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ABSTRACT

Shreevastava, Anamika Ph.D., Purdue University, December 2020. Spatio-Temporal
Characterization of Fractal intra-Urban Heat Islets. Major Professor: P. Suresh C.
Rao.

Extreme heat is one of the deadliest health hazards that is projected to increase

in intensity and persistence in the near future. Temperatures are further exacerbated

in the urban areas due to the Urban Heat Island (UHI) effect resulting in increased

heat-related mortality and morbidity. However, the spatial distribution of urban

temperatures is highly heterogeneous. As a result, metrics such as UHI Intensity that

quantify the difference between the average urban and non-urban air temperatures,

often fail to characterize this spatial and temporal heterogeneity. My objective in

this thesis is to understand and characterize the spatio-temporal dynamics of UHI for

cities across the world. This has several applications, such as targeted heat mitigation,

energy load estimation, and neighborhood-level vulnerability estimation.

Towards this end, I have developed a novel multi-scale framework of identifying

emerging heat clusters at various percentile-based thermal thresholds (Tthr) and refer

to them collectively as intra-Urban Heat Islets. Using the Land Surface Temperatures

from Landsat for 78 cities representative of the global diversity, I have showed that

the heat islets have a fractal spatial structure. They display properties analogous

to that of a percolating system as Tthr varies. At the percolation threshold, the size

distribution of these islets in all cities follows a power-law, with a scaling exponent ∼

1.88 and an aggregated Area-Perimeter Fractal Dimension ∼ 1.33. This commonality

indicates that despite the diversity in urban form and function across the world,

the urban temperature patterns are different realizations with the same aggregated

statistical properties. In addition, analogous to the UHI Intensity, the mean islet

intensity, i.e., the difference between mean islet temperature and thermal threshold,
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is estimated for each islet, and their distribution follows an exponential curve. This

allows for a single metric (exponential rate parameter) to serve as a comprehensive

measure of thermal heterogeneity and improve upon the traditional UHI Intensity as

a bulk metric.

To study the impact of urban form on the heat islet characteristics, I have intro-

duced a novel lacunarity-based metric, which quantifies the degree of compactness

of the heat islets. I have shown that while the UHIs have similar fractal structure

at their respective percolation threshold, differences across cities emerge when we

shift the focus to the hottest islets (Tthr = 90th percentile). Analysis of heat islets’

size distribution demonstrates the emergence of two classes where the dense cities

maintain a power law, whereas the sprawling cities show an exponential deviation at

higher thresholds. This indicates a significantly reduced probability of encountering

large heat islets for sprawling cities. In contrast, analysis of heat islet intensity dis-

tributions indicates that while a sprawling configuration is favorable for reducing the

mean Surface UHI Intensity of a city, for the same mean, it also results in higher local

thermal extremes.

Lastly, I have examined the impact of external forcings such as heatwaves (HW)

on the heat islet characteristics. As a case study, the European heatwave of 2018

is simulated using the Weather Research Forecast model with a focus on Paris. My

results indicate that the UHI Intensity under this HW reduces during night time by

1◦C on average. A surface energy budget analysis reveals that this is due to drier

and hotter rural background temperatures during the HW period. To analyze the

response of heat islets at every spatial scale, power spectral density analysis is done.

The results show that large contiguous heat islets (city-scale) persist throughout the

day during a HW, whereas the smaller islets (neighborhood-scale) display a diurnal

variability that is the same as non-HW conditions.

In conclusion, I have presented a new viewpoint of the UHI as an archipelago

of intra-urban heat islets. Along the way, I have introduced several properties that

enable a seamless comparison of thermal heterogeneity across diverse cities as well
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as under diverse climatic conditions. This thesis is a step towards a comprehensive

characterization of heat from the spatial scales of an urban block to a megalopolis.
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1. INTRODUCTION

Public interest in climate change impacts tends to be focused on rapid-onset disasters

such as hurricanes, floods, and earthquakes. On the contrary, extreme heat is a slow-

onset disaster that claims more lives than other natural hazards due to prolonged

exposure1. More than 50% of the world’s population currently resides in cities, and

the number continues to increase rapidly with a projection that 70% of the global

population will be urbanized by 2050 [1]. As urbanization is rapidly accelerating,

cities face the growing burden of adapting to the new normal of scorching heat every

summer, which is further exacerbated by the anthropogenic modifications of local

weather. The impacts of extreme heat in cities range from increased energy con-

sumption, critical pressure on power supply grids, and heat-related morbidity and

mortality. As a result, the problem of urban heat has become an urgent scientific and

societal issue. In this thesis, I focus on the intra-urban spatio-temporal complexity

of extreme heat.

1.1 The Urban Heat Island

The first instance of anthropogenic modification of local weather was recorded in

the form of Urban Heat Island (UHI) by Luke Howard in 1833. Cities ever since

have only grown bigger, and their environmental impacts have become more visible.

Several other pioneers, such as Oke, have investigated the occurrence and driving

mechanisms of this phenomena and have built a sub-discipline, called Urban Climate,

around it [2]. Formally defined as the excess heat in urban areas compared to its

rural surroundings, UHIs have been observed and reported in a diverse range of cities,

large or small, in warm or cold climates [3]. The main cause behind the excess heat

1Source: https://www.weather.gov/hazstat/

https://www.weather.gov/hazstat/
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is increased absorption and storage of incoming solar radiation due to an excess of

concrete, increased anthropogenic heat fluxes due to air-conditioning and vehicular

emissions, coupled with decreased evapotranspiration and decreased wind-driven heat

transport due to increased roughness of urban surfaces. It is known to be the strongest

in the urban canopy layer, i.e., the region between the ground level and the mean roof

height, where it is strongly influenced by local site characteristics such as building

geometry and construction materials [4]. But it is also detectable in the boundary

layer, which resides above the urban canopy, typically up to two kilometers [5].

The traditional approach used to quantify UHI is the metric UHI Intensity i.e., the

difference between point measurements of temperature in a representative urban area

and similar measurements in the surrounding non-urban environment [6]. However,

urban areas are highly heterogeneous in nature, and the choice of a ”representative”

urban area can often lead to very different estimates that do not adequately describe

the urban temperatures throughout a city. Notable efforts have been made at a city

scale to collect data at a higher spatial sampling, such as the Basel Urban Boundary

Layer Experiment [7], but such examples remain rare. Furthermore, the methods

of collecting data are expensive and labor-intensive, thereby making it prohibitively

difficult to replicate for other cities across the world.

As a solution to these limitation, the Surface UHI (SUHI), has emerged as an

alternative metric [8, 9] . As elevated urban air temperatures characterize the at-

mospheric UHI, the SUHI refers to the increased Land Surface Temperatures (LST)

compared to the rural areas. High-resolution Earth-monitoring satellites such as

Landsat, Moderate Resolution Imaging Spectro-radiometer (MODIS), and Geosta-

tionary Operational Environmental Satellite (GOES) allow a broader coverage and

more uniform sampling than in-situ data. Furthermore, globally consistent methods

of observation enable inter-city comparison minimizing the challenge of maintaining

data quality. Features within urban areas such as building roofs and wall exteriors,

surface materials, albedo, impervious, and vegetated fractions determine the resul-

tant LST within each pixel (resolution ∼ 90 m). In other words, LST observations
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from satellites at the resolution should be interpreted as a resultant temperature of a

heterogeneous urban block. Furthermore, while SUHI bears similarity in spatial and

temporal patterns to UHI [6], LST is more coupled with urban form and function,

whereas air temperatures are subject to the boundary layer wind profiles as well.

Therefore, a point-to-point correspondence between the two can not be expected [10].

Lastly, modeling environments such as the Weather Research Forecast (WRF)

model help in studying the phenomenon from a multi-dimensional perspective [11].

They assimilate surface and atmospheric boundary conditions using reanalysis datasets

and estimate relevant fields such as LST, air temperature at a 2-meter height (T2),

moisture, precipitation, and surface energy fluxes and provide a comprehensively

modeled dataset for further diagnostics. Current modeling efforts for urban regions

include the incorporation of high-resolution urban Land Use Land Cover (LULC)

maps coupled with advanced urban surface parameterization schemes such as Build-

ing Effect Parameterization - Building Energy Model (BEP-BEM) into the WRF

model [12]. A combination of satellite remote sensing and WRF model outputs are

used as the main dataset for this thesis.

1.2 Spatial heterogeneity of urban temperatures

A version of this section is published in collaboration with the World Urban

Database Access and Portal Tools (WUDAPT) in Bulletin of American

Meteorological Society 2.

A growing body of heat mitigation research suggests that the UHI can be signif-

icantly reduced by altering parts of the urban form, increasing the albedo of bup ilt

surfaces, and/or incorporating more vegetation within the city, to name a few [13–15].

However, the UHI is a collection of multiple hot and cold regions that emerge within

the city. For example, a pond within a bustling urban area can serve as a heat

2Ching, J. et al., including Shreevastava, A. (2018). WUDAPT: An urban weather, climate, and en-
vironmental modeling infrastructure for the Anthropocene. Bulletin of the American Meteorological
Society, 99(9), 1907-1924.
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Figure 1.1. 8-day average surface temperature (in Celcius) derived from
MODIS and Local Climate Zone maps for (a,d) Indianapolis, USA, (b,e)
Boston, USA, and (c,f) Mumbai, India. The legend for LCZ classes is
shown on the right. Note the elevated LSTs in regions corresponding to
the urban LCZ classes. Resolution = 1 km.

sink within the heat island. Similarly, a hotter heat island such as downtown can

peak above a larger UHI. In order to make informed, spatially optimized decisions

regarding the areas where mitigation resources are most required and will be most

effective, it is necessary to comprehensively characterize the spatial heterogeneity of

urban temperatures. Towards that, bulk estimates such as UHI Intensity are inade-

quate to address the problem of intra-urban spatial heterogeneity and often impede

the analysis of urban temperatures at an intra-urban scale.

The primary cause of thermal variability is the heterogeneity of urban form itself.

One of the most significant advancements towards a climatologically relevant LULC

classification of the city is developed by Stewart and Oke (2012). The intra-urban

classes are called Local Climate Zones (LCZ) and are formally defined as regions of

uniform surface cover, structure, material, and human activity that span hundreds of
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meters to several kilometers on the horizontal scale. Each LCZ has a characteristic

thermal regime that is most apparent over dry surfaces, on calm, clear nights, and in

areas of simple relief [3]. Examples of three cities, Indianapolis, Boston, and Mumbai,

mapped as LCZs using the methodology described in ref. [16] are given in figure 1.1a.

The random-forest based supervised classification scheme that uses a training dataset

based on observable parameters such as building heights, spacing, and the amount of

vegetative fraction, provided by the user. Schematic representations of LCZ classes

are given in Appendix A. International collaborative efforts such as the World Urban

Database Portal and Access Tools (WUDAPT) are implementing the standardization

of the methodology across the urban climate scientific community [17].

Figure 1.2. Barplot of mean LST temperatures for each LCZ of (a,b)
Indianapolis and (c,d) Boston corresponding to an 8-day composite LST
(from MODIS) in June and December respectively.
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In an analysis of the correlation between LCZs and LSTs, I examine the case of

Indianapolis and Boston for two distinct weeks in June and December, respectively, as

a representative of summer and winter temperatures. A composite 8-day average LST

product from MODIS (MOD11A2) was used for analysis (Figure 1.1). The mean LST

value over each LCZ class is shown as a barplot in figure 1.2. Note that the thermal

variability within the urban classes (shown in red) are as significant as the difference

between urban and rural LCZs (up to 2◦C in summer). These findings are also

discussed in several other papers, such as refs. [3,18,19]. There is growing consensus

in the urban climate community that while the terms ”urban” and ”rural” may be

evocative of the landscape, they are vague as objects of scientific UHI analyses and

the urban-rural divide has blurred into a gradual continuum of diverse urban forms

and functions [3].

Beyond the heterogeneity across LCZ, there is an inherent variability within the

same LCZ as well (Figure 1.3a-c). Under the assumption of a non-parametric dis-

tribution, pairwise Mann-Whitney’s U test is conducted for the LST pdfs across all

LCZs. The results indicate that there is no statistically significant difference across

the temperatures for some pairs of LCZs (Figure 1.3d-f). Lastly, the pdf of tem-

peratures within the LCZ class also depends on the spatial aggregation of the LCZ

patches. As an example, the spatial organization of the LCZ 8, i.e., the Large Low

Rise urban type (for instance, blocks of American supermarket and parking lots),

is discussed. In figure 1.3g, the urban patches corresponding to LCZ 8 (in red) are

larger and more aggregated in space. In contrast, LCZ8 patches for Boston (figure

1.3h) are dispersed throughout the city. Subsequently, the variance of LSTs within

LCZ 8 is larger for the city of Boston, as compared with Indianapolis (Figure 1.3i).

As a result, studying urban thermal differences based on a purely LULC methodology

is inadequate.
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Figure 1.3. Probability distribution functions for LST within each LCZ
is shown for (a) Indianapolis, (b) Boston, and (c) Mumbai. The LCZ
classes present in each city are listed along the y-axis, and the variability
in LSTs are displayed as a violin plot along the x-axis. The short vertical
lines within the violin plots correspond to the mean LST. (d,e,f) P-value
of Mann Whitney’s U test to estimate statistical significance in the dif-
ference between LST populations is shown for each pair of LCZs for the
three cities. In the bottom row, all regions corresponding to LCZ 8 for
(d) Indianapolis, and (f) Boston, are highlighted in red. (e) The variabil-
ity in temperatures corresponding to LCZ8 for the two (in blue and red
respectively) are drawn for comparison.
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2. COMPLEX CITIES AND THEIR THERMAL

LANDSCAPES

“Clouds are not spheres, mountains are not cones, coastlines are not circles,

and bark is not smooth, nor does lightning travel in a straight line.”

– Benoit Mandelbrot, Fractal geometry of nature

I view “extreme heat in cities” as a Complexity problem at the nexus of two

interacting complex systems - extreme weather and urbanization. Weather and cli-

mate are extremely dynamic complex systems that span a multitude of temporal

and spatial scales. They range from turbulent wind gusts to seasonal fluctuations

(weather), to macroscopic trends spanning decades (climate). Moreover, we are cur-

rently witnessing an upheaval of climate regimes wherein extreme weather events

such as heatwaves are becoming more intense, frequent, and persistent. Alongside

increasing temperatures, there is also the challenge of accelerated urbanization [20].

Cities are multi-scale systems consisting of spatially heterogeneous urban form, such

as buildings and socio-technological networks such as roads, railways, power grids,

etc. that grow and decay on a timescale of decades while many urban functions such

as mobility, energy consumption, anthropogenic emissions, etc. that vary within the

timescale of hours. One of the manifestations of the dynamic multi-scale interactions

between these two systems is the UHI, which causes a further increase in energy

consumption and heat-related casualties. In other words, while extreme weather in-

fluences human behavior; collective human behavior impacts the weather itself. As

UHI is a manifestation of urban form and function itself, I build on the properties of

fractal cities to characterize the spatio-temporal complexity of the thermal landscape.
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2.1 Fractal form and function

The field of fractal geometry was developed by Benoit Mandelbrot in the mid 20th

century. Its applications to a wide variety of real-world problems were exemplified and

popularized by his remarkable book, Fractal Geometry of Nature [21]. The irregular

and complex geometrical shapes, such as coastlines of countries and perimeters of

lakes that were earlier considered untenable, became widely studied and characterized

using techniques developed by Mandelbrot.

Cities are some of the best examples of fractals. Urban form is defined as the

physical characteristics that make up built-up areas, including the shape, size, density,

and configuration of settlements. From the favelas of Mexico City or the neat urban

blocks of Barcelona to haphazardly heterogeneous neighborhoods of Mumbai, the

urban form is diverse. Yet, despite these differences, cities across the world show

similar fundamental patterns. Most notably, in the past few decades, Batty and

others have shown that the commonalities between urban spatial patterns are best

characterized as fractals [22]. Various elements of the urban form, such as impervious

area, road networks, sewage networks, etc. have been shown to have fractal properties

[23–26]. Similarly, the metabolic functions of cities, such as population distribution,

traffic flow, human mobility, and energy use, display self-similarity in the spatial

patterns as well [27–29]. The spatial organization of physical assets, i.e., the urban

form (e.g., impervious areas; buildings), in turn, governs the distribution of heat

sources in a city. These distributed and fixed sources add excess heat and modify the

cooling effect of heat sinks (e.g., vegetation and water bodies).

Based on these prior findings and the established correlation between urban sur-

face temperatures and urban morphology [30–32], I hypothesize that the SUHI

should follow a fractal spatial structure as well. While similar scaling laws and

fractal metrics have been developed in atmospheric sciences [33], their application in

SUHI studies remains limited [14,34].
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2.2 Percolation theory of fractal landscapes

Fractal geometry also has a long history of application in the field of percolation

theory, a canonical branch of statistical physics that focuses on the connectivity of

clusters in a system [35,36]. In particular, it is used to characterize the complex topo-

graphical surfaces (such as a DEM) as iso-lines (or contour lines). At any threshold,

the continuously connected regions above the threshold are referred to as a cluster.

