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ABSTRACT

Parsa, Maryam Ph.D., Purdue University, December 2020. Bayesian-based Multi-
Objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neuromor-
phic System Designs. Major Professor: Professor Kaushik Roy.

Neuromorphic systems promise a novel alternative to the standard von-Neumann

architectures that are computationally expensive for analyzing big data, and are not

efficient for learning and inference. This novel generation of computing aims at “mim-

icking” the human brain based on deploying neural networks on event-driven hard-

ware architectures. A key bottleneck in designing such brain-inspired architectures is

the complexity of co-optimizing the algorithm’s speed and accuracy along with the

hardware’s performance and energy efficiency. This complexity stems from numerous

intrinsic hyperparameters in both software and hardware that need to be optimized

for an optimum design.

In this work, we present a versatile hierarchical pseudo agent-based multi-objective

hyperparameter optimization approach for automatically tuning the hyperparameters

of several training algorithms (such as traditional artificial neural networks (ANN),

and evolutionary-based, binary, back-propagation-based, and conversion-based tech-

niques in spiking neural networks (SNNs)) on digital and mixed-signal neural accel-

erators. By utilizing the proposed hyperparameter optimization approach we achieve

improved performance over the previous state-of-the-art on those training algorithms

and close some of the performance gaps that exist between SNNs and standard deep

learning architectures.

We demonstrate > 2% improvement in accuracy and more than 5X reduction

in the training/inference time for a back-propagation-based SNN algorithm on the

dynamic vision sensor (DVS) gesture dataset. In the case of ANN-SNN conversion-
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based techniques, we demonstrate 30% reduction in time-steps while surpassing the

accuracy of state-of-the-art networks on an image classification dataset (CIFAR10)

on a simpler and shallower architecture. Further, our analysis shows that in some

cases even a seemingly minor change in hyperparameters may change the accuracy

of these networks by 5-6X. From the application perspective, we show that the opti-

mum set of hyperparameters might drastically improve the performance (52% to 71%

for Pole-Balance control application). In addition, we demonstrate resiliency of dif-

ferent input/output encoding, training neural network, or the underlying accelerator

modules in a neuromorphic system to the changes of the hyperparameters.
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1. INTRODUCTION

Advances in computing engines and graphic processing units (GPUs) as well as

massively produced data from smart devices, social media, and internet, create an

immense opportunity for machine learning and in particular deep neural networks

(DNN) to solve tasks such as recognition and classification. DNNs are computa-

tionally expensive, and require substantial resources. Therefore, their computation

is either carried out in the cloud, or in a neuromorphic computing system through

domain-specific energy-efficient accelerators built with CMOS [1–4], or speculatively

on resistive crossbars [5–7] and spintronics [8] based technologies to boost the perfor-

mance and speed of DNNs.

Spiking neuromorphic system is an alternative computing platform that takes

direct inspiration from biology in how information is processed. These biologically-

inspired computing platforms not only offer tremendous energy efficiency for com-

puting in resource-constrained environments such as mobile and edge devices, but

also extend the ability to solve challenging machine learning problems due to their

massive connectivity of synthetic neurons and synapses [9].

The in-memory computing capability of neuromorphic systems proposes a promis-

ing alternative or complement to von Neumann architectures that suffer from the

low bandwidth between CPU and memory, also known as the von Neumann bot-

tleneck [10]. In addition, the brain-like structure of spiking neuromorphic systems

is suitable for on-line, real-time learning for certain tasks such as smart healthcare

diagnosis on edge devices, special purpose applications on drones, and robotics.

Designing a high-performance neuromorphic computing system is reliant on not

only maximizing accuracy, and speed of training or inference of the neural network,

but also minimizing energy and area requirements of the underlying hardware. There-

fore, the algorithm-hardware co-design is an indispensable step toward empowering
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high-performance neuromorphic computing. The optimum design for a neuromorphic

system (non-spiking or spiking) is highly dependent on the selection of the inherent

hyperparameters (HPs) that belong to the algorithm, underlying hardware, the appli-

cation, and in the case of spiking neuromorphic systems, the input/output encoding

schemes.

In the deep learning community, for traditional artificial neural networks (ANNs),

hyperparameter and network architecture decisions are often made by choosing an

“off-the-shelf” network architecture and then relying on manual tuning (often based

on the user’s intuition) to customize the model’s hyperparameters for a particular

application. With ANNs, the community has had decades to build up “intuition”

on how to make these decisions, though even that community often relies on opti-

mization approaches to help make those decisions on non-standard problems [11].

However, in a non-spiking neuromorphic system, optimizing the ANN performance

without considering the strong correlation between its HPs and the corresponding

hardware specific parameters results in a sub-optimal and inefficient hardware archi-

tecture. For an ANN, the HPs include, but are not limited to, the number of hidden

layers, kernel sizes, the choice of optimizer and non-linearity function. In addition,

examples of hardware specific HPs are memory bandwidth, and pipelining in CMOS

technologies [12], and the number of bits, the number of crossbars and the crossbar

sizes in memristive crossbar accelerators [7].

In the spiking domain, the input/output information is received and generated

in the form of spikes over time. Additionally, network dynamics include a notion of

time in how the information is processed, which is often in the form of delays on

the synapses or axons. Due to these differences with ANNs, spiking neural networks

(SNNs) require adaptations to existing training algorithms or entirely new training

approaches in order to train the networks to effectively perform new tasks. Liquid

state machines [13], evolutionary-based algorithms [14], backpropagation-based [15,

16] and ANN-SNN conversion-based techniques [17, 18] are among the commonly
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used training algorithms for SNNs. Similar to ANNs, the network architecture and

hyperparameters of the model for SNNs must be defined before training begins.

For SNNs, a similar approach to determine HPs and network architectures is often

taken. That is, the same “off-the-shelf” hyperparameters and network architectures

for ANNs are chosen and then manually tuned. Unlike ANNs however, there is limited

“community intuition” to help guide the manual tuning of these parameters. Addi-

tionally, as SNNs have fundamentally different computational characteristics than

ANNs, there is no guarantee that HPs that behave well on ANNs will also behave

well on SNNs. In fact, SNNs often fail to achieve the same level of accuracy as ANNs

on tasks such as image classification, but it is not clear whether that difference in

performance is due to the computational characteristics of SNNs or the algorithms

that are training them, or if it is due to the lack of customization of hyperparameters

and network architectures for SNNs.

Selection of HPs is critical for the design of accurate neuromorphic systems; how-

ever, there are often other considerations, such as optimizing speed of processing or

energy efficiency, when utilizing custom hardware. In spiking neuromorphic comput-

ing systems, HPs and neural architecture decisions can have a significant impact on

the network latency–the time required for processing of a single input spike across

all the layers. A larger latency leads to an increased inference time, and in turn,

compromises the energy efficiency of SNN architectures. Therefore, it is often neces-

sary to take these factors into account when optimizing the HPs for the best network

accuracy, which requires solving a multi-objective optimization problem.

In this work we propose a novel optimization framework built upon agent-based

modeling and hierarchical Bayesian optimization techniques to obtain the optimum

set of HPs for any neuromorphic system design. This generic framework is not only

suitable for both non-spiking or spiking neural networks, but also handles different

types of hardware (CMOS [19–21] or beyond-CMOS [7]). Bayesian optimization is a

powerful tool for finding the optimal point of objective functions that are unknown

and expensive to evaluate [22]. However, for problems with more than one objective
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function Bayesian-only techniques are mathematically complex, and suffer from high

dimensionality limitations in parameter-heavy models [23]. Other approaches such as

Neural Architecture Search (NAS, [24]) also require massive computational resources.

These factors were the driving forces to search for alternative algorithms to find the

optimal set of hyperparameters.

Our proposed approach, Hierarchical Pseudo Agent-based Bayesian Optimization

(Hierarchical-PABO [25–29]), is built upon using a supervisor agent correlating the

results of isolated Bayesian estimations for each of the objective functions. The agent

creates an extra set of Bayesian estimator focusing only on finding the Pareto frontier.

The hierarchy of Bayesian optimizers enables predicting the Pareto frontier for com-

plex problems regardless of the number of objective functions. The Pareto frontier

is a set that consists of solutions in which no other is superior in optimizing objec-

tive functions (i.e. performance matrices such as maximizing the neural network’s

accuracy and speed of training/inference as well as minimizing the energy and area

requirements of the underlying hardware). In other words, each member of the Pareto

set is not dominated by other members of the set, where the dominance is defined as:

The vector ~a dominates vector ~b notated as ~a � ~b or ~b ≺ ~a, iff ∀i; fi(a) ≤ fi(b) where

fi is the i-th objective function [30].

Applications

Devices

Mixed-SignalDigital

Flower17, MNIST
Fashion-MNIST

CIFAR-10
CIFAR-100

IRIS
Radio DVS Gesture Pole-balance RoboNav

Classification Control

CNN
(Traditional)

EONS
(Evolutionary)

Whetstone
(Binary)

Slayer
(Back-prop)

Hybrid
(Conversion)

Software core (Training NN + Hierarchical-PABO for HPO)

CMOS-based Memristive 
Crossbars

Memristive 
Cells

Fig. 1.1.: An overview of the Hierarchical-PABO framework
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Figure 1.1 demonstrates an overview of the Hierarchical-PABO framework for a

multi-objective optimization problem. The software core trains a neural network and

optimizes the HPs using Hierarchical-PABO. We validated the approach on traditional

convolutional neural network (CNN) on AlexNet [31] and VGG architectures [32],

EONS [14] as an evolutionary-based spiking training algorithm, WHETSTONE [16]

as a binary network approach, SLAYER [15] which is a backpropagation-based tech-

nique, and HYBRID [17] as a modified ANN-SNN conversion approach. We chose

three different underlying hardware, digital (CMOS-based DANNA2 [19]), and mixed

signal (memristive crossbar, PUMA [7], and memristive cells, mrDANNA [33]). We

also considered several benchmarking applications such as image classification tasks

(Flower17 [34], MNIST [35], Fashion-MNIST [36], CIFAR10 [37], CIFAR100 [37],

IRIS [38], satellite radio signal [39], and DVS Gesture dataset [40]) as well as control

tasks (canonical pole balancing [41], and autonomous robotic navigation [42]).

We demonstrate that by utilizing Hierarchical-PABO for neuromorphic computing

system designs (ANN-based and SNN-based) we automatically discover optimum hy-

perparameters that outperform the network accuracy of the previous state-of-the-art

results for all algorithms shown in Figure 1.1. Moreover, we show how this hyper-

parameter optimization (HPO) approach can include additional objectives beyond

accuracy (e.g., minimizing training/inference time, energy and area requirements of

the underlying hardware) and demonstrate that Hierarchical-PABO can find hyper-

parameters that produce models that simultaneously optimize several objectives. For

example, we observe > 2% improvement in accuracy and more than 5× reduction

in the training/inference time for the SLAYER [15] algorithm on the DVS Gesture

dataset. In addition, in the case of the HYBRID [17] technique, we demonstrate 30%

reduction in time-steps while surpassing the accuracy of state-of-the-art networks on

CIFAR10 on simpler VGG13 architecture, which we would expect to be more en-

ergy efficient. Our analysis further clarifies the significance of the present work by

highlighting cases where even a seemingly minor change in hyperparameters can dras-

tically change the performance of the network (by 5−6×). The speed and accuracy of
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the framework enables designers to perform sensitivity analyses on hyperparameters

to determine the resiliency of the system to the changes of the hyperparameters.

The salient features of our work are summarized below:

• In [25], we introduced PABO, which was the first step toward designing the Hi-

erarchical PABO. In the case of PABO, there is no hierarchy of Bayesian estima-

tors, rather the supervisor agent decides for the search direction in favor of the

Pareto region, without any Bayesian estimator. By turning off the extra set of

Bayesian estimator that is used to predict the Pareto frontier, Hierarchical-PABO

reduces to PABO. We tested PABO on both AlexNet and VGG19 architectures on

a memristive crossbar accelerator (PUMA [7]). Using PABO, we estimated sets of

hyperparameters that belong to the Pareto region of a multi-objective optimiza-

tion problem, where the objectives were maximizing the neural network’s accuracy

and minimizing the energy consumption of the underlying hardware. Compared to

grid search, random search, and evolutionary-based hyperparameter optimization

approaches (NSGA-II [43]), PABO obtains superior performance both in terms of

accuracy and computational time (predicting the Pareto region at least 100x faster

compared to the NSGA-II).

• Our work [26] is, to the best of our knowledge, the first in the literature that a hy-

perparameter optimization technique for spiking neuromorphic computing system

was proposed and the effects of different types of hyperparameters on the overall

performance of the system were analyzed. We not only discovered an optimum set

of hyperparameters to maximize accuracy of an SNN, but also performed sensitiv-

ity analysis on spiking neuromorphic system hyperparameters, and discussed the

strategic role of some sets of hyperparameters on the system’s final performance. In

addition, we demonstrated that hyperparameters of a resilient training framework

for spiking neuromorphic systems such as EONS [14] have the least impact on the fi-

nal performance of the system compared to the input encoding or hardware-specific

hyperparameters.
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• In [27], we showed that an optimum set of hyperparameters drastically increases

the performance of Whetstone [16] as a binary neural network approach that can

be deployed to neuromorphic hardware. We also observed that the best hyper-

parameters found for different datasets differ across the datasets, indicating the

importance of specifically optimizing hyperparameters for each new problem when

converting to binary communication. In [44], Whetstone is deployed on SpiN-

Naker [45], with slight drop in accuracy due to issues with input/output encoding.

Here, we optimized the network using Whetstone, but we do not map the resulting

networks to a neuromorphic hardware implementation, such as SpiNNaker [45] or

Loihi [20]. As observed in [44], several other hyperparameters such as input/output

encoding, different network topologies and training parameters will have an effect

on this mapping performance. In the future, we plan to include how the network

performs on real neuromorphic hardware as part of our training objectives in the

hyperparameter and network architecture optimization process.

• In [28], we introduced Hierarchical-PABO as a novel approach that, with its sim-

ple yet effective underlying mathematics, is able to predict a Pareto frontier of a

multi-objective hyperparameter optimization for both non-spiking and spiking neu-

ral network systems with only few evaluations. We defined sets of hyperparameters

and estimated a Pareto region for three-objective optimization problem (perfor-

mance, energy, and network size). This framework also paves the way to further

analyze and study sensitivity and resiliency of the system due to the changes of

the hyperparameters. The main current limitation of Hierarchical-PABO is scal-

ability and ability to parallelize the approach. The goal of Hierarchical-PABO is

predicting the Pareto region for a search space with reasonable ranges for the hy-

perparameters and with only few evaluations; it is not designed to compete with all

NAS-based approaches that search the entire search space with massive computa-

tional resource requirements. However, improving scalability of Hierarchical-PABO

paves the way for incorporating the technique in different frameworks with multiple

layers of optimization problems and hyperparameters.
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• In [29], we illustrated an approach for Hierarchical-PABO that has been successfully

applied to two distinct SNN training algorithms, SLAYER [15] and HYBRID [17]

with the goal of simultaneously optimizing SNN’s accuracy and latency (the time

required for processing of a single input spike across all the layers). Optimizing

the latter further improves the practical usability of these algorithms. For the

SLAYER [15] algorithm on the DVS Gesture dataset [40], we demonstrated that

this approach achieved state-of-the-art results by increasing the Top-1 accuracy

from 94.13% to 96.2%. In addition, we showed that with a multi-objective hyper-

parameter optimization approach, we are able to reduce network latency (train-

ing/inference times) by 5× while obtaining comparable accuracy.

Using the proposed hierarchical Bayesian optimization, that contains a single-

objective Bayesian approach for hyperparameter optimization of the ANN and an

agent-based multi-objective Bayesian approach for hyperparameter optimization of

the SNN, we optimized and trained networks that outperform the previous state-of-

the-art HYRBID [17] training SNN results on the CIFAR10 and CIFAR100 dataset

with VGG and RESNET architectures in terms of accuracy with more than 40%

reduction in network latency (time steps). We demonstrated that the proposed ap-

proach can discover hyperparameters for simpler architectures that achieve higher

accuracy and lower latency than previously published results. Both the reduction

in architecture size and network latency have significant implications for energy

efficiency of these architectures. For example, we demonstrated the results for CI-

FAR10 on VGG9 with improved accuracy compared to a much deeper and more

energy-consumptive VGG16, and with 30% reduction in inference time.

Through these numerous examples, we also achieve one of the key goals of this

work, which is to help close the gap in performance between ANNs and SNNs in

resource-constrained environments without compromising the practicality of utilizing

SNNs.
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1.1 Contributions

We made the following contributions:

1. A novel optimization framework based on hierarchical Bayesian opti-

mization and agent-based modeling, suitable for both non-spiking and

spiking neuromorphic systems. With simple yet effective underlying mathe-

matics, Hierarchical-PABO estimates the Pareto region for multi-objective hyper-

parameter optimization problems with few evaluations.

2. One of the first techniques in the literature for co-designing software-

hardware that is not limited to the number of objectives to optimize

(network performance, energy consumption, size, speed of inference,

etc.). Based on our knowledge, our proposed technique is one of the first tech-

niques in the literature that simplifies the mathematical complexity of exclusive

Bayesian approaches for multi-objective optimization. We do this by adding a

supervisor agent and performing Bayesian optimization in different levels. This

paves the way to effectively optimize more than two objective functions.

3. Generic framework extendable to various artificial and spiking neural

networks and the underlying digital, analog, or mixed-signal acceler-

ators. We tested our framework using various training techniques on several

classification and control applications with both digital and mixed-signal acceler-

ators as the underlying hardware. We were able to estimate the Pareto frontier

regardless of the number of performance matrices, size of the search space, training

algorithm, type of application or hardware.

