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ABSTRACT

Vaitheeswaran, Pavan Kumar PhD, Purdue University, December 2020. Interface
Balance Laws, Growth Conditions and Explicit Interface Modeling Using Algebraic
Level Sets for Multiphase Solids with Inhomogeneous Surface Stress. Major Profes-
sor: Ganesh Subbarayan, School of Mechanical Engineering.

Many natural and engineering phenomena including cancer cell growth, solidifi-

cation, and crack propagation may be classified as phase evolution problems. These

phenomena may have significant physiological or engineering impact, but are diffi-

cult to analyze due to the complexity of their interface geometry evolution and the

complexity of their governing equations. The goal of this dissertation is to derive the

thermodynamic conditions governing the evolution of the interfaces and an efficient

computational procedure for modeling the interface evolution. The first contribution

towards the goal is to derive the thermodynamic conditions at a moving interface in

a body subject to large deformation with multiple diffusing species and arbitrary sur-

face stress. A pillbox procedure is used to form balance laws at an interface, analogous

to conventional balance laws in the bulk. The thermodynamic conditions that result

from interface free-energy inequality lead to the analytical form of the configurational

force for bodies subject to mechanical loads, heat and multiple diffusing species. The

derived second law condition naturally extends the Eshelby energy-momentum ten-

sor to include species diffusion terms. The above second law restriction is then used

to derive the condition for the growth of new phases in a body undergoing finite

deformation subject to inhomogeneous, anisotropic surface stress. Next, a general,

finite-deformation, arbitrary surface stress form of phase nucleation condition is de-

rived by considering uncertainty in growth of a small nucleus. The probability of

nucleation is shown to naturally depend on a theoretical estimate of critical volu-



xv

metric energy density, which is directly related to the surface stress. The classical

nucleation theory is shown to result as a simplified special case.

Towards the goal of computationally simulating evolving interfaces, an interface

tracking approach called enriched isogeometric analysis (EIGA) is adopted in this the-

sis. The phase boundary is represented explicitly using parametric splines, with the

physical fields isogeometrically defined on the interface geometry, and immersed in a

non-conforming underlying domain. The behavioral field solution at a point is given

by a convex blending of the underlying solution and the interface solution. Signed

algebraic level sets are used as a measure of distance to model the weakening influence

of a phase interface with distance. These level sets are generated from the impliciti-

zation of geometries using resultants, and are smooth, monotonic with distance, and

exact on the boundary. Furthermore, the sign of these level sets enable classifying

points as lying inside or outside a given closed geometry. The generation of these level

sets is found to fail often for even simple three-dimensional surfaces, where the Dixon

resultant used for implicitization is either identically zero or unsigned. A maximal-

rank submatrix approach is adopted in this thesis to recover the implicitization for

surfaces with identically zero resultants. Also, a polynomial square root procedure is

developed to extract sign from unsigned resultants. The proposed approach is demon-

strated on three-dimensional electrostatic and electromigration problems, and is used

to simulate electromigration experiments conducted on Copper-TiN line structures.

Since EIGA is an explicit interface method, topological changes that are common in

phase evolution pose geometric challenges, such as computing intersection between

boundaries of coalescent phases. This is overcome in this thesis by using Boolean

compositions on algebraic level sets. These compositions can be done algebraically

using R-functions, and provide level sets for merged phases. As analysis in EIGA is

based only on signed level sets, the Boolean compositions automatically allow EIGA

of systems with coalescent phases. Since the compositions automatically generate

appropriate signed level sets for merged and separate phases, topological changes can

be modeled without needing explicit surface-surface intersection calculation. The ef-
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ficiency of this approach is demonstrated on various electrostatic problems of solids

with voids, and on a problem of bubble coalescence subject to the constraint of volume

conservation.
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1. INTRODUCTION

A large and important class of problems is phase evolution under mechanical and

non-mechanical loads. Examples of such problems include cancer tissue growth, so-

lidification, electromigration driven void growth, growth of intermetallic compounds

in solder joints and crack propagation. Such phase evolution problems have significant

physiological and engineering impact. For example, voids nucleating due to electro-

migration in a current carrying line can grow large enough to sever the line, causing

open failure. Similarly, presence and growth of cracks can severely decrease the failure

life of parts and components. Phase evolution phenomena such as electromigration

are complex to analyze both due to the complexity of their governing equations and

due to the complexity of the evolving interface geometry. For example, electromigra-

tion is driven by an electric field, thermal gradients, mechanical stresses as well as

diffusion of vacancies. Existing analytical methods in literature often assume consti-

tutive relations between fluxes and corresponding driving forces when modeling phase

nucleation and growth. However, these constitutive relations are generally empirical

and not derived from thermodynamic principles at a phase interface. Models based

on thermodynamic balance laws at an interface either ignore the influence of surface

stress, or assume it to be isotropic and homogeneous. Generalized conditions for

nucleation and growth of phases in multiphase systems with arbitrary surface stress

appear to be largely absent in literature.

At the same time, numerical modeling of phase evolution phenomena faces several

challenges. Computationally, such phenomena can be classified under the umbrella

of moving boundary problems, where an interface or boundary evolves with time.

The motion and evolution of the interface can lead to complex shapes and topologies.

For instance, spontaneous solidification of supercooled liquid results in formation of

dendritic crystals with dense branching (see Fig. 1.1). Also, when multiple phase
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Figure 1.1. : Snow crystals are an example of dendritic solidification in nature. The
wide diversity and complexity of snow crystal shapes make it highly unlikely for any
two crystals to be identical in shape (Image by Wilson Bentley–in Public Domain).

Figure 1.2. : Nucleation and growth of voids in a solder joint due to electromigration.
Since a large number of voids are closely packed, voids coalesce with each other to
form large macro-voids. [1]
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interfaces are present, interactions between them can lead to complex topological

changes. This can be observed in Fig. 1.2, where numerous micro-voids, formed due

to electromigration, coalesce to form larger voids. As a result, explicit interface rep-

resentation methods encounter geometric challenges in modeling evolution of phase

boundaries. Consequently, such problems are typically modeled using implicit inter-

face methods such as the phase-field method or the level set method. While these

techniques naturally capture complex shape and topological changes, they lose ge-

ometric information on the interface such as the curvature and normal at a point.

Such information can be important to capture the underlying physics. For instance,

in dendritic solidification, the temperature at the solid-liquid interface is dictated by

the curvature-dependent Gibbs-Thomson condition [2],

T = Tm − εc(n)κ− εv(n)vn (1.1)

where, Tm is the melting point and εc, εv are parameters that depend on the normal n

to the phase interface at a point. The curvature is denoted by κ, while vn denotes the

normal velocity of the interface. In implicit geometry methods, since the interface is

not explicitly defined, the interface boundary conditions imposed indirectly, and pos-

sibly approximately. A computational technique that accommodates complex shape

and topological changes and imposes interface boundary conditions precisely, while

retaining interface geometric information appears to be absent in the literature.

1.1 Literature Survey

A survey of literature on studying nucleation and growth of phases shall now be

presented. This shall be followed by a description of various computational techniques

found in literature for numerical modeling of moving boundary problems in general,

and phase evolution in particular.
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1.1.1 Phase Nucleation and Growth

Diffusion-driven phase nucleation and growth under mechanical, thermal or elec-

trical fields represents an important class of problems. Void nucleation and growth

under the influence of an electrical current (electromigration) is an example of this

class of problems. The growth of a void is typically attributed to the coalescence

of vacancies, which is dependent on the magnitude of the bulk diffusion flux of the

vacancies [3]. For instance, computational studies of void growth due to electromigra-

tion often rely on the flux of vacancies to predict the growth rate [4,5]. A competing

model for void growth is to use the bulk entropy of the system to develop a measure

of damage [6]. In these models, a constitutive relation is assumed between the bulk

diffusion flux and the various driving forces such as the gradients of chemical poten-

tial, hydrostatic stress, temperature or electric potential. This constitutive relation

is however not derived using established principles of rational mechanics at a phase

interface. In other words, the constitutive relation is empirical and does not directly

follow from balance laws governing a moving interface. Abeyaratne and Knowles [7]

are among the few that use interface balance laws to derive a thermodynamic force

driving the evolution of a phase interface. The thermodynamic force, or the configu-

rational force [8,9], determines the energy per unit area of the interface consumed as

the phase evolves.

In general, the motion of the interface is influenced by the interfacial stress, which

may be anisotropic and inhomogeneous. For instance, electromigration experiments

have shown a strong relation between void growth rate and surface energy at the

interface [10]. The generalization of the configurational force associated with a moving

interface, accounting for arbitrary interfacial stress, appears to be largely missing

in the literature. The existing models for interfacial growth, while they assume a

constutitve relation between the bulk flux and fields, often do not obey interfacial

balance laws or incorporate surface stress in their formulation. Gurtin [9] derives the

configurational force for a system with homogeneous, isotropic surface stress. However
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this does not appear to have been extended to a general system with aniostropic,

inhomogeneous surface stress.

In the context of phase nucleation, transformed fraction models based on the

Kolmogorov–Johnson–Mehl–Avrami theory and its extensions [11,12] have been used

to estimate the nucleation rate. Although the nucleation process has its roots in

statistical mechanics, the classical nucleation criterion is developed using continuum

theory [13,14]. Specifically in electromigration, a critical vacancy concentration con-

dition [15, 16] is often used to describe the onset of void nucleation [4, 17]. Among

the other criteria that are used to describe eletromigration, Tu et al. proposed that

the region of “maximum current crowding” or the region with the highest current

density is most susceptible to void nucleation [18,19]. Alternatively, stress-based con-

ditions have also been suggested for nucleation [20–22]. A normal stress condition

was used in finite element simulations in [23], while a cohesive zone model was used

in [24–26]. Finally, [27, 28] have used an entropy based damage criterion to predict

void nucleation in finite element simulations. In general, the above models, similar

to the growth criteria, do not follow the principles of rational mechanics to derive

the nucleation condition from thermodynamic balance laws, and further do not con-

sider the influence of surface stress. Nucleation conditions based on the presence

of flaws in free surfaces under homogeneous, isotropic surface stress have been pro-

posed [20,29]. Nevertheless, these models have not been extended to general systems

with anisotropic, inhomogeneous surface stress.

1.1.2 Computational Approaches for Phase Evolution Problems

Moving boundary problems in general, and phase evolution problems in particular,

involve interfaces evolving with time. In conventional numerical methods such as

finite elements, the domain geometry is approximated through a boundary-conforming

mesh. Such approaches require re-meshing as the phase interface evolves, resulting

in prohibitive computational costs. To avoid re-meshing, several non-conforming
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mesh approaches have been proposed in literature, which can be broadly classified

into explicit and implicit interface representation methods. When the interface is

represented explicitly, geometric information such as the curvature and normal to the

interface at a point can be obtained directly. Such geometric information is absent

when implicit interface methods such as the level set method or the phase-field method

are used. However, implicit interface methods generally model topological changes

such as merging and nucleation of phases naturally.

Immersed boundary methods

A common class of non-conforming mesh methods are the Immersed Boundary

(IB) methods. Introduced by Peskin [30] to study blood flow in the heart, this class

of methods generally involve an interface immersed or embedded in a fixed back-

ground mesh and have been used extensively to model fluid-structure interaction

problems [31, 32]. Other problems that have been studied include the free-boundary

problem and optimal design [33]. Several approaches under this class have been

proposed in literature, predominantly with an explicit interface representation. Gen-

erally, the immersed body is assumed rigid, and hence only the background fluid

domain is solved for with traction and no-slip conditions on the fluid-solid interface.

In the immersed finite element method [34], the immersed solid is allowed to deform.

A moving Lagrangian mesh is used for the solid while a fixed Eulerian background

mesh is used for the fluid. The immersed boundary approach can also be applied

to mechanics of complex geometries, by extending the domain to a larger, simpler

fictitious region. This is called the fictitious domain method [35,36], and allows solv-

ing problems on complex geometries with simple, structured grids. More recently,

the Finite Cell Method [37] has been proposed in a similar vein, wherein a “soft”

outer fictitious domain is assumed, with near-zero material properties. Since im-

mersed boundary methods generally use an explicit representation for the interface,

geometric information at a point on the interface can be obtained. However, since
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the background mesh does not conform with the immersed boundary, imposing in-

terface boundary conditions becomes challenging. Common approaches to impose

interface boundary conditions include using Lagrange multipliers, penalty method

and Nitsche’s method. However, these approaches only enforce interface boundary

conditions weakly. The solution structure method was proposed as an alternative

for accurate imposition of boundary conditions [38]. Based on Weighted Extended

B-splines or WEB-splines [39], this method imposes Dirichlet boundary conditions

exactly on the immersed boundary, and uses a distance function to spread this so-

lution to the bulk. However, the generation of the distance function is non-trivial,

limiting the application of this method for complex geometries. Furthermore, topo-

logical changes such as merging of immersed boundaries pose geometric challenges

and require contact detection and computation of intersections between boundaries.

Implicit Interface Methods

Implicit interface methods such as the phase-field method or the level set method

describe the phase interface through a state variable such as the phase-field variable

or the level set parameter, respectively. The solution to this state variable naturally

captures evolution of the interface as well as topological changes such as coalescence

and splitting of phases. This however comes at the cost of not explicitly tracking

normals and curvatures at the interface, which could be important for phenomena

such as solidification.

In the level set method, the evolving interface is implicitly represented as the zero

contour of the level set parameter [40, 41]. Evolution of the interface is dictated by

the solution of the level set parameter φ to the Hamilton-Jacobi equation,

∂φ

∂t
+ v ‖∇φ‖ = 0 (1.2)

Equation (1.2) is a first-order hyperbolic equation and requires sophisticated tech-

niques to minimize oscillations in the solution [42]. The Generalized Finite Element
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Method (GFEM) was introduced by Strouboulis et al. [43], which incorporates a-

priori known solution features into the GFEM approximation through enrichments

to classical finite element shape functions. Different enrichment functions have been

proposed for different behavioral fields [44]. A related approach in the context of

crack propagation is the eXtended Finite Element Method (XFEM) proposed by Be-

lytschko [45], where the asymptotic crack tip displacement is used as the enrichment

function. The Heaviside function is used to incorporate the jump in displacement

across the crack interface [46]. The level set method is used to track the interface and

enrichment functions are applied only to nodes close to the interface. Since these en-

riched nodes are part of the underlying domain, interface boundary conditions cannot

be directly imposed on the phase boundary, but only weakly enforced in the back-

ground mesh. Apart from crack propagation [47], XFEM has also been applied to

the problems of dislocation [48,49] and phase evolution [50–52].

Another widely used implicit interface method is the phase-field method [53],

which has been used to solve moving boundary problems such as crack growth [54,55]

and solidification [56–58]. A phase-field variable is introduced as an additional field.

A double-well potential is used to drive the phase-field solution towards equilibrium

states corresponding to pure phases. The interface is defined as a diffused region in

which the phase-field variable transitions from one equilibrium value to another. A

primary challenge with phase-field methods is the need to develop diffused interface

equivalents to the governing equations. Common phase-field systems are observed to

be highly nonlinear and non-convex, making the solution process challenging. For ex-

ample, the Cahn-Hilliard system used in phase evolution problems is inherently fourth

order in the phase-field variable. Furthermore, since the interface is diffused and not

clearly defined, interface boundary conditions are imposed only approximately.
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1.1.3 Enriched Field Approximations

In this thesis, an explicit interface method called Enriched Isogeometric Analysis

(EIGA) is adopted [59]. Similar to immersed boundary methods, a non-conforming

background mesh is used for the underlying domain, and evolving interfaces are repre-

sented explicitly as lower-dimensional parametric geometries. However, unlike general

immersed boundary methods, the immersed interfaces have separate degrees of free-

dom associated with them. The behavioral field solution is described as a weighted

blending of a continuous approximation associated with the underlying domain, and

enrichments representing the influence of immersed interfaces (see Fig. 1.3). Ap-

proximations for the behavioral fields are chosen to be isoparametric with the geo-

metric models to facilitate CAD-CAE integration. The construction of behavioral

approximations isoparametric with parametric spline geometric models was proposed

earlier [60–63]. The use of such approximations for analysis is at present popularly

referred as Isogeometric Analysis (IGA, [64]). Since separate degrees of freedom are

associated with the immersed interfaces, interface boundary conditions can be ac-

curately and strongly imposed. Further, since the interface is represented explicitly

(e.g., through parametric splines), geometric information on the interface such as the

normal to and curvature at a point is directly obtained. The governing equations

are also simpler as compared to implicit interface formulations. However, topological

changes such as coalescence and splitting of phases pose geometric challenges. For

example, when two phases coalesce, the merged geometries need to be described. This

generally involves computing the surface-surface intersection of the two phase bound-

aries. Common strategies for contact detection and intersection computation include

subdivision, lattice evaluation, marching methods and implicitization [65]. Perform-

ing these operations at each simulation time step is computationally expensive.
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Figure 1.3. : Schematic of enriched isogeometric analysis containing an explicit in-
terface immersed in a non-conforming mesh. Both the explicit interface and the
underlying domain contribute to the behavioral field solution.

1.1.4 Algebraic Level Sets

Generally, the influence of an interface weakens with distance. To reflect this,

the weighted blending in EIGA is based on distance, so that the interface solution

dominates only in the neighborhood of the immersed interface. Also, since immersed

interfaces typically separate regions of different phases and thus different material

properties, points should be classified based on the side of the interface they lie in.

This raises the need for a fast and efficient measure of signed distance, with the

sign denoting point classification. Signed distance fields are also important in other

applications such as describing the physical behavior of graded materials [66] and

fluid-structure interactions [67, 68]. They are also used in geometric applications

such as image processing [69], collision detection such as for robotics [70] and ani-

mation [71–73], and multi-body contact in finite element analysis [74, 75]. Finally,

they are used in volumetric geometric representaion [76] for offset surfaces and in

morphing between shapes [77].

Distance and point classification queries are usually handled using iterative meth-

ods such as Newton-Raphson [78–80]. Such iterative methods are not only compu-

tationally expensive, the computed distance field is also not sufficiently smooth for
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analysis purposes. An alternative approach is to approximate the parametric inter-

face geometry by a polytope (polygon for curves and polyhedron for surfaces), since

distance from a planar or linear segment can be easily computed [81,82]. In order to

make the distance field smooth at the vertices and edges, R-functions can be used to

combine distance fields from individual segments of the polytope to obtain a smooth

distance field for the entire geometry [83]. However, these methods lose the geomet-

ric exactness of the interface and are exact only in the limit of refinement. Upreti et

al. [84,85] developed signed algebraic level sets that were generated from implicitiza-

tion of parametric geometries using resultants [86]. The implicit form of a parametric

curve or surface can be expressed as,

[MD(x)] [u] = 0 (1.3)

where, the Dixon matrix MD is linear in the position x, and u is a vector of mono-

mials of the parametric coordinates and their powers. For points on the curve or

surface, Eq. (1.3) is satisfied for some u. Thus, the Dixon matrix MD is singular

for all points on the curve or surface, and det(MD(x)) generates level sets increasing

monotonically with distance. These distance level sets provide a smooth, monotonic

distance measure that preserves the exactness of the interface geometry. Since they

are generated through a non-iterative, analytical procedure, the distance estimation

is computationally efficient. Furthermore, for closed geometries, the algebraic level

sets are signed, thereby intrinsically classifying points as lying inside, on or outside

the closed geometry. An illustration of the smoothness of these algebraic level sets

vis-a-vis an iterative method such as Newton-Raphson is provided in Fig. 1.4. These

advantages of the algebraic level sets have recently been taken advantage of to perform

smooth, algebraic point projections on to curves and surfaces, including geometries

with high local curvature and sharp corners [87].

EIGA with algebraic level sets have been used to study several moving boundary

problems such as solidification [88], fracture [84] and optimal design [89]. However,
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(a) (b)

Figure 1.4. : Distance level sets for a quadratic NURBS curve obtained from (a)
Newton-Raphson iterations and (b) Algebraic level sets. The algebraic level sets are
smooth even in the neighborhood of sharp corners and in regions of high curvature.
Distance estimates using the Newton-Raphson, on the other hand, show discontinu-
ities near such features.

(a) (b)

Figure 1.5. : Dixon resultant contours for (a) cylinder of unit radius centered at the
origin (b) sphere of unit radius centered at the origin. The Dixon matrix is identically
singular and hence the resultant is zero everywhere for both geometries.
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application to three-dimensional problems has been limited due to issues in gener-

ating signed algebraic level sets for general surfaces. For several three-dimensional

parametric surfaces (including common surfaces such as spheres and cylinders), the

Dixon matrix is trivially singular. For such surfaces, det(MD(x)) is zero everywhere,

even where Eq. (1.3) is not satisfied, thereby failing to generate distance level sets

(see Fig. 1.5). The vanishing of the Dixon resultant is thus only a necessary condition

to satisfy Eq. (1.3), and not sufficient. A second issue with using the Dixon resultant

is the occasional lack of sign for closed surfaces. The sign of the Dixon resultant is

used to ascribe the sign of algebraic level sets for points close to the surface. For

most surfaces the Dixon resultant is signed, classifying space into inside and outside

regions. However, for some solids (see Fig. 5.3), the Dixon resultant could lack an

intrinsic sign. Subsequently, the generated algebraic level sets are unsigned and thus

cannot classify points as lying inside or outside the closed geometry. Both these is-

sues also warrant rectifications to the algebraic point projection procedure proposed

in [87]. An alternate implicitization procedure for parametric surfaces was developed

by L. Busé [90] called the Matrix-Representation (M-Rep). In this approach, the

parametric geometry is described as the locus of rank drop of a single M-Rep matrix

MR; the matrix is singular only at points on the curve or surface. Further, the author

also provides a measure of distance from the geometry based on the singular values of

the M-Rep matrix. This robust implicitization procedure is observed to be valid even

for geometries with trivially singular Dixon resultants. However, since singular values

are always non-negative, the generated level sets are unsigned and hence cannot an-

swer point containment queries. Additionally, the M-Rep distance measure requires

a singular value decomposition at each point of evaluation. This makes the approach

computationally expensive. L. Busé also suggests an alternate distance measure given

by the determinant of the matrix product MRM
T
R. This distance measure is also

unsigned, and while it may avoid calculating singular values, matrix products are

generally not robust and can lead to round-off errors.
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1.2 Research Objectives

The objectives of this dissertion are the analytical and numerical modeling of

phase evolution problems for systems with multiple diffusing species and inhomo-

geneous surface stress. As discussed in § 1.1.1, existing models for phase evolution

often assume constitutive relations and generally do not follow the principles of ra-

tional mechanics to derive nucleation and growth conditions from thermodynamic

balance laws. Further, existing models either ignore the influence of surface stress,

or assume the surface stress to be homogeneous and isotropic. Thus, there is a need

to develop generalized conditions for growth or nucleation of a phase under the influ-

ence of mechanical and non-mechanical fields as well as arbitrary surface stress. To

this regard, a configurational force associated with a moving interface in a body is

developed, allowing inhomogeneous, anisotropic arbitrary surface stresses. Further,

general thermodynamic principles governing the motion of an interface are used to

derive conditions for growth of a phase as well as the nucleation of a new phase.

The modeling of phase evolution is also numerically challenging, as shown in § 1.1.2.

