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ABSTRACT 

Additive manufacturing (AM) introduces high variability in the microstructure and defect 

distributions, compared with conventional processing techniques, which introduces greater 

uncertainty in the resulting fatigue performance of manufactured parts. As a result, qualification 

of AM parts poses as a problem in continued adoption of these materials in safety-critical 

components for the aerospace industry. Hence, there is a need to develop precise and accurate, 

physics-based predictive models to quantify the fatigue performance, as a means to accelerate the 

qualification of AM parts.  The fatigue performance is a critical requirement in the safe-life design 

philosophy used in the aerospace industry.  Fatigue failure is governed by the loading conditions 

and the attributes of the material microstructure, namely, grain size distribution, texture, and 

defects.  In this work, the crystal plasticity finite element (CPFE) method is employed to model 

the microstructure-based material response of an additively manufactured Ni-based superalloy, 

Inconel 718 (IN718). Using CPFE and associated experiments, methodologies were developed to 

assess multiple aspects of the fatigue behavior of IN718 using four studies.  In the first study, a 

CPFE framework is developed to estimate the critical characteristics of porosity, namely the pore 

size and proximity that would cause a significant debit in the fatigue life. The second study is 

performed to evaluate multiple metrics based on plastic strain and local stress in their ability to 

predict both the modes of failure as seen in fractography experiments and estimate the scatter in 

fatigue life due to microstructural variability as obtained from fatigue testing. In the third study, a 

systematic analysis was performed to investigate the role of the simulation volume and the 

microstructural constraints on the fatigue life predictions to provide informed guidelines for 

simulation volume selection that is both computationally tractable and results in consistent scatter 

predictions. In the fourth study, validation of the CPFE results with the experiments were 

performed to build confidence in the model predictions. To this end, 3D realistic microstructures 

representative of the test specimen were created based on the multi-modal experimental data 

obtained from high-energy diffraction experiments and electron backscatter diffraction 

microscopy. Following this, the location of failure is predicted using the model, which resulted in 

an unambiguous one to one correlation with the experiment. In summary, the development of 

microstructure-sensitive predictive methods for fatigue assessment presents a tangible step 
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towards the adoption of model-based approaches that can be used to compliment and reduce the 

overall number of physical tests necessary to qualify a material for use in application. 
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 INTRODUCTION 

1.1 Motivation 

Additive manufacturing (AM) is a revolutionary manufacturing technique, which builds a 3-D net-

shaped component via layer-by-layer material deposition, with the use of CAD models. Selective 

laser melting (SLM) is one of the AM techniques that is used for fabrication of polycrystalline 

metallic parts. SLM offers numerous advantages over the conventional techniques (machining, 

milling, etc.) such as the ability to produce complex geometries, reduced tooling cost, and lead 

time reduction.  However,  SLM introduces high variability in microstructure and defect 

distribution such as porosity, surface roughness, and residual stress gradients that cause uncertainty 

in the resulting fatigue performance of the parts, which in one of the dominant modes of failure in 

the aerospace components [1]. As a result, qualification of AM parts continues to be a challenge 

to wide spread adoption of these materials into service, especially in safety-critical components 

for the aerospace industry [2].  

 

The conventional qualification procedures for the aerospace parts require extensive experimental 

testing involving ~5,000 -100,000 specimens, which is both time consuming (~ 5-15 years) and 

costly ( more than $130 million) [3].  For SLM materials, this approach could be even more 

intensive because of the drastic variability in the fatigue performance and hence, is not practical. 

Alternatively, a model-based approach could be utilized, which would accelerate the process by 

reducing the overall number of specimen level tests necessary. Therefore, the development of 

predictive models for quantifying fatigue performance is crucial.  

 

Fatigue failure is plasticity-mediated and is governed by the underlying material microstructure, 

namely the grain sizes, morphologies, and orientations, grain boundary character distribution, and 

pore sizes and locations [4,5].  The role of porosity is of particular interest since it can cause a 

significant debit in fatigue life in synergy with the other microstructural attributes. Furthermore, 

the variability in the microstructure results in the scatter of the fatigue lives as shown in Figure 1.1. 

Predicting this scatter behavior and the associated modes of failure is an important problem in 

view of the qualification process. The crystal plasticity finite element (CPFE) method is a 
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microstructure-sensitive physics-based numerical tool ideally suited for the assessment of fatigue 

behavior in the polycrystalline materials [6] and is used extensively in this research work. 

 

 

Figure 1.1 Scatter in the fatigue life due to the inherent microstructural variability 

The aim of this research is to develop predictive methodologies based on CPFE simulations to 

address critical problems in the fatigue of additively manufactured IN718, which would provide a 

pathway forward in realizing rapid qualification of the AM materials. To this end, the four 

problems of interest are as follows: 

o What are the limiting characteristics of a pore in terms of size and clustering that would 

cause a significant debit in fatigue life? 

o What is an appropriate fatigue metric that could identify the location of failure and predict 

the scatter in fatigue life? 

o What is the minimum number of grains in the simulation volume to obtain reliable 

estimates of the fatigue life? 

o How well do the extreme values of the fatigue metrics obtained from CPFE simulations 

correlate with the experimental location of failure? 
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1.2 Research Contributions 

The major contributions of this dissertation is outlined below:  

 

1. Estimation of critical porosity characteristics 

• Porosity is a potential source of crack initiation and is dependent on the location, size 

and proximity to an adjacent pore or a surface. Quantifying the limiting characteristics 

of pore that would cause pore-mediated failures is important for process optimization 

and making an informed choice of the inspection methods. In this study, we determined 

the critical pore size and clustering relative to the microstructural length scale that 

would cause a significant debit in the fatigue life using a CPFE based framework. 

 

2. Examining fatigue metrics for prediction of failure location and fatigue  life 

• The safe-life design of the aerospace components requires information on the 

distribution of the fatigue lives and associated failure modes.  In order to derive this 

information, an appropriate microstructure-sensitive fatigue metric is needed. In this 

study, we assessed multiple metrics based on plastic strain and local stress in their 

ability to predict the location and scatter in fatigue life and arrived at optimal choices 

using CPFE simulations of 3D virtual microstructures and experiments. 

 

3. Role of simulation volume and microstructural constraints on the fatigue life prediction 

• Due to computational time limitations in performing CPFE simulations of large 

volumes (specimen or component scale), the fatigue prognosis is often performed using 

reduced volumes and simplified boundary conditions (BCs).  The choice of the 

simulation volume is crucial to obtain accurate predictions and depends on the BCs 

utilized. In this study, we estimated the minimum simulation volume (or the number of 

grains in a microstructure) necessary to obtain reliable estimates of the fatigue life by 

performing a systematic analysis using CPFE simulations with the use of traction free 

BCs. 
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4. Validating the microstructure-sensitive fatigue crack initiation using crystal plasticity 

simulations and high-energy X-ray experiments 

• Validation is an important aspect of developing models to build trust in the predictions. 

In this study, we achieved an unambiguous 1-to-1 correlation between the extreme 

values of the fatigue metrics, plastic strain accumulation and plastic strain energy 

density, and the location of crack initiation with realistic 3D microstructures and 

boundary conditions.  

1.3 Outline of the Dissertation 

This dissertation is organized into eight chapters and a brief review of each chapter is as follows. 

Chapter 1 presents a broad overview of the current gaps pertaining to the rapid qualification of the 

additively manufactured materials and a list of specific research questions to be addressed.  

Furthermore, the research contributions of this dissertation is specified. 

Chapter 2 provides a review of the literature in context to the research questions, which are                

(a) estimation of critical porosity, (b) Examining metrics for fatigue life and location prediction, 

(c) role of simulations volume and microstructural constraints on the fatigue life prediction, and 

(d) validation of  microstructure-sensitive fatigue crack initiation using crystal plasticity 

simulations and high-energy X-ray experiments 

Chapter 3 describes the material and all the characterization techniques such as the electron 

backscatter diffraction microscopy, micro-tomography, and high-energy X-ray diffraction 

microscopy and fatigue testing with associated results. 

Chapter 4 details out the primary ingredients of the crystal plasticity modeling framework, which 

includes the creation of synthetic microstructures using the statistical information obtained from 

experiments, the description of the material constitutive law, determination of the material 

parameters using a genetic algorithm, and the regularizing schemes used for post-processing of the 

results. 



 

 

22 

Chapter 5 presents a crystal plasticity based framework to quantify the critical porosity 

characteristics in terms of the pore size and clustering, including a description on the problem 

formulation based on micromechanics. 

Chapter 6 reports a detailed methodology to predict both the location of fatigue crack initiation 

and life using multiple fatigue metrics followed by a comparative assessment among the metrics. 

Furthermore, the role of simulation volume and the microstructural constraints on the prediction 

of scatter in fatigue life is discussed. 

Chapter 7 describes the work involving validation of the predicted location of microstructure-

sensitive fatigue crack initiation using a high-fidelity crystal plasticity model informed via high-

energy X-ray experiments. Moreover, the integrated setup is used to understand the role of twins 

on the crack initiation. 

Chapter 8 presents the conclusions of this dissertation reflecting on the significance of this research 

work and a discussion on the potential future work. 
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 LITERATURE REVIEW 

2.1 Estimation of critical porosity characteristics 

Porosity is a potential source of fatigue crack initiation in both AM [7–10] and in conventionally 

manufactured materials [11–16]. Experimental observations based on fractography analysis have 

shown that the characteristics of a crack-initiating pore in fatigue are related to the pore size and 

the proximity to the surface or an adjacent pore. Couper et al. have shown that the pore size is 

more critical than pore volume fraction in connection with the fatigue behavior of a cast aluminum 

alloy [11]. Wang et al. have experimentally estimated a critical pore size by comparing the fatigue 

lives of fully dense and porous microstructures of a cast aluminum alloy [12]. Additionally, 

researchers have shown that fatigue cracks initiate from near-surface and surface pores [9,15,17]. 

Furthermore, Danninger et al. [13] and Pang et al. [15]  have shown that a pore cluster is a 

prominent location of crack initiation due to interaction effects. As of now, a robust understanding 

of the limiting cases of porosity in terms of pore size and clustering of pores for SLM materials is 

still elusive. 

Computed tomography (CT) is a non-destructive method used in the detection and characterization 

of micro-pores in a material, and in the analysis of fatigue crack initiation. 3D reconstruction of 

the pores in the material microstructure using CT is shown in [7,18–23]. The detection of a pore 

is dependent on the resolution of the tomography set-up, which varies from sub-micron to sub-

millimeter. In this work, two different resolutions per voxel are used, namely, 0.65 μm and 30 μm 

(Section 3.3). However, to make an informed optimal choice of a tomography set-up, prior 

knowledge of the minimum pore size that affects the fatigue properties is essential. 

Extensive specimen testing under fatigue loading combined with fractography analysis or CT is 

one of the ways to identify limiting porosity. However, due to the time and cost involved, a more 

feasible alternative is to make use of numerical modeling and simulation. There has also been a 

growing need for predictive models in rapid qualification and certification of SLM materials [24], 

which is the focus of the present work.  

Some of the early work on the role of porosity towards the mechanical behavior involved the 

development of analytical models to understand ductile failure using continuum plasticity theory 
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[25–30]. These pioneering works have played a significant role in understanding the deformation 

behavior of materials with pores. Recent studies explicitly account for pores within a finite element 

(FE) model as it allows for more complex geometry and material description. Gall et al. [31] and 

Fan et al. [32] studied the plastic strain localization around a pore using a continuum plasticity 

framework in an idealized 2D-FE analysis. Gall et al. found that pore size and loading ratios have 

a significant influence on the strain localization [31]. In addition, Fan et al. [32] and Xu et al. [33] 

obtained the trends on strain localization by varying the distance of the pore from the surface and 

spacing of the pore cluster. Gall et al. [31] and Baicchi et al. [34] showed that the pore shape has 

minimal effect on the plastic strain. All of the above studies model the deformation by placing the 

pore in a homogenized matrix [31–34] and thereby ignoring the effects of spatial inhomogeneity 

of a polycrystalline microstructure having various grain morphologies and orientations, which can 

significantly impact the results. 

A few studies have been conducted by placing a pore within a heterogeneous matrix explicitly 

accounting for microstructural attributes. Gao et al. have studied the variation in plastic strain 

localization around a pore in a bi-crystal by varying the crystallographic orientation of the grains 

[35]. Carroll et al. have modeled the pore in a polycrystalline microstructure with a large number 

of grains having random orientations using 2D CP-FE simulations. They conducted the study using 

different pore sizes and concluded that the local microstructure profoundly influences the strain 

localization only when the pore has a size comparable to or less than the average grain size, and it 

has nearly no influence if the pore is significantly larger than the average grain size [36]. Battaile 

et al. extended the previous study [36] by performing a variability study on the peak plastic strain 

for different pore sizes using multiple instantiations. Within each microstructure instantiation, the 

crystallographic orientation of the grains is varied and grain morphology is held constant. 

Additionally, they showed that a sub-grain pore in a polycrystalline matrix localizes more plastic 

strain than when placed in an isotropic matrix [37]. The aforementioned studies [35–37] deal with 

monotonic (tensile) loading and hence do not provide adequate insights on the deformation 

behavior of pores subjected to cyclic loading. The cyclic deformation captures the effect of reverse 

plasticity, and stress redistribution that is of prime importance to the study of fatigue crack 

nucleation.   
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2.2 Examining metrics for fatigue life prediction 

The fatigue performance, especially the crack initiation life, is a significant factor in the safe-life 

design philosophy used for critical aerospace components. Crack initiation is governed by the 

loading conditions and the material microstructure, namely, grain size distribution, texture, and 

defects [38,39]. It has been well established that the variability in microstructure leads to scatter 

in fatigue life [4,5]. The accurate prediction of scatter in fatigue life is of paramount importance 

to obtain the statistical minimum life for safe-life analysis [40–42] and further optimize AM 

process parameters to obtain tailored microstructures.  

Some of the early fatigue lifing approaches were based on the regression analysis between the 

applied mechanical fields and fatigue life. Basquin proposed the first kind of this model, which 

related the applied alternating stress to fatigue life [43]. Coffin and Manson developed a fatigue 

life model based on the applied plastic strain, applicable to the low cycle fatigue regimes [44,45], 

and Morrow related plastic strain energy per cycle to fatigue life [46]. Each of these 

phenomenological models represent a two-parameter power-law regression to experimental data. 

Smith, Watson, and Topper proposed a combined stress-strain formulation to predict the fatigue 

life, which also includes the mean stress effect [47]. Fatemi and Socie developed a unified 

parameter based on shear strain and normal stress, and correlated with fatigue life, to obtain the 

critical plane during multi-axial loading [48]. While these classical approaches are easy to 

implement, they have mainly two major limitations: (a) require a significant amount of 

experimental data to characterize the model parameters and requires repetition of experiments 

upon any slight pedigree changes to the material and (b) lack physical insight into the crack 

initiation mechanisms, which limits their use in designing microstructures based on fatigue 

resistance. A physics-based model, as the one presented in this work, is necessary to overcome 

these limitations.  

Several researchers formulated analytical models for understanding the crack initiation and life 

estimation based on the dislocation motion and interaction occurring at the defect scale. Tanaka 

and Mura modeled the plastic deformation within a slip band using two adjacent layers of 

dislocations and obtained an expression for cycles to crack initiation by relating the stored energy 

of dislocations and surface energy of the crack [49] and later, extended their model to account for 

crack initiation from inclusions [50]. Mura and colleagues made further developments of the 
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baseline model [49] to account for multiple slip bands [51,52]. Chan et al. made modifications to 

the dislocation dipole model [49] to explicitly incorporate crack size and microstructural size based 

on the minimization of the Gibbs free energy [53]. These models provide physical insights into the 

crack initiation; however, they do not account for the statistical variations of the microstructure, 

namely, grain size distribution, orientation distribution, and pores, hence, making it less applicable 

to quantify microstructure induced fatigue scatter. Sangid et al. formulated an atomistically 

informed prediction model for fatigue scatter with a special focus on crack initiation from 

persistent slip bands (PSBs) in nickel-based superalloys accounting for the microstructural 

variability [4,54,55]. However, their approach does not account for the complex evolution of 

stresses and strains within the microstructure, which requires the use of CPFE simulations. 

In the past two decades, researchers have been extensively using microstructure-sensitive CPFE 

simulations to link the heterogeneities at the mesoscale to fatigue crack initiation.  A fatigue metric 

(commonly known as the fatigue indicator parameter) is a combination of one or more mesoscale 

field quantities, which is used as a surrogate measure to identify the most likely location of crack 

initiation. The existing literature has a wide variety of fatigue metrics defined to assess fatigue. 

Multiple researchers have worked on correlating the fatigue metrics to the location of crack 

initiation; however, the assessment was based solely on a single mode of failure. For instance, 

Hochhalter et al. studied the crack initiation from a matrix-particle interface of an aluminum alloy 

and concluded that all the slip- and energy-based metrics, including the mesoscale Fatemi-Socie 

parameter [56–61], qualitatively predicted the same location of crack initiation [62]. Rovinelli et 

al. [63] and Nicolas et al. [64] also observed similar results in their respective works. On the other 

hand, Dunne and colleagues have studied the crack nucleation arising from a matrix–inclusion 

interface at the free surface of a nickel-based superalloy and concluded that the metric, stored 

energy density was able to accurately predict multiple crack initiation locations as compared to 

other metrics [65]. The findings from the researchers mentioned above cannot be generalized for 

multiple modes of failure as the mechanics of deformation varies with the failure mode under 

consideration. In the current work, multiple modes of failure, at the free surface and either a 

crystallographic feature or pore in the bulk of the microstructure are considered, which motivates 

the reassessment of the fatigue metrics for this work. Few researchers have looked at the competing 

failure modes using CPFE simulations, in particular, Prithivirajan and Sangid looked at the fatigue 

failure between crystallographic features and pores [66], and Bandyopadhyay and Sangid analyzed 
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failures from crystallographic features and an inclusion [67], however these works have not been 

used to obtain the scatter in fatigue life, which is one of the objectives of this work. 

The fatigue metrics could also be used for the fatigue life estimation, for instance, the elastic stored 

energy [68] introduced by Dunne and colleagues has shown good correlations with experimental 

fatigue life data; however, it requires the use of a dislocation density-based model which is 

computationally expensive for 3D CPFE simulations and the identification of material parameters 

is challenging.  Cruzado et al. proposed a two-parameter model based on the local plastic 

dissipation energy to predict the fatigue life [69]. Ghosh and colleagues proposed a fatigue life 

model based on effective traction and dislocation pile up; however, its suitability is limited to dwell 

fatigue of titanium alloys [70,71].  Yeratapally et al. proposed a fatigue model combining 

molecular dynamics and CPFE simulations with emphasis on the role of twin boundaries. This 

work involves the use of model parameters involving multiple length scales, which is very difficult 

to obtain and validate [72] and hence, difficult in practice to solve problems for industrial 

applications. In this study, a phenomenological CPFE model is employed to obtain multiple fatigue 

metrics, which are further utilized to obtain the failure location as well as the scatter in fatigue life.  

The model for obtaining fatigue life only involves a single parameter that could be easily obtained 

from experimental test data. This work also involves carrying out a comparative assessment among 

the multiple fatigue metrics.  

2.3 Role of simulation volume and microstructural constraints on fatigue life predictions 

While CPFE simulations have been proven to be useful in obtaining mechanistic insights at the 

microstructural length scale of polycrystalline materials, simulations involving large 

microstructures are computationally intensive. Hence, researchers often solve problems with 

multiple instantiations of reduced simulation volumes that are statistically representative, to 

mitigate the time limitation [4,5,58,73,74]. Tu et al. deduced that the minimum number of grains 

in the microstructure for the prediction of an effective property or response function varies from 

100-300 grains based on the quantity of interest [74], but has not addressed the dependence of 

simulation volume (or the number of grains) on the fatigue life. A fatigue crack occurs at the 

weakest link in the material, which is a rogue combination of the microstructural features and 

defects in the microstructure. The probability of capturing the weakest link increases with either 

https://www.sciencedirect.com/science/article/pii/S0749641918306065#!
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increasing the number of grains in a single microstructure or with the number of instantiations with 

a reasonable number of grains in them [75]. Sangid et al. deduced that fatigue life decreases with 

an increase in the number of grains using their PSB energy model [4]. Yeratapally et al. have 

performed a sensitivity study on the fatigue scatter with respect to the number of grains within the 

microstructure, and found that 150 grains is a reasonable simulation size to capture the scatter [5], 

but has not investigated how the fatigue life prediction will change when the simulation volume is 

close to the test specimen’s gauge volume, which has been addressed in this work. Moreover, 

previous studies have not explored the combined role of the simulation volume and the 

microstructure constraints towards the prediction of fatigue scatter, which is also addressed in this 

work.  

2.4 Validation of  microstructure-sensitive fatigue crack initiation using crystal plasticity 

simulations and high-energy X-ray experiments 

Fatigue is the most common form of failure in the critical components of the aerospace industry 

and the material microstructure dictates the plasticity-mediated micro-crack initiation [39]. The 

development of a validated microstructure-sensitive predictive model for fatigue crack initiation 

would accelerate the qualification process by reducing the overall number of specimen level tests 

necessary. The crystal plasticity finite element (CPFE) method is a microstructure-sensitive 

physics-based numerical tool commonly used to simulate plasticity and fatigue damage in 

polycrystalline materials [6]. While CPFE has been in use for more than three decades and aspects 

of CPFE modeling are constantly improving since its inception, lack of rigorous validation efforts 

has restricted its usage in engineering design workflows [76,77]. To build trust in these models, 

they must be validated at a relevant length scale, which is the key aspect of this work.  

The key inputs to any CPFE simulation are the microstructure (i.e. the description of the grain 

structure including morphologies, orientations, and grain boundaries and defect distribution) and 

the boundary conditions. As this work involves one to one comparison with experiments, it is 

important to replicate the physical test specimen at a mesoscale (i.e. the microstructure) and 

capture the exact loading scenario and boundary conditions of the test specimen. Recent 

developments in high-energy synchrotron X-ray techniques have made it possible to non-

destructively probe the 3D microstructure of a specimen and acquire the evolution of the 

micromechanical fields with loading.  Synchrotron X-ray micro-tomography (µCT) enables 3D 
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imaging of the specimen’s internal structure based on the local density variations within the sample.  

µCT is useful to obtain the porosity map and location of fatigue crack initiation during loading in 

the specimen [78,79]. High-energy X-ray diffraction microscopy (HEDM) uses diffracted spots 

pertaining to individual crystallites from a rotating sample, illuminated with X-rays to obtain grain 

level information [80–85].  The near-field (NF) configuration of HEDM provides information on 

grain morphology and orientations [80–82]. The far-field (FF) configuration of HEDM provides 

the centroidal position, orientations, and elastic strain tensors for each grain illuminated by X-ray 

rays within the sample [83–85]. In this work, µCT, NF-HEDM, and FF-HEDM are sequentially 

used within the same experiment to obtain relevant information during fatigue loading.  The 

subsequent data is used to instantiate the CPFE models and validate the predicted location of crack 

initiation. Annealing twins are present in the additively manufactured IN718 [86] and are known 

to significantly influence the local mechanical behavior.  While it is quite challenging to identify 

and reconstruct twins using HEDM, due to restrictions in the dynamic range of the detectors; this 

limitation can be addressed by carefully setting up multiple CPFE models, as shown in this work. 

Twin boundaries (TBs) are known to be preferential sites for fatigue crack initiation in Ni-based 

superalloys as observed from a few experimental studies [55,87]. Multiple models exist in 

literature to rationalize why a twin boundary is detrimental to fatigue crack initiation. Some of the 

earlier works developed analytical models, which showed that the TB developed high stress 

concentrations because of elastic and plastic incompatibilities [88–91]. Using atomistic 

calculations, Sangid et al. have derived that the TBs possess the lowest static energy and the highest 

energy barrier for dislocation motion [55]. Thus, TBs are shown to be both beneficial as well as 

detrimental to fatigue. Using CPFE simulations, Castelluccio and McDowell have shown that the 

insertion of twins have increased the extreme values of the Fatemi-Socie parameter [92]. 