4. Superior performance in terms of accuracy and computational speed

in finding the Pareto region compared to the state-of-the-art Genetic

Algorithm (GA) optimization approach (in scenarios where GA-based opti-

mizations were available for comparison, [43]). Please see [25] for details of this

contribution.
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5. Hierarchical-PABO closes the gap in performance between ANNs and

SNNs for resource-constrained environments without compromising the

practicality of utilizing SNNs.
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2. BACKGROUND AND RELATED WORK

In the era of the exigent need to design energy efficient neuromorphic systems for

resource-constrained environments such as mobile edge devices, several approaches

have been proposed in the literature to reduce the massive energy requirement of

these systems. For artificial neural networks (ANNs), these techniques span from

simplifying models, such as pruning and quantization [24,46–48], to designing energy

efficient architectures [49–52], and neural architecture search (NAS) [24]. In spiking

neuromorphic domain, these include different training algorithms such as evolutionary

optimization [14, 53], modified backpropagation techniques [15, 54, 55], binary com-

munication [56], and hybrid approach [17] while deploying them on neuromorphic

hardware such as [57, 58]. In this section, we briefly review the literature on each

of these methods and continue with the added complexity of co-designing algorithm

and hardware for neuromorphic systems. We then present the contribution of our

work (Hierarchical-PABO) and how we fill the existing gap in a generic approach of

co-designing software and hardware in the literature.

To reduce the energy requirement of neural network architectures, there have

been a variety of model simplification techniques proposed by [46], and continued

with [24, 47], and [48]. Each of these techniques focus on simplifying the neural net-

work with different approaches of pruning, quantization, learning the connections,

and leveraging sparsity. Designing energy-efficient architectures are also well-studied

in the literature with flattened Convolutional Neural Network (CNN) [49], factorized

CNN [50], conditional CNN [51,59], and staged-conditional CNN [52]. More recently,

compact structures such as MobileNets [60] and ShuffleNet [61] are also introduced

and are specifically designed for mobile devices. Although both approaches of model

simplification and efficient architecture design demonstrate promising results in re-

ducing the energy requirements of neural networks, they do not necessarily yield to
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the optimum designs for energy efficient accelerators. This is mainly due to the fact

that they only locally search the space. In addition, layers with more parameters do

not necessarily consume more energy [23,62].

Spiking neural networks (SNNs) have great algorithmic promise as an energy-

efficient machine learning technique, but training and learning in SNNs have proved

to be difficult with the existing approaches. A common learning mechanism for

SNNs is synaptic plasticity, such as spike-timing dependent plasticity (STDP) [63,64],

but the utility of these approaches has been relatively limited. Another approach

is evolutionary algorithms [14], which have the advantage that they can design all

aspects of the network (structure and parameters) and are flexible with respect to

applications, but can be slow to train.

Adapting existing backpropagation methods to work with SNNs is a widely used

approach for training SNNs. These include training a traditional artificial neural net-

work and then developing a mapping to an SNN [18, 65–68], adapting the training

procedure to accommodate spiking neurons or binary activations [56], or changing

the training procedure to leverage timing in the SNN [15, 69]. There are several

key issues with these backpropagation-based approaches. First, by utilizing existing

training approaches without much adaptation, it is not clear that SNNs will be able

to establish an advantage over existing approaches. Second, defining the appropri-

ate neural architecture and hyperparameters of these approaches is difficult and can

require a tremendous amount of human effort. Third, to achieve comparable results

with their ANN counterparts, these types of training algorithms require large train-

ing/inference time (time-steps), which negates many of the underlying benefits of

spike-based approaches.

Several stakeholders play a role in designing a high-performance neuromorphic sys-

tem, such as neural network itself (ANN or SNN), underlying hardware (CMOS-based

on Beyond-CMOS), and in the case of spiking neuromorphic system, input/output

encoding modules to encode the real-world data to spikes and vice-versa.
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Different training algorithms, both in the non-spiking and spiking domains, have

several HPs that have to be set and that can potentially significantly affect per-

formance of the algorithm, such as ANN-specific HPs (kernel sizes, optimizer type,

learning rate, etc), crossover and mutation rate for genetic algorithm approaches,

number of neurons in spiking reservoir computing, and back propagation parameters

and network structure in deep SNNs [18,68]. In addition to algorithmic HPs, neuro-

morphic hardware also have HPs that can be set as part of a design process. These

HPs include the number of required input/output neurons (sensors and actuators in

the hardware), the range or resolutions of synaptic or neuronal delays and weights.

Each of these HPs can play a role in the performance and energy requirements of the

neuromorphic computing system. There have also been a variety of approaches pro-

posed for converting data into spikes and some training or learning algorithms rely on

a particular type of encoding to function properly. Rate-based and temporal-based

are two of the most popular approaches for input encoding ( [70]). Other approaches,

including binning, have also been proposed to allow for higher resolution input values

to be encoded over a shorter time period ( [71]). These different encoding approaches

require one or more HPs that have to be defined for the problem. Examples include

the number of bins and spikes per bins for binning-base, and Poisson rate, lateral in-

hibition and homeostasis for temporal-based encoding. HPs for these modules should

not only be optimized for their performances, but also be co-optimized to obtain the

maximum algorithm-hardware performance (at least maximum accuracy, minimum

energy and area requirement, and maximum speed of training/inference). Of course,

there will be other possibilities for performance matrices such as sparsity, resiliency,

and robustness.

We first review different hyperparameter optimization (HPO) techniques that are

proposed in the literature for single objective optimization (neural network accuracy

only) for both non-spiking and spiking domains, and then review the hardware-aware

HPO techniques that is required in the neuromorphic computing platform.
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HPO for neural networks used to be largely governed by rules of thumb [72]. Ex-

amples of these rules and practical guidelines for efficiently training large-scale deep

neural networks are given in [73]. In addition, it is shown that random search outper-

forms grid search and manual search for HPO and has good theoretical guarantees

and empirical evidence [74]. Continuing along this line of research, another approach

is greedy sequential algorithms, which have shown promising results compared to

random search [75].

Bayesian-based approaches have also been used for optimizing the hyperparam-

eters of deep neural networks. It is shown that algorithms based specifically on the

Gaussian process are the most call-efficient for hyperparameter optimization of deep

neural networks [76]. DeepHyper [77] is a Python package that leverages the Bal-

sam workflow and provides an interface for implementation and study of scalable

hyperparameter search methods. In addition, HORD [78] is a deterministic and effi-

cient method for hyperparameter optimization using radial basis function as the error

surrogate in Bayesian-based methods, and its effectiveness is shown on MNIST and

CIFAR-10 datasets.

To achieve higher performance and avoid human driven optimization, significant

effort has been placed on automating architecture selection. A powerful method

for obtaining the best performance ANN architecture designs is Neural Architecture

Search (NAS) [24,79]. The objective of these techniques is to automate architectural

engineering to discover a network design which provides maximum performance [80–

84]. NAS was started by Google Brain [24] to find an optimal neural architecture by

searching for architectural building blocks on a small dataset and then transferring the

block to larger ones. NAS was a starting point for a series of NAS-based approaches

in recent years [85–87]. Reinforcement learning NAS [88] has also been used for HPO

of deep neural networks. This approach suggests architectures with significantly less

trainable parameters, shorter training times, and accuracies matching or surpassing

the state-of-the-art models used on cancer dataset [89]. All of these works were
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proposed to design a neural network with optimum performance, regardless of the

energy requirement of the underlying neural accelerator.

Hardware-aware neural architecture designs can be categorized in three domains

of multi-layer co-optimization [90], hardware-aware NAS [91–95], and Bayesian-based

hyperparameter optimization [12,96,97]. Each one of these approaches have their pros

and cons. While defining an optimum neural architecture with energy-efficient hard-

ware in mind, the multi-layer co-optimization approach cannot easily be extended to

generic platforms. Hardware-aware NAS techniques are time consuming and require

substantial resources, and Bayesian-based methods are not well-suited for parameter-

heavy models [23].

While the above approaches catered to deep neural networks, NAS approaches

have been much less common in the realm of SNNs, where learning algorithms are

still in their infancy. Differential evolution (DE) and self-adaptive differential evo-

lution algorithms (SADE) is proposed by [98] to optimize the parameter space of

synaptic plasticity and membrane adaptivity learning mechanisms in the lobula giant

movement detector (LGMD) neuron that is driven by a dynamic vision sensor (DVS)

camera. A neuro-evolutionary algorithm to optimize the hyperparameters of spiking

neural networks is given at [99] and shown that the model trained using this ap-

proach outperforms all other models. In general; however, HPO and NAS approaches

specifically for SNNs and spiking neuromorphic systems have been largely unexplored.

In Hierarchical-PABO [25–28] we propose a novel hardware-aware approach with

minimum mathematical complexity suitable for both non-spiking and spiking neu-

romorphic computing systems. This framework is based on hierarchical Bayesian

optimization and agent-based modeling. Using a set of Bayesian estimators in differ-

ent levels and correlating them with a supervisor agent, we overcome the drawbacks of

exclusive Bayesian approaches available in the literature. In addition, with the need

to optimize several performance matrices in any neuromorphic computing system, the

number of objective functions that Hierarchical-PABO is optimizing simultaneously

is flexible.
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3. METHODOLOGY

In order to systematically take the human knowledge out of the loop in selecting the

optimum set of hyperparameters for a neuromorphic computing system (and in gen-

eral any artificial intelligence-based platform), we chose Bayesian optimization as the

core of our approach. In this section, we first review the basic mathematics of Bayesian

modeling and Bayesian optimization for single objective optimization (SOO) prob-

lems [22, 26, 27]. We then present PABO (Pseudo Agent-based Bayesian Optimiza-

tion) [25] for multi objective hyperparameter (MOO) problems, and finally we add

a hierarchy to PABO design (Hierarchical-PABO: Hierarchical Pseudo Agent-based

Bayesian Optimization), to improve efficiency and speed of predicting the Pareto

region for MOO [28].

3.1 An Introduction to Bayesian Optimization

Bayesian optimization is a powerful tool for finding the optimum point of objective

functions that are unknown and expensive to evaluate [100]. The problem of finding

a global optimizer for an unknown objective function is formulated in Equation 3.1.

x∗ = argmax
x∈X

f(x) (3.1)

where X is the entire design space, and f is the black-box objective function with-

out simple closed form. As summarized by [22], in a sequential manner, we search

for the best location xn+1 to observe yn+1 point in order to estimate f . After N iter-

ations, the algorithm suggests the best estimation of the black-box function f . This

sequential approach is based on building a prior estimation over possible objective

functions, and then iteratively re-estimating the prior model using the observations
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from updating the Bayesian posterior model. The posterior representations are the

updated knowledge on the objective function we are trying to optimize. We explore

the search space by leveraging the inherent uncertainty of the posterior model and

mathematically introducing a surrogate model, called the acquisition function αn.

The maximum point of this function is the next candidate point to observe (xn+1)

and guides the search direction toward the true representation of the objective func-

tion. The efficiency of Bayesian approach to estimate the global optimizer for the

expensive black-box function with fewer evaluations relies on the ability of Bayesian

technique to learn from prior belief on the problem and direct the observations by

trading off exploration and exploitation of the design space.

In the context of neuromorphic computing, x is the system’s hyperparameters

such as inherent hyperparameters for different input/output encoding schemes, or

population size or optimizer choice for various training techniques. Hardware-specific

hyperparameters are also another choice for parameter x. Function f is the black-box

objective function, such as accuracy of the network, energy or area requirements of

the system, and speed of inference, for stochastic observations of y. A summary of

the Bayesian approach is illustrated in the Figure 3.1. (See [75,100,101] for detailed

tutorials.)

Ground truth 𝑓
Gaussian process mean
Gaussian process st. dv.
Current evaluations
Acquisition function (AF)
Best next point
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!"#

Iteration 2

!"$

Iteration n
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Fig. 3.1.: Summary of single objective Bayesian optimization. Reproduced with
permission from [25]

In Figure 3.1, we are estimating an unknown objective function, ground truth f .

We only have two observations (likelihood model) in iteration one (red dots). We

first build our prior distribution (current belief) based on these observations using
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Gaussian processes. The Gaussian distribution is shown with mean and standard

deviation, solid black line, and highlighted dashed area, respectively. A surrogate

model, acquisition function, is estimated for this posterior distribution, which is shown

as the highlighted green function. The maximum point of the acquisition function

(green dot) is the best next point to observe in the next iteration. As the new points

are added to the observations in different iterations, the standard deviations, and

therefore the uncertainty of estimating the ground truth function, is reduced. Each

observation requires evaluating an unknown, expensive objective function. The ability

of the Bayesian technique in predicting this function (ground truth in Figure 3.1) with

few evaluations, speeds up the process of finding the optimum set of hyperparameters

with minimum computational resources.

For configuring the Gaussian process, the covariance function is a positive definite

kernel that specifies the similarity between points of observations. There are different

methods to estimate this kernel function based on the smoothness, noise level and

periodicity of the ground truth. In our experimental setup, we selected the Matern

kernel function with smoothness value of 1.5. This particular kernel is selected due to

the intrinsic stochastic nature, and noise level of our problem. Once we estimate the

posterior distribution based on the likelihood model and the prior distribution, we

build an acquisition function to guide the search direction. This acquisition function

defines whether to search the space where the uncertainty is high (explore) or sample

at locations where the model predicts high objectives (exploit). There are different

methods to calculate this surrogate model such as improved-based, optimistic, and

information-based policies [100, 102–108]. The choice of the method to use directly

impacts the speed of convergence to the ground truth in Bayesian search. We chose

“expected improvement” approach for the acquisition function. This selection does

not impact the effectiveness or performance of our approach; rather, it only impacts

the speed of searching the hyperparameter space and avoid trapping in local minima.

(More details in selecting kernel or acquisition function can be found in [22]).
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3.2 PABO: Pseudo Agent-based Bayesian Optimization

Figure 3.2a summarizes the PABO search process. The framework starts with

selecting observations (at least two) from the design space. The design space is a set

containing all possible HP combinations. The observations are the performance ma-

trices values for a set of HP. These observations are then passed to separate Bayesian

estimators for each performance metric. In this figure, for example, performance of

the neural network (in terms of accuracy), energy usage, and size requirements of the

underlying neural accelerator are the objective functions and performance matrices

we would like to optimize. GP stands for Gaussian Process, and AF stands for Acqui-

sition Function. For each objective, a Gaussian distribution is estimated followed by

a surrogate model (acquisition function, AF). In this step, for each objective function,

the optimum point of AF is the best HP to observe in the next iteration regardless

of the search direction for other objectives. The process is then followed by a super-

visor agent that evaluates the impacts of output HPs on the other posterior models

and decides which HPs it must pass along. This agent decides on the set of HPs

to evaluate at each step, the direction of the search process, and when to stop the

technique. With a supervisor agent we reduce the complexity of the joint optimiza-

tion problem, which in turn speeds up the algorithm to obtain the Pareto frontier

compared to the state-of-the-art methods. Such capability is further beneficial for

solving multi-objective problems with more than two objective functions.

In Figure 3.2b the estimated correlated posterior Gaussian distributions are shown

for this example which is a three-objective optimization problem. This figures shows

how each observation for isolated Bayesian estimators is helping the search direction

toward the Pareto region of the problem using the supervisor agent. Throughout the

process, the supervisor agent guides the search process to the Pareto frontier region

and speeds up the procedure without adding extra complexity to the underlying

mathematics.
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Fig. 3.2.: a. Overview of PABO framework, b. Estimated correlated posterior Gaus-
sian distributions for multi-objective Bayesian optimization problem using PABO

3.3 Hierarchical-PABO: Hierarchical Pseudo Agent-based Bayesian Op-

timization

Hierarchical-PABO (Hierarchical Pseudo Agent-based Bayesian Optimization) is

an ultra-efficient Bayesian-based optimization framework to find an optimum set of

hyperparameters for designing an accurate neural network while minimizing the en-

ergy consumption and area requirement of the underlying hardware.

Figure 3.3 summarizes the Hierarchical-PABO framework. We randomly select

two hyperparameter (HP) combinations from the design space. In the first level,

these current observations are used to build Bayesian estimation posterior distribu-

tions for each objective function separately. We then define the acquisition function

for each posterior model. The optimum point of these acquisition functions are the

best next point (HP combination) to evaluate for their corresponding objective func-

tion. In the second level, the supervisor agent level, the process starts with all current

observations (set of HP combinations) and the candidate HP combination that led to
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Fig. 3.3.: Overview of Hierarchical-PABO framework

the optimum value of the acquisition functions in the previous iteration. For these

observations, we estimate an intermediate Pareto frontier function using a Gaus-

sian distribution. This is calculated based on the observation points (on the Pareto

front set), as well as a score calculated based on L1-norm of these points after be-

ing normalized. Therefore, a corresponding surrogate model (acquisition function)

for this Gaussian distribution explores and exploits the search space with the goal

of estimating the current intermediate Pareto function. The next best observation

for this Pareto is then added to the observations for each Bayesian estimator. With

this technique, we force the Bayesian approach to add extra observations that help

in minimizing the current intermediate Pareto function. This function is updated

iteratively and moved toward the actual Pareto region of the problem.
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In Hierarchical-PABO, the Pareto Bayesian estimator in the second level plays

a vital role in correlating the Bayesian estimators for each objective function in the

first level. However, to speed up the search process, the supervisor agent might turn

off this Pareto Bayesian estimator. If this extra Bayesian estimator is turned off, the

supervisor agent takes HP combinations taken from optimum point of the acquisition

function for each objective and only allow those that are in favor of moving toward

the Pareto region.

Algorithm 1 illustrates the pseudo-code of Hierarchical-PABO framework. In this

triple-objective optimization algorithm the black-box objective functions are shown

with fperf, feng, and fsize. fperf is the performance of the neural network (ie. error),

feng is the energy consumption of the underlying neural accelerator, and fsize is a

proxy for area requirement of the design.