The non-conforming explicit interface method, Enriched Isogeometric Analysis (EIGA),

is adopted in this thesis. However, application of EIGA to three-dimensional prob-

lems is challenged by the need to generate algebraic level sets and point projection

for surfaces whose Dixon resultant is singular. In this thesis, rectification measures

are developed to generate signed algebraic level sets and for smooth point projec-

tion for surfaces. This allows studying three-dimensional phase evolution problems

using EIGA. Electromigration experiments on Blech-like Copper-TiN test structures

with different cap layers were conducted in [91]. The copper edge was observed to

displace due to electromigration, and the growth rate was measured under different

conditions of temperature and current densities. In this thesis, EIGA simulations are

used to model these experiments to study the copper edge profile under electromigra-

tion. Since an explicit interface representation is used in EIGA, modeling topological

changes poses geometric challenges. Taking advantage of the fact that analysis in
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EIGA is based on signed algebraic level sets, an implicit interface information, al-

gebraic Boolean compositions on the level sets are used to accommodate topological

changes such as merging. This allows modeling coalescence of phases without having

to detect contact and compute surface-surface intersections.

1.3 Outline

The rest of this dissertation is organized as follows. The analytical modeling of

phase evolution is described in detail in Chapter 2. Balance laws are derived on an

interface using a pillbox procedure, to derive a configurational force driving motion of

the interface. These are then used to derive generalized conditions for the nucleation

and growth of phases for multiphase systems with arbitrary surface stress. Following

the analytical modeling, an introduction to enriched isogeometric analysis (EIGA) is

provided in Chapter 3, with an example of a two-dimensional electrostatics problem.

This approach uses a quick and efficient measure of distance called signed algebraic

level sets. A detailed discussion on signed algebraic level sets is provided in Chap-

ter 4. The generation of level sets is shown to fail frequently for three-dimensional

surfaces. Rectification measures are developed in Chapter 5 to generate signed level

sets for surfaces. This enables modeling three-dimensional phase evolution problems

using EIGA. As an illustration, a three-dimensional electrostatics problem is solved.

The approach is then applied to solve three-dimensional electromigration problems

in Chapter 6. First, the evolution of a void under electromigration in a line is tracked.

This is followed by EIGA simulations of a Blech-like Copper-TiN test structure sub-

jected to electromigration, showing edge displacement as observed in the experiments

conducted in [91]. Complications in EIGA occur when there are multiple, interacting

phase boundaries as these generally lead to topological changes. A computationally

efficient approach to model such changes using algebraic Boolean compositions on al-

gebraic level sets is provided in Chapter 7. The developed approach is demonstrated
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on electrostatics problems with coalescent voids. The approach is then used to solve

a problem of bubble coalescence subject to constraints of conservation of mass.
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2. PHYSICS OF PHASE NUCLEATION AND GROWTH

Diffusion-driven phase nucleation and growth under mechanical, thermal or electrical

fields represents an important class of problems. Void nucleation and growth under

the influence of an electrical current (electromigration) is an example of this class

of problems. Other examples of such phenomena include crack propagation due to

creep [92], dendritic growth in Li-ion batteries [93,94], growth of brittle intermetallic

compounds in solder joints [95, 96], tissue growth [97], and growth of compounds

under chemical-vapor deposition [98]. The interplay between stress and diffusion

can change the morphology of the phase-interface from being crack-like to spheroidal

[99]. The growth of such heterogeneities can have significant physical as well as

physiological effect. For example, growth of cracks at high temperatures due to

creep decides the life of pipes, turbines, engines in power-plants and aircrafts, and

moderating the growth of malignant tissues can aid in recovery of diseased individuals.

As described in § 1.1.1, generalized conditions describing nucleation and growth of

phases in multiphase systems with arbitrary surface stress are absent in literature.

In this chapter, a transport theorem for a phase interface is derived following the

pioneering work of Truesdell and Toupin [100], and used to form balance laws at the

interface. From interface second law conditions, a configurational force associated

with a moving interface in a body with multiple diffusing species and inhomoge-

neous, anisotropic surface stress is developed. This is used to develop generalized

conditions for growth or nucleation of a phase under the influence of mechanical

and non-mechanical fields as well as arbitrary surface stress. Finally, the developed

ideas are demonstrated on a practical problem to deduce the critical energy density

associated with electromigration in Al-TiN interface.
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2.1 Review of Balance Laws in the Bulk

The procedure described in [8,101] is followed in developing the bulk relations for

a multi-species (atoms or molecules) solid. Consider a region Ω of the body B at an

instant in time convecting with the body. ρ(x, t) is the instantaneous mass density

at any point in the region. Since the region Ω convects with the body, d
dt

∫
Ω
ρ dΩ = 0.

Let the convecting region contain N species labeled α = 1, 2, ..., N , and let να(x, t)

denote the instantaneous mass fraction of species α (ratio of species mass density to

ρ). The body is assumed to consist entirely of diffusing species such that
∑

α ν
α = 1,

and ρα = ρνα represents the mass density of species α. Changes in Ω are brought

about by the diffusion of species α across the boundary ∂Ω as well as instantaneous

species supply rα measured in mass per unit volume per unit time. The mass flux

jα(x, t) is measured in mass per unit area, per unit time, and assumed positive in

the outward normal direction of the surface across which the species is transported.

Letting n denote the outward unit normal to the boundary, the mass balance for the

species is,
d

dt

∫
Ω

ρνα dΩ = −
∫
∂Ω

jα · n dΓs +

∫
Ω

rα dΩ (2.1)

which yields, after the application of the divergence theorem as well as the Reynolds

Transport theorem [101], the following local mass balance for any species α,

ρν̇α = −∇ · jα + rα (2.2)

Since the mass fractions sum to unity at all times, the above expression also implies

∑
α

ρν̇α =
∑
α

(−∇ · jα + rα) = 0 (2.3)
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The tractions acting on the surface of the body cause stress σ within the body at any

instant. σn represents the surface traction exerted on Ω across the boundary ∂Ω.

The balance of linear and angular momentum requires,

d

dt

∫
Ω

ρv dΩ =

∫
∂Ω

σn dΓs +

∫
Ω

ρb dΩ

d

dt

∫
Ω

x× ρv dΩ =

∫
∂Ω

x× (σn) dΓs +

∫
Ω

x× ρb dΩ

(2.4)

where, v is the velocity and b is the body force per unit mass. These yield the local

force and moment balances,

ρa = ∇ · σT + ρb

σ = σT
(2.5)

with a being the acceleration.

The accumulation of the specific internal energy e and the kinetic energy within

the body is:

d

dt

∫
Ω

(
ρe+

1

2
ρv · v

)
dΩ =

∫
∂Ω

(σn) · v dΓs +

∫
Ω

ρb · v dΩ

−
∫
∂Ω

jq · n dΓs +

∫
Ω

rq dΩ

−
N∑
α=1

(∫
∂Ω

µαjα · n dΓs −
∫

Ω

µαrα dΩ

) (2.6)

where, jq is the heat flux assumed positive in the outward normal direction of the

surface, rq is the rate of heat supply, and µα is the chemical potential of species α

measured in units of energy per unit mass. As before, applying the Reynolds Trans-

port theorem, using the divergence theorem on the integral over ∂Ω, and utilizing the

mass balance relation Equation (2.2), one obtains the local rate of change of internal

energy as

ρė = σ : D−∇ · jq + rq −
N∑
α=1

(jα · ∇µα − ρµαν̇α) (2.7)
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where, D is the symmetric part of the velocity gradient tensor ∇vT. The local form

of entropy imbalance is defined as:

ρη̇ ≥ −∇ ·
(
jq

T

)
+
rq

T
(2.8)

where, η is the specific internal entropy and T is the absolute temperature. Defining

the free energy as ψ = e − ηT , using the local form of entropy imbalance Equa-

tion (2.8), finally the local form of the free energy imbalance is obtained as:

ρ(ψ̇ + ηṪ ) ≤ σ : D− 1

T
jq · ∇T −

N∑
α=1

(jα · ∇µα − ρµαν̇α) (2.9)

Thus, all thermodynamically permissible processes in the bulk must be consistent

with Equation (2.9). The free energy ψ is a function of the deformation, the species

concentration, and the temperature ψ ≡ ψ (F , να, T ), where F is the deformation

gradient. Using the chain rule to compute ψ̇ and writing σ : D = σ : ∇vT = σ :

Ḟ F−1 gives,

(
ρ
∂ψ

∂F
− σF−T

)
: Ḟ+

N∑
α=1

(
∂ψ

∂να
− µα

)
ρν̇α +

(
∂ψ

∂T
+ η

)
ρṪ

+
N∑
α=1

jα · ∇µα +
1

T
jq · ∇T ≤ 0

(2.10)

Since this inequality has to hold for arbitrary values of Ḟ , ν̇α, and Ṫ we get the

constitutive equations,

σ = ρ
∂ψ

∂F
F T (2.11)

µα =
∂ψ

∂να
∀α (2.12)

η = −∂ψ
∂T

(2.13)
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The terms within the parentheses hence vanish. Finally, since temperature is always

positive, the free energy inequality is satisfied by constitutive relations of form,

jα = −Mα∇µα ∀α (2.14)

jq = −k∇T (2.15)

where, Mα is a positive definite mobility tensor for species α and k is a positive

definite thermal conductivity tensor. Equation (2.14) describes Fick’s first law of

diffusion for each species α, while Eq. (2.15) is the Fourier law of heat conduction.

2.2 Derivation of Balance Laws at the Interface

The development in this section is motivated by the pioneering work of Truesdell

and Toupin [100]. The approach followed is to make a systematic analogy to the bulk

balance laws described in § 2.1, including in the explicit use of an entropic inequality

condition on the interface. Additionally, analogous to bulk derivation, surface quan-

tities corresponding to mass, momentum, internal energy, entropy and free energy are

introduced as variables and resolved through the derived thermodynamic restrictions.

The resulting form of the driving force on the phase interface is similar to that de-

rived in [8,102], but the derivation here allows inhomogeneous and anisotropic surface

stress.

2.2.1 Interface Transport Theorem

Prior to deriving the balance laws at the interface, the interface transport theorem

for a scalar field on the interface is first derived. This then serves to provide the basis

for derivation of mass, momentum and energy balances at the interface. The interface

is modeled to convect with the body in the present work. To connect the bulk fields

with the interface, an interface “pillbox” (Fig. 2.1) is typically used to derive local

balance relations at interfaces.
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Consider the domain Ω = Ω− ∪ Ω+ divided by the interface Γ shown in Fig. 2.1

with the subregion Γs within the control volume. Ω− and Ω+ are bounded otherwise

by Γ− and Γ+. An arbitrary field φ(x, t) is considered, with the values in each of the

phases specified by φ−(x, t) and φ+(x, t). The balance law for the domain of each

phase can now be written as,

d

dt

(∫
Ωi
φi dΩ

)
= −

∫
Γi
ji · ni dΓs −

∫
Γs

ji · ni dΓs +

∫
Ωi
ri dΩ i = −,+ (2.16)

where, j refers to the flux of the field φ while r denotes volumetric generation. The

interface is now considered as a separate domain, bounded by the curve ∂Γs (Fig. 2.1).

The superficial field on the interface φs is changed by inflows due to a flux h on the

boundary ∂Γs of the interface, the flux exchanges ji with the bulk domains on either

side, and the spontaneous generation rate rs. The normal to the curve ∂Γs in the

tangent plane of Γ is denoted m (see Fig. 2.2). The balance law for the interface is

now written as,

d

dt

∫
Γs

φs dΓs = −
∮
∂Γs

h.m dc+
∑
i=−,+

∫
Γs

ji · ni dΓs +

∫
Γs

rs dΓs (2.17)

To be able to define a transport theorem for the interface pillbox, Eqs. (2.16)

and (2.17) need to be combined together. Utilizing the expressions for the material

derivatives on the left hand sides of Eqs. (2.16) and (2.17) (derived in Appendices B

and C on the basis of surface identities given in Appendix A), following [100], the

combined bulk and surface balances yields,

∑
i=−,+

(∫
Ωi

∂φi

∂t
dΩ +

∫
Γi
φivin dΓs +

∫
Γs

φivisn dΓs

)
+

∫
Γs

(
φ̇s + φs∇s · vs

)
dΓs =∑

i=−,+

(
−
∫

Γi
ji · ni dΓs +

∫
Ωi
ri dΩ

)
−
∮
∂Γs

h.m dc+

∫
Γs

rs dΓs

(2.18)
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Figure 2.1. : Control Volume (interface “pillbox”) with generalized field and fluxes.
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Ω+

Ω−

Γs

∂Γs

n

m

Figure 2.2. : Schematic showing the definition of the normals to the interface and to
the boundary of the interface subregion Γs.

where, vin = vi ·ni, visn = vis ·ni. The following simplifications are made to Eq. (2.18).

1. The outer control surfaces Γ−,Γ+ are infinitesimally close to the inner control

surface Γs. As Γ−,Γ+ → Γs, Ω→ 0 and the bulk integral terms drop out.

2. n− is set equal to n on Γs. This implies that n+ = −n on Γs. Thus, as Ω→ 0,

n− = −n on Γ−, and n+ = n on Γ+.

These simplifications along with the use of the surface divergence theorem of Equa-

tion (A.9) reduces Eq. (2.18) to,∫
Γs

(
− Jφ (vsn − vn)K + φ̇s + φs∇s · vs

)
dΓs =∫

Γs

(
−

q
jφ

y
· n−∇s · hφt + rφs

)
dΓs

(2.19)

where, the jump terms are defined as J·K = (·+ − ·−) and (vsn − vn) = (vs − v) · n;

hφt = Phφ is the tangential component of the flux hφ with P being the surface

projection tensor defined in Eq. (A.1). The superscript φ serves to remind the quantity
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whose flux is on the right hand side. Since Eq. (2.19) must be valid on every arbitrary

subregion Γs of Γ, we arrive at the local form of the interface transport theorem:

− Jφ (vsn − vn)K + φ̇s + φs∇s · vs = −
q
jφ

y
· n−∇s · hφt + rφs on Γ (2.20)

where, the left hand side of the above expression represents the accumulation of bulk

and interface fields due to bulk normal fluxes and the interface flux.

2.2.2 Balance Laws at the Interface

The general interface transport theorem of Equation (2.20) can be applied to

various conserved quantities such as species mass, momentum and energy, by replacing

φ with the appropriate conserved quantity to obtain the balance law. The species

mass balance at the interface is obtained by replacing the bulk field φ by ρνα, the mass

flux jφ of the diffusing species α by jα, and the tangential interface flux hφt by the

surface mass flux hαt . Also, the interface is considered massless, and therefore, surface

mass excess, φs is ignored. The rate of spontaneous generation of species α at the

surface (as due to a chemical reaction) is denoted rαs . Substituting in Equation (2.20),

we obtain the species balance as,

− Jρνα (vsn − vn)K = − JjαK · n−∇s · hαt + rαs (2.21)

The momentum balance at the interface is obtained by considering momentum

in an arbitrary, but fixed direction n̂. By analogy to the bulk relation Eq. (2.4), we

choose the field φ to be the momentum in the direction n̂, that is, φ = ρv · n̂. Since

the negative of the normal component of the bulk flux enters the domain, by analogy

of Eq. (2.4), −ji · ni = n̂ · σni, and the flux is defined as jv = −σn̂ so that the

normal component of this quantity defines the traction component in the direction

n̂. Similarly, since the component of the surface flux normal to the boundary ∂Γs

enters the surface, the surface flux is defined as hv = −σsn̂ with a symmetric surface
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stress σs such that traction component hv ·m acts on the boundary ∂Γs tangent

to the plane of the interface. Now, assuming that the interface is massless, and

that the spontaneous generation of momentum is negligible, i.e., φs and rs are zero,

substituting in Equation (2.20), we obtain the momentum balance as:

− Jρv (vsn − vn)K · n̂ = Jσn̂K · n−∇s · hv
t (2.22)

Furthermore, hv
t = Phv = −Pσsn̂. Since n̂ is arbitrary, constant and non-zero,

Eq. (2.22) yields:

− Jρv (vsn − vn)K = JσKn+∇s · (Pσs) (2.23)

If the surface stress is homogeneous and isotropic, i.e., σs = γI, bulk inertial effects

are small, then the momentum jump can be ignored, and using Equation (A.6), we

can obtain the Laplace-Young equation:

− n · JσKn = γκ (2.24)

where, κ is the total curvature of the interface.

As with momentum balance, the interface energy balance is obtained by analogy

of Eq. (2.6). Thus, the bulk field is φ = ρe + 1
2
ρv · v, bulk energy flux is je =

−σv + jq +
∑N

α=1µ
αjα. The surface field φs is given by the internal energy per

unit area, es. By analogy to interface momentum balance, the tangential component

of the surface flux corresponding to internal energy accumulation is given by het =

−Pσsvs + hq +
∑N

α=1µ
α
s h

α
t . Thus, the interface energy balance relation is:

− Jφ (vsn − vn)K + φ̇s + φs∇s · vs =

−

t

−σv + jq +
N∑
α=1

µαjα

|

· n−∇s ·

(
−Pσsvs + hq +

N∑
α=1

µαs h
α
t

)

+rqs +
N∑
α=1

µαs r
α
s

(2.25)
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Using the interface species mass balance Eq. (2.21) and utilizing the surface identities

in Appendix A, the above equation simplifies to:

−
s(

ρe+
1

2
ρv · v

)
(vsn − vn)

{
+ ės + es∇s · vs =

JσvK · n− JjqK · n−∇s · hqt + rqs

−
N∑
α=1

(µαs Jρνα (vsn − vn)K + hαt · ∇s µ
α
s )

+
N∑
α=1

(− JµαjαK + µαs JjαK) · n

+∇s · (Pσsvs)

(2.26)

The interface entropy inequality can be obtained analogous to the bulk entropy

inequality Eq. (2.8). Let η denote the bulk specific internal entropy and ηs denote

the entropy per unit area of the interface. The external sources of entropy are the

bulk heat flux jq, surface heat flux hq and the surface heat generation rqs . Following

the pillbox procedure in § 2.2.1 gives the interface entropy imbalance inequality,

− Jρη (vsn − vn)K + η̇s + ηs∇s · vs ≥ −
s
jq

T

{
· n−∇s ·

hqt
Ts

+
rqs
Ts

(2.27)

where, Ts is the surface temperature.

Defining the specific free energy, ψ = e− ηT and its interface equivalent, the free

energy per unit area of the interface, ψs = es − ηsTs, the free energy inequality is ob-

tained by using the first and second laws of thermodynamics (Eqs. (2.26) and (2.27)),

assuming continuity of chemical potential across the interface, i.e.,

JµαK = 0, µαs = µα (2.28)

and under the assumption of continuity of temperature, i.e.,

JT K = 0, Ts = T (2.29)
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we get:

−
s(

ρψ +
1

2
ρv · v

)
(vsn − vn)

{
+ ψ̇s + ηsṪs

+ψs∇s · vs +
1

Ts

hqt · ∇s Ts ≤

− Jρvs · v (vsn − vn)K− Jσ (vs − v)K · n− [∇s · (Pσs)] · vs

−
N∑
α=1

(Jρµανα (vsn − vn)K + hαt · ∇s µ
α
s )

+∇s · (Pσsvs)

(2.30)

where, we have substituted for JσvK · n from the expression derived in Eq. (E.3) of

Appendix E. The right hand side indicates the work that is being done on the control

volume due to surface tractions and diffusion. The free energy increase of the system

is given to be less than or equal to the right hand side by the second law. Substituting

∇s · (Pσsvs) = [∇s · (Pσs)] · vs + Pσs : ∇s vs, and keeping in mind that σs and P are

symmetric, we get,

−
r
ρ
(v

2
− vs

)
· v (vsn − vn)

z
+ ψ̇s + ηsṪs

+ψs∇s · vs − σsP : (∇s vs)
T

−

t

(vs − v) ·

(
ρψI− σ − ρ

N∑
α=1

µαναI

)
n

|

+
N∑
α=1

hαt · ∇s µ
α
s +

1

Ts

hqt · ∇s Ts ≤ 0

(2.31)

Finally, it is postulated that the surface free energy is a function of temperature

and a scalar state variable ξs. That is, ψs ≡ ψs(ξs, Ts). Thus one can write,

ψ̇s(ξs, Ts) =
∂ψs

∂ξs

ξ̇s +
∂ψs

∂Ts

Ṫs (2.32)
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Ignoring inertial effects or the higher order velocity terms, utilizing the derivations

for (∇s vs)
T and ∇s ·vs given in Appendix D, Eq. (D.11) and Eq. (D.13), one can now

rewrite Eq. (2.31) as

∂ψs

∂ξs

ξ̇s +

(
∂ψs

∂Ts

+ ηs

)
Ṫs

+ (ψsI− σs) P :
4
FG

−

t

(vs − v) ·

(
ρψI− σ − ρ

N∑
α=1

µαναI

)
n

|

+
N∑
α=1

hαt · ∇s µ
α
s +

1

Ts

hqt · ∇s Ts ≤ 0

(2.33)

where,
4
F is the convected time derivative of the deformation gradient defined in

Eq. (D.12).

Since Eq. (2.33) has to be satisfied for arbitrary values of the rates ξ̇s,
4
F , Ṫs, the

following conditions, which are analogous to bulk definitions of Eqs. (2.11) to (2.13),

have to hold:

∂ψs

∂ξs

= 0 (2.34)

(ψsI− σs) P = 0 (2.35)

ηs = −∂ψs

∂Ts

(2.36)

Furthermore, to satisfy Eq. (2.33), the following inequalities also have to hold on the

interface,

−

t

(vs − v) ·

(
ρψI− σ − ρ

N∑
α=1

µαναI

)
n

|

≤ 0 (2.37)

hαt · ∇s µ
α
s ≤ 0 ∀α (2.38)

hqt · ∇s Ts ≤ 0 (2.39)
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Eq. (2.35) implies that the rows of (ψsI− σs) are in the surface normal direction

n. This in turn implies that the quantity has unit rank with a single out of plane

eigenvector. Thus, for arbitrary surface normal n and hence arbitrary P, for condition

Eq. (2.35) to hold

det (ψsI− σs) = 0 (2.40)

This condition is trivially achieved if the surface stress is homogeneous and isotropic,

i.e., if σs = γI. The conditions Equations (2.38) and (2.39) are satisfied by constitu-

tive relations of the following form:

hαt = −Mα
s∇s µ

α
s (2.41)

hqt = −ks∇s Ts (2.42)

where, Mα
s is a positive definite surface mobility tensor for the species α, and ks is a

positive definite heat conductivity tensor on the surface. The above equations are the

surface analogs of the bulk versions of Fick’s law and Fourier’s Law (Equation (2.14)

and Equation (2.15)).

As derived in Appendix F, in the absence of inertial forces, Equation (2.37) can

be restated in the reference configuration using Eq. (F.6),

VS · JΣν − σIKN ≥ 0 on Γs0 (2.43)

where,

Σν = Σ0 − ρ0

N∑
α=1

µα0ν
α
0 I (2.44)

is an extension to the Eshelby energy momentum tensor [103] Σ0 = (ρ0ψ0I−∇0UσI),

with σI being the first Piola-Kirchoff stress tensor; U is the displacement in reference

coordinates and Γs0 is the subsurface viewed in the reference configuration. Eshelby

also suggests Σ∗0 = Σ0 − σI as an energy-momentum tensor with greater utility for

estimating the force on a defect [103].
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The jump JΣν − σIK represents a conserved quantity that will integrate to zero

within a homogeneous domain. In this sense, it is an extension to the path-independent

J-integral of fracture mechanics [104] to bodies with multiple diffusing species. The

conjugate to the reference interface velocity Vs, namely JΣν − σIKN , is the reference

configurational force associated with the motion of the interface.

