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Electrical nerve stimulation (ENS) is an emergihgrapy for many neurological disorders.
Compared with conventional one-way stimulationgset-loop ENS approaches increase the
stimulation efficacy and minimize patient's discomfby constantly adjusting the stimulation
parameters according to the feedback biomarkemn fpatients. Wireless neurostimulation
devices capable of both stimulation and telemetmgcorded physiological signals are welcome
for closed-loop ENS systems to improve the quaitg reduce the costs of treatments, and real-
time digital signal processing (DSP) engines preiogsand extracting features from recorded
signals can reduce the data transmission rate lendesulting power consumption of wireless
devices. Electrically-evoked compound action paeéECAP) is an objective measure of nerve
activity and has been used as the feedback biomarkelosed-loop ENS systems including
neural response telemetry (NRT) systems and a newsjyosed autonomous nerve control (ANC)
platform. It's desirable to design a DSP enginerdai-time processing of ECAP in closed-loop

ENS systems.

This thesis focuses on developing the DSP architector real-time processing of ECAP,
including stimulus artifact rejection (SAR), denogs, and extraction of nerve fiber responses as
biomedical features, and its VLSI implementatiom émptimal hardware costs. The first part
presents the DSP architecture for real-time SAR d@debising of ECAP in NRT systems. A
bidirectional-filtered coherent averaging (BFCA) thmd is proposed, which enables the
configurable linear-phase filter to be realizeddwaare efficiently for distortion-free filtering of
ECAPs and can be easily combined with the altergatolarity (AP) stimulation method for
SAR. Design techniques including folded-IIR fil@nd division-free averaging are incorporated
to reduce the computation cost. The second pasepts the fiber-response extraction engine
(FREE), a dedicated DSP engine for nerve activatontrol in the ANC platform. FREE
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employs the DSP architecture of the BFCA methodhined with the AP stimulation, and the
architecture of computationally efficient peak dtiten and classification algorithms for fiber
response extraction from ECAP. FREE is mapped entustom-made and battery-powered
wearable wireless device incorporating a low-powd?GA, a Bluetooth transceiver, a
stimulation and recording analog front-end and wgremanagement unit. In comparison with
previous software-based signal processing, FREEonbt reduces the data rate of wireless
devices but also improves the precision of fibepomse classification in noisy environments,
which contributes to the construction of high-aexyr nerve activation profile in the ANC
platform. An application-specific integrated circgASIC) version of FREE is implemented in
180-nm CMOS technology, with total chip area andeqmwer consumption of 19.98 riand
1.95 mW, respectively.
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1. INTRODUCTION

1.1 Background

Nervous system is a complex network spreading tilvahe human body that carries message
from brain to various parts of body for regulatiohphysiological functions, including breath,
heart rate, sensation, speech, and even stomaclenmotv during digestion [1]. These
physiological functions may be modulated externddly stimulating particular branches of
central or peripheral nervous systems, which is ki®wn as neuromodulation [2-4]. Ever since
the United States Food & Drug Administration (FDé#gproved deep brain stimulation (DBS) as
a valid treatment of tremor in 1997 [5], neuromadioin becomes an emerging therapeutic for
various neuro- logical diseases. Neuromodulationamdy provides another option for patients
who're resistant to medication, but also possabsesapacity to target and dose a certain nerve
and brain area more precisely, making it a poptdeatment alternative to pharmaceutical
approach. For instance, DBS utilizes implanted oalactrodes in the brain through which
electrical stimulus is delivered to targeted bi@iea and has been employed in the treatments for
Parkinson disease, chronic pain, and other neumgabdgisorders including depression [6, 7].
Spinal cord stimulation (SCS) provides therapydboronic and intractable pains by intervening
in transmission of pain signals along the spinatisavith electrical pulses [8-10]. Applications
of neuromodulation to other neurological or psytigadisorders have been demonstrated and

are still being investigated today [11, 12].

Electrical nerve stimulation (ENS) is one neuroniation technique that involves stimulating

nerves with electric current in order to modulatepagation of neural signals along nerve. Ever
since the first patient-wearable ENS device wasrgat in the United States in 1974 [13], ENS
has been widely used in clinical therapy for acute chronic pains, and its application in the
treatment for other neurological diseases hasralseived attention in these decades [14-16]. In
human's nervous system, vagus nerve is the loogasial nerve extending from the brain stem
to the colon; it controls important sensory and andtinctions, including the visceral sensation
of lungs, heart, and digestive tract and musclgkenheart and digestive tract for the regulation

of heart rate and food digestion, respectively [18], Vagus nerve stimulation (VNS) is one of
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the most renowned ENS that was approved by the F@Aepilepsy treatment in 1997 and
approved for major depressive disorder treatmer205 [19, 20]. Although the mechanism of
VNS still requires more elucidation, studies hatieven the efficacy of VNS and its mild side
effects [21]. VNS has been approved for seizurectdn in Canada and more than 15 countries

in Europe [22].

Most commercial neurostimulation systems todayiaran open-loop manner, where devices
with pre-programmed electrical stimulus is connécte targeted nerve or brain area via
implanted microelectrodes, and stimulus parametezstuned per week or month according to
patient's subjective experience in treatment. Faample, the VNS device produced by
LivaNova and the responsive neurostimulation deviweduced by NeuroPace are two
commercialized open-loop neurostimulators [23]. the clinical experiences of open-loop
neurostimulation accumulate, its problems becomeenayident, including low stimulation
efficiency (either too much or too little dosing)pw reaction to patient's condition that easily
causes patient's discomfort, and side effects adsdowith the therapy, all of which results from
lacking objective measurement of how patients reactapplied stimulus. A closed-loop
neurostimulation system can improve stimulationicefficy and reduce discomforts and side
effects on patients by recording physiological algnfrom patients and constantly adjusting
stimulus strength in response to changes in redosdmals [24-26]. Efforts have been made in
developing closed-loop neurostimulation systems @emces for various neurological diseases
[27, 28]. In closed-loop VNS for epilepsy, stimudait is triggered at the onset of seizure, which
can be detected in real-time based on heart rad@geh electroencephalogram (EEG) and
electrocardiogram (ECG) signals [29-32]. Closedpbld@BS comprises stimulation, sensing of
biomarkers such as local field potentials (LFPs}ioa potentials, electrocorticogram (ECoG),
and EEG, and detection of their features [33]. iaw of closed-loop DBS systems and devices
can be found in [34]. An FDA-approved closed-loopSSsystem, the RestoreSensor system
(Medtronic, Minneapolis, MN, USA), is also proposethich automatically adjusts stimulus
parameters according to patient's body positiosestiby a 3-axis accelerometer [24]. In brief, a
closed-loop neurostimulation system must be abietse physiological signals effectively from
patients, precisely locate the biomarkers in reedrdignals, and detect change in biomarkers

and adjust stimulus strength in response to thagdha real-time.
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Fig. 1.1 Block diagram of the autonomous nerve ifANC) system and its applications. [35]

1.2 Autonomous Nerve Control

A nerve comprises mainly bundle of cable-like nefiliers (also called axon), each of which is a
projection of nerve cell (neuron) that transmitcéieal signals known as action potentials to
different muscles, tissues and organs [36]. Accwydio Gasser [37], nerve fibers can be
classified into three types based on their phydieatures and signal conduction properties -
group A (fast, myelinated), group B (slow, myelied, and group C (slow, unmyelinated). It's
believed that the electrical stimulation modulaties activity of nerve fibers and thus sensory
and motor functions the nerve fibers map to, whglone explanation for the mechanism of
VNS [38]. Based on this theory, if the activatiohnerve fibers can be properly controlled, the
efficacy of VNS can be greatly improved and theesity of side effects in open-loop VNS can

also be minimized. To address this issue, Matthieal.oropose the autonomous nerve control
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(ANC) system [35], a responsive closed-loop ENSesysthat automatically adjusts stimulus

strength using measured nerve activation level.

Fig. 1.1 shows the block diagram of ANC system &sdapplications. In ANC, electrical
stimulus is first applied onto a nerve via a stiation electrode and the electrically-evoked
compound action potential (ECAP) on the nerve gpoase to the stimulus is derived from the
neural signals acquired from the recording ele@rod the nerve adjacent to the stimulation
electrode. ANC then identifies and classifies ndiler responses on ECAP waveform in real
time. The amplitude responses of targeted nerver fibgether with stimulus parameters are
clustered for construction of a patient-specifiecveeactivation profile (NAP), which predicts
how nerve will respond to stimulus with any stréngtn closed-loop stimulation, ANC
constantly adjusts stimulus parameters accordirigaalerived NAP to control the activation of
targeted nerve fiber. ANC is first tested in VNSrafs to demonstrated its capacity to most
efficiently control the activation of vagal A, B @ fibers [35] and can be applied to other ENS-
based therapeutics for various neurological disgasg). addiction, chronic pain, motor and
sensory disorders.

ANC introduces great benefits to both patients imgsicians. From patient's side, the period of
treatment can be lowered to help patients save time¢ cost, and quality of treatment is also
improved through the minimization of discomfort asdle effects. For physicians, ANC

provides an objective dosing standard based olette of nerve activation, and save physicians
from the time-consuming process of stimulus parameming. ANC also enable physicians to
selectively control the activation of fiber grouf, B or C fiber) and hence the physiological

functions that fiber group maps to.

1.3 Neural Response Telemetry

It is estimated that around 466 million people wailkle suffer from some degree of hearing loss,
34 million of which are children [39]. Several cassof hearing loss includes genetics, aging,
exposure to noise, infections, birth complicatiansl traumas to ear. Hearing loss results in not
only inconvenience to patients but also physicaychological and social problems (e.g.

headache, stress, low self-esteem, isolation framncunity, etc.). Ever since 1957, when
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Fig. 1.2 A typical modern cochlear implant systtrat provideselectrical stimuli to auditol
nerve [42].

French physician Djourno and his colleagues reghithee hearing of two totally deafened

patients using electrical stimulation, cochlear lamp has been a popular management for
hearing loss that provides partial hearing to deadepatients. Today, cochlear implant is one of
the most successful neural prosthesis with mone 129,000 people implanted worldwide [40,

41]. The goal of cochlear implant is to replaceribemal acoustic hearing process with electrical
signals that directly stimulate auditory nerve éstore functional hearing. Fig. 1.2 illustrates a
typical modern cochlear implant system [42]. Thergbis first sensed with a microphone,

processed and encoded into digital signals by $ppeacessor, and transmitted to the implant
with the radio frequency (RF) transmitter. On tkeaiver that is placed under the skin behind
the ear, digital signals are received with the ramée decoded and converted into electric current.
A stimulator on the receiver deliver the electnicrent to auditory nerve via the electrode array

implanted in the cochlea, which's then interpretedound.
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Fig. 1.3 Nueral Response Telemetry (NRT) systeMunleus CI24M cochlear implant [43].

Due to the difference in the structure of auditoeyve, the performance of cochlear implant can
be unpredictable and vary in patients. This probtexm be solved via the measurement of nerve
function. In 1995, a bidirectional neural respotedemetry (NRT) system was incorporated into
the Nucleus CI24M cochlear implant to wirelessly mibar the ECAPs in response to the
electrical stimuli on auditory nerve [44]. Fig. EBows the NRT system in Nucleus Cl124M [43].
The stimulation parameters are first transmitteinfrspeech processor to implant via RF link.
On the implant side, digital signals are received decoded (Rx Decode), and the electrical
stimuli (Stim) corresponding to stimulation paraerstare delivered onto auditory nerve via
intra-cochlear electrode. Neural signals recordBéc) from electrode neighboring to the
stimulation one are encoded digitally and trangedi{fTx Encode) back to speech processor and
host PC. On the host PC, stimulus artifacts reembadong with neural signals are removed with
dedicated algorithms. For example, the mask-prayadigm proposed by Brown et al. [45] is
adopted in Nucleus CI24M cochlear implant [43]eTECAP response to the electrical stimulus
is derived by coherently averaging all responsdieaed from a stimulation trial containing
identical, repeated stimulus pulses. Features enEfBAP waveform are then identified, and
stimulus strength is adjusted accordingly. Clinstaidies have validated the capacity of NRT to
wirelessly measure ECAP responses [43, 46, 47]jtarah be equivalently applied to other ENS
systems requiring wireless monitoring of ECAP resm@s on the nerve, including the newly

proposed ANC platform.
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Fig. 1.4 Cross-section of a nerve and group ofenébers (axons) [48].

1.4 Electrically-Evoked Compound Action Potential

Fig. 1.4 illustrates the cross-section of a nerad @s nerve fibers (axons) on which action
potentials propagate [48]. When electrical stimuib®ve stimulation threshold (the minimum

required stimulation current to elicit an actiontgrgial) is applied to a nerve, groups of nerve
fibers are activated simultaneously. The summatidnall evoked action potentials from

activated fibers is called compound action poténiistead of the action potential of single axon,
it is the electrically-evoked compound action ptiEr{ECAP) that can be recorded externally as
it propagates along the nerve. Several approachesetrfacing electrodes with nerves for ECAP
recording have been referred in [49]. Cuff electmidwhich are designed to fit around nerve
without invasion, possess the advantage of maingqistable and long-term contact with nerve
yet exerting little pressure. This makes cuff efed¢ suitable for implantation and the most

popular electrode for nerve stimulation and ECA¢dbrding.
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Type of fiber Diameter Conduction velocity General function

(micrometers) (m/sec)
A-a 13-22 70-120 a-motoneurons, muscle spindle primary endings, Golgi tendon organs, touch
A-B 8-13 40-70 Touch, kinesthesia, muscle spindle secondary endings
A=y 4-8 15-40 Touch, pressure, y-motoneurons
A-8 1-4 5-15 Pain, crude touch, pressure, temperature
B 1-3 3-14 Preganglionic autonomic
C 0.1-1 0.2-2

Pain, touch, pressure, temperature, postganglionic autonomic

Fig. 1.5 Classification of nerve fiber types [49].
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Fig. 1.6 Classification of nerve fiber responses on ECAP ef@ams plotted (A) against tir
axis and (B)s a function of conduction veloc. The ECAP responses are obtained from th
cervical vagus nerve of ra€onduction distanc= 8.0 + 0.5 mm) [35].

The action potentials of nerve fibers of the sanmmugpropagate along amerve at econstant
velocity called conduction veloci, which is proportional to the diameter of fib [37]. Fig. 1.5
shows the classification of nerve fib in letter system®stablished by Gass[37] based on
their conduction velocity [49\When the ECAPs arrecorded on a nerve atfixed and known
conduction distance (i.ethe distance between stimulation and recordingtrelde on a nen),

the responses of nerve fibgroupswith specific conduction velocity formpeakswith constant

latency on ECAP waveforns the stimulus strength is increasthe amplitud of peaks grow
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Fig. 1.7 The three most commonly useethods for stimulus artifact reduction in EC
recording: (a) alternating polarity, (b) subthrdshi@mplate subtraction, and (c)2ise forwar
masking paradigm [50].

accordingly owing to more fibers of that group eated. Fig. 1.6 shows the classification of
nerve fiber responses on ECAP waveforms recordag@bximately 8-mm conduction distance
[35], where the responses of A, B and C fibers, sehoonduction velocities are listed in Fig. 1.5,
peak separately within a fixed time range on ECA®aforms. The latency and amplitude of
these peaks, which indicate the type of activamdenfiber and its activation level, respectively,
are important biomedical features on ECAP wavefoiinshould be kept in mind that a proper
conduction distance must be chosen in order toragp#he responses of different fiber groups

while keep their response amplitudes.

Recording of ECAP on nerves is inevitably accomedry stimulus artifact and ambient noise
[50]. Such stimulus artifact usually contaminates tecorded ECAP signal and, at large enough
amplitude, even saturates the recording amplifiegnich hinders the amplifier from further
recording. Stimulus artifact results mainly frometkioltage gradients between the recording
electrodes caused by current flowing through teeugs around nerves, and the electromagnetic
coupling between stimulation and recording eledar{ill], which can be reduced by increasing
conduction distance (i.e., placing recording etsbér further away from stimulation electrode).
For implantable devices (e.g. cochlear implantsyvinich large enough conduction distance to
completely eliminate stimulus artifact is impraatic additional techniques are required to
suppress stimulus artifact. Fig. 1.7 illustrates three most commonly used stimulus artifact
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Fig. 1.8 Principle of the coherent avearing (C&ghnique [52].

rejection (SAR) techniques in ECAP recording: aéing polarity, subthreshold template
subtraction, and two-pulse forward masking paradjgfj. The alternating polarity method in
Fig. 1.7 (a) utilizes two stimulus pulses, a catlqullse and an anodal one, whose amplitude
and shape are the same and polarity is oppositeth®mground that the polarity of ECAP
response does not change with that of stimulusjustis artifact is removed by summing the
cathodal and anodal responses whose stimulus castifeeve symmetric shape and opposite
polarity. In the subthreshold template subtractisethod, a pure stimulus artifact is evoked with
a subthreshold stimulus pulse (i.e., stimulus bedtwwulation threshold), which serves as the
template. The stimulus artifact is removed by sadiing the evoked response (ECAP plus
artifact) with a scaled template. The two-pulsevmd masking paradigm utilizes the refractory
period of nerve where another stimulation leadnidoECAP [46] and aims to obtain a pure
stimulus artifact within this period. As seen igFL.7 (c), either masker or probe pulse alone
elicits both ECAP response and stimulus artifadtengas the probe pulse within the refractory
period that follows after the masker pulse elioitéy a stimulus artifact. Artifact is then removed
by summing the responses to the abovementionedilsiine., masker, probe, and masker plus

probe).
Coherent averaging (CA), also called ensemble gusgais a commonly used technique to
recover evoked responses from recording noise #met gignals that are not correlated to the

evoked response and degrade the signal-to-noige (8IR) [52-54]. The CA is based on the
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principle that the response to the applied stimukmmains invariant throughout the entire
stimulation, which is generally true for stimulatidrials lasting for only seconds. Fig. 1.8
illustrates the principle of CA technique [52]. Asse that a series &f equidistant and identical
stimuli are applied, ang;(t) is the output signal after the i-th stimulus tbahtains response

r;(t) and noise;(t), i.e.,y;(t) = r;(t) + n;(t). The coherently averaged sig§dt) is the time-

aligned averaging of all output signals from N stimnamely,y(t) = %ZiN:lyi(t) =7r(t) +
%ZiNzlni(t), based on the invariance of responée (i.e.,r(t) = r(t) = - =ry(t)). The

random noise plus uncorrelated sign&e@}\’:lni(t) will then be averaged toward zero. CA is

also equivalent to a low-pass finite-impulse-regmoi(FIR) filter. Detailed descriptions and

eguations can be found in [52].