Yeratapally et al. have demonstrated through CPFE simulations that regions adjacent to TBs have 

high values of elastic stress anisotropy and plastic strain accumulation thereby providing favorable 

sites for crack initiation [5]. Cerrone et al. from the simulations concluded that high elastic 

anisotropy and coplanarity of the boundary plane with an active slip plane are the main reasons for 

TBs to be crack initiators [93]. In this work, we investigate the synergetic aspect of twins via 

comparing the local micromechanical fields obtained from the microstructural models with and 

without twins, along with the aforementioned validation efforts. 



 

 

30 

Recently, several researchers have attempted to validate CPFE model using grain-scale 

micromechanical fields from experiments. Turner et al. have instantiated a CPFE model informed 

from the HEDM experiments and showed a reasonable agreement in grain-averaged stresses 

between the simulations and experiments [94]. Kapoor et al. [95] and Tari et al. [96] have used the 

same dataset as Ref. [94] and have shown improved predictions in stresses between the CPFE and 

HEDM after initializing their models with residual stresses. However, validating grain-scale 

stresses does not guarantee the accurate capture of fatigue crack location, which is a localized 

event. Few authors have validated a CPFE model with respect to the location of fatigue crack 

initiation.  For instance, Chen et al. have predicted multiple crack locations at the matrix-inclusion 

interface of a Ni-based superalloy using the extreme values of local stored energy obtained from 

the CPFE simulations [65].  Bandyopadhyay et al. validated the crack initiation location of Ti-6Al-

4V alloys using the soft-hard-soft grain rationale and local micromechanical fields obtained from 

CPFE simulations [97]. Nicolas et al. probed the environmentally-assisted fatigue crack initiation 

using multiple fatigue metrics [64]. The aforementioned works [64,65,97] have achieved excellent 

results, however,  the sub-surface information was not included in their models, which has been 

shown to significantly influence the local micromechanical fields [98]. Cerrone et al. have 

investigated the fatigue crack initiation at a TB using a 3D realistic microstructural model informed 

from HEDM experiments [93]. They performed correlation studies between the fatigue metrics 

and the failure locations in a qualitative sense and reported that the values of slip-based metrics 

and a transmission-based metric were high at the location of crack initiation. Given that, the 

predictive models for use in safety-critical applications demand a high degree of confidence, a 

detailed quantitative assessment of the correlations (between the metrics and the crack location) 

via the probability measures is crucial, which is performed in this work. 
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 MATERIAL AND EXPERIMENTS 

In this chapter, the material of interest and the details of different experimental characterization 

techniques and testing used in this work are described.  These experimental data are further used 

in the modeling efforts and solve the problems associated with the fatigue of additively 

manufactured IN718 as described in the introduction section. 

3.1 Material and fabrication 

The material of interest in this study is IN718, produced by SLM.  The material was produced at 

Penn State University's Center for Innovative Materials Processing through Direct Digital 

Deposition (CIMP-3D) via an EOSINT M280 system [99].  Samples were produced in bulk blocks 

(from which coupons would be extracted) and net-shape dogbone specimens, both of which were 

built in the vertical orientation.  The samples underwent a stress relief heat treatment prior to being 

removed from the build plate (1065 °C for 1.5 hours followed by a two-bar argon cooling).  

Afterwards, the parts underwent vacuum homogenization (1177 °C for 1 hour followed by two bar 

argon cooling at 38 °C/hr to below 538 °C), vacuum solution heat treatment (982 °C for 1 hour 

followed by gas fan cooling with argon to below 149 °C), and a two-part vacuum aging process 

(718 °C for 8 hours, furnace cooled to 621 °C and held for 18 hours, and then gas fan cooled with 

argon to below 149 °C).  It should be noted that the samples did not undergo hot isostatic pressing.  

The heat treatment was adequate to form γ’ and γ’’ precipitates, as the major strengthening 

mechanism in this alloy, as well as a large fraction of annealing twins.   

3.2 Electron backscatter diffraction analysis 

To identify the grain attributes, several coupons of the material were characterized via electron 

backscatter diffraction (EBSD) analysis using a Phillips XL-40 SEM with an EDAX EBSD camera 

and associated TSL data collection and analysis software. More details on the scan parameters and 

EBSD analysis are available in [86]. The grain map is shown in Figure 3.1. The pertinent 

microstructural attributes used in this study are a grain size of 52.7 μm with a standard deviation 

of 52.2 μm, random texture, and twin area fraction of 0.52.   
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Figure 3.1 2D grain map of SLM IN718 obtained via EBSD analysis indicating the presence of annealing 

twins in this material.  

3.3 Tomography characterization 

To characterize the defects inherent in the material as a result of the SLM processing, a detailed 

tomography evaluation and analysis were conducted at two different length-scales in terms of 

scanned volume and resolution of the tomograms.  First, a lower resolution CT characterization 

was conducted on a GE Phoenix V Tome X M 300 CT System at CIMP-3D.  Two types of samples 

were scanned and reconstructed, including bulk blocks from the build process (50.8 mm by 21.59 

mm by 19.05 mm, as shown in Figure 3.2a) and net-shape dog-bone specimens (3 mm thick and 

50.8 mm in overall length by 8.9 mm in width, while the gauge section is 17.5 mm long by 3.5 

mm in width, as shown in Figure 3.2b).  The CT characterization had a resolution of 30 μm per 

voxel (as 1680 voxels represented the longest dimension of 50.8 mm).  Next, a higher resolution 

synchrotron based X-ray micro-computed tomography (μXSCT) was conducted on 10 mm x 1 mm 

x 1 mm coupons extracted from the bulk of the blocks at 2-BM of the Advanced Photon Source at 

Argonne National Laboratory.  The μXSCT characterization consisted of 1500 projections taken 

over 180° continuously rotated at 1°/s with a 100 ms exposure time in white beam mode. The 

μXSCT characterization had a resolution of 0.65 μm per voxel (as 1532 voxels represented the 

longest dimension of 1 mm).  Tomographic reconstructions were performed on the acquired 



 

 

33 

radiographs using a gridrec algorithm [100,101] implemented in tomographic data processing 

software, TomoPy 1.0.0 [102].     

Image processing consisted of both thresholding, using the Ostu method [103] and segmentation, 

which were performed using a combination of ImageJ [104,105] and Avizo 9.2.0 software [106].  

The segmented rendered volumes are shown in Figure 3.2 to display the porosity.  A pore was 

considered based on the threshold and segmented phase contrast.  A reliable volume was 

determined based on a 2x2x2 surface connected voxel filter (8 voxel minimum – minimum 1.3 μm 

minimum diameter), whereas a reliable morphology description required a 5x5x5 surface 

connected voxel filter (125 voxels minimum – minimum 3.25 μm minimum diameter) [19].  Figure 

3.2c displays the porosity from the μXSCT characterization with the 125 voxel filter.  For 

visualization, only pores with equivalent diameter of 10 μm or larger in the μXSCT sample are 

shown in Figure 3.2d. As seen in Table 3.1, the disparity in resolution and scanned volume results 

in drastically different percentages of porosity.  The lower resolution CT scans can capture much 

larger scanned volumes, but cannot measure small pores that are prevalent in the AM process.  

Thus, the degree of porosity measured in the μXSCT characterization is significantly higher than 

the CT characterization.  However, due to the small scanned volume inherent to the μXSCT 

technique, it results in low probability of scanning large pores, since an insufficient volume is 

probed.  Moreover, due to the high surface area to volume ratio of the dogbone specimen, 

compared to the bulk block, the dogbone specimens contain a significantly larger degree of 

porosity.  The cumulative distribution function (CDF) of the porosity for the different techniques 

and parts are shown in Figure 3.3a, with the 8 voxel filter applied to each dataset.  The μXSCT 

characterization shows a median pore size of 4 μm. Moreover, the data was analyzed to determine 

the minimum distance to an adjacent pore (for each pore analyzed).  The minimum pore spacing 

is shown in Figure 3.3b, with the median distance to the closest pore being ~10.5 μm.        
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Figure 3.2 Tomography reconstruction showing porosity of IN718 for various samples and settings: (a) 

CT sample of dogbone (b) CT sample of bulk block, (c) µXSCT sample from bulk – with 5x5x5 voxel 

filter, and (d) µXSCT sample from bulk – with 10 µm equivalent diameter filter. 

 

 

Figure 3.3 Porosity data from tomography reconstruction of IN718 (a) Cumulative distribution of pore 

equivalent diameter and (b) Cumulative distribution of distance to the closest pore. 
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Table 3.1 Porosity data using μXSCT and CT. 

Sample 
Resolution 

(µm) 
Qty 

Total volume 

(mm3) 

Porosity 

(%) 

μXSCT 0.65 8 10.4 4.5 x 10-2 

CT-Blocks 30 2 41878 4.5 x 10-8 

CT-Tensile 

Specimens 
30 3 3960 8.6 x 10-4 

 

3.4 Mechanical testing 

Eight micro-tensile specimens (Figure 3.4(a)) were tested at Element Materials Technology under 

stress-controlled fatigue loading with a stress ratio (Rσ) of 0.01 and a maximum stress (𝜎𝑚𝑎𝑥) of 

800 MPa. The samples had a gauge volume of 1 mm x 0.3 mm x 1 mm. The life to failure data 

obtained from the experiments is shown in Figure 3.4(b), which follows a lognormal distribution1. 

Two modes of failure were observed from post mortem fractography analysis, namely, the facet 

failure at the bulk of the specimen and failure at a free surface [107], which are also indicated in 

Figure 3.4(b). Since the macroscopic loading is in high cycle fatigue regime with 𝜎𝑚𝑎𝑥 at ~70% 

of the material’s yield strength [86], the crack initiation life dominates the total life, and for this 

reason, the failure life will be considered the crack initiation life. 

 
1 The test for log-normality of the data set X (X here represents the failure lives) is alternatively posed as a test for 

normality of log (X).  The data points are first scaled and centered using the following equation: 

z =
log(𝐗) −  µ

𝜎
 

Where, µ  and 𝜎  are the mean and standard deviation corresponding to log(X). Following this, the one sample 

Kolmogorov-Smirnov test for normality of z was performed using the MATLAB function kstest. This returned the h 

value to be zero indicating that the kstest fails to reject the null hypothesis (that the data comes from a normal 

distribution) at 5% significance level. Thus, the original data set X belongs to a log-normal distribution. 
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Figure 3.4 (a) IN718 specimen geometry used for fatigue testing, (b) Fatigue life data obtained from 

testing of eight samples ranging from 37461 to 70161 cycles in life and following a log-normal 

distribution, and indicating modes of failure, namely facet failure and free surface failure, as observed in 

the eight specimens from the post mortem fractography analysis. 

3.5 Fatigue testing with in situ X-ray experimentss 

 

Figure 3.5(a) Schematic of the IN718 test specimen used for in situ fatigue testing with the ROI at the 

center as shown, (b) 3D NF-HEDM microstructure map of the ROI with grains colored via an inverse 

pole figure representation, (c) 3D porosity map reconstructed from μCT within the ROI along with the 

encircled surface pore where the fatigue crack initiated, and (d) μCT image of the fatigue crack from the 

surface pore. 
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The in situ high cycle fatigue (HCF) testing was conducted at beamline 1-ID of the Advanced 

Photon Source (APS) at Argonne National Laboratory using a beam energy of 71.676 keV 

(λ=0.0172972 nm). The specimen was subjected to fatigue loading from 0 to 71000 cycles with an 

R ratio of 0.01 and was cycled between 10 MPa (𝜎𝑚𝑖𝑛) and 800 MPa (𝜎𝑚𝑎𝑥) at a frequency of 20 

Hz. This experiment was conducted in two parts: (i) 0 to 20 cycles and (ii) 20 to 71000 cycles. The 

first part of the experiment was performed to initialize the CPFE model, and the second part of the 

experiment was performed to obtain crack initiation data for use in validation efforts. A suite of 

non-destructive 3D high-energy X-ray characterization techniques, conducted in transmission 

geometry, namely, in situ NF-HEDM, FF-HEDM, and μCT were employed in this experiment.  

During the first part of the experiment (0 to 20 cycles), NF-HEDM and FF-HEDM scans were 

performed on a 355 μm tall region of interest (ROI) encompassing the gauge section of the 

specimen, as shown in Figure 3.5(a). In the second part of the experiment (20 to 71000 cycles), 

FF-HEDM and μ-CT were performed on a 3 mm tall section (including the ROI). During the 

second part of the experiment, the larger region was necessary to capture the surrounding 

microstructure to the ROI and the appropriate boundary conditions for subsequent modeling 

activities and ensure the crack initiation location was captured in the ROI.  A rotational and axial 

motion system [108] was used to apply cyclic load to the test specimen. This device is capable of 

simultaneously applying axial load, while rotating the sample, without obstructing the path of the 

X-ray beam. To aid with feature tracking across the aforementioned 3D characterization 

techniques, a gold cube affixed on the gauge section was used as a fiducial marker [109]. The 

details of each in situ high-energy X-ray technique along with the experimental set-up and data 

acquisition will be outlined in the forthcoming paragraphs. 

FF-HEDM was used to obtain the grain centroids, grain-averaged orientations, and the evolution 

of the grain-averaged elastic strain tensors (and hence, grain-averaged stresses) with respect to the 

HCF loading cycles. The experimental setup for both parts of the experiment was calibrated using 

Ceria (CeO2) powder and Au patterns. A GE area detector (2048 x 2048 pixels, 200 μm pitch), 

placed ~ 880 mm away from the specimen was used to capture the diffraction peaks corresponding 

to the grains that satisfied Bragg’s condition every 0.25°, while the specimen was rotated 360° 

about its loading axis. At this distance, eight diffraction rings (corresponding to the {111}, {020}, 

{220}, {131}, {222}, {040}, {331}, and {240} crystallographic planes) were captured on the 
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detector. The first two rings were attenuated with a lead tape to shield the detector from their high 

diffracted-intensity measures. The FF-HEDM data was reconstructed by employing the 

Microstructural Imaging and Diffraction Analysis Software (MIDAS) [110,111] using a 

completeness value of 0.7. A spatial resolution of ~50 μm for the grain centroids, an angular 

resolution of 0.1o for grain orientations and a resolution of 1e-4 for the lattice strains were achieved 

using the current set-up. Further details regarding both parts of the experiment are as follows: 

• For the first part of the experiment (0 to 20 cycles), the scans for the ROI were obtained at 

0 cycle, 1 cycle, 2 cycles, 5 cycles, 10 cycles, and 20 cycles, using a 50 µm tall beam. 

Seven boxes spanning the ROI (the specimen was translated vertically by 50 μm between 

each scan) were scanned to characterize the microstructure. Diffraction spots from six 

complete Debye-Scherrer rings ({220}, {131}, {222}, {040}, {331}, and {240} planes) 

were used for analysis and reconstructing FF-HEDM data. 

• For the second part of the experiment (20-71000 cycles and 3mm tall section), 24 boxes 

stacked along the loading axis were scanned with a beam of height 125 μm. Scans were 

taken at 20, 200, 2K, 15K, 43K, 51K, 59K, and 71K cycles. Diffraction spots from the first 

four Debye Scherrer rings (belonging to {111}, {020}, {220}, and {131} crystallographic 

planes) were used to reconstruct the FF-HEDM data. 

 

NF-HEDM was used to obtain the 3D grain map of the ROI at the initial state (0 cycle). Line 

focused beams, 2 μm tall and 2 mm wide, were used to acquire 71 scans to characterize the ROI. 

This NF-HEDM data was recorded every 0.25°, while the sample was rotated by 180° about its 

loading axis. A detector with a 3 mm field of view and 1.5 μm x 1.5 μm pixel size captured the 

diffraction data at two distances from the sample, ~ 5 and 7 mm, which helped to maximize the 

spatial resolution of this technique, and accurately determine the source and direction of the 

diffracted beam corresponding to each diffracted spot. The experimental setup was first calibrated 

using a gold cube with sharp grain features. These calibration parameters were further refined 

(using grains from the specimen itself) using an optimization technique until consistently well-

defined grain boundaries were obtained throughout the reconstructed near-field slice. NF-HEDM 

scans were reconstructed using MIDAS, wherein a triangular grid with an edge size of 5 μm was 

used to obtain a high signal to noise ratio. The grain orientations obtained from FF-HEDM were 
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used to seed the forward modeling search-space within an orientation tolerance of 4°. The 

triangular mesh (containing orientation information) was then re-gridded onto a 3D voxel-based 

structure with a resolution of 2μm x 2μm x 5μm. This was followed by a segmentation procedure 

by allowing a maximum misorientation of 2° between adjacent voxels to obtain distinct grains. 

The 3D grain map of the ROI thus obtained is shown in Figure 3.5(b). 

μCT was used to obtain the following information: (a) porosity map, (b) the location of microcrack 

initiation during the fatigue testing, (c) the perimeter of the ROI to create a mask for the grains 

reconstructed via NF-HEDM, and (d) the location of the gold cube in order to facilitate registration 

among the three characterization techniques. To scan the 3 mm region, three 1.2 mm tall boxes 

(stacked along the z-axis) were scanned with a 1.2 mm tall x 2 mm wide beam such that there was 

a 100μm overlap between two consecutive boxes on either end. A high resolution tomography 

detector, with a pixel size of 1.17 μm, was used to capture the raw data ~90 mm away from the 

specimen (at 20, 15K, 43K, 51K, 59K, and 71K cycles). To capture fine features (such as pores 

and micro cracks), radiographs were taken every 0.1° while the specimen was held in tension (at 

𝜎𝑚𝑎𝑥) and rotated by 360° about its loading axis. This resulted in 3600 radiographs, which were 

used to reconstruct the specimen volume using an in-house APS MATLAB code [112]. Further 

post-processing was done using a combination of MATLAB and ImageJ [105], and visualization 

of the reconstructed 3D volume was done using ParaView [113]. A spatial resolution of 2.34 μm 

was achieved with the current detector set-up. The porosity map within the ROI is shown in Figure 

3.5(c). A fatigue micro crack was observed at a surface-connected pore after 51K cycles from the 

reconstructed data, which is depicted in Figure 3.5(d). Since the μCT scans were performed at 

discrete intervals, the exact time point of crack initiation is not known. However, the crack must 

have nucleated between 43K and 51K cycles. 
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 CRYSTAL PLASTICITY BASED MODELING FRAMEWORK  

In this chapter, the major elements of a crystal plasticity based framework is described in detail.  

This includes the creation of 3D virtual microstructures, description of constitutive model, 

calibration of the material parameters, and the regularizing schemes used in post-processing of 

results. Some aspects of this workflow process has been published in [114]. 

4.1 Creation of 3D virtual microstructures 

 

Figure 4.1. Automated creation of a 3D finite element model which is statistically representative of the 

EBSD microstructural attributes. 

The steps involved in the creation of the discretized polycrystalline microstructural instantiations 

starting from the electron backscatter diffraction (EBSD) data is shown in Figure 4.1. In the first 

step, the microstructural statistical information, namely, the grain sizes and orientations and twin 

length fraction are obtained from the EBSD data. The grain sizes and orientations are extracted 

using the reconstruction filters in DREAM.3D [115]. The reconstruction procedure involves: (a) 

cleaning the experimental noise in the EBSD data, (b) segmentation of grains using a 
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misorientation threshold value2, and (c) measuring grain sizes and orientations. The reader may 

refer to the DREAM.3D reconstruction tutorial and associated algorithms for additional details of 

these procedures [116,117]. The grain size corresponds to the diameter of an equivalent circle, as 

is appropriate for equiaxed grain materials, and the orientations are obtained in the form of Bunge 

Euler angles. From a single EBSD scan, only the 2D grain sizes are available, hence stereological 

methods are necessary to obtain the 3D grain sizes (diameter of the equivalent sphere) for accurate 

microstructure representation.  The 2D grain sizes are converted to 3D data by multiplying a 

stereological factor of 4/π [117]. Annealing twins are generally prevalent in Ni-based superalloys, 

including IN718, owing to the material’s relatively low stacking fault energy, and these features 

need to be included in subsequent modeling activities due to their significant effect on the 

corresponding mechanical behavior. The twin boundaries are identified from the EBSD data using 

the procedure detailed in Ref. [118]. Later, the twin length fraction, defined as the total length of 

the twin boundaries to that of all the grain boundaries, is obtained using DREAM.3D. 

The second step involves the creation of 3D synthetic microstructures, including twins, using the 

statistics as obtained in the previous step. The synthetic building filters within DREAM.3D are 

used to obtain the 3D synthetic microstructure, which we refer to as parent microstructure. The 

inputs to the parent microstructure creation are the 3D grain sizes and the orientation information 

(obtained in the previous step), desired volume of the microstructure, and the size of a voxel.   

The primary steps in the parent microstructure creation involve packing the grains inside the 

specified volume and matching the crystallography to the specified texture; the reader is referred 

to Refs. [116,117] for additional details. The parent microstructure generation is random in nature, 

i.e., different microstructures are obtained when the DREAM.3D pipeline is run multiple times 

with the same set of inputs. The parent microstructure is deliberately created with a higher mean 

grain size3, as compared to the actual mean obtained from the EBSD, which is necessary to 

compensate for the reduction in the mean grain size after insertion of twins. The twins are inserted 

 
2 For a material with a random texture, as is the case for the present material, a misorientation threshold value of 5o is 

generally used. For highly textured materials, a misorientation threshold value of ~1o-2o would be more appropriate. 

 
3 The increased grain size is dependent on the twin length fraction of the material. For the present material, the twin 

length fraction is ~0.5 corresponding to an increase of the mean parent grain size of 30%.  In the present analysis, the 

parents and twins are treated independently in determining the grain size. 
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into the parent microstructure using the methodology described in Ref. [119]. The segmentation 

of a twin is performed along a randomly chosen {111} plane in a randomly chosen grain. The 

Euler angles for the twin are assigned such that the misorientation between the parent and twin is 

a 60o twist with respect to the <111> plane normal.  Twins are restricted to be inserted in large 

grains (greater than 80% of the largest grain) to preserve the average grain size of the 

microstructure with twins. The maximum number of twins per grain is restricted to three to avoid 

the creation of very small grains (diameter less than the minimum 3D grain size) after twin 

insertion. Also, only one twin variant per grain is permitted to avoid the intersection of twins.  The 

creation of the parent microstructure, as well as the twin insertion process, is an iterative process 

and is continued until statistical equivalency is achieved between the attributes of the synthetic 

microstructure with twins and the EBSD data. The statistical equivalency criteria are defined using 

three metrics: (a) within 5% of the average grain size, (b) within 5% of the twin length fraction4, 

and (c) within 2% of the Taylor factor with respect to the applied loading direction of the 

simulation. The Taylor factor serves as a scalar measure of the texture [120–122]. A tighter bound 

is enforced on the Taylor factor criterion to preserve the sensitivity of the mechanical response to 

the texture and a 5% tolerance for the grain size is acceptable as the crystal plasticity model used 

in the present study is length scale independent. The microstructure instantiation containing twins 

is referred to as the statistical equivalent microstructure (SEM) throughout the remainder of this 

dissertation. Fifteen SEMs are created for this study. Each SEM is a cube of 300 µm length. The 

number of grains in the SEMs vary from 190-204, which is sufficient to capture the random texture 

and the homogenized stress-strain behavior at the macroscale [5]. 

The final step involves the creation of a volume mesh of the SEMs for subsequent CPFE 

simulations. First, non-smooth surface meshes of the grain boundaries are obtained using 

DREAM.3D. Second, these non-smooth surface meshes are smoothed using the Laplacian 

smoothing algorithm available within DREAM.3D. The grain boundary smoothing is an important 

step to obtain realistic grain morphologies. The reader is referred to Ref. [116] for the usage of 

relevant DREAM.3D filters5. Third, the 3D volume mesh for each grain is obtained from the 

 
4 For the 3D synthetic microstructures, area fraction of the twins is estimated and is used to compare with the length 

fraction of twins obtained from 2D EBSD. 
5 Laplacian smoothing requires multiple parameters as input. In this work, the default parameters given in DREAM.3D 

software are used. 
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smooth surface mesh using Gmsh [123]. Finally, all grain meshes are combined using Gmsh to 

obtain the mesh for the entire SEM volume while maintaining the compatibility between nodes at 

the grain interfaces. Linear tetrahedron elements (C3D4) are used in this study.  