2.3 Conditions for Phase Growth

During the growth of the phases, Eq. (2.37) should be satisfied at each point on Γ

and at all instants of time. It is convenient, however, to derive the growth criterion

in the reference configuration using Eq. (2.43), specifically the alternative form of

the equation as listed in Eq. (F.5). The surface velocity is first decomposed into

tangential and normal components in the reference configuration VS = VST
+ VSN

N ,

where N is the surface normal vector with the convention that N points from Phase

− into Phase + (see Fig. 2.1). Thus, the left hand side of Eq. (2.43) can be written

as

(VST
+ VSN

N ) · JΣν − σIKN =VST
·

t

ρ0

(
ψ0 −

N∑
α=1

µα0ν
α
0

)
I− F TσI

|

N

+ VSN
N · JΣν − σIKN (2.45)

where, F is the deformation gradient with the inverse F−1 = G. Simplifying, the

second law condition of Eq. (2.45) reduces to requiring:

− JFVST
· σINK + VSN

N · JΣν − σIKN ≥ 0 on Γs0 (2.46)

In the above expression, it was possible to move VST
andN inside the jump term since

for a coherent interface (see Appendix D), JNK = JVSK = 0 and hence JVSN
NK = 0

leading to JVSK = JVSN
N + VST

K = JVST
K = 0.
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The relation between the normal in the reference configuration and in the current

configuration is obtained using the differential surface relation Eq. (F.2):

N =
Js

J i
F iTn (2.47)

where, i represents either + or − phase and,

Js =
dΓs

dΓs0

=
J i√

n · F iF iTn
(2.48)

It should be noted that Js > 0, JJsK = 0 due to coherence of the interface. Also,

FVST
·n = 0 since by its definition (see Eq. (2.47)) n = Ji

Js
GiTN , and since VST

·N =

0. Thus, the quantity FVST
is tangential to the interface. Therefore, using Eq. (D.4),

we obtain

VSN
=
Js

J i
(vs − vi) · n (2.49)

F iVST
= P(vs − vi) (2.50)

This last quantity P(vs − vi) is the difference in velocity in the tangential direction

between the interface and the neighboring material point. Using the definition of the

first Piola-Kirchoff stress (Eq. (F.3)) σIN = Jsσn, we can now write the first term

in Eq. (2.46) as

F iVST
· σIN = JsP(vs − vi) · σn (2.51)

The right hand side is zero if there is no slip in the tangential direction between the

surface and the adjacent material point, that is, if P (vs − v) = 0.
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Now, treating the dissipation due to tangential slip independent of the normal

velocity causing the growth, the thermodynamic second law conditions for growth,

Equation (2.46), may be stated as:

VSN
N · JΣν − σIKN ≥ 0 on Γs0 (2.52)

−VST
·
q
F TσI

y
N ≥ 0 on Γs0 (2.53)

with N · JΣν − σIKN representing a jump in volumetric energy density. The second

condition is trivially satisfied in the absence of slip.

Recalling that the positive normal velocity points in the direction N of the inter-

face, from the − Phase to the + Phase in the reference configuration, a convention

is assumed that Phase − is the growing phase and therefore, VSN
is positive during

the growth. Although it is not necessary to choose a priori the observed quantity,

the surface normal speed VSN
is chosen as a macroscopic, positive observed quantity.

Therefore, Equations (2.52) and (2.53) can be restated to require that:

N · JΣν − σIKN ≥ 0 on Γs0 (2.54)

VSN
= CVNN · JΣν − σIKN on Γs0 (2.55)

VST
= −CVT

q
F TσI

y
N on Γs0 (2.56)

where, CVN and CVT are arbitrary positive quantities.

2.3.1 Growth Conditions in the Current Configuration

In this section, an alternative form of Eq. (2.54) is derived in the current con-

figuration. Using Eq. (F.3) in the interface momentum balance equation Eq. (2.23),

ignoring inertial effects, one can write

JσIKNdΓs0 = −∇s · (Pσs) dΓs

= − (κσsn+∇s · σs) JsdΓs0

(2.57)
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Substituting Eq. (2.57) into Eq. (2.54), and utilizing Equations (2.47) and (2.48), we

get
1

Js

N · JΣνKN +
F Tn√
n · FF Tn

· (κσsn+∇s · σs) ≥ 0 on Γs (2.58)

While the above equation is left in mixed form between current and reference con-

figurations for ease of reading, it is possible to express the first term in the current

configuration using and Eq. (F.4):

1

Js

N · JΣνKN =

t
√
n · FF Tn

(
ρψ −

N∑
α=1

ρµανα

)
−
n · F

(
F T − I

)
σn

√
n · FF Tn

|

(2.59)

Similar to the above derivation, one can derive the following condition using Eqs. (2.50)

and (2.51):

q
F TσI

y
N = Js

q
F Tσ

y
n on Γs0

(2.60)

Thus, utilizing Eq. (2.50), one can write the second law condition of Eq. (2.53) in the

current configuration as

−P(vs − vi) ·GiT
q
F Tσ

y
n ≥ 0 on Γs (2.61)

Substituting Eq. (2.59) into the growth condition into Eq. (2.58), we get the current

configurations forms of Eqs. (2.54) and (2.55):

gsn ≡

t
√
n · FF Tn

(
ρψ −

N∑
α=1

ρµανα

)
−
n · F

(
F T − I

)
σn

√
n · FF Tn

|

+
F Tn√
n · FF Tn

· (κσsn+∇s · σs) ≥ 0 on Γs (2.62)

(vs − vi) · n = cvnJ
igsn on Γs (2.63)

P(vs − vi) = −cvtGiT
q
F Tσ

y
n on Γs (2.64)
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where, Eqs. (2.49) and (2.61) have been used to arrive at the above condtions. cvn

and cvt are arbitrary, positive proportionality constants.

2.3.2 Statistical Growth Condition

In general, the atomistic phenomena that lead to phase nucleation and growth

are statistical in nature. Thus, in experimental observations, the growth condition

of Equation (2.54) requires a treatment keeping in mind the inherent variability at

microscopic length scales. Considering now Equation (2.62), the alternative form of

Equation (2.54), the equation is rewritten as

gsn ≡
(
H − G

l

)
≥ 0 on Γs0 (2.65)

where, H and G are volumetric and surface energy densities respectively, and l is

a characteristic length scale in the current configuration as explained below. The

definitions of H and G follow from Equation (2.62)

H (F , να, T ) =

t
√
n · FF Tn

(
ρψ −

N∑
α=1

ρµανα

)
−
n · F

(
F T − I

)
σn

√
n · FF Tn

|

(2.66)

G (F ,σs, T ) = −l F Tn√
n · FF Tn

· (κσsn+∇s · σs) (2.67)

The arguments in the above expressions explicitly indicate the independent physical

variables that influence the quantities. For ease of reading, henceforth, the arguments

will not be explicitly included when referring to these quantities. The explicit intro-

duction of the length scale l in the definition of G nullifies the length scale dependence

inherent in the expression on the right in Equation (2.62) due to the curvature and

surface divergence terms.

Since, for an applied configurational force, the observed velocity in general is in-

fluenced by microstructural arrangement influenced by atomic scale uncertainty, a

probabilistic treatment of the observed velocity is now considered for a given (de-
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terministic) configurational force. A natural choice for the probabilistic distribution

that captures the atomic uncertainty in (vsn − vn) is the Boltzmann distribution [105].

Therefore, the probability density function for (vsn − vn) is defined as

f(vsn − vn) ≡ f(cE) = f0 exp

[
−
(
cEgsnl

3

kBT

)]
(2.68)

where, kB is the Boltzmann constant, l is a characteristic length in the current config-

uration, and cE is a positive non-dimensional measure that captures the uncertainty

in the energy causing the interface motion. The unknown f0 is evaluated by using

the property of the probability density function

∫ ∞
0

f(cE) dcE = 1→ f0 =
gsnl

3

kBT
(2.69)

where, we have used the physical requirement that gsn, l > 0. We now define a positive

energy quantity E for ease of recognition, which is dimensionally of the form:

E = cEgsnl
3 (2.70)

Finally, assuming the existence of a critical value of the energy Ec, the expected

surface velocity resulting from the second law condition of Equation (2.63) is:

〈
vsn − vin

〉
=

∫ ∞
Ec

(vsn − vin)f(E)dE

= cvnJ
igsn exp

[
−
(
Ec
kBT

)] (2.71)

with gsn as defined in Eqs. (2.62) and (2.65). The corresponding form in the reference

configuration is

〈VSN
〉 = CVN (N · JΣν − σIKN ) exp

[
−
(
Ec
kBT

)]
(2.72)
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2.3.3 Application to Small Deformation Diffusive Void Growth

Assuming small deformation from the definition of surface jacobian Eq. (2.48) we

have,

J

Js

=
√
n · FF Tn

=
√
n · (I +∇uT )(I +∇u)n

≈
√
n · (I +∇uT +∇u)n

J

Js

≈
√

1 + 2εnn

(2.73)

where, ε = 1
2

(
∇u+∇uT

)
is the infinitesimal strain tensor, εnn = n · εn is the

normal strain and the quadratic terms of ∇u are assumed to be negligible. We can

now simplify Eq. (2.59) under assumptions of small deformations:

1

Js

N · JΣνKN =

t
√
n · FF Tn

(
ρψ −

N∑
α=1

ρµανα

)
−
n · F

(
F T − I

)
σn

√
n · FF Tn

|

≈

t
√

1 + 2εnn

(
ρψ −

N∑
α=1

ρµανα

)
− 1√

1 + 2εnn
n · ∇uσn

|

≈

t(
ρψ −

N∑
α=1

ρµανα

)
− n · ∇uσn

|

≈

t

n ·Σn−
N∑
α=1

ρµανα

|

(2.74)

where, we have used the simplification F (F T −I) = FF T −F ≈ I+∇uT +∇u−(I+

∇uT ) = ∇u, and the small strain assumption, εnn � 1. Σ is the Eshelby Energy-
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Momentum tensor defined as Σ = ρψI − ∇uσ. This reduces the growth condition

of Eq. (2.58) to,

t

n ·Σn−
N∑
α=1

ρµανα

|

≥ − F Tn√
n · FF Tn

· (κσsn+∇s · σs)

≥ − 1√
1 + 2εnn

(I +∇u)n · (κσsn+∇s · σs)

(2.75)

Now, if the surface stress is homogeneous and isotropic (σs = γI), and if strains are

small εnn � 1, the above equation simplifies to,

t

n ·Σn−
N∑
α=1

ρµανα

|

+ κγ ≥ 0 on Γs (2.76)

Now, a growing phase is locally required to have negative curvature. Thus, a local

radius of curvature r = − 1
κ
> 0 is defined, and assuming Phase − to be void (values

are zero inside the jump term), we get the condition for diffusive void growth as

n ·Σn−
N∑
α=1

ρµανα − γ

r
≥ 0 on Γs (2.77)

Finally, applying the statistical arguments of § 2.3.2, we arrive at the samll defor-

mation diffusive void normal velocity as:

vsn = cvn

(
n ·Σn−

N∑
α=1

ρµανα − γ

r

)
exp

[
−
(
Ec
kBT

)]
(2.78)

2.4 Criterion for Phase Nucleation

The nucleation of a new phase is modeled as the growth of an infinitesimally small

embryo under the influence of the various thermodynamic forces. The uncertainty,

however, is presumed to occur in the lengthscale l in Equation (2.68). Consider an

infinitesimal nucleus of Ωn = l3, with the bounding surface Γn. During nucleation,

for a supplied energy density, the resulting length scale l is presumed uncertain and
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thus, only some nuclei will continue to grow into the second phase. That is, the

configurational force gsn is deterministic, while the characteristic volume is uncertain.

Thus,

l ≥ lc (2.79)

with the critical length defined as lc = G
H
, G ≥ 0, H > 0. During nucleation, it is

expected that the length scale l � 1. Therefore, the length scale uncertainty that

expresses through energy that varies as l2 dominates over the energy that varies as

l3. Thus, representing the energy that varies as l2 as cGGl
2 (G > 0) with cG an un-

known positive constant, the uncertainty in l may be expressed using the Boltzmann

distribution as

f(l) = f0 exp

[
−
(
cGGl

2

kBT

)]
(2.80)

The required condition for nucleation is then written as the probability that the

length l will exceed the critical value lc:

P (l > lc) =

∫ ∞
lc

f(l)dl

= 1− erf

[√
cGG3

kBT

1

H

]

= 1− erf

[
Ĥc

H

] (2.81)

with the definition Ĥc =
√

cGG3

kBT
. Ĥc is a theoretical estimate of the characteristic

value of H at which nucleation will accelerate, with erf(x) being the error function.

It is interesting to note the nonlinear dependence of the characteristic value Ĥc on

the surface stress on the interface. A plot of the probability of nucleation against

normalized H is shown in Figure 2.3. It is clear from the figure that the probability

of nucleation is practically zero if H ≤ Hc. A one percent change in the probability

value occurs when H ≈ 0.55Ĥc.

The existence of a critical value beyond which nucleation occurs rapidly is sup-

ported experimentally [106,107]. While the value of Hc can be estimated theoretically
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as in the Ĥc value, in general, the theoretical estimate may not correlate well with

experimental observation due to errors in estimating the surface energy. The surface

energy of a highly curved interface will be different from the bulk surface energy

calculated for a flat surface. Thus, the value of Hc would in general be estimated

experimentally. Finally, in the event lc = G = 0, then, trivially, the probability

P (l > lc) = 1.
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Figure 2.3. : Probabilitiy of nucleation versus H

Ĥc
. There is a sharp increase in the

probability of nucleation beyond a characteristic value H ≥ Hc. A one percent change
in the probability value occurs when H ≈ 0.55Ĥc.

2.4.1 Reduction to Classical Nucleation Condition

In classical nucleation, the deformation and stress in the bulk are assumed negligi-

ble (pure diffusion) and that surface stress is isotropic (σs = γI), leading to G = −lκγ.

A growing nucleus of Phase − will have a negative total curvature, therefore, in Equa-

tion (2.76), we consider rn = − 1
κ

as a characteristic radius of the growing nucleus in
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the current configuration. This gives G = γ. For a viable nucleus, the right hand

side of Eq. (2.76) has to be positive. Thus, Equation (2.65) reduces to

rn ≥
γ

H
(2.82)

where,

H =

t

ρψ −
N∑
α=1

ρµανα

|

(2.83)

H is the (deterministic) volumetric energy density for the growth of the nucleus.

Specifically for a sphere, the length scale is rn = R
2

, where R is the radius of the

sphere. The above criterion describes the minimum radius in the current configuration

for viable nucleation in the presence of isotropic surface stress.

The classical nucleation theory [108, 109] suggests that when embryos of the new

phase are too small to satisfy Eq. (2.82), they are unstable and collapse. Embryos

above the critical size undergo stable growth to form viable nuclei. Since the embryos

are very small, the energy of formation is predominantly the surface energy, varying

as Gn ≈ cγγr
2
n, where cγ is a positive constant relating the defined length scale to

the surface area. For a sphere, cγ = 16π. Following the procedure of the previous

section, the probability of nucleation then is

P
(
rn ≥

γ

H

)
= 1− erf

(
Ĥc

H

)
(2.84)

where, Ĥc =
√

cγγ3

kBT
. The classical nucleation theory is thus a special case of the

general criterion of Equation (2.81).
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2.5 Electromigration Induced Void Nucleation and Growth

In the context of entropic inequality, the applied electrical field provides an exter-

nal power to each diffusing species of the form jα · eα leading to modification of the

constitutive equation for the bulk mass flux, Equation (2.14),

jα = −Mα(∇µα + eα) ∀α (2.85)

Since the free energy is a function of only the deformation gradient, temperature and

concentration, it is unaffected by the presence of the electromigration force. Similarly,

the electrical field may be thought to add an external surface power term hαt · eαs
leading to the modification of the surface constitutive equation, Equation (2.41),

hαt = −Mα
s (∇µαs + eαs ) ∀α (2.86)

Since electromigration force causes a contribution only to the external power, the

criterion for nucleation, Equation (2.84), remains unchanged. However, since the

interface is now between a void phase and a solid phase, the nucleation criterion

simplifies to:

ρψ −
N∑
α=1

ρµανα ≥ Hc (2.87)

where, all the quantities are evaluated in the solid phase.

The experiments by Lane et al [10] may now be interpreted in light of Equa-

tion (2.87) as follows. The dominant path for the diffusion in copper is along the

grain-boundaries. Therefore, for a copper line subject to electromigration force, the

vacancy concentration at the cathode at a given time instant is independent of the

adhesion energy of the interface (between the metal and barrier layer) binding the

line. As the vacancy concentration increases at the cathode, the hydrostatic stress

will also increase, and consequently there is an increase in the chemical potential and

therefore H near the cathode. When H reaches a critical value, Hc, which depends
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on the adhesion energy of the interface, a void will nucleate. Once a void nucleates,

the growth of the void is governed by the magnitude of the configurational force at

the interface. Since κ is negative for a convex void, the force is greater when the

adhesion energy is smaller, and the void will grow at a faster rate at an interface with

lower adhesion energy compared to one with a stronger adhesion.

2.6 Application: Critical Energy Density of Al-TiN Interface

In this section, the famous Blech’s experiment [110] is simulated to estimate the

critical value of (Hc) for Al-TiN interface. Figure 2.4 shows a schematic of the ge-

ometry used in Blech’s experiment. The experiment consisted of a current carrying

aluminum line deposited on a titanium nitride (TiN) layer. The ends of the TiN layer

were connected to the electrical leads. Thus, the current enters the geometry through

the TiN layer, passes through the Al line (due to the lower resistivity) and then exits

once again through the TiN layer. From a historical perspective, this experiment

is important because it elucidates the mechanism behind electromigration. Specif-

ically, Blech identified a critical length of the interconnect line, for a given current

density, now called the Blech length, below which no electromigration was observed.

Furthermore, he observed that the product of the critical length and the current den-

sity was a constant. He then explained the observations by developing a model for

how the vacancy concentration gradient in the line setup by the initial electromigra-

tion can balance the forced diffusion due to the electric current. When the vacancy

concentration at the cathode is below a critical limit, electromigration voids are not

observed.

It shall now be shown that using the notion of the Blech-length, one can estimate

the value of Hc. This then provides an easy method to determine void nucleation

criterion in metals. Figure 2.6 shows a portion of the geometry that was used to

simulate Blech’s experiment. The length of the Al line was chosen to be equal to

10µm. The interface between Al and TiN was modeled as a distinct material with
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thickness equal to 0.1µm but with higher diffusivity (see Tab. 2.1). It is known

from Blech’s experiments that for Al tested in a geometry of this type, the critical

value of jL was equal to (jL)c = 1260 A/cm. In order to simulate electromigration,

it is necessary to simultaneously solve three sets of partial differential equations [4,

6]: (1) the electrical charge continuity equation, (2) the vacancy diffusion equation

and (3) the stress-equilibrium equation and the coupling between them. The stress

problem was solved by modifying the elastic constitutive behavior of Al to account

for the dilational strain that is induced due to vacancy concentration variations.

Electromigration was modeled by solving an advection diffusion equation over the Al

and interface domains. Diffusion was not simulated in the TiN region, as it is known

to be resistant to electromigration.

The electrical boundary conditions in the simulations were as shown in Figure 2.4.

The electric potential was applied at the ends of TiN layer corresponding to the critical

current density, (jL)c. All the boundaries were made impervious to vacancy diffusion

during the simulations. The initial vacancy concentration was assumed to be 0.9

mol/m3 roughly corresponding to a concentration of 1 vacancy for every 106 atoms

of copper. All the boundaries were held fixed during the elastic stress analysis. The

line was assumed to be initially stress-free.

Figure 2.4. : Schematic of the Blech-structure that was used in the simulation.

Figure 2.5 shows the variation of H at the cathode end as a function of time.

The onset of electromigration equilibrium occurs when t ≈ 15000s. Figure 2.7 shows

the spatial variation of several physical variables in the Blech structure once vacancy

concentration equilibrium was achieved. Fig. 2.7a shows the electrical current density,

j = σ∇φ, where φ is the electrical potential and the σ is the electrical conductivity.
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Figure 2.5. : Variation of H at the cathode as a function of time.

Figure 2.6. : Mesh of the Blech structure with the color representing the size of the
elements.
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Table 2.1. : Table of Material Properties.

Material Property Value
Aluminum Diffusivity 1× 10−14 m2/s
Interface Diffusivity 1× 10−6 m2/s
Al Young’s Modulus 70× 109 Pa
TiN Young’s Modulus 500× 109 Pa
Al Electrical Conductivity 3.774× 107 S/m
TiN Electrical Conductivity 2.6× 104 S/m

Since the conductivity is higher in Al compared to TiN, the current density is cor-

respondingly higher. Fig. 2.7b shows the distribution of vacancy concentration. As

might be expected, the vacancy concentration is higher at the cathode than at the

anode. Consequently, the hydrostatic stress is tensile at the cathode and compressive

at the anode. Due to the higher vacancy concentration and the tensile hydrostatic

stress, H is also higher at the cathode. Since it is known that it is at this value of H

that voids begin to nucleate at the cathode, this H is equal to Hc. Hence, the Blech

experiment may be used to determine the value of Hc to predict void nucleation in a

material.

The simulations indicate that the value of Hc = 5.5 Joules/cm3 for the Al-TiN in-

terface. The value of Hc being an intrinsic property of the interface, it does not depend

on the diffusivities of the materials in the test structure. But, to accurately predict

the time for void nucleation, the diffusivities through the bulk, grain-boundaries and

through the metal-dielectric interfaces will need to be known. In general, as in frac-

ture mechanics, in a structure with multiple interfaces, the knowledge of H alone

is insufficient to predict void location since the critical value of Hc depends on the

specific interface.

2.7 Summary

In conclusion, the free energy inequality on a moving interface naturally yields:

(1) constitutive equations relating surface free energy to the surface stress, (2) surface
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(a) Electrical current density (A/cm2)

(b) Vacancy concentration (moles/m3)

(c) Hydrostatic stress (MPa)

(d) H (Joules/cm3)

Figure 2.7. : Spatial variation of the various physical quantities at equilibrium.
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entropy to the surface free energy, (3) constitutive equation relating surface species

mass flux to the gradient of surface chemical potential and (4) surface heat flux to

the gradient of surface temperature respectively. The derived interface second law

condition was shown to lead to a configurational force associated with the interface

evolution that naturally extends the Eshelby energy momentum tensor to problems

with species diffusion. Also, the dependence on the jump in the free energy and

the elastic misfit energy are shown to emerge naturally from the thermodynamic

restrictions at the interface. This configurational force was then used to develop the

criteria for growth and nucleation of a phase in a body with multiple diffusing species

undergoing finite deformation, and with arbitrary surface stress. The interface growth

and nucleation criteria developed in this chapter are thermodynamic restrictions and

as such do not presuppose any constitutive relation for the bulk or surface diffusional

flux. The phase growth condition is statistical to account for the statistical nature of

the atomistic phenomena that lead to phase growth. Conditions for small deformation

diffusive void growth as well as the classical nucleation theory are obtained as special

cases of the developed general criteria for growth and nucleation respectively. It is

shown that a critical material-dependent energy density that must be overcome for

nucleation (Hc) naturally arises as a consequence of the statistical distribution of

nucleus sizes, and the existence of a critical nucleus size. As an application, the

developed theory is used to study inherent material resistance to void nucleation at

Al-TiN interface. Through a simulation of Blech’s experiments, the critical energy

density for the interface is estimated as Hc = 5.5 Joules/cm3.
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3. ENRICHED ISOGEOMETRIC ANALYSIS

To simulate phase evolution problems numerically, an explicit boundary tracking ap-

proach called Enriched Isogeometric Analysis (EIGA) [59] is adopted in this thesis.

