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ABSTRACT 

Author:Tsai, Jui-Wei.PhD 
Institution: Purdue University 
Degree Received:December 2020 
Title: Digital Signal Processing Architecture Design for Closed-Loop Electrical Nerve 

Stimulation Systems.  
Committee Chair: Pedro Irazoqui  
 

Electrical nerve stimulation (ENS) is an emerging therapy for many neurological disorders. 

Compared with conventional one-way stimulations, closed-loop ENS approaches increase the 

stimulation efficacy and minimize patient's discomfort by constantly adjusting the stimulation 

parameters according to the feedback biomarkers from patients. Wireless neurostimulation 

devices capable of both stimulation and telemetry of recorded physiological signals are welcome 

for closed-loop ENS systems to improve the quality and reduce the costs of treatments, and real-

time digital signal processing (DSP) engines processing and extracting features from recorded 

signals can reduce the data transmission rate and the resulting power consumption of wireless 

devices. Electrically-evoked compound action potential (ECAP) is an objective measure of nerve 

activity and has been used as the feedback biomarker in closed-loop ENS systems including 

neural response telemetry (NRT) systems and a newly proposed autonomous nerve control (ANC) 

platform. It's desirable to design a DSP engine for real-time processing of ECAP in closed-loop 

ENS systems.  

 

This thesis focuses on developing the DSP architecture for real-time processing of ECAP, 

including stimulus artifact rejection (SAR), denoising, and extraction of nerve fiber responses as 

biomedical features, and its VLSI implementation for optimal hardware costs. The first part 

presents the DSP architecture for real-time SAR and denoising of ECAP in NRT systems. A 

bidirectional-filtered coherent averaging (BFCA) method is proposed, which enables the 

configurable linear-phase filter to be realized hardware efficiently for distortion-free filtering of 

ECAPs and can be easily combined with the alternating-polarity (AP) stimulation method for 

SAR. Design techniques including folded-IIR filter and division-free averaging are incorporated 

to reduce the computation cost. The second part presents the fiber-response extraction engine 

(FREE), a dedicated DSP engine for nerve activation control in the ANC platform. FREE 
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employs the DSP architecture of the BFCA method combined with the AP stimulation, and the 

architecture of computationally efficient peak detection and classification algorithms for fiber 

response extraction from ECAP. FREE is mapped onto a custom-made and battery-powered 

wearable wireless device incorporating a low-power FPGA, a Bluetooth transceiver, a 

stimulation and recording analog front-end and a power-management unit. In comparison with 

previous software-based signal processing, FREE not only reduces the data rate of wireless 

devices but also improves the precision of fiber response classification in noisy environments, 

which contributes to the construction of high-accuracy nerve activation profile in the ANC 

platform. An application-specific integrated circuit (ASIC) version of FREE is implemented in 

180-nm CMOS technology, with total chip area and core power consumption of 19.98 mm2 and 

1.95 mW, respectively.   
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1. INTRODUCTION  

1.1 Background  

Nervous system is a complex network spreading through the human body that carries message 

from brain to various parts of body for regulation of physiological functions, including breath, 

heart rate, sensation, speech, and even stomach movement during digestion [1]. These 

physiological functions may be modulated externally by stimulating particular branches of 

central or peripheral nervous systems, which is also known as neuromodulation [2-4]. Ever since 

the United States Food & Drug Administration (FDA) approved deep brain stimulation (DBS) as 

a valid treatment of tremor in 1997 [5], neuromodulation becomes an emerging therapeutic for 

various neuro- logical diseases. Neuromodulation not only provides another option for patients 

who're resistant to medication, but also possesses the capacity to target and dose a certain nerve 

and brain area more precisely, making it a popular treatment alternative to pharmaceutical 

approach. For instance, DBS utilizes implanted microelectrodes in the brain through which 

electrical stimulus is delivered to targeted brain area and has been employed in the treatments for 

Parkinson disease, chronic pain, and other neurological disorders including depression [6, 7]. 

Spinal cord stimulation (SCS) provides therapy for chronic and intractable pains by intervening 

in transmission of pain signals along the spinal cords with electrical pulses [8-10]. Applications 

of neuromodulation to other neurological or psychiatric disorders have been demonstrated and 

are still being investigated  today [11, 12].  

 

Electrical nerve stimulation (ENS) is one neuromodulation technique that involves stimulating 

nerves with electric current in order to modulate propagation of neural signals along nerve. Ever 

since the first patient-wearable ENS device was patented in the United States in 1974 [13], ENS 

has been widely used in clinical therapy for acute and chronic pains, and its application in the 

treatment for other neurological diseases has also received attention in these decades [14-16]. In 

human's nervous system, vagus nerve is the longest cranial nerve extending from the brain stem 

to the colon; it controls important sensory and motor functions, including the visceral sensation 

of lungs, heart, and digestive tract and muscles in the heart and digestive tract for the regulation 

of heart rate and food digestion, respectively [17, 18]. Vagus nerve stimulation (VNS) is one of 
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the most renowned ENS that was approved by the FDA for epilepsy treatment in 1997 and 

approved for major depressive disorder treatment in 2005 [19, 20]. Although the mechanism of 

VNS still requires more elucidation, studies have shown the efficacy of VNS and its mild side 

effects [21]. VNS has been approved for seizure reduction in Canada and more than 15 countries 

in Europe [22].   

 

Most commercial neurostimulation systems today are in an open-loop manner, where devices 

with pre-programmed electrical stimulus is connected to targeted nerve or brain area via 

implanted microelectrodes, and stimulus parameters are tuned per week or month according to 

patient's subjective experience in treatment. For example, the VNS device produced by 

LivaNova and the responsive neurostimulation device produced by NeuroPace are two 

commercialized open-loop neurostimulators [23]. As the clinical experiences of open-loop 

neurostimulation accumulate, its problems become more evident, including low stimulation 

efficiency (either too much or too little dosing), slow reaction to patient's condition that easily 

causes patient's discomfort, and side effects associated with the therapy, all of which results from 

lacking objective measurement of how patients react to applied stimulus. A closed-loop 

neurostimulation system can improve stimulation efficiency and reduce discomforts and side 

effects on patients by recording physiological signals from patients and constantly adjusting 

stimulus strength in response to changes in recorded signals [24-26]. Efforts have been made in 

developing closed-loop neurostimulation systems and devices for various neurological diseases 

[27, 28]. In closed-loop VNS for epilepsy, stimulation is triggered at the onset of seizure, which 

can be detected in real-time based on heart rate change, electroencephalogram (EEG) and 

electrocardiogram (ECG) signals [29-32]. Closed-loop DBS comprises stimulation, sensing of 

biomarkers such as local field potentials (LFPs), action potentials, electrocorticogram (ECoG), 

and EEG, and detection of their features [33]. A review of closed-loop DBS systems and devices 

can be found in [34]. An FDA-approved closed-loop SCS system, the RestoreSensor system 

(Medtronic, Minneapolis, MN, USA), is also proposed, which automatically adjusts stimulus 

parameters according to patient's body position sensed by a 3-axis accelerometer [24]. In brief, a 

closed-loop neurostimulation system must be able to sense physiological signals effectively from 

patients, precisely locate the biomarkers in recorded signals, and detect change in biomarkers 

and adjust stimulus strength in response to the change in real-time.  
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1.2 Autonomous Nerve Control  

A nerve comprises mainly bundle of cable-like nerve fibers (also called axon), each of which is a 

projection of nerve cell (neuron) that transmit electrical signals known as action potentials to 

different muscles, tissues and organs [36]. According to Gasser [37], nerve fibers can be 

classified into three types based on their physical features and signal conduction properties - 

group A (fast, myelinated), group B (slow, myelinated), and group C (slow, unmyelinated). It's 

believed that the electrical stimulation modulates the activity of nerve fibers and thus sensory 

and motor functions the nerve fibers map to, which is one explanation for the mechanism of 

VNS [38]. Based on this theory, if the activation of nerve fibers can be properly controlled, the 

efficacy of VNS can be greatly improved and the severity of side effects in open-loop VNS can 

also be minimized. To address this issue, Matthew et al. propose the autonomous nerve control 

 
 

Fig. 1.1 Block diagram of the autonomous nerve control (ANC) system and its applications. [35] 
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(ANC) system [35], a responsive closed-loop ENS system that automatically adjusts stimulus 

strength using measured nerve activation level.   

 

Fig. 1.1 shows the block diagram of ANC system and its applications. In ANC, electrical 

stimulus is first applied onto a nerve via a stimulation electrode and the electrically-evoked 

compound action potential (ECAP) on the nerve in response to the stimulus is derived from the 

neural signals acquired from the recording electrode on the nerve adjacent to the stimulation 

electrode. ANC then identifies and classifies nerve fiber responses on ECAP waveform in real 

time. The amplitude responses of targeted nerve fiber together with stimulus parameters are 

clustered for construction of a patient-specific nerve activation profile (NAP), which predicts 

how nerve will respond to stimulus with any strength. In closed-loop stimulation, ANC 

constantly adjusts stimulus parameters according to the derived NAP to control the activation of 

targeted nerve fiber. ANC is first tested in VNS of rats to demonstrated its capacity to most 

efficiently control the activation of vagal A, B or C fibers [35] and can be applied to other ENS-

based therapeutics for various neurological diseases, e.g. addiction, chronic pain, motor and 

sensory disorders.  

 

ANC introduces great benefits to both patients and physicians. From patient's side, the period of 

treatment can be lowered to help patients save their time cost, and quality of treatment is also 

improved through the minimization of discomfort and side effects. For physicians, ANC  

provides an objective dosing standard based on the level of nerve activation, and save physicians 

from the time-consuming process of stimulus parameter tuning. ANC also enable physicians to 

selectively control the activation of fiber group (A, B or C fiber) and hence the physiological 

functions that fiber group maps to.  

1.3 Neural Response Telemetry  

It is estimated that around 466 million people worldwide suffer from some degree of hearing loss, 

34 million of which are children [39]. Several causes of hearing loss includes genetics, aging, 

exposure to noise, infections, birth complications and traumas to ear. Hearing loss results in not 

only inconvenience to patients but also physical, psychological and social problems (e.g. 

headache, stress, low self-esteem, isolation from community, etc.). Ever since 1957, when 
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French physician Djourno and his colleagues regained the hearing of two totally deafened 

patients using electrical stimulation, cochlear implant has been a popular management for 

hearing loss that provides partial hearing to deafened patients. Today, cochlear implant is one of 

the most successful neural prosthesis with more than 120,000 people implanted worldwide [40, 

41]. The goal of cochlear implant is to replace the normal acoustic hearing process with electrical 

signals that directly stimulate auditory nerve to restore functional hearing. Fig. 1.2 illustrates a 

typical modern cochlear implant system [42]. The sound is first sensed with a microphone, 

processed and encoded into digital signals by speech processor, and transmitted to the implant 

with the radio frequency (RF) transmitter. On the receiver that is placed under the skin behind 

the ear, digital signals are received with the antenna, decoded and converted into electric current. 

A stimulator on the receiver deliver the electric current to auditory nerve via the electrode array 

implanted in the cochlea, which's then interpreted as sound.  

 

 
 

Fig. 1.2  A typical modern cochlear implant system that provides electrical stimuli to auditory 
nerve [42].  
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Due to the difference in the structure of auditory nerve, the performance of cochlear implant can 

be unpredictable and vary in patients. This problem can be solved via the measurement of nerve 

function. In 1995, a bidirectional neural response telemetry (NRT) system was incorporated into 

the Nucleus CI24M cochlear implant to wirelessly monitor the ECAPs in response to the 

electrical stimuli on auditory nerve [44]. Fig. 1.3 shows the NRT system in Nucleus CI24M [43]. 

The stimulation parameters are first transmitted from speech processor to implant via RF link. 

On the implant side, digital signals are received and decoded (Rx Decode), and the electrical 

stimuli (Stim) corresponding to stimulation parameters are delivered onto auditory nerve via 

intra-cochlear electrode. Neural signals recorded (Rec) from electrode neighboring to the 

stimulation one are encoded digitally and transmitted (Tx Encode) back to speech processor and 

host PC.  On the host PC, stimulus artifacts recorded along with neural signals are removed with 

dedicated algorithms. For example, the mask-probe paradigm proposed by Brown et al. [45] is 

adopted in  Nucleus CI24M cochlear implant [43]. The ECAP response to the electrical stimulus 

is derived by coherently averaging all responses collected from a stimulation trial containing 

identical, repeated stimulus pulses. Features on the ECAP waveform are then identified, and 

stimulus strength is adjusted accordingly. Clinical studies have validated the capacity of NRT to 

wirelessly measure ECAP responses [43, 46, 47], and it can be equivalently applied to other ENS 

systems requiring wireless monitoring of ECAP responses on the nerve, including the newly 

proposed ANC platform.    

 

 
 

Fig. 1.3  Nueral Response Telemetry (NRT) system in Nucleus CI24M cochlear implant [43].  
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1.4 Electrically-Evoked Compound Action Potential  

Fig. 1.4 illustrates the cross-section of a nerve and its nerve fibers (axons) on which action 

potentials propagate [48]. When electrical stimulus above stimulation threshold (the minimum 

required stimulation current to elicit an action potential) is applied to a nerve, groups of nerve 

fibers are activated simultaneously. The summation of all evoked action potentials from 

activated fibers is called compound action potential. Instead of the action potential of single axon, 

it is the electrically-evoked compound action potential (ECAP) that can be recorded externally as 

it propagates along the nerve. Several approaches to interfacing electrodes with nerves for ECAP 

recording have been referred in [49]. Cuff electrodes, which are designed to fit around nerve 

without invasion, possess the advantage of maintaining stable and long-term contact with nerve 

yet exerting little pressure. This makes cuff electrode suitable for implantation and the most 

popular electrode for nerve stimulation and ECAP recording.    

 

 
 

Fig. 1.4  Cross-section of a nerve and group of nerve fibers (axons) [48].  



 

The action potentials of nerve fibers of the same group 

velocity called conduction velocity

shows the classification of nerve fibers

their conduction velocity [49]. When the ECAPs are 

conduction distance (i.e., the distance between stimulation and recording electrode on a nerve

the responses of nerve fiber groups 

latency on ECAP waveform. As the stimulus strength is increased, 

 

Fig. 1.5 

 

Fig. 1.6  Classification of nerve fiber responses on ECAP waveforms plotted (A) against time 
axis and (B) as a function of conduction velocity
cervical vagus nerve of rat (Conduction distance
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The action potentials of nerve fibers of the same group propagate along a nerve at a 

called conduction velocity, which is proportional to the diameter of fibers

shows the classification of nerve fibers in letter systems established by Gasser 

When the ECAPs are recorded on a nerve at a 

the distance between stimulation and recording electrode on a nerve

groups with specific conduction velocity form peaks 

As the stimulus strength is increased, the amplitude

  Classification of nerve fiber types [49].  

Classification of nerve fiber responses on ECAP waveforms plotted (A) against time 
as a function of conduction velocity. The ECAP responses are obtained from the left 

Conduction distance = 8.0 ± 0.5 mm) [35].  

 
 

nerve at a constant 

which is proportional to the diameter of fibers [37]. Fig. 1.5 

established by Gasser [37] based on 

recorded on a nerve at a fixed and known 

the distance between stimulation and recording electrode on a nerve), 

peaks with constant 

the amplitude of peaks grow 

 

Classification of nerve fiber responses on ECAP waveforms plotted (A) against time 
. The ECAP responses are obtained from the left 
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accordingly owing to more fibers of that group activated. Fig. 1.6 shows the classification of 

nerve fiber responses on ECAP waveforms recorded at approximately 8-mm conduction distance 

[35], where the responses of A, B and C fibers, whose conduction velocities are listed in Fig. 1.5, 

peak separately within a fixed time range on ECAP waveforms. The latency and amplitude of 

these peaks, which indicate the type of activated nerve fiber and its activation level, respectively, 

are important biomedical features on ECAP waveforms. It should be kept in mind that a proper 

conduction distance must be chosen in order to separate the responses of different fiber groups 

while keep their response amplitudes.  

 

Recording of ECAP on nerves is inevitably accompanied by stimulus artifact and ambient noise 

[50]. Such stimulus artifact usually contaminates the recorded ECAP signal and, at large enough 

amplitude, even saturates the recording amplifier, which hinders the amplifier from further 

recording. Stimulus artifact results mainly from the voltage gradients between the recording 

electrodes caused by current flowing through the tissues around nerves, and the electromagnetic 

coupling between stimulation and recording electrode [51], which can be reduced by increasing 

conduction distance (i.e., placing recording electrode further away from stimulation electrode). 

For implantable devices (e.g. cochlear implants) in which large enough conduction distance to 

completely eliminate stimulus artifact is impractical, additional techniques are required to 

suppress stimulus artifact. Fig. 1.7 illustrates the three most commonly used stimulus artifact 

 
 

Fig. 1.7  The three most commonly used methods for stimulus artifact reduction in ECAP 
recording: (a) alternating polarity, (b) subthreshold template subtraction, and (c) 2-pulse forward 
masking paradigm [50].   
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rejection (SAR) techniques in ECAP recording: alternating polarity, subthreshold template 

subtraction, and two-pulse forward masking paradigm [50]. The alternating polarity method in 

Fig. 1.7 (a) utilizes two stimulus pulses, a cathodal pulse and an anodal one, whose amplitude 

and shape are the same and polarity is opposite. On the ground that the polarity of ECAP 

response does not change with that of stimulus, stimulus artifact is removed by summing the 

cathodal and anodal responses whose stimulus artifacts have symmetric shape and opposite 

polarity. In the subthreshold template subtraction method, a pure stimulus artifact is evoked with 

a subthreshold stimulus pulse (i.e., stimulus below stimulation threshold), which serves as the 

template. The stimulus artifact is removed by subtracting the evoked response (ECAP plus 

artifact) with a scaled template. The two-pulse forward masking paradigm utilizes the refractory 

period of nerve where another stimulation leads to no ECAP [46] and aims to obtain a pure 

stimulus artifact within this period. As seen in Fig. 1.7 (c), either masker or probe pulse alone 

elicits both ECAP response and stimulus artifact, whereas the probe pulse within the refractory 

period that follows after the masker pulse elicits only a stimulus artifact. Artifact is then removed 

by summing the responses to the abovementioned stimuli (i.e., masker, probe, and masker plus 

probe).  