The above procedure is automated within an in-house MATLAB program.  Thus, the entire 

workflow, including calling the necessary DREAM.3D pipelines, twin insertion, identifying 

statistical equivalency, grain boundary smoothing and meshing, and volume meshing in Gmsh, is 

completed with a single execution of the program, via scripting between the various suite of 

programs and algorithms.  Hence, a set of SEMs can be quickly created, which can be used to 

study the role of microstructure variability on the associated mechanical response.  The automation 

of this process ensures that the associated features are statistically equivalent and thereby the input 

microstructure to the CP model is reliable. The 3D SEMs serve as input to CPFE simulations 

discussed in the forthcoming chapters 5 and 6. 

4.2  Crystal plasticity model  

A phenomenological CP model [6,124,125] is used, which considers the twelve FCC slip 

systems: 〈110〉{111}. The model is incorporated in ABAQUS within a user-defined material 

subroutine (UMAT). The kinematics of slip is captured using the multiplicative decomposition 

[126] of the total deformation gradient, 𝐅, as 

 𝐅 = 𝐅𝐞𝐅𝐩 (4.1) 

 

Here, 𝐅𝐞 and  𝐅𝐩 are the elastic and plastic portions of the total deformation gradient, respectively. 

The plastic velocity gradient, 𝐋𝐩, is related to the shearing rates, γ̇α, on a slip system α as 

 𝐋𝐩 =  ∑ γ̇α𝐬α⨂𝐧α

12

α=1

 (4.2) 

 

Here, 𝐬α is the slip direction and 𝐧α is the slip plane normal. A Hutchinson type flow rule [127] is 

used to relate the shear strain rates to the resolved shear stress, τα, as 

 
γ̇α = γ̇0 |

τα − χα

gα
|

n

sgn(τα − χα) 

 

(4.3) 
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where γ̇0  is the reference shear strain rate; g  and χ  are the reference stress and back stress, 

respectively; n is the inverse strain-rate sensitivity exponent. The evolution laws for the reference 

and the back stresses are based on the Armstrong-Frederick type equations [128,129] and are given 

by 

 

 

 

ġα = H ∑ qαβ

12

β=1

|γ̇β| − Hdgα ∑|γ̇β|

12

β=1

      

 

 

(4.4) 

 
χ̇α = Aγ̇α − Adχα|γ̇α|       

 
(4.5) 

where H and Hd are the direct hardening and dynamic recovery coefficients, respectively, for the 

reference stress; A and Ad are the direct hardening and dynamic recovery coefficients, respectively, 

for the back stress; qαβ is the hardening matrix which has values of 1 for self-hardening (diagonal 

terms) and 1.2 for latent hardening (off-diagonal terms) [130]. There are eight CP parameters: γ̇0, 

n, g0  (initial value of g), H, Hd , χ0  (initial value of χ), A, and Ad  to be estimated, which are 

obtained using GA as described below.   

4.3 Parameter estimation using genetic algorithm 

In this study, the objective is to obtain a combination of the eight CP parameters that would 

accurately capture the macroscopic response of the material (both forward and reverse behavior) 

under uniaxial loading. The simplest approach is to manually adjust the CP parameters and carry 

out a series of simulations until the desired homogenized output is achieved. However, such an 

approach is time consuming and not suitable to accurately capture the reverse loading behavior 

(Bauschinger’s effect) because the parameters are highly coupled and cannot be sequentially 

changed with a high degree of precision. Hence, the CP parameter estimation is posed as an 

unconstrained optimization problem given by:  

 

min
𝛉

  f(𝛉)  = √
1

N
∑ (1 −

Ssim
i (𝛉)

Sexpt
i

)

2N

i=1

   

 

(4.6) 
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where 𝛉 is the set of CP parameters; Sexpt
i  is the stress value from the experiment and Ssim

i (𝛉) is 

the volume averaged stress value along loading direction from the CPFE simulation corresponding 

to the ith point on the macroscopic stress-strain curve; N is the total number of equidistant points 

chosen on the stress-strain curve.  

The optimization problem could be solved using many different approaches, including: (a) 

machine learning techniques, (b) gradient based optimization methods, and (c) non-gradient based 

optimization methods. The application of machine learning techniques requires a significant 

quantity of training data and, hence, are not chosen in this work. To make use of the gradient based  

 

Figure 4.2. The schematic of an automated framework for the estimation of crystal plasticity parameters 

using a genetic algorithm. 
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approaches, one needs to numerically evaluate the gradients at 𝛉, because f(𝛉) does not have a 

closed-form expression in terms of 𝛉. Each function evaluation at 𝛉 involves a CPFE simulation 

to obtain Ssim
i (𝛉). The numerical evaluation of gradients requires at least 9 CPFE simulations 

(using either forward or backward difference schemes) for each iteration and hence, is too 

computationally expensive. Moreover, the continuity and differentiability of f(𝛉)  is not 

guaranteed for all 𝛉 ∈ ℝ8, where ℝ8 is the eight-dimensional space of real numbers corresponding 

to the number of CP parameters, a convergence using any gradient based method is not guaranteed. 

So, a non-gradient based method is well-suited to solve the problem given by Eqn. (4.6), and due 

to its simplicity, a GA is chosen for this work. The automated framework for the GA 

implementation in a high performance computing domain involving multiple software platforms 

is shown in Figure 4.2. The ABAQUS input file, containing mesh geometry, CP parameters (𝛉), 

and boundary conditions, is created using MATLAB. Subsequently, CPFE simulations are 

performed in ABAQUS. Next,  Ssim
i (𝛉)  is extracted from ABAQUS using a Python script. 

Afterwards, f(𝛉) is evaluated in MATLAB. The stopping criterion is set as f(𝛉) ≤ 0.03, which 

corresponds to the percentage error determined to be acceptable in calibrating the model to the 

macroscopic experimental stress data (Sexpt
i ). The built-in MATLAB function ga is used for 

updating the parameters if the stopping criterion is not met.  

Based on a sensitivity study with different mesh sizes, a coarse mesh of size 7.5 µm was found to 

yield a similar macroscopic stress response as compared to fine meshes and hence, was chosen for 

the fitting process. The model reduction resulted in a computational cost saving of ~100X 

(compared to a mesh size of 3 µm)6, which is necessary to make this a tractable means for 

parameter estimation in an engineering workflow. The maximum number of generations 

(corresponds to global iteration number) is taken as 10 and the population size (corresponds to 

sub-iterations within each generation) is given as 100. For most cases, the convergence was 

achieved within a generation or two. The number of model evaluations could be estimated as the 

population size × (number of generations + 1).  

 
6 One CPFE simulation, comprised of two loading cycles, in the present study with a mesh size of 7.5 µm takes about 

12-18 minutes using 160 processors. 
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Also, due to the uncertainty in values for the single crystal elastic constants of IN718 in the 

literature, these constants were obtained by back fitting the elastic portion of the experimental 

stress-strain response using the GA. The upper and lower bounds for the cubic constants (C11, 

C12, and C44) for the fit were taken from the literature [131–134]. All the model parameters thus 

obtained via the use of GA are shown in Table 4.1. The model calibration with the experimental 

macroscopic stress-strain curve for ten cycles until saturation of the hysteresis loops is shown in 

Figure 4.3. 

Table 4.1 Parameters used in the CP simulations. 

No. Parameters Values 

1 C11 225.7 MPa 

2 C12 151.2 MPa 

3 C44 112.3 MPa 

4 γ̇0 0.0004 s-1 

5 m 38 

6 g0 380 MPa 

7 H 7800 MPa 

8 Hd 19 

9 A 14000 MPa 

10 Ad 84 

11 𝜒0 10 MPa 
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Figure 4.3. Comparison of the macroscopic stress-strain behavior of experiments and simulations using 

calibrated CP parameters until ten cycles. 

4.4 Regularizing schemes 

The presence of distorted elements in the meshing of 3D polycrystalline microstructures is 

unavoidable using the current workflow procedure. The distorted mesh elements arise, especially 

due to the smoothing of the grain boundaries to obtain realistic grain morphologies. The distorted 

elements are undesirable because they result in spurious stress values. Thus, it is necessary to 

identify the elements with the poor quality and then, mitigate their effects using regularization 

schemes. The quality of each element in each SEM is assessed by using the following geometrical 

measures of the tetrahedron as defined by β and γ.   

 β =
CR

3 ∗ IR
 (4.7) 

 

 γ =
𝑆𝑟𝑚𝑠

3

8.48 ∗ V
 (4.8) 
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where CR is the radius of the circumscribed sphere, IR is the radius of the inscribed sphere, 

𝑆𝑟𝑚𝑠 (= √
1

6
∑ (𝑆𝑖)2   6

𝑖=1 ) is the root mean square value of the edge lengths (Si), and V is the 

volume of the tetrahedron. The schematic of a mesh element with relevant geometrical quantities 

(as in Eqns. (4.7)  and (4.8) ) are shown in Figure 4.4(a, b). The good quality elements correspond 

to β ∈ [1,3] and γ ∈ [1,3], and the rest of the elements are considered as poor quality elements 

[135]. The distribution of the mesh quality metrics for one of the SEMs is shown in Figure 4.4. 

Different volume averaging schemes, namely non-local averaging [66], band averaging [61], and 

the grain averaging, are used to mitigate the effects of the poor-quality elements, and to report 

consistent results that are mesh independent.  

 

Figure 4.4 (a) 3D schematic of a tetrahedron with the edge length denoted by Si for a side i, (b) 2D 

representation of a tetrahedron with the circumscribed sphere (with a radius CR) and the inscribed sphere 

(with a radius IR) shown, and distribution of mesh quality metrics: (c) β and (d) γ for all the elements 

within SEM #1. For both the quality metrics, values greater than three represent poor quality elements 

[135]. 
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Figure 4.5 2D schematic of the different regularization schemes used in the post-processing of the 

micromechanical fields: (a) non-local averaging, (b) band averaging, and (c) grain averaging, defined at 

an integration point, P. 

In the non-local averaging scheme, at each integration point (say P), a cuboidal volume as defined 

by the slip vector, slip normal, and the orthonormal in-plane vector is bounded such that the 

integration point is at the centroidal position of the averaging volume (Figure 4.5(a)). The bounded 

volume will enclose multiple integration points, and the average of all the field values inside the 

bounded volume is calculated. The process is repeated for all the integration points in the 

microstructure. Since there are twelve slip systems in an FCC polycrystal, we have twelve 

averaged values corresponding to each slip system. The maximum value among the twelve values 

is assigned to the point P. In performing the averaging, the volume is not allowed to cross the grain 

boundary as shown in Figure 4.5(a). The averaging scheme closely aligns with the physics of slip 

deformation, thereby retaining the associated gradients in the micromechanical fields. Also, by 

restricting the averaging domain to be within a grain enables preservation of the gradient developed 

across the grain boundary due to kinematic compatibility and elastic anisotropy. Band averaging 

is the limiting case of the non-local averaging scheme. When the cuboidal volume is extended 

along the slip vector, and the orthonormal in-plane vector is extended until the exterior surfaces of 

the grain, we obtain the band averaging volume (Figure 4.5(b)). In the grain averaging scheme, for 

each integration point within a grain, all the field values within the grain are averaged and assigned 

to that integration point. Therefore, each grain will have one unique value for a given field quantity. 
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The poor-quality elements, elements near the simulation boundary constraints, and elements near 

the pore are not included in the regularization calculations to avoid bias in the resulting values.  

The size of the non-local averaging domain is dependent on the local finite element size and the 

loading conditions (low cycle fatigue or high cycle fatigue). In the low cycle fatigue conditions, 

the size of the averaging volume is taken as ~ 3-4 elements with respect to the slip direction and ~ 

2-3 elements in the transverse directions based on a sensitivity study. This volume satisfies the 

requirement of smoothing spurious values and preserving the localization of the micromechanical 

fields. The volume corresponding to each integration point would be different due to the 

restrictions placed on the domain to be within the grain.  In the high cycle fatigue conditions, as 

the macroscopic loading is less than the material’s yield strength, some elements in the SEM will 

undergo plastic deformation, while the remaining elements will still be elastically loaded. Hence 

it is essential that the averaging volume is small to capture microplasticity, but at the same time, it 

has sufficient elements to result in mesh independent results. Hence, the size of the non-local 

averaging volume is chosen as 2*2*2 elements, and the average number of elements in the non-

local averaging volume is found to be ~ 25, which is sufficient to smooth out oscillations. 

 

Figure 4.6 Comparisons of the stress values along a random probe line evaluated from the local element 

values of the coarse mesh, non-local averaged values obtained from coarse mesh, and non-local averaged 

values obtained from fine mesh. 
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Figure 4.6 shows the comparisons of the stress values along a random probe line in the FE 

microstructure in the loading direction. The three plots shown in Figure 4.6 correspond to the local 

element values obtained from the coarse mesh, non-local averaged values obtained from the coarse 

mesh, and the non-local averaged values obtained from the fine mesh. The details of the coarse 

mesh and the fine mesh are given in Table 4.2. The smoothing of the stress values due to the 

application of the averaging technique is evident from Figure 4.6 and the mesh sensitivity study 

using the non-local averaged stress values indicate that the coarse mesh shows converged results 

in comparison to the fine mesh, which justifies the choice of the coarse mesh in our simulations.  

Table 4.2 A comparison between the coarse mesh and the fine mesh for the CP-FE models with respect to 

element size, number of nodes and elements, and computational time for one cycle. 

Finite element model 
Element Size 

(μm) 
No. of Nodes 

No. of 

Elements 

Simulation time 

for 1 cycle 

Coarse Mesh 3.2 0.7 M 3.8 M ~ 1 day 

Fine Mesh 2 2.2 M 13.7 M ~ 10 days 
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 ESTIMATION OF CRITICAL POROSITY CHARACTERISTICS 

In this chapter, a CPFE based modeling framework is described to predict the limiting cases of 

porosity (pore size and proximity within a pore cluster) affecting the fatigue crack initiation of 

SLM IN718, which also addresses an existing gap in the current literature. Cyclic simulations are 

performed for multiple instantiations of the 3D microstructure containing pores of varying pore 

sizes, locations relative to the surrounding microstructure, and proximity between adjacent pores. 

Multiple instantiations in this study allow variation in both crystallographic orientation and grain 

morphology to understand the resulting sensitivity with different microstructures. Within this 

chapter, Section 5.1 presents the problem formulation with the results, and Sections 5.5 and 5.6 

provide the discussions and conclusions of this work, respectively. The results and analysis 

provided in this chapter have been published in [66]. 

5.1 Input microstructures 

 

 

Figure 5.1 SEMs used as input to the CP-FE simulations that are statistically representative of the EBSD 

microstructural attributes and have similar macroscopic strength behavior. 

A total of 5 SEMs (Figure 5.1) were created as input to the CPFE simulations that are statistically 

representative of the EBSD microstructural attributes and have similar macroscopic strength 

behavior. Each SEM is a cube of dimension 300μm. The number of grains within the SEMs varies 
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from 189-205. Linear tetrahedron elements (C3D4) are used in meshing. The global mesh size for 

each SEM is prescribed as 3.2 µm based on a sensitivity study.   

5.2 Boundary conditions 

 

Figure 5.2 Displacement boundary conditions applied on the boundary faces of the microstructure model 

used in the CP-FE simulations. Ux is zero on the x=0 face, Uy is zero on the y=0 face, Uz is zero on the 

Z=0 face, Uy is specified on the top face, and the other two faces (X or Z=300 µm) are free. 

Each CP-FE model under investigation is subjected to strain controlled fatigue cycling from 0 to 

1%. A total of 47 CP-FE simulations are conducted within this study, and the computational time 

necessary for each simulation on 160 processors is ~4-5 days. As discussed in Section 5.4.2, the 

critical pore size estimation involves a comparison within the spatial distribution of the damage 

metrics. From a single CP-FE simulation, it was found that the spatial distribution of the damage 

metrics had a similar trend in terms of the most probable location of failure for both four cycles 

and ten cycles. Hence, the present analysis based upon the computational costs and identifying the 

most likely location of crack initiation, relies upon the results of CP-FE simulations after four 

loading cycles. 

The boundary conditions used in the FE simulations are shown in Figure 5.2 and are consistent 

with those proposed in [136]. Ux, Uy, and Uz represent the displacements in x, y, and z directions, 

respectively. Ux is zero on the x=0 face, Uy is zero on the y=0 face, Uz is zero on the Z=0 face, 
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Uy is specified on the top face (Figure 5.2) based on the applied strain values, and the other two 

faces (X or Z = 300 µm) are free. In this work, we are primarily interested in the role of porosity 

in SLM IN718, and the presence of residual stress gradients and surface roughness effects are not 

taken into account. 

5.3 Damage indicator parameters 

To understand the fatigue behavior, four damage indicator parameters (DIPs) have been calculated 

in this study based on their prevalence to fatigue crack initiation as previously discussed in [5], 

namely, the plastic strain accumulation (PSA), elastic stress anisotropy (ESA), change in resolved 

shear stress (∆RSS) and the triaxiality (Triax). PSA indicates the localization of plastic slip in the 

microstructure [137,138] and strain localization is well-known to be a precursor to crack initiation 

[39,139]. PSA is obtained as the time integral of the scalar product of the plastic velocity gradient, 

Lp, 

 ṗ = √
2

3
𝐋𝐩: 𝐋𝐩 

 

(5.1) 

 
PSA =  ∫ ṗdt 

 

(5.2) 

ESA gives a scalar measure of the lattice incompatibility tensor [140] and is representative of the 

internal stresses caused by geometric mismatch of the slip system at the grain boundary. 

 
α = Curl(𝐅𝐩) =  − curl(𝐅𝐞

−1) 

 
(5.3) 

 𝐸𝑆𝐴 =  √
3

2
α: α 

 

(5.4) 

RSS provides a measure of the shear stress on a slip system which drives the plastic deformation. 

∆RSS is obtained between the maximum and the minimum strain points during a loading cycle, 

and the value of ∆RSS is taken as the maximum value over the 12 slip systems, β. 

 
τβ = 𝛔: (sβ ⊗ nβ) 

 
(5.5) 

 ∆RSS = max
β

∆τβ (5.6) 
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Triax is the ratio of the hydrostatic stress to the equivalent stress. Hydrostatic stress influences the 

volume change of a material point which is an elastic process. Equivalent (or von Mises) stress is 

derived from the deviatoric part of the stress tensor and it affects the shape change of a material 

point. The relevance of triaxiality to crack initiation is discussed in [141]. 

 
𝑇𝑟𝑖𝑎𝑥 =  

Hydrostatic stress

Equivalent stress
 

 

(5.7) 

ESA and Triax are obtained at the maximum applied strain point corresponding to the fourth cycle, 

PSA is obtained at the minimum applied strain point at the fourth cycle, and ∆RSS is obtained 

across the fourth cycle as a difference between the peak and minimum applied strains.  

5.4 Results 

In a polycrystalline microstructure with pores, the fatigue crack may either initiate at a 

crystallographic feature (grain boundary, triple/quad points, twin boundary, etc.) or at a pore. The 

goal of the critical pore study is to identify the scenarios under which the fatigue crack is likely to 

initiate at the pore rather than the crystallographic features.  

Further, in this work, a microstructure with multiple pores will be referred to as a flawed model, a 

microstructure with no pore will be called a fully dense microstructure. Any micromechanical field 

quantity (stress, strain, etc.) around a pore in the flawed model depends on the size of the pore, 

anisotropy of the surrounding grains and the interaction effects (pore-pore and pore-boundary). 

Mathematically, any micromechanical field (𝜓) near a pore could be approximated as:  

 ψ~ ψavg + Δψporesize +  Δψanisotropy +  Δψ interaction (5.8) 

 

Δψ  represents the perturbation due to the specified factor.  
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Figure 5.3 Representative microstructure models used in the critical pore study with (a) a single pore and 

(b) two pores. 

The critical pore study is formulated as three connected studies based on Eqn. (5.8), namely, the 

pore placement study with respect to the SEM, critical size study, and the cluster study. Each study 

accounts for only one factor. The first two studies have a single pore in the microstructure as shown 

in Figure 5.3a, and the cluster study has two pores in the microstructure as shown in Figure 5.3b. 

The pore in the model is created by element deletion from the meshed model. Before deletion, the 

FE mesh is locally refined at the local neighborhood around the pore center with an element size 

of 1 𝜇𝑚. The refinement is carried out within a sphere of radius 10 𝜇𝑚 greater than the pore radius. 

This provides a more realistic pore representation and a local refined mesh near the pore to capture 

gradients in the micromechanical fields. The nearest two layers of elements near the pore are not 

considered while obtaining the spatial distribution of the DIPs to avoid the effects of the local 

geometrical serrations caused by element deletion. The descriptions of each study with the 

mechanistic basis of the formulation and corresponding results are given below. 

5.4.1 Pore placement study 

In the pore placement study, the FE microstructures are set up in such a way to include only the 

influence of the surrounding anisotropy (Δ𝜓𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦). This is accomplished by following three 

steps. First, the models are created with a single pore, which eliminates the pore-pore interaction 

effects. Second, the pore is deliberately placed in the bulk of the microstructure, which reduces the 
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pore-boundary interaction effects, and third, all the models are created with a fixed pore size of 

30 𝜇𝑚, which eliminates the effect of the pore size. This study identifies the location in the fully 

dense microstructure, where a pore should be placed representing the worst-case scenario for a 

fatigue crack to initiate, as predicted by the DIPs.  

It is well known that the intersection points in a fully-dense microstructure (grain boundaries, triple, 

and quad points) act as stress concentrators. From a study consisting of seven CP-FE simulations, 

it was found that a pore when placed at the intersection point (of the fully-dense microstructure) 

possessing the highest stress, resulted in the maximum values of the DIPs (PSA, ∆RSS, and Triax) 

near the pore. This information regarding the pore placement is used to set up the simulations for 

the critical size study. 

5.4.2 Critical size study 

In the critical size study, the influence of the pore size (Δ𝜓𝑝𝑜𝑟𝑒𝑠𝑖𝑧𝑒) is studied by using only a 

single pore placed at a fixed location (highest stress intersection point corresponding to each SEM), 

which eliminates the anisotropy and interaction effects. For each SEM, five models are created 

with one pore in each SEM having sizes of 10, 20, 30, 40, and 50 𝜇𝑚, respectively. This study 

estimates the critical pore size corresponding to each SEM, which is defined as the size beyond 

which the location of crack nucleation, as determined by the values of the resulting DIPs, 

transitions from crystallographic features to the pore vicinity. From the simulations, the critical 

size is obtained from the radial distribution function of the maximum values of the non-local 

averaged DIPs. It is estimated by identifying the pore size at which the DIPs near the pore attain 

the maximum value as compared to the rest of the microstructure. 

The radial distribution function of all the DIPs for each SEM are plotted in Figures 5.4-5.8. The 

fully dense case (with no pore) is plotted in the figures to have a baseline comparison for the SEM 

models with a pore. The Figures 5.4-5.8 have the same range for each DIP for all SEMs to enable 

easier visual comparison. It could be observed that the radial distribution of each DIP 

corresponding to an SEM is distinct and is predominantly due to the variability of the 

microstructures across the SEMs. For a single SEM, the DIPs near the pore vicinity are different 
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for each pore size and they converge to the values of the fully-dense case farther from the pore 

center.  

