown at each location per year.  

Location Year Date Crop 

PPAC 2013 

2014 

2015 

2016 

2017 

2018 

 

12-Aug 

15-Aug 

02-Aug 

04-Aug 

23-Aug 

26-Aug 

Maize 

Soybean 

Maize 

Soybean 

Maize 

Soybean 

TPAC 2013 

2014 
2015 

2016 

2017 

2018 

 

12-Aug 

15-Aug 
02-Aug 

05-Sept 

08-Sept 

26-Aug 

Soybean 

Maize 
Soybean 

Maize 

Soybean 

Maize 

ACRE 92 2013 

2014 

2015 

2016 

2017 

2018 

 

12-Aug 

15-Aug 

02-Aug 

04-Aug 

23-Aug 

26-Aug 

Soybean 

Maize 

Soybean 

Maize 

Soybean 

Maize 

ACRE 94 2013 

2014 

2015 

2016 

2017 
2018 

 

12-Aug 

15-Aug 

02-Aug 

04-Aug 

23-Aug 
26-Aug 

Maize 

Maize 

Maize 

Maize 

Maize 
Maize 

Simpson 2013 

2016 

2017 

2018 

05-Aug 

29-Aug 

31-Jul 

19-Aug 

Maize 

Soybean 

Maize 

Soybean 
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Figure 2.2. Example of the workflow for zone delineation using multiple years of Landsat 8 

satellite imagery and calculated NDVI maps. 

 

  
Figure 2.3. Distribution of 96 sampling locations at PPAC (left) and 54 at Simpson (right). 

Colored zones represent the multi-year normalized NDVI zones. Green symbolizes areas with the 

highest NDVI values (“healthy” vegetation) over the years (mostly in August), while red 

symbolizes the lowest NDVI values (“stressed” vegetation). 
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Figure 2.4 Distribution of 90 sampling locations at PPAC (left), 72 at TPAC (top right), and 63 at ACRE (bottom 

right). Colored zones represent the multi-year normalized NDVI zones. Green symbolizes areas with the highest 

NDVI values (“healthy” vegetation) over the years (mostly in August), while red symbolizes the lowest NDVI 

values (“stressed” vegetation). 

 

 

 

Figure 2.5. Location of the six plants within the sampling location for height measurements. Three 

plants from each row across from one another. 

  

2 m

2 rows
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Figure 2.6. Plant height measurement methods: H1 = distance from soil surface to most recent 

visible leaf collar, H2 = distance from soil surface to imaginary horizontal plane at tops of plants, 

and H3 = distance from soil surface to tip of stretched out uppermost leaf.  

 

 

 

 

Figure 2.7. Plant height measurement methods: H1 = distance from soil surface to uppermost 

visible leaf collar, H2 = distance from soil surface to imaginary horizontal plane of the uppermost 

leaf, and H3 = distance from soil surface to tip of tassel.  
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Figure 2.8. Fresh biomass harvest at reproductive growth stage R5 at PPAC. 

 

 

 

Table 2.7 Plant height measurement dates, growth stages, and UAV flight dates for reproductive growth stage 

biomass sampling at ACRE, PPAC, and TPAC in 2019. 

Location 
Date of plant height 

measurement 

Reproductive 

growth stage at 
height 

measurement 

Date of image 
acquisition 

Date of 

biomass 
harvest 

Reproductive 

growth stage 
at biomass 

harvest 

PPAC 22-Aug R3 5-Sept 5-6 Sept a R5 

TPAC 30-Aug R4 19-Sept 20-Sept R5 

ACRE 92 23-Aug R3 19-Sept 19-Sept R5 

ACRE 94 27-Aug R4 19-Sept 19-Sept R5 
a At PPAC, 2 out of 5 replications were harvested (fresh biomass) on 5-Sept and the remaining replications on 6-

Sept. 
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Table 2.8. Vegetative indices, their formulas, and the researchers who first developed each VI evaluated for 

predicting maize biomass at 4 field trial locations across Indiana in 2019.  

Vegetative 

index 
Index full name Formula Reference 

RGB-based VI 

ExG Excess Green Index [2G-R-B] Woebbecke et al. (1995) 

PPBR Plant Pigment Ratio [(G-B)/(G+B)] Metternicht (2003) 

VDVI 
Visible-band Difference Vegetation 

Index 
[(2G-B-R)/(2G+B+R)] 

Wang Xiaoqin et al. 

(2015) 

VIg Vegetation Index Green [(G-R)/(G+R)] Tucker (1978) 

NIR-based VI 

NDVI 
Normalized Difference Vegetation 

Index 
[(NIR-R)/(NIR+R)] Rouse et al. (1973) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
[(NIR-G)/(NIR+G)] Gitelson et al. (1996) 

SAVI Soil-Adjusted Vegetation Index [(NIR-R)/(NIR+R+L)]x(1+L) Huete (1988) 

OSAVI 
Optimized Soil-Adjusted Vegetation 

Index 
[(NIR-R)/(NIR+R+0.16)] Baret et al. (1993) 

MSAVI 
Modified Soil-Adjusted Vegetation 

Index 

[2xNIR+1-[√(2xNIRx1)2 -

8x(NIR-R))]]/2 
Qi et al. (1994) 

Red-edge-based VI 

ISR Inverse Simple Ratio RE/ NIR Peng Gong et al. (2003) 

NDRE 
Normalized Difference Red Edge 

Index 
(NIR-RE) / (NIR+RE) Fitzgerald et al. (2010) 

MTCI MERIS Terrestrial Chlorophyll Index (NIR-RE) / (RE-R) Dash & Curran (2004) 
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Figure 2.9. Vegetative index calculation and “no plants” pixels masking using the Model Builder 

tool in ERDAS IMAGINE. 

 

 

 

 

Figure 2.10. Aerial view of sampling areas the day of biomass sampling. 
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Table 2.9. Linear Models analyzed in this study and objectives to which they address. Height, vegetative indices 

(VI), and canopy cover fraction (CCF) as the independent variables (predictors), and above ground biomass (AGB) 

as de dependent variable. 

 

Study objectives 

1. Determine if in-situ 

plant height 

measurement 

technique affects the 

relationship between 

plant height and 

maize biomass at 
vegetative and 

reproductive growth 

stages. 

2. Assess the relative 

performance of UAV-

derived VI and canopy 

cover fraction (CCF) as 

predictors of maize 

biomass at vegetative 

and reproductive 
growth stages under 

field-scale conditions. 

3. Determine if 

masking out soil 

and shadow 

background image 

pixels improves 

biomass prediction 

by several VI at 
reproductive growth 

stage R5. 

Linear Model 

AGB = a + b (height) + Error X   

AGB = a + b (VI) + Error  X X 

AGB = a + b (CCF) + Error  X  

AGB = a + b (VI) + c (CCF) + Error  X  
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Table 2.10. Average monthly air temperature and accumulated precipitation from 1 May to 31 October for all study locations. Values in parentheses represent the 

deviation from the 30 yr average (1981-2010). 

Location 
Air temperature (°C) a  Precipitation (mm) b 

May Jun Jul Aug Sept Oct  May Jun Jul Aug Sept Oct 

PPAC 15.0 19.9 23.6 21.0 19.7 11.3  168 121 74 54 158 93 

(-1.1) (-1.2) (+1.1) (-0.9) (+1.6) (-0.8)  (+67) (+17) (-40) (-58) (+73) (+2) 

TPAC 16.7 21.2 24.7 21.9 21.1 12.9  129 97 74 84 62 102 

 (+0.1) (-0.6) (+1.3) (-0.5) (+2.3) (+0.8)  (+11) (-18) (-30) (-16) (-9) (+34) 

ACRE 16.1 20.9 24.3 21.6 20.4 12.0  137 84 47 65 67 86 

 (-0.3) (-0.7) (+1.3) (-0.4) (+2.2) (+0.3)  (+16) (-20) (-59) (-26) (-5) (+9) 

Simpson 17.2 21.2 25.1 22.5 21.4 12.7  104 155 139 80 21 119 

(+0.6) (-0.6) (+1.6) (-0.2) (+2.6) (+0.6)  (-27) (+39) (+23) (-11) (-63) (+36) 
a For air temperature, blue and red shadows represent deviations below and above the 30-yr monthly average respectively. Darker shading indicates a 

greater deviation. 
b For precipitation, yellow and blue shadows represent deviations below and above the 30-yr monthly average respectively. Darker shading indicates a 

greater deviation. 
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Table 2.11. Cross-validation metrics of linear regression between plant height measured with three techniques 

(predictor variable) and biomass (dependent variable) at vegetative growth stages V3 to V5 at PPAC and Simpson 

locations in 2019. 

Location and  

growth stage a 
Height method b 

Mean height 

(cm) 

CV c 

(%) 
P-value d 

K-fold cross validation  

metrics (k=10) e  

R2  f RMSE (% ) 

PPAC H1 6.2 14 <0.0001 0.63 16 

V3-V4 H2 18.9 18 <0.0001 0.35 22 
 H3 32.0 9.8 <0.0001 0.70 14 

Simpson H1 8.0 29 <0.0001 0.89 26 

V4-V5 H2 25.8 33 <0.0001 0.94 20 
 H3 38.9 26 <0.0001 0.95 20 

Two locations H1 6.8 26 <0.0001 0.80 26 

 H2 21.4 31 <0.0001 0.80 27 

 H3 34.5 21 <0.0001 0.87 19 
a Mean biomass at PPAC was 6.5 g m-2, 10.5 g m-2 at Simpson, and 8.0 g m-2 at the two locations combined. 
b H1= distance from soil surface to most recent visible leaf collar, H2 = distance from soil surface to imaginary 
horizontal plane at tops of plants, and H3 = distance from soil surface to tip of stretched out uppermost leaf. 
c CV = Coefficient of variation of predictor variable (height). 
d P-values bolded indicate that the relationship between the predictor variable (height) and biomass is statistically 

significant (P-value ≤ 0.10). 
e R2 (R-squared) = squared correlation between the observed biomass values and the predicted values by the model, 

RMSE (Root mean square error) = average difference between the observed biomass values and the predicted by 

the model. 
f Rating of predictor variable: Poor = R2 ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent = R2 > 0.75. 
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Figure 2.11. Linear regressions between plant height and biomass at PPAC (V3-V4), Simpson 

(V4-V5), and the two locations combined (V3-V5). Height measurement techniques: H1) distance 

from soil surface to most recent visible leaf collar, H2) distance from soil surface to imaginary 

horizontal plane at tops of plants, and H3) distance from soil surface to tip of stretched out 

uppermost leaf. Shaded area represents 95% confidence interval.  
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Figure 2.12. Maize plants at vegetative growth stage V3-V4 at PPAC (left), and at V4-V5 at 

Simpson (right) the day of biomass harvest and plant height measurements.  
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Table 2.12. Cross-validation metrics of linear regression between RGB, NIR, and Red-edge masked vegetation 

indices (VI), canopy cover fraction (CCF), and VI plus CCF plus (predictor variables), and biomass (dependent 

variable) at vegetative growth stages V3 to V5 at PPAC and Simpson locations in 2019, and the two locations 

combined.  

Predictor variables a 

PPAC (V3-V4) b Simpson (V4-V5) b Two locations (V3-V5) b 

K-fold cross validation metrics (k=10) c 

R2 RSME (%) R2 RSME (%) R2 RSME (%) 

RGB ExG 0.18 24 0.23 61 0.14 56 
 PPRB ns ns ns ns ns ns 
 VDVI 0.16 25 0.50 48 ns ns 
 VIg 0.20 24 0.76 38 ns ns 

NIR GNDVI 0.65 17 0.82 37 0.69 35 
 MSAVI 0.41 20 0.82 32 0.75 30 
 NDVI 0.59 17 0.79 36 0.31 49 
 OSAVI 0.51 18 0.92 30 0.60 38 
 SAVI 0.43 20 0.86 30 0.78 31 

Red-edge ISR 0.56 18 0.85 32 0.52 42 
 MTCI 0.41 20 0.85 34 0.57 37 
 NDRE 0.55 18 0.86 33 0.57 41 

CCF  0.56 18 0.90 23 0.82 24 

RGB + CCF ExG 0.59 17 0.92 24 0.86 23 
 PPRB 0.58 18 0.91 22 0.84 23 
 VDVI - - - - 0.86 23 
 VIg - - - - 0.85 23 

NIR + CCF GNDVI - - - - - - 
 MSAVI 0.63 16 - - - - 
 NDVI - - - - 0.86 22 
 OSAVI - - - - - - 
 SAVI 0.60 16 - - - - 

Red-edge + CCF ISR - - - - - - 
 MTCI 0.68 16 - - - - 
 NDRE 0.63 15 - - - - 

Note: No data shown indicates collinearity between the specific VI and CCF. Pearson correlation coefficient ≥ 
|0.60|.  
a Background pixels were masked out from all VI evaluated at vegetative growth stages. RGB VI (ExG=Excess 

Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index 

Green), NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted 

Vegetation Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation 

Index, SAVI=Soil-Adjusted Vegetation Index), and Red-edge VI (ISR=Inverse Simple Ratio, MTCI=MERIS 

Terrestrial Chlorophyll Index, NDRE=Normalized Difference Red Edge Index).  
b Mean biomass at PPAC was 6.5 g m-2, 10.5 g m-2 at Simpson, and 8.0 g m-2 at the two locations combined. Mean 

canopy cover fraction (CCF) was 0.13 at PPAC, 0.19 at Simpson, and 0.15 at the two locations combined. 
c R2 (R-squared) = squared correlation between the observed biomass values and the predicted values by the model. 

Rating of predictor variable(s): Poor = R2 ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent = R2 > 

0.75. RMSE (Root mean square error) = average difference between the observed biomass values and the predicted 

by the model.  
  



 

 

121 

 
Figure 2.13. Linear regressions between RGB vegetative indices (VI) and biomass at PPAC (V3-

V4), Simpson (V4-V5), and the two locations combined (V3-V5). Acronyms of VI stand for: 

ExG) Excess Green Index, PPBR) Plant Pigment Ratio, VDVI) Visible-band Difference 

Vegetation Index, and VIg) Vegetation Index Green. Shaded area represents 95% confidence 

interval. 
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Figure 2.14. Linear regressions between NIR vegetative indices (VI) and biomass at PPAC (V3-

V4), Simpson (V4-V5), and the two locations combined (V3-V5). Acronyms of VI stand for: 

GNDVI) Green Normalized Difference Vegetation Index, MSAVI) Modified Soil-Adjusted 

Vegetation Index, NDVI) Normalized Difference Vegetation Index, OSAVI) Optimized Soil-

Adjusted Vegetation Index, and SAVI) Soil-Adjusted Vegetation Index. Shaded area represents 

95% confidence interval. 
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Figure 2.15. Linear regressions between Red-edge vegetative indices (VI) and biomass at PPAC 

(V3-V4), Simpson (V4-V5), and the two locations combined (V3-V5). Acronyms of VI stand for: 

ISR) Inverse Simple Ratio, MTCI) MERIS Terrestrial Chlorophyll Index, and NDRE) Normalized 

Difference Red Edge Index. Shaded area represents 95% confidence interval. 
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Figure 2.16. Pearson’s correlation coefficients (r) between RGB, NIR, and Red-edge VI derived 

from UAV imagery acquired at early vegetative growth stages at PPAC (V3-V4), Simpson (V4-

V5), and the two locations combined. VI acronyms: ExG= Excess Green Index, PPBR= Plant 

Pigment Ratio, VDVI= Visible-band Difference Vegetation Index, VIg= Vegetation Index Green, 

GNDVI= Green Normalized Difference Vegetation Index, MSAVI= Modified Soil-Adjusted 

Vegetation Index, NDVI= Normalized Difference Vegetation Index, OSAVI= Optimized Soil-

Adjusted Vegetation Index, SAVI= Soil-Adjusted Vegetation Index, ISR= Inverse Simple Ratio, 

MTCI= MERIS Terrestrial Chlorophyll Index, and NDRE= Normalized Difference Red Edge 

Index.  

  

PPAC Simpson 

Two locations 
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Figure 2.17. Linear regressions between plant height and fresh biomass at reproductive growth 

stage R5 at PPAC, TPAC, ACRE, and the three locations combined. Height measurement 

techniques: H1) distance from soil surface to uppermost visible leaf collar, H2) distance from soil 

surface to imaginary horizontal plane of the uppermost leaf, and H3) = distance from soil surface 

to tip of tassel. Shaded area represents 95% confidence interval. 
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Table 2.13. Cross-validation metrics of linear regression between plant height measured with three methods 

(predictor variable) and fresh biomass (dependent variable) at reproductive growth stage R5 at PPAC, TPAC, and 

ACRE in 2019. 

