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NOMENCLATURE 

Latin symbols 

𝑎𝑃 Diagonal coefficients in FVM solution matrix 

𝑎𝑁 Off-diagonal coefficients in FVM solution matrix 

[A] Solution matrix in FVM linear algebraic system 

𝐴 Area 

𝐴𝑖  Area of microscopic interface 

𝑐𝑝 Constant pressure specific heat 

b Collection of sources in FVM linear algebraic system 

[b] Source vector in FVM linear system 

𝐶 Composition 

𝐶𝑒𝑢𝑡 Eutectic composition 

𝐶𝑚𝑎𝑥
𝛼  Maximum composition of the primary solid phase 𝛼 

𝐶𝐷 Drag coefficient 

𝐶�̅�,𝑖 Average interfacial composition for phase 𝑘 along microscopic interface 𝑖 

𝐶𝑜 Courant number 

𝐝 Vector between the center of control volume 𝑃 and its neighbor 𝑁 

𝑑𝑔 Local grain diameter used in the relative solid-liquid velocity term 

𝑑𝑔
𝑓
 Final grain diameter used in the relative solid-liquid velocity term 

𝐷 Solutal mass diffusivity, drag coefficient 

E𝑘 Interfacial energy transfer into phase 𝑘 

𝑓𝑥 Weighting factor for central differencing  

F𝑓 Mixture flux at face 𝑓 

F𝐷,𝑓 Numerical diffusion flux at face 𝑓 

F𝑙,𝑓 Liquid mass flux at face 𝑓 

F𝑟,𝑓 Relative solid-liquid mass flux at face 𝑓 

F𝑠,𝑓 Solid mass flux at face 𝑓 

𝐹𝑜 Fourier number 
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𝑔𝑘 Volume fraction of phase 𝑘 

𝑔𝑔
𝑐  Grain volume fraction upon coalescence 

𝑔𝑠
𝑡 Solid volume fraction from transport stage used in operator splitting method 

𝑔𝑠𝑖 Internal solid fraction 

𝑔𝑠𝑖
𝐻 Internal solid fraction predicted from hemispherical tip model 

𝑔𝑠𝑖
𝑃  Internal solid fraction predicted from paraboloidal tip model 

𝐠 Gravity vector 

𝐺𝑀𝐼 Global macrosegregation index 

𝐡 Displacement vector in the direction of gravity from some reference point 

ℎ Specific enthalpy 

𝐇𝑃 Collection of vectors at control volume 𝑃 used in the PISO algorithm 

𝑰 Identity tensor 

Iv Ivantsov function 

𝒋 Diffusion flux vector 

J𝑘 Interfacial solute transfer into phase 𝑘 

𝑘 Thermal conductivity 

𝑘𝑝 Solute partition coefficient 

𝑘𝑝
∗  Mass-weighted solute partition coefficient 

𝐾 Permeability of the rigid mush 

𝐿𝑓 Latent heat of fusion 

𝑚 Marker function  

𝑚𝑙𝑖𝑞 Linearized liquidus slope 

𝑚𝑠𝑜𝑙 Linearized solidus slope 

𝐌𝑘 Interfacial momentum transfer into phase 𝑘 

𝐌𝑘
𝑑 Interfacial momentum transfer into phase 𝑘 due to drag 

𝑀𝐴𝑃𝐸 Mean absolute percent error 

𝒏 Normal vector 

𝒏𝑘 Normal vector at the microscale interface pointing into phase 𝑘 

p Total pressure 
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p𝑅 Reduced pressure 

p̅𝑘,𝑖 Average interfacial pressure for phase 𝑘 along microscopic interface 𝑖 

𝒒𝑘  Heat diffusion flux vector for phase 𝑘 

Ṙ𝑘 General interfacial transfer into phase 𝑘 

𝑅 Local grain radius used in volume-averaged microsegregation model 

𝑅𝑓 Final grain radius used in volume-averaged microsegregation model 

𝑅𝑒𝑔 Grain Reynolds number 

𝒔𝑘 Species diffusion flux vector for phase 𝑘 

𝑆 Source term, surface 

𝑺𝑓 Outward surface area vector of face 𝑓 

𝑆𝑖 Interfacial area per unit volume for microscopic interface 𝑖 

𝑡 Time 

∆𝑡 Time step 

𝑇 Temperature 

𝑇𝑒𝑢𝑡 Eutectic temperature 

�̅�𝑘,𝑖 Average interfacial temperature for phase 𝑘 along microscopic interface 𝑖 

𝑇𝑙𝑖𝑞 Liquidus temperature 

𝑇𝑠𝑜𝑙 Solidus temperature 

𝒖 Velocity vector 

𝒖𝑖 Velocity normal to the microscopic interface 

𝒖𝑚 Mesh velocity 

𝒖𝑟 Relative solid-liquid velocity vector 

�̃�𝑟 Relative solid-liquid velocity coefficient 

𝒖𝑟𝑒𝑓 Refence velocity of the rigid mush 

𝑉 Volume 

𝑉𝑔 Volume of grain 

�̅�𝑛𝑖 Average normal growth velocity of interface 𝑖 

𝒙 Position vector 

[x] Column vector in FVM linear algebraic system 
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∆𝑥 Grid spacing in x-direction 

𝑋𝑘 Indicator function for phase 𝑘 

 

 

Greek symbols 

𝛽 Solutal back diffusion parameter 

Γ General diffusion coefficient 

𝛤𝐺𝑇 Gibbs-Thomson coefficient 

Γ𝑘 Mass generation rate of phase 𝑘 due to phase change 

𝛿𝑖 Species diffusion length at microscopic interface 𝑖 

𝛿𝑖
𝑇 Thermal diffusion length at microscopic interface 𝑖 

∆ Growth constraint in the volume-averaged microsegregation model 

𝜁 Indicator function for packing interface cells with a mixture outflow 

𝜂 Numerical diffusion coefficient for phase mass flux at packing interface 

𝜆 Characteristic length scale of the rigid mush, shrinkage coefficient 

𝜇 Dynamic viscosity of the slurry 

𝜇∗ Mean sensitivity in elementary effects method 

𝜇𝑒𝑓𝑓 Effective dynamic viscosity 

𝑣 Kinematic viscosity 

𝜌 Density 

𝜌𝑒𝑓𝑓
𝐵  Effective density in the buoyancy term 

𝜌𝑘
𝐵  Density from Boussinesq approximation for phase 𝑘 

𝝈𝑘 Material stress tensor of phase 𝑘 

𝝉𝑘 Deviatoric momentum stress tensor 

𝜙𝑘 General transport quantity of phase 𝑘 

𝜔 Blending factor for face-based drag method 

Ω Supersaturation 

 

 

Superscripts 

∗ Effective, auxiliary, previous iteration 

𝑜 Previous time  
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Subscripts 

𝐶𝐷 central differencing 

𝑑 Interdendritic liquid 

𝑒 Extradendritic liquid 

𝑓 Face 

𝑔 Grain 

𝑖 Interface, constituent 

𝑘 Phase 

𝑙 Liquid 

𝑁 Neighboring control volume 

𝑜 Reference value  

𝑃 Control volume of interest 

𝑈𝐷 upwind differencing 

 

 

Other supplementary symbols 

max(∙) Maximum operator 

min(∙) Minimum operator 

pos(∙) Positive operator 

〈𝜙〉 Volume average of quantity 𝜙 

〈𝜙𝑘〉
𝑘 Intrinsic volume average for quantity 𝜙 of phase 𝑘 

�̂�𝑘 Fluctuating component for quantity 𝜙 of phase 𝑘 

 

 

Acronyms 

CFD Computational fluid dynamics 

DC Direct chill 

FVM Finite volume method  

HDC Horizontal direct chill 

PISO Pressure-implicit with splitting of operators 

VDC Vertical direct chill 
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ABSTRACT 

Direct chill (DC) casting is the main production method for wrought aluminum alloys. In this 

semi-continuous process, significant heat is extracted through a narrow, solidified shell by 

impinging water jets. A combination of rapid cooling and inoculation of the liquid metal with 

heterogenous nucleation sites (grain refiner) produces the proper conditions for equiaxed 

solidification. As equiaxed grains nucleate and grow in the slurry, they are transported by natural 

convection until their eventual coalescence into a rigid mush. The preferential accumulation of 

these solute-depleted grains in localized regions of the casting can lead to long range composition 

differences known as macrosegregation. Because macrosegregation cannot be mitigated by 

subsequent processing, it is critical to understand and prevent its development during casting.  

Numerical models are often used to gain insight into the interplay of the different transport 

phenomena that cause macrosegregation. The formation of mobile equiaxed grains creates a 

multiphase system with many moving interfaces, causing several modeling challenges. In principle, 

a model could be formulated in terms of local instantaneous variables describing the evolution of 

these interfaces, however the associated computational cost prohibits its extension to the length 

scale of industrial castings. For this reason, macroscopic transport equations are mathematically 

formulated using volume averaging methods. Two different volume-averaged model formulations 

can be distinguished in the solidification literature. The first approach is the multiphase 

formulation, which solves separate sets of governing equations for each phase that are coupled 

using microscale interfacial balances. While this approach retains closure models to describe the 

behavior of the sub-grid interfaces, these interfacial models introduce significant uncertainty that 

is propagated through the model. The second approach is the mixture formulation, which solves a 

single set of governing equations for the mixture and utilizes more pragmatic closure relationships. 

While this approach significantly reduces the complexity and computational cost of the model, 

previous formulations have oversimplified the microscale transport. Recognizing the advantages 

and disadvantages of both formulations, a mixture model is rigorously derived, retaining 

appropriate relationships for the grain structure and microsegregation behavior in equiaxed 

solidification  

Implementation of this model into a 3-D finite volume method (FVM) code using a co-located 

grid is discussed along with appropriate treatment of the discontinuous body forces and phase mass 
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fluxes across the interface between the slurry and rigid mush. More specifically, body forces in 

the momentum equation are treated at the face-centers of a control volume to prevent erroneous 

velocity oscillations near this interface, and a diffuse phase flux method is proposed to reduce the 

sensitivity of composition predictions to the numerical grid. The proposed methods are verified 

across a wide range of conditions present in equiaxed solidification.  

This model is then used to investigate the role of grain motion on macrosegregation 

development in equiaxed solidification, specifically in horizontal and vertical DC casting. In 

horizontal DC casting, the casting axis is perpendicular to gravity and there is a tendency for grains 

to accumulate along the bottom of the ingot. Feeding liquid metal through a constrained inlet near 

the bottom suspends grains in the slurry, both reducing the overall macrosegregation and 

improving the macrosegregation symmetry in the ingot. In vertical DC casting, the casting axis is 

parallel to gravity and there is a tendency for grains to accumulate in the center of the ingot. It is 

determined by a combination of simulations in the current work and previous experimental results 

that a strong localized jet at the centerline can suspend grains in the slurry and reduce negative 

centerline segregation. The change in segregation is attributed to a combination of reducing the 

accumulation of solute-depleted grains near the centerline and thinning the rigid mush where 

solidification shrinkage pulls enriched liquid away from the centerline. The strong localized jet 

also causes significant refinement and homogenization of the grain structure, which improves the 

mechanical properties of the ingot. These studies indicate that it is beneficial for DC casting 

practices to move towards agitated or stirred melts, and away from conventional practices which 

promote thermal stratification and localized accumulation of equiaxed grains. 
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 INTRODUCTION 

1.1 Background and Rationale 

The use of aluminum and its alloys has significantly expanded in the last few decades. The 

annual world production of primary aluminum grew from about 20 million tons in the early 2000s 

to 64 million tons in 2019 [1], making aluminum the second most economically important metal 

after iron. It is estimated that more than half of the global production of aluminum is used as rolled 

and extruded product in applications where light weight and corrosion resistance are required, 

including transportation (e.g. aerospace and automotive), construction, and packaging (e.g. foil 

and cans). Direct chill (DC) casting is the primary processing method for wrought aluminum ingots 

used as starting stock for these formed products, representing a multibillion dollar economic 

activity. 

The technology behind DC casting is well developed with a long history dating back to the 

1930s when it was invented almost simultaneously and independently in Germany and the USA. 

A number of excellent reviews on the historical development of the modern DC casting process 

are available [2,3]. A distinguishing feature of DC casting from other casting methods (e.g. 

permanent mold casting, die casting, and sand casting) is that the majority of heat is extracted 

through a narrow solidified shell by impinging water jets (hence “direct chill”) rather than 

indirectly through the mold walls. The increased cooling rate promotes a finer and more uniform 

grain structure desired for subsequent deformation processing. 

A schematic of vertical DC casting, the most common variant of the process, is shown in 

Figure 1.1.  Molten metal is poured from the furnace into a transfer trough and enters the mold 

either through a gap in the trough (known as a hot-top system), or through a down spout where it 

is then distributed through a combo-bag (known as a bi-level system). At the beginning of the 

process, a bottom block mounted to a hydraulic ram closes the mold. Once a solid shell forms 

along the bottom block and near the mold walls, the bottom block is lowered into a casting pit. At 

this stage, the inner core of the ingot still contains a solid-liquid mixture, from which heat is 

extracted through the solid shell with water jets as the ingot exits the mold. This secondary cooling 

stage accounts for 80-90% of the total heat extraction during the DC casting process. Casting stops 

when the ram reaches the bottom of the casting pit, making the process semi-continuous. 
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The most severe defect in DC casting is the formation of hot and cold cracks resulting from 

the residual stresses that accumulate due to uneven thermal contractions and expansions during 

cooling. Inoculation of the melt with titanium-based grain refiner promotes the heterogenous 

nucleation of equiaxed grains which exhibit improved uniformity in mechanical properties and 

reduced hot cracking susceptibility. These equiaxed grains form a slurry of solid grains suspended 

in the liquid metal. As the particles grow and interact, they connect to form a permeable rigid mush. 

The demarcation between the slurry and the rigid mush is referred to as the packing interface, 

indicated by the dotted line in Figure 1.1. 

A less severe but commonly observed defect in DC casting is macrosegregation, defined 

as chemical inhomogeneity on the length scale of the ingot. Because wrought aluminum alloys 

obtain most of their strength by precipitating secondary phases, macrosegregation plays a direct 

role in the distribution of microstructure and mechanical properties of the ingot. This casting defect 

is problematic because it reduces the efficiency of the subsequent heat treatment and deformation 

processes. In the most severe cases, the chemical composition in a significant portion of the ingot 

can be outside of the material specification limits of the alloy and it must be scrapped. Although 

this defect causes scrapping in less than 1% of all ingots produced [2], recent industrial needs 

require larger ingots in which macrosegregation tends to be more severe. 

Although research into the transport phenomena causing macrosegregation has been 

extensively studied since the advent of DC casting, progress towards mitigating its severity has 

only been achieved in recent years. The purpose of this work is to improve modeling capabilities 

of the DC casting process, allowing better prediction of the transport phenomena known to cause 

macrosegregation. A model scalable to 3-D simulations of large rolling slabs is required to 

investigate industrially relevant problems. This model is used to investigate the role that forced 

convection from the liquid metal distribution system can have on macrosegregation. 
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Figure 1.1: Illustration of the DC casting process with two inlet variations: a.) hot-top, and b.) bi-

level with a combo-bag. 
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1.2 Physical Phenomena in Alloy Solidification 

1.2.1 Equilibrium Phase Diagrams and Solidification Structures 

One of the most powerful tools for the exposition of segregation development during alloy 

solidification is the binary eutectic phase diagram. This diagram shows the types and quantities of 

thermodynamic phases present at equilibrium as a function of temperature and composition. A 

generic diagram for solute A and B is shown in Figure 1.2 at constant pressure. Composition is 

plotted on the x-axis and temperature on the y-axis. The primary divisions on this diagram are the 

liquidus and solidus lines. At temperatures above the liquidus line, only liquid is present, and at 

temperatures below the solidus line, only solid is present. There will either be one or two solid 

phases depending on the temperature and composition. The 𝛼 solid phase has a crystal structure 

of pure A (face-centered-cubic for Al) with B in solution. Likewise, 𝛽 is a solid solution with the 

structure of pure B. At the eutectic point, which occurs at the eutectic temperature 𝑇𝑒𝑢𝑡  and 

composition 𝐶𝑒𝑢𝑡, all three phases (𝐿, 𝛼, and 𝛽) coexist in equilibrium. The wrought alloys studied 

in this work are all hypoeutectic, meaning that they solidify on the 𝛼-side of the diagram. 