It shall be shown in later chapters how this method can be used to model topologi-

cal changes without having to compute surface-surface intersections. In EIGA, each

phase interface is explicitly described by a parametric spline. The behavioral field

is described as a weighted blending of a continous approximation associated with

the underlying domain, and enrichments representing the influence of the interfaces.

The influence of an interface is generally expected to decrease with distance from the

interface. Thus, the enrichments require a measure of distance from the interface.

Approximations for the behavioral fields are usually chosen to be isoparametric with

the geometric models to facilitate CAD-CAE integration. In this chapter, the Hier-

archical Partition of Unity Field Compositions (HPFC) method will be introduced,

from which the EIGA method shall be developed. Finally, as an illustration, the

EIGA method is used to model the electrostatic problem of a current carrying metal

line with a void.

3.1 Hierarchical Partition of Unity Field Compositions

The HPFC method was developed by Subbarayan et al. [111, 112] based on the

Partition of Unity Finite Element Method [113]. The domain of interest is constructed

as hierarchical compositions of simpler primitives (see Fig. 3.1). Analogous to the

CAD procedure of Constructive Solid Geometry (CSG), the geometry, materials and
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behavioral fields over the domain (f(x)) are given by weighted compositions of fields

defined on the constituent primitives (Ωi),

f(x) =
∑
i

wi(x)fΩi(x) (3.1)

where, wi are weight functions. To ensure convergence of the analysis, the weight

functions must satisfy,

∑
i

wi(x) = 1 ∀ x (3.2a)

0 ≤ wi(x) ≤ 1 ∀ i,x (3.2b)

‖wi(x)‖∞ ≤ C∞ ∀ i,x (3.2c)

‖∇wi(x)‖∞ ≤
CG

diam Ωi

∀ i,x (3.2d)

Figure 3.1. : Complex domain constructed as hierarchical compositions of simple
primitives in a CSG procedure.

3.2 Enriched Field Approximations

An extension to the HPFC method, called Enriched Isogemetric Analysis (EIGA)

was developed by Tambat et al. [59], composing a continuous domain with lower-
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dimensional geometries such as evolving interfaces. Consider interfaces Γi embedded

in an underlying domain Ω, with associated behavioral field approximations fΓi and

fΩ respectively. The EIGA formulation for any behavioral field f(x) can then be

written as,

f(x) =

(
1−

∑
i

wi(x)

)
fΩ(x) +

∑
i

wi(x)fΓi (x,P(x)) (3.3)

where, wi(x) is the weight field associated with the ith interface Γi. Since the enrich-

ments are defined on lower-dimensional geometries, their influence at any point x in

space is dictated by its projection P(x) on to the lower-dimensional geometry. Inter-

face boundary conditions are directly imposed on the degrees of freedom associated

with the enrichments. An illustration is provided in Fig. 3.2.

Figure 3.2. : Behavioral field obtained as a composition of a continuous approximation
over the underlying domain, and an enrichment associated with the interface. The
influence of the interface is limited to a region in its neighborhood.

3.2.1 Choice of Weight Function

Interfaces exert influence on behavioral fields in their neighborhood. This in-

fluence generally weakens with distance away from the interfaces. To capture this

weakening influence, weight functions based on interface distance are used for blend-

ing of enrichments in Enriched IGA. Several weight functions have been proposed



52

in literature, such as inverse distance weighting [114], spline functions [115, 116] and

exponential functions [59].

Consider a single enrichment system as shown in Fig. 3.2. A weight function

w(d), varying with distance d from the enrichment is assumed. The influence of the

enrichment is restricted to the region within a cutoff distance ds that depends on the

length-scale dictated by the geometry and governing physics. Thus, the behavioral

field and its gradient are given by,

f(x) = (1− w(d))fΩ(x) + w(d)fΓ (x,P(x)) (3.4a)

g(x) = (1− w(d))∇fΩ(x) + w(d)∇fΓ (x,P(x))

−∇w
(
fΩ(x)− fΓ (x,P(x))

)
(3.4b)

In order for the interface solution and its gradient to be exact on an interface, the

weight function should be unity and its gradient zero, on the interface (i.e. d = 0).

Further, the weight function and its gradient should vanish at the cutoff distance ds,

so that the influence of the enrichment falls smoothly to zero. Mathematically,

w(0) = 1 (3.5a)

w(±ds) = 0 (3.5b)

∇w(0) = 0 (3.5c)

∇w(±ds) = 0 (3.5d)

where, the sign of the distance is used to differentiate the two sides of an enrichment.

In this thesis, cubic and quartic weight functions that satisfy all conditions of Eq. (3.5)

are used, shown in Fig. 3.3,

w(d) = 2

∣∣∣∣ dds
∣∣∣∣3 − 3

∣∣∣∣ dds
∣∣∣∣2 + 1 (3.6a)

w(d) = −3

∣∣∣∣ dds
∣∣∣∣4 + 8

∣∣∣∣ dds
∣∣∣∣3 − 6

∣∣∣∣ dds
∣∣∣∣2 + 1 (3.6b)
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Figure 3.3. : Cubic and quartic weight functions used for weighted blending of con-
tinuous approximation and enrichments.

Since the behavioral field approximation at a point depends on its distance from

enrichments such as phase interfaces, EIGA requires a computationally efficient mea-

sure of distance of a point from an interface. Such a distance measure called signed

algebraic level sets shall be introduced in the following chapters. The interface de-

grees of freedom influencing a particular point in the domain are obtained from its

projection on to the interface. Thus, a computationally efficient point projection

procedure is necessary, and an algebraic approach for the same shall be introduced

in subsequent chapters. Finally, Boolean compositions on signed algebraic level sets

are described in Chapter 7 to enable modeling topological changes such as merging

without having to compute intersections between phase interfaces.

3.3 Application: Current Through Line with Void

As an application, the electrostatic problem of a current carrying metal line with

a void is considered. This is of relevance in studying void growth due to electromigra-

tion, which is a failure concern in the semiconductor industry. A formal description

of the electromigration problem follows (see Fig. 3.4a for reference). A rectangular
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domain Ω, containing an arbitrarily shaped void is considered. To allow irregular

shapes, voids are represented using NURBS curves. The system is governed by the

Laplace equation on the electric potential φ,

∇2φ = 0 in Ω (3.7)

Dirichlet boundary conditions are applied at the top and bottom surfaces, and the

walls are assumed to not allow electric flux to flow through them. Additionally, there

is no flux entering or exiting the surface of a void Γe,

∂φ

∂n
= 0 on Γe (3.8)

The cubic weight function in Eq. (3.6a) is used to express the electric potential as a

weighted blending of a continuous approximation φc, and an enrichment φe associated

with the void surface,

φ(x) = (1− w(x))φc(x) + w(x)φe(P(x)) (3.9)

An advantage of this form for the electric potential is that it can be shown to auto-

matically satisfy Eq. (3.8) on the void boundary. For any point on the void boundary,

where the distance d = 0, we have from Eq. (3.5) that w = 1,∇w = 0. Thus, on the

boundary,

∂φ

∂n
= (1− w)∇φc(x) · n+ w∇φe(P(x)) · n+∇w · n (−φc + φe)

= ∇φe(P(x)) · n
(3.10)

At any point x on the boundary, traveling along the normal direction does not change

the projection P(x). This gives ∇P(x) ·n = 0, and by extension ∇φe(P(x)) ·n = 0,

and Eq. (3.8) is satisfied. As a result, only the governing Laplace equation with

Dirichlet boundary conditions need to be solved. The blended form assumed for

the electric potential ensures that the interface conditions are obeyed exactly. Some
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problems also involve non-homogeneous interface conditions, such as passing current

through a line with an inclusion. For such problems, an additional gradient degree of

freedom is required at the void interface, as used in [89].

φ(x) = (1− w(x))φc(x) + w(x) (φe(P(x)) +Ge(P(x))) (3.11)

The system is solved using isogeometric analysis for an elliptical void, and the

resulting potential solution is shown in Fig. 3.4b. The obtained results can be in-

terpreted as follows. For a system with no voids, the analytical solution at a point

x ≡ (x, y) is given by,

φ(x) =
y

h
(3.12)

where, h is the height of the metal line. The potential solution varies linearly from

the bottom surface to the top. This satisfies both the governing Laplace equation, as

well as the Dirichlet and wall boundary conditions. Such a solution is characterized

by straight, horizontal contour lines. As can be seen in Fig. 3.4b, far away from the

void, the potential contour lines are unaffected and remain straight and horizontal.

However in the neighbourhood of the void, the contours are distorted in order to

satisfy Eq. (3.8). The use of an explicit interface representation along with the as-

sumed form for the potential approximation in Eq. (3.9) has allowed imposing the

void interface conditions exactly.
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(a)
(b)

Figure 3.4. : (a) Schematic of the electromigration problem for a rectangular domain.
A sample point and its projection on to the void interface are illustrated. (b) Contours
of the electric potential solution obtained for a system with a single void.
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4. SIGNED ALGEBRAIC LEVEL SETS

For effective application of enriched isogeometric analysis, a fast and monotonic mea-

sure of signed distance is necessary, with the sign of the distance distinguishing points

lying on either side of the enrichment. In this chapter, a distance measure proposed

by Upreti et al. [84, 85], called signed algebraic level sets is introduced. Algebraic

level sets are obtained from the implicitization of the enrichment geometry, followed

by normalization and trimming. A bounding box procedure was proposed in [85] to

ascribe sign and thus classify points as lying inside, on or outside closed geometries.

Since the procedure to generate these signed level sets is completely analytical, it is

computationally very efficient. Further, these level sets are smooth, increase mono-

tonically with distance, and are exact on the boundary, making it apt for enriched

isogeometric analysis.

4.1 Background: Implicitization of Parameteric Geometries

Surfaces and curves may be expressed with an implicit or parametric represen-

tation. Most CAD systems use parametric representations such as NURBS which

provide an easier and more intuitive control for users. On the other hand, the implicit

representation of a surface allows natural generation of level sets that increase mono-

tonically with distance, thereby serving as a measure of distance. It is hence desirable

to obtain the equivalent implicit representation for a given parametric curve or sur-

face. Since spline geometries are piece-wise polynomial, they are first decomposed into

constituent Bézier polynomial segments through knot insertion [80, 117, 118]. Each

Bézier segment is then implicitized using the Dixon resultant [119] from Elimination

theory, as shown in [86]. Resultants are polynomial expressions on the coefficients of a

given system of polynomial equations. The given system of equations have a common
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solution only if their resultant vanishes. For example, for a linear system Ax = 0,

the determinant of the coefficient matrix, |A| depends only on the coefficients of the

system and behaves as a resultant; the system has a non-trivial common solution only

if this determinant vanishes. The Dixon resultant is obtained as an n-dimensional

extension of the Cayley-Bezout resultant [120], and shall be discussed presently. This

is followed by a brief description of an alternative implicitization procedure devel-

oped by L. Busé [121]. While the procedure described here is for three-dimensional

surfaces, it can be adapted for planar curves in a straight-forward manner.

4.1.1 Dixon Resultant

Rational parametric representations such as Bézier and NURBS have the general

form,

x(u, v) =
X(u, v)

W (u, v)
, y(u, v) =

Y (u, v)

W (u, v)
, z(u, v) =

Z(u, v)

W (u, v)
(4.1)

where, X, Y, Z,W are functions in the parameters (u, v), with degree m in u and n

in v. Such representations can be converted into a polynomial system of equations,

X(u, v)− xW (u, v) = 0

Y (u, v)− yW (u, v) = 0

Z(u, v)− zW (u, v) = 0

(4.2)

Consider the following determinant where α, β are any constants,∣∣∣∣∣∣∣∣∣
xW (u, v)−X(u, v) yW (u, v)− Y (u, v) zW (u, v)− Z(u, v)

xW (u, β)−X(u, β) yW (u, β)− Y (u, β) zW (u, β)− Z(u, β)

xW (α, β)−X(α, β) yW (α, β)− Y (α, β) zW (α, β)− Z(α, β)

∣∣∣∣∣∣∣∣∣



59

This determinant is zero whenever u = α or v = β, and hence (u − α) and (v − β)

are factors of the determinant. Define,

δ(x) =
1

(u− α)(v − β)

∣∣∣∣∣∣∣∣∣
xW (u, v)−X(u, v) yW (u, v)− Y (u, v) zW (u, v)− Z(u, v)

xW (u, β)−X(u, β) yW (u, β)− Y (u, β) zW (u, β)− Z(u, β)

xW (α, β)−X(α, β) yW (α, β)− Y (α, β) zW (α, β)− Z(α, β)

∣∣∣∣∣∣∣∣∣
For points on the surface, the first-row entries are zero, and the determinant is zero

irrespective of α, β. Hence all points on the surface satisfy,

δ(x) = 0 ∀ α, β ∈ R (4.3)

Now, the quantity δ depends on α, β, u and v, and can be expanded to separate these

factors as,

δ =
[
1 α α2 · · · αm−1β2n−1

]
[MD(x)]



1

u

u2

...

u2m−1vn−1


= [α][MD(x)][u] (4.4)

For the determinant to vanish for all α, β, we have,

[MD(x)][u] = 0 (4.5)

|MD(x)| = 0 (4.6)

This forms a necessary condition for a given point x to lie on the parametric surface

and can act as its implicit equation. The 2mn × 2mn determinant in Eq. (4.6) is

called the Dixon resultant and was derived by Dixon [119] in an involved procedure
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expressing X, Y, Z,W in the power basis of the parameters. The corresponding Dixon

matrix is linear in x, y, z and can be written as,

MD(x) = Mw + Mxx+ Myy + Mzz (4.7)

where each of the coefficient matrices are constants and independent of u, v or x.

In [119], it is shown that the coefficient of αiβjukvl in the expansion of δ in Eq. (4.4)

can be written as,

MD(i, j, k, l) =
∑

(dIJx− aIJ , dKLy − bKL, dMNz − cMN) (4.8)

summed over all integers I, J,K, L′,M ′, N ≥ 0 such that,

L = L′ + j + 1

M = M ′ + k + 1

I +K +M ′ = i

J + L′ +N = l

(4.9)

Here, a, b, c, d are the coefficients in the expansion of X, Y, Z,W , written as,

X(u, v) =
∑
K,L

aKLu
KvL

Y (u, v) =
∑
K,L

bKLu
KvL

Z(u, v) =
∑
K,L

cKLu
KvL

W (u, v) =
∑
K,L

dKLu
KvL

(4.10)
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The parentheses in Eq. (4.8) denote a determinant, with the notation as used in [86],

(aIJ , bKL, cMN) =

∣∣∣∣∣∣∣∣∣
aIJ bIJ cIJ

aKL bKL cKL

aMN bMN cMN

∣∣∣∣∣∣∣∣∣
Constructing the Dixon Matrix

From Eq. (4.8), a simple procedure to build the coefficient matrices in Eq. (4.7) and

hence the Dixon matrixMD is to loop over all possible combinations of I, J,K, L,M,N

and assign at the appropriate location in MD. Such an algorithm for building the

Dixon resultant is provided in [86] and a slightly modified version is presented here

(see Algm. 1). The degree of the surface is assumed to be n in both parameters.

4.1.2 Implicitization using M-Rep

An alternative implicitization procedure was proposed by L. Busé [121,122] called

the Matrix Representation or the M-Rep. As a generalization of the moving lines

implicitization method [123], this approach constructs for a given curve or surface,

a matrix with elements varying in space. The matrix is constructed such that its

rank drops exactly on the curve or surface. Consider a tensor product Bézier surface

f(u, v) =
[
f0 f1 f2 f3

]
with degree (d1, d2). Let Bn

i (u) =
(
n
i

)
(1 − u)iun−i denote

the ith Bernstein polynomial of order n. The M-Rep for this surface is constructed

as follows (refer [121] for further details). An orthogonal Bézier surface g(u, v) is

constructed with degree ν ≡ (ν1, ν2) ≥ (d1 − 1, 2d2 − 1) [or ν ≥ (2d1 − 1, d2 −

1)] [122,124,125],

g(u, v) =

ν1∑
i=0

ν2∑
j=0

αijB
ν1
i (u)Bν2

j (v) (4.11)

f(u, v) · g(u, v) = 0 ∀ (u, v) (4.12)
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Algorithm 1 Dixon Resultant Assembly

Require: n, aIJ , bIJ , cIJ , dIJ
for I, J,K,N = 0 to n do

for L,M = 1 to n do
if (IJ == KL or KL == MN or MN == IJ) then

cycle
end if
Dx = (dIJ ,−bKL,−cMN)
Dy = (−aIJ , dKL,−cMN)
Dz = (−aIJ ,−bKL, dMN)
Dw = (−aIJ ,−bKL,−cMN)
for M ′ = 0 to min(M − 1, 2n− 1− I −K) do

for L′ = 0 to min(L− 1, 2n− 1− J −N) do
i = I +K +M ′

j = L− L′ − 1
k = M −M ′ − 1
l = J + L′ +N
Mx(i, j, k, l) = Mx(i, j, k, l) +Dx

My(i, j, k, l) = My(i, j, k, l) +Dy

Mz(i, j, k, l) = Mz(i, j, k, l) +Dz

Mw(i, j, k, l) = Mw(i, j, k, l) +Dw

end for
end for

end for
end for
return Mx,My,Mz,Mw
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In matrix form, this can be written as,

[
Bν1+d1

0 (u)Bν2+d2
0 (v) . . . Bν1+d1

ν1+d1
(u)Bν2+d2

ν2+d2
(v)
]
Sν =[

Bν1
0 (u)Bν2

0 (v)f0 . . . Bν1
ν1

(u)Bν2
ν2

(v)f0 . . . Bν1
ν1

(u)Bν2
ν2

(v)f3

]
(4.13)

where, Sν is a matrix constructed using the following relation between Bernstein poly-

nomials,

Bd1
i (u)Bd2

j (v)Bν1
k (u)Bν2

l (v) =

(
d1
i

)(
d2
j

)(
ν1
k

)(
ν2
l

)(
d1+ν1
i+k

)(
d2+ν2
j+l

) Bd1+ν1
i+k (u)Bd2+ν2

j+l (v) (4.14)

Thus, solutions for αij in Eqs. (4.11) and (4.12) lie in the null space of Sν . Since

Sν may not have full row rank, a singular value decomposition is required to com-

pute the null space Null(Sν). Writing a basis for this null space as Null(Sν) =[
M0 M1 M2 M3

]T

, the Matrix Representation (M-Rep), MR, of the surface is

obtained as,

MR(x) = M0 + M1x+ M2y + M3z (4.15)

where, Mi are matrices of real constants. For points P on the curve or surface, the

M-Rep matrix drops rank since for some u, v, it satisfies,

[
Bν1

0 (u)Bν2
0 (v) . . . Bν1

ν1
(u)Bν2

ν2
(v) . . . Bν1

ν1
(u)Bν2

ν2
(v)
]
MR(P ) = 0 (4.16)

A measure of unsigned distance from the curve or surface may be obtained from

MR(x) as the product of its singular values, or as det
(
MT

RMR

)
. The determinant

cannot be used directly since MR may not be a square matrix.
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(a) (b)

Figure 4.1. : Algebraic level sets for a section of a parabola generated from (a) Dixon
resultant and (b) after the trimming operation.

4.2 Unsigned Algebraic Level Sets

For each Bézier segment of the spline geometry, the Dixon resultant derived

in § 4.1.1 allows us to generate the algebraic level sets [84],

Γ(x) = |MD(x)| (4.17)

Composition of these level sets using the R-conjunction operation [126], corresponding

to Boolean intersection, provides a smooth, composite algebraic level set for the

complete spline geometry.

The generated level sets for a section of a parabola are shown in Fig. 4.1a. It can

be seen that while the parametric curve is restricted to just a section, the resultant

generates level sets over the entire parametric range, i.e., for the entire parabola. As

a result, as we move away from any end of the curve in the tangential direction, the

level sets are not monotonic. This is because the implicit equation for a section of

a parabola is the same as that for the whole parabola. It is hence required that the

implicitization is restricted to the required parametric domain. This is achieved using

a trimming procedure based on R-functions [83,126].



65

4.2.1 Trimming Procedure

The convex hull of the parametric surface, defined by the field Φ(x) ≥ 0, is used

as the trimming region. If f(x) is the implicitization of the parametric surface, then

the trimmed field, g(x), is given by the R-function [127],

g(x) =

√
f 2 +

(|Φ| − Φ)2

4
(4.18)

Within the trimming region, the original implicitization is recovered, while outside

the region a composite field is obtained,

g(x) =

|f(x)| Φ(x) ≥ 0√
f 2 + Φ2 Φ(x) < 0

(4.19)

Usage of the R-function ensures that the subsequent field is smooth. The level set

Φ for the convex hull can be computed as a Boolean union of distance fields of its

faces (edges in the case of planar curves). The procedure to obtain the Boolean union

is described in § 4.2.2 as the R-disjunction operation. Trimmed level sets generated

for the parabola section are shown in Fig. 4.1b; it can be seen that the level sets are

globally monotonically increasing.

4.2.2 Boolean Operations Using R-Functions

Parametric spline geometries are piecewise polynomial representations. Conse-

quently, an algebraic distance field measure for splines can be obtained as the Boolean

intersection of the level sets of individual polynomial geometries. These Boolean

operations are carried out algebraically using R-functions given in [126] to ensure

smoothness. The three fundamental R-function Boolean operations are,
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1. Negation: A positive argument gives a negative result and vice-versa

¬g = −g (4.20)

2. Union: R-disjunction provides the equivalent to Boolean union, where the

result is positive if either argument is positive

g1 ∨ g2 = g1 + g2 +
√
g2

1 + g2
2 (4.21)

3. Intersection: R-conjunction provides the functional equivalent, where the re-

sult is positive only if both arguments are positive

g1 ∧ g2 = g1 + g2 −
√
g2

1 + g2
2 (4.22)

Usage of the R-conjunction function for the Boolean intersection of individual level

sets ensures a smooth composite field for parametric splines.

4.2.3 Normalization of the Algebraic Level Sets

In order to compose algebraic level sets from different segments of a parametric

spline geometry, each constituent field has to be normalized. The level sets generated

by the implicitization process in § 4.1.1 do not inherently satisfy the property ‖∇d‖ =

1 on the geometry, and hence different segments of the spline could grow at different

rates. This could lead to a non-monotonic composite field as shown in Fig. 4.2a.

Hence the algebraic level set in § 4.2.1 is normalized before trimming and composition.

Consider a point x, a distance d away from the geometry. Let xf be the projection

of the point on to the geometry. The Taylor series expansion of the resultant at x is,

Γ(xf ) = Γ(x)−∇Γ(x) · nd+
d2

2
n · ∇∇Γ · n+ . . . (4.23)
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where, n is the unit normal at xf . Since xf lies on the curve or surface, Γ(xf ) = 0.