Of all DIPS, both the PSA and ∆RSS have a strong correlation with the pore size as can be seen in 

Figures 5.4-5.8. In most cases, both the PSA and ∆RSS monotonically increase with an increase 

in the pore size. In very few cases (as in Figure 5.8), there is a slight decrease of both the PSA and 

∆RSS while going from a pore size of 40 to a pore size of 50. This could be attributed to a couple 

of reasons: a) the immediate neighborhood is different for each pore size or b) local refinement in 

mesh.  On the other hand, both the ESA and Triax do not have a strong correlation with the pore 

size. The ESA involves gradients, which are numerically calculated during post- processing using 

the following equation [142] 

 

∂ϕ 

∂xr
=

∑
1

rm

n
m=1

(ϕk − ϕm)
((xr)k − (xr)m)

∑
1

rm

n
m=1

 

 

(5.9) 

𝜕𝜙 

𝜕𝑥𝑟
 is the partial derivative of a field quantity 𝜙 with respect to a Cartesian coordinate direction 

𝑥𝑟. The partial derivative is evaluated at the kth point using the information of the closest n (=10) 

neighboring points. 𝑟𝑚  is the distance between the kth point and the mth neighboring point. 𝜙  

corresponds to the plastic deformation gradient tensor (Fp) in calculating the ESA. Since ESA 

involves calculations of gradients explicitly, this quantity is more sensitive to the mesh and 

serrations near the pore, which would explain the inconsistent behavior of the ESA especially near 

the pore in Figures 5.4-5.8. As for the behavior of the Triax, it could be attributed to the fact that 

it is a ratio of two different stress measures. For all the SEMs, the Triax has been observed to be 

higher at the microstructural features than at the pore vicinity due to the additional volume 

constraints.  

The peak values of all the DIPs, observed particularly near the microstructural features in Figures 

5.4-5.8, are not subjected to a detailed investigation to find out the inherent microstructural features, 

as the focus of this work is more towards the porosity than understanding the microstructural 

attributes related to fatigue crack initiation. 
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From the observations above, only the PSA and ∆RSS are considered further in the assessment of 

the critical pore size. For each SEM, the critical pore size is obtained based on the radial functions 

of the PSA and ∆RSS. The critical pore size thus obtained for each SEM is plotted in Figure 5.9, 

and it varies from 20 – 40 𝜇𝑚 across all the SEMs. As a conservative estimate the critical pore size 

could be taken as 20 𝜇𝑚, which is ~ 40 % with respect to the average grain size of 48 𝜇𝑚.   

The maximum values of the PSA and ∆RSS at the pore vicinity for all the SEMs with respect to 

pore size is plotted in Figure 5.10. For the same pore size, there exists a considerable variation of 

the resulting PSA and ∆RSS. The deviation in the values could be strongly related to the difference 

in the surrounding microstructure associated with each SEM around the pore. Figure 5.11 shows 

the visualization of all the DIPs corresponding to SEM4 with a 20 µm pore.  Figure 5.11 is mainly 

intended to depict the heterogeneous deformation behavior of the polycrystalline microstructure 

and the localization of the micromechanical fields near the pore. Each DIP is plotted with respect 

to the entire microstructure and about a cross-section across the pore. The PSA, ESA, ∆RSS and 

Triax are shown in Figure 5.11(a), (b), (c), and (d), respectively. 

 

Figure 5.4 Radial distribution plots of the damage indicator parameters for SEM1 (a) Plastic strain 

accumulation, (b) Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 
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 Figure 5.5 Radial distribution plots of the damage indicator parameters for SEM2 (a) Plastic 

strain accumulation, (b) Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 

 

Figure 5.6 Radial distribution plots of the damage indicator parameters for SEM3 (a) Plastic strain 

accumulation, (b) Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 



 

 

62 

 

Figure 5.7 Radial distribution plots of the damage indicator parameters for SEM4 (a) Plastic strain 

accumulation, (b) Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 

 

Figure 5.8 Radial distribution plots of the damage indicator parameters for SEM5 (a) Plastic strain 

accumulation, (b) Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 
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Figure 5.9 Critical pore diameter for each SEM with respect to plastic strain accumulation and change in 

resolved shear stress. 

 

Figure 5.10 (a) Plastic strain accumulation, and (b) Change in resolved shear stress at the pore vicinity as 

a function of pore diameter for all SEMs. 
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Figure 5.11 Visualization of the damage indicator parameters for SEM4 (with 20 µm pore) along with 

cross-sectional views near the pore showing the spatial variation of  (a) Plastic strain accumulation, (b) 

Elastic stress anisotropy, (c) Change in resolved shear stress, and (d) Triaxiality. 

5.4.3 Cluster study 

In the cluster study, the influence of the pore-pore interaction is studied. All the models in this 

study have two pores (representing a pore cluster) of the same diameter, d, in the microstructure 

(Figure 5.3b) with their centers separated by a distance of L. The simulations are performed by 

fixing both the size and location of the existing pore (Figure 5.3b) and the position of the additional 

pore is varied, thereby varying L in each simulation. The cluster study models (Figure 5.3b) are 

created using the critical size study microstructures (Figure 5.3a). The additional pore (Figure 5.3b) 

is created on the plane (X-Z) perpendicular to the loading direction (Y) and radially adjacent to 

the point in the circumference of the existing pore that has the maximum PSA, which allows for 

the maximum interaction effects. 
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From the critical size study, SEM4 has the least critical pore size of 20 𝜇𝑚 in terms of both PSA 

and ∆RSS and hence, it is chosen for the cluster study as it is representative of the worst-case 

scenario. The first set of cluster models identify the critical separation distance below which a 

combination of two sub-critical pores (d = 10 𝜇𝑚) is likely to initiate a fatigue crack. This is 

estimated by comparing the simulation results of the pore cluster study with the results of the 

critical size study. 

  

Figures 5.12 (a) and (b) display the variation of the PSA and ∆RSS for various L/d ratios. The 

critical value in Figure 5.12 corresponds to the respective DIP values obtained from the CP-FE 

simulation of a single 20 𝜇𝑚 pore in SEM4 from the critical size study. For the pore cluster of d = 

10 𝜇𝑚, the PSA (Figure 5.12 a) exceeds the critical value when L/d equals 1.5, whereas ∆RSS 

does not exceed the critical value in any case. With respect to PSA, it could be concluded that 

when the separation distance, L, is less than or equal to 15 𝜇𝑚, a fatigue crack is likely to initiate 

at the pore cluster. 

 

 

Figure 5.12 Variation of the (a) Plastic strain accumulation and (b) Change in resolved shear stress 

obtained for the cluster study (d = 10 µm). 
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Figure 5.13 Variation of the (a) Plastic strain accumulation and (b) Change in resolved shear stress 

obtained for the cluster study (d = 20 µm). 

The second set of studies are performed with two pores each having a size of 20 𝜇𝑚 in order to 

understand the nature of the pore-pore interaction effects on both the PSA and ∆RSS as a function 

of L/d. Investigation of Figures 5.12 and 5.13 show that interaction effects are most dominant 

when L/d ratio is less than or equals 2. 

5.5 Discussion 

Based on the results of the CP-FE simulations, the size of a critical single pore to cause a potential 

debit in the fatigue life of SLM IN718 is determined to be 20  𝜇𝑚 . From this conservative 

assessment, a standalone pore of size 20 𝜇𝑚 or greater within the microstructure is likely to initiate 

a fatigue crack. Moreover, additional pores in the vicinity of the initial critical pore would result 

in a further detriment to the fatigue life. Even sub-critical pores with diameters of 10 𝜇𝑚 could 

cause fatigue failure when the separation distance between them is less than 15 𝜇𝑚, due to the 

pore-to-pore interaction. The results of the CP-FE simulations are compared with the μXSCT 

characterization (Figure 3.3) to identify the probability of limiting porosity within representative 

SLM IN718 material. From Figure 3.3, the probability of a single pore greater than 20 𝜇𝑚 in size 

is 0.2%, while the probability of pores possessing a diameter of 10 to 20 𝜇𝑚 is equal to 1.8%.  In 

general, the probability of pores being spaced less than 15 𝜇𝑚 apart is 41.6%. From the probability 

values determined from the μXSCT characterization, based on their size and separation distance, 
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~1% pores are likely to providing a fatigue debit. For this SLM IN718 material, a tomography 

measurement with resolution of 10 𝜇𝑚 (5 𝜇𝑚 voxel size based on Nyquist sampling) would be 

sufficient for detection of critical porosity within the material. In addition, the process build 

parameters and subsequent post-processing treatments could be tailored to control the porosity 

within the critical limits as obtained from the simulation results.  

The final mode of failure from a pore is due to the pore-boundary interaction. Although the pore-

boundary interactions are not explicitly modeled, it is possible to obtain a rough estimate from the 

results of the porosity cluster study. Based on symmetry, we propose the approximation as shown 

in Figure 5.14. A pore cluster separated by a distance, L, is idealized into a pore-boundary 

configuration with a separation of L/2. Of course, the traction free-boundary conditions of the free 

surface and the resulting surface deformation would result in a breakdown of this simplifying 

assumption.  Nevertheless, the imposed symmetry condition would be more detrimental to the 

values of the DIPs than the free surface, as the additional out-of-plane constraints from the 

symmetry condition would result in additional localization of the micromechanical fields 

compared to the free surface condition. Hence, the symmetry assumption depicted in Figure 5.14 

provides a conservative estimate. From the cluster study, it was determined that a pore cluster, in 

which pores are separated by less than 15 𝜇𝑚 would provide a debit in the fatigue life and the 

pore-to-pore interaction would be dominant when the L/d ratio is less than 2. Based on these results, 

a surface connected pore or pore immediately sub-surface by a distance equivalent to its diameter 

would result in localization of the micromechanical fields and likely be a site for fatigue crack 

initiation. 
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Figure 5.14 Approximating pore-pore interaction to an equivalent pore-boundary interaction. 

The CP-FE simulations in this study represent an idealized microstructure, which does not 

introduce residual stresses, non-metallic inclusions [143], surface roughness, as large as (ALA) 

grain sizes [4], or notches due to geometric discontinuities, which would further reduce the fatigue 

life and act as a competing failure mechanism in the presence of porosity. Residual stresses have 

a less significant effect on crack initiation, as post-processing heat treatment significantly reduces 

them [7]. Surface defects, including surface roughness and surface connected porosity, are another 

prominent source of crack initiation in SLM materials [21,144,145]. Any surface defect could be 

modeled as an equivalent sized surface pore [31,34] using the current framework. Thus, by 

including more representative defects within the simulation, it is anticipated that the critical pore 

size would increase, as pore induced crack initiation would serve as a competing mechanism with 

other flaw-mediated sources of failure.  Thus, the current study represents a conservative approach 

(or worst-case scenario) for the critical pore size.  As the first attempt at validation, the SLM IN718 

material was machined into eight micro-fatigue specimens with gauge volume of 1 mm3.  This 

material, corresponding to the porosity characterization in Figure 3.3, was cyclically loaded until 

failure. Fractography was conducted on the failed fracture surfaces, and in each specimen, porosity 

was not the cause of failure.  Hence, based on the porosity characterization for this material, it was 

determined from the present modeling analysis that ~ 1% of the pores in the characterization 

volume are potentially likely to initiate a fatigue crack, albeit this low percentage was in agreement 

with the experiments, since pore initiated failure was not observed from the fractography analysis. 

This is the topic of on-going research aimed at predicting the fatigue lifetime of SLM IN718 

material. 
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5.6 Conclusions 

• A crystal plasticity based modeling framework is developed to quantify the critical scenarios 

of porosity towards the fatigue crack initiation of SLM IN718, where,  

 

o Statistical equivalent microstructures are created as input to crystal plasticity 

simulations, which are statistically representative of the microstructural attributes and 

macroscopic stress response. 

o Crystal plasticity parameter estimation is posed as an optimization problem and is 

solved using a genetic algorithm. 

o A spatial non-local averaging technique is introduced to capture the variations of the 

micromechanical fields, which allows the usage of a coarser mesh. 

o The problem of critical porosity study is formulated as three connected studies based 

on the mechanics of pore deformation, which are the pore placement relative to the 

neighboring microstructure, critical size of a single pore, and the separation distance of 

two pores representing a pore cluster. 

 

• For the SLM IN718 materials with average grain size of 48 μm, the size of a critical single 

pore to cause fatigue failure is obtained as 20 𝜇𝑚. It was also found that even sub-critical pores 

of 10 𝜇𝑚 in diameter could cause fatigue failure when the separation distance between these 

pores is less than 15 𝜇𝑚, due to the pore-to-pore interaction. Based on a statistical argument, 

the percentage of critical porosity within the μXSCT characterization volume is estimated as 

~ 1%. 

 

• The modeling framework developed in this study has been used to study critical porosity but 

can be extended to other defects. This work is potentially beneficial in qualifying SLM 

materials given the natural porosity inherent to the manufacturing process, by reducing the 

number of necessary fatigue experiments.  Additionally, the results of this study can be used 

to help identify appropriate process build parameters based on the resulting porosity, choice of 

non-destructive evaluation methods based on the resolution needed to capture the critical pore 

size, and subsequent post-processing steps necessary to mitigate pores larger than the critical 

size. 
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 EXAMINING METRICS FOR FATIGUE LIFE PREDICTIONS 

INCLUDING THE ROLE OF SIMULATION VOLUME AND 

MICROSTRUCTURAL CONSTRAINTS 

In this chapter, a comparative assessment of multiple fatigue metrics based on microstructure-

sensitive CPFE simulations of many virtual microstructures are performed, to obtain the probable 

location of failure and the scatter in fatigue life, considering the failures at both the surface and 

sub-surface, including the role of porosity. In addition, we perform additional sets of CPFE 

simulations to understand the role of simulation volume as well as the boundary conditions on the 

prediction of the fatigue scatter. Within this chapter, Section 6.1 describes the crystal plasticity 

based fatigue modeling framework, Section 6.2 presents the results, and Sections 6.3 and 6.4 

provide the discussions and conclusions of this work, respectively. The results and analysis 

provided in this chapter have been published in [146]. 

6.1 Fatigue life prediction framework 

6.1.1 Microstructural models  

Fifteen SEMs are created for this study, as shown in Figure 6.1. The pores are created randomly 

within the SEMs such that the volume fraction of the pores across the SEMs matches the volume 

fraction from µXSCT characterization. Also, the sizes of the pores are sampled from the tails of 

the distribution obtained from the µXSCT characterization [66] and are prescribed to be 10, 20, 

30, and 40 µm. The pores are inserted to serve as a competing failure mechanism. As per the 

previous studies by the authors [66,107], a pore becomes significant only if its size is equal or 

greater than 10 µm and hence, is chosen to be the minimum size. The details of the number of 

pores and corresponding sizes in each SEM have been shown in Table 3.1. The creation of pores 

in the discretized SEMs is performed via element deletion. Before deletion, the local neighborhood 

around each pore is refined using an element size of 1 µm. The radius of the sphere of refinement 

is 10 µm greater than the actual pore radius. The refinement helps in obtaining a near-spherical 

pore morphology and preserves the gradients developed near the pore. Constraints are added such 

that each SEM can have a maximum of two pores, which permits more uniform distribution of the 

pores across the SEMs, and the intersection of pores during the creation process is prevented.  
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Each SEM is a cube of dimension 300 µm. The number of grains within the SEMs varies from 

190-204. Linear tetrahedron elements (C3D4) are used in meshing. The global mesh size for each 

SEM is prescribed as 3 µm based on a sensitivity study reported in Ref. [66].  The number of nodes 

across the SEMs range from 0.74 to 1 million and the number of elements span from 4.5 to 6.2 

million.  

 

 

Figure 6.1 Fifteen statistically equivalent microstructures (SEMs) used as input to the crystal plasticity 

simulations and subsequently the fatigue life predictions are shown. Twelve SEMs (shown with a 

transparent view) contain pores indicated via black arrows and the other three (opaque view) are fully 

dense. It should be noted that the two pores in SEM # 12 are not close to each other. Microstructures are 

colored by unique grain IDs. The pore size details for each SEM are shown in Table 3.1. 
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Table 6.1 The number of pores and the corresponding pore diameter for each SEM (shown in Figure 6.1) 

are indicated. The number of pores in each SEM vary from 0 to 2 and the pore diameter varies from 10 to 

40 µm. 

SEM# No. of pores Pore diameter (µm) 

1 2 20 30 

2 1 20 - 

3 1 10 - 

4 0 - - 

5 2 30 10 

6 2 10 10 

7 1 40 - 

8 1 30 - 

9 1 20 - 

10 0 - - 

11 0 - - 

12 2 40 30 

13 2 30 30 

14 2 20 30 

15 1 10 - 

 

6.1.2 Boundary conditions 

Each SEM model is subjected to a stress-controlled cyclic loading with Rσ =0.01 and σmax = 800 

MPa for ten loading cycles until the saturation of the local plastic strain response. The loading 

conditions are the same as that of the experimental fatigue testing. The average time to completion 

for a CPFE simulation is about five days, while running on 160 processors in parallel. The 

boundary conditions used in the CPFE simulations are shown in Figure 6.2. Normal displacements 
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on the three adjacent orthogonal faces (as defined by X=0, Y=0, and Z=0) are constrained. Normal 

stress is specified on the top face (Y=300 µm) of the microstructure. The other two faces of the 

microstructure (X=300 µm, Z=300 µm) are free from any constraints. In this work, the failure 

modes due to crystallographic features and pores are primarily considered.  The role of residual 

stresses was not considered in the modeling activity since the samples underwent rigorous post-

processing resulting in significantly lower residual stress values as compared to macroscopic 

loading conditions [86], moreover we could potentially expect relaxation of the initial residual 

stresses with cyclic loading especially at non-zero mean stress (Rσ =0) loading conditions [147]. 

Furthermore, the effect of surface roughness was not considered since the test coupons were 

ground and polished [86]. 

 

 

Figure 6.2 Finite element boundary conditions applied on the faces of the microstructure model used in 

the CPFE simulations. ux is zero on the X=0 face, uy is zero on the Y=0 face, uz is zero on the Z=0 face, 

σyy is specified on the top face (Y=300 µm), and the other two faces (X or Z=300 µm) are unconstrained. 

6.1.3 Fatigue metrics for location and life prediction 

In this work, the fatigue metrics are used to obtain the likely location of fatigue crack initiation 

and to predict the fatigue life. The metrics are chosen to be positive and monotonically increasing 

with the number of loading cycles, to enable fatigue life prediction. The choice of metrics was 

based on previous studies in literature, including Morrow [46], Fatemi and Socie [48], McDowell 

and co-workers [56–61], Dunne and colleagues [65,68], and Bandyopadhyay et al. [148]. All of 

the aforementioned studies have emphasized the importance of both plastic strain and local stresses 
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in predicting the crack initiation events.  Hence, in this work, we assess the fatigue life using 

different metrics, most of which are formulated as a composite measure of plastic strain and local 

stresses. Six candidate metrics have been formulated. To have a baseline comparison, one metric 

is defined purely in terms of plastic strain, and the rest of the five metrics are a combination of 

plastic strain and a measure of the local stress state. 

The first metric is the plastic strain accumulation (PSA), which indicates the cumulative slip 

calculated at an integration point due to the shear across all the individual slip systems [137,138]. 

Slip localization is well-known to be a precursor to crack initiation [39,139], and experimental 

evidence suggests that PSA could potentially capture the location of crack initiation [64,65,68]. 

PSA is obtained as the integral of the double dot product of the plastic velocity gradient, Lp,  

 
M1:     PSA =  ∫ √

2

3
𝐋𝐩: 𝐋𝐩 𝑑𝑡 

 

(6.1) 

The second metric is the cumulative plastic strain energy density (Wp), which corresponds to the 

dissipative energy due to plastic deformation. The relevance of the dissipative energy to fatigue 

crack initiation has been shown in the works of Skelton [149] and Korsunsky et al. [150].  

 

 

M2:     Wp = ∮ 𝜎: 𝑳𝒑𝑑𝑡 

 

(6.2) 

Where σ is the Cauchy stress tensor. The Wp has accounted for the local stress in an implicit 

manner. Since the Cauchy stress is a continuum level parameter, we consider the slip level stress 

measures, namely, the maximum resolved shear stress (τmax) and a Dang Van type measure (τmax 

+ σh) [151] to formulate the next four fatigue metrics. τmax provides a measure of the maximum 

shear stress at an integration point, out of the twelve slip systems.  

 

τmax = max
α

[𝛔: (𝐬α ⊗ 𝐧α)] 

 

(6.3) 

The hydrostatic stress, σh , influences the volume change at a material point and a tensile 

hydrostatic stress is known to be conducive to crack formation and growth [151][152]. 
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σh =

trace (𝛔)

3
 

 

(6.4) 

Taking inspiration from the classical multi-axial fatigue approaches [151,153], simple 

combinations, namely the product and sum forms, are used. The third and fourth fatigue metrics 

are obtained using the product of stress measures and PSA, as given by:  

 
M3:     PSA ∗ (τmax + 𝜎ℎ)  

 
(6.5) 

 
M4:     PSA ∗ τmax  

 
(6.6) 

The fifth and sixth fatigue metrics are obtained by a linear combination of stresses and PSA. Since, 

PSA and stresses have different units; they are first normalized and then added. The fifth and sixth 

metrics are given by: 

 

M5:     
PSA

〈PSA〉
+

τmax

〈τmax〉
  

 

(6.7) 

 

M6:     
PSA

〈PSA〉
+

τmax+ σh

〈τmax+ σh〉
 

 

(6.8) 

Where 〈. 〉 denotes the maximum value of the given field quantity among all the integration points 

within a given SEM at the last cycle analyzed. These six metrics will be used subsequently to 

identify the location of failure within an SEM and predict the fatigue life of each SEM. 
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6.1.4 Fatigue model calibration and prediction 

 

Figure 6.3 (a) Evolution of the plastic strain accumulation with fatigue loading cycles at an integration 

point, (b) Change in plastic strain accumulation per cycle indicating local plastic shake down at 

approximately ten cycles. 

The evolution of the non-local averaged PSA, and the change in PSA per cycle until 25 loading 

cycles are shown in Figures 6.3(a) and 6.3(b), respectively. From Figure 6.3(b), we observe that 

the local plastic strain saturates after ten cycles, which means that there will be constant increments 

of plastic strain after cycle ten.  Similar behavior was observed for the other metrics as well. Based 

upon the above observation, the value of any fatigue metric, after cycle ten, can be obtained from 

linear extrapolation. Let ϕ𝑖
𝑗
 be the fatigue metric for the ith microstructure, for a given approach (j 

refers to the combination of the particular fatigue metric (M1-M6) and averaging scheme). The 

value of ϕ𝑖
𝑗
 at N cycles (N >>10) is obtained as: 

 (ϕ𝑖
𝑗
)|

𝑁
= (ϕ𝑖

𝑗
)|

10
+  (∆ϕ𝑖

𝑗
)|

10
∗ 𝑁 (6.9) 

 

where, (∆ϕ𝑖
𝑗
)|

10
 is the increment in ϕ𝑖

𝑗
 from cycle nine to cycle ten.  

Due to the inherent stochasticity of fatigue, life predictions require a non-deterministic approach.  