 

Coherent averaging (CA), also called ensemble averaging, is a commonly used technique to 

recover evoked responses from recording noise and other signals that are not correlated to the 

evoked response and degrade the signal-to-noise ratio (SNR) [52-54]. The CA is based on the 

 
 

Fig. 1.8  Principle of the coherent avearing (CA) technique [52].   
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principle that the response to the applied stimulus remains invariant throughout the entire 

stimulation, which is generally true for stimulation trials lasting for only seconds. Fig. 1.8 

illustrates the principle of CA technique [52]. Assume that a series of N equidistant and identical 

stimuli are applied, and 
���
 is the output signal after the i-th stimulus that contains response 

r��t
 and noise n��t
, i.e., 
���
 = ����
 + ����
. The coherently averaged signal 
���
 is the time-

aligned averaging of all output signals from N stimuli, namely, 
���
 = �
� ∑ 
���
���� = ���
 +

�
� ∑ ����
���� , based on the invariance of response ���
 (i.e., ���
 = ����
 = ⋯ = ����
). The 

random noise plus uncorrelated signals 
�
� ∑ ����
����  will then be averaged toward zero. CA is 

also equivalent to a low-pass finite-impulse-response (FIR) filter. Detailed descriptions and 

equations can be found in [52].  

 

In short, ECAP is a direct and objective measurement of nerve activity and function and has been 

adopted as a biomarker in various diagnoses of neural diseases [49, 50] and closed-loop ENS 

systems such as previously mentioned cochlear implants and ANC platform, in combination with 

the stimulus-artifact-rejection techniques and CA. Its recording, processing and characterization 

still present challenges yet deserve more studies for improvement of neurological therapeutics.  

1.5 Real-Time Digital Signal Processing for Closed-Loop Neurostimulation  

As mentioned in Section 1.1, closed-loop neurostimulation requires continuous monitoring of 

physiological signals from patients and stimulation of nervous system with stimulus strength 

constantly adjusted in response to changes in recorded signals, which, until today, is achieved 

with medical equipments connected to patients via external cables in most clinical treatments. 

This is problematic, as these equipments and their setup are generally costly in time and money, 

and most importantly, the transcutaneous cable connection between nervous system and 

equipments results in not only patient's discomfort but also the risk of injury or inflammation on 

nerve, which degrades the quality of treatments. The progress in consumer electronics and 

semiconductor technologies has thus promoted the development of wireless wearable (or 

implantable) devices for various closed-loop neurostimulation systems in commercial off-the-

shelf (COTS) components or application-specific integrated circuits (ASICs) [55-59].  
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Fig. 1.9 illustrates the high-level block diagram of a typical wireless, wearable (or implantable) 

closed-loop neurostimulation device. Neural signals from central or peripheral nervous system as 

well as other physiological signals (e.g. EEG, ECG) are recorded and digitized with neural 

amplifier (NA) and analog-to-digital converter (ADC) in recording analog front-end (AFE), 

respectively. The wireless module provides a bidirectional communication interface, by which 

digitized data from ADC are transmitted and user commands are received. Electrical stimuli are 

generated with the neural stimulator according to the stimulus parameters decoded from received 

user commands by the control unit, and delivered to targeted nerve or brain areas. The device is 

powered using battery or wireless power transfer (WPT), and the power supply of each building 

block is generated with the power management unit.   

 

In order to extend the lifetime of battery and avoid excessive density of WPT that can heat up 

and damage tissues, power consumption is always the first consideration in designing wireless 

devices. The Federal Communications Commission restricts the maximum power density of 

electromagnetic field to 6 W/m2 at 915 MHz and 10 W/m2 at 2.4 and 5.8 GHz [60]. On the other 

hand, the resolution of neural or physiological signals recorded from wireless device and the  

corresponding data transmission rate must be high enough for users to distinguish the change in 

signals and adjust stimulus parameters accordingly. For instance, a 192-kbps sampling rate per 

channel (8 bits × 24-kHz sampling frequency) is required for recording of action potential (also 

called "spike") from a neuron, and the resulting data rate of a 64-channel wireless neural 

 

 
Fig. 1.9  High-level block diagram of a typical wireless wearable (or implantable) device for 
closed-loop neurostimulation.  
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recording device is as high as 11.71 Mbps [61]. Unfortunately, continuous transmission of 

recorded raw data at high rate is power-costly for the wireless module dominating the power 

consumption of wireless device. For example, the power consumption of a Bluetooth transceiver 

during transmission can reach up to 102.6 mW (57 mA at 1.8-V voltage supply) at 0.72-Mbps 

data rate [62]. Besides, data transmission at high rate results in high data error rate that also 

degrades the fidelity of recorded signals. As there's limited room for improvement in the power 

dissipation of wireless module, a better approach to saving power cost of wireless device in 

closed-loop systems is to reduce the data rate of device by sending only key information in 

recorded signals relevant to stimulation adjustment.  

 

A real-time digital signal processing (DSP) engine capable of decoding recorded neural or 

physiological signals can effectively reduce the data transmission rate of wireless devices, and its 

role on a wireless device is illustrated in Fig. 1.10. Digitized data from ADC are processed by the 

DSP engine in real time, and only the detected events or extracted features on recorded signals 

are transmitted by the wireless module at full resolution, based on which the stimulation intensity 

is adjusted. Such DSP engine can be implemented in microcontroller, field-programmable gate 

array (FPGA) or ASIC, on which the DSP algorithms must be computationally efficient in order 

to minimize the implementation cost. Several examples of digital processor for neural signal 

processing are given as follows. A spike-sorting DSP chip in 90-nm complementary metal-

oxide-semiconductor (CMOS) process is presented in [61] for detection and feature extraction of 

neuron spikes from 64 channels simultaneously, which has a power dissipation of only 130 µW 

and reduces data rate from 11.71 Mbps to 1.02 Mbps. A neural signal processor is proposed for a 

32-channel neural recording system which utilizes discrete wavelet transform (DWT) and run 

length encoding (RLE) for neural data compression [63]. This processor, implemented in 130-nm 

 
 

Fig. 1.10  Illustration of a real-time digital signal processing (DSP) engine on a wireless device.  
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CMOS process, consumes 800 µW of power and reduces the maximum data rate of a 32-channel 

neural implant to 1 Mbps. A general-purpose wireless brain-machine-brain interface (BMBI) is 

reported in [64], which incorporates a microcontroller-based neural signal processor for digital 

filtering, feature extraction, spike detection, and compressed sensing. In [65], real-time 

algorithms for decoding of electroneurogram (ENG) are implemented onto an off-the-shelf DSP 

processor, which consist of denoising, spike detection, spike sorting by template matching, and 

classification. For optimal performance and lower area and power cost, very-large-scale 

integration (VLSI) architecture for real-time DSP and its implementation in either FPGA or 

ASIC are usually preferred.  

1.6 Motivation  

There has been significant progress in development of wireless wearable (or implantable) device 

and real-time DSP algorithm and architecture for various closed-loop neurostimulation systems. 

Surprisingly, today's closed-loop ENS systems that measure ECAP as feedback biomarker, such 

as the NRT system in cochlear implant and the newly proposed ANC platform [35], still rely on 

the offline processing of continuously recorded and transmitted neural data on software. For 

instance, the Nucleus CI24M cochlear implant incorporates a custom NRT software for post-

processing of received neural data [43], including the SAR and CA techniques for recovery of 

ECAP responses described in previous sections and feature extraction from ECAP signals, and 

similar signal-processing steps are implemented on MATLAB  software in ANC. The required 

data rate for transmission of neural data (e.g. 800-kbps input data rate in ANC) will be too high 

for wireless devices to work with these closed-loop ENS systems while satisfy the low power 

demand. It's favorable to have a DSP engine for ECAP processing that comprises SAR, 

denoising, and extraction of features such as fiber responses described in Section 1.4, to reduce 

the data rate of wireless device in these systems. A VLSI architecture of such DSP engine is 

especially desirable for performance and hardware cost optimization.   

 

Although CA technique has been widely adopted in many ECAP-based closed-loop ENS 

platforms for noise removal, its efficacy is strongly dependent on the number of averaging (i.e., 

the number of stimuli). A large number of stimuli and hence long stimulus train duration is 

needed to boost the filtering capacity of CA, which also adds power consumption to wireless 
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device due to increase in the length of data recording and transmission time. Another deficiency 

of CA is its limited ability to remove periodic noises, such as electromagnetic interferences (e.g. 

60-Hz power line) and baseline wanders (caused by patient's movement) which are prevalent in 

neural recording, especially when periodic noises are time-locked to stimulus pulses. Such noises, 

if not properly eliminated, will introduce inaccuracy onto biomedical features of ECAP (fiber 

responses), which adversely influences the tuning of stimulus parameters in closed-loop 

stimulation. Digital filters remove periodic noises more effectively and can be efficiently 

implemented in real-time DSP in finite impulse response (FIR) or infinite impulse response (IIR) 

structures [66]. Unfortunately, most digital filters, especially IIR filters which are more 

computationally efficient, have nonlinear phase response; This causes phase-frequency distortion 

of filtered signals (i.e., all frequency components of input signal shifted in time unequally) which 

results in the deformation of ECAP waveform and its features. It's possible to achieve zero-phase 

filtering and hence avoid distortion of ECAP waveform by applying a filter both forward and 

backward in time, which's also known as forward-backward filtering [67]. However, this 

technique requires a time-reversal operation on the entire input data stream (i.e., all neural data 

recorded during the stimulus train) and are still performed with offline software processing today. 

A distortion-free and computationally efficient filtering technique for more effective periodic 

noises removal and its VLSI architecture is essential to realize a real-time DSP engine for ECAP 

processing.  

 

This thesis focuses on the design of a DSP engine dedicated to ECAP-based closed-loop ENS 

systems, including NRT and ANC systems, and its VLSI architecture. This real-time DSP engine 

performs SAR and filtering to recover ECAP from the stimulus artifact and noises and extracts 

fiber responses from recovered ECAP waveform. A computationally efficient filtering technique 

named bidirectional-filtered coherent averaging (BFCA) and its VLSI architecture is proposed 

for real-time denoising of ECAP, by which periodic noises are more effectively removed without 

introducing waveform distortion. With the DSP engine developed in this work, data transmission 

rate can be greatly reduced, which enables wireless devices to work with ECAP-based closed-

loop ENS systems at reasonable power cost. The BFCA method removes periodic as well as 

random noises more efficaciously, which helps improve the precision of extracted biomedical 

features (e.g. fiber responses) and the performance of closed-loop stimulation.   
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1.7 Outline of Thesis  

Chapter 2 presents a DSP architecture for real-time recovery of ECAP responses in NRT as well 

as other ECAP-based closed-loop ENS systems, which consists of SAR via alternating-polarity 

(AP) stimulation and denoising with the proposed BFCA method. The principle of the BFCA 

and its combination with AP technique is explained, and the VLSI architecture of BFCA 

algorithm AP stimulation-based SAR are described. Design techniques such as folded IIR filter 

and division-free averaging are presented for hardware efficient implementation. The stimulation 

and recording AFE circuitry interfacing with the DSP is also described. This DSP architecture is 

implemented on FPGA and verified in in-vivo ENS, and its efficacy is evaluated in terms of 

residual stimulus artifact, noise floor, and waveform distortion.  

 

Chapter 3 extends the work of Chapter 2 and presents fiber-response extraction engine (FREE), 

the first real-time DSP engine designed for nerve activation control in closed-loop ENS using the 

ANC platform, to the best of our knowledge. Computationally efficient algorithms and VLSI 

architectures are presented for extraction of fiber responses from ECAP responses derived with 

the DSP architecture in Chapter 2. A custom-made wearable wireless device is built in printed 

circuit board (PCB) prototype that comprises a low-power FPGA onto which FREE is mapped, a 

Bluetooth transceiver, the stimulation and recording AFE circuitry described in Chapter 2 and a 

power-management circuitry, and can be powered with a single coin-cell battery. This wearable 

device is integrated into ANC system to verify the performance of FREE. Both offline and in-

vivo experimental results show that compared with previous software-based processing in ANC, 

not only does FREE help reduces the required data transmission rate of wireless device, but the 

precision of extracted fiber responses is improved through the proposed BFCA. High-precision 

fiber responses obtained from FREE contributes to increase in the accuracy of NAP construction 

in ANC and hence closed-loop stimulation efficiency. FREE is also implemented in 180-nm 

CMOS technology, whose total chip area is 19.98 mm2 and core power consumption is 1.95 mW 

at 1.8-V core voltage and 16-MHz system clock rate.   

 

Finally, Chapter 4 draws a conclusion to this thesis and describes the future work for this 

research. The output data rate of FREE can be further reduced by employing DWT and RLE for 

compression of ECAP response, and its preliminary result is demonstrated. All the computations 
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in FREE can be implemented with the half-precision floating-point arithmetic that provides 

sufficient data precision whereas reduces the computation costs. Wireless powering technique 

can be further incorporated in order to make the wireless device implantable, and the required 

components in the power management unit are illustrated. Bluetooth transceivers with lower 

power consumption may be adopted to reduce the overall power cost of the wireless device.   
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2. A DSP ARCHITECTURE FOR REAL-TIME EVOKED COMPOUND 
ACTION POTENTIAL RECOVERY IN NEURAL RESPONSE 

TELEMETRY SYSTEM  

This chapter presents the first digital signal processing (DSP) architecture for real-time recovery 

of electrically-evoked compound action potentials (ECAPs) from stimulus artifacts and periodic 

noises in bidirectional neural response telemetry (NRT) system. In this DSP architecture, a 

bidirectional-filtered coherent averaging (BFCA) method is proposed for configurable and 

distortion-free filtering of the ECAP waveforms, and the alternating-polarity (AP) stimulation 

method is utilized for rejecting stimulus artifacts overlapped with ECAPs, which can be easily 

incorporated into the proposed BFCA method. Design techniques including the configurable 

folded infinite-impulse-response (IIR) filter and division-free averaging are also presented for 

efficient hardware implementation. Synthesized in 180-nm CMOS process, the proposed DSP 

architecture consumes 0.97-mm2 area and 2.38-mW power. The efficacy of the DSP architecture 

in recovering ECAPs from recorded neural data contaminated by overlapped stimulus artifacts 

and periodic noises is validated in in-vivo electrical nerve stimulations. Experiment results show 

that compared with the previous coherent averaging technique, the proposed DSP architecture 

improves the signal-to- noise ratio (SNR) of ECAP responses by 11 dB and achieves an 3.1% 

waveform distortion that is 17.1× lower.  

2.1 Introduction  

Neural response telemetry (NRT) is an useful technique to wirelessly measure electrically-

evoked compound nerve action potential (ECAP) for the study of the nervous system using 

implantable devices [46]. The measured ECAP reflecting the activity of the nerve being 

stimulated serves as an objective criterion for adjustment of stimulus parameters in closed-loop 

electrical nerve stimulation. Fig. 2.1 shows a conventional bidirectional NRT system for closed-

loop stimulation [43, 68]. Bidirectional communication between the host personal computer (PC) 

and the radio-frequency (RF) transceiver on the implant is established with a base station (BS), 

and instructions from host PC are sent to implant and decoded to deliver user-defined stimulus 

train onto the nerve. Neural responses to the stimuli are recorded and digitized on the implant, 

and transmitted back to the host PC, on which data from the implant are processed to recover the 



 
 

36 
 

ECAP responses and stimulus parameters are adjusted. NRT is first introduced into the electrical 

stimulation of the auditory nerve in cochlear implants decades ago, which has been widely 

applied in clinical treatment since then with over 200,000 patients implanted [40, 41]. A recently 

proposed response-driven electrical nerve stimulation platform, autonomous nerve control (ANC) 

[35], provides another promising application area for NRT. In ANC, ECAP responses to a pre-

defined stimulus are decoded to identify targeted nerve fiber response, and the stimulation 

parameters are constantly updated according to a patient-specific nerve activation profile to 

control the activation level of nerve fiber. NRT system can be integrated into ANC for wireless 

measurement of ECAPs, offering close-loop electrical nerve stimulation on implantable devices 

with improved efficiency.  

 

On the implant of a conventional NRT system, neural signals are continuously sampled and 

transmitted to host PC via RF transceiver during a stimulation trial that typically consists of a 

pulse train with specific stimulation rate (number of stimulus pulses per second) and duration 

[14]. As reported in [35], a 50-kHz sampling frequency and a 16-bit sampling precision (the 

analog-input precision of USB-6353, National Instruments) are required to resolve ECAPs with 

milli-volt amplitude after amplification, and the resulting data transmission rate will be 800 kbps 

on the implant. Whereas RF transceiver dominates the power consumption of the implant, 

continuous transmission of raw data wirelessly at such high data rate is not only power-costly for 

the implant, but also vulnerable to data loss in wireless transmission that degrades the fidelity of 

derived ECAP responses on host PC. A digital signal processing (DSP) hardware capable of 

recovering ECAP response from recorded raw neural data and extracting biomedical features of 

interest is thus welcome for minimizing data transmission rate in NRT systems. Fig. 2.2 (a) 

illustrates an NRT system with the above- mentioned DSP hardware, and details on the DSP unit 

 

 

Fig. 2.1  Illustration of Conventional bidirectional neural response telemetry (NRT) systems.  
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and the stimulation and recording analog front-end (AFE) on the implant are plotted in Fig. 2.2 

(b). Based on the stimulation parameters in the decoded instruction received from host PC, a 

digitized stimulus waveform is generated from the stimulation controller on DSP unit and 

converted to a current stimulus on the stimulation electrode by the digital-to-analog converter 

(DAC) and the current pump (CP). Neural signals in response to the stimulus are picked up by 

the recording electrode in the neighborhood, conditioned by neural amplifier (NA) and digitized 

by analog-to-digital converter (ADC). On the DSP unit, digitized raw neural data (RD) are 

processed to obtain the ECAP response to the applied stimulus train, and biomedical features 

such as nerve fiber responses on the ECAP are extracted and transmitted back to host PC. 