In short, ECAP is a direct and objective measurdéraknerve activity and function and has been
adopted as a biomarker in various diagnoses ofaheliseases [49, 50] and closed-loop ENS
systems such as previously mentioned cochlear mtgpnd ANC platform, in combination with
the stimulus-artifact-rejection techniques and @ .recording, processing and characterization
still present challenges yet deserve more studiesriprovement of neurological therapeutics.

1.5 Real-Time Digital Signal Processing for Closed-L oop Neurostimulation

As mentioned in Section 1.1, closed-loop neurodfimn requires continuous monitoring of
physiological signals from patients and stimulat@innervous system with stimulus strength
constantly adjusted in response to changes in dedosignals, which, until today, is achieved
with medical equipments connected to patients xtaraeal cables in most clinical treatments.
This is problematic, as these equipments and satup are generally costly in time and money,
and most importantly, the transcutaneous cable exion between nervous system and
equipments results in not only patient's discomborttalso the risk of injury or inflammation on
nerve, which degrades the quality of treatmentse Phogress in consumer electronics and
semiconductor technologies has thus promoted theslalement of wireless wearable (or
implantable) devices for various closed-loop netimogation systems in commercial off-the-

shelf (COTS) components or application-specifiegnated circuits (ASICs) [55-59].

28



Power Management Unit

7 2N Recording AFE
Co L BECL LI NA ADC || | Wireless Y
% il Module
I\ :"i’: \\l sTIM _ Control
U e Neural Stimulator | Unit
“1‘ j|.

Fig. 1.9 High-level block diagram of a typicaireless wearable (or implantable) device
closed-loop neurostimulation.

Fig. 1.9 illustrates the high-level block diagrafmactypical wireless, wearable (or implantable)
closed-loop neurostimulation device. Neural sigfiasn central or peripheral nervous system as
well as other physiological signals (e.g. EEG, EGE} recorded and digitized with neural
amplifier (NA) and analog-to-digital converter (AD@n recording analog front-end (AFE),
respectively. The wireless module provides a batfiomal communication interface, by which
digitized data from ADC are transmitted and usene@mnds are received. Electrical stimuli are
generated with the neural stimulator accordingheostimulus parameters decoded from received
user commands by the control unit, and deliveretitgeted nerve or brain areas. The device is
powered using battery or wireless power transfePT)y and the power supply of each building

block is generated with the power management unit.

In order to extend the lifetime of battery and a@vekcessive density of WPT that can heat up
and damage tissues, power consumption is alwayfirtieconsideration in designing wireless
devices. The Federal Communications Commissiorricestthe maximum power density of
electromagnetic field to 6 W/at 915 MHz and 10 W/frat 2.4 and 5.8 GHz [60]. On the other
hand, the resolution of neural or physiologicalnsig recorded from wireless device and the
corresponding data transmission rate must be mghgh for users to distinguish the change in
signals and adjust stimulus parameters accordikgly.instance, a 192-kbps sampling rate per
channel (8 bits x 24-kHz sampling frequency) isuregg for recording of action potential (also

called "spike") from a neuron, and the resultingadeate of a 64-channel wireless neural
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Fig. 1.10 lllustration of a real-time digital sgjrprocessing (DSP) engine on a wireless device.

recording device is as high as 11.71 Mbps [61].ddohately, continuous transmission of
recorded raw data at high rate is power-costlytlier wireless module dominating the power
consumption of wireless device. For example, th@gvgaconsumption of a Bluetooth transceiver
during transmission can reach up to 102.6 mW (57 ahA.8-V voltage supply) at 0.72-Mbps
data rate [62]. Besides, data transmission at hadda results in high data error rate that also
degrades the fidelity of recorded signals. As tisdimited room for improvement in the power
dissipation of wireless module, a better approaxisaving power cost of wireless device in
closed-loop systems is to reduce the data rateewice by sending only key information in

recorded signals relevant to stimulation adjustment

A real-time digital signal processing (DSP) enguepable of decoding recorded neural or
physiological signals can effectively reduce theadeansmission rate of wireless devices, and its
role on a wireless device is illustrated in Fig.QL.Digitized data from ADC are processed by the
DSP engine in real time, and only the detected tsvenextracted features on recorded signals
are transmitted by the wireless module at full hetsan, based on which the stimulation intensity
is adjusted. Such DSP engine can be implementadiarocontroller, field-programmable gate
array (FPGA) or ASIC, on which the DSP algorithmgstbe computationally efficient in order
to minimize the implementation cost. Several exampf digital processor for neural signal
processing are given as follows. A spike-sortingPD&ip in 90-nm complementary metal-
oxide-semiconductor (CMOS) process is present¢@lihfor detection and feature extraction of
neuron spikes from 64 channels simultaneously, vhas a power dissipation of only 18o/

and reduces data rate from 11.71 Mbps to 1.02 Mbpeeural signal processor is proposed for a
32-channel neural recording system which utilizexréte wavelet transform (DWT) and run

length encoding (RLE) for neural data compress@8]j.[This processor, implemented in 130-nm
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CMOS process, consumes 8/ of power and reduces the maximum data rate @ehannel
neural implant to 1 Mbps. A general-purpose wirglBgin-machine-brain interface (BMBI) is
reported in [64], which incorporates a microcorimebased neural signal processor for digital
filtering, feature extraction, spike detection, asdmpressed sensing. In [65], real-time
algorithms for decoding of electroneurogram (EN@) ianplemented onto an off-the-shelf DSP
processor, which consist of denoising, spike detecspike sorting by template matching, and
classification. For optimal performance and loweeaa and power cost, very-large-scale
integration (VLSI) architecture for real-time DSRdaits implementation in either FPGA or

ASIC are usually preferred.

1.6 Motivation

There has been significant progress in developmiewireless wearable (or implantable) device
and real-time DSP algorithm and architecture fatotes closed-loop neurostimulation systems.
Surprisingly, today's closed-loop ENS systems thaasure ECAP as feedback biomarker, such
as the NRT system in cochlear implant and the n@ndposed ANC platform [35], still rely on
the offline processing of continuously recorded #@rashsmitted neural data on software. For
instance, the Nucleus CI24M cochlear implant inooafes a custom NRT software for post-
processing of received neural data [43], includimg SAR and CA techniques for recovery of
ECAP responses described in previous sections eatdre extraction from ECAP signals, and
similar signal-processing steps are implementedM&TLAB software in ANC. The required
data rate for transmission of neural data (e.g-l8ffs input data rate in ANC) will be too high
for wireless devices to work with these closed-l&¥S systems while satisfy the low power
demand. It's favorable to have a DSP engine for E(Q#ocessing that comprises SAR,
denoising, and extraction of features such as fibsponses described in Section 1.4, to reduce
the data rate of wireless device in these syst&mgLSI architecture of such DSP engine is

especially desirable for performance and hardwasé @ptimization.

Although CA technique has been widely adopted imyn&CAP-based closed-loop ENS
platforms for noise removal, its efficacy is strgndependent on the number of averaging (i.e.,
the number of stimuli). A large number of stimuhdahence long stimulus train duration is

needed to boost the filtering capacity of CA, whalko adds power consumption to wireless
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device due to increase in the length of data reegrdnd transmission time. Another deficiency
of CA is its limited ability to remove periodic rs@s, such as electromagnetic interferences (e.g.
60-Hz power line) and baseline wanders (causedaligmt's movement) which are prevalent in
neural recording, especially when periodic noisegiane-locked to stimulus pulses. Such noises,
if not properly eliminated, will introduce inaccasaonto biomedical features of ECAP (fiber
responses), which adversely influences the tunihgstonulus parameters in closed-loop
stimulation. Digital filters remove periodic noisesore effectively and can be efficiently
implemented in real-time DSP in finite impulse r@sge (FIR) or infinite impulse response (IIR)
structures [66]. Unfortunately, most digital fikkerespecially IIR filters which are more
computationally efficient, have nonlinear phasgoese; This causes phase-frequency distortion
of filtered signals (i.e., all frequency componeaitsnput signal shifted in time unequally) which
results in the deformation of ECAP waveform andatstures. It's possible to achieve zero-phase
filtering and hence avoid distortion of ECAP wawvefoby applying a filter both forward and
backward in time, which's also known as forwardKveard filtering [67]. However, this
technique requires a time-reversal operation orettige input data stream (i.e., all neural data
recorded during the stimulus train) and are sgelf@grmed with offline software processing today.
A distortion-free and computationally efficienttéiting technique for more effective periodic
noises removal and its VLSI architecture is esatftirealize a real-time DSP engine for ECAP

processing.

This thesis focuses on the design of a DSP engdécated to ECAP-based closed-loop ENS
systems, including NRT and ANC systems, and its MirShitecture. This real-time DSP engine
performs SAR and filtering to recover ECAP from 8tenulus artifact and noises and extracts
fiber responses from recovered ECAP waveform. Amaationally efficient filtering technique

named bidirectional-filtered coherent averaging @& and its VLSI architecture is proposed
for real-time denoising of ECAP, by which periodigises are more effectively removed without
introducing waveform distortion. With the DSP erguteveloped in this work, data transmission
rate can be greatly reduced, which enables wiralesges to work with ECAP-based closed-
loop ENS systems at reasonable power cost. The BF@od removes periodic as well as
random noises more efficaciously, which helps imprthe precision of extracted biomedical

features (e.qg. fiber responses) and the performainclesed-loop stimulation.
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1.7 Outlineof Thesis

Chapter 2 presents a DSP architecture for real+tenevery of ECAP responses in NRT as well
as other ECAP-based closed-loop ENS systems, wduiokists of SAR via alternating-polarity
(AP) stimulation and denoising with the proposedCBFmethod. The principle of the BFCA
and its combination with AP technique is explainedd the VLSI architecture of BFCA
algorithm AP stimulation-based SAR are describegsign techniques such as folded IIR filter
and division-free averaging are presented for hardwefficient implementation. The stimulation
and recording AFE circuitry interfacing with the P$ also described. This DSP architecture is
implemented on FPGA and verified in in-vivo ENSdaits efficacy is evaluated in terms of

residual stimulus artifact, noise floor, and wavefalistortion.

Chapter 3 extends the work of Chapter 2 and prededr-response extraction engine (FREE),
the first real-time DSP engine designed for nextesation control in closed-loop ENS using the
ANC platform, to the best of our knowledge. Compotally efficient algorithms and VLSI
architectures are presented for extraction of filesponses from ECAP responses derived with
the DSP architecture in Chapter 2. A custom-madaraide wireless device is built in printed
circuit board (PCB) prototype that comprises a jmwer FPGA onto which FREE is mapped, a
Bluetooth transceiver, the stimulation and recaydii-E circuitry described in Chapter 2 and a
power-management circuitry, and can be powered avgimgle coin-cell battery. This wearable
device is integrated into ANC system to verify fiexformance of FREE. Both offline ama-
vivo experimental results show that compared with previsoftware-based processing in ANC,
not only does FREE help reduces the required datsmission rate of wireless device, but the
precision of extracted fiber responses is improthedugh the proposed BFCA. High-precision
fiber responses obtained from FREE contributesidcease in the accuracy of NAP construction
in ANC and hence closed-loop stimulation efficienBREE is also implemented in 180-nm
CMOS technology, whose total chip area is 19.98 mnal core power consumption is 1.95 mW
at 1.8-V core voltage and 16-MHz system clock rate.

Finally, Chapter 4 draws a conclusion to this themnd describes the future work for this
research. The output data rate of FREE can beefiurdduced by employing DWT and RLE for
compression of ECAP response, and its preliminasylt is demonstrated. All the computations
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in FREE can be implemented with the half-precisitwating-point arithmetic that provides

sufficient data precision whereas reduces the ctatipn costs. Wireless powering technique
can be further incorporated in order to make thelass device implantable, and the required
components in the power management unit are illtesdr Bluetooth transceivers with lower

power consumption may be adopted to reduce thealbyswer cost of the wireless device.
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2. ADSPARCHITECTURE FOR REAL-TIME EVOKED COMPOUND
ACTION POTENTIAL RECOVERY IN NEURAL RESPONSE
TELEMETRY SYSTEM

This chapter presents the first digital signal pesing (DSP) architecture for real-time recovery
of electrically-evoked compound action potentid&€APS) from stimulus artifacts and periodic
noises in bidirectional neural response telemeliRT) system. In this DSP architecture, a
bidirectional-filtered coherent averaging (BFCA) thmd is proposed for configurable and
distortion-free filtering of the ECAP waveforms,dathe alternating-polarity (AP) stimulation
method is utilized for rejecting stimulus artifacteerlapped with ECAPS, which can be easily
incorporated into the proposed BFCA method. Degaphniques including the configurable
folded infinite-impulse-response (lIR) filter andvidion-free averaging are also presented for
efficient hardware implementation. Synthesized &-bm CMOS process, the proposed DSP
architecture consumes 0.97-area and 2.38-mW power. The efficacy of the DSRitecture

in recovering ECAPs from recorded neural data coimtated by overlapped stimulus artifacts
and periodic noises is validatedimvivo electrical nerve stimulations. Experiment resahisw
that compared with the previous coherent averatgegnique, the proposed DSP architecture
improves the signal-to- noise ratio (SNR) of ECA#3ponses by 11 dB and achieves an 3.1%
waveform distortion that is 17.1x lower.

2.1 Introduction

Neural response telemetry (NRT) is an useful teplmito wirelessly measure electrically-
evoked compound nerve action potential (ECAP) fa study of the nervous system using
implantable devices [46]. The measured ECAP refigcthe activity of the nerve being
stimulated serves as an objective criterion fousttent of stimulus parameters in closed-loop
electrical nerve stimulation. Fig. 2.1 shows a @ntional bidirectional NRT system for closed-
loop stimulation [43, 68]. Bidirectional communicat between the host personal computer (PC)
and the radio-frequency (RF) transceiver on thelamtpis established with a base station (BS),
and instructions from host PC are sent to implautt decoded to deliver user-defined stimulus
train onto the nerve. Neural responses to the $itiane recorded and digitized on the implant,
and transmitted back to the host PC, on which filata the implant are processed to recover the
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Fig. 2.1 lllustration of Conventional bidirectidrreeural response telemetry (NRT) systems.

ECAP responses and stimulus parameters are adjddedis first introduced into the electrical
stimulation of the auditory nerve in cochlear imyta decades ago, which has been widely
applied in clinical treatment since then with 0260,000 patients implanted [40, 41]. A recently
proposed response-driven electrical nerve stimarighlatform, autonomous nerve control (ANC)
[35], provides another promising application areaNIRT. In ANC, ECAP responses to a pre-
defined stimulus are decoded to identify targetedva fiber response, and the stimulation
parameters are constantly updated according totianpapecific nerve activation profile to
control the activation level of nerve fiber. NRTsgym can be integrated into ANC for wireless
measurement of ECAPs, offering close-loop eledtneave stimulation on implantable devices
with improved efficiency.