Here, a series of i microstructures are randomly generated (yet their distributions of microstructural 

attributes are statistically similar).  The microstructure generation results in different neighboring 
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grains in each SEM, thus adding a non-deterministic approach to lifetime prediction [4,5].  After 

ten cycles of loading is applied to each SEM, through the CPFE simulation described in Section 

3.2, the predicted location of the failure (or the hotspot) for a given SEM is identified as the element 

ID (upon applying the regularization scheme) with the maximum value of the fatigue metric of 

interest.  Following hotspot identification, the fatigue prognosis of the set of the i SEMs is 

performed as a two-step process: (i) calibration and (ii) life prediction.  The calibration involves 

estimating the critical value of a particular fatigue metric ϕ𝑗  across the distribution of SEMs 

analyzed.  Such a critical value is unique to a specific combination of the fatigue metric and  

regularizing scheme, and is obtained as follows. The set of the ϕ𝑖
𝑗
 form a distribution for the 

evolution of the fatigue metric with increasing cycle numbers, N, using Eqn. (6.9). The distribution 

of extrapolated ϕ𝑖
𝑗
 (for i = 1 to 15 SEMs) is obtained as a series of linear equations.  The median 

value of this distribution is set equal to the experimentally obtained median fatigue life, and used 

to identify the critical value of the fatigue metric ϕ𝑗. With input from the calibration, the fatigue 

life of the ith SEM (NSEM) for a given ϕ𝑗 is predicted using a rearranged form of Eqn. (6.9), given 

as:  

 𝑁𝑆𝐸𝑀 =   
(ϕ𝑖

𝑗
)|

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 
− (ϕ𝑖

𝑗
)|

10

(∆ϕ𝑖
𝑗
)|

10

 (6.10) 

6.2 Results   

The hotspots predicted by the non-local averaged, band averaged, and grain averaged values of 

PSA (M1) are shown as white circles in the bottom row of Figure 6.4.  The hotspot predicted by 

the non-local averaged value of the PSA is near a pore, while both the band- and grain-averaged 

values of PSA predict different hotspot locations. The non-local averaged PSA is able to capture 

the localized effect near the pore as is expected due to the geometrical stress concentration, 

whereas both the band- and grain- averaged PSA are unable to capture this behavior since both the 

schemes homogenize the PSA over larger volumes, which makes the localization behavior 

diminish. The grains corresponding to each hotspot are highlighted in green on the top row of 

Figure 6.4 and are different for each averaging scheme. In each SEM, there is a distribution of the 

grain sizes. The size of the averaging volume for the band- and the grain- averaging schemes are 
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dependent on the size of the grain. Therefore, there is a significant variation in the number of 

elements inside the averaging volumes (especially for the band- or grain- averaging schemes) 

depending on the spatial location of the integration point, which possibly results in non-realistic 

hotspot predictions. Furthermore, both the band- and grain- averaged values do not provide any 

insight into the different modes of failure. Hence, for the above reasons, the non-local averaging 

is considered as the appropriate scheme and is used in further analysis. 

 

Figure 6.4 The top row shows the fatigue crack initiating grains (highlighted in green) and the 

corresponding X-Z cross-section through the failure location, and the bottom row shows the physical 

location of failure on the X-Z plane as predicted by the: (a) non-local averaged values, (b) band-averaged 

values, and (c) grain-averaged values of plastic strain accumulation (M1). 
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Figure 6.5 Fatigue life predictions of IN718 using the non-local averaged values of the metrics (a) M1, 

(b) M2, (c) M3, (d) M4, (e) M5, and (f) M6. 

. 

 

Figure 6.6 Different modes of failure (including the failure at a pore, free surface, and near a grain/twin 

boundary in the bulk) along with the SEM IDs overlaid on the fatigue life plot obtained using non-local 

averaged values of the metrics (a) M1, (b) M2, (c) M3, (d) M4, (e) M5, and (f) M6. 
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Figure 6.7 Two additional analyses are performed to understand the role of the simulation volume and the 

boundary conditions on the fatigue life estimation.  In the first analysis, 30 microstructures having four 

distinct volumes are created and utilized to perform CPFE simulations and, subsequently, the fatigue life 

predictions. One large model (d) is obtained by inserting twins into the parent microstructure (a) and the 

remaining 29 microstructures, as shown in ((e)-(g)), are obtained by first segmenting the parent 

microstructure (a) equally in divisions of four, nine, and sixteen, respectively, and inserting twins in each 

resulting volume segment. Traction-free BCs (as in Figure 6.2) is used in each of the 30 simulations. In 

analysis II, no additional CPFE simulations are performed. The micromechanical fields (h) from the 

CPFE simulation of the model (d) are segmented equally in divisions of four, nine, and sixteen to obtain 

29 sub-volumes and fatigue life estimation is performed for each sub-volume. Each sub-volume will have 

unique microstructural constraints (or BCs) based on the location of the sub-domain in the model (d). 

The fatigue scatter predictions using the non-local averaged values of the six fatigue metrics are 

shown in Figure 6.5. The fatigue lives were calculated using the method described in Section 3.5. 

The fatigue lives from the experiments are within the ranges of lives calculated from the six metrics 

from the CPFE simulations indicating that all of the six metrics perform reasonably well in 

capturing the range of the fatigue life.  Moreover, the slope of the lognormal distribution (i.e. the 

scatter) is well captured by all of the metrics, albeit there are differences at the extreme values of 

the distribution.  

The modes of failure (corresponding to each point in Figure 6.5) are shown in Figure 6.6. A mode 

of failure is identified and labeled as per the spatial location of the predicted hotspot for each SEM. 

There are three different modes of failure, labeled as (a) GB/bulk, indicating that the hotspot is in 
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the subsurface and in the vicinity of a grain/twin boundary, or a triple/quad junction, (b) pore, 

depicting that the hotspot is near a pore, and (c) free surface, representing that the hotspot element 

is touching any of the free surfaces (namely, X=300 μm or Z=300 μm) in an SEM. Alongside the 

failure mode, the corresponding SEM is also shown in Figure 6.6. 

The predictions of scatter in fatigue lives, thus far, were performed using a simulation volume of 

300*300*300 μm3, which is lesser than the actual volume of the gauge section of the sample 

(1000*300*1000 μm3) used in fatigue testing.  With the increase in the simulation volume, the 

number of grains inside the microstructure would increase, which can potentially alter the 

maximum values of the fatigue metrics due to the grain interactions and in turn, the fatigue lives. 

Second, traction-free boundary conditions (as discussed in Section 3.2), were used for every SEM 

to calculate the scatter in fatigue lives (Figure 6.5). Hence, it is important to critically assess the 

effect of both the simulation volume and boundary constraints on the life predictions. To this end, 

two additional sets of analyses were performed. 

The first analysis is designed to understand the effect of the simulation volume on the fatigue life 

predictions. In the first analysis, CPFE simulations and fatigue life estimation of 30 different 

microstructures (Figure 6.7(d)-(g)) having four distinct simulation volumes (the largest 

microstructure (Figure 6.7(d)) has a volume close to the gauge volume of the test specimen) were 

carried out with the traction-free BCs, as in Figure 6.2.  All the 30 microstructures (Figure 6.7(d)-

(g)) were created from a single parent microstructure (Figure 6.7(a)), which consists of no twins 

and has a dimension of 900*300*900 μm3. The first microstructure (Figure 6.7(d)) is created by 

inserting twins into the parent microstructure. The remaining 29 models are obtained by 

segmenting the parent microstructure equally in divisions of four (Figure 6.7(e)), nine (Figure 

6.7(f)), and sixteen (Figure 6.7(g)), respectively, and inserting twins in each of the segments 

independently.  The creation process mentioned above associates each of the 30 microstructures 

to the parent microstructure, analogous to sampling smaller populations of the microstructure. The 

dimensions of each model in Figure 6.7 (e), (f), and (g) is 450*300*450 μm3, 300*300*300 μm3, 

225*300*225 μm3, respectively.  The number of grains in model (d) is 1423, and the number of 

grains varies from 313-559 in model (e), 147-265 in model (f), and 84-160 in model (g). All the 

30 models thus created are statistically representative in terms of microstructural attributes while 
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the microstructures in Figure 6.7(g) do not necessarily possess equivalent strength characteristics, 

therefore, are not considered SEMs. 

The second analysis is set-up to investigate the role of the microstructural constraints on the life 

estimation. In this analysis, while no additional simulations were carried out, the micromechanical 

fields (Figure 6.7(h)) obtained from the CPFE simulation of the largest model (Figure 6.7(d)) are 

utilized to perform life calculations. In this work, a sub-volume (Figure 6.7(i)) is defined as a sub-

set of the meshed model mapped with the micromechanical fields (Figure 6.7(h)). Multiple sub-

volumes having three distinct volumes are sampled and fatigue life for each sub-volume is 

estimated. Such sampling will capture the realistic microstructure constraints associated with the 

sub-volumes and its effect on the resulting fatigue life.  The micromechanical fields (Figure 6.7(h)) 

are segmented equally in divisions of four, nine, and sixteen, to obtain 29 sub-volumes of 

dimensions 450*300*450 μm3, 300*300*300 μm3, and 225*300*225 μm3, respectively. The 

process in the first analysis is shown in the first row of Figure 6.7, while the second analysis is 

depicted in the last row of Figure 6.7. 

The fatigue lives for both the analyses are obtained using the non-local averaged PSA (M1) and 

are shown in Figure 6.8 and Figure 6.9, respectively. The critical value of PSA (as per Eqn. (6.9)) 

is estimated using the microstructure in Figure 6.7(d). Moreover, a lognormal reference line is 

plotted for identically sized microstructures and sub-volumes in Figure 6.8 and Figure 6.9. 

Furthermore, the fatigue lives at a probability of 0.001 is obtained for both analyses via 

extrapolation and is shown in the table in the inset of Figure 6.8 and Figure 6.9. In these analyses, 

we are more interested in the slope of the lognormal distribution (i.e. the scatter) as a function of 

simulation volumes. From Figure 6.6, it could be seen that the pores do alter the minimum fatigue 

life but do not significantly change the slope of the distribution. For this reason, for the above two 

size analyses, pores were not inserted in the microstructures. 
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Figure 6.8 Fatigue life prediction using non-local averaged values of PSA for Analysis I. The critical 

value of PSA is obtained from the largest microstructure (900*300*900 µm3). The table shows the 

minimum life (corresponding to a probability of 0.001) for each microstructure set (having identical 

simulation volume) obtained by extrapolation. 

6.3 Discussion  

In this work, a phenomenological crystal plasticity model is used which is a length-scale 

independent model, due to computational efficiency considerations compared to strain gradient 

models. However, the usage of the non-local averaging scheme in the post-processing of the 

mesoscale fields indirectly leads to the inclusion of a local length-scale dependence to the field 

values, since the regularizing scheme accounts for the nearest neighbors in the calculations. From 

Figure 6.4, it has been shown that the non-local averaging scheme preserves the microstructural 

heterogeneity and localization behavior as compared with the band- and grain- averaging schemes, 

which is consistent with the findings reported in Ref. [64]. 
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The scatter in the fatigue lives is caused by the inherent variability in the material microstructure, 

namely the grain sizes, morphologies, and orientations, grain boundary character distribution, and 

pore sizes and locations [4,5]. Each SEM under consideration (Figure 6.1) has a unique 

arrangement of grains and pores. Although the macroscopic loading conditions are the same, the 

microstructural variability results in different spatial distributions of the mesoscale field quantities 

among the SEMs and different maximum values of the associated fatigue metrics causing the 

scatter in fatigue lives, as shown in Figure 6.5. The fatigue life predictions from the six fatigue 

metrics are in good agreement with the experimental data. A detailed assessment of the modes of 

failure is necessary to understand the performance of the metrics as compared to one another.  

 

Figure 6.9 Fatigue life prediction using non-local averaged values of PSA for Analysis II. The critical 

value of PSA is obtained from the largest microstructure (900*300*900 µm3). The table shows the 

minimum life (corresponding to a probability of 0.001) for each sub-volume set obtained by 

extrapolation. 

The predicted modes of failure, namely, the free surfaces, a grain/twin boundary in the bulk, and 

a pore, are mechanistically relevant to fatigue crack initiation and subsequent small crack 
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propagation. At a free surface, there is less constraint to plastic flow because of the traction free 

condition, which causes glide of dislocations potentially resulting in the formation of surface 

extrusions and subsequent crack initiation [154,155]. At a grain/twin boundary in the bulk, 

dislocations can pile up resulting in the increase of the local stress concentration, leading to a crack 

[156,157]. A pore is a geometrical discontinuity, which causes a local stress concentration and has 

less constraint to plastic flow, due to the lack of material, causing the pore to be a potential crack 

initiator depending on the size, location, and proximity to an adjacent pore or free surface [66]. 

The six metrics considered in this study can potentially capture all three modes of failure.   

Four pores (from SEMs 1, 7, 12, and 14) are consistently being identified as the failure mode by 

all six metrics, as seen from Figure 6.6. The metrics M3 and M6 identify additional pores as failure 

modes as compared to the other four metrics. There is an inherent bias towards the pores by the 

metrics formulated from τmax+σh. This is possibly due to the reason that these are stress-enhanced 

metrics made of two different stress quantities and hence, have a significant influence on the 

geometric stress concentration of the pores.  In a statistical sense, they also predict less free surface 

failures (< 50%), while in experiments, a significant percentage of failures are from the free surface. 

Additionally, the metrics, M5 and M6, result in non-conservative scatter predictions as compared 

to the scatter predicted by the remaining four metrics (Figure 6.6). For the above reasons, the 

metrics M3, M5, and M6, are considered less significant as compared to the remaining three 

metrics. Out of the remaining three metrics, M1 and M3 will be assessed here. The modes of 

failure predicted by M1 and M3 are identical for each SEM under consideration, as shown in 

Figure 6.6. The correlation between the metrics mentioned above is because of the coupling 

between the resolved shear stress and the shear strains at a slip system level, as shown in the flow 

rule expression, and potentially, a single slip-system is more dominant than others. This 

observation is consistent with the results reported in the references [62–64]. Since these two 

metrics are tightly correlated, one of them, M1, is considered for further analysis.  

Between the predictions using M1 and M2, there is a very slight difference in the modes of failure 

as observed from Figure 6.6. For SEM10, M1 predicts the failure mode to be at the GB in the bulk 

of the specimen, while M2 predicts failure at the free surface. A closer look at the hotspot element 

predicted by M2 reveals that the location of failure corresponds to that of the intersection between 

a grain boundary and a free surface. Such failure instances were also observed experimentally in 
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the prior works [68,93]. However, for this exception, both results from M1 and M2  estimate ~50% 

of failures at a free surface, which correlates in a statistical sense to post mortem fractography 

results, where we observed a higher number of failures at free surfaces. While the modes of failures 

are similar, a detailed analysis of the hotspot elements revealed that the predictions by M1 and M2 

are the same for eight of the SEMs but are different for the other seven SEMs. Unlike M3, M2 

considers the contribution of the entire Cauchy stress tensor; hence takes into account the multi-

axial effects at a spatial location within the SEM, which potentially causes a difference in the 

location of failure prediction as compared to M1. However, it should be noted that hotspot 

elements as predicted by M1 in the non-conforming cases also have extreme values of the M2 

(>99.999th percentile) although not exhibiting the maximum value.  

The post mortem fractography has indicated that none of the samples showed a pore-mediated 

failure, out of the eight samples analyzed (Figure 3.4), while we see ~25% failures from pores 

using the fatigue metrics, M1 or M2 (Figure 6.6). This discrepancy is expected and is due to the 

stochasticity in the insertion of pores in the microstructures (Section 3.1). First, the pore sizes are 

sampled from the tails of the distribution (>98th percentile) obtained from the µXSCT 

characterization, making the pores more favorable to fail in simulations as compared to the 

experiments. Second, the microstructure surrounding the pore has a strong influence in governing 

the failure between the pore and other modes [66], which is not the same in simulations and 

experiments. The pore-driven failure cases seen in the simulations have provided additional 

insights as discussed and do not affect the key takeaways of the present work. 

The use of microstructures with reduced volumes (as compared to the test specimen or components) 

is a common practice in the crystal plasticity modeling community, mainly due to the 

computational cost involved in simulating large microstructures. For example, the CPFE 

simulation of the largest microstructure (Figure 6.7(d)) takes ~12x times longer to complete the 

simulation as compared to the 300*300*300 µm3 SEMs (Figure 6.1). In this work, we have 

systematically varied the simulation volumes (Figure 6.7) and obtained the fatigue lives as shown 

in Figure 6.8. The median fatigue life of the largest microstructure (Figure 6.7(d)) is 54707, which 

corresponds to the median experimental life, because the calibration for the critical value of the 

failure metric was performed with the largest microstructure. From Figure 6.8, the median fatigue 

lives of the microstructures in Figure 6.7 (e), (f), and (g) are 40049, 36721, and 31238, respectively, 
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which means that the median lives are increasing with increase in the simulation volume, which is 

quite contrary to the weakest link theory [4]. This discrepancy is potentially due to the use of the 

traction-free boundary conditions used in all the 30 microstructure in Analysis I (Figure 6.7). As 

the size of the microstructure decreases, the number of grains within the microstructure decreases, 

which in turn causes a larger percentage of grains in the simulation volume to be adjacent to one 

of the free surfaces, causing the deformation to be accommodated more at the surface than at the 

bulk.  The effect of traction-free BCs becomes very pronounced in the smallest microstructures 

(Figure 6.7(g)), which possess fewer grains in the bulk of the material. Out of the sixteen 

microstructures of the smallest volume simulated, fourteen exhibited free-surface mediated 

failures. Moreover, a significant scatter, and a non-uniform slope is observed for the smallest sized 

microstructures (225*300*225 µm3) from Figure 6.8, which could be attributed to this size 

microstructure not containing a sufficient number of grains to represent the strength characteristics 

of the material (i.e. not constituting an SEM), which potentially caused a significant variation in 

the resulting maximum values of the PSA. Hence, the smallest sized microstructures with traction-

free BCs are not suitable to obtain consistent results in fatigue scatter.  The slope of the lognormal 

distribution obtained from the microstructures of sizes, 300*300*300 µm3 and 450*300*450 µm3 

is reasonably uniform and correlates well with the experimental slope. Overall, the results in 

Figures 11 indicate a complex interaction between the simulation volume and the BCs in governing 

the scatter in fatigue lives. 

In order to decouple the size of the domain used for life predictions and the corresponding 

boundary conditions, an additional analysis (Analysis II) used the resulting micromechanical fields 

from the largest CPFE simulation for subsequent predicted lifetime assessment.  The 

micromechanical fields from the 900*300*900 μm3 (Figure 6.7(h)) were segmented into different 

sub-volumes.  Each sub-volume will experience a unique set of surrounding constraints based on 

its spatial location in the largest microstructure. For each sub-domain in the maximum value of the 

PSA value was obtained through a non-local regularization scheme to assess the predicted fatigue 

life, as shown in Figure 6.9.  The median lives for sub-volumes of sizes, 450*300*450 µm3, 

300*300*300 µm3, 225*300*225 µm3 are 71274, 72109, 76277, which indicates that the median 

lives are decreasing with increase in the volume, which is consistent with the weakest link theory 

and reported in Ref. [4].  The maximum value of PSA among a set of identically sized sub-volumes 

will correspond to the maximum PSA value of the entire microstructure (Figure 6.7(h)). This could 
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be seen in Figure 6.9, where the minimum fatigue lives for different sub-volume sets exhibit the 

same value (align along the y-axis).  By definition, a weakest link model will result in lower lives 

for larger simulation volumes, which can be problematic when comparing CPFE simulations to 

components are multiple length scales greater in size.  It can be seen that this phenomenon starts 

to saturate in the results shown.  Moreover, in Analysis I, the introduction of a relatively larger of 

percentage of grains subjected to free surfaces (and thereby traction free surfaces) result in more 

likely locations of failure and therefore lower fatigue lives.  It should be noted that pre-determining 

the realistic microstructural constraints for the CPFE simulations of SEMs is challenging, and 

additional work is needed to ascertain appropriate simulation volumes and boundary conditions 

for comparison of CPFE results to specimen and component level data. Albeit, given the 

significant percentage of fatigue failures occurring at the free surfaces, traction-free BCs on SEMs 

for input into CPFE is a suitable choice to deduce the mode of failure. 

The optimal simulation volume of the microstructure (or the number of grains in the microstructure) 

with the use of traction-free BCs is the one that can accurately capture the slope of the experimental 

fatigue life distribution. From Figure 6.8, the microstructures of size 450*300*450 µm3 

(containing 445 grains on average) seem to be the most optimal out of the simulations conducted 

in this study. However, models of size 300*300*300 µm3 (containing 192 grains on average) are 

reasonable except for an outlier in the plot.  The deviation could be potentially due to fewer grains 

(149) in that particular microstructure. Moreover, the models of size 300*300*300 µm3 are 

computationally tractable as compared to the microstructures of size 450*300*450 µm3, which 

takes ~3x more computational time to complete these simulations as compared to the former. For 

safe-life design methodologies, which are based on determining the statistically  minimum fatigue 

life, the life to failure at a probability of 0.001 (or B0.1 life) is estimated by extrapolation of the 

data points [40–42]. The B0.1 lives were predicted and are shown in the inset of Figure 6.8. The 

minimum lives for the microstructures 450*300*450 µm3 and 300*300*300 µm3 are very close to 

each other, which also confirms the optimality of the microstructure of size 300*300*300 µm3.  

From the above results, it is concluded that a minimum of ~200 grains are potentially sufficient 

within the polycrystalline aggregate to obtain reliable estimates of fatigue lives using CPFE 

simulations.  It is emphasized that the above analyses were performed for a microstructure with an 

equiaxed grain structure and random texture. 
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The crystal plasticity-based fatigue lifing framework could be used to generate a substantial 

amount of fatigue life data to obtain the minimum statistical life for the safe-life approach, thus 

reducing the overall experiments needed to be conducted. A physically-based model as the one 

used in this work can significantly reduce the time and cost in the current qualification procedures 

[158], especially for AM materials, which involves significant uncertainty in the fatigue 

performance and also enables a simulation-based design framework moving away from 

empiricism.  

6.4 Conclusions 

In the present work, six fatigue metrics from microstructure-sensitive crystal plasticity finite 

element simulations were used to assess the fatigue behavior of an additively manufactured 

material. Additional CPFE simulations were performed to understand the role of the simulation 

volume and microstructure constraints in the resulting fatigue scatter predictions. The key points 

are summarized below: 

• The non-local averaging technique is used to mitigate the spurious effects of distorted 

elements in the SEMs, while also associating a length-scale to the mesoscale metric under 

consideration. It is also shown to preserve the localization of the mechanical fields caused 

by the heterogeneous deformation when compared to the band- and grain-averaging 

schemes. 

• Six fatigue metrics are used, one is plastic strain-based, and the rest of the five metrics 

are a composite measure of plastic strain, and local stress state. All six metrics predict the 

scatter in fatigue life with reasonable accuracy as compared to the experimental fatigue 

data.  

• The metrics containing the stress term, τmax+ σh (M4 and M6), exhibited a bias towards 

the pore-mediated failures. The hotspot predictions by PSA (M1) and Wp (M2) showed a 

larger number of surface-mediated failures, which agrees with observations from post 

mortem fractography results. The hotspot elements predicted by M1 and M2 were 

different in some of the cases, however, the hotspot elements predicted by M1 were 

found to have extreme values (>99.999th percentile) of M2 although not exhibiting the 

maximum value. 
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• The prediction of scatter in fatigue lives is significantly dependent on both the choice of 

the simulation volume and the microstructure constraints. The minimum number of 

grains within the polycrystalline aggregate to obtain reliable estimates of fatigue lives 

were estimated to be ~200 grains with the use of the traction-free boundary conditions, 

although additional size studies are necessary to use these CPFE simulations within a 

fatigue prognosis framework. 

• The crystal plasticity-based fatigue lifing framework is potentially beneficial in realizing 

the safe-life design with significant reduction in the experiments to identify the statistical 

minimum fatigue life, and accelerating the material qualification process. 
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 VALIDATING THE MICROSTRUCTURE-SENSITIVE FATIGUE 

CRACK INITIATION USING CRYSTAL PLASTICITY 

SIMULATIONS AND HIGH-ENERGY X-RAY EXPERIMENTS 

In this chapter, high-fidelity CPFE models are created with different twin instantiations, using 

multi-modal data sets including the 3D microstructure map (from NF-HEDM), porosity 

information (from µCT), accurate boundary conditions (from FF-HEDM), and representative twin 

distributions (from EBSD). These models are then used to validate the location of fatigue crack 

initiation as observed from µCT and to understand the role of twins on the influence of local 

micromechanical fields and crack initiation.  The remainder of the chapter is organized as follows. 

Section 7.1 details the simulation framework including the constitutive model description. Results 

and discussion are presented in Sections 7.2 and 5, respectively. Lastly, the conclusions of this 

work are given in Section 7.4. The results and analysis provided in this chapter have been published 

in the Ref. [159]. 

7.1 Simulation setup 

7.1.1 Microstructural model creation  

The grain- and pore- maps obtained from high-energy X-ray experiments, and the statistical twin 

information obtained via EBSD analysis are utilized to instantiate three models (with different 

twin instantiations) as input to the CPFE simulations and subsequent failure location analysis. 