In iteration n, we have observations from the isolated Bayesian estimators for the

objective functions. Among all these observations, we select and store those points

that belong to the Pareto frontier (i.e. the HP points coming from any of the Dperf,

Deng, or Dsize that are non-dominated), and their corresponding score vector (i.e.

the vector containing the results of evaluating performance, energy, and size for that

specific HP). Please note that this vector is not limited in size and can be adjusted

based on the number of objective functions. These non-dominated points for this

iteration, create DIntPar set. In this step, assume that you would like to estimate a

completely new function using Bayesian optimization (intermediate Pareto function).

Bayesian optimization helps in estimating black-box functions with sets of observa-

tions. In the second level, this black-box function is a intermediate function that

changes in every iteration as we learn more about the isolated Bayesian estimators

in the first level. To build a posterior model for this intermediate function, we re-

quire a likelihood model (i.e. our observations) and a prior model. Observations

are non-dominated HPs stored in the DIntPar set. The prior Gaussian distribution

model uses these observations along with a score dedicated for each observation. In

Hierarchical-PABO we use a normalized summation of the score vectors for each HP,
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and in this way, we represent a single score for each non-dominated point. We esti-

mate a Gaussian distribution for these non-dominated HPs (From DIntPar) and their

corresponding scores IntParn, calculate an acquisition function (AFn( ˜IntPar)), and

optimize it. The optimum point of this acquisition function is the new HP that helps

moving the current Pareto to the corner. This new HP is then added to all isolated

Bayesian estimators in the first level and help with improving those estimations. By

repeating this process, we move the intermediate function in the second level closer

to the corner and therefore actual Pareto region of the problem.

In the Hierarchical-PABO framework, there are two different stopping criteria.

One is after a predefined number of iterations in the Hierarchical-PABO process, and

the other one is when the new observations (new set of hyperparameter) does not

improve the Bayesian estimation. This happens when the surrogate model (acquisi-

tion function) converges to zero and the optimum point of this acquisition function

cannot suggest a new set of hyperparameter that helps in exploring and exploiting

the search space.
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Algorithm 1 Hierarchical-PABO (for triple-objective optimization: performance,
energy, size)

Notations: AF : Acquisition Function; p-norm: ||.||p; HP : hyperparameter;
n: iteration number; O: Observations; β: estimated Pareto front set; IK := {1, 2, ...,K}

Inputs: Three objective functions (performance, energy and size): fperf, feng, fsize
HPall: The set containing all possible combinations of hyperparameters (HPs)
Initial training datasets: θ, Γ, Ψ

Initialize: n← 1
flag ← True
θn = Γn = Ψn = {hp1, hp2}, where set {hp1, hp2} is randomly selected from HPall

On(θ) ≡ [fperf(θn), feng(θn), fsize(θn)]
Dperf = ∅ : Set for storing all selected HPs for estimating fperf
Deng = ∅ : Set for storing all selected HPs for estimating feng
Dsize = ∅ : Set for storing all selected HPs for estimating fsize
DIntPar = ∅ : Set for storing all selected HPs for estimating IntPar (intermediate Pareto front)

========================== LEVEL 1 ==========================
1: Dperf = Dperf ∪ θn, Deng = Deng ∪ Γn, Dsize = Dsize ∪ Ψn.
2: Posterior Gaussian distributions:

˜fperf = p( ˜fperf|(fperf, Dperf)), fifeng = p( ˜feng|(feng, Deng)), ˜fsize = p( ˜fsize|(fsize, Dsize))
3: while flag do
4: Calculate AFn( ˜fperf), AFn( ˜feng), AFn( ˜fsize)

5: θn+1 = argmax
HPall

AFn( ˜fperf), Γn+1 = argmax
HPall

AFn( ˜feng), Ψn+1 = argmax
HPall

AFn( ˜fsize)

6: if θn+1 = θn, and Γn+1 = Γn, and Ψn+1 = Ψn:
flag ← False

7: else:
8: Dperf = Dperf ∪ θn+1, Deng = Deng ∪ Γn+1, Dsize = Dsize ∪ Ψn+1.
9: Evaluate On+1(θ), On+1(Γ ), On+1(Ψ)

========================== LEVEL 2 ==========================
10: calculate βn = {∀ i ∈ IK | βin}

(where On(β) are non-dominant points. Please note K maybe different in each iteration)
11: DIntPar = DIntPar ∪ βn
12: calculate On,norm(β), (by normalizing each element of On(β) to [0, 1])
13: IntParn = {∀ i ∈ IK | IntParin = ||Oin,norm||1}
14: ˜IntParn = p( ˜IntParn|(IntPar, DIntPar))
15: Calculate AFn( ˜IntPar)
16: βn+1 = argmax

HPall

AFn( ˜IntPar) (Next best data set to move the current Pareto the corner)

17: Dperf = Dperf ∪ βn+1, Deng = Deng ∪ βn+1, Dsize = Dsize ∪ βn+1.
18: Evaluate On+1(β)
19: n← n+ 1
20: update ˜fperf, ˜feng, ˜fsize, ˜IntPar.
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4. PABO FOR NON-SPIKING NEUROMORPHIC

SYSTEMS

In this chapter we use PABO as hyperparameter optimization framework to maximize

accuracy of a traditional ANN while simultaneously minimizing the energy require-

ments of a memristive crossbar-based underlying accelerator. The experiment and

its corresponding results are published in [25]. Details of the neural network archi-

tectures, an overview on the underlying accelerator, and how to estimate an abstract

energy consumption for this accelerator are given in this section. This is then followed

by the experimental setup, and results for three different case studies.

4.1 Artificial Neural Network Architecture

Throughout this chapter we present artificial neural network (ANN) architecture

with the following notation: − for dividing layers, c for convolution layers, p for

pooling layers, and fc for fully connected layers. For example 128× 128× 3− 12c5−

2p − 10o is a four-layer ANN with 128 × 128 × 2 input followed by 12 convolution

filters with size 5, a 2 × 2 pooling layer, and finally 10 output neurons. Details

of the AlexNet [31], and VGG19 [32], architectures for flower17 [34] and CIFAR-

10 [37] datasets are given in Table 4.1, respectively. This table only shows a sample

architecture for AlexNet, and VGG19, and the architectures are modified based on

the hyperparameters given in the experimental setup for ANN.

4.2 Baseline Accelerator Overview

This section provides an overview of a memristive crossbar-based accelerator,

shown in Figure 4.1. Typical memristive accelerators employ a spatial architecture,
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Table 4.1.: Details of ANN architectures used in the PABO for non-spiking neuro-
morphic systems experiments

Name Architecture

AlexNet
227× 227× 3− 96c5− p3− 256c3− p3− 384c3− 384c3− 256c3− p3− 4096fc
−4096fc− 17fc

VGG19
32× 32× 2− 64c3− 64c3− p2− 128c3− 128c3− p2− 256c3− 256c3− 256c3
−256c3− p2− 512c3− 512c3− 512c3− 512c3− p2− 4096fc− 4096fc− 1000fc

where the DNN is executed by mapping the model across the on-chip crossbar stor-

age in a spatial manner [7]. This is because the memristive devices have high storage

density, but are limited by the high write cost. Consequently, the high storage density

enables mapping DNNs spatially in practical die sizes while alleviating the high write

cost which would be required if a crossbar was reused for different parts of the model

in a time-multiplexed fashion. At the lowest level, N Matrix Vector Multiplication

Units (MVMUs) are grouped into a single core. Each MVMU is composed of multiple

crossbars and performs a 16-bit 128 × 128 matrix-vector multiplication. Note that

multiple crossbars are needed to store high precision data required for DNN inference,

since typical memristive crossbars store low-precision data such as 2-bits [5, 7]. At

the next level, M cores are grouped into a single tile with access to a shared memory,

which enables data movement between cores (inter and intra tile). At the highest

level, T tiles are connected via a network-on-chip that enables data movement be-

tween tiles within a single node. For large scale applications, multiple nodes can be

connected using suitable chip-to-chip interconnect.

4.3 PUMA Energy Consumption

We use an abstract energy consumption model to evaluate the efficiency for PABO,

where we consider the energy consumption of the MVMUs only. First, the abstract

model enables evaluating the impact of hyperparameter optimization while isolat-

ing the benefits obtained from microarchitectural techniques. This isolation enables

widespread applicability where DNNs optimized with PABO can be executed over
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Fig. 4.1.: High-level overview of PUMA [7] hybrid accelerator architecture

a wide range of memristive accelerators, where each accelerator may be leveraging

different dataflow, compute to control granularity, etc. Second, while a typical mem-

ristive accelerator expends significant energy in shared memory, network on chip and

chip-chip interconnect due to the data movements in a spatial architecture, reduc-

ing the number of MVMU operations typically reduces the total energy consumption

commensurately [109].

A layer (fully connected or convolution layer) is partitioned into smaller blocks of

size N×N to fit a MVMU (sized N×N). Each layer will map across multiple MVMUs

that may span multiple cores and multiple tiles (see Figure 4.1). Further, a MVMU

may be used multiple times (once) for an input in a convolution layer (fully connected

layer) due to weight-sharing. Hence, the number of MVMU operations required to
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execute an inference of deep neural network will depend on the several HPs such as

the number of layers, the number of extracted feature in each convolution layers, and

the kernel sizes in the network architecture (Equations 4.1, and 4.2).

num xbar ci = di × di × d
nci × ki × ki

xs
e × dnci+1

xs
e (4.1)

num xbar fi = dnfi
xs
e × dnfi+1

xs
e (4.2)

In these equations, num xbar ci, and num xbar fi are number of crossbars for the

ith convolution layer and the fully connected layers, respectively. di is the dimension

of the output, nci is the number of input features for convolution layer i. Similarly,

nfi is the number of input features for the fully connected layer i. ki is the kernel

size in ith convolution layer, and xs is the crossbar size. The term di in Equation 4.1

is for inherent weight-sharing property of convolution layers.

Typically, each memristive operation is followed by vector linear, vector non-linear

and data movement operations [7]. Consequently, the number of MVMU operations

is proportional to the overall energy consumption and can be used as a metric of

computational cost on hardware. We calculate the total energy consumption in each

convolution and fully connected layer based on the number of crossbar operations

using the following equations. In our selected memristive crossbar accelerator, a 16-

bit (inputs and weights) crossbar operation (size 128×128) consumes '44nJ energy.

epx is the energy per matrix vector multiplication operation. The sum of energy

consumption for all the convolution and fully connected layers is then used to calculate

the total energy consumption of the memristive crossbar accelerator (Equation 4.3).

tot eng t = (
∑
i

num xbar ci +
∑
i

num xbar fi)× epx (4.3)

In this experiment, we used Equations 4.1 through 4.3 to calculate the total

hardware energy consumption for each combination of HP.
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Table 4.2.: Evaluated parameters for three different case studies for using PABO on
ANN with PUMA as underlying hardware. ANN’s accuracy, and PUMA’s energy
consumption were the two objectives we optimized in these case studies

Case study one Case study two Case study three

Dropout 0.4, 0.5 0.5 Dropout, Layer 1 0.3, 0.4
Learning Rate 0.001 0.001, 0.01 Learning Rate 0.01, 0.1
Momentum 0.85, 0.9, 0.95 - Learning Rate Decay 1e− 6, 1e− 4
Optimizer Momentum Momentum, Adam Weight Decay 0.0005, 0.05
# of FC Layers 2, 3 2, 3 Kernel Size, Layer 6 3, 5
# of Conv. Layers 4, 5 3, 4, 5 Kernel Size, Layer 7 3, 5
Kernel Size, Layer 1 5, 7 3, 5, 7 Kernel Size, Layer 8 3, 5
Kernel Size, Layer 2 3, 5 3, 5 Kernel Size, Layer 9 3, 5, 7
Kernel Size, Layer 3 3, 5 # of Features, Layer 1 64, 128
Kernel Size, Layer 4 3 3, 5 # of Features, Layer 2 128, 256

# of Features, Layer 4 256, 512
Architecture AlexNet AlexNet VGG19
Neural Accelerator PUMA PUMA PUMA
Dataset Flower17 Flower17 CIFAR10
Search Space 192 288 3072

4.4 Experimental Setup and Results

We performed several case studies for different types of hyperparameters, including

the number of layers, kernel sizes, number of features to extract in each layer, and

also the values for learning rate, momentum, and dropout.

Table 4.2 shows a summary of the selected ranges for the hyperparameters (HPs)

for three different case studies. All these cases are studied with PUMA [7] as the

underlying hardware. Case study one is designed with a small search space of size

192 HPs. We begin with the small search space size in order to estimate the actual

Pareto frontier of the problem with a grid search technique and to compare the PABO

result with other state-of-the-art approaches. Case study two is included to capture

the effects of different types of HPs in the analysis, and case study three is a more

realistic experiment with VGG19 as the chosen architecture on CIFAR10 dataset.



30

4.4.1 Single-Objective Optimization

Before presenting the joint optimization results, it is imperative to answer the

question: Why one cannot rely on single objective optimization to minimize the

hardware energy consumption with maximum neural network accuracy? Figure 4.2

demonstrates the limitations of using independent single objective HP optimization

techniques to separately design a neural network with optimum performance and a

hardware with minimum energy requirements.

N
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Fig. 4.2.: PABO for ANN on PUMA for case study two, single-objective optimiza-
tion results for Table 4.2, obtained using SKOPT [89] python Bayesian optimization
package. a. Optimizing HPs for hardware energy consumption only. b. Optimizing
HPs for ANN’s performance only.

Figure 4.2a shows that designing an energy efficient hardware without optimizing

the network accuracy leads to significant decrease in the network performance (large

error). The selected HP set is reported after 40 evaluations of hardware energy

consumption. For this HP, the minimum energy is ∼7.8mJ, while the DNN’s error is

∼92%. Similarly, in Figure 4.2b the network performance, in terms of reducing error,

is optimized without considering the energy consumption of the underlying hardware.

The inefficient hardware design is evident as the reported minimum error region occurs
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at high hardware energy consumption. Both of these results are undesirable, and are

the main reasons to seek a multi-objective approach to find HPs that minimizes

DNN’s error while designing an energy-efficient hardware. We used SKOPT [89]

python package to solve these single-objective Bayesian optimization for AlexNet on

Flower17 dataset with HPs given in Table 4.2, case study 2.

4.4.2 Multi-Objective Optimization (PABO)

We used the proposed PABO algorithm to find the optimum ANN accuracy while

minimizing the underlying memristive crossbar accelerator energy consumption on

three case study. In case study 1, we used AlexNet network with the Flower17 dataset

with a small search space of 192 HPs. The range of HPs are provided in Table 1. In

this case, we intentionally selected a small search space, so that we can estimate the

actual Pareto frontier using the grid search method. Figure 4.3 shows the results for

case study 1. In this figure, PABO’s result compared with grid search, random search,

and state-of-the-art NSGA-II (Non-Dominated Sorting Genetic Algorithm) [43]. Red

triangles, blue dots, black squares and gray crosses correspond to PABO, random

search, NSGA-II, and grid search, respectively. Each point in the figure corresponds

to one evaluation of the noted techniques.

With only 17 evaluations (out of 192 possible sets of HPs), PABO estimates the

Pareto frontier (red dash line in Figure 4.3) for the HPs within ∼1-2% percent of the

actual Pareto set (gray line in Figure 4.3) obtained using the grid search method.

Compared to the NSGA-II approach, PABO not only estimates Pareto frontier more

accurately, but is also 92× faster. A comparison between the execution time for

different techniques is shown in Figure 4.4.

In Table 4.3, to further illustrate the impact of HPs, we summarized them for the

points A, B, C and D that are shown in Figure 4.3. Point A belongs to the Pareto

frontier of the network at which we obtained the optimum DNN performance and

hardware energy requirement. Point B corresponds to an HP set with minimized
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Fig. 4.3.: PABO for ANN on PUMA for case study one: AlexNet on Flower17 dataset
with 192 possible set of HPs. Comparison between grid search for all HP combinations
(grey cross), random search with evaluating 40 different sets of HPs (blue dots),
NSGA-II with population size of 10 and maximum generation of 50 (black squares),
and PABO (red triangles). The red dashed line, gray line and the black dashed line
are the Pareto frontiers obtained by PABO, grid search and NSGA-II approaches.

energy requirement for hardware, while producing a sub-optimal DNN design. At

point C, HPs result in minimum DNN error but with an inefficient hardware design,

and the corresponding HP at point D neither optimizes the DNN performance nor

hardware energy consumption. It is clear from Table 4.3, that using a joint optimiza-

tion approach is indispensable for optimal design of both the DNN and the hardware.

Moreover, in this case study, selecting HPs given in point A (from Table 4.3) results

in up to 40% decrease in energy requirements for the memristive crossbar accelera-

tor compared to the case where DNN is not optimized for the hardware architecture

design (point E shown in Figure 4.3).
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Fig. 4.4.: PABO for ANN on PUMA for case study one: execution time for PABO
is 92x faster than state-of-the-art NSGA-II technique on one Nvidia GeForce RTX
2080 Ti TU102 GPU with 11 GB of memory.

Table 4.3.: PABO for ANN on PUMA for case study one, hyperparameter analysis

Hyperparameter A B C D

Dropout 0.5 0.4 0.5 0.4
Learning rate 0.001 0.001 0.001 0.001
Momentum 0.95 0.85 0.95 0.9
Batch size 64 64 64 64

# of FC layers 2 2 2 3
# of conv. layers 4 4 5 5

Kernel size, layer 1 5 5 7 7
Kernel size, layer 2 3 3 3 5
Kernel size, layer 3 3 3 5 5
Kernel size, layer 4 3 3 3 3

Figures 4.5 and 4.6 show the results for two additional case studies with more

realistic choices of HPs. Details of the HP selections are given in Table 4.2. Fig-

ure 4.5 is a case study with 6912 choices of HP combinations on AlexNet architecture

with Flower17 dataset. PABO results are shown in red triangles and compared with

random search with blue dots and NSGA-II with black squares. Random search is

performed with 40 evaluations, NSGA-II had population size of 20 with maximum

generation of 100. PABO approximates the Pareto frontier with only 33 function eval-

uations (where each evaluation corresponds to training the DNN and computing the

hardware energy consumption). Compared to 6000 function evaluations of NSGA-II

technique, this leads to 183× faster execution time. Note that the results obtained

for NSGA-II are the best we could get with the same computational resources we
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Fig. 4.6.: PABO for ANN on PUMA for case study three: VGG19 network on CIFAR-
10 dataset with 3072 different set of HP combination. Other methods cannot be run
on this case study due to significant computational requirements.
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used to perform PABO and other methods. We may improve the NSGA-II’s results

using supercomputers and significantly longer hours of computation.

