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PREFACE

The work done in this thesis was done as a part of the DOE sponsored NEXTCAR

(Next-Generation Energy Technologies for Connected and Automated On-Road Vehi-

cles) project. Purdue’s project title was “Connected and Automated Class 8 Trucks”.

In collaboration with two corporate partners: Cummins and Peloton Technology. The

project goal was to enable an additional 20% reduction in energy consumption of fu-

ture connected and automated freight trucks. The plan was to achieve this through:

i) connectivity-enabled remote powertrain calibration, ii) connectivity-enabled, real-

time powertrain control from the cloud, and iii) more efficient two-truck platooning

using connectivity-enabled shifting coordination and lead truck predictive cruise con-

trol.
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ABSTRACT

Black, Brady T. M.S., Purdue University, December 2020. Optimization of Vehicle
Dynamics for Enhanced Class 8 Truck Platooning. Major Professor: Gregory M.
Shaver.

The heavy duty transportation sector is projected to grow in the coming decades.

Increasing the fuel economy of class 8 vehicles would simultaneously decrease CO2

emissions and decrease the annual fuel expenditures that account for nearly a quarter

of cargo companies’ annual budgets. Most technology that has aimed to do this has

primarily been focused on either improvements in engine efficiency or reduction of

aerodynamic drag. This thesis addresses a somewhat different approach: the opti-

mization of vehicle dynamics in order to realize fuel savings.

Through partnerships with Peloton Technology and Cummins, tests and simula-

tions were conducted on corridors with grades up to 5% that indicate fuel savings of

up to 14.4% can be achieved through the combination of three strategies: two-truck

platooning, long-horizon predictive cruise control (LHPCC), and simultaneous shift-

ing. Two-truck platooning is the act of drafting a rear truck behind a front truck.

It has been shown that this not only reduces the drag of the follow vehicle, but also

that of the lead vehicle. LHPCC is an optimization of the lead truck’s velocity over

a given corridor to get “from point A to point B” in the most efficient way possible

whilst doing so with a trip time constraint. Last is the use of simultaneous shifting,

which allows the follow vehicle to maintain the proper platoon gap distance behind

the lead truck.
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1. INTRODUCTION

1.1 Motivation

With ever growing concerns about rising CO2 levels in the atmosphere and an

increasing interest in reducing the cost of operating a commercial vehicle fleet, there

is great incentive for both the government as well as the heavy-duty vehicle industry

to reduce the fuel consumption of commercial vehicles. Both the population and the

per capita income of the world are continuing to grow. With this growth comes a rise

in the demand for goods and services, and thus an increase in need for commercial

transportation. Commercial vehicles not only comprise a large portion of the current

global transportation sector’s energy demand, but in the ExxonMobile 2019 Outlook

for Energy, the increase of the heavy-duty sector is predicted to account for over 50%

of the growth in energy demand from 2017 to 2040 [1]. A breakdown of the global

transportation energy demand by sector is shown in Figure 1.1.

The heavy-duty transportation sector is not just a major part of the economy

globally, but also in the United States. The entire transportation sector accounts for

28% of the greenhouse gas emissions in the United States, which is the sector with the

highest greenhouse gas emissions in the nation [2]. Within the transportation sector,

heavy-duty and medium-duty vehicles account for the second highest emissions after

light-duty vehicles [3]. However, while light-duty vehicles trend toward hybridization

and electrification, heavy-duty trucks struggle to make the transition due to the long

periods of time that they are operated and the low energy density that currently

plagues battery technology. Figure 1.2 shows the complete breakdown of greenhouse

gas emissions by sector, and Figure 1.3 shows a further breakdown of greenhouse gas

emissions within the transportation sector.
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Fig. 1.1. Global Transportation Energy Demand [1]

Fig. 1.2. Sources of Greenhouse Gas Emissions in 2018 [2]
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Fig. 1.3. U.S. Transportation Sector GHG Emissions by Source 2017 [3]

Class 8 trucks drive more miles per vehicle than any other vehicle in the U.S.

Additionally, in the U.S., class 8 trucks consume the second highest amount of fuel

per vehicle after transit buses [4]. However, there is over an order of magnitude more

class 8 trucks than transit buses in the U.S., and transit bus operation yields itself

better to hybridization or full electrification. A breakdown of average number of miles

traveled by major vehicle category is shown in Figure 1.4, and a breakdown of average

amount of fuel used on a yearly basis by vehicle type is shown in Figure 1.5.

As previously mentioned, there is not just an interest in reducing fuel consumption

to reduce the greenhouse gas emissions of heavy-duty vehicles, but also to reduce fuel

costs. A breakdown of the costs of a class 8 truck in the United States reveals that

fuel is the second largest expense, after driver wages, to operate a truck [5]. Small

improvements in the fuel economy of a class 8 vehicle can yield large monetary savings

in operating costs of a fleet of class 8 trucks, and therefore lead to fleet operating
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Fig. 1.4. Average Annual Vehicle Miles Traveled by Major Vehicle Category [4]

Fig. 1.5. Average Annual Fuel Use Per Vehicle by Vehicle Type [4]

companies improving their profit margins. A pie chart for major truck operating

expenses is shown in Figure 1.6.

Lastly, the state of Indiana has a large interest in reducing the impact of trucking

on the environment. Indiana is one of the few states where the majority of freight

movement is not entering, leaving, or within the state. The majority of freight move-
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Fig. 1.6. Average Motor Carrier Cost Per Mile 2018 [5]

ment in Indiana is passing through the state, and this is expected to grow in the

coming years [6]. A graphic of state to state truck flows using Indiana corridors for

data from 2011 with a projection to 2040 is shown in Figure 1.7.

Class 8 trucks are a significant contributor to global climate change, and their

usage is expected to grow in the coming decades. There is great interest in reducing

their fuel consumption, which would, in turn, reduce their operating costs and reduce

their carbon footprint. New and creative technologies are needed to address this

problem.

1.2 Background

One of the major areas of inefficiencies in a class 8 vehicle comes from aerodynamic

losses. Figure 1.8 shows that 22.3% of the vehicle’s fuel energy goes into overcoming

aerodynamic losses [7]. This is why low-clearance air dams, wheel covers, drive wheel

fairings, trailer skirts, roof wind deflectors, trailer boat tails (etc.) have become
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Fig. 1.7. State to State Truck Flows Using Indiana Corridors [6]
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increasingly common. These devices are so effective that, in combination, one report

states that “fleet owners who install gap fairings, side skirts and boat tails on their

trucks can increase their fuel efficiency by 14% or more” [8].

Fig. 1.8. Energy Balance of a Fully Loaded Class 8 Tractor-Trailer
on a Level Road at 65 mph [7]

Platooning is another strategy that aims to reduce the aerodynamic drag force on

vehicles by drafting one vehicle behind another. Figure 1.9 shows how not only the

rear truck, but also the lead truck, experience a reduction in aerodynamic drag [9].

The rear truck, of course, sees a greater reduction in drag due to the lead truck

displacing the air for the rear truck yielding reduced forebody drag. Furthermore,

the lead truck also has some aerodynamic benefit due to the follow truck reducing

the low pressure region behind the lead truck through the reduction of turbulence,

thus reducing the pressure drag.

For the lead truck, a closer platoon gap appears to always yield more fuel savings.

The follow truck follows this trend up to around a 50 foot gap, but then appears

to loose some savings due to the cooling fans needing to turn on for proper airflow

through the radiator [10]. Interestingly enough, the National Renewable Energy Lab-
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Fig. 1.9. Visualization of Airflow Over Two Platooning Class 8 Trucks [9]

oratory (NREL) also found that savings due to platooning appeared to be synergistic

with aerodynamic improving features on trailers, i.e., trucks pulling trailers with aero-

dynamic improving features saved more fuel (during platooning) than trucks pulling

trailers without aerodynamic improving features [10]. In order to safely drive class

8 trucks at 65 MPH at such short distances, Peloton claims that vehicle to vehicle

communication is required [11]. Figures 1.10, 1.11, and 1.12, illustrate how vehicle to

vehicle communication is necessary in order to safely close the platoon gap between

two platooning vehicles.

Fig. 1.10. Driver Lag [11]

Fig. 1.11. Radar Lag [11]

Peloton states that their fixed gap platooning cuts fuel consumption by 4.5% on

the lead truck and 10% on the follow truck for a platoon average of 7.25% savings [11].
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Fig. 1.12. PlatoonPro [11]

A separate study, led by NREL, found that on the Continental Proving Grounds in

Uvalde, Texas, savings of up to 6.4% were measured using SAE J1321 Type II fuel

testing standards [12].

A European study found that for a particular fleet, approximately 40% of all miles

traveled could be in a platooning state [13]. Another study led by NREL showed that

for the trucks across the U.S. for which they could confirm vehicle speed, 55.7% of

miles traveled could be in a platooning state [14]; however, it should be noted that

road grade was not a factor in this calculation, and it would likely prevent some of

the miles from being platoonable by class 8 trucks. Furthermore, Peloton claims that

in their trials, more than 80% of the platoonable miles have been utilized [15].

Significantly reducing the fuel consumption of class 8 trucks is a challenging task,

but platooning appears to be a promising technology to reduce fuel consumption in

class 8 vehicles.

1.3 Literature Review

The aim of the NEXTCAR project is to improve the performance of platooning,

specifically on hilly terrain. Currently, platooning has primarily been implemented

over flat and lightly graded corridors, as hilly terrain can result in excessive follow

truck gap growth. While a respectable percentage of the U.S. roadways that class 8

trucks use fall into this category, increasing the number of roadways that trucks are

able to platoon on would greatly increase the impact of this technology. Additionally,

optimizing vehicle operation over various corridors could also lead to additional fuel

savings above those obtained from platooning.
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One simple strategy to help class 8 trucks maintain the gap on graded routes,

proposed by Ibitayo, is to simultaneously shift the rear truck with the front truck [16].