Ignoring higher order terms, we get the first order approximation for the distance,

d(x) =
Γ(x)

‖∇Γ‖
(4.24)

The distance measure defined by Eq. (4.24) satisfies the property ‖∇d‖ = 1 trivially

on the geometry, while providing a first order accuracy for the distance. Additionally,

the measure is exactly zero on the curve or surface. Normalizing individual distance

measures before composition ensures monotonicity of the composite field of the spline,

as shown in Fig. 4.2b. Higher order normalizations can also be obtained in a similar

manner.

The gradient of the resultant is obtained using Eq. (4.17). From tensorial calculus,

the derivative of the determinant of a matrix M is given by,

∇|M | = |M | tr
(
M−1∇M

)
(4.25)

where, tr(•) denotes the trace of a matrix. The gradient of the resultant is hence

given by,

∇Γ = Γ tr
(
M−1

D ∇MD

)
(4.26)

The gradient of the Dixon matrix can be calculated from Eq. (4.7) as,

∇MD =


Mx

My

Mz

 (4.27)

4.2.4 Construction of Unsigned Algebraic Level Sets

The procedure to construct algebraic level sets for parametric spline geometries is

now summarized. Splines are piecewise polynomial representations. Common para-
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(a)

(b)

Figure 4.2. : Algebraic level sets for a spline obtained from R-function based compo-
sition of individual distance fields. (a) Composition of non-normalized fields results
in a non-monotonic distance measure (b) Normalization of individual level sets before
composition ensures monotonicity of the resultant field
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metric representations like composite Bézier and NURBS can be decomposed into

individual Bézier components through knot insertion [80, 117, 118] and consequently,

through basis conversion to the power basis, into the polynomial constituents.

1. The Dixon resultant Γ is computed for each individual component using Algm. 1

2. To facilitate composition with adjacent algebraic level sets, the individual re-

sultants are normalized using Eq. (4.24)

3. The normalized algebraic level set is restricted to the defined parametric domain

by using Eq. (4.18) with the convex hull as the trimming region

4. R-conjunction (Eq. (4.22)) is used to compose individual trimmed level sets to

form algebraic level sets for the parametric spline

The algebraic level sets thus obtained are unsigned due to the trimming procedure.

Both the trimming procedure and R-conjunction preserve the normalization [84].

4.3 Signed Alegebraic Level Sets

An algebraic procedure to generate level sets was discussed in the previous sec-

tion § 4.2. Due to the trimming and R-conjunction, the level sets lack sign and are

always positive. Open curves and surfaces do not partition space into inside and out-

side regions, and hence the concept of signed level sets does not apply to them. Signed

algebraic level sets can hence be generated only for closed geometries. Attributing

sign to these level sets helps classify points as lying inside or outside the geometry.

In [85], the sign of the algebraic level sets is computed separately from the distance

computation, through a point by point containment query. The sign convention used

here is that of positive distance inside the geometry and negative distance outside.

On the curve or surface, the distance is zero, as seen in the previous section § 4.2.

A close-fitted bounding polygon is constructed for the closed spline geometry, from

the convex hulls of individual Bézier components. For each Bézier component, the



70

sign of the Dixon resultant Γ is set such that the resultant is negative for control

points that lie on the bounding polygon (and hence outside the geometry). This is

a one-time process for a given geometry. During sign determination, the point of

interest is first classified with respect to the bounding box. If the point is outside the

bounding box, then it is also outside the given geometry and its distance can be taken

to be negative. Query points that lie inside the bounding box are then classified with

respect to the convex hulls of the Bézier components. If the point lies inside any of

the hulls, then the sign of the distance is the same as the sign of the Dixon resultant

of the corresponding Bézier component, evaluated at the point of interest. If the

query point does not lie inside any of the individual convex hulls, but lies inside the

bounding box, then it lies inside the closed geometry and its distance can be taken

to be positive.

The only non-trivial step in the point containment approach discussed is the con-

struction of the bounding polygon from individual convex hulls; this is described

presently.

4.3.1 Bounding Box Construction

A close-fitted bounding polygon can be constructed for a closed spline geometry

from the convex hulls of its Bézier components. However the construction approach

is different for planar curves and three-dimensional surfaces, and both are discussed

separately here.

Bounding Box for Planar Curves

A convention is followed wherein the control points of the parametric spline are

ordered in an anti-clockwise sense. Consider the convex hull of any Bézier component

with vertices v1, v2, · · · , vn, where v1 and vn are the end points of Bézier. Due to the

anti-clockwise ordering of the control points, the interior of the spline is to the left of

the line segment v1vn. Hence all vertices of the hull to the left of this line segment are
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discarded, while the rest contribute to the bounding box. This is illustrated in Fig. 4.3.

Repeating for all Bézier components gives the required bounding box. An example

is provided in Fig. 4.4 where the convex hulls of individual Bézier components are

shown dashed. The bounding box constructed using the above procedure is shown

with solid lines.

Figure 4.3. : Contribution to the bounding box from convex hull of a Bézier com-
ponent. Only vertices to the right of the v1v7 line contribute to the bounding box.
Edges of the convex hull contributing to the bounding box are shown as arrows, while
the remaining edges are shown in grey.

In some cases the bounding box constructed could contain self-intersections, one

such example shown in Fig. 4.5. Such a bounding polygon does not have clearly

defined inside and outside regions, making point classification and subsequent sign

determination infeasible. However a corner cutting procedure can be employed based

Figure 4.4. : Illustration of construction of a bounding polygon for a NURBS curve
from the convex hulls of individual Bézier components. Edges contributing to the the
bounding box are shown solid, while the remaining edges are shown dashed.
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Figure 4.5. : Corner cutting to handle self-intersections in the bounding box.
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on degree elevation of the intersecting Bézier components [85]. One of the intersecting

Bézier components is chosen. Let the control points of this curve be P0,P1, · · · ,Pp,

where p is the degree of the Bézier curve. The curve can be equivalently represented

as a p+ 1 degree Bézier curve, with p+ 2 control points given by [80],

Qi =

(
1− i

p+ 1

)
Pi +

i

p+ 1
Pi−1 ∀ i = 0, 1, · · · , p+ 1 (4.28)

Due to the nature of Bézier curves, as the degree increases, the convex hull approaches

the curve. Hence the degree elevation procedure can be repeated until the bounding

box has no self-intersections. This is illustrated in Fig. 4.5, where the bounding box

has self-intersections. The intersecting cubic Bézier curve with 4 control points is

degree elevated to a quartic curve with 5 control points, without altering the original

curve. The bounding box no longer has self-intersections.

Bounding Box for Three-Dimensional Surfaces

The control points of the Bézier components of the spline surface (NURBS or

composite Bézier) are assumed to be ordered such that the normal to the patch is

pointed outwards to the enclosed volume. The vertices of the faces of their convex

hulls are also ordered in an anti-clockwise sense so that the face normal points away

from the Bézier patch. Consider the convex hull of the ith Bézier component. Let f ik

denote the kth face of this convex hull and let the face normal be nik. Compute the

centroid of f ik and project it on to the Bézier component under consideration. Let N i
k

be the normal to the Bézier at the projection point. If both nik and N i
k point in the

same direction, i.e., nik ·N i
k > 0, then the face contributes to the bounding box. This

process is then repeated for each face of the convex hulls of each Bézier component.

An illustration is provided in Fig. 4.6. Self-intersections in the bounding box are

handled similar to the case of 2D curves; one of the intersecting patches undergoes

degree elevation until there are no more self-intersections. In case of overlap between
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faces, the overlapping faces are replaced by their union. The process is detailed

in Algm. 2

Figure 4.6. : Construction of the bounding box for a parametric surface from convex
hull faces of Bézier components. Ci is the centroid of the face under interest (high-
lighted), and Pi is the projection of the centroid on to the Bézier surface. Since the
face normal (N ) and surface normal (n) point in the same direction, the face is added
to the bounding box.

Algorithm 2 Bounding Box Construction for Spline Surfaces

Require: Bézier decomposition of spline surface
B ← empty polyhedron
for all Bézier patch Si do
H i ← convex hull of Si

for all face f ik of H i do
nik ← face normal of f ik
Ci
k ← centroid of f ik

P i
k ← projection of Ci

k on to Si

N i
k ← normal to Si at P i

k

if nik ·N i
k > 0 then

B ← B ∪ {f ik}
end if

end for
end for
while B contains self-intersections do

degree elevation of intersecting patches
end while
return B
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(a) (b)

(c)

Figure 4.7. : Examples of 2D and 3D signed algebraic level sets: (a) Circle (b)
Arbitrary bean-like shape (c) Sphere
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4.3.2 Examples

Some examples of signed algebraic level sets, for both planar curves and three-

dimensional surfaces are shown in Fig. 4.7. All three examples have been generated

using quadratic NURBS representation. It can be observed that the generated alge-

braic level sets are exactly zero on the boundary. Also, they increase in magnitude as

we move away from the boundary. Finally, as per the convention followed, the level

sets are positive inside the closed geometries and negative outside.

4.4 Point Projection

Point projection and inversion are required to determine which control points of

the enrichment influence behavior at a given point in the underlying domain. A

smooth algebraic point projection procedure proposed in [87,89] is used in this paper

and shall now be described in brief. The foot point xf of a point x in space is given

by,

xf = x− dn (4.29)

where, d = Γ
‖∇Γ‖ is a first order distance estimate obtained from a first order Taylor

series expansion of the Dixon resultant Γ(x). A more accurate point projection may

be obtained by considering a second order Taylor series expansion,

Γ(xf = x− dn) = Γ(x)−∇Γ · nd+
d2

2
n · ∇∇Γn = 0 (4.30)

d =
1

Γ,nn

(
Γ,n −

√
Γ2
,n − 2Γ Γ,nn

)
(4.31)

where, (•),n and (•),nn denote ∇(•) ·n and n ·∇∇(•)n, respectively. The foot points

obtained are in the physical space and have to be converted to parametric coordinates

on the surface. This point inversion procedure can be carried out using Eq. (4.5). For
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foot points xf on the curve or surface, the Dixon matrix loses rank and satisfies this

equation. Partitioning the Dixon matrix gives,

[
m M c

D

] [
1 u u2 . . . u2m−1v2n−1

]T

= 0 (4.32)

⇒M c
D

[
u u2 . . . u2m−1v2n−1

]T

= −m (4.33)

where, m is a column vector and M c
Dis a matrix with appropriate dimensions. Now,

M c
Dis of full rank and thus Eq. (4.33) can be solved to obtained the required para-

metric coordinates u, v.

4.5 Issues with Signed Algebraic Level Sets

As seen in § 4.1.1, it is only a necessary condition, not necessarily sufficient,

that Γ = |MD| = 0 on the geometry. It has been observed that for many three-

dimensional parametric solids (including spheroids and cylinders), the Dixon resultant

is identically zero everywhere [128, 129]. For such geometries, the parametric form

cannot be implicitized by the method suggested, causing the level set generation to

fail. A second issue is that the resultant may not be signed. The signed algebraic level

set procedure uses the sign of the resultant to ascribe the sign of level sets for points

close to the surface (within the convex hull). While the Dixon resultant generally

switches from positive to negative across the boundary, there are some parametric

solids where the resultant is either non-negative or non-positive everywhere. This

causes the generation of signed algebraic level sets based on the resultant to fail, and

consequently, the algebraic point projection procedure detailed in § 4.4. These issues

shall be discussed separately in the following chapter.
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5. EXTENDING SIGNED ALGEBRAIC LEVEL SETS TO

THREE-DIMENSIONAL SURFACES

While the generation of algebraic level sets for curves using the Dixon resultant is

robust, there are two issues in generating these level sets for surfaces. The first issue

is the insufficiency of the Dixon resultant. It can be observed that for several three-

dimensional parametric solids (including spheres and cylinders), the Dixon resultant

is identically singular [128, 129]. Such geometries cannot directly be impliticized us-

ing the Dixon resultant and thus cannot generate algebraic level sets. The second

issue with using the Dixon resultant is the occasional lack of sign for closed surfaces.

The sign of the Dixon resultant is used to ascribe the sign of algebraic level sets for

points close to the surface. For most surfaces the Dixon resultant is signed, classifying

space into inside and outside regions. However, for some geometries (described later

in Fig. 5.3), the Dixon resultant could lack an intrinsic sign. Subsequently, the gen-

erated algebraic level sets are unsigned and thus cannot classify points as lying inside

or outside the closed geometry. In this chapter, procedures are developed to address

wide rank-deficiency and loss of sign of the Dixon resultant. The maximal-rank sub-

matrix approach developed in [128,129] is used to correct for wide rank-deficiency of

the resultant. A multivariate polynomial square root method is developed to recover

the sign for unsigned resultants. Rectification measures for algebraic point projection

developed in [87] are also proposed for surfaces with identically singular or unsigned

Dixon resultants. As an application, the electrostatic problem is solved on a three-

dimensional system with voids using Enriched Isogeometric Analysis.
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5.1 Insufficiency of the Dixon Resultant

Consider a cylinder and a sphere, both of unit radius centered at the origin. As

shown in Fig. 5.1, for both geometries, the resultant is zero everywhere. We do not

have the natural generation of level sets required for the algebraic level sets. A similar

issue was reported in [128] in the context of elimination theory, where the authors

studied multivariate systems of equations. The Dixon resultant, used to detect the

existence of a common solution to a multivariate system, was found to be identically

zero for some systems. The authors attributed the cause to the presence of extraneous

factors in the resultant. They also compared the Dixon resultant with other resultants

such as the Sylvester resultant and concluded that the Dixon resultant generally had

the least number of extraneous factors [129]. To recover the resultant, the authors

suggested using the maximal-rank submatrix of the Dixon matrix MD in Eq. (4.17).

The same approach is adopted here in the context of implicitization of a parametric

geometry.

A point that does not lie on the surface is chosen (e.g. one of the control points)

and the Dixon matrix MD is computed at this point. Since the resultant is zero

everywhere, the Dixon matrix must be singular. The LU decomposition of the ma-

trix with complete pivoting is performed. Complete pivoting is required since it is

applicable even for singular matrices and is rank-revealing.

PMDQ = LU = L

Ũp×2mn

0

 (5.1)

where P and Q are permutation matrices, L is lower triangular, and U and Ũ

are upper triangular matrices. For identically singular Dixon matrices, the upper

triangular matrix has rows of zeros as shown. The number of non-zero rows p ≤ 2mn

in U is the row rank of the Dixon matrix. The maximal-rank submatrix is obtained

by taking the first p rows and first p columns from the permuted Dixon matrix. The

permutation matrices P and Q can be represented as an ordering of row indices
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pi and column indices qj, respectively. Then, the maximal-rank submatrix may be

denoted as,

M sub
D = MD[p1 . . . pp; q1 . . . qp] (5.2)

This submatrix now behaves like a resultant. This operation is only performed once

for the geometry; the corresponding indices are stored and used in distance compu-

tation for all points. For points on the surface this submatrix becomes singular, and

the corresponding resultant is zero.

(a) (b)

Figure 5.1. : Dixon resultant contours for (a) cylinder of unit radius centered at the
origin (b) sphere of unit radius centered at the origin. The Dixon matrix is identically
singular and hence the resultant is zero everywhere for both geometries.

(a) (b)

Figure 5.2. : Using the submatrix recovers the implicitization of the (a) cylinder and
(b) sphere, thereby generating algebraic level sets.
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Example 1. An octant of a unit sphere centered at origin, shown in Fig. 5.1b, is now

considered. A random point (2.00, 1.57, 1.97), not lying on the sphere, is chosen. One

of the control points, excluding the end points, may also be chosen. At the selected

point the Dixon matrix has the form,

MD =



−2.00 −1.63 −1.03 2.25 2.11 −0.08 0.91 −0.54

−2.20 1.29 5.74 −1.14 −1.70 −0.31 −1.85 0.16

−0.46 5.08 2.85 −6.57 −1.32 0.00 −1.07 1.49

2.58 −3.59 −4.51 2.75 0.69 1.11 1.24 −0.27

−0.21 −3.37 −1.92 4.39 1.29 −0.02 0.85 −1.00

−2.04 2.42 4.03 −1.89 −0.82 −0.73 −1.17 0.20

−0.96 2.42 1.32 −3.08 −0.05 −0.03 −0.31 0.69

0.76 −1.66 −0.67 1.22 −0.18 0.55 0.09 −0.10



(5.3)

This matrix is singular even though the chosen point does not lie on the sphere. Per-

forming LU decomposition with complete pivoting gives the upper triangular matrix,

U =



−6.57 2.85 −0.46 5.08 0 1.49 −1.32 −1.07

0 5.25 −2.12 0.41 −0.31 −0.1 −1.47 −1.66

0 0 −2.17 0.11 −0.08 −0.03 1.65 0.53

0 0 0 −1.16 0.88 0.28 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(5.4)
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By observation, it is clear that the Dixon matrix is of rank 4. Using the permutation

matrices of the complete pivoting, the maximal-rank submatrix of the Dixon matrix

MD is obtained as,

M sub
D =


2.85 −6.57 −0.46 5.08

5.74 −1.14 −2.2 1.29

−1.03 2.25 −2.0 −1.63

−4.51 2.75 2.58 −3.59

 (5.5)

This LU decomposition is performed only once. For subsequent resultant computa-

tions, the same indices are used for the submatrix. Figure 5.2 shows the recovery of

the algebraic level sets on using the submatrix approach for a quarter-cylinder and

an octant of a sphere.

5.1.1 Point Inversion

While the earlier described procedure for point projection continues to be valid

for surfaces with identically singular Dixon matrices, point inversion to parametric

coordinates is not valid due to rank loss exceeding unity. Unlike for general surfaces

as described in § 4.4, Eq. (4.5) cannot be used for point inversion since the null

space of the Dixon matrix has dimension greater than 1, thereby allowing multiple

solutions for this equation. Instead, point inversion may be carried out using the

M-Rep matrix equation Eq. (4.16) since MT
R has a null space dimension of 1 even

for surfaces with identically singular Dixon matrices. The null space of the M-Rep

matrix may be computed from the singular value decomposition (SVD) to determine

the corresponding parametric coordinates [121]. Alternatively, here, a column deletion
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procedure, akin to § 4.4, is used to avoid performing the computationally expensive

SVD operation. Expanding the Bernstein polynomials in Eq. (4.16), we get,

MT
R


(1− u)ν1(1− v)ν2

ν1u(1− u)ν1−1(1− v)ν2

...

uν1vν2

 = 0 (5.6)

First, it is verified that u = 1 or v = 1 are not feasible. Now assuming u 6= 1, v 6= 1,

we define new variables t = u
1−u , s = v

1−v having a one-one correspondence with u, v

respectively. For feasible parameters 0 ≤ u, v ≤ 1, we have s, t ≥ 0. Thus, Eq. (5.6)

can be expressed in terms of s, t as,

[
m M c

R

] [
1 ν1t . . . tν1sν2

]T

= 0 (5.7)

⇒ [M c
R]
[
ν1t

(
ν1
2

)
t2 . . . tν1sν2

]T

= −m (5.8)

where MT
R has been partitioned into a column vector m and a matrix M c

R. Since

MT
R has a nullity of 1, M c

Ris of full-rank and thus, Eq. (5.8) may be solved directly

to obtain s, t and subsequently u = t
1+t
, v = s

1+s
.

5.2 Lack of Signed Resultant

As described in § 4.3, for points inside the convex hull of a Bézier component, the

sign of the algebraic level set is taken to be the same as that of the Dixon resultant.

This relies on the fact that the implicit form of a parametric curve or surface generally

switches from positive to negative across the boundary of the geometry. For example

the implicit form of a unit circle, (1− x2− y2), transitions from being positive inside

the circle, zero on the circumference and negative outside. However, this need not be

true in all cases. For the same example of a unit circle, an equally valid implicit form

is (1− x2 − y2)2. This is zero on the circle and positive everywhere else. While still



84

capturing the geometry accurately, such implicitizations do not allow signed algebraic

level sets and by extension, point containment determination.

The Dixon resultant being an implicit form is also not immune to being unsigned.

Consider an octant of a unit sphere centered at the origin. The sphere is defined as

a quadratic rational Bézier surface. The Dixon resultant was found to be trivially

singular and hence the maximal-rank submatrix was used. The resultant and its sign

are shown in Fig. 5.3. It can be seen that the resultant is zero on the sphere and

negative everywhere else. In such cases, the resultant can be expressed as Γ = −ρ2,

where ρ is the desired resultant. This can be verified analytically for the unit sphere

example, where the Dixon resultant can be expanded as,

Γ(x) = −1.56(x2 + y2 + z2 − 1)2 (5.9)

(a) (b)

Figure 5.3. : (a) Maximal-rank submatrix based resultant and its (b) sign, for an
octant of a unit sphere centered at the origin. The resultant is negative (blue) every-
where.

5.2.1 Possible Strategies for Sign Extraction

A general procedure is hence required to extract the sign of the fundamental

resultant for cases similar to Eq. (5.9). A couple of possible approaches to do the

same are discussed in brief below.
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Matrix Square Root

From Eq. (4.17) and writing Γ = −ρ2, we can extract the fundamental resultant

as,

Γ′ =
∣∣∣√MD

∣∣∣ = iρ (5.10)

Using Schur decomposition, one can compute the matrix square root of the Dixon

matrix using the Bjorck-Hammarling recursion [130], whose determinant would be

the required resultant. However the sign of the square root was found to be incon-

sistent (see Fig. 5.4), possibly depending on the nature of the eigenvalues of MD. If

e1, e2, . . . , en are the eigenvalues of the Dixon matrix then,

Γ′ =
√
e1 ×

√
e2 × · · · ×

√
en (5.11)

The nature of Eq. (5.11) depends on whether the eigenvalues are all real or include

complex conjugate pairs. For example, if the Dixon matrix has 3 eigenvalues, all real,

with Γ = −1, then two possible eigenvalue triplets are (1, 1,−1) and (−1,−1,−1).

The former gives Γ′ = i while the latter gives Γ′ = −i. The square root hence allows

both positive and negative values. However, if the eigenvalues contain a complex

conjugate pair, then the third eigenvalue must be negative (e.g. (−1, i,−i)). In such

cases the imaginary part of Γ′ is always positive.

Normal Gradient Method

While two points on either side of the curve of surface can have the same sign,

the gradients at these points would point in opposite directions, as shown in Fig. 5.5.

To compute the sign of the resultant, the gradient ∇Γ is computed at the point of

interest. The point is then projected on to the curve or surface and the normal n

computed at the projection point. The sign of the resultant is then given by the sign

of ∇Γ · n.
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Figure 5.4. : Sign of the resultant obtained from the matrix square root method.
Regions in yellowish brown denote positive distance and those in blue denote negative
distance. The sign is observed to contain inconsistencies.

However, this method requires accurate point projection. Algebraic point projec-

tion used in [87, 89] is not exact and its accuracy is found to be wanting, especially

for points far away from the geometry. Alternatively one can use iterative methods

such as the Newton-Raphson method. Such methods lack robustness [84] and also

lose the computational advantage of signed algebraic level sets.