In Figure 4.6, we used the VGG19 network on CIFAR-10 data with 3072 HPs com-

binations listed in Table 4.2. Since the network is significantly larger than AlexNet,

it is computationally prohibiting to perform NSGA-II using our computational re-

sources. On the other hand, PABO was able to estimate the Pareto frontier with

only 22 evaluations.

4.5 Discussions

We proposed a novel pseudo agent-based multi-objective hyperparameter opti-

mization technique, deemed PABO, that can maximize the neural network perfor-

mance while minimizing the energy requirements of the underlying hardware. PABO

uses Bayesian optimization with Gaussian processes and acquisition function along

with a supervisor agent, to estimate the Pareto frontier that shows the optimum

HP sets for maximum neural network performance and minimum hardware energy

consumption [25].

We tested PABO on both AlexNet [31], and VGG19 [32] neural network with

an underlying memristive crossbar accelerator [7], and compared it with other algo-

rithms. Superior performance of our method both in terms of accuracy and com-

putational time was demonstrated. 100x increase in computational speed compared

to the NSGA-II algorithm was demonstrated. It is important to note that PABO is

not limited to a specific neural network or hardware architecture, and can be applied

to multiple (more than two) black-box functions corresponding to different design

requirements.
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5. HIERARCHICAL-PABO FOR

EVOLUTIONARY-BASED SPIKING NEUROMORPHIC

SYSTEMS

In this chapter we use Hierarchical-PABO as hyperparameter optimization frame-

work for an evolutionary-based training algorithm (EONS [14]), using two different

underlying hardware (DANNA2 [19], and mrDANNA [33]) on several control and

classification tasks. Pole-balance [41, 110], and RoboNav [42] were the two selected

control applications. Pole-balance is a control benchmark in engineering which in-

volves a pole connected to a cart through a joint that allows single axis movement.

The goal of this control application is to keep the pole from falling by moving the cart

either direction. RoboNav is an autonomous navigation system for robotic applica-

tions and is meant to be deployed on a specific robot [42]. We also used the Iris [38]

and Radio [39] datasets for classification tasks. The former is a multivariate dataset

of 50 samples from each of three species of the Iris flower, and the latter is a satellite

radio signal classification problem.

We demonstrate the effectiveness of Hierarchical-PABO first as single-objective

optimization problem to maximize accuracy of EONS only and then we continue with

three-objective optimization problem of maximizing accuracy and minimizing network

size and energy requirement of the underlying hardware. In these experiments for the

Kernel function in Hierarchical-PABO, we chose Matern covariance function with the

Kernel function shown in Equation 5.1.

Cν(d) = σ2 21−ν

Γ (ν)

Ç
√

2ν
d

ρ

åν
Kν

Ç
√

2ν
d

ρ

å
(5.1)

where d is a distance function, Γ is the gamma function, Kν is the modified

Bessel function of the second kind, ρ and ν are positive parameters. For this paper,
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we found out the fastest most accurate HP optimization results are obtained when

ρ = 1, and ν = 1.5. We selected Matern kernel function [111] due to smooth Gaussian

distribution estimate it provides. This results are summarized in [27, 28]. Details

of the EONS training algorithm, the input encoding module, an overview on the

underlying accelerators, and how to estimate an abstract energy consumption for a

accelerator is given in this section. This is then followed by the experimental setup

and results for several case studies.

5.1 Introduction

Fig. 5.1.: High-level Overview of a Spiking Neuromorphic Computing System

As shown in Figure 5.1, a spiking neuromorphic computing systems consists of

two key building blocks, namely a spiking neural network (SNN) and an underly-

ing neuromorphic hardware. There are different techniques available to train an

SNN [14, 16, 18]. In this section we only focus on EONS [14]. As for the spike-based

neuromorphic systems there have been various CMOS-based [19–21] and beyond-

CMOS [7] neuromorphic accelerators introduced in literature. Each of these building

blocks have inherent hyperparameters that directly affect the final performance of the

system, such as accuracy, energy efficiency, inference time, and network size. While
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one set of hyperparameters might satisfy one or all performance metrics, a minor

change can drastically alter the resulting performance.

Neuromorphic devices and architectures run only on spikes; however, most of the

time the real-world applications communicate their states through values, and only

accept values as their input. There are several input/output coding schemes such as

direct, binning [71], rate coding [112], and temporal coding [113]. In this work we

considered a combination of several coding techniques that can handle a wide range

of data within a short time period for real-time online applications (specially for edge

devices) [71].

We consider various types of hyperparameters ranging from input encoding to

SNN’s training and neuromorphic hardware implementation. We perform sensitivity

analysis on various hyperparameter sets and demonstrate how critical some sets of

hyperparameters are, directly impacting the performance of the system. We further

analyze different input encoding schemes and show how combining multiple schemes

might boost the performance of the system.

5.1.1 EONS: Evolutionary Optimization for Neuromorphic Systems

EONS trains a graph representation of a spiking neural network for a neuromor-

phic hardware system using Genetic Algorithms (GA). This graph representation of a

neuromorphic network generates an initial population of random graphs based on the

application inputs and hardware specifics. Next generations are produced by dupli-

cating, merging, mutation or crossover on current generations based on their fitness

values. The resulting generations are converted to spiking neural networks, and the

new performance values are calculated. The process repeats until the desired fitness

is reached or terminated due to the running time [14, 114]. Neurons and synapses

are the building blocks of this graph and are inherent to the device characteristics.

Synaptic weights and delays ranges, neurons thresholds, as well as their leaky rates or
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plasticity parameters are defined by the neuromorphic hardware and are also targeted

in our proposed optimization framework.

In this work we use TENNLab’s framework [114] for input encoding, EONS, and

neuromorphic hardware hyperparameter (HP) optimization to find the optimum set

of HPs that maximizes the overall performance of the system. We considered the fit-

ness value (accuracy), number of synapses (size), and neuromorphic hardware energy

consumption as the performance matrices of the system; however, this can be easily

modified to any other metric such as inference time.

5.1.2 Input/Output Coding Module

The TENNLab framework facilitates value to spike encoding and vice-versa through

an encoding/decoding module. This module accepts different state-of-the-art in-

put/output coding schemes such as direct, binning [71], rate coding [112], and tempo-

ral coding [113]. In this work we considered a combination of several coding techniques

that can handle a wide range of data within a short time period for real-time online

applications (specially for edge devices) [71].

• Binning. Encoding an input with single spike in a single time step, through

creating multiple neurons and spiking on a particular neuron based on the value of

the input.

• Spike-count. Converting input values to a number of spikes at a fixed rate.

• Charge-injection. Injecting a specific charge value into a neuron rather than a

fixed magnitude spike.

• Combined coding schemes. Combining all above techniques in a hierarchy

by introducing three different inter-bin functions of simple, flip-flop, and triangle.

Simple inter-bin function linearly maps the values between the preassigned charge

values for each bin, whereas in flip-flop, this mapping is only for odd-numbered bins

and then flips for even-numbered ones. This function enables continuous mapping
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across the bins. Finally, the triangle inter-bin function creates overlapped bins to

encourage smooth mapping.

Details of the above input/output coding schemes are given in [71]. Each of

these methods have inherent hyperparameters that directly impact the performance

of the system. Here our main focus is finding the optimum set of input encoding

hyperparameters to maximize the performance of spiking neuromorphic system for a

specific application and hardware.

5.1.3 Neuromorphic Hardware

We use two different neuromorphic implementations that are already deployed in

the TENNLab framework, a fully digital neuromorphic processor, DANNA2 [19], and

a memristive mixed-signal neuromorphic processor, mrDANNA, [33]. DANNA2 is a

fully digital programmable device with integrate-and-fire neurons and synapses that

can be deployed either on an FPGA or a custom chip, and mrDANNA is a mixed

analog-digital programmable device with metal-oxide memristors.

We use mrDANNA for the case studies where we would like to minimize energy

requirement of the underlying neuromorphic hardware. Table 5.1 summarizes the

energy estimate per spike for this neuromorphic device. mrDANNA is a synchronous

neuromorphic architecture and is simulated in a discrete event simulation. Events in

the simulation include accumulations, fires, and learning. The energy estimates for

each event type are given in Table 5.1 and we track how many of each type of event

occurs in the simulation and sum up the energies. If no event is occurring on a neuron

or synapse in a clock cycle, that neuron or synapse is “idle”, but still performing some

operations that contribute to idle cost. We use these energy estimates to estimate

the overall energy cost of running on a particular application.
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Table 5.1.: Energy estimate per spike for mrDANNA

Accumulation Fire Learning Idle

Neuron 9.81pJ 12.5pJ - 7.2pJ
Synapse 1.45pJ - 2.58pJ 0.07pJ

Table 5.2.: Evaluated parameters for six different case studies for using Hierarchical-
PABO on EONS with DANNA2 and mrDANNA as underlying hardware.

Hyperparameters Case Study 1 Case Study 2 Case Studies 3,4 Case Studies 5,6

bk 1, 2, 4, 8 2, ..., 8 2, 4, 8 2, 4, 8, 10, 12
pk 1, 2, 4, 8 1, ..., 12 4, 8 2, 4, 8, 10, 12

[ck, Ck]
[0,0.5],[0,1],

[0.25,0.5], [0.25,1],
[0.5,0.5],[1,1]

[0,0.5],[0,1],
[0.25,0.5],[0.25,1],

[0.5,0.5],[1,1]

[0,1], [0.5,0.5],
[1,1]

[0,0.5],[0,1],
[0.25,0.5], [0.25,1],

[0.5,0.5],[1,1]

Function
Simple

Flip-flop
Triangle

Simple
Flip-flop
Triangle

Simple
Flip-flop

Simple
Flip-flop
Triangle

Interval 1 1, ..., 5 0, 1 0, 1, 2

Population size 1000
600, 800, 1000,

1200, 1500, 2000
10, 100, 500 10, 100, 500, 700

Mutation rate 0.9 0.6, 0.7, 0.8, 0.9 0.2, 0.6, 0.9 0.2, 0.6, 0.9
Crossover rate 0.5 0.3, 0.4, 0.5, 0.6, 0.7 0.3, 0.5, 0.9 0.3, 0.5, 0.9

Synaptic weight [-255,255]
[-127,127],[-255, 255]

[-511, 511],[-1023, 1023]
- -

Neuron threshold [0,1023] 255, 511, 1023 - -
Synaptic delay 127 15, 31, 63, 127, 255 - -

Neural Accelerator DANNA2 DANNA2 mrDANNA mrDANNA
Application Pole-balance Pole-balance 3: IRIS, 4:Radio 5: IRIS, 6: Radio
Search Space 240 54,432,000 1458 35,640

Objective Accuracy Accuracy
Accuracy
Energy

Size

Accuracy
Energy

Size

5.2 Experimental Setup and Results

Table 5.2 shows a summary of the selected ranges for the hyperparameters (HPs)

for case studies in SNN domain using EONS as the underlying training algorithm. In

this table, bk, pk, [ck, Ck], function, and interval are from the input encoding module,

population size, mutation rate, and crossover rate are for EONS evolutionary-based

training algorithm, and synaptic weight, neuron threshold, and synaptic delay belong

to the underlying neuromorphic hardware. The input encoding hyperparameters in-

clude several approaches such as binning-based, using bk as the number of bins required
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for each input values, spike-count with pk as the maximum number of spikes to en-

code a single input value, charge-value with [ck, Ck] on injecting a specific charge to

fire a neuron, function on how to map the values to spikes, and interval to define the

interval between pulses. For more details on each of these hyperparameters please

refer to [26,71].

We first show the importance of hyperparameter optimization for spiking neuro-

morphic systems by only focusing on single-objective optimization (performance of the

system on the task) problem, where grid search results are already available by [71].

We then continue with Hierarchical-PABO (H-PABO) results for a three-objective

optimization problem (performance, energy, and network size).

5.2.1 Single-Objective Optimization

While H-PABO is generally aimed for multi-objective problems, it can easily be

reduced to a single-objective optimization by setting objective functions to one. This

is the case for case studies one and two in Table 5.2, where we are only optimizing a

single objective function that is the accuracy of the neural network.

For the first case study, we start with finding the optimum set of HP for the input

encoding hyperparameters of an SNN. For this problem, a grid search technique has

previously been applied for all HP combination settings and thus, the optimum HP

set is known [71]. In Table 5.2, case study one shows the possible values for different

HPs. The ranges are all based on reasonable and acceptable values for each of the

HPs and the combinations that do not make sense are removed from the search space.

Figure 5.2 shows box plot figures with interquartile ranges. The grid search result

is produced and published by [71] and shown in Figure 5.2a. For each one of the

240 combinations of the hyperparameters, the network accuracy is calculated and

evaluated for 100 times. In Figure 5.2b, we used H-PABO for the same experiment,

and with only 40 hyperparameter combinations, each repeated for 10 times, we are

able to predict not only the exact optimum set of hyperparameter, but also predict
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Fig. 5.2.: Hierarchical-PABO for EONS on DANNA2 for case study one: Comparing
grid search with HP optimization for problem with HP combinations shown in Ta-
ble 5.2, case study one. a. Grid search: 100 runs for each of the valid 240 different
HP sets according to [71]. b. Bayesian-based HP optimization: 10 runs for selected
40 HP combinations. Both techniques report the same optimum HP set (bk = 2,
pk = 8, charge = [0, 0.5], function = flip − flop) with median fitness value of 52%
(Reproduced with permission from [26]).

the same trend in the network accuracy changes for different hyperparameter combi-

nations [26]. In this case study the optimum hyperparameter combination leads to

median value of 52%.
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Fig. 5.3.: Hierarchical-PABO for EONS on DANNA2 for case study one: Histogram
of the HP combinations for 40 evaluations.

The iterative Bayesian-based HP optimization finds the optimum set of HPs by

exploring and exploiting the search space. This means that it not only maintains the

HP combinations that creates the highest fitness values, but also explores the search
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space to avoid trapping in local minima. The frequency of selecting the value for each

hyperparameter for case study one is shown in Figure 5.3. The hyperparameter value

with maximum number of calls is consistent with the optimum HP set defined by the

optimization technique (bk = 2, pk = 8, charge = [0, 0.5], function = flip− flop).

In Table 5.2 case study two, we considered three types of HP combinations: input

encoding related, EONS, or hardware-related hyperparameters. In this experiment

the total number of hyperparameter combinations is 54, 432, 000. This shows how

drastically the number of hyperparameter sets increase in real problems where there

are multiple HPs involved in different modules, frameworks, algorithm, and architec-

tures. In Figure 5.4 we plotted the median fitness value for 50 HP combinations sets

(50 iterations of Bayesian optimization) each repeated for 100 times. It is evident from

the figure that the method ensures obtaining the optimum HP set through exploring

the search space by evaluating HP combinations with low fitness values that were

chosen outside the predicted range of optimum HPs, while performing exploitation

by maintaining the predicted optimum HPs in overall higher fitness value domains.

Please see the discussion Section 5.3 for further analysis and observations on this

results.

5.2.2 Multi-Objective Optimization

To validate Hierarchical-PABO technique for multi-objective hyperparameter op-

timization problems in SNN domain, we focus on classification application with

IRIS [38], and Radio [101] dataset on both digital [19] and mixed-signal memris-

tive [33] neuromorphic devices using EONS [14] as the core training algorithm. The

summary of the case studies three to six, and their corresponding HP ranges are given

in Table 5.2.

Figure 5.5 demonstrates the Hierarchical-PABO (H-PABO) results using EONS

training algorithm on IRIS classification dataset with a mixed-signal underlying hard-

ware (mrDANNA [33]). Figure 5.5a shows the H-PABO results compared to grid
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search for the case study three given in Table 5.2 with 1458 different sets of HPs.

Each point in the three-dimension figure represents network performance, hardware

energy consumption, and number of required synapses for a set of HP combination.

The number of required synapses increases as the color becomes lighter. The grid

search results show that most of the time the energy consumption increases as the

number of synapses increase (the top left region of Figure 5.5a). However, we might

also have a larger network with more inhibitory synapses, for example, that would

have less activity and thus less energy than a smaller network (top right region). The

triangles are the H-PABO search points, and as expected, all different regions of the

search space are explored with H-PABO. The H-PABO Pareto points are shown with

squares. These points are calculated once the H-PABO search process is completed

and are the H-PABO search points that belong to the Pareto frontier. As shown
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parameter optimization (network performance, hardware energy consumption, and
number of synapses) for Iris classification dataset on mrDANNA with HP search
space of a. 1458, case study three, b. 35640, case study five in Table 5.2

in Figure 5.5a this calculated Pareto frontier is within close proximity to the actual

Pareto frontier of the problem.
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Fig. 5.6.: Hierarchical-PABO for EONS on mrDANNA: Comparing three-dimensional
results, pairwise for a. case study three with search space size 1458, b. case study
five with search space size 35640.

Figure 5.5b shows the H-PABO results for case study five in Table 5.2 for the HP

search space of 35640 different HP combinations. Once again, we see that all regions

of the search space are explored by the H-PABO approach, but that the majority of

the H-PABO points are evaluated are in the region of interest and near the H-PABO

Pareto front. In this case, H-PABO was able to find well-performing networks with

desired characteristics (low energy consumption and relatively few synapses) with

significantly fewer evaluates than what would be required for a full grid search of

35640 points. It is also worth noting that by optimizing over the additional HPs, the

H-PABO approach is able to find well-performing networks with better characteristics

than the networks found simply optimizing over the smaller set of HPs (shown in

Figure 5.5b).