Developing a hardware architecture for real-time ECAP recovery is the first step to the 

realization of the above-mentioned DSP unit, and the required signal-processing steps will be 

described later.  

 

One challenge in ECAP recovery is the accompanying of electrical stimulus artifacts [51]. In 

implantable devices, a limited conduction distance (i.e., the distance between stimulation and 

recording electrodes) usually results in the overlapping of stimulus artifacts with ECAP 

responses, necessitating the utilization of stimulus artifact rejection (SAR) techniques on the 

 
(a)  
 

 
(b)   

 
Fig. 2.2  (a) The NRT systems with a digital signal processor. (b) Details of stimulation and 
recording analog front-ends (AFE) and digital signal processor on the implant.  
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DSP unit. While many techniques for stimulus artifact rejection have been reported [69-73], 

those implemented in DSP hardware are first reviewed. In template subtraction method, a 

template of artifacts is derived from a series of pure stimulus artifacts recorded in sub-threshold 

stimulation, and recorded neural data is subtracted by the template signal to remove the stimulus 

artifacts. A hardware implementation of this method is reported in [74], where a low-cost 

infinite-impulse-response (IIR) temporal filter architecture is utilized for template generation. 

Another template generation method based on adaptive filtering and its hardware implementation 

is proposed in [75]. The main disadvantage of template subtraction is that in real-time 

stimulation, it's difficult to obtain an artifact template free of overlapped ECAP responses in the 

absence of accurate estimation of ECAP threshold. The forward masking method [45, 76, 77] 

aims to generate a pure stimulus artifact during the refractory period of nerve by utilizing a two-

pulse stimulus, a high-amplitude masker pulse followed by a probe pulse. This pure stimulation 

artifact is then properly time-shifted and subtracted from recorded neural signals. Without prior 

knowledge of the refractory period of nerve being stimulated, however, this method fails if the 

probe pulse isn't completely within the refractory period, which induces artifacts plus ECAP 

responses. The alternating-polarity (AP) stimulation method [76], based on the fact that flipping 

stimulus pulse changes only the polarity of stimulus artifact instead of ECAP response, utilizes a 

cathodal pulse followed by an anodal one that has the same amplitude and opposite polarity. The 

resulting artifacts, which are identical in shape and opposite in polarity owing to the symmetry of 

stimulus pulses, cancel with each other by summing the cathodal and anodal responses within a 

period of biphasic stimulation. AP stimulation features low complexity and has been proved 

effective in removing artifacts overlapping with ECAP responses [35], and hence is preferred for 

implementation of real-time SAR on DSP hardware.  

 

Another challenge in ECAP recovery is the presence of periodic noises such as electromagnetic 

interferences and baseline drifts which are commonly encountered on the implants. Although the 

coherent averaging of neural data is equivalent to a low-pass filter, as reported in [52], its 

performance is limited by the number of averaging cycles, and fails to effectively remove 

periodic noises, especially those time-locked to stimulus pulses. A programmable digital band-

pass filter is necessary to periodic noise removal of ECAP whose frequency spectra varies with 

both nerve fiber distribution and conduction distance [78]. The major problem with digital 
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filtering, however, is its nonlinear phase response and the resulting frequency-dependent phase 

shift on filtered ECAP responses [66], which distorts both ECAP waveform and its biomedical 

features, especially the latency of nerve fiber responses reflecting distribution of nerve 

conduction velocity [37, 79]. The waveform deformation caused by nonlinear phase response of 

digital filters can be circumvented with zero-phase filtering (ex: filtfilt function in MATLAB). 

So far, this technique is only implemented on the software, which requires the entire raw data 

stream to be transmitted to host PC for offline processing. Wavelet filtering based on wavelet 

decomposition and reconstruction has been proved effective in removing low-frequency noise 

whereas maintaining the waveform shape and has been adopted for denoising of various 

biomedical signals [80, 81]. A hardware efficient very-large scale integration (VLSI) architecture 

of wavelet filtering is also presented for its real-time DSP implementation [82]. Nevertheless, 

unlike conventional digital filters, the programmability of passband in wavelet filtering is strictly 

limited due to the intrinsic property of discrete wavelet transform [83], making it unsuitable for 

filtering of ECAP. For real-time ECAP recovery, it is essential to develop a programmable and 

distortion-free filtering strategy and its computationally-efficient hardware implementation.  

 

In this chapter, we present the first DSP architecture for real-time and distortion-free recovery of 

ECAPs from stimulus artifacts and periodic noises in bidirectional NRT systems. In this DSP 

architecture, a bidirectional-filtered coherent averaging (BFCA) method is proposed for 

configurable and distortion-free filtering of the ECAP waveforms, and the AP stimulation 

method is utilized to reject stimulus artifacts overlapped with ECAPs, which can be easily 

combined with the BFCA method. For hardware-efficient implementation, both the architectures 

of configurable folded IIR filter and exponentially-weighted moving averaging (EWMA) [84] 

are presented. Synthesized in 180-nm CMOS process, the proposed DSP architecture consumes 

0.97-mm2 area and 2.38-mW power. This DSP architecture is tested in in-vivo electrical nerve 

stimulations to verify its efficacy of removing overlapped stimulus artifacts and periodic noises. 

Compared with the previous coherent averaging technique, the proposed DSP architecture 

improves the signal-to-noise ratio (SNR) of ECAP responses by 11 dB and achieves an 3.1% 

waveform distortion that is 17.1× lower.  
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This chapter is organized as follows. Section 2.2 describes the principle of bidirectional-filtered 

coherent averaging (BFCA) method for distortion-free artifact and noise removal on ECAP. 

Section 2.3 describes the proposed DSP architecture for real-time ECAP recovery. Section 2.4 

presents results of FPGA and CMOS implementation of the DSP engine and its verification via 

in-vivo experiments, and Section 0 draws a conclusion of this work.   

2.2 Bidirectional-Filtered Coherent Averaging  

Coherent averaging is a useful method to extract evoked neural responses [52]. In this method, a 

stimulus train consisting of a series of identical and equidistant stimulus pulses is applied to the 

nerve. It's assumed that the nerve response to the same stimulus pulse in a stimulus train is 

invariant, which is generally valid for a stimulus train lasting for only a few seconds. An ECAP 

response to a stimulus train is obtained by systematically aligning and averaging of all evoked 

responses to a single stimulus pulse. During the averaging process, random noise components 

recorded with ECAPs are summed toward zero, contributing to a higher signal-to-noise ratio 

(SNR). Coherent averaging can be easily combined with AP stimulation method for SAR, in 

which an artifact-free ECAP response is attained by first aligning and summing the cathodal and 

anodal responses within an AP stimulus period and coherently averaging the summed waveform 

of all AP stimulus cycles [35].  

 

A linear-phase programmable filter before coherent averaging is applicable to eliminate periodic 

noise interferences whereas avoid distorting ECAP waveforms in recorded raw neural data [85]. 

The simplest way to realize linear phase filters is to design finite-impulse-response (FIR) filters 

with symmetric or anti-symmetric impulse responses [86, 87]. Under the same frequency band 

and magnitude response specifications, however, FIR filters require much higher order than 

infinite- impulse-filter (IIR) filters and thus more computation costs. Several methods to derive 

an IIR filter with desired magnitude response and approximately linear phase in its pass band 

have been reported in [88]. Nevertheless, these methods require either an order increase in IIR 

filters or another filters to compensate the phase nonlinearity of IIR filters, both of which 

degrade the computation efficiency of original IIR filters, and their applications are limited to 

specific type of filter design due to a partially valid linear-phase relationship. Powell and Chau 

[89] proposed the linear-phase filter structure implemented with an IIR filter with transfer 
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function ���
, cascaded by the same filter in time-reversed order, �����
, which are realized 

using the local time-reversal of input data of filter ���
. Powell and Chau's filter structure 

provides an exact linear-phase relationship over the entire frequency band while preserving the 

computation efficiency of an IIR filter, and can be applied to arbitrary IIR filters ���
 designed 

with magnitude specification only. Another attractive feature of Powell and Chau's method is the 

utilization of block processing techniques, where a continuous input data stream is equally 

divided into finite sections, and each section is bidirectional-filtered with both ���
 and �����
. 

Without the requirement for additional data storage, block processing can be easily combined 

with the coherent averaging technique, where continuously recorded raw neural data are 

segmented into individual responses to a single stimulus. In this chapter, by integrating coherent 

averaging with Powell and Chau's linear-phase filter structure, we propose the bidirectional-

filtered coherent averaging (BFCA) and its efficient hardware implementation for real-time, 

linear-phase filtering of ECAP responses.  

 

Fig. 2.3 (a) illustrates the proposed BFCA method for distortion-free artifact and noise removal 

on ECAP, where TR and CA denote time-domain order reversal and coherent averaging, 

respectively. Recorded raw neural data from AFE, as plotted in Fig. 2.3 (b), consists of a series 

of ECAP responses evoked by an AP stimulus pulse train, as well as stimulus artifacts and 

periodic noise interferences. The raw data (RD) is continuously filtered by filter ���
, whose 

outcome versus raw data before filtering are plotted in Fig. 2.3 (c). For each AP stimulus cycle, 

both the cathodal and anodal parts of continuously filtered raw data are sampled with a window 

time-locked to stimulus pulses, and the windowed data are reversed in time-domain order, as 

shown in Fig. 2.3 (d). By summing windowed cathodal and anodal responses, the stimulus 

artifacts, which are symmetric and aligned on time axis, are cancelled to restore the ECAP within 

an AP stimulus period. The ECAP response to applied stimulus train is computed by averaging 

ECAP of all AP stimulus cycles, referred as the mean ECAP (uCAP) response. The above-

mentioned process is equivalent to the coherent averaging of continuously-filtered and time-

reversed raw data, as illustrated in Fig. 2.3 (a). The uCAP response in reverse-time order is 

filtered with the same response ���
 , as shown by Fig. 2.3 (e), and converted back to 

continuous-time order with another TR operation. Fig. 2.3 (f) shows an ECAP response derived 

by applying BFCA on the raw data superimposed by periodic noises as seen in Fig. 2.3 (b), and 
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the original noise-free ECAP. It can be seen that applying BFCA effectively removes periodic 

noises on recorded raw data, and the resulting ECAP waveform is exactly the same as that of the 

original ECAP.  
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(a)  
  

  
(b)  

 

  
(c)  
 

 
(d)  

 
Fig. 2.3  Principle of the proposed bidirectional-filtered coherent averaging (BFCA) method 
combined with the alternating-polarity (AP) stimulation method for stimulus artifact rejection 
and distortion-free denoising of ECAP.  
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A linear-phase relationship of BFCA shown in Fig. 2.3 (a) can be verified with its Discrete-Time 

Fourier Transform (DTFT). The DTFT of filtering process is expressed as  

 

���� !" = ��� !"#�� !",  

�$�� !" = ��� !"�%�� !
.       (2.1) 

 

where ��� !" is the DTFT of filter response ���
. The TR operation in Fig. 2.3 (a) is defined as    

 


&��
 = 
��−�
,       


��
 = 
$�−�
,         (2.2) 

 
(e)  
 

 
(f)  
 

Fig. 2.3  continued.  
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and its DTFT is given by  

 

�&�� !" = ����� !",        

��� !" = �$��� !".          (2.3) 

 

Assume that a stimulation train consists of NST AP stimulus pulses and, the time interval between 

cathodal and anodal stimulus pulses is T. The coherent averaging (CA) of filtered and time-

reversed raw data  in Fig. 2.3 (a) is defined as 

 


%��
 = �
&�() ∑ 
&�� + *+
&�()��,�-   

 = y&�n
 ∗ �
&�() ∑ 0�� + *+
&�()��,�- ,       (2.4) 

 

where * denotes convolution operation. The equivalent  impulse response of CA is expressed as 

 

ℎ23��
 = �
&�() ∑ 0�� + *+
&�()��,�- ,       (2.5) 

 

and its DTFT, as derived in [52], is given by 

 

�23�� !
 = �
&�() ∙ 5�6�!7�()


5�689
:!7; .        (2.6) 

 

The DTFT of (2.4) can thus be written as  

 

�%�� !" = �23�� !"�&�� !
 .        (2.7) 

 

By summarizing (2.1)-(2.7), the transfer function of BFCA can be derived: 
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��� !" = �23��� !"���� !"��� !"#�� !
 

= �23�� !"<��� !"<&#�� !
,  
�=>23�� !" = ?�@AB"

C�@AB" = �23�� !"<��� !"<&
,       (2.8) 

 

where the relationship �23��� !" = �23�� !" can be verified from (2.6). It can be observed in 

(2.8) that the transfer function of BFCA, �=>23�� !" , is real and positive. Therefore, no 

frequency-dependent phase shift will be introduced by BFCA, and the shape of ECAP 

waveforms characterizing the distribution of nerve conduction velocity can be preserved after 

applying BFCA to raw neural data. Moreover, the BFCA enables the filter ���
 in Fig. 2.3 (a) to 

be realized with an infinite-impulse response (IIR) filter regardless of its nonlinear phase 

response, which saves more computation resources than linear-phase FIR filter under the same 

filter specification.   

2.3 Architecture Design  

2.3.1 System Overview  

Fig. 2.4 shows the proposed DSP architecture for real-time ECAP recovery. The clock generator 

derives all clock signals from an external system clock. Two SPI masters SPIDAC and SPIADC 

control the DAC and ADC in AFE for stimulus generation and neural data acquisition, 

 
 

Fig. 2.4  Block diagram of the proposed DSP architecture for real-time ECAP recovery. 
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respectively. All system parameters, including the stimulation control and filter coefficients, are 

decoded from instructions serially loaded via the UART interface and stored into the parameter 

register. Based on received stimulation parameters, the stimulation controller derives the digital 

codes of the AP stimulus pulse train which are to be generated in AFE, and controls the time-

locked windowing of raw data in BFCA. The raw data from the ADC are sampled at 50 kHz and 

digitized to 16 bits as required in [35]. The BFCA core, which is the hardware implementation of 

the proposed BFCA algorithm, compute the ECAP response to applied stimulation trial from 

digitized raw data. A configurable output buffer is also included, which selectively outputs either 

filtered raw data (RDFilt) or ECAP responses according to the user's configuration, and its output 

data are then serially transmitted with the UART interface. Filtered raw data are transmitted in 

the beginning stimulation trials, by which users can check the balance between cathodal and 

anodal stimulus artifacts to ensure successful stimulus artifact cancellation. Once balanced 

stimulus artifacts are verified, only the artifact- and noise-free ECAP responses will be 

transmitted to users for further analysis.  

2.3.2 Stimulation Controller  

The stimulation controller is clocked at 1-MHz frequency to provide 1-µs time resolution for 

stimulus pulse train. Fig. 2.5 shows the parameters for AP stimulus pulse generation. The 

number of AP pulses per train (NST) and the interphasic delay (IPD), i.e., time spacing between 

cathodal and anodal pulses, are determined by the pulse repetition frequency (PRF) and the 

 
 

Fig. 2.5  Generation of the alternating-polarity stimulus pulse and time-locked windowing 
control in stimulation controller. 
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stimulus train duration (ttrain) using the relationship DE7 = �FGH ∙ �IJK�L
  and MFN =
1 �2 ∙ FGH
⁄ , both of which are computed offline. Both the pulse width (PW) and IPD are 

represented in microseconds and stored into the parameter register as integers. The mid-code of 

the DAC in the stimulation AFE is assigned to the DC level of a stimulus pulse train (DCST), and 

the digital code of the stimulus pulse amplitude (AMPST) is determined offline by the desired 

current amplitude and the voltage-current relationship of the current pump in AFE. A signed 

parameter "amplitude calibration" (AMPCAL) is added to anodal pulse amplitude in order to tune 

its resulting artifact amplitude for balance. Note that a series of NSET settling cycle where no 

stimulus is applied (i.e., AMPST = 0) is appended before the AP stimulus train in order that the 

baseline current at the stimulation channel is first stabilized before the stimulus train starts.   

 

The control signal for time-locked windowing of cathodal and anodal responses in digitized raw 

data is also generated in the stimulation controller. As seen in Fig. 2.5, a windowing-start signal 

WINEN is launched at the rising edge of each stimulus pulse to start the windowing of recorded 

raw data. The cathodal and anodal stimulus artifacts of each AP stimulus pulse can thus be 

aligned on the time axis, as seen in Fig. 2.3 (d), and cancelled during the coherent averaging 

process.  

 

 
 

Fig. 2.6  Schematic of the BFCA core. 
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2.3.3 BFCA Core  

Fig. 2.6 shows the schematic of the BFCA core. Digitized raw data from ADC in unsigned 

integers are converted to two's complement format by subtracting them by DCREC, the mid- code 

of ADC (32768 for 16-bit ADC precision) corresponding to the common-mode voltage of 

recording AFE as will be described later. To avoid overflow in fixed-point computation [90], the 

word length of data paths in BFCA core are set to 20 bits. The signed raw data are filtered 

continuously with the forward filter (ForFilt ), and its cathodal (CA) and anodal (AN) parts are 

windowed and stored into two last-in-first-out (LIFO) registers LIFO_CA and LIFO_AN, 

respectively. Note that the windowing of the filtered raw data is started after the settling cycles 

NSET, when the outputs of the forward filter are settled. When windowed raw data are being 

stored into corresponding LIFO registers, its residual DC offset is calculated:  

 

NR = �
�STU ∑ V��
�STU��L�-  ,          (2.9) 

 

where x(n) is the windowed raw data, and Nwin is the windowing length which's set to a power of 

2 such that division by Nwin can be accomplished with right-shifting. Fig. 2.7 shows the 

schematic of the DC calculator in Fig. 2.6 for DC offset calculation of windowed cathodal and 

anodal raw data using (2.9), where the precision of the accumulation register is extended to 30 

bits. The windowing length Nwin is determined by the IPD of the AP stimulus. At 50-kHz 

sampling frequency, the value of Nwin is programmable from 256 to 1024 to support a maximum 

PRF of 80 Hz, and the maximum windowing length is 20.48 ms, which is sufficient to cover the 

nerve fiber responses with slowest conduction velocity in ECAP response given a conduction 

distance less than 10 mm [35]. The cathodal and anodal responses stored in LIFO registers are 

 

 

Fig. 2.7  Schematic of the DC calculator.  
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time-reversed, subtracted by their DC offsets, and summed to obtain an artifact-free ECAP 

waveform, denoted as the summed wave (SW). The uCAP is calculated by averaging SWs of all 

AP stimulation cycles using exponentially-weighted moving averaging (EWMA), whose 

principle will be described later. The updated averaging of SW from EWMA, denoted as the 

averaged wave (AW), is stored into the LIFO register LIFO_AVG. When the averaging process is 

completed at the end of a stimulus train, the AW is filtered in time-reversed order by the reverse 

filter (RevFilt). The outcome of the reverse filter, denoted as the filtered wave (FW), is stored 

back to the LIFO_AVG and converted to forward-time ECAP as plotted in Fig. 2.3 (f). Both the 

forward filter and reverse filter are implemented in IIR filter structures with input and output 

word-length of 20 bits and internal word-length of 28 bits for overflow prevention, and have the 

same filter response by sharing the identical filter coefficients. Filter coefficients stored in the 

parameter registers are quantized to 16 bits and programmable online according to the frequency 

spectrum distribution of ECAP responses.  