In percolation theory, the coagulation of dispersed clusters into a giant contiguous

component is referred to as percolation, and the largest cluster is identified as the

percolating cluster. The threshold at which the single connected component appears

is referred to as the percolation threshold. For statistically self-similar (or fractal) sur-

faces, the set of areas of clusters follows a probability distribution with a power-law

tail at the percolation threshold [37,38]. This was first presented as an empirical rule

by physicist and geographer Jaromir Korčák, who suggested a scaling law describing

the size-distribution of various geographical objects, including lakes and archipelago

of islands [39]. In summary, this law is expressed as the relative number of islands with

an area equal to a is given by the power-law: N(a) ∝ a(−β). Multiple studies have

reported the occurrence of such scaling in natural topography such as islands [40],

lakes [41], where the respective size distributions are well described by a power-law

tail. For example, in hydrology, the power-law distribution of area exceedance for

flow accumulation is a well-established signature of self-organization [42].

Another feature of fractal systems is the scaling of fluctuations as a function of

the mean. This type of scaling relationship is called Taylor’s law by ecologists after

L.R. Taylor and his influential paper on natural populations [43]. In the ecological

context, the law states that for any fixed species, the fluctuations in the size of a

population (characterized by the standard deviation) can be approximately written

as α: fluctuations = k ∗meanα for a wide range of the average. This is since found

several other applications in other complex systems such as traffic, stock market,

precipitation, and networks [44,45].
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Figure 2.1. Illustrated above in an example of thresholding by percentile.
The thermal maps are represented as 3-d elevation maps where height, as
well as color, corresponds to a higher temperature. For each percentile of
the thermal threshold, the areas above that are selected and connected
pixels (by Moore neighborhood) are grouped into a cluster. Figures (a-i)
show the clusters that emerge above nine incremental percentiles (shown
as p, here).
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2.3 Mathematical formulation of intra-urban heat islets

For UHIs, the most popular metric of quantifying the excess urban heat is the UHI

Intensity, which is defined as the difference between the mean urban temperature and

the mean background temperature of surrounding non-rural regions. However, the

urban-rural classification has its limitations. “Rural” in this context is characterized

by non-urban, sparsely populated regions surrounding the denser “urban” counter-

part. However, as the peri-urban settlements increase and cities sprawl farther into

the non-urban neighborhoods, the standardization of reference rural temperatures

has become very difficult. Subsequently, the UHI Intensity varies significantly de-

pending on the choice of a rural neighborhood. A solution to this problem is the use

of percentile-based thermal thresholds to identify anomalously hot regions.

To characterize the complex spatial structure of the urban thermal, I conceptualize

the thermal map as a Digital Elevation Model (DEM) where temperatures substitute

for elevation (See figure 2.1). For a given LST map, I select regions with temperatures

above specified percentile thresholds (Tthr) and group the connected regions together

using a Moore neighborhood to define clusters, thereby identifying islets of higher heat

for each incremental threshold [46]. In this way, the thermal threshold is analogous

to the water level flooding a landscape so that only the islands above the water are

considered for analysis [47]. Using this framework, we can capture the heat islets

across several spatial scales at several thermal thresholds.

As Tthr is decreased, the total number of clusters increases as more regions with

T > Tthr are selected. However, at a certain threshold, the number of clusters start

declining as they coalesce to form a giant connected component. This threshold is

referred to as the percolation threshold. This is illustrated in figure 2.2 using

the example of Boston, USA. Note that corresponding to the percolation threshold

(marked in dark red), the total number of clusters reaches a maximum and starts

declining. At the same threshold, the size of the largest cluster starts increasing as

it continues to absorb smaller clusters. I refer to the set of clusters obtained at any



13

Figure 2.2. (a) Plot of largest cluster size as a function of the thermal
threshold for the case of Boston city (b) Total number of clusters shown
for each thermal threshold. The first dashed red line shows the perco-
lation threshold (75th percentile in this case) identified as the threshold
where the total number of clusters is the maximum and below which the
largest connected component emerges. Lighter red lines towards its right
mark the subsequent percentiles of threshold which were considered for
the analysis.

threshold as intra-urban heat islets . As a result, the SUHI can be viewed as a

collection of several intra-urban heat islets that emerge and interact to form the

“mega heat island” that is notable at a regional scale. When the thermal threshold is

equal to the rural background temperature, the resultant set of heat islets corresponds

to the SUHI as per its conventional definition. In this way, I present a new viewpoint

of the UHI as an archipelago of intra-urban heat islets. This opens up the opportunity

to condense the spatial complexity of UHI into quantifiable heat islet characteristics.

These properties are systematically explored using the key questions and hypotheses

that are discussed next.
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2.4 Key research questions

• What is the islet’s characteristic shape and geometric properties? Hypothesis:

Since, urban form and function is fractal in nature, the resulting heat islets will

also have a fractal geometry.

• How many and how big are the islets? What is their size distribution? Hy-

pothesis: Given the hypothesis stated in the previous question, like other

fractal landscapes in the world, such as wetlands, lakes, and islands, it would

have a power-law size distribution within the percolation range of thresholds

and display exponential tempering at thresholds above.

• What is their spatial structure? Does the spatial pattern play a role in heat

mitigation? Hypothesis: The spatial distribution urban form and function,

such as sprawl or compactness, will play a role in heat mitigation and can,

therefore, influence the spatial organization of heat islets.

• What are their diurnal temporal dynamics? Hypothesis: SUHI is known to

be the strongest during the daytime. As a result, the heat islets as well should

be the most numerous and largest during the daytime and dissipate during the

night.

• How do they interact with a heatwave? Hypothesis: Heatwaves are persis-

tent high-pressure systems that have been observed to both enhance as well

as suppress the UHI Intensity. I hypothesize that this interaction would be

governed by the urban form. A spatially aggregated system of heat islet might

grow stronger, whereas, for a dis-aggregated city, the smaller islets might be

dissipated easily, resulting in a smaller difference between urban and non-urban

temperatures, hence lower intensities.
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3. STATISTICAL CHARACTERIZATION OF HEAT

ISLETS FOR GLOBAL CITIES

“Science begins with counting. To understand a phenomenon, we must first

describe it; to describe it objectively, we must first measure it.”

– Siddhartha Mukherjee, The Emperor of all Maladies

In this chapter, first, the methodology of selecting cities from across the world (in

Section 3.1) and derivation of their LST from Landsat 8 (in Section 3.2) is discussed.

Then, to describe the complexity of heat islets in a rigorous, reliable, and reproducible

way, properties such as shape, size, temperature, and spatial structure of heat

islets are quantified. Shape in this context refers to their collective irregularity that is

quantified by the aggregated area-perimeter fractal dimension of the entire set of islets

(section 3.3.1). Their spatial organization is quantified using a novel Lacunarity-based

metric (section 3.3.3). Sizes are calculated as the set of areas of each islet, which are

then modeled as a probabilistic distribution function (pdf) (section 3.3.2). Similarly,

the set of islet intensities, defined as the difference between the mean LST for each islet

and the thermal threshold, are also modeled as a pdf (section 3.3.4). These analyses

serve to answer questions such as “How many and how big are the islets? How much

hotter than a given thermal threshold are they?”. Lastly, discussions pertaining to the

similarities and dissimilarities of islet properties across global cities are presented at

the end of the chapter (section 3.4). Parts of this chapter are published in Physical

Review E1 and Scientific Reports2.

1Shreevastava, A., Rao, P. S. C., & McGrath, G. S. (2019). Emergent self-similarity and scaling
properties of fractal intra-urban heat islets for diverse global cities. Physical Review E, 100(3),
032142.
2Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M., & Rao, P. S. C. (2019). Para-
doxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while
enhancing local extremes. Scientific Reports, 9(1), 1-10.
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3.1 Set of 78 globally diverse cities

Initially a set of 100 cities that are representative of diverse climate types [48]

as well as cultural backgrounds were selected, including but not limited to the C-

40 (http://www.c40.org/cities). Since the focus of this thesis is intra-urban heat,

only the cities that exhibited elevated temperatures within the urban boundaries were

selected. Cities which showed inversion of the heat island effect [49] due to hotter

background climates such as Phoenix, Cairo, or Jaipur or cities with a significant

coastal influence such as San Francisco, Mumbai, or Singapore were removed from

the set. Lastly, cities containing significant topographic relief dominating the LST

patterns such as Medellin, Ulaanbaatar, or Lima were removed as well. The remaining

cities comprise of a suite of case studies containing 78 cities. These range from small

cities such as Bern and Tbilisi (population 200 k) to the largest metropolitan regions

Figure 3.1. World map showing the locations of 78 cities considered in this
study. The marker size is representative of the city size, and the colour
represents their Koppen-Geiger climate classification [48].

http://www.c40.org/cities
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like Tokyo and Osaka with a net population of ∼ 30 M. It includes densely packed

cities, such as Seoul and Beijing, as well as agglomerated cities such as Mexico City

and Jakarta; spatially heterogeneous cities like Mumbai and Shanghai, to structured

and grid-like ones such as Los Angeles and Houston. It should be noted that the

selected list is not exhaustive in any way but a representative subset of diverse global

cities. Complete list of cities studied is attached as Table S1 of Appendix B.

For each of the selected cities, the urban area was estimated using Land Cover

Type dataset (MCD12Q1) derived from MODIS (Figs 3.2a, and 3.2e). The exact

definition of urban boundaries and city area plays a significant role in urban scaling

laws where different urban extents can produce different statistical exponents [50],

therefore, a buffer of 5 km in the rural regions was taken to account for the peri-urban

settlements. However, as the heat islets occur well within the city boundaries, the

estimated exponents were found to be independent of the buffer width. Lastly, in case

of coastal cities, the Large Scale International Boundary (LSIB) dataset provided by

United States Office of the Geographer was used to crop out the oceans and delineate

coastal boundaries.

3.2 Data: Land Surface Temperatures from Landsat 8

The primary source of LST in this thesis is Landsat 8. Low Earth Orbiting imagers

such as Landsat 8 have a high spatial resolution of 100 m but an infrequent repeat of

every 16 days. Since, in this section I am only focusing on a spatial characterization,

one Landsat image per city was selected. An initial screening was implemented using

Google Earth Engine [51] to select cloud-free summertime days for each city with

an incident solar angle of at least 60 degrees. LST was derived by a Single Channel

Algorithm as detailed in [52] using data from Landsat 8 (Bands 4, 5, 10, and 11)

daytime images (Figs 3.2b, and 3.2f). While the native resolution of Thermal Infrared

sensor (bands 10 and 11) is 100 m, they are sampled to match the other bands at

30 m in the Landsat composite product. In order to avoid any error that might
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have been introduced due to the downscaling of thermal band datasets, we opted

to aggregate the resolution to 90m (which is closer to the native TIRS resolution).

Given the abundance of surface types in the urban environment, the net estimated

LST is a resultant of several reflective materials within the pixel area. Therefore,

anomalous LSTs lying outside the 99.9 percentile were smoothed out by assigning

them the average value of their neighborhood pixels. Figure 3.2 serves to visualize the

geospatial format of data collected using the example of Boston, USA, and Kolkata,

India. See Appendix C for algorithm and Table S1 further information on Landsat

scenes used.

Figure 3.2. Maps for Boston (top) and Kolkata (bottom) are shown here
as examples. (a, e) Land use map derived from MODIS - Land Cover
Type dataset for the year 2016. (b, f) Land Surface Temperature (in ◦C)
map derived from Landsat 8. (c, g) Heat islets above the percolation tem-
perature (19◦C for Boston and 32◦C for Kolkata) obtained using Moore
neighborhood clustering algorithm are indicated as red. (d,h) Extreme
high heat islets obtained at the 95th percentile temperature of each city.
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3.3 Properties

3.3.1 Self-similarity and Fractal Dimension

As a primary test of fractality, the aggregated Area-Perimeter fractal dimension

(D) [40] is chosen. Total area and perimeter of the islet set is estimated at multiple

values of thermal threshold, Tthr (50th, 60th, · · · , 90th percentiles), and D is calculated

using the following equation:

ΣP = k · ΣA
D
2 (3.1)

where, k = 2 ∗
√
π = 3.545, that is determined for the limiting case of a circle, and

the summation of perimeters (P ) and areas (A) goes over the set of islets. Note that

this refers to the fractal dimension of the ensemble iso-thermal contour lines [22]. In

the limiting case of a circle, P ∝
√
A and D = 1. For more irregular and convoluted

shapes, the perimeter becomes increasingly plane-filling or elongated, and the area

tends to zero, resulting in linear shapes where P = A and D = 2 (solid bounding

lines in figures 3.3a and 3.3b). For statistically self-similar surfaces, not only is D a

fractional value between 1 and 2, but it is also the same for all thresholds used for

clustering [38]. In figure 3.2, I use the example of Boston and Kolkata to illustrate the

collection of islets that appear at two different thermal thresholds, one corresponding

to the percolation threshold, and another corresponding to the 95th percentile. At

higher temperature thresholds we can delineate areas within cities that experience

extreme temperatures.

For each city, D is found to be consistent for all values of Tthr as shown by

the same log(Area) : log(Perimeter) ratio. Figure 3.3a shows the area perimeter

scatter plot for two example cities, Bern and Atlanta, at the five thermal thresholds.

Note that for each city, the Area-perimeter ratio, i.e. D remains constant. This is

a novel and key finding, demonstrating the statistical self-similarity of SUHIs and

empirically establishing fractal geometry of urban thermal landscape. Figure 3.3b

serves to demonstrate the same for all cities under consideration. Note that as cities
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Figure 3.3. (a) Aggregated perimeters versus aggregated areas at 60, 70,
80, and 90 percentiles thresholds are shown here for two cities, Bern (in
red) and Atlanta (in blue), demonstrating the same ratio of log(Area) and
log(Perimeter) and hence the same Fractal Dimension (D) of iso-thermal
contour lines as indicated by the grey, dashed lines show examples of
two cities with D = 1.38 for Atlanta and D = 1.26 for Bern. D of the
perimeter of a circle (D = 1) and a space-filling plane (D = 2) are plotted
to show the physical bounds for D. (b) The same plot for all cities shown
with a single colour attributed to each city that corresponds to its area.
(c) D as a function of the city area. This plot serves to illustrate that
D increases with city area as per D = 0.0695 logAcity + 1.15 (R2 = 0.7).
(d) Histogram of D for all cities at their respective percolation thresholds
with mean = 1.33± 0.033 (std. dev.).
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grow in size, as indicated by the colorbar from blue to red, the corresponding sets

of areas and perimeters increase. This results in an upward shift in the plot and an

increase of D. The same can be observed in figure 3.3a, where Atlanta has larger

values of both area and perimeter and a resultant slope corresponding to D = 1.38

compared to D = 1.26 for Bern.

The scaling of D with city size is demonstrated more clearly as a scatter plot

between D and city area, where D is weakly correlated to the city size following the

relation D = 0.0695 · log(Acity)+1.15(R2 = 0.7) (Figure 3.3c). The tendency for D to

Figure 3.4. (a,b) LST maps of Atlanta and Bern, respectively. (c,d) Heat
islets obtained at the percolation temperature for each city are overlaid
(in red) on top of the LST maps. The islet perimeter is shown in black.
Note that the maps are not drawn to scale. The diameter of region of
interest for Atlanta is 54 km, whereas the same for Bern is 14 km.
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be smaller for small cities is reflective the evolving urban morphology of cities as they

grow. Smaller cities are often mono-centric (more circle-like) with fewer heat islets,

as a result, D tends toward a value of 1. While megalopolises, on the other hand,

formed from agglomeration of multiple peri-urban settlements are expected to have

higher number of heat islets scattered throughout the city, thereby, increasing the net

perimeter of heat islets, and thereby D. Maps of LST and heat islets (obtained at

their respective percolation thresholds) for Atlanta and Bern are shown in figure 3.4

to illustrate this difference. Moreover, in larger cities, the islets are more abundant,

as can be seen in the total number of islets for each city that scales linearly as

N = 0.038 ∗ Acity + 40 (R2 = 0.8) (See figure 3.5). This indicates that the limitation

of resolution of data in case of Bern is another contributing factor, where the smaller

scale irregularities are not captured.

The histogram of D values (Figures 3.3d) indicates a normal distribution with a

mean D = 1.33 and standard deviation of 0.033. This is an extremely narrow spread

about the mean suggesting a strikingly similar D for all cities despite their diversity.