Figure 5.5. : Points A and B on opposite sides of the cubic curve both have positive
resultants, but the gradient of the resultant (marked by arrows) at these points point
in opposite directions. P is the projection of A and B on to the curve while n is
the normal to the curve at P. Thus, A has a positive normal gradient and is hence
outside, while B has a negative normal gradient and is hence inside.
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5.2.2 Algebraic Square Root

A method is hence required to extract the sign when the Dixon resultant lacks

sign. A robust, consistent and algebraic method is now developed to extract the

fundamental resultant directly from the unsigned Dixon resultant. From the form

of the Dixon matrix in Eq. (4.7), the resultant can be expressed as a polynomial in

x, y, z. Using Eq. (4.17), we can write,

Γ = |MD| =
∑
i

∑
j

∑
k

Mijkx
iyjzk (5.12)

where, Mijk is the sum of determinants of all matrices formed from any i rows of Mx,

j rows of My, k rows of Mz and the rest from Mw, as explained in detail below. The

problem of determining the fundamental resultant ρ then reduces to determining the

square root of a multivariate polynomial. The sign of the algebraic level set is then

obtained from the sign of the fundamental resultant. Since ρ is obtained directly as

the polynomial square root of the Dixon resultant, this procedure is required only

once for the curve or surface. Once computed, the fundamental resultant can be used

directly at all points. This is illustrated in Fig. 5.6 for the unit sphere example. It can

be seen that this method is able to successfully classify regions as inside and outside.

The problem can hence be divided into two steps,

1. Expansion of the Dixon resultant into the polynomail form

2. Obtaining the polynomial square root of the resultant

Both steps will now be discussed in brief.

Polynomial Expansion of the Resultant

The coefficients Mijk in the polynomial expansion in Eq. (5.12) can be determined

by decomposing the determinant into a sum of several determinants such that each
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(a) (b)

Figure 5.6. : Sign of the algebraic level sets determined using the algebraic square
root method. Positive level sets are coloured yellowish brown, while blue regions
correspond to negative level sets. (a) Sign of resultant for an octant of a unit sphere
(b) Sign of algebraic level sets for a complete sphere
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determinant contains only monomials elements, with the variable being the same in

each row. In other words, the resultant can be expressed in the form,

Γ = |Mw + Mxx+ Myy + Mzz| =
∑

(i1,i2,... )

∣∣∣∣∣∣∣∣∣
M 1

xi1
xi1

M 2
xi2
xi2

...

∣∣∣∣∣∣∣∣∣ =
∑
i

∑
j

∑
k

Mijkx
iyjzk (5.13)

Here, M p
xip

denotes the pth row of the coefficient matrix Mxip . The subscript ip takes

the values 0,1,2 and 3 denoting constant, x, y, z terms respectively. The summation

is over all possible combinations of (i1, i2, . . . ), allowing repetition of variables. An

illustration for a 2×2 determinant is provided in Ex. 2. Each determinant in Eq. (5.13)

that consists of i rows from Mx, j rows from My, k rows from Mz and the rest from

Mw, evaluates into a xiyjzk term. Hence the cofficient Mijk in Eq. (5.12) is simply the

sum of all such determinants. This gives the polynomial expansion of the resultant,

term by term.

Example 2. Consider the determinant,

∆ =

∣∣∣∣∣∣ x+ 2 y + 2

x+ 2y x+ y + 1

∣∣∣∣∣∣ (5.14)

This determinant can be split as,

∆ =

∣∣∣∣∣∣x 0

x x

∣∣∣∣∣∣+

∣∣∣∣∣∣ x 0

2y y

∣∣∣∣∣∣+

∣∣∣∣∣∣x 0

0 1

∣∣∣∣∣∣+

∣∣∣∣∣∣0 y

x x

∣∣∣∣∣∣+

∣∣∣∣∣∣ 0 y

2y y

∣∣∣∣∣∣+

∣∣∣∣∣∣0 y

0 1

∣∣∣∣∣∣+

∣∣∣∣∣∣2 2

x x

∣∣∣∣∣∣+

∣∣∣∣∣∣ 2 2

2y y

∣∣∣∣∣∣+

∣∣∣∣∣∣2 2

0 1

∣∣∣∣∣∣
(5.15)

Each determinant in the decomposition only consists of monomials. Additionally each

row has the same variable.

• The constant term in the expansion is the determinant with only constant ele-

ments, M000 =

∣∣∣∣∣∣2 2

0 1

∣∣∣∣∣∣
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• The term linear in x is the sum of determinants containing one row of x and

one constant row, M100 =

∣∣∣∣∣∣x 0

0 1

∣∣∣∣∣∣+

∣∣∣∣∣∣2 2

x x

∣∣∣∣∣∣
• The term linear in y is the sum of determinants containing one row of y and

one constant row, M010 =

∣∣∣∣∣∣0 y

0 1

∣∣∣∣∣∣+

∣∣∣∣∣∣ 2 2

2y y

∣∣∣∣∣∣
Thus the polynomial expansion of ∆ can be constructed term by term.

Computation of the Polynomial Square Root

Once the polynomial expansion of the resultant is known, the polynomial square

root can be computed analytically for small-degree surfaces. For example, for a linear

surface we have,

Γ = ρ2 = (ax+ by + cz + d)2

= a2x2 + b2y2 + c2z2 + 2(abxy + bcyz + acxz) + 2d(ax+ by + cz) + d2
(5.16)

For this case, the fundamental resultant can be extracted as,

d =
√
M000

a =
M100

2d
; b =

M010

2d
; c =

M001

2d

(5.17)

where, Mijk denotes the coefficient of xiyjzk in the polynomial expansion of Γ. It

may seem simpler to obtain a directly as a =
√
M200. However, this does not extend

naturally to higher degree surfaces. On the other hand, Eq. (5.17) gives the coefficients

for the linear and constant terms for surfaces of any degree. This is because quadratic

and higher order terms in ρ cannot contribute to the linear and constant terms in Γ.

This suggests an approach to generalize the procedure for any surface.
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Let the polynomial expansion of the fundamental resultant be,

ρ =
∑
i

∑
j

∑
k

Rijkx
iyjzk (5.18)

Expanding Γ in terms of the fundamental resultant, we get,

Γ = ρ2 =
∑
p

∑
q

∑
r

Mpqrx
pyqzr (5.19)

=

(∑
i

∑
j

∑
k

Rijkx
iyjzk

)(∑
l

∑
m

∑
n

Rlmnx
lymzn

)
(5.20)

Γ =
∑
i

∑
j

∑
k

∑
l

∑
m

∑
n

RijkRlmnx
i+lyj+mzk+n (5.21)

Now, higher order terms in ρ cannot contribute to the coefficient Mpqr in Γ. This

gives, for {pqr} 6= {000},

Mpqr =

p∑
i=0

q∑
j=0

r∑
k=0

RijkRp−i,q−j,r−k (5.22)

= 2R000Rpqr +
∑

(i,j,k)6=(0,0,0)
(i,j,k)6=(p,q,r)

RijkRp−i,q−j,r−k (5.23)

⇒ Rijk =
1

2R000

Mpqr −
∑

(i,j,k)6=(0,0,0)
(i,j,k)6=(p,q,r)

RijkRp−i,q−j,r−k

 (5.24)

This provides a recursive procedure to calculate the polynomial expansion of the

fundamental resultant, described in Algm. 3. An illustration is provided in Ex. 3.

This method is valid for surfaces of any degree, but Eq. (5.24) assumes that R000 6= 0,

i.e., the curve or surface does not contain the origin. It is easy to deal with curves or

surfaces with R000 = 0, by choosing a coordinate system with a translated origin for

the purposes of computing the resultant. This new coordinate system is used only for

distance computations of the particular curve or surface, and is chosen such that its

origin does not lie on the geometry of interest (say, a control point). Such an origin
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shift is valid since the distance of a point from a curve or surface is invariant under

translation of the origin. Once the fundamental resultant is known, it can be evaluated

at the point of interest and its sign used in the algebraic level sets directly. This allows

the generation of signed distance level sets completely algebraically, without resorting

to iterative and non-robust Newton-Raphson method.

Algorithm 3 Computation of the Polynomial Square Root

Require: Polynomial coefficients Mpqr of the given polynomial
R000 =

√
M000

N ← degree of given polynomial
for p, q, r = 0 to N/2 do

if ((i, j, k) = (0, 0, 0)) or (i+ j + k > N/2) then
cycle

end if
Rpqr ←Mpqr

for i = 0 to p do
for j = 0 to q do

for k = 0 to r do
if (i, j, k) = (0, 0, 0) or (i, j, k) = (p, q, r) then

cycle
end if
Rpqr ← Rpqr −RijkRp−i,q−j,r−k

end for
end for

end for
Rpqr ← Rpqr/(2R000)

end for
return Polynomial coefficients Rijk of the square root

Example 3. Consider the example of a unit sphere with the resultant given by,

Γ = x4 + y4 + z4 + 2(x2y2 + y2z2 + x2z2)− 2(x2 + y2 + z2) + 1 (5.25)
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The coefficients of the square root are then obtained as,

R000 =
√
M000 =

√
1 = 1 (5.26)

R001 =
M001

2R000

= 0;R010 =
M010

2R000

= 0;R100 =
M100

2R000

= 0 (5.27)

R011 =
1

2R000

[M011 − 2R010R001] = 0;R101 = R110 = 0 (5.28)

R002 =
1

2R000

[
M002 −R2

001

]
= −2

2
= −1;R020 = R200 = −1 (5.29)

This gives the signed polynomial square root,

ρ =
√

Γ = (1− x2 − y2 − z2) (5.30)

The polynomial square root method is used to generate the algebraic level sets shown

in Fig. 5.6, as well as for the sphere in Fig. 4.7c.

5.2.3 Point Projection and Inversion

For a resultant in the squared form Γ = ±ρ2, the degree is twice that of the

fundamental resultant ρ. This leads to poor point projection using the Taylor series

expansion described in § 4.4. In order to improve the accuracy of point projection,

the Taylor series expansion in Eq. (4.30) is expressed in terms of the fundamen-

tal resultant. For first order algebraic point projection, the distance estimate used

in Eq. (4.29) is modified as,

d =
|ρ|
‖∇ρ‖

= 2
|Γ|
‖∇Γ‖

(5.31)
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Thus, using the original squared resultant underestimates the distance of a point

from the surface. For second order algebraic point projection, we rewrite Eq. (4.31)

in terms of the fundamental resultant and express the result in terms of Γ,

d =
1

ρ,nn

(
ρ,n −

√
ρ2
,n − 2ρ ρ,nn

)
=

2Γ(
2Γ Γ,nn − Γ2

,n

) (Γ,n −
√

3Γ2
,n − 4Γ Γ,nn

) (5.32)

where (•),n and (•),nn denote ∂•
∂n

and ∂2•
∂n2 , respectively.

As a consequence of the squared form of the resultant, each point on the physi-

cal surface corresponds to two points in the parametric space. For example, in the

octant example shown in Fig. 5.3, the point (0.36, 0.48, 0.8) lies on the surface. In

the parametric space, this point corresponds to the two points (0.5858, 0.5858) and

(−16.4853, 1.5469). Out of these, only one point lies within the parametric range of

interest [0, 1]. Thus, unlike general surfaces, there are two solutions to Eq. (5.6), and

the M-Rep matrix drops rank by two for points on such a surface. As a result, surfaces

with squared-form resultants require an alternative procedure for point inversion from

physical to parametric space. Such a procedure is now developed.

Beginning with Eq. (5.6), it is first verified that u = 1 or v = 1 are not feasible.

Now, assuming u 6= 1, v 6= 1, we define new variables t = u
1−u , s = v

1−v having a

one-one correspondence with u, v respectively. For feasible parameters 0 ≤ u, v ≤ 1,

we have s, t ≥ 0. Expressing Eq. (5.6) in terms of the new variables and assuming

the existence of two solutions (t1, s1), (t2, s2), we have,

MT
R



1

ν1t1(
ν1
2

)
t21

...

tν11 s
ν2
1


= MT

R



1

ν1t2(
ν1
2

)
t22

...

tν12 s
ν2
2


= MT

R



0

ν1∆t(
ν1
2

)
∆t2

...

∆ (tν1sν2)


= 0 (5.33)
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where, ∆ (•) = (•)1 − (•)2. Now, dividing by ∆t in the new homogeneous equation

and partitioning the coefficient matrix gives,

[
m1 m2 M c

R

] [
0 ν1

(
ν1
2

)
∆t2/∆t . . . ∆ (tν1sν2) /∆t

]T

= 0 (5.34)

⇒ [M c
R]
[(

ν1
2

)
∆t2/∆t . . . ∆ (tν1sν2) /∆t

]
= −ν1m2 (5.35)

where, m1,m2 are column vectors and M c
R is a matrix of appropriate dimensions.

Since MT
R has a nullity of 2, M c

R is of full rank and Eq. (5.35) can be solved directly

to obtain (t1, s1) and (t2, s2). Taking only the positive (feasible) solution, the required

parametric point can be obtained as u = t
1+t
, v = s

1+s
. The result of the procedure is

illustrated on a sphere in Fig. 5.7.

Figure 5.7. : Algebraic point projection on to a sphere of radius 0.1 units. The test
points were sampled from a concentric sphere of radius 0.15 units.
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5.2.4 Study of Computational Efficiency

Four different geometries (Figs. 5.3, 5.8 and 5.9 and Fig. 5.2a) were considered to

study the computation time of algebraic level sets. For comparison, the computation

times for the same geometries using the M-Rep method developed by Busé [121] was

also calculated. This analysis has two parts. The first is a comparison of the pre-

processing times. For algebraic level sets, pre-processing requires robustness checks

for sufficiency and sign of the Dixon resultant. Depending on the geometry, this

may require computing a maximal-rank submatrix and/or a polynomial square root.

On the other hand, for the M-Rep method, pre-processing requires Singular-Value

Decomposition (SVD) to compute the M-Rep matrix MR. The second part of the

computational analysis is the estimation of distance at sample points. 10,000 points

were chosen and the distance estimated at these points. In case of the M-Rep method,

the product of singular values was chosen as the distance estimate. Busé [90] also

suggests using the determinant of MRM
T
R as an alternate distance measure. This

was avoided in this paper as matrix products can lead to round-off errors.

Computation times for both parts are listed in Tabs. 5.1 and 5.2, respectively.

In Tab. 5.1, 25 different instances were run and the mean time tabulated. The M-Rep

method is found to take much less time for pre-processing. This is due to the different

robustness measures that must be taken for algebraic level sets. These measures are

unnecessary for the M-Rep method, making it faster despite having to perform the

computationally expensive singular value decomposition (SVD). It should be noted

that this pre-processing step needs to be performed only once for a given geometry

in either method. Table 5.2 lists the computation times for distance estimation,

calculated as the mean of 10,000 points. As can be observed from the table, the

proposed algebraic level sets method takes much less time for distance estimation

as compared to the M-Rep. This is because the proposed method requires a simple

determinant computation for the distance estimation while the M-Rep requires a SVD

operation at each point. Further, for geometries like the quarter-cylinder and spherical
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octant that had higher pre-processing times, using algebraic level sets is even faster

since the maximal-rank submatrix method reduces the size of the resultant matrix.

(a) (b)

Figure 5.8. : Algebraic level sets generated for a cubic curve using the (a) normal-
ized Dixon resultant and (b) M-Rep method. The level sets generated by the M-Rep
method are non-negative everywhere. The algebraic level sets generated by the nor-
malized Dixon resultant differ in sign on either side of the curve. No robustness
measures were required for the normalized Dixon resultant.

(a) (b)

Figure 5.9. : Algebraic level sets generated for a bi-quadratic surface using the (a)
normalized Dixon resultant and (b) M-Rep method. The level sets generated by
the M-Rep method are non-negative everywhere. The algebraic level sets generated
by the normalized Dixon resultant differ in sign on either side of the surface. No
robustness measures were required for the normalized Dixon resultant.
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Table 5.1. : Pre-processing times for algebraic level sets and the M-Rep method for
different geometries. A total of 25 different instances were considered for each geome-
try, and the mean time computed. Pre-processing refers to computing a maximal-rank
submatrix and/or a polynomial square root.

Geometry Algebraic Level
Sets (ms)

M-Rep
(ms)

Remarks

2D Bézier curve (Fig. 5.8) 0.261 0.123 –
3D Bézier curve (Fig. 5.9) 0.810 0.256 –
Quarter Cylinder (Fig. 5.2a) 1.700 0.249 Requires maximal-rank

submatrix computation

Spherical Octant (Fig. 5.3) 1.950 0.274 Requires maximal-rank
submatrix and polynomial
square root computation

Table 5.2. : Computation time for distance estimation using algebraic level sets and
the M-Rep method for different geometries. The distance was estimated at 10,000
points and the mean time computed.

Geometry Algebraic Level
Sets (µs)

M-Rep
(µs)

2D Bézier curve (Fig. 5.8) 9.70 10.64
3D Bézier curve (Fig. 5.9) 8.28 13.03
Quarter Cylinder (Fig. 5.2a) 5.20 12.64
Spherical Octant (Fig. 5.3) 6.66 12.32
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5.3 Application to EIGA: Current Through Line with Void

The application of Enriched Isogeometric Analysis (EIGA) to three-dimensional

problems has been limited due to the issues with the Dixon resultant underscored in

the previous chapter. As a demonstration, the robustness enhancements developed in

this chapter are now applied to a three-dimensional electrostatics problem of passing

current through a line with a void. An EIGA formulation similar to § 3.3 is used for

the analysis. A schematic of the problem is shown in Fig. 5.10a. The electric potential

is governed by the Laplace equation in the domain. Dirichlet boundary conditions

are prescribed on the top and bottom surfaces while the walls are assumed adiabatic.

No electric flux is allowed to enter or exit the void. The approximation form used

for the electric potential solution is analogous to that in § 3.3, with a quartic weight

function as defined in Eq. (3.6b),

φ(x) = (1− w)φc(x) + wφe(P(x)) (5.36)

(a) (b)

Figure 5.10. : (a) Schematic of the three-dimensional electrostatic problem with a
void. (b) Electric potential solution contours on the mid-section planes in the case of
a single spherical void.
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If the void interface is represented as a parametric spline such as NURBS, then

signed algebraic level sets can be used as the distance measure d(x). As in § 3.3,

this form of the electric potential automatically satisfies the void boundary condi-

tion Eq. (3.8). As a result, only the Laplace equation has to be solved for in the

domain, along with the Dirichlet boundary conditions. The electric potential solu-

tion for a system with a single spheroidal void is shown in Fig. 5.10b. The figure

shows the electric potential contours on the two mid-section planes. For the spherical

void, the Dixon resultant is found to be identically zero. Hence, the maximal-rank

submatrix method was used to recover the resultant. However, the recovered resul-

tant was found to be negative everywhere. Consequently, the polynomial square root

procedure was employed to generate signed algebraic level sets. These level sets were

then used as the distance measure for the weighted blending in Eq. (5.36).

An approximate analytical solution for the electric potential near the void is now

used to validate the EIGA solution. A spherical coordinate system (r, θ, φ) with origin

at the center of the spherical void is chosen. In the absence of the void, the analytical

solution to the problem is φ(x) = z. The presence of the void is assumed to perturb

this solution as φ(x) = z + φ′(x), where φ′(x) satisfies the Laplace equation and

vanishes on moving away from the void. Further, the perturbed solution must satisfy

the interface condition Eq. (3.8).

∇2φ′(x) = 0 (5.37)

lim
r→∞

φ′(x) = 0 (5.38)

∂φ′

∂r
= − cos θ at r = R (5.39)

where, R is the radius of the spherical void. This gives the perturbation as φ′(x) =

R3

2r2
cos θ, and the perturbed solution as,

φ(x) = z +
R3

2r2
cos θ (5.40)
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This analytical solution is accurate only near the void. The electric potential solution

obtained from enriched isogeometric analysis is compared with Eq. (5.40) for points

along a vertical line passing through the center of the void, and the results shown

in Fig. 5.11. Points inside the void were ignored for the comparison. Discretization

size is measured in the parametric space in the form of the smallest knot span. The

EIGA solution shows good agreement with the analytical solution, with a maximum

relative error magnitude of 4.84%. The maximum error shows decrease with decrease

in the smallest knot span.

(a) (b)

Figure 5.11. : (a) Comparison between the analytical electric potential and the so-
lution obtained from enriched isogeometric analysis, along the vertical line passing
through the center of the spherical void. Points inside the sphere have been ignored.
The smallest knot span was 0.005. The maximum relative error magnitude is 4.84%
(b) Maximum relative error magnitude reduces with decrease in the smallest knot
span.
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6. ELECTROMIGRATION DRIVEN VOID GROWTH

Electromigration is an important failure concern in the semiconductor industry. It

occurs in lines carrying high current densities, where the electrons impart sufficient

momentum to metal ions to displace them. This leads to formation of voids near the

cathode and accumulation of material, called hillocks, near the anode. The developed

voids could evolve and grow large enough under the imposed electric field so as to sever

the line and cause open circuit failure. Electromigration experiments on line structires

have shown a strong relation between void growth rate and the presence of cap layers.

In [10], copper lines with different cap layers were subjected to electromigration to

measure void growth rate. Separately, mechanical interfacial fracture experiments

were performed to measure interfacial debond energy of the cap layers. It was observed

that cap layers with higher debond energy induced slower void growth (see Fig. 6.1).

In [91], Blech-like test structures of Cu-TiN lines with TiN, SiN and Ta cap layers

were considered. On passing large currents, voiding was observed near the cathode

and found to cause displacement of the copper edge. The edge motion was tracked

optically under a scanning electron microscope and used to measure the void growth

rate under different conditions of temperature and current densities. The results

obtained are shown in Fig. 6.2. As the copper edge moved towards the anode, the ends

were observed to move faster than the center, causing the edge to develop curvature.

In this chapter, EIGA and signed algebraic level sets are used to model electro-

migration driven void growth. Firstly, the velocity at a void interface is derived from

first priciples, using the interfacial balance laws and growth conditions developed

in Chapter 2. This is followed by solving a three-dimensional electromigration prob-

lem of void evolution in a current line. Enriched IGA and algebraic level sets are

used, along with the recitification measures proposed in the previous chapter.
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(a)

(b)

Figure 6.1. : (a) Schematic of the line-via-line structure used in [10] (b) Void growth
rate as a function of interfacial debond energy [10]

Figure 6.2. : Observed edge displacement in a 10µm width Cu-TiN line. The flat
copper edge becomes curved as it moves towards the anode.
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The problem formulation for electromigration is very similar to the electrostatics

problem discussed in § 5.3, with the schematic shown in Fig. 5.10a. The electric po-

tential is governed by the Laplace equation, with Dirichlet boundary conditions at the

top and bottom. No electric flux is allowed to enter or exit the void. Mathematically,

we have,

∆φ = 0 in Ω (6.1a)

∇φ · n = 0 on Γe (6.1b)

φ = 0 on z = 0 (6.1c)

φ = 1 on z = 1 (6.1d)

6.1 Velocity at Void Interface

Void growth is driven by the external electric field, as well as by gradients in stress

and temperature. For void growth to be thermodynamically feasible, any point on the

void interface should satisfy the interfacial second law conditions derived in Chapter 2

at all times. Assuming small deformation diffusive void growth, we have the second

law condition Eq. (2.77) give,

n ·Σn−
N∑
α=1

ρµανα + γκ ≥ 0 (6.2)

For a solid with a void, there is only one material phase (denoted sol). Writing

ρsol = ρνsol, the above equation gives ρsolµsol ≤ n · Σn + γκ, allowing us to express

the chemical potential as,

µsol =
c0

ρsol
(n ·Σn+ γκ) (6.3)

where, c0 ≤ 1 is some constant.
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An expression for the velocity at the void interface may be obtained by reducing

the interface species balance condition Eq. (2.21) for a solid with a single material

phase and a void,

vsn =
1

ρsol
(jsol · n+∇s · ht − rs) (6.4)

For void growth, we can assume the bulk mass flux and species generation to be

negligible. A constitutive relation is now assumed for the surface mass flux. Since

void growth is driven by the external electric field as well as gradients in the stress

and concentration, we assume the constitutive relation,

ht = −Msρ
solΩsol

(
∇s

(
ρsolΩsolµ

sol
)

+ Z∗e∇s φe
)

(6.5)

where, Ωsol is the atomic volume for the solid, Ms is the surface mobility of the solid,

Z∗ is the effective charge and e is the charge on an electron. Thermal gradients are

assumed to be negligible and are ignored here. Using Eq. (6.3) with this constitutive

relation gives the void growth velocity as,

vsn = −Msc0Ω2
sol∇2

s(n ·Σn+ γκ)−MsZ
∗eΩsol∇2

sφe (6.6)

Neglecting mechanical contributions and introducing constants c1, c2, we can write,

vsn = c1∇2
sκ+ c2∇2

sφe (6.7)

where, c1 = −Msc0γΩ2
sol, c2 = −MsZ

∗eΩsol. Since Enriched IGA includes an explicit

representation of the void interface, the curvature and surface Laplacians may be

computed directly and accurately. The procedure for computing the curvature and

the surface Laplacians is described in Appendix G. This expression for the velocity can

now be used to evolve the static void described in § 5.3. Forward Euler time stepping
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is used in the simulations, and the step length at each time step is determined through

a CFL condition,

∆t = Ct
h

maxi |vi|
(6.8)

where, Ct is the CFL constant and h is the discretization size.