Ibitayo shows that when simultaneous shifting is used, the maximum platoon gap

over a section of Interstate 69 in Indiana is reduced from 34.3 meters to 20.5 meters.

Management of gap is incredibly important because large platoon gaps can encourage

cars to drive in between platooning vehicles (often referred to as a cut-in). Cut-ins

demand the platoon to be canceled (also called “dissolved”). While simultaneous

shifting appears to be a promising strategy to minimize and maintain platoon gap

on aggressively graded roads and thus expand the number of miles where platooning

is accessible to class 8 trucks, it currently does not show additional fuel savings over

standard platooning [16].

Another successful strategy proposed by Ibitayo allows the rear truck to follow a

variable gap profile, instead of a fixed gap, behind the lead truck. Foster took this

concept and was able to successfully implement a PID style controller for the rear

truck to track the optimized gap profiles [17]. Both Ibitayo and Foster report rear

truck fuel savings of around 6-12% from a single-truck constant velocity baseline, and

they show significantly lower maximum gap growths than when the rear truck was

tracking a fixed gap. Lastly, operating the lead truck in a manner that is easier to

follow by the rear truck appears to aid in the management of gap growth.

1.4 Thesis Outline

This chapter outlined the motivation for why fuel saving technologies for class 8

trucks are important. There is a high impact of class 8 trucks on the environment,

and there are also cost saving benefits to be had through the reduction of fuel con-

sumption of class 8 trucks. Furthermore, the chapter set forth a rationale for why

aerodynamic improvements on class 8 trucks are a strong approach for saving fuel.

It then delved into platooning as a promising technology for saving fuel, and then
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addressed some of the challenges of platooning and some currently proposed solutions

to those challenges.

Chapter 2 will discuss the use of an engine test cell as a means of obtaining a

real-world estimate of fuel consumption before vehicle testing is conducted. It will

also present some data of Purdue’s fuel saving strategies that were previously run in

simulation.

Chapter 3 will describe the framework developed for an MPC controller that was

used to calculate the optimal velocity profile for a lead truck and the optimal gap

profile for a follow truck (behind aforementioned lead truck) over two corridors in the

United States. The chapter also shows the model being exercised through variations

of parameters and constraints to learn more about the optimal profiles that were

calculated.

Chapter 4 will discuss on-road testing that was conducted over a section of Inter-

state 69 in Indiana, and the subsequent data analysis. It also goes over predictions

of truck behavior and fuel consumption of a high-fidelity vehicle model using the

real-world data that was collected.

Chapter 5 will provide a summary of the work outlined in this thesis, emphasizing

key conclusions, as well as proposing recommendations for future work.
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2. TEST CELL REPEATABILITY

2.1 Motivation

While the focal point of this thesis is undoubtedly on simulations and on-road

testing, an important part of the process of moving from the simulation space into

on-road vehicle testing is the intermediate step of running an engine test cell. The

engine test cell allows for a vehicle control strategy feasibility check, whereby it is

possible to ensure that the engine speed and torque profiles are viable for the engine

to follow (e.g., commanded changes are not faster than what the engine is able to re-

spond to). Additionally, an engine test cell simultaneously acts as a fuel consumption

calculator, in which real-world fuel consumption can be measured instead of relying

upon simulation fuel consumption predictions. A high-fidelity vehicle model was de-

veloped with a powertrain (engine + transmission) “blackbox”, from Cummins, that

gives a predicted fuel consumption by Dr. Alexander Taylor [18]. The test cell can

then verify the accuracy of these simulation predictions, which gives insight into the

quantity of fuel that an on-road vehicle would consume. Lastly, the test cell can verify

other model predictions, such as emissions, and ensure that a given vehicle control

strategy does not increase emissions (particularly NOx) over its respective baseline.

One important difference to note between the test cell and the Peterbilt 579 trucks

(used for vehicle testing) is that the engine testbed was fed engine speed/torque

profiles, but the on-road vehicles were fed a velocity setpoint as a function of GPS

location. This will pose some discrepancy in the testbed fuel consumption vs. the

vehicle fuel consumption. However, the conducted vehicle tests (discussed in Chapter

4), showed that the measured engine speed and torque from the on-road vehicle

aligned very closely with the high-fidelity vehicle model simulation prediction over

the same corridor.
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Comparison of fuel consumption took on the order of hours in the simulation space

and on the order of weeks when doing full J1321 Type II fuel tests with platooning

vehicles (due to the strict requirements of ambient conditions as well as a lengthy

vehicle pre-drive and warm-up procedure). The beauty of the test cell lies in its

ability to generate real-world results on the order of days, and depending on the

length and types of tests being conducted, as little as a single day. While this chapter

will outline the number of tests that were run to ensure statistical significance and

therefore repeatability, what was found, and what will be shown, is that there is value

in as little as a single test for each strategy.

2.2 Experimental Setup and Testing Procedure

Inside Purdue’s Herrick Laboratories Test Cell #2 is a Cummins X15 Efficiency

Series shown in Figure 2.1. The engine is rated for 450 horsepower and 1750 foot-

pounds of torque. The X15 is mated to a 670 horsepower Power Test AC dynamome-

ter. Data was acquired via a Speedgoat real-time target machine, which runs on

Simulink. Fuel consumption was calculated by gravimetric analysis through the use

of a fuel container suspended by a load cell with before and after mass measurements

taken for each test.

In order to ensure repeatable results, tests where fuel consumption data was

needed were run only when the engine was in a “hot” state. A day of testing would

begin with a heavy-duty federal test procedure (HD-FTP) to warm up the engine for

the first test of the day, and all subsequent tests would be run after each other.

2.3 Routes of Interest

The focus of this thesis revolves around two main corridors of interest: Interstate

69 in southern Indiana and Interstate 280 in northern California. Two of the three

parties involved with the NEXTCAR project reside in the state of Indiana (Purdue

and Cummins), and the third resides in California (Peloton Technology). Because the
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Fig. 2.1. Cummins X15

technology this thesis presents yields the greatest fuel savings over aggressively graded

corridors, the most aggressive corridors that could be found within a reasonable dis-

tance of all parties involved were sought after. Both Interstate 69 and Interstate 280

were identified as corridors with grades that reach as high as 5%, and can be accessed

by the parties in their respective states within a reasonable drive time.

2.3.1 Interstate 69

Interstate 69 runs south to north through the state of Indiana with a break around

the Indianapolis metropolitan area, where it merges with Interstate 465. It spans

from Evansville, Indiana before it goes into Kentucky on the south side, and into the

Michigan border just to the north of Angola, Indiana.

Route data was recorded by Purdue students during the summer of 2018, and

it was identified that the section of I-69 between Crane and Bloomington, Indiana,

which was recently finished in 2015, was a good section to experiment with Purdue

NEXTCAR technologies [18]. Figure 2.2 is an image taken from Google Maps high-

lighting the start and end points used for testing on I-69. The northbound route was
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used with latitude/longitude starting coordinates of 38.8632, -87.0703 and ending co-

ordinates of 39.0709, -86.6125. Figure 2.3 shows vehicle velocity and grade for this

section of I-69.

Fig. 2.2. Interstate 69

Figure 2.3’s top plot shows a constant velocity vehicle traveling at the average

traffic velocity over I-69 (27.5 m/s corresponds to approximately 61.5 MPH). The

bottom plot shows the grade over time experienced by the same vehicle traveling at

that velocity. Of note is that the grade has frequent oscillations and has amplitudes

as high as nearly 5% and as low as nearly -5%.
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Fig. 2.3. Interstate 69 Speed and Grade Data

2.3.2 Interstate 280

Interstate 280 is also a north-south freeway that runs from San Jose to San Fran-

cisco in California. I-280 was identified by Peloton Technology as a route of interest

for some of their on-road platooning testing. I-280 also has aggressive grade, and

provides Peloton Technology with a close proximity route to test their technology

and any updates or changes that they make to it. Road grade and average traffic

speed data over this corridor was provided to Purdue by Peloton Technology. An

image of Interstate 280 is shown in Figure 2.4; the data provided is for a roughly 30

mile section of the freeway.

The plots in Figure 2.5 show average traffic speed and road grade, in the same

manner as Figure 2.3, for I-280. On the top, it can be seen that the traffic speed

is given as 22.5 m/s which equates to approximately 50 MPH, and the bottom plot

shows grade as a function of time for a vehicle following the constant velocity profile.

The maximum and minimum grade values also reach nearly 5% and -5% respectively.
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Fig. 2.4. Interstate 280

Fig. 2.5. Interstate 280 Speed and Grade Data



18

2.4 Test Cell vs. Simulation Fuel Consumption Initial Check

To both explore how test cell fuel consumption compares to simulation predicted

fuel consumption, as well as work toward one of the NEXTCAR project goals of

reducing fuel consumption by 5% using NEXTCAR developed algorithms (verified

with the test cell), multiple tests were run on the testbed. Ultimately, the data

of highest interest would come from the constant velocity vehicle baseline and the

improved platooning lead and follow truck tests, because this yields the highest fuel

savings percentage. However, in an attempt to identify how the test cell behaves with

a variety of tests, single vehicle long-horizon predictive cruise control (LHPCC) and

constant velocity platooning vehicles were also run. Table 2.1 shows both simulation

and test cell fuel consumption numbers, as well as the fuel consumption percent

differences between the test cell and simulation. The single vehicle and lead vehicle

values are for a vehicle that was tracking a constant velocity. In the case of the follow

vehicle, it was tracking a constant gap behind the lead vehicle. Table 2.2 gives the

same information as 2.1, but substitutes the lead and single vehicle constant velocity

profile with an optimized LHPCC velocity profile. The follow vehicle is then, of

course, behind the LHPCC lead vehicle.