 

The impact of quantization noise on the BFCA algorithm is evaluated by comparing the 

performance of BFCA algorithms in the fixed-point precision specified in Fig. 2.6, versus that in 

floating-point precision. A set of offline-recorded raw neural data obtained from 40 stimulation 

trials is quantized to 16-bit precision and fed into both floating-point and fixed-point BFCA 

algorithms. The signal-to-quantization-noise ratio (SQNR) of ECAP responses obtained from the 

fixed-point BFCA algorithm is defined as   

 

SQNR = 20 log�- _E`ab,def
�g,def h ,        (2.10) 

 

with Sout and NQ denoting the reference ECAP output in floating-point precision and quantization 

noise, respectively [90]. The averaged SQNR obtained from 40 raw neural data is 37.11 dB, 

which is sufficient for the discrimination of nerve fiber responses on ECAP waveforms.  
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Fig. 2.8 (a) illustrates the time reversal of recorded data using a LIFO register [89], where X(j,n) 

denotes the n-th time index of input data in the j-th stimulation cycle, and NW is the windowing 

length. The input data of the j-th stimulation cycle are written sequentially into LIFO from the 

top port, and the previously stored data in the (j-1)-th cycle are read out from the bottom port in 

 
(a)  
 

 
(b)  

 
Fig. 2.8  (a) Time reversal via LIFO register and (b) its implementation with a two-port SRAM 
and two binary up/down counters.  
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reverse-time order. To reverse the order of data read-out, the port-swapping control (SWP) of the 

LIFO register is switched in the next cycle, flipping the write-in and read-out direction of the 

LIFO. In the (j+1)-th stimulation cycle, data stored in the j-th cycle are read-out from the top port 

and thus in reverse-time order, and input data of the (j+1)-th stimulation cycle are written into 

the LIFO via the bottom port. Such time-reversal operation is maintained by flipping SWP of the 

LIFO for each stimulation cycle. Fig. 2.8 (b) shows the implementation of a LIFO register using 

a two-port SRAM (one read port and one write port) with single clock signal CLK, and two 

bidirectional counters CNTW and CNTR for the write and read addresses generation, which are 

activated by the write-enable (WEN) and read-enable (REN) signals of the SRAM, respectively. 

The counting direction of counters is controlled by the SWP of the LIFO: when SWP = 0, 

activated counters are initialized to 0 and incremented to (NW-1); when SWP = 1, activated 

counters are initialized to (NW-1) and decremented to 0. Data access order on SRAM can be 

reversed via switching of SWP, and the time-reversal operation is thus achieved on the LIFO.  
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Fig. 2.9  Timing diagram of the BFCA core under continuous neural data input.  
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Fig. 2.9 shows the timing diagram of the BFCA core for continuous BFCA operation, where (k, j) 

denotes the j-th AP stimulus cycle in the k-th stimulation trial, and W and R represent data write-

in and read-out of a LIFO register, respectively. The windowed cathodal and anodal responses 

from the ForFilt  output in the j-th stimulus cycle, CA(k, j) and AN(k, j), are written into the 

LIFO_CA in the cathodal phase and the LIFO_AN in the anodal phase, respectively. In the (j+1)-

th AP stimulus cycle, when CA(k, j+1) and AN(k, j+1) are written into the LIFO_CA and the 

LIFO_AN, respectively, both the previously stored responses, CA(k, j) and AN(k, j), are read out 

time-reversely in the cathodal phase by flipping SWP_RD, the port-swapping control of both the 

LIFO_CA and LIFO_AN. Within the cathodal phase of each stimulus cycle, the summed wave 

SW(k, j) is calculated from CA(k, j) and AN(k, j), and averaged with the AW(k, j-1) read out from 

the LIFO_AVG using EWMA. Meanwhile, the averaged wave AW(k, j) is written into the 

LIFO_AVG time-reversely. In the first cathodal stimulus cycle of the (k+1)-th stimulation trial, 

the averaging of all SWs in the k-th stimulation trial is completed, which's represented as AW(k, 

NST). The AW(k, NST) is filtered time- reversely with the RevFilt, and the filtered wave FW(k, NST) 

is stored back into the LIFO_AVG. In the 1st anodal stimulus cycle, the ECAP response of the k-

th stimulation trial is outputted in continuous-time order by reading out FW(k, NST) from the 

LIFO_AVG with its port-swapping control SWP_AVG flipped. While data stored in the k-th 

stimulation trial are read out from LIFO registers during the 1st AP stimulus cycle, the 

continuously filtered raw data of the (k+1)-th stimulation trial, CA(k+1, 1) and AN(k+1, 1), are 

also windowed and written into the LIFO_CA and LIFO_AN, respectively. Therefore, no halting 

of raw data stream is required by the BFCA core, which enables the ECAP response of each 

stimulation trial to be calculated continuously. 

2.3.4 Exponentially-Weighted Moving Average  

Let CA(j, n) and AN(j, n) denote the windowed cathodal and anodal responses in the j-th AP 

stimulus cycle, respectively. The summed wave (SW) of the j-th stimulation cycle is calculated 

by  

 

ij�k, �
 = �Rl�k, �
 − NR23
 + �lD�k, �
 − NR3�
,    (2.11) 
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where DCCA and DCAN denote the residual DC offset of CA(j, n) and AN(j, n), respectively. An 

uCAP response calculated via arithmetic averaging of all SWs is expressed as   

 

mRlF��
 = �
�() ∑ ij�k, �
�() �� ,       (2.12) 

 

where NST is the number of AP stimulus cycles per stimulation train. The calculation of 

arithmetic averaging, however, requires a divider to obtain the reciprocal of NST, which is 

hardware costly and not supported by most FPGAs nowadays. A division-free calculation of 

uCAP is achievable by replacing the arithmetic mean with an exponentially-weighted moving 

average (EWMA) [74]. The EWMA of SWs is defined as  

 
(a)  
 

 
(b)  

 
Fig. 2.10  Schematics of the (a) exponentially-weighted moving-average (EWMA) calculator and 
(b) lead-one detector for estimation of weighting factor in EWMA. 
 
 



 
 

56 
 

 

lj�k, �
 = n ij�k, �
, k = 1�1 − opq3
 ∙ lj�k − 1, �
 + opq3 ∙ ij�k, �
, k > 1s,   (2.13) 

 

where AW(j, n), the averaged wave as described earlier, is the EWMA of SWs from the first j AP 

stimulus cycles of a stimulus train. The uCAP response is thus the EMWA of SWs from all AP 

stimulus cycles, i.e., uCAP(n) = AW(NST, n). The weighting coefficient of EWMA in (2.13), 

KEWA, is adjusted to the number of AP stimulus cycles (NST) and calculated by  

 

DtE = uvwx& DE7y , 
opq3 = 2��{(.     (2.14) 

 

It's worth mentioning that the number of right-shifting (NRS) in (2.14) is equivalent to the number 

of bits after leading-one in the binary expression of NST and thus can be easily calculated. For 

example, an NST equal to 20, whose binary expression is "10100", will give NRS = 4. Since the 

value of KEWA is a power of 2, the multiplication by KEWA in (2.13) is done by right shifting. The 

computation of EWMA requires only right-shifting and addition and hence can be implemented 

on the hardware efficiently. Fig. 2.10 (a) illustrates the schematic of the EWMA calculator. Both 

the SW calculated with (2.11) and the AW of the previous AP stimulus cycle which is read out 

from LIFO_AVG register are right-shifted by NRS derived from the lead-one detector, and 

summed to form an updated AW. Fig. 2.10 (b) shows the combinational logic implementation of 

the lead-one detector. The binary expression of NST in 16-bit precisions is bit-reversed (Rev), 

inverted, and incremented by 1 (Inc). The number of bits after leading-one of NST (POS) is 

derived via exclusive-OR (XOR) of Rev and Inc, which is expressed in thermal code, and the 

number of right-shifting (NRS) can be obtained via the bit-summing of POS.  

2.3.5 Configurable Folded IIR filter Design  

Both the forward filter and reverse filters in the BFCA core adopt an eight-order IIR filter, which 

is implemented with 4 cascaded bi-quadratic (biquad) IIR filters [91]. The difference equation of 

a direct-form II [66] biquad IIR filter stage is written as  
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|}��
 = V��
 − ∑ �,}�� − *
&,��
��
 = ∑ ~,}�� − *
&,�-                s,       (2.15) 

 

where x(n) and y(n) are the input and output signals, respectively, and ak and bk are the filter 

coefficients. Fig. 2.11 shows the conventional implementation of an eight-order IIR filter with 4 

cascaded biquad filter stages, each of which requires 5 multiplications and 4 additions. The input 

and output of the eight-order IIR filter are multiplied by the input-scaling constant (KIN) and 

output-scaling constant (KOUT), respectively, to save the internal word-length of biquad filter 

stage while avoid overflow. The eight-order IIR filter in Fig. 2.11 requires 22 multiplications and 

16 additions, which is excessive and not feasible for its hardware implementation on the FPGA.  

 

To further save the implementation cost, folding technique can be utilized for minimizing the 

number of arithmetic units in IIR filters [92], and several folded IIR filter architectures have been 

proposed [93, 94]. In our design, a folded direct-form II IIR filter architecture modified from [94] 

is presented, as shown in Fig. 2.12 (a). A single multiply-add (MA) unit controlled by a faster 

clock CLKFILT is shared by 4 biquad filter stages, and one MA operation is performed per 

CLKFILT cycle. For each biquad filter stage, the d(n) and y(n) defined in (2.15) are computed in 

multiple CLKFILT cycles, and the temporary outcomes of d(n) and y(n) from the MA unit are 

accumulated in two registers dt and yt, respectively, which are also clocked by the CLKFILT. 

Delay elements of each biquad filter stage store the computed d(n) of the previous sampling 

 
 

Fig. 2.11  A conventional configurable 4-stage IIR filter  
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clock (CLKSAMP) cycles, namely d(n-1) and d(n-2). Fig. 2.12 (b) shows the timing diagram of the 

folded eight-order IIR filter architecture. The input sample s(n) and delay elements of each 

biquad filter stage are first updated at the rising edge of the sampling clock CLKSAMP, and filtered 

data are computed by 4 cascaded biquad filter stages at the rate of CLKFILT. The MA operation of 

a biquad filter stage for computing d(n) and y(n) using (2.15) is shown in Fig. 2.12 (c), where 

dt(m) and yt(m) denote the value of accumulation registers dt and yt in the m-th CLKFILT cycle, 

respectively. In the first CLKFILT cycle of each biquad filter stage, the input of a biquad filter 

stage x(n) is stored into the dt register. Note that in the first biquad filter stage, a MA operation is 

required in the first CLKFILT cycle to multiply input sample s(n) by KIN. The d(n) and y(n) of a 

biquad filter stage are calculated following the order specified in Fig. 2.12 (c), and the resulting 

d(n) and y(n) are latched in accumulation registers dt and yt, respectively, throughout the rest of 

CLKFILT cycles. When the computation of y(n) is completed, the next biquad filter stage will be 

started, where the received y(n) from previous stage is directly stored into the dt register and the 

calculation of d(n) and y(n) are followed. In the forth biquad filter stage, an extra MA operation 

is required to multiply KOUT with calculated y(n) stored in the yt register. The rate of the CLKFILT 

is 32 times faster than that of CLKSAMP so that computation of all biquad filter stages are finished 

within a CLKSAMP cycle. When this folded IIR filter is disabled, the input sample s(n) is directly 

passed to the filter output without any MA operation.  
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(a)  
 

 
(b)  

 

 
(c)  

 
Fig. 2.12  (a) The proposed configurable, folded 4-stage IIR filter with shared multiply-add (MA) 
unit, (b) its timing diagram, and (c) shared MA operation of a biquad filter stage.  
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2.3.6 Output Buffer  

Fig. 2.13 shows the schematic of the output buffer. Both the RDFilt and computed ECAP 

responses are quantized to 16 bits by preserving their most significant parts (i.e., the most 

significant 16 bits). In the first and last AP stimulation cycles, the windowed cathodal and anodal 

parts of the RDFilt are down-sampled by 4 and stored into a first-in-first-out (FIFO) register 

FIFO_RD with word-depth of 1024, which provides to users the information on both the settling 

of stimulus train and the balance of stimulus artifacts in recorded neural data. The computed 

ECAP responses from the BFCA core is directly stored into the 1024-word FIFO register 

FIFO_ECAP. The windowed RDFilt and ECAP responses are selectively read out at the end of 

each stimulation trial according to user's configuration and serialized into byte streams for serial 

data transmission using the UART interface. The FIFO registers can be easily implemented with 

two-port SRAM [95].  

2.4 Experiment Results  

2.4.1 Hardware Implementations  

The proposed DSP architecture in Fig. 2.4 is mapped to the Microsemi IGLOO2 FPGA 

(M2GL025) on the FUTUREM2GL-EVB evaluation board. This FPGA was programmed using 

Verilog and Microsemi Libero-SoC development software. The mapped architecture requires 

6936 (25.04%) logic elements (LEs), 3035 (10.96%) D flip-flops (DFFs), 8 (25.81%) large 

 
 

Fig. 2.13  Schematic of the output buffer.  
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with size of 18×1024 bits, and 8 (23.53%) MACC units

18 bits multiplier. Synthesized in 180-nm CMOS process, the DSP architecture 

silicon area which's dominated by on-chip SRAMs in the BFCA core and the 

power consumption is 2.38 mW at 16-MHz system

whose detail is plotted in 0. Low-power design techniques such as

can be applied to further reduce power consumption.  

schematic of the stimulation and recording AFE interfacing with the 

832, a 16-bit precision, micro-power, SPI-compatible serial 

analog converter from Texas Instruments, is used to convert the digitized 

voltage output. With the on-chip matched bipolar offset resistors, the 

DAC8832 can be configured to provide a bipolar voltage output for the AP stimulus pulse 

generation by connecting an external operational amplifier to its dedicated pins 

The DAC8832 can also be reset to a mid-scale code which corresponds 

output in bipolar mode. The OPA191 from Texas Instruments is chosen as the external 

operational amplifier for DAC8832 owing to its high precision (±5-μV offset voltage and 

input bias current), wide gain bandwidth (2.5 MHz), low quiescent current (140 

. A Howland current pump is employed and implemented with

from Analog Devices [55]. A DC-blocking capacitor is used in 

current pump to avoid direct current injections into nerves, and a resistor trimmer ranging from 0 
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which corresponds to 0-V 
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offset voltage and ±5-pA 

140 μA) and wide 
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blocking capacitor is used in the 
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m CMOS process.  
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to 1k Ohm (SMUA102PET, Ohmite) is added before the LT6375 to balance the resistor network, 

which helps the current pump achieve high common-mode rejection ratio (CMRR) and high 

output impedance [98]. The current pump is properly designed to deliver up to 1.5-mA stimulus 

current, and based on the analysis in [55], the charge-balance error of this current pump is less 

than 0.3%, which's acceptable for generating symmetric stimulus pulses in the AP stimulation. 

Neural signals are differentially recorded with a capacitively-coupled precision instrumentation 

amplifier (INA333, Texas Instruments) and conditioned by an active filter constructed with a 

micro-power, low-noise operational amplifier (OPA2348, Texas Instruments). The recording 

front end has a total gain of 500, and a bandwidth from 1.6 Hz to 20 kHz, much wider than that 

of ECAP responses to prevent the active filter from distorting the ECAP waveforms in recorded 

neural signals. Recorded neural signals are digitized with the ADS8860, a 16-bit precision, 

micro-power, SPI-compatible serial interface analog-to-digital converter from Texas Instruments. 

The supply voltage of both the LT6375 and OPA191 (VCP) is ±10 V, providing sufficient 

headroom for the output voltage swing of the current pump. The analog supply voltage (VREF) 

and common-mode voltage (VCM) of two amplifiers are 3.0 V and 1.5 V, respectively, and the 

digital supply voltage  (VDD) of the ADC and DAC is 3.3 V.  

2.4.2 In-Vivo Test Results  

Fig. 2.16 illustrates the setup of in-vivo electrical nerve stimulations for verification of the 

proposed DSP architecture. Following the surgery procedure described in [35], the stimulation 

 
 

Fig. 2.15  Circuit schematic of the stimulation and recording AFE.  
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and recording electrodes depicted in Fig. 2.2 (b), both of which are made of silicone cuff 

electrodes, are attached to the left cervical vagus nerve of a male rat. These two electrodes are 

connected to the differential stimulation and recording channels of the AFE, whose supply 

voltages are generated with external power supplies. The programmed FPGA evaluation board is 

powered at 5 V and controlled by the host PC via an USB-UART bridge on the board. Output 

data from the DSP architecture are plotted with MATLAB R2016a software. A band-pass elliptic 

filter with 0.2-3 kHz pass-band, 20-dB stop-band attenuation and 0.1-dB passband ripples is 

adopted in the proposed BFCA method, whose filter coefficients are derived with the Filter 

Designer in MATLAB.  