6.2 Electromigration Driven Void Evolution in Line

A parametric representation using NURBS is used for the void interface. Enriched

IGA with Eq. (5.36) as the form for the electric potential is used to solve the electro-

migration system of equations (Eq. (6.1)) at each time step. Velocities are determined

for the control points of the void surface such as to satisfy Eq. (6.7) in a least squares

sense. A time step is chosen based on the CFL condition, and the void is evolved by

moving the control points with the solved velocities.

Table 6.1. : Values chosen for the constants for the void evolution simulations.

c1 1.8× 10−4

c2 6.0× 10−2

Since adaptive time stepping is used, the absolute values of the constants c1, c2

in Eq. (6.7) are not as important as their relative magnitudes, with a large c1 value

describing a material with large surface energy. The values chosen for the constants

are given in Tab. 6.1. Two cases were considered. The first case was the limiting

case of low or negligible surface stress. In this case, the ∇2
sκ term in Eq. (6.7) was

neglected to describe a material with very low surface energies. Snapshots of the

void evolving with time, with electric potential contours, are shown in Fig. 6.3. The

void moves towards the cathode, as is observed in electromigration experiments. The

void also shows significant shape distortion as it moves. It took about 1.9 hrs for

the simulations to run for 60 time steps on a 8GB RAM computer, at an average of

about 2 mins per time step. The second case includes the surface stress (∇2
sκ term) in

the evolution of the void. Snapshots of the void for this case, with electric potential
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contours, are shown in Fig. 6.4. Though the void moves towards the cathode in this

case as well, it shows less distortion in its shape. This is because ∇2
sκ is a stabilising

term that drives the void shape to the minimum surface energy configuration of a

sphere. It took about 1.37 hrs for the simulations to run for 60 time steps on a 8GB

RAM computer, at an average of about 82s per time step.

(a) n=1 (b) n=20 (c) n=40 (d) n=60

(e) n=6 (f) n=80

Figure 6.3. : (a)-(d) Snapshots of the void at different instances, for a material with
negligible surface stress. The electric potential solution contours on the mid-section
planes at (e) n=6 time steps and (f) n=80 time steps. As the void moves towards the
cathode, it shows significant shape distortion as well.

6.3 Void Growth in Cu-TiN Line

The electromigration experiments of [91] shall now be modeled using EIGA. As

shown in Fig. 6.2, the copper edge is observed to curve as it moves towards the anode.

This behavior shall be shown to be captured in the simulations as well.
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(a) n=1 (b) n=20 (c) n=40 (d) n=60

(e) n=6 (f) n=50

Figure 6.4. : (a)-(d) Snapshots of the void at different instances, for a material with
negligible surface stress. The electric potential solution contours on the mid-section
planes at (e) n=6 time steps and (f) n=50 time steps. While the void moves towards
the cathode, it does not show much distortion in its shape.
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Figure 6.5. : Side view of the geometry used for the simulations. Both layers have a
width of 10µm into the plane of the paper.

6.3.1 Model Formulation

Blech-like test structures of Cu-TiN lines are used for the simulations, as depicted

in Fig. 6.5. Dirichlet boundary conditions of zero electric potential are imposed on

the left TiN interface, while Neumann boundary conditions are applied on the right

TiN interface to impose required current densities. Current densities considered here

are 1− 3× 106A/cm2.

Table 6.2. : Material properties of copper used in the simulations.

Property Value Units
Electric conductivity 5.998× 107 S/m

Density 8700 kg/m3

Z∗ 0.5 —
Atomic radius 0.128 nm

Adhesion energy 10 J/m2

Table 6.3. : Material properties of copper in terms of the scaled units. These values
were directly used in the simulations.

Property Value Units
Electric conductivity 59.98 S/µm

Density 8.7 pg/µm3

Z∗ 0.5 —
Atomic radius 1.28× 10−4 µm

Adhesion energy 10−5 µJ/µm2

The material properties of copper used in the simulations are provided in Tab. 6.2.

The electrical conductivity of TiN is taken to be 1.33×107 S/m. For better numerical

stability, scaled units are used. The length scale chosen for analysis is the µm, while
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the scale chosen for the mass is pg, i.e., 10−15kg. Electric current and potential are

denoted in mA and mV , respectively. The scaled material properties of copper in

terms of these units are provided in Tab. 6.3. The electrical conductivity of TiN scales

to 1.33 S/µm, while the imposed current density is 10 − 30 mA/µm2. The velocity

for void evolution is given by Eq. (6.7). In terms of the scaled units, it can be seen

that the constants c1, c2 for the Cu-TiN line simulations should be of comparable

magnitudes,
c2

c1

=
Z∗e

Ωsolγc0

∼ 1 (mV )−1(µm)−1 (6.9)

To analyze each coefficient in Eq. (6.7) separately, a scaling for MsΩsol is to be

determined. This quantity can be written as [131],

MsΩsol =
Dshint

kBT

where, Ds is the surface diffusivity and hint is the interface thickness. The surface

diffusivity for copper is given as 10−8cm2/s or 1 µm2/s [132]. Based on the other

chosen scaled units, the compatible scaled unit for time is τ = 0.1µs which gives

Ds = 10−7µm2/τ . An interface thickness of 10 A0 is assumed, while the temperature

is chosen to be 275◦C, based on the experiments in [91]. Thus,

MsΩsol =
Dshint

kBT
= 1.32× 10−4µm τ/pg (6.10)

The constants c1, c2 in Eq. (6.7) can now be evaluated in terms of the scaled quantities

as,

c1 = (MsΩsol)(c0γΩsol) = 1.16× 10−13µm4/τ (6.11)

c2 = (MsΩsol)(Z
∗e) = 1.056× 10−13µm-τ 2-mA/pg (6.12)
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This expresses the void velocity in µm/τ . To obtain the velocity in µm/hr, both

constants have to be multiplied by 3600× 107. Thus, the void velocity in µm/hr for

Cu-TiN line structures under electromigration is given by,

vsn = −4.17× 10−2∇2
sκ− 3.80× 10−2∇2

sφe (6.13)

Three-dimensional electromigration simulations were conducted on a Cu-TiN line

structure. A line length of L = 50µm and width w = 10µm were used. The

copper and TiN layers had a height of h = 5µm each, and a current density of

3×106A/cm2 = 30mA/µm2 was applied as a Neumann boundary condition. Laplace

equation was solved for in the domain, and Eq. (6.13) was used to evolve the copper-

void interface. A parametric representation was used for the void interface using

NURBS. The simulations took about 2.5 hrs for 300 time steps on an 8GB RAM

desktop computer with a 2.60GHz processor, at an average of about half a minute

per time step. The results are shown in Fig. 6.6. As expected, most of the potential

drop is across the TiN extensions, with very little potential drop across the copper

layer. This is because the electric conductivity of copper is 60 times that of TiN.

While the copper-void interface is initially nearly planar, it begins to curve as the

void interface moves. However, the curvature is restricted to the width direction of

the line, and there is very little curvature along the thickness direction. This sug-

gests that a two-dimensional model would be sufficient to capture the void growth in

Cu-TiN lines.

A two-dimensional model was chosen to capture behaviour at the void interface

region. A rectangular domain was used for the line, with a total length of L = 100µm

and width of w = 20µm. A planar interface was assumed at the initial time step

(see Fig. 6.7a), dividing the line into a TiN segment of length 25µm and a Cu-

TiN segment of length 75µm. Since copper has much higher electrical conductivity

than TiN (∼ 60 times), current can be assumed to flow predominantly through the

copper layer. Thus, material below the void interface was assumed to be pure copper,
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(a) t=0 (b) t=12.6

(c) t=25 (d) t=32

Figure 6.6. : Electric potential solution in the Cu-TiN line at different instances of
time. While the void interface is initially planar, it begins to turn cylindrical as line
shrinks.
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carrying a current density of 3×106A/cm2 applied as a Neumann boundary condition

at the bottom interface. Material above the void interface was taken to be TiN, with

Dirichlet boundary conditions of zero potential at the top interface. At the void, no

electric flux is assumed to enter or exit the interface as in the previous simulations.

The simulations took about 27 minutes for 5000 time steps on a desktop computer,

at an average of 0.3 s per time step. The results are shown in Fig. 6.7. As expected,

there is very little potential drop across the copper layer. The line slowly shrinks

with time. As the line shrinks, the resistance of the Cu-TiN structure is expected to

increase. This can be observed here indirectly in the form of an increase in the total

potential difference across the line. Further, while the void interface is initially planar,

the interface develops a curvature as the line shrinks. This is in direct agreement with

the observations in [91].

6.3.2 Incorporating Cap Layers

The presence of cap layers inhibits void growth since additional energy is required

to debond the copper-cap layer interface. Let the interface debond energy for copper

with the cap layer be γcap. Assuming no slip at the interface, if vsn is the velocity of the

void surface and vn is the velocity due to deformation in copper, then vsn−vn denotes

the rate of debond at the cap layer. This requires additional power, dissipated at the

rate Ėdiss = γcap p(vsn − vn) where p ≈ w is the perimeter of the cap layer interface.

Similarly, the Cu-TiN interface also dissipates energy at the rate γTiN Lc(vsn − vn)

where Lc ≈ w is the width of the Cu-void interface.

The resistance provided by the cap layer can be translated into a slow-down in

species generation through the chemical potential. Since the chemical potential µsol

denotes the energy per unit mass of the solid, Ėdiss/µ
sol corresponds to the reduction

in rate of species generation. Averaging this out over the total cross-section area A,
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(a) t=0 (b) t=12000 (c) t=20000

(d) t=23600 (e) t=25000

(f)

Figure 6.7. : (a)-(e) Electric potential solution in the Cu-TiN line at different instances
of time (f) Curved profile of copper edge observed in the experiments of [91]. While
the void interface in the simulations is initially planar, it begins to curve as the edge
moves. This shows good agreement with the profile observed in experiments.



115

and using the approximation p/A ≈ 1/h, Lc/A ≈ 1/h, we get the modified species

balance equation,

−
q
ρsol(vsn − vn)

y
= − JjsolK · n−∇s · ht + rs +

s
γcap + γTiN

µsolh
(vsn − vn)

{
(6.14)

For a solid with a single material phase and a void under negligible bulk motion, this

reduces to,

ρsolvsn = jsol · n+∇s · ht − rs −
(γcap + γTiN)

µsolh
vsn (6.15)

⇒ vsn =
1

ρsol
(

1 + γcap+γTiN

µsolρsolh

) (jsol · n+∇s · ht − rs) (6.16)

Following the approach in § 6.1 and writing it in the form of Eq. (6.7) gives,

vsn =
c1∇2

sκ+ c2∇2
sφ(

1 + γcap+γTiN

µsolρsolh

) (6.17)

When there is no cap layer, γcap=0 and Eq. (6.7) is recovered. The addition of the

cap layer slows the void growth. For very thick lines, the influence of the cap layer

reduces as expected. For two copper lines with different cap layers (say SiN and Ta),

the ratio of velocities is,

vSiNsn

vTasn

=
(ρsolµsolh+ γTa + γTiN)

(ρsolµsolh+ γSiN + γTiN)
=

c0κh+ (γTa + γT iN)/γ

c0κh+ (γSiN + γT iN)/γ
(6.18)

where, we have taken ρsolµsol = c0γκ. Typically, κ ∼ 1/w ∼ 0.1µm−1, h ∼ 0.1µm, c0 ∼

1, while γcap/γ ∼ 1. Thus, the c0κh terms can be neglected in favour of the adhesion

energy terms. This provides the simplified expression for the ratio of velocities,

vSiNsn

vTasn

=
γTa + γT iN

γSiN + γT iN
(6.19)

The above expression shows good agreement with the behaviour observed in [91].
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7. MODELING TOPOLOGICAL CHANGES USING ALGEBRAIC LEVEL SETS

Problems with evolving phase interfaces generally involve topological changes namely

merging, splitting, nucleation and dissolution of phases. For example in electromigra-

tion driven voiding in solder shown in Fig. 1.2, numerous microscopic voids coalesce to

form larger voids. When an explicit representation is used for evolving interfaces, such

topological changes introduce geometric challenges. They generally require contact

detection and computation of surface-surface intersections at each time step. Com-

mon strategies for such geometric operations include subdivision, marching, lattice

evaluation and implicitisation [65]. Performing these operations at each and every

time step is computationally prohibitive.

As seen in Chapter 3, the Enriched IGA method uses an explicit parametric rep-

resentation for evolving phase interfaces. However, analysis in EIGA is based on

distance based weighted blending, and consequently on signed algebraic level sets.

Topological changes on the geometry can be translated into algebraic Boolean com-

positions on the signed algebraic level sets. This allows modeling topological changes

using EIGA, without detecting or computing surface-surface intersections.

7.1 Boolean Compositions on Algebraic Level Sets

Signed algebraic level sets can be used to perform Boolean operations on simple

geometries to obtain level sets for composite geometries [85]. First, algebraic level sets

are generated for each constituent geometry. These algebraic level sets are composed

using appropriate R-functions defined in Eqs. (7.1) to (7.3). The result is a signed

algebraic level set corresponding to the composite geometry.

Common Boolean operations performed on primitives are negation, union, inter-

section and difference. Consider any two primitive geometries, say A and B. If d1
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and d2 are the algebraic level sets for these primitives, then the result of Boolean

operations on these primitives can be described by the algebraic level set d given by,

• Negation (¬A):

d = ¬d1 = −d1 (7.1)

• Union (A ∪B):

d = d1 ∨ d2 = d1 + d2 +
√
d2

1 + d2
2 (7.2)

• Intersection (A ∩B):

d = d1 ∧ d2 = d1 + d2 −
√
d2

1 + d2
2 (7.3)

• Difference (A−B = A ∩B′):

d = d1 ∧ ¬d2 = d1 − d2 −
√
d2

1 + d2
2 (7.4)

These operations were performed for two spheres to obtain algebraic level sets for

the different composite geometries, and the results are shown in Fig. 7.1. Generating

level sets for the spheres required finding a maximal rank submatrix for their Dixon

resultants, followed by computing their algebraic square roots as per the procedure

described in § 5.2.2.

7.2 Modeling Topological Changes

Topological changes on the geometry can be translated into algebraic Boolean

compositions on the signed algebraic level sets. This idea is illustrated in Fig. 7.2 for a

system with two spherical voids. The figure shows the Boolean union (from Eq. (7.2))

of the signed algebraic level sets of the two voids, both before and after coalescence.

It can be observed that the union operation automatically generates signed level

sets for the merged void upon coalescence. Since the analysis depends only on the
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(a) (b)

(c) (d)

Figure 7.1. : Sign of algebraic level sets obtained for Boolean compositions of two
spheres. Yellowish brown denotes positive level sets (inside) while blue indicates
negative level sets. (a) CAD model of the two spheres. (b) Union, (c) intersection
and (d) set difference of the two spheres.
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Table 7.1. : Computation times for electromigration simulations of the different sys-
tems considered. The systems are referred by the index of the corresponding figure.
There is no significant overhead on handling systems with coalescent voids.

Electromigration System
Degrees of
Freedom

Time (in s)
Pre-merging Post-merging

Two bean-shaped voids (Fig. 7.4) 259 0.99 0.73
Three bean-shaped voids (Fig. 7.5) 273 2.15 1.61
One spherical void (Fig. 5.10b) 2465 29.64 N/A
Two spherical voids (Fig. 7.3) 2510 75.0 72.62

weight field and hence the algebraic level sets, coalescent voids can be accommodated

without resorting to collision detection and intersection computation. Solving the

electromigration problem as in § 5.3 for a solid with two spherical voids, we get

electric potential solutions as shown in Fig. 7.3.

(a) (b)

Figure 7.2. : Signed algebraic level sets for a system with two interacting voids (a)
without coalescence (b) with coalescence, generated as the Boolean union of the
individual level sets in both cases.

Further illustrations are provided in Figs. 7.4 to 7.6 for two-dimensional and three-

dimensional systems with free-form voids with and without coalescence, forming com-

plex topologies. The three-dimensional free-form voids required both the maximal-

rank submatrix approach, as well as the polynomial square root method to generate
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(a) (b)

Figure 7.3. : Contours of the electric potential solution for a system with two inter-
acting spherical voids (a) without coalescence (b) with coalescence.

(a) (b)

Figure 7.4. : Contours of the electric potential solution for a system with two free-form
voids (a) without coalescence (b) with coalescence.
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(a) (b)

Figure 7.5. : Contours of the electric potential solution for a system with multiple
free-form voids (a) without coalescence (b) with coalescence.

(a) (b)

Figure 7.6. : Contours of the electric potential solution at the mid-section planes for
a solid with (a) two coalescent free-form voids (b) three coalescent free-form voids.
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individual signed algebraic level sets. The efficiency of the proposed approach is

demonstrated in Tab. 7.1, where it is observed that there is no overhead when coales-

cence occurs. The solution time is unaffected by topological changes such as merging

of phases.

7.3 Application to Bubble Evolution

To demonstrate the capabilities of modeling topological changes using Boolean

operations, a bubble coalescence problem shall now be considered. A collection of

bubbles are introduced, and each bubble is prescribed with an upward veloctiy, in-

versely proportional to its size. That is, larger bubbles “float” slower than smaller

ones, causing different bubbles to coalesce. To conserve mass, assuming constant

density, the total volume of all bubbles should be conserved. Mathematically, for a

collection of N bubbles, the conservation of volume can be written as,

dV

dt
=

d

dt

(
N∑
i=1

∫
Ω

dΩ

)
=

N∑
i=1

∫
Ω

(∇ · v)dΩ =
N∑
i=1

∫
Γ

v · n dΓ = 0 (7.5)

Let the prescribed velocity for the ith bubble be denoted as vi0(x). A parametric

spline representation, namely NURBS, is used to represent the bubbles. Motion of a

bubble corresponds to motion of its control points. The bubble coalescence problem

can thus be described as a least-squares fitting of the prescribed velocities subject to

the volume constraint, Eq. (7.5).
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7.3.1 Problem Formulation

Mathematically, the bubble evolution problem can be written as,

min I =
N∑
i=1

(
1

2

∫
Γi

∥∥v − vi0∥∥2
dΓ

)
(7.6)

s.t.

N∑
i=1

(∫
Γi

v · n dΓ

)
= 0 (7.7)

The volume constraint can be moved to the objective function by introducing La-

grange variables λ. This gives the Lagrangian function,

L(v, λ) =
1

2

N∑
i=1

∫
Γi

∥∥v − vi0∥∥2
dΓ− λ

N∑
i=1

∫
Γi

v · n dΓ (7.8)

The solution occurs at a stationary point of the Lagrangian function L. Taking the

variation of L(v, λ) gives,

δL =
N∑
i=1

∫
Γi

[(v − v0) · δv − λn · δv] dΓ− δλ

(
N∑
i=1

∫
Γi

v · n dΓ

)
= 0 (7.9)

The above equation should be satisfied for all variations of v, λ. Further, the variations

in these quantities are independent of each other. For this to be true, the following

system of equations must be satisfied,

N∑
i=1

∫
Γi

(v − λn) · δv dΓ−
N∑
i=1

∫
Γi

v0 · δv dΓ = 0 (7.10)

N∑
i=1

∫
Γi

v · n dΓ = 0 (7.11)

A parametric representation is used for the enrichments to discretize this system.

For any particular enrichment Γi, each control point is associated with a nodal ve-

locity. The velocity at any point on the enrichment can be written in terms of

the shape functions, [N ] as, v =
[
vx vy vz

]T

, with vx =
[
N
]{
vx

}
. Similarly,
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δv =
[
δvx δvy δvz

]T

, with δvx =
[
N
]{

δvx

}
. Here,

{
vx

}
and

{
δvx

}
denote the

velocities and variations, repsectively, at the control points of the enrichment Γi. [N ]

is a row matrix of shape functions, and has been chosen to be NURBS in this thesis.

This gives the dot product,

v · δv =
[
δvTx δvTy δvTz

]
NTN 0 0

0 NTN 0

0 0 NTN



vx

vy

vz

 (7.12)

We define symmetric positive definite matrices Ki for each enrichment, and a

global matrix K as,

Ki =

∫
Γi

[N ]T [N ] dΓ

K =


K1 0 . . . 0

0 K2 . . . 0
...

... . . .
...

0 0 . . . KN


Using this with Eq. (7.12) gives,

N∑
i=1

∫
Γi

v · δv dΓ =
[
δvTx δvTy δvTz

]
K 0 0

0 K 0

0 0 K



vx

vy

vz

 (7.13)

Similarly, we introduce quantities representing the normal and v0 terms in Eq. (7.10)

for each enrichment,

sxi =

∫
Γi

[N ]Tnx dΓ (7.14)

fxi =

∫
Γi

[N ]Tvix0 dΓ (7.15)
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The introduction of these quantities allows us to write Eq. (7.10) in a matrix form

as,

[
δvTx δvTy δvTz

]

K 0 0

0 K 0

0 0 K



vx

vy

vz

− λ

sx

sy

sz




=
[
δvTx δvTy δvTz

]
fx

fy

fz


(7.16)

Taking into account the fact that the variations δv are arbitrary gives the linear

system of equations, 
K 0 0 −sx
0 K 0 −sy
0 0 K −sz



vx

vy

vz

λ

 =


fx

fy

fz

 (7.17)

The volume conservation equation, Eq. (7.11) has not been included yet. This con-

straint can be written in terms of the newly defined quantities as,

[
sTx sTy sTz

]
vx

vy

vz

 =
[
−sTx −sTy −sTz

]
vx

vy

vz

 = 0 (7.18)

Adding this to Eq. (7.17) gives the final symmetric, positive semi-definite system to

be solved at each time step,
K 0 0 −sx
0 K 0 −sy
0 0 K −sz
−sTx −sTy −sTz 0




vx

vy

vz

λ

 =


fx

fy

fz

0

 (7.19)
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At each time step, this linear system is solved to obtain the control point velocities

to evolve the bubbles. Since the integrals involved in the assembly process are all sur-

face integrals, there is no underlying domain required. The integration is performed

numerically using 3-point Gauss quadrature for each enrichment. For coalescent bub-

bles, only the external regions of the bubble surface contribute to the integrals. In

other words, quadrature points in an enrichment that lie inside other bubbles do not

contribute towards the integrals. For each enrichment, the Boolean union of level sets

from all other bubbles is used to determine and ignore such quadrature points. Due

to the use of the Boolean union, the coalescence is handled automatically without

the need to detect and compute surface-surface intersections. Standard quadrature is

however not sufficiently accurate in the regions where the bubble surfaces intersect.