Please refer to Table S2 in Appendix B for a complete list of D values. Lastly, to

Figure 3.5. (a) Scatter plot showing the correlation between number of
islets and city size that scales linearly as indicated by the red line. (b)
Histogram of Area Weighted Mean Fractal Dimension (AWMFD) for all
cities with mean = 1.22± 0.025.
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examine the average shape of a single islet within a city, area-weighted mean fractal

dimension (AWMFD) can also be a useful alternative [14]. The AWMFD for heat

islet sets were found to be normally distributed as well with a mean AWMFD = 1.227

(s.d. = 0.025; See figure 3.5b).

As LST and urban LULC are strongly coupled, these findings are compared with

the reported fractal dimension of urban impervious area. In a study by Makse et.

al., 1.2 < D < 1.4 with a mean value of 1.33 was reported [24]. Another study found

D = 1.22 ± 0.08 for 68 Chinese cities [23]. Therefore, the fractal dimensions of heat

islets as well are in agreement with that of urban impervious area.

3.3.2 Islet Size distribution

I now examine the variability in heat islets sizes. For fractal landscapes, clusters

are statistically self-similar at the percolation threshold over certain ranges of sizes,

with the cluster areas following a power law probability distribution [38]. This is

the same as the relative number of islands with an area equal to a is given by the

power-law: N(a) ∝ a−β as discussed in section 2.1. As an exceedance probability

distribution function, the size distribution can be written as the following:

P (A ≥ a) ∝ a1−β, ∀a ≥ amin (3.2)

where, for a given area a, the probability of an islet having an area A larger than a

is represented by P , the scaling exponent is represented by β, and the minimum area

at or above which the power law is valid is represented as amin. This is hypothesized

to be valid for the set of heat islets sizes if they are fractal in nature. Above the

percolation threshold, as described in section 2.3, the size distribution deviates from

the power-law resulting in some form of tempering, often modeled as an exponential

tempering (Figure 3.8a).

A preliminary indicator of a heavy tailed distribution (such as a power law) can

be found by the “fluctuation scaling analysis” of islet sizes. Here, the relationship

between the fluctuations in islet areas (characterized as the standard deviation) and
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Figure 3.6. Scatter plot showing the correlation between mean islet area
and its standard deviation. The solid line represents a slope of 1.64, re-
ferred to as the fluctuation scaling exponent α. Two additional dashed
lines corresponding to exponential (α = 1) and poisson (α = 1/2) distri-
bution are drawn.

the mean islet area for each city at each thermal threshold are evaluated. In agreement

with the Taylor’s law, the fluctuations are found to scale with the mean islet area

as per the equation s.d. ∝ mean1.64 for all cities. Figure 3.6 serves to illustrate

this where each point represents the std. dev. and mean for one set of heat islets

obtained at a single threshold for a single city. As Tthr decreases, the mean area as

well as std. dev. is observed to increase, while maintaining the scaling relationship

as indicated by the slope of 1.64. Most complex systems report the scaling exponent,

α, to fall within 1/2 to 1 [44] corresponding to a Poisson or Exponential distribution

respectively (indicated as dashed lines in figure 3.6). A much higher scaling exponent

in this case indicates a stronger spatial correlation and a heavier tailed distribution.

First, in order to test the hypothesis, the percolation threshold is identified for each

city using the method described in section 2.2. For some cities, a sharp percolation

transition was observed which corresponded to the maximum number of heat islets
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Figure 3.7. Scatter plot showing the correlation between mode tempera-
ture and the percolation threshold (R2 = 0.93)

as well. The temperature corresponding to percolation threshold, in such cases, was

found to be the same as statistical mode of the temperature distribution i.e. the most

frequently encountered temperature in the city (figure 3.7). However, for the other

cities, a more gradual change in largest islet size was observed which made the precise

identification of percolation threshold difficult. For those cases as well, thresholds

corresponding to the mode temperature (which also correspond to the threshold at

which maximum number of islets are obtained) is chosen as the percolation threshold

in this section. A detailed discussion pertaining to the two classes is presented in the

next subsection.

In agreement with the hypothesis, for the heat islets across all cities, The area-

exceedance probability distribution was found to follow a power-law tail at the per-

colation threshold which then deviates at higher thermal thresholds (example of

Guangzhou shown in Figure 3.8a). This is consistent throughout all the cities with

the scaling exponent normally distributed with mean β = 1.88 and s.d. = 0.12

(Figures 3.8b and 3.8c). Here, I have used a conservative approach to test for and

fit the power-law distributions using a combination of maximum-likelihood fitting



26

methods with goodness-of-fit tests based on the Kolmogorov-Smirnov (KS) statistic

and likelihood ratios [53]. Alternative distributions, such as log-normal, exponential

and Weibull, were tested as potential candidates; however, they were all rejected (at

p > 0.1), while the same tests suggested that the distributions could not be rejected

as having power-law tails. See Appendix D for detailed methodology on probabilistic

distribution fitting and Table S2 of Appendix B for results.

The power-law tails are curtailed on the higher end by limits of the study domain

i.e. the total city size, in this case, [54], and on the lower end, by spatial resolution.

Numerous smaller heat clusters are either not captured or are rounded off to integer

multiples of the lowest available resolution. Interestingly, in this case, the lower

bound (amin at which the power-law tail starts) is ∼ 0.25 km2, which corresponds

to the size of a couple of urban blocks. This suggests that below this, the heat

islets may indeed scale differently as the individual building level features become

evident. A relationship between D and β can be derived for Gaussian surfaces as

β − 1 = D/2 [38]. However, this was not found to be true for heat islets indicating a

departure from random Gaussian topography.

The power-law size distribution is another key finding that further supports the

fractal structure. The area scaling exponent, β, varies between 1.6 and 2.2 for small

cities (Acity < 1000 km2), but for the larger cities it converges to the mean (see

Figure 3.8d). One explanation for this is statistical, wherein for small cities, fewer

islets obtained at 90 m resolution results in higher statistical fluctuations about the

mean. As the number of islets increases with city size, larger sample sets are obtained,

which results in a convergence of the scaling exponent towards the mean. However,

from an urban growth perspective, this behavior is consistent with several other

complex systems that operate within cities [55,56]. For smaller cities, the variability

due to factors unrelated to city size, such as diversity of urban form, results in more

detectable fluctuations. As cities grow in size, the spatial patterns converge due to

self-organization [57].
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Figure 3.8. (a) Area Exceedance Probability Distributions for the city
of Guangzhou (as an example) is shown at multiple Tthr. As Tthr in-
creases (indicated in color from blue to red), the size distribution deviates
gradually from the power law obtained at the percolation threshold (cor-
responding to 50th percentile in this case). (b) Area Exceedance Proba-
bility Distributions for all cities at their respective percolation thresholds
are shown here in grey. Overlaid as a dashed black line is the line demon-
strating the mean scaling exponent, β = 1.88. (c) A histogram of β of
all cities. (d) Scatter plot of β and city area for each city. Yellow dashed
lines serve to highlight this convergence of β to mean with an increase in
the city area.
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Comparing with the literature of size distribution for fractal surfaces, I find that

for the case uncorrelated percolation, β is estimated to be 187/91 (∼ 2.05) [36,

37]. Moreover, empirical distributions of land classified as urban and cities modeled

with correlated percolation as well have found similar size distributions with β ∼ 2

[24, 58, 59]. A slightly smaller exponent of 1.88, in this case, indicates a greater

probability of occurrence of heat islets than what would be expected from impervious

area alone. Lastly, fractal landscapes are expected to yield the same scaling exponents

irrespective of the resolution. To test their sensitivity to input resolution, LST maps

were aggregated at a range of resolutions from 90 m to 720 m. Scaling exponents

were found to be the same, adding further support to the self-similar topography of

SUHI.

Percolation transition and tempering of power law

While the power law size distribution is consistent at the percolation temperature

for all cities, the difference across cities become apparent in how the exceedance

probability distributions change as the threshold increases. In case of some cities, such

as Lagos and Jakarta (Figure 3.9a,b), the power law size distribution is maintained

even at higher thresholds (Figure 3.9e). For others, such as Chicago and Guangzhou

(Figure 3.9c,d), the heat islet size distributions deviate significantly from the power

law in the form of an exponential tempering (Figure 3.9f), such that their distributions

more closely follow:

P (A ≥ a) ∝ a1−β · e−c·a, ∀ a ≥ amin (3.3)

where c represents the exponential tempering coefficient for each thermal threshold

(See Supplementary Table 3 for the complete set of coeffecients).

This behavior is explained by looking closely at the percolation threshold discussed

earlier [36,37]. In fractal landscapes, the power law size distribution of clusters holds

true only at the percolation threshold, i.e., until which the percolating cluster retains



29

Figure 3.9. Two groups of cities emerge based on the size distributions of
heat islets at incremental thermal thresholds. Two representative cities for
each group - Jakarta, Indonesia, and Lagos, Nigeria; and Chicago, USA,
and Guangzhou, China - are shown for each. (a,b) Land Surface Tem-
perature map (in ◦C), (c,d) Heat islets that emerge at the 90th percentile
thermal threshold. (e,f) Exceedance probability plots for heat islets at
several thermal thresholds. Note the leftward shift in size distribution as
the thresholds increase, especially the exponential tempering evident in
second set of cities. (g,h) Largest islet size, and (i,j) sum of remaining
islets (as a % of total city area), as a function of thermal threshold. The
vertical dashed colored lines mark the temperatures corresponding to the
percentiles used in (e,f).
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its identity. In some cases (such as Jakarta and Lagos), this transition is not sharp

enough to be defined by a single threshold. As a solution to that, the range of

thresholds over which the transition takes place are identified and referred to as

Percolation Transition Range. This is done by identifying the inflection points in

the rate of change of the largest cluster size as a function of thermal threshold as

illustrated in figure 3.10. The range is then normalized using the minimum and

maximum temperatures for each city such that the range is restricted to 0 and 1. I

refer to this new term as the Normalized Percolation Range (NPR).

In the case of cities like Jakarta and Lagos, as the temperature threshold is in-

creased, the largest connected islet decreases in size gradually, and the resulting NPR

is large (Figure 3.9g). Conversely, in the case of cities that show exponential tem-

pering, such as Chicago and Guangzhou, there is a much sharper decrease in the size

Figure 3.10. This figures serves to diagrammatically illustrate the Normal-
ized Percolation Range (NPR). (a) Largest cluster size (AL) as a function
of temperature (T) was plotted. d2AL/dT

2 (shown in blue) at each ther-
mal threshold was computed to find the inflection points. The range where
rapid decrease in the largest cluster size takes place is referred to as the
Percolation Transition Range (PTR). PTR is then divided by the total
range to obtain the Normalized Percolation Range (NPR) for each city.
(b,c) The same is illustrated for Jakarta and Guangzhou, respectively.
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of the percolating cluster (Figure 3.9h) resulting in a narrow NPR (Figure 3.9i,j).

As the 90th percentile thresholds in these cases fall outside the NPR Figure 3.9j),

exponential tempering is observed. In such cases, from the perspective of the size

distribution of heat islets, fewer and smaller heat islets are captured as the thermal

threshold is increased. Therefore, an exponential tempering can be interpreted as a

reduced probability of encountering large heat islets of higher temperatures.

3.3.3 Spatial organization (Lacunarity)

Fractal surfaces with the same aggregated iso-line fractal dimensions can look very

different depending on how the islets are located in space with respect to each other.

Popular metrics such as root mean square distances work well for Gaussian systems,

but for fractal landscapes, a metric of spacing called lacunarity is better-suited [60].

Lacunarity (represented as Λ), a word derived from the latin word “lacuna” which

means holes or gaps, is a scale-dependent measure of the gaps between heat islets [21].

The ‘gliding box counting’ algorithm [61] was adopted for calculating Λ, which is

described here. First, using the thermal thresholding technique (section 2.3), the LST

maps were converted to a binary map of heat islets where each pixel with T > Tthr is

assigned the value 1, and others are assigned 0. Then, square boxes of increasing size

(1 < r < Acity) are placed on a corner of the binary map and within each box size, the

number of occupied pixels (value=1 corresponding to the islets) are measured. The

number of occupied sites is referred to as the box mass. The box was then moved one

column to the right, and the box mass was again counted. This process was repeated

over all rows and columns, producing a frequency distribution of the box masses. The

number of boxes of size r containing S occupied sites were designated by n(S,r) and

the total number of boxes of size r by N(r). This frequency distribution was converted

into a probability distribution: Q(S, r) = n(S,r)
N(r)

. Lacunarity is calculated as per the

following equation for each box size, r.
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Figure 3.11. (a) Lacunarity curves of all cities (in grey) and the four
archetype cities (in colour) shown on a log(Λ) vs log(r) plot. The cities
with a concave downwards shape in the upper side of the diagonal indicate
larger and more aggregated gaps, whereas cities underneath the curve
indicate a more uniform dispersed pattern of islets and smaller gaps. (b)
Histogram of Lacunarity scores (Λscore) of all cities (mean = 0.04, s.d. =
0.38).

Λ(r) =
V ariance[Q(S, r)]

Mean[Q(S, r)]2
+ 1 (3.4)

While the absolute values of Λ offer little insight, the utility of lacunarity analysis

is in examining the rate of change of Λ as a function of r. Therefore, as a final

step, a graph of Λ(r) vs r on a log-log scale is plotted for analysis. The presence

of spacing corresponding to a length scale, r is indicated in the slope of Lacunarity

curves as shown in figure 3.11. The two extremes of lacunarity curvature can be best

conceptualized as a chessboard-type homogeneously dispersed structure of small-scale

spacings (shown by a dashed line on the lower edge of 3.11a), and a single contiguous

cluster with a single contiguous mass of “spacing” surrounding it (shown by the

dashed line on the upper edge of 3.11a). For fractal surfaces, however, as gaps of all
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spatial scales are present, the portions corresponding to the steepest slopes should be

interpreted as the dominant scale of spacing.

As the differences in the spatial organization of heat islets are most apparent at

higher temperature thresholds, here, we characterized the spatial structure obtained

at the 90th percentile of LST for all cities. In other words, the total islet area under

consideration corresponds to the hottest 10% of the total city area. The largest box

size taken under consideration is normalized from 0 to 100 to account for the variable

sizes of cities. Note that the curvature of the Lacunarity curve was unaffected by

these transformations.

Lacunarity curves for the four representative cities discussed in the previous sec-

tion are highlighted (in colour) on top of other cities (in grey) in figure 3.11a. Cities

with larger and aggregated heat islets also result in aggregation of gaps, as can be

seen in case of Lagos and Jakarta Figure 3.8c). The lacunarity curve for these cities

lay above the diagonal. Conversely, a dispersed spatial structure of the heat islets

manifests as smaller spacings, such as Chicago and Guangzhou (Figure 3.8d) and the

lacunarity curve falls under the diagonal. We assign a single score (Λscore) to quantify

the convexity of the curves in Figure 3.11a such that positive scores indicate larger

spacing and vice-versa. This is achieved using the following empirical equation:

log10
(
Λ(r)

)
=

(
1− log10(r)

2

)2Λscore

(3.5)

where constants 1 and 2 are used to fix the end points of the curve at log(Λ(r)) = 1

and log(r) = 2, and the exponent, Λscore is scale-independent measure of the shape of

the lacunarity curve (See Methods section). The cities have Λscore ranging between

-0.9 to 0.6, and distributed normally (Figure 3.11b).

Therefore, in this framework, the complex spatial organization of heat islets can

be quantified and compared using a single metric, Λscore. Note that a bi-modal

distribution corresponding to the two distinct classes was not observed. Rather,

Λscore was normally distributed around a mean value close to zero, indicating that

most cities display a balance between the two extreme cases.
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3.3.4 Intensity distribution

Analogous to the UHI Intensity, I introduce a “heat islet intensity” metric, where

instead of setting rural temperature as a benchmark to study excess urban heat,

the thermal threshold is used as a reference. The islet intensity, ∆T , is defined as

the difference between the mean temperature of each islet and Tthr. Figure 3.12a

shows the heterogeneity of their mean islet intensity for the city of Boston. At the

percolation threshold corresponding to Tthr = 19◦C, the set of heat islets each display

a different value of ∆T . Within this set, larger islets have higher temperatures (Figure

3.12b), which is also observed at a city scale, where the UHI Intensity scales up with

log of city size (indicated using population) [62]. The probability distribution of ∆T s

captures the question: “How much hotter are the islets than the threshold used to

define them?” and serves as a complementary metric of thermal variability across

heat islets.

Figure 3.12. (a) Map of heat islets obtained for the city of Boston at
percolation temperature (19◦C, in this case) with colour representing the
islet intensity (∆T ) above the threshold. Please refer to figure 3.2b for
the original LST map of Boston. (b) Scatter plot of heat islet sizes and
intensities (∆T ) shows the scaling of islet intensity with the log of islet
size. The red line demonstrates the linear regression line corresponding
to the following equation:∆T ∝ log(a)0.43;R2 = 0.4)
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Figure 3.13. Scatter plot showing the correlation between mean islet in-
tensity and its standard deviation. The solid line represents a slope (α)
of 1 corresponding to an exponential distribution. Two additional dashed
lines corresponding to the mean islet sizes (Figure 3.6) with α = 1.64
(top) and poisson distribution with α = 1/2 (bottom) are drawn.