Between the solidus and liquidus is a two-phase region where a single solid phase coexists 

in equilibrium with the liquid. In this temperature range, the solid and liquid will have different 

compositions due to the difference in solute solubilities. For equilibrium solidification (i.e. lever 

rule), the individual phase compositions fall on the solidus and liquidus lines. When calculating 

the phases fractions and phase compositions, it is often convenient to represent the solidus and 

liquidus curves as straight lines: 

𝑇𝑙𝑖𝑞 = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶𝑙 (1.1) 

and  

𝑇𝑠𝑜𝑙 = 𝑇𝑚 +𝑚𝑠𝑜𝑙𝐶𝑠 (1.2) 

 

where 𝑇𝑚 is the melting temperature of the pure solvent, 𝑚𝑙𝑖𝑞 and 𝑚𝑠𝑜𝑙 are the slopes of the 

liquids and solidus, and  𝐶𝑙 and 𝐶𝑠 are the compositions of the liquid and solid phases. The 

composition ratio of the solid and liquid at the equilibrium interface is the partition coefficient: 

𝑘𝑝 =
𝐶𝑠
𝐶𝑙
=
𝐶𝑚𝑎𝑥
𝛼

𝐶𝑒𝑢𝑡
 (1.3) 
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which can be approximated using maximum composition of the primary solid phase 𝐶𝑚𝑎𝑥
𝛼  and the 

eutectic composition 𝐶𝑒𝑢𝑡. It is necessary for hypoeutectic alloys to have a partition coefficient 

less than one, indicating that solute is rejected into the liquid phase during solidification.  

Using the phase diagram, the process of solidification can be described for an alloy with 

the initial composition 𝐶𝑜. The path begins in the liquid at some temperature 𝑇 > 𝑇𝑙𝑖𝑞 and liquid 

composition 𝐶𝑙 = 𝐶𝑜. As heat is extracted, the temperature drops until 𝑇 = 𝑇𝑙𝑖𝑞 and solidification 

begins. The composition of the first solid to form is 𝐶𝑠 = 𝑘𝑝𝐶𝑜. With more heat removal, the 

temperature drops and the equilibrium solid and liquid compositions move down the solidus and 

liquidus curves, respectively, until solidification ends at the solidus temperature, 𝑇𝑠𝑜𝑙 = 𝑇𝑚 +

𝑚𝑠𝑜𝑙𝐶𝑜. 

Although the phase diagram provides a significant amount of information, it assumes that 

the system is in thermal and solutal equilibrium. The wrought aluminum alloys studied in this work 

are substitutional alloys, meaning that the atoms from each element can occupy the same lattice 

sites in the crystal structure. Therefore, the atomic mobility is significantly lower in the solid than 

in the liquid and the rate of solute diffusion, characterized by the mass diffusivity coefficient 𝐷, is 

several orders of magnitude less. A more appropriate assumption for substitutional alloys might 

be the Gulliver-Scheil assumption which assumes thermal and solutal equilibrium at the solid-

liquid interface, complete solute diffusion into the liquid, and no solute diffusion into the solid 

during solidification. The consequence of this final assumption is that the average solid 

composition lags behind the interfacial solid composition, and thus, the solid fraction at a given 

temperature is lower than under equilibrium conditions. Additionally, solidification persists down 

to the eutectic temperature which widens the freezing range of the alloy. The appropriate solute 

diffusion assumption will depend on the interfacial area available for solute diffusion (i.e. the 

microstructure) and the time scale of the solidification process. Because the evolution of phase 

fractions and compositions predicted by these different microsegregation models will tend to differ, 

proper understanding of the microstructure and solidification conditions are required. 

Two important insights concerning alloys solidification affecting macroscopic transport 

can be established from the previous description of solidification reactions. The first is that alloys 

freeze over a finite temperature range, resulting in a two-phase region where solid and liquid 

coexist, commonly referred to as a mushy zone.  The second is that the solid and liquid phases 

have different compositions which change as a function of temperature and are both different than 
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the initial composition. These two effects result in temperature and composition gradients in the 

mushy zone which can induce relative solid-liquid motion, translating segregation to the 

macroscale. 

In most commercial applications, the mushy zone will consist of solid dendrites with 

interdendritic liquid. Dendrites are tree-like structures consisting of primary and secondary arms, 

which grow in the preferred growth direction, e.g. 〈100〉 for cubic crystal structures. The growth 

of a dendrite is driven by undercooling at the dendrite tip. Undercooling refers to the phenomenon 

of solidification to occur at some temperature below the equilibrium liquidus temperature due to 

combined thermal, curvature, and solutal effects. The growth velocity of the dendrite tip increases 

as the undercooling increases. For cubic systems, the secondary arms will tend to branch 

orthogonal to the primary dendrite to fill the space between primary arms. When these structures 

grow from a fixed surface against a unidirectional (at least locally) heat flux, they are classified as 

columnar dendrites. Columnar dendrites do not generally have enough space to grow in DC casting 

due to the heterogenous nucleation of grains in the undercooled region ahead of the columnar 

dendrites. The grains that nucleate and grow in this region are classified as equiaxed grains and 

can have several different types of structures.  

The two most important structures in DC casting are globular grains and dendritic grains, 

shown in Figure 1.3. A globular microstructure occurs when solutal or thermal instabilities are 

unable to develop during solidification, e.g. when the grain radius is small with respect to a 

characteristic instability wavelength of the interface [4]. The primary phase will tend to grow with 

a nearly spherical solid-liquid interface. Under similar thermal conditions, the same alloy may 

develop a dendritic microstructure when the final grain size is large, which occurs when the 

number of heterogenous nucleation sites is decreased. A simple morphological model used to 

describe equiaxed grains is the grain envelope model of Rappaz and Thévoz [5]. The grain 

envelope is a hypothetical, smooth surface that connects the tips of the primary dendrite arms. The 

morphology, or dendricity, of the grain is characterized by the ratio of the solid and grain fraction 

volume fractions: 

𝑔𝑠,𝑖 =
𝑔𝑠
𝑔𝑔
=

𝑔𝑠
𝑔𝑠 + 𝑔𝑑

 
(1.4) 

Where the grain volume fraction (𝑔𝑔 ) is the sum of the solid volume fraction (𝑔𝑠 ) and the 

interdendritic liquid volume fraction (𝑔𝑑). This morphological parameter is commonly known as 
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the internal solid fraction ( 𝑔𝑠,𝑖 ) and is used throughout this work to characterize grain 

morphologies. Globular grains will therefore have an internal solid fraction slightly less than one, 

while dendritic grains will have an internal solid fraction much less than one. 

 

 

Figure 1.2: Generic binary eutectic equilibrium phase diagram with approximated linear solidus 

and liquidus lines. 
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Figure 1.3: Equiaxed grain types encountered in DC casting for Al-4.5wt%Cu: global grains 

(grain size ≈ 100 µm), dendritic grains (grain size ≈ 250 µm), and the morphological grain 

envelope model. Micrographs courtesy of Sam Wagstaff. 

 

1.2.2 Fluid Flow and the Development of Macrosegregation 

Due to solute rejection into the liquid at the grain interface, any macroscopically significant 

relative motion of the enriched liquid and the depleted solid grains causes the macroscopic 

transport of the solute. This phenomenon is known as macrosegregation. The four main causes of 

relative motion during equiaxed solidification [4], illustrated in Figure 1.4, are: 

1. Shrinkage induced flow: The density of the solid phases is generally higher than the 

liquid. The volume contraction upon solidification causes suction of the liquid, generally 

perpendicular to the solid fraction isocontours. This flow is most significant deep in the 

mushy where other flow effects are negligible due to strong drag forces. Although the 

liquid velocities may be small, they can cause significant solute redistribution due to the 

liquid being highly enriched in this region. 

2. Natural convection: Temperature and composition gradients produce buoyancy forces 

that drive enriched liquid through permeable regions in the rigid mush 

3. Grain motion: Suspended equiaxed grains in the slurry tend to move (settle or float) 

depending on the density difference between the solid and liquid. The amount of relative 

solid-liquid motion depends on balance of buoyancy and drag forces, which both depend 
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on the morphology of the grain. Globular grains tend to settle more quickly that dendritic 

grains due to the larger volume to surface area ratio. 

4. Mushy zone deformation: The deformation of the solid skeleton of the rigid mush causes 

motion of the enriched interdendritic liquid. It is primarily caused by thermal or mechanical 

stresses which can expel enriched liquid under compression, or pull in liquid under tension 

 

Macrosegregation in DC casting is caused by the net contribution from each source of relative 

phase motion, illustrated in Figure 1.5. The flow in the slurry region is primarily driven by 

thermosolutal natural convection caused by the rapid cooling at the ingot surface which drives 

flow along a narrow boundary layer near the packing interface. Natural convection tends to 

transport enriched liquid in the rigid mush towards the centerline, the degree to which depends on 

the permeability of the rigid mush and the dimensions of the ingot. Natural convection also tends 

to sweep solute-depleted grains toward the centerline where they settle in a region of thermal and 

solutal stratification. The accumulation of depleted grains contributes to negative segregation at 

the centerline and positive segregation in the slurry, the degree to which depends on both the grain 

size and internal solid fraction. Finally, shrinkage induced flow in the rigid mush is directed 

orthogonal to the solid fraction isocontours, pulling liquid from the centerline to the surface. The 

degree to which shrinkage flow effects macrosegregation primarily depends on the orientation of 

the solid fraction isocontours in the rigid mush. 

Shrinkage generally causes two distinct macrosegregation segregation features, the first is a 

depleted centerline due to the enriched liquid pulled from this location being replaced with liquid 

closer to the nominal composition from the slurry. The second is a depleted region adjacent to a 

narrow band of enrichment at the surface. The enriched surface is due to a phenomenon known as 

liquation. As the surface solidifies it pulls away from the mold, enriched liquid is driven by the 

hydrostatic head through the permeable rigid mush to the surface where it freezes. Due to the poor 

surface quality and the severe amount of localized segregation, the surface is general scalped 

before subsequent treatment. Because the depleted centerline cannot be modified by any such 

downstream process, it is the most concerning and prominent macrosegregation feature in DC cast 

ingots. With this macrosegregation feature in mind, experimental investigations of 

macrosegregation and grain structure are reviewed in the following section to demonstrate efforts 

made towards understand the origin and mitigation of its formation. 
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Figure 1.4: Various types of relative motion during equiaxed solidification induced by a.) 

solidification shrinkage, b.) natural convection, c.) grain motion, and d.) mushy zone deformation. 

The positive and negative signs indicate the regions of positive and negative segregation which 

form due to the relative solid-liquid motion in hypoeutectic alloys. 
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Figure 1.5: Typical relative flows and resulting macrosegregation profile in DC casting. 
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1.2.3 Experimental Investigations of Macrosegregation in DC Casting 

One of the earliest attempts to explain mechanisms for macrosegregation in DC casting 

was performed by Yu and Granger in 1986 [6] on Al-Cu-Mg slabs. The authors found positive 

segregation towards the surface and negative segregation at the centerline (similar to Figure 1.5) 

and concluded that the former was due to shrinkage induced flow while the latter was due to grain 

accumulation. A duplex grain structure was observed near the centerline consisting of both fine 

and coarse cell dendrites. The spatially varying microstructure indicates different thermal histories 

for the two structures since the dendrite cell size depends on the cooling rate, and therefore, the 

coarse cell dendrites must have grown at much smaller cooling rates. Electron microprobe 

measurements of the composition profiles in the grains showed that these coarse cell grains grew 

in near isothermal conditions close to the centerline, while the fine dendrites grew under higher 

cooling rates as they were swept along the packing interface. The negative centerline segregation 

was attributed primarily to the accumulation of solute-depleted coarse cell dendrites. 

 This hypothesis was generally supported by Gariepy and Caron [7] in their investigation 

of 51 different rolling slabs (AA3014 and AA5182) cast with various metal distribution systems, 

casting speeds, and levels of grain refinement. The authors found that the level of centerline solute 

depletion generally increased with the amount of added grain refiner and suggested that grain 

refinement practices should be optimized to only supply the amount necessary to prevent hot-

cracking, but prevent the morphological transition to globular grains that tend to accumulate at the 

centerline. The authors also demonstrated the significant role that the liquid metal distribution had 

on macrosegregation. The authors concluded that adding combo-bags to the bi-level transfer 

system (see Figure 1.1) could reduce the bulk segregation by up to 30 − 40% by preventing forced 

convection down the centerline. However, no specific mechanism describing how attenuated 

forced convection led to the reduction of macrosegregation was provided. The practical conclusion 

of this work were that both grain refinement and liquid metal distribution practices could have a 

significant effect on macrosegregation, and the design of these practices should be improved. 

Under the European EMPACT project, Joly et al. [8] characterized the macrosegregation 

and grain structure formation in ingots (AA5182) cast with and without grain refiner and combo-

bags. An ingot cast with a combo-bag exhibited more severe centerline depletion when grain 

refined (−9.2% Mg) than non-grain refined (−4.2% Mg). This observation was attributed to the 

increased settling tendency and packing fraction for globular grains in the grain refined case 
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compared to dendritic grains in the non-grain refined case. The morphology of the grain appeared 

to play a larger role than the grain size in the accumulation of solute-depleted grains near the 

centerline. The grain refined ingot had a significantly smaller average grain size (198±41 µm 

compared to 399±52 µm) while having a more solute-depleted centerline. The interplay of grain 

morphology on hydrodynamics explains why trends in centerline macrosegregation as a function 

of grain size cannot be well established because large grains will tend to undergo a globular-to-

dendritic morphological transition. In contrast to Gariepy and Caron [7], the authors observed that 

removal of the combo-bag led to the overall reduction in centerline depletion, however no 

mechanism was suggested. 

 More recently, Wagstaff and Allanore [9–12] used a strong localized jet to feed liquid metal 

down the centerline of Al-4.5wt%Cu slabs to prevent the accumulation of solute-depleted grains 

at the centerline. The authors proposed an optimal jet condition strong enough to suspend grains 

locally, but weak enough to minimize the erosion of the rigid mush, which would tend to increase 

the horizontal component of shrinkage driven flow. For the first time, the authors demonstrated 

the ability to refine and globularize the grain structure, while simultaneously preventing the 

accumulation of solute-depleted grains at the centerline. A considerable reduction in the depleted 

centerline for this “jet-stirred” process compared to conventional casting with a combo-bag is 

shown in Figure 1.6, where the casting direction is into the page. The use of a numerical model to 

elucidate details of the change in transport phenomena leading to this different macrosegregation 

pattern is one of the primary goals of this dissertation. 
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Figure 1.6: Comparison of experimental macrosegregation profiles in ingot slices for conventional 

and jet-stirred casting at a cast length of 1800 mm. The composition was previously measured 

using X-ray fluorescence (XRF) by Wagstaff and Allanore [9] and contour plots are reproduced 

here assuming two-fold symmetry of the measured ingot quadrant indicated by the black lines. 