Hexahedral elements are used for model, as the mesh can be directly generated from the voxel-

based microstructures.  A mesh size of 6 μm is chosen for this study, which ensures that there will 

be ~ 4000 elements per grain in the FE model, which is sufficient to capture the intragranular 

heterogeneous deformation for subsequent failure predictions [160] and also makes the CPFE 

simulations computationally tractable. 

Three voxel-based simulation volumes, each of dimension 978 x 978 x 798 μm were created to 

represent the gauge section of the fatigue test specimen (Figure 7.1(a)). Each voxel in the 

simulation was then mapped with either the grain information (including identification number 

(ID) and orientation) or a pore ID. The first volume does not consist of any twins while the second 
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and third volume are instantiated with twins. Each volume could be divided into three partitions 

as per the z-plane, namely, the ROI at the center of the simulation and the padding regions on both 

ends of the ROI (Figure 7.1(b)).  Each padding region has a height of 222 μm and the ROI at the 

center is 354 μm tall. The mapping of information to the unassigned voxels of the simulation 

volumes are described in the forthcoming paragraphs. 

First, the resolution of the initial grain map obtained from NF-HEDM was coarsened to 6 x 6 x 6 

μm using DREAM.3D [115]  and three different variants (Figure 7.1(e)-(g)) were created by 

including the pores and segmenting the twins. It should be noted that the μCT porosity data has a 

fine resolution (1.17 μm) as compared to the working resolution of 6 μm. By volume equivalence, 

one voxel in the post-processed NF-HEDM grain map corresponds to 135 voxels in the μCT 

dataset. The mapping process of pores from μCT data to post-processed NF-HEDM grain map is 

as follows. For each voxel, say P, in the post-processed NF-HEDM grain map, 135 voxels (nearest 

to the centroidal position of P) are identified in the μCT dataset. If more than 40% of the voxels 

(out of 135) in the μCT data represent an intensity value that is associated with the threshold of a 

pore, then the Pth voxel is labeled as a pore in the variant model. The threshold value of 40% was 

determined by a sensitivity analysis.  The first microstructure variant, without annealing twins, is 

shown in Figure 7.1(e). The second and the third microstructure variants are both created by first 

segmenting twins in the post-processed NF-HEDM followed by the mapping of pores (using the 

same procedure outlined above). The segmentation of the twins is performed as per the procedure 

outlined in Ref. [114], which ensures that the twins inserted match the EBSD characterization data 

in a statistical sense. Moreover, the twin segmentation process is random in nature and hence, the 

second and third microstructure variants have different instantiation of twins, as shown in Figures 

2(f), and (g), respectively. The three microstructure variants were respectively mapped (on a voxel 

to voxel basis) to the ROI of the three simulation volumes (Figure 7.1(b)).  
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Figure 7.1(a) The general construction of the microstructure model for use in CPFE simulations, (b) the 

partitions in the microstructure model, namely, the ROI (opaque view) and the padding regions 

(transparent view), (c) the plane of failure observed from the experiment and the pores explicitly modeled 

inside the ROI, (d) the magnified view of the surface pore where the experimental crack initiated, and the 

ROI of the: (e) microstructural model without twins, (f) microstructural model with twins (Instantiation 

I), and (g) microstructural model with twins (Instantiation II). All the three microstructural models have 

the same padding regions. 

Second, the FF-HEDM data is used to map the voxels in the padding regions (Figure 7.1(b)) of the 

simulation volumes. The padding regions are additional volumes of the material included in the 

simulation domain primarily for the application of the boundary conditions (BCs). The addition of 

these regions effectively shifts the boundary faces vertically (on which the loading is applied) 

farther from the ROI. The inclusion of the padding regions thus eliminates any spurious effects on 

the results obtained in the ROI, caused due to the BCs, as per the Saint-Venant’s principle. For 

each simulation volume, the information in the top and bottom z-faces of the ROI region is 

extended in the respective directions to the length of seven voxels (i.e. 42 μm) to provide a smooth 

transition in the microstructural features between the ROI and the padding regions. Each 

unassigned voxel in the top- (618 μm < z ≤ 978 μm)  and bottom- (0 ≤ z < 180 μm) padding regions 

is mapped to the nearest grain centroid obtained from the FF-HEDM data. The assignment 

procedure outlined here closely follows the references [94,95], which results in a Voronoi 
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representation for the remaining volume (composed of unassigned voxels in the padding regions). 

In order to avoid any sudden transitions between the ROI and padding regions, a grain boundary 

smoothing algorithm, as described in Ref. [98], is employed only for the grains within the padding 

regions without disturbing the structure of the ROI region. Lastly, the voxel-based simulation 

volumes are converted to a hexahedron mesh (C3D8 elements) using DREAM.3D, and the 

elements labelled as pores were deleted from the FE mesh.  

7.1.2 Loading and boundary conditions 

 

Figure 7.2(a) The grain averaged stresses in the loading direction (σzz) at the minimum load point as 

obtained from FF-HEDM data over a length of 3 mm in the specimen. The bounds within the green lines 

represent the height considered for microstructure model creation including the ROI and padding regions 

(Figure 7.1). The gradient in stress distribution along x signifies the existence of a slight bending moment, 

and the boundary conditions used in the CPFE simulations during the loading step shown on the (b) 3D 

microstructure and (c) the 2D x-z plane. The bottom z face is fixed and a combined bending and axial 

stress is applied on the top z face. 

It is important to accurately capture the loading state of the specimen from the experiment to aid 

in comparisons with the CPFE simulation results. To this end, the grain-averaged stress data in the 

loading direction (σzz) obtained from the FF-HEDM (at cycle 21), as shown in Figure 7.2(a), is 

analyzed. The σzz  plot obtained at the minimum load point indicates a stress gradient along the x-

axis, which is due to the existence of a slight bending moment about y-axis (Figure 7.2). The 

resultant bending moment (Myy) is calculated using the following equation: 
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 Myy = ∬ 𝑥 𝜎𝑧𝑧𝑑𝑥 𝑑𝑦 (1) 

 

Myy was obtained to be 30 N-mm. Following this analysis, the stress due to bending was calculated 

as  

 𝜎bending = −𝑀𝑦𝑦 𝑥/𝐼𝑦𝑦 (2) 

   

where, x is the x-coordinate of a given voxel centroid, Iyy is the area moment of inertia about the 

y-axis.  

 

Figure 7.3 Evolution of the grain-averaged stresses in the loading direction (σzz ) with loading cycles 

obtained from FF-HEDM experiments corresponding to (a) the first part of the experiment ((a)-(f)) (b) the 

second part of the experiment ((g)-(n)). Stress at cycle 0 corresponds to the residual state and for cycles 1 

– 59K, the stress is obtained at the peak loading point of the cycle. 
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As mentioned in Section 363.5, the maximum applied axial stress (𝜎max) is 800 MPa. The effective 

applied stress on the specimen at the maximum loading point is the addition of the 𝜎max and 

𝜎bending components, as shown in Figure 7.2(b,c).  The prediction of the most probable location 

of crack initiation is based on the maximum values of the fatigue metrics, which constitute the 

local stress tensor and the accumulated slip.  Hence, the choice of loading cycles for the CPFE 

simulations relies on the spatial evolution of stress and accumulated slip.  To this end, the spatial 

evolution of grain-averaged σzz with the loading cycles obtained from FF-HEDM, as shown in 

Figure 7.3, is analyzed.  It should be noted that the loading conditions of the test specimen were 

obtained based on the FF-HEDM data acquired during the second part of the experiment. From 

the σzz plots corresponding to cycles 21 – 59K (Figure 7.3), the spatial heterogeneity of the stress 

distribution is preserved with the loading cycles although there were minor variations in the 

magnitude of stress values. For the grain of interest (where the crack initiated), the maximum 

variation of stress with the loading cycles was less than 8%, indicating that there was no significant 

evolution of the stress values.  When there is no stress redistribution with the loading cycles, the 

spatial heterogeneity of the accumulated slip is also preserved with the loading cycles [161]. Based 

on the above observations and the computational costs, each simulation volume is subjected to one 

loading cycle with the effective stress values. One CPFE simulation takes ~ 15 days to be 

completed when run on 300 processors in parallel. 

7.2 Results 

From the experimental analysis, the fatigue crack nucleated near a pore located at a free surface 

from the μCT data.  Crack initiation is strongly related to a high degree of heterogeneity in the 

deformation caused by the irreversible dislocation motion with cyclic loading [39]. FF-HEDM 

provides essential information to quantify the deformation heterogeneity via gradients in the elastic 

strain and local lattice misorientations [162,163], which could be used to obtain insights into  
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Figure 7.4 Histogram of the averaged full width (FW) in η coordinate at (a) 20 cycles and (b) 59000 

cycles, and in 2θ coordinate at (c) 20 cycles and (d) 59K cycles obtained from FF-HEDM experiments 

within the ROI region and with the grain of interest marked by a red star. 

 

Figure 7.5 Evolution of the (a) full width (FW) in directions η and 2θ, and (b) diffraction spot 

corresponding to the (111) plane for the grain of interest with respect to the applied loading cycles.   

deformation and failure of the polycrystalline material.  The aforementioned gradient measures 

could be obtained by quantifying the changes in the shape of a diffraction spot as outlined in [164], 
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assuming that the background noise and distortions with respect to the point spread function on 

the detector remain constant. The full width (FW) values of the distribution in the radial (2θ) and 

azimuthal (η) coordinates provide information on the grain-averaged- intragranular elastic strain 

heterogeneity  and intragranular misorientation. To improve the ability to capture vital information 

corresponding to minute changes within a grain, which can manifest as faint spreads in the 2θ and 

η directions, the extent of the full width has been reported instead of commonly reported full width 

at half maximum (FWHM) spreads. In Figure 7.4, the histograms of the FW (averaged over the 

four spots corresponding to the most active slip plane, i.e. the (111)) in 2θ and η coordinates for 

all the grains within the ROI is shown. Moreover, the value of the FW for the crack-initiated grain 

is marked in the histogram. The crack initiating grain displays high values of the FW in both the 

2θ and η directions, although the crack initiating grain does not correspond to the maximum value.  

One of the primary reasons for this observation is that the grain-averaged information is not 

sufficient, in and of itself, to probe the micro-crack nucleation event, which is a highly-localized 

intragranular event for coarse grain material, without large notches or inclusions present.  In 

addition, the evolution of the FW values in 2θ and η coordinates for the crack initiating grain with 

cyclic loading is shown in Figure 7.5.  We do not see a significant evolution in the FW values 

(Figure 6) potentially due to the reason that the macroscopic loading is in the HCF regime, which 

means there is micro plasticity within the microstructure, occurring at the sub-grain level. The 

experimentally derived grain-scale metrics are important to understand the heterogeneous 

deformation; however, these metrics are not sufficient to pinpoint the underlying mechanisms of 

crack initiation. The limitation of the grain-scale resolution in the X-ray experiments could be 

overcome by the use of the experimentally informed CPFE simulations, which offers a higher 

resolution (voxel by voxel) representation of the micromechanical fields.  
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Figure 7.6 Comparing the stress in the loading direction (σzz ) obtained from the (a) FF-HEDM 

experiments, and (b) CPFE simulations of the three models. The simulation results are shown for ((b)-(d)) 

element and ((e)-(g)) grain-averaged. σzz  in the experiment was obtained in cycle 21, and σzz  in 

simulations were obtained at cycle one; all stress values are shown at the maximum loading point. The 

black colored features indicate unregistered grains. 

 

Figure 7.7 Comparison of (a) grain maps via an inverse pole figure (IPF) representation, (b) plastic strain 

accumulation (PSA), (c) plastic strain energy density (Wp), and (d) stress in the loading direction (σzz), 

among the three models. 
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Three CPFE models (with different twin instantiations) were reconstructed using the experimental 

data to represent the fatigue test specimen. Moreover, the realistic boundary conditions were 

captured using the stress data obtained from FF-HEDM. A slight bending moment was observed 

due impart to the small gauge section of the sample and tight tolerance in manufacturing the sample.  

This bending moment was taken into account in the model by applying appropriate boundary 

conditions.  As an initial verification step, the grain-averaged stress values in the loading direction 

obtained from the FF-HEDM and CPFE simulations are compared, as shown in Figure 7.6. The 

grain-averaged stress plots from the experiment and the models look similar, implying that CPFE 

model (including the BCs and CP parameters) was appropriate.  One CPFE simulation was 

performed without accounting for the bending moment, the details are provided in Appendix A. 

After building confidence in capturing the grain-scale stress distributions, the CPFE model is used 

to predict the potential failure locations and assess the fatigue model’s predictive capability. 

To identify the likely locations of failure, surrogate measures calculated from CPFE simulations 

are most commonly used. In this work, two metrics are chosen from a previous study by the authors  

to investigate crack initiation [146]. The first metric is the plastic strain accumulation (PSA) 

[137,138], which is the cumulative slip measure with contributions from each active slip system 

and is defined as  

 
PSA =  ∫ √

2

3
𝐋𝐩: 𝐋𝐩 𝑑𝑡 

 

(7.1) 

The second metric is the cumulative plastic strain energy density (Wp), which corresponds to the 

dissipative energy due to plastic deformation [148–150]. It is defined as  

 
Wp = ∮ 𝝈: 𝑳𝒑𝑑𝑡 

 

(7.2) 

where, 𝝈 is the Cauchy stress tensor.  
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The PSA, WP, and σZZ obtained from the CPFE simulations of the three models are compared in 

Figure 7.7. The figure indicates differences in the spatial distribution of the respective mesoscale 

fields among the three models associated with the local microstructural heterogeneity due to the 

different twin instantiations among the three models.  

The most likely location of failure (or the hotspot) for each model was identified using the 

maximum value of the metrics, PSA and WP.  Hence, two hotspots are obtained per model. For 

Model 1, the hotspot determined by the PSA metric is obtained at the point indicated as XB and 

the hotspot predicted by the WP metric is located at Xc, as shown in Figure 7.8.  Location XB is 

adjacent to a grain boundary with a misorientation of ~ 46o and a free surface, and XC is adjacent 

to a grain boundary with a misorientation of ~ 54o and at a pore.  For Models 2 and 3 (i.e. with 

statistical twin insertion), both the metrics, PSA and Wp, predicted location XA as the hotspot 

(Figure 7.8). XA is at a surface-connected pore and happens to be the actual crack location as 

observed from the experiment.  

To understand the reason for the shift in the predicted failure locations (to XA)   after twin insertion, 

a thorough quantitative analysis of the failure metrics at XA, XB, and XC is performed. From Table 

7.1, the PSA at XB significantly decreases in Models 2 and 3, this describes the shift as per the 

PSA predictive metric.  In Models 2 and 3, the value of Wp, decreases at XC and increases at XA, 

which explains the shift in the failure location to XA as per Wp. The detailed analysis regarding the 

failure predictions from various models and the role of twins on the influence of the local 

micromechanical fields are explained in the next section.  
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Figure 7.8(a) x-y slices of interest with their respective z position from the bottom face, and the failure 

locations from the CPFE simulations of the three models predicted using (b) the plastic strain 

accumulation metric and (c) the plastic strain energy density metric. Slices D and E are referenced in the 

Appendix (Figure A1). 

 

Figure 7.9 Cumulative distribution plots of (a) plastic strain accumulation and (b) plastic strain energy 

density within the ROI of Model 1 with the failure locations XA, XB, and XC overlaid. 
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7.3 Discussion 

In this study, we link the CPFE model and the high-energy X-ray experiments at a grain-scale to 

validate the predicted location of microstructure-sensitive fatigue crack initiation using the fatigue 

metrics, namely, PSA and Wp. Moreover, the integrated framework is used to investigate the 

microstructural rationale behind the crack initiation and understand the role of twins on the local 

micromechanical fields and crack initiation.  

Table 7.1 The values of the metrics, PSA, and WP at points of interest (XA, XB, and XC) obtained for each 

model. 

Location 
Micromechanic

al fields 
Model 1 Model 2 Model 3 

XA 

PSA 0.0071 0.0079 0.0072 

WP (MJ/m3) 5.3776 6.3252 5.6386 

XB 

PSA 0.0088 0.0013 0.0017 

WP (MJ/m3) 5.1638 0.7542 0.8971 

XC 

PSA 0.0060 0.0045 0.0045 

WP (MJ/m3) 5.9391 5.0094 3.7796 
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Table 7.2 The stress components at the location XB obtained for each model. 

Stress 

components 

(MPa) 

Model 1 Model 2 Model 3 

𝜎𝑋𝑋 -109.25 2.60 45.83 

𝜎𝑌𝑌 241.38 122.33 169.80 

𝜎𝑍𝑍 1159.80 930.54 974.91 

𝜎𝑋𝑌 37.17 21.35 71.00 

𝜎𝑋𝑍 108.32 8.30 -48.71 

𝜎𝑌𝑍 166.99 -57.28 -216.54 

 

 

Figure 7.10(a) The inverse pole figure map (IPF) of the grain slice containing the point XA along with the 

nearest neighbors from each model, and the corresponding micromechanical fields obtained from each 

simulation: (b) plastic strain accumulation (PSA), (c) plastic strain energy density (Wp), and (d) stress in 

the loading direction (σzz). 

From the experimental characterization, the fatigue crack initiates near a surface-connected pore 

on the test specimen, which is consistent with the experimental findings reported in prior studies 

[9,165]. The mechanistic reasons for the crack initiation could potentially be due to the following: 
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(i) pores act as stress concentrator points, and in particular, a pore close to the surface is more 

detrimental than a pore at the bulk [66,165], and (ii) free surface facilitates glide of dislocations 

due to the traction free boundary condition leading to accommodation of more plastic deformation 

[166].  

From Figure 7.8, the predictions for the locations of failure as per the PSA and Wp metrics using 

Model 1 (i.e. the microstructure without twins) do not coincide with the actual location of failure.  

However, the failure predictions using Models 2 and 3 (i.e. the microstructures with twins) have 

provided an unambiguous one-to-one match of the location of crack initiation with the extreme 

values of the failure metrics. It is clear that the insertion of twins have improved the accuracy of 

the predicted location of failure; however, to understand how significantly twins have altered the 

micromechanical field values at XA, the cumulative probability of PSA and Wp within the ROI of 

Model 1 are assessed, as shown in Figure 7.9. The value of the PSA metric at XA  is at the 99.998th 

percentile and the value of Wp metric at XA is the fourth highest value.  Hence, the values of both 

the failure metrics belong to the extreme tails of the distribution, albeit they do not correspond to 

the highest value of each metric.  
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Figure 7.11(a) The inverse pole figure map (IPF) of the grain slice containing the point XB along with the 

nearest neighbors from each model, and the corresponding micromechanical fields obtained from each 

simulation: (b) plastic strain accumulation (PSA), (c) plastic strain energy density (Wp), and (d) stress in 

the loading direction (σzz). 

After twin insertion, there is an increase in the values of both failure metrics at XA, while at the 

locations XB and XC, there is a decrease in the values of the failure metrics (Table 7.1).  To 

understand the role of twins in general, the location XB is chosen for further analysis, since at XB  

there was a drastic decrease of the failure metrics.  To this end, more fundamental quantities such 

as the local stress tensor and the individual slip system activity are obtained at XB from all the 

models. From Table 7.2 , the insertion of twins have resulted in changes to the entire stress tensor. 
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Some of the stress components (σxx, σyz) have changed their sign. The change in the stress tensor 

is due to the elastic and plastic incompatibilities induced by the twin boundaries. A similar 

observation was also made by Peralta et al. [90] via analytical studies. A slip system, α, is 

considered active if the quantity |
𝜏−𝜒

𝑔
| ≥ 1. From the analysis, it was found that the insertion of the 

twins have changed the slip system activity in Models 2 and 3. In Model 1, the slip systems 

(1̅11)[1̅1̅0] and (1̅1̅1)[011]  were active. In Model 2, the slip systems (1̅1̅1)[110]  and 

(11̅1)[1̅01] were active, and in Model 3, only the slip system (1̅11)[1̅1̅0] was active. This is due 

to the change of the local stress state. The spatial comparison of PSA and WP at the locations of 

interest (XA, XB, and XC) for the three models are shown in Figures 7.10-7.12, respectively, which 

illustrates the role of twins on the local micromechanical fields. We are able to validate the location 

of failure despite the lack of deterministic knowledge of the twin placement within Models 2 and 

3. In summary, twins can be favorable to fatigue life by providing a strengthening mechanism to 

the material without resulting in substantial loss of ductility, but twins can also be a likely location 

for crack initiation, once a persistent slip band has formed [55]. 
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Figure 7.12(a) The inverse pole figure map (IPF) of the grain slice containing the point XC along with the 

nearest neighbors from each model, and the corresponding micromechanical fields obtained from each 

simulation: (b) plastic strain accumulation (PSA), (c) plastic strain energy density (Wp), and (d) stress in 

the loading direction (σzz). 

The validation study performed in this work builds confidence in assessing the fatigue crack-

initiation using the failure metrics, namely PSA, and Wp, obtained via crystal plasticity simulations.  

The current qualification procedures require extensive experimental testing, which is both time 

and cost intensive [3]. A validated microstructure-sensitive failure model, such as the one shown 

in this work, provides a pathway to perform a suite of virtual experiments under different loading 

conditions, thus reducing a significant number of physical testing. This study is a step forward in 

realizing a microstructural sensitive model-based accelerated qualification approach. 
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7.4 Conclusions 

In this work, we create three CPFE models (with different twin instantiations) informed from the 

multi-modal characterization data obtained from NF-HEDM, FF-HEDM, µCT, and EBSD. These 

models are subsequently used to perform validation studies with respect to the location of crack 

initiation and to understand the role of twins on crack initiation. The key findings of this study are 

summarized below: 

• From the µCT analysis, the fatigue crack was found to initiate at a surface-connected 

pore. 

• The predicted locations of failure using microstructure without twins do not coincide with 

the actual location of failure, while the probabilistic insertion of twins (i.e. in Models 2 

and 3) have resulted in an exact correlation for the location of crack initiation with the 

extreme values of the failure metrics, namely, PSA and WP. 

• The insertion of twins within the model cause changes in the local stress tensor and the 

slip system activity, which in turn influences the calculated values of the fatigue metrics.  

There is no uniform correlation between the twin insertion and the resulting failure 

metrics.  
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 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The overall objective of this dissertation was to supplement the understanding of various aspects 

of the fatigue response of an additively manufactured alloy as a function of material microstructure 

and defects with the use of both predictive crystal plasticity modeling and experiments.  To realize 

this objective, first a suite of tools necessary to perform crystal plasticity simulations is developed. 

The toolset includes: (a) an automated framework to create and mesh 3D statistically equivalent  

microstructures based on the information of the microstructural attributes (grain size data, twin 

fraction, and texture) obtained from electron backscatter diffraction, (b) a genetic algorithm based 

framework to estimate the material parameters using the macroscopic stress-strain response, and 

(c) a regularization scheme to mitigate the spurious effects of the distorted elements inherent to 

the meshing process and report consistent results.  Using this toolset, four studies were performed 

as a part of this dissertation: 

8.1.1 Estimation of critical porosity characteristics 

o Pores were explicitly added to the microstructural instantiations by systematically varying 

the location, size and proximity between pores. With damage indicator parameters obtained 

from the crystal plasticity simulations, the likely locations of failure were assessed and 

classified as pore-mediated and crystallographic features-induced.  

o The major finding of this study is the estimation of the characteristics such as the pore size 

and proximity (to an adjacent pore or free surface) that led to the occurrence of only pore-

mediated failures.   

o This work potentially influences decisions in process parameter optimization, and choice 

of non-destructive characterization methods. 

8.1.2 Examining metrics for fatigue life prediction 

o Multiple metrics based on plastic strain and local stress were used to predict the locations 

of failure relative to the microstructural features and were compared to the fractography 
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results. Two of the metrics, plastic strain accumulation and plastic strain energy density, 

correlated well in a statistical sense with the fractography experiments.  

o The same set of metrics were used to obtain the scatter in the fatigue life due to 

microstructural variability and compared with the experimental scatter data. The scatter 

predictions from all metrics agreed well with the experiments.  

o The highlight of this study is the identification of appropriate fatigue metrics in the fatigue 

prognosis of additively manufactured materials. 