For each set of islets obtained at a few thermal thresholds, mean and variance

of ∆T values are estimated. The fluctuation scaling analysis of ∆T reveals that the

fluctuations (std. devs.) are equal to the mean, indicating a scaling exponent α = 1,

which corresponds to an underlying exponential distribution (Figure 3.13). Unlike

the fluctuation analysis of size distributions (Figure 3.6), no discernible pattern as a

function of Tthr is observed. Expressed as an exceedance probability, the exponential

distribution can be written as:

P (∆T ≥ x) ∝ 1− e−λx (3.6)

where the probability of an islet intensity, ∆T , exceeding a value x is represented by

an exponential distribution characterized by λ.

The exponential distribution obtained for each city at their respective percolation

thresholds are shown visually with the aid of an exceedance probability plot drawn
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on semi-log axes (Figure 3.14a). Note that unlike the fractal dimension and islet size

distribution, the islet intensity distributions vary widely across the cities. In figure

3.14b, the same is shown on a linear scale for all cities (in grey), with special empha-

sis on the 4 representative cities from figure 3.9. Lagos and Jakarta (shown in blue

Figure 3.14. (a) Exceedance probability plots of islet intensities for all
cities are shown on a semi-log graph with each color corresponding to a
single city. This figure serves to illustrate the varibility in pdfs across
all cities. (b) The exponential pdfs of ∆T for the four archetype cities is
shown on a linear graph at their 90th percentile thermal thresholds, respec-
tively. The same for all other cities are shown in grey in the background.
(c) Histogram of rate parameter λ (Eqn. 3.6) with mean = 2.25K−1. (d)
Scatter plot of λ and area where each point represents one city. Yellow
dashed lines highlight the converging behaviour of λ with increasing area.
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and green respectively) have a steeper exponential decaying rate than Chicago and

Guangzhou (shown in orange and red), which drastically reduces the probability of

local thermal extremes within their heat islets. This difference in rate parameters can

have significant repercussions in terms of extreme temperatures. While the probabil-

ity of a heat islet being hotter than the mean by 1◦C is almost zero for the first two,

the likelihood increases to roughly 20% for the latter two (Figure ??a).

The rate parameters, λ, across cities display a log-normal distribution with a

mean = 2.25 K-1 and s.d. = 1.47 K-1 (Figure 3.14c; see Table S2 for a complete

list). Furthermore, it shows convergence to the mean with increasing city size as well

(Figure 3.14d). By definition of exponential distributions, mean of the pdf = 1/λ,

which can be interpreted as the representative islet intensity for a given city. Higher

values of 1/λ correspond to an increased probability of higher temperatures within

the islets. Since, this pattern is consistent across all cities, a single metric, λ, can be

used as a measure of intra-urban thermal heterogeneity. Furthermore, at a thermal

threshold corresponding to the rural background temperature, this corresponds to the

conventional metric of mean Urban Heat Island Intensity [4].

3.4 Synthesis of islet characteristics

In summary, here, I show that the spatial structure of Surface Urban Heat Is-

land (SUHI) is strongly fractal for 78 diverse global cities. As a result, it can be

conceptualized as a collection of intra-urban heat islets that occur as local heat

clusters within the cities. The heat islets have remarkably similar spatial structure as

characterized by the fractal dimension (D), as well as a power-law size distribution

with exponent, β at the percolation threshold. This finding is rather surprising given

the diversity of geographic, and socioeconomic constraints in the population of cities

studied. This commonality indicates that despite the diversity in urban form and

function across the world, the urban temperature patterns are different realizations

with the same aggregated statistical properties. Difference among cities become ev-
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ident at higher thermal thresholds, where deviation from power law is observed in

the form of an exponential tempering (c). Further research into the relationship be-

tween urban morphology and the exponential tempering is discussed in section 4.1

which can provide some useful insights on urban design solutions for intra-urban heat

mitigation.

The narrow distributions of scaling parameters and their convergence are also

relevant to model the heat exchange between hot areas and their colder surroundings

[4]. Current numerical weather prediction models, such as Weather Research Forecast

(WRF) [11], use gridded data formats and, as a result, the perimeter of any heat

islet is resolved to the minimum resolution (about ∼ 1 − 9 km2). This results in

an under-estimation of urban perimeter boundary which is important for modeling

heat exchange across the urban-rural transect. A fractal perimeter of iso-thermal

contour lines indicates a larger perimeter of contact with cooler regions, which in

turn enables a larger heat flux to dissipate from the heat islets. The inclusion of

a correction factor to simulate a rough and convoluted perimeter (with D ∼ 1.33)

may improve the modeling of such processes. Furthermore, as the scaling metrics are

rather narrowly distributed across diverse cities, we expect such a correction factor

to be extendable across all urban areas.

As the pdf describing their distribution follows an exponential distribution, the

intensity parameter (λ) can be used to characterize the heterogeneity of thermal ex-

tremes and compare across cities. An interesting finding is that while the cities cor-

responding to an exponential tempering have a significantly smaller area that attains

higher temperatures, they are also more likely to experience extreme temperatures in

more of the heat islets. This brings us to question, “which one is better?” More on

this paradoxical observation will be discussed in section 4.1.

The scaling observed in the islet size and intensity distributions are analogous to

the scaling laws known for areas and mean stages of lakes and wetlands [41, 47] and

can be used to build the empirical basis for an investigation into the scaling theory of

intra-urban heat islets. The proposed framework of identifying extreme heat clusters
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by using incremental thresholds can be used to describe the patterns of extreme heat

clusters in any thermal landscape. For instance, for exposure assessment of urban

communities to heat, analysis of surface temperatures itself is not enough. Heat-

stress assessment requires the joint consideration of air temperature and humidity [63].

Despite the difference in absolute values of UHI and SUHI, similarities between spatial

patterns of the surface and air temperatures have been reported [64, 65]. Therefore,

techniques of scaling based on SUHI patterns can be extended to spatial clusters of

UHI as well. The additional challenge is to better understand the superimposition of

intra-urban heat islets with the spatial distribution of vulnerable communities, such

as the poor in mega-cities, the elderly, or critical urban infrastructure such as roads,

power grids, and communication networks [66,67].

Lastly, while the commonalities in the metrics derived here do not help in answer-

ing specific questions pertaining to a particular city, the convergence of the metrics

with increasing size suggests a common attractor for all cities. Both λ and c were

observed to decrease as the cities grow in size indicating an increased likelihood of

occurrence larger and hotter heat islets for mega-cities indicating that their residents

are at greater risk of extreme heat stress impacts. Therefore, while the effect of di-

verse urban morphologies is evident in smaller cities, in the mean, the larger cities

are alike. This begs the question if this is an inevitable or a desirable trajectory

for growing cities? Identifying the common statistical properties of the heat islets

across diverse cities provides a means to escape from the geographical malaise of the

uniqueness of place, and provides a step towards the improved characterization of its

complex thermal landscape.
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4. INFLUENCE OF URBAN AND CLIMATIC DRIVERS

Several factors influence UHI Intensity. The reduction of evaporative cooling in urban

areas is generally thought to be the most dominant factor. Excessive anthropogenic

heat release is another added input to the urban energy balance. Buildings and

other artificial materials store more radiation energy in the daytime than can natu-

ral vegetation and soil, and release some of the stored energy at night, contributing

to night-time UHI [68]. Energy redistribution through convection between the sur-

face and the atmospheric boundary layer can either increase or reduce UHI Intensity,

depending on whether the efficiency of convection over urban land is suppressed or en-

hanced relative to that over adjacent rural land [69,70]. Finally, an extreme weather

event such as a heatwave can disturb the energy budgets and modify the magnitude of

UHI Intensity. Although these concepts have been known for some time, a quantita-

tive understanding of their relative roles across different climate backgrounds remains

elusive.

Notable studies that have addressed this question have highlighted that back-

ground climate plays a significant role in the UHI Intensity. This was also observed

in my dataset of 100 cities, where cities located in dry desert climates (such as Cairo

and Las Vegas) showed inversion of the UHI effect due to artificial irrigation of city

compared to a hotter and drier rural background. Studies based on Community Earth

System Model (CESM) simulation of the North American cities show that more than

the difference in evaporative cooling between urban and rural areas, the variations in

the efficiency with which urban and rural areas convect heat to the lower atmosphere is

also a key driver of UHI Intensity [71]. Another study that analyzed MODIS-observed

SUHIs of 30000 cities worldwide reported that SUHI Intensities could largely be ex-

plained by the climate type, classified in dry vs. wet regimes using the mean annual

precipitation (P) as an indicator, and the city size, characterized by total population
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(N). For drier regimes (P < 1500mm/yr), SUHI Intensity scales with P as well as

log(N). However, in wet and humid regions such as Singapore, the influence of both

diminishes greatly. Based on these results, the authors suggest that in arid regions,

strategies that enhance evapotranspiration, such as green roofing, are effective ways

to mitigate urban heat while different strategies (for example, increasing albedo or

convection efficiency) will be needed in wetter climates [72].

In this section, I focus on understanding the impact of these drivers on the spatio-

temporal dynamics of the intra-urban heat islets. I approach this question by classi-

fying the drivers into two main classes:

1. Factors pertaining to the urban form and function, such as sprawl or compact

urban forms (discussed in section 4.1)

2. Climatic background of the city and the mesoscale hydro-climatic forcings, such

as heatwaves (section 4.2)

To elucidate the impact of these drivers in isolation, the following questions can

be posed: “if two cities are identical in terms of morphological and anthropogenic

characteristics but are placed in different climates, will they have the same UHI

Intensity?”. Similarly, regarding the importance of urban form, one can ask: “if two

cities, very different in their urban form and function, are placed in the same hydro-

climatic background and subjected to the same mesoscale event such as a heatwave,

will the resultant thermal response vary?” To an urban planner, these inquiries can

reveal how much heat mitigation is possible by urban design alone and for which

climate backgrounds do urban design interventions fail to play a role. This question

is particularly urgent now, as an additional 2.5 billion people are projected to urbanize

by 2050, with over 90% of this increase taking place in developing countries of the

global south.
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4.1 Impact of urban form: Paradox of Sprawling vs Compact heat islets

A version of this section is published in Scientific Reports1.

Cities grow through a combination of parallel and sequential episodes of expan-

sion and densification at different rates [73, 74]. Depending on local preferences

and geographical constraints, neighborhoods are built with different spatial patterns,

from dense downtowns to sprawling suburbs. Factors like topography, coastline, and

intra-urban commuting time constrain expansion, whereas other factors such as local

building laws limit densification. While there are several objective functions such

as commuting travel time distribution, net carbon emissions, and socio-economical

factors which urban form and functions are optimized for, another growing concern is

the aspect of urban heat. From this viewpoint, a natural question follows: “Is there

any optimal trajectory of urban growth that can minimize excessive urban heat?”

There has been a substantial amount of research towards this question that spans

a multitude of spatial scales. At the micro-scale, i.e., within the urban canyon, the

surface temperatures are extremely sensitive to the geometrical details of immediate

surroundings, such as street canyon geometry, sky-view factor, vegetative fraction,

solar access and shading [75–77]. At a neighborhood scale, i.e., from a few hundred

meters to a few kilometers, consistent thermal patterns emerge due to locally homo-

geneous patches of urban form and function [17,18]. Studies investigating local scale

impact of urban form report that high-density urban development leads to higher

local temperatures since many of the mechanisms producing the UHI effect are often

most pronounced within dense urban cores [19, 78]. In contrast, several others note

that sprawling urban development may result in worse thermal conditions since it

results in more land clearances, impervious surfaces, and excess heat generated per

capita when compared to higher density development [79,80]. Furthermore, Debbage

and Shepherd (2015) [14] show that for air temperature based UHI assessments, re-

1Shreevastava, A., Bhalachandran, S., McGrath, G. S., Huber, M., & Rao, P. S. C. (2019). Para-
doxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while
enhancing local extremes. Scientific Reports, 9(1), 1-10.
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gardless of the urban density type within a patch, the relative spatial contiguity of

these land use patches is a critical variable as well. As a result, we do not have a clear

consensus on the optimal urban form and function to minimize excess heat locally as

well as at a city-scale.

Figure 4.1. Lacunarity analysis for two separate Landsat derived LSTs of
the four archetype cities is conducted. Lacunarity Score (Λscore) obtained
for both dates are presented in the table below. Note that while there is
a slight difference in the actual Λscore, the curves still serve to illustrate a
consistent pattern of spatial organization.
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Here, I focus on the impact of spatial distribution of the heat islets on the local

and city-scale heat island. I use the metric of Lacunarity to quantify the degree of

sprawl and compactness of heat islets. Note that the terms “sprawl” or “compact-

ness” in this context do not refer to the spatial organization of urban assets such as

buildings or impervious areas. Instead, they refer to the overall organization of heat

islets across the city. Recall that negative Λscore correspond to small and dispersed

(in other words, sprawling) heat islets, and positive Λscore corresponds to large and

contiguous (compact) heat islets. One caveat here is that as temperatures are tempo-

rally variable itself, the spatial organization of heat islets may change significantly as

well. However, in figure 4.1, I show that while there is some change in the Lacunarity

Score (Λscore) corresponding the change in LST values (obtained using two separate

Landsat images), the indicator still reveals the underlying organization (compact vs.

sprawling) that stays consistent. Therefore, Lacunarity should be interpreted as a

multi-scale organization indicator, wherein, the value of the index lies in its slope

with respect to the spatial scale (box size, r), and therefore, the exact Λscore should

not be taken too literally. In particular, the impact on two key properties: islet size

and intensity distribution is discussed in the following sections (sections 4.1.1 and

4.1.2, respectively).

4.1.1 Lacunarity vs Size distribution

Dense urban growth occurs when there is increased in-fill construction within the

existing high-density built-up area. Such a process is often driven by economic and

socio-political factors that lead to the settlement of new urban regions close to the

city center [81]. This is akin to the preferential attachment phenomenon observed in

complex networks where a new node is more likely to agglomerate at the ”hub nodes”

with the highest density of edges [82]. Densification within urban areas would result in

hot regions getting hotter and larger, thereby resulting in power law size distributions

of heat islets [54]. Urban expansion in the form of sprawl, on the other hand, occurs at
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Figure 4.2. Scatter plot of Normalized Percolation Range (NPR) and
Lacunarity score (Λscore). This figure illustrates the classification of cities
into the 2 classes based on Lacunarity Score and the type of transition
(Critical vs. smooth) associated with each.

the periphery of urban areas in the form of growing suburban regions. This, in turn,

would lead to the emergence of heat islets that are spread more evenly throughout

the city, often interspersed with local heat sinks. In the size distribution, this should

manifest as a fast decaying tail in the form of an exponential tempering [83]. As a

result, the two classes of size distributions discussed in section 3.3.2, must correspond

to sprawling and compact heat islet organization. Similar effects of urban form are

observed on the power law distributions of several other urban infrastructure systems

such as roads and sewage networks [25,55,84].

To test this hypothesis, we compare the relationship between Λscore and the Nor-

malized Percolation Range (NPR; figure 3.10), and by extension, probability of expo-

nential tempering at higher thresholds. We find that the dense cities associated with

an aggregated heat islet structure (positive Λscore) display a larger NPR, referred to

as a smooth transition (≥ 0.25; Figure 4.2). Whereas, sprawling and disaggregated



46

cities (negative Λscore) have a smaller NPR, referred to as a critical transition (< 0.25;

Figure 4.2) and consequently an exponential tempering of the power law tail (Figure

4.2). An exception to this pattern are cities that show a negative Λscore despite cor-

responding to an NPR ≥ 0.25 (shown in yellow in Figure 4.2). Upon examination,

we found these to have a significant river flowing right through them. Under such a

scenario, the percolating heat cluster is divided structurally into two halves by a heat

Figure 4.3. Some examples of anomalous cities with a river flowing be-
tween them, resulting in a negative Λscore and large Normalized Percola-
tion Range (Figure 3b) are shown here. (a) Land Surface Temperature
maps for Bangkok, Dusseldorf, Kolkata, and Montreal. (b) Largest cluster
size (AL) as a function of thermal threshold shows the sharp decrease in
cluster size at lower thresholds which is not corresponding to a rise in the
size of other clusters. This is because the largest cluster merely breaks
into two in these cases due to a central river (at low temperature. As a
result, these are not classified as a critical transition as per percolation
theory.
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sink (the river), irrespective of the threshold (Figure 4.3). This results in a negative

Λscore due to the spacing introduced by the river despite an aggregation of heat islets

on either side of the river. Thus, Figure 4.2 serves to quantitatively affirm the corre-

lation between the spatial configuration of cities (dense versus sprawling) and the two

classes of size distributions of the heat islets. From an urban planning perspective,

this indicates a significantly reduced probability of encountering large heat islets for

sprawling cities.