 

1.3 Mathematical Modeling of Alloys Solidification 

Having identified the various micro- and macroscopic transport phenomena that contribute to 

macrosegregation development during solidification and in DC casting, focus is shifted towards 

the development and use of mathematical models of macrosegregation. Among the first studies to 

model macrosegregation during alloy solidification were published in the 1960s by Flemings and 

his coworkers [13,14]. Flemings and Nereo [13] derived a local solute redistribution equation; an 

ordinary differential equation based on solute mass conservation and the Scheil assumption for 

local solute partitioning. This equation was used to determine the macrosegregation caused by 

shrinkage-induced flow in Al-Cu castings cooled from the bottom. The analytical model enabled 
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the authors to study the effects of varying heat transfer rates and casting cross-sections to 

qualitative explain macrosegregation development in casings. This model was later extended by 

Mehrabian et al. [15] to include the effect of buoyancy driven flows in the interdendritic liquid. A 

temperature gradient was imposed, and steady state velocity and compositional fields in the mushy 

zone were calculated. A parametric study suggested that channels of highly enriched liquid during 

columnar solidification were the result of buoyancy, and not shrinkage. 

The first attempt to calculate, rather than prescribe, the interactions between the mushy 

zone and bulk fluid, was performed by Szekely and Jassal [16]. A multi-domain approach was 

used where separate conservation equations modeled were solved for the heat and momentum 

transfer in the mush, liquid, and solid. An iterative procedure was used to couple the different 

regions using the solutions on their boundaries. Ridder et al. [17] used a similar model to study 

macrosegregation in an axisymmetric ingot, with Flemings solute redistribution equation in the 

mushy zone. The macrosegregation predictions of the model qualitatively agreed with experiments.  

Substantial progress in solidification modeling began in the mid-1980s with the advent of 

single-domain models. Such models eliminated the computational difficulties associated with 

coupling and remeshing near interfaces by solving the same set of equations over the entire fixed 

computational domain, regardless of the location of phase fronts. Two different modeling 

approaches can be distinguished from the single domain models: the multiphase models of 

Beckermann and coworkers [18,19], and the mixture model of Bennon  and coworkers [20–22]. 

1.3.1 Multiphase Models 

Ni and Beckermann [18] were the first to use the volume-averaging approach to propose a 

two-phase model for transport phenomena occurring during globular equiaxed solidification. In 

this approach, the microscale transport equations for the solid and liquid phases are averaged over 

a representative volume element (RVE). The formal averaging procedure, was based on the 

method of Drew [23] for incorporating microscopic phenomena into macroscopic balance 

equations. These macroscopic balances are formulated for each phase and coupled by interphase 

transfer terms that reflect the transport phenomena such as grain nucleation and growth, solutal 

undercooling and backdiffusion, and interfacial drag occurring on the microscopic scale. The 

interphase transfer terms are dependent on the solid-liquid interfacial area per unit volume, which 

characterizes the geometry of the interface lost during the averaging process. Expressions for the 
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interfacial area per unit volume generally require the number density of grains, determined either 

from some type of nucleation model [24] or are taken to be uniform and constant. The solid growth 

rate in the representative volume is approximated by a growing sphere model controlled by a solute 

mass balance at the solid-liquid interface, assumed to be at thermodynamic equilibrium. The 

interphase drag of a sphere is calculated according to the generalized expression of Agarwal and 

O’Neill [25], approaching Stoke’s law for a single sphere at low solid volume fractions and the 

Kozeny-Carman expression for the permeability of a packed bed of spheres at high solid volume 

fractions. The solid phase is treated as a pseudo fluid with an effective viscosity that approaches 

an infinite value at a predefined packing fraction of 0.637, corresponding to the random close 

packing of spheres [26]. This implies that the macroscopic velocity gradients in the solid vanish at 

solid fractions above the packing limit so that the rigid solid assumes a uniform velocity equal to 

the system velocity. 

Wang and Beckermann [19] expanded the previous multiphase model to dendritic grain 

morphologies using the concept of a grain envelope (see Figure 1.3). Because this hypothetical 

interface separates the inter- and extradendritic liquid, it provides the ability to incorporate 

microscopic phenomena related to the grain morphology into the macroscopic equations [27]. The 

growth of the envelope is governed by the velocity of the primary dendrite tips using an Ivantsov-

based growth model [28], which requires a further assumption about the geometry of the dendrite 

tip (e.g. hemisphere [29] or paraboloid [30]). The evolution of the solid phase inside the envelope 

is controlled by solute diffusion on the length scale of the secondary dendrite arms, assuming local 

thermodynamic equilibrium at the solid-liquid interface. Thus, the morphology of the dendritic 

grain is determined by the competitive growth of the primary and secondary dendrite arms and the 

internal solid fraction can then be calculated. For the limiting case where the internal solid fraction 

reaches unity, the model reduces to the two-phase formulation of Ni and Beckermann [18]. 

Perhaps, the most important aspect of this model is that the internal fraction solid can be 

tracked to account for the influence of grain morphology on the hydrodynamic behavior of the 

system. For example, the effective viscosity used to transition between the slurry and rigid mush 

is dependent on the grain fraction, Eqn. (1.4), so that grains can coalesce with a solid fraction less 

than the theoretical packing limits for its ideal shape. This phenomenon is supported by ample 

experimental evidence from Arnberg and coworkers [31,32] which shows that the packing fraction 

for aluminum alloys is in the solid fraction range of 0.1 − 0.55 , depending of the grain 
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morphology. Additionally, the use of the grain envelope model better accounts for the influence 

of grain morphology on the buoyancy and drag forces exerted on the grain. In this regard, an 

interphase drag model based on settling experiments involving a wide range of realistically shaped 

models of dendrites [33,34] was proposed by Wang et al. [35]. Combeau et al. [36] compared the 

macrosegregation and grain structure predictions using a similar multiphase model to explore the 

influence of grain morphology on macrosegregation in steel castings. Notably, the authors showed 

that dendritic grains settled slower and carried less solute-depleted mass to the centerline than 

globular grains. A significant improvement in the prediction of centerline segregation was 

observed by accounted for the grain dendricity in the numerical model. 

1.3.2 Mixture Models 

While the multiphase approach theoretically resolves the microscopic and macroscopic 

features of equiaxed solidification in significant detail, it requires model inputs for the interphase 

transfer terms for which experimental data can be scarce, introducing additional uncertainty into 

the model predictions. Furthermore, the use of separate conservation equations for each phase can 

be computationally expensive and difficult to implement into standard CFD procedures. Bennon 

and Incropera [21,37] proposed an alternative approach, known as the continuum mixture model, 

which cast the previous transport equations in terms of mixture quantities to reduce the number of 

equations to be solved and negating the need for uncertain interphase transfer terms. When 

necessary, individual phase contributions are found by postulating ad hoc algebraic relationships. 

An example of such a relationship is using lever rule to calculate the phase fractions and 

compositions rather than using the complicated multiphase growth kinetics model. The relative 

simplicity of these models has led to the development of robust and efficient solution procedures 

for coupling the various transport equations  [38–40], making them well suited to upscaling to the 

length and time scales of industrial systems. Recognizing these benefits, Ni and Incropera [41,42] 

extended the mixture model to include solutal undercooling and solid motion, although no 

calculations were performed. 

Vreeman et al. [43,44] used some of the previous developments to propose a binary mixture 

model accounting for grain motion during equiaxed solidification. The model uses different source 

terms in the momentum equations for the slurry and packed zones. Compared to the pseudo-

viscosity model, this approach requires a method for tracking the evolution of the packing interface 



 

 

40 

to properly transition terms from expressions in the slurry to the rigid mush. Using a discrete 

transition between slurry and rigid mush regions can have a significant artificial influence on the 

composition predictions [45,46] and must be treated carefully. The supplementary relationship 

used to predict the relative solid-liquid velocity assumes a constant, characteristic grain diameter 

and spherical, globular grains. The only morphological consideration of the model is the ad-hoc 

selection of the characteristic packing fraction which invokes an implicit assumption about the 

grain morphology which is not included in the relative velocity model. Although this model has 

been used with some success in DC casting [47–49], there have been few attempts to reformulate 

the mixture model to incorporate a more realistic description of the grain size and morphology in 

equiaxed solidification. Development of a continuum mixture model for dendritic equiaxed 

solidification is one of the primary goals of this dissertation. 

1.3.3 Mathematical Investigations of DC Casting 

The earliest attempts at modelling DC casting process were by Flood et al. in 1991 [50]. 

The model, which assumed an entirely rigid mush (no solid-liquid slurry) moving at the casting 

speed and neglected solidification shrinkage, was applied to an Al-4.5wt%Cu billet with a diameter 

of 420 mm. Without settling solid grains or shrinkage driven flow, the authors observed positive 

segregation at the center of the ingot due to solutal convection in the rigid mush. Reddy and 

Beckermann [51] made the first attempt to model grain motion in DC casting of a Al-4.5wt%Cu 

billet with a diameter of 533 mm. The authors compared cases with and without grain motion and 

compared preliminary results to the experiments of Finn et al. [37]. Although neither case showed 

good quantitative agreement with experiments, it was demonstrated that incorporation of grain 

motion into the numerical model allowed for the prediction of a depleted centerline. For the same 

alloy and casting conditions, Reddy and Beckermann [52] studied competition between 

thermosolutal natural convection and shrinkage induced flow. The former relies on the 

permeability of the rigid mush, while the latter does not, so that shrinkage flow fills the volume 

deficit from solidification regardless of the solid structure via continuity. A rigid mush with 

relatively high permeability allowed natural convection to dominate shrinkage flow in the rigid 

mush causing positive centerline segregation. On the other hand, a rigid mush with a low 

permeability damped natural convection and shrinkage flow dominated causing negative 

centerline segregation. 
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Vreeman et al. [43] studied macrosegregation formation in 400 mm diameter billets using 

a continuum mixture model that considered grain motion, thermosolutal convection, and shrinkage. 

Two different alloys were considered: Al-4.5wt%Cu, which has cooperating negative thermal and 

solutal buoyancy (i.e. Cu is lighter than Al) and Al- 6wt%Mg, which has competing thermal and 

solutal buoyancy (Mg is heavier than Al). The first parametric study on the role of grain motion 

on macrosegregation showed that both the grain diameter and packing fractions had a significant 

impact on predictions. It was also shown that a region of loosely packed grains formed in the center 

of the ingot that increased in volume with increasing grain size due to the increased sedimentation 

rate of the larger grains. The authors demonstrated the different flow patterns in the slurry for the 

two alloys. Since Mg is lighter that Al, the natural convection flow tended to recirculate up towards 

the inlet before interacting with the incoming liquid. In the other alloy, Cu is heavier that Al, and 

the recirculation cell was constrained to a region below the thermally stratified hot-top reservoir.  

Later, Vreeman et al. [47] used the same simplified model to compare the model 

predictions to experiments for a 450 mm diameter grain-refined Al-6wt%Cu billets. The 

comparison showed sufficient agreement in temperature profiles, composition profiles, and sump 

shape to explain general trends in the process. The authors concluded that the experimental packing 

fraction could be somewhere in the range of 0.2-0.25 solid fraction based on the comparison of the 

composition profiles but noted that this value most likely depends on the position in the casting 

and casting parameters. 

Flood and Davidson [53] presented an analytical model of DC casting and performed a 

scaling analysis on the flow patterns in the sump. The authors showed that, as the liquid metal is 

uniformly introduced at the top of the mold, it is immediately pulled towards the chilled surface 

and is driven down by thermal buoyancy forces in a narrow boundary layer along the rigid mush. 

As the cooling liquid moves radially inward and down the rigid mush, the fluid is continually 

entrained into the mush and solidifies. When the remaining fluid reaches the centerline, it is 

redirected upwards as part of a shear-driven recirculation cell that is mostly isothermal. The scaling 

analysis was further used to demonstrate that general flow structure was a weak function of billet 

radius and superheat, so that there is only a narrow range of buoyancy driven velocities possible.  

Rappaz and coworkers [54,55] studied macrosegregation formation in an Al-Mg sheet 

ingot  (275 mm thick) based on the experiments of the EMPACT project [8] using a 2-D model 

that did not account for grain motion. Jalanti [54] concluded that the combined thermosolutal 
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natural convection for Al-Mg alloys had an insignificant role compared to shrinkage on the 

macrosegregation formation. Comparison with experiments showed reasonable qualitative 

agreement in the prediction of a depleted centerline, but did not predict enrichment in the mid-

section, attributed to the lack of grain motion model. The conclusions from this study suggest that 

shrinkage driven flow is the most important transport mechanism contributing to the depleted 

centerline in DC cast slabs. 

Zaloznik et al. [56] performed the most detailed investigation to date regarding the relative 

importance of transport mechanisms on the macrosegregation. A 350 mm thick sheet ingot of 

aluminum alloy 7449 was simulated using a 2-D multiphase model. The authors found that 

shrinkage and grain motion were the two most import transport mechanisms contributing to the 

formation of negative centerline segregation, with shrinkage flow being the most important by a 

wide margin. The authors also identified two mechanisms for grain coalescence. Near the chill and 

along the inclined packing interface grains coalesce by a growth and impingement mechanism, 

whereas near the centerline grains coalesce by sedimentation. This latter mechanism causes a flat, 

loosely packed bed similar to the previous observations of Vreeman et al. [43]. Although the model 

did not predict grain morphologies (i.e. a fully globular structure was prescribed), various trends 

can be concluded from the reported undercoolings and growth rates. As the grains are swept along 

the packing interface they rapidly grow in a region of large undercooling and will tend to be 

dendritic and increase in size towards the centerline. The grains that do not coalesce are carried 

into the sump where they are either carried to regions above the liquidus temperature, and remelt, 

or remain in the core of the slurry. This region exhibits low undercoolings and growth velocities 

which can explain the formation of coarse dendrites intermixed with fine equiaxed dendrites, as 

has been observed experimentally [6,8]. 

Heyvaert et al. [57] attempted to simultaneously predict the grain structure and 

macrosegregation using a version of the Wang and Beckermann multiphase model [19]. The model 

was compared to the results from the combined numerical and experimental investigation of 

Vreeman et al. [47]. Although the authors claim better agreement with experiments, the 

macrosegregation predictions using different input parameters for nucleation density, envelope 

packing fraction, and tip geometry assumption are all within the experimental uncertainty band. 

Although the model is sophisticated, it does not seem to shed much light on the transport 

phenomena occurring in DC casting not already captured by more simplified approaches. Instead 
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the general conclusions seem to characterize the behavior of the multiphase model as a function 

of model input. For example, is was demonstrated that assuming paraboloidal dendrite tips led to 

the prediction of a globular-to-dendritic transition depending on the nucleation parameters 

prescribed to the model, while the hemispherical tip model consistently predicted globular grains. 

Therefore, the authors concluded that there is still a need for improved microstructure modeling 

before these models can reliably predict grain structure evolution and be confidently used to model 

DC casting. Some recent efforts towards this goal have been made by Torabi et al. [58]. 