8.1.3 Role of simulation volume and microstructural constraints on life predictions 

o Two sets of analyses were performed in this study. In the first analysis, the microstructure 

is segmented into smaller sized microstructures, with each microstructure used as an input 

for the CPFE simulation and the associated fatigue life predictions.  While in the second 

analysis, the large simulation volume is used as input into the CPFE simulation and the 

resulting micromechanical fields are segmented for use in fatigue prognosis (effectively 

changing the boundary conditions to account for the neighboring microstructural 

constraints).  

o The major finding of this study is two-fold: (i) it was shown that the fatigue life prediction 

is governed by a complex interaction between the simulation volume and the boundary 

conditions, and (ii) with the use of traction free boundary conditions, the minimum number 

of grains in the microstructural instantiation to reliably predict the scatter in fatigue life ~ 

200 grains. These findings provide informed guidelines for the fatigue prognosis using 

reduced simulation volumes. 

8.1.4 Validation of  microstructure-sensitive fatigue crack initiation using crystal plasticity 

simulations and high-energy X-ray experiments 

o 3D microstructural models, with various twin distributions, were developed based on high-

energy X-ray experiments, specifically grain and pore maps, as well as appropriate 

boundary conditions. These CPFE models were used to probe the fatigue crack initiation 

of IN718 produced via additive manufacturing, thus evaluating the predictive capabilities 

of the CPFE model.  
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o The results indicated an unambiguous one to one correlation for the location of crack 

initiation with the extreme values of the failure metrics, namely, plastic strain accumulation 

and the plastic strain energy density, thus building confidence in the usage of crystal 

plasticity models for the fatigue assessment. 

Overall, the four studies in this dissertation provide a promising step towards the realization of 

using a suite of virtual experiments to complement and reduce the number of full-scale physical 

testing, thereby resulting in a microstructural sensitive model-based accelerated qualification of a 

material for use in safety-critical applications.  

8.2 Future work 

Based on the research studies performed in this dissertation, here is a list of potential problems for 

the future work: 

• In Chapter 4, the generation of 3D mesh for the polycrystalline microstructure involves 

multiple tools and the distortion of few elements is unavoidable due to the current 

workflow procedure that ensures a smooth topology to the grain boundaries.  This 

limitation could be addressed by the development of a robust meshing routine to obtain 

high quality elements as well as provisions for localized meshing near the grain boundaries. 

• In Chapter 5, a CPFE framework was used to study the role of porosity towards the crack 

initiation behavior of IN718.  The same framework could be used to include additional 

defect structures such as inclusions and surface roughness, and  study the synergetic effects 

of all the defect structures on the fatigue behavior of IN718. 

• In Chapter 5, the critical pore characteristics (in terms of the pore size and clustering) were 

estimated for a specific average grain size. As changes in the process parameters leads to 

changes in the average grain size, the current estimate may not be valid. However, the 

CPFE framework proposed in Chapter 5 could be used to obtain the estimates of critical 

porosity characteristics as a function of the average grain size. 

• In Chapter 6, it was shown that CPFE simulations of large microstructures (close to the 

size of the specimen’s gauge section) is computationally intensive. The development of 
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more efficient solvers will provide opportunities for gaining mechanistic insights into 

failure at a specimen scale. 

• In Chapter 7, the validation efforts were performed corresponding to a single mode of 

failure (i.e. at a surface-connected pore). This study could be further enhanced by 

performing validation studies corresponding to multiple modes of failure by using the 

methods described in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

114 

APPENDIX A. PREDICTING LOCATION OF FAILURE USING 

UNIAXIAL BOUNDARY CONDITIONS 

 

Figure A1(a) An inverse pole figure (IPF) representation of the predicted planes of failure (slices D and 

E) using Model 3 with uniaxial loading conditions, (b) the plastic strain accumulation plot, and (c) plastic 

strain energy density plot of the slices D and E, with the respective locations of failure encircled. Location 

XD  is predicted by PSA and XE  by Wp. 

 

 

The prediction of microstructure-sensitive fatigue crack initiation in the CPFE modeling 

community is commonly carried out using the application of simplified boundary conditions (BCs).  

This is mainly due to the difficulty in obtaining the exact BCs, assumptions that the specimen is 

perfectly aligned, or limitations in the size of the simulation volume.  However, in this study, 

HEDM experiments were used to extract the stresses in grains adjacent to the volume of interest, 

thereby providing the BCs to apply to the simulation.  These BCs were used for failure predictions 
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as discussed in earlier Sections. This data also provides an opportunity to study the role of BCs 

towards the prediction of fatigue crack initiation. To this end, one CPFE simulation was performed 

using Model 3 by the application of simple uniaxial loading conditions, which was achieved by 

setting the  𝜎bending component to zero as described in Section 3.2. The model was subjected to 

one loading cycle with a maximum stress of σmax at R=0, and subsequently the likely locations of 

failure were predicted using the metrics, PSA, and Wp
. The predicted hotspots as per the metrics, 

PSA and Wp, were obtained to be XD and XE, respectively, as shown in Figure A1.  The z 

coordinates of slices D and E (Figure A1) relative to the simulation volume is given in Figure 7.8.  

Location XD is situated at a grain boundary near the free surface and XE is located sub-surface at 

the intersection of a pore and a twin boundary.  It was previously shown that Model 3, when 

subjected to the experimentally determined loading conditions (tension and slight bending), 

predicted XA as the location of failure, which was the experimentally observed location of failure. 

Thus, by not accounting for the slight bending moment (Figure 3) in the current simulation, we 

observe a shift in the predicted locations of failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

116 

REFERENCES 

[1] M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, Overview of Materials 

Qualification Needs for Metal Additive Manufacturing, Jom. 68 (2016) 747–764. 

doi:10.1007/s11837-015-1810-0. 

[2] A. Yadollahi, N. Shamsaei, Additive manufacturing of fatigue resistant materials: 

Challenges and opportunities, Int. J. Fatigue. 98 (2017) 14–31. 

doi:10.1016/j.ijfatigue.2017.01.001. 

[3] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 

1917–1928. doi:10.1007/s11665-014-0958-z. 

[4] M.D. Sangid, H.J. Maier, H. Sehitoglu, An energy-based microstructure model to account 

for fatigue scatter in polycrystals, J. Mech. Phys. Solids. 59 (2011) 595–609. 

doi:10.1016/j.jmps.2010.12.014. 

[5] S.R. Yeratapally, M.G. Glavicic, M. Hardy, M.D. Sangid, Microstructure based fatigue life 

prediction framework for polycrystalline nickel-base superalloys with emphasis on the role 

played by twin boundaries in crack initiation, Acta Mater. 107 (2016) 152–167. 

doi:10.1016/j.actamat.2016.01.038. 

[6] F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of 

constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity 

finite-element modeling: Theory, experiments, applications, Acta Mater. 58 (2010) 1152–

1211. doi:10.1016/j.actamat.2009.10.058. 

[7] S. Leuders, M. Thöne,  a. Riemer, T. Niendorf, T. Tröster, H. a. Richard, H.J. Maier, On 

the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser 

melting: Fatigue resistance and crack growth performance, Int. J. Fatigue. 48 (2013) 300–

307. doi:10.1016/j.ijfatigue.2012.11.011. 

[8] P. Edwards, M. Ramulu, Fatigue performance evaluation of selective laser melted Ti-6Al-

4V, Mater. Sci. Eng. A. 598 (2014) 327–337. doi:10.1016/j.msea.2014.01.041. 



 

 

117 

[9] S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, The Influence of Porosity on 

Fatigue Crack Initiation in Additively Manufactured Titanium Components, Sci. Rep. 7 

(2017) 1–13. doi:10.1038/s41598-017-06504-5. 

[10] E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured 

AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle 

fatigue, and fracture behavior, Mater. Des. 34 (2012) 159–169. 

doi:10.1016/j.matdes.2011.07.067. 

[11] M.J. Couper, A.E. Neeson, J.R. Griffiths, Casting Defects and the Fatigue Behaviour of an 

Aluminium Casting Alloy, Fatigue Fract. Eng. Mater. Struct. 13 (1990) 213–227. 

doi:10.1111/j.1460-2695.1990.tb00594.x. 

[12] Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356-T6 aluminum cast alloys. 

Part I. Effect of casting defects, J. Light Met. 1 (2001) 73–84. doi:10.1016/S1471-

5317(00)00008-0. 

[13] H. Danninger, B. Weiss, The influence of defects on high cycle fatigue of metallic materials, 

J. Mater. Process. Technol. 143–144 (2003) 179–184. doi:10.1016/S0924-0136(03)00409-

6. 

[14] S.J. Polasik, J.J. Williams, N. Chawla, Fatigue crack initiation and propagation of binder-

treated powder metallurgy steels, Metall. Mater. Trans. A. 33 (2002) 73–81. 

doi:10.1007/s11661-002-0006-8. 

[15] H.T. Pang, P.A.S. Reed, Fatigue crack initiation and short crack growth in nickel-base 

turbine disc alloys - The effects of microstructure and operating parameters, Int. J. Fatigue. 

25 (2003) 1089–1099. doi:10.1016/S0142-1123(03)00146-4. 

[16] S. Dezecot, J.Y. Buffiere, A. Koster, V. Maurel, F. Szmytka, E. Charkaluk, N. Dahdah, A. 

El Bartali, N. Limodin, J.F. Witz, In situ 3D characterization of high temperature fatigue 

damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography, Scr. 

Mater. 113 (2016) 254–258. doi:10.1016/j.scriptamat.2015.11.017. 

 



 

 

118 

[17] S. Benedictus-deVries, A. Bakker, G.C. a. M. Janssen, H. de Wit, Fatigue Crack Initiation 

Behavior of Welded AA5083 in a Seawater Environment, J. Eng. Mater. Technol. 126 

(2004) 199. doi:10.1115/1.1651098. 

[18] X. Zhou, D. Wang, X. Liu, D.D. Zhang, S. Qu, J. Ma, G. London, Z. Shen, W. Liu, 3D-

imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation 

micro-CT, Acta Mater. 98 (2015) 1–16. doi:10.1016/j.actamat.2015.07.014. 

[19] R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, A.D. Rollett, Synchrotron-Based X-

ray Microtomography Characterization of the Effect of Processing Variables on Porosity 

Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V, Jom. 69 (2017) 479–

484. doi:10.1007/s11837-016-2234-1. 

[20] S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, F. Walther, 

Computed tomography for characterization of fatigue performance of selective laser melted 

parts, Mater. Des. 83 (2015) 661–669. doi:10.1016/j.matdes.2015.06.063. 

[21] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Correlation between porosity and 

processing parameters in TiAl6V4 produced by selective laser melting, Mater. Des. 105 

(2016) 160–170. doi:10.1016/j.matdes.2016.05.070. 

[22] R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, A.D. 

Rollett, Analyzing the effects of powder and post-processing on porosity and properties of 

electron beam melted Ti-6Al-4V, Mater. Res. Lett. 5 (2017) 516–525. 

doi:10.1080/21663831.2017.1340911. 

[23] S. Khademzadeh, S. Carmignato, N. Parvin, F. Zanini, P.F. Bariani, Micro porosity analysis 

in additive manufactured NiTi parts using micro computed tomography and electron 

microscopy, Mater. Des. 90 (2016) 745–752. doi:10.1016/j.matdes.2015.10.161. 

[24] K. Jurrens, Energetics Incorporated, Measurement Science Roadmap for Metal-Based 

Additive Manufacturing, Addit. Manuf. (2013) 86. doi:10.1007/s13398-014-0173-7.2. 

[25] F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech. 

(1968) 363–371. 



 

 

119 

[26] J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields∗, J. 

Mech. Phys. Solids. 17 (1969) 201–217. doi:10.1016/0022-5096(69)90033-7. 

[27] A. Needleman, Void growth in an elastic-plastic medium., 1 (1972). doi:10.1115/1.3422899. 

[28] A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 

I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol. 99 

(1977) 2. doi:10.1115/1.3443401. 

[29] V. Tvergaard, Tvergaard - On localization in ductile materials containing spherical 

voids.pdf, 18 (1982) 237–252. 

[30] J. Koplik,  a. Needleman, Void growth and coalescence in porous plastic solids, Int. J. Solids 

Struct. 24 (1988) 835–853. doi:10.1016/0020-7683(88)90051-0. 

[31] K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, J. Fan, On the driving force for 

fatigue crack formation from inclusions and voids in a cast A356 aluminum alloy, Int. J. 

Fract. 108 (2001) 207–233. doi:10.1023/A:1011033304600. 

[32] J. Fan, D.L. McDowell, M.F. Horstemeyer, K. Gall, Cyclic plasticity at pores and inclusions 

in cast Al-Si alloys, Eng. Fract. Mech. 70 (2003) 1281–1302. doi:10.1016/S0013-

7944(02)00097-8. 

[33] Z. Xu, W. Wen, T. Zhai, Effects of pore position in depth on stress/strain concentration and 

fatigue crack initiation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43 (2012) 2763–

2770. doi:10.1007/s11661-011-0947-x. 

[34] P. Baicchi, G. Nicoletto, E. Riva, Modeling the influence of pores on fatigue crack initiation 

in a cast Al-Si alloy, Int. Conf. CRACK PATHS 2006. (2006) 2–9. 

http://www.gruppofrattura.it/index.php?option=com_docman&task=doc_download&gid=

152&Itemid=228. 

[35] H. Gao, Z. Zhang, Y. Lai, J. Li, Y. Liu, Influence of crystallographic orientation on growth 

behavior of spherical voids, J. Cent. South Univ. Technol. (Engl. Ed.). 15 (2008) 830–834. 

doi:10.1007/s11771. 



 

 

120 

[36] J.D. Carroll, L.N. Brewer, C.C. Battaile, B.L. Boyce, J.M. Emery, The effect of grain size 

on local deformation near a void-like stress concentration, Int. J. Plast. 39 (2012) 46–60. 

doi:10.1016/j.ijplas.2012.06.002. 

[37] C.C. Battaile, J.M. Emery, L.N. Brewer, B.L. Boyce, Crystal plasticity simulations of 

microstructure-induced uncertainty in strain concentration near voids in brass, Philos. Mag. 

95 (2015) 1069–1079. doi:10.1080/14786435.2015.1009958. 

[38] D.L. McDowell, F.P.E. Dunne, Microstructure-sensitive computational modeling of fatigue 

crack formation, Int. J. Fatigue. 32 (2010) 1521–1542. doi:10.1016/j.ijfatigue.2010.01.003. 

[39] M.D. Sangid, The physics of fatigue crack initiation, Int. J. Fatigue. 57 (2013) 58–72. 

doi:10.1016/j.ijfatigue.2012.10.009. 

[40] J.M. Larsen, S.K. Jha, C.J. Szczepanski, M.J. Caton, R. John, A.H. Rosenberger, D.J. 

Buchanan, P.J. Golden, J.R. Jira, Reducing uncertainty in fatigue life limits of turbine 

engine alloys, Int. J. Fatigue. 57 (2013) 103–112. doi:10.1016/j.ijfatigue.2013.01.012. 

[41] A.L. Hutson, S.K. Jha, W.J. Porter, J.M. Larsen, Activation of life-limiting fatigue damage 

mechanisms in Ti – 6Al – 2Sn – 4Zr – 6Mo, 66 (2014) 1–10. 

doi:10.1016/j.ijfatigue.2014.02.011. 

[42] J.M. Larsen, M.J. Caton, S.K. Jha, A.H. Rosenberger, Understanding Materials Uncertainty 

for Prognosis of Advanced Turbine Engine Materials, (2010) 1–12. 

[43] O.H. Basquin, The exponential law of endurance tests, Am. Soc. Test. Mater. 10 (1910) 

625–630. 

[44] L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal, 1953. 

[45] S. S. Manson, Behavior of materials under conditions of thermal stress, 1953. 

[46] J. D. Morrow, Cyclic plastic strain energy and fatigue of metals, in: Intern. Frict. Damping, 

Cycl. Plast., ASTM International, PA, 1965: pp. 45–87. 

 



 

 

121 

[47] K.N. Smith, P. Watson, T.H. Topper, A Stress-Strain Function for the Fatigue of Metals, J. 

Mater. (1970) 767–778. 

[48] A. Fatemi, D.F. Socie, A critical plane approach to multiaxial fatigue damage including out‐

of‐phase loading, Fatigue Fract. Eng. Mater. Struct. 11 (1988) 149–165. 

doi:10.1111/j.1460-2695.1988.tb01169.x. 

[49] K. Tanaka, T. Mura, A dislocation model for fatigue crack initiation, ASME J. Appl. Mech. 

48 (1981) 97–103. 

[50] K. Tanaka, T. Mura, A theory of fatigue crack initiation at inclusions, Metall. Trans. A. 13 

(1982) 117–123. doi:10.1007/BF02642422. 

[51] G. Venkataraman, Y.W. Chung, T. Mura, Application of minimum energy formalism in a 

multiple slip band model for fatigue-II. Crack nucleation and derivation of a generalised 

Coffin-Manson law, Acta Metall. Mater. 39 (1991) 2631–2638. doi:10.1016/0956-

7151(91)90079-G. 

[52] G. Venkataraman, Y.W. Chung, T. Mura, Application of minimum energy formalism in a 

multiple slip band model for fatigue - I. Calculation of slip band spacings, Acta Metall. 

Mater. 39 (1991) 2621–2629. doi:10.1016/0956-7151(91)90078-F. 

[53] K.S. Chan, A microstructure-based fatigue-crack-initiation model, Metall. Mater. Trans. A. 

34A (2003) 43-? doi:10.1007/s11661-003-0207-9. 

[54] M.D. Sangid, H.J. Maier, H. Sehitoglu, A physically based fatigue model for prediction of 

crack initiation from persistent slip bands in polycrystals, Acta Mater. 59 (2011) 328–341. 

doi:10.1016/j.actamat.2010.09.036. 

[55] M.D. Sangid, H.J. Maier, H. Sehitoglu, The role of grain boundaries on fatigue crack 

initiation - An energy approach, Int. J. Plast. 27 (2011) 801–821. 

doi:10.1016/j.ijplas.2010.09.009. 

[56] M.M. Shenoy, D.L. McDowell, Constitutive Modeling and Life Prediction in Ni-Base 

Superalloys, Mech. Eng. Doctor of (2006). 



 

 

122 

[57] M. Shenoy, Y. Tjiptowidjojo, D. McDowell, Microstructure-sensitive modeling of 

polycrystalline IN 100, Int. J. Plast. 24 (2008) 1694–1730. doi:10.1016/j.ijplas.2008.01.001. 

[58] M. Shenoy, J. Zhang, D.L. McDowell, Estimating fatigue sensitivity to polycrystalline Ni-

base superalloy microstructures using a computational approach, Fatigue Fract. Eng. Mater. 

Struct. 30 (2007) 889–904. doi:10.1111/j.1460-2695.2007.01159.x. 

[59] C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, D.L. McDowell, Microstructure-

sensitive modeling of high cycle fatigue, Int. J. Fatigue. 32 (2010) 512–525. 

doi:10.1016/j.ijfatigue.2009.03.021. 

[60] C.P. Przybyla, D.L. McDowell, Simulated microstructure-sensitive extreme value 

probabilities for high cycle fatigue of duplex Ti-6Al-4V, Int. J. Plast. 27 (2011) 1871–1895. 

doi:10.1016/j.ijplas.2011.01.006. 

[61] G.M. Castelluccio, D.L. McDowell, Microstructure and mesh sensitivities of mesoscale 

surrogate driving force measures for transgranular fatigue cracks in polycrystals, Mater. Sci. 

Eng. A. 639 (2015) 626–639. doi:10.1016/j.msea.2015.05.048. 

[62] J.D. Hochhalter, D.J. Littlewood, R.J. Christ, M.G. Veilleux, J.E. Bozek, A.R. Ingraffea, 

A.M. Maniatty, A geometric approach to modeling microstructurally small fatigue crack 

formation: II. Physically based modeling of microstructure-dependent slip localization and 

actuation of the crack nucleation mechanism in AA 7075-T651, Model. Simul. Mater. Sci. 

Eng. 18 (2010). doi:10.1088/0965-0393/18/4/045004. 

[63] A. Rovinelli, Y. Guilhem, H. Proudhon, R.A. Lebensohn, W. Ludwig, M.D. Sangid, 

Assessing reliability of fatigue indicator parameters for small crack growth via a 

probabilistic framework, Model. Simul. Mater. Sci. Eng. 25 (2017). doi:10.1088/1361-

651X/aa6c45. 

[64] A. Nicolas, N.E.C. Co, J.T. Burns, M.D. Sangid, Predicting fatigue crack initiation from 

coupled microstructure and corrosion morphology effects, Eng. Fract. Mech. 220 (2019) 

106661. doi:10.1016/j.engfracmech.2019.106661. 

 



 

 

123 

[65] B. Chen, J. Jiang, F.P.E. Dunne, Is stored energy density the primary meso-scale 

mechanistic driver for fatigue crack nucleation?, Int. J. Plast. 101 (2018) 213–229. 

doi:10.1016/j.ijplas.2017.11.005. 

[66] V. Prithivirajan, M.D. Sangid, The role of defects and critical pore size analysis in the 

fatigue response of additively manufactured IN718 via crystal plasticity, Mater. Des. 150 

(2018) 139–153. doi:10.1016/j.matdes.2018.04.022. 

[67] R. Bandyopadhyay, M.D. Sangid, Crystal plasticity assessment of inclusion- and matrix-

driven competing failure modes in a nickel-base superalloy, Acta Mater. 177 (2019) 20–34. 

doi:10.1016/j.actamat.2019.07.024. 

[68] V.V.C. Wan, D.W. MacLachlan, F.P.E. Dunne, A stored energy criterion for fatigue crack 

nucleation in polycrystals, Int. J. Fatigue. 68 (2014) 90–102. 

doi:10.1016/j.ijfatigue.2014.06.001. 

[69] A. Cruzado, S. Lucarini, J. LLorca, J. Segurado, Microstructure-based fatigue life model of 

metallic alloys with bilinear Coffin-Manson behavior, Int. J. Fatigue. 107 (2018) 40–48. 

doi:10.1016/j.ijfatigue.2017.10.014. 

[70] K. Kirane, S. Ghosh, M. Groeber, A. Bhattacharjee, Grain Level Dwell Fatigue Crack 

Nucleation Model for Ti Alloys Using Crystal Plasticity Finite Element Analysis, J. Eng. 

Mater. Technol. 131 (2009) 021003. doi:10.1115/1.3078309. 

[71] M. Anahid, M.K. Samal, S. Ghosh, Dwell fatigue crack nucleation model based on crystal 

plasticity finite element simulations of polycrystalline titanium alloys, J. Mech. Phys. Solids. 

59 (2011) 2157–2176. doi:10.1016/j.jmps.2011.05.003. 

[72] S.R. Yeratapally, M.G. Glavicic, C. Argyrakis, M.D. Sangid, Bayesian uncertainty 

quantification and propagation for validation of a microstructure sensitive model for 

prediction of fatigue crack initiation, Reliab. Eng. Syst. Saf. 164 (2017) 110–123. 

doi:10.1016/j.ress.2017.03.006. 

 



 

 

124 

[73] A. Bagri, G. Weber, J. Stinville, W. Lenthe, T. Pollock, C. Woodward, Microstructure and 

Property-Based Statistically Equivalent Representative Volume Elements for 

Polycrystalline Ni-Based Superalloys Containing Annealing Twins, Metall. Mater. Trans. 

A. 49 (2018) 5727–5744. doi:10.1007/s11661-018-4858-y. 

[74] X. Tu, A. Shahba, J. Shen, S. Ghosh, C. Engineering, Microstructure and property based 

statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys, Int. J. Plast. 

115 (2019) 268–292. doi:10.1016/j.ijplas.2018.12.002. 

[75] T. Kanit, S. Forest, Determination of the size of the representative volume element for 

random composites : statistical and numerical approach, 40 (2003) 3647–3679. 

doi:10.1016/S0020-7683(03)00143-4. 