4.1.2 Lacunarity vs islet intensity distribution

I now focus on the heterogeneity of heat contained within the heat islets. To

address this, we first use the well-known indicator of excess heat in urban areas, the

SUHI Intensity in the traditional sense, i.e., the difference between the mean urban

and rural temperatures [85] to evaluate the average excess heat within cities. We find

that larger Λscore values (representative of aggregated heat islets) tend to be associated

with higher SUHI Intensity (Figure 4.4). This suggests that sprawling cities, with

a larger number of heat sinks to match the heat sources, are a better configuration

for reducing the overall SUHI Intensity. This outcome is also in agreement with

our conclusions based on the size distribution of extreme heat islets as well as prior

research based on the discontiguity of urban patches derived from the National Land

Cover Dataset (NLCD) for US cities [14].

For a more comprehensive assessment of the thermal variability within cities, how-

ever, we compute the Heat Islet Intensity distribution of the excess heat (∆T ) within

each islet. Recall that lower values of λ correspond to an increased probability of

higher temperatures within the islets. By extension, 1/λ, which is the mean islet

intensity, is directly proportional to ∆T variability across islets. 1/λ is represented

as the color bar in Figure 4.4. From heat islet analysis, we find that while cities

with a higher degree of sprawl have a lower mean temperature, for the same SUHI

(Y-axis in Figure 4.4), cities with lower Λscore also experience a higher likelihood of
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Figure 4.4. A scatter plot of mean SUHI Intensity, defined as the dif-
ference between mean urban and rural temperatures versus Lacunarity
Score (Λscore), is shown. A weak positive correlation (R2 = 0.344) is de-
tected shown as dashed regression line. The color, as well as the size of
the marker, indicates the inverse of rate parameter (λ) from Equation 3.6,
which is equal to the mean Heat Islet Intensity for each distribution. In-
creasing size indicates a likelihood of higher temperatures within the heat
islets.

encountering thermal extremes. For example, dense cities such as Lagos and Jakarta

have a steeper exponential decaying rate than Chicago and Guangzhou, which dras-

tically reduces the probability of local thermal extremes within their heat islets. As

the larger heat islets are often associated with the highest islet intensity as well, this

can result in significantly large areas of extreme heat, especially for megacities like

Guangzhou and Chicago. Such a finding reveals that while mean SUHI Intensity

decreases with sprawling cities, for the same mean, they also experience higher local

thermal extremes. As a result, in addition to the mean SUHI Intensity, it is essential
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to characterize the thermal heterogeneity within the cities, and the islet intensity

distribution can be adopted as a complementary metric.

4.1.3 Size vs Spacing: Intra-urban differences

In this section, I take a detour to explore the various combinations of size and

spacings that yield diverse heat islet configurations. Heat islet maps for all cities are

obtained at a 90th percentile threshold to focus on the spatial structure of hottest

10% of each city for this experiment. Two scale scale-independent metrics to char-

acterize size: Mean (AM), and Largest (AL) Relative Heat Islet Sizes calculated as a

percentage of the total city area and a more intuitive indicator of islet sizes than β.

First, we observe that there is a weak positive correlation (R2 = 0.4) between AM

and spacing of the heat-islets (Figure 4.5a). This is expected because a positive Λscore

as well as a high AM corresponds to dense cities, and a negative Λscore and low AM

corresponds to sprawling cities. More noteworthy is the horizontal spread about the

diagonal, which represents different spatial configurations (characterized by Λscore)

that are possible for the same AM . This spread may be explained by AL, which

increases with Λscore (illustrated using marker size in Figure 3.11d; Supplementary

Figure 5). In the bottom-left, both AM and AL are small. This is because negative

Λscore corresponds to sprawling cities where large clusters were absent in the islet-

size distribution (as inferred from the exponential tempering of power law). In the

bottom-right, however, the dominance of the largest aggregated islet results in a

positive Λscore despite a low AM value. This kind of a phase space plot for size

and spacing may be useful to gauge the current spatial structure of a given thermal

landscape and to determine mitigation strategies towards a more desirable state.

The size vs. spacing phase plot can also be used to explore local differences within

a city’s boundaries. Here, I start with the four archetype cities and crop concentric

circular subsets with an increasing radius starting from the geographical center of

each city. Analyzing where each subset lies on the phase space plot as a function of
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Figure 4.5. Scatter plot of Mean Relative Heat Islet Size (AM) versus
Λscore. Additionally, the largest islet size (AL, as a percentage of the total
city area) is indicated using the marker size. These two metrics indicate
the size distribution of the hottest islets occupying the hottest ten percent
of the city area. On the sides, corresponding to each quadrant of the phase
space, schematic diagrams of the spatial structure of heat islets are shown
to exemplify the various spatial configurations that are possible for cities.
Since AM scales inversely with the total city area, the top two schematics
are drawn to represent smaller cities.

the cropping radius can reveal interesting patterns of sprawl vs. compactness within

radial zones of a city.

First, the scatter plot of total area under consideration is plotted against Λscore in

figure 4.6a for all cities (in grey), as well as the circular subsets of the four archetype

cities (in colour). We note that both types of cities start with a positive Λscore which

indicates compact structure of heat islets. As the cropping radius increases, more

heat islets are captured across the region and the points move towards the left side,

indicating sprawl. In case of Guangzhou (in red), this trend continues as more and

more heat islets are encountered even at the peripheries resulting in a gradual shift

to negative Λscore. The shift towards sprawl appears to be balanced for Chicago (in
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orange) where above a certain cropping radius, the Λscore doesn’t change. This could

indicate expansion and densification in equal parts. On the other hand, for compact

cities (Jakarta in green and Lagos in blue) an inflection point occurs after which the

trajectory sharply turn towards a more positive Λscore. This is because the contiguous

heat islets are aggregated towards the city center and increase in radius only adds to

more spacing, thereby increasing Lacunarity.

These trajectories are then studied in the context of the phase space plot (Figure

4.6b). We first note that all the cities start in the same region, but as the urban area

increases, the influences of densification and expansion becomes increasingly evident.

The marker size in Figure 4.6b represents the total area in consideration. As AM

is inversely proportional to total city size, the trajectories are flipped between the

two plots. Consistent with the previous plot, the sprawling cities move along the

diagonal, whereas, the dense cities show a sharp increase in Λscore beyond certain

cropping radii. Thus, in the phase plot, the movement along the diagonal from top-

Figure 4.6. Scatter plot of Area Size vs. Spacing for all cities (gray
circles) with subsets of the four megalopolises - Lagos (Blue triangles),
Jakarta (Green squares), Chicago (Orange circles), and Guangzhou (Red
diamonds). For each of these, the city area is cropped at the center for dif-
ferent radii. The marker sizes represent the total area under consideration
for each subset.
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right to bottom-left may be interpreted as continued expansion, while the shift of

the diagonal represents the development of multiple hubs or polycentric structures

perpendicularly away from the diagonal may be interpreted as densification.

Even though megacities converge to a similar spatial pattern as a whole [86],

the neighborhoods that agglomerate to form the megacity still display the variability

consistent with that observed in smaller cities. Thus, larger cities can be conceptu-

alized as a collection of heterogeneous neighborhoods, but local-scale variations are

overwhelmed by larger-scale patterns. These results are in accordance with topolog-

ical analyses of urban drainage and water supply infrastructure networks in diverse

cities [25, 55]. Thus, the phase plot of AM and Λscore may be used as a useful metric

for city planners to gauge the current extent of expansion and/or densification and

to determine mitigation strategies for future trajectory from the current state.

4.2 Impact of a heatwave

Heatwaves (HW) are usually defined as anomalously hot periods that last several

consecutive days, resulting in higher levels of heat-related discomfort, diseases, and

unusually higher death toll [87]. Despite being a slow and silent killer, HWs claim

more lives every year than all the other meteorological hazards combined2. Some of

the deadliest and most well-documented examples in the last few decades have been

the 2003 European HW and the 2015 Indian HW, which claimed thousands of lives.

Such cases are on the rise as HWs get more intense, more frequent, and longer-lasting

under the changing climate [1, 88].

Moreover, a disaster like a HW has vastly different impacts on different socio-

economic population groups. As an individual’s problem, extreme heat can be com-

bated rather easily with excessive air-conditioning. While the rampant use of air-

conditioning in the affluent parts of the cities cool down the buildings internally, it

leads to an excess emission of anthropogenic heat flux outside, further increasing the

2Source: https://www.weather.gov/hazstat/

https://www.weather.gov/hazstat/


53

ambient temperatures for those who are exposed and vulnerable to it. Thus, the

consequences of heat stress are borne disproportionately by the urban poor. Apart

from the loss of human life, as power consumption surges, power grids become prone

to cascading failures during HW episodes, thereby increasing the probability of black-

outs [89]. In the 2003 HW over New York City (NYC), for instance, the mortality

rate increased by 25% as a result of the subsequent blackout [90]. On a larger spatio-

temporal scale, HWs cause damage to vast expanses of forests, croplands, water re-

sources, and hydro-climatic balance. This puts further pressure on urban systems by

rapidly depleting ecosystem resources in the short term as well as causing the uprooted

rural populations to migrate into cities as climate refugees in the long term [91].

There are some consistent meteorological features that characterize HW events.

They are generally the result of trapped air when anti-cyclonic circulation patterns

result in a high-pressure system on top of a region (often thousands of Kms in size)

and prevents effective circulation of air and dissipation of trapped heat [92]. However,

there is no precise threshold that defines it. Some descriptions intrinsically include

the human health aspect as they are defined as extreme hot periods, which results

in higher human mortality. However, people in different climatic background get

acclimatized to their local thermal extremes, either by natural conditioning or by

artificial measures of insulation such as building heating and air-conditioning. For

instance, the National Oceanic and Atmospheric Administration (NOAA) issues a

heat stress warning above 33◦C for some regions in the US, whereas in the tropical

regions of India, up to 40◦C does not warrant a warning3. In the absence of a standard

definition, the use of percentile-based thermal thresholds based on local historical

records of nighttime minima or daytime maxima has been recommended [87].

The interaction between these two extreme heat phenomena: HWs and UHIs, has

attracted a lot of scientific interest over the last couple of years [68]. A key driving

question has been: “how does a HW modify the UHI Intensity”? Prior research

has shown that it results in a synergistic union where the sum is greater than the

3Source: https://www.weather.gov/safety/heat-index

https://www.weather.gov/safety/heat-index
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parts, and higher amplitude of UHI Intensity is observed during a HW period [69,93].

However, the contrary is also observed in some cases where the UHI Intensity had

reduced [94,95]. Here as well, we focus on the interaction between the two processes,

which a specific focus on the spatio-temporal heterogeneity of urban thermal extremes.

I use the Weather Research Forecast (WRF) model to simulate the 2018 European

HW focused on the city of Paris because WRF simulates the spatio-temporal scales

of both HW and UHI. Details of the case study selection are given in section 4.2.1,

and the WRF model specifications are given in Appendix E. I then examine three key

properties: (i) the UHI intensity (surface and air temperature-based, Section 4.2.2)

(ii) the variance of intra-urban temperatures and (iii) the 2-D power spectral density

of the thermal map is evaluated, which serves as an indicator of spatial organization.

(Section 4.2.4). Note that due to the lower resolution outputs obtained from WRF

(∼ 1 km compared to 90 m from Landsat), we can no longer apply the framework of

thermal thresholding to obtain sets of heat islets. As an alternative, the 2-D power

spectral density of the thermal map is evaluated, which serves as an indicator of

spatial organization.

4.2.1 Data: WRF simulation of the European HW 2018

Europe has been experiencing record-breaking summers of high heat every year

and the summer of 2018 experienced a series of HWs over various regions. Here, I

focus on the metropolitan region of Paris to study the impact of HW on its UHI.

For this investigation, the air temperatures obtained from the Reanalysis dataset for

2018 are compared against the expected average temperature for the day based on the

reanalysis dataset of air temperature over the last decade to highlight the anomalously

hot periods. The ‘expected temperature’ for each day during the period of interest

was calculated by averaging the air temperature values from 2006 to 2016 for that

day and then applying a 7-day smoothing (Figure 4.7). Based on this, a sample set of

11 days corresponding to two distinct HW episodes from July 23rd to July 27th and
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Figure 4.7. (a) Time series of Air temperatures in the Paris metropolitan
region during the year of 2018. The air temperature dataset was obtained
from NCAR’s Reanalysis data. The hottest periods of the year corre-
sponding to July 25th - August 5th are selected here as a HW event. (b)
Thermal anomaly experienced in 2018 calculated as the difference between
2018’s reanalysis air temperature and the baseline temperature, which was
calculated as the average temperature by day over the reanalysis dataset
over Paris from 2006 to 2016 and then applying a 7-day smoothing. (c)
The same time period in 2017 is simulated as well as a representative of
non-HW conditions.

then from August 3rd to August 7th (Figures 4.9 and 4.10) are identified as HW days.

The days after the two episodes were not used as a representative of non-HW days to

avoid any effect of the residual heat. Instead, the same time period corresponding to

the HW days but from the previous year, 2017, was used as a representative baseline

of no HW event.
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Paris was chosen because it is a large city with conspicuous intra-urban variability,

and the UHI effect is captured in the WRF environment (resolution ∼ 1 km) as well

as its distance from the coast that minimizes the effect of coastal winds in the said

interaction [89]. A triply nested domain structure is designed such that the small-

est domain (resolution = 1 km) is centered on the city of Paris, mid-sized domain

(resolution = 3 km) covers several other European cities such as London, Frankfurt,

Amsterdam, etc., and the largest domain (resolution = 9 km) encompasses western

Europe (Figure 4.8a). The simulations are driven by ERA-interim reanalysis data

provided by European Centre for Medium-Range Weather Forecasts (ECMWF)4 at

6-hour intervals as atmospheric boundary conditions and the surface boundary con-

4Source: https://rda.ucar.edu/datasets/ds627.0/

Figure 4.8. The three nested domains used in WRF simulation. The do-
mains’ horizontal resolutions are 9, 3, and 1 km (from largest to smallest),
respectively. Domain 3, centered over Paris, has 163 163 horizontal grid
points. (b) Land Use Land Cover map of Domain 3. The urban area of
Paris is shown in red.

https://rda.ucar.edu/datasets/ds627.0/
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ditions are derived from MODIS (Figure 4.8b). The resultant output has a temporal

resolution of 3 hours for domain 1, and 1 hour for domains 2 and 3. The simulation

was run from July 20, 00 GMT, to August 9, 00 GMT, and a 24-h model spin-up

period was allowed before the data was collected for analysis. For other details about

the WRF simulation, please refer to Appendix E.

4.2.2 Urban Heat Island Intensity

The spatio-temporal dynamics of air temperature (estimated at the height of 2

meters above the street level and referred to as T2 in WRF) as well as surface tem-

perature (estimated a representative skin temperature for all urban surfaces within

a grid cell, LST) is discussed here. While the two fields are correlated, they show

different diurnal patterns (Figures 4.9 and 4.10). During the daytime, Surface Tem-

perature is higher than air temperature due to incoming solar radiation, whereas the

air temperature is higher during nighttime due to the delayed outgoing longwave as

well as anthropogenic heat fluxes. This is illustrated as a scatter plot between the

two variables, where each point represents an individual grid cell in domain 3 (Figure

4.11). During the night time (e.g., 11 pm, 2 am, and 5 am), the points lie above

the dashed 1:1 line indicating that T2 > LST , whereas during the daytime (e.g., 11

am, 2 pm, and 5 pm), the points shift significantly below the 1:1 line indicating that

LST > T2. Moreover, a wider horizontal spread shows higher heterogeneity in LST

during day time with a distinct cluster of points emerging on the right that corre-

sponds to urban areas. This can also be seen as the distinctly hotter urban region

that appears during daytime in the LST plots (Figure 4.10), and during nighttime in

the T2 plots (Figure 4.9).