Table 2.1.
Constant Velocity Fuel Consumption Over I-280

Single Vehicle Lead Vehicle Follow Vehicle

Simulation [lbs] 31.97 31.79 30.78

Test Cell [lbs] 30.71 30.57 27.52

Percent Difference [%] -3.9 -3.8 -10.6

Each of the values in the test cell row represents a single data point (as each

value comes from a single test), thus, drawing strong conclusions from this data was

avoided (repeats of tests are covered in the following sections). Nonetheless, most tests
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Table 2.2.
LHPCC Fuel Consumption Over I-280

Single Vehicle Lead Vehicle Follow Vehicle

Simulation [lbs] 28.29 28.04 26.37

Test Cell [lbs] 27.45 27.22 25.72

Percent Difference [%] -3.0 -2.9 -2.5

consistently consumed approximately 3% less fuel than their simulation counterparts.

One major exception to this was the case of a follow vehicle tracking a fixed gap behind

a lead vehicle tracking a constant velocity. It was initially speculated that there was

an error with the testing equipment that yielded an erroneous value, so a second test

was conducted for that data point. The second test yielded a fuel consumption of

27.73 lbs. This was .76% different than the initial test and -9.9% different from the

simulation, which again, differed significantly more from simulation than the other

tests did. It was hypothesized that this was due to differences in BSFC on the

testbed versus in the vehicle model. However, due to time constraints and the fast

paced nature of the NEXTCAR project, further investigation into the discrepancy

was not conducted.

2.5 Fuel Savings of LHPCC and ROGG

After sanity checking the fuel consumption results from the test cell against sim-

ulation with the preliminary tests, the next step was to run multiple tests to obtain

a statistically significant fuel savings percentage. The data in this section was used

as part of the NEXTCAR project to fulfill a required milestone of a 5% fuel savings

where the point of comparison was a single vehicle tracking a constant velocity. As

part of closing out this milestone, two different strategies were used: 1) a two-truck

platoon where the lead vehicle was using LHPCC and the follow vehicle was using
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Peloton’s production-intent PlatoonPro constant gap controller, and 2) a two-truck

platoon where the lead vehicle was tracking a constant velocity and the follow vehicle

was using a Purdue developed strategy called route optimized gap growth (ROGG).

Data for both strategies was provided by Ifeoluwa Ibitayo [16]. Case #1 was given

over I-280, and case #2 was given over I-69. The rationale for this was that these

were the corridors where the respective strategies saved the most fuel in simulation

(based on platoon average fuel consumption). After running the tests in section 2.4,

it was discovered that the torque command output by the simulation framework was

for dynamometer torque and not commanded engine torque. Because the X15 engine

used in Purdue’s Test Cell #2 has the accessories removed, an additional torque re-

quirement to the dynamometer needed to be added to replicate the accessory loads.

The data for the following sections will be based on the updated profiles with the

added accessory loads.

2.5.1 Long Horizon Predictive Cruise Control + PlatoonPro Over I-280

A simulated constant velocity single-truck operating over the previously mentioned

section of I-280 consumed, on average, 31.26 pounds of fuel in the test cell. This was

the point of comparison from which the savings were measured. With the strategy

of a LHPCC front truck with a constant gap PlatoonPro controlled rear truck, the

average of the platoons’ average fuel consumption was calculated to be 27.16 pounds.

A t-test was then conducted, and the resulting calculation yielded a nominal savings

of 13.11% with a confidence interval of ±0.36%. This was for a confidence level of

95%.

Table 2.3 shows the amount of fuel consumed for each individual test. A total of

9 tests were run (3 tests to simulate each of the 3 different truck cases) in order to

confirm fuel savings. Table 2.4 averages the fuel consumption of the lead and follow

vehicles in order to visualize the platoon average savings.
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Table 2.3.
Individual Engine Test Cell Fuel Consumption Over I-280

Test # Single Vehicle [lbs] Lead Vehicle [lbs] Follow Vehicle [lbs]

1 31.24 28.13 26.32

2 31.27 27.92 26.25

3 31.26 28.09 26.24

Table 2.4.
Platoon Average Engine Test Cell Fuel Consumption Over I-280

Test # Single Vehicle [lbs] Platoon Average [lbs]

1 31.24 27.23

2 31.27 27.09

3 31.26 27.17

Average 31.26 27.16

2.5.2 Constant Velocity + Route Optimized Gap Growth Over I-69

The second strategy of a constant velocity lead vehicle with a follow vehicle using

ROGG was simulated over I-69. The constant velocity single vehicle average fuel

consumption over this corridor was 34.73 pounds, which was used as the point of

comparison. The average of the platoons’ average fuel consumption was 32.86 pounds.

Another t-test was done, and the fuel savings were calculated to be 5.38% with a

confidence interval of ±0.22%. This was also for a confidence level of 95%. Fuel

consumption numbers for all strategy 2 tests can be found in Table 2.5. Table 2.6

averages the lead and follow vehicles into a single column to more easily view the

platoon average fuel savings.
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Table 2.5.
Individual Engine Test Cell Fuel Consumption Over I-69

Test # Single Vehicle [lbs] Lead Vehicle [lbs] Follow Vehicle [lbs]

1 34.69 34.51 31.18

2 34.76 34.45 31.33

3 34.75 34.49 31.19

Table 2.6.
Platoon Average Engine Test Cell Fuel Consumption Over I-69

Test # Single Vehicle [lbs] Platoon Average [lbs]

1 34.69 32.85

2 34.76 32.89

3 34.75 32.84

Average 34.73 32.86

2.6 Test Cell Repeatability Revisited

In addition to using the aforementioned tests to realize fuel savings using various

strategies, they were also used as a check for the predicted fuel consumption values

from simulation. This section explores the tests as a “real-world” reference to com-

pare against the simulation values. Section 2.5 discussed the constant velocity single

vehicle (used as a point of comparison), lead vehicle (in an improved platoon), and

follow vehicle (in an improved platoon). Additionally, other tests were conducted in

the spring of 2019 which included lead and follow vehicles in a standard (constant

velocity) platoon. However, due to time constraints, the single vehicle LHPCC (non-

platooning) vehicle was not retested. To reiterate, the following data represents tests

that were run using the updated profiles with the accessory loads added.
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2.6.1 Interstate 280

Table 2.7 shows values for a constant velocity single vehicle, a constant velocity

platooning lead vehicle, and a follow vehicle tracking a constant gap using PlatoonPro

behind the constant velocity lead vehicle. All of which are over the same section of

I-280.

Table 2.7.
Test Cell vs. Simulation Fuel Consumption Constant Velocity Over I-280

Test Type Single [lbs] Lead [lbs] Follow [lbs]

Constant Velocity Test Cell Test 1 31.24 31.13 30.16

Constant Velocity Test Cell Test 2 31.27 31.08 30.23

Constant Velocity Test Cell Test 3 31.26 31.09 30.14

Constant Velocity Test Cell Average 31.26 31.10 30.18

Constant Velocity Test Cell SD 0.0153 0.0265 0.0473

Constant Velocity Simulation 31.97 31.79 30.78

Percent Difference from Simulation -2.22 -2.17 -1.95

Table 2.8 shows values for only a LHPCC lead vehicle with a PlatoonPro follow.

It was determined that obtaining 3 tests for the LHPCC single vehicle profile with

added accessory loads was the lowest priority in comparison to the other scenarios.

This is why results for a LHPCC single vehicle are not included in Table 2.8

2.6.2 Interstate 69

Table 2.9 shows values for constant velocity single vehicle, constant velocity pla-

tooning lead, and follow vehicle using the ROGG strategy behind the constant velocity

lead. Over the same section of I-69.
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Table 2.8.
Test Cell vs. Simulation Fuel Consumption LHPCC Over I-280

Test Type Lead [lbs] Follow [lbs]

LHPCC Test Cell Test 1 28.13 26.32

LHPCC Test Cell Test 2 27.92 26.25

LHPCC Test Cell Test 3 28.09 26.24

LHPCC Test Cell Average 28.05 26.27

LHPCC Test Cell SD 0.1115 0.0436

LHPCC Simulation 28.04 26.37

Percent Difference from Simulation 0.04 -0.38

Table 2.9.
Test Cell vs. Simulation Fuel Consumption Constant Velocity Over I-69

Single [lbs] Lead [lbs] Follow [lbs]

ROGG Test Cell Test 1 34.69 34.51 31.18

ROGG Test Cell Test 2 34.76 34.45 31.33

ROGG Test Cell Test 3 34.75 34.49 31.19

ROGG Test Cell Average 34.73 34.48 31.23

ROGG Test Cell SD 0.0379 0.0306 0.0839

ROGG Simulation 35.10 34.75 30.89

Percent Difference from Simulation -1.05 -0.78 1.10

2.7 Summary

Two different NEXTCAR vehicle strategies, developed collaboratively by Purdue,

Peloton Technology, and Cummins, have shown promising fuel savings over aggres-

sively graded routes in the U.S. Long-horizon predictive cruise control on a lead truck
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with a fixed gap platooning rear truck saved 13.11 ±0.36 % fuel over a section of

I-280, and a constant velocity lead vehicle with a route optimized gap growth follow

vehicle saved 5.38 ±0.22 % over a section of I-69. Furthermore, average test cell fuel

consumption numbers deviated from simulation by 1.10% to -2.22%, and all testing

datasets had standard deviation values less than 0.11 lbs of fuel, with the majority

of tests having standard deviation values of less than 0.05 lbs of fuel. The strong

correlation between test cell fuel consumption and simulation fuel consumption is a

testament to the accuracy of the simulation framework.
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3. TWO-TRUCK LONG-HORIZON PREDICTIVE

CRUISE CONTROL

3.1 Motivation

When looking at fuel savings strategies to improve two-truck platooning, various

improvements in vehicle dynamics have been explored. Investigated strategies include:

optimizing lead vehicle velocity via a model predictive control (MPC) controller,

optimizing follow vehicle gap via a MPC controller, the use of simultaneous shifting

as a gap management strategy, and many others. However, what had not previously

been investigated was a lead and follow vehicle simultaneously optimized to complete

a corridor in a fixed amount of time. This, in theory, would provide the maximum fuel

savings a two-truck platoon could achieve, as a solver is given complete control over

both vehicles so long as it did not violate any physically based constraints (including

engine power, braking power, and speed limits).