In each of the preceding studies, liquid metal was introduced from a sufficiently wide inlet 

so that the inflow was immediately entrained towards the mold. Although several numerical 

studies have examined the flow field behavior for different inlet configurations in DC casting 

[49,59–62], few studies have calculated the macrosegregation in 3-D slabs. Pakanati [63] applied 

a version of the Wang and Beckermann multiphase model [19] to 3-D simulations of  DC casting 

including a centerline jet to promote grain suspension. However, the computational expense of the 

multiphase approach prevented the model from assisting in process designs decisions because a 

limited number of simulations could be performed. A similar conclusion was reached by 

Mortensen et al. [64] and their multiphase model [65] was simplified by prescribing a constant 

grain size and packing fraction, and the Gulliver-Scheil assumption was used to model 

microsegregation. Nevertheless, the model still included all relevant macroscopic transport 

phenomena including forced convection from a constrained inlet, natural convection, grain motion, 

and mushy zone deformation. The macrosegregation in the AA5182 ingots previously cast and 

characterized by Joly et al. [8] was investigated. The authors observed the same qualitative results 

as the experiments: removal of the combo-bag reduced the negative centerline segregation; 

however the flow field was not examined and no mechanism for this change in segregation was 

suggested. 

1.4 Research Objectives 

The formation of macrosegregation in DC casting has been investigated for many years, but 

a full understanding is still developing. Due to the complexity of the physical phenomena involved 

and the opacity of the metal, a merely experimental approach cannot provide enough clarity and 

must be complimented with numerical studies. Previous efforts to perform numerical studies for 

DC casting point towards the need to bridge the gap between the multiphase and mixture models. 
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The former resolves a significant amount of detail regarding the grain structure; however, the 

current implementations of these models require prohibitive computational resources to use them 

for 3-D parametric studies of industrial scale processes. In contrast, current implementations of 

mixture models are sufficiently scalable, but do not include enough detail of the grain structure to 

apply these models to realistic cases. 

Extension and generalization of the mixture model is presented in Chapter 2, formulated 

from the volume-averaged multiphase equations. Information regarding the grain structure is 

retained in the hydrodynamic considerations of the model. The model is further extended to more 

realistic microsegregation models with finite solute diffusion in Chapter 3. Two different 

microsegregation models are formulated with a varying level of complexity. The first is an 

analytical model based on the work of Clyne and Kurz [66] which gives an algebraic expression 

for phase fractions and compositions. This expression can be directly incorporated into the 

efficient thermodynamic coupling procedures developed by Voller and coworkers [38–40]. The 

second is based on the multiphase model of Wang and Beckermann [67] which attempts to 

simultaneously predict both the microsegregation and microstructure development. An efficient 

thermodynamic coupling procedure is developed for the multiphase microsegregation model in 

Chapter 5. As a result, the computational expense of the two microsegregation models are similar 

and can be evaluated in terms of their ability to predict various microscale phenomena in Chapter 

7. It is of general interest to determine if the multiphase microsegregation model: (1) can reliably 

predict grain structure using the latest closure relationships, and (2) changes the macroscale 

transport predictions compared to the more simplified analytical approach. 

The most important aspects of any numerical model are related to the discretization 

procedures used to solve the transport equations. The finite volume method on co-located grids is 

reviewed in Chapter 4, and novel treatments of the discontinuous body forces and phase mass 

fluxes across the packing interface are proposed. The numerical model is verified against 

benchmark solutions in Chapter 6 to characterize its behavior and select discretization procedures 

that are free from erroneous numerical artifacts. 

The final objective of this work is to investigate the role that forced convection has on grain 

transport and macrosegregation in DC casting using the verified numerical model. In horizontal 

DC casting, the casting axis is perpendicular to gravity and there is a tendency for grains to 

accumulate along the bottom of the ingot. Feeding liquid metal through a constrained inlet near 
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the bottom in an effort to suspend grains is investigated in Chapter 8. In vertical DC casting, the 

casting axis is parallel to gravity and there is a tendency for grains to accumulate in the center of 

the ingot. The influence of a strong vertical jet down the centerline on the transport mechanisms 

contributing to macrosegregation development is investigated in Chapter 9. The grain structure 

data previously measured by Wagstaff and Allanore [9] in industrial scale vertical DC cast ingots 

is used a model input to properly account for the microstructure variation under different flow 

conditions. 
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 PHYSICAL MODEL 

This chapter is dedicated to formulating a mathematical model describing equiaxed 

solidification and deriving the corresponding conservation equations. This model uses a single-

domain approach to account for both flow regimes present during equiaxed solidification: the 

slurry and the rigid mush. In the slurry regime, the solid phase is mobile, and the flow behaves as 

a solid-liquid suspension. This is classified as a multiphase flow because two-way coupling exists 

between the phase structures and the local flow conditions. In the rigid mush, the solid phase is 

coalesced into a nondeformable solid matrix moving at the system velocity. This is classified as a 

single-phase flow through a saturated permeable medium because the local flow conditions do not 

directly influence the solid structure. The purpose of this model is to capture the effects that the 

combined relative solid-liquid motion in the different flow regimes have on the development of 

macrosegregation in castings. 

Although models have been formulated to describe the microscopic details of solidification 

interfaces, the length scale disparity between these interfaces and industrial scale castings prohibits 

their use. For example, a model that could theoretically capture the grain-scale phenomena in grain 

refined DC casting would require a computational grid spacing of about 10 µm. Calculation of the 

governing equations via the finite volume method (FVM) in three dimensions for a single cubic 

meter casting would require 1015 (one quadrillion) control volumes, an amount that is not feasible 

at any point in the foreseeable future. For this reason, macroscopic transport equations are 

formulated using volume averaging methods to replace instantaneous descriptions on the grain 

interface with approximated averages over a length scale that bridges the disparity between 

microscale phenomena and industrial systems. In this case, a grid spacing which provides 

meaningful averages of the microscale interfaces and accurate approximations of the discrete 

macroscale transport equations is on the order of 1-10 mm. Therefore, the volume averaging 

method can reduce the control volume requirement to about 106 (one million), which is reasonable 

for current computing systems available in both academia and industry. 

The development of the current model relates the previous work of Drew [23] for volume 

averaging procedures, Beckermann and coworkers for its application to multiphase models of 

solidification [18,19], and Bennon and Incropera [20] for the formulation of mixture equations. 

Insight into the relationship between multiphase and mixture equations is also taken from Prescott 
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et al. [22], Ni and Incropera [41], and Manninen [68]. Therefore, the model developed in this 

chapter is the continuation of long-standing ideas used to provide the necessary framework for 

mathematical model formulation of solidification processes. The resulting mixture model retains 

relationships for the grain morphology and size which were oversimplified in previous mixture 

formulations for equiaxed solidification. 

2.1 Volume Averaging 

Volume averaging is a procedure used to derive macroscopic continuum equations for 

individual phases in a multiphase system. Consider a representative volume consisting of solid 

grains and liquid, as shown in Figure 2.1. The formal definition of the volume average of the 

transport quantity 𝜙𝑘 over this representative volume 𝑉 is 

〈𝜙𝑘〉 =
1

𝑉
∫ 𝑋𝑘𝜙𝑘𝑑𝑉
𝑉

 (2.1) 

 

where the phase function 𝑋𝑘 indicates if the phase exists at a certain position 𝒙 and time 𝑡 

𝑋𝑘(𝒙, 𝑡) = {
1    if 𝒙 is in phase 𝑘 at time 𝑡 
0    else                                          

 
(2.2) 

 

 

The volume average of the phase function, 

〈𝑋𝑘〉 =
1

𝑉
∫ 𝑋𝑘𝑑𝑉
𝑉

=
𝑉𝑘
𝑉
= 𝑔𝑘 (2.3) 

 

is equal to the phase volume fraction 𝑔𝑘  of phase 𝑘  present in the representative volume and 

conservation of total volume requires that the phase volume fractions sum to unity: 

∑𝑔𝑘
𝑘

= 1 
(2.4) 

 

The fluctuating component of the quantity for phase 𝑘 in the representative volume is defined as 

�̂�𝑘 = 𝜙𝑘 − 〈𝜙𝑘〉
𝑘 (2.5) 
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where 〈𝜙𝑘〉
𝑘  is referred to as the intrinsic volume average. However, when the fluctuating 

component is neglected (�̂�𝑘 = 0), this value is mathematically equivalent to its microscopic 

counterpart, 𝜙𝑘 . Therefore, the volume average of some quantity is simply the product of the 

volume fraction and the microscopic quantity for that phase, 

〈𝜙𝑘〉 = 𝑔𝑘𝜙𝑘 (2.6) 

 

The material derivative of the phase function, also known as the topological function, 

𝜕𝑋𝑘
𝜕𝑡

+ 𝒖𝑖 ∙ ∇𝑋𝑘 = 0 (2.7) 

 

is utilized to provide the necessary relationship between the time varying component and spatially 

varying component of 𝑋𝑘. Here, 𝒖𝑖 is the velocity normal to the interface and the gradient of the 

phase function ∇𝑋𝑘 has properties of a Dirac 𝛿-function since it is zero everywhere except at the 

interface. The magnitude of ∇𝑋𝑘  at the interface is equivalent to the normal derivative and its 

direction points into the direction of phase, which gives 

∇𝑋𝑘 =
𝜕𝑋𝑘
𝜕𝑛

𝒏𝑘 = 𝛿(𝒙 − 𝒙𝑖)𝒏𝑘 
(2.8) 

 

 

Because the collection of all points on the interface defines the interfacial surface area, the volume 

integral of  𝜙𝑘∇𝑋𝑘 is equivalent to the surface integral of the interfacial value 

∫ 𝜙𝑘∇𝑋𝑘𝑑𝑉
𝑉

= ∫ 𝜙𝑘,𝑖𝒏𝑘𝑑𝐴
𝐴𝑖

 
(2.9) 

 

 

The previous volume averaging relationships can be applied to the general equation for transport 

of quantity 𝜙𝑘: 

𝜕

𝜕𝑡
(𝜌𝑘𝜙𝑘)⏟      

transient term

+ ∇ ∙ (𝜌𝑘𝜙𝑘𝒖𝑘)⏟        
advection term

= − ∇ ∙ (𝒋𝑘)⏟    
diffusion term

+ 𝑆𝑘⏟
source terms

 
(2.10) 

 

where each term has been labeled with its physical representation. The first step in deriving 

volume-averaged transport equations is to multiply the microscale balance by the phase indicator  
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function, such that: 

𝑋𝑘
𝜕

𝜕𝑡
(𝜌𝑘𝜙𝑘)⏟        

transient term

+ 𝑋𝑘∇ ∙ (𝜌𝑘𝜙𝑘𝒖𝑘)⏟          
advection term

= − 𝑋𝑘∇ ∙ (𝒋𝑘)⏟      
diffusion term

+ 𝑋𝑘𝑆𝑘⏟
source terms

 (2.11) 

 

 

Applying the chain rule to the transient, advection, and diffusion terms, 

𝜕

𝜕𝑡
(𝑋𝑘𝜌𝑘𝜙𝑘) − 𝜌𝑘𝜙𝑘

𝜕𝑋𝑘
𝜕𝑡⏟                

transient term

 

+∇ ∙ (𝑋𝑘𝜌𝑘𝜙𝑘𝒖𝒌) − 𝜌𝑘𝜙𝑘𝒖𝒌 ∙ ∇𝑋𝑘⏟                    
advection term

= 

−∇ ∙ (𝑋𝑘𝒋𝑘) + 𝒋𝒌 ∙ ∇𝑋𝑘⏟            
diffusion term

+ 𝑋𝑘𝑆𝑘⏟
source terms

 

(2.12) 

 

 

and averaging the microscopic equations over the representative volume, gives 

𝜕

𝜕𝑡
(
1

𝑉
∫ (𝑋𝑘𝜌𝑘𝜙𝑘)𝑑𝑉
𝑉

) +
1

𝑉
∫ (𝜌𝑘𝜙𝑘𝒖𝑖 ∙ ∇𝑋𝑘)𝑑𝑉
𝑉⏟                                

transient term

 

+
1

𝑉
∫ ∇ ∙ (𝑋𝑘𝜌𝑘𝜙𝑘𝑼𝒌)𝑑𝑉
𝑉

−
1

𝑉
∫ ∇ ∙ (𝜌𝑘𝜙𝑘𝒖𝒌 ∙ ∇𝑋𝑘)𝑑𝑉
𝑉

=
⏟                                    

advection term

 

−
1

𝑉
∫ ∇ ∙ (𝑋𝑘𝒋𝑘)𝑑𝑉
𝑉

+
1

𝑉
∫ 𝒋𝒌 ∙ ∇𝑋𝑘
𝑉⏟                      

diffusion term

+
1

𝑉
∫ 𝑋𝑘𝑆𝑘
𝑉⏟      

source terms

 

 

(2.13) 

 

Using the definition of the volume-averaged normal derivative of 𝑋𝑘 in Eqn. (2.8) gives 

𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘𝜙𝑘) −

1

𝑉
∫ 𝜌𝑘𝜙𝑘,𝑖𝒖𝑖 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖⏟                        

transient term

 

+∇ ∙ (𝑔𝑘𝜌𝑘𝜙𝑘𝒖𝒌) +
1

𝑉
∫ 𝜌𝑘𝜙𝑘,𝑖𝒖𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖⏟                          

=

advective term

 

−∇ ∙ (𝑔𝑘𝒋𝑘) +
1

𝑉
∫ 𝒋𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖⏟                  

diffusion term

+ 𝑔𝑘𝑆𝑘⏟
source terms

 

(2.14) 
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Collecting the area integral terms gives a general macroscale balance equation which can be used 

to describe the average behavior of a phase quantity in a representative volume: 

𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘𝜙𝑘) + ∇ ∙ (𝑔𝑘𝜌𝑘𝜙𝑘𝒖𝑘) = −∇ ∙ (𝑔𝑘𝒋𝑘) + 𝑔𝑘𝑆𝑘 + �̇�𝑘 (2.15) 

 

where �̇�𝑘 is a collection of the microscale interfacial transfer terms: 

�̇�𝑘 =
1

𝑉
∫ 𝜌𝑘𝜙𝑘,𝑖(𝒖𝑖 − 𝒖𝑘) ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖⏟                  

interface transfer 
due to phase change

+
1

𝑉
∫ 𝒋𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖⏟          

interface transfer 
due to diffusion

 

(2.16) 

 

The generation of a transport quantity in one phase must come at the annihilation of the quantity 

in the other phases, so that the net contribution of the interfacial transfer terms sum to zero: 

∑Ṙ𝑘
𝑘

= 0. 
(2.17) 

2.2 Multiphase Model 

Macroscopic conservation equations can be specified for a certain system by making 

relevant assumptions which simplify the interfacial transfer expressions. Although exact 

expressions for the interfacial transfers are provided in Eqn. (2.16), they are not useful for closure 

of the model because their length scale is not resolved after averaging. In view of the mean value 

theorem for integrals, the interfacial transfer terms can be modeled as the product of an interfacial 

area concentration (i.e. 𝑆𝑖 = 𝐴𝑖 𝑉⁄ ) and a mean interfacial flux. Hence, the interfacial transfer due 

to phase change becomes: 

1

𝑉
∫ 𝜌𝑘𝜙𝑘,𝑖(𝒖𝑖 − 𝒖𝑘) ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖

= 𝑆𝑖𝜌𝑘�̅�𝑛𝑖�̅�𝑘,𝑖 (2.18) 

 

where �̅�𝑛𝑖 represents the average normal velocity of the interface relative to phase 𝑘. For �̅�𝑘,𝑖 =

1, the mass exchange due to phase change is obtained 
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Γ𝑘 = 𝑆𝑖𝜌𝑘�̅�𝑛𝑖 (2.19) 

 

Similarly, an exact expression for the interfacial stress due to diffusion is provided. These 

terms physically represent transport phenomena caused by microscopic gradient on either side of 

the interface. Similar to the interface motion transfer, diffusion transfers can generally be modeled 

as the product of the interfacial area concentration and a mean interfacial flux. For momentum, the 

diffusion flux vector 𝒋𝑘 = −𝝈𝑘 , represents the general material stress tensor and can be 

decomposed into isotropic and deviatoric components, 𝝈𝑘 = −p𝑘𝐈 + 𝝉𝑘 . The diffusion and 

interfacial stress terms become  

∇ ∙ (𝑔𝑘𝝈𝑘) −
1

𝑉
∫ 𝝈𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖

= −∇ ∙ (𝑔𝑘p𝑘) + p̅𝑘,𝑖∇𝑔𝑘 + ∇ ∙ (𝑔𝑘𝝉𝑘) + 𝐌𝑘
𝑑 (2.20) 

 

where the deviatoric part of the interfacial stress 𝐌𝑘
𝑑, represents the effect of viscous drag caused 

by the relative motion of the phases on either side of the interface. Constitutive models for 

modeling this term are addressed in later sections. In principle the average interfacial pressure of 

can be modeled using (p̅𝑘,𝑖 − p̅𝑗,𝑖) = 𝜎�̅� , where �̅�  is the average curvature of the interface. 