 

A conduction distance of 8 mm is measured after the implant of electrodes, and a series of 

stimulation trials with varying amplitude are applied to the nerve, whose parameters are listed as 

follows: PW = 0.2 ms, PRF = 20 Hz and �IJK�L = 1 s. The stimulus current amplitude is limited to 

0.5 mA to avoid amplifier saturation during the recording of stimulus artifacts. Fig. 2.17 plots the 

windowed raw data of two stimulation trials with stimulus current amplitude of 0.2 mA and 0.4 

mA, respectively, where cathodal and anodal stimulus artifacts are symmetric before and after 

filtering. The corresponding linear-phase (LP) filtered ECAP responses are plotted against 

unfiltered ECAP responses in Fig. 2.17 (b). Clearly, linear-phase filtering of ECAP responses 

using the proposed BFCA method can effectively reduce periodic noise interferences and 

 
 

Fig. 2.16  Setup of in-vivo electrical nerve stimulation for verification of proposed DSP 
architecture. 
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preserve the waveform of ECAP responses, especially the amplitude and  latency of peaks on 

ECAP waveforms representing the activation level of certain nerve fiber groups [37].  

 

To prove the validity of measured ECAP responses, a series of stimulation trials are applied to 

the nerve by varying stimulus amplitude from 0 mA to 0.5 mA with 0.05-mA increment. Fig. 

2.18 (a) plots the linear-phase filtered ECAP responses computed by the FPGA against stimulus 

amplitude, where twenty ECAP responses are collected per stimulus amplitude. It can be seen 

that consistent ECAP waveforms are measured under the same stimulus amplitude, and that the 

responses of activated nerve fiber groups, distinguished by positive and negative peaks with 

constant latency and amplitude proportional to the applied stimulus strength, are also visible on 

measured ECAP waveforms. Fig. 2.18 (b) plots the amplitude growth function (i.e. peak-to-peak 

amplitude versus stimulus strength) of fiber responses marked in Fig. 2.18 (a). The 3 peak groups 

on ECAP waveforms are classified into Aγ, Aδ and C fiber groups, respectively, based on their 

conduction velocity defined in [35]. Note that the response amplitude of C fiber drops slightly 

after 0.3-mA stimulus amplitude, which may result from its low positive peak amplitude at its 

maximal activation level. 
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         (a)           (b)  
 
Fig. 2.17  FPGA measurement results from stimulation trials with stimulus parameters PW = 0.2 ms, PRF = 20 Hz and �IJK�L = 1s: (a) 
windowed raw data and (b) computed ECAP responses of two stimulation trials with stimulus current amplitude of 0.2 mA and 0.4 
mA, respectively. 
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2.4.3 Efficacy Analysis  

The efficacy of the AP stimulation method for stimulus artifact rejection in the DSP architecture 

is demonstrated by comparing the amplitude of stimulus artifacts in raw data and ECAP 

responses from a total  of 220 stimulation trials in Fig. 2.18. In our analysis, the stimulus artifacts 

are defined as the waveforms within a 10-ms window starting from the onset of stimulus pulses, 

as seen in Fig. 2.17 (a), and the root-mean-square (rms) values of stimulus artifacts are calculated 

for both raw data and ECAP responses. Fig. 2.19 (a) and (b) plot the mean rms values of 

stimulus artifacts in raw data and ECAP responses from the FPGA, respectively, under different 

 
(a)  
 

 
(b)  

 
 
Fig. 2.18  (a) FPGA measurement results of linear-phase filtered ECAP responses collected from 
stimulation trials with stimulus amplitude varying from 0 to 0.5 mA. (b) Amplitude growth 
function of nerve fiber responses designated by peaks on ECAP responses.   
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stimulus amplitudes. Note that the mean rms value of the noise floor and its standard deviation in 

Fig. 2.19 (b) is obtained from a 10-ms segment on ECAP waveforms containing no stimulus 

artifacts and nerve fiber responses. While the stimulus artifacts in raw data grow proportionally 

with the applied stimulus amplitude as plotted in Fig. 2.19 (a), the rms values of the stimulus 

artifact on recovered ECAP responses are approximately 1.6 times higher than that of the noise 

floor for stimulus amplitude below 0.15 mA. As the stimulus amplitude is increased above 0.15 

mA, where nerve fiber responses are visible on ECAP waveforms as seen in Fig. 2.18 (a), the 

rms values of stimulus artifact on ECAP responses are of the same order of the amplitude of 

nerve fiber responses plotted in Fig. 2.18 (b). This implies that the stimulus artifacts overlapped 

with ECAPs as seen in  Fig. 2.17 (a) are successfully removed. The rms value of stimulus artifact 

on measured ECAP responses is reduced by a factor of 115 on average.   
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(a) 

 

 
(b) 

 
Fig. 2.19  Root-mean-square (rms) value of stimulus artifacts in (a) raw data and (b) ECAP 
responses measured from FPGA. The rms value of noise floor in (b) is obtained from a 10-ms 
segment on each ECAP waveform containing no stimulus artifacts or nerve fiber responses.   
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The performance of linear-phase filtering using the proposed BFCA method is quantified with 

the signal-to-noise ratio (SNR) improvement and waveform distortion in ECAP responses. In 

SNR analysis, only the ECAP waveforms from the FPGA containing recognizable nerve fiber 

responses are considered. The SNR of ECAP waveforms is defined as  

 

SNR = 20 log�- 8>tdef
�>def;,      (2.16) 

 

where FRrms and NFrms are the rms voltage of nerve fiber responses and noise floor, respectively. 

The value of FRrms and  NFrms are calculated from the first 5-ms interval of ECAP waveforms 

containing nerve fiber responses and a 10-ms segment on ECAP waveforms containing 

background noises only, respectively. Fig. 2.20 plots the mean SNR of unfiltered and linear-

phase filtered ECAP responses from the FPGA under different stimulus amplitude. For stimulus 

amplitude above 0.2 mA, the SNR of linear-phase filtered ECAPs is 20.8 dB on average, 

whereas that of unfiltered ECAPs is 9.6 dB; this facilitates the discrimination of nerve fiber 

responses on ECAP waveforms. In waveform distortion analysis, ECAP responses are recovered 

from a set of offline-recorded neural data in [35] superimposed by 60-Hz sine waves with -6-dB 

SNR and random phase as periodic noises; the SNR of sine waves can be calculated with (2.16), 

where the fiber responses are defined as the first 6-ms interval of the noise-free ECAP waveform 

 
 

Fig. 2.20  Signal-to-noise ratio (SNR) of linear-phase filtered versus unfiltered ECAP responses 
measured from FPGA.  
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in Fig. 2.21 (a). An example of the original noise-free ECAP waveform versus the ECAP 

waveforms after the forward filtering (i.e., continuous filtering of raw data before coherent 

averaging only), coherent averaging, and linear-phase filtering via the BFCA is given in Fig. 

2.21 (a). The level of waveform distortion after filtering is quantified with the normalized mean-

square error (NMSE) between the original and filtered ECAP waveforms, which is defined as  

 

NMSE = ∑ ��U��U
:U
∑ ��U���
:U ,      (2.17) 

 

where xn and yn denote the samples of filtered and original ECAP waveform, respectively. The 
� 

in (2.17) denotes the DC offset of the original ECAP waveform which is calculated by  

 


� = �
� ∑ 
LL  ,          (2.18) 

 

where N is the number of samples in ECAP waveforms and is equal to the windowing length 

Nwin. Fig. 2.21 (b) plots the mean NMSE of ECAP waveforms obtained with the forward filtering, 

coherent averaging and BFCA in 66 trials. The NMSE of coherent averaging is up to 53.1%, 

  
     (a)             (b)  
 
Fig. 2.21  Waveform distortion caused by forward filtering (ForFilt), coherent averaging (CA)
and linear-phase filtering via BFCA: (a) demonstration and (b) a quantitative comparison using 
normalized mean-square error (NMSE) between filtered and original noise-free ECAP 
waveforms.  
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which results from its deficiency in removing periodic noises. The forward filtering removes 

periodic noises better, but its NMSE is still 28.8% due to the nonlinear phase response of IIR 

filters. The NMSE of linear-phase filtering via the proposed BFCA method is only 3.1%. Table 

2.1 shows a comparison of this work with other filtering techniques. Compared with the coherent 

averaging method used in [35], the proposed BFCA method improves SNR by 11 dB and 

achieves an 3.1% waveform distortion that is 17.1× lower. Beside, with its IIR filters that can 

have arbitrary frequency response, the BFCA method provides frequency selectivity which is 

useful in characterizing the high- and low- frequency components of ECAP responses [99]. To 

our best knowledge, this is the first DSP architecture for programmable and distortion-free 

filtering of ECAP responses in real-time.  

2.5 Conclusion of This Chapter  

This chapter presented the first DSP architecture for real-time recovery of ECAP responses from 

stimulus artifacts and periodic noises in bidirectional NRT systems. A BFCA method was 

proposed for configurable and distortion-free filtering of ECAPs, and the AP stimulation method 

that can be combined with the BFCA is utilized for rejecting overlapped stimulus artifacts. 

Design techniques including the configurable folded IIR filter and EWMA were also presented 

for hardware- efficient implementation of the DSP architecture. Synthesized in 180-nm CMOS 

Table 2.1  Comparison with other filtering techniques 
 

 [80]  [35]  This work  

Signal Neuron Spike  ECAP  ECAP  

Filtering 
Technique  

Wavelet 
Filtering  

Coherent 
Averaging  

BFCA  

Frequency 
Selectivity  

No  No  Yes  

SNR (dB)  9*  9.6  20.8  

Waveform 
Distortion (%) 

4*  53.1  3.1  

* The best cases of reported SNR and waveform distortion 
are listed here.  
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process, the total area and power consumption of this DSP architecture are 0.97 mm2 and 2.38 

mW, respectively. The proposed DSP architecture was tested in in-vivo electrical nerve 

stimulations to verify its efficacy of recovering ECAPs from overlapped stimulus artifacts and 

periodic noises, and experiment results showed that compared with the previous coherent 

averaging technique, the proposed DSP architecture improves the SNR of ECAP responses by 11 

dB and achieves an 3.1% waveform distortion that is 17.1× lower. This is the first step to 

realizing the real-time DSP engine in Fig. 2.2 (b). The principle and VLSI architecture of feature 

extraction from ECAP waveforms, the complete DSP engine, and its integration with wearable 

wireless devices will be discussed in the next chapter.  
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3. FREE: FIBER-RESPONSE EXTRACTION ENGINE ON A CUSTOM-
MADE WEARABLE DEVICE FOR AUTONOMOUS NERVE 

ACTIVATION CONTROL  

This chapter continues the work of Chapter 2 and presents FREE (fiber-response extraction 

engine), the first digital signal processing (DSP) engine dedicated to nerve activation control in 

closed-loop electrical nerve stimulation (ENS) systems. FREE adopts a newly proposed 

bidirectional-filtered coherent-averaging (BFCA) method combined with the alternating-polarity 

(AP) stimulation for stimulus artifact rejection and distortion-free filtering of electrically-evoked 

compound nerve action potentials (ECAPs) in real-time, and its hardware architecture are 

illustrated. The algorithms and VLSI implementation of real-time fiber-response extraction, 

including peak detection on ECAP and fiber-response classification are also explained. A 

custom-made wearable device powered by a single coin battery is realized in a printed circuit 

board prototype that integrates the FREE, a low-power wireless transceiver, a stimulation and 

recording analog front-end, and a power management unit. FREE reduces the data transmission 

rate of wearable devices to 16.4 kbps for ECAP output and 192 bps for fiber-response output, 

which are 49× and 4167× lower than that of software processing, respectively. Experimental 

results show that compared with the previous software-processing techniques, FREE improves 

the precision of fiber response classification in terms of amplitude precision by up to 3.1× in 

noisy environments, which boosts the accuracy of nerve activation profiles by up to 62.9%. An 

application-specific integrated circuit version of FREE implemented in 180-nm CMOS process 

consumes 1.95-mW core power at 1.8-V supply.   

3.1 Introduction  

Ever since the U.S. Food and Drug Administration (FDA) approved deep-brain stimulation as a 

valid treatment for tremor in late 90's [5], electrical neuromodulation becomes an emerging 

therapeutic for many neurological diseases [4, 100-102]. The main advantage of electrical 

neuromodulation is its capacity to target and dose a certain nerve and brain area more precisely, 

which also makes it a popular treatment for nerve disease alternative to pharmaceutical 

approaches. Nowadays, most commercial neuromodulation systems are configured in open-loop 

manner [23], where pre-programmed electrical stimuli are delivered to nerve and adjusted after 
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weeks or months based on patient's subjective experiences. As the drawbacks of open-loop 

systems gradually appear, including poor efficiency (either too much or too little dosing) and 

slow reaction to patient's clinical symptoms, which easily causes patient's discomfort and other 

side effects, efforts have been made in building closed-loop neuromodulation systems which 

automatically adjust stimulus strength in real-time based on patient's physiological responses and 

significantly improve the drawbacks of open-loop systems [24, 27, 103].  

 

Electrical nerve stimulation (ENS) is one neuromodulation techniques that has been widely 

adopted in clinical therapies for pain, epilepsy and depression [14, 15, 104, 105]. The evoked 

compound action potential (ECAP) is the sum of action potentials from nerve fibers in response 

to the electrical stimulus that can be recorded on the nerve [49]. It reflects the activity of the 

nerve being stimulated and is an objective measure of patient's nerve physiology and stimulation 

efficiency in closed-loop neural stimulations. The most renowned closed-loop ENS system 

employing ECAP as the feedback physiological signal is the neural response telemetry in 

cochlear implants [41]. A newly proposed ENS platform, autonomous nerve control (ANC) [35], 

also utilizes ECAP for stimulation parameter adjustment in closed-loop system: it decodes 

ECAPs for construction of the patient-specific nerve activation profile (NAP) that describes the 

relationship between the stimulus strength and the activation level of nerve fibers. By precisely 

controlling patient's nerve activation based on the derived NAP, ANC helps mitigate patient 

response variability and maximizes the efficacy of closed-loop ENS.  

 

Traditional closed-loop neuromodulation platforms require wire connections between patient's 

nervous system and external instruments for neural stimulation and recording. Such tethered 

cables not only degrade the signal quality and restrict patient's movement, but also introduce the 

risk of infection and injury due to tension on cables attached to the nervous system. To solve 

these problems, wearable devices and application-specific integrated circuits (ASICs) capable of 

simultaneous stimulation and recording have been developed for various closed-loop neuro-

modulation systems [55, 57, 106, 107], on which neural signals are continuously recorded and 

wirelessly transmitted to a host personal computer (PC) for post processing. Whereas the radio-

frequency (RF) transceiver for data telemetry dominates the power consumption of wearable 

devices, data transmission rate becomes a major limiting factor for their realization. For example, 
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a data rate of 1.96 Mbps is required to transmit raw data from 128 channels (1-kS/s sampling rate 

and 15-bit resolution) [107], and an 800-kbps data rate will be required for raw data transmission 

in the ANC system [35]. Not only is continuous wireless transmission of raw data at such high 

rate power-costly, but it's also subject to data loss during transmission that impairs the fidelity of 

recorded neural signals. Real-time digital signal processing (DSP) techniques have been 

employed to reduce output data rate of wearable devices or ASICs for closed-loop 

neuromodulation systems. For instance, [108] reports a fully-integrated neuromodulation system-

on-chip (SoC) that operates 64 acquisition channels with digital compression by sending spike 

events and firing rate, and [109] reports a 128-channel bidirectional closed-loop neural interface 

system with field-programmable gate array (FPGA) based real-time spike sorting. A general-

purpose brain-machine-brain interface (BMBI) is also reported in [64], which incorporates a 

microcontroller-based digital neural signal analyzer for time and frequency domain feature 

extraction and compressed sensing of neural signals. Beside electrical neuromodulation, real-

time DSP, including spike detection and data compression, has also been applied for combined 

optogenetics and multi-channel neural recording [110].   

 

Regardless of the progress in ENS and real-time DSP, today's closed-loop ENS systems, 

especially the newly-proposed ANC platform, still rely on offline processing of continuously 

transmitted neural signals to remove stimulus artifact [111] and noises from ECAP and extract 

biomedical features such as nerve fiber responses [37] that serve as references for stimulus 

strength adjustment. A real-time DSP for artifact and noise rejection and feature extraction of 

ECAP is hence desirable for reducing the output data rate of wearable devices applied to ANC as 

well as other closed-loop ENS systems. Furthermore, neural signals recorded with wireless 

devices are inevitably accompanied with periodic noises including power-line interference and 

baseline wander, which introduces errors onto extracted biomedical features and degrades the 

stimulation efficiency. For instance, the amplitude error of nerve fiber responses on the ECAP 

caused by noises can easily decrease the accuracy of NAP in ANC. The coherent-averaging 

technique [52], which's been used for noise removal of the ECAP in ENS systems, including 

ANC, is inefficient in removing periodic noises, especially those time-locked to the stimulus 

pulse train. It's therefore essential to have an efficient DSP strategy for real-time periodic noise 
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removal which is also capable of preserving the waveform morphology of the ECAP and the 

precision of extracted biomedical features.  

 

In this chapter, we present a fiber-response extraction engine (FREE) for real-time artifact and 

noise rejection and feature extraction of the ECAP. FREE employs the newly proposed 

bidirectional-filtered coherent-averaging (BFCA) method presented in Chapter 2 for distortion-

free filtering of the ECAP, which can be easily combined with the alternating-polarity (AP) 

stimulation method for stimulus artifact rejection. Nerve fiber responses on recovered ECAP 

waveforms are identified according to the user-defined response latencies. Resource-optimized 

architecture design of FREE, including the BFCA and real-time fiber response extraction is also 

presented. FREE is implemented on a custom-made and coin battery-powered wearable printed 

circuit board (PCB) integrating a low-power FPGA, a Bluetooth transceiver, a stimulation and 

recording analog front-end (AFE), and a power management unit (PMU), and tested both offline 

and in-vivo. Compared with the previous software-based ECAP processing in [35], FREE not 

only reduces the maximum data rate of wearable devices to 16.4 kbps that is at least 49× lower, 

but also improves the precision of fiber response classification in terms of amplitude precision by 

up to 3.1× in noisy environments, which boosts the accuracy of NAP construction by up to 

62.9%. An ASIC implementation of FREE is demonstrated whose total chip area and core power 

consumption of 19.98 mm2 and 1.95 mW, respectively. To our best knowledge, FREE is the first 

DSP engine designed for ANC platform to facilitate nerve activation control on wearable devices, 

and can be applied to other closed-loop ENS systems utilizing the ECAP as their feedback 

biomarker. 