3.2 Two-Truck Long-Horizon Predictive Cruise Control Framework and

Algorithm Design

In order to explore the optimal vehicle operation of a two-truck platoon, a linear

model based on two Peterbilt 579 trucks was created for a MPC controller. This

is referred to as two-truck long-horizon predictive cruise control (LHPCC). A state

space representation was used, and the free body diagram, which was used for the

state space equations, is shown in Figure 3.1.

The motive forces for the preceding and the follow truck were represented by the

respective equations:
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Fig. 3.1. Free-Body Diagram of Forces Acting on Two Class 8 Trucks

Fmotive,p = Pe,p/Vp (3.1)

Fmotive,f = Pe,f/Vf (3.2)

where Pe,p is the engine power for the preceding vehicle, Pe,f is the engine power for

the follow vehicle, Vp is the preceding vehicle velocity, and Vf is the follow vehicle

velocity. Power was used because it is independent of gear number which allows the

nonlinearities associated with gear shifting to be neglected within the controller.

Similar equations were used to represent the braking forces:

Fbrake,p = Pbrake,p/Vp (3.3)

Fbrake,f = Pbrake,f/Vf (3.4)

where Pbrake,p and Pbrake,f are the preceding and follow vehicles’ braking powers,

respectively, and again Vp and Vf are the preceding and follow vehicles’ velocities,

respectively.
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The force of gravity on the preceding and follow trucks, respectively, was repre-

sented by:

Fgravity,p = mpgsin(θp) ≈ mpgθp (3.5)

Fgravity,f = mfgsin(θf ) ≈ mfgθf (3.6)

where mp and mf are the masses of the preceding and follow trucks, respectively, g

is the acceleration due to gravity, θp is the grade experienced by the preceding truck,

and θf is the grade experienced by the follow truck. The small angle approximation

was used to approximate sin(θp) as θp and sin(θf ) as θf .

The force of rolling resistance was represented by:

Froll,p = mpgfcos(θp) ≈ mpgf (3.7)

Froll,f = mfgfcos(θf ) ≈ mfgf (3.8)

where mp and mf are the masses of the preceding and follow trucks, g is the acceler-

ation due to gravity, and f is the rolling resistance coefficient. Again, the small angle

approximation was used to approximate both cos(θf ) and cos(θp) as 1.

The drag force varies as a function of both velocity and truck separation (which

changes the drag coefficient). The drag forces were represented by:

Fdragp = 1/2ρĀCD,0(p2VpV̄ + p3dV̄
2) (3.9)

Fdragf = 1/2ρĀCD,0(p0Vf V̄ + p1dV̄
2) (3.10)

where ρ is the density of air, Ā is the frontal area of the vehicle (assumed to be the

same for both the preceding and follow vehicles because the model assumed identical

vehicles in a platoon) CD,0 is the nominal drag coefficient, which was assumed to

be the same for both trucks since the model assumed identical preceding and follow

vehicles, Vp is the current velocity of the preceding truck, Vf is the current velocity of

the follow truck, V̄ is the average velocity of the trucks (assuming negligible difference

in their trip times), d is the distance between the preceding truck and the follow truck,
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p0 is the y-intercept of the linearization of drag as a function of distance for the follow

truck, p1 is the slope of the linearization of drag as a function of distance for the follow

truck, p2 is the y-intercept of the linearization of drag as a function of distance for

the preceding truck, and p3 is the slope of the linearization of drag as a function of

distance for the preceding truck. This equation was obtained by linearizing the drag

variation, a nonlinear phenomenon, as a function of truck separation. This data was

obtained by Salari and is shown in Figure 3.2 [19]. A first-order Taylor expansion

was then applied to the force of drag to obtain its variation as a linear function of

both velocity and truck separation.

Fig. 3.2. The Normalized Drag Coefficients for the Lead Truck and
Follow Truck as a Function of Truck Separation [19]

The prediction model for the system is as follows:

x[k + 1] = Ax[k] + Bu[k] + Bθ,fθf [k] + Bθ,pθp[k] (3.11)

where x is the state vector, A relates the evolution of states from one time instance to

the next, u is the input vector, B relates how the inputs affect the states, θf is the road
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grade experienced by the follow vehicle, Bθ,f relates how the road grade experienced

by the follow vehicle affects the states, θp is road grade experienced by the preceding

vehicle, and Bθ,p relates how the road grade experienced by the preceding vehicle

affects the states. The road grade experienced by the preceding vehicle and follow

vehicle were treated as disturbances so that they could change dynamically over the

MPC horizon.

The state vector is as follows:

x =



Sf

Vf

Pe,f

Pb,f

f

d

Sp

Vp

Pe,p

Pb,p



(3.12)

where Sf is the position of the follow vehicle. Vf is the velocity of the follow vehicle.

Pe,f is the engine power of the follow vehicle. Pb,f is the braking power of the follow

vehicle. f is the rolling resistance coefficient. d is the distance between the preceding

vehicle and the follow vehicle. Sp is the position of the preceding vehicle. Vp is the

velocity of the preceding vehicle. Pe,p is the engine power of the preceding vehicle.

Pb,p is the braking power of the preceding vehicle.

The state matrix, A, is as follows:
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A =



0 1 0 0 0 0 0 0 0 0

0 −ρĀCD,0V̄ p0
2me,f

ηt
me,f V̄

− 1
me,f V̄

− mf

me,f
g −ρĀCD,0V̄

2p1
2me,f

0 0 0 0

0 0 − 1
τe

0 0 0 0 0 0 0

0 0 0 − 1
τb

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 − mp

me,p
g −ρĀCD,0V̄

2p3
2me,p

0 −ρĀCD,0V̄ p2
2me,p

ηt
me,pV̄

− 1
me,pV̄

0 0 0 0 0 0 0 0 − 1
τe

0

0 0 0 0 0 0 0 0 0 − 1
τb


(3.13)

where ρ is the density of air. Ā is the frontal area of the vehicle, which was assumed

to be the same for both the preceding and follow vehicles because the model assumed

identical vehicles in a platoon. CD,0 is the nominal drag coefficient, which is again

the same for both vehicles as previously mentioned. V̄ is the average velocity of the

vehicles over the route (again, assumed to be the same for both vehicles). p0 is the y-

intercept of the linearization of drag as a function of distance for the follow vehicle. p1

is the slope of the linearization of drag as a function of distance for the follow vehicle.

p2 is the y-intercept of the linearization of drag as a function of distance for the

preceding vehicle. p3 is the slope of the linearization of drag as a function of distance

for the preceding vehicle. me,f is the inertial mass of the follow vehicle. me,p is the

inertial mass of the preceding vehicle. ηt is the vehicle drivetrain efficiency which is

assumed to be the same for both vehicles. mf is the mass of the follow vehicle. mp

is the mass of the preceding vehicle. g is the acceleration due to gravity. τe is the

engine time constant, and τb is the brake time constant; both of which were assumed

to be the same for both vehicles due to the assumption of identical powertrains and

braking systems.
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The input vector is as follows:

u =


Pe,f,com

Pbrake,f,com

Pe,p,com

Pbrake,p,com

 (3.14)

where Pe,f,com is the commanded engine (positive) power of the follow vehicle, Pb,f,com

is the commanded braking (negative) power of the follow vehicle, Pe,p,com is the com-

manded engine (positive) power of the preceding vehicle, Pb,p,com is the commanded

braking (negative) power of the preceding vehicle.

The input matrix, B, is as follows:

B =



0 0 0 0

0 0 0 0

1
τe

0 0 0

0 1
τb

0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1
τe

0

0 0 0 1
τb



(3.15)

where τe is the engine time constant, and τb is the brake time constant. Both of

which are assumed to be the same for the preceding and follow vehicles as previously

mentioned.
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The grade input matrix for the follow vehicle, Bθ,f , is as follows:

Bθ,f =



0

− mf

me,f
g

0

0

0

0

0

0

0

0



(3.16)

where mf and me,f are the mass and inertial mass, respectively, of the follow vehicle,

and g is the acceleration due to gravity.

The grade input matrix for the preceding vehicle, Bθ,p, is as follows:

Bθ,p =



0

0

0

0

0

0

0

− m,p
me,p

g

0

0



(3.17)

where mp and me,p are the mass and inertial mass, respectively, of the preceding

vehicle, and g is the acceleration due to gravity.
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The objective function is as follows:

min J =
N−1∑
k=0

Pe,p[k] + Pe,f [k] (3.18)

(3.19)

the constraints for the two-truck MPC are shown below:

Pe,min ≤ Pe,p ≤ Pe,max (3.20)

Pe,min ≤ Pe,f ≤ Pe,max (3.21)

Ṗe,min ≤ Ṗe,p ≤ Ṗe,max (3.22)

Ṗe,min ≤ Ṗe,f ≤ Ṗe,max (3.23)

P̈e,min ≤ P̈e,p ≤ P̈e,max (3.24)

P̈e,min ≤ P̈e,f ≤ P̈e,max (3.25)

0 ≤ Pbrake,p ≤ Pbrake,max (3.26)

0 ≤ Pbrake,f ≤ Pbrake,max (3.27)

Vmin ≤ Vp ≤ Vmax (3.28)

Vmin ≤ Vf ≤ Vmax (3.29)

dmin ≤ d ≤ dmax (3.30)

tfinal ≤ tmax (3.31)

where Pe,p and Pe,f are the respective preceding and follow vehicles’ engine powers.