However, for solid-liquid systems the assumption of mechanical equilibrium on the length scale 

of the control volume is generally valid (i.e. p̅𝑘,𝑖 = p𝑘 = p) and is used here [18,20,23,68]. 

For species, the flux vector is written in terms of Fick’s first law, 𝒋𝑘 = −𝜌𝑘𝐷𝑘∇𝐶𝑘, where 

𝐷𝑘 is the solute mass diffusivity. Similarly, the heat flux vector is written in terms of Fourier’s law, 

𝒋𝑘 = −𝑘𝑘∇𝑇𝑘, where 𝑘𝑘 is the thermal conductivity. The interfacial transfer due to these fluxes 

can be evaluated using a small representative volume near the solid-liquid interface [4], shown in 

Figure 2. It is generally assumed that these fluxes can be approximated by the difference between 

the interfacial average and the volume-averaged quantities over some characteristic length. Hence, 

the interfacial mass transfer due to diffusion for species and heat are 

∇ ∙ (𝑔𝑘𝒔𝑘) +
1

𝑉
∫ 𝒔𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖

= ∇ ∙ (𝑔𝑘𝜌𝑘𝐷𝑘∇𝐶𝑘) + 𝑆𝑖𝜌𝑘
𝐷𝑘
𝛿𝑖
(𝐶�̅�,𝑖 − 𝐶𝑘) (2.21) 

and 
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∇ ∙ (𝑔𝑘𝒒𝑘) +
1

𝑉
∫ 𝒒𝑘 ∙ 𝒏𝑘𝑑𝐴
𝐴𝑖

= ∇ ∙ (𝑔𝑘𝑘𝑘∇𝑇𝑘) + 𝑆𝑖
𝑘𝑘

𝛿𝑖
𝑇 (�̅�𝑘,𝑖 − 𝑇𝑘) (2.22) 

 

where 𝛿𝑖  is the diffusion length characterizing the resistance to diffusion and is generally a 

complicated function of the microscopic phenomena. Its determination for equiaxed solidification 

requires a more formal analysis which is addressed in the application of a volume-averaged 

microsegregation model in Chapter 3. Applying these constitutive relationships to the general 

transport equation provides macroscale balance equations for mass, momentum, temperature, and 

species, summarized in Table 2.1. The interfacial transfer terms and balances are provided in Table 

2.2. 
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Figure 2.1: A schematic of the temperature and composition fluxes near the solid-liquid interface. 
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Table 2.1: Summary of volume-averaged balance equations 

Quantity Volume-Averaged Equations Eqn. 

Mass 
𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘) + ∇ ∙ (𝑔𝑘𝜌𝑘𝒖𝑘) = Γ𝑘 

(2.23) 

 

Momentum 
𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘𝒖𝑘) + ∇ ∙ (𝑔𝑘𝜌𝑘𝒖𝑘𝒖𝑘) = ∇ ∙ (𝑔𝑘𝝉𝑘) − 𝑔𝑘∇p + 𝑔𝑘𝜌𝑘

𝐵𝐠 +𝐌𝑘 (2.24) 

Energy 
𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘ℎ𝑘) + ∇ ∙ (𝑔𝑘𝜌𝑘𝒖𝑘ℎ𝑘) = ∇ ∙ (𝑔𝑘𝑘𝑘∇𝑇𝑘) + E𝑘 (2.25) 

Species 
𝜕

𝜕𝑡
(𝑔𝑘𝜌𝑘𝐶𝑘

𝑖) + ∇ ∙ (𝑔𝑘𝜌𝑘𝒖𝑘𝐶𝑘
𝑖) = ∇ ∙ (𝑔𝑘𝜌𝑘𝐷𝑘

𝑖∇𝐶𝑘
𝑖) + J𝑘 (2.26) 

 

 

Table 2.2: Summary of volume-averaged constitutive interfacial transfer relationships 

Quantity Interfacial Transfers Eqn. 

Mass Γ𝑘 = 𝑆𝑖𝜌𝑘�̅�𝑛𝑖 (2.27) 

Momentum 𝐌𝑘 = Γ𝑘�̅�𝑘,𝑖 +𝐌𝑘
𝑑 (2.28) 

Energy E𝑘 = Γ𝑘ℎ̅𝑘,𝑖 + 𝑆𝑖
𝑘𝑘

𝛿𝑖
𝑇 (�̅�𝑘,𝑖 − 𝑇𝑘) (2.29) 

Species J𝑘 = Γ𝑘𝐶�̅�,𝑖 + 𝑆𝑖𝜌𝑘
𝐷𝑘
𝛿𝑖
(𝐶�̅�,𝑖 − 𝐶𝑘) (2.30) 
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2.3 Continuum Mixture Model 

Although widely adopted within the solidification modeling community, the formal 

averaging procedure completed in the previous section is not necessary to obtain volume-averaged 

conservation equations. Bennon and Incropera [20] obtained nearly identical equations using 

continuum theory, which suggests that if the phase is continuous within the control volume, the 

differential surface area 𝑑𝐴𝑘  and volume 𝑑𝑉𝑘  of the phase are equal to 𝑔𝑘𝑑𝐴  and 𝑔𝑘𝑑𝑉, 

respectively. Since the integrands are continuous and differentiable functions, the integral 

theorems of Leibnitz and Gauss can be applied to the microscale conservation equation, 

𝜕

𝜕𝑡
(
1

𝑉
∫ 𝜌𝑘𝜙𝑘𝑑𝑉𝑘
𝑉

) +
1

𝑉
∫ ∇ ∙ (𝜌𝑘𝒖𝑘)
𝑉

𝑑𝑉𝑘 = ∫ ∇ ∙ (𝒋𝑘)
𝑉

𝑑𝑉𝑘 

+∫ 𝑆𝑘
𝑉

𝑑𝑉𝑘 +∫ Ṙ𝑘
𝑉

𝑑𝑉 

(2.31) 

 

and an expression identical to Eqn. (2.15) is obtained. Although this approach does not provide 

any insight into the mathematical representation of the interfacial transfer terms, �̇�𝑘, Bennon and 

Incropera [20] cast the conservation equations in terms of the mixture by summing the individual 

phase equations, and these terms cancel according to conservation (∑ Ṙ𝑘 = 0𝑘 ). Due to the relative 

simplicity of this method, it is the goal of the subsequent sections to derive mixture forms of the 

governing equations for mass, momentum, energy, and species to describe equiaxed solidification. 

These expressions will be derived from the summation of the multiphase volume-averaged 

conservation equations provided in Table 2.1. 

A volumetric mixture variable is defined as the summation of the phase fraction and the 

phase quantity:  

𝜙 =∑𝑔𝑘𝜙𝑘
𝑘

 
(2.32) 

 

A similar expression is given for mass quantities by the additional consideration of the phase 

density: 

𝜙 =
1

𝜌
∑𝜌𝑘𝑔𝑘𝜙𝑘
𝑘

 
(2.33) 
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where 𝜌 is the mixture density: 

𝜌 =∑𝜌𝑘𝑔𝑘
𝑘

 (2.34) 

 

An expression for the mixture velocity is obtained using 𝜙 = 𝒖 in Eqn. (2.33) 

𝒖 =
1

𝜌
∑𝜌𝑘𝑔𝑘
𝑘

𝒖𝑘 (2.35) 

 

To facilitate the formulation of continuum mixture equations, a relationship for the summation of 

phase mass fluxes is used based on decomposing the advective term into contributions from the 

mean mixture motion and the relative phase motion: 

∑𝜌𝑘𝑔𝑘𝒖𝑘𝜙𝑘
𝑘

= 𝜌𝒖𝜙 +∑𝜌𝑘𝑔𝑘(𝒖𝑘 − 𝒖)(𝜙𝑘 − 𝜙)

𝑘

 (2.36) 

 

Here, (𝒖𝑘 − 𝒖) is commonly referred to as diffusion velocity, i.e., the velocity of phase 𝑘 relative 

to the mass center of the mixture. In general, the solidification microstructure will consist of three 

distinct hydrodynamic phases: the solid grain, the interdendritic liquid, and the extradendritic 

liquid. The permeability of interdendritic structure is typically low enough that flow tends to move 

around the grain envelope until the grains coalesce into a rigid mush. Modeling the partitioning of 

liquid flow between inter- and extradendritic regions presents significant modeling difficulties. 

Although models exist that include these effects [19,35],  the current model makes no attempt to 

do so. Instead, it is assumed the inter- and extradendritic liquid acts a single hydrodynamic phase 

(𝒖𝑑 = 𝒖𝑒 = 𝒖𝑙), which leads to the following mixture relationship: 

∑𝜌𝑘𝑔𝑘𝒖𝑘𝜙𝑘
𝑘

= 𝜌𝒖𝜙 + 𝜌𝑠𝑔𝑠(𝒖𝑠 − 𝒖)(𝜙𝑠 − 𝜙) + 𝜌𝑙𝑔𝑙(𝒖𝑙 − 𝒖)(𝜙𝑙 − 𝜙) (2.37) 

 

This assumption will overpredict segregation in the slurry when the inter- and extra- dendritic 

liquid are at different compositions because the mass flux of enriched liquid away from the solid 

grain is over-estimated. However, it will generally have a negligible effect on segregation 

predictions due to the small supersaturations of the alloys investigated in this work, defined as the 

ratio of the difference between the inter- and extradendritic liquid compositions to the difference 
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between the interdendritic liquid and solid compositions. Despite this simplification of liquid flow 

partitioning, the influence of grain morphology will still be included through the combination of 

an effective viscosity model, a marker function 𝑚 used to transition terms for the slurry and the 

rigid mush in the momentum equation, and the calculation of the relative solid-liquid velocity. 

2.3.1 Conservation of Mass 

The conservation of mass for phase 𝑘 is expressed in Eqn. (2.23). Summing this equation 

over each phase, 

𝜕

𝜕𝑡
(∑𝜌𝑘𝑔𝑘

𝑘

) + ∇ ∙ (∑𝜌𝑘𝑔𝑘
𝑘

𝒖𝑘) =∑Γ𝑘
𝑘

 (2.38) 

 

and utilizing the definitions of mixture density and the mixture velocity gives a continuity equation 

for the mixture: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 (2.39) 

 

Formulation of this mixture equation replaces the phase quantities with mixture quantities as the 

dependent variables of the partial differential equations used to describe macroscopic transport. In 

this example, the phase volume fraction is replaced with the mixture density. Thus, it is a 

requirement of the mixture method that the individual phase quantities can be obtained from some 

ad hoc relationships specified in terms of mixture quantities. For alloy solidification, relationships 

describing the phase fractions and compositions as a function of local temperature and composition 

are well-established based on analytical microsegregation models (e.g. lever rule and Scheil 

model), making these systems amenable to the mixture method. The assumptions made in 

obtaining such closure relationships are addressed in Chapter 3. 
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2.3.2 Conservation of Momentum 

The conservation of momentum for phase 𝑘 is expressed in Eqn. (2.24). Summing this 

equation over each phase, 

𝜕

𝜕𝑡
(∑𝜌𝑘𝑔𝑘𝒖𝑘

𝑘

) + ∇ ∙ (∑𝜌𝑘𝑔𝑘𝒖𝑘𝒖𝑘
𝑘

) = ∇ ∙ (∑𝑔𝑘𝝉𝑘
𝑘

) 

−∑𝑔𝑘∇p

𝑘

+∑𝑔𝑘𝜌𝑘
𝐵𝐠

𝑘

+∑𝐌𝑘

𝑘

 

(2.40) 

 

and applying the mixture relationships and interfacial balances gives a mixture momentum 

expression for an arbitrary multiphase system 

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (∑𝑔𝑘𝝉𝑘

𝑘

) 

−∇ ∙ (∑𝜌𝑘𝑔𝑘(𝒖𝑘 − 𝒖)(𝒖𝑘 − 𝒖)

𝑘

) − ∇p + 𝜌𝐵𝐠 

(2.41) 

 

The second term of the right-hand side originate from the viscous stress generated from the relative 

phase motion and therefore is sometimes referred to as the diffusion stress tensor. Under the 

assumption of the simplified hydrodynamic model used in this work, the solid and liquid diffusion 

velocities can be related by the relationship: 

𝜌𝑙𝑔𝑙(𝒖𝑙 − 𝒖) + 𝜌𝑠𝑔𝑠(𝒖𝑠 − 𝒖) = 0 (2.42) 

 

Substitution of Eqn. (2.42) into Eqn. (2.41) gives the following momentum equation for a solid-

liquid mixture: 

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝑔𝑠𝝉𝑠 + 𝑔𝑙𝝉𝑙) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) − ∇𝑝 + 𝜌
𝐵𝐠 

(2.43) 

 

Consideration must be given to the treatment of the phase stress tensors (𝑔𝑠𝝉𝑠, 𝑔𝑙𝝉𝑙) to account for 

the two flow regimes present during equiaxed solidification: the slurry and the rigid mush. 
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Slurry Regime 

The general form of the macroscopic stress tensor for a Newtonian fluid is defined as 

𝝉𝑘 = 𝜇𝑘[∇𝒖𝑘 + (∇𝒖𝑘)
𝑇] −

2

3
𝜇𝑘(∇ ∙ 𝒖𝑘)𝐼 (2.44) 

 

where 𝐼 is the identity tensor. According to the scaling analysis of Vreeman et al. [44], contribution 

from the spatial variation in phase fraction is negligible compared to the velocity gradients in the 

slurry region, justifying expression of the gradient as ∇𝒖𝑘 and not ∇𝑔𝑘𝒖𝑘 as in Prescott et al. [22]. 