Figures 4.12a and 4.12b served to illustrate the time series of averaged LST and

T2 over domain 3, as well as UHI Intensity calculated as the difference between

mean urban temperature (corresponding to all urban classes) and rural temperature

(estimated as an average over all other types of surfaces except water). First, we
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Figure 4.9. Example of spatio-temporal pattern of air temperatures (T2)
over domain 3 shown at three-hourly intervals for ten days. The HW
period is corresponding to higher daytime temperatures from August 3rd

to August 7th. Note that the city in the center of domain becomes visible
during the nighttime as T2-based UHI Intensity is the strongest during
nighttime.
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Figure 4.10. Example of spatio-temporal pattern of surface temperatures
(LST) over domain 3 shown at three-hourly intervals for ten days. The
HW period is corresponding to higher daytime temperatures from August
3rd to August 7th. Note that the city in the center of domain becomes
strongly detectable during the daytime as LST-based SUHI Intensity is
the strongest during the daytime.
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Figure 4.11. Scatter plot of air vs surface temperatures within Domain
3 is shown at a three-hour interval for 2 days. Here, a range of 12◦C
is maintained on both axes and the dashed diagonal line indicates 1:1
correlation line. The colorbar corresponds to the density of points in a
region.

observe the UHI Intensity to be the strongest during night time with an inversion

effect (negative UHI Intensity) during the daytime. Whereas, SUHI Intensity is also

present during the nighttime and intensifies further during the day. The impact of

HWs on both of these metrics can be most strongly and consistently observed during

the nighttime. To illustrate that, the UHI Intensities are averaged by each hour across

the five days, to generate the hour-specific average UHI Intensities (Figures 4.12c and

4.12d). Such a representation helps in ironing out the anomalies and focusing on the

consistent diurnal trend alone. We observe that the UHI Intensities for both fields

decrease in the HW scenario by almost 1◦C on average during the night time. Thus,

these findings in contradiction with the reported synergistic union between HWs and

UHIs in some cases. The surface energy budget and soil moisture availability are

explored in section 4.2.3 to explain the lack of synergy.

4.2.3 Surface energy budget analysis

Prior work on UHI-HW interaction has identified the difference in storage heat

flux and moisture availability during a HW as a main driver of the synergistic outcome
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Figure 4.12. (a,b) Domain averaged LST and T2 over the five days (Au-
gust 3rd, local midnight to August 8th) are shown as light-colored lines
in the background. Hour-specific average mean LST and T2 are over-
laid on the respective plots as dark solid lines. Red lines corresponds to
HW (2018) and blue corresponds to non-HW scenario (2017). (c,d) SUHI
and UHI Intensities, calculated as the difference between mean urban and
rural temperatures are shown in the same format.

[70, 89]. Here, I study the surface energy budget between urban and rural areas and

the moisture availability in and around Paris during the HW event. The surface

energy budget of the urban canyon in the absence of significant windy conditions can

be expressed as the following equation.

−Q∗ (= −SW ↓ −LW ↓ +SW ↑ +LW ↑) = QH +QE −QG + ∆QS (4.1)

Here, Q∗ is the sum of all four radiative components, i.e. incoming (↓) and out-

going (↑) shortwave (SW) and longwave (LW) radiations respectively (Figure 4.13).
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SW↓, LW↓, QH , and QE are estimated within the model and provided as a WRF

output variables, whereas SW↑ and LW↑ are calculated using the LULC properties

such as albedo and emissivity. QH and QE are the sensible and latent heat fluxes

respectively which are also given as a WRF output. Lastly, QG is the heat flux going

downwards into the ground, and ∆QS denotes stored energy within the urban canopy

layer. However, these two terms are not distinguished within the WRF environment

and the combined term is referred to as either storage or ground heat flux term in

the literature. Here, I refer to it as storage flux (denoted as QS) and calculate it as

the Residual term in the energy budget. The negative sign in this equation indicates

downward direction. The hour-specific average of each energy flux term is calculated

for urban and rural areas within HW and Non-HW periods of interest and are shown

in figure 4.14.

The incoming SW↓ term is modeled in WRF as a function of latitude and longitude

of the location and the time of year. As a result, SW↓ is exactly the same for

all four cases. The outgoing SW↑ term is calculated as albedo× SW↓. As urban

areas are darker (albedo = 0.15) than the rural surroundings (albedo = 0.20), they

Figure 4.13. The diurnal trend of radiative components and the net ra-
diation (Q*) are shown for an urban area as an example. The data is
obtained by hour-specific averaging over the HW days.
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reflect less SW↑. The LW↓ as well was observed to be the same for urban and

rural areas, however, there was a significant increase (∼ 40 W/m2) for both urban

and rural areas in a HW scenario. LW↑ is calculated as per the radiation equation,

σ × emissivity × LST 4, where σ is the Stefan-Boltzmann constant (= 5.67 × 10−8

W/m2 K4). LW↑ for rural areas is found to be higher than the urban area by ∼ 20

W/m2 in both HW and non-HW scenario. Although the urban LST values are higher

than the rural LSTs especially during daytime (Figure 4.12), a higher emissivity of

rural areas (∼ 0.98) compared to that of urban areas (∼ 0.88) results in higher LW↑

radiations. These terms are added to obtain the net radiation, Q∗ (Figure 4.13). Net

Q∗ over urban areas is higher than rural areas by ∼ 40 W/m2.

Figure 4.14. Diurnal trends for all the components of the surface energy
budget are shown for urban and rural areas (shown in purple and green
respectively). Solid lines indicate HW scenario, and dashed lines corre-
spond to non-HW scenario. The y-axis for each subplot corresponds to
energy flux and has the units of W/m2. Please note that the y-axis for
each variable is scaled differently according to its own maxima and min-
ima. Note that the direction of each flux term is indicated in equation 4.1
are only the magnitude is shown here.
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In another study, an urban site in Beijing and a nearby rural location for a HW

event, in-situ observation towers were used to measure the radiative fluxes [70]. The

results indicate that both the sites received more SW↓ (∼ 150 W/m2) during the

HW event, and the urban site received more LW↓ (∼ 20 W/m2) than the rural site,

resulting in a larger radiative energy input into the urban surface energy budget. The

study also reported an increase in UHI Intensity during the HW, which was attributed

to this additional energy input. However, this phenomenon was not captured in this

WRF simulation.

The net radiation is then partitioned into three terms: Sensible (QH), Latent

(QE), and Storage (QS) heat fluxes. Urban areas usually have a higher sensible heat

flux due to reduction in moisture availability, whereas rural areas have a nearly equal

split between sensible and latent heat flux. The partitioning is best captured using

Figure 4.15. Energy partitioning of the net radiation (black) into sensible
(orange), latent (green), and storage (purple) heat fluxes in W/m2 for
each case as labeled on the plot.
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the metric of Bowen Ratio (defined as QS/QE). Bowen ratio for rural area changes

from a median value of 1.1 to 0.9 under a heatwave scenario which is due to an

increase in QE and a decrease in QS (Figures 4.14f and 4.14g). The same trend is

observed in urban area as well where the Bowen ratio decreases from a median value

of 10 to 8 due to the heat wave. The storage heat flux is larger for urban areas

(by ∼ 40 W/m2). It increases even further under HW by upto ∼ 50 W/m2 during

midday. While figure 4.14 serves to illustrate the difference between urban/rural and

HW/non-HW scenario for each heat flux, figure 4.16 is also presented to demonstrate

the partitioning of net radiation into QH , QE, and QS more clearly. These results

are consistent with the results reported from the observations towers employed in the

Beijing study [70]. The storage flux is associated with SUHI Intensity [89], and the

synergistic effect of HWs is attributed to an increase in storage heat flux [69, 89],

however, the same was not observed here.

In cases where synergy was not observed as well, lack of moisture in the rural areas

is identified as an amplifier of rural temperatures thereby reducing UHI Intensity in

HW scenarios [94, 95]. Here as well, the soil moisture in rural areas was the same as

that in cities.

Figure 4.16. Mean soil moisture (m3/m3) over urban and rural areas
shown for the duration of HW event.
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4.2.4 Spatial organization of heat islets

Islet characteristics such as size and intensity distributions, while applicable to

any spatial scale of intra-urban heat islets, were not statistically feasible to measure

at the resolution of 1 km. As an alternative, the variance and 2-D power spectral

density of the LST and T2 within domain 3 is evaluated as an indicator of spatial

organization.

First, the V ar(LST ) and V ar(T2) is calculated for the regions corresponding to

urban areas only, where the temperature fields follow a nearly Gaussian distribution.

Then, similar to UHI Intensity, the hour-specific variances and the coeffecient of

variation (c.o.v., calculated as V ar/Mean) are estimated, as shown in figure 4.17.

Figure 4.17. Time series of variance of (a) LST and (b) T2 within the
urban areas over the period of interest are shown as light-colored lines in
the background. Hour-specific averaged LST and T2 variances are overlaid
on the respective plots as dark solid lines. Red lines corresponds to HW
(2018) and blue corresponds to non-HW scenario (2017). (c,d) Coefficient
of variations, calculated as Variance/Mean for LST and T2 respectively
are shown in the same format.
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First, we find that the variance V ar(LST ) is higher during the daytime (same as SUHI

Intensity) under normal conditions, but it decreases significantly under HW. The same

is not observed in V ar(T2) plots where the no change in variance is observed. This

is particularly evident in the c.o.v. plots as well (Figure 4.17d), where the c.o.v.

values show no significant impact of a HW on the net variability of T2. Variance,

however, does not offer any information about the size and spacings of the heat islets.

For that, I use 2D Power Spectral Density that extracts the information on variance

contributed by each of the constituent spatial scales.

Power Spectra analysis

In this section, the 2-D Fast Fourier Transform is used to decomposes the LST and

T2 fields (domain 3) into contributions of variance from different spatial wavelengths.

The PSD is computed using standard 2D FFT algorithms [96,97]. The resultant PSD

is then averaged radially about the center (Figure 4.18a) to yield the 1-D isotropic

PSD spectrum, which is plotted on a log-log graph in figure 4.18b. The term isotropic

energy x-y spectrum is not to suggest that the field is isotropic but rather that the

angular averaging about the center integrates the anisotropy (if any). However, in

the PSD of thermal maps, the effect of anisotropy was not significant. The PSD of

a fractal surface has a power-law dependence on the spatial frequency of roughness.

As a result, the PSD provides utility in that it contains a statistical description of

the spatial variabilities, which is largely unaffected by choice of a particular islet size

or pixel resolution.

An implementation of the PSD algorithm for fractal surfaces is shown in figure

4.18. Three fractal surfaces representing synthetic temperature maps were generated

using three Hurst exponent (H). Originally defined for a time series, H is a measure

of long-term auto-correlations within a signal. In the 2-D context, it leverages the

autocorrelation function to measure the smoothness of surfaces. As H increases,

the spatial scale of variability increases as well (Figure 4.18c). In the context of
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Figure 4.18. (a) 2D PSD map as obtained from the fft algorithm. This
values are then radially averaged to obtain a single value correspond-
ing to each wavenumber (b) The radially averaged PSD as a function of
wavenumber is illustrated for three different fractal landscapes with dif-
ferent Hurst exponents. (c) Map of the three fractal surfaces, with Hurst
exponents 0.05, 0.50, and 0.95 respectively. These were used to validate
the PSD algorithm and slope estimation. The table summarizes the vali-
dation results.

thermal maps, if high temperatures are aggregated together, it will manifest as a larger

wavelength. Alternatively, if high temperatures are dispersed in space, it will manifest

as more power in the smaller wavelengths. For each of the three surfaces, the 2-D PSD

was calculated and then radially averaged to obtain the 1-D isotropic PSD spectrum

(shown in figure 4.18b). We observe that as H increases, the slope of PSD increases

as well. The expected slope using the relation: Slope = −2(H + 1), was found to

be consistent with the slope measured from PSD plots (4.18c) thereby validating the
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algorithm and illustrating the application of PSD slopes as a comprehensive indicator

of multi-scale spatial variability.

The radially averaged PSD algorithm is applied to the LST map obtained at

every time step (1 hourly) of domain 3, and the diurnal evolution for a single day is

shown in figures 4.19a and 4.19b We find that the most notable impact of the HW

manifests as an increased variance within the larger wavelengths (corresponding to

32-163 km). The diurnal variability in these spatial scales, which are evident in figure

4.19a, are absent under a HW scenario, indicating large-sized heat islet structure

through day and night. On the other hand, the tail of power spectra (corresponding

to 1-5 km in figure 4.19b) indicates a systematic diurnal variability, which is similar

to its counterpart in 4.19b. These smaller spatial scales correspond to smaller heat

islets, which increase during the day time.

This observation was consistent for other HW days as well. A representative PSD

plot is shown in figures 4.19c and 4.19d, for nighttime and daytime respectively. For

examining the impact during nighttime, the time steps between 9 pm and 7 am for the

five days are selected, and the variance corresponding to each wavelength is averaged.

The same is repeated for all other time steps corresponding to daytime. We find that

the most notable difference manifests in the larger wavelength during the night time,

which indicates larger contiguous patches of heat. These spatial scales (54 - 160 km)

correspond to the entire width of the city and are therefore corresponding to the SUHI,

which would indicate that the SUHI is persistent during nighttime as well during the

HW. However, we know from figure 4.12 that this is not the case. Therefore, it shows

that the large contiguous patches of heat are not corresponding to the urban vs.

rural boundaries. During the daytime, however, the PSD corresponding to city-scale

wavelength does not vary due to the HW. This is because the SUHI is significantly

dominant during the daytime irrespective of the HW. This finding is also consistent

with the SUHI Intensity analysis wherein the impact of HWs was negligible during

the daytime (Figure 4.12).
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Figure 4.19. Radially averaged 2-D Power Spectral Densities (PSD) of
LST fields are shown. PSD for every hour of a single day, August 4th, is
shown for (a) non-HW scenario, and (b) a HW scenario. Here, the color
bar represents the hour of the day with 0 starting midnight. The PSD
value obtained for (c) night time (from 9 pm to 7 am), and (d) daytime
(from 8 am to 8 pm) within the period of interest are then averaged by
wavelength to obtain the average PSD values for HW (in red) and non-HW
(in blue) scenario. The period of interest is shown in figure 4.10
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Figure 4.20. PSD slopes of (a) LST and (b) T2 as a function of hour of the
day is shown in the light-colored lines for HW (in red) and non-HW (in
blue) scenario. Hour-specific average slopes for each time of day overlaid
in dark lines.

The PSD analysis of air temperatures revealed higher slopes (ranging from 1.75

to 2.75) than LST (ranging from 1.5 to 2.5), indicating less variance in smaller-scale

features. This is because air temperatures tend to be more homogeneous and have

smoother gradients due to turbulent mixing, whereas LST can have sharp thermal

changes due to sharp changes in LULC and associated emissivity. The diurnal trend,

however, is consistent with that of LSTs, where the most dominant impact of HWs

is the persistence of large contiguous patches of heat during nighttime. Persistence

of contiguous regions of high heat would impede effective thermal dissipation due

to increased distance from nearby heat sinks. This could result in an homogeneous

expanse of persistent high temperatures, which was observed in the low values of

V ar(LST ) observed during daytime HWs (Figure 4.17).

Lastly, a strong relationship between the PSD slope, SUHI Intensity, and the mean

LST (averaged over domain 3) emerges under HW, which is otherwise weaker (Figure

4.21). As mean temperatures increase during the daytime (shown as the color of

points), SUHI Intensity increases as well. A negative correlation between PSD slope

and SUHI Intensity indicates a shift of variance from larger scales to small scales as

the heat island gets more intense.
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Figure 4.21. Scatter plot betwen the PSD slope and SUHI Intensity is
shown for all hours within the HW and non-HW periods of interest re-
spectively. The color indicates mean LST over domain 3.

4.2.5 Diurnal trajectory analysis of UHI metrics

To better understand the correlations between the aforementioned UHI metrics,

in this section, I examine their relationship with a focus on their trajectory in time

(Figure 4.21). First, I discuss the results based on air temperature under non-HW

conditions. The variables’ hourly-averaged time series (as shown in figures 4.12,

4.17, and 4.20), is re-illustrated here with a focus on non-HW days. Five key time

steps (roughly corresponding to midnight, midday, dawn, and dusk), where a notable

change in any of the variable was observed are marked as vertical dashed lines (Figure

4.22). The T2 maps corresponding to the time steps are shown as well. In these

plots, a normalized color scheme is chosen such that it varies from Mean(T2)− 4 to

Mean(T2) + 4 for each time step.

In figure 4.22d, the diurnal trajectory of UHI Intensity as a function of mean air

temperature is evaluated. First, the scatter plot of UHI Intensity and mean T2 is

plotted with the color corresponding to hour of day. Then, for each hour, the average

of UHI Intensity and T2 is estimated and the trajectory is shown as an overlaid

solid line (Figure 4.22d). During early morning hours, as the sun rises, the rural air
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temperatures start rising faster than that of the urban areas. So, although the mean

temperature increases, UHI Intensity decreases till it reaches its minima at 1 pm (T2

map shown in figure 4.22g). In the afternoon hours, once the urban air start heating

up due to the longwave radiations given off of urban surfaces, the UHI Intensity

starts increasing steadily. In the meantime, T2 reaches its peak at about 4 pm and

starts declining. As urban and rural T2 continues to decrease through the night, the

difference between the two remains large during the night because of the release of

urban storage heat flux. Thus, the difference in heat capacity between the urban and

rural regions leads to a hysteresis in the response of urban T2, which manifests as an

anticlockwise circular trajectory of UHI Intensity as a function of mean T2.