On the implant of a conventional NRT system, nesighals are continuously sampled and
transmitted to host PC via RF transceiver durirggimulation trial that typically consists of a
pulse train with specific stimulation rate (numlmérstimulus pulses per second) and duration
[14]. As reported in [35], a 50-kHz sampling frequg and a 16-bit sampling precision (the
analog-input precision of USB-635Rational Instrumenfsare required to resolve ECAPs with
milli-volt amplitude after amplification, and thesulting data transmission rate will be 800 kbps
on the implant. Whereas RF transceiver dominates pibwer consumption of the implant,
continuous transmission of raw data wirelesslyuahshigh data rate is not only power-costly for
the implant, but also vulnerable to data loss ireless transmission that degrades the fidelity of
derived ECAP responses on host PC. A digital sigmatessing (DSP) hardware capable of
recovering ECAP response from recorded raw newata dnd extracting biomedical features of
interest is thus welcome for minimizing data trarssion rate in NRT systems. Fig. 2.2 (a)

illustrates an NRT system with the above- mentioD&®P hardware, and details on the DSP unit
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Fig. 2.2 (a) The NRT systems with a digital sigpabcessor. (pDetails of stimulation ar
recording analog front-ends (AFE) and digital sigmacessor on the implant.

and the stimulation and recording analog front-6NEE) on the implant are plotted in Fig. 2.2
(b). Based on the stimulation parameters in theodied instruction received from host PC, a
digitized stimulus waveform is generated from thienglation controller on DSP unit and
converted to a current stimulus on the stimulagtectrode by the digital-to-analog converter
(DAC) and the current pump (CP). Neural signalseisponse to the stimulus are picked up by
the recording electrode in the neighborhood, caori#d by neural amplifier (NA) and digitized
by analog-to-digital converter (ADC). On the DSPitudigitized raw neural dataRD) are
processed to obtain the ECAP response to the dpglimulus train, and biomedical features
such as nerve fiber responses on the ECAP arectedrand transmitted back to host PC.
Developing a hardware architecture for real-timeAPCrecovery is the first step to the
realization of the above-mentioned DSP unit, arel rdquired signal-processing steps will be

described later.

One challenge in ECAP recovery is the accompanginglectrical stimulus artifacts [51]. In
implantable devices, a limited conduction distafioe, the distance between stimulation and
recording electrodes) usually results in the oygilag of stimulus artifacts with ECAP

responses, necessitating the utilization of stiswddifact rejection (SAR) techniques on the
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DSP unit. While many techniques for stimulus actifeejection have been reported [69-73],
those implemented in DSP hardware are first reviewa template subtraction method, a
template of artifacts is derived from a series wfepstimulus artifacts recorded in sub-threshold
stimulation, and recorded neural data is subtraojethe template signal to remove the stimulus
artifacts. A hardware implementation of this methedreported in [74], where a low-cost
infinite-impulse-response (IIR) temporal filter hrtecture is utilized for template generation.
Another template generation method based on adafitiering and its hardware implementation
is proposed in [75]. The main disadvantage of temeplsubtraction is that in real-time
stimulation, it's difficult to obtain an artifacmplate free of overlapped ECAP responses in the
absence of accurate estimation of ECAP threshdie. forward masking method [45, 76, 77]
aims to generate a pure stimulus artifact durirgréfractory period of nerve by utilizing a two-
pulse stimulus, a high-amplitude masker pulse va#id by a probe pulse. This pure stimulation
artifact is then properly time-shifted and subteactrom recorded neural signals. Without prior
knowledge of the refractory period of nerve beitighnslated, however, this method fails if the
probe pulse isn't completely within the refract@mriod, which induces artifacts plus ECAP
responses. The alternating-polarity (AP) stimulatimethod [76], based on the fact that flipping
stimulus pulse changes only the polarity of stisudutifact instead of ECAP response, utilizes a
cathodal pulse followed by an anodal one that hasame amplitude and opposite polarity. The
resulting artifacts, which are identical in shapd apposite in polarity owing to the symmetry of
stimulus pulses, cancel with each other by sumrthiegcathodal and anodal responses within a
period of biphasic stimulation. AP stimulation fe&s low complexity and has been proved
effective in removing artifacts overlapping with EE responses [35], and hence is preferred for

implementation of real-time SAR on DSP hardware.

Another challenge in ECAP recovery is the presarigeeriodic noises such as electromagnetic
interferences and baseline drifts which are comgnentountered on the implants. Although the
coherent averaging of neural data is equivalena tlow-pass filter, as reported in [52], its
performance is limited by the number of averagiygles, and fails to effectively remove
periodic noises, especially those time-locked btmus pulses. A programmable digital band-
pass filter is necessary to periodic noise remov&#CAP whose frequency spectra varies with

both nerve fiber distribution and conduction dis&r{78]. The major problem with digital
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filtering, however, is its nonlinear phase respoasd the resulting frequency-dependent phase
shift on filtered ECAP responses [66], which digdsoth ECAP waveform and its biomedical
features, especially the latency of nerve fiberpoeses reflecting distribution of nerve
conduction velocity [37, 79]. The waveform deforroatcaused by nonlinear phase response of
digital filters can be circumvented with zero-phéittering (ex: filtfilt function in MATLAB).

So far, this technique is only implemented on tbvwsare, which requires the entire raw data
stream to be transmitted to host PC for offlinecpssing. Wavelet filtering based on wavelet
decomposition and reconstruction has been proviedtefe in removing low-frequency noise
whereas maintaining the waveform shape and has bdepted for denoising of various
biomedical signals [80, 81]. A hardware efficieery-large scale integration (VLSI) architecture
of wavelet filtering is also presented for its readle DSP implementation [82]. Nevertheless,
unlike conventional digital filters, the programnildi of passband in wavelet filtering is strictly
limited due to the intrinsic property of discretawelet transform [83], making it unsuitable for
filtering of ECAP. For real-time ECAP recovery,istessential to develop a programmable and

distortion-free filtering strategy and its compudatlly-efficient hardware implementation.

In this chapter, we present the first DSP architector real-time and distortion-free recovery of
ECAPs from stimulus artifacts and periodic noisedidirectional NRT systems. In this DSP
architecture, a bidirectional-filtered coherent raging (BFCA) method is proposed for
configurable and distortion-free filtering of theCEP waveforms, and the AP stimulation
method is utilized to reject stimulus artifacts dapped with ECAPs, which can be easily
combined with the BFCA method. For hardware-effitienplementation, both the architectures
of configurable folded IIR filter and exponentiallyeighted moving averaging (EWMA) [84]
are presented. Synthesized in 180-nm CMOS protesgroposed DSP architecture consumes
0.97-mnf area and 2.38-mW power. This DSP architecturesget inin-vivo electrical nerve
stimulations to verify its efficacy of removing alepped stimulus artifacts and periodic noises.
Compared with the previous coherent averaging iqaen the proposed DSP architecture
improves the signal-to-noise ratio (SNR) of ECABp@nses by 11 dB and achieves an 3.1%

waveform distortion that is 17.1x lower.
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This chapter is organized as follows. Section 2&cdbes the principle of bidirectional-filtered
coherent averaging (BFCA) method for distortiorefrartifact and noise removal on ECAP.
Section 2.3 describes the proposed DSP architetduneal-time ECAP recovery. Section 2.4
presents results of FPGA and CMOS implementatioth@fDSP engine and its verification via

in-vivo experiments, and Section 0 draws a conclusiohisfwork.

2.2 Bidirectional-Filtered Coherent Averaging

Coherent averaging is a useful method to extracke&y neural responses [52]. In this method, a
stimulus train consisting of a series of identi@atl equidistant stimulus pulses is applied to the
nerve. It's assumed that the nerve response teame stimulus pulse in a stimulus train is
invariant, which is generally valid for a stimultrain lasting for only a few seconds. An ECAP
response to a stimulus train is obtained by sysieaily aligning and averaging of all evoked
responses to a single stimulus pulse. During thezaming process, random noise components
recorded with ECAPs are summed toward zero, cariinp to a higher signal-to-noise ratio
(SNR). Coherent averaging can be easily combingd AP stimulation method for SAR, in
which an artifact-free ECAP response is attainedirsy aligning and summing the cathodal and
anodal responses within an AP stimulus period aiently averaging the summed waveform

of all AP stimulus cycles [35].

A linear-phase programmable filter before cohees@raging is applicable to eliminate periodic
noise interferences whereas avoid distorting EC/AReforms in recorded raw neural data [85].
The simplest way to realize linear phase filtertislesign finite-impulse-response (FIR) filters
with symmetric or anti-symmetric impulse respong@& 87]. Under the same frequency band
and magnitude response specifications, however, fii#ts require much higher order than
infinite- impulse-filter (lIR) filters and thus mercomputation costs. Several methods to derive
an IR filter with desired magnitude response apgraximately linear phase in its pass band
have been reported in [88]. Nevertheless, thes@adstrequire either an order increase in IIR
filters or another filters to compensate the phasalinearity of IIR filters, both of which
degrade the computation efficiency of original fiRers, and their applications are limited to
specific type of filter design due to a partiallglid linear-phase relationship. Powell and Chau

[89] proposed the linear-phase filter structure lenpented with an IIR filter with transfer
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functionH(z), cascaded by the same filter in time-reversedroifigz 1), which are realized
using the local time-reversal of input data ofefilt/(z). Powell and Chau's filter structure
provides an exact linear-phase relationship overetfitire frequency band while preserving the
computation efficiency of an IIR filter, and can @gplied to arbitrary IIR filter$l (z) designed
with magnitude specification only. Another attraetfeature of Powell and Chau's method is the
utilization of block processing techniques, whereaatinuous input data stream is equally
divided into finite sections, and each sectionidirbctional-filtered with both (z) andH (z™1).
Without the requirement for additional data stordgleck processing can be easily combined
with the coherent averaging technique, where caotisly recorded raw neural data are
segmented into individual responses to a singheuwtis. In this chapter, by integrating coherent
averaging with Powell and Chau's linear-phaserfiftieucture, we propose the bidirectional-
fillered coherent averaging (BFCA) and its efficidrardware implementation for real-time,

linear-phase filtering of ECAP responses.

Fig. 2.3 (a) illustrates the proposed BFCA methaddistortion-free artifact and noise removal
on ECAP, where TR and CA denote time-domain oraensal and coherent averaging,
respectively. Recorded raw neural data from AFEplated in Fig. 2.3 (b), consists of a series
of ECAP responses evoked by an AP stimulus pubse,tas well as stimulus artifacts and
periodic noise interferences. The raw dd&®) is continuously filtered by filteH (z), whose
outcome versus raw data before filtering are pibiteFig. 2.3 (c). For each AP stimulus cycle,
both the cathodal and anodal parts of continuoiiisyed raw data are sampled with a window
time-locked to stimulus pulses, and the windoweth gae reversed in time-domain order, as
shown in Fig. 2.3 (d). By summing windowed cathodall anodal responses, the stimulus
artifacts, which are symmetric and aligned on taris, are cancelled to restore the ECAP within
an AP stimulus period. The ECAP response to apgigdulus train is computed by averaging
ECAP of all AP stimulus cycles, referred as the m&CAP (uCAP) response. The above-
mentioned process is equivalent to the coherentagirey of continuously-filtered and time-
reversed raw data, as illustrated in Fig. 2.3 Tdde uCAP response in reverse-time order is
fillered with the same respongf(z), as shown by Fig. 2.3 (e), and converted back to
continuous-time order with another TR operatiomy. 2.3 (f) shows an ECAP response derived

by applying BFCA on the raw data superimposed bjode noises as seen in Fig. 2.3 (b), and
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the original noise-free ECAP. It can be seen tipgtiyang BFCA effectively removes periodic
noises on recorded raw data, and the resulting E@&Rform is exactly the same as that of the
original ECAP.
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Fig. 2.3 Principle of the proposed bidirectiondiefed coherent averaging (BFCA)ethoc
combined with the alternatingplarity (AP) stimulation method for stimulus aaiit rejectio
and distortion-free denoising of ECAP.
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Fig. 2.3 continued.

A linear-phase relationship of BFCA shown in Fig3 2a) can be verified with its Discrete-Time
Fourier Transform (DTFT). The DTFT of filtering press is expressed as

Y:(e/®) = H(e/?)Xx(e/?),

Y,(e/?) = H(e/?)Y;(e/?). (2.1)
whereH(ef“’) Is the DTFT of filter responsé(z). The TR operation in Fig. 2.3 (a) is defined as
y2(n) = y1(—n),

y(n) =y, (—n), (2.2)
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and its DTFT is given by

Y,(e/?) = 1,(e™/?),
Y(ej“’) = Y4(e_j“’). (2.3)

Assume that a stimulation train consistdNgf AP stimulus pulses and, the time interval between
cathodal and anodal stimulus pulsesTisThe coherent averaging (CA) of filtered and time-
reversed raw data in Fig. 2.3 (a) is defined as

ys(n) = 5= SR ya(n + KT)
1 _
= y2 () * 5 =T8T S(n +KT), (2.4)

where * denotes convolution operation. The equivalienpulse response of CA is expressed as
1 —
hea() = =X, L57 7 8(n +kT), (2.5)

and its DTFT, as derived in [52], is given by

sin(wTNgr)

joy = 1
Hea(e™) 2Nst sin(%wT) ' (2.6)
The DTFT of (2.4) can thus be written as
Ys(e/?) = Hea(e/?) Y, (/) . (2.7)

By summarizing (2.1)-(2.7), the transfer functidrBé&CA can be derived:
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Fig. 2.4 Block diagram of the proposed DSP archite for real-time ECAP recovery.

Y(ej“’) = HCA(e_j“’)H(e_j“’)H(ej“’)X(ej“’)
= Hea(ed®)|H(e/2)|" X (e72),

Hprca(e/®) = ;Eijg = Hea(e7?)|H(e™)[", (2.8)

where the relationshific,(e™/©) = Hc4(e/?) can be verified from (2.6). It can be observed in

(2.8) that the transfer function of BFCHBFCA(ef“’), is real and positive. Therefore, no
frequency-dependent phase shift will be introdudsd BFCA, and the shape of ECAP
waveforms characterizing the distribution of nepanduction velocity can be preserved after
applying BFCA to raw neural data. Moreover, the BF€hables the filteH (2) in Fig. 2.3 (a) to

be realized with an infinite-impulse response (liffder regardless of its nonlinear phase
response, which saves more computation resoureeslittear-phase FIR filter under the same

filter specification.

2.3 Architecture Design
2.3.1 System Overview

Fig. 2.4 shows the proposed DSP architecture fartnme ECAP recovery. The clock generator
derives all clock signals from an external systdatic Two SPI masters Sk and SPApc
control the DAC and ADC in AFE for stimulus genésat and neural data acquisition,
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Fig. 2.5 Generation of the alternating-polaritynstius pulse and time-locked windowing
control in stimulation controller.

respectively. All system parameters, including shimulation control and filter coefficients, are
decoded from instructions serially loaded via th®RT interface and stored into the parameter
register. Based on received stimulation parametkeesstimulation controller derives the digital
codes of the AP stimulus pulse train which are dogbnerated in AFE, and controls the time-
locked windowing of raw data in BFCA. The raw datan the ADC are sampled at 50 kHz and
digitized to 16 bits as required in [35]. The BFCdére, which is the hardware implementation of
the proposed BFCA algorithm, compute the ECAP respdo applied stimulation trial from
digitized raw data. A configurable output buffelaiso included, which selectively outputs either
filtered raw dataRDrj;) or ECAP responses according to the user's camfiigm, and its output
data are then serially transmitted with the UARTeiface. Filtered raw data are transmitted in
the beginning stimulation trials, by which users @heck the balance between cathodal and
anodal stimulus artifacts to ensure successful ustisn artifact cancellation. Once balanced
stimulus artifacts are verified, only the artifac@nd noise-free ECAP responses will be

transmitted to users for further analysis.

2.3.2 Stimulation Controller

The stimulation controller is clocked at 1-MHz fumipcy to provide s time resolution for
stimulus pulse train. Fig. 2.5 shows the parametersAP stimulus pulse generation. The
number of AP pulses per traiNld7) and the interphasic delalPD), i.e., time spacing between

cathodal and anodal pulses, are determined by ks pepetition frequencyPRF and the
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Fig. 2.6 Schematic of the BFCA core.

stimulus train duration tf,n) using the relationshipNg; = (PRF - tiygqin) and IPD =
1/(2- PRF), both of which are computed offline. Both the pulsidth W) and IPD are
represented in microseconds and stored into thepeer register as integers. The mid-code of
the DAC in the stimulation AFE is assigned to the Bvel of a stimulus pulse traiDCsy), and

the digital code of the stimulus pulse amplituddVPsy) is determined offline by the desired
current amplitude and the voltage-current relatigmof the current pump in AFE. A signed
parameter "amplitude calibrationAPca) is added to anodal pulse amplitude in order tetu
its resulting artifact amplitude for balance. Ntbat a series oNsgr settling cycle where no
stimulus is applied (i.eAMPst= 0) is appended before the AP stimulus train in ottt the

baseline current at the stimulation channel is fitabilized before the stimulus train starts.