[76] Committee on Integrated Computational Materials Engineering, Integrated computational 

materials engineering: A transformational discipline for improved competitiveness and 

national security, 2008. doi:10.17226/12199. 

[77] D.U. Furrer, D.M. Dimiduk, J.D. Cotton, C.H. Ward, Making the Case for a Model-Based 

Definition of Engineering Materials, Integr. Mater. Manuf. Innov. 6 (2017) 249–263. 

doi:10.1007/s40192-017-0102-7. 

[78] S.R. Stock, Recent advances in X-ray microtomography applied to materials, Int. Mater. 

Rev. 53 (2008) 129–181. doi:10.1179/174328008X277803. 

[79] S.R. Stock, X-ray microtomography of materials, Int. Mater. Rev. 44 (1999) 141–164. 

doi:10.1179/095066099101528261. 

[80] H. Poulsen, Three-dimensional X-ray diffraction microscopy: mapping polycrystals and 

their dynamics, Springer, 2004. 

[81] R.M. Suter, D. Hennessy, C. Xiao, U. Lienert, Forward modeling method for microstructure 

reconstruction using x-ray diffraction microscopy: Single-crystal verification, Rev. Sci. 

Instrum. 77 (2006) 123905. doi:10.1063/1.2400017. 

 



 

 

125 

[82] S.F. Li, R.M. Suter, Adaptive reconstruction method for three-dimensional orientation 

imaging, J. Appl. Crystallogr. 46 (2013) 512–524. doi:10.1107/S0021889813005268. 

[83] J. V Bernier, N.R. Barton, U. Lienert, M.P. Miller, Far-field high-energy diffraction 

microscopy: a tool for intergranular orientation and strain analysis, J. Strain Anal. Eng. Des. 

46 (2011) 527–547. doi:10.1177/0309324711405761. 

[84] L. Margulies, T. Lorentzen, H.F. Poulsen, T. Leffers, Strain tensor development in a single 

grain in the bulk of a polycrystal under loading, Acta Mater. 50 (2002) 1771–1779. 

doi:10.1016/S1359-6454(02)00028-9. 

[85] H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. 

Margulies, T. Lorentzen, D. Juul Jensen, Three-dimensional maps of grain boundaries and 

the stress state of individual grains in polycrystals and powders, J. Appl. Crystallogr. 34 

(2001) 751–756. doi:10.1107/S0021889801014273. 

[86] M.D. Sangid, T.A. Book, D. Naragani, J. Rotella, P. Ravi, A. Finch, P. Kenesei, J.-S. Park, 

H. Sharma, J. Almer, X. Xiao, Role of heat treatment and build orientation in the 

microstructure sensitive deformation characteristics of IN718 produced via additive 

manufacturing, Addit. Manuf. 22 (2018) 479–496. 

[87] J. Miao, T.M. Pollock, J. Wayne Jones, Crystallographic fatigue crack initiation in nickel-

based superalloy René 88DT at elevated temperature, Acta Mater. 57 (2009) 5964–5974. 

doi:10.1016/j.actamat.2009.08.022. 

[88] C. Blochwitz, W. Tirschler, Twin boundaries as crack nucleation sites, Cryst. Res. Technol. 

40 (2005) 32–41. doi:10.1002/crat.200410305. 

[89] A. Heinz, P. Neumann, Crack initiation during high cycle fatigue of an austenitic steel, Acta 

Metall. Mater. 38 (1990) 1933–1940. doi:10.1016/0956-7151(90)90305-Z. 

[90] P. Peralta, L. Llanes, J. Bassani, C. Laird, Deformation from twin-boundary stresses and 

the role of texture: Application to fatigue, Philos. Mag. A Phys. Condens. Matter, Struct. 

Defects Mech. Prop. 70 (1994) 219–232. doi:10.1080/01418619408242547. 



 

 

126 

[91] C. Blochwitz, W. Tirschler, Influence of texture on twin boundary cracks in fatigued 

austenitic stainless steel, Mater. Sci. Eng. A. 339 (2003) 318–327. doi:10.1016/S0921-

5093(02)00126-0. 

[92] G.M. Castelluccio, D.L. Mcdowell, Effect of annealing twins on crack initiation under high 

cycle fatigue conditions, (n.d.). doi:10.1007/s10853-012-7021-y. 

[93] A. Cerrone, C. Stein, R. Pokharel, C. Hefferan, J. Lind, H. Tucker, R. Suter, A. Rollett, A. 

Ingraffea, Implementation and verification of a microstructure-based capability for 

modeling microcrack nucleation in LSHR at room temperature, Model. Simul. Mater. Sci. 

Eng. 23 (2015) 035006. doi:10.1088/0965-0393/23/3/035006. 

[94] T.J. Turner, P.A. Shade, J. V. Bernier, S.F. Li, J.C. Schuren, P. Kenesei, R.M. Suter, J. 

Almer, Crystal Plasticity Model Validation Using Combined High-Energy Diffraction 

Microscopy Data for a Ti-7Al Specimen, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 

48 (2017) 627–647. doi:10.1007/s11661-016-3868-x. 

[95] K. Kapoor, M.D. Sangid, Initializing type-2 residual stresses in crystal plasticity finite 

element simulations utilizing high-energy diffraction microscopy data, Mater. Sci. Eng. A. 

729 (2018) 53–63. doi:10.1016/j.msea.2018.05.031. 

[96] V. Tari, R.A. Lebensohn, R. Pokharel, T.J. Turner, P.A. Shade, J. V. Bernier, A.D. Rollett, 

Validation of micro-mechanical FFT-based simulations using High Energy Diffraction 

Microscopy on Ti-7Al, Acta Mater. 154 (2018) 273–283. 

doi:10.1016/j.actamat.2018.05.036. 

[97] R. Bandyopadhyay, A.W. Mello, K. Kapoor, M.P. Reinhold, T.F. Broderick, M.D. Sangid, 

On the crack initiation and heterogeneous deformation of Ti-6Al-4V during high cycle 

fatigue at high R ratios, J. Mech. Phys. Solids. 129 (2019) 61–82. 

doi:10.1016/j.jmps.2019.04.017. 

[98] A. Nicolas, A.W. Mello, Y. Sun, D.R. Johnson, M.D. Sangid, Reconstruction methods and 

analysis of subsurface uncertainty for anisotropic microstructures, Mater. Sci. Eng. A. 760 

(2019) 76–87. doi:10.1016/j.msea.2019.05.089. 



 

 

127 

[99] https://www.eos.info/systems_solutions/metal/systems_equipment/eosint_m280, (2010). 

[100] B.A. Dowd, G.H. Campbell, R.B. Marr, V. Nagarkar, S. Tipnis, L. Axe, D.P. Siddons, 

Developments in synchrotron X-ray computed microtomography at the National 

Synchrotron Light Source, in: Proc. SPIE, 1999: p. Bellingham, WA, Society of Photo-

Optical Instrumen. doi:10.1117/12.363725. 

[101] M.L. Rivers, tomoRecon: High-speed tomography reconstruction on workstations using 

multi-threading, in: Proc. SPIE, 2012. doi:10.1117/12.930022. 

[102] D. Gürsoy, F. De Carlo, X. Xiao, C. Jacobsen, TomoPy: A framework for the analysis of 

synchrotron tomographic data, J. Synchrotron Radiat. 21 (2014) 1188–1193. 

doi:10.1107/S1600577514013939. 

[103] N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Trans. Syst. 

Man. Cybern. 9 (1979) 62–66. doi:10.1109/TSMC.1979.4310076. 

[104] C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. 

Eliceiri, ImageJ2: ImageJ for the next generation of scientific image data, BMC 

Bioinformatics. 18 (2017) 1–26. doi:10.1186/s12859-017-1934-z. 

[105] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image 

analysis, Nat. Methods. 9 (2012) 671–675. doi:10.1038/nmeth.2089. 

[106] Konrad Z, User’s Guide – Avizo, (2017). 

[107] M.D. Sangid, P. Ravi, V. Prithivirajan, N.A. Miller, J. Park, ICME Approach to 

Determining the Critical Pore Size of IN718 Produced by Selective Laser Melting, JOM. 

(2019). doi:10.1007/s11837-019-03910-0. 

[108] P.A. Shade, B. Blank, J.C. Schuren, T.J. Turner, P. Kenesei, K. Goetze, R.M. Suter, J. V. 

Bernier, S.F. Li, J. Lind, U. Lienert, J. Almer, A rotational and axial motion system load 

frame insert for in situ high energy x-ray studies, Rev. Sci. Instrum. 86 (2015) 1–9. 

doi:10.1063/1.4927855. 



 

 

128 

[109] P.A. Shade, D.B. Menasche, J. V Bernier, P. Kenesei, J.-S. Park, R.M. Suter, J.C. Schuren, 

T.J. Turner, Fiducial marker application method for position alignment of in situ multimodal 

X-ray experiments and reconstructions, J. Appl. Cryst. 49 (2016) 700–704. 

doi:10.1107/S1600576716001989. 

[110] H. Sharma, R.M. Huizenga, S.E. Offerman, A fast methodology to determine the 

characteristics of thousands of grains using three-dimensional X-ray diffraction. I. 

Overlapping diffraction peaks and parameters of the experimental setup, J. Appl. 

Crystallogr. 45 (2012) 693–704. doi:10.1107/S0021889812025563. 

[111] H. Sharma, R.M. Huizenga, S.E. Offerman, A fast methodology to determine the 

characteristics of thousands of grains using three-dimensional X-ray diffraction. II. Volume, 

centre-of-mass position, crystallographic orientation and strain state of grains, J. Appl. 

Crystallogr. 45 (2012) 705–718. doi:10.1107/S0021889812025599. 

[112] A. Khounsary, P. Kenesei, J. Collins, G. Navrotski, J. Nudell, High Energy X-ray Micro-

tomography for the characterization of thermally fatigued GlidCop specimen, J. Phys. Conf. 

Ser. 425 (2013) 212015. doi:10.1088/1742-6596/425/21/212015. 

[113] J. Ahrens, B. Geveci, C. Law, ParaView: An End-User Tool for Large Data Visualization, 

(2005). 

[114] R. Bandyopadhyay, V. Prithivirajan, M.D. Sangid, Uncertainty Quantification in the 

Mechanical Response of Crystal Plasticity Simulations, Jom. 71 (2019) 2612–2624. 

doi:10.1007/s11837-019-03551-3. 

[115] M.A. Groeber, M.A. Jackson, DREAM . 3D : A Digital Representation Environment for the 

Analysis of Microstructure in 3D, Integr. Mater. Manuf. Innov. (2014) 1–17. 

[116] http://dream3d.bluequartz.net/binaries/Help/DREAM3D/, (2013). 

[117] M. Groeber, Development of an Automated Characterization- Representation Framework 

for the Modeling of Polycrystalline Materials in 3D, Ohio State University, 2007. 

 



 

 

129 

[118] M.D. Sangid, H. Sehitoglu, H.J. Maier, T. Niendorf, Grain boundary characterization and 

energetics of superalloys, Mater. Sci. Eng. A. 527 (2010) 7115–7125. 

doi:10.1016/j.msea.2010.07.062. 

[119] L.H. Chan, Synthetic Three-Dimensional Voxel-Based Microstructures that Contain 

Annealing Twins, Carnegie Mellon University, 2010. 

[120] G.Taylor, Plastic strain in metals, J. Inst. Met. 62 (1938). 

[121] J. Bishop, R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under 

combined stresses, Philos. Mag. 42 (1951). doi:10.1080/14786445108561065. 

[122] H.J. Bunge, Some Applications of the Taylor Theory of Polycrystal Plasticity, Krist. Und 

Tech. 5 (1970) 145–175. 

[123] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with 

built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng. 79(11). 0 (2009) 

1309–1331. doi:10.1002/nme.2579. 

[124] R.J. Asaro, Crystal Plasticity, J. Appl. Mech. 50 (1983) 921. doi:10.1115/1.3167205. 

[125] L. Anand, M. Kothari, A computational procedure for rate-independent crystal plasticity, J. 

Mech. Phys. Solids. 44 (1996) 525–558. doi:10.1016/0022-5096(96)00001-4. 

[126] E.H. Lee, Elastic-Plastic Deformation at Finite Strains, J. Appl. Mech. 36 (1969) 1. 

doi:10.1115/1.3564580. 

[127] J.W. Hutchinson, Creep and plasticity of hexagonal polycrystals as related to single crystal 

slip, Met. Trans A. 8 (1977) 1465–1469. doi:10.1007/BF02642860. 

[128] C.O. Frederick, P.J. Armstrong, A mathematical representation of the multiaxial 

Bauschinger effect, Mater. High Temp. 24 (2007) 1–26. doi:10.1179/096034007x207589. 

[129] M.F. Horstemeyer, D.L. McDowell, R.D. McGinty, Design of experiments for constitutive 

model selection: application to polycrystal elastoviscoplasticity, Model. Simul. Mater. Sci. 

Eng. 7 (1999) 253–273. 



 

 

130 

[130] U.F. Kocks, The relation between polycrystal deformation and single-crystal deformation, 

Metall. Mater. Trans. 1 (1970) 1121–1143. doi:10.1007/BF02900224. 

[131] C. Ye, J. Chen, M. Xu, X. Wei, H. Lu, Multi-scale simulation of nanoindentation on cast 

Inconel 718 and NbC precipitate for mechanical properties prediction, Mater. Sci. Eng. A. 

662 (2016) 385–394. doi:10.1016/j.msea.2016.03.081. 

[132] E. Salvati, T. Sui, A.M. Korsunsky, Uncertainty quantification of residual stress evaluation 

by the FIB–DIC ring-core method due to elastic anisotropy effects, Int. J. Solids Struct. 87 

(2016) 61–69. doi:10.1016/j.ijsolstr.2016.02.031. 

[133] G. Martin, N. Ochoa, K. Sai, E. Herve-Luanco, G. Cailletaud, A multiscale model for the 

elastoviscoplastic behavior of Directionally Solidified alloys: Application to FE structural 

computations, Int. J. Solids Struct. 51 (2014) 1175–1187. doi:10.1016/j.ijsolstr.2013.12.013. 

[134] P. Haldipur, F.J. Margetan, R.B. Thompson, Estimation of Single‐Crystal Elastic Constants 

from Ultrasonic Measurements on Polycrystalline Specimens, 1061 (2006). 

[135] V.N. Parthasarathy, C.M. Graichen, A.F. Hathaway, A comparison of tetrahedron quality 

measures, Finite Elem. Anal. Des. 15 (1994) 255–261. doi:10.1016/0168-874X(94)90033-

7. 

[136] Z. Zhang, M.A. Cuddihy, F.P.E. Dunne, On rate-dependent polycrystal deformation : the 

temperature sensitivity of cold dwell fatigue, in: Proc. R. Soc. A Math. Phys. Eng. Sci., 

2015. 

[137] A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal 

plasticity, Proc. R. Soc. A Math. Phys. Eng. Sci. 460 (2004) 1881–1903. 

doi:10.1098/rspa.2003.1258. 

[138] C.A. Sweeney, W. Vorster, S.B. Leen, E. Sakurada, P.E. McHugh, F.P.E. Dunne, The role 

of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation, J. 

Mech. Phys. Solids. 61 (2013) 1224–1240. doi:10.1016/j.jmps.2013.01.001. 

 



 

 

131 

[139] S.D. Antolovich, R.W. Armstrong, Plastic strain localization in metals: Origins and 

consequences, Prog. Mater. Sci. 59 (2014) 1–160. doi:10.1016/j.pmatsci.2013.06.001. 

[140] A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, 

J. Mech. Phys. Solids. 48 (2000) 1565–1595. doi:10.1016/S0022-5096(99)00075-7. 

[141] D. Naragani, M.D. Sangid, P.A. Shade, J.C. Schuren, H. Sharma, J.S. Park, P. Kenesei, J. 

V. Bernier, T.J. Turner, I. Parr, Investigation of fatigue crack initiation from a non-metallic 

inclusion via high energy x-ray diffraction microscopy, Acta Mater. 137 (2017) 71–84. 

doi:10.1016/j.actamat.2017.07.027. 

[142] K. Kirane, S. Ghosh, A cold dwell fatigue crack nucleation criterion for polycrystalline Ti-

6242 using grain-level crystal plasticity FE Model, Int. J. Fatigue. 30 (2008) 2127–2139. 

doi:10.1016/j.ijfatigue.2008.05.026. 

[143] M.J. Caton, S.K. Jha, A.H. Rosenberger, J.M. Larsen, Divergence of Mechanisms and the 

Effect on the Fatigue Life Variability of Rene’ 88 DT, Superalloys. (2004) 305–312. 

[144] L. Huynh, J. Rotella, M.D. Sangid, Fatigue behavior of IN718 microtrusses produced via 

additive manufacturing, Mater. Des. 105 (2016) 278–289. 

doi:10.1016/j.matdes.2016.05.032. 

[145] C.A. Kantzos, R.W. Cunningham, V. Tari, A.D. Rollett, Characterization of metal additive 

manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling, 

Comput. Mech. (2017). doi:10.1007/s00466-017-1531-z. 

[146] V. Prithivirajan, M.D. Sangid, Examining metrics for fatigue life predictions of additively 

manufactured IN718 via crystal plasticity modeling including the role of simulation volume 

and microstructural constraints, Mater. Sci. Eng. A. (2020). 

[147] W.Z. Zhuang, G.R. Halford, Investigation of residual stress relaxation under cyclic load, 

Int. J. Fatigue. 23 (2001) 31–37. doi:10.1016/s0142-1123(01)00132-3. 

 



 

 

132 

[148] R. Bandyopadhyay, V. Prithivirajan, A.D. Peralta, M.D. Sangid, Microstructure sensitive 

critical plastic strain energy density criterion for fatigue life prediction across various 

loading regimes, Proc. R. Soc. A Math. Phys. Eng. Sci. (2020) 20190766. 

doi:http://dx.doi.org/10.1098/rspa.2019.0766. 

[149] R.P. Skelton, Energy criterion for high temperature low cycle fatigue failure, Mater. Sci. 

Technol. 7 (2014) 427–440. doi:10.1179/mst.1991.7.5.427. 

[150] A.M. Korsunsky, D. Dini, F.P.E. Dunne, M.J. Walsh, Comparative assessment of dissipated 

energy and other fatigue criteria, Int. J. Fatigue. 29 (2007) 1990–1995. 

doi:10.1016/j.ijfatigue.2007.01.007. 

[151] K. Dang-Van, Macro-Micro Approach in High-Cycle Multiaxial Fatigue, Adv. Multiaxial 

Fatigue. (1993) 120–130. doi:10.1520/stp24799s. 

[152] K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. 

Kenesei, J.S. Park, A.L. Pilchak, Study of grain-level deformation and residual stresses in 

Ti-7Al under combined bending and tension using high energy diffraction microscopy 

(HEDM), Int. J. Solids Struct. 94–95 (2016) 35–49. doi:10.1016/j.ijsolstr.2016.05.010. 

[153] Findley, W. N., A Theory for the Effect of Mean Stress on Fatigue of Metals Under 

Combined Torsion and Axial Load or Bending, J. Eng. Ind. (1959) 301–306. 

[154] H. Mughrabi, R. Wang, K. Differt, U. Essmann, Fatigue Crack Initiation by Cyclic Slip 

Irreversibilities in High-Cycle Fatigue, Astm Stp 811. (1983) 5–45. 

[155] C. Déprés, C.F. Robertson, M.C. Fivel, Crack initiation in fatigue: Experiments and three-

dimensional dislocation simulations, Mater. Sci. Eng. A. 387–389 (2004) 288–291. 

doi:10.1016/j.msea.2003.12.084. 

[156] J.P. Hirth, The Influence of Grain Boundaries, Metall. Trans. 3 (1972) 3047–3067. 

doi:10.1007/bf02661312. 

 



 

 

133 

[157] P. Neumann, A. Tönnessen, Crack Initiation at Grain Boundaries in F.C.C. Materials, in: 

Strength Met. Alloy. (ICSMA 8), Pergamon Press plc, 1989: pp. 743–748. 

doi:10.1016/b978-0-08-034804-9.50116-9. 

[158] C.A. Brice, Proceedings of the 1st World Congress on Integrated Computational Materials 

Engineering, in: ICME, 2011: pp. 241–245. 

[159] V. Prithivirajan, P. Ravi, D. Naragani, M.D. Sangid, Direct comparisons of microstructure-

sensitive fatigue crack initiation via crystal plasticity simulations and in situ high energy X-

ray experiments, Mater. Des. (2020). 

[160] A. Cruzado, S. Lucarini, J. Llorca, J. Segurado, Crystal plasticity simulation of the e ff ect 

of grain size on the fatigue behavior of polycrystalline Inconel 718, Int. J. Fatigue. 113 

(2018) 236–245. doi:10.1016/j.ijfatigue.2018.04.018. 

[161] T. Zhang, J. Jiang, B. Britton, B. Shollock, F. Dunne, Crack nucleation using combined 

crystal plasticity modelling, high-resolution digital image correlation and high-resolution 

electron backscatter diffraction in a superalloy containing non-metallic inclusions under 

fatigue, Proc. R. Soc. A Math. Phys. Eng. Sci. 472 (2016). doi:10.1098/rspa.2015.0792. 

[162] M. Obstalecki, S.L. Wong, P.R. Dawson, M.P. Miller, Quantitative analysis of crystal scale 

deformation heterogeneity during cyclic plasticity using high-energy X-ray diffraction and 

finite-element simulation, Acta Mater. 75 (2014) 259–272. 

doi:10.1016/j.actamat.2014.04.059. 

[163] J. Oddershede, J.P. Wright, A. Beaudoin, G. Winther, Deformation-induced orientation 

spread in individual bulk grains of an interstitial-free steel, Acta Mater. 85 (2015) 301–313. 

doi:10.1016/j.actamat.2014.11.038. 

[164] D.P. Naragani, P.A. Shade, P. Kenesei, H. Sharma, M.D. Sangid, X-ray characterization of 

the micromechanical response ahead of a propagating small fatigue crack in a Ni-based 

superalloy, Acta Mater. 179 (2019) 342–359. doi:10.1016/j.actamat.2019.08.005. 

 



 

 

134 

[165] I. Serrano-Munoz, J.Y. Buffiere, R. Mokso, C. Verdu, Y. Nadot, Location, location &size: 

Defects close to surfaces dominate fatigue crack initiation, Sci. Rep. 7 (2017) 1–9. 

doi:10.1038/srep45239. 

[166] J.W. Hutchinson, Plasticity at the micron scale, Int. J. Solids Struct. 37 (2000) 225–238. 

doi:10.1016/S0020-7683(99)00090-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

135 

PUBLICATIONS 

1. V. Prithivirajan, MD Sangid. The role of defects and critical pore size analysis in the 

fatigue response of additively manufactured IN718 via crystal plasticity. Materials & 

Design (2018). 

 

2. V Prithivirajan*7, R Bandyopadhyay*, MD Sangid. Uncertainty quantification in the 

mechanical response of crystal plasticity simulations. The Journal of the Minerals, Metals 

& Materials Society (2019). 

 

3. V Prithivirajan, MD Sangid. Examining metrics for fatigue life predictions of additively 

manufactured IN718 via crystal plasticity modeling including the role of simulation 

volume and microstructural constraints. Material Science and Engineering: A (2020). 

 

4. R Bandyopadhyay, V Prithivirajan, A Peralta-Duran, MD Sangid. Microstructure 

sensitive critical plastic strain energy density criterion for fatigue life prediction across 

various loading regimes. Proceedings of the Royal Society A (2020). 

 

5. MD Sangid, P Ravi, V Prithivirajan, NA Miller, JS Park, P Kenesei. An ICME Approach 

to Determining the Critical Pore Size of IN718 Produced by Selective Laser Melting. The 

Journal of the Minerals, Metals & Materials Society (2020). 

 

6. V Prithivirajan, P.Ravi, D Naragani, MD Sangid. Direct comparison of microstructure 

sensitive fatigue crack initiation via crystal plasticity simulations and in situ high-energy 

X-ray experiments. Materials & Design (2020). 

 

 

 
7 * denotes equal contributions 

 