Location a 

 
Height method b Mean height 

(m) 

CV c 

(%) 
P-value d 

K-fold cross validation  

metrics (k=10) e 

R2 f  RMSE (%) 

PPAC H1 2.51 4.0 <0.0001 0.32 7 

 H2 2.78 3.8 <0.0001 0.33 6 

 H3 3.02 3.9 <0.0001 0.28 7 

TPAC H1 2.45 5.2 <0.0001 0.61 8 

 H2 2.73 4.4 <0.0001 0.61 8 

 H3 2.96 3.9 <0.0001 0.65 7 

ACRE H1 2.03 6.9 <0.0001 0.58 6 

 H2 2.31 5.8 <0.0001 0.51 7 

 H3 2.47 6.0 <0.0001 0.57 6 

Three locations H1 2.35 10.1 <0.0001 0.80 8 

 H2 2.63 8.9 <0.0001 0.80 8 

 H3 2.85 9.4 <0.0001 0.82 8 
a Mean fresh biomass per sampling location at PPAC was 6.71 kg m-2, 6.18 kg m-2 at TPAC, 4.56 kg m-2 at ACRE, 

and 5.94 kg m-2 at the three locations combined. 
b H1 = distance from soil surface to uppermost visible leaf collar, H2 = distance from soil surface to imaginary 

horizontal plane of the uppermost leaf, and H3 = distance from soil surface to tip of tassel. 
c CV = Coefficient of variation of predictor variable (height). 
d P-values bolded indicate that the relationship between the predictor variable (height) and fresh biomass is 

statistically significant (P-value ≤ 0.10). 
e R2 (R-squared) = squared correlation between the observed fresh biomass values and the predicted values by the 

model, RMSE (Root mean square error) = average difference between the observed fresh biomass values and the 

predicted by the model.  
f Rating of predictor variable: Poor = R2 ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent = R2 > 0.75. 
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Figure 2.18. Ears collected at growth stage R5 from one of the sampling areas at PPAC, TPAC, 

and ACRE (Field 92 and 94) the date of fresh biomass sampling.  
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Table 2.14. Cross-validation metrics of linear regression between masked and non-masked RGB, NIR, and Red-

edge vegetation indices (VI) (predictor variable) and fresh biomass (dependent variable) at reproductive growth 

stage R5 at PPAC, TPAC, and ACRE in 2019, and the three locations combined. 

Vegetative index (VI)a b 

PPAC c TPAC c ACRE c Three locations c 

K-fold cross validation metrics (k=10) d 

R2 
RMSE  

(%) 
R2 

RMSE  

(%) 
R2 

RMSE  

(%) 
R2 

RMSE  

(%) 

RGB VI ExGm 0.23 7 ns ns 0.20 9 ns ns 

 ExG 0.26 7 0.18 10 0.34 9 ns ns 

 PPRBm 0.28 7 0.30 11 ns ns ns ns 

 PPRB 0.30 7 0.30 10 0.26 9 ns ns 

 VDVIm 0.23 7 0.26 10 0.24 9 0.09 17 

 VDVI 0.27 7 0.27 11 0.30 8 0.16 17 

 VIgm 0.31 7 0.25 10 0.30 8 0.13 17 

 VIg 0.15 7 ns ns 0.46 8 0.25 16 

NIR VI GNDVIm 0.48 5 0.32 9 0.49 7 0.78 8 

 GNDVI 0.49 5 0.45 8 0.56 7 0.74 9 

 MSAVIm 0.48 5 0.21 11 0.50 7 0.38 14 

 MSAVI 0.44 6 ns ns 0.63 7 0.35 14 

 NDVIm 0.36 6 ns ns 0.50 7 0.73 9 

 NDVI 0.38 7 0.32 10 0.50 7 0.70 10 

 OSAVIm 0.47 6 0.11 10 0.51 7 0.46 13 

 OSAVI 0.36 6 ns ns 0.59 6 0.44 13 

 SAVIm 0.45 6 0.27 11 0.57 7 0.40 14 

 SAVI 0.47 6 ns ns 0.56 7 0.34 14 

Red-edge VI ISRm 0.47 6 0.48 8 0.46 7 0.78 8 

 ISR 0.51 6 0.41 9 0.67 7 0.76 9 

 MTCIm 0.51 6 0.52 9 0.46 7 0.76 9 

 MTCI 0.52 5 0.54 8 0.44 8 0.73 9 

 NDREm 0.47 5 0.46 8 0.61 7 0.78 8 

 NDRE 0.49 6 0.50 9 0.60 6 0.77 9 

Note: Relationship between the predictor variable (vegetative index) and fresh biomass is statistically significant (P-

value ≤ 0.10) unless indicated by “ns”. 
a RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 

VIg=Vegetation Index Green), NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified 

Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted 

Vegetation Index, SAVI=Soil-Adjusted Vegetation Index), and Red-edge VI (ISR=Inverse Simple Ratio, 

MTCI=MERIS Terrestrial Chlorophyll Index, NDRE=Normalized Difference Red Edge Index).  
b Vegetative index (VI) followed by “m” indicate that background pixels (soil and shadow mostly) were masked out 

from the VI map. 
c Mean fresh biomass per sampling location at PPAC was 6.71 kg m-2, 6.18 kg m-2 at TPAC, 4.56 kg m-2 at ACRE, 
and 5.94 kg m-2 at the three locations combined. 
d R2 (R-squared) = squared correlation between the observed biomass values and the predicted values by the model. 

Rating of predictor variable (Vegetative index): Poor = R2 ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and 

Excellent = R2 > 0.75. RMSE (Root mean square error) = average difference between the observed biomass values 

and the predicted by the model.  
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Table 2.15. Changes in R2 values of regression models due to masking for RGB, NIR, and Red-edge vegetative indices (VI) derived from UAV imagery and 

biomass, and change in rating (Poor “P” = R2≤0.25, Fair “F” = 0.26 - 0.50, Good “G” = 0.51 - 0.75, and Excellent “E” = R2>0.75) of VI as predictors of biomass 

before and after masking at reproductive growth stage R5 at PPAC, TPAC, and ACRE in 2019, and the three locations combined. Gray cells indicate that 

difference in R2 was less than ±0.05, blue indicate an increase in R2 ≥0.06, and orange a decrease in R2 ≥0.06. Darker shading indicates a greater difference. 

Location 
RGB VI a  NIR VI b  Red-edge VI c 

EXG PPRB VDVI VIg  GNDVI MSAVI NDVI OSAVI SAVI  ISR MTCI NDRE 

PPAC -0.03 -0.02 -0.04 0.16  -0.01 0.04 -0.02 0.11 -0.02  -0.04 -0.01 -0.02 
 F-P d F-F F-P P-F d  F-F F-F F-F F-F F-F  G-F G-G F-F 

TPAC 0.07 0.00 -0.01 0.01  -0.13 0.07 -0.06 -0.11 0.15  0.07 -0.02 -0.04 
 P-ns e F-F F-F ns-P  F-F ns-P F-ns ns-P ns-F  F-F G-G F-F 

ACRE -0.14 -0.04 -0.06 -0.16  -0.07 -0.13 0.00 -0.08 0.01  -0.21 0.02 0.01 
 F-P F-ns F-P F-F  G-F G-F F-F G-G G-G  G-F F-F G-G 

Three locations -0.01 -0.03 -0.07 -0.12  0.04 0.03 0.03 0.02 0.06  0.02 0.03 0.01 
 ns-ns ns-ns P-P P-P  G-E F-F G-G F-F F-F  E-E G-E E-E 

a RGB VI: ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green.  
b NIR VI: GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation 

Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, SAVI=Soil-Adjusted Vegetation Index. 
c Red-edge VI: ISR=Inverse Simple Ratio, MTCI=MERIS Terrestrial Chlorophyll Index, NDRE=Normalized Difference Red Edge Index. 
d Bolded text red indicates deterioration in rating and bolded text green indicates improvement. 
d “ns” indicates that regression model was not significant (P-value>0.10). 

  



 

 

130 

Table 2.16. Cross-validation metrics of linear regression between non-masked RGB, NIR, and Red-edge vegetative 

indices (VI), canopy cover fraction (CCF), and VI plus CCF (predictor variables), and fresh biomass (dependent 

variable) at reproductive growth stage R5 at PPAC, TPAC, and ACRE in 2019, and the three locations combined. 

Predictor variables a 

PPAC b TPAC b ACRE b Three locations b 

K-fold cross validation metrics (k=10) c d 

R2 
RMSE 

(%) 
R2 

RMSE 

(%) 
R2 

RMSE 

(%) 
R2 

RMSE 

(%) 

RGB ExG 0.26 7 0.18 10 0.34 9 ns ns 
 PPRB 0.30 7 0.30 10 0.26 9 ns ns 
 VDVI 0.27 7 0.27 11 0.30 8 0.16 17 
 VIg 0.15 7 ns ns 0.46 8 0.25 16 

NIR GNDVI 0.49 5 0.45 8 0.56 7 0.74 9 
 MSAVI 0.44 6 ns ns 0.63 7 0.35 14 
 NDVI 0.38 7 0.32 10 0.50 7 0.70 10 
 OSAVI 0.36 6 ns ns 0.59 6 0.44 13 
 SAVI 0.47 6 ns ns 0.56 7 0.34 14 

Red-edge ISR 0.51 6 0.41 9 0.67 7 0.76 9 
 MTCI 0.52 5 0.54 8 0.44 8 0.73 9 
 NDRE 0.49 6 0.50 9 0.60 6 0.77 9 

CCF  0.25 7 0.17 10 0.30 9 0.29 15 

RGB + CCF ExG 0.35 7 0.34 10 0.14 9 0.37 15 
 PPRB 0.30 6 0.24 10 0.22 9 0.32 15 
 VDVI 0.31 6 0.24 10 0.27 8 0.42 14 
 VIg 0.27 7 - - - - 0.49 13 

NIR + CCF GNDVI - - 0.50 9 0.50 7 0.75 9 
 MSAVI 0.49 5 - - 0.53 7 0.61 11 
 NDVI - - 0.25 10 0.43 7 0.71 10 
 OSAVI 0.43 6 0.33 10 0.51 7 0.68 10 
 SAVI 0.46 5 - - 0.54 7 0.60 11 

Red-edge + CCF ISR - - 0.47 9 0.61 6 0.76 9 
 MTCI - - 0.48 8 0.47 7 0.75 9 

  NDRE - - 0.43 9 0.55 6 0.77 9 

Note: Relationship between the predictor variable and fresh biomass is statistically significant (P-value ≤ 0.10) 

unless indicated by “ns”. No data shown (-) indicates collinearity between the specific VI and CCF. Pearson 

correlation coefficient ≥ |0.60|.  
a RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VDVI=Visible-band Difference Vegetation Index, 
VIg=Vegetation Index Green), NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified 

Soil-Adjusted Vegetation Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted 

Vegetation Index, SAVI=Soil-Adjusted Vegetation Index), and Red-edge VI (ISR=Inverse Simple Ratio, 

MTCI=MERIS Terrestrial Chlorophyll Index, NDRE=Normalized Difference Red Edge Index).  
b Mean fresh biomass per sampling location at PPAC was 6.71 kg m-2, 6.18 kg m-2 at TPAC, 4.56 kg m-2 at ACRE, 

and 5.94 kg m-2 at the three locations combined. Mean canopy cover fraction (CCF) was 0.76 at PPAC, 0.72 at 

TPAC, 0.84 at ACRE, and 0.77 at the three locations combined. 
c R2 (R-squared) = squared correlation between the observed biomass values and the predicted values by the model. 

Rating of predictor variable(s): Poor = R2 ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent = R2 > 

0.75. RMSE (Root mean square error) = average difference between the observed biomass values and the predicted 

by the model.  
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Figure 2.19. Linear regressions between RGB vegetative indices (VI) and fresh biomass at 

reproductive growth stage R5 at PPAC, TPAC, ACRE, and the three locations combined. 

Acronyms of VI stand for: ExG) Excess Green Index, PPBR) Plant Pigment Ratio, VDVI) 

Visible-band Difference Vegetation Index, and VIg) Vegetation Index Green. Shaded area 

represents 95% confidence interval. 
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Figure 2.20. Linear regressions between NIR vegetative indices (VI) and fresh biomass at reproductive growth stage 

R5 at PPAC, TPAC, ACRE, and the three locations combined. Acronyms of VI stand for: GNDVI) Green 

Normalized Difference Vegetation Index, MSAVI) Modified Soil-Adjusted Vegetation Index, NDVI) Normalized 

Difference Vegetation Index, OSAVI) Optimized Soil-Adjusted Vegetation Index, and SAVI) Soil-Adjusted 

Vegetation Index. Shaded area represents 95% confidence interval. 
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Figure 2.21. Linear regressions between Red-edge vegetative indices (VI) and fresh biomass at reproductive growth 

stage R5 at PPAC, TPAC, ACRE, and the three locations combined. Acronyms of VI stand for: ISR) Inverse Simple 

Ratio, MTCI) MERIS Terrestrial Chlorophyll Index, and NDRE) Normalized Difference Red Edge Index. Shaded 

area represents 95% confidence interval. 
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Figure 2.22. Pearson’s correlation coefficients (r) between RGB, NIR, and Red-edge VI derived 

from UAV imagery at PPAC, TPAC, ACRE, and the three locations combined at reproductive 

growth stage R5. VI acronyms: ExG= Excess Green Index, PPBR= Plant Pigment Ratio, VDVI= 

Visible-band Difference Vegetation Index, VIg= Vegetation Index Green, GNDVI= Green 

Normalized Difference Vegetation Index, MSAVI= Modified Soil-Adjusted Vegetation Index, 

NDVI= Normalized Difference Vegetation Index, OSAVI= Optimized Soil-Adjusted Vegetation 

Index, SAVI= Soil-Adjusted Vegetation Index, ISR= Inverse Simple Ratio, MTCI= MERIS 

Terrestrial Chlorophyll Index, and NDRE= Normalized Difference Red Edge Index. 
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 CONSUMER CAMERAS VS MULTISPECTRAL 

SENSORS FOR ASSESSING MAIZE RESPONSES TO 

EXPERIMENTAL TREATMENTS 

3.1 Abstract 

Agronomic researchers interested in including unmanned aerial vehicles (UAVs) in their 

toolbox for data collection must face the challenge of selecting the right technology that best suits 

their activities. Sensor selection impacts not only the other resources to be acquired (UAV, 

computer hardware, software for imagery processing, and storage), but also image collection, 

processing, and data interpretation. Consumer-grade and multispectral sensors have been the most 

affordable options for research under field-scale conditions. Previous studies comparing these two 

types of sensors have been conducted in small research plots (<1 ha), which does not necessarily 

represent research under field-scale conditions. In larger areas, flights are typically conducted at 

the maximum altitude allowed by FAA to maximize area flown with available UAV batteries, 

which has a direct impact on the spatial resolution from both consumer-grade and multispectral 

sensors. The main goal of this study was to compare the performance of a regular RGB camera 

and a camera modified to acquire NIR versus a multispectral sensor in assessing maize responses 

to different seeding and nitrogen rates under field-scale conditions. Two field trials (4 ha each) 

conducted during the 2019 crop growing season in Indiana were used for the study. Images were 

acquired during the vegetative and reproductive periods. Biomass samples were collected from 

pre-determined sampling areas (3.05 m2) prior to image acquisition at growth stage R5, and grain 

yield data per plot was collected at harvest. Results indicated that correlation between consumer-

grade and multispectral RGB-based VI was higher compared to NIR-based VI, which was 

reflected in the results of yield and biomass prediction based on VI, as well as analysis of variance 

(ANOVA) results for treatment effects. Taking into consideration practicability, time efficiency, 

and ease of image processing, consumer-grade sensors were the best option for working in field 

scale research. 
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3.2 Introduction 

Precision farming technologies have enabled agronomists to more easily conduct field scale 

research than in the past (Griffin et al., 2008). This has contributed to producers perception of the 

reliability of the data generated and the development of agronomic recommendations that are 

considered more representative of field-scale conditions (Posner et al., 1995). However, a common 

challenge of conducting research in large fields (ranging from 10 to 40 ha) is data collection. It is 

labor-intensive, time-consuming, and expensive (Varela et al., 2017), but it is required to document 

growth limiting conditions or experimental treatment effects on final yield (Liu et al., 2010). In 

response to this challenge, researchers have adopted new technologies and developed approaches 

to estimate crop variables such as plant height, leaf area index, biomass and others to monitor crop 

status. Remote sensing technologies offer the potential for crop monitoring in field-scale 

experiments (Kyveryga & Blackmer, 2012). Satellite, airborne, ground platforms, and unmanned 

aerial vehicles (UAVs) are the principal platforms for remote sensing data collection (Niu et al., 

2019).  

Depending on the area of interest, one platform may work better than another may. For 

instance, satellites provide better information at a regional level compared to other platforms, while 

at farm level, airborne, ground platforms, and unmanned aerial vehicles (UAVs) are most likely to 

offer better and more detailed information than satellites. In the last decade, the use of UAVs in 

agriculture has increased due to their affordability, ease of operation, high spatial resolution, 

flexibility to conduct image acquisition when needed, potential of mounting different sensors 

(Corti et al., 2018), and the possibility of getting spectral data and vertical growth information, 

such as crop height (Yue et al., 2018). In this sense, UAVs have become an alternative tool to 

collect data for crop monitoring. Yet, agronomic researchers interested in including UAVs in their 

toolbox for data collection face the challenge of selecting the right technology that best suits their 

activities in a market with an extensive variety of sensors and platforms. 