The control signal for time-locked windowing of leatlal and anodal responses in digitized raw
data is also generated in the stimulation controfs seen in Fig. 2.5, a windowing-start signal
WINEN: s launched at the rising edge of each stimulusepto start the windowing of recorded

raw data. The cathodal and anodal stimulus artifatteach AP stimulus pulse can thus be
aligned on the time axis, as seen in Fig. 2.3 4dy] cancelled during the coherent averaging

process.
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2.3.3 BFCA Core

Fig. 2.6 shows the schematic of the BFCA core. ti2igd raw data from ADC in unsigned
integers are converted to two's complement forngaguitracting them bipCgreg the mid- code

of ADC (32768 for 16-bit ADC precision) correspongito the common-mode voltage of
recording AFE as will be described later. To avavgrflow in fixed-point computation [90], the
word length of data paths in BFCA core are setQobf®s. The signed raw data are filtered
continuously with the forward filtedHorFilt), and its cathodal (CA) and anodal (AN) parts are
windowed and stored into two last-in-first-out (OF registersLIFO_CA and LIFO_AN
respectively. Note that the windowing of the fitdrraw data is started after the settling cycles
Nser, when the outputs of the forward filter are selttl®vhen windowed raw data are being

stored into corresponding LIFO registers, its nealdC offset is calculated:
1 Nyin—1
DC = mZTL:O x(n) , (29)

wherex(n) is the windowed raw data, ahj;, is the windowing length which's set to a power of
2 such that division byN,in can be accomplished with right-shifting. Fig. Zkows the
schematic of the DC calculator in Fig. 2.6 for Dffset calculation of windowed cathodal and
anodal raw data using (2.9), where the precisiothefaccumulation register is extended to 30
bits. The windowing lengtiN,i, is determined by théPD of the AP stimulus. At 50-kHz
sampling frequency, the value N, is programmable from 256 to 1024 to support a man
PRF of 80 Hz, and the maximum windowing length is 30ms, which is sufficient to cover the
nerve fiber responses with slowest conduction vglao ECAP response given a conduction

distance less than 10 mm [35]. The cathodal andan@sponses stored in LIFO registers are
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time-reversed, subtracted by their DC offsets, anthmed to obtain an artifact-free ECAP
waveform, denoted as the summed wesj( The uCAP is calculated by averagi@ys of all
AP stimulation cycles using exponentially-weightedoving averaging (EWMA), whose
principle will be described later. The updated agarg of SWfrom EWMA, denoted as the
averaged waveAW), is stored into the LIFO registetFO_AVG When the averaging process is
completed at the end of a stimulus train, AW s filtered in time-reversed order by the reverse
filter (RevFil). The outcome of the reverse filter, denoted asfilkered wave EW), is stored
back to thdLIFO_AVGand converted to forward-time ECAP as plottedio B.3 (f). Both the
forward filter and reverse filter are implementedliR filter structures with input and output
word-length of 20 bits and internal word-length2@f bits for overflow prevention, and have the
same filter response by sharing the identicalrfitteefficients. Filter coefficients stored in the
parameter registers are quantized to 16 bits amgr@mmable online according to the frequency

spectrum distribution of ECAP responses.

The impact of quantization noise on the BFCA aldponi is evaluated by comparing the
performance of BFCA algorithms in the fixed-poimégision specified in Fig. 2.6, versus that in
floating-point precision. A set of offline-recordeaw neural data obtained from 40 stimulation
trials is quantized to 16-bit precision and fedoifioth floating-point and fixed-point BFCA
algorithms. The signal-to-quantization-noise ré8QNR) of ECAP responses obtained from the
fixed-point BFCA algorithm is defined as

SQNR = 20logy, (S'N”#) , (2.10)

Qrms

with St andNg denoting the reference ECAP output in floatingap@irecision and quantization
noise, respectively [90]. The averaged SQNR obthinem 40 raw neural data is 37.11 dB,

which is sufficient for the discrimination of nerfiber responses on ECAP waveforms.
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Fig. 2.8 (a) Time reversal via LIFO register and (b) its lerpentation with a twgort SRAV
and two binary up/down counters.

CLK

Fig. 2.8 (a) illustrates the time reversal of relgal data using a LIFO register [89], wh&i@n)
denotes the n-th time index of input data in thie gtimulation cycle, andlly is the windowing
length. The input data of the j-th stimulation &dre written sequentially into LIFO from the

top port, and the previously stored data in thi){jh cycle are read out from the bottom port in
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reverse-time order. To reverse the order of datd-mit, the port-swapping contr&@\B of the
LIFO register is switched in the next cycle, flipgithe write-in and read-out direction of the
LIFO. In the (j+1)-th stimulation cycle, data stdr@ the j-th cycle are read-out from the top port
and thus in reverse-time order, and input datahef(j+1)-th stimulation cycle are written into
the LIFO via the bottom port. Such time-reversaragion is maintained by flippin§WPof the
LIFO for each stimulation cycle. Fig. 2.8 (b) shothie implementation of a LIFO register using
a two-port SRAM (one read port and one write parith single clock signaCLK, and two
bidirectional counter€NTWandCNTRfor the write and read addresses generation, wdnieh
activated by the write-enabl®/EN and read-enabldREN signals of the SRAM, respectively.
The counting direction of counters is controlled thg SWP of the LIFO: whenSWP = 0,
activated counters are initialized to 0 and incnet@é to (Nw-1); when SWP = 1, activated
counters are initialized tNw-1) and decremented to 0. Data access order on SRAIVbea

reversed via switching @WR and the time-reversal operation is thus achievethe LIFO.
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Fig. 2.9 shows the timing diagram of the BFCA clmrecontinuous BFCA operation, whefle |)
denotes the j-th AP stimulus cycle in the k-th siimtion trial, and/V andR represent data write-
in and read-out of a LIFO register, respectivellge Windowed cathodal and anodal responses
from the ForFilt output in the j-th stimulus cycl&€A(k, j) and AN(K, j) are written into the
LIFO_CAin the cathodal phase and tH&O_AN in the anodal phase, respectively. In the (j+1)-
th AP stimulus cycle, whe@A(k, j+1) and AN(k, j+1) are written into the.IFO_CA and the
LIFO_AN, respectively, both the previously stored respsyGA(K, j) andAN(k, j) are read out
time-reversely in the cathodal phase by flipp8\yP_RDthe port-swapping control of both the
LIFO_CA andLIFO_AN Within the cathodal phase of each stimulus cyitle,summed wave
SW(k, ) is calculated fron€A(k, j)andAN(k, j) and averaged with th8®W(k, j-J read out from
the LIFO_AVG using EWMA. Meanwhile, the averaged war®V(k, ) is written into the
LIFO_AVGtime-reversely. In the first cathodal stimulus leyof the (k+1)-th stimulation trial,
the averaging of albWs in the k-th stimulation trial is completed, whghepresented asW(k,
Ns7). TheAW(k, Ny7) is filtered time- reversely with thRevFilt and the filtered wavEW(K, Ns7)

is stored back into thelFO_AVG In the 1st anodal stimulus cycle, the ECAP respaf the k-

th stimulation trial is outputted in continuous-&norder by reading olEW(k, Ns7) from the
LIFO_AVG with its port-swapping contradBWP_AVGilipped. While data stored in the k-th
stimulation trial are read out from LIFO registedsring the 1st AP stimulus cycle, the
continuously filtered raw data of the (k+1)-th stilation trial, CA(k+1, 1)andAN(k+1, 1) are
also windowed and written into théFO_CAandLIFO_AN, respectively. Therefore, no halting
of raw data stream is required by the BFCA coreiclvlenables the ECAP response of each

stimulation trial to be calculated continuously

2.3.4 Exponentially-Weighted Moving Average

Let CA(j, n) and AN(j, n) denote the windowed cathodal and anodal respanste j-th AP

stimulus cycle, respectively. The summed waS@j(of the j-th stimulation cycle is calculated

by

SW(j,n) = (CA(,n) — DCex) + (AN(j,n) — DCap), (2.11)
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whereDCca andDCay denote the residual DC offset©A(j, n)andAN(j, n) respectively. An
UCAP response calculated via arithmetic averagfrall &\ is expressed as

uCAP(n) = NLSsz.Vg SW(j,n), (2.12)

where Nst Is the number of AP stimulus cycles per stimulativbain. The calculation of
arithmetic averaging, however, requires a dividerobtain the reciprocal oNsy, which is
hardware costly and not supported by most FPGAsadays. A division-free calculation of
uCAP is achievable by replacing the arithmetic megth an exponentially-weighted moving
average (EWMA) [74]. The EWMA bW is defined as
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SW(@G,n), j=1

AW (jn) = {(1 — Kewa) "AW( — L,n) + Kgwa - SW(,n), j> 1

(2.13)

whereAW(j, n) the averaged wave as described earlier, is thMMEWF SWs from the firs§ AP
stimulus cycles of a stimulus train. The uCAP remmois thus the EMWA d&\Ws from all AP
stimulus cycles, i.eyCAP(n) = AW(Ny, n). The weighting coefficient of EWMA in (2.13),
Kewa IS adjusted to the number of AP stimulus cychs)(and calculated by

Ngs = |log, Nsr] ,
KEWA = Z_NRS. (214)

It's worth mentioning that the number of right-gihi§ (Nrg in (2.14) is equivalent to the number
of bits after leading-one in the binary expressidriNst and thus can be easily calculated. For
example, arNst equal to 20, whose binary expression is "10100i, giwve Ngrs= 4. Since the
value ofKgwais a power of 2, the multiplication B$gwain (2.13) is done by right shifting. The
computation of EWMA requires only right-shifting daaddition and hence can be implemented
on the hardware efficiently. Fig. 2.10 (a) illusésthe schematic of the EWMA calculator. Both
the SWcalculated with (2.11) and th®W of the previous AP stimulus cycle which is read ou
from LIFO_AVG register are right-shifted birs derived from the lead-one detector, and
summed to form an updatédV. Fig. 2.10 (b) shows the combinational logic inmpéntation of
the lead-one detector. The binary expressiomNg&fin 16-bit precisions is bit-reverse®4\),
inverted, and incremented by In€). The number of bits after leading-one N (PO9 is
derived via exclusive-OR (XOR) d®evandInc, which is expressed in thermal code, and the
number of right-shiftingNlr9 can be obtained via the bit-summingR&S

2.3.5 Configurable Folded IIR filter Design

Both the forward filter and reverse filters in BECA core adopt an eight-order IIR filter, which
is implemented with 4 cascaded bi-quadratic (biguilifilters [91]. The difference equation of

a direct-form Il [66] biquad IIR filter stage is itten as
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Fig. 2.11 A conventional configurable 4-stage fileer

{d(n) =x(n) — Y= axd(n — k) (2.15)

y(n) = Xi=o bed(n — k) ’

wherex(n) andy(n) are the input and output signals, respectively anandby are the filter
coefficients. Fig. 2.11 shows the conventional enpéntation of an eight-order IIR filter with 4
cascaded biquad filter stages, each of which reg&rmultiplications and 4 additions. The input
and output of the eight-order IIR filter are muliggl by the input-scaling constari() and
output-scaling constanKgyr), respectively, to save the internal word-lengthbimuad filter
stage while avoid overflow. The eight-order IIRdil in Fig. 2.11 requires 22 multiplications and

16 additions, which is excessive and not feasitalét$ hardware implementation on the FPGA.

To further save the implementation cost, foldinghteque can be utilized for minimizing the
number of arithmetic units in lIR filters [92], aséveral folded IIR filter architectures have been
proposed [93, 94]. In our design, a folded direct¥ Il IR filter architecture modified from [94]
is presented, as shown in Fig. 2.12 (a). A singldtiply-add (MA) unit controlled by a faster
clock CLKg 7 is shared by 4 biquad filter stages, and &M& operation is performed per
CLKg LT cycle. For each biquad filter stage, th@) andy(n) defined in (2.15) are computed in
multiple CLKg Lt cycles, and the temporary outcomesd@f) andy(n) from the MA unit are
accumulated in two registeds andy;, respectively, which are also clocked by BeKg 1.

Delay elements of each biquad filter stage stoeedbmputedd(n) of the previous sampling
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clock (CLKsamp cycles, namelyl(n-1) andd(n-2) Fig. 2.12 (b) shows the timing diagram of the
folded eight-order IIR filter architecture. The utpsamples(n) and delay elements of each
biquad filter stage are first updated at the rissdge of the sampling clo&LKsavp and filtered
data are computed by 4 cascaded biquad filter staigéhe rate o€CLKg, r. The MA operation of

a biquad filter stage for computirdfn) andy(n) using (2.15) is shown in Fig. 2.12 (c), where
di(m) andyi(m) denote the value of accumulation regisikrandy; in the mth CLKg 1 cycle,
respectively. In the firsCLKg . cycle of each biquad filter stage, the input dfiquad filter
stagex(n) is stored into thek register. Note that in the first biquad filter gga aMA operation is
required in the firsCLKgt cycle to multiply input samplse(n) by K\y. Thed(n) andy(n) of a
biquad filter stage are calculated following thderspecified in Fig. 2.12 (c), and the resulting
d(n) andy(n) are latched in accumulation registérandy;, respectively, throughout the rest of
CLKg LT cycles. When the computation y(in) is completed, the next biquad filter stage will be
started, where the receivg(h) from previous stage is directly stored into theegister and the
calculation ofd(n) andy(n) are followed. In the forth biquad filter stage, extraMA operation

is required to multiplfKout with calculatedy(n) stored in they register. The rate of tHeLKg 1

is 32 times faster than that 6GLKsavp SO that computation of all biquad filter stages famished
within a CLKsawp cycle. When this folded IIR filter is disabledgetinput sample(n)is directly
passed to the filter output without alwhA operation.
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Fig. 2.12 (a) The proposed configurable, foldestalye IIR filter with shared multiplged (MA
unit, (b) its timing diagram, and (c) shared\ operation of a biquad filter stage.
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Fig. 2.13 Schematic of the output buffer.

2.3.6 Output Buffer

Fig. 2.13 shows the schematic of the output bufRwth the RDg; and computed ECAP
responses are quantized to 16 bits by preserviag thost significant partsi.¢., the most
significant 16 bits). In the first and last AP stilation cycles, the windowed cathodal and anodal
parts of theRDgj; are down-sampled by 4 and stored into a firsirst-but (FIFO) register
FIFO_RDwith word-depth of 1024, which provides to usérs information on both the settling
of stimulus train and the balance of stimulus acti$ in recorded neural data. The computed
ECAP responses from the BFCA core is directly stomto the 1024-word FIFO register
FIFO_ECAP The windowedRDrj; and ECAP responses are selectively read out agnieof
each stimulation trial according to user's configian and serialized into byte streams for serial
data transmission using the UART interface. TheQFtEgisters can be easily implemented with
two-port SRAM [95].

24 Experiment Results
24.1 Hardwarelmplementations

The proposed DSP architecture in Fig. 2.4 is mapedhe Microsemi IGLOO2 FPGA
(M2GL025) on the FUTUREM2GL-EVB evaluation boarchi§ FPGA was programmed using
Verilog and Microsemi Liber&@oC development software. The mapped architecenaines

6936 (25.04%) logic elements (LEs), 3035 (10.96%fJlip-flops (DFFs), 8 (25.81%) large
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Fig. 2.14 Power consumption of the Dfarchitecture in 180m CMOSprocess.

SRAMs (LSRAMS), eaclwith size of 1ix1024 bits, and 8 (23.53%)ACC units, each of which
contains an 1818 bits multiplier Synthesized in 180m CMOS process, the DSP architect
occupies 0.97-mfrsilicon area which's dominated by-chip SRAMs in the BFCA core and t
output buffer, andhe totalpower consumption i2.38 mW at 16-MHzysten clock rate and
1.62-V core voltagewhose deta is plotted in 0. Lowpower design techniques suct clock

gatingcan be applied to further reduce power consum.

Fig. 2.15 shows the circusichematic othe stimulation and recording ARRterfacing with the
DSP architecture. The DA®82, a 1-bit precision, micro-power, SRBmpatible serie
interface digital-tcanalog converter fronTexas Instrumentds used to convert the digitiz:
stimulus waveform into &oltage output. With the «-chip matched bipolar offset resistors,
DAC8832 can be configured to provi@ bipolar voltage output for thAP stimulus pulsi
generation by connecting an external operationallifier to its dedicated pin[96], as pointed
out in Fig. 2.15The DAC8832 can also be reset to a-scale codevhich correspondto 0-V
voltageoutput in bipolar mode. The OPA191 frcTexas Instruments chosen as the exterr
operational amplifier for DAC8832 owing to its higihecision 15-uV offset voltage and5-pA

input bias current), wide gain bandwidth (2.5 MHBb\W quiescer current (40 pA) and wide
supply range [97] A Howland current pump is employed and implemeénieth a LT6375
voltage-difference amplifieirom Analog Deviceg55]. A DC-blocking capacitor is used the

current pump to avoid direct current injecisinto nerves, and a resistor trimmer ranging fro
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Fig. 2.15 Circuit schematic of the stimulation aadording AFE.

to 1k Ohm (SMUA102PETOhmiItg is added before the LT6375 to balance the rasmtwork,
which helps the current pump achieve high commodaniejection ratio (CMRR) and high
output impedance [98]. The current pump is propddgigned to deliver up to 1.5-mA stimulus
current, and based on the analysis in [55], thegehbalance error of this current pump is less
than 0.3%, which's acceptable for generating symemstimulus pulses in the AP stimulation.
Neural signals are differentially recorded with apacitively-coupled precision instrumentation
amplifier (INA333, Texas Instrumentsand conditioned by an active filter constructedhva
micro-power, low-noise operational amplifier (OPA&3 Texas Instruments The recording
front end has a total gain of 500, and a bandwhdtim 1.6 Hz to 20 kHz, much wider than that
of ECAP responses to prevent the active filter fidistorting the ECAP waveforms in recorded
neural signals. Recorded neural signals are dagitiwith the ADS8860, a 16-bit precision,
micro-power, SPI-compatible serial interface analmgligital converter fronTexas Instruments
The supply voltage of both the LT6375 and OPA1¥%p) is +10 V, providing sufficient

headroom for the output voltage swing of the curmmp. The analog supply voltagér£r)
and common-mode voltag®dy) of two amplifiers are 3.0 V and 1.5 V, respediyyand the
digital supply voltage \(pp) of the ADC and DAC is 3.3 V.