Pe,min is the minimum engine power (i.e., maximum retarder power), and Pe,max is

the maximum positive engine, both of which were assumed to be the same for both

vehicles. Ṗe,p and Ṗe,f are the rates of change of engine power for the preceding and

follow vehicles, respectively. Ṗe,min is the fastest that the engine power can decrease,

and Ṗe,max is the fastest that the engine power can increase, both of which were

assumed to be the same for both vehicles. P̈e,p and P̈e,f are the second derivatives of

engine power for the preceding and follow vehicles, respectively. P̈e,min is the fastest

that the derivative of engine power can decrease, and P̈e,max is the fastest that the
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derivative of engine power can increase, both of which were assumed to be the same for

both vehicles. Pbrake,p and Pbrake,f are the braking powers of the preceding and follow

vehicles, respectively. Pb,max is the maximum braking power, which was assumed to

be the same for both vehicles. d is the instantaneous vehicle separation, dmin is the

minimum platooning gap, and dmax is the maximum platooning gap. tfinal is the final

time instance, and tmax is the maximum time allowed to finish the corridor.

Essentially, the objective is to minimize positive power (used as a proxy for fuel

consumption) of both the preceding and follow vehicles while maintaining realistic

constraints on the engines, brakes, vehicle separation and also ensuring that the

vehicles finish the route within the specified time constraint. The controller was

applied to the entire route in open loop to generate an optimal preceding vehicle

velocity Vp,des, and an optimal vehicle separation (gap), ddes, for the follow vehicle to

platoon at.

3.3 Results

3.3.1 I-69 and I-280 Results

After finishing the algorithm development, the model was exercised over the sec-

tions of I-69 and I-280 that were outlined in chapter 2. An interesting, and somewhat

non-intuitive, result is that the algorithm nearly always output a near fixed gap

desired gap profile with the setpoint being the smallest gap allowed by the gap con-

straints. This can be seen for the I-280 corridor in Figure 3.3, and in Figure 3.4 for

the I-69 corridor.

In Figures 3.3 and 3.4, it can be seen that there are five instances of small desired

gap growth over the I-280 corridor, and two very small (effectively negligible) instances

of desired gap growth over the I-69 corridor. This implies that over the two corridors

outlined in this thesis, fixed gap platooning behind a lead truck with an optimized

velocity profile appears to be the most optimal way to operate two vehicles (especially

in the case over I-69).
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Fig. 3.3. Interstate 280 Optimized Velocity & Gap

Fig. 3.4. Interstate 69 Optimized Velocity & Gap

3.3.2 Further Exploration over I-69

Because this was a Purdue-led effort with plans for on-road testing (over I-69),

further exploration of the model was done using the I-69 corridor. This was done to
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test some of the limits of the model and allow for further insight into what optimal

two-truck behavior looks like.

The discovery of fixed gap platooning behind an optimized lead truck was further

tested by first adjusting the minimum constraint on platoon gap over I-69. This is

shown in Figure 3.5

Fig. 3.5. Interstate 69 Optimized Gap with Different Minimum Gap Constraints

Figure 3.5 shows that even when the minimum platooning gap was changed, the

optimal gap profile of the follow vehicle was still a fixed gap at the minimum allowable

gap. In all six different minimum gap constraint scenarios, it can be seen that the

two (near negligible) gap growths still occurred at roughly the same instances over

the route. This outcome indicates that, if the lead truck is driven very reasonably

(and with knowledge of a follow truck behind it), a follow vehicle should be able to

easily track a fixed gap without needing to aggressively speed up or slow down.

Given the outcome of the previous results, the next exercise was to adjust the

mass of the trucks. Intuitively, as the mass of a truck becomes larger, the fixed

maximum forces (from the engine and the brakes) will have less of an effect on its

change in acceleration. This would, in theory, make it more difficult to follow a fixed

gap (especially in the case of a heavier rear truck). The outcome of these tests are
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shown in Figure 3.6. Four cases are shown: (1) standard front truck with light rear

truck, (2) light front truck with standard rear truck, (3) standard front truck with

heavy rear truck, and (4) heavy front truck with standard rear truck.

Fig. 3.6. Interstate 69 Optimized Gap for Different Truck Masses

Again in Figure 3.6, it can be seen that fixed gap platooning was the optimal

strategy when the lead truck had an optimized velocity profile. Even in case two where

the rear truck was nearly twice the mass of the lead truck, a fixed gap platoon was

still optimal. The only deviation from this was when the rear truck mass was doubled,

and in this scenario there is significant change in gap. However, it is important to

highlight that this was an academic exercise. The maximum GVW of a tractor-

trailer is 80,000 pounds. This means that the tested value of 132,000 pounds is well

beyond the legal limit; indicating that for all practical purposes, weight does not

affect the optimal gap profile over I-69. Additionally, even though the second case

(with a heavier rear truck) also output fixed gap platooning, it should be noted that,

currently, Peloton’s PlatoonPro system allows for platooning with only the heavier

truck in front, for safety reasons.
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3.3.3 Fuel Consumption

Once the two-truck MPC model had been further investigated, and subsection

3.3.2 has shown that fixed gap platooning did really appear to be the optimal strat-

egy behind a well-driven lead vehicle, a look into simulated fuel savings was appro-

priate. Because the results indicate that a fixed minimum gap is most optimal, it was

helpful to compare the two-truck LHPCC results to a “selfish” single-truck optimized

LHPCC. Both strategies were given a rear truck using fixed gap PlatoonPro (both

with and without simultaneous shifting). The results for I-280 are shown in Table

3.1, and they show fuel savings of ∼14% with respect to a single vehicle tracking a

constant velocity (which consumed 14.51 kg of fuel). The results for I-69 are shown in

Table 3.2, and they demonstrate fuel savings of ∼12% with respect to a single vehicle

tracking a constant velocity (which consumed 15.92 kg of fuel).

Table 3.1.
Interstate 280 Fuel Consumption Results

Table 3.1 (for I-280) shows that slightly higher fuel savings were achieved with

the “selfish” single-truck velocity profile than with the two-truck front vehicle velocity

profile. It is speculated that this could have partially been due to the fact that the

optimized I-280 rear truck gap profile did not spend as much time against the mini-
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Table 3.2.
Interstate 69 Fuel Consumption Results

mum gap constraint as in the case of I-69 (per Figure 3.3 above), and this desired gap

growth did not occur in the vehicle simulation framework when fixed gap PlatoonPro

was used. Another likely explanation is that the linear model did not capture all of

the nuanced truck behaviors that the high-fidelity model did (e.g., shifting). Nonethe-

less, Figure 3.7 shows how the lead truck velocity profiles were similar between the

two-truck optimized MPC and single-truck optimized MPC.

Lastly, further analysis of the data shown in Tables 3.1 and 3.2 was conducted

to investigate what could potentially be done to realize more fuel savings. In order

to do this, a series of calculations were done. First, the amount of fuel consumed

over the corridor was divided by the cumulative propulsive energy. This provided an

estimate for how much fuel it took to put a given amount of energy into the vehicle (an

efficiency of sorts). This number can then be multiplied by the cumulative amount of

negative energy, used by the retarder, to arrive at an estimate of how much additional

fuel could be saved if no retarder were to be used over the corridor. These results are

shown on the rightmost column in both Tables 3.1 and 3.2. The respective percent

savings from the baseline, if the calculated amount of fuel savings from retarder
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Fig. 3.7. Interstate 69 Optimized Velocity Comparison

elimination were to be realized, are also shown in parentheses in the same column.

From this, it can be deduced that if the retarder were to be completely eliminated over

the I-280 corridor, savings of roughly 20% could be realized. This is due to the fact

that the vehicles use more retarder (cumulative braking energy) over I-280 than over

I-69; therefore, there is more potential fuel savings to be had over I-280. However,

in order to completely eliminate the retarder usage (and therefore realize more fuel

savings), the velocity constraints would need to allow a wider range. Because the

MPC controller uses a linear model to solve for the optimal velocity and gap profiles,

but the force due to drag is quadratic (not linear), when the velocity constraints are

more flexible than outlined in this chapter, the model’s predictive ability of what

is optimal becomes less accurate. When the, further relaxed, “optimized” velocity

profile is fed into the high-fidelity vehicle model, more fuel is consumed at the higher

velocities than the solver anticipated, and therefore overall savings are not improved.

Thus, in order to realize more savings over I-280, the drag term would need to be

modeled differently.
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3.4 Summary

The conclusion that can be drawn up to this point in the two-truck MPC devel-

opment is that when a lead truck has its velocity profile optimized, the rear truck is

able to efficiently maintain the minimum allowable gap. Maintaining the minimum

possible platoon gap allows both trucks to reap the maximum benefit of platooning

and reduce the energy lost to drag as much as possible. When this was done, fuel

savings were ∼14% and ∼12% over I-280 and I-69, respectively. Further analysis of

the retarder energy indicated that if the retarder could be completely eliminated, fuel

savings of ∼20% and ∼13% over I-280 and I-69, respectively, could potentially be

realized. The serendipitous aspect of this is that no further development of a variable

gap platoon controller would need to be developed; Peloton’s PlatoonPro controller

already tracks a constant gap.
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4. TWO-TRUCK FUEL SAVINGS

4.1 Motivation

After extensive research and development of candidate algorithms for optimal

vehicle dynamics from months of testing in both the simulation space as well as the

engine test cell, the appropriate next step was to conduct on-road testing. Because

this testing would be Purdue-led, the focus remained exclusively on a roughly 40

mile section of Interstate 69, which is approximately a 2 hour one-way drive from the

Purdue truck facility in Lafayette, IN.