Proper selection of a sensor depends on the objectives of the study. This is a critical step, 

since the sensor will have impact on other resources to be acquired, such as type of UAV, computer 

hardware, software for imagery processing, and storage. The choice of sensor also impacts image 

collection, processing, and data interpretation. There are a variety of commercial on-board sensors 

available for UAVs that vary in spectral resolution, image processing complexity, and price. The 

most commonly used sensors for agricultural applications can be characterized as consumer-grade, 
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multispectral, hyperspectral, and thermal sensors (Tsouros et al., 2019). Consumer-grade and 

multispectral sensors have been the most affordable options for research under field-scale 

conditions.  

In addition to being affordable, consumer-grade sensors are characterized by their ultra-high 

spatial resolution, light weight, and easy operation (Zheng et al., 2018). Although these sensors 

are limited to acquire only visible light, modifications can be made to add Near-infrared (NIR) 

detection capabilities (Fernández et al., 2019). Multispectral sensors are commonly more 

expensive than consumer-grade sensors and their main advantage is the ability to acquire 

information in the visible, Red-edge, and NIR region of the spectrum. Internal characteristics of 

these two types of sensors can impact aerial image acquisition, processing, and data interpretation. 

Therefore, caution must be taken when results from a modified consumer-grade sensor are 

compared to results from a multispectral sensor (Widjaja & Soni, 2017).  

Each spectral band in a sensor has a specific wavelength, which is defined as the region of 

the spectrum covered by the band. For example, the wavelength of the Red band in the MicaSense 

Altum multispectral sensor (https://micasense.com/altum/) goes from 660 to 676 nm (bandwidth 

of 16 nm), with center at 668 nm. All sensors have different spectral response functions, which 

refer to the central wavelength and bandwidth of the spectral bands (Deng et al., 2018). While 

consumer-grade sensors often have wide and overlapping bands, multispectral sensors tend to have 

narrower bands that do not overlap (Berra et al., 2017) (Figure 3.1). Since most multispectral 

sensors are designed for research purposes, the details of the spectral response function are 

generally provided by the manufacturer. In contrast, these details are not easily available for 

consumer-grade cameras, and the equipment required to obtain this information is not easily 

accessible to agronomic researchers. For consumer-grade cameras that have been modified to 

obtain NIR information, there is an “unknown” percentage of NIR information that is also captured 

by the RGB region because of the overlap of the visible and Near-infrared spectral bands. In Figure 

3.1.A, the yellow line representing the NIR band overlaps with the Green and Red bands, while in 

Figure 3.1.B none of the bands overlap with each other. This overlap, also known as “cross-talk” 

between the visible and NIR regions (Soria et al., 2017), can contribute significantly to the 

differences in the derived vegetative indices (VI) from different sensors (Chen et al., 2018). In a 

study conducted by Nebiker et al. (2016) using consumer-grade and multispectral sensors for yield 

https://micasense.com/altum/
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estimation of rapeseed (Brassica napus L.), better results obtained by the multispectral sensors 

were attributed to the more distinct separation of the four spectral bands.  

In a study conducted by Deng et al. (2018), two sensors with narrow band and broad 

bandwidth were used to obtain NDVI from a maize (Zea mays L.) nitrogen trial during vegetative 

growth stages, tasseling (VT), and maturity (R6). Results were compared to NDVI derived from a 

spectrometer using linear regression analysis. The authors concluded that the narrow band 

vegetative indices were superior to the broad bandwidth indices. Nevertheless, they emphasized 

that results may change depending on the radiometric calibration method applied, in which sensor 

measurements stored as digital numbers (DN) are converted to reflectance values. In another study 

conducted by Rasmussen et al. (2016), the authors analyzed the benefits of narrow band NIR 

sensors on the assessment of a wheat (Triticum aestivum L.) plant density trial. The results 

indicated that there were no clear indications that narrow band NIR sensors were better at assessing 

the vegetation status of wheat compared to the broad bandwidth sensors. It is evident that there are 

conflicts regarding the benefits of using narrow band versus broad bandwidth sensors for 

vegetation status monitoring. Nevertheless, it is also important to keep in mind that crops under 

analysis, sensors, and experimental trials varied among these studies, so generalizations must be 

taken with caution. 

Regarding spatial resolution, which is commonly described as the area covered by one pixel, 

there are also differences between consumer-grade and multispectral sensors. Although spatial 

resolution is principally defined by the height at which image acquisition is conducted, it also 

depends on the technical specifications of the sensor (Tsouros et al., 2019). In field-scale 

conditions, agronomic researchers in the U.S. are mostly limited to conducting UAV flight 

missions at the maximum 122 m Above Ground Level (AGL) altitude allowed by the U.S. Federal 

Aviation Administration (FAA) in order to cover large areas. Therefore, it is important that they 

pay attention to the spatial resolution offered by a sensor in the process of selecting and buying 

one. Previous research demonstrated the greater capability of consumer-grade sensors with high 

spatial resolution over multispectral sensors for discriminating vegetation foliage from soil 

background and early detection of plant diseases (Fuentes-Peailillo et al., 2018; Nebiker et al., 

2016). High spatial resolution avoids fuzzy boundaries between plants and soil, and therefore 

reduces the chances of having a high portion of mixed pixels that include information from both 

vegetation and background (Gracia-Romero et al., 2017).  
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Dynamic range is other sensor specification that often varies between consumer-grade and 

multispectral sensors, and it is defined as the capability of a sensor to identify differences between 

the darkest (pure black) and lightest tones in an image (pure white) (Muda et al., 2012). The greater 

the dynamic range, which is measured in bits (e.g. 8-bit), the more likely the camera will be able 

to detect details in the shadows or the highlights. For instance, information from leaves located in 

the lower part of the canopy or leaves under shadow will be likely recorded by a sensor with a 

dynamic resolution of 12-bit than a sensor of 8-bit. The compression format in which an image is 

saved also plays an important role in the final dynamic range of an image (Vergara-Díaz et al., 

2016). Images acquired by consumer-grade sensors is normally saved in JPEG (Joint Photographic 

Expert Group) format, which is the result of a lossy compression of the RAW file format conducted 

at the moment of image acquisition. Lossy compression creates file sizes that are significantly 

smaller than the original one, but discards some of the image data. In contrast, lossless compression 

ensures that all the image information is preserved, and therefore the size of the final file is larger. 

Multispectral sensors commonly conduct lossless compression of the images and save them in 

TIFF (Tagged Image File Format) format. While JPEG files are limited to a maximum dynamic 

range of 8-bit, TIFF files saved by multispectral sensors can have a greater dynamic range and 

store multiple layered images in a single file. Therefore, regardless of the dynamic range of a 

consumer-grade camera, images saved in JPEG format will be limited to 8-bit. A potential solution 

to conserve image information when using a consumer-grade camera with a dynamic range higher 

than 8-bit is to save images in RAW format (Vergara-Díaz et al., 2016). Even though more storage 

will be necessary, information can be preserved.  

Field of view (FOV) is another sensor specification that varies between consumer-grade and 

multispectral sensors, and that impacts other steps of the workflow, such as flight planning, storage, 

and image processing. The FOV is defined as the angle through which a detector is sensitive to 

electromagnetic radiation (Aasen & Bolten, 2018), and it is directly connected to the area on the 

ground recorded by a sensor at a given distance above the ground. The narrower the FOV, the less 

area covered in one picture (Figure 3.2). Although a narrow FOV reduces distortion on the edges 

of the images, commonly associated with wider FOV (Zheng et al., 2018) (Figure 3.3), more 

images need to be taken, and more flight time is required to cover an entire field. 

In the case of small research plots, using a sensor with a narrow FOV might not be a problem. 

However, in the case of large-scale fields, more than one flight may be required in order to cover 
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the total area due to limited battery capacity. Longer flight time increases the chances that light 

conditions will change throughout the lengthier flight mission. In addition, a higher memory 

storage capacity will be required to save the images collected. From a practical point of view, 

spatial coverage and more consistent light conditions are achieved with consumer-grade sensors 

due to their wider FOV compared to most multispectral sensors (Gracia-Romero et al., 2017). 

Band misalignment is a common problem associated with multispectral sensors because 

images are not always recorded simultaneously by the individual lenses of the sensor (Muda et al., 

2012). While consumer-grade cameras use a single lens, multispectral sensors use individual 

lenses for each band. Therefore, it is likely that images corresponding to each band need to be 

registered (aligned) before further image processing for most multispectral sensors. This process 

requires technical knowledge and the proper software, which can be a drawback for researchers 

with limited expertise in image processing. One advantage of consumer-grade cameras is that 

reflectance of Red, Green, and Blue is recorded simultaneously by a single lens, so the resulting 

images corresponding to the three bands (Red, Green, and Blue) are automatically aligned.  

Finally, radiometric calibration is one of the processes that vary depending on the sensor. 

The main objective of radiometric calibration is to convert digital numbers (DN) recorded by the 

camera in each pixel to reflectance values. In the case of multispectral sensors, there are two types 

of radiometric calibration methods, preflight and vicarious (Deng et al., 2018). Pre-flight 

calibration methods require laboratory-calibrated parameters of the sensor, such as the absolute 

radiometric calibration coefficients, while vicarious methods rely on characterization of reference 

targets using a spectrometer the day of image acquisition (Nguy-Robertson et al., 2016). The Parrot 

Sequoia (https://www.sensefly.com/camera/parrot-sequoia/) is a multispectral sensor that uses 

preflight calibration. Laboratory-calibrated parameters information, calibration targets for image 

acquisition, and algorithm of commercial software (for example Pix4D https://www.pix4d.com/) 

are provided by the manufacturer to conduct the calibration. Like Parrot Sequoia, MicaSense 

multispectral sensors (https://micasense.com/) also follow the same “preflight” calibration method 

(Olson et al., 2019). The process of converting DN to reflection data is considered to be a “black 

box” since the software does it by itself with limited intervention from the user (Deng et al., 2018). 

On the other hand, the vicarious method requires more effort, equipment, and knowledge of image 

processing, which is a disadvantage for many agronomic researchers. One of the most common 

vicarious methods is the empirical line method (Deng et al., 2018), which requires true spectral 

https://www.sensefly.com/camera/parrot-sequoia/
https://www.pix4d.com/
https://micasense.com/
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reflectance data of target panels collected with a spectrometer the day of image acquisition as a 

reference to convert DN to reflectance values. Vicarious methods can be applied to consumer-

grade sensors too. Ideally, the target panels should have a Lambertian surface that reflects the 

incident light uniformly in all directions (Lambert & Anding, 1892). However, in the real world 

most commercial targets used for calibration purposes by agronomic researchers do not always 

meet this characteristic (Nebiker et al., 2016; Nguy-Robertson et al., 2016; von Bueren et al., 2014; 

Zheng et al., 2018). In large-scale trials focused on agronomic research, measuring the reflectance 

of calibration targets for every UAV flight is time consuming and impractical because researchers 

are often racing to conduct the flight missions while cloud conditions are favorable for flights. 

Conducting radiometric calibration is a required step if the intent is to compare vegetative indices 

derived from imagery collected on multiple dates, for example the NDVI value of a specific maize 

plant at different growth stages. In this case, radiometric calibration is important since DN 

recorded by the sensor vary depending on the specific light conditions on the day of image 

acquisition. On the other hand, although studies have shown that radiometric calibration improves 

vegetation monitoring (Nguy-Robertson et al., 2016), this process is not mandatory when imagery 

is collected to analyze different objects of interest at the same time, e.g. NDVI values of maize 

plants under different fertilizer treatments at one point in time. In other words, the value of 

radiometric calibration depends on the specific application and objectives of the study. 

Overall, consumer-grade and multispectral sensors have their advantages and disadvantages. 

While multispectral sensors offer more research-grade data, they also required more computer 

capabilities, storage, software, and knowledge of image processing. Furthermore, the narrower 

FOV of multispectral sensors compared to the wider FOV of consumer-grade sensors make them 

less desirable for covering areas ranging from 10 to 40 ha since more flight time is required the 

narrower the FOV. On the other hand, consumer-grade sensors offer better spatial resolution than 

multispectral sensors, which is an advantage in large-scale trials, where image acquisition is most 

likely from the maximum flight height allowed by law in order to cover the whole field efficiently.  

Dent et al. (2018) conducted an experiment to compare the ability of narrow and broadband 

multispectral cameras to monitor maize responses to nitrogen at vegetative growth stages, tasseling 

(VT), and maturity. Imagery acquisition using a UAV was conducted at 50 m AGL over an area 

of 0.35 ha. using two sensors, a Tetracam Mini-MCA6 (http://www.tetracam.com/) and a Parrot 

Sequoia (https://www.sensefly.com/camera/parrot-sequoia/). The bandwidth for the Tetracam 

http://www.tetracam.com/Products-Mini_MCA.htm
https://www.sensefly.com/camera/parrot-sequoia/
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sensor ranged from 10 to 20 nm and from 10 to 40 nm for the Parrot Sequoia. Two different 

radiometric calibration methods, including the empirical line method, were applied to assess the 

effects of the method. The narrowband sensor produced more accurate reflectance values than the 

broadband sensor, but results varied depending on the calibration method applied. Another notable 

result was that despite the central wavelength for the Green band being the same for both sensors, 

the larger bandwidth of the Sequoia sensor captured less reflectance of the green band, and 

therefore the NIR-based vegetative indices also varied between sensors. Another study was 

conducted by Gracia-Romero et al. (2017) to evaluate the performance of consumer-grade (Lumix 

GX7 https://www.panasonic.com/) and multispectral (Tetracam MCA12 

http://www.tetracam.com/) derived vegetative indices to assess early responses of maize to 

phosphorus fertilization in small research plots (< 1 ha total). Image acquisition using a UAV was 

conducted nadir to the ground at 50 m AGL when plants were at approximately vegetative growth 

stage V10. No details about radiometric calibration were indicated for either of the sensors. Based 

on the results, the authors concluded that the consumer-grade derived vegetative indices achieved 

comparable results with the multispectral sensors and suggest that consumer-grade cameras are 

the best option in terms of cost and time efficiency. A similar study was conducted by Marcial-

Pablo et al. (2019), in which vegetative indices derived from consumer-grade (Sony model α5100 

https://www.sony.com/) and multispectral (Tetracam ADC Snap http://www.tetracam.com/) 

sensors were assessed for their ability to estimate canopy cover fraction during vegetative and 

reproductive growth stages. Aerial imagery using a UAV was acquired at 52 m AGL over a small 

research plot (< 1 ha). In this study, radiometric calibration was conducted for the multispectral 

sensor only. The authors concluded that RGB-based indices derived from the consumer-grade 

camera were better at early vegetative growth stages, while the NIR vegetative indices did better 

at later stages when soil background was barely visible. The better performance of RGB indices 

early in the season may be related to the higher spatial resolution of the consumer-grade imagery 

(1.25 cm pixel−1) compared to the multispectral imagery (2.10 cm pixel−1). A higher resolution 

allowed for better separation of plants from background, which is a critical step at early vegetative 

growth stages. Finally, a study was conducted by Nguy-Robertson et al. (2016) to examine effects 

of light conditions at the moment of image acquisition in the radiometric calibration of consumer-

grade sensor images. Maize plants were included among the objects under analysis. Image 

collection was conducted indoors when maize was at V4 and VT, at approximately 3 m above the 

https://www.panasonic.com/
http://www.tetracam.com/
https://www.sony.com/
http://www.tetracam.com/
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plants (camera nadir to the plants). Different white balance settings were assessed. The results 

showed that light intensity plays an important role in radiometric calibration to ensure sensor 

saturation, and therefore an improper white-balance setting selection before imagery acquisition 

can negatively impact data collection. This is an important concept to keep in mind when using 

consumer-grade sensors for vegetation monitoring, since camera settings in consumer-grade 

sensors are defined by the user every time before image acquisition. 

Other studies have also compared multispectral and consumer-grade sensors for crop growth 

monitoring have been conducted in rapeseed (Zhang et al., 2020a), ryegrass, Lolium perenne L. 

(von Bueren et al., 2014), grapes, Vitis vinifera L. (Fuentes-Peailillo et al., 2018), rice, Oryza sativa 

L. (Zheng et al., 2018), mixed crops (Nebiker et al., 2016), and barley, Hordeum vulgare L. 

(Rasmussen et al., 2016). A few studies comparing consumer-grade and multispectral sensors have 

been also conducted in controlled lab conditions (Coburn et al., 2018), mixed materials, including 

pavement, buildings, trees, and grass (Muda et al., 2012; Widjaja & Soni, 2017), and also focused 

in environmental applications (Chen et al., 2018). Conclusions on which sensor is better than 

another vary depending on the objectives of the study. Nevertheless, all these studies agreed about 

the benefits of consumer-grade cameras regarding spatial resolution, easy field operation and 

simpler image processing compared to multispectral sensors. 