24.2 In-Vivo Test Results

Fig. 2.16 illustrates the setup of-vivo electrical nerve stimulations for verification tie

proposed DSP architecture. Following the surgepcedure described in [35], the stimulation
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Fig. 2.16 Setup ohtvivoelectrical nerve stimulation for verification ofgposed DSP
architecture.

Y

and recording electrodes depicted in Fig. 2.2 foth of which are made of silicone cuff
electrodes, are attached to the left cervical vamguse of a male rat. These two electrodes are
connected to the differential stimulation and relaoy channels of the AFE, whose supply
voltages are generated with external power supplies programmed FPGA evaluation board is
powered at 5 V and controlled by the host PC vidJ&B-UART bridge on the board. Output
data from the DSP architecture are plotted with MAB R2016a software. A band-pass elliptic
filter with 0.2-3 kHz pass-band, 20-dB stop-banttratation and 0.1-dB passband ripples is
adopted in the proposed BFCA method, whose filteffecients are derived with the Filter
Designer in MATLAB.

A conduction distance of 8 mm is measured afteritmglant of electrodes, and a series of
stimulation trials with varying amplitude are apulito the nerve, whose parameters are listed as
follows: PW= 0.2 msPRF= 20 Hz and;,,;, = 1 s. The stimulus current amplitude is limited t
0.5 mA to avoid amplifier saturation during theasting of stimulus artifacts. Fig. 2.17 plots the
windowed raw data of two stimulation trials withnstilus current amplitude of 0.2 mA and 0.4
mA, respectively, where cathodal and anodal stiswadifacts are symmetric before and after
filtering. The corresponding linear-phase (LP)efiid ECAP responses are plotted against
unfiltered ECAP responses in Fig. 2.17 (b). Clealilyear-phase filtering of ECAP responses

using the proposed BFCA method can effectively cedperiodic noise interferences and
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preserve the waveform of ECAP responses, espedfalyamplitude and latency of peaks on

ECAP waveforms representing the activation levedestain nerve fiber groups [37].

To prove the validity of measured ECAP responseserees of stimulation trials are applied to
the nerve by varying stimulus amplitude from 0 nPAG5 mA with 0.05-mA increment. Fig.
2.18 (a) plots the linear-phase filtered ECAP resps computed by the FPGA against stimulus
amplitude, where twenty ECAP responses are cotlepgr stimulus amplitude. It can be seen
that consistent ECAP waveforms are measured uhdesame stimulus amplitude, and that the
responses of activated nerve fiber groups, disisiga by positive and negative peaks with
constant latency and amplitude proportional toapplied stimulus strength, are also visible on
measured ECAP waveforms. Fig. 2.18 (b) plots thpldémde growth function (i.e. peak-to-peak
amplitude versus stimulus strength) of fiber regesmmarked in Fig. 2.18 (a). The 3 peak groups
on ECAP waveforms are classified intg,Ad and C fiber groups, respectively, based on their
conduction velocity defined in [35]. Note that thesponse amplitude of C fiber drops slightly
after 0.3-mA stimulus amplitude, which may resutinfi its low positive peak amplitude at its

maximal activation level.
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Fig. 2.18 (a) FPGA measurement results of lindesp filtered EAP responses collected fr
stimulation trials with stimulus amplitude varyifigpm 0 to 0.5 mA. (b) Amplitude grow
function of nerve fiber responses designated bikgpea ECAP responses.

2.4.3 Efficacy Analysis

The efficacy of the AP stimulation method for stiobmuartifact rejection in the DSP architecture
is demonstrated by comparing the amplitude of dtiswartifacts in raw data and ECAP

responses from a total of 220 stimulation trial&ig. 2.18. In our analysis, the stimulus artiact

are defined as the waveforms within a 10-ms wingtavting from the onset of stimulus pulses,
as seen in Fig. 2.17 (a), and the root-mean-squas values of stimulus artifacts are calculated
for both raw data and ECAP responses. Fig. 2.1%(a) (b) plot the mean rms values of
stimulus artifacts in raw data and ECAP responsas the FPGA, respectively, under different
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stimulus amplitudes. Note that the mean rms vafukeonoise floor and its standard deviation in
Fig. 2.19 (b) is obtained from a 10-ms segment @AE waveforms containing no stimulus

artifacts and nerve fiber responses. While theldtimartifacts in raw data grow proportionally

with the applied stimulus amplitude as plotted ig.R2.19 (a), the rms values of the stimulus
artifact on recovered ECAP responses are approglynat6 times higher than that of the noise
floor for stimulus amplitude below 0.15 mA. As teémulus amplitude is increased above 0.15
mA, where nerve fiber responses are visible on E@aReforms as seen in Fig. 2.18 (a), the
rms values of stimulus artifact on ECAP responsesoé the same order of the amplitude of
nerve fiber responses plotted in Fig. 2.18 (b)sTihiplies that the stimulus artifacts overlapped
with ECAPs as seen in Fig. 2.17 (a) are succdgstihoved. The rms value of stimulus artifact

on measured ECAP responses is reduced by a fdct@bamn average.
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Fig. 2.19 Root-mean-square (rms) value of stimadgacts in (a) raw data and (b)CEP

responses measured from FPGA. The rms value oérilmer in (b) is obtained from a 1fis
segment on each ECAP waveform containing no stisattifacts or nerve fiber responses.
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Fig. 2.20 Signal-to-noise ratio (SNR) of linear-phase filéreersus unfiltered ECARsponse
measured from FPGA.

The performance of linear-phase filtering using pneposed BFCA method is quantified with
the signal-to-noise ratio (SNR) improvement and efarm distortion in ECAP responses. In
SNR analysis, only the ECAP waveforms from the FP€ataining recognizable nerve fiber

responses are considered. The SNR of ECAP wavefgrdefined as

SNR = 20 logy (S22), (2.16)

N rms

whereFRms andNF.ms are the rms voltage of nerve fiber responses amskriloor, respectively.
The value ofFRms and NFys are calculated from the first 5-ms interval of BE Avaveforms
containing nerve fiber responses and a 10-ms sdgmenECAP waveforms containing
background noises only, respectively. Fig. 2.2asplbhe mean SNR of unfiltered and linear-
phase filtered ECAP responses from the FPGA unifereht stimulus amplitude. For stimulus
amplitude above 0.2 mA, the SNR of linear-phastertld ECAPs is 20.8 dB on average,
whereas that of unfiltered ECAPs is 9.6 dB; thisiliimtes the discrimination of nerve fiber
responses on ECAP waveforms. In waveform distorioalysis, ECAP responses are recovered
from a set of offline-recorded neural data in [86perimposed by 60-Hz sine waves with -6-dB
SNR and random phase as periodic noises; the SNR@fvaves can be calculated with (2.16),

where the fiber responses are defined as thesfinss interval of the noise-free ECAP waveform
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Fig. 2.21 Waveform distortion caused by forwaltefing (ForFilt), coherent averaging (CA)
and linear-phase filtering via BFCAa) demonstration and (b) a quantitative comparissing
normalized mean-square error (NMSE) between filte@nd original noise-free GAP
waveforms.

in Fig. 2.21 (a). An example of the original nofsee ECAP waveform versus the ECAP
waveforms after the forward filtering (i.e., contous filtering of raw data before coherent
averaging only), coherent averaging, and lineasphidtering via the BFCA is given in Fig.

2.21 (a). The level of waveform distortion aftdtefiing is quantified with the normalized mean-

square error (NMSE) between the original and BiteECAP waveforms, which is defined as

Zn( n— n)z
NMSE = zn(xyn——yy)z (2.17)

wherex, andy, denote the samples of filtered and original ECA®&form, respectively. The
in (2.17) denotes the DC offset of the original BCWaveform which is calculated by

¥ =~Fadn (2.18)

whereN is the number of samples in ECAP waveforms anelisal to the windowing length
Nwin- Fig. 2.21 (b) plots the mean NMSE of ECAP wavef®nbtained with the forward filtering,
coherent averaging and BFCA in 66 trials. The NM8Eoherent averaging is up to 53.1%,
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Table 2.1 Comparison with other filtering techrequ

[80] [35] This work
Signal Neuron Spike ECAP ECAP
Filtering Wavelet Coherent BECA
Technique Filtering Averaging
Frequency
Selectivity No No ves
SNR (dB) 9 9.6 20.8
Waveform Iy 53.1 3.1

Distortion (%)

* The best cases of reported SNR and waveform rdisto
are listed here.

which results from its deficiency in removing pelio noises. The forward filtering removes
periodic noises better, but its NMSE is still 28.8Ue to the nonlinear phase response of IIR
filters. The NMSE of linear-phase filtering via tpeoposed BFCA method is only 3.1%. Table
2.1 shows a comparison of this work with otheefilhg techniques. Compared with the coherent
averaging method used in [35], the proposed BFCAhatk improves SNR by 11 dB and
achieves an 3.1% waveform distortion that is 17dwer. Beside, with its IIR filters that can
have arbitrary frequency response, the BFCA methrodides frequency selectivity which is
useful in characterizing the high- and low- frequeromponents of ECAP responses [99]. To
our best knowledge, this is the first DSP architextfor programmable and distortion-free
filtering of ECAP responses in real-time.

2.5 Conclusion of This Chapter

This chapter presented the first DSP architectoredal-time recovery of ECAP responses from
stimulus artifacts and periodic noises in bidirecél NRT systems. A BFCA method was
proposed for configurable and distortion-free fihg of ECAPs, and the AP stimulation method
that can be combined with the BFCA is utilized fejecting overlapped stimulus artifacts.
Design techniques including the configurable foldke filter and EWMA were also presented
for hardware- efficient implementation of the DSiehetecture. Synthesized in 180-nm CMOS

71



process, the total area and power consumptioni®fBP architecture are 0.97 rhiand 2.38
mW, respectively. The proposed DSP architecture wem$ed inin-vivo electrical nerve
stimulations to verify its efficacy of recoveringCBPs from overlapped stimulus artifacts and
periodic noises, and experiment results showed toatpared with the previous coherent
averaging technique, the proposed DSP architeochpmves the SNR of ECAP responses by 11
dB and achieves an 3.1% waveform distortion thal7slx lower. This is the first step to
realizing the real-time DSP engine in Fig. 2.2 e principle and VLSI architecture of feature
extraction from ECAP waveforms, the complete DSBire#y and its integration with wearable

wireless devices will be discussed in the next tdrap
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3. FREE: FIBER-RESPONSE EXTRACTION ENGINE ON A CUSTOM-
MADE WEARABLE DEVICE FOR AUTONOMOUSNERVE
ACTIVATION CONTROL

This chapter continues the work of Chapter 2 arebgmts FREE (fiber-response extraction
engine), the first digital signal processing (D®RYine dedicated to nerve activation control in
closed-loop electrical nerve stimulation (ENS) eyst. FREE adopts a newly proposed
bidirectional-filtered coherent-averaging (BFCA)thed combined with the alternating-polarity
(AP) stimulation for stimulus artifact rejectiondadistortion-free filtering of electrically-evoked
compound nerve action potentials (ECAPS) in raakti and its hardware architecture are
illustrated. The algorithms and VLSI implementatioh real-time fiber-response extraction,
including peak detection on ECAP and fiber-responksssification are also explained. A
custom-made wearable device powered by a single leaitery is realized in a printed circuit
board prototype that integrates the FREE, a lowgyowireless transceiver, a stimulation and
recording analog front-end, and a power managemnaht FREE reduces the data transmission
rate of wearable devices to 16.4 kbps for ECAP wugmd 192 bps for fiber-response output,
which are 49x and 4167x lower than that of softmarecessing, respectively. Experimental
results show that compared with the previous softvpmocessing techniques, FREE improves
the precision of fiber response classificationenrs of amplitude precision by up to 3.1x in
noisy environments, which boosts the accuracy ofenactivation profiles by up to 62.9%. An
application-specific integrated circuit version EREE implemented in 180-nm CMOS process

consumes 1.95-mW core power at 1.8-V supply.

3.1 Introduction

Ever since the U.S. Food and Drug AdministratioBAl approved deep-brain stimulation as a
valid treatment for tremor in late 90's [5], eleztf neuromodulation becomes an emerging
therapeutic for many neurological diseases [4, 108 The main advantage of electrical
neuromodulation is its capacity to target and dosertain nerve and brain area more precisely,
which also makes it a popular treatment for nervgease alternative to pharmaceutical
approaches. Nowadays, most commercial neuromodualagistems are configured in open-loop
manner [23], where pre-programmed electrical stirat¢ delivered to nerve and adjusted after
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weeks or months based on patient's subjective exmes. As the drawbacks of open-loop
systems gradually appear, including poor efficiefeyher too much or too little dosing) and
slow reaction to patient's clinical symptoms, wheasily causes patient's discomfort and other
side effects, efforts have been made in buildirgsell-loop neuromodulation systems which
automatically adjust stimulus strength in real-tipased on patient's physiological responses and

significantly improve the drawbacks of open-loogteyns [24, 27, 103].

Electrical nerve stimulation (ENS) is one neuromation techniques that has been widely
adopted in clinical therapies for pain, epilepsyl @epression [14, 15, 104, 105]. The evoked
compound action potential (ECAP) is the sum ofaacpotentials from nerve fibers in response
to the electrical stimulus that can be recordedrennerve [49]. It reflects the activity of the
nerve being stimulated and is an objective measupatient's nerve physiology and stimulation
efficiency in closed-loop neural stimulations. Thest renowned closed-loop ENS system
employing ECAP as the feedback physiological sigsathe neural response telemetry in
cochlear implants [41]. A newly proposed ENS platfpautonomous nerve control (ANC) [35],
also utilizes ECAP for stimulation parameter adpest in closed-loop system: it decodes
ECAPs for construction of the patient-specific reactivation profile (NAP) that describes the
relationship between the stimulus strength andattieration level of nerve fibers. By precisely
controlling patient's nerve activation based on dieeved NAP, ANC helps mitigate patient

response variability and maximizes the efficacglosed-loop ENS.

Traditional closed-loop neuromodulation platfornesjuire wire connections between patient's
nervous system and external instruments for nestralulation and recording. Such tethered
cables not only degrade the signal quality andiotgiatient's movement, but also introduce the
risk of infection and injury due to tension on @bhttached to the nervous system. To solve
these problems, wearable devices and applicatieoHspintegrated circuits (ASICs) capable of
simultaneous stimulation and recording have beereldped for various closed-loop neuro-
modulation systems [55, 57, 106, 107], on whichraksignals are continuously recorded and
wirelessly transmitted to a host personal comp(R€) for post processing. Whereas the radio-
frequency (RF) transceiver for data telemetry dat@s the power consumption of wearable

devices, data transmission rate becomes a majamigractor for their realization. For example,
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a data rate of 1.96 Mbps is required to transmitdata from 128 channels (1-kS/s sampling rate
and 15-bit resolution) [107], and an 800-kbps data will be required for raw data transmission
in the ANC system [35]. Not only is continuous va®s transmission of raw data at such high
rate power-costly, but it's also subject to dats Iduring transmission that impairs the fidelity of
recorded neural signals. Real-time digital signabcpssing (DSP) techniques have been
employed to reduce output data rate of wearableicdevor ASICs for closed-loop
neuromodulation systems. For instance, [108] repafully-integrated neuromodulation system-
on-chip (SoC) that operates 64 acquisition chanweéls digital compression by sending spike
events and firing rate, and [109] reports a 128nkabidirectional closed-loop neural interface
system with field-programmable gate array (FPGA3eokareal-time spike sorting. A general-
purpose brain-machine-brain interface (BMBI) isoaleported in [64], which incorporates a
microcontroller-based digital neural signal anatyter time and frequency domain feature
extraction and compressed sensing of neural sigBaside electrical neuromodulation, real-
time DSP, including spike detection and data cosgom, has also been applied for combined

optogenetics and multi-channel neural recordin@[11

Regardless of the progress in ENS and real-time,06&ay's closed-loop ENS systems,
especially the newly-proposed ANC platform, stélyr on offline processing of continuously
transmitted neural signals to remove stimulus atif111] and noises from ECAP and extract
biomedical features such as nerve fiber respon3épsthat serve as references for stimulus
strength adjustment. A real-time DSP for artifactl anoise rejection and feature extraction of
ECAP is hence desirable for reducing the outpua date of wearable devices applied to ANC as
well as other closed-loop ENS systems. Furthermpoeeiral signals recorded with wireless
devices are inevitably accompanied with periodise® including power-line interference and
baseline wander, which introduces errors onto etdthbiomedical features and degrades the
stimulation efficiency. For instance, the amplitugteor of nerve fiber responses on the ECAP
caused by noises can easily decrease the accufadp® in ANC. The coherent-averaging
technique [52], which's been used for noise rema¥ahe ECAP in ENS systems, including
ANC, is inefficient in removing periodic noises,pesially those time-locked to the stimulus

pulse train. It's therefore essential to have dicieht DSP strategy for real-time periodic noise
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removal which is also capable of preserving the ef@wm morphology of the ECAP and the

precision of extracted biomedical features.