Figures 5.6 shows the H-PABO results from Figure 5.5, but splits the results

into three different pairwise comparison plots, for each case study, to show how the

different objectives play off of each other. The third objective is also shown in each
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number of synapses) for case studies four and six in Table 5.2, Radio classification
dataset on mrDANNA, a. search space size 1458, b. search space size 35640

Table 5.3.: Observation Three. Hierarchical-PABO for EONS. Evaluated parameters
for best and worst networks for isolated HP optimization analysis

Best Network Worst Network

Input Encoding HPs

bk = 2 bk = 8
pk = 8 pk = 1
[ck, Ck] = [0, 0.5] [ck, Ck] = [0.5, 0.5]
function = flip-flop function = simple
Interval = 1 Interval = 1

EONS HPs
Population size = 1000 Population size = 1000
Mutation rate = 0.9 Mutation rate = 0.6
Crossover rate = 0.6 Crossover rate = 0.3

Hardware HPs
Synaptic Weights = [−511, 511] Synaptic Weights = [−1023, 1023]
Neuron Thresholds = [0, 1023] Neuron Thresholds = [0, 255]
Synaptic Delay = 127 Synaptic Delay = 15

plot through the color of the squares. With these plots, we can see the different Pareto

fronts for each of the pairwise objectives. For example, in the network performance vs.

hardware energy plots, we can see that there are trade-offs in energy usage in order to

achieve lower error (and similarly for network performance vs. number of synapses).

However, the number of synapses and energy usage are relatively correlated, such

that fewer synapses typically corresponds to a lower energy value.
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Figure 5.7 gives the results for case studies four and six, in which the H-PABO

approach is applied to HP optimization for the Radio classification dataset on the

memristive mixed-signal system (mrDANNA). The two case studies look at the same

HP combination sets as the Iris dataset and correspond to 1458 and 35640 combina-

tions, respectively. As shown in the figure, H-PABO once again explores the space

of potential solutions but is able to find a Pareto front in relatively few evaluations.

Again, similar to the result for the Iris dataset, by expanding our HP set to the 35640

potential HP combinations, H-PABO is able to achieve overall better performing net-

works (lower error and energy and fewer synapses required), and in general moving

the Pareto front closer to the desired region.

5.3 Discussions

Figure 5.8 demonstrates a partial dependence plot for non-categorical hyperpa-

rameters in case study four. Inter-bin function types and population size are consid-

ered as categorical HPs and therefore not shown in this plot. The black dots are the

set of parameters we have evaluated and the red dot is the best parameter we found.

In these plots colors are the surrogate model built by the Gaussian Process. Light

regions are the best (highest fitness values) while the darker ones are the worst. To

make each of these partial dependence plots, we make a grid for a set of two parame-

ters. We then calculate the surrogate model with fix values for those two parameters

while generating random values for all other parameters. We repeat the process and

average the fitness values and plot the color map. These plots are only used for

extra analysis on the optimization search process and are not deterministic due to

the inherent variability of the built surrogate models for Gaussian distribution with

random parameter selections. In this figure for some HPs the counter plots show the

convergence toward the optimum values. For example for pk versus synaptic delay

partial dependence plot it is clear that the higher the value for both parameters is

the better performance. However for all partial dependence plot for parameter bk, as
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Table 5.4.: Hierarchical-PABO for EONS. Sensitivity analysis for SOO

Hyperparameters Experiment 1 Experiment 2 Experiment 3 Experiment 4

Input Encoding HPs

bk 2 2 2 2
pk 8 12 8 8
charge [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5]
function flip-flop flip-flop flip-flop flip-flop
interval 1 5 1 2

EONS HPs
population size 1000 1500 400 1000
mutation rate 0.9 0.9 0.9 0.9
crossover rate 0.5 0.4 0.5 0.7

Accelerator HPs
synp weight [−255, 255] [−127, 127] [−255, 255] -
neuron thrshld [0, 1023] [0, 1023] [0, 1023] -
synp delay 127 255 15

Neuromorphic System Performance 52% 70.99% 50% 53%

long as the optimum set stays in any of the light regions, it does not matter what

combination we choose for the next iteration.

Different hyperparameters have different impact on the final performance of the

neuromorphic system. Figure 5.9 demonstrates how critical it is to select the opti-

mum set of input encoding and hardware hyperparameters to obtain the maximum

fitness value. In both cases the worst HP combination lead to almost 0% fitness

value. However, EONS hyperparameters such as crossover and mutation rates have

less impact on the final performance of the system. This shows resiliency of EONS

framework. Details of the HP sets in each network is given in Table 5.3.

In Table 5.4, a sensitivity analysis is performed for Hierarchical-PABO single ob-

jective optimization (SOO) for different classification applications (Pole-balance for

Experiments 1 and 2, and RoboNav for Experiments 3 and 4) on two different neu-

ral accelerators (i.e. DANNA2 [19] for Experiments 1 to 3, and mrDANNA [33] for

Experiment 4). These experiments show how sensitive is pole-balance control appli-

cation to the changes of hyperparameters. If we only change few hyperparameters (all

in reasonable ranges), the resulting accuracy will change from 52% to 70.99% (com-

paring experiments 1 and 2 in Table 5.4). Based on these experiments, RoboNav

appears to be less sensitive to changes in hyperparameters and architectures, but

more extensive experiments may be required in order to understand the full impact

on this particular application.
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Fig. 5.9.: Hierarchical-PABO for EONS. Sensitivity analysis on different types of HPs.
Comparing the fitness values for best and worst HP combinations

Neuromorphic computing systems provide a potential solution for energy efficient

machine learning. However, there are many aspects of spiking neuromorphic comput-

ing systems that are not well understood, including how to input information into
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the spiking neuromorphic computing system, how to train associated spiking neu-

ral networks for these systems, and hardware details themselves. In this work, we

demonstrate a Bayesian-based hyperparameter optimization approach for neuromor-

phic computing systems. We show that this approach can discover the appropriate

hyperparameters for input encoding for neuromorphic systems in many fewer itera-

tions than a grid search. We also show that selecting the appropriate hyperparameters

can have a tremendous impact on application performance.
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6. HIERARCHICAL-PABO FOR BINARY

NEUROMORPHIC SYSTEMS

In this section we introduce Whetstone [56], as binary neuromorphic system, to our

Hierarchical-PABO framework with the goal of pushing its limit to the full capacity

with optimized hyperparameters. After a brief introduction, we describe the Whet-

stone [56] training algorithm, and then continue with the experimental setup and

results. Results of this work are published in [27].

6.1 Introduction

Whetstone trains networks that have binary communication, which are amenable

for mapping onto spiking neuromorphic hardware. In this approach, neural networks

are trained initially with differentiable activation functions (e.g., sigmoidal or bounded

rectified linear units), but over the course of gradient descent optimization, the ac-

tivation functions are slowly “sharpened” to non-differentiable threshold functions.

This approach not only has all of the hyperparameters associated with traditional

neural network or deep learning network training, but also additional hyperparame-

ters of its own, for example, associated with how sharpening occurs over the course of

the algorithm. As we will show below, these hyperparameters can have a significant

effect on the performance of the algorithm, but it is not clear what hyperparameters

to use for a given dataset a priori.

In this work, we apply Hierarchical-PABO for single-objective optimization prob-

lem (accuracy only) to find optimal hyperparameters for the Whetstone algorithm on

four different datasets. We compare our results to the previously published Whetstone

results from [56] and show that by tuning the hyperparameters for each dataset we

can achieve significantly better performance, up to a 15% improvement in accuracy
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in some cases. We compare the best performing hyperparameters for each dataset,

and study the sensitivity of the final performance on the changes of hyperparame-

ters. These results represent, not just an improvement over state-of-the-art, but also

an indication that off-the-shelf spiking algorithms may be significantly improved by

optimization via this Bayesian approach.

6.2 Whetstone

Whetstone utilizes bounded rectified linear units (bRELUs) and sigmoidal units

that are modified during training to approach binarized step-functions. The ap-

proach aims to gradually modify the activation function so as to minimally otherwise

disrupt network training. Due to the sensitivity of backpropagation to zeroed acti-

vations, this sharpening and thus binary conversion process was found to be more

stable when applied layer-by-layer on a schedule and in the direction of input layer

to output layer. This scheduled-sharpening involves several hyperparameters, such as

the epoch to start the sharpening, duration of sharpening, and number of epochs to

wait before starting the next scheduled sharpening (intermission). To avoid a fully

manual schedule with additional hyperparameters, Whetstone’s authors introduced

an adaptive-sharpening scheduler that monitors loss after each training epoch and

decides to resume or pause sharpening dependent on the relative change in training

loss(fixed to 15% in [16]). If sharpening is currently on, the rate of sharpening is

dependent on a duration hyperparameter but is adjusted gradually over each batch

in the epoch. Initial sharpening epoch and sharpening pause duration are additional

hyperparameters to be chosen.

Whetstone also attempts to mitigate a condition which occurs in bRELUs and

sigmoidal nodes that stop responding and produce zero outputs regardless of input.

The authors note that this condition happens in non-binarized networks as well but

hypothesize that the sharpening process can increase occurrence odds. To alleviate

this problem, Whetstone networks typically use redundant output encodings as out-



55

put targets. To produce output for loss computation, Whetstone uses a softmax over

a population encoding (neuron distribution key generated or specified at network

initialization) that allows for n-hot encoding of targets while output neurons can

contribute to more than one class. This also enables the use of a cross-entropy loss

function (common to many neural network classification tasks), which the authors

found to be more effective than a direct mean squared error vector loss.

Severa et al. [56] also demonstrate the effects of architecture hyperparameters

such as number of convolution layers and filter sizes on the overall performance of

Whetstone for four different dataset. Their results for these various hyperparameters

were consistent with the intuition that deeper networks perform better for spiking

networks. However, they did not perform any comprehensive hyperparameter op-

timization. Additional instability was noted in relation to the choice of optimizer

used during training, with Adam optimized networks’ performance being especially

sensitive to initial conditions. For the choice of optimizer, they show that Adadelta

and RMSprop are more reliable compared to Adam. Batch normalization was further

found to improve stability during training. The sensitivity of Whetstone approach on

various hyperparameters such as the choice of optimizer or batch normalization layer,

differentiates the hyperparameter optimization approach for this binary communica-

tion from traditional artificial neural network training. This leads to a research ques-

tion on which hyperparameter optimization technique is suitable for non-traditional

networks such as Whetstone.

In this work, we only focus on scheduled-sharpening due to the stability and consis-

tency of the results obtained with this scheduler. In our hyperparameter optimization

search, we considered three main hyperparameters involved in this technique: sharp-

ener starting epoch (“sh st”), duration (“sh du”), and intermission (“sh int”). For

each case study, detailed of the ranges for each of these hyperparameters is given in

the following section.
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6.3 Experimental Setup and Results

We validate our Bayesian hyperparameter optimization approach across several

datasets, hyperparameter combinations and case studies. In using Whetstone, there

are a variety of sets of hyperparameters that can be optimized. Here we focus on

the following hyperparameter sets: optimizer parameters, noise parameters, batch

normalization parameters, Whetstone sharpener parameters, and CNN architecture

parameters. The Whetstone’s scheduled sharpener sharpens layers one at a time in

sequential order. The “start epoch” hyperparameter is the epoch on which it begins

sharpening the first layer. The “duration” is how many epochs it takes to sharpen

each layer, and the “intermission” is how many epochs it waits after sharpening a

layer before beginning sharpening of the next layer. Details of the hyperparameters

that are optimized and their corresponding ranges are given in each case study as

follows.

Our methods were benchmarked on four labeled image data sets commonly used

to demonstrate efficacy of supervised image classification protocols. The MNIST [35]

dataset consists of gray-scale images of handwritten single digits, each 28× 28 pixels.

There are 10 classes, one for each number 0− 9, and the data is split in to a training

set of 60000 images and a test set of 10000 images. The Fashion-MNIST [36] dataset

consists of gray-scale images of miscellaneous clothing items (shirts, pants, shoes,

etc.), each 28 × 28 pixels. There are 10 classes, one for each type of item, and the

data is split in to a training set of 60000 images and a test set of 10000 images.

The Fashion-MNIST dataset is designed to be a drop in replacement for the MNIST

dataset, with the only difference being the items which are classified. The CIFAR-

10 [37] dataset consists of color images of miscellaneous items (dogs, airplanes, birds,

ships, etc.), each 32× 32 pixels. There are 10 classes, one for each type of item, and

the data is split in to a training set of 50000 images and a test set of 10000 images.

The CIFAR-100 [37] dataset is the same as the CIFAR-10 dataset, except with 100

classes. Each class represents an equal proportion of the total dataset.
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Table 6.1.: Hierarchical-PABO for Whetstone: Evaluated hyperparameters

Hyperparameter Case Study One Case Study Two

Optimizer

Learning rate 0.0001, 1 0.0001, 0.001, 0.01, 0.1, 1
Rho 0.9 0.9, 0.95
Epsilon 1e-6 1e-8, 1e-6
Decay 1e-8, 1e-6 1e-8, 1e-6
Type Adadelta Adadelta, RMSprop

Noise
Standard deviation - 0.2, 0.3
Location Without noise Without noise, After 1st dense

Batch
Normalizer

Momentum, conv. 0.95 0.85, 0.95
Momentum, dense 0.95 0.85, 0.95
Epsilon 1e-3 1e-3, 1e-2
Center True False, True
Scale True False, True

Sharpener
Schedule

Start Epoch 15, 25 20, 25, 30
Duration 3, 7 4, 5, 6, 7
Intermission 2, 5 1, 2, 3, 4, 5

CNN
Architecture

Conv. layer 1, filter size 3, 7 3, 5, 7
Conv. layer 2, filter size 5 3, 5
Conv. layer 3, filter size 3 3, 5
Conv. layer 1, # of features 64, 128 32, 64, 128
Conv. layer 2, # of features 256 64, 128, 256
Conv. layer 3, # of features 512 256, 512
Dense layer, # of features 256, 1024 256, 512, 1024

Search space size 256 398,131,200

In this experiment, we designed two different case studies with the hyperparam-

eters given in Table 6.1. For case study one, we select a small search space for

classification task on CIFAR-100 dataset [37]. This limited search space is helpful

in validating the results through comparing the optimum hyperparameters from the

optimization technique and the grid search approach. The grid search approach is

evaluating the network for all possible combinations of the hyperparameters.

In Figure 6.1, for CIFAR-100 dataset, the grid search results are compared with

the results from the Bayesian hyperparameter search. The hyperparameter ranges are

given in Table 6.1, case study one. After only 15 evaluations of Whetstone [56], the

Bayesian hyperparameter search finds the almost optimum combination of hyperpa-

rameters that the grid search predicts after 256 evaluations. This optimal point for the

Bayesian search, (l r = 1, dec = 1e − 6, sh st = 25, sh du = 7, sh int = 2, filter1 =

3, feat1 = 128, dense = 1024), is shown in red star in Figure 6.1, and leads to accu-
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racy of 53.13%, which outperforms the 38% accuracy reported in Whetstone original

results [56]. The optimum hyperparameter set for the grid search is (l r = 1, dec =

1e − 6, sh st = 25, sh du = 3, sh int = 5, filter1 = 3, feat1 = 128, dense = 1024)

with accuracy of 53.34%. These two points predict almost the same classification

accuracy and only differ in two hyperparameters of “duration of sharpening”, and

“sharpening intermission”.

In case study two, we increase the search space size to 398,131,200 combinations

of hyperparameters shown in Table 6.1. In this scenario we consider various hyperpa-

rameter types ranging from optimizer hyperparameters, to Gaussian noise, or batch

normalization layers. In addition we also include the Whetstone scheduled sharpen-

ing [56] hyperparameters, and the hyperparameters that belong to the neural network

architecture itself, such as filter sizes or the number of features to extract.

For the hyperparameters given in Table 6.1, the performance of the hyperpa-

rameter optimization approach for Whetstone technique for four different dataset of

MNIST [35], Fashion-MNIST [36], CIFAR-10 [37], and CIFAR-100 [37] as well as

their corresponding optimum hyperparameter values are given in Table 6.2. For each

dataset, the Whetstone network is trained for 50 epochs and the hyperparameter

optimization search evaluated the network for 30 different hyperparameter sets. The

Whetstone performance once its hyperparameters are optimized is increased from

99.53% to 99.6% for MNIST, and from 93.2% to 93.68% for Fashion-MNIST dataset.

This improved performance is more noticeable for more complex dataset such as

CIFAR-10 and CIFAR-100. For the former, the accuracy is increased from 79% to

84.36, and for the latter it is improved from 38% to 53.42%.

Figure 6.2 demonstrates the exploration and exploitation capability of Bayesian

optimization technique in finding the optimum set of hyperparameter for each dataset.