Overall, there is agreement about the advantages that consumer-grade sensor provide for 

crop growth monitoring and the varying effects of radiometric calibration depending on the method 

applied and light conditions during image acquisition. Although all the benefits that consumer-

grade sensors have for field-scale agronomic research, all the studies focused on maize were 

conducted in small research plots (<1 ha), which does not represent the conditions in large-scale 

fields. The main goal of this study was to compare the performance of consumer-grade sensors 

versus a multispectral sensor in assessing maize responses to different nitrogen and seeding rates 

in field-scale trials. The specific objectives of the study were: 1) evaluate the correlations between 

vegetative indices derived from consumer-grade and multispectral sensors, 2) determine if using 

aerial images from multispectral sensors improves regression results between VI and biomass and 

yield, compared to using images from consumer-grade sensors, 3) determine whether vegetative 

indices based on aerial images from consumer-grade and multispectral sensors vary in their ability 

to identify significant effects of treatments during the growing season, 4) determine if differences 
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between VI derived from consumer-grade versus multispectral sensors change when soil and 

shadow background is masked from VI. 

3.3 Materials and Methods 

3.3.1 Site description 

Two adjacent fields at the Agronomy Center for Research and Education (ACRE) near 

West Lafayette in west central Indiana were selected for this study. Location and soil information 

for each field are listed in Table 3.1. 

Previous crops in the two fields were soybean (Field 92) and maize (Field 94). Both trials 

were no-till planted with an adapted maize hybrid (101-day relative maturity rating, 1366 GDD 

planting to maturity) on June 10, 2019 using a commercial 12-row planter without starter fertilizer. 

The later than normal planting date was due to excessively wet soils in April and May. Maize rows 

were spaced 76 cm apart and oriented in a north-south direction in both fields. The width of each 

plot was 9.1 m (12 rows) and length was approximately 76 m.  

3.3.2 Plant population and nitrogen trial information 

Combinations of three seeding rates and 3 sidedress nitrogen (N) rates were replicated 3 

(Field 92) or 4 (Field 94) times in a randomized complete block design arranged in a split -plot 

layout with seeding rate as the main plot (Table 3.2). The sidedress N fertilizer (UAN, 28-0-0) rate 

treatments were applied on June 28 at approximately growth stage V3, using a traditional tractor-

drawn knife injection toolbar.  

3.3.3 UAV image acquisition 

UAV images were acquired at four different growth stages (V5-V6, V11, R3, and R5) over 

the two fields. Specifications of sensors used for imagery acquisition are detailed in Table 3.3, and 

information of the flight missions conducted in Table 3.4.  
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Multispectral sensor 

The multispectral sensor used for the study was a MicaSense® Altum 

(https://micasense.com/altum) mounted on a DJI Matrice 200 (M200) UAV. In addition to 

capturing LWIR thermal IR 8-14 m (not used in this study), the sensor captures individual images 

for Blue-475 nm (32 nm bandwidth), Green-560 nm (27 nm), Red-668 nm (16 nm), Red-edge-717 

nm (12 nm), and Near-infrared-842 nm (57 nm), each at a resolution of 2064 x 1544 (3.2MP). The 

Ground Sample Distance (GSD) is 5.2 cm per pixel at 120 m AGL flight altitude. The sensor 

captured 1 image sec-1 in 12-bit RAW and the field of view is 48o x 37o. 

Flight missions were planned and conducted using the MicaSense Atlas flight planning 

application (https://micasense.com/atlas-flight/). Flight parameters for every mission were 120 m 

AGL altitude, 75% overlap (side and front), 10 m s-1 flight speed, and flight direction perpendicular 

to the maize rows. One or more images were taken of a reflectance calibration panel (MicaSense®) 

immediately prior to each mission and used later for radiometric calibration of the images collected. 

Individual images for each wavelength were recorded in TIFF format by the sensor and geographic 

position data was included in each image from the internal GPS of the sensor. 

Consumer-grade cameras 

Separate flights using the same UAV platform (DJITM Matrice 200) were conducted to 

acquire aerial images using both a standard RGB Zenmuse X4S camera and a modified RG-NIR 

Zenmuse X4S camera. For the purposes of this study, both cameras were considered as “consumer-

grade”. Flight parameters for these missions were 120 m AGL flight altitude, 75% side overlap, 

85% front overlap, and flight direction perpendicular to the maize rows. Due to mechanical 

problems with the M200 on the final planned flights with the Zenmuse RGB and RG-NIR cameras 

(19-Sept, growth stage R5), images from an earlier flight (14-Sept) with a DJITM Mavic 2 Pro UAV 

and its default RGB camera were used instead. The specifications of the M2P Hasselblad L1D-

20c camera were nearly identical to those of the M200 Zenmuse X4S camera. Flight parameters 

were 120 m AGL flight altitude, 85% front overlap, and 80% side overlap, and flight direction 

perpendicular to the maize rows. Wavelength specifications for these consumer-grade cameras 

were not available from the manufacturer. 

https://micasense.com/altum
https://micasense.com/atlas-flight/


 

 

146 

All flight missions using the consumer-grade sensors were planned and conducted using 

the DroneDeploy flight application (https://www.dronedeploy.com). Images were recorded in 

JPEG format and geographic position data was included in each image.  

A final flight mission was conducted on 9-Oct, using the M2P UAV with its standard RGB 

camera to identify and delineate the visible biomass sampling locations for subsequent image 

analyses. Flight parameters for this mission were 120 m AGL altitude, 75% front and side overlap, 

and flight perpendicular to the maize rows. The flight was planned and conducted using the 

DroneDeploy flight planning application. Images were recorded in JPEG format and geographic 

position data was included in each image. 

3.3.4 Ground truth measurements 

Delineation of biomass sampling zones based on NDVI satellite imagery 

Sampling zones for collecting biomass samples were delineated prior to harvest based on 

multi-year average NDVI (2013-2018) calculated from Landsat 8 satellite imagery, available to 

the public through the United States Geological Survey (https://earthexplorer.usgs.gov/). Selection 

of the satellite imagery to use for the zone delineation was predicated on cloud-free images 

available in August, when maize and soybean generally have already reached reproductive growth 

stages. Dates of each satellite image considered in the zone delineation process are given in Table 

3.5, and the description of the delineation zone process is provided in Chapter 2 (Section 2.3.4). 

Identification of biomass sampling locations 

Each biomass sampling location was defined as two maize rows wide (1.52 m) by 2 m long 

(3.04 m2). At each field, one transect perpendicular to the maize rows was established taking in 

consideration the NDVI zones already delineated (Figure 3.4). One sampling location was 

identified for every plot within the transect and established in the rows 8 and 9. All sampling 

locations were marked using a flag and a garden stake with the corresponding identification (ID) 

number. 

 

 

https://earthexplorer.usgs.gov/
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Ground truth measurements 

Fresh biomass 

On September 19, when plants were in reproductive growth stage R5 (dent), fresh weight 

biomass determination was performed in situ (after UAV image acquisition) by destructively 

harvesting all the plants within the sampling location and weighing them using a scale and a tripod 

(Figure 3.5).  

Grain Yield data 

Maize grain was harvested on October 29 from both fields from the center 8 rows of each 

plot using a commercial combine equipped with a calibrated GPS-enabled yield monitor. Grain 

yield was adjusted to 150 g kg-1 moisture, and the yield monitor data were processed and cleaned 

using Ag Leader® SMS™ Advanced (https://www.agleader.com) and QGIS 

(https://www.qgis.org/en/site) software.  

3.3.5 UAV image processing 

Orthomosaic generation  

Multispectral imagery from the MicaSense Altum sensor was post-processed in Pix4D 

V4.2.27 (https://www.pix4d.com/) to stitch the individual images per flight to generate 

orthomosaic field images and for radiometric calibration. Five reflectance raster bands, Blue 

(475nm center point, 32 nm bandwidth), Green (560 nm centerpoint, 27 nm bandwidth), Red (668 

nm centerpoint, 16 nm bandwidth), Red edge (717 nm centerpoint, 12 nm bandwidth), and Near-

infrared (842 nm centerpoint, 57 nm bandwidth) were generated per each set of images 

corresponding to a specific date. Spatial resolution was 5.17 cm pixel-1 at a flight altitude of 120 

m AGL. 

Images from the consumer-grade cameras were stitched using the DroneDeploy 

application. The resulting orthomosaics were exported with a spatial resolution of 5.08 cm pixel-1. 

The orthomosaic corresponding to the final flight mission conducted for identification and 

delineation of biomass sampling locations was coregistered with the consumer-grade and 

multispectral sensors derived orthomosaics at growth stage R5. The objective of coregistration is 

to ensure that the orthomosaics are spatially aligned, and any feature in one image overlaps its 

https://www.agleader.com/
https://www.qgis.org/en/site
https://www.pix4d.com/
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footprint in the master image (Leprince et al., 2012). Coregistration was conducted in ArcGIS Pro 

© 2018 Esri using the transformation method 1st Order Polynomial. 

Radiometric calibration was not conducted for the consumer-grade imagery since there is 

not a specific calibration method and equipment specified by the manufacturer to do so, and results 

derived from calibrated imagery may vary dependent on the specific method applied (Deng et al., 

2018). In contrast, multispectral imagery was radiometrically calibrated using the preflight method 

in Pix4D, which is the default option provided by the manufacturer. Therefore, digital numbers 

(DN) ranging from 0 to 256 were used for further processing based on the consumer cameras, and 

reflectance values ranging from 0 to 1 for processing based on the multispectral sensor. 

Image classification  

A detailed description of the image classification process for segmenting “plant” and “no 

plant” pixels is provided in Chapter 1 (Section 1.3.5; subsection “Image classification”). For the 

multispectral imagery, per each date, a composite of the reflectance raster bands: Red (668 ± 20 

nm), Green (560 ± 20 nm), Blue (475 ± 20 nm), Red-edge (717 ± 10 nm), and NIR (840 ± 40 nm) 

was generated in ArcGIS Pro © 2018 Esri to be use as the input for image classification. The 

primary output from the classification process was a binary layer for each field trial, in which 

pixels corresponding to plants were assigned a pixel value of one, and pixels corresponding to “no 

plants” (soil and shadow) a value of zero.  

Vegetative indices used for this analysis 

For analysis of spectral reflectance responses of maize to plant density and nitrogen 

fertilizer rates, a set of ten published RGB and NIR vegetative indices previously documented to 

be good indicators of spectral variability and biomass were examined in this study (Table 3.6). 

Calculation of VI were conducted for each date using the Model Builder tool in ERDAS® 

IMAGINE 2016. The binary layer was included during the VI calculation to mask out the “no 

plant” pixels. As a result, all the pixel values corresponding to “no plant” in the index raster layers 

were equal to zero. Later, in ArcGIS Pro © 2018 Esri, the zero pixel values were set as “Null” 

using the command “Set Null” in the “Raster Calculator tool”.  
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 Because flights could not be conducted with the M200 and the modified RG-NIR Zenmuse 

X4S camera at growth stage R5 (dent), only RGB-based VI were calculated using the RGB bands 

of the multispectral Altum sensor of the M200 UAV and the consumer RGB camera of the M2P 

UAV. 

Data extraction per plot 

Plot-based image data extraction for regression with grain yield 

The field trial plot layer was imported into ArcGIS Pro © 2018 as a polygonal shapefile. 

To avoid possible border effects of adjacent treatments and the edges of the field on crop 

reflectance, a buffer of 3 m between plot and 15 m from the edges of the field were created and 

removed from the plot layer in ArcGIS Pro © 2018 Esri. Areas corresponding to planter skips were 

also removed. The updated plot layer was used to extract the VI data from each plot and calculate 

mean plot values (with and without soil and shadow pixels background) using the tool “zonal 

statistics as a table” in ArcGIS Pro © 2018 Esri. Mean VI values per plot were used for the 

statistical analysis. 

Sampling area-based data extraction for regression with fresh biomass 

A polygonal shapefile of the sampling locations was created in ArcGIS Pro © 2018 Esri 

using the orthomosaic generated from the 9-Oct UAV flight imagery as a reference to identify and 

delineate the sampling spots. Later, the “zonal statistics as a table” tool in ArcGIS Pro © 2018 was 

used to estimate the mean VI value for each harvested area prior to sampling by using the 

polygonal shapefile and each VI raster layer as inputs.  

3.3.6 Statistical analysis 

All statistical analyses were performed with the statistical software RStudio ® 1.1.4 

(https://rstudio.com/).  
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Objective 1: Correlation between VI derived from multispectral and consumer-grade sensors 

Pearson’s correlation coefficients (R) between consumer-grade and multispectral sensor 

derived RGB and NIR-based VI at maize growth stages V5, V11, and R3, and only RGB-based 

VI at growth stage R5 were calculated using the R package “sjstats” (https://cran.r-

project.org/web/packages/sjstats/sjstats.pdf). Correlations were based on individual VI plot means.  

Objective 2: Regression of biomass and yield  

Linear regression models between VI and biomass [Biomass = a+b(VI)+Error] at growth 

stage R5 were based on sampling area data, while regression models between VI and grain yield 

[Yield = a+b(VI)+Error] using imagery from growth stages R3 and R5 were based on plot data. 

Biomass and yield were considered as the dependent variable, while the VI values were considered 

as the independent variables. The fit of the regressions was assessed using adjusted R-squared 

(R2
adj) determination coefficient and root mean square error (RMSE) as quality indicators of the 

models. The adjusted R-squared (R2
adj) values were subjectively characterized for goodness of fit: 

Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent= R2

adj > 0.75.  

Objective 3: Analysis of spectral reflectance response of maize to experimental treatments  

For each flight date, all VI maps (with and without background pixels) were used to analyze 

maize spectral responses to the different experimental treatments. Effects of different nitrogen and 

seeding rates on maize grain yield and vegetative indices at growth stages V5, V11 and R3 were 

subjected to analysis of variance (ANOVA). The R package “agricolae” (https://cran.r-

project.org/web/packages/agricolae/agricolae.pdf), was used for this purpose. The ANOVA 

P-values were used as the criteria to determine whether VI derived from the different sensors 

differed in their ability to detect experimental treatment effects on crop reflectance.  

Before conducting the statistical analysis, VI plot means were multiplied by 1000 since 

original VI values rounded to two decimals places were the same among several plots within a 

field. Plot means of the ExG maps derived from the consumer camera were not multiplied by 1000. 

The ExG is not a ratio-based index, so plot means do not range from -1 to 1 when using digital 

numbers (DN) instead of reflectance values. 

https://cran.r-project.org/web/packages/sjstats/sjstats.pdf
https://cran.r-project.org/web/packages/sjstats/sjstats.pdf
https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
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3.3.7 Weather data 

Monthly air temperature and precipitation from 2019 growing season were collected from 

an automated weather station located in close proximity to the growing site. Weather data were 

obtained though the Midwestern Regional Climate Center’s cli-MATE online data portal 

(https://mrcc.illinois.edu/CLIMATE/). Monthly normals (1981-2010) computed by the National 

Centers for Environmental Information (NCEI) were subtracted from the monthly air temperature 

and precipitation of the months evaluated to identify deviation from the normal. 

3.4 Results and Discussion 

3.4.1 Weather conditions during the year of evaluation 

Average monthly air temperature and accumulated precipitation from 1 May to 31 October 

are summarized in Table 3.7. Weather in 2019 was characterized for the excessive rainfall events 

that occurred throughout the state early in the growing season, which delayed planting and caused 

a shorter vegetative period. Although May had excessive rainfall, monthly precipitation for the 

rest of the growing season was below normal. Especially in July and August. In fact, temperatures 

above normal in July, and lower than average precipitation in July and August likely caused maize 

plants stress at the beginning of the grain filling period. Finally, September was characterized by 

warmer than normal temperatures, which probably had a positive impact on the GDD 

accumulation to reach kernel maturity.  

3.4.2 Correlation between consumer-grade and multispectral sensors for RGB- and NIR-

derived vegetative indices 

Pearson correlation coefficients (R) between consumer-grade and multispectral sensors 

derived RGB and NIR-based VI, non-masked and masked, at four growth stages are summarized 

in Table 3.8. For both field trials, there was a high correlation between the consumer-grade and 

multispectral sensors for all RGB-based VI (non-masked and masked). Overall, Pearson 

correlation coefficients were all significant (P ≤ 0.10) and 73% of the time were equal or greater 

than 0.90. Across the two fields and the various growth stages, R values ranged from 0.50 to 1.00, 

with most of the lower correlation coefficients obtained at growth stage R5. On the other hand, the 

https://mrcc.illinois.edu/CLIMATE/
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R values and significance for correlations between the consumer-grade and multispectral sensors 

derived NIR-based VI varied dependent on the field and masking status.  

In the maize-soybean rotation (Field 92), correlation between consumer-grade and 

multispectral derived NIR-based VI was significant for 14 of the 15 non-masked NIR-based VI x 

growth stage combinations, and 11 of the 15 masked NIR-based VI x growth stage combinations. 