In this chapter, we present a fiber-response extra@ngine (FREE) for real-time artifact and
noise rejection and feature extraction of the ECAREE employs the newly proposed
bidirectional-filtered coherent-averaging (BFCA) thhed presented in Chapter 2 for distortion-
free filtering of the ECAP, which can be easily doned with the alternating-polarity (AP)
stimulation method for stimulus artifact rejectiaderve fiber responses on recovered ECAP
waveforms are identified according to the usersdfiresponse latencies. Resource-optimized
architecture design of FREE, including the BFCA asal-time fiber response extraction is also
presented. FREE is implemented on a custom-madea@ndoattery-powered wearable printed
circuit board (PCB) integrating a low-power FPGABRetooth transceiver, a stimulation and
recording analog front-end (AFE), and a power managnt unit (PMU), and tested both offline
andin-vivo. Compared with the previous software-based ECARRgssing in [35], FREE not
only reduces the maximum data rate of wearablecdswio 16.4 kbps that is at least 49x lower,
but also improves the precision of fiber resporiaesification in terms of amplitude precision by
up to 3.1x in noisy environments, which boosts dglceuracy of NAP construction by up to
62.9%. An ASIC implementation of FREE is demonsiilaivhose total chip area and core power
consumption of 19.98 mfrand 1.95 mW, respectively. To our best knowlediREE is the first
DSP engine designed for ANC platform to facilitagve activation control on wearable devices,
and can be applied to other closed-loop ENS systatitizing the ECAP as their feedback

biomarker.

The rest of this chapter is organized as follonecti®n 3.2 presents an overview of FREE on
wireless wearable devices. Section 3.3 presentartiieétecture design of each building module
in FREE. Section 3.4 presents the custom-made egselvearable device in PCB prototype
integrating FREE. Section 3.5 presents offline amdivo tests for performance comparison
between FREE and previous software-based signakepsing [35] in terms of amplitude and
latency variation of fiber responses and the regspulNAP in noisy environments, and the ASIC

implementation of FREE. Finally Section 3.6 drawaclusion to this work.
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Fig. 3.1 Top-level block diagram of the wirelessarable device in a closéobp electrice
nerve system and the proposed fibesponse extraction engine (FREE), a dedicated é»gi¢
for autonomous nerve activation control.

3.2 System Overview

Fig. 3.1 presents the top-level block diagram @ Wireless wearable device in a closed-loop
ENS system and the proposed FREE, a DSP engineatiedito autonomous nerve activation
control. This device comprises the AFE for stimiglatand recording of neural signals, the
proposed FREE for real-time artifact and noisectep@ and feature extraction of ECAPSs in
digital domain, a RF module in charge of wirelesglgeiving instructions from and transmitting
biomedical features to the host PC, and the PMUhected to batteries for power supply of
abovementioned modules. Digitized stimulus wavetare first generated from FREE based on
decoded instructions, and converted to currentudition stimulation electrode by a digital-to-
analog converter (DAC) and a current pump (CP)hm AFE for electrical nerve stimulation.
The responsive neural signals recorded on the hergig electrode are conditioned with a
neural amplifier (NA) and digitized by an analogdigital converter (ADC). On FREE,
digitized raw neural dataRD) are processed to recover the ECAP response t@ppbked
stimulus, and nerve fiber responses on the ECARxracted as its biomedical features, which
are then fed to the RF module and wirelessly saok o the PC. A base station is connected to
the host PC via the USB port for wireless commurocabetween the wearable device and the
PC, and Bluetooth standard is adopted for low-pcamer short-distance wireless communication
required by battery-powered wearable devices noygada@n the host PC, the NAP of fiber
groups of interest, which describes the extentes@ fiber response to given stimulus strength,

is derived based on the fiber responses from theratsde device, and stimulus parameters are
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Fig. 3.2 (a) Block diagram of the proposed fibesponse extraction engine (FREE) and (b
flowchart of its operation.

adjusted according to the predicted NAP and dediveto the wearable device to maintain

desired activation level of the fiber group.

Fig. 3.2 (a) shows the overall block diagram of ph@posed FREE. Two SPI mastersaPland
SPhpc interface with the DAC and ADC in the AFE for stias generation and neural data
acquisition, respectively. The stimulation con&olyjenerates AP stimulus pulse trains with 1-ns
time resolution which is transmitted to the AFEmwihe SPiac. Details on the generation of AP
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stimuli and its parameters have been describechapt@r 2. The quantized raw daRD) from

the ADC are sampled at 50 kHz, as is adopted i, [@3d both the SBAc and SPApc are
configured to transmit and receive 16-bit digitizkada, respectively, same as the precision of the
data acquisition board used in [35]. In the BFCAe¢ahe ECAP response to the applied
stimulus pulse train is recovered from digitizeavrdata via stimulus artifact rejection and
distortion-free filtering, as described in Chapter Fiber responses, which peak on ECAP
waveforms, are detected with the peak detectorepreish ripple and noise floor thresholds, and
targeted fiber responses with specific conductiefosity, whose peaks are located within a
fixed time range on the ECAP waveform [37], arentidentified and classified with the fiber-
response classifier. The output buffer selectivalyputs filtered raw dataRQrj;), recovered
ECAP response, or index and amplitude of extradtedr responses, according to user's
configuration, and data are then serially outputtith the UART interface. All system
parameters, including the stimulus parametergrfibefficients, thresholds for peak detection
and time indices of targeted fiber responses, anally loaded from the UART interface and

stored into the parameter register.

Fig. 3.2 (b) illustrates the flow chart of the ogigon of FREE for nerve activation control using
the ANC platform. At the beginning stimulation ts&RDrj; are outputted first such that users
can adjust the stimulus parameters to balancetitnelss artifacts irRDgj; for stimulus artifact
rejection (SAR). After stimulus artifact rejectiam stimulation trial with zero stimulus amplitude
is first applied for peak detector (PD) training,which noise floor on recorded neural data and
its standard deviatioruf) are calculated by the BFCA core and peak detestspectively, and
the computed, is sent to users. A series of stimulation trialhwonzero amplitude are then
applied, and the users, based on the outputted EEg@dNnses, can define the parameters for the
peak detector and fiber-response classifier fogrfitesponse extraction. During the stimulation
trials for constructing NAPs and maintaining theiation level of targeted fiber group, only
extracted fiber responses will be outputted to miné the amount of data transmission and the
resulting power consumption on the wearable deviEEAP responses can always be
retransmitted whenever there's any missing or idvéber response (For example, fiber
responses fall out of predefined time range oratevirom predicted NAP, both of which can be
identified with their index and amplitude sent fréiREE).
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Fig. 3.3 (a) Architecture of the BFCA core in FRBERd (b) the schematic dhe maxime
absolute value detector.

3.3 Architecture Design
3.3.1 BFCA Corein FREE

FREE adopts the bidirectional-filtered coherentrageng (BFCA) algorithm combined with the
AP stimulation method, as presented in Chapteor2SAR and distortion-free filtering of ECAP
in real-time. Fig. 3.3 (a) shows the architectur¢he BFCA core in FREE, where the hardware
implementation of the division-free exponentiallgighted moving average (EWMA) calculator,
the resource-sharing biquad IIR filter used fortbfatrward and reverse filters, and the last-in-
first-out (LIFO) register are the same as thosemasd in Chapter 2. In BFCA core the time-
locked windowing of raw-data is controlled by th@&mailation controller to ensure the
synchronization between the stimulus pulse and ewiriglg and hence the alignment of cathodal
and anodal stimulus artifacts [35]. In FREE the dewing length Ki,) is also programmable
from 256 to 1024, allowing recovered ECAP respomgdls duration from 5.12 ms to 20.48 ms

to be stored at 50-kHz sampling frequency.

80



Voltage (uV) + Detected Peak
A

r

40 L

=7

:THR%

o
§ 04— — — A — — AAAAS |THR|
204 \
W 1 THRy,
=40 Y
———+—+—+—> Time
10 20 30 40 50 60 Index

Fig. 3.4 lllustration of the peak-detection prilei

It should be noticed that a maximal absolute vdeitector MAXas, whose schematic is shown
in Fig. 3.3 (b), is integrated into the BFCA coneRREE for the detection of maximal absolute
value of an ECAP response that will be used inpének detector. When the output of the reverse
filter, which's the recovered ECAP response in tnexersal order as explained in Chapter 2, is
written into theLIFO_AVGregister, it's also fed into thdAXags The absolute value of the first
sample is directly stored into the register. Infiblowing clock cycles the previously stored data
in the MAXagsis compared with the absolute value of incomingas, and replaced when the
absolute value of incoming sample is larger. Atehd of reverse filter output, the value stored
in MAXassWill be the maximal absolute value of recoveredAPCGesponse.

3.3.2 Peak Detector

As stated in [35], an ECAP response contains sepprmks on time axis that are contributed by
activated fiber groups with different conductioniogity. A peak detector is hence required in
FREE to identify possible fiber responses and shbel able to distinguish fiber responses from
background noises. Fig. 3.4 illustrates the prilecipf peak detection in FREE based on
amplitude thresholding [112]. The amplitude of readisresholdTHR,) is estimated based on the

standard deviation of noise floor on ECAP resporisgs multiplied with an empirical constant
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C, namely,THR, = C - g,,. Using the same formula in [113], the standardiatexn of noise

floor o, is calculated by

o [T DT, e

Nyin Nyin

wherex; is the i-th sample of the ECAP response from tRER core and\y;, is the windowing
length described earlier. Thid,i, is a power of 2 such that the division b, can be
implemented with a right-shifting operation. It sitab be mentioned that the optimal value(f
that best estimates the amplitude of activatedr fregsponses in ECAPs is still being studied
today, which requires not only offline statisticalysis on pre-recorded ECAP responses but also
relies on subjective decisions from physiologistsddl on their clinical experiences [114-116].
Nevertheless, amplitude thresholding and its harewaplementation are still useful for future
study of real-time data compression [110, 117] GAP waveforms and hence will be described
here. To better locate the local maxima and minom&CAP waveforms at the presence of the
rippling resulted from residual random noises dfitegring and the quantization noise in fixed-
point arithmetic, a percentage thresholHRy,) is also preset such that only the peaks with
amplitude variation greater tharHRy, will be detected. This percentage threshdlHRy) is
given byTHRo, = Max - %, where Max is the maximal absolute value of ECAP response
calculated by the BFCA core, artd is the user-defined percentage of amplitude vanat
ranging from O to 1.
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Table 3.1 Peak Detection Algorithm

Input: x(i), i = 0,1, ..., Ny, — 1: i-th sample of the recovered ECAP,
THRy,: percentage threshol@iHR,: noise threshold,;
initial state = INI, ipos = 0, ineg = 0, Indpos = @, AMppos = @,
Indypeg = 0, AMppey = 0;
fori=0,..,Ny,i;m—1
switch (state)
case INI: if (x(ipos) = x(i) + THRy,) state = POS;
dseif (x(i) = x(iney) + THRy,) state = NEG;
end if
if (x(0) = x(ipos)) ipos = i;
dseif (x(0) < x(ineg)) ineg = i;
end if
break;
case POS if (x(i) = x(ipos)) ipos = i
dseif (x(ipos) = x(i) + THRy,)
if (x2(ipos) = THRZ)
Indy,,s = Indp,s U {ipos};
Amppos = Amppos U {X(ipos)};
end if
lneg = I; State = NEG;
end if
break;
case NEG: if (x(i) < x(iney)) ineg =i
dseif (x(i) = x(ineg) + THRy,)
if (x2(ineg) = THRZ)
Indpeg = Indpeg U {ineg};
Ampneg = Ampneg U {X(ineg)};
end if
ipos = i; state = POS;
end if
break;
end switch
end for
Output: Indy, s, AMpy s, INdyeg, AMPreg

Table 3.1 demonstrates the details of the pealctigtealgorithm in FREE, wheng,s andi,.,
denote the index of temporarily positive and negapeaks, respectively. Note tHa{Rz =
C?- 02 is computed instead to avoid the square root t&tlon ofg,, in (3.1), and the square
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Fig. 3.5 (a) Architecture of the peak detectortaDaath in the peak detector fon @alculatior
of standard deviation of the noise floor during theining mode, updating of Xgercentag
threshold and (d) noise threshold, andl geak detection. The multiplication operations
properly scheduled such that only one multiplicai®performed for each clock cycle.

value of the input sample is compared WittiR2 for amplitude thresholding, as described in

[113]. The architecture of the peak detector, wkithe hardware implementation of Table 3.1,
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is shown in Fig. 3.5 (a). The accumulation andhdagisters store the value of two thresholds
THR,, andTHRZ, and the temporary results during their derivatibhe index, amplitude and
amplitude square of temporary positive and neggieaks are also stored in a register file. The
decision logic is the realization of the case sta&tet in Table 3.1, which can be implemented as
a finite-state machine. As illustrated in Fig. 82, o2 is computed during the training phase of
the peak detector. In other stimulation trdil6R,, andTHR?2 are updated right after FREE
receives an instruction containing updat@dnd%. Fig. 3.5 (b), (c), (d) and (e) illustrate the
data-path arrangement in the peak detector foulzings? in the training phase, updating of
THR,, andTHRZ, and peak detection. By storing the temporaryltesoto data registers, the
multiplication operations in the computation «ff andTHR?2 can be properly scheduled such
that only one multiplication is performed for eadbck cycle. As a result, only one multiplier is
required in the peak detector, which saves the @oigs hardware implementation. On detecting
a positive or negative peak, its index and ampétace outputted to the fiber-response classifier,
together with the flag signals indicating a detattand the polarity of detected peak. For fixed-
point implementation% is quantized into 16-bit precision, a@ds encoded as a 8-bit unsigned

integer with 5-bit fractional length, assuming Cgreater than 6 as stated in [113].

3.3.3 Fiber Response Classifier

Given a fixed conduction distance on the nerve, ilee distance between the stimulation and
recording electrodes in Fig. 3.1, fiber responsik specific conduction velocity peak within a
fixed time range on an ECAP waveform, as shown3i].[ Real-time classification of fiber
responses is hence possible by properly definiegtithe index of targeted fiber groups and
locating the peaks on an ECAP waveform with indexhie proximity of that defined by users.
Fig. 3.6 (a) illustrates the principle of fiber-pemse classification. Two time index®&Dyr and
INDyy are first defined by users, which mark the appr@ate time range of positive and
negative peaks of the targeted fiber group (A fiipeFig. 3.6 (a) as an example), respectively,
according to the conduction distance and the EG&¥panses collected in the stimulation trials
indicated in Fig. 3.2 (b). The fiber response dtthiber group, represented by its positive and
negative peaks, is then classified by finding tbsifive peak nearest tblDyp and negative peak

nearest tdNDyy, respectively.
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Fig. 3.6 (a) Principle of fiber-response (FR) slfsation and (b) its architecture.

Fig. 3.6 (b) presents the hardware architecturtheffiber- response classifier in FREE which
supports the classification of 3 targeted fiberupo When a peak is detected by the peak
detector, its indexINDpp) and amplitude AMPpp) are first latched in registers and fed into 3
processing elements (PE), each in charge of thssiGtzation of a fiber group. Based on the
polarity of detected peak, either tidDyp or INDyy Of a targeted fiber group is assigned to the
user-defined peak indexNDyp) in each PE. The PE then calculates and comphessime-
index distance to the user-defined peak betweerctdEt and temporarily-classified peak,
namely,|INDp, — INDyp[i]| and|INDy¢[i] — INDyp[i]|, whereIND;.[i] denotes the index of
temporarily-classified positive or negative peakha i-th fiber group, depending on the polarity
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Fig. 3.7 Schematic of the output buffer in FREE.

of the detected peak, afiN D, [i] is the user-defined peak index in that group. BREhhas a
fiber-response registefR_REQG storing the index and amplitude of temporarilgsdified
positive and negative peaks. At the beginning assification, the index and amplitude values of
temporarily-classified positive and negative peakshe FR_REGare initialized at 0. Upon
receiving a detected peak with time-index distataceNDyp smaller than that of temporarily-
classified peak, i.e|/[NDpp — INDyp[i]| < |INDyc[i] — INDyp[i]|, the index and amplitude
values of temporarily-classified peak previouslgretl in theFR_REGare replaced with the
INDpp and AMPsp, respectively. At the end of an ECAP waveform, plositive and negative
peaks stored in thER_REGwill be the peaks closest to thidDyp and INDyy On time axis,
respectively. The classified positive and negatesponses stored in tiké&_REGof 3 PEs are
then serially read out on receiving user's insionst

3.34 Output Buffer in FREE

Fig. 3.7 shows the schematic of the output bufigFREE, which is the same as that in Chapter 2
except for additional an output of index and anoplé values of classified fiber responses. The
RDrii, recovered ECAP responses and the amplitude wélfileer responses are quantized to 16
bits by preserving their most significant parte.( the most significant 16 bits). THeDrj; in
FREE are also down-sampled by 4, and onlyRBe;; in the first and last AP stimulation cycles
are stored into the first-in-first-out (FIFO) regisFIFO_RD. Both the FIFO registefsIFO_RD
andFIFO_ECAPhave a total size of 16.4 kbits (16 bit x 1024 dvdepth), and the total size of
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Fig. 3.8 Schematic of the stimulation and recaydamalog front-end (AFE) in the wearable
device.

fiber response outputs is 192 bits (16 bit x (2kpeamlexes + 2 peak amplitudes) x 3 fiber
groups). TheRDxji;, ECAP and fiber responses can also be selectiealy out at the end of each
stimulation trial according to user's instructicensd are serialized into byte streams for data

transmission using the UART interface.