 

The rest of this chapter is organized as follows. Section 3.2 presents an overview of FREE on 

wireless wearable devices. Section 3.3 presents the architecture design of each building module 

in FREE. Section 3.4 presents the custom-made wireless wearable device in PCB prototype 

integrating FREE. Section 3.5 presents offline and in-vivo tests for performance comparison 

between FREE and previous software-based signal processing [35] in terms of amplitude and 

latency variation of fiber responses and the resulting NAP in noisy environments, and the ASIC 

implementation of FREE. Finally Section 3.6 draws a conclusion to this work.  
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3.2 System Overview  

Fig. 3.1 presents the top-level block diagram of the wireless wearable device in a closed-loop 

ENS system and the proposed FREE, a DSP engine dedicated to autonomous nerve activation 

control. This device comprises the AFE for stimulation and recording of neural signals, the 

proposed FREE for real-time artifact and noise rejection and feature extraction of ECAPs in 

digital domain, a RF module in charge of wirelessly receiving instructions from and transmitting 

biomedical features to the host PC, and the PMU connected to batteries for power supply of 

abovementioned modules. Digitized stimulus waveforms are first generated from FREE based on 

decoded instructions, and converted to current stimuli on stimulation electrode by a digital-to-

analog converter (DAC) and a current pump (CP) in the AFE for electrical nerve stimulation. 

The responsive neural signals recorded on the neighboring electrode are conditioned with a 

neural amplifier (NA) and digitized by an analog-to-digital converter (ADC). On FREE, 

digitized raw neural data (RD) are processed to recover the ECAP response to the applied 

stimulus, and nerve fiber responses on the ECAP are extracted as its biomedical features, which 

are then fed to the RF module and wirelessly sent back to the PC. A base station is connected to 

the host PC via the USB port for wireless communication between the wearable device and the 

PC, and Bluetooth standard is adopted for low-power and short-distance wireless communication 

required by battery-powered wearable devices nowadays. On the host PC, the NAP of fiber 

groups of interest, which describes the extent of nerve fiber response to given stimulus strength, 

is derived based on the fiber responses from the wearable device, and stimulus parameters are 

 
 
Fig. 3.1  Top-level block diagram of the wireless wearable device in a closed-loop electrical 
nerve system and the proposed fiber-response extraction engine (FREE), a dedicated DSP engine 
for autonomous nerve activation control.  
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adjusted according to the predicted NAP and delivered to the wearable device to maintain 

desired activation level of the fiber group.   

 

Fig. 3.2 (a) shows the overall block diagram of the proposed FREE. Two SPI masters SPIDAC and 

SPIADC interface with the DAC and ADC in the AFE for stimulus generation and neural data 

acquisition, respectively. The stimulation controller generates AP stimulus pulse trains with 1-ns 

time resolution which is transmitted to the AFE with the SPIDAC. Details on the generation of AP 

 
(a)  
 

 
(b)  

 
Fig. 3.2  (a) Block diagram of the proposed fiber-response extraction engine (FREE) and (b) the 
flowchart of its operation. 
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stimuli and its parameters have been described in Chapter 2. The quantized raw data (RD) from 

the ADC are sampled at 50 kHz, as is adopted in [35], and both the SPIDAC and SPIADC are 

configured to transmit and receive 16-bit digitized data, respectively, same as the precision of the 

data acquisition board used in [35]. In the BFCA core, the ECAP response to the applied 

stimulus pulse train is recovered from digitized raw data via stimulus artifact rejection and 

distortion-free filtering, as described in Chapter 2. Fiber responses, which peak on ECAP 

waveforms, are detected with the peak detector preset with ripple and noise floor thresholds, and 

targeted fiber responses with specific conduction velocity, whose peaks are located within a 

fixed time range on the ECAP waveform [37], are then identified and classified with the fiber-

response classifier. The output buffer selectively outputs filtered raw data (RDFilt), recovered 

ECAP response, or index and amplitude of extracted fiber responses, according to user's 

configuration, and data are then serially outputted with the UART interface. All system 

parameters, including the stimulus parameters, filter coefficients, thresholds for peak detection 

and time indices of targeted fiber responses, are serially loaded from the UART interface and 

stored into the parameter register.  

 

Fig. 3.2 (b) illustrates the flow chart of the operation of FREE for nerve activation control using 

the ANC platform. At the beginning stimulation trials RDFilt are outputted first such that users 

can adjust the stimulus parameters to balance the stimulus artifacts in RDFilt for stimulus artifact 

rejection (SAR). After stimulus artifact rejection, a stimulation trial with zero stimulus amplitude 

is first applied for peak detector (PD) training, in which noise floor on recorded neural data and 

its standard deviation (�L) are calculated by the BFCA core and peak detector, respectively, and 

the computed �L is sent to users. A series of stimulation trials with nonzero amplitude are then 

applied, and the users, based on the outputted ECAP responses, can define the parameters for the 

peak detector and fiber-response classifier for fiber-response extraction. During the stimulation 

trials for constructing NAPs and maintaining the activation level of targeted fiber group, only 

extracted fiber responses will be outputted to minimize the amount of data transmission and the 

resulting power consumption on the wearable device. ECAP responses can always be 

retransmitted whenever there's any missing or invalid fiber response (For example, fiber 

responses fall out of predefined time range or deviate from predicted NAP, both of which can be 

identified with their index and amplitude sent from FREE).  
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3.3 Architecture Design  

3.3.1 BFCA Core in FREE  

FREE adopts the bidirectional-filtered coherent-averaging (BFCA) algorithm combined with the 

AP stimulation method, as presented in Chapter 2, for SAR and distortion-free filtering of ECAP 

in real-time. Fig. 3.3 (a) shows the architecture of the BFCA core in FREE, where the hardware 

implementation of the division-free exponentially-weighted moving average (EWMA) calculator, 

the resource-sharing biquad IIR filter used for both forward and reverse filters, and the last-in-

first-out (LIFO) register are the same as those described in Chapter 2. In BFCA core the time-

locked windowing of raw-data is controlled by the stimulation controller to ensure the 

synchronization between the stimulus pulse and windowing and hence the alignment of cathodal 

and anodal stimulus artifacts [35]. In FREE the windowing length (Nwin) is also programmable 

from 256 to 1024, allowing recovered ECAP responses with duration from 5.12 ms to 20.48 ms 

to be stored at 50-kHz sampling frequency.  

 
(a)  
 

  
(b)  

 
Fig. 3.3  (a) Architecture of the BFCA core in FREE and (b) the schematic of the maximal 
absolute value detector.   
 
 



 
 

81 
 

 

It should be noticed that a maximal absolute value detector (MAXABS), whose schematic is shown 

in Fig. 3.3 (b), is integrated into the BFCA core in FREE for the detection of maximal absolute 

value of an ECAP response that will be used in the peak detector. When the output of the reverse 

filter, which's the recovered ECAP response in time-reversal order as explained in Chapter 2, is 

written into the LIFO_AVG register, it's also fed into the MAXABS. The absolute value of the first 

sample is directly stored into the register. In the following clock cycles the previously stored data 

in the MAXABS is compared with the absolute value of incoming samples, and replaced when the 

absolute value of incoming sample is larger. At the end of reverse filter output, the value stored 

in MAXABS will be the maximal absolute value of recovered ECAP response.  

3.3.2 Peak Detector   

As stated in [35], an ECAP response contains separate peaks on time axis that are contributed by 

activated fiber groups with different conduction velocity. A peak detector is hence required in 

FREE to identify possible fiber responses and should be able to distinguish fiber responses from 

background noises. Fig. 3.4 illustrates the principle of peak detection in FREE based on 

amplitude thresholding [112]. The amplitude of noise threshold (THRσ) is estimated based on the 

standard deviation of noise floor on ECAP responses (�L) multiplied with an empirical constant 

  
 

Fig. 3.4  Illustration of the peak-detection principle. 
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C, namely, +�G� = R ∙ �L. Using the same formula in [113], the standard deviation of noise 

floor �L is calculated by  

 

�L = �8∑ V�&�STU����- − �∑ V��STU����- "& ∙ �
�STU; ∙ �

�STU ,        (3.1) 

 

where xi is the i-th sample of the ECAP response from the BFCA core and Nwin is the windowing 

length described earlier. The Nwin is a power of 2 such that the division by Nwin can be 

implemented with a right-shifting operation. It should be mentioned that the optimal value of C 

that best estimates the amplitude of activated fiber responses in ECAPs is still being studied 

today, which requires not only offline statistic analysis on pre-recorded ECAP responses but also 

relies on subjective decisions from physiologists based on their clinical experiences [114-116]. 

Nevertheless, amplitude thresholding and its hardware implementation are still useful for future 

study of real-time data compression [110, 117] of ECAP waveforms and hence will be described 

here. To better locate the local maxima and minima on ECAP waveforms at the presence of the 

rippling resulted from residual random noises after filtering and the quantization noise in fixed-

point arithmetic, a percentage threshold (THR%) is also preset such that only the peaks with 

amplitude variation greater than THR% will be detected.  This percentage threshold (THR%) is 

given by +�G% = ��V ∙ % , where Max is the maximal absolute value of ECAP response 

calculated by the BFCA core, and % is the user-defined percentage of amplitude variation 

ranging from 0 to 1.   
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Table 3.1 demonstrates the details of the peak detection algorithm in FREE, where ���� and �L@� 

denote the index of temporarily positive and negative peaks, respectively. Note that +�G�& =
R& ∙ �L& is computed instead to avoid the square root calculation of �L in (3.1), and the square 

Table 3.1  Peak Detection Algorithm 
 

Input: V��
, � = 0, 1, … , D��L − 1: i-th sample of the recovered ECAP,  +�G%: percentage threshold, +�G�: noise threshold;  
initial  ����� = MDM, ���� = 0, �L@� = 0, M�}��� = ∅, l	���� = ∅, 

     M�}L@� = ∅, l	�L@� = ∅;   
for � = 0, … , D��L − 1  

switch (�����)  
    case INI: if �V�����" ≥ V��
 + +�G%
  ����� = F�i;  
          else if �V��
 ≥ V��L@�" + +�G%
  ����� = D��;  
          end if  
          if �V��
 ≥ V�����"
  ���� = �;  
          else if �V��
 ≤ V��L@�"
  �L@� = �;  
          end if  
  break;  
  case POS: if �V��
 ≥ V�����"
  ���� = �;   
          else if �V�����" ≥ V��
 + +�G%
  
              if  �V&�����" ≥ +�G�&"  
                  M�}��� = M�}��� ∪ ������;  
                  l	���� = l	���� ∪ �x�����
�;  
              end if  
              �L@� = �;  ����� = D��;   
        end if   
  break;  
  case NEG: if �V��
 ≤ V��L@�"
  �L@� = �;   
          else if �V��
 ≥ V��L@�" + +�G%
  
              if  � V&��L@�" ≥ +�G�&"  
                  M�}L@� = M�}L@� ∪ ��L@��;  
                  l	�L@� = l	�L@� ∪ �x��L@�
�;  
              end if  
              ���� = �;  ����� = F�i;   
          end if   
  break;  
end switch  

end for  
Output: M�}���, l	����, M�}L@�, l	�L@�  
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value of the input sample is compared with +�G�& for amplitude thresholding, as described in 

[113]. The architecture of the peak detector, which's the hardware implementation of Table 3.1, 

   
(a)  
 

   
(b)  

 

   
(c)      (d)  

 

  
(e)  
 

Fig. 3.5  (a) Architecture of the peak detector. Data path in the peak detector for (b) calculation 
of standard deviation of the noise floor during the training mode, updating of (c) percentage 
threshold and (d) noise threshold, and (e) peak detection. The multiplication operations are 
properly scheduled such that only one multiplication is performed for each clock cycle.   
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is shown in Fig. 3.5 (a).  The accumulation and data registers store the value of two thresholds 

+�G% and +�G�&, and the temporary results during their derivation. The index, amplitude and 

amplitude square of temporary positive and negative peaks are also stored in a register file. The 

decision logic is the realization of the case statement in Table 3.1, which can be implemented as 

a finite-state machine. As illustrated in Fig. 3.2 (b), �L& is computed during the training phase of 

the peak detector. In other stimulation trails +�G%  and +�G�&  are updated right after FREE 

receives an instruction containing updated C and %. Fig. 3.5 (b), (c), (d) and (e) illustrate the 

data-path arrangement in the peak detector for calculating �L& in the training phase, updating of 

+�G% and +�G�&, and peak detection. By storing the temporary results into data registers, the 

multiplication operations in the computation of �L& and +�G�& can be properly scheduled such 

that only one multiplication is performed for each clock cycle. As a result, only one multiplier is 

required in the peak detector, which saves the cost of its hardware implementation. On detecting 

a positive or negative peak, its index and amplitude are outputted to the fiber-response classifier, 

together with the flag signals indicating a detection and the polarity of detected peak. For fixed-

point implementation, % is quantized into 16-bit precision, and C is encoded as a 8-bit unsigned 

integer with 5-bit fractional length, assuming C no greater than 6 as stated in [113].  

3.3.3 Fiber Response Classifier  

Given a fixed conduction distance on the nerve, i.e., the distance between the stimulation and 

recording electrodes in Fig. 3.1, fiber responses with specific conduction velocity peak within a 

fixed time range on an ECAP waveform, as shown in [35]. Real-time classification of fiber 

responses is hence possible by properly defining the time index of targeted fiber groups and 

locating the peaks on an ECAP waveform with index in the proximity of that defined by users. 

Fig. 3.6 (a) illustrates the principle of fiber-response classification. Two time indexes INDUP and 

INDUN are first defined by users, which mark the approximate time range of positive and 

negative peaks of the targeted fiber group (A fiber in Fig. 3.6 (a) as an example), respectively, 

according to the conduction distance and the ECAP responses collected in the stimulation trials 

indicated in Fig. 3.2 (b). The fiber response of that fiber group, represented by its positive and 

negative peaks, is then classified by finding the positive peak nearest to INDUP and negative peak 

nearest to INDUN, respectively.   
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Fig. 3.6 (b) presents the hardware architecture of the fiber- response classifier in FREE which 

supports the classification of 3 targeted fiber groups. When a peak is detected by the peak 

detector, its index (INDPD) and amplitude (AMPPD) are first latched in registers and fed into 3 

processing elements (PE), each in charge of the classification of a fiber group. Based on the 

polarity of detected peak, either the INDUP or INDUN of a targeted fiber group is assigned to the 

user-defined peak index (INDUD) in each PE. The PE then calculates and compares the time-

index distance to the user-defined peak between detected and temporarily-classified peak, 

namely, |MDN�� − MDN�� �¡| and |MDN72 �¡ − MDN�� �¡|, where MDN72 �¡ denotes the index of 

temporarily-classified positive or negative peak in the i-th fiber group, depending on the polarity 

  
(a)  
 

 
(b)  

 
Fig. 3.6  (a) Principle of fiber-response (FR) classification and (b) its architecture. 
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of the detected peak, and MDN�� �¡ is the user-defined peak index in that group. Each PE has a 

fiber-response register (FR_REG) storing the index and amplitude of temporarily-classified 

positive and negative peaks. At the beginning of classification, the index and amplitude values of 

temporarily-classified positive and negative peaks in the FR_REG are initialized at 0. Upon 

receiving a detected peak with time-index distance to INDUD smaller than that of temporarily-

classified peak, i.e., |MDN�� − MDN�� �¡| < |MDN72 �¡ − MDN�� �¡|, the index and amplitude 

values of temporarily-classified peak previously stored in the FR_REG are replaced with the 

INDPD and AMPPD, respectively. At the end of an ECAP waveform, the positive and negative 

peaks stored in the FR_REG will be the peaks closest to the INDUP and INDUN on time axis, 

respectively. The classified positive and negative responses stored in the FR_REG of 3 PEs are 

then serially read out on receiving user's instructions.   

3.3.4 Output Buffer in FREE  

Fig. 3.7 shows the schematic of the output buffer in FREE, which is the same as that in Chapter 2 

except for additional an output of index and amplitude values of classified fiber responses. The 

RDFilt, recovered ECAP responses and the amplitude value of fiber responses are quantized to 16 

bits by preserving their most significant parts (i.e., the most significant 16 bits). The RDFilt in 

FREE are also down-sampled by 4, and only the RDFilt in the first and last AP stimulation cycles 

are stored into the first-in-first-out (FIFO) register FIFO_RD. Both the FIFO registers FIFO_RD 

and FIFO_ECAP have a total size of 16.4 kbits (16 bit × 1024 word-depth), and the total size of 

 
 

Fig. 3.7  Schematic of the output buffer in FREE. 
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fiber response outputs is 192 bits (16 bit × (2 peak indexes + 2 peak amplitudes) × 3 fiber 

groups). The RDFilt, ECAP and fiber responses can also be selectively read out at the end of each 

stimulation trial according to user's instructions and are serialized into byte streams for data 

transmission using the UART interface.  

3.4 PCB Prototype of Wearable Device  

In order to demonstrate the efficacy of the proposed FREE in reducing the data transmission rate 

of wearable wireless devices in closed-loop ENS systems, a printed circuit board (PCB) 

prototype of the wearable device in Fig. 3.1 is implemented.  