The trajectory of slope as a function of mean T2 has two troughs and crests

over the course of the day. Higher values of slope are observed during dawn and

dusk and the minima occurs during the midday and midnight. Importantly, there

is no monotonic correlation between T2 and slope. For instance, from 1 pm to 7

pm, the change in T2 is negligible compared to the near vertical rise in slope. This

rapid increase is akin to the increase in UHI over the same period (cf. Figure 4.22d).

Therefore, the slope is more closely related to the change in UHI intensity rather than

the absolute value of temperature. Figure 4.22f shows the trajectory of slope as a

function of UHI intensity. The slope decreases as the absolute value of UHI intensity

increases (either positive or negative). When the UHI is near zero, it implies that the

temperatures are homogeneous across the rural-urban boundaries. This manifests as

the reduction of small-scale variabilities, in other words, steeper PSD slope. When

the urban temperatures deviate from that of the surroundings, the variances manifest

at every scale resulting in a decrease of slope. Note that the first crest at dawn

corresponds to zero UHI; however, the second crest that occurs at dusk shows a

hysteresis and corresponds to a positive UHI value. This reveals a quadratic nature

of the relationship between the UHI intensity and the slope. Further research on the

consistency of such a pattern for other environmental conditions, and other cities is

needed to study the precise relationship.
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Figure 4.22. (a-c) Hour-specific averaged time series of domain-averaged
T2, UHI Intensity, and T2-based PSD slope is shown for the non-HW
scenario. Vertical lines corresponding to five times of interest are marked
as dashed lines. (d-f) Scatterplot of pairs of metrics (as labelled) are
shown for the five non-HW day period (August 3rd, local midnight to
August 8th, 2017) as lightly colored dots in the background. The color
corresponds to the time of day. Overlaid on top for each is the hour-
averaged diurnal trajectory in the phase space of the labelled variables
respectively. (g) The T2 map for each of the five times of interest are
shown on the right side. The colorscale for each map is adjusted such
that a range of Mean(T2)± 4◦C is maintained for each map.
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I now examine the influence of HW on the diurnal trajectory of UHI Intensity,

Variance, and slope. In figures 4.23a-f, the diurnal trajectory of the variables under

non-HW conditions are shown in a light colors with cross-shaped markers indicating

each hour. The same for HW conditions are shown in dark colors with circular markers

for each hour. While the anti-clockwise trajectory of UHI Intensity is consistent under

a HW, the increased range of T2 results in a larger range of UHI intensity as well.

This results in lower UHI Intensity during the night and early morning hours (figure

4.23a). Similarly, the variance of urban air temperatures, V ar(T2), also follows a near

circular trajectory which expands in range under the HW. However, in this case, the

trajectory shifts upwards, yielding higher values during nighttime (figure 4.23b) and

nearly the same values during the daytime. Lastly, the double-peaked slope trajectory

of slope is not increased by the HW. Only the nighttime hours experience a higher

value of slope (figure 4.23c).

The trajectory of SUHI Intensity as well maintains the same diurnal pattern, but

increases in range due to lower night time temperatures (figure 4.23d). V ar(LST )

shows an overall positive correlation with mean LST with a slight hysteresis as the

temperatures decrease through the late afternoon and night. The the afternoon tem-

peratures are higher, the V ar(LST ) flattens and the peak V ar(LST ) reduces (figure

4.23e). In case of slope trajectory, the range increases and the otherwise circular

trajectory becomes more elongated with a strong negative correlation (figure 4.23f).

The diurnal behavior of LST-based metrics is discussed in details with the help of

figure 4.24.

Consistent with the template of figure 4.22, the time series and diurnal trajectories

of SUHI Intensity, Var(LST), and LST-based PSD-slope are presented along with a

panel of LST maps corresponding to each hour of interest (Figure 4.24). To enable

a visual comparison of LST across different timesteps, a normalized color scheme is

chosen such that it varies from Mean(T2) − 8 to Mean(T2) + 8 for each time step

(Figure 4.24g). Unlike UHI, the SUHI does not have a delayed response to solar

radiation (Figure 4.11). As a result, SUHI Intensity is more positively correlated
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Figure 4.23. The hourly-specific diurnal trajectory is shown within the
phase space of (a) UHI Intensity, (b) Var(T2), and (c) T2-based PSD
slope as a function of mean rural T2, as well as (d) SUHI Intensity, (e)
Var(LST), (f) LST-based PSD slope as a function of mean rural LST. A
typical non-HW day is shown in light-colored lines with cross-markers,
and a HW day is shown in darkly colored lined with circle markers. The
colors correspond to the hour of day.

with mean LST (Figure 4.24d). As the sun rises, mean LST immediately increases

steeply; however, the SUHI intensity first decreases for about an hour before rising

later. This subtle offset in behavior between the urban and rural areas result in a

similar anti-clockwise trajectory despite the notable positive correlation.

The trajectory of PSD-slope as a function of LST shows a consistent negative

correlation, with the minima of slope corresponding to the late afternoon hours when

the mean LST is highest (Figure 4.24e). In the case of LST as well, the diurnal

pattern of slope is more closely linked to the SUHI Intensity than the mean LST,

as is highlighted the sharp peak in slope occurring at 8 am corresponding to the
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Figure 4.24. (a-c) Hour-specific averaged time series of domain-averaged
LST, SUHI Intensity, and LST-based PSD slope is shown for the HW
scenario. Vertical lines corresponding to five times of interest are marked
as dashed lines. (d-f) Scatterplot of pairs of metrics (as labelled) are shown
for the five HW day period (August 3rd, local midnight to August 8th,
2018) as lightly colored dots in the background. The color corresponds to
the time of day. Overlaid on top for each is the hour-specific trajectory of
a typical day in the phase space of these variables. (g) The LST map for
each of the five times of interest are shown on the right side. The color-
scale for each map is adjusted such that a range of Mean(LST )± 8◦C is
maintained for each map.
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minima in SUHI Intensity. As a result, the more interesting pattern emerges from

the analysis of slope vs SUHI Intensity (Figure 4.24f). Consistent with the pattern

in figure 4.22f, the minima of slope occurs when the absolute value of SUHI Intensity

is the largest. Since, there are no negative values of SUHI Intensity, this manifests

as a monotonous negative correlation, wherein the maximum slope value occurs near

zero SUHI Intensity. This is again because near zero values of SUHI Intensity implies

that the temperatures are homogeneous across the rural-urban boundaries. This

reduction of small-scale variabilities manifests as a steeper PSD slope. As SUHI

Intensity increases, the variances show up at every scale thereby lowering the PSD

slope. Thus, the hourly trajectory plots for pairs of these three variables present a

novel perspective that complements the time series analysis.

4.2.6 Comparison with other cities

The 2018 heatwave impacted several other European cities as well (Figure 4.25).

The data from domain 2 is used to compare the response of diverse cities to the same

heatwave. Six of the largest urban agglomeration, including Paris, are selected for

further analysis. The spatial resolution of LST and T2 maps is 3 km (Domain 2),

which did not leave adequate spatial data for computing the Power Spectral Density.

Therefore, only mean UHI Intensity and the intra-urban variance for both LST and T2

are computed. To maintain consistency across the cities, the aforementioned metrics

are recalculated for Paris at a 3 km resolution as well. Due to the coarser resolution,

some inconsistencies are observed between the results obtained from Domain 3 dataset

and the results shown here.

The six urban regions were obtained by identifying all contiguous urban patches

that are above 100 pixels (∼ 900km2) using the MODIS land use map (Figure 4.25a).

As a result, other than the two mega-cities of Paris and London, agglomerations

of nearby smaller cities were identified. For example, all the urban settlements in

and around Rotterdam and The Hague were grouped into a single urban polygon.
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Figure 4.25. (a) Land Use Land Cover map of Europe (Extent: Domain
2). Six contiguous urban regions (area > 900 km2) are identified and
shown in red. Each urban agglomeration includes a main city and its
neighboring towns. (b) LST map of the same as on August 4th, 2018
afternoon.

Similarly, three distinct agglomerations of German cities were identified as well which

are named after their largest city. For each of the cities, the surrounding of the

urban polygon excluding water bodies was taken to estimate the rural background

temperature.

The analysis of UHI Intensities and intra-urban variance for other urban areas

shows results consistent with that of Paris (Figure 4.26). Both UHI and SUHI Inten-

sities were mostly unaltered by the HW during the daytime. The SUHI Intensity for

the coastal cities, Rotterdam and London, were an exception to this trend. Unlike

the inland cities, the diurnal pattern of SUHI Intensity under non-heat wave scenario

(shown in blue in Figures 4.26d and 4.26f) for these coastal cities do not conform to

a range of 4◦C. This could be an impact of proximity to the oceans. However, the

same impact of sea breeze in not evident in UHI Intensities (Figures 4.26i and 4.26l).

During nighttime, a reduction of nearly 1◦C was observed for all cases except London.

This serves to show that despite the difference in rural backgrounds of Paris (which
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Figure 4.26. Time series of (a-f) SUHI Intensity and (g-l) UHI Intensity is
shown for six urban agglomerations. The data for individual days is shown
as lightly colored lines in the background and hour-specific averaged SUHI
and UHI Intensities are overlaid on the respective plots as dark solid lines.
Red lines corresponds to HW (2018) and blue corresponds to non-HW
scenario (2017). The LST and T2 datasets are obtained from Domain 2
of the WRF simulation at a resolution of 3 km.
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Figure 4.27. Time series of variance of (a) LST and (b) T2 within each
of the urban agglomerations as labelled are shown as light-colored lines
in the background. Hour-specific averaged LST and T2 variances are
overlaid on the respective plots as dark solid lines. Red lines corresponds
to HW (2018) and blue corresponds to non-HW scenario (2017). The LST
and T2 datasets are obtained from Domain 2 of the WRF simulation at
a resolution of 3 km.
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is 90% croplands) and the German cities (which are closer to forests), no synergistic

influence of HW was observed.

The intra-urban variance analysis shows that the heatwave reduced V ar(LST )

and homogenized the urban surface temperatures for all cities, except Rotterdam

(Figure 4.27a-f). This is because the Rotterdam-Hague urban agglomeration has a

considerable portion of urban regions sharing the perimeter with the ocean. The lower

coastal temperatures contribute greatly to both V ar(LST ) and V ar(T2) (Figures

4.27d and 4.27f). For other cities, V ar(T2) is unaltered by the HW and any difference

in V ar(T2) is lower than the standard deviation of normal V ar(T2) values by the

hour. Note that V ar(T2) plot of Paris is different than the same estimated from

domain 3 (figure 4.17) because of the coarser resolution of domain 2. This limitation

should be kept in mind while analyzing the results of other cities as well.

4.3 Summary

The UHI is driven by two main types of drivers, those pertaining to urban form

and those that describe synoptic atmospheric conditions. In this chapter, I focus on

their impact on the intra-urban heat islets. As a proxy for urban form, the spatial

organization of heat islets, characterized by Λscore, was used. Analysis of heat islet

size distributions (Figure 4.2) demonstrate the emergence of two classes where the

compact configurations result in a power law distribution, and the sprawling cities

show an exponential tempering of power law tail. In contrast, the analysis of heat

islet intensity distributions (Figure 4.4) indicates that while a sprawling configuration

is favorable for reducing the mean SUHI Intensity of a city, for the same mean, it also

results in higher local thermal extremes. This poses as a trade-off for urban designers

in adopting expansion or densification as a growth trajectory to mitigate urban heat

at both the neighborhood and the city scale.

As an external forcing to the heat islet system, the impact of HW were studied.

The results show that the mean SUHI (and UHI) Intensity reduced by nearly 1◦C
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under the HW during nighttime and remained unchanged during daytime. The anal-

ysis of variance within heat islets using PSD indicated that large contiguous heat

islets (city-scale) persist throughout the day during a HW, which would disappear

during nighttime under normal conditions. On the other hand, the smaller islets

(neighborhood-scale) display the same diurnal patterns as the non-HW conditions

wherein they arise during daytime and dissipate during nighttime. Lastly, correlation

between SUHI Intensity and PSD slope highlight that the variances at every scale

contribute to the overall difference between urban and rural temperatures. From a

mitigation point of view, this presents as a wicked problem analogous to the paradox

of adopting either expansion or densification. It is not within the scope of this thesis

to offer an immediate solution to the urban planners on what is the best pathway

to mitigate multi-scale UHI or the exacerbated impact of HW on them. Rather,

this serves as a template to quantify and assess the heterogeneity of urban heat and

evaluate the trade-offs between alleviating local vs. city-wide thermal extremes.
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5. CONCLUDING REMARKS

“Since all models are wrong, the scientist must be alert to what is importantly

wrong. It is inappropriate to be concerned about mice when there are tigers

abroad.”

– George E. P. Box

Cities are the apex examples of a complex, coupled, socio-technological systems,

which present multiple challenges as urbanization rapidly intensifies across the world

[98]. The UHI is one such problem. The view of UHI as a fractal system is novel

in that clusters of high temperatures are shown to be statistically self-similar for the

first time. However, within the field of quantitative geography, cities and several of

their properties are already known to be fractal [73].

Fractals are the most energy-efficient organizations for several applications. For

example, river networks are fractal because it is the best pathway to optimize energy

while flowing towards lower potential energy. In the same way, engineered trans-

portation networks such as sewage and road networks also evolve over time to become

fractals when they are optimized for efficiency [25, 55]. In their book chapter ‘form

follows function’ in Fractal Cities, Batty and Longley explain that urban functions

grow in time while constantly optimizing the form to result in a fractal [22]. Exam-

ples include metabolic functions of cities, such as population distribution, traffic flow,

human mobility, and energy use [27–29]. As UHI is a by-product of urban form and

functions, they follow similar spatial patterns as well [86]. However, an important

distinction is that the city does not grow to optimize ‘urban heat’ per se. Therefore,

a fractal UHI structure is not necessarily the optimal design to minimize urban heat.

More importantly, the same fractal generative mechanism can yield a diverse spatial

organization of heat islets. This was shown by a range of different Lacunarity val-
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ues attained by heat islet systems with the same aggregated area-perimeter fractal

dimension (D ∼ 4/3). In a quest to find the most optimal spatial structure of UHI,

we defined heat islet size and intensity distribution as an indicator and found that

sprawling spatial organizations had its merits in that they reduce the sizes of heat

islets, but at the same time, these islets tend to attain higher than mean tempera-

tures. Therefore, a balance needs to be kept between the expansion and densification

of cities to counter extreme heat.

The framework of using incremental thresholds to identify connected clusters and

study their dynamics as a function of the threshold was adapted from percolation

theory [37] and can be used to describe any fractal landscape. This is analogous to

using the water levels, flooding a heterogeneous landscape to study the archipelago

of islands. Alternatively, we may invert the clustering technique to identify potential

lakes and wetlands below the water level. Interestingly, the area-perimeter fractal

dimensions for islands [40], lakes [41], wetlands [47], and even clouds [99] are reported

as D ∼ 4/3 as well.

In the context of heat, the work can be extended beyond the city to regional ther-

mal landscapes. As we know that atmospheric thermal patterns, as well as the natural

topography, is fractal as well, regional-scale thermal landscapes are also expected to

exhibit self-similarity. The scaling laws might differ from the intra-urban heat islets,

given the higher heterogeneity of the urban areas. However, their comparison can

extend this work to larger regional scale domains. A limitation of analyzing thermal

maps is that it only represents the instantaneous result of dynamic heat sources and

sinks. If we assume homogeneous heat capacities and thermal conductivity, this will

correspond to the structural heterogeneity of heat sources and sinks, wherein the sizes

of heat islets indicate the strength of the sources and the Lacunarity of spacings in-

dicate the sink strengths. Consideration of the functional heterogeneity will require

that we incorporate the heterogeneity within heat capacity and thermal conductivi-

ties as well. For that, instead of LST, a spatial map of heat fluxes can be input as

the DEM within this framework.
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For exposure assessment of urban communities to heat, however, analysis of sur-

face temperatures itself is not enough. What people living in the cities experience

as heat stress is computed using a combination of air temperature as well as humid-

ity [63]. Exposure to heat stress can affect an individual’s ability to regulate his

body temperature, resulting in increased rates of heat stress, heatstroke, and prema-

ture death [100]. However, different individuals have different susceptibilities for heat

stress, and the characterization of exposure alone is not sufficient. Populations at

risk from extreme heat may share several characteristics, called vulnerability factors,

such as old age, low educational attainment, high poverty levels, poor health, and

lack of air conditioning, which can be unified into a vulnerability index through sta-

tistical methods [66, 67]. As a result, vulnerability is a function of both the thermal

conditions of a region and the exposure and susceptibility of the individuals who are

subjected to it. In order to characterize the spatially variable vulnerability, a joint

probability of heat stress, as well as the population’s susceptibility, should be consid-

ered. Furthermore, similar to the vulnerability of humans, other urban infrastructure

systems can be affected by extreme heat as well. For instance, consider the power grid

network. When the temperature soars in a city, people respond by maximizing the

use of their respective air-conditioning. For critical heat islets, the collective overload

on the power grid system can result in a cascading failure. As a result, the design

of power supply networks cognizant of the critical regions could help prevent such

failures as well as optimizing costs.