3.4 PCB Prototype of Wearable Device

In order to demonstrate the efficacy of the progddSREE in reducing the data transmission rate
of wearable wireless devices in closed-loop ENStesys, a printed circuit board (PCB)

prototype of the wearable device in Fig. 3.1 islenpented.

Fig. 3.8 shows the circuit schematic of the stimakaand recording AFE, whose topology is the
same as that described in Chapter 2. The ADC an@ Bre implemented with the ADS8860
(Texas Instrumentsand DAC8832 Texas Instrumenys respectively, both featuring 16-bit
precision, micro-power and SPI-compatible seriéériace. The DAC8832 combined with the
external operational amplifier OPA19TIgxas Instrumenkscan be configured in bipolar output
operation for AP stimulus pulse generation, whasecpnnection is plotted in Fig. 3.8 [96]. A
Howland current pump is employed and implementeth wihe LT6375 Analog Devices

voltage-difference amplifier. The current pump adogp DC-blocking capacitor to avoid direct
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Fig. 3.9 PCB prototype of the wireless signal pssing (WSP) platform with major
components annotated.

current injection into nerves, and a resistor triennfiSMUA102PET,Ohmitg to balance the
resistor network, which helps improve its commondmaejection ratio (CMRR) and output
impedance [118]. Up to 1.5-mA stimulus current banprovided by this current pump. Neural
signals are differentially recorded with a capaeity-coupled precision instrumentation
amplifier (INA333, Texas Instrumentsaand amplified with an active filter implementedwthe
OPAZ2348 Texas Instrumen)sThe total gain of the recording AFE is 500, discbandwidth is
1.6-20k Hz. The dual supply voltage of the LT63Ta HPA191 {Vcp) is set totl0 V. The

analog supply voltagevker) and common-mode voltag®dy) of two amplifiers are 3.0 V and
1.5V, respectively, and the digital supply volta@é,p) of ADC and DAC is 3.3 V.

Fig. 3.9 demonstrates the PCB prototype of thelesgesignal-processing (WSP) platform. This
WSP platform is built with a low-power FPGA (M2GLBXFG256, Microsemi Cor) as the
main processor onto which FREE is mapped. On tbgrammed FPGA, FREE occupies 8275
(29.88%) logic elements (LEs), 3680 (13.29%) D-flgps (DFFs), 8 (25.81%) large SRAMs
(LSRAMS), each with size of ¥3024 bits, and 12 (35.29%) MACC units, each of \Wwhic
contains an 1818 bits multiplier. The MIKROE-958 Bluetooth Cli¢kikro-Elektronikg built
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Fig. 3.10 Block diagram of the power-managemeirit (\#MU) for the power supply of the AFE
and WSP platform.

based on the RN-4Mcrochip Tech). low-power, class-1 Bluetooth radio module is @rmoss
the example RF module in Fig. 3.1 and mounted enV{5P board. The RN-41 features an on-
chip antenna, compatibility with Bluetooth 2.1 stard, the UART interface, and easy-to-
configure property for instant USB cable replacetndimanks to the proposed FREE, data
transmission and reception on the RN-41 take ptadg at the end of each stimulation trial.
Such advantage enables the RN-41 to be configarediif mode, where the radio wakes up at a
specific interval set to 250 ms in our case, apd in very low power mode (with current drain
around 2 mA) for the rest of the time [119]. Conguhkvith normal continuous mode with an
average current consumption of 30 mA, RN-41 infanibde only drains 8-mA average current
[120]. Other major components of the WSP boardluting a JTAG connector for FPGA
programming and the reset circuitry for both powerand manual reset, are also annotated in
Fig. 3.9. The core power of the FPGA is 1.2 V, 8}V power supply is used for the I/O power
of the FPGA and other active components, includiigr41 and APX803S-31SA-7Dlodes
Incorporated in the reset circuitry. The total size of the WigFrard is 78 mm x 36 mm.
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Table 3.2 List of the components used in the PNGBP

Component Company Part number
Boost Converter Texas Instruments TPS61032PWPR
Voltage Converter Texas Instruments TL7660CDGKT
Regulator-3.3 Texas Instruments TPS78233DDCR
Regulator-1.2 Texas Instruments TPS78001DDCT
Voltage Reference Texas Instruments REF2030AIDDCT

Fig. 3.10 illustrates the block diagram of the powmnagement unit (PMU) for power supply
generation of the stimulation and recording AFE #r@l WSP platform from a single 3-V, 620-
mAh CR2450 coin battery. First, a TPS61032PWPR tomsverter fromTexas Instrumentis

chosen to convert the voltage from a single coittebato 5 V, owing to its 20-pA quiescent

current, wide input voltage range (1.8-5.5 V) [124hd 93% conversion efficiency at 25-mA

Fig. 3.11 The assembled PCB prototype of the viadevice.
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Fig. 3.12 lllustration of experiment setup for performancenparison between hardware (H
and software (SW) processing.

output current (simulated with WEBEN@HPowerDesigner) [122]. Two voltage converters
(TL7660, Texas Instrumentsone configured as a positive-voltage doubler eredother as a

negative-voltage converter as described in [123],amopted to delivet10-V supply voltage.

The 3.3-V and 1.2-V supply voltage are generateddoyn-regulating the 5-V boost converter
output and 3-V coin battery output with low dropte@oltage regulators, and the 3-V and 1.5-V
voltage in the recording AFE are generated with citage reference. Table 3.2 lists all
components used in the implementation of the PMble &ssembled PCB prototype of the
wearable device in Fig. 3.1 is shown in Fig. 3ihdlyvhich the AFE and PMU boards are marked,
and the coin battery is on the bottom side of tNeJRboard. The measured power consumption

of the wearable device is 234 mW (3-V battery ougpd8-mA current consumption).

3.5 Experiment Results
3.5.1 Experiment Setup

The efficacy of the BFCA core in SAR and distortioee noise removal has been presented in
Chapter 2. In this chapter, we further demonstitageefficacy of FREE in not only reducing the
data transmission rate of a wearable device botialproving the accuracy in the prediction of
the NAP in the ANC platform compared with previaaftware-based processing in [35]. Fig.

3.12 illustrates the experiment setup for perforoeacomparison between hardware (HW) and
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Fig. 3.13 Plots of the original neural signal recorded inrayke stimulation trial that contai
ECAP responses and the neural signal superimpogledO+Hz noise and Btz baseline drift ¢
the input data for HW and SW comparison. The irgaia should be shifted byl,,,, to meet th
dynamic range of the ADC on AFE..

software (SW) processing, in which SAR, noise reahoand feature extraction of ECAPs are
performed using FREE on a FPGA and MATLAB R2018athWork$, respectively. A RN-41-
EK (Microchip Tech). Bluetooth evaluation kit serves as the baseostati Fig. 3.1, which's
controlled by a MATLAB-based graphic users inteefdGUI) on the PC via its USB port. The
RN-41-EK is configured in master mode which estdl#ds connection to the RN-41 module on
the wearable device configured in slave mode [1PO]data acquisition board (USB-6218,
National Instrumenisinterfaced with the PC via an USB port is usedjémerate test signals
which are fed into the ADC input and processed wWithFPGA on the wearable device. The test
signals generated from the analog output channéhefUSB-6218 are also sent to its analog
input channel for SW processing. Two control signiabm FREE,STIM_EN (the flag signal
pulled high during the stimulation train) a@l Ksavpe (the 50-kHz sampling clock), are fed to
the digital input channels of the USB-6218; Botle thignal output on thédO_CH and
acquisition on th&\l_CH are enabled by th&TIM_ENSsignal and synchronized to the sampling
of the ADC with theCLKsaupsignal.
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Fig. 3.13 shows the input test signals for perforocgacomparison, where the pre-recorded neural
signals presented in [35] containing valid fibespenses are superimposed with periodic noises,
including power-line interference and baseline varngimulated by 60-Hz and 2-Hz sinusoidal
waves [124-126], respectively, with -6-dB signalrmise ratio (SNR) and random phase shift

for both waves. The SNR is defined as

SNR = 20logyo (S2) (3.2)

Arms

where FRs is the root-mean-square (rms) amplitude of fibesponses waveform on the
"original ECAP", i.e., the ECAP derived from originnoise-free neural signals, aAgs is the
rms amplitude of the sine waves. In the computabiolys the fiber responses are defined as the
first 6-ms interval of ECAP waveform as seen in.RAdl4 (a). A band-pass elliptic filter with
0.1-4 kHz pass-band, 20-dB stop-band attenuati@hCab-dB passband ripple is adopted for
both the forward and reverse filters in the BFCAeco

3.5.2 Precision Comparison

An example of the recovered ECAP via HW- and SWepssing versus the original ECAP

waveform is plotted in Fig. 3.14 (a). It can berséiee ECAP obtained from HW-processing is
bettered regained than that from SW-processingnmg of waveform distortion, defined as the
mean squared Euclidean distance between the drie@¥aP and the recovered ECAP waveform
in (2.17), which proves that real-time BFCA algonit on FREE rejects periodic noises better
than traditional coherent averaging used in the BW¢essing [35]. Fig. 3.14 (b) plots all HW-

and SW-recovered ECAP waveforms and extracted fibsponses from pre-recorded neural

signals in 66 stimulation trials, each with unicienulus parameters.
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Fig. 3.14 (a) An example of recovered ECAP via Hikd SWprocessing versus the origi
ECAP waveform. (b) All HW- and SWecovered ECAP responses from the entire input sk

(66 trials).
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Fig. 3.15 Mean latency and amplitude of extracted (a) pasiéimd (b) negative fiber respon:
Both the positive and negative fiber responsesaeté¢dfrom HW have less amplitude variat

than those from SW owing to the more effective reahof periodic noises on HW.

The precision of fiber-response classification ow Find SW is first compared in terms of
fluctuation in the latency and amplitude of exteakcfiber responses [99]. Fig. 3.15 (a) and (b)
show the mean latency and amplitude of positiveraghtive responses, respectively, of 3 fiber

groups (A, B, and C fibers given an 8-mm conduction distareperted in [35]) extracted from
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both HW and SW and their variations. The respo$es fiber groups on both HW- and SW-
recovered ECAP waveforms are recognizable and hibece's little difference between HW and
SW in the latency variation of positive and negatilber responses. Nevertheless, the HW has
higher classification precision indicated by itsspiwe and negative responses having a lower
amplitude variation than that from SW, especiatly Ayand B fibers with low SNR. Such
amplitude variation results mainly from the ampdiguerror of fiber responses caused by periodic
noises on ECAP waveforms. Note that positive loc@lima within the time range of B fiber are
extracted as its negative responses on both HWSadlue to a low yet identifiable response
amplitude of B fiber.

To compare the overall classification precisiore #hope-activation relationships of both HW
and SW, which predicts the threshold current (rleepbase currenlgy) versus fiber activation
level and is the key to constructing the NAP in &NC platform [35], are derived based on
extracted fiber responses and the correspondinqukts parameters. As reported in [35], the
stimulus-response data are first sorted, and thelimmle of the positive fiber response (i.e.,
positive peak) is converted into an activation lelbg normalizing it with the largest fiber
response amplitude representing the maximal aaiivaFiber responses with similar activation
level (i.e., with difference less than a presebrtolerance), along with the associated stimulus
parameters are then clustered, and clusters wikbaat 2 stimulus-response pairs are selected.
The rheobase current, i.e., the slope of the chdugation line of each chosen cluster
corresponding to an activation level, is computsthg the least-square linear regression. The
slope-activation relationship of a fiber group dsnpredicted by applying linear regression on

the abovementioned slope-activation data and isefeddby the equatiof, = 4 -r*, where

A= AMPFR/AMP - 100 is the activation level in percentagdsjs the rheobase current for

max

0% activation level, and is a constant reflecting the rate of growth ofaltese current with
respect to the activation level. Fig. 3.16 (a) &@byillustrate the slope-activation data derived
using fiber responses from HW and SW, respectivelyether with the corresponding equations
modeling the slope-activation relationship and ficieht of determination (B representing the
goodness of fit. The amplitude error of fiber rasges caused by periodic noises introduces
inaccuracy into the process of clustering and cdatmn of rheobase current for each cluster,
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which causes the slope-activation data to deviatm fthe predicted model. With the real-time
removal of periodic noises on ECAPSs, slope-actratiata derived from the HW-extracted fiber
responses fit better to the predicted model asatdd by Rin Fig. 3.16, suggesting that higher
overall classification precision is achieved on HWiis helps more accurately constructing a

NAP which estimates the stimulus parameters to tai@inlesired nerve activation level.
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Fig. 3.17 In-vivo test results RW = stimulus pulse width = 0.2 m&RF = pulse repetitio
frequency = 20 Hzfyain = stimulus train duration = 1 s) of HW- and SWcovered ECA
waveforms and extracted fiber responses

3.5.3 In-Vivo Test Results

The performance comparison between HW- and SW-essiaeg is further accomplished on a
male Long-Evan ratin-vivo. Two custom-made silicone cuff electrodes in défdial
configuration serve as the stimulation and recayditectrodes depicted in Fig. 3.1. These two
electrodes are attached to the cervical vagus rddrtlee rat following the surgical procedure in
[35], and connected to the stimulator output amddifferential amplifier input in Fig. 3.8. An 8-
mm conduction distance is measured after the imglelectrodes. For data acquisition in SW

processing, the output of the OPA2348 is connetélde analog input channel of the USB-6218.

A series of stimulation trials with varying amplikel are applied to the nerve with the following
stimulus parameter®W = stimulus pulse width = 0.2 mBRF= pulse repetition frequency = 20
Hz andt;, 4, = Stimulus train duration = 1 s. The stimulus atode ranges from 0.5 mA to 0.9
mA with 0.1-mA increment to obtain observable filvesponses on ECAP waveforms without
amplifier saturation. Fig. 3.17 plots ECAP waveferand extracted responses of 3 fiber groups
(A9, B, and C fibers) from both HW and SW against stilm amplitude, in which ten ECAP

waveforms are collected per stimulus amplitude. péak-to-peak amplitude of fiber responses
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Fig. 3.18 (a) hie amplitude growth function (AGF) of extractedeifibresponses and (c)
mean latency of positive and negative fiber respsretracted from HW and SW in wiwvo

tests.

versus stimulus amplitude, also known as the aog#itgrowth function (AGF), and the mean
latency of positive and negative responses, aldttgtiveir variations, are plotted in Fig. 3.18 (a)
and (b), respectively. Both HW- and SW- recover@RP waveforms contain peaks contributed
by both fiber responses and noises (both periaaticrandom) in the proximity of user-defined
fiber response index (i.eINDyp and INDyy), and hence the mean latency and variation of
positive and negative responses from HW and SWnaarly identical. At each stimulus
amplitude, however, the peak-to-peak amplitudeatiamn of 3 fiber responses from HW is lower
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Fig. 3.19 The ASIC implementation of proposed FR&EHE80-nm CMOSechnology: (a) di
photo and breakdown of its (b) power and (c) as®soemption.

than that from SW, which's necessary for constngcNAP with higher accuracy, as verified in

Fig. 3.15 and Fig. 3.16.

354 ASIC Implementation

The proposed FREE is further implemented in 180€MOS technology. Fig. 3.19 (a) shows
the micrograph of the fabricated chip, whose totak and chip area are 10.14 fnamd 19.98
mnY, respectively. The core and I/O voltages of thip eine 1.8V and 3.3V, respectively, and the
system clock frequency is 16 MHz. To the best of knowledge, this is the first digital signal
processor dedicated to the newly-proposed ANC qulatf This chip is tested with the same
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Table 3.3 Performance comparison between hardavateoftware processing

Software [35] This work

Filtering Technique Coherent Averaging BFCA
(CA)

Processing Unit Intel Core i5-3230M ASIC
Freq. [MHz] 2,600 16
Power [mW] 28,440 1.95 (at 1.8V)
Latency [ms] 115 20.5
Max Data Rate [kbps] 800 16.4
Amplitude Variation (B
Fiber) [uV] 3.74 1.22
Coeff. of Determination 0 0
(A Fiber) 50.9% 82.9%

setup as that in Fig. 3.12, except that the FPGAptaced with the chip under test, and an 1.8-V
low drop-out voltage regulator (TPS78218DDOExas Instrumentsdown-regulating the 3-V
coin battery output to 1.8V is used as the coréagel supply of the chip. At 1.8-V core voltage
and 16-MHz clock rate, the measured active andddtgnpower are 1.95 mW and 0.3 mW,
respectively. Fig. 3.19 (b) and (c) show the breakd of power and area consumption,
respectively, which's estimated with the layoutulesnd post-layout simulation in Cadence
Innovus Implementation System. The power consumptib FREE is dominated by memory
banks in both the BFCA core and the output buffef the fixed-width multiplier of 1IR filters in
the BFCA core, which can be further reduced by ewiph the low-power memory architectures
[127, 128] and power-efficient fixed-width multiphs [129, 130].