Due to the novel SARS-CoV-2 virus, platooning of two trucks was unavailable.

Therefore, real-world single-truck data was collected to be run in platooning simu-

lations. When deemed safe and appropriate, real-world fuel economy testing (J1321

Type II) over I-69 is planned, in order to have on-highway results of realized fuel

savings.

Having experimental data from on-road trucks to run in simulation has a number

of benefits. First, it allows for the characterization of the cruise controller, which is

a better representation of baseline truck behavior, from which fuel savings can be

measured. Second, it allows for the validation of on-truck variable velocity (LHPCC)

control, ensuring that the on-road truck can track desired velocity profiles. Lastly, it

also allows for fuel consumption predictions that are one step closer to what could

be expected from on-road vehicles; the simulated fuel consumption would come from

velocity profiles that were experimentally obtained.
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4.2 Experimental Setup and Testing Procedure

For on-road testing, two 2019 Peterbilt 579 sleeper cabs were used. They are

powered by the Cummins X15 Efficiency Series engine (same engine in Purdue’s

Herrick Labs test cell #2) mated to an Eaton Endurant 12 speed automated manual

transmission. The trucks are connected to 53’ Wabash National DuraPlate dry van

trailers with trailer skirts, and they are loaded down with concrete blocks so that the

total tractor-trailer GVW is 65,000 lbs. The vehicles are shown in Figure 4.1.

Fig. 4.1. Peterbilt 579 Trucks

The trucks are equipped with Peloton’s PlatoonPro system, which is integrated

into the vehicle’s controller area network (CAN). This allows the PlatoonPro system

to read data from the vehicle, engine, transmission, and brake module. It also allows

for various parameters, such as engine torque, to be commanded during a platoon.

The data obtained in this section comes from Peloton’s engine control unit (PECU),

which has an internal GPS that allows it to log vehicle parameters as a function of

time and location.

Speedgoat real-time target machines were installed to enable the implementation

of custom Simulink algorithms. The Speedgoat machines are equipped with separate

GPS units, and they are able to communicate both over CAN and through separate

connections to the engine and PECU. This gives them the ability to command engine
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torque, retarder torque, transmission gear number, and cruise control setpoint. In

this chapter, only the use of variable cruise control setpoint was used to command a

variable velocity LHPCC Profile. The network architecture is shown in Figure 4.2.

Fig. 4.2. Truck Vehicle Network Schematic

In the spirit of trying to mimic J1321 Type II fuel testing procedures, even though

no official on-road fuel economy testing was conducted, the vehicle was driven down to

the testing location, outlined in section 4.3, immediately before testing. This allowed

for the vehicle’s hardware to reach operating temperature, which helped ensure the

vehicle was in the same state for each test.

4.3 Interstate 69 Corridor

Upon further analysis of the portion of I-69 that was used for the research outlined

in chapters 2 and 3, the current section that was used could be improved, from the

perspective of truck testing, by giving the starting and ending points identifiable

landmarks, as well as placing them in locations such that if a test needed to be

aborted, the time to regroup and reset is minimized. The landmark identification is
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useful in ensuring the test equipment is performing as expected in the instance that

it is supposed to initiate a test sequence.

The southern, starting, point was moved around half a mile north to be on a bridge

spanning railroad tracks, and the northern, ending, point was also moved about 5

miles north to be at the South Rockport Road underpass that is between the Fullerton

Pike exit and the Highway 37 exit. This provided a quick turnaround in the case of an

improper start for the first, beginning of the day, southbound test. While this thesis

focuses on the northbound testing, a southbound test preceded every northbound test

due to proximity from Purdue’s campus. The previous northern point would have

led to a roughly 20 minute reset time versus approximately 5 minutes that it took in

the new route. The new starting GPS coordinates were 38.868301, -87.070196, and

the new ending GPS coordinates were 39.118228, -86.567221. The updated route is

shown in Figure 4.3.

Fig. 4.3. Updated I-69 Route
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A zoomed in view of the change made to the start point (southern location) is

shown in Figure 4.4, and a zoomed in view of the change made to the end point

(northern location) is shown in Figure 4.5. In both cases, the original location is the

circle with the black outline, and the new location is the red pin.

Fig. 4.4. Updated I-69 Route Starting Point

A standard day of testing started with the drive down to I-69 from Lafayette.

A stop was then made on the southbound ramp onto I-69 from Fullerton Pike to

ensure all equipment and software were prepared for testing. A southbound test was

then run to the aforementioned southbound point on I-69. Finally, the truck then

took the US Highway 58 exit to pause briefly for another system functionality check

before beginning the northbound testing, which began as soon as the GPS in the

truck recorded the vehicle crossing the starting point.
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Fig. 4.5. Updated I-69 Route Ending Point

It should be noted that tests on both the northbound and southbound routes

were conducted, but this thesis will focus exclusively on the northbound route. The

primary rationale for this is that previous research conducted by Professor Greg

Shaver et al. concentrated exclusively on the northbound route. For sake of continuity

of the progression of work that has been done up until this point in time (Summer

2020), only results for the northbound route will be discussed.
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4.4 Acquisition of Single-Truck Data

Previously, in simulation, a PI controller tracking a constant velocity setpoint was

used as a point of comparison, because a vehicle cruise controller was not available

in simulation. This was used for the results outlined in chapters 2 and 3. One

goal of acquiring single-truck data, was to have the truck drive over the route with

its cruise controller in various settings. This captured real-world velocity profiles

produced by different cruise controller settings. With the real-world cruise controller

velocity profiles, a more appropriate quantification of fuel savings by Purdue strategies

was made in simulation. Among many tuneable cruise control parameters, the most

commonly adjusted is what is referred to as the “droop” settings. The droop settings

of the cruise controller allow the vehicle velocity to deviate from the setpoint. An

illustration of this for droop settings of ±3 MPH is shown in Figure 4.6.

Fig. 4.6. Droop Illustration

Because this analysis was focused exclusively on the I-69 corridor, two trips were

made to the south of Bloomington, IN, where the section of interest lies. The first trip

successfully captured data for the Cummins cruise controller with the droop settings
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set to ±0 MPH (no droop), and additionally, for droop settings set to +3.1/-6.1 MPH

(max droop), which are the maximum values allowed by the Cummins software.

The second trip was a functionality check for the Purdue-developed LHPCC veloc-

ity profile. It allowed the Purdue team to gain insight into how well the truck would

follow the commanded vehicle velocity, as well as yield an experimental velocity pro-

file from an on-road truck. This, in turn, allowed for the use of experimental data to

be run in the simulation framework. In a similar manner to wanting real-world cruise

controller velocity profiles to move away from simulated constant-velocity profiles,

having an experimental LHPCC profile provides a more accurate representation of

LHPCC rather than continuing to rely only upon the high-fidelity vehicle model’s

prediction. The current state of the algorithm development, outlined in chapter 3,

showed that a near-fixed gap platooning follow truck behind a lead truck with a

route-optimized velocity profile yields the highest fuel savings. While the two-truck

optimized velocity profile yielded slightly higher platoon average fuel savings in the

predictive, two-truck, fixed gap high-fidelity vehicle model, than its single-truck coun-

terpart (shown in Table 3.2), this algorithm takes longer to run than the single truck

algorithm. Because the route had been slightly modified and a new optimal velocity

profile needed to be generated, in the interest of time, the single-truck optimized

algorithm was used to generate the velocity profile.

4.5 Experimental Data Results

Figure 4.7 plots the three experimental data samples from the single-truck testing

(no droop, max droop, LHPCC) to explore how the truck behaved with each veloc-

ity tracking setting. The first subplot is road grade as a function of distance. The

measured grade for the three tests align indicating that the rest of the measured pa-

rameters are also position aligned. This ensures a true “apples to apples” comparison.

If there was misalignment of grade data, then it would not be appropriate to compare
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how the vehicle speed, engine torque, retarder torque, and gear numbers differ from

case to case.

The second subplot is vehicle velocity as a function of time. In this plot it can

be seen that the trends in vehicle velocity for both no droop and max droop are

very similar. As expected, the maximum and minimum velocities of the max-droop

data yield more extreme values than those of the no-droop counterpart. Of particular

interest is that the no-droop cruise controller still deviated very far from its 62 MPH

setpoint, and that the max-droop cruise controller went both faster and slower than

its respective upper and lower velocity limits; notably, the max-droop cruise controller

had a peak velocity of around 70 MPH, which was about 5 MPH faster than expected.

This was surprising because efforts were made to obey posted speed limits for I-

69 testing. With a cruise control setpoint of 62MPH and a +3.1 MPH allowable

deviation from the setpoint, a maximum velocity of 65.1 MPH was expected. The

I-69 speed limit is 65 MPH, so the truck went 5 MPH faster than the I-69 speed

limit. More specifically, according to the retarder settings, the retarder should have

initiated when the truck reached 65.1 MPH (0 MPH over the speed threshold), and

full retarder should have been in use when the truck reached 67.1 MPH (2 MPH over

the speed threshold). In both cases, this did not appear to happen.

The third subplot is positive engine torque as a function of distance. A takeaway

from this plot is that, as expected, the no-droop cruise controller saturates the engine

torque much more frequently than the max-droop cruise controller and the LHPCC

velocity profile.

The fourth subplot is engine retarder torque over position. Here it is seen that the

LHPCC profile eliminated the use of the engine retarder, with the small exception of a

quick use of retarder at the very end of the corridor. However, it is speculated that this

was caused by a slow-moving vehicle that activated the truck’s ACC. The reduction

of engine retarder usage is significant because the use of the engine retarder equates

to a loss of kinetic energy, which will quickly need to be regained by way of increased

fueling. Avoiding usage of retarder, or friction brakes, should universally translate to
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lower fuel consumption. The max-droop cruise controller was also able to minimize

retarder use, and only used it in four instances. The no-droop cruise controller had

significantly more retarder usage than both the max-droop cruise controller, and the

LHPCC profile.