Lastly, the limitations of scientific models and observations should be kept in mind.

The Land Surface Temperatures viewed by satellites such as Landsat are, after all,

an estimate. Satellites preferentially see horizontally unobstructed surfaces (such as

roofs, open areas). They also combine substantial surface temperature variability

caused by building plan area, building height to width ratio, construction materials

and albedos, impervious and vegetated fractions, and moisture status, etc., that play

a role in determining the LST distribution within the spatial scale of a pixel (∼ 90

m). While there are correlations between LST and air temperature (Figure 4.11),
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the findings based on LST should not directly be extended to the thermal comfort of

occupants. For instance, consider a dense layout of high-rise buildings like Manhattan

(all with hot roofs) might lead to a hotter remotely sensed LST, but the narrow the

street canyons shaded by them might result in a cooler environment for pedestrians.

The same caveats apply to WRF models as well, where not only the heterogeneity

within a grid cell is lost, but several other approximations and assumptions (Appendix

E) could lead to cascading errors. This is especially true for studying intra-urban

environments using WRF as the urban LULC characterization often does not reflect

the city accurately. Despite these mice and tigers, this work presents a step towards

the multi-scale characterization of the complex intra-urban thermal landscape, and I

hope that it opens new vistas for future investigations.
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A. APPENDIX A: LOCAL CLIMATE ZONES

Figure A.1. Schematic diagram for nine diverse types of Local Climate
Zones are shown to illustrate the different forms urban neighborhoods
can take. Please refer to http://www.wudapt.org/ for further details.
Source: Stewart and oke (2012)

http://www.wudapt.org/
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B. APPENDIX B: LIST OF CITIES

Table B.1.: List of cities, their location, climate type,

and the Landsat image used

City Climate Longitude Latitude Landsat image timestamp

Accra bsh -0.19 5.60 (2017-04-15 10:15:09)

Adelaide csa 138.60 -34.93 (2016-12-24 00:33:47)

Amsterdam cfb 4.90 52.37 (2017-05-27 10:39:11)

Astana dfb 71.47 51.16 (2015-06-03 06:07:15)

Atlanta cfa -84.39 33.75 (2014-05-06 16:12:23)

Austin cfa -97.74 30.27 (2016-05-03 17:02:37)

Bangkok aw 100.50 13.76 (2015-02-05 03:37:41)

Barcelona csa 2.17 41.39 (2017-06-14 10:30:09)

Basel cfb 7.59 47.56 (2014-07-17 10:22:33)

Beijing dfa 116.41 39.90 (2017-05-07 02:52:50)

Berlin dfb 13.40 52.52 (2017-06-02 10:02:10)

Bern cfb 7.45 46.95 (2014-07-17 10:22:33)

Birmingham cfb -86.80 33.52 (2015-04-09 10:57:56)

Bogota cfb -74.07 4.71 (2015-02-21 15:12:33)

Boston cfa -71.06 42.36 (2016-04-24 15:26:37)

Brasilia aw -47.88 -15.79 (2016-05-02 13:14:21)

Bucharest cfa 26.10 44.43 (2015-08-03 08:56:34)

BuenosAires cfa -58.38 -34.60 (2014-12-19 13:44:45)

Busan cfa 129.08 35.18 (2016-04-19 01:59:02)

Chengdu cwa 104.07 30.57 (2017-05-01 03:32:40)

Chennai aw 80.27 13.08 (2016-04-23 04:58:01)
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Chicago dfa -87.63 41.88 (2014-09-23 16:35:10)

Colombo af 79.86 6.93 (2017-01-13 04:54:05)

Copenhagen cfb 12.57 55.68 (2016-05-12 10:13:38)

Curitiba cfb -49.27 -25.42 (2016-06-12 13:11:01)

Delhi bsh 77.21 28.61 (2017-03-05 05:18:40)

Denver cfa -104.99 39.74 (2013-09-26 17:39:09)

Dusseldorf csb 6.77 51.23 (2013-07-21 10:29:37)

Frankfurt cfb 8.68 50.11 (2015-04-24 10:15:02)

Guangzhou cfa 113.26 23.13 (2016-02-07 02:52:07)

Guatemala cwb -90.23 15.78 (2016-01-27 16:24:11)

Hanoi cwa 105.83 21.03 (2017-06-04 03:23:02)

HoChiMinh aw 106.63 10.82 (2014-09-18 03:14:22)

Houston cfa -95.37 29.76 (2017-04-06 16:50:10)

Indianapolis dfa -86.16 39.77 (2013-10-08 16:25:01)

Istanbul csa 28.98 41.01 (2013-07-30 08:47:23)

Jakarta am 106.87 -6.18 (2014-09-13 03:00:14)

Kiev dfb 30.52 50.45 (2016-07-13 08:49:07)

Kolkata aw 88.36 22.57 (2014-04-22 04:30:53)

KualaLumpur af 101.69 3.14 (2014-04-25 03:28:26)

Lagos aw 3.38 6.52 (2013-12-18 10:04:25)

Lisbon csa -9.14 38.72 (2016-07-14 11:14:27)

London cfb -0.13 51.51 (2017-06-10 10:52:04)

LosAngeles csa -118.24 34.05 (2014-06-01 18:27:56)

Manila aw 120.98 14.60 (2016-02-13 02:17:23)

Miami aw -80.19 25.76 (2014-10-17 15:50:16)

Milan cfa 9.19 45.46 (2014-06-10 10:04:37)

Montreal dfb -73.57 45.50 (2016-06-16 15:44:09)

Moscow dfb 37.62 55.76 (2016-07-24 08:29:03)

Nairobi cfb 36.82 -1.29 (2013-06-08 07:45:12)
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Nanjing cfa 118.80 32.06 (2013-04-07 02:39:14)

NewOrleans cfa -90.07 29.95 (2014-04-09 16:32:12)

NewYork dfa -74.01 40.71 (2016-04-15 15:33:16)

Orlando cfa -81.38 28.54 (2017-04-07 15:54:56)

Osaka cfa 135.50 34.69 (2016-03-22 01:34:32)

Oslo dfb 10.75 59.91 (2013-07-12 10:33:27)

Paris cfb 2.35 48.86 (2017-04-09 10:40:20)

Perth csa 115.86 -31.95 (2017-04-24 02:04:49)

Philadelphia dfa -75.17 39.95 (2017-07-30 15:39:49)

Portland csb -122.68 45.52 (2015-06-07 18:55:15)

Prague cfb 14.44 50.08 (2017-05-19 09:50:28)

RioDeJaneiro am -43.17 -22.91 (2015-09-25 12:51:59)

Rotterdam cfb 4.48 51.92 (2017-04-09 10:39:32)

SanJose csb -121.89 37.34 (2013-04-09 18:46:34)

Seattle csb -122.33 47.61 (2015-06-23 18:54:58)

Seoul dfa 126.98 37.57 (2016-05-19 02:10:38)

Shanghai cfa 121.47 31.23 (2016-02-27 02:24:54)

Stockholm cfb 18.07 59.33 (2013-07-09 10:02:33)

StPetersburg dfb 30.34 59.93 (2014-04-24 09:04:48)

Sydney cfa 151.21 -33.87 (2013-09-18 23:46:03)

Tbilisi cfa 44.83 41.72 (2017-07-03 07:43:22)

Tokyo cfa 139.69 35.69 (2013-09-17 01:17:47)

Toulouse cfb 1.44 43.60 (2016-08-12 10:42:27)

Vancouver csb -123.12 49.28 (2017-07-05 19:01:13)

Warsaw dfb 21.01 52.23 (2015-04-23 09:31:23)

WashingtonDC cfa -77.04 38.91 (2016-04-13 15:46:02)

Wuhan cfa 114.31 30.59 (2015-10-25 02:56:23)
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C. APPENDIX C: LAND SURFACE TEMPERATURE

ALGORITHM

Until recently, studies of urban effects on meteorology and climate have been con-

ducted for isolated locations and with in-situ measurements. With the advent of

high-resolution Earth-monitoring satellites, it has become possible to study these ef-

fects both remotely and on continental or global scales [9]. Here, we use LST derived

from Landsat thermal bands for the analysis. The algorithm employed for the compu-

tation of LST here doesn’t account of atmospheric correction. However, a systematic

error throughout the Landsat scene is acceptable in this particular study because the

absolute temperatures are not of interest, but the relative temperatures matter. The

algorithm used as well as the R-code written for LST is outlined below.

Step 1: TOA radiance

Lλ = ML ·Qcal + AL (C.1)

where,

Lλ = TOA spectral radiance (W/m2 ∗ srad ∗ µm)

ML = Band-specific multiplicative rescaling factor from the metadata

(RADIANCE MULT BAND x, where x is the band number)

AL = Band-specific additive rescaling factor from the metadata

(RADIANCE ADD BAND x, where x is the band number)

Qcal = Quantized and calibrated standard product pixel values (DN)

Step 2: TOA Brightness Temperature

T =
K2

ln(K1

Lλ
+ 1)

(C.2)

where,
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T = At-satellite brightness temperature (K)

Lλ = TOA spectral radiance (W/m2 ∗ srad ∗ µm)

K1 = Band-specific thermal conversion constant from the metadata

(K1 CONSTANT BAND x, where x is the thermal band number)

K2 = Band-specific thermal conversion constant from the metadata

(K2 CONSTANT BAND x, where x is the thermal band number)

The band specific values were obtained from the metadata file. These equations

are used for both band 10 and 11, to obtain the temperatures. However, to obtain

the actual ground surface temperature, the emissivity needs to be calculated. The

codes implemented in R here were derived and modified from ArcGIS toolbox [52].

Step 3: Proportion of vegetation (Pv) and Emmissivity (e) is estimated from NDVI

to estimate actual LST:

Pv =
NDV I −NDV Imin

(NDV Imax −NDV Imin)2
(C.3)

e = 0.004 ∗ Pv + 0.986 (C.4)

LST =
T

1 + w ∗ T
ρ
∗ ln(e)

(C.5)

where,

T = At satellite brightness temperature (K) as per equation C.4

w = Wavelength of emitted radiation (11.5 µm)

ρ = h× c
σ

= 14380 µmK

(σ = Boltzmann constant = 1.38×10−23 J
K

, h = Planck’s constant = 6.626×10−34Js,

c = velocity of light = 2.998× 108 m
s

)

e = emissivity as per equation C.4

(Source: https://landsat.usgs.gov/using-usgs-landsat-8-product)

https://landsat.usgs.gov/using-usgs-landsat-8-product
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D. APPENDIX D: FITTING PROBABILITY

DISTRIBUTIONS

For fitting probability distributions to the cluster size distribution, a combination of

maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov-

Smirnov (KS) statistic and likelihood ratios were used [53]. A step-by-step method-

ology as summarized in Box 1 of the paper (as outlined below) was followed with the

help of R-code provided by Laurent Dubroca and Cosma Shalizi on Clauset’s website

1. Following their R-code for the analysis of power-law distributions the steps are as

follows:

1. Estimate the parameters xmin and α of the power-law model.

2. Calculate the goodness-of-fit between the data and the power law. If the re-

sulting p − value ≥ 0.1, the power law is a plausible hypothesis for the data,

otherwise it is rejected.

3. Compare the power law with alternative hypotheses via a likelihood ratio test.

For each alternative, if the calculated likelihood ratio is significantly different

from zero, then its sign indicates whether or not the alternative is favored over

the power-law model.

The data was tested for a power law tail fit and compared against 4 other com-

peting distributions - Exponential, Lognormal, Stretched Exponential (Weibull), and

Power law with exponential rate of tempering. The equations are given below (adapted

from Clauset, et al. 2009) [53].

The basic idea behind the likelihood ratio test is to compute the likelihood of the

data under two competing distributions. The one with the higher likelihood is then

1http://tuvalu.santafe.edu/~aaronc/powerlaws/

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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the better fit. Alternatively, one can calculate the ratio of the two likelihoods, or

equivalently the logarithm R of the ratio, which is positive or negative depending on

which distribution is better, or zero in the event of a tie. Furthermore, the p-value

for the Log-likelihood Ratio is checked and an outcome is selected only if the p-value

< 0.1 (For a 90% confidence).

The cluster size distributions for all cities were tested at several thermal thresh-

olds based on the following percentiles: 50th, 60th, 70th, 80th, and 90th. All of the

distributions were found to qualify as a power law tail (with a p-value of 0.1, i.e.

90% confidence) for lower percentile thresholds. The lower cut-off for power law

was found to be under 500 m for most cities (95% CI one-sided), this roughly cor-

responds to the size of an urban block implying that the scaling doesn’t extend to

the length scales smaller than an urban block. At 90th percentile threshold, we find

that 25 of the 78 cities were described as a power-law with exponential tempering:

P (A > a) ∝ a1−βe−c·a. However, none of them have likelihoods suggesting a Weibull,

exponential, or lognormal describe the data better. The table with complete results

is attached as separate excel sheet.
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E. APPENDIX E: WRF SIMULATION SPECIFICATIONS

WRF preprocessing system (WPS) variables as used in namelist.wps file.

For further information, please see https://anamika255.github.io/portfolio/

5-WRF/

&share

wrf core = ‘ARW’

max dom = 3

start date = 2018-07-20 00:00:00

end date = 2018-08-09 00:00:00

interval seconds = 21600

io form geogrid = 2

&geogrid

parent id = 1, 1, 1,

parent grid ratio = 1, 3, 9,

i parent start = 1, 30, 52,

j parent start = 1, 20, 38,

e we = 162, 271, 163,

e sn = 126, 253, 163,

geog data res = ‘5m’,‘5m’,‘30s’,

dx = 9000

dy = 9000

map proj = ‘lambert’

ref lat = 50.1516

ref lon = 4.813

https://anamika255.github.io/portfolio/5-WRF/
https://anamika255.github.io/portfolio/5-WRF/
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truelat1 = 50.1516

truelat2 = 0

stand lon = 4.813

WRF run variables as used in namelist.input file

&time control

run days = 0,

run hours = 0,

run minutes = 0,

run seconds = 0,

start year = 2018, 2018, 2018,

start month = 07, 07, 07,

start day = 20, 20, 20,

start hour = 00, 00, 00,

end year = 2018, 2018, 2018,

end month = 08, 08, 08,

end day = 09, 09, 09,

end hour = 00, 00, 00,

interval seconds = 21600

input from file = .true.,.true.,.true.,

history interval = 180, 60, 60,

frames per outfile = 1000, 1000, 1000,

restart = .false.,

restart interval = 1440,

io form history = 2

io form restart = 2

io form input = 2
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io form boundary = 2

&domains

time step = 36,

time step fract num = 0,

time step fract den = 1,

max dom = 3,

e we = 162, 271, 163,

e sn = 126, 253, 163,

e vert = 60, 60, 60,

p top requested = 5000,

num metgrid levels = 38,

num metgrid soil levels = 4,

dx = 9000, 3000, 1000,

dy = 9000, 3000, 1000,

grid id = 1, 2, 3,

parent id = 1, 1, 1,

i parent start = 1, 30, 52,

j parent start = 1, 20, 38,

parent grid ratio = 1, 3, 9,

parent time step ratio = 1, 3, 9,

feedback = 0,

smooth option = 0,

&physics

mp physics = 8, 8, 8, (New Thompson et al. scheme)

cu physics = 2, 0, 0, (Betts-Miller-Janjic scheme)

ra lw physics = 1, 1, 1, (Rapid Radiative Transfer Model scheme)

ra sw physics = 1, 1, 1, (Dudhia Scheme)
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bl pbl physics = 2, 2, 2, (Mellor-Yamada-Janjic scheme)

sf sfclay physics = 2, 2, 2, (Eta similarity)

sf surface physics = 2, 2, 2, (Noah Land Surface Model)

radt = 10, 10, 10,

bldt = 0, 0, 0,

cudt = 0, 0, 0,

icloud = 1,

num land cat = 21, (MODIS Land Cover dataset)

sf urban physics = 2, 2, 2, (Building Environment Parameterization scheme)

surface input source = 1

&dynamics

hybrid opt = 2,

w damping = 0,

diff opt = 1, 1, 1,

km opt = 3, 3, 3, (Smagorinsky 3d deformation)

diff 6th opt = 0, 0, 0,

diff 6th factor = 0.12, 0.12, 0.12,

base temp = 290.

damp opt = 3,

zdamp = 5000., 5000., 5000.,

dampcoef = 0.2, 0.2, 0.2

khdif = 0, 0, 0,

kvdif = 0, 0, 0,

non hydrostatic = .true., .true., .true.,

moist adv opt = 1, 1, 1,

scalar adv opt = 1, 1, 1,

gwd opt = 1,
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