While expressions for the effective viscosity of slurries have been widely studied dating back to 

the seminal theory of Einstein  in 1908 [69], determination of the individual phase viscosities have 

been left to volume-averaged interpretations of the mixture relations. The derivation of the mixture 

stress tensor, 𝝉, from the summation of the volume-averaged components leads to the creation of 

several algebraic source terms that do not have any direct physical meaning. Because the 

macroscopic viscosity of a slurry is an intrinsic property of the mixture, the mixture stress tensor 

can be specified directly in terms of mixture quantities: 

∇ ∙ (𝑔𝑠𝝉𝑠 + 𝑔𝑙𝝉𝑙) = ∇ ∙ (𝜇[∇𝒖 + (∇𝒖)
𝑇] −

2

3
𝜇(∇ ∙ 𝒖)𝐼) (2.45) 

 

where 𝜇 is the macroscopic mixture viscosity of the mixture which can be calculated according to: 

𝜇 = 𝜇𝑙 (1.0 − min(
𝑔𝑔

𝑔𝑔
𝑐 , 0.7))

−2.5𝑔𝑔
𝑐

 (2.46) 

 

This is a modified form of the expression proposed by Ishii and Zuber [70], which only considers 

the linear portion of the dynamic viscosity curve for suspensions. Although many other forms of 

the mixture viscosity are available, it is necessary to avoid functions which approach an infinite 

viscosity during coalescence because such functions would remove any mixture velocity gradients 

near the packing interface. Substitution of Eqn. (2.45) into Eqn.(2.43) gives and expression for the 

momentum transport in the slurry regime: 



 

 

60 

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝜇[∇𝒖 + (∇𝒖)𝑇] −

2

3
𝜇(∇ ∙ 𝒖)𝐼) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) − ∇𝑝 + 𝜌
𝐵𝐠 

(2.47) 

Rigid Mush Regime 

The previous assumptions regarding viscous stress are not valid in the rigid mush because 

the solid phase is nondeformable. Assuming that the liquid kinematic viscosity is locally invariant 

(∇𝑣𝑙 = 0) and the solid phase is rigid (∇ ∙ (∇𝒖𝑠) = 0), the liquid stress tensor is defined as: 

∇ ∙ (𝑔𝑙𝝉𝑙) = 𝜌𝑣𝑙[∇𝒖 + (∇𝒖)
𝑇] −

2

3
𝜌𝑣𝑙(∇ ∙ 𝒖)𝐼. (2.48) 

 

The solid stress tensor is obtained by rearranging Eqn. (2.24) for the solid phase 

∇ ∙ (𝑔𝑠𝝉𝑠) =
𝜕

𝜕𝑡
(𝜌𝑠𝑔𝑠𝒖𝑠) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠𝒖𝑠) + 𝑔𝑠∇𝑝 − 𝑔𝑠𝜌𝑠

𝐵𝐠 −𝐌𝑙
𝑑 . (2.49) 

 

The first two terms on the right-hand side are zero in a stationary bed and negligible in a moving 

bed. The interfacial drag is modeled according to Darcy’s Law: 

𝐌𝑙
𝑑 = −𝑔𝑙

2
𝜇𝑙
𝐾
(𝒖𝑙 − 𝒖𝑠) (2.50) 

 

where 𝐾 is the permeability of the structure, often determined from the Blake-Kozeny model as a 

function of some characteristic length scale λ: 

𝐾 =
𝜆2

180

𝑔𝑙
3

(1 − 𝑔𝑙)2
. (2.51) 

 

Applying the mixture relationship to the relative velocity in the drag term gives 

∇ ∙ (𝑔𝑠𝝉𝑠) = 𝑔𝑠∇𝑝 − 𝑔𝑠𝜌𝑠
𝐵𝐠 − 𝑔𝑙𝜌

𝑣𝑙
𝐾
(𝒖 − 𝒖𝑠) (2.52) 

 

Substituting the divergence of the phase stress tensors into Eqn. (2.43) gives a continuum mixture 

relationship for the flow through the rigid mush: 
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𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝜌𝑣𝑙[∇𝒖 + (∇𝒖)

𝑇] −
2

3
𝜌𝑣𝑙(∇ ∙ 𝒖)𝐼) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) − 𝑔𝑙∇𝑝 + 𝑔𝑙𝜌𝑙
𝐵𝐠 

−𝑔𝑙𝜌
𝑣𝑙
𝐾
(𝒖 − 𝒖𝑠) 

(2.53) 

 

Since one of the primary objectives of the continuum mixture model is to develop equations 

amenable to numerical procedures for single phase flow, a final step must be taken to prevent the 

scaling of the pressure gradient by 𝑔𝑙 in Eqn. (2.53). When the solid fraction is sufficiently high 

to form a continuous structure, it is assumed that the only significant terms in Eqn. (2.53) are those 

associated with the pressure gradient, the liquid buoyancy force, and the interfacial drag force. 

𝑔𝑙∇𝑝 − 𝑔𝑙𝜌𝑙
𝐵𝐠 − 𝑔𝑙𝜌

𝑣𝑙
𝐾
(𝒖 − 𝒖𝑠) = 0 (2.54) 

 

Dividing these terms by 𝑔𝑙 does not change their identity with zero and the continuum mixture 

momentum equation for the rigid mush becomes: 

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝜌𝑣𝑙[∇𝒖 + (∇𝒖)

𝑇] −
2

3
𝜌𝑣𝑙(∇ ∙ 𝒖)𝐼) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) − ∇𝑝 + 𝜌𝑙
𝐵𝐠 − 𝜌

𝑣𝑙
𝐾
(𝒖 − 𝒖𝑠) 

(2.55) 

Single Domain Model 

Comparing the momentum conservation in the slurry regime and rigid mush regime, a 

single momentum equation is attainable through the specification of an effective viscosity 𝜇𝑒𝑓𝑓  

and effective buoyant density 𝜌𝑒𝑓𝑓
𝐵 . These effective properties can be formulated as linear 

combinations of each flow regime value following the definition of a marker function m, which 

indicates the local condition of the solid structure. A discrete transition model is used in this work, 

where the marker function is defined as: 

𝑚(𝒙, 𝑡) = {
1    if 𝒙 is in rigid mush at time 𝑡 
0    else                                                 

 
(2.56) 

 



 

 

62 

An iterative rules-based method for tracking the local position of the packing interface on a 

numerical grid similar to Vreeman et al. [43] is applied. This method states that a point in space is 

packed if the local grain fraction is greater than or equal to the critical packing fraction, i.e. 

𝑔𝑔(𝒙, 𝑡) ≥ 𝑔𝑔
𝑐(𝒙, 𝑡), and has a neighboring point that is also packed. Therefore, the propagation 

of the packing front from some initial point or collection of points, generally prescribed as a 

boundary of the numerical domain, is physically representative of the evolution of the packing 

front during equiaxed solidification. Using this marker method, the effective viscosity and density 

are defined as: 

𝜇𝑒𝑓𝑓 = (1 −𝑚)𝜇 +𝑚𝜌𝑣𝑙 (2.57) 

and 

𝜌𝑒𝑓𝑓
𝐵 = (1 − 𝑚)(𝑔𝑠𝜌𝑠

𝐵 + 𝑔𝑙𝜌𝑙
𝐵) + 𝑚𝜌𝑙

𝐵 (2.58) 

 

where the densities are obtained by the Boussinesq approximation including both thermal and 

solutal effects: 

𝜌𝑙
𝐵 = 𝜌𝑙 [1 − 𝛽𝑇,𝑙(𝑇 − 𝑇𝑜) − 𝛽𝑐,𝑙(𝐶𝑙 − 𝐶𝑙,𝑜)] (2.59) 

and 

𝜌𝑠
𝐵 = 𝜌𝑠  [1 − 𝛽𝑇,𝑠(𝑇 − 𝑇𝑜) − 𝛽𝑐,𝑠(𝐶𝑠 − 𝐶𝑠,𝑜)] (2.60) 

 

In these expressions, 𝛽𝑇 and 𝛽𝑐 are the thermal and solutal expansion coefficients, and 𝑇𝑜 and 𝐶𝑘,𝑜 

are the reference temperatures and compositions. 

Substituting and collection of similar terms gives a single equation for momentum transport 

in equiaxed and columnar solidification, simultaneously modeling transport of mobile grains in 

the slurry and liquid flow in the rigid mush: 

𝜕

𝜕𝑡
(𝜌𝒖𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝜇𝑒𝑓𝑓[∇𝒖 + (∇𝒖)

𝑇] −
2

3
𝜇𝑒𝑓𝑓(∇ ∙ 𝒖)𝐼) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) − ∇𝑝 + 𝜌𝑒𝑓𝑓
𝐵 𝐠 

−𝑚𝜌
𝑣𝑙
𝐾
(𝒖 − 𝒖𝑠) 

(2.61) 
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Momentum Closure  

Closure of mixture momentum model requires an expression for the solid velocity. 

Although empirical correlations exist for the settling velocity of dispersed solid in a suspension, it 

is more common to formulate relationships in terms of the relative solid-liquid velocity, i.e. 

𝒖𝑟 = 𝒖𝑠 − 𝒖𝑙 (2.62) 

The one-dimensional equation of motion for a single porous grain in a fluid under gravity is: 

𝜌𝑔
𝐵𝑉𝑔

𝑑

𝑑𝑡
(𝒖𝑠 − 𝒖𝑙) = 𝑉𝑔(𝜌𝑔

𝐵 − 𝜌𝑙
𝐵)𝐠 +

1

2
𝜌𝑙
𝐵𝐴𝑔𝐶𝐷|𝒖𝑠 − 𝒖𝑙|(𝒖𝑠 − 𝒖𝑙) (2.63) 

 

where 𝑉𝑔 is the volume of the grain, 𝐴𝑔 is the surface area of the grain, and 𝐶𝐷 the drag coefficient.  

The left-hand side represents the acceleration of the grain relative to the liquid, while the right-

hand side represents the buoyancy and drag forces acting on the grain. A scaling analysis is shows 

the relative importance of each term in Eqn. (2.63): 

𝜌𝑔
𝐵

(𝜌𝑔𝐵 − 𝜌𝑙
𝐵)

𝑢𝑟
g𝑡⏟        

intertia

    ~__ 1⏟

buoyancy

  ~__
𝜌𝑙
𝐵

(𝜌𝑔𝐵 − 𝜌𝑙
𝐵)

𝐴𝑔𝐶𝐷𝑢𝑟
2

𝑉𝑔g⏟            
drag

   
(2.64) 

 

The grain will reach a constant terminal relative velocity when the buoyancy force is balanced by 

drag, such that: 

𝑢𝑟~√
(𝜌𝑔𝐵 − 𝜌𝑙

𝐵)

𝜌𝑙
𝐵

𝑉𝑔g

𝐴𝑔𝐶𝐷
 (2.65) 

 

If it can be shown that this condition is attained over relatively short time scales, then the inertial 

term can be neglected altogether. The terminal velocity is attained at times when the inertial term 

is much smaller than the buoyancy term, or 

𝑡 ≪ 𝜌𝑔
𝐵√

𝑉𝑔

𝜌𝑙
𝐵(𝜌𝑔𝐵 − 𝜌𝑙

𝐵)g𝐴𝑔𝐶𝐷
≈ √

𝜌𝑙
𝐵𝑑𝑔

(𝜌𝑔𝐵 − 𝜌𝑙
𝐵)g𝐶𝐷

 (2.66) 

 

For equiaxed solidification in DC casting, these terms have the following approximate 

orders of magnitude 𝜌𝑙
𝐵 ≈ 𝒪(1000 kg m−3),  𝜌𝑔

𝐵 − 𝜌𝑙
𝐵 ≈ 𝒪(100 kg m−3),  g ≈ 𝒪(10 m s−2), 
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𝐶𝐷 ≈ 𝒪(100), 𝑑𝑔 ≈ 𝒪(1 × 10
−4 m). The resulting characteristic time to reach terminal velocity 

is 𝑡 ≈ 𝒪(0.01 s) for 100 µm spherical grains in the dilute slurry, and therefore, acceleration can 

be safely neglected. Introducing the grain Reynolds number, which represents the ratio of inertial 

and viscous forces on the particle due to the relative velocity: 

𝑅𝑒𝑔 =
𝜌𝑙𝑑𝑔|𝒖𝑠 − 𝒖𝑙|

𝜇𝑙
 (2.67) 

 

and assuming spherical grains (𝐴𝑔/𝑉𝑔 = 3/2𝑑𝑔), the relative velocity for a single grain can be 

expressed as: 

(𝒖𝑠 − 𝒖𝑙) =
4

3

(𝜌𝑔
𝐵 − 𝜌𝑙

𝐵)𝑑𝑔
2

𝐶𝐷𝑅𝑒𝑔𝜇𝑙
𝐠 (2.68) 

 

where relative density can also be specified defined in terms of the internal solid fraction: 

𝜌𝑔
𝐵 − 𝜌𝑙

𝐵 = 𝑔𝑠,𝑖(𝜌𝑠
𝐵 − 𝜌𝑙

𝐵) (2.69) 

 

In the slurry, viscous interactions of multiple grains will tend to reduce the relative velocity by a 

factor equal to the volume of surrounding liquid, resulting in the following general expression for 

the relative velocity: 

(𝒖𝑠 − 𝒖𝑙) =
4

3

(1 − 𝑔𝑔)𝑔𝑠,𝑖(𝜌𝑠
𝐵 − 𝜌𝑙

𝐵)𝑑𝑔
2

𝐶𝐷𝑅𝑒𝑔𝜇𝑙
𝐠 (2.70) 

 

While many different models have been proposed for modeling drag in suspensions, one similarity 

is that each can be arranged as an expression of 𝐶𝐷𝑅𝑒𝑔. In Chapter 6, different 𝐶𝐷𝑅𝑒𝑔 relationships 

for popular drag models used in equiaxed solidification models are introduced and compared for 

an isothermal settling experiment. Using the mixture relationships and the marker function, an 

expression for the solid velocity in the single domain model is: 

𝒖𝑠 = (1 −𝑚) [𝒖 +
𝜌𝑙𝑔𝑙
𝜌
𝒖𝑟] + 𝑚𝒖𝑟𝑒𝑓 (2.71) 

 

Although grain nucleation model and growth models exist for calculating the grain diameter, these 

models generally depend on highly uncertain nucleation and growth kinetics parameters. Since the 
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average grain size at the end of solidification, 𝑑𝑔
𝑓
, is generally well-known for a particular casting 

process and is an easy to measure quantity (via optical microscopy), it is used to calculate the local 

grain diameter appearing in the relative velocity expression. 

𝑑𝑔 = (
𝑔𝑔

𝑔𝑔
𝑐)

1
3

𝑑𝑔
𝑓

 (2.72) 

 

Scaling the local grain fraction by the grain packing fraction assumes that the grain diameter 

observed in post-mortem metallographic analysis is approximately equal to the grain diameter at 

packing. 

2.3.3 Conservation of Energy 

Assuming local thermal equilibrium (𝑇𝑘 = 𝑇) , the enthalpy conservation equation for 

phase 𝑘 is 

𝜕

𝜕𝑡
(𝜌𝑘𝑔𝑘ℎ𝑘) + ∇ ∙ (𝜌𝑘𝑔𝑘𝒖𝑘ℎ𝑘) = ∇ ∙ (𝑔𝑘𝑘𝑘∇𝑇) + �̇�𝑘 (2.73) 

 

The last term represents the energy exchange rate between phases which sum to zero according to 

conservation of energy, ∑ �̇�𝑘𝑘 =0. The general expression for the enthalpy of phase 𝑘 is: 

ℎ𝑘 = ℎ𝑘
𝑜 +∫ 𝑐𝑘𝑑𝑇

𝑇

𝑇𝑜
 (2.74) 

 

where ℎ𝑘
𝑜
 is the reference enthalpy at the reference temperature 𝑇𝑜. The reference temperature  

𝑇𝑜 = 0 𝐾 can be used so that ℎ𝑠
𝑜 = 0 and ℎ𝑙

𝑜 = 𝐿𝑓, where 𝐿𝑓 is the latent heat of phase change. 