 

Fig. 3.8 shows the circuit schematic of the stimulation and recording AFE, whose topology is the 

same as that described in Chapter 2. The ADC and DAC are implemented with the ADS8860 

(Texas Instruments) and DAC8832 (Texas Instruments), respectively, both featuring 16-bit 

precision, micro-power and SPI-compatible serial interface. The DAC8832 combined with the 

external operational amplifier OPA191 (Texas Instruments) can be configured in bipolar output 

operation for AP stimulus pulse generation, whose pin connection is plotted in Fig. 3.8 [96]. A 

Howland current pump is employed and implemented with the LT6375 (Analog Devices) 

voltage-difference amplifier. The current pump adopts a DC-blocking capacitor to avoid direct 

 
 

Fig. 3.8  Schematic of the stimulation and recording analog front-end (AFE) in the wearable 
device.  
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current injection into nerves, and a resistor trimmer (SMUA102PET, Ohmite) to balance the 

resistor network, which helps improve its common-mode rejection ratio (CMRR) and output 

impedance [118]. Up to 1.5-mA stimulus current can be provided by this current pump. Neural 

signals are differentially recorded with a capacitively-coupled precision instrumentation 

amplifier (INA333, Texas Instruments) and amplified with an active filter implemented with the 

OPA2348 (Texas Instruments). The total gain of the recording AFE is 500, and its bandwidth is 

1.6-20k Hz. The dual supply voltage of the LT6375 and OPA191 (±VCP) is set to ±10 V. The 

analog supply voltage (VREF) and common-mode voltage (VCM) of two amplifiers are 3.0 V and 

1.5 V, respectively, and the digital supply voltage  (VDD) of ADC and DAC is 3.3 V.  

 

Fig. 3.9 demonstrates the PCB prototype of the wireless signal-processing (WSP) platform. This 

WSP platform is built with a low-power FPGA (M2GL025-VFG256, Microsemi Cor.) as the 

main processor onto which FREE is mapped. On the programmed FPGA, FREE occupies 8275 

(29.88%) logic elements (LEs), 3680 (13.29%) D flip-flops (DFFs), 8 (25.81%) large SRAMs 

(LSRAMs), each with size of 18×1024 bits, and 12 (35.29%) MACC units, each of which 

contains an 18×18 bits multiplier. The MIKROE-958 Bluetooth Click (Mikro-Elektronika) built 

 
 

Fig. 3.9  PCB prototype of the wireless signal processing (WSP) platform with major 
components annotated.  
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based on the RN-41 (Microchip Tech.) low-power, class-1 Bluetooth radio module is chosen as 

the example RF module in Fig. 3.1 and mounted on the WSP board. The RN-41 features an on-

chip antenna, compatibility with Bluetooth 2.1 standard, the UART interface, and easy-to- 

configure property for instant USB cable replacement. Thanks to the proposed FREE, data 

transmission and reception on the RN-41 take place only at the end of each stimulation trial. 

Such advantage enables the RN-41 to be configured in sniff mode, where the radio wakes up at a 

specific interval set to 250 ms in our case, and sleeps in very low power mode (with current drain 

around 2 mA) for the rest of the time [119]. Compared with normal continuous mode with an 

average current consumption of 30 mA, RN-41 in sniff mode only drains 8-mA average current 

[120]. Other major components of the WSP board, including a JTAG connector for FPGA 

programming and the reset circuitry for both power-on and manual reset, are also annotated in 

Fig. 3.9. The core power of the FPGA is 1.2 V, and 3.3-V power supply is used for the I/O power 

of the FPGA and other active components, including RN-41 and APX803S-31SA-7 (Diodes 

Incorporated) in the reset circuitry. The total size of the WSP board is 78 mm × 36 mm.  

 

 

 

Fig. 3.10  Block diagram of the power-management unit (PMU) for the power supply of the AFE 
and WSP platform.  
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Fig. 3.10 illustrates the block diagram of the power-management unit (PMU) for power supply 

generation of the stimulation and recording AFE and the WSP platform from a single 3-V, 620-

mAh CR2450 coin battery. First, a TPS61032PWPR boost converter from Texas Instruments is 

chosen to convert the voltage from a single coin battery to 5 V, owing to its 20-µA quiescent 

current, wide input voltage range (1.8-5.5 V) [121], and 93% conversion efficiency at 25-mA 

 

 
 

Fig. 3.11  The assembled PCB prototype of the wearable device.  
 

Table 3.2  List of the components used in the PMU PCB  
 

Component  Company  Part number  

Boost Converter  Texas Instruments  TPS61032PWPR  

Voltage Converter  Texas Instruments  TL7660CDGKT  

Regulator-3.3  Texas Instruments  TPS78233DDCR  

Regulator-1.2  Texas Instruments  TPS78001DDCT  

Voltage Reference  Texas Instruments  REF2030AIDDCT  
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output current (simulated with WEBENCH® Power Designer) [122]. Two voltage converters 

(TL7660, Texas Instruments), one configured as a positive-voltage doubler and the other as a 

negative-voltage converter as described in [123], are adopted to deliver ±10-V supply voltage. 

The 3.3-V and 1.2-V supply voltage are generated by down-regulating the 5-V boost converter 

output and 3-V coin battery output with low drop-out voltage regulators, and the 3-V and 1.5-V 

voltage in the recording AFE are generated with a voltage reference. Table 3.2 lists all 

components used in the implementation of the PMU. The assembled PCB prototype of the 

wearable device in Fig. 3.1 is shown in Fig. 3.11, in which the AFE and PMU boards are marked, 

and the coin battery is on the bottom side of the PMU board. The measured power consumption 

of the wearable device is 234 mW (3-V battery output × 78-mA current consumption).  

3.5 Experiment Results  

3.5.1 Experiment Setup  

The efficacy of the BFCA core in SAR and distortion-free noise removal has been presented in 

Chapter 2. In this chapter, we further demonstrate the efficacy of FREE in not only reducing the 

data transmission rate of a wearable device but also improving the accuracy in the prediction of 

the NAP in the ANC platform compared with previous software-based processing in [35]. Fig. 

3.12 illustrates the experiment setup for performance comparison between hardware (HW) and 

  
 
Fig. 3.12  Illustration of experiment setup for performance comparison between hardware (HW) 
and software (SW) processing.  
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software (SW) processing, in which SAR, noise removal, and feature extraction of ECAPs are 

performed using FREE on a FPGA and MATLAB R2016a (MathWorks), respectively. A RN-41-

EK (Microchip Tech.) Bluetooth evaluation kit serves as the base station in Fig. 3.1, which's 

controlled by a MATLAB-based graphic users interface (GUI) on the PC via its USB port. The 

RN-41-EK is configured in master mode which establishes connection to the RN-41 module on 

the wearable device configured in slave mode [119]. A data acquisition board (USB-6218, 

National Instruments) interfaced with the PC via an USB port is used to generate test signals 

which are fed into the ADC input and processed with the FPGA on the wearable device. The test 

signals generated from the analog output channel of the USB-6218 are also sent to its analog 

input channel for SW processing. Two control signals from FREE, STIM_EN (the flag signal 

pulled high during the stimulation train) and CLKSAMP (the 50-kHz sampling clock), are fed to 

the digital input channels of the USB-6218; Both the signal output on the AO_CH and 

acquisition on the AI_CH are enabled by the STIM_EN signal and synchronized to the sampling 

of the ADC with the CLKSAMP signal.  

 

 
 
Fig. 3.13  Plots of the original neural signal recorded in a single stimulation trial that contains 
ECAP responses and the neural signal superimposed with 60-Hz noise and 2-Hz baseline drift as 
the input data for HW and SW comparison. The input data should be shifted by +�£¤ to meet the 
dynamic range of the ADC on AFE..   
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Fig. 3.13 shows the input test signals for performance comparison, where the pre-recorded neural 

signals presented in [35] containing valid fiber responses are superimposed with periodic noises, 

including power-line interference and baseline wander simulated by 60-Hz and 2-Hz sinusoidal 

waves [124-126], respectively, with -6-dB signal-to-noise ratio (SNR) and random phase shift 

for both waves. The SNR is defined as  

 

SNR = 20 log�- 8>tdef
3def ; ,          (3.2) 

 

where FRrms is the root-mean-square (rms) amplitude of fiber responses waveform on the 

"original ECAP", i.e., the ECAP derived from original noise-free neural signals, and Arms is the 

rms amplitude of the sine waves. In the computation of Arms the fiber responses are defined as the 

first 6-ms interval of ECAP waveform as seen in Fig. 3.14 (a). A band-pass elliptic filter with 

0.1-4 kHz pass-band, 20-dB stop-band attenuation and 0.1-dB passband ripple is adopted for 

both the forward and reverse filters in the BFCA core.  

3.5.2 Precision Comparison  

An example of the recovered ECAP via HW- and SW-processing versus the original ECAP 

waveform is plotted in Fig. 3.14 (a). It can be seen the ECAP obtained from HW-processing is 

bettered regained than that from SW-processing in terms of waveform distortion, defined as the 

mean squared Euclidean distance between the original ECAP and the recovered ECAP waveform 

in (2.17), which proves that real-time BFCA algorithm on FREE rejects periodic noises better 

than traditional coherent averaging used in the SW processing [35]. Fig. 3.14 (b) plots all HW- 

and SW-recovered ECAP waveforms and extracted fiber responses from pre-recorded neural 

signals in 66 stimulation trials, each with unique stimulus parameters.   
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(a)  
 

 
(b)   

 
Fig. 3.14  (a) An example of recovered ECAP via HW- and SW-processing versus the original 
ECAP waveform. (b) All HW- and SW-recovered ECAP responses from the entire input data set 
(66 trials).  
 
 



 
 

96 
 

The precision of fiber-response classification on HW and SW is first compared in terms of 

fluctuation in the latency and amplitude of extracted fiber responses [99]. Fig. 3.15 (a) and (b) 

show the mean latency and amplitude of positive and negative responses, respectively, of 3 fiber 

groups (Aγ, B, and C fibers given an 8-mm conduction distance reported in [35]) extracted from 

       
(a)  
 

     
(b)  

 
Fig. 3.15  Mean latency and amplitude of extracted (a) positive and (b) negative fiber responses. 
Both the positive and negative fiber responses extracted from HW  have less amplitude variation 
than those from SW owing to the more effective removal of periodic noises on HW.   
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both HW and SW and their variations. The responses of 3 fiber groups on both HW- and SW- 

recovered ECAP waveforms are recognizable and hence there's little difference between HW and 

SW in the latency variation of positive and negative fiber responses. Nevertheless, the HW has 

higher classification precision indicated by its positive and negative responses having a lower 

amplitude variation than that from SW, especially for Aγ and B fibers with low SNR. Such 

amplitude variation results mainly from the amplitude error of fiber responses caused by periodic 

noises on ECAP waveforms. Note that positive local minima within the time range of B fiber are 

extracted as its negative responses on both HW and SW due to a low yet identifiable response 

amplitude of B fiber.   

 

To compare the overall classification precision, the slope-activation relationships of both HW 

and SW, which predicts the threshold current (i.e., rheobase current, IRh) versus fiber activation 

level and is the key to constructing the NAP in the ANC platform [35], are derived based on 

extracted fiber responses and the corresponding stimulus parameters. As reported in [35], the 

stimulus-response data are first sorted, and the amplitude of the positive fiber response (i.e., 

positive peak) is converted into an activation level by normalizing it with the largest fiber 

response amplitude representing the maximal activation. Fiber responses with similar activation 

level (i.e., with difference less than a preset error tolerance), along with the associated stimulus 

parameters are then clustered, and clusters with at least 2 stimulus-response pairs are selected. 

The rheobase current, i.e., the slope of the charge-duration line of each chosen cluster 

corresponding to an activation level, is computed using the least-square linear regression. The 

slope-activation relationship of a fiber group can be predicted by applying linear regression on 

the abovementioned slope-activation data and is modeled by the equation Mt¥¦ = l ∙ �§,  where 

¨ = l�F>t l�F¤K�© ∙ 100 is the activation level in percentages, A is the rheobase current for 

0% activation level, and r is a constant reflecting the rate of growth of rheobase current with 

respect to the activation level. Fig. 3.16 (a) and (b) illustrate the slope-activation data derived 

using fiber responses from HW and SW, respectively, together with the corresponding equations 

modeling the slope-activation relationship and coefficient of determination (R2) representing the 

goodness of fit. The amplitude error of fiber responses caused by periodic noises introduces 

inaccuracy into the process of clustering and computation of rheobase current for each cluster, 
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which causes the slope-activation data to deviate from the predicted model. With the real-time 

removal of periodic noises on ECAPs, slope-activation data derived from the HW-extracted fiber 

responses fit better to the predicted model as indicated by R2 in Fig. 3.16, suggesting that higher 

overall classification precision is achieved on HW. This helps more accurately constructing a 

NAP which estimates the stimulus parameters to maintain desired nerve activation level.  
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(a)  
 

  
 (b)  

 
Fig. 3.16  Slope-activation data of extracted fiber responses from (a) HW and (b) SW and the predicted slope-activation relationship 
(i.e., rheobase currents IRh as a function of the percent activation level λ). The classification precision of fiber responses from HW 
and SW is reflected by the coefficient of determination R2 which represents the goodness-of-fit of predicted IRh.   
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3.5.3 In-Vivo Test Results  

The performance comparison between HW- and SW- processing is further accomplished on a 

male Long-Evan rat in-vivo. Two custom-made silicone cuff electrodes in differential 

configuration serve as the stimulation and recording electrodes depicted in Fig. 3.1. These two 

electrodes are attached to the cervical vagus nerve of the rat following the surgical procedure in 

[35], and connected to the stimulator output and the differential amplifier input in Fig. 3.8. An 8-

mm conduction distance is measured after the implant of electrodes. For data acquisition in SW 

processing, the output of the OPA2348 is connected to the analog input channel of the USB-6218.  

 

A series of stimulation trials with varying amplitude are applied to the nerve with the following 

stimulus parameters: PW = stimulus pulse width = 0.2 ms, PRF = pulse repetition frequency = 20 

Hz and �IJK�L = stimulus train duration = 1 s. The stimulus amplitude ranges from 0.5 mA to 0.9 

mA with 0.1-mA increment to obtain observable fiber responses on ECAP waveforms without 

amplifier saturation. Fig. 3.17 plots ECAP waveforms and extracted responses of 3 fiber groups 

(Aδ, B, and C fibers) from both HW and SW against stimulus amplitude, in which ten ECAP 

waveforms are collected per stimulus amplitude. The peak-to-peak amplitude of fiber responses 

   
 

Fig. 3.17  In-vivo test results (PW = stimulus pulse width = 0.2 ms; PRF = pulse repetition 
frequency = 20 Hz; ttrain = stimulus train duration = 1 s) of HW- and SW- recovered ECAP 
waveforms and extracted fiber responses.  
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versus stimulus amplitude, also known as the amplitude growth function (AGF), and the mean 

latency of positive and negative responses, along with their variations, are plotted in Fig. 3.18 (a) 

and (b), respectively. Both HW- and SW- recovered ECAP waveforms contain peaks contributed 

by both fiber responses and noises (both periodic and random) in the proximity of user-defined 

fiber response index (i.e., INDUP and INDUN), and hence the mean latency and variation of 

positive and negative responses from HW and SW are nearly identical. At each stimulus 

amplitude, however, the peak-to-peak amplitude variation of 3 fiber responses from HW is lower 

 
(a)  
 

     
(b)  

 
Fig. 3.18  (a) The amplitude growth function (AGF) of extracted fiber responses and (c) the 
mean latency of positive and negative fiber responses extracted from HW and SW in in-vivo
tests.  
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than that from SW, which's necessary for constructing NAP with higher accuracy, as verified in 

Fig. 3.15 and Fig. 3.16.   

3.5.4 ASIC Implementation  

The proposed FREE is further implemented in 180-nm CMOS technology. Fig. 3.19 (a) shows 

the micrograph of the fabricated chip, whose total core and chip area are 10.14 mm2 and 19.98 

mm2, respectively. The core and I/O voltages of the chip are 1.8V and 3.3V, respectively, and the 

system clock frequency is 16 MHz. To the best of our knowledge, this is the first digital signal 

processor dedicated to the newly-proposed ANC platform. This chip is tested with the same 

              
(a)  
 

 
             (b)     (c)   

 
Fig. 3.19  The ASIC implementation of proposed FREE in 180-nm CMOS technology: (a) die 
photo and breakdown of its (b) power and (c) area consumption.  
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setup as that in Fig. 3.12, except that the FPGA is replaced with the chip under test, and an 1.8-V 

low drop-out voltage regulator (TPS78218DDCT, Texas Instruments) down-regulating the 3-V 

coin battery output to 1.8V is used as the core voltage supply of the chip. At 1.8-V core voltage 

and 16-MHz clock rate, the measured active and stand-by power are 1.95 mW and 0.3 mW, 

respectively. Fig. 3.19 (b) and (c) show the breakdown of power and area consumption, 

respectively, which's estimated with the layout result and post-layout simulation in Cadence 

Innovus Implementation System. The power consumption of FREE is dominated by memory 

banks in both the BFCA core and the output buffer and the fixed-width multiplier of IIR filters in 

the BFCA core, which can be further reduced by employing the low-power memory architectures 

[127, 128] and power-efficient fixed-width multipliers [129, 130].  

 

Table 3.3 shows the comparison with the SW processing, the MATLAB-based ECAP processing 

in [35] comprising SAR, denoising and fiber response extraction, on an Intel® Core™ i5-3230M 

Processor. The SW processing requires wearable neuromodulation devices to continuously 

transmit recorded neural data at 800-kbps (16-bit precision × 50-kHz sampling frequency) data 

transmission rate. In contrast, with real-time ECAP processing via FREE, the maximum data rate 

becomes 16.4 kbps for both RDFilt and ECAP output (on the ground that  �IJK�L is greater than 1 s 

and both RDFilt and ECAP output has 16.4 kbits), at least 49× lower than that of SW, and 192 bps 

Table 3.3  Performance comparison between hardware and software processing  
 

 Software [35]  This work  

Filtering Technique  
Coherent Averaging 

(CA)  
BFCA  

Processing Unit  Intel Core i5-3230M  ASIC  

Freq. [MHz]  2,600  16  

Power [mW]  28,440  1.95 (at 1.8V)  

Latency [ms]  11.5  20.5  

Max Data Rate [kbps]  800  16.4  
Amplitude Variation (B 
Fiber) [µV]  

3.74  1.22  

Coeff. of Determination 
(A Fiber)  

50.9%  82.9%  
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for fiber response output which is 4167× lower. The computation latency, i.e., the required time 

for signal processing in ANC, is estimated over 66 stimulation trials. Whereas the latency of 

FREE is of the same order of that of SW, the computation power of FREE is much less than that 

of SW, on which the average power of the CPU is 28.44 W. Moreover, FREE improves the 

precision of fiber-response classification and the accuracy of NAP construction in noisy 

environments. For example, in B fiber classification, the amplitude variation of the positive 

response from FREE is 1.22 µV, which is 3.1× lower than that from the SW; in constructing the 

NAP of Aγ fiber, the coefficient of determination of the slope-activation profile derived from the 

fiber responses from FREE is 82.9%, which is increased by 62.9% compared with the SW.   