Starting from two random sets of hyperparameters, the search technique not only

exploits and leverages the sets of hyperparameters with decent performance, but also

explores the search space. In Figure 6.3, we show the frequency of selecting each

value for some of the hyperparameters given in Table 6.2 for CIFAR-100. The x-axis
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Table 6.2.: Hierarchical-PABO for Whetstone, case study two: Optimized hyperpa-
rameters and their corresponding classification accuracies for different dataset

Dataset MNIST Fashion-MNIST CIFAR-10 CIFAR-100

Optimizer Hyperparameters

Learning Rate 0.001 0.001 0.001 1
Rho 0.95 0.9 0.9 0.9
Epsilon 1e-6 1e-6 1e-8 1e-6
Decay 1e-8 1e-6 1e-6 1e-6
Type RMSprop RMSprop RMSprop Adadelta

Noise Layer
Hyperparameters

Standard deviation - 0.2 - -
Location No Noise After 1st Dense No Noise No Noise

Batch Normalizer
Hyperparameters

Momentum, conv. 0.95 0.95 0.85 0.95
Momentum, dense 0.95 0.85 0.95 0.95
Epsilon 1e-2 1e-2 1e-3 1e-3
Center False False True False
Scale False False False False

Whetstone Sharpener Schedule
Hyperparameters

Start Epoch 30 20 30 30
Duration 6 4 4 4
Intermission 4 5 2 5

CNN Architecture
Hyperparameters

Conv. layer 1, filter size 7 3 3 3
Conv. layer 2, filter size 5 3 5 5
Conv. layer 3, filter size 3 5 5 5
Conv. layer 1, # of features 128 128 64 128
Conv. layer 2, # of features 128 128 256 256
Conv. layer 3, # of features 256 512 512 512
Dense layer, # of features 256 512 512 1024

Accuracy 99.6% 93.68% 83% 53.42%

IterationIteration

Ac
cu
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 (%
)

Fig. 6.1.: Hierarchical-PABO for Whetstone case study one: Comparing grid search
and Bayesian hyperparameter optimization for hyperparameters given in Table 6.1
with search space size of 256

is the choice of hyperparameter and the y-axis is the number of times that a specific

choice is called within the 30 evaluations in the Bayesian optimization search. The

optimum hyperparameter values are highlighted in red rectangles in the figure. This
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Fig. 6.2.: Hierarchical-PABO for Whetstone case study two: Performance value (accu-
racy (%) for each hyperparameter optimization search iteration for MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 dataset with optimum hyperparameters given in
Table 6.2

also shows that after 30 iterations for searching the optimum hyperparameter set,

the Bayesian framework not only leans toward the optimum values by selecting them

most, but also tries all possible hyperparameter values to avoid trapping in any local

minimum.

6.4 Discussions

We perform further analysis on the changes of hyperparameters and their effect

on the final accuracy of the network. The hyperparameter values at each iteration in

case study one in Table 6.1 are given in Table 6.3. For example, with changing the

sharpener starting epoch from 15 to 25, its duration from 3 to 7, and the filter size



61

Fig. 6.3.: Hierarchical-PABO for Whetstone, case study two: Histograms of each
hyperparameter value for CIFAR-100 dataset experiment for the 30 iterations of the
optimization search process

in the first convolution layer from 7 to 3, we are able to improve the final accuracy

from 38.65% to 53.13% (iteration 3 versus iteration 13 in Table 6.3). This table also

shows that some hyperparameters play a vital role on the final performance of the

system, such as learning rate.

Table 6.4 gives a comprehensive sensitivity analysis on changing hyperparameter

values and observing the final performance of the spiking neural network for CIFAR-

100 dataset with the hyperparameter values given in Table 6.1 in case study two,

and the performances shown in Figure 6.2 for this dataset. These experiments are

chosen among the 30 iterations of the Bayesian optimization search. The first three

experiments in Table 6.4 show that with quite different combinations of hyperparam-
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Table 6.3.: Hierarchical-PABO for Whetstone, case study one: Details of the Bayesian
search direction

HPs Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7 Iter 8 Iter 9 Iter 10 Iter 11 Iter 12 Iter 13 Iter 14 Iter 15

lr 1e-4 1e-4 1 1e-4 1 1 1 1e-4 1 1 1e-4 1 1 1 1
dec 1e-8 1e-6 1e-6 1e-8 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-8 1e-6 1e-6
sh st 25 25 15 15 25 25 25 25 25 25 25 25 25 25 25
sh dur 3 7 3 3 7 7 3 3 7 3 7 7 7 7 7
sh int 2 2 2 5 5 5 5 2 2 5 2 2 5 5 2
filter 1 3 7 7 3 3 7 7 3 7 7 3 3 3 3 3
feat 1 64 128 128 64 64 64 64 128 128 64 128 128 64 128 64
dense 256 256 1024 1024 256 256 1024 1024 1024 256 256 1024 1024 1024 1024
Acc (%) 5.61 6.37 38.65 7.69 49.69 43.4 45.19 7.59 47.84 41.34 6.11 53.13 51.54 52.38 51.69

eters we are getting almost zero improvement in the classification performance. This

also intuitively shows that when the performance is not acceptable, the Bayesian ap-

proach drastically changes the hyperparameters to find the areas in the search space

with better accuracies. In experiment four, the hyperparameter combination leads

to an acceptable classification performance of 44.21%. From this point forward, the

changes in the hyperparameter values are less aggressive to leverage the decent perfor-

mance (only two hyperparameter values are changed from experiment four to five).

In experiment six, optimizer hyperparameter type and the corresponding learning

rate are changed; however, the final performance is within the same range compared

to experiment five. This shows that different sets of hyperparameters might lead to

similar classification performances. This indicates that this problem is well-suited for

multi-objective hyperparameter optimization problems, where we might achieve sim-

ilar performance while minimizing energy or area consumption. Experiments seven

and eight demonstrate the exploration aspect of our optimization approach, mean-

ing that although we already know an acceptable values for the hyperparameters,

we also explore other areas of the search space to see if we can further improve the

performance or not.

Table 6.5 shows a comparison between the Spiking Neural Network (SNN) classi-

fication accuracies on MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 dataset

for state-of-the-art models and network architectures in the literature. The purpose

of this work is not obtaining the best accuracy for each dataset; instead, our goal is to

show that with an effective hyperparameter optimization framework, we can drasti-
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Table 6.4.: Hierarchical-PABO for Whetstone, case study two. Sensitivity Analysis:
Comparing CIFAR-100 classification accuracy for different experiments

CIFAR-100 Exp. 1 Exp. 2 Exp.3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8 Exp. 9

Optimizer Learning Rate 0.0001 1 0.1 0.0001 0.0001 1 1 0.001 1
Optimizer Rho 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Optimizer Epsilon 1e-8 1e-6 1e-8 1e-8 1e-8 1e-8 1e-8 1e-6 1e-6
Optimizer Decay 1e-8 1e-8 1e-6 1e-6 1e-6 1e-6 1e-6 1e-8 1e-6
Optimizer Type Adadelta RMSprop RMSprop RMSprop RMSProp Adadelta RMSprop Adadelta Adadelta
Noise Standard deviation 0.2 0.3 - - - - 0.3 0.3 -
Noise Location 1st Dense 1st Dense No Noise No Noise No Noise No Noise 1st Dense 1st Dense No Noise
Batch Norm. Momentum, conv. 0.95 0.85 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Batch Norm. Momentum, dense 0.85 0.95 0.95 0.85 0.95 0.95 0.95 0.95 0.95
Batch Norm. Epsilon 1e-3 1e-2 1e-2 1e-2 1e-2 1e-2 1e-3 1e-3 1e-3
Batch Norm. Center True True False False False False False False False
Batch Norm. Scale True True True True False False False False False
Sharpener Start Epoch 25 20 25 30 30 30 20 25 30
Sharpener Duration 7 6 4 4 4 4 4 4 4
Sharpener Intermission 2 1 5 5 5 5 5 5 5
Conv. layer 1, filter size 7 5 3 3 3 3 3 3 3
Conv. layer 2, filter size 5 5 5 5 5 5 5 5 5
Conv. layer 3, filter size 3 3 5 5 5 5 5 5 5
Conv. layer 1, # of features 64 128 32 32 32 128 128 128 128
Conv. layer 2, # of features 256 128 64 64 64 64 128 256 256
Conv. layer 3, # of features 512 512 256 512 512 512 512 256 512
Dense layer, # of features 256 1024 256 1024 1024 1024 1024 1024 1024

Accuracy 1.96% 1.01% 1.01% 44.21% 46.07% 48% 1.01% 21.73% 53.42%

cally improve a performance of a model with only few evaluations. It is worth noting

that the networks that achieve higher accuracy in this table are often significantly

more complicated than the network structure we use, in terms of the architecture

and input encoding techniques for SNNs. By allowing for more complex network

structures, we expect that comparable accuracies can be achieved.

In this work, we show that by optimizing the hyperparameters associated with

Whetstone we increase the performance over the previous state-of-the-art for this

algorithm. From our results, we see that the choice of hyperparameters (even among

reasonable choices) can have a tremendous effect on the performance of Whetstone.

We also observe that the best hyperparameters found for each dataset differ across

the datasets, indicating the importance of specifically optimizing hyperparameters

for each new problem when converting to binary communication. We perform some

small network architecture optimizations in this work. In particular, we optimize the

filter size and number of features for each of the three convolutional layers, as well

as the number of features for the dense layer. We are limiting our search to a fixed

maximum network depth to deploy it on embedded systems in the future. The best
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Table 6.5.: Comparison of the SNN classification accuracies on MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 dataset

Model Network Architecture Method
Accuracy (%)

MNIST
Fashion
MNIST

CIFAR-10 CIFAR-100

Shrestha et al. [15] 6-layer CNN
Temporal credit assignment
for backpropagating (BP) error

99.36 - - -

Rueckauer et al. [115] 8-layer CNN Offline, ANN-to-SNN conversion 99.44 - 90.85 -
Hunsberger et al. [116] AlexNet Offline, ANN-to-SNN conversion 99.12 - 83.54 55.13
Lee et al. [117] ResNet-11 Spike-based backpropagating 99.59 - 90.95 -
Hao et al. [118] 3-layer FF SNN Symmetric STDP Rule 96.73 85.31 - -

Shrestha et al. [119] 4-layer NN
Error Modulated STDP
with symmetric weights

97.3 86.1 - -

Jin et al [120] 6-layer CNN Direct macro/micro BP 99.49 - - -
Sengupta et al. [18] VGG-16 Offline, ANN-to-SNN conversion - - 91.55 -

Machado et al. [121] 3-layer NatCSNN
Two-phase (unsupervised STDP,
ReSuMe supervised)

- - 84.7 -

Wu et al. [122] CIFARNet SNN and ANN with shared weights - - 91.54 -
Roy et al. [123] VGG-9 StochSigmoid XNOR-Net - - 87.95 55.54
Xing et al. [124] Inception-v4 Homeostasis-based conversion - - 92.49 70.4
Hu et al. [125] ResNet-8 ANN-to-SNN conversion 99.59 - - -
Hu et al. [125] ResNet-44 ANN-to-SNN conversion - - 91.98 68.56
Guerguiev et al. [126] ConvNet + LIFNet Regression discontinuity design - 91.81 76.2 -
Thiele et al. [127] Direct spike gradient 99.52 - 89.99 -
Wu et al. [128] 8-layer CNN Error BP through time - - 90.53 -
Severa et al. [56] VGG-like Whetstone (Sharpened ANN) 99.53 - 84.67 -

Severa et al. [56] 6-layer CNN Whetstone (Sharpened ANN) 99.53 93.2 79 38
Hyperparameter Optimized
Whetstone (this work)

6-layer CNN
Bayesian hyperparameter
optimized Whetstone

99.6 93.68 84.36 53.42

results on the different datasets are shown with different parameters in Table 6.2. We

anticipate that further optimizing the network architecture will be able to improve

the performance of Whetstone on different datasets. In future work, we plan to use

an evolutionary optimization approach such as MENNDL [84] added to Hierarchical-

PABO search to further optimize the architecture (the number and type of layers) of

these networks. Whetstone’s simple modifications to neural network design should

allow us to search for topologies including sharpening activations within this joint

Bayesian, Genetic Algorithm framework to better understand when sharpening is

useful and hopefully discover higher performance network designs that may better

leverage binarized operations.

In [44], Whetstone is deployed on SpiNNaker [45], with slight drop in accuracy

due to issues with input/output encoding. Here, we optimize the network using

Whetstone, but we do not map the resulting networks to a neuromorphic hardware

implementation, such as SpiNNaker [45] or Loihi [20]. As observed in [44], several

other hyperparameters such as input/output encoding, different network topologies



65

and training parameters will have an effect on this mapping performance. In the

future, we plan to include how the network performs on real neuromorphic hardware

as part of our training objectives in the hyperparameter and network architecture

optimization process.

Finally, as we consider mapping onto real neuromorphic hardware, there are often

other important performance considerations beyond accuracy on the task at hand. For

example, size, area, and energy efficiency are often important considerations for real

deployments of neuromorphic systems. As such, it is important to train with those

objectives in mind. In previous work, we have extended the Bayesian optimization

approach [25,28] and the fitness function used within MENNDL [129] to incorporate

multiple objectives. In future work, we plan to apply this approach to the Whetstone

algorithm in order to optimize networks that are both more accurate, but also more

efficient.
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7. HIERARCHICAL-PABO FOR

BACKPROPAGATION-BASED SPIKING

NEUROMORPHIC SYSTEMS

In this chapter we focus on a backpropagation-based training algorithm for spiking

neural networks, Spike Layer Error Reassignment in Time or SLAYER [15]. The goal

is to define optimum sets of hyperparameters that maximize SLAYER’s accuracy and

minimize the required time for training this SNN [29]. We first introduce SLAYER

and then continue with the experimental setup and results.

7.1 Introduction

The SLAYER approach, introduced in [15], overcomes the issue of non-differentiability

of the spiking function by introducing a backpropagation approach that uses a tem-

poral credit assignment policy to backpropagate errors. In this experiment we have

illustrated an approach for Hierarchical-PABO that has been successfully applied to

SLAYER [15]. We have shown that we can utilize this approach to simultaneously

optimize multiple objectives, including accuracy and network latency. Optimizing

the latter further improves the practical usability of these algorithms.

For the SLAYER [15] algorithm on the DVS Gesture dataset, we have demon-

strated that this approach has achieved state-of-the-art results by increasing the Top-1

accuracy from 94.13% to 96.2%. In addition, we have shown that with Hierarchical-

PABO approach, we are able to reduce network latency (training/inference times) by

5× while obtaining comparable accuracy.
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7.2 SLAYER

As already mentioned, SLAYER is a backpropagation-based training algorithm

for spiking neural networks, that uses temporal credit assignment policy for training

weights and delays. They treat the spiking neuron as probabilistic and observe the

conditions in which the spike state changes. The derivative is well approximated by

the probability density function of the spike state change [15].

In addition to typical hyperparameters of convolutional neural networks and op-

timization approaches, the SLAYER [15] algorithm itself has a variety of hyperpa-

rameters (HPs) to be optimized. The first set of parameters are concerned with

how the neurons function in the network. SLAYER utilizes a Spike Response Model

(SRM) neuron, which takes a signal processing approach to represent the behavior

of a spiking neuron. Several different types of neuron models (e.g., leaky integrate-

and-fire neurons) can be implemented using SRMs by changing the parameters. The

particular hyperparameters of the neuron model are as follows:

• Neuron threshold (theta): If a neuron’s state (or membrane potential) exceeds this

value, the neuron will generate a spike.

• Spike Response time constant (tauSr): The spike response time constant determines

the rate of decay for the spike response kernel. This effectively acts as a membrane

time constant for the neuron.

• Refractory period time constant (tauRef): The refractory period time constant

determines the refractory behavior of the neuron following a spike.

• Neuron refractory response scaling factor (scaleRef): This value indicates how to

scale the neuron’s response when the neuron is in its refractory period. It is specified

relative to the neuron threshold value (theta).

• Spike function derivative time constant (tauRho) and spike function derivative scale

factor (scaleRho): These values are used in formulating an approximation of the
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derivative of the spike function. Both values are scaling factors in a probability

density function for the change in state of the spiking neuron. More details are

available in the original paper on SLAYER [15].

Additional HPs for SLAYER are related to the spiking neural network (SNN)

simulation, as well as information about the input data. Those parameters are:

• Time length of sample (tSample): This is how long the SNN simulation is run for

each data sample. This value is specified in ms.

• Sampling time (Ts): The specifies the size of the time step in the SNN simulation.

This value is specified in ms.

Finally, SLAYER requires that both correct and incorrect output neurons fire

over the course of training to alleviate the “dead neuron” problem that is common in

backpropagation-based SNN training approaches. Thus, SLAYER also requires extra

set of HPs to specify how many times the “true” neuron should spike (sCountTrue)

and how many times the “false” neurons should spike (sCount div). Please see the

original SLAYER paper [15] and the SLAYER source code for PyTorch1 for full

information about the SLAYER algorithm and how it is implemented. The original

SLAYER approach has the ability to learn both synaptic weights and axonal delays,

but in the current software release (in Python, utilizing pytorch), SLAYER only learns

the synaptic weights of the SNN.

7.3 Experimental Setup and Results

We use Hierarchical-PABO for defining sets of HPs that maximize SLAYER’s

accuracy with the minimum training time per epoch (as a proxy for the network

latency). The HPs on the Pareto front not only lead to SNN performances (both in

terms of accuracy and speed) that surpass those obtained in [15], but also show a

trade-off in designing accurate and fast networks. Such information can be used by a

1https://github.com/bamsumit/slayerPytorch
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skilled designer to tune their networks according to their requirements. For example,

a network designer might choose to reduce accuracy by a few hundredths in exchange

for doubled speed. All results are obtained with NVIDIA Tesla V100 GPUs with

16GB memory.

7.4 Results

In the first case study for SLAYER, we apply Hierarchical-PABO on the DVS

Gesture dataset [40] to optimize SLAYER’s accuracy and training/inference time. We

intentionally design a small search space (with only 512 different HP combinations),

so that we can obtain a ground truth for the actual Pareto region of the problem by

running a grid search algorithm. We then compare the actual Pareto region of the

problem with the one estimated using our Hierarchical-PABO technique. We repeat

each HP combination five times to account for the inherent stochasticity involved

in designing neural networks. The evaluated and fixed HPs for this case study are

given in Table 7.1. All evaluated HPs are in reasonable and acceptable ranges for

the SLAYER algorithm. In Table 7.1, Arch refers to the SLAYER architecture..

Architecture 1 (“Arch = 1”) refers to a ten layer SNN with spiking delays after the

convolution and fully connected layers, architecture 2 (“Arch = 2”) refers to the

original eight layer SNN from [15], and architecture 3 (“Arch = 3”) is a ten layer

SNN without any spiking delays. Details of these architectures are as follows:

• Arch = 1: input/pool1/conv1/delay1/pool2/conv2/delay2/pool3/conv3/delay3/

pool4/fc1/delay4/fc2.