Table 3.3 shows the comparison with the SW proongssihe MATLAB-based ECAP processing
in [35] comprising SAR, denoising and fiber respoesgtraction, on an Intel® Core™ i5-3230M
Processor. The SW processing requires wearableomegulation devices to continuously
transmit recorded neural data at 800-kbps (164atipionx 50-kHz sampling frequency) data
transmission rate. In contrast, with real-time EQ#Bcessing via FREE, the maximum data rate
becomes 16.4 kbps for bd&Drj; and ECAP output (on the ground that,;, is greater than 1 s
and bothRDrj; and ECAP output has 16.4 kbits), at least W@ver than that of SW, and 192 bps
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for fiber response output which is 436lbwer. The computation latency, i.e., the requitiete

for signal processing in ANC, is estimated overdiiénulation trials. Whereas the latency of
FREE is of the same order of that of SW, the cowrmpart power of FREE is much less than that
of SW, on which the average power of the CPU ig128N. Moreover, FREE improves the
precision of fiber-response classification and #eeuracy of NAP construction in noisy
environments. For example, in B fiber classificatidghe amplitude variation of the positive

response from FREE is 1.2&/, which is 3.k lower than that from the SW; in constructing the

NAP of Ay fiber, the coefficient of determination of the @eactivation profile derived from the
fiber responses from FREE is 82.9%, which is ineeelaby 62.9% compared with the SW.

3.6 Conclusion of This Chapter

In this chapter, a fiber-response extraction endfFREE), the first DSP engine dedicated to
nerve activation control using the newly-proposédiCAplatform, was presented. FREE employs
the DSP architecture presented in Chapter 2 fonustis artifact rejection and distortion-free
filtering of ECAP waveforms. Computationally-efieit algorithms for fiber response extraction
on ECAPs and their VLSI architectures were alsolamrpd. FREE was implemented on a
custom- made and coin battery-powered wearable R@&jrating a low-power FPGA, a
Bluetooth transceiver, a stimulation and recordiki¢E and a power management unit. FREE
reduces the maximum data rate of wearable dewic#6.4 kbps, which is at least 49xlower than
that of software processing. Experimental resué® ahow that compared with the previous
software-processing, FREE improves the precisiofibar response classification by 3.1x in
noisy environments, which increases the accuraayeofe activation profiles by up to 62.9%.
An ASIC implementation of FREE was also presentéubse total chip area and core power
consumption of 19.98 mfrand 1.95 mW, respectively. FREE facilitates nexwtvation control
on wearable devices by reducing the data rate amgipcosts and improving the precision of
NAP in noisy environments, and can be applied heotlosed-loop ENS systems utilizing the
ECAP as their feedback biomarkers.
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4. CONCLUSION AND FUTURE WORK

41 Conclusion

Electrical neurostimulation is an emerging therajgetor various neurological diseases and
possesses the advantage over pharmaceutical appoodose the targeted area of brain or nerve
more precisely. Closed-loop neurostimulation apghea increase the stimulation efficacy and
minimize side-effects and patient's discomfort bystantly tailoring the stimulation parameters
according to feedback physiological signals frormguas. To improve the quality and reduce the
costs of treatments, wireless neurostimulation aes/capable of both stimulation and telemetry
of recorded physiological signals can be introdudetb closed-loop neurostimulation in
replacement of laboratory instruments. In view lué tlata transmission rate and the resulting
power consumption of wireless devices, a real-tD®&P processor processing and extracting
features from recorded signals is desired; its V&iShitecture and implementation in FPGA and
ASICs are especially attractive for optimal compiota power and cost. ECAP is an objective
measure of the nerve activity and condition andbeen adopted as the feedback biomarker in
closed-loop ENS systems including NRT in cochleaplants and a newly proposed ANC
platform. This thesis focuses on the developmera DISP engine and its VLSI architecture for
real-time processing of ECAP, including SAR, demgjsand extraction of nerve fiber responses
as biomedical features. When integrated with theelegss device applied in closed-loop ENS
systems, not only does such DSP engine reduceregiqdata rate of the wireless device, but it
also improves the precision of extracted biomedeatures by removing artifacts and noises on
ECAPs, which facilitates the tailoring of stimutaii parameters and boosts the efficacy of

closed-loop ENS systems.

Chapter 2 describes a DSP architecture for recowérifCAP responses in NRT and other
ECAP-based closed-loop ENS systems. A newly prapdBECA technique enables the
configurable linear-phase filter to be realizeddwaare efficiently for distortion-free filtering of
ECAPs, and this technique can be easily combindid AP stimulation method for SAR. This
DSP architecture also incorporates folded-IIR filéed division-free averaging to reduce the

computation cost. The DSP architecture is mappéd anow-power FPGA, and it's proved in
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in-vivo tests to reject stimulus artifacts overlapped VEDAP responses and remove periodic

noises more effectively without distorting ECAP weérms.

A fiber-response extraction engine (FREE) is presstim Chapter 3 for nerve activation control
in closed-loop ENS using the ANC platform. FREHizgs the DSP architecture proposed in
Chapter 2 for SAR and denoising of ECAPs, and tt&P Carchitecture of computationally
efficient peak detection and classification aldans for fiber response extraction from ECAPs
in real time. FREE is mapped onto a custom-madebattdry-powered wearable wireless device
incorporating a low-power FPGA, a Bluetooth tramgee a stimulation and recording AFE
circuitry and a power-management circuitry. In camgon with previous software-based signal
processing, FREE demonstrates its capacity to migtreduce the data rate of wearable devices
but also improve the precision of extracted bioroadfeatures (fiber responses) reflected by
their amplitude and latency variation. It is alsified that fiber responses extracted from FREE,
which possesses higher precision than those frdtwa® processing, helps boost the accuracy
of NAP construction in ANC. An ASIC version of FREE implemented in 180-nm CMOS
technology, whose total chip area is 19.98%namd core power consumption is 1.95 mW at 1.8-

V core voltage and 16-MHz system clock rate.

4.2 FutureWork
4.2.1 Half-Precision Floating-Point Computation

All the computations in FREE, including the BFCA thied combined with the AP stimulation
based SAR in Chapter 2 and the peak detection lasdiftccation in Chapter 3, are accomplished
with fixed-point arithmetic in which the data widih 20 bits. Since the arithmetic operations in
those algorithms consist mainly of addition, suttican, multiplication, and logical shift, they
can be implemented in half-precision floating-po{irtPFP) arithmetic to further save the
required data width in FREE yet still achieve desidata precision. The data width of a HPFP
number is 16 bits (1-bit sign, 5-bit exponent arddbit fraction) and hence this format is also
referred as "binary16" in IEEE 754-2008 standa@I]1
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Fig. 4.1 Block diagram of a half-precision bitiséfloating-point adder [132].
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Fig. 4.2 Block diagram of a half-precision floatpoint multiplier, whereX_e Y_@ and ¥ _f,
Y_1# are exponents and fractions of two input signaspectively, "load" and "resedte contrc
signals for each part, ad eandZ_fare the exponent and fraction of multiplier outfil&3].

As stated in Section 2.3.3, the dynamic range ebift&DC output in 2's complement format is
—32768 t032767 and can be expressed in HPFP format, whose thémuaax representable
value is 65504. To avoid overflow in computatiotata in HPFP format can be scaled by factors
equal to power of 2, which corresponds to subtngdine exponent of a HPFP number. Addition,
subtraction, and multiplication can be implementethardware according to the floating-point
arithmetic defined in IEEE 754 standard [134]. Fdl illustrates the block diagram of a HPFP
adder [132], and the block diagram of a HPFP mlidtips also shown in Fig. 4.2 [133]. The left
shifting in (2.13) and right shifting in (2.9) cadre achieved by adding and subtracting the
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Fig. 4.3 lllustration of DWT algorithm for datarmogression with 4 levels of decomposition [63]

exponent of a HPFP number, respectively. The fitefficients in the BFCA method can be
first derived in single-precision floating-pointrfoat and then converted into HPFP format.
Implementing the computations in FREE in HPFP arétic can effectively reduce required data
width and the resulting hardware costs, includirepand power consumptions.

4.2.2 Data Compression of ECAP

In close-loop ENS, the morphology of recorded ECAd’srucial for neurologists to identify
valid nerve fiber activation and determine the appnate latency of fiber responses. As
mentioned in Section 3.5.4, the required data imésson rate for an ECAP output in FREE is
16.4 kbps. This can be further reduced by applyeai-time data compression technique to the
ECAP outputs from the BFCA core. The discrete waiviehnsform (DWT) in combination with
run-length encoding (RLE) is one popular data casgon technique which has been utilized
for data reduction in various biomedical systemehsas neural recording [63] and bladder
pressure monitoring [135]. This techniqgue has tllwaatage of preserving the temporal
information and the shape of detected eventsme window, and hence is applicable to ECAP
waveforms on which the latency and amplitude oérfikesponses on ECAPs must be maintained

after compression.

DWT decomposes signals into different frequencydsawith multiple stages of low and high
pass filters. Fig. 4.3 illustrates DWT algorithnr fdata compression with 4 levels of decom-
position [63], wherdy, andg are the filter coefficients of low and high pastefs, respectively,
anda andd;, represent approximation and detail coefficientgthtlevel, respectively. At each

level, g is filtered byhy andgo to generate temporary outpus.{)emp and €+1)emp Which are
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down-sampled by 2 to obtagg., andd,. After decomposition a pre-defined threshtidis
applied to detail coefficientd,1, whose resulting value is denoted by prime (‘nely, dj:1. At

the last 4th level, thresholds are applied to lagghroximate and detail coefficients to generate
a's and d'4, respectively. The thresholding operation will gethe significant high-energy
coefficients contributed by events and zero thegmifcant low-energy coefficients resulted

from noises, which is equivalent to the waveletdaafitering [80, 81].

A preliminary result of data compression of the BC&aveform in Fig. 3.14 (a) is demonstrated
with a 2-level DWT, where the Haar wavelet is stddcowing to its computation simplicity
(which requires only addition and subtraction) [1136]. Fig. 4.4 (a) shows the derivation of
guantization threshold of the wavelet coefficientsan ECAP waveform. First, the wavelet
coefficients (denoted asV'C' in Fig. 4.4) of noises are computed by applying DWT to the
noise waveform obtained using the BFCA method, teh the mean of absolute value of
wavelet coefficients fABSyc) in each decomposition level is computed [82]. Tluantization
threshold for the wavelet coefficients of an ECARveform THRyc) is derived by multiplying
the ABSyc with an empirical scaling constant, which is set5tin this demonstration. The
wavelet coefficients of an ECAP waveform, obtairiesn the DWT, are compared against the
THRwc, below which the wavelet coefficients are quarmtize zero. Fig. 4.4 (b) shows the
wavelet coefficients of an ECAP waveform before aftdr quantization. The quantized wavelet
coefficients are encoded with RLE, where sequeheems is replaced with a word representing
zero followed by a zero-count word, and non-zerodsare unchanged. As an example in [63],

a 40-word data sequence

BDOOOAOOO0000A000000CBOAOOO0O000000DOOOOOD
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will be reduced to the sequence "BDX3AX7AX6CBOAXIRED" after RLE, where X stands
for zero. Given an ECAP waveform with windowing dg¢im of 1024, the total number of non-
zero elements in the quantized wavelet coefficiemtBig. 4.4 (b) is 175, and the length after
RLE is 217 in this example. Assume the precisiorea¢h wavelet coefficient is 16 bits. The
total size of encoded wavelet coefficients is 38it8, which is 4.72 lower than that of ECAP
waveform. Fig. 4.4 (c) shows a comparison betweaeninal ECAP waveform and reconstructed
ECAP waveform after data compression. It can be seat the shape of nerve fiber responses

and its time-axis location are preserved on themnsitucted ECAP waveform.

What needs further study in the data compressioBGAP waveforms is the optimal value of
THRuc representing the amplitude threshold of activafiedr responses, and the level of
decomposition in DWT that achieves the maximal casgion of an ECAP whereas maintains
the latency and shape of fiber responses. Moredgegenerate an optimal compression, it's
desirable to find a wavelet basis whose shape fgssnthe signal to be compressed so that the
original can be reconstructed with the fewest namxeavelet coefficients. So far, studies have
shown the Symlets 4 is the optimal wavelet basicéonpression of neural spikes, whose shape
best matches that of spikes and requires modecatpwations [137]. The wavelet basis that
best matches ECAP waveforms thus deserves invastigdor implementation of real-time
DSP, several approaches to designing the VLSI tactore of DWT have been presented,
including the pyramid algorithm [138, 139] andihfy scheme [140-142]. Implementing RLE in
VLSI architecture is also feasible and an impleragoh example can be found in [63].

4.2.3 Implantable Wireless Device

To make the wearable wireless device presentecdtidh 3.4 chronically implantable, it must
be combined with the WPT strategies to eliminat leed for constant battery replacement
[143]. Fig. 4.5 illustrates the block diagram o&tRMU which utilizes a combination of both
WPT and a rechargeable battery as its power suppky.powering coil receives the power from
electromagnetic fields, and the wireless receiva@iverts the received electromagnetic power
into a regulated DC voltage output. The DC voltagéut of the wireless receiver is fed to a
battery charger that can charge a 3.7-V lithium-ieohargeable coin-cell battery, power the

system, or both. The powering coil, wireless reeeiand the battery charger are all available in
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Fig. 4.5 Block diagram of the PMU with a combiwatiof both WPTand a rechargeable batt
as its power supply.

COTS components. Fig. 4.6 (a) shows the schemdtithe bg51003 Texas Instruments
wireless power supply receiver as an example [MHich utilizes near-field inductive coupling
for WPT. A receiver coil for the bg51003 wirelesseiver is shown in Fig. 4.6 (bYMurth
Elektronik Group, whose total size is 15 mm (diamet&rd.6 mm (height). Fig. 4.6 (c) shows
the bg500212AEVM-550 wireless power transmitterlea@on module Texas Instruments
which uses a 5-V USB port as the power supply ancompatible with the bq51003 wireless
receiver [145]. Combined with the receiver coilkig. 4.6 (b), the bq51003 wireless receiver
provides 5-V regulated output voltage at 500-mAdlog current. The schematic of an example
lithium-ion battery charger bq21040d&xas Instrumentds shown in Fig. 4.6 (d). This battery
charger has an input voltage supply range from\8% 28 V, and provides up to 800-mA
charging current at 4.2-V regulated voltage ouffd6] which can charge the 3.7-V lithium-ion
battery and supply the system loading. On the offaexd, a newly proposed WPT technique,
named cavity resonator based WPT [147], employs BTWthamber with circulating
electromagnetic fields as the primary power trati&miand a biaxial receiver coil system to
enable the wireless powering of devices implantettee-moving animals. This technique has
been adopted in the design of the Bionode, a clusgul neuromodulation device [55], and is

also applicable to the powering of the wirelessicepresented in Section 3.4.
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Fig. 4.6 (a) Schematic of the bg5100@xas Instrumen})svireless power supply receiver [144]
(b) A receiving coil for the bg51003\{urth Elektronik Group with total size ofl5 mn
(diameter) x 0.6 mm (height). (c) Top view of the bq500212AE\BE0 wireless powe
transmitter evaluation modul@dxas Instrumen)sas the primary wireless power supply [145]
(d) Schematic of the bq21040dxas Instrumenjdithium-ion battery charger [146].
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Fig. 4.6 continued.

The pover consumption of the RF module Fig. 3.1can be further reduced to facilitate
realization of an implantable dev by using other low-power B&tooth transceive. Fig. 4.7 (a)
shows the MIKROE2471 BLE 3 Click MikroElektronikg [148] as an examplewhich is built

(b)

Fig. 4.7 Top view of (a) th®MIKROE-2471 BLE 3 Click MikroElektronikg [148] and (b) th
B204 USB dongle [150], botbuilt with the NINA-B112 Bluetooth 4.2 module
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Table 4.1 Comparison of the low-power COTS Blu#tcgnodules [151]

Transceiver NINA-B112 BL652 ZL70103 CC2640R2F BMD-350
Energy ) ) ; . -
Efficiency (nd/b) 9-19 9-19 15-19 11-23 12-25
Ioc at 0 dBm 53 53 53 6.1 71
(mA)

VDD (V) 1.7-3.6 1.7-3.6 2.8-3.5 1.8-3.6 1.7-3.6
Duplex N/R Full Half Full Full
Physical size 14x10%4 14x10%2 6x5%2 7x7%2 8.7x6.4x1.5
(mm)

Antenna Internal Internal External External ehnial
Max DR (Mbps) 1 1 0.8 1 2

with the NINA-B112 (1-bloX) Bluetooth Low-Energy (BLE) module and can alsarmunted on
the WSP board in Fig. 3.9. The NINA-B112 BLE modtdaturing Bluetooth 5.0 standard has a
maximum data rate of 1 Mbps, a module size of 14t mm (including the on-chip antenna)
a supply voltage range of 1.7-3.6 V, and a curcemsumption of 5.3 mA at 0-dBm transmitter
power [149]. It also supports serial communicata the UART interface. Fig. 4.7 (b) shows
the B204 USB dongleu¢bloX [150]; it also uses the NINA-B112 BLE module, yistes access
to UART over USB, and thus can serve as the basestn Fig. 3.1. A comparison of the low-
power COTS Bluetooth modules can be found in [1&1d is given in Table 4.1. Furthermore,
the Bluetooth transceiver on the WSP board canrbgr@gmmed in standby mode by default,
where the current consumption is only a few micrparas (e.g., 2.RA for NINA-B112), and

waken up by the dedicated control pins on FREE &a transmission.
All the boards in the PCB prototype shown by Fid.13can be further miniaturized through PCB

layout, and integrated in a small package for imigausing the rigid-flex PCB technology [110]
or the PCB assembly technique presented in [55].
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