Taking the specific heats as constants, the following expressions are obtained for the solid and 

liquid phase enthalpies: 

ℎ𝑠 = 𝑐𝑝,𝑠𝑇 (2.75) 

and 

ℎ𝑙 = 𝑐𝑝,𝑙𝑇 + 𝐿𝑓 (2.76) 
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It is noted that both Bennon and Incropera and Wang and Beckermann [71] previously used the 

eutectic temperature as a reference for the liquid (i.e. 𝑇𝑜 = 𝑇𝑒𝑢𝑡) which results in ℎ𝑙
𝑜 = 𝑐𝑝,𝑠𝑇𝑒𝑢𝑡 +

𝐿𝑓|𝑇𝑒𝑢𝑡
 for the refence enthalpy of the liquid, where 𝐿𝑓|𝑇𝑒𝑢𝑡

 is the latent heat evaluated at the 

eutectic temperature. Since all terms related to the reference state are constants, the change in 

reference temperature can be accounted for using a modified form of the latent heat without any 

loss of generality of the current mixture method: 

𝐿𝑓 = (𝑐𝑝,𝑠 − 𝑐𝑝,𝑙)𝑇𝑒𝑢𝑡 + 𝐿𝑓|𝑇𝑒𝑢𝑡
 (2.77) 

 

Although this form of the latent heat definition is not implemented in this work, the nature of these 

additional terms appearing in previous studies are clarified here and can be applied if desired. 

Summing (2.73) over both phases, 

𝜕

𝜕𝑡
(𝜌𝑠𝑔𝑠ℎ𝑠 + 𝜌𝑙𝑔𝑙ℎ𝑙) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠ℎ𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙ℎ𝑙) = ∇ ∙ ((𝑔𝑙𝑘𝑙 + 𝑔𝑠𝑘𝑠)∇𝑇) (2.78) 

 

and substituting the definition of phase enthalpies with rearrangement gives: 

𝜕

𝜕𝑡
(𝜌𝑐𝑝𝑇) + ∇ ∙ ((𝜌𝑠𝑔𝑠𝒖𝑠𝑐𝑝,𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙𝑐𝑝,𝑙)𝑇) = ∇ ∙ (𝑘∇𝑇) 

+ [
𝜕

𝜕𝑡
(𝑔𝑠𝜌𝑠) + ∇ ∙ (𝑔𝑠𝜌𝑠𝒖𝑠)] 𝐿𝑓 

(2.79) 

 

where the mixture specific heat capacity 𝑐𝑝 and mixture thermal conductivity 𝑘 are defined as: 

𝑐𝑝 =
1

𝜌
∑𝜌𝑘𝑔𝑘𝑐𝑝𝑘
𝑘

 (2.80) 

and 

𝑘 =∑𝑔𝑘𝑘𝑘
𝑘

 (2.81) 

Eqn. (2.79) is identical to the form specified for the multiphase model developed by Wang and 

Beckermann when the definition of latent heat is replaced with Eqn. (2.77). Finally, using the 

mixture relationship for the average liquid velocity  (𝜌𝑙𝑔𝑙𝒖𝑙 = 𝜌𝒖 − 𝜌𝑠𝑔𝑠𝒖𝑠) gives the following 

mixture energy equation specified in terms of temperature: 
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𝜕

𝜕𝑡
(𝜌𝑐𝑇) + ∇ ∙ (𝜌𝒖𝑐𝑝,𝑙𝑇) = ∇ ∙ (𝑘∇𝑇) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠(𝑐𝑝,𝑙 − 𝑐𝑝,𝑠)𝑇) 

+[
𝜕

𝜕𝑡
(𝜌𝑠𝑔𝑠) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠)] 𝐿𝑓 

(2.82) 

 

2.3.4 Conservation of Species 

Two different microsegregation models are used in this work to describe to evolution of 

phase fractions and compositions: (1) a volume-averaged microsegregation model which includes 

the effect of finite diffusion is both the solid and liquid phases, and (2) a simplified analytical 

model which includes finite diffusion in the solid, but considers the liquid to be solutally well-

mixed. For the volume-averaged microsegregation model, the phase composition equations must 

be calculated in their multiphase form provided in Table 2.1, and so a conservation equation for 

the mixture composition is not needed. Therefore, the form of the solute conservation equation 

will depend on the chosen microsegregation model. 

Several insights can be used to simplify modeling the composition field. First, the solutal 

Péclet number (𝑃𝑒𝑐 = 𝐿𝑢 𝐷⁄ ), which is the ratio of the solutal advection and diffusion rates over 

the characteristic length scale 𝐿, is generally large enough to justify the neglecting the macroscopic 

solute diffusion terms altogether [4]. Several researchers have adopted this simplified approach 

without any change to the numerical predictions to the model. This is true even for solutions of 

columnar solidification on relatively fine grids (about 0.25  mm) [72]. The multiphase solute 

conservation equations for the solid and liquid become 

𝜕

𝜕𝑡
(𝑔𝑠𝜌𝑠𝐶𝑠) + ∇ ∙ (𝑔𝑠𝜌𝑠𝒖𝑠𝐶𝑠) = Γ𝑠𝑘𝑝𝐶�̅�,𝑖 +

𝑆𝑠,𝑙𝜌𝑠𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) (2.83) 

and  

𝜕

𝜕𝑡
(𝑔𝑙𝜌𝑙𝐶𝑙) + ∇ ∙ (𝑔𝑙𝜌𝑙𝒖𝑙𝐶𝑙) = − [Γ𝑠𝑘𝑝𝐶�̅�,𝑖 +

𝑆𝑠,𝑙𝜌𝑠𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠)] (2.84) 

 

where the interfacial area concentration of the solid-liquid interface is 𝑆𝑠,𝑙  and the solid 

composition at the interface is 𝐶�̅�,𝑖 = 𝑘𝑝𝐶�̅�,𝑖. Because the solutal interfacial transfer terms must 

sum to zero (i.e. 𝐽𝑠 = −𝐽𝑙 ), only the solid transfers are used to prevent over-constraining the 

problem. If the liquid is treated as two distinct hydrodynamic phases, an additional advection 
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source term accounting for the flow partitioning of inter- and extra- dendritic liquid is required in 

Eqn. (2.84). Summing these multiphase species equations gives: 

𝜕

𝜕𝑡
(𝜌𝐶) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠𝐶𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙𝐶𝑙) = 0 (2.85) 

 

Although the mixture relationship for the summation of advection terms, i.e. Eqn. (2.37), 

can be applied here, Vreeman and Incropera [73] showed that the composition predictions are 

sensitive to the numerical discretization of the advection source term in this method. In the original 

work of Bennon and Incropera [20], the mixture advection term was discretized by upwind 

differencing, while the advection source term was discretized by central differencing causing 

erroneous segregation predictions. To avoid confusion between mathematical formulation and 

numerical discretization, the advection terms for each phase are left in their original form. 

Although this form of the mixture species equation requires an explicit time discretization, and is 

therefore only conditionally stable, the time steps needed to resolve the time accuracy of the 

solution are generally small enough that this will not affect the solution [40,74,75]. Features of the 

numerical methods used to solve the phase fluxes appearing in each solute conservation equation 

are discussed in detail in Chapter 4.  

2.4 Summary of Equations 

The system of equations for the continuum mixture model are summarized in Table 2.3 and 

Table 2.4. However, relationships are required for the phase fractions (𝑔𝑠, 𝑔𝑙 ), and phase 

compositions (𝐶𝑠, 𝐶𝑙 ) to close the mathematical model. In the next chapter, two different 

microsegregation models with varying degrees of complexity are formulated to provide 

expressions for these phase quantities. 
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Table 2.3: Summary of continuum mixture conservation equations 
Quantity Mixture Conservation Equation Eqn. 

Mass 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 (2.39) 

Momentum 

𝜕

𝜕𝑡
(𝜌𝒖𝒖) + ∇ ∙ (𝜌𝒖𝒖) = ∇ ∙ (𝜇𝑒𝑓𝑓[∇𝒖 + (∇𝒖)

𝑇] −
2

3
𝜇𝑒𝑓𝑓(∇ ∙ 𝒖)𝐼) 

−∇ ∙ (𝜌
𝜌𝑠𝑔𝑠
𝜌𝑙𝑔𝑙

(𝒖𝑠 − 𝒖)(𝒖𝑠 − 𝒖)) 

−∇𝑝 + 𝜌𝑒𝑓𝑓
𝐵 𝐠 −𝑚

𝑣𝑙
𝐾
𝜌(𝒖 − 𝒖𝑠) 

(2.61) 

Energy 

𝜕

𝜕𝑡
(𝜌𝑐𝑇) + ∇ ∙ (𝜌𝒖𝑐𝑝,𝑙𝑇) = ∇ ∙ (𝑘∇𝑇) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠(𝑐𝑝,𝑙 − 𝑐𝑝,𝑠)𝑇) 

+[
𝜕

𝜕𝑡
(𝜌𝑠𝑔𝑠) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠)] 𝐿𝑓 

(2.82) 

Species 
𝜕

𝜕𝑡
(𝜌𝐶) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠𝐶𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙𝐶𝑙) = 0 (2.85) 

 

Table 2.4: Summary of hydrodynamic relationships used in mixture momentum model 

Property Relationship Eqn. 

Effective viscosity 𝜇𝑒𝑓𝑓 = (1 −𝑚)𝜇 +𝑚𝜌𝑣𝑙 (2.57)  

Mixture viscosity 𝜇 = 𝜇𝑙 (1.0 − min(
𝑔𝑔

𝑔𝑔
𝑐 , 0.7))

−2.5𝑔𝑔
𝑐

 (2.46) 

Solid density (buoyancy) 𝜌𝑠
𝐵 = 𝜌𝑠 [1 − 𝛽𝑇,𝑠(𝑇 − 𝑇𝑜) − 𝛽𝑐,𝑠(𝐶𝑠 − 𝐶𝑠,𝑜)] (2.59) 

Liquid density (buoyancy) 𝜌𝑙
𝐵 = 𝜌𝑙  [1 − 𝛽𝑇,𝑙(𝑇 − 𝑇𝑜) − 𝛽𝑐,𝑙(𝐶𝑙 − 𝐶𝑙,𝑜)] (2.60) 

Effective density (buoyancy) 𝜌𝑒𝑓𝑓
𝐵 = (1 −𝑚)(𝑔𝑠𝜌𝑠

𝐵 + 𝑔𝑙𝜌𝑙
𝐵) + 𝑚𝜌𝑙

𝐵 (2.58) 

Permeability 𝐾 =
𝜆2

180

𝑔𝑙
3

(1 − 𝑔𝑙)
2
 (2.51) 

Grain diameter 𝑑𝑔 = (
𝑔𝑔

𝑔𝑔
𝑐)

1
3

𝑑𝑔
𝑓
 (2.72) 

Solid velocity 𝒖𝑠 = (1 −𝑚) [𝒖 +
𝜌𝑙𝑔𝑙
𝜌
𝒖𝑟] +𝑚𝒖𝑟𝑒𝑓 (2.71) 

Relative velocity 𝒖𝑟 =
4

3

(1 − 𝑔𝑔)𝑔𝑠,𝑖(𝜌𝑠
𝐵 − 𝜌𝑙

𝐵)𝑑𝑔
2

𝐶𝐷𝑅𝑒𝑔𝜇𝑙
𝐠 (2.70) 
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 MICROSEGREGATION MODEL 

In this chapter, microsegregation models are developed to provide closure to the macroscale 

equations formulated in the previous chapter. It is desirable for these microsegregation models to 

account for the various solute profiles that can develop due to the interaction of solute rejection 

during solidification with solute diffusion in both the liquid and solid phases. A scaling analysis 

performed by Dantzig and Rappaz [4] showed that interdendritic liquid can be safely assumed as 

well-mixed over a wide range of solidification conditions. However, it is not yet clear if 

consideration of finite diffusion in the solid and extradendritic liquid are required to obtain 

reasonable predictions of macroscale transport during equiaxed solidification. Towards this 

understanding, two different microsegregation models are formulated in this chapter. The first is 

an analytical model which accounts for finite diffusion in the solid phase but assumes the 

extradendritic liquid to be well-mixed. This model is based on the work of Clyne and Kurz [66] 

and is extended to account for different solid and liquid densities in a conservative manner. The 

second is a volume-averaged model for equiaxed dendrites which accounts for finite diffusion in 

both the solid and extradendritic liquid. This model is based on the original work of Wang and 

Beckermann [67] but is applied here using interfacial closure relationships which are easier to 

implement into standard numerical procedures. In particular, the complicated nucleation models 

are avoided altogether by assuming a constant grain number density (𝑛) during solidification. The 

nucleation and growth of an equiaxed dendrite is approximated as a function of the local grain 

volume fraction (𝑔𝑔), the initial grain radius during nucleation (𝑅𝑜), and the final grain radius at 

the end of solidification (𝑅𝑓). This model is verified against the more complicated approach [67] 

for the solidification of an Al-5wt.%Si alloy based on the case proposed by Rappaz and Thevoz 

[76]. 

3.1 Analytical Microsegregation Model 

Assuming thermal equilibrium  (i.e. 𝑇𝑘 = �̅�𝑘,𝑖 = 𝑇) and a solutally well-mixed liquid (i.e. 

𝐶𝑙 = 𝐶�̅�,𝑖) on the length scale of the representative volume implies that the liquidus surface of the 

equilibrium phase diagram (see Figure 1.2) provides the relationship between the liquid 

composition and temperature: 
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𝑇 = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶𝑙 (3.1) 

 

The fundamental requirement for closure of this microsegregation model is a relationship for the 

liquid composition as a function of the local solid volume fraction, i.e. 𝐶𝑙 = 𝑓(𝑔𝑠), which is 

derived in this section using the same approach as Clyne and Kurz [66]. The mixture composition 

in the representative volume is: 

𝜌𝐶 = 𝜌𝑠𝑔𝑠𝐶𝑠 + 𝜌𝑙𝑔𝑙𝐶𝑙 (3.2) 

 

In the case of a uniform solid morphology and constant phase densities, Eqn. (3.3) can be written 

as: 

𝜌𝐶 = 𝜌𝑠∫ 𝐶𝑠𝑑𝜃
𝑔𝑠

0

+ 𝜌𝑙𝑔𝑙𝐶𝑙 (3.3) 

 

where 𝜃 is a place-holder for integration [66]. The time derivative can be expressed as 

𝜕

𝜕𝑡
(𝜌𝐶) = 𝜌𝑠𝑘𝑝𝐶𝑙

𝑑𝑔𝑠
𝑑𝑡

+ 𝜌𝑠∫
𝜕𝐶𝑠
𝜕𝑡
𝑑𝜃

𝑔𝑠

0

+ 𝜌𝑙
𝜕

𝜕𝑡
(𝑔𝑙𝐶𝑙) (3.4) 

 

where the second term on the right-hand side is the solute “back diffusion” rate. This term can be 

represented in the following manner 

𝜌𝑠∫
𝜕𝐶𝑠
𝜕𝑡
𝑑𝜃

𝑔𝑠

0

= 𝛽𝜌𝑠𝑔𝑠𝑘𝑝
𝜕𝐶𝑙
𝜕𝑡

 (3.5) 

 

where 𝑘𝑝 is the equilibrium partition coefficient and 𝛽 is the “back diffusion” parameter in the 

range 0 ≤ 𝛽 ≤ 1. This parameter allows for a simplified treatment of solute diffusion into the solid 

phase between the limits of zero back diffusion (𝛽 = 0, the Scheil assumption) and complete back 

diffusion (𝛽 = 1, the lever rule). Substitution of Eqn. (3.5) into Eqn. (3.4) with rearrangement 

gives: 

𝑑

𝑑𝑡
(𝜌𝐶) = 𝜌𝑠𝑘𝑝𝐶𝑙

𝑑𝑔𝑠
𝑑𝑡

+ 𝛽𝑔𝑠𝜌𝑠𝑘𝑝
𝑑𝐶𝑙
𝑑𝑡
+ 𝜌𝑙𝐶𝑙

𝑑𝑔𝑙
𝑑𝑡

+ 𝑔𝑙𝜌𝑙
𝑑𝐶𝑙
𝑑𝑡

 (3.6) 
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At this point, the Clyne and Kurz model [66]  assumed equal solid and liquid densities to 

simplify the resulting expression for the solute concentration in the liquid. However, this 

assumption leads to discrepancies between phase volume fractions and phase mass fractions when 

the solid and liquid densities are different, a situation that is required for calculating shrinkage 

induced flow in the macroscale transport model. Therefore, the assumption of equal phase densities 

is relaxed by expanding of the time derivative of the left-hand side of Eqn. (3.6): 