• Arch = 2: input/pool1/conv1/delay1/pool2/conv2/ delay2/pool3/fc1/delay3/fc2

• Arch = 3: input/pool1/conv1/pool2/conv2/pool3/ conv3/ pool4/fc1/fc2.

In this notation, “pool” refers to pooling layer, “conv” is convolution layer, and

“fc” is a fully connected layer. In addition, in Table 7.2 filters 1 to 3 refer to filter

sizes in convolution layers 1 to 3 in the architectures described above.
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Table 7.1.: Hierarchical-PABO for SLAYER, case study one. Fixed and evaluated
HPs with their corresponding values, as well as details of HPs for maximum accuracy
(Point A) and minimum time (Point B)

Fixed Hyperparameters Evaluated Hyperparameters Point A Point B

tSample 1200 Ts 10, 14 10 14
theta 10 sCountTrue 200, 150 200 200

sCountFalse 20 tauRho 0.1, 1 1 1
tauSr 2 × Ts scaleRho 0.5, 1 0.5 0.5
tauRef Ts Optimizer Adam, Nadam Adam Adam

scaleRef 2 [Arch.,Filter1,2,3] [3,7,5,3], [1,7,3,3], [3,3,5,3], [2,5,3,3] [3,7,5,3] [2,5,3,3]
Learning Rate 0.01 # of Feature in FC 256, 512 512 512

# Feature 1,2,3 [20,32,64] Batch Size 4, 8 4 8

Search Space Size: 512
95.113%
73.17sec

91.35%
29.19sec

c.

A

95.113 ± 0.70%

B
29.19 ±0.54 sec

a.

b.

B

A

NeurIPS’18 [15]

93.64 ± 0.49 %

Fig. 7.1.: Hierarchical-PABO for SLAYER, case study one. Grid search results are
shown in, (a) for accuracy; and (b) for training time per epoch; for all possible HP
combinations based on the HPs given in Table 7.1. Please note, the x-axis in (a) and
(b) are NOT the same, as the combinations are sorted in descending order according
to accuracy in (a) and time in (b). (c) Pareto front obtained using Hierarchical-
PABO framework with only 15 iterations. The green data point, shows the best
result from [15]. Points A, and B, refer to maximum accuracy and minimum training
time per epoch, respectively. The corresponding HPs for these two points are given
in Table 7.1.
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Figure 7.1a and Figure 7.1b show how SLAYER’s accuracy and training time per

epoch change for the hyperparameter combinations given in Table 7.1. Each data

point on these two panels are a boxplot with interquartile ranges that are obtained

after 5 repeats of the same run with the same set of hyperparameter. The test

accuracy drastically changes from 95.113% to 16.91% if only sCountTrue changes

from 200 to 150, tauRho from 1 to 0.1, scaleRho from 0.5 to 1, and filter size in the

first convolution layer from 7 to 3. We emphasize that all these hyperparameters are

chosen within a reasonable range typically used by the designers of such networks.

Please note that HP combinations are sorted for test accuracy, and for training time

per epoch individually on the x-axis of Figure 7.1a and b, respectively; and therefore,

the HP indices are different in the two panels in the figure.

Figure 7.1c demonstrates the Hierarchical-PABO search points and estimated

Pareto points after 15 iterations of the Bayesian algorithm. The Pareto points (shown

as blue stars) are within close proximity to the actual Pareto frontier of the problem

(obtained from grid search shown as grey dots). The optimizer search points (shown

in red squares) are the Bayesian estimators observations and show how the entire

search space is explored and exploited. The accuracy shown as the NeurIPS’18 point

in the figure is the accuracy reported in [15]. It should be noted that the authors

of that work have provided us with the hyperparameters that lead to the reported

accuracy. We used those HPs to obtain the training time per epoch for the network

on the same system on which all other runs were carried out. With only 15 iterations

of our Bayesian HPO framework, we obtained sets of hyperparameters that surpass

results given by [15] both in terms of accuracy and speed of training as shown in

Figure 7.1c. The co-optimized Pareto HP points show better or comparable accuracy

while reducing the training time per epoch by as much as 5×. In all data points

shown in Figure 7.1, the number of epochs is fixed to 40.

Table 7.2 gives details of the HPs that led to the Pareto points shown with blue

stars in Figure 7.1c. For each HP combination, the median value for accuracy and

training time per epoch after five evaluations of SLAYER is given in Table 7.2. All of
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Table 7.2.: Hierarchical-PABO for SLAYER, case study one on DVS Gesture dataset
using SLAYER. Hyperparameter combinations for Pareto points shown with blue
stars in Figure 1. Search space size: 512

Evaluated Hyperparameter Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Ts 10 14 14 14 10 10
sCountTrue 200 200 200 200 200 200

tauRho 1.0 1.0 1.0 1.0 1.0 1.0
scaleRho 0.5 1.0 1.0 1.0 0.5 0.5
Optimizer Adam Adam Adam Adam Nadam Nadam

[Arch.,Filter1,2,3] [2,5,3,3] [3,7,5,3] [3,7,5,3] [3,3,5,3] [3,7,5,3] [2,5,3,3]
# of Feature in FC 256 256 512 512 256 256

Batch Size 8 8 8 4 8 8
Accuracy (%) 92.86% 94.74% 94.36% 93.23% 95.49% 92.48%

Training Time per Epoch (sec) 31.06 49.02 48.92 47.22 58.86 30.67

these points belong to the Pareto frontier of a multi-objective optimization problem;

therefore, none of them can be dominated by any other one for both accuracy and

time. However, with only a 0.75% drop in median accuracy, we can drop the median

training time by 9.84 seconds per epoch (point 5 vs. point 2 in Table 7.2).

As indicated in Table 7.1, in this case study, tSample is fixed to 1200, and Ts is

limited to 10 or 14. The ratio of tSample to Ts is the number of discrete time steps

to evaluate which is a primary factor for training time. However, other HPs also play

an important role in training time such as tauSR which helps determine the spike

response kernel. The response kernel must be convolved with the spiking signal for

each layer, so a larger kernel results in additional computation. In the grid search

results shown in Figure 7.1, to have a manageable search space size, tSample/Ts

is either 120, or 85. These factors combined with all other HPs given in Table 1,

create a grid search with only 512 HP combinations and a training time per epoch

that varies from 79 seconds to 29 seconds. In problems where the hyperparameter

combinations are on the order of millions and billions, a simple change in one HP

can create orders of magnitude shifts in training time. In the NeurIPS’18 [15] point

shown in Figure 7.1c, tSample is 1450, and theta is 1.0. This change, combined with

the values for other HPs, led to a non-optimal design with almost 5× higher training

time.
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Table 7.3.: Hierarchical-PABO for SLAYER. Hyperparameter combination for the
optimum accuracy of 96.421% on DVS gesture dataset

Optimum HP Value Optimum HP Value

Test Accuracy: 96.421%
Number of Epochs: 100
Number of Bayesian Iterations: 40
Number of Repeats: 5
Training/Test split: 70%/30%
Performance Metric: Accuracy-only

tSample 1200 tauRho 1
theta 10 scaleRho 0.5

sCountTrue 200 Learning Rate 0.01
sCountFalse 20 Optimizer Adam

Ts 10 Batch Size 4
tauSr 20 [Arch.,Filter1,2,3] [3,3,5,3]
tauRef 10 # Feature 1,2,3 [20,32,64]

scaleRef 2 # of Feature in FC 512

Figures 7.2, and 7.3 demonstrate the changes in accuracy and training time per

epoch for different HPs, respectively. All 512 HP combinations given in Table 7.1

are ranked from best to worst for accuracy (in Figure 7.2), and training time per

epoch (in Figure 7.2). The box plots show the variation across 5 evaluations for each

HP set. The median value is shown with red line. The color blocks for each figure

represents HP combination that correspond to the given accuracy, and training time

per epoch (for Figures 7.2, and 7.3, respectively). These figures show the drastic

difference that HP combinations have on the SLAYER performance (both in terms

of accuracy and time). In addition, the color blocks for each set of HP show that

a combination of HPs affects the final performance, not only one specific HP. This

further demonstrates how critical it is to perform hyperparameter optimization when

designing any neural accelerator system.

In addition, we used our Hierarchical-PABO for optimizing accuracy only, and

obtained 96.241% Top-1 accuracy compared to the Top-1 accuracy of 94.13% reported

by [15]. This optimum HP combination was found after 40 iterations of Bayesian

optimizer with maximum epoch count of 100, and it is given in Table 7.3.

To further investigate efficiency of our Hierarchical-PABO approach, in case study

two on SLAYER, we increase the search space size to 14,929,920 different HP com-

binations. Figure 7.4 shows that after only 40 iterations of the Hierarchical-PABO

search the Pareto frontier is estimated (which is shown in blue stars). The hyper-

parameter ranges for this example are given in Table 7.4. The four Pareto points
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Table 7.4.: Hierarchical-PABO for SLAYER, case study two on DVS Gesture dataset.
Search space size: 14,929,920. Results are shown in Figure 7.4

HP Range HP Range HP Range

tSample
1000, 1200,

1400, 1600, 2000
tauRho 0.1, 0.5, 1 # Feature 1 20

theta 10, 12 scaleRho 0.1, 0.5, 1 # Feature 2 32, 64
sCountTrue 100, 150, 200, 250 tauRef Ts/1, Ts/2, Ts/3 # Feature 3 64, 128

Ts 10, 16 scaleRef 1, 2, 3 # of Feature in FC 256, 512

sCountFalse
sCountTrue/5,
sCountTrue/10,
sCountTrue/15

[Arch.,Filter1,2,3]

[2, 5, 3, 5], [3, 7, 5, 3],
[1, 7, 3, 3], [2, 5, 3, 3],
[2, 3, 5, 3], [3, 3, 5, 3],
[3, 7, 3, 3], [3, 5, 3, 3]

Optimizer Adam, Nadam

tauSr Ts × 1, Ts × 2, Ts × 3 Learning Rate 0.001, 0.01 Batch Size 8

shown with blue stars in Figure 7.4 and their corresponding HPs are summarized

in Table 7.5. This study shows that for a case study with almost 15 million differ-

ent HP combinations, we are able to find optimum HPs with acceptable ranges for

both accuracy and training time with only 40 iterations of the Hierarchical-PABO

approach.

Fig. 7.4.: Hierarchical-PABO for SLAYER, case study two on DVS Gesture dataset.
Search space size: 14,929,920 with HP ranges given in Table 7.5
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Table 7.5.: Hierarchical-PABO for SLAYER, case study two. Pareto Points and the
Corresponding HPs for HP ranges given in Table 7.4, and results shown in Figure 7.4

HP [tSample, theta, sCountTrue, sCountFalse, Ts, tauSr, tauRef, scaleRef, tauRho, scaleRho,
LR, optimizer, [Arch, Filter1,2,3], Feature 1, Feature 2, Feature 3, Feature FC, Batch-size]

[Accuracy,
Training time per epoch]

[1400, 12, 200, 40, 10, 20, 10, 1, 0.5, 1.0, 0.01, Adam, 5, 20, 32, 64, 256, 8] 92.10%, 38.51 sec
[1000, 10, 100, 20, 10, 10, 20, 1, 1.0, 0.1, 0.01, Nadam, 1, 20, 32, 64, 256, 8] 87.22%, 33.43 sec
[1000, 10, 100, 20, 10, 20, 20, 1, 1.0, 0.5, 0.01, Nadam, 1, 20, 32, 64, 256, 8] 87.60%, 33.62 sec
[1000, 10, 100, 20, 10, 20, 20, 2, 1.0, 0.1, 0.01, Nadam, 1, 20, 32, 64, 256, 8] 85.34%, 33.28 sec

Table 7.6.: Comparison of the results of our Hierarchical-PABO framework with other
SNN models on DVS Gesture dataset [40]

Work Network Type Accuracy (%)

Kaiser eRBP [130] Feed Forward SNN, No Convolutions 92.7
DECOLLE [131] Deep SNN, Online Learning 95.54
Fang IIR [132] Deep SNN, Neuron+Synapse Filters 96.09
SLAYER [15] Deep SNN 93.64
This Work HP Optimized SLAYER 96.241

7.5 Discussions

In Table 7.6 we compare recent results in the literature with our results on DVS

Gesture dataset [40] with an HP optimized SLAYER. In this table we only show

a sample of results for our multi-objective HPO. There are several Pareto points

discussed in the paper that when compared to other results in the literature are

better in terms of accuracy, time, or both.

In this work, we adopted a novel hierarchical-PABO approach, and applied it to

a distinct SNN training algorithm, SLAYER. The proposed multi-objective method

was utilized to simultaneously optimize multiple objectives, including accuracy and

network latency. Optimizing the latter further improves the practical usability of

these algorithms. The estimated hyperparameter sets from the proposed method

results in more accurate and faster networks compared to the state-of-the-art ap-

proaches. Through several case studies, we demonstrated cutting-edge results that

can be leveraged by a skilled designer in the field to design lightweight, energy efficient

and accurate architectures.
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8. HIERARCHICAL-PABO FOR CONVERSION-BASED

SPIKING NEUROMORPHIC SYSTEMS

The HYBRID approach proposed by [17] relies on converting an already trained ANN

to an SNN with appropriate threshold-balancing, and then fine-tuning with a spike-

based backpropagation approach. The technique proposes a computationally efficient

algorithm with reduced latency and time-steps [17]. In this chapter, we first briefly

review HYBRID approach, and then present the experimental setup and results for

using our Hierarchical-PABO framework to push HYBRID limits to its full capacity.

The goal is to find optimum set of HPs that maximize performance of HYBRID

training algorithm in terms of accuracy and speed of training/inference [29].

8.1 HYBRID

HYBRID [17] proposes a hybrid training approach for deep SNNs on VGG [32] and

ResNet [133] architectures for image classification tasks [17]. The HYBRID technique

combines the two previously proposed methods of supervised training in SNNs: ANN-

SNN conversion [18,66], and surrogate gradient-based backpropagation in SNN [134].

The objective of the HYBRID approach is to reduce the inference latency associated

with the conversion methods, and at the same time enable the training of deep SNNs

that is otherwise difficult to perform with only backpropagation methods due to high

training time (wall-clock time).

In this method, an ANN (with ReLU neurons) is trained with standard backprop-

agation and then converted to an SNN (with integrate-and-fire (IF) neurons) with

appropriate threshold-balancing [18]. The threshold-balancing computes the thresh-

old for each layer as the maximum pre-activation value for that layer. This converted

SNN that already achieves decent accuracy (3% − 15% less than ANN) is further
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fine-tuned (to improve the accuracy) with spike-based backpropagation to capture

the temporal information from the spatiotemporal inputs. Please see the original

HYBRID paper [17] and the HYBRID source code for PyTorch1 for full information

about the HYBRID algorithm and how it is implemented.

8.2 Experimental Setup and Results

As the HYBRID technique is designed based on ANN-SNN conversion, if the ac-

curacy of the underlying ANN is maximized, the overall performance of the HYBRID

approach increases significantly. Therefore in this experiment, we use the two-level

Hierarchical-PABO (H-PABO) technique and demonstrate how the HYBRID

approach is further improved, in terms of accuracy and time-steps, once both ANN

and SNN’s HPs are optimized. In the first level of the two-level H-PABO technique,

we use the framework as a single-objective optimizer (SOO) to find an optimum set of

HPs that maximizes the performance of the underlying ANN. In the second level, we

use the Bayesian HPO as a multi-objective hyperparameter optimizer (MOO) that

optimizes both accuracy of the trained SNN and the latency in terms of time-steps.

For the ANN, we choose the optimizer, learning rate, learning rate change sched-

ule, weight decay term (L2 regularization), momentum, and dropout as the hyper-

parameters. Additionally, for the SNN, we select time-steps, leak, and scaling factor

(used to reduce the thresholds at lower time-steps) as the hyperparameters. All the

ANN hyperparameters are also considered for the SNN during the spike-based back-

propagation. The hierarchical-PABO finds the sets of HPs that belong to the Pareto

region of the problem. The HPs on the Pareto front not only lead to SNN perfor-

mances (both in terms of accuracy and speed) that surpass those obtained in [17],

but also show a trade-off in designing accurate and fast networks. All results are

obtained with NVIDIA Tesla V100 GPUs with 16GB memory.