The fifth plot is of transmission gear number as a function of position. This

shows that all three strategies operate primarily in top gear with a few instances of

downshifts into 11th gear, and a single instance of downshifting into 10th gear in only

the no-droop and LHPCC runs. The shift into 10th gear in the LHPCC profile aligns

with the retarder usage; again, it is speculated that this was due to the ACC being

activated. Additionally, the LHPCC profile had the fewest number of shifts, and the

no-droop cruise controller had the most number of shifts while the max-droop cruise

controller was between the two.
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4.6 Simulation Results

The long-term goal of testing on I-69 is to experimentally confirm the fuel savings

(predicted by simulation and the test cell) that could be realized over this corridor,

with the expectation of fuel savings in excess of 12% (as discussed in chapter 3). The

approach was to take the experimentally acquired velocity profiles and convert the

data into the format that could be input into the high-fidelity vehicle model. Because

of the inability to platoon, as previously mentioned due to SARS-CoV-2, a fixed gap

platooning rear truck was unable to run behind the different lead vehicle velocity

strategies. However, as shown in chapter 2, it is understood that fuel saving trends

realized in simulation strongly align with fuel savings realized in the testbed, which

utilizes the same engine in the Peterbilt 579 trucks. Additionally, because it was seen

that the PI controller in the high-fidelity vehicle model tracks its desired velocity very

closely, it is believed that the trends (percent savings) in fuel consumption numbers

output from the high-fidelity vehicle model would very closely align with trends in

real-world, on highway fuel consumption.

4.6.1 Single-Truck Simulation Results Using Experimental Velocity Pro-

files

After gathering the experimental velocity profiles, the data was put into the format

that could be run in the high-fidelity vehicle model. The fuel consumption results,

from the model, are shown in Table 4.1. The most rigid form of the cruise controller,

no droop, was used as the point of comparison (in lieu of the previously used PI

controller tracking a constant velocity) .

In Table 4.1, it can be seen that by only relaxing the cruise controller from no

droop to max droop, a fuel savings of just over 6% can be realized. The Purdue-

developed optimized velocity profile (LHPCC) saved 7.8%
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Table 4.1.
Simulated Single Vehicles Using Experimental Data Over I-69

Profile Fuel Consumption [kg] Savings [%]

No Droop 17.56 -

Max Droop 16.50 6.0

Experimental LHPCC 16.19 7.8

4.6.2 Comparing Single-Truck Simulations: Predicted vs. Experimental

Velocity Profiles

To give further insight into how the vehicle responded when tracking the LHPCC

velocity profile, Figure 4.8 compares the experimental data from the experimental

LHPCC shown in Figure 4.7 to the data, for the same parameters, from the LHPCC

high-fidelity vehicle model’s prediction.

As in Figure 4.7, the first subplot in Figure 4.8 is of grade as a function of distance

to ensure an accurate comparison. The second plot shows vehicle velocity with an

additional inclusion of commanded velocity in order to check the tracking of both the

simulation as well as the on-road truck. In this plot, it can be seen that the simu-

lation tracked the commanded velocity almost perfectly with a few small deviations.

The on-road truck also appears to have tracked the velocity very well, but without

the perfection of the simulation, which was expected. There was a relatively large

deviation at the very end of the corridor; it is, again, speculated that this was due to

a slow-moving vehicle triggering the ACC and slowing the truck down, not due to a

problem with the testing equipment.
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An interesting aspect, when comparing the original simulation to the simulation of

the experimental data, is that when the high-fidelity vehicle model tracked the desired

optimized velocity profile, its predicted fuel consumption was higher than when the

high-fidelity model tracked the experimental velocity of the truck attempting to follow

the optimized velocity profile. This difference appears to be largely attributable to

the near elimination of retarder torque in the case of the experimental profile. These

results are shown in Table 4.2

Table 4.2.
LHPCC Fuel Savings Comparison Over I-69

Profile Fuel Consumption [kg] Percent Savings [%]

No Droop 17.56 -

Simulation LHPCC 16.66 5.1

Experimental LHPCC 16.19 7.8

While this discovery was definitely more pleasant than the opposite situation (if

the experimental velocity profile had consumed more fuel), it indicated that the ve-

locity profile generated by the simple model optimizer was not quite the most optimal

due to the limitations of the simple model not fully capturing all real-world phenom-

ena. This decreased fuel consumption was likely due to various vehicle dynamics (e.g.,

shifting) that were not accounted for in the optimized profile, but were encountered

in the high-fidelity vehicle model. Another possible explanation is that there was a

small discrepancy in trip time. The prediction from the high-fidelity vehicle model

finished the route 10 seconds faster than the experimental profile. This could have

accounted for some slight increase in fuel consumption in the high-fidelity prediction,

but it most likely is not responsible for the majority of the difference, as it is less

than a 0.5% difference in trip time.
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4.6.3 Platoon Simulation Results Using Experimental Velocity Profiles

Using the same experimental velocity profiles in simulation and adding a (sim-

ulated) fixed gap platooning rear truck, fuel consumption values were obtained and

are shown in Table 4.3. Just as in Table 4.1, the percent savings were relative to a

single vehicle using a droop cruise controller (17.56 kg).

Table 4.3.
Simulated Platoon Using Experimental Data Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

No Droop 17.26 17.56 17.41 0.9

Max Droop 16.17 16.34 16.26 7.4

Experimental LHPCC 15.85 15.45 15.65 10.9

One interesting discovery in the platooning data was that in the case where the

lead vehicle was using a no-droop cruise controller, the standard PlatoonPro follow

truck saved no fuel compared to the baseline single truck, and it also consumed more

than the lead truck in the platoon. Upon further investigation, it was determined

that the follow truck did indeed have a reduction in aerodynamic drag, but following

a lead truck with a relatively stiff cruise controller made tracking more difficult and

increased the retarder usage. The integrated retarder usage increased from 34.71

MJ (single truck no droop) to 54.34 MJ. When the rear truck uses its retarder, it

effectively transfers its kinetic energy to heat. The kinetic energy is essentially derived

from the fuel, so by increasing the retarder usage, the follow truck is wasting its fuel.

It was previously discovered that simultaneous shifting (SS) occasionally yields

lower fuel consumption than its non-simultaneous shifting counterparts. However,

more importantly, simultaneous shifting allows for the rear truck to more adequately

manage the gap growth to discourage cut-ins. Table 4.4 explores the fuel consumption
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of a platoon when simultaneous shifting of the lead and follow trucks was being used.

Again, the percent savings were relative to a single truck using a no-droop cruise

controller (17.56 kg).

Table 4.4.
Simulated Platoon with SS Using Experimental Data Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

No Droop 17.26 17.42 17.34 1.3

Max Droop 16.17 16.39 16.28 7.3

Experimental LHPCC 15.85 15.32 15.58 11.3

The results shown in Table 4.4 confirm previous research results that showed

simultaneous shifting does not having a large impact on fuel savings. It did, however,

slightly improve both the no-droop cruise control case as well as the LHPCC by 0.4%.

This data now indicates that the largest fuel savings that can be expected over I-69,

using two trucks, is around 11.3%.

As previously mentioned, the main benefit of simultaneous shifting is gap manage-

ment to avoid cut-ins. The maximum simulated platoon gap for each strategy both

with and without simultaneous shifting is explored in Table 4.5. The interesting as-

pect of the gap data is that in the case of LHPCC with simultaneous shifting, the gap

was reduced to about 23 meters, which is significantly lower than in the max-droop

case of 31 meters. This is important because even though max droop might have close

to the same benefits when it comes to fuel savings, it appears to still be relatively

hard to follow with a fixed gap platooning rear truck even when simultaneous shifting

is used.
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Table 4.5.
Maximum Simulated Platoon Gap Using Experimental Data Over I-69

Velocity Profile Without SS [m] With SS [m]

No Droop 50.90 35.21

Max Droop 41.88 31.28

Experimental LHPCC 33.85 23.02

4.6.4 Comparing Platoon Simulations: Predicted vs. Experimental Ve-

locity Profiles

In subsection 4.6.3 the experimental LHPCC velocity profile was given a simulated

fixed gap platooning follow vehicle. It was then compared to both no-droop and max-

droop velocity profiles, which were also given fixed gap platooning follow vehicles.

Additionally, in subsection 4.6.2 the experimental LHPCC single truck was compared

to the predicted, simulated LHPCC single truck. This subsection further investigates

the differences between the experimental and predicted LHPCC fuel consumption,

but now with simulated fixed gap platooning rear trucks both with and without

simultaneous shifting. To reiterate, all savings percentages are with respect to a

single truck using a no-droop cruise controller.

Table 4.6.
Simulated LHPCC Platoon Fuel Savings Comparison Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

Simulated LHPCC 16.31 15.58 15.94 9.2

Experimental LHPCC 15.85 15.45 15.65 10.9
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In Table 4.6, the platoon lead saved more fuel when following the experimental

LHPCC profile than the desired LHPCC profile, similar to the single-truck case shown

in Table 4.2. This was expected because trends in the platoon lead’s fuel consumption

very closely follow trends in the single vehicle fuel consumption (as their velocity

profiles are the same). Additionally, as intuition might suggest, the follow vehicle fuel

consumption is also lower when following the velocity of the experimental LHPCC

than it is when following the desired LHPCC profile.

Table 4.7 is the same as Table 4.6, but with the addition of simultaneous shift-

ing. Comparing the percent savings from the two tables confirms that simultaneous

shifting, again, does not universally have a significant impact on fuel consumption.