Pearson correlation coefficients (R) for the non-masked VI ranged from │0.40│ to │0.98│ and 

from│0.71│ to │0.98│for the masked VI. In the maize-maize rotation (Field 94), correlation 

between consumer-grade and multispectral derived NIR-based VI was significant for 12 of the 15 

non-masked NIR-based VI x growth stage combinations, and 13 of the 15 masked NIR-based VI 

x growth stage combination. Pearson correlation coefficients (R) for the non-masked VI ranged 

from │0.28│ to 0.97 and from│0.32│ to │0.97│for the masked VI. 

Different correlation results obtained for the RGB and NIR-based VI might be attributed 

to the overlap of visible (RGB) and NIR spectral bands commonly found in modified consumer-

grade sensors, contrary to the narrow and nonoverlapping bands in multispectral sensors (Soria et 

al., 2017). Previous studies have shown that the overlap of visible and NIR spectral bands can 

cause band correlation and a mixed spectral response, which can have a direct impact on the 

calculation of NIR-based VI (Berra et al., 2017; Coburn et al., 2018).  

At growth stage V5-V6, greater soil surface was visible for the sensors compared to the 

other growth stages evaluated (Figure 3.6), particularly in the continuous maize rotation (Field 

94). Crop residue in Field 94 (Figure 3.7) likely created difficult stand establishment conditions, 

delaying maize crop emergence and development (Nielsen et al., 2007). While plants in the maize-

soybean rotation (Field 92) were predominantly at V6, in the continuous maize rotation (Field 94) 

plants were at growth stage V5. This difference in growth stage resulted in a smaller fraction 

corresponding to plants in Field 94 than in Field 92 (Figure 3.8). At these growth stages, significant 

correlations between consumer-grade and multispectral derived NIR-based VI were drastically 

different across both fields. In Field 92, regardless of VI masking status, correlation values in Field 

92 ranged from 0.40 to │0.98│, with the higher correlations corresponding to the masked NIR-

based VI (except GNDVI). Conversely, correlations in Field 94 were lower than in Field 92, 

ranging from -0.28 to -0.64, and masking did not improve the correlation results between 

consumer-grade and multispectral derived NIR-based VI.  
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At growth stages V10-V11, although maize canopy cover was greater than at growth stage 

V5-V6, soil, crop residue, and shadow background was still visible in the UAV imagery collected 

from both fields (Figure 3.6). Plants in the maize-soybean rotation (Field 92) were predominantly 

at growth stage V11, and in the continuous maize rotation (Field 94) at V10. Like at growth stage 

V5-V6, significant correlations between consumer-grade and multispectral sensors derived NIR-

based were greater in Field 92 than in Field 94. Regardless of masking status, correlations ranged 

from │0.77│ to │0.98│ in Field 92, and from │0.30│ to │0.97 │in Field 94. Interestingly, 

masking background pixels from the NIR-based VI (except GNDVI) change negative correlations 

to positive across both fields, and in Field 94, R values became also greater. 

At growth stage R3, background pixels in UAV imagery corresponded mainly to plant 

shadow rather than to soil and crop residue. Like at earlier growth stages, correlations between 

consumer-grade and multispectral sensors derived NIR-based at growth stage R3 were greater in 

Field 92 than in Field 94. On the other hand, masking did not improve correlation results. In Field 

92, correlations of non-masked NIR-based VI ranged from -0.69 to -0.86, while R values of 

masked NIR-based VI were mostly not significant. Likewise, in Field 94, correlations of non-

masked NIR-based VI ranged from -0.64 to -0.67, while correlations of masked NIR-based VI 

were lower, ranging from -0.34 to -0.66. 

Among the NIR-based VI examined, GNDVI (non-masked and masked) was the only 

index that consistently had a high correlation between sensor types across both fields and all 

growth stages, with values that ranged from -0.64 to -0.98. Among the NIR-based VI, GNDVI is 

the only index that uses a Green band instead of a Red band. Although spectral response function 

varies depending on the sensor, band overlap between the visible and NIR region commonly cause 

greater mixed spectra between the Red and NIR region than between Green and NIR (Berra et al., 

2017), since Red and NIR are adjacent in the electromagnetic spectrum. Therefore, it was more 

likely that VI calculated with Red and NIR acquired from consumer-grade versus multispectral 

sensors were less correlated than VI calculated with Green and NIR. Our results are in line with 

Chen et al. (2018), who indicated that compared with the Green and NIR channels, Red and Red-

edge channels show more between-sensor difference, which contribute significantly to the 

difference in the derived vegetative indices. 

When background pixels corresponding to soil, shadow, and residue were masked out from 

the vegetative indices, there was still a high correlation (R from 0.70 to 1.0) between the consumer 
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and multispectral derived RGB-based VI across fields and growth stages. In the case of the NIR-

based VI, masking the background pixels affected the correlations between consumer-grade and 

multispectral sensors derived NIR-based VI, except for GNDVI. However, the changes were not 

consistent among the growth stages. At growth stage V5-V6, correlations improved when 

background pixels were masked from images in Field 92, but remained similar in Field 94. The 

only NIR-based VI that had similar correlation coefficient values across fields, growth stages, and 

background status (masked and non-masked) was GNDVI. 

In summary, RGB-based VI derived from consumer-grade and multispectral sensors were 

highly correlated, with or without masking background pixels corresponding to mostly soil, 

shadow and residue. On the other hand, the relationship between sensor types for the NIR-based 

VI varied dependent on field evaluated, specific VI, and masking status. Overall, NIR-based VI 

derived from the modified consumer camera (except GNDVI) were more sensitive to soil 

background compared to those derived from the multispectral sensor. This can be attributed to the 

high reflectance of Red by the soil, and the overlap between the visible and the NIR region. In 

contrast, GNDVI did not have the same problem since its formula utilized Green instead of Red.  

3.4.3 Treatment effects on biomass at growth stage R5 and grain yield  

Treatment effects on biomass at R5 

Seeding rate had a significant effect (P-value ≤ 0.10) on fresh biomass at growth stage R5 

in both field trials (Table 3.9). The higher seeding rate, the greater biomass per square meter 

(Figure 3.9). Effects of N rate on biomass were only significant in the continuous maize (Field 94). 

Optimum average N rate is greater for continuous maize fields than for maize-soybean rotation 

fields (Camberato & Nielsen, 2019). Therefore, the difference in fresh biomass response to total 

N rate between Field 92 and 94 might be explained by the higher requirement of N in the 

continuous maize (Field 94). Finally, none of the fields showed a significant interaction between 

seeding rate and total N for biomass.  

Treatment effects on grain yield  

Seeding rate and total nitrogen (N) rate had significant effect on grain yield in both field 

trials, while the interaction between the two factors was not significant (Table 3.10). Grain yield 
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increased with higher rates of N and maximum grain yield occurred with the intermediate seeding 

rate (70,000 seeds ha-1) in each field (Figure 3.10). Although the lowest seeding rate (45,000 seeds 

ha-1) resulted in the lowest mean grain yield across the two fields, the two higher seeding rates 

70,000 and 95,000 seeds ha-1 had similar grain yield. 

There was a significant correlation between fresh biomass at growth stage R5 and grain 

yield in both field trials. Pearson correlation coefficients in Field 92 and 94 were 0.51 and 0.42 

respectively (Figure 3.11). 

3.4.4 Biomass and grain yield prediction based on vegetative indices derived from 

consumer-grade and multispectral UAV images 

Fresh biomass prediction based on RGB vegetative indices at growth stage R5  

Results of linear regressions between biomass at growth stage R5 and five masked and 

non-masked RGB-based VI were different for Field 92 and 94 (Table 3.11). Of the 20 VI x 

masking status x sensor type combinations in each field, only 10% of the regressions were 

significant in Field 92, while 85% were significant in Field 94. The only significant regression 

models in Field 92 (maize following soybean) were those involving the non-masked VARI and 

VIg derived from the multispectral sensor, however the models only accounted for 9 and 7% of 

the variability in yield, respectively (Table 3.11). All the linear regressions between fresh biomass 

and the non-masked RGB-based VI in Field 94 (continuous maize) were significant regardless of 

the sensor used. However, their goodness of fit was ≤ 0.25 (Table 3.11). Masking improved the 

significance levels and R2
adj for the regressions involving VI derived from the consumer grade 

camera. In contrast, masking VI derived from the multispectral sensor decreased both the 

significance and R2
adj of the regressions between VI and biomass (Table 3.11). In Field 94, Pearson 

correlation coefficients between consumer-grade and multispectral derived non-masked RGB-

based VI were greater than those derived from the masked RGB-based VI (Table 3.11). Therefore, 

it was expected that regression results based on the non-masked RGB-based VI would be 

comparable between sensors, but different based on the masked RGB-based VI. 

Across both fields, VARI and VIg were best at predicting fresh biomass at growth stage 

R5 compared to the rest of VI. Particularly, VARI and VIg derived from the consumer-grade 

sensor in Field 94 had R2
adj values ranging from 0.29 to 0.36 regardless of whether background 

was masked. Imagery from the consumer-grade sensor was collected five days prior to image 
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acquisition using the multispectral sensor, which could be a potential reason why R2
adj regression 

models based on the RGB-based VI derived from the consumer-grade sensor were higher than the 

multispectral in Field 94.  

Grain prediction based on RGB and NIR vegetative indices at growth stages R3 and R5 

Reproductive growth stage R3  

All the regressions between RGB-based VI at R3 (masked or not) and grain yield were 

significant for Field 92 (maize following soybean) with R2
adj values primarily fair to good (Table 

3.12). Regressions between NIR-based VI at R3 (masked or not) and grain yield for Field 92 

(maize following soybean) were also significant. Nevertheless, fit of the models varied dependent 

on the specific group of VI evaluated (RGB or NIR-based), and the sensor from which VI were 

derived. Fit (R2
adj) of the RGB-based VI regression models ranged from 0.14 to 0.54, and from 

0.09 to 0.90 for the NIR-based VI regression models. 

Fit (R2
adj) of the RGB-based VI regression models was not affected drastically by the type 

of sensor used, which was expected because of the high correlation between consumer-grade and 

multispectral sensor derived RGB-based VI (Table 3.8). For 4 of 5 RGB-based VI (non-masked 

and masked) regression models, variation in R2
adj was no greater than ±0.04. Overall, R2

adj values 

of VARI were the highest, ranging from 0.50 to 0.54 regardless of the sensor used and VI masking 

status.  

On the other hand, sensor type had a greater effect on NIR-based VI. Fit (R2
adj) for 4 of 5 

masked and non-masked NIR-based VI derived from the multispectral sensor ranged from 0.67 to 

0.74, while R2
adj for the same NIR-based VI derived from the consumer-grade sensor ranged from 

0.09 to 0.17. These results are in line with the study conducted by Nebiker et al. (2016), in which 

consumer-grade and multispectral sensors were used for yield estimation of rapeseed. The authors 

concluded that the better results obtained by the multispectral sensors were attributed to the more 

distinct separation of the four spectral bands. 

Background masking modified the fit of the models, but not in the same way for both 

sensors. After masking, R2
adj slightly increased for 4 of 5 models based on the multispectral sensor, 

while R2
adj values for all the models based on the consumer-grade data decreased. Among the NIR-

based VI, GNDVI had consistently the highest R2
adj, ranging from 0.68 to 0.90 regardless of the 
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sensor used and VI masking status. Although spectral response function varies depending on the 

sensor, band overlap between the visible and NIR region commonly cause greater mixed spectra 

between the Red and NIR region rather than between Green and NIR (Berra et al., 2017), since 

Red and NIR are adjacent in the electromagnetic spectrum. Among the NIR-based VI, GNDVI is 

the only index that uses a Green band instead of a Red band, which might explain why results 

based on GNDVI varied less than the other NIR-based VI regardless of the sensor used. 

In contrast to the maize-soybean rotation (Field 92), of the 40 linear regression models 

between grain yield and all the VI evaluated at growth stage R3 in the maize-maize (Field 94), 

only 60% were significant. Within the regression models based on RGB, 40% were significant, 

and 80% based on the NIR-based VI. Overall, linear regressions between the RGB-based VI and 

grain yield in the maize-maize (Field 94) were either not significant or the fit of the models were 

poor (R2
adj 0-0.25). Background masking did not result in significant regression models, nor were 

there any marked differences in model significance between the consumer-grade and multispectral 

sensors.  

On the other hand, like in Field 92, sensor type had a greater effect on NIR-based VI. Four 

of five non-masked NIR-based VI with grain yield were significant only for the multispectral 

sensor. Nevertheless, R2
adj for 3 of the 4 models were characterized as poor, with R2

Adj ranging 

from 0.12 to 0.17, indicating poor fit of the models to the data. When background was masked, all 

the linear regressions between the five NIR-based VI and grain yield were significant for both 

types of sensors. However, fit of the models was also poor, with R2 ranging from 0.14 to 0.25, 

except for the model based on GNDVI derived from the multispectral data (R2
adj 0.63).  

Reproductive growth stage R5 

In the maize-soybean rotation (Field 92), all linear regressions between the five RGB-based 

VI and grain yield were significant for both types of sensors, whether background pixels were 

masked or not (Table 3.13). However, there were differences in fit of the models to the data 

between consumer-grade and the multispectral sensors. The R2
adj values for 4 of 5 non-masked 

RGB-based VI derived from the consumer-grade sensor were fair, ranging from 0.30 to 0.36, while 

fair to good when derived from the multispectral sensor data, ranging from 0.35 to 0.57. Masking 

background pixels did not improve fit of the regressions. The R2
adj values for 4 of 5 masked RGB-

based VI derived from the consumer-grade sensor were still smaller (R2
adj 0.25 to 0.26) than those 
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derived from the multispectral sensor data (R2
adj 0.30 to 0.53). Among the five RGB-based VI, 

ExG had poor R2
adj (ranging from 0.10 to 0.25) regardless of the sensor from which it was derived, 

and whether background pixels were masked or not. 

In contrast to the maize-soybean field, not all the linear regressions between the RGB-

based VI and grain yield in the maize-maize rotation (Field 94) were significant for both types of 

sensors. Significance and fit of the models varied depending on the sensor from which VI were 

derived, and whether VI were masked or not. Regression models for only 3 of 5 non-masked RGB-

based VI with grain yield were significant for the multispectral sensor, with poor R2
adj values 

ranging from 0.07 to 0.12. On the other hand, regression models with all the non-masked RGB-

based VI with grain yield were significant for the consumer-grade sensor, with poor to fair R2
adj 

values ranging from 0.12 to 0.36. Masking background resulted in not significant models for the 

multispectral sensor, and significant models for the consumer-grade sensor, with R2
adj from 0.09 

to 0.33. 

Overall, results of regressions between grain yield and VI at growth stages R3 and R5 were 

different between Field 92 and 94 (Tables 3.12 and 3.13) in regards to significance (P-value) and 

fit of the regression models (R2
adj) despite both fields had the same experimental design. The crop 

rotation for Field 92 was maize-soybean, while for Field 94 was continuous maize. Therefore, 

effects of continuous maize rotation on plant growth and development (Nielsen et al., 2007) could 

have impacted the results.  

Within each field, results of regressions between grain yield and RGB-based VI derived 

from the consumer-grade and multispectral sensors were comparable (Table 3.12 and 3.13). In 

contrast, in case of the NIR-based VI, there were differences in the results of regressions models 

based on NIR-based VI derived from the consumer-grade and those derived from the multispectral 

sensor (Table 3.12). For both field trials, there was a high correlation between the consumer-grade 

and multispectral sensors for all RGB-based VI (non-masked and masked), which may explain the 

comparable results of regressions between grain yield and RGB-based VI derived from both 

sensors. Conversely, correlation between the consumer-grade and multispectral sensors for all 

NIR-based VI (non-masked and masked) was either negative or not significant (Table 3.8), which 

could be the reason of the differences in results of regressions models based on NIR-based VI 

derived from the consumer-grade and those derived from the multispectral sensor. Our results are 

in agreement with Berra et al., (2017) and Coburn et al., (2018) who agreed that the overlap of 
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visible and NIR spectral bands in modified consumer-grade sensors can cause band correlation 

and a mixed spectral response, resulting in differences in NIR-based VI derived from consumer-

grade and multispectral sensors  

In general, VI derived from UAV aerial images was better at predicting yield in Field 92 

than in Field 94 (Tables 3.12 and 3.13). Contrarily, performance of VI at predicting biomass was 

better in Field 94 than in Field 92 (Table 3.11). While yield regression models were based on the 

mean VI value per each plot, biomass regression models were based on sampling areas. The width 

of each plot was 9.1 m (12 rows) and length was approximately 76 m, and each biomass sampling 

area was equivalent to 1.52 m (two rows) wide by 2 m long. Both, grain yield and the five RGB-

based vegetative indices were averaged for each plot. Therefore, even if natural spatial variability 

related to soil or elevation within each plot had effects on grain yield or vegetative indices, the 

effects were not distinguished when working with plot-based values. Conversely, data (e.g. fresh 

biomass) collected from smaller areas is more likely to reflect the effects of the characteristics of 

the site where it was collected, since it is not averaged with data from other areas prior to analysis.  