1https://github.com/nitin-rathi/hybrid-snn-conversion
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Table 8.1.: Hierarchical-PABO for HYBRID. Summary of results for the two-level
hierarchical Bayesian HPO compared with results from [17]

ANN SNN

Dataset Architecture
ICLR’20 [17]

Accuracy
This work, SOO

Accuracy
ICLR’20 [17]

[Accuracy, Time-step]
This Work, MOO: Sample Pareto Points

[Accuracy, Time-step] (# of epochs)

CIFAR10

VGG5 87.88% 90.66% [86.91%,75] [90.00%,70], [89.32%,60], [88.53%,40] (30)
VGG9 91.45% 92.42% [90.54%,100] [91.53%,90], [91.32%, 80], [90.71%, 60] (30)
VGG13 - 93.6% - [91.45%,80], [89.81%, 60], [88.00%, 40] (30)
VGG16 92.81% 93.9% [91.13%, 100] [91.47%,120], [90.04%,70] (5)

RESNET20 93.15% 93.53% [92.22%, 250] [90.49%,80], [90.24%,60] (5)

CIFAR100
VGG11 71.21% 69.29% [67.87%, 125] [63.87%, 60](5)
VGG16 - 72.35% - [62.70%,80],[60.90%,60] (5)

RESNET20 - 64.56% - [63.10%,80], [61.74%,60] (30)

Table 8.2.: Hierarchical-PABO for HYBRID. HPs for the Pareto points given in
Table 8.1

Dataset Architecture
[Accuracy (%), Time-step]: Pareto HP [LR, LR red, LR int,
Weight-decay,Time-step, Leak, Scaling-factor, Dropout] (# of epochs)

CIFAR10

VGG5
[90.00%,70]: [1e-5, 5, [0.4, 0.65, 0.85], 5e-5, 70, 1.0, 0.5, 0.2] (30)
[89.32%,60]: [1e-5, 10, [0.4, 0.65, 0.85], 5e-5, 60, 1.0, 0.5, 0.2] (30)
[88.53%,40]: [1e-5, 5, [0.6, 0.8, 0.9], 5e-5, 40, 1.0, 0.5, 0.2] (30)

VGG9
[91.53%,90]: [1e-5, 5, [0.4, 0.65, 0.85], 5e-5, 90, 1.0, 0.5, 0.2] (30)
[91.15%, 70]: [1e-5, 5, [0.6, 0.8, 0.9], 5e-5, 70, 1.0, 0.5, 0.2] (30)
[90.38%, 50]: [1e-5, 10, [0.6, 0.8, 0.9], 5e-5, 50, 1.0, 0.5, 0.2] (30)

VGG13
[91.45%,80]: [5e-4, 5, [0.6, 0.8, 0.9], 5e-5, 80, 1.0, 0.5, 0.2] (30)
[89.81%, 60]: [1e-5, 5, [0.6, 0.8, 0.9], 5e-5, 60, 1.0, 0.5, 0.2] (30)
[88.00%, 40]: [1e-4, 10, [0.5, 0.7, 0.9], 1e-4, 40, 1.0, 0.5, 0.3] (30)

VGG16
[91.47%, 120]: [1e-5, 2, [0.6, 0.8], 5e-4, 120, 0.95, 0.4, 0.0] (5)
[90.04%, 70]: [5e-4, 10, [0.6, 0.8], 1e-4, 70, 0.95, 0.5, 0.3] (5)

RESNET20
[90.49%, 80]: [1e-4, 10, [0.6, 0.8], 1e-5, 80, 1.0, 0.5, 0.0] (5)
[90.24%,60]: [5e-4, 5, [0.4, 0.6], 1e-6, 60, 1.0, 0.5, 0.0] (5)

CIFAR100
VGG11 [63.87%, 60]: [1e-4, 10, [0.6, 0.8, 0.9], 5e-4, 60, 1.0, 0.5, 0.3] (5)

VGG16
[62.70%, 80]: [1e-4, 2, [0.6, 0.8], 5e-4, 80, 1.0, 0.4, 0.1] (5)
[60.90%,60]: [5e-4, 5, [0.6, 0.8], 5e-5, 60, 0.99, 0.5, 0.0] (5)

RESNET20
[63.10%,80]: [5e-5, 10, [0.4, 0.6], 5e-5, 80, 1.0, 0.5, 0.2] (30)
[61.74%,60]: [5e-5, 8, [0.6, 0.8], 5e-4, 60, 1.0, 0.5, 0.2] (5)

In this experimental setup, we use the HYBRID technique [17] on image classifi-

cation datasets of CIFAR10 and CIFAR100 [37] using VGG [32] and RESNET [133]

architectures.

Table 8.1 shows a summary of the results on both the ANN and SNN compared

with [17], where available. For CIFAR10 on VGG architectures without Hierarchical-

PABO reported by HYBRID [17], the highest accuracy and lowest time-steps found

were 91.13% and 100, respectively, on the VGG16 architecture. In this work, however,
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there are numerous Pareto points that surpass the previous state-of-the-art results

both in terms of accuracy and time-step. For example, this approach discovered a

set of hyperparameters that led to a Pareto point with higher accuracy of 91.45%, a

lower time-step of 80, and the simpler architecture of VGG9.

Table 8.2 gives details of the HPs for the Pareto points shown in Table 8.1 for

CIFAR-10 and CIFAR-100 datasets using different VGG and ResNet architectures. In

this table, “LR” represents Learning Rate, “LR red” refers to how much to reduce LR,

and “LR int” gives the location where LR is reduced. Figure 8.1 demonstrates how the

Hierarchical-PABO searches for the Pareto frontier of the multi-objective optimization

problem. The distribution of red triangles in the figure show the exploration and

exploitation of the search space. After 15 iterations of the Bayesian estimators, the

Pareto frontier is estimated, which is shown in blue stars in Figure 8.1.

As discussed in [17], with the increase in the spiking activity, the energy efficiency

of the SNN decreases. Thus, although deeper networks might increase the training

accuracy, an increase in the average number of spikes per layer, as well as increasing

the number of layers in the network, will cause a decrease in the energy efficiency of

the network. Here, we are able to show that by optimizing hyperparameters, we can

achieve similar accuracy with smaller (and hence more efficient) SNNs.

Table 8.3 gives details of HPs and their ranges for each single-objective optimiza-

tion run for the underlying ANN. With a search space size of 12, 096, we searched

for the optimum HP that maximizes the underlying ANN performance (in terms of

test accuracy) for all VGG and ResNet architectures used in these experiments on

CIFAR-10 and CIFAR-100 datasets. Figure 8.2 is a demonstration of how the hier-

archical Bayesian HPO searches for the optimum HP for CIFAR-10 for the VGG16

architecture. This figure shows as the number of iterations increases in the Bayesian

estimator, the underlying ANN accuracy is optimized. Similar trends are seen for all

other architectures on CIFAR-10 and CIFAR-100. The batch size is fixed to 64 and

the maximum epoch count for all experiments was 300.
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ICLR’20 [17]
86.91%

88.53%

89.32%
90.00%
89.87%

ICLR’20 [17]
90.54%

89.08%
90.38%
90.71%
91.15%
91.32%
91.53%

a.

b.

Fig. 8.1.: Hierarchical-PABO for HYBRID. CIFAR10 on VGG5. Architectures with
better performances are shown in the Pareto frontier. These designs improve the
accuracy by 2-4%, with 50% reduce in time-steps.

Table 8.3.: Hierarchical-PABO for HYBRID. Single-objective optimization (SOO):
Search space size: 12,096 for SOO on Underlying ANN

Hyperparameter Range

LR 0.1, 0.07, 0.03, 0.01, 0.007, 0.003, 0.001
LR red 5, 10
LR int [0.4, 0.6, 0.8], [0.5, 0.7, 0.9], [0.6, 0.8, 0.9]

Optimizer SGD, Adam, Adagrad, Adamax, Adadelta, RMSprop
Weight-decay 1e-5, 5e-5, 1e-4, 5e-4
Momentum 0.8, 0.85, 0.9, 0.95

Dropout 0.2, 0.3, 0.4
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Fig. 8.2.: Hierarchical-PABO for HYBRID, Single-objective optimization. Search
space size: 12,096 for SOO on Underlying ANNs with HP ranges given in Table 8.3

Figures 8.3 and 8.4 show the Pareto frontier of the multi-objective optimization

problem (accuracy and time-steps) for several architectures on CIFAR-10 and CIFAR-

100 image classifications. The corresponding HPs for each single Pareto point are

given in Tables 8.4, and 8.5. For all of these examples the optimizer is fixed to Adam.

8.3 Discussions

In Table 8.6 we compare recent results in the literature with our results on CIFAR-

10 with an HP optimized HYBRID. In this table we only show a sample of results

for our multi-objective HPO. There are several Pareto points discussed in the paper

that when compared to other results in the literature are better in terms of accuracy,

time, or both.

Using the proposed novel two-level Hierarchical-PABO approach, that contains a

single-objective Bayesian approach for hyperparameter optimization of the ANN and
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Fig. 8.3.: Hierarchical-PABO for HYBRID. CIFAR10 Image Classification on VGG
and RESNET architectures
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Fig. 8.4.: Hierarchical-PABO for HYBRID. CIFAR100 Image Classification on VGG
and RESNET architectures
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Table 8.4.: Hierarchical-PABO for HYBRID. Details of the HPs for the Pareto Points
in Figure 8.3

Architecture
Pareto HP = [LR, LR red, LR int, Weight-decay,
Time-step, Leak, Scaling-factor, Dropout]

Accuracy Time-step

CIFAR10

VGG11

[1e-5, 10, [0.6, 0.8], 1e-5, 40, 1.0, 0.5, 0.0]
[1e-5, 15, [0.4, 0.6], 1e-5, 50, 1.0, 0.5, 0.0]
[1e-5, 10, [0.6, 0.8], 1e-6, 60, 1.0, 0.5, 0.1]
[1e-5, 5, [0.4, 0.6], 1e-5, 70, 1.0, 0.5, 0.0]
[1e-5, 10, [0.6, 0.8], 5e-5, 80, 1.0, 0.5, 0.3]
[1e-5, 5, [0.4, 0.6], 1e-5, 90, 1.0, 0.5, 0.0]
[1e-5, 5, [0.6, 0.8], 1e-5, 110, 0.99, 0.5, 0.0]
[1e-5, 15, [0.6, 0.8], 1e-5, 130, 1.0, 0.6, 0.5]

88.25%
89.04%
90.09%
90.18%
90.92%
90.96%
91.46%
91.84%

40
50
60
70
80
90
110
130

VGG13

[5e-4, 5, [0.4, 0.6], 5e-4, 40, 0.99, 0.4, 0.1]
[1e-5, 8, [0.4, 0.6], 5e-4, 80, 1.0, 0.6, 0.4]
[1e-4, 5, [0.6, 0.8], 5e-5, 100, 0.95, 0.4, 0.3]
[1e-5, 10, [0.4, 0.6], 5e-5, 140, 1.0, 0.7, 0.0]

87.32%
90.94%
91.63%
91.84%

40
80
100
140

VGG16

[1e-5, 5, [0.4, 0.6], 1e-5, 40, 1.0, 0.4, 0.1]
[1e-5, 5, [0.4, 0.6], 1e-5, 50, 1.0, 0.4, 0.0]
[1e-5, 5, [0.4, 0.6], 1e-5, 60, 1.0, 0.5, 0.0]
[5e-4, 8, [0.6, 0.8], 1e-4, 80, 0.95, 0.4, 0.0]
[1e-5, 5, [0.4, 0.6], 5e-4, 100, 0.99, 0.5, 0.1]
[1e-5, 10, [0.4, 0.6], 5e-5, 140, 1.0, 0.7, 0.0]

82.1%
84.2%
89.53%
90.23%
90.4%
91.91%

40
50
60
80
100
140

RESNET20
[1e-5, 5, [0.6, 0.8], 1e-6, 40, 1.0, 0.5, 0.2]
[1e-5, 5, [0.4, 0.6], 1e-5, 50, 1.0, 0.5, 0.0]
[5e-4, 5, [0.4, 0.6], 1e-6, 60, 1.0, 0.5, 0.0]

77.67%
80.81%
90.24%

40
50
60

an agent-based multi-objective Bayesian approach for hyperparameter optimization

of the SNN, we have optimized and trained networks that outperform the previous

state-of-the-art HYRBID [17] training SNN results on the CIFAR10 and CIFAR100

dataset with VGG and RESNET architectures in terms of accuracy with more than

40% reduction in network latency (time steps). In addition, we demonstrate that

the proposed approach can discover hyperparameters for simpler architectures that

achieve higher accuracy and lower latency than previously published results. Both

the reduction in architecture size and network latency have significant implications

for energy efficiency of these architectures. For example, we demonstrate the results

for CIFAR10 on VGG9 with improved accuracy compared to a much deeper and more

energy-consumptive VGG16, and with 30% reduction in inference time. Finally, by
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Table 8.5.: Hierarchical-PABO for HYBRID. Details of the HPs for the Pareto Points
in Figure 8.4

Architecture
Pareto HP = [LR, LR red, LR int, Weight-decay,
Time-step, Leak, Scaling-factor, Dropout]

Accuracy Time-step

CIFAR100

VGG11

[1e-4, 5, [0.6, 0.8], 1e-5, 40, 0.99, 0.5, 0.0]
[1e-5, 10, [0.4, 0.6], 1e-5, 50, 1.0, 0.5, 0.0]
[1e-5, 10, [0.4, 0.6], 1e-5, 70, 1.0, 0.5, 0.2]
[1e-5, 5, [0.6, 0.8], 5e-5, 80, 0.99, 0.5, 0.1]
[1e-5, 5, [0.4, 0.6], 1e-6, 110, 0.99, 0.6, 0.2]
[1e-5, 15, [0.4, 0.6], 5e-5, 140, 1.0, 0.7, 0.0]

55.27%
56.67%
60.74%
61.86%
62.16%
65.97%

40
50
70
80
110
140

VGG13

[5e-4, 5, [0.6, 0.8], 5e-5, 40, 1.0, 0.5, 0.1]
[1e-5, 10, [0.6, 0.8], 5e-5, 80, 0.95, 0.5, 0.3]
[5e-4, 5, [0.4, 0.6], 5e-5, 90, 0.95, 0.5, 0.0]
[1e-5, 5, [0.4, 0.6], 1e-6, 130, 1.0, 0.6, 0.4]

63.23%
63.59%
66.56%
67.72%

40
80
90
130

VGG16

[5e-4, 5, [0.6, 0.8], 1e-5, 40, 1.0, 0.5, 0.0]
[5e-4, 5, [0.6, 0.8], 5e-5, 60, 0.99, 0.5, 0.0]
[1e-5, 10, [0.4, 0.6], 5e-6, 80, 1.0, 0.6, 0.2]
[1e-5, 10, [0.4, 0.6], 5e-6, 140, 1.0, 0.6, 0.2]

55.23%
60.9%
60.72%
63.23%

40
60
80
140

RESNET20
[1e-4, 10, [0.4, 0.6], 5e-5, 40, 1.0, 0.5, 0.1]
[1e-5, 5, [0.6, 0.8], 1e-6, 70, 1.0, 0.5, 0.0]
[5e-5, 10, [0.4, 0.6], 5e-5, 80, 1.0, 0.5, 0.2]

60.75%
61.04%
52.43%

40
70
80

evaluating the performance of the proposed approach on multiple SNN algorithms

on standard and non-standard datasets, we signify its versatility in optimizing the

performance of SNNs. Through these numerous examples, we also achieve one of the

key goals of this approach, which is to help close the gap in performance between

ANNs and SNNs for resource-constrained environments without compromising the

practicality of utilizing SNNs.

Table 8.6.: Comparison of the results of our Hierarchical-PABO framework with other
SNN models on CIFAR10 dataset

Work Network Type Accuracy (%) Time-step
CIFAR10 [37]

SPIKE-NORM [18] Deep CNN Conversion, VGG16 91.55 2500
Rueckauer [115] Deep Binary Weight CNN Conversion, BinaryNet 90.85 400
Wu Direct Training [135] Deep SNN 90.53 12
Lee Spike-Based BP [136] Deep SNN, VGG9 (ResNet11) 90.45 (90.95) 100 (100)
HYBRID [17] Hybrid Training, VGG16 91.13 (92.02) 100 (200)
This Work HP Optimized HYBRID, VGG9 (VGG13) 91.53 (91.45) 90 (80)
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9. DISCUSSION AND FUTURE WORK

In this thesis, we propose a novel multi-objective optimization framework based on

hierarchical Bayesian optimization and agent-based modeling (Hierarchical-PABO).

With its one of a kind structure, and simple yet effective underlying mathematics,

we are able to predict a Pareto frontier of a multi-objective hyperparameter opti-

mization for both non-spiking and spiking neural network systems with only few

evaluations. This framework paves the way to further analyze and study sensitivity

and resiliency of the system due to the changes of the hyperparameters. In addition,

this optimization framework is compatible with various training algorithms, appli-

cations, and underlying accelerators. This include, but not limited to, convolutional

neural networks in traditional deep learning, binary networks, evolutionary, and back-

propagation based in spiking domain training algorithms, CMOS and beyond-CMOS

accelerators, as well as control and classification applications.

The main limitation of Hierarchical-PABO is scalability and ability to parallelize

the approach. The goal of Hierarchical-PABO is predicting the Pareto region for

a search space with reasonable ranges for the hyperparameters and with only few

evaluations and we do not want to compete with all NAS-based approaches that

search the entire search space with massive computational resource requirements.

However, improving scalability of Hierarchical-PABO paves the way for incorporating

the technique in different frameworks with multiple layers of optimization problems

and hyperparameters.

For future work, we intend to fully integrate the Hierarchical-PABO approach into

the TENNLab neuromorphic framework by [114], so that it can seamlessly determine

hyperparameters for the neuromorphic framework user. Within that framework, we

also intend to apply this hyperparameter framework to other neuromorphic imple-

mentations that are supported and other applications, including a variety of control
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applications (like those described by [137]) and other classification tasks. We also

plan to investigate an implementation of Hierarchical-PABO for high-performance

computers, such as Oak Ridge National Laboratory’s Summit supercomputer.

9.1 Broader Impact

The overall goal of this work is to provide a framework that can automatically

design models for new tasks that are more accurate and more efficient in neuromorphic

hardware. There are a variety of potential positive and negative outcomes of this

approach. One positive outcome is that this approach can reduce the barrier of entry

in utilizing these SNN algorithms for researchers who are less familiar with SNN

approaches. Another positive outcome is that this approach can be used to develop

AI models that are more energy efficient in their deployment, which can potentially

lead to a decrease in the energy usage and carbon footprint of AI models that are

deployed for real-world applications.

We believe negative implications of our work largely stem from the amplification

of negatives embodied in existing neural network methods. One such example of

this would be on the tuning of model parameters to create networks that are more

strongly fit to datasets which have underlying biases that enable the exploitation of

underrepresented groups in society. Another concern is that efficient hyperparameter

optimization techniques may lead to a loss of intuition behind model design that could

reduce understanding of neural network components and functionality in a way that

researchers are less likely to be equipped to understand model drawbacks as well as less

likely to make future structural improvements. A strong focus on fundamentals during

machine learning education may mitigate the extent of this concern. Alternatively,

avoiding tedious human in the loop hyperparameter testing frees up research time to

look into deeper questions for machine learning and neural network architectures.
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