Table 4.7.
Simulated LHPCC Platoon with SS Fuel Savings Comparison Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

Simulated LHPCC 16.31 15.52 15.92 9.4

Experimental LHPCC 15.85 15.32 15.58 11.3

The maximum simulated platoon gaps are shown in Table 4.8

Table 4.8.
Maximum Simulated Platoon Gap LHPCC Comparison Over I-69

Velocity Profile Without SS [m] With SS [m]

Simulated LHPCC 42.83 27.01

Experimental LHPCC 33.85 23.02
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4.6.5 Relaxing the Predictive Cruise Controller

While the most obvious benefit of LHPCC over the max-droop cruise controller

was its increase in fuel savings, there are a number of other benefits to consider

when comparing these two strategies. These include better gap management and

more authority over vehicle speed (to ensure the speed limit is not broken). This

subsection aims to target the issue of the max-droop cruise controller going 5 miles

per hour over its allowed maximum speed.

The benefit of LHPCC is that it can optimize the velocity profile such that it can

speed up and slow down at various points in the corridor to minimize engine retarder

(and/or friction brakes), which oftentimes is an unnecessary transfer of kinetic energy

into heat rejected to the environment. If the max-droop cruise controller allowed the

truck to reach speeds of 70 miles per hour, then the best “apples to apples” comparison

with LHPCC was to allow the optimizer to also permit the truck to reach up to 70

miles per hour.

Table 4.9 shows predicted, simulated fuel consumption results for a new relaxed

LHPCC velocity profile that allowed the truck to reach up to 70 miles per hour

(denoted relaxed LHPCC). Table 4.10 shows the same strategies with simultaneous

shifting on the rear truck.

Table 4.9.
Relaxed LHPCC Simulated Platoon Comparison Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

Simulated LHPCC 16.31 15.58 15.94 9.2

Relaxed LHPCC 15.73 15.22 15.47 11.9

Max Droop 16.17 16.34 16.26 7.4
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Table 4.10.
Relaxed LHPCC Simulated Platoon with SS Comparison Over I-69

Velocity Profile Lead [kg] Follow [kg] Platoon Avg. [kg] Savings [%]

Simulated LHPCC 16.31 15.52 15.92 9.4

Relaxed LHPCC 15.73 15.18 15.45 12.0

Max Droop 16.17 16.39 16.28 7.3

It is important to remember that both LHPCC strategies shown in Tables 4.9 and

4.10 are based on the values from simulation results only, and the max droop values

are from the real-world velocity profile being rerun in simulation. While this is a bit

of an “apples to oranges” comparison, there is the unifying fact that both velocity

profiles were being fed into the same high-fidelity vehicle model, and it was the best

that could be done with the restrictions that were on testing.

Table 4.11 shows the simulated maximum platoon gap over the corridor for each

strategy both with and without simultaneous shifting.

Table 4.11.
Maximum Simulated Relaxed LHPCC Platoon Gap Over I-69

Velocity Profile Without SS [m] With SS [m]

Simulated LHPCC 42.83 27.01

Relaxed LHPCC 32.78 24.65

Max Droop 41.88 31.28

An astute observer would recall that in subsections 4.6.2 and 4.6.4, when com-

paring the simulation prediction vs. simulated on-road truck velocity profiles, the

simulated on-road fuel consumption was lower than the simulation prediction. While

it was desirable to run the relaxed version of the LHPCC on the single truck, SARS-
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CoV-2 prevented this from happening, and any assumptions about the behavior of

the real-world truck versus the predicted relaxed LHPCC will be avoided.

Additionally, another way to more fairly compare the original LHPCC profile to

the max-droop cruise controller would have been to set the velocity setpoint for the

cruise controller at a lower speed. A setpoint of 57 MPH was considered as it was

5 MPH slower than the previously used setpoint, and should, theoretically, reduce

the maximum speed by 5 MPH (from 70 MPH down to the speed limit of 65 MPH).

Again, due to SARS-CoV-2, no further vehicle testing was possible.

4.7 Summary

Truck data over I-69 was taken with no-droop and max-droop cruise control set-

tings as well as with an LHPCC profile. Many important observations were made

such as the fact that even when the cruise controller was in its most rigid calibration

(i.e., no droop), the velocity of the truck still deviated from its setpoint by a couple

of miles per hour (which was not the case for the PI controller tracking a constant

velocity used as a point of comparison in chapters 2 and 3). With max droop, veloc-

ities no slower than 55.9 MPH and no faster than 65.1 MPH were expected based on

the calibration settings. However, the measured max-droop minimum speed was 53

MPH (2 MPH slower than its minimum expected value), and its maximum speed was

about 70 MPH (5 MPH over its maximum expected value). When the experimental

velocity traces are run in simulation, the LHPCC profile yields lower fuel consump-

tion numbers than both the no-droop and max-droop velocity profiles. This is true

for all possible scenarios: single truck, platoon lead and follow, and platoon lead and

follow with simultaneous shifting. The case that saves the most fuel is a lead truck

using an LHPCC velocity profile with a follow truck using PlatoonPro with simulta-

neous shifting. The platoon average savings are 11.3% relative to a single truck using

a no-droop cruise controller. In addition to more fuel savings, there are two other

benefits to LHPCC. First, it does a better job of reducing the maximum platoon gap,
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especially with the use of simultaneous shifting. When using max droop as a lead

truck profile, an unexpected result was that the platoon gap grew to greater than 30

meters, even with simultaneous shifting. Second, LHPCC is able to track its desired

velocity very well, which, in turn, means that it should not excessively break the

speed limit like the max-droop case did. While it would be possible to potentially

lower the max-droop setpoint by 5 miles per hour to theoretically reduce its top speed

by 5 MPH (back down to 65 MPH), this would likely cause a significant increase in

trip time (a very undesirable outcome).
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5. SUMMARY AND FUTURE WORK

5.1 Summary

Saving fuel on class 8 trucks could have a large impact on the reduction of green-

house gas emissions as well as decreasing trucks’ operating costs. Different algorithms

and control strategies have been developed to realize fuel savings, and were tested on

an engine test cell to check for feasibility of real-world implementation and real-world

effectiveness. Additionally, a two-truck optimized platoon algorithm was developed

to yield the highest fuel savings possible from vehicle level optimization. Lastly, a

Peterbilt 579 was driven over a portion of I-69 to collect real-world vehicle behavior

over this corridor. The two main takeaways are 1) there is improved fuel savings when

the lead truck is operated more efficiently either with LHPCC (best case) or a max-

droop cruise controller, and 2) gap management (which allows for platooning over

graded terrain) can be improved with simultaneous shifting, lead truck LHPCC, or

max-droop cruise control settings on the lead truck (in that order of positive impact).

Test cell #2 at Purdue’s Herrick Laboratories houses a Cummins X15 Efficiency

Series Engine. This engine was used to validate Purdue developed algorithms by

calculating fuel consumption and demonstrating that the simulation model predicted

reasonable engine torque response dynamics. One strategy confirmed a fuel savings

of 5.38% over a section of I-69, and another strategy confirmed a fuel savings of

13.11% over I-280. The testbed consistently produced fuel consumption data with

standard deviation values of less than 0.11 lbs. of fuel, and appeared to be incredibly

repeatable.

Significant fuel savings on class 8 trucks can be had both from platooning and route

optimized velocity profiles. While these strategies had previously been combined, an

optimizer had never been given control over both vehicles’ velocities simultaneously.
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A framework for a two-truck MPC controller was developed and after exercising it

over two different corridors (a section of I-280 and a section of I-69), it revealed

that given the problem formulation, the most optimal behavior of two vehicles is

to optimize a velocity profile for the lead truck such that a follow truck can easily

maintain a fixed gap behind the lead truck so both trucks can reap the full benefits

of platooning. Doing this yielded a combined (averaged) fuel savings of around 14%

over I-280 and around 12% over I-69.

Lastly, a Peterbilt 579 was driven over the section of I-69 that was used for analysis

throughout this thesis. Datasets for a no-droop and max-droop cruise controller were

taken as well as a dataset for a Purdue-developed LHPCC variable velocity profile.

The experimental velocity profile was then run in simulation with a platooning follow

truck, and yielded savings of 11% relative to a simulated no-droop single truck. Ad-

ditionally, when the follow truck was behind a lead truck utilizing the LHPCC profile

and simultaneous shifting, the maximum gap was reduced to 23 meters from over 50

meters when the follow truck was following the no-droop lead without simultaneous

shifting.

5.2 Recommendations for Future Work

This thesis has shown that significant fuel savings are attainable through the use

of advanced platooning strategies, but more testing and development is needed.

The test cell has proven itself to be an incredibly useful and repeatable tool.

However, some tests deviated from their predicted fuel consumption more than others.

Continuing to update and refine models, by running tests at steady states, could

allow for the calculation of BSFC to see if there are specific operating conditions in

the model that differ from the operating conditions on the testbed.

The two-truck MPC algorithm has consistently yielded near-fixed gap platooning

distance to be most optimal behind an optimized lead truck. Further exercising of

the model over more heavily graded routes, could show that more gap flexibility is
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desirable on grades above 5%. Additionally, attempting to relax the speed constraint

(as may be feasible in a dedicated class 8 truck platooning lane) to completely elimi-

nate the retarder torque over the section of I-280 could likely yield significantly higher

fuel savings. Lastly, capturing more vehicle dynamics into the solver (e.g., shifting),

could translate into velocity profiles that consume even less fuel.

Furthermore, for truck testing, doing full J1321 fuel economy testing (both single-

truck and two-truck) to get concrete evidence for the proposed fuel savings is an

important step in understanding the real-world fuel economy benefits. Finally, run-

ning the relaxed LHPCC profile on a truck would allow for a more “apples to apples”

comparison of LHPCC to max droop to further understand the benefits of LHPCC

over max droop.
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