Bare soil in the soil map of Field 92 and 94 (Figure 3.12) shows the natural spatial 

variability in each field attributed to the different type of soils (Table 3.1). Soil color in Field 92 

appears more uniform than in Field 94, since most area of Field 92 correspond to Chalmers soil 

series (Cm). Conversely, in Field 94 there is a contrast in soil color corresponding to the two 

predominant two soil series, Chalmers (Cm) and Raub-Brenton (RcA). The smaller sampling area 

and the higher spatial variability related to soil type in Field 94 may explain why linear regression 

models between fresh biomass and the RGB-based VI seemed to perform better in Field 94 versus 

Field 92, in contrast to the opposite difference between the fields for the RGB-based VI models 

for grain yield. 

3.4.5 ANOVA results 

Vegetative growth stage V5-V6  

Regardless of the sensor type or masking status, the five RGB-based VI were significantly 

affected by seeding rate in the maize-soybean rotation in Field 92 (Table 3.14). On the other hand, 

effect of seeding rate on the NIR-based VI varied dependent on sensor type and masking status. 

The five non-masked NIR-based VI derived from the multispectral sensor were affected by seeding 
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rate, while only 1 of 5 non-masked NIR-based VI derived from the consumer-grade sensor. 

Masking the background pixels from the VI did not change the significant response of the NIR-

based VI derived from the multispectral sensor, but it resulted in a significant effect on the five 

NIR-based VI derived from the consumer sensor. On the other hand, none of the ten VI evaluated 

detected a significant effect of nitrogen fertilizer rate in Field 92, nor an interaction of seeding and 

nitrogen rate. 

Like in Field 92, regardless of the sensor type and masking status, the five RGB-based VI 

were affected by seeding rate in Field 94. The five non-masked NIR-based VI derived from the 

multispectral sensor were affected by seeding rate, while only 1 of 5 NIR-based VI derived from 

the consumer-grade sensor. In contrast to Field 92, masking did not result in significant response 

of the NIR-based VI derived from the consumer sensor in Field 94.  

In terms of response to N rate, contrary to the maize-soybean rotation (Field 92), N rate 

had a significant effect on crop reflectance in the maize-maize rotation (Field 94). One of five non-

masked RGB-based VI (PPRB) was affected by N rate, regardless of the sensor from which it was 

derived. Masking resulted in significant effect of N rate on three and two RGB-based VI derived 

from the multispectral and consumer sensor respectively, but not the same VI in both sensors.  

In the same maize-maize rotation (Field 94), 2 of 5 non-masked NIR-based VI derived 

from the multispectral sensor were affected by N rate, while all the non-masked NIR-based VI 

derived from the consumer-grade sensor were affected. Interestingly, masking the background 

pixels from the VI maps, resulted in not significant effect of N rate on 2 of 5 NIR-based VI derived 

from the multispectral sensor, which prior to masking were affected. Likewise, while all non-

masked NIR-based VI derived from the consumer-grade sensor were significant, all the masked 

VI were not.  

As early as vegetative growth stage V5-V6, nine days after N treatments had been imposed 

with sidedress fertilizer applications, the effect of seeding rate on spectral response of maize was 

already significant in both fields, while the effect of N rate was significant only in the maize-maize 

rotation (Field 94). Since image acquisition at V5-V6 was conducted nine days after nitrogen 

treatment application, it was expected that N rate would not have a significant effect on crop 

reflectance yet. The greater soil residue cover slowed plant growth and development in the maize-

maize rotation (Field 94), in which growth stage was predominantly V5, compared to the maize-

soybean rotation (Field 92), in which growth stage was predominantly V6. Potentially, nitrogen 
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had higher impact on the less developed plants in Field 94. On the other hand, seeding rate was 

likely to have a significant effect on crop reflectance because of the differences in canopy cover 

attributed to different seeding rates.  

Among the ten VI evaluated, GNDVI was the only VI that was consistently affected by 

seeding rate in both fields at growth stage V5-V6, regardless of the sensor and masking status. At 

later vegetative and reproductive growth stages, the effect of seeding rate was significant on all 

the VI evaluated, regardless of the sensor and masking status (Tables 3.15 to 3.17). Although 

ANOVA results showed that effect of seeding rate was significant on all VI after V5, the actual 

effects were not the same for all VI. As shown in Figures 3.13 to 3.16, while effects of seeding 

rate were similar on the RGB-based VI derived from multispectral and consumer sensor, the effects 

on the NIR-based VI derived from both sensors were not the same. For instance, in Figure 3.14, 

the higher seeding rate resulted in a higher GNDVI derived from the multispectral sensor, but 

lower GNDVI derived from the consumer-grade sensor. The high correlation between the 

consumer-grade and multispectral sensors for all RGB-based VI (non-masked and masked) (Table 

3.8) may explain the comparable effects of seeding rate on RGB-based VI derived from both 

sensors. Conversely, correlation between the consumer-grade and multispectral sensors for all 

NIR-based VI (non-masked and masked) was either negative or not significant (Table 3.8), which 

could be the reason of the differences in the effect of seeding rate on NIR-based VI derived from 

the consumer-grade and multispectral sensor. 

Vegetative growth stage V0-V11 

Regardless of the sensor type and masking status, the five RGB-based VI evaluated were 

affected by seeding rate in both fields (Table 3.15). In the case of the five NIR-based VI, significant 

response of VI at growth stages V10-V11 to seeding rate varied dependent on the field and sensor 

type. In Field 92, effect of seeding rate was significant on the five NIR regardless of sensor type 

and masking status. In Field 94, NIR-based VI (masked and non-masked) derived from the 

multispectral sensor were affected seeding rate, while only the non-masked GNDVI and all the 

masked NIR-based VI derived from consumer-grade sensor were affected.  

While effects of N rate on crop reflectance were significant only in the maize-maize 

rotation (Field 94) at growth stage V5-V6, effects were significant in both fields (Table 3.15) at 

growth stage V10-V11. In Field 92 growth stage was predominantly V11, and V10 in Field 94.  



 

 

162 

Of the 40 VI evaluated in the maize-soybean rotation (Field 92), 11 masked VI were 

affected by N rate, from which 7 were RGB and 4 NIR-based VI. Significant response of VI to N 

rate varied dependent of the sensor from which the VI were derived. As regard of the RGB-based 

VI, 4 of the 5 RGB-based VI derived from the multispectral sensor were affected by N rate, and 3 

of the 5 RGB-based VI derived from the consumer-grade sensor were affected. Within the RGB-

based VI, effect of N rate on PPRB and VDVI was significant regardless of the sensor type. On 

the other hand, only masked NIR-based VI derived from the consumer-grade sensor were affected 

by N rate were. 

In Field 94, a higher number of VI, both masked and non-masked were affected by N rate. 

Of 40 VI evaluated, effect of N rate on was significant on 9 non-masked and 7 masked VI. Results 

varied dependent on the sensor type. Within the RGB-based VI, non-masked and masked ExG 

derived from the multispectral sensor were affected by N rate, while 2 non-masked (VARI and 

VIg) and 1 masked RGB-based VI (VARI) derived from the consumer-grade sensor were affected. 

Concerning the NIR-based VI, the effect of N rate on GNDVI derived from the 

multispectral sensor was significant regardless of masking status. In the case of the consumer-

grade derived NIR-based VI, all the non-masked NIR-based VI were affected by N rate. 

Interestingly, after background was masked GNDVI derived from the consumer-grade sensor was 

not affected.  

 Interaction effect of seeding rate and N rate was significant on specific VI in each field. In 

the maize-soybean rotation (Field 92), 4 of the 40 VI evaluated were affected by the interaction of 

seeding rate and N rate, of which 2 non-masked VI (VARI and VIg) were derived from the 

consumer-grade sensor, and 2 masked VI (VIg and SAVI) derived from the multispectral sensor. 

A higher number of VI were affected by the interaction of seeding rate and N rate in the maize-

maize rotation (Field 94) compared to the maize-soybean rotation (Field 92). Of 40 VI evaluated, 

7 were affected. In contrast to Field 92, all the VI affected by the interaction of seeding rate and N 

rate in Field 94 were RGB-based and derived exclusively from the consumer-grade sensor. Of the 

7 RGB-based VI, 3 were non-masked (ExG, VARI, and VIg) and 4 masked (ExG, VARI, VDVI, 

VIg). 
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Reproductive growth stage R3  

At reproductive growth stage R3 (Table 3.16), regardless of the sensor type and masking 

status, 100% of the VI evaluated were affected by seeding rate in both fields. On the other hand, 

N rate had a greater effect on crop reflectance in the maize-maize soil rotation (Field 94) than in 

the maize-soybean rotation (Field 92). Eighty-eight percent of the VI evaluated were affected by 

N rate Field 94 compared to 73% in Field 92. Not surprisingly, the greatest effect of the interaction 

between seeding rate and N rate on crop reflectance was also in the maize-maize rotation (Field 

94), in which 48% of the VI evaluated were affected, while only 15% in the maize-soybean rotation 

(Field 92).  

Seeding rate and N rate had significant effect on grain yield in both field trials, while the 

interaction between the two factors was not significant (Table 3.10). At growth stage R3, ExG, 

PPRB, GNDVI and NDVI were consistently affected by seeding rate and N rate in Field 92 and 

94 regardless of masking status and the sensor type from which they were derived. On the other 

hand, although interaction between seeding rate and N rate did not affect grain yield, VARI and 

VIg derived from the consumer-grade sensor were affected in Field 92 regardless of masking 

status, as well as the masked version of ExG and GNDVI derived from the multispectral sensor. 

In the case of Field 94, the effect of the interaction was significant on a greater number of VI, from 

which ExG was consistently affected regardless of masking status and sensor type from which it 

was derived. 

Reproductive growth stage R5 

Like at reproductive growth stage R3, regardless of the sensor type and masking status, 

seeding rate had a significant effect on 100% of the VI evaluated at growth stage R5 in both fields. 

In terms of the effects of N rate, 80% of the VI evaluated were affected in Field 92, and 85% in 

Field 94. Among the RGB-based VI evaluated at growth stage R5, ExG, PPRB, and VDVI were 

consistently affected by seeding rate and N rate in both field trials regardless of masking status 

and sensor type. 

Regarding the interaction between seeding rate and N rate, 0% of the VI evaluated at 

growth stage R5 were affected in Field 92, and only 25% in Field 94. Non-masked and masked 

ExG and PPRB derived from the multispectral sensor, and masked PPRB derived from the 
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consumer-grade sensor were affected by the interaction between seeding rate and N rate in Field 

94.  

3.5 Conclusions 

In general, correlations between consumer-grade cameras and multispectral sensors derived 

RGB-based VI were higher than those for NIR-based VI. Masking background from VI had a 

greater effect on correlation results for the NIR-based VI than the RGB-based VI. However, 

changes were not consistent across fields and growth stages. 

Regressions between plant biomass and RGB-based VI derived from consumer-grade 

sensors at growth stage R5 were comparable to regressions involving RGB-based VI derived from 

multispectral sensors, regardless of VI masking status. Likewise, regressions between grain yield 

and RGB-based VI derived from both sensors at growth stage R3, were comparable regardless of 

masking status. In contrast, at growth stage R5, regressions between grain yield and RGB-based 

VI derived from consumer-grade sensors were worse than regressions involving VI derived from 

multispectral data, which might be explained by the timing of image acquisition. Imagery 

acquisition using the consumer-grade sensor was conducted 5 days prior to image acquisition using 

the multispectral sensor. On the other hand, regressions between grain yield and NIR-based VI 

derived from the multispectral sensor were generally better than those based on the consumer-

grade sensor. Moreover, masking had a greater effect on NIR-based VI derived from the consumer 

grade sensor than from the multispectral sensor. Regression results based on the consumer-grade 

derived NIR-based VI were more likely to change after masking compared to those derived from 

the multispectral sensor.  

Effects of seeding rate and N rate treatments were equally detectable using VI derived from 

consumer-grade sensors than VI derived from multispectral sensors. Masking background soil and 

shadow reflectance modified the ability of VI to detect treatment effects. However, changes were 

not consistent, since in some cases masking improved ability of VI to detect treatment effects and 

in others it was decreased.  

Overall, effects of masking were greater on the NIR-based VI, particularly derived from the 

consumer-grade sensor. Nevertheless, changes were not consistent across analyses (regressions 

and ANOVA), fields, and growth stages. 
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In our study, VI derived from standard sensors on consumer-grade UAV were moderately 

equally effective than VI derived from multispectral sensors on more expensive UAV in 

identifying, distinguishing, and predicting important phenotypic variables in field scale agronomic 

research. Based on the results from this research, we believe agronomic researchers and 

consultants would benefit most from using consumer grade sensors. The easier operation in the 

field compared to multispectral sensor, the less memory storage required for imagery collected, 

and the easier image handling and processing make consumer-grade sensors a good tool to 

integrate in the toolbox for field-scale research. 

Future research should address if conducting radiometric calibration of the consumer-grade 

imagery would improve the correlation between the consumer-grade and multispectral derived 

NIR-based VI. 
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Figure 3.1. Spectral function response for: A) modified consumer grade sensor (model Canon S110 NIR), which 

show overlap between the Green, Red and NIR bands, and B) and multispectral sensor (model multiSPEC 4C), in 

which bands are not overlapped. Adapted from Nebiker et al., (2016) 

 

 

 

 

 

Figure 3.2. Narrow versus wide field of view (FOV). A) Narrower FOV covers less area on the ground, while B) 

Wider FOV covers more. Images source: Nielsen (2019) 
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Figure 3.3. A) Distortion on the edges of the image versus B) better quality in the center when 

using sensor with a wider FOV. Images source: Nielsen (2019) 

 

 

 

 

Table 3.1. Area, location and description of soils and percentage of field by soil type for the two field experiments 

conducted in 2019 at the Agronomy Center for Research and Education (ACRE) near West Lafayette in west-central 

Indiana. Data obtained from: WebSoilSurvey.  

Field 

ID a 
Location % of field area Slope Soil series Family 

92 

(4 ha) 
40.4835, 

-87.0081 

88 

 
9 

 

3 

0-2% 

 
0-1% 

 

Pothole 

Chalmers 

 
Raub-Brenton 

 

Milford 

Fine-silty, mixed, superactive, 

mesic Typic Endoaquolls 
Fine-silty, mixed, superactive, 

mesic Aquic Argiudolls 

Fine, mixed, superactive, mesic 

Typic Endoaquolls 

94 

(4 ha) 
40.4852, 

-87.0081 

56 

 

44 

0-1% 

 

0-2% 

Raub-Brenton 

 

Chalmers 

Fine-silty, mixed, superactive, 

mesic Aquic Argiudolls 

Fine-silty, mixed, superactive, 
mesic Typic Endoaquolls 

a Both field experiments are located at 245 m above sea level. 
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Table 3.2. Details of seeding and nitrogen rate treatments for the field trials at the Agronomy Center for Research 

and Education (ACRE) near West Lafayette in west-central Indiana in 2019. 

Treatments 

Seeding rate 

(seeds ha-1) 

Sidedress nitrogen rate 

(kg N ha-1) 

1) 45,000 

2) 45,000 

3) 45,000 

4) 70,000 

5) 70,000 

6) 70,000 

7) 95,000 

8) 95,000 

9) 95,000 

112 

168 

224 

112 

168 

224 

112 

168 

224 

 

 

Table 3.3. Specifications of cameras used for imagery acquisition. 

Camera make and model Spectral bands Megapixels Dynamic range Field of view (FOV) 

MicaSense Altum a R-G-B-RE-NIR 3.2 MP 12-bit 48º x 37º 

Zenmuse X4S R-G-B 20 MP 8-bit 84° 

Modified Zenmuse X4S R-G-NIR 20 MP 8-bit 84° 

Hasselblad L1D-20c R-G-B 20 MP 10-bit 77° 
a Information of the LWIR thermal band is not detailed since it was not used in this study.  

 

 

Table 3.4. Maize growth stage, flight date, time of solar noon, cloud conditions, sensor, platform, and flight launch 

time for image acquisition over the two field trials located at the Agronomy Center for Research and Education 

(ACRE) near West Lafayette in west-central Indiana in 2019. 

Growth 

stage a 
Date Solar noon 

Cloud 

conditions 
Sensor UAV platform b Time 

V5-V6 07-July 13:53 Broken Multispectral M200 17:35 

  RGB M200 18:08 

  RG-NIR M200 18:26 

V10-V11 24-July 13:55 Clear RGB M200 17:38 

  RG-NIR M200 17:48 

25-July 13:55 Clear Multispectral M200 16:43 

R3 28-Aug 13:50 Clear Multispectral M200 12:56 

  RGB M200 13:25 

  RG-NIR M200 13:47 

R5 19-Sept 13:43 Clear Multispectral M200 12:45 

 14-Sept 13:45 Clear RGB M2P 15:12 
a Vegetative stages were determined based on the leaf collar method, and reproductive stages based on visual 

indicators of kernel development (Abendroth et al., 2011). 
b M200= DJITM Matrice 200 UAV; M2P=M200 DJITM Mavic 2 Pro. 