 

3.6 Conclusion of This Chapter  

In this chapter, a fiber-response extraction engine (FREE), the first DSP engine dedicated to 

nerve activation control using the newly-proposed ANC platform, was presented. FREE employs 

the DSP architecture presented in Chapter 2 for stimulus artifact rejection and distortion-free 

filtering of ECAP waveforms. Computationally-efficient algorithms for fiber response extraction 

on ECAPs and their VLSI architectures were also explained. FREE was implemented on a 

custom- made and coin battery-powered wearable PCB integrating a low-power FPGA, a 

Bluetooth transceiver, a stimulation and recording AFE and a power management unit. FREE 

reduces the maximum data rate of wearable devices to 16.4 kbps, which is at least 49×lower than 

that of software processing. Experimental results also show that compared with the previous 

software-processing, FREE improves the precision of fiber response classification by 3.1× in 

noisy environments, which increases the accuracy of nerve activation profiles by up to 62.9%. 

An ASIC implementation of FREE was also presented whose total chip area and core power 

consumption of 19.98 mm2 and 1.95 mW, respectively. FREE facilitates nerve activation control 

on wearable devices by reducing the data rate and power costs and improving the precision of 

NAP in noisy environments, and can be applied to other closed-loop ENS systems utilizing the 

ECAP as their feedback biomarkers.   
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4. CONCLUSION AND FUTURE WORK 

4.1 Conclusion  

Electrical neurostimulation is an emerging therapeutic for various neurological diseases and 

possesses the advantage over pharmaceutical approach to dose the targeted area of brain or nerve 

more precisely. Closed-loop neurostimulation approaches increase the stimulation efficacy and 

minimize side-effects and patient's discomfort by constantly tailoring the stimulation parameters 

according to feedback physiological signals from patients. To improve the quality and reduce the 

costs of treatments, wireless neurostimulation devices capable of both stimulation and telemetry 

of recorded physiological signals can be introduced into closed-loop neurostimulation in 

replacement of laboratory instruments. In view of the data transmission rate and the resulting 

power consumption of wireless devices, a real-time DSP processor processing and extracting 

features from recorded signals is desired; its VLSI architecture and implementation in FPGA and 

ASICs are especially attractive for optimal computation power and cost. ECAP is an objective 

measure of the nerve activity and condition and has been adopted as the feedback biomarker in 

closed-loop ENS systems including NRT in cochlear implants and a newly proposed ANC 

platform. This thesis focuses on the development of a DSP engine and its VLSI architecture for 

real-time processing of ECAP, including SAR, denoising, and extraction of nerve fiber responses 

as biomedical features. When integrated with the wireless device applied in closed-loop ENS 

systems, not only does such DSP engine reduce required data rate of the wireless device, but it 

also improves the precision of extracted biomedical features by removing artifacts and noises on 

ECAPs, which facilitates the tailoring of stimulation parameters and boosts the efficacy of 

closed-loop ENS systems.  

 

Chapter 2 describes a DSP architecture for recovery of ECAP responses in NRT and other 

ECAP-based closed-loop ENS systems. A newly proposed BFCA technique enables the 

configurable linear-phase filter to be realized hardware efficiently for distortion-free filtering of 

ECAPs, and this technique can be easily combined with AP stimulation method for SAR. This 

DSP architecture also incorporates folded-IIR filter and division-free averaging to reduce the 

computation cost. The DSP architecture is mapped onto a low-power FPGA, and it's proved in 
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in-vivo tests to reject stimulus artifacts overlapped with ECAP responses and remove periodic 

noises more effectively without distorting ECAP waveforms.   

 

A fiber-response extraction engine (FREE) is presented in Chapter 3 for nerve activation control 

in closed-loop ENS using the ANC platform. FREE utilizes the DSP architecture proposed in 

Chapter 2 for SAR and denoising of ECAPs, and the DSP architecture of computationally 

efficient peak detection and classification algorithms for fiber response extraction from ECAPs 

in real time. FREE is mapped onto a custom-made and battery-powered wearable wireless device 

incorporating a low-power FPGA, a Bluetooth transceiver, a stimulation and recording AFE 

circuitry and a power-management circuitry. In comparison with previous software-based signal 

processing, FREE demonstrates its capacity to not only reduce the data rate of wearable devices 

but also improve the precision of extracted biomedical features (fiber responses) reflected by 

their amplitude and latency variation. It is also verified that fiber responses extracted from FREE, 

which possesses higher precision than those from software processing, helps boost the accuracy 

of NAP construction in ANC. An ASIC version of FREE is implemented in 180-nm CMOS 

technology, whose total chip area is 19.98 mm2 and core power consumption is 1.95 mW at 1.8-

V core voltage and 16-MHz system clock rate.  

4.2 Future Work  

4.2.1 Half-Precision Floating-Point Computation  

All the computations in FREE, including the BFCA method combined with the AP stimulation 

based SAR in Chapter 2 and the peak detection and classification in Chapter 3, are accomplished 

with fixed-point arithmetic in which the data width is 20 bits. Since the arithmetic operations in 

those algorithms consist mainly of addition, subtraction, multiplication, and logical shift, they 

can be implemented in half-precision floating-point (HPFP) arithmetic to further save the 

required data width in FREE yet still achieve desired data precision. The data width of a HPFP 

number is 16 bits (1-bit sign, 5-bit exponent and 11-bit fraction) and hence this format is also 

referred as "binary16" in IEEE 754-2008 standard [131].  
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As stated in Section 2.3.3, the dynamic range of 16-bit ADC output in 2's complement format is 

−32768 to 32767 and can be expressed in HPFP format, whose the maximum representable 

value is 65504. To avoid overflow in computations, data in HPFP format can be scaled by factors 

equal to power of 2, which corresponds to subtracting the exponent of a HPFP number. Addition, 

subtraction, and multiplication can be implemented in hardware according to the floating-point 

arithmetic defined in IEEE 754 standard [134]. Fig. 4.1 illustrates the block diagram of a HPFP 

adder [132], and the block diagram of a HPFP multiplier is also shown in Fig. 4.2 [133]. The left 

shifting in (2.13) and right shifting in (2.9) can be achieved by adding and subtracting the 

 
 

Fig. 4.1  Block diagram of a half-precision bit-serial floating-point adder [132]. 
 
 

 
 

Fig. 4.2  Block diagram of a half-precision floating-point multiplier, where (X_e, Y_e) and (X_f, 
Y_f) are exponents and fractions of two input signals, respectively, "load" and "reset" are control 
signals for each part, and Z_e and Z_f are the exponent and fraction of multiplier output [133].  
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exponent of a HPFP number, respectively. The filter coefficients in the BFCA method can be 

first derived in single-precision floating-point format and then converted into HPFP format. 

Implementing the computations in FREE in HPFP arithmetic can effectively reduce required data 

width and the resulting hardware costs, including area and power consumptions.   

4.2.2 Data Compression of ECAP  

In close-loop ENS, the morphology of recorded ECAPs is crucial for neurologists to identify 

valid nerve fiber activation and determine the approximate latency of fiber responses. As 

mentioned in Section 3.5.4, the required data transmission rate for an ECAP output in FREE is 

16.4 kbps. This can be further reduced by applying real-time data compression technique to the 

ECAP outputs from the BFCA core. The discrete wavelet transform (DWT) in combination with 

run-length encoding (RLE) is one popular data compression technique which has been utilized 

for data reduction in various biomedical systems such as neural recording [63] and bladder 

pressure monitoring [135]. This technique has the advantage of preserving the temporal 

information and the shape of  detected events on time window, and hence is applicable to ECAP 

waveforms on which the latency and amplitude of fiber responses on ECAPs must be maintained 

after compression.  

 

DWT decomposes signals into different frequency bands with multiple stages of low and high 

pass filters. Fig. 4.3 illustrates DWT algorithm for data compression with 4 levels of decom-

position [63], where h0 and g0 are the filter coefficients of low and high pass filters, respectively, 

and aj and dj represent approximation and detail coefficients at j-th level, respectively. At each 

level, aj is filtered by h0 and g0 to generate temporary outputs (aj+1)temp and (dj+1)temp which are 

 
 

Fig. 4.3  Illustration of DWT algorithm for data compression with 4 levels of decomposition [63]
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down-sampled by 2 to obtain aj+1 and dj+1. After decomposition a pre-defined threshold thj is 

applied to detail coefficients dj+1, whose resulting value is denoted by prime ('), namely, d'j+1. At 

the last 4th level, thresholds are applied to both approximate and detail coefficients to generate 

a'4 and d'4, respectively. The thresholding operation will keep the significant high-energy 

coefficients contributed by events and zero the insignificant low-energy coefficients resulted 

from noises, which is equivalent to the wavelet-based filtering [80, 81].  

 

A preliminary result of data compression of the ECAP waveform in Fig. 3.14 (a) is demonstrated 

with a 2-level DWT, where the Haar wavelet is selected owing to its computation simplicity 

(which requires only addition and subtraction) [117, 136]. Fig. 4.4 (a) shows the derivation of 

quantization threshold of the wavelet coefficients of an ECAP waveform. First, the wavelet 

coefficients (denoted as "WC" in Fig. 4.4) of noises are computed by applying the DWT to the 

noise waveform obtained using the BFCA method, and then the mean of absolute value of 

wavelet coefficients (µABSWC) in each decomposition level is computed [82]. The quantization 

threshold for the wavelet coefficients of an ECAP waveform (THRWC) is derived by multiplying 

the µABSWC with an empirical scaling constant, which is set to 5 in this demonstration. The 

wavelet coefficients of an ECAP waveform, obtained from the DWT, are compared against the 

THRWC, below which the wavelet coefficients are quantized to zero. Fig. 4.4 (b) shows the 

wavelet coefficients of an ECAP waveform before and after quantization. The quantized wavelet 

coefficients are encoded with RLE, where sequence of zeros is replaced with a word representing 

zero followed by a zero-count word, and non-zero words are unchanged. As an example in [63], 

a 40-word data sequence  

 

BD000A0000000A000000CB0A0000000000D00000D  
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(a)  
 

 
(b)  

 

 
(c)  
 

Fig. 4.4  Data compression of an ECAP waveform using 2-level Haar wavelet DWT: (a) 
derivation of the threshold (THRWC) based on the mean of absolute value of wavelet coefficients 
(µABSWC), (b) origical versus thresholded wavelet coefficients (WCTHR) of an ECAP waveform, 
and (c) origical versus reconstructed ECAP waveform.  
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will be reduced to the sequence "BDX3AX7AX6CB0AX10DX5D" after RLE, where X stands 

for zero. Given an ECAP waveform with windowing length of 1024, the total number of non-

zero elements in the quantized wavelet coefficients in Fig. 4.4 (b) is 175, and the length after 

RLE is 217 in this example. Assume the precision of each wavelet coefficient is 16 bits. The 

total size of encoded wavelet coefficients is 3472 bits, which is 4.72× lower than that of ECAP 

waveform. Fig. 4.4 (c) shows a comparison between original ECAP waveform and reconstructed 

ECAP waveform after data compression. It can be seen that the shape of nerve fiber responses 

and its time-axis location are preserved on the reconstructed ECAP waveform.  

 

What needs further study in the data compression of ECAP waveforms is the optimal value of 

THRWC representing the amplitude threshold of activated fiber responses, and the level of 

decomposition in DWT that achieves the maximal compression of an ECAP whereas maintains 

the latency and shape of fiber responses. Moreover, to generate an optimal compression, it's 

desirable to find a wavelet basis whose shape resembles the signal to be compressed so that the 

original can be reconstructed with the fewest nonzero wavelet coefficients. So far, studies have 

shown the Symlets 4 is the optimal wavelet basis for compression of neural spikes, whose shape 

best matches that of spikes and requires moderate computations  [137]. The wavelet basis that 

best matches ECAP waveforms thus deserves investigation. For implementation of real-time 

DSP, several approaches to designing the VLSI architecture of DWT have been presented, 

including the pyramid algorithm [138, 139] and lifting scheme [140-142]. Implementing RLE in 

VLSI architecture is also feasible and an implementation example can be found in [63].   

4.2.3 Implantable Wireless Device  

To make the wearable wireless device presented in Section 3.4 chronically implantable, it must 

be combined with the WPT strategies to eliminate the need for constant battery replacement 

[143]. Fig. 4.5 illustrates the block diagram of the PMU which utilizes a combination of both 

WPT and a rechargeable battery as its power supply. The powering coil receives the power from 

electromagnetic fields, and the wireless receiver converts the received electromagnetic power 

into a regulated DC voltage output. The DC voltage output of the wireless receiver is fed to a 

battery charger that can charge a 3.7-V lithium-ion rechargeable coin-cell battery, power the 

system, or both. The powering coil, wireless receiver, and the battery charger are all available in 
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COTS components. Fig. 4.6 (a) shows the schematic of the bq51003 (Texas Instruments) 

wireless power supply receiver as an example [144], which utilizes near-field inductive coupling 

for WPT. A receiver coil for the bq51003 wireless receiver is shown in Fig. 4.6 (b) (Würth 

Elektronik Group), whose total size is 15 mm (diameter) × 0.6 mm (height). Fig. 4.6 (c) shows 

the bq500212AEVM-550 wireless power transmitter evaluation module (Texas Instruments), 

which uses a 5-V USB port as the power supply and is compatible with the bq51003 wireless 

receiver [145]. Combined with the receiver coil in Fig. 4.6 (b), the bq51003 wireless receiver 

provides 5-V regulated output voltage at 500-mA loading current. The schematic of an example 

lithium-ion battery charger bq21040 (Texas Instruments) is shown in Fig. 4.6 (d). This battery 

charger has an input voltage supply range from 3.5 V to 28 V, and provides up to 800-mA 

charging current at 4.2-V regulated voltage output [146] which can charge the 3.7-V lithium-ion 

battery and supply the system loading. On the other hand, a newly proposed WPT technique, 

named cavity resonator based WPT [147], employs a WPT chamber with circulating 

electromagnetic fields as the primary power transmitter and a biaxial receiver coil system to 

enable the wireless powering of devices implanted in free-moving animals. This technique has 

been adopted in the design of the Bionode, a closed-loop neuromodulation device [55], and is 

also applicable to the powering of the wireless device presented in Section 3.4.  

 

 
 

Fig. 4.5  Block diagram of the PMU with a combination of both WPT and a rechargeable battery 
as its power supply.  
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(a)  
 

 
(b)  

 

  
(c)  
 

Fig. 4.6  (a) Schematic of the bq51003 (Texas Instruments) wireless power supply receiver [144]. 
(b) A receiving coil for the bq51003 (Würth Elektronik Group) with total size of 15 mm 
(diameter) × 0.6 mm (height). (c) Top view of the bq500212AEVM-550 wireless power 
transmitter evaluation module (Texas Instruments) as the primary wireless power supply [145]. 
(d) Schematic of the bq21040 (Texas Instruments) lithium-ion battery charger [146].  



 

The power consumption of the RF module in 

realization of an implantable device

shows the MIKROE-2471 BLE 3 Click (

 
 

Fig. 4.7  Top view of (a) the MIKROE
B204 USB dongle [150], both built with the NINA
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er consumption of the RF module in Fig. 3.1 can be further reduced to facilitate the 

realization of an implantable device by using other low-power Bluetooth transceivers

2471 BLE 3 Click (MikroElektronika) [148] as an example, 

(d)  
 

Fig. 4.6  continued.  

 

 
(a)  
 

 
(b) 

 
MIKROE-2471 BLE 3 Click (MikroElektronika) [148]
built with the NINA-B112 Bluetooth 4.2 module. 

 
 

can be further reduced to facilitate the 

uetooth transceivers. Fig. 4.7 (a) 

as an example, which is built 

 

[148] and (b) the 
.  
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with the NINA-B112 (u-blox) Bluetooth Low-Energy (BLE) module and can also be mounted on 

the WSP board in Fig. 3.9. The NINA-B112 BLE module featuring Bluetooth 5.0 standard has a 

maximum data rate of 1 Mbps, a module size of 14 mm × 10 mm (including the on-chip antenna) 

a supply voltage range of 1.7-3.6 V, and a current consumption of 5.3 mA at 0-dBm transmitter 

power [149]. It also supports serial communication via the UART interface. Fig. 4.7 (b) shows 

the B204 USB dongle (u-blox) [150]; it also uses the NINA-B112 BLE module, provides access 

to UART over USB, and thus can serve as the base station in Fig. 3.1. A comparison of the low-

power COTS Bluetooth modules can be found in [151] and is given in Table 4.1. Furthermore, 

the Bluetooth transceiver on the WSP board can be programmed in standby mode by default, 

where the current consumption is only a few microamperes (e.g., 2.2 µA for NINA-B112), and 

waken up by the dedicated control pins on FREE for data transmission.  

 

All the boards in the PCB prototype shown by Fig. 3.11 can be further miniaturized through PCB 

layout, and integrated in a small package for implants using the rigid-flex PCB technology [110] 

or the PCB assembly technique presented in [55].  

 

Table 4.1  Comparison of the low-power COTS Bluetooth modules [151] 
 

Transceiver NINA-B112  BL652  ZL70103  CC2640R2F  BMD-350  
Energy 
Efficiency (nJ/b)  

9-19  9-19  15-19  11-23  12-25  

IDC at 0 dBm  
(mA)  

5.3  5.3  5.3  6.1  7.1  

VDD (V) 1.7-3.6  1.7-3.6  2.8-3.5  1.8-3.6  1.7-3.6  

Duplex N/R  Full  Half  Full  Full  

Physical size  
 (mm3)  

14×10×4  14×10×2  6×5×2  7×7×2  8.7×6.4×1.5  

Antenna Internal  Internal  External  External  Internal  

Max DR (Mbps) 1  1  0.8  1  2  
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