To improve the accuracy adapative quadrature based on k-D trees, proposed in [89],

is used near such intersection regions. Quadrature cells that are intersected by bubble

boundaries are refined into smaller cells iteratively, with signed algebraic level sets

used to detect such quadrature cells. Forward Euler time stepping is used in the

simulations, and the total volume of the bubbles computed at each time step. The

step length at each time step is determined through the CFL condition Eq. (6.8).

The total volume of the bubbles is computed as the sum of individual volumes.

Volume of each bubble is computed by the surface integral,

Vi =

∫
Ω

dΩ =

∫
Γi

x · n dΓ (7.20)

Quadrature points that are inside other bubbles are neglected during numerical in-

tegration. When a bubble is completely absorbed inside another bubble, then its

volume contribution is zero. When this contribution is below a specified tolerance,

the bubble is assumed to have been absorbed and is removed from the system.
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7.3.2 Results

A system with two bubbles is first considered. The bubbles are initially both

spherical with radii 0.0375 units and 0.075 units, respectively. The smaller bubble is

given a constant upward velocity of 0.014 units, while the larger bubble is slower with

an upward velocity of 0.002 units. The bubbles are initially separated by a gap of 0.01

units. The simulations took about 53 mins for 800 time steps on a desktop computer,

at an average of about 4s per time step. Snapshots of the bubbles at different time

steps are shown in Fig. 7.7, while the variation of the total volume and corresponding

error are shown in Fig. 7.8. The error is initially very low and rises up to 17.3%

during coalescence. Once the smaller bubble has been completely absorbed, the error

falls back to very low values.

(a) (b) (c) (d)

Figure 7.7. : Snapshots of the bubbles as both bubbles float at (a) initial time step
(b) t = 2.66 (c) t = 5.36 (d) t = 17.44. The smaller bubble has been completely
absorbed into the larger bubble.

Next, a system with 7 bubbles of various sizes is considered. The bubbles are

initially spherical with radii ranging from 0.03 units to 0.085 units. They are provided

a size-dependent upward velocity given by,

vi = 0.0009/ri − 0.01 (7.21)

where, 2ri is the maximum dimension of the ithbubble along the Cartesian axes. The

simulations took about 9hrs 40 mins for 1200 time steps on a desktop computer,
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Figure 7.8. : Variation of volume with each time step for the system with two bubbles.
The total volume error is initially low, before rising to 17.35% during coalescence, and
falling back to very low values after complete absorption of the smaller bubble.



129

at an average of about half a minute per time step. Snapshots of the bubbles at

different time steps are shown in Fig. 7.9, while the variation of the total volume and

corresponding are shown in Fig. 7.10. The maximum error in the total volume is

13.06%.

(a) (b)

(c) (d)

Figure 7.9. : Snapshots of the bubbles at (a) initial time step (b) t = 3.39 (c) t = 7.27
(d) t = 13.15. One of the bubbles have been completely absorbed, while some have
nearly been.
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Figure 7.10. : Variation of volume with each time step for the system with 7 bubbles.
The total volume error is 13.06%
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8. CLOSURE

This work explores the analytical and numerical modeling of phase evolution problems

for systems with multiple diffusing species. Generalized criteria for phase nucleation

and growth were derived from first principles of thermodynamics. A pillbox procedure

was followed to form balance laws of mass, momentum and energy as well as the en-

tropy inequality, at a phase interface. The interface second law conditions provided a

configurational force associated with the motion of the interface. The derived config-

urational force naturally extends the Eshelby energy momentum tensor to problems

with multiple diffusing species and arbitrary surface stress. This configurational force

was used to develop generalized conditions that dictate the growth and nucleation of

a phase in a body with multiple diffusing species. These conditions are also applicable

to bodies with finite deformation and arbitrary surface stress. Notably, no constitu-

tive relations for the surface and bulk diffusional flux were assumed in deriving these

generalized conditions. A critical material-dependent energy density was developed,

which must be overcome for phase nucleation to occur. As an illustration, simulations

of Blech’s experiments were used to estimate this critical energy density for a Al-TiN

interface as 5.5 Joules/cm3.

Numerical modeling of phase evolution was performed using an explicit interface

technique called enriched isogeometric analysis. In this analysis approach, the behav-

ioral field solution is given as a weighted blending of the underlying solution and the

interface solution. In order to restrict the influence of an interface to its neighbor-

hood, a distance-based weight field was used. Signed algebraic level sets were used

as a fast and efficient measure of distance for the weight field. The sign of these level

sets helped classify points based on the side of the phase interface they lie in. These

level sets were generated from the implicitization of the interface geometry using the

Dixon resultant. While being robust for curves, the generation of these level sets was
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found to fail for common three-dimensional surfaces. For several parametric surfaces

including spheroids and cylinders, the Dixon resultant was identically zero. Such

geometries could be directly implicitized using the Dixon resultant. In this work,

a maximal-rank submatrix procedure was adopted to recover the resultant and thus

the implicitization, for trivially singular Dixon matrices. Further, the Dixon resultant

was found to be unsigned for some closed surfaces such as spheres. The sign of the

Dixon resultant is important to classify points as lying inside or outside a given closed

geometry. A polynomial square root procedure was developed in this work to extract

the sign from unsigned Dixon resultants, completely algebraically. Rectification mea-

sures to [87] were also proposed for smooth algebraic point projection for surfaces with

trivially singular or unsigned Dixon resultants. The developed procedure is compared

with the M-Rep method developed by Busé [90]. Since the M-Rep method does not

require measures for robustness, it was observed to have lower pre-processing times

than algebraic level sets. However, distance estimation using the M-Rep method re-

quires performing a SVD at each point of evaluation, and consequently, the M-Rep

method was observed to be much slower than algebraic level sets in providing a mea-

sure of distance at a point. Furthermore, algebraic level sets are signed, unlike the

M-Rep distance measure, and thus can trivially answer point containment queries.

As an illustration, different three-dimensional electromigration problems were solved,

including simulations of electromigration experiments on Copper-TiN line structures.

Moving boundary problems in general, and phase evolution problems in partic-

ular, can involve complex topologies. Since enriched isogeometric analysis (EIGA)

is an explicit interface method, topological changes in phases pose geometric chal-

lenges. Conventionally, these would warrant computing intersections between phase

boundaries, which could be computationally prohibitive to perform at each time step.

Taking advantage of the fact that analysis in EIGA is based on algebraic level sets,

a simple and efficient approach to model topological changes without introducing

computational overhead was proposed in this work. Algebraic Boolean operations on

signed level sets using R-functions were used to model coalescence of phases. Appli-



133

cation to various problems with multiple, interacting voids showed that the proposed

method does not introduce any overhead when modeling systems with or without

coalescence.

8.1 Future Work

The major avenue to extend the work in this thesis is to capture general topological

changes. In addition, this thesis may be enhanced by using local refinement techniques

and by improving the bounding box construction implementation. These shall now

be discussed in brief.

8.1.1 Modeling Topological Changes

In physical problems, there are four topological changes that phases may undergo,

viz. coalescence, splitting, nucleation and dissolution. Algebraic Boolean composi-

tions on signed level sets were introduced in this work to model coalescence of phases

efficiently. As future work, methods and techniques shall have to be developed to

accommodate the other topological changes. Nucleation and dissolution may be ap-

proximated by assuming a minimum size condition for a phase, possibly derived

from Eq. (2.82). Another possibility is to use a statistical approach, where the prob-

ability of nucleation Eq. (2.84) can be used to introduce nuclei stochastically. The

splitting of a phase into two would require detection of self-intersection of the phase

boundary and using the self-intersection to split the phase into multiple geometries.

8.1.2 Local Refinement

In this thesis, all simulations were conducted with a Non-Uniform Rational B-

Spline (NURBS) representation for the void or phase interface. A disadvantage of us-

ing a NURBS representation is that it does not allow local refinement. Since NURBS

is a tensor-product representation, knot insertion is a global operation and thus re-
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finement cannot be confined to a region of interest. This leads to an unnecessarily

large number of degrees of freedom and consequently longer run times. To alleviate

this alternative representations such as THB-splines, which support local refinement,

may be used. Using such representations will reduce the number of degrees of freedom

and thus the computation time.

8.1.3 Native Implementation of Convex Hull

The bounding box procedure used to generate signed algebraic level sets requires

computing the convex hull of the control points of the parametric curve of surface. In

this thesis a C++ library, QHull [133], is used for this operation. It is observed that

communicating the control point coordinates with the library functions introduces

numerical error. The coordinates obtained from the computed convex hulls do not

match exactly with the original coordinates. This causes the constructed bounding

box to contain open slivers. To avoid this, a convex hull algorithm should be imple-

mented natively. This would ensure that the constructed bounding box is perfectly

closed and without gaps.
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A. SURFACE IDENTITIES

Following the definitions given in [102], the surface gradient is defined using the

projection tensor:

P = I− n⊗ n (A.1)

where, I is the identity tensor and n is the normal to the surface at the point of

interest. Referring to Figure 2.2, for a scalar field φs(xs) defined on the subregion Γs

of Γ, the surface gradient operator is defined to relate the gradient of the field in its

extension into the body as

∇s φs = P∇φs (A.2)

where, the quantity ∇s φs is defined on the tangent plane at the point of interest.

Similarly, for a vector field a(xs) defined on the surface Γs, the surface gradient

operator and the surface divergence operators are defined as

∇s a = P∇a, ∇s · a = tr (∇s a) = P : ∇a (A.3)

Finally, for a second-order tensor field A(xs) defined on Γs, the two surface operators

are similarly defined as,

∇s A = P∇A, ∇s ·A = tr (∇s A) = P : ∇A (A.4)

The curvature tensor at any point on the surface and the total curvature are defined

using the surface gradient as

L = −∇sn, κ = tr (L) = −∇s · n (A.5)
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where, κ is the total curvature, or twice the mean value. The curvature tensor is fully

tangential and symmetric. Further, from the above relationship, it is easy to show:

∇s ·P = κn (A.6)

This gives a useful surface divergence product rule for any second order tensor field

A(xs),

∇s · (PA) = (∇s ·P) ·A + P : ∇A

= κn ·A +∇s ·A
(A.7)

We list next an identity that is useful for simplifications carried out in this thesis.

For a smooth scalar and vector fields φ(xs) and a(xs) respectively,

∇s · φsg = φs∇s · g + g · ∇s φs (A.8)

The surface divergence theorem for a tangential vector field at(xs) defined on a sub-

region Γs is: ∫
Γs

∇s · at dΓs =

∮
∂Γs

m · at dc (A.9)

where, m is tangent to the surface, but normal to the bounding curve ∂Γs. For

a superficial vector field with both normal and tangential components of the form

a = ann + at such that an = a · n, the above surface divergence theorem can be

generalized using Equation (A.8) and Equation (A.5) as

∫
Γs

∇s · a dΓs = −
∫

Γs

κn · a dΓs +

∮
∂Γs

m · a dc (A.10)

Similarly for a superficial tensor field A(xs), the divergence theorem has the form,

∫
Γs

∇s ·A dΓs = −
∫

Γs

κn ·A dΓs +

∮
∂Γs

m ·A dc (A.11)
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B. MATERIAL TIME DERIVATIVE OF A BULK FIELD

Given a field φ(x, t), the material time derivative of the field is defined as [101]

φ̇ =
∂φ

∂t
+ v · ∇φ (B.1)

Thus,

d

dt

∫
Ω

φ dΩ =

∫
Ω

φ̇ dΩ +

∫
Ω

φ ˙dΩ

=

∫
Ω

(
∂φ

∂t
+ v · ∇φ

)
dΩ +

∫
Ω

φ∇ · v dΩ

=

∫
Ω

∂φ

∂t
dΩ +

∫
Ω

∇ · φv dΩ

=

∫
Ω

∂φ

∂t
dΩ +

∫
∂Ω

φv · n dΓs

(B.2)
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C. SURFACE TRANSPORT THEOREM

The surface transport theorem then gives the rate of change of a superficial scalar

field, φs(xs(t), t), defined on the interface [134]. The surface transport theorem can

be derived using the concept of material time derivative:

d

dt

∫
Γs

φs dΓs =

∫
Γs

φ̇s dΓs +

∫
Γs

φs
˙dΓs (C.1)

By definition of material time derivative:

φ̇s (xs (t) , t) =
∂φs

∂t
+
∂φs

∂xs

· dxs

dt
(C.2)

=
∂φs

∂t
+ vs · ∇φs (C.3)

Now, the material time derivative of the differential surface element is [101]

˙dΓs = (∇ · vs − n · ∇vsn) dΓs = P : ∇vsdΓs = ∇s · vsdΓs (C.4)

Thus,

d

dt

∫
Γs

φs dΓs =

∫
Γs

(
φ̇s + φs∇s · vs

)
dΓs (C.5)
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D. KINEMATICS OF A COHERENT INTERFACE

The velocity of a particle at a spatial location x (X, t) obtained by holding position

in the reference configuration X fixed, is defined as,

v =
∂

∂t
x (X, t) (D.1)

Now, it is assumed that the interface convects with the body, and that different

material particles come to occupy the interface at different instants of time. Hence,

the interface can be viewed as evolving with time in both the reference and current

configurations. LetXS (t) denote the reference coordinate of particles on the interface

at time t. Then, the interface velocity as viewed in the reference configuration is given

by [102],

VS =
d

dt
XS (t) (D.2)

Similarly, the velocity of the interface in the current configuration is,

vs =
d

dt
xs (XS (t) , t)

=
∂xs

∂t
+

∂xs

∂XS

· dXS

dt

(D.3)

The first term v = ∂xs

∂t
represents the velocity of a material point currently at the

interface, F = ∂xs

∂XS
is the instantaneous deformation gradient at the spatial location

xs with its corresponding reference location XS. The subscripts on xs and XS in the

definition of F serve to remind the fact that these material points currently reside

on the interface, but are free to change in any direction. The second term represents

the contribution due to interfacial motion in the reference configuration, since by

Eq. (D.2), VS = dXS

dt
is the velocity of the interface in the reference configuration.
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Thus, the difference between the velocity of the interface and the velocity of a particle

currently at the interface is,

vs − v = FVS (D.4)

The inverse relationship is thus,

VS = G (vs − v) (D.5)

where, G = F−1 = ∂XS

∂xs
is the inverse of the deformation gradient at a point on the

interface. Furthermore, for a coherent interface, in both the reference and current

configurations, at all times, the following conditions must be satisfied

JvsK = 0

JVSK = 0
(D.6)

This gives a relation for the jump in the bulk velocity across the interface,

JvK = − Jvs − vK = − JF KVS (D.7)

where, we have used JVSK = 0. Although not done here, the above condition is

sometimes further reduced by assuming that the deformation gradient jump is non-

zero only in the normal direction [7]. That is,

JvK = − JF KNVSN
(D.8)

0 = − JF KVST
(D.9)

where, VSN
is the normal component of the reference interface velocity, VSN

= N ·VS

and VST
is the tangential component of the reference interface velocity.
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The surface gradient and surface divergence of the interface velocity are next

derived. Applying the surface gradient operation on Eq. (D.4), we get

∇s vs = P∇v + PGT
[
∇0F VS +∇0VS F

T
]

(D.10)

Observing that ∂
∂XS

(
∂xs

∂t

)
= ∂

∂t

(
∂xs

∂XS

)
, the above expression can be rewritten as

(∇s vs)
T =

4
FGP (D.11)

where,
4
F is the convected time derivative of the deformation gradient

4
F =

∂F

∂t
+ (∇0F VS)T + F (∇0VS)T (D.12)

Finally, using the above derivation, it is easy to show that

(∇s · vs) =
4
FG : P (D.13)
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E. DERIVATION FOR THE JUMP IN STRESS-VELOCITY TERM

Using Equation (D.4), the stress-velocity jump term is written as

JσvK · n = Jσvs − σ (vs − v)K · n (E.1)

Denoting the average 〈〈·〉〉 = 1
2
(·− + ·+), the following product relationship may be

derived: JabK = JaK 〈〈b〉〉+ 〈〈a〉〉 JbK. Thus,

JσvsK · n = (JσK 〈〈vs〉〉+ 〈〈σ〉〉 JvsK) · n

= JσnK · vs

= (− Jρv (vsn − vn)K−∇s · (Pσs)) · vs

(E.2)

where, we have used Equation (2.23) and Equation (D.6). Thus, using Eq. (A.6), and

substituting Equation (E.2) into Equation (E.1), we get:

JσvK · n = − Jρvs · v (vsn − vn)K− Jσ (vs − v)K · n− (∇s · (Pσs)) · vs (E.3)
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F. DERIVATION OF THE SECOND LAW CONDITION IN THE REFERENCE

CONFIGURATION

Writing (vs − v) = FVS, the second law condition Eq. (2.37) can be rewritten as,

∫
Γs

VS ·

t

F T

(
ρψI− ρ

N∑
α=1

µαναI− σ

)|

n dΓs ≥ 0 (F.1)

Nanson’s formula [101] is now used to relate the differential surfaces in current and

reference configurations,

n dΓs = JGTN dΓs0 (F.2)

where, J = det(F ) > 0 is the Jacobian or the determinant of the deformation gradient

F , G = F−1 = ∂X
∂x

is the inverse of the deformation gradient, and N is the normal to

the interface in the reference configuration. By the definition of the first Piola-Kirchoff

stress tensor, ∫
Γs

JσKn dΓs =

∫
Γs0

JσIKN dΓs0 (F.3)

leading to the expression

σI = JσGT (F.4)

Thus, expressing the integral in Eq. (F.1) in the reference configuration, and using the

fact that Γs0 is arbitrary, we get the second law condition in reference configuration

as

VS ·

t

ρ0

(
ψ0 −

N∑
α=1

µα0ν
α
0

)
I− F TσI

|

N ≥ 0 on Γs0 (F.5)
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Using the fact that the deformation gradient F = ∂x
∂X

= I+∇0U
T the above condition

can be expressed in the following alternative form,

VS ·

t

Σ0 − ρ0

N∑
α=1

µα0ν
α
0 I− σI

|

N ≥ 0 on Γs0 (F.6)

where, we have used the fact that ρ0 = Jρ. Σ0 = ρ0ψ0I − ∇0UσI is the Eshelby

energy-momentum tensor [103] in the reference configuration.
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G. EVALUATING SURFACE LAPLACIANS FOR PARAMETRIC GEOMETRIES

The procedure to determine the surface Laplacian ∇2
sf for any scalar field f , as well

as the curvature at a point, κ = −∇s · n for curves is straightforward, while the

procedure for surfaces is involved. They are hence described separately here.

G.1 Curves

Let s denote the arc length of the curve and g = ds
du

denote its metric. For scalar

and vector fields f and g, respectively, we have

∇f =
∂f

∂n
n+

∂f

∂s
ês (G.1)

∇g = n⊗ ∂g

∂n
+ ês ⊗

∂g

∂s
(G.2)

The surface gradient is obtained using the projection operator P as,

∇s f = P∇f = ∇f − n∂f
∂n

=
∂f

∂s
ês =

1

g

∂f

∂u
ês (G.3)

For a vector field g, we have,

∇s g = P∇g = P
(
n⊗ ∂g

∂n
+ ês ⊗

∂g

∂s

)
= ês ⊗

∂g

∂s
(G.4)

∇s · g = ês ·
∂g

∂s
(G.5)
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Thus, the surface Laplacian is given by,

∇2
sf = ês ·

(
∂

∂s

(
∂f

∂s
ês

))
(G.6)

=
∂

∂s

(
∂f

∂s

)
(G.7)

=
1

g

∂

∂u

(
1

g

∂f

∂u

)
(G.8)

=
1

g

(
−1

g2
g,uf,u +

1

g
f,uu

)
(G.9)

∇2
sf =

1

g3
(−g,uf,u + gf,uu) (G.10)

where, we have used the fact that ∂ês
∂s

is in the normal direction, i.e., ês · ∂ês∂s = 0. The

metric is given by g =
√
x2
,u + y2

,u which also allows computing g,u in a straightforward

manner. The curvature is given by the well-known expression,

κ =
d2y
dx2(

1 + dy
dx

)3/2
(G.11)

κ =
1

g3
(x,uy,uu − y,ux,uu) (G.12)

The Laplacian of the curvature can be computed analytically by finding parametric

derivatives through Eq.(G.12) and using Eq.(G.10).

G.2 Surfaces

Let r denote the position of any point on the surface, and ru and rv denote the

parametric derivatives ∂r
∂u

and ∂r
∂v

, respectively. Henceforth, a subscript with u or v

shall denote the respective partial derivative unless otherwise specified. The curvature

and surface Laplacian for a parametric surface are given in terms of quantities called
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fundamental forms. The first and second fundamental forms are defined respectively

as,

I =

ru · ru ru · rv
ru · rv rv · rv

 =

E F

F G

 (G.13)

II =

n · ruu n · ruv
n · ruv n · rvv

 =

L M

M N

 (G.14)

Another surface quantity that is commonly referred to is the shape operator S =

∇sn. The Weingarten equation gives the curvature of the surface in terms of the

fundamental forms as, κ = tr ([II][I−1]). The final results for the surface gradient,

divergence and Laplacian shall be presented here, with detailed derivation provided

in a subsequent section.

For any scalar field f , the surface gradient is given by,

∇s f = R1fu +R2fv (G.15)

where,

R1 =
1

(EG− F 2)
[Gru − Frv] (G.16)

R2 =
1

(EG− F 2)
[−Fru + Erv] (G.17)

We also have the relation EG− F 2 = det(I) = ‖ru × rv‖2. For a vector field g, the

surface gradient and divergence are similarly given by,

∇s g = R1 ⊗ gu +R2 ⊗ gv (G.18)

∇s · g = R1 · gu +R2 · gv (G.19)
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Finally, the surface Laplacian for any scalar field f is given by,

∇2
sf = ‖R1‖2 fuu +

(
R1 ·R1,u +R2 ·R1,v

)
fu + 2R1 ·R2fuv

+ ‖R2‖2 fvv +
(
R1 ·R2,u +R2 ·R2,v

)
fv

(G.20)

Thus, to compute the surface Laplacian of any field f , one needs to compute the

parametric derivatives fu, fv, fuu, fuv and fvv. For solved quantities like the electric

potential which are represented through shape functions, these derivatives are easily

obtained.

Using Eq.(G.19) on the normal at a point, we get the relation for the curvature

at a point as,

κ = −∇s · n =
1

(EG− F 2)
[GL− 2FM + EN ] (G.21)

Since the curvature depends on L,M,N , it is by itself a second order quantity. To

compute the surface Laplacian of the curvature, one needs to compute its parametric

derivatives up to the second order. This is not easily computable since these quantities

are fourth order derivatives. One workaround is to do a NURBS fit for the curvature

and use the NURBS basis functions to approximate the parametric differentiation.
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