  



 

 

169 

Table 3.5. Date of acquisition of Landsat 8 satellite imagery considered in the delineation of multi-

year normalized NDVI zones, and crop growth at each of the two field trials located at the 

Agronomy Center for Research and Education (ACRE) near West Lafayette in west-central 

Indiana in 2019.  

Location Year Date Crop 

ACRE 92 2013 

2014 

2015 

2016 

2017 

2018 

 

12-Aug 

15-Aug 

02-Aug 

04-Aug 

23-Aug 

26-Aug 

Soybean 

Maize 

Soybean 

Maize 

Soybean 

Maize 

ACRE 94 2013 

2014 

2015 
2016 

2017 

2018 

12-Aug 

15-Aug 

02-Aug 
04-Aug 

23-Aug 

26-Aug 

Maize 

Maize 

Maize 
Maize 

Maize 

Maize 

 

 

 

 

Figure 3.4. Distribution of 27 sampling locations in Field 92 (bottom) and 36 in Field 94 (top). Colored zones 

represent the multi-year normalized NDVI zones. Green symbolizes areas with the highest NDVI values (“healthy” 

vegetation) over the years (mostly in August), while red symbolizes the lowest NDVI values (“stressed” vegetation).  
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Figure 3.5. Fresh biomass harvest and weigh at reproductive growth stage R5.  
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Table 3.6. Vegetative indices used to analyze spectral responses of maize to plant density and nitrogen fertilizer 

rates in two field trials located at the Agronomy Center for Research and Education (ACRE) near West Lafayette in 

west-central Indiana in 2019. 

Vegetative 
index 

Index full name Formula Reference 

RGB-based VI 

ExG Excess Green Index [2G-R-B] Woebbecke et al. (1995) 

PPBR Plant Pigment Ratio [(G-B)/(G+B)] Metternicht (2003) 

VARI 
Visible Atmospherically Resistant 

Index 
[(G-R)/(G+R-B)] Gitelson et al. ( 2002) 

VDVI 
Visible-band Difference Vegetation 

Index 
[(2G-B-R)/(2G+B+R)] 

Wang Xiaoqin et al. 

(2015) 

VIg Vegetation Index Green [(G-R)/(G+R)] Tucker (1978) 
NIR-based VI 

NDVI 
Normalized Difference Vegetation 

Index 
[(NIR-R)/(NIR+R)] Rouse et al. (1973) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
[(NIR-G)/(NIR+G)] Gitelson et al. (1996) 

SAVI Soil-Adjusted Vegetation Index [(NIR-R)/(NIR+R+L)]x(1+L) Huete (1988) 

OSAVI 
Optimized Soil-Adjusted Vegetation 
Index 

[(NIR-R)/(NIR+R+0.16)] Baret et al. (1993) 

MSAVI 
Modified Soil-Adjusted Vegetation 

Index 

[2xNIR+1-[√(2xNIRx1)2 -

8x(NIR-R))]]/2 
Qi et al. (1994) 
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Table 3.7. Average monthly air temperature and accumulated precipitation from 1 May to 31 October at the 

Agronomy Center for Research and Education (ACRE), near West Lafayette in west-central Indiana in 2019. Values 

in parentheses represent the deviation from the 30-year average (1981-2010). 

Air Temperature (°C)  Precipitation (mm) 

May June July Aug Sept Oct  May June July Aug Sept Oct 

16.1 20.9 24.3 21.6 20.4 12.0  137 84 47 65 67 86 

(-0.3) (-0.7) (+1.3) (-0.4) (+2.2) (+0.3)  (+16) (-20) (-59) (-26) (-5) (+9) 
a For air temperature, blue and red shadows represent deviations below and above the 30-yr monthly average 
respectively. Darker shading indicates a greater deviation. 
b For precipitation, yellow and blue shadows represent deviations below and above the 30-yr monthly average 

respectively. Darker shading indicates a greater deviation. 
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Table 3.8. Pearson correlation coefficients (R) between consumer-grade (RGB Zenmuse X4S, modified RG-NIR 

Zenmuse X4S, or  Mavic 2 Pro RGB) and multispectral (Altum) sensors for five RGB-based and NIR-based 

vegetative indices (VI), non-masked and masked, at four growth stages in Field 92 and 94 at the Agronomy Center 

for Research and Education (ACRE) near West Lafayette in west-central Indiana in 2019. 

VI a 

Pearson correlation coefficients (R) b  

Non-masked VI  Masked VI c 

V5-V6 V10-V11 R3 R5  V5-V6 V10-V11 R3 R5 

Field 92 (maize following soybean) 

RGB VI           

ExG 0.97 0.84 0.85 0.91  0.95 0.50 0.83 0.86 

PPRB 0.95 0.99 0.99 0.95  0.94 0.99 1.00 0.94 

VARI 0.99 1.00 0.94 0.73  0.98 0.99 0.96 0.71 

VDVI 0.99 0.99 0.98 0.91  0.97 0.99 0.99 0.90 

VIg 0.99 1.00 0.96 0.78  0.98 0.99 0.98 0.76 

NIR VI           

GNDVI -0.96 -0.98 -0.86 -  -0.95 -0.98 -0.89 - 

MSAVI ns -0.81 -0.69 -  0.69 0.82 ns - 

NDVI 0.49 -0.77 -0.82 -  0.76 0.83 ns - 

OSAVI 0.44 -0.81 -0.74 -  0.74 0.81 ns - 

SAVI 0.40 -0.81 -0.71 -  0.71 0.78 ns - 

Field 94 (continuous maize) 

RGB VI          

ExG 0.89 0.84 0.93 0.88  0.92 0.73 0.89 0.75 

PPRB 0.86 0.97 0.99 0.94  0.70 0.99 0.99 0.92 

VARI 0.98 0.97 0.98 0.80  0.95 0.96 0.97 0.75 

VDVI 0.92 0.98 0.99 0.91  0.82 0.99 0.99 0.89 

VIg 0.97 0.97 0.98 0.81  0.94 0.97 0.98 0.76 

NIR VI          

GNDVI -0.64 -0.97 -0.66 -  -0.64 -0.97 -0.66 - 

MSAVI -0.43 -0.30 -0.64 -  -0.36 0.58 -0.37 - 

NDVI ns ns -0.67 -  ns 0.60 -0.34 - 

OSAVI -0.28 ns -0.66 -  ns 0.56 -0.38 - 

SAVI -0.38 -0.30 -0.65 -  -0.32 0.54 -0.39 - 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 
and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b Pearson correlation coefficients (R) are significant (P ≤ 0.10) unless "ns" is indicated.  
c Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
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Figure 3.6. Subset area of Field 92 and 94 at different growth stages, showing the change in canopy cover as the 

crop developed. 

 

    

Figure 3.7. Maize residue from previous crop in Field 94 at emergence (left) and at growth stage V5 (right). Images 

source: Morales (2019) 
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Figure 3.8. Subset area of Field 92 (maize-soybean rotation) and 94 (maize-maize rotation) on July 7th. 

Predominantly growth stage in Field 92 was V6, and V5 in Field 94. Tan color in Field 94 corresponds mostly to 

maize residue from previous crop.   
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Table 3.9. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 
SxN interaction on fresh biomass at growth stage R5 in Field 92 and 94 at the Agronomy Center for Research and 

Education near West Lafayette in west-central Indiana in 2019.   

Factors 
P-value a 

 Mean fresh biomass 

kg m-2 

Field 92 Field 94  Field 92 Field 94 

Seeding rate (seeds ha-1) 0.04 0.09    

45,000    4.70 4.17 

70,000    4.97 4.32 

95,000    5.06 4.38 

Nitrogen rate (kg N ha-1) 0.16 0.05    

112    4.75 4.19 

168    4.95 4.24 

224    5.03 4.44 

Interaction SxN 0.87 0.83    

a P-values bolded indicate a significant effect on the factor on grain yield (P ≤ 0.10). 
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Figure 3.9. Effect of seeding rate (plants ha-1)and nitrogen fertilizer rate (kg N ha-1) on fresh biomass (kg m-2) at 

growth stage R5 in Field 92 and 94 at the Agronomy Center for Research and Education near West Lafayette, 

Indiana in west-central Indiana in 2019. 
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Table 3.10. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 

SxN interaction on grain yield in Field 92 and 94 at the Agronomy Center for Research and Education near West 

Lafayette in west-central Indiana in 2019.   

Factors 
P-value a 

 Mean grain yield 

Mg ha-1 

Field 92 Field 94  Field 92 Field 94 

Seeding rate (seeds ha-1) 0.002 0.003    

45,000    9.6 8.4 

70,000    10.6 9.1 

95,000    10.4 8.8 

Nitrogen rate (kg N ha-1) 0.001 <0.0001    

112    10.1 8.5 

168    10.2 8.8 

224    10.4 9.0 

Interaction SxN 0.37 0.11    

a P-values bolded indicate a significant effect on the factor on grain yield (P ≤ 0.10). 
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Figure 3.10. Effect of seeding rate (plants ha-1) and nitrogen fertilizer rate (kg N ha-1) on grain yield (Mg ha-1) in 

Field 92 and 94 at the Agronomy Center for Research and Education near West Lafayette, Indiana in west-central 

Indiana in 2019. 
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 Fresh biomass (kg m-2) Fresh biomass (kg m-2) 

Figure 3.11. Relationship between fresh biomass at growth stage R5 and grain yield in Field 92 (left) and 94 (right) 

at the Agronomy Center for Research and Education near West Lafayette, Indiana in west-central Indiana in 2019. 

Pearson’s correlation coefficient is expressed as R.  
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Table 3.11. Regression analysis results between fresh biomass (kg m-2) and five RGB-based vegetative indices (VI), 

non-masked and masked, at reproductive growth stage R5 for two field trials at the Agronomy Center for Research 

and Education near West Lafayette in west-central Indiana in 2019. 

VI a 

Non-masked VI Masked VI b 

Multispectral Consumer grade Multispectral Consumer grade 

P-value c R2
adj 

d RMSE% e P-value R2
adj 

RMSE 

% 
P-value R2

adj 
RMSE 

% 
P-value R2

adj 
RMSE 

% 

Field 92 (maize following soybean) 

ExG 0.48 n.s 7 0.29 n.s 7 0.99 n.s 7 0.34 n.s 7 

PPRB 0.25 n.s 7 0.24 n.s 7 0.36 n.s 7 0.30 n.s 7 

VARI 0.07 0.09 6 0.15 n.s 7 0.13 n.s 7 0.23 n.s 7 

VDVI 0.14 n.s 7 0.18 n.s 7 0.24 n.s 7 0.25 n.s 7 

VIg 0.09 0.07 6 0.16 n.s 7 0.17 n.s 7 0.23 n.s 7 

Field 94 (continuous maize) 

ExG 0.08 0.06 6 0.02 0.12 6 0.87 n.s 6 0.02 0.12 6 

PPRB 0.07 0.07 6 0.03 0.11 6 0.31 n.s 6 0.09 0.05 6 

VARI 0.01 0.17 5 0.0001 0.36 5 0.05 0.08 6 0.0002 0.32 5 

VDVI 0.02 0.12 6 0.003 0.22 5 0.12 n.s 6 0.01 0.14 6 

VIg 0.01 0.15 5 0.0001 0.34 5 0.07 0.07 6 0.0004 0.29 5 

Note: Mean fresh biomass per sampling location in Field 92 was 4.91 (kg m-2), and 4.29 (kg m-2) in Field 94. 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
c P-values bolded indicate that the relationship between the predictor variable (vegetative index) and fresh biomass 

is statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in fresh biomass (dependent variable) explained by the 

predictor variable (vegetative index). Rating of vegetative index as predictor of fresh biomass: Poor = R2
adj ≤ 0.25, 

Fair = 0.26 - 0.50, Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference between the observed fresh biomass values and that 

predicted by the model. 
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Table 3.12. Regression analysis results between grain yield (Mg ha-1) and five RGB-based and five NIR-based 

vegetative indices (VI), non-masked and masked, at reproductive growth stage R3 for two field trials at the 

Agronomy Center for Research and Education near West Lafayette in west-central Indiana in 2019. 

VI a 

Non-masked VI Masked VI b 

Multispectral Consumer-grade Multispectral Consumer-grade 

P-value 
c 

R2
adj 

d RMSE e P-value R2
adj RMSE P-value R2

adj RMSE P-value R2
adj RMSE 

Field 92 (maize following soybean) 

RGB-based indices 

ExG 0.003 0.27 0.4 0.0003 0.39 0.4 0.03 0.14 0.5 0.0003 0.39 0.4 

PPRB 0.002 0.30 0.4 0.001 0.32 0.4 0.002 0.29 0.4 0.001 0.32 0.4 

VARI <0.0001 0.54 0.3 <0.0001 0.54 0.3 <0.0001 0.51 0.3 <0.0001 0.50 0.4 

VDVI 0.0003 0.40 0.4 0.0003 0.39 0.4 0.0004 0.37 0.4 0.0004 0.38 0.4 

VIg <0.0001 0.47 0.4 <0.0001 0.47 0.4 0.0001 0.44 0.4 0.0001 0.45 0.4 

NIR-based indices 

GNDVI <0.0001 0.88 0.2 <0.0001 0.69 0.3 <0.0001 0.90 0.2 <0.0001 0.68 0.3 

MSAVI <0.0001 0.67 0.3 0.04 0.12 0.5 <0.0001 0.74 0.3 0.06 0.10 0.5 

NDVI <0.0001 0.73 0.3 0.02 0.17 0.5 <0.0001 0.72 0.3 0.06 0.10 0.5 

OSAVI <0.0001 0.69 0.3 0.02 0.17 0.5 <0.0001 0.74 0.3 0.06 0.10 0.5 

SAVI <0.0001 0.66 0.3 0.02 0.17 0.5 <0.0001 0.71 0.3 0.07 0.09 0.5 

Field 94 (continuous maize) 

RGB-based indices 

ExG 0.60 ns 0.4 0.37 ns 0.4 0.24 ns 0.4 0.31 ns 0.4 

PPRB 0.21 ns 0.4 0.16 ns 0.4 0.33 ns 0.4 0.32 ns 0.4 

VARI 0.04 0.09 0.4 0.01 0.15 0.4 0.09 0.06 0.4 0.02 0.12 0.4 

VDVI 0.11 ns 0.4 0.05 0.08 0.4 0.20 ns 0.4 0.15 ns 0.4 

VIg 0.07 0.07 0.4 0.01 0.15 0.4 0.14 ns 0.4 0.05 0.09 0.4 

NIR-based indices 

GNDVI <0.0001 0.71 0.2 0.002 0.22 0.4 <0.0001 0.63 0.3 0.004 0.20 0.4 

MSAVI 0.02 0.13 0.4 0.65 ns 0.4 0.01 0.16 0.4 0.001 0.24 0.4 

NDVI 0.001 0.28 0.4 0.85 ns 0.4 0.001 0.25 0.4 0.002 0.24 0.4 

OSAVI 0.01 0.17 0.4 0.88 ns 0.4 0.01 0.18 0.4 0.002 0.23 0.4 

SAVI 0.02 0.12 0.4 0.89 ns 0.4 0.01 0.14 0.4 0.002 0.23 0.4 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
c P-values bolded indicate that the relationship between the predictor variable (vegetative index) and yield is 

statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference in Mg ha-1 between the observed yield values and the 

predicted by the model.   
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Table 3.13. Regression analysis results between grain yield (Mg ha-1) and five RGB-based vegetative indices (VI), 
non-masked and masked, at reproductive growth stage R5 for two field trials at the Agronomy Center for Research 

and Education near West Lafayette in west-central Indiana in 2019. 

VI a 

Non-masked VI Masked VI b 

Multispectral Consumer grade Multispectral Consumer grade 

P-value c R2
adj 

d RMSE e P-value R2
adj RMSE P-value R2

adj RMSE P-value R2
adj RMSE 

Field 92 (maize following soybean) 

ExG 0.009 0.21 0.4 0.01 0.24 0.4 0.06 0.10 0.5 0.005 0.25 0.4 

PPRB 0.001 0.35 0.4 0.002 0.30 0.4 0.002 0.30 0.4 0.01 0.25 0.4 

VARI <0.0001 0.57 0.3 0.001 0.35 0.4 <0.0001 0.53 0.3 0.01 0.24 0.4 

VDVI 0.0001 0.46 0.4 0.001 0.34 0.4 0.0002 0.41 0.4 0.004 0.26 0.4 

VIg <0.0001 0.52 0.3 0.001 0.36 0.4 <0.0001 0.48 0.4 0.005 0.25 0.4 

Field 94 (continuous maize) 

ExG 0.73 ns 0.4 0.02 0.12 0.4 0.31 ns 0.4 0.02 0.12 0.4 

PPRB 0.16 ns 0.4 0.02 0.13 0.4 0.45 ns 0.4 0.04 0.09 0.4 

VARI 0.02 0.12 0.4 0.0001 0.36 0.4 0.11 ns 0.4 0.0002 0.33 0.4 

VDVI 0.06 0.07 0.4 0.003 0.21 0.4 0.24 ns 0.4 0.01 0.16 0.4 

VIg 0.03 0.10 0.4 0.0002 0.33 0.4 0.15 ns 0.4 0.0004 0.30 0.4 
a Vegetative index (VI) evaluated: ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green. 
b Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
c P-values bolded indicate that the relationship between the predictor variable (vegetative index) and yield is 

statistically significant (P-value ≤ 0.10). 
d R2

adj (Adjusted R-square) = proportion of the variation in yield (dependent variable) explained by the predictor 

variable (vegetative index). Rating of vegetative index as predictor of yield: Poor = R2
adj ≤ 0.25, Fair = 0.26 - 0.50, 

Good = 0.51 - 0.75, and Excellent= R2
adj > 0.75. 

e RMSE (Root mean square error) = average difference in Mg ha-1 between the observed yield values and the 

predicted by the model.  
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Figure 3.12. Soil map of Fields 92, 93 and 94, in which bare soil shows natural spatial variability related to different 

types of soils. Soil color in Field 92 looks more uniform than in Field 94, since most area of Field 92 correspond to 

Chalmers soil series (Cm). In Field 94, the predominant two soil series, Chalmers (Cm) and Raub-Brenton (RcA), 

show contrast in soil color. Data obtained from: WebSoilSurvey. 
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Table 3.14. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 

SxN interaction on five RGB-based and five NIR-based vegetative indices (VI), non-masked and masked, at 

vegetative growth stage V5-V6 for two field trials at the Agronomy Center for Research and Education near West 

Lafayette in west-central Indiana in 2019.  

VI a 

P-value b 

Non-masked VI Masked VI c 

Multispectral Consumer grade Multispectral Consumer grade 

S N SxN S N SxN S N SxN S N SxN 

Field 92 (maize following soybean | growth stage V6) 

RGB-based indices 

ExG 0.0002 1.00 0.46 0.001 0.87 0.51 0.0003 0.69 0.40 0.0004 0.80 0.70 

PPRB 0.0001 0.64 0.36 0.004 0.58 0.25 0.0001 0.62 0.34 0.004 0.60 0.45 

VARI 0.0004 0.54 0.54 0.001 0.56 0.85 0.001 0.73 0.20 0.0004 0.57 0.65 

VDVI 0.0002 0.77 0.63 0.001 0.92 0.78 0.001 0.91 0.22 0.0003 0.99 0.64 

VIg 0.0004 0.55 0.53 0.001 0.47 0.89 0.001 0.82 0.16 0.0003 0.62 0.61 

NIR-based indices 

GNDVI 0.0003 0.33 0.73 0.0002 0.49 0.71 0.001 0.53 0.51 0.0004 0.53 0.64 

MSAVI 0.0002 0.60 0.70 0.78 0.96 0.36 0.0004 0.85 0.50 0.03 0.15 0.83 

NDVI 0.0003 0.32 0.66 0.49 0.86 0.35 0.001 0.58 0.36 0.03 0.22 0.79 

OSAVI 0.0002 0.50 0.76 0.50 0.87 0.40 0.0005 0.77 0.50 0.03 0.15 0.88 

SAVI 0.0002 0.61 0.73 0.53 0.95 0.35 0.0004 0.89 0.44 0.03 0.14 0.77 

Field 94 (continuous maize | growth stage V5) 

RGB-based indices 

ExG 0.0001 0.12 0.96 <0.0001 0.23 0.99 <0.0001 0.31 0.13 <0.0001 0.02 0.36 

PPRB <0.0001 0.03 0.95 0.0003 0.01 0.86 <0.0001 0.19 0.01 0.0002 0.001 0.37 

VARI <0.0001 0.63 0.94 <0.0001 0.20 0.97 0.001 0.002 0.30 <0.0001 0.31 0.76 

VDVI <0.0001 0.75 0.98 <0.0001 0.41 1.00 0.0001 0.003 0.17 <0.0001 0.36 0.50 

VIg <0.0001 0.55 0.96 <0.0001 0.26 0.98 0.0004 0.002 0.26 <0.0001 0.40 0.84 

NIR-based indices 

GNDVI 0.0001 0.20 0.62 0.03 0.06 0.95 0.003 0.03 0.86 0.003 0.13 0.82 

MSAVI 0.001 0.03 0.66 0.68 0.01 0.79 0.0001 0.55 0.91 0.32 0.30 0.11 

NDVI <0.0001 0.39 0.74 0.76 0.01 0.81 0.002 0.002 0.89 0.32 0.33 0.12 

OSAVI 0.0001 0.18 0.71 0.77 0.01 0.78 0.0002 0.04 0.94 0.34 0.33 0.13 

SAVI 0.0006 0.04 0.67 0.76 0.01 0.81 0.0002 0.50 0.88 0.32 0.39 0.10 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b P-values bolded indicate a significant effect on the VI under analysis (P-value ≤ 0.10). 
c Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
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GROWTH STAGE V6 – FIELD 92 
Original VI (no masked) Masked VI 

Multispectral Consumer grade Multispectral Consumer grade 

    

    

    

    

    
Figure 3.13. Effect of seeding rate on five non-masked and masked RGB vegetative indices derived from 

multispectral and consumer grade sensors at growth stage V6 in Field 92 at the Agronomy Center for Research and 

Education near West Lafayette, Indiana in west-central Indiana in 2019. 
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GROWTH STAGE V6 – FIELD 92 
Original VI (no masked) Masked VI 

Multispectral Consumer grade Multispectral Consumer grade 

    

    

    

    

    

Figure 3.14. Effect of seeding rate in five non-masked and masked NIR vegetative indices (VI) derived from 

multispectral and consumer grade sensors at growth stage V6 in Field 92 at the Agronomy Center for Research and 

Education near West Lafayette, Indiana in west-central Indiana in 2019. 
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GROWTH STAGE V5 – FIELD 94 
Original VI (no masked) Masked VI 

Multispectral Consumer grade Multispectral Consumer grade 

    

    

    

    

    

Figure 3.15. Effect of seeding rate in five non-masked and masked RGB vegetative indices (VI) derived from 

multispectral and consumer grade sensors at growth stage V5 in Field 94 at the Agronomy Center for Research and 

Education near West Lafayette, Indiana in west-central Indiana in 2019. 
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GROWTH STAGE V5 – FIELD 94 
Original VI (no masked) Masked VI 

Multispectral Consumer grade Multispectral Consumer grade 

    

    

    

    

    

Figure 3.16. Effect of seeding rate in five non-masked and masked NIR vegetative indices (VI) derived from 

multispectral and consumer grade sensors at growth stage V5 in Field 94 at the Agronomy Center for Research and 

Education near West Lafayette, Indiana in west-central Indiana in 2019. 
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Table 3.15. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 

SxN interaction on five RGB-based and five NIR-based vegetative indices (VI), non-masked and masked, at 

vegetative growth stage V10-V11 for two field trials at the Agronomy Center for Research and Education near West 

Lafayette in west-central Indiana in 2019. 

VI a 

P-value b 

Original VI (no masked) Masked VI c 

Multispectral Consumer grade Multispectral Consumer grade 

S N SxN S N SxN S N SxN S N SxN 

Field 92 (maize following soybean | growth stage V11) 

RGB-based indices 

ExG 0.008 0.19 0.72 0.0001 0.23 0.87 0.02 0.21 0.17 <0.0001 0.01 0.48 

PPRB 0.0001 0.45 0.25 <0.0001 0.12 0.29 0.0001 0.02 0.40 <0.0001 0.01 0.60 

VARI 0.0001 0.81 0.66 0.0001 0.16 0.06 0.0002 0.09 0.21 <0.0001 0.23 0.11 

VDVI 0.0001 0.59 0.75 <0.0001 0.24 0.15 0.0001 0.003 0.19 <0.0001 0.02 0.26 

VIg 0.0001 0.70 0.74 0.0001 0.20 0.06 0.0001 0.02 0.10 <0.0001 0.13 0.17 

NIR-based indices 

GNDVI 0.001 0.16 0.44 0.0004 0.24 0.57 0.0004 0.13 0.50 0.001 0.35 0.59 

MSAVI 0.001 0.25 0.13 0.01 0.49 0.95 0.0004 0.19 0.14 0.0005 0.02 0.53 

NDVI 0.0003 0.57 0.45 0.01 0.61 0.93 0.0001 0.33 0.40 0.0004 0.01 0.46 

OSAVI 0.0008 0.35 0.23 0.01 0.55 0.92 0.0003 0.17 0.13 0.0004 0.005 0.71 

SAVI 0.002 0.23 0.14 0.01 0.58 0.94 0.001 0.19 0.09 0.0004 0.003 0.54 

Field 94 (continuous maize| growth stage V10) 

RGB-based indices 

ExG 0.002 0.02 0.55 <0.0001 0.31 0.09 0.05 0.02 0.74 <0.0001 0.66 0.10 

PPRB <0.0001 0.17 0.78 <0.0001 0.33 0.17 <0.0001 0.44 0.28 <0.0001 0.63 0.18 

VARI 0.0001 0.54 0.79 <0.0001 0.05 0.10 0.0002 0.46 0.49 0.0001 0.05 0.07 

VDVI <0.0001 0.66 0.84 <0.0001 0.17 0.11 <0.0001 0.79 0.43 <0.0001 0.43 0.10 

VIg 0.0001 0.63 0.83 <0.0001 0.05 0.07 0.0001 0.59 0.47 <0.0001 0.12 0.07 

NIR-based indices 

GNDVI 0.0001 0.06 0.58 <0.0001 0.08 0.64 <0.0001 0.07 0.29 <0.0001 0.19 0.32 

MSAVI <0.0001 0.45 0.86 0.17 0.002 0.15 0.0002 0.24 0.35 0.01 0.003 0.76 

NDVI 0.0002 0.21 0.77 0.15 0.002 0.13 0.0001 0.26 0.47 0.01 0.01 0.87 

OSAVI <0.0001 0.34 0.88 0.17 0.002 0.13 0.0002 0.26 0.37 0.01 0.01 0.84 

SAVI 0.0001 0.38 0.85 0.16 0.002 0.12 0.0003 0.28 0.36 0.01 0.01 0.69 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b P-values bolded indicate a significant effect on the VI under analysis (P-value ≤ 0.10). 
c Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
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Table 3.16. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 

SxN interaction on five RGB-based and five NIR-based vegetative indices (VI), non-masked and masked, at 

reproductive growth stage R3 for two field trials at the Agronomy Center for Research and Education near West 

Lafayette in west-central Indiana in 2019. 

VI a 

P-value b 

Non-masked VI Masked VI c 

Multispectral Consumer grade Multispectral Consumer grade 

S N SxN S N SxN S N SxN S N SxN 

Field 92 (maize following soybean) 

RGB-based indices 

ExG 0.002 0.0001 0.12 0.0001 0.0001 0.33 0.005 <0.0001 0.05 0.0001 0.0003 0.34 

PPRB <0.0001 0.0004 0.40 <0.0001 0.01 0.20 <0.0001 0.001 0.63 <0.0001 0.0001 0.24 

VARI 0.0003 0.14 0.98 0.001 0.06 0.05 0.0003 0.08 0.83 0.0002 0.84 0.01 

VDVI <0.0001 0.0004 0.44 <0.0001 0.27 0.15 0.0001 0.001 0.62 <0.0001 0.003 0.33 

VIg 0.0001 0.003 0.75 0.0003 0.74 0.09 0.0001 0.002 0.64 0.0001 0.28 0.03 

NIR-based indices 

GNDVI 0.003 0.0001 0.17 <0.0001 0.01 0.63 0.001 0.0001 0.06 0.0001 0.004 0.65 

MSAVI 0.0007 0.49 0.69 0.001 0.0003 0.19 0.0004 0.84 0.73 0.03 0.0001 0.50 

NDVI <0.0001 0.003 0.49 0.0004 0.001 0.27 <0.0001 0.01 0.22 0.03 0.0002 0.56 

OSAVI 0.0006 0.76 0.73 0.001 0.001 0.32 0.0004 0.67 0.83 0.03 0.0001 0.53 

SAVI 0.0009 0.30 0.66 0.0004 0.001 0.25 0.001 0.96 0.79 0.02 0.0002 0.60 

Field 94 (continuous maize) 

RGB-based indices 

ExG <0.0001 <0.0001 0.004 <0.0001 <0.0001 0.02 0.0001 <0.0001 0.001 <0.0001 <0.0001 0.04 

PPRB <0.0001 <0.0001 0.01 <0.0001 0.0003 0.13 <0.0001 <0.0001 0.01 <0.0001 <0.0001 0.01 

VARI <0.0001 0.60 0.91 <0.0001 0.08 0.39 <0.0001 0.01 0.90 <0.0001 0.40 0.59 

VDVI <0.0001 0.0001 0.06 <0.0001 0.52 0.81 <0.0001 <0.0001 0.04 <0.0001 0.0004 0.13 

VIg <0.0001 0.03 0.51 <0.0001 0.30 0.69 <0.0001 0.0001 0.25 <0.0001 0.58 0.68 

NIR-based indices 

GNDVI 0.02 <0.0001 0.02 <0.0001 0.0004 0.84 0.04 <0.0001 0.01 <0.0001 0.0001 0.69 

MSAVI 0.002 0.01 0.55 0.0003 <0.0001 0.004 0.001 0.003 0.44 0.004 <0.0001 0.01 

NDVI 0.0004 0.0004 0.67 0.0002 <0.0001 0.01 0.0001 0.001 0.37 0.003 <0.0001 0.02 

OSAVI 0.001 0.01 0.61 0.0002 <0.0001 0.01 0.001 0.003 0.47 0.004 <0.0001 0.02 

SAVI 0.003 0.02 0.54 0.0002 <0.0001 0.01 0.001 0.005 0.43 0.004 <0.0001 0.01 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b P-values bolded indicate a significant effect on the VI under analysis (P-value ≤ 0.10). 
c Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
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Table 3.17. Analysis of variance P-values for the effects of seeding rate (“S”), nitrogen fertilizer rate (“N”), and the 

SxN interaction on five RGB-based vegetative indices (VI), non-masked and masked, at reproductive growth stage 

R5 for two field trials at the Agronomy Center for Research and Education near West Lafayette in west-central 

Indiana in 2019.  

VI a 

P-value b 

Original VI (no masked) Masked VI c 

Multispectral Consumer grade Multispectral Consumer grade 

S N SxN S N SxN S N SxN S N SxN 

Field 92 (maize following soybean) 

ExG 0.0002 <0.0001 0.24 0.0004 0.001 0.44 0.0003 <0.0001 0.34 0.0004 0.005 0.54 

PPRB 0.0001 0.0003 0.47 0.0001 0.002 0.22 0.0001 0.0002 0.50 0.0001 0.0002 0.31 

VARI 0.001 0.07 0.25 0.005 0.35 0.69 0.002 0.03 0.29 0.004 0.84 0.80 

VDVI 0.0003 0.004 0.32 0.0002 0.08 0.43 0.0003 0.001 0.37 0.0002 0.01 0.52 

VIg 0.0008 0.02 0.26 0.002 0.70 0.51 0.001 0.01 0.29 0.001 0.89 0.70 

Field 94 (continuous maize) 

ExG <0.0001 <0.0001 0.01 0.0003 0.001 0.29 <0.0001 <0.0001 0.01 0.0002 0.003 0.37 

PPRB <0.0001 <0.0001 0.08 0.0001 0.001 0.34 <0.0001 <0.0001 0.01 <0.0001 <0.0001 0.04 

VARI 0.0001 0.21 0.35 0.02 0.01 0.45 0.0001 0.22 0.36 0.02 0.02 0.57 

VDVI <0.0001 0.04 0.33 0.001 0.04 0.71 <0.0001 0.0004 0.14 0.0003 0.01 0.57 

VIg 0.0001 0.19 0.35 0.01 0.01 0.48 <0.0001 0.04 0.28 0.01 0.03 0.59 
a Vegetative index (VI) evaluated: RGB VI (ExG=Excess Green Index, PPBR=Plant Pigment Ratio, VARI= Visible 

Atmospherically Resistant Index, VDVI=Visible-band Difference Vegetation Index, VIg=Vegetation Index Green) 

and NIR VI (GNDVI=Green Normalized Difference Vegetation Index, MSAVI=Modified Soil-Adjusted Vegetation 

Index, NDVI=Normalized Difference Vegetation Index, OSAVI=Optimized Soil-Adjusted Vegetation Index, 

SAVI=Soil-Adjusted Vegetation Index). 
b P-values bolded indicate a significant effect on the VI under analysis (P-value ≤ 0.10). 
c Masked VI indicates that background pixels (soil and shadow mostly) were masked from VI map prior to statistical 

analysis. 
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