𝜌
𝑑𝐶

𝑑𝑡
+ 𝐶

𝑑𝜌

𝑑𝑡
= 𝜌𝑠𝑘𝑝𝐶𝑙

𝑑𝑔𝑠
𝑑𝑡

+ 𝛽𝑔𝑠𝜌𝑠𝑘𝑝
𝑑𝐶𝑙
𝑑𝑡
+ 𝜌𝑙𝐶𝑙

𝑑𝑔𝑙
𝑑𝑡

+ 𝑔𝑙𝜌𝑙
𝑑𝐶𝑙
𝑑𝑡

 (3.7) 

 

The first term in Eqn. (3.7) is zero due to conservation of the mixture species during phase change 

in a closed system, however the second term is nonzero due the varying mixture density during 

solidification. Using the mixture relationship for density (i.e. 𝜌 = 𝜌𝑠𝑔𝑠 + 𝜌𝑙𝑔𝑙 ) and the 

conservation of volume (i.e. 𝑑𝑔𝑠 𝑑𝑡⁄ = −𝑑𝑔𝑙 𝑑𝑡⁄ ), the following expression is obtained after 

rearrangement: 

𝑑𝑔𝑠

𝜌𝑙 − (𝜌𝑙 − 𝜌𝑠𝛽𝑘𝑝)𝑔𝑠
=

𝑑𝐶𝑙

𝐶(𝜌𝑠 − 𝜌𝑙) + [𝜌𝑙 − 𝜌𝑠𝑘𝑝]𝐶𝑙
 (3.8) 

 

Both sides of this equation can be integrated using the identity: 

∫
𝑑𝑥

𝑎 + 𝑏𝑥

𝑥2

𝑥1

=
1

𝑏
[𝑙𝑛 (1 +

𝑏𝑥2
𝑎
) − 𝑙𝑛 (1 +

𝑏𝑥1
𝑎
)] (3.9) 

 

with the definite integral limits (𝑥1 = 0, 𝑥2 = 𝑔𝑠) for the left-hand side and (𝑥1 = 𝐶, 𝑥2 = 𝐶𝑙) 

for right-hand side. Solving the integrand in terms of the liquid composition with rearrangement 

gives: 

𝐶𝑙 = 𝐶 [(
𝜆

(1 − 𝑘𝑝∗)
+ 1) [1 − (1 − 𝑘𝑝

∗𝛽)𝑔𝑠]

𝑘𝑝
∗−1

1−𝑘𝑝
∗𝛽 −

𝜆

(1 − 𝑘𝑝∗)
] (3.10) 

where 𝑘𝑝
∗  is the mass-weighted partition coefficient: 

𝑘𝑝
∗ =

𝜌𝑠
𝜌𝑙
𝑘𝑝 (3.11) 

 

and 𝜆 is the shrinkage coefficient: 
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𝜆 =
𝜌𝑠 − 𝜌𝑙
𝜌𝑙

 (3.12) 

 

Substitution of Eqn. (3.10) into Eqn. (3.1) with rearrangement provides an expression for the solid 

volume fraction as a function of the local temperature: 

𝑔𝑠 =
1

(1 − 𝑘𝑝∗𝛽)
[1 − (

(𝑇 − 𝑇𝑚)(1 − 𝑘𝑝
∗) + 𝜆𝑚𝑙𝐶

𝑚𝑙𝐶(1 − 𝑘𝑝∗ + 𝜆)
)

1−𝑘𝑝
∗𝛽

𝑘𝑝
∗−1

] (3.13) 

 

This equation recovers the Clyne and Kurz model [66] for 𝜌𝑠 = 𝜌𝑙, Scheil assumption when 𝜌𝑠 =

𝜌𝑙 and 𝛽 = 0, and the lever rule when 𝜌𝑠 ≠ 𝜌𝑙 and 𝛽 = 1. Figure 3.1 compares the solid volume 

fraction calculated using the Eqn. (3.13) and liquid composition using Eqn. (3.10) for an Al-4.5 

wt% Cu alloy. The dotted lines indicate the correction in volume fraction due to unequal phase 

densities. 

3.1.1 Extension to Multicomponent Solidification 

A major advantage of this the analytical microsegregation model is its simple extension to 

multicomponent solidification of dilute alloys. For most dilute alloys, the liquidus surface can be 

reasonably be approximated as the summation of the binary liquidus lines: 

𝑇 = 𝑇𝑚 +∑𝑚𝑙
𝑖𝐶𝑙
𝑖

𝑛

𝑖=1

 (3.14) 

 

where 𝑚𝑙
𝑖 is liquidus slope of species 𝑖 and 𝐶𝑙

𝑖 is the liquid composition of species 𝑖. Recognizing 

the properties of summations, the local solid fraction expression provided in (3.13) may be used 

for multicomponent systems by replacing the effective partition coefficient 𝑘𝑝
∗  and 𝑚𝑙𝐶 term with 

the summation of each constituent, i.e. 

𝑘𝑝
∗ =

𝜌𝑠
𝜌𝑙
∑𝑘𝑝

𝑖

𝑛

𝑖=1

 (3.15) 

and  
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𝑚𝑙𝐶 =∑𝑚𝑙
𝑖

𝑛

𝑖=1

𝐶𝑖 (3.16) 

 

Figure 3.2 compares the solid fraction and copper composition of the liquid for aluminum alloy 

AA7050. The partition coefficients and liquidus slopes were taken from Fezi et al. [48], determined 

using the thermodynamic database program ThermocalcTM with the TCAL1 database. In the case 

of this commercial wrought alloy, the incorporation of shrinkage into microsegregation model has 

an insignificant effect on the solidification curve and liquid composition evolution. However, 

properly accounting for the limited  diffusion in the solid phase significantly increases the alloy 

freezing range and the enrichment of the liquid at the end of solidification where shrinkage driven 

flow can significantly affect the macrosegregation. 

 

 

Figure 3.1: Computed temperature vs. solid volume fraction curves (left) and the corresponding 

liquid composition curves (right) for an Al-4.5 wt% Cu alloy were 𝛽 = 1 , 𝜆 = 0.118 is the lever 

rule and 𝛽 = 0 , 𝜆 = 0 is the Gulliver-Scheil equation. 
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Figure 3.2: Computed temperature vs. solid volume fraction curves (left) and the corresponding 

liquid composition curves (right) for AA7050 where 𝛽 = 1 , 𝜆 = 0.09 is the lever rule and 𝛽 = 0,  

𝜆 = 0 is the Gulliver-Scheil equation. 

 

3.2 Volume-Averaged Microsegregation Model 

The primary limitation of the previous analytical model is the neglection of finite diffusion 

in the extradendritic liquid. This phenomenon is important for predicting the recalescence and 

grain growth during equiaxed of solidification. Wang and Beckermann [67] developed a more 

general approach to the microsegregation problem based on volume averaging to account for the 

previous microsegregation phenomena as well as finite diffusion in the extradendritic liquid. Three 

different regions are defined using the concept of a grain envelope [5]: the solid dendrite (𝑠), 

interdendritic liquid (𝑑), and extradendritic liquid (𝑒), shown in Figure 3.3. The interdendritic 

liquid is still assumed to be well-mixed; but the additional interface allows for the treatment of 

finite diffusion in the extradendritic liquid. Assuming the representative volume is closed and 

isothermal, the densities of the solid and liquid are constant, the solute balance for the 

interdendritic liquid is [4]: 
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𝜌𝑙
𝑑

𝑑𝑡
(𝑔𝑑𝐶�̅�,𝑖) = 𝜌𝑙

𝑑𝑔𝑑
𝑑𝑡

𝐶�̅�,𝑖 − 𝜌𝑠
𝑑𝑔𝑠
𝜕𝑡
𝑘𝑝𝐶�̅�,𝑖 −

𝜌𝑙𝑆𝑔𝐷𝑙

𝛿𝑙
(𝐶�̅�,𝑖 − 𝐶𝑒)

−
𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) 

(3.17) 

 

where the last two terms represent solute diffusion into the extradendritic and solid phase, 

respectively. The corresponding solute diffusion rates are controlled by the interfacial area 

concentrations of the grain interface (𝑆𝑔) and the solid-liquid interface (𝑆𝑠,𝑙), and the characteristic 

diffusion lengths in the extradendritic liquid (𝛿𝑒) and solid (𝛿𝑠). The time derivative of the left-

hand side can be expanded and combined with the first two terms on the right-hand side using the 

interfacial balance relationships provided in Table 2.2: 

𝜌𝑙𝑔𝑑
𝑑𝐶�̅�,𝑖
𝑑𝑡

= 𝜌𝑠
𝑑𝑔𝑠
𝑑𝑡
(1 − 𝑘𝑝)𝐶�̅�,𝑖 −

𝜌𝑙𝑆𝑔𝐷𝑙

𝛿𝑒
(𝐶�̅�,𝑖 − 𝐶𝑒) −

𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) (3.18) 

 

Rearranging this expression in terms of the solid phase change rate gives: 

𝜌𝑠(1 − 𝑘𝑝)𝐶�̅�,𝑖
𝑑𝑔𝑠
𝑑𝑡

=
𝜌𝑙𝑆𝑔𝐷𝑙

𝛿𝑒
(𝐶�̅�,𝑖 − 𝐶𝑒) +

𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) + 𝜌𝑙𝑔𝑑
𝑑𝐶�̅�,𝑖
𝑑𝑡

 (3.19) 

 

For a closed system, this equation states that the species flux rejected into the interdendritic liquid 

due to phase change is either diffused into the extradendritic region, diffused into the solid region, 

or stored in the interdendritic region [19]. The volume average of total liquid in the representative 

volume is specified as: 

𝑔𝑙𝐶𝑙 = 𝑔𝑑𝐶�̅�,𝑖 + 𝑔𝑒𝐶𝑒 (3.20) 

 

and therefore, an equivalent expression for the phase change rate (i.e. 𝛤𝑠 = 𝑑𝑔𝑠 𝑑𝑡⁄ ) in terms of 

the volume-averaged solid and liquid compositions is: 

𝑑𝑔𝑠
𝑑𝑡

= Γ𝑠 =

𝑆𝑠,𝑙𝜌𝑠𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) +
𝑆𝑔𝜌𝑙𝐷𝑙
𝛿𝑒

𝑔𝑙
(1 − 𝑔𝑔)

(𝐶�̅�,𝑖 − 𝐶𝑙) + 𝜌𝑙𝑔𝑑
𝑑𝐶�̅�,𝑖
𝑑𝑡

(1 − 𝑘𝑝)𝐶�̅�,𝑖
 

(3.21) 
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Figure 3.3: The physical model of an equiaxed dendrite enclosed by an envelope. The fluid inside 

the envelope (interdendritic) is assumed to be well-mixed. The solid and extradendritic liquid 

compositions both decrease with distance from their respective interfaces. 
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3.2.1 Clarification of Interfacial Balances 

When the volume-averaged microsegregation model was extended to consider advection 

by Wang and Beckermann [19], the phase change rate was obtained from the macroscale species 

balance in the interdendritic liquid phase: 

𝜕

𝜕𝑡
(𝜌𝑙𝑔𝑑𝐶�̅�,𝑖) + ∇ ∙ (𝜌𝑙𝑔𝑑𝒖𝑑𝐶�̅�,𝑖) = −Γ𝑠𝑘𝑝𝐶�̅�,𝑖 + Γ𝑔𝐶�̅�,𝑖 

−
𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) −
𝜌𝑙𝑆𝑔𝐷𝑙

𝛿𝑒
(𝐶�̅�,𝑖 − 𝐶𝑒) 

(3.22) 

 

The phase change rate of the grain envelope Γ𝑔 was replaced with an equivalent expression from 

the interdendritic continuity equation: 

𝜕

𝜕𝑡
(𝜌𝑙𝑔𝑑) + ∇ ∙ (𝜌𝑙𝑔𝑑𝒖𝑑) = Γ𝑔 − Γ𝑠 (3.23) 

 

resulting in the following expression upon substitution: 

𝜕

𝜕𝑡
(𝜌𝑙𝑔𝑑𝐶�̅�,𝑖) + ∇ ∙ (𝜌𝑙𝑔𝑑𝒖𝑑𝐶�̅�,𝑖) = −Γ𝑠𝑘𝑝𝐶�̅�,𝑖 + [

𝜕

𝜕𝑡
(𝜌𝑙𝑔𝑑) + ∇ ∙ (𝜌𝑙𝑔𝑑𝒖𝑑) + 𝛤𝑠] 𝐶�̅�,𝑖 

−
𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) −
𝜌𝑙𝑆𝑔𝐷𝑙

𝛿𝑙
(𝐶�̅�,𝑖 − 𝐶𝑒) 

(3.24) 

 

Isolating the solid phase change rate on the left-hand side and using the chain rule for the time 

derivatives and divergence terms gives:  

Γ𝑠 =

𝜌𝑠𝑆𝑠,𝑙𝐷𝑠
𝛿𝑠

(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) +
𝜌𝑙𝑆𝑔𝐷𝑙
𝛿𝑙

𝑔𝑙
(1 − 𝑔𝑔)

(𝐶�̅�,𝑖 − 𝐶𝑙) + 𝜌𝑙𝑔𝑑
𝜕𝐶�̅�,𝑖
𝜕𝑡

+ 𝜌𝑙𝑔𝑑𝒖𝑑∇𝐶�̅�,𝑖

(1 − 𝑘𝑝)𝐶�̅�,𝑖
 

(3.25) 

 

The additional term, 𝒖𝑑∇𝐶�̅�,𝑖, accounts for the advection of interdendritic liquid across of the RVE. 

However, it is not clear if formulating the interfacial species balances from macroscale equations 

is a theoretically consistent approach. An interfacial species balance on the length scale of the 

microscopic interface would show ∇𝐶�̅�,𝑖 = 0, due to the assumption of a well-mixed interdendritic 

liquid, and the relationship for the solid phase change rate would be equivalent to Eqn. (3.21). 

Therefore, the interfacial species balances should be performed under the assumption of a closed 
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system on the approximate length scale of the microstructure to prevent the generation of 

extraneous terms originating from the volume averaging procedure. The solid growth rate provided 

is Eqn. (3.21) is used for the remainder of this dissertation. 

3.2.2 Interfacial Closure Relationships 

Closure of the previous volume-averaged microsegregation model requires auxiliary 

relationships for the interfacial parameters. To simplify notation, the phase change rate is 

expressed as: 

Γ𝑠 =
𝑎(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) + 𝑏(𝐶�̅�,𝑖 − 𝐶𝑙) + 𝜌𝑙𝑔𝑑

𝑑𝐶�̅�,𝑖
𝑑𝑡

(1 − 𝑘𝑝)𝐶�̅�,𝑖
 (3.26) 

 

where 𝑎 is the diffusion rate coefficient in the solid: 

𝑎 =
𝑆𝑠,𝑙𝜌𝑠𝐷𝑠
𝛿𝑠

 (3.27) 

 

and 𝑏 is the effective diffusion rate coefficient in the extradendritic liquid: 

𝑏 =
𝑆𝑔𝜌𝑙𝐷𝑙

𝛿𝑒

𝑔𝑙

(1 − 𝑔𝑔)
 (3.28) 

 

The solid diffusion coefficient, 𝑎, is assumed to be zero in this dissertation to focus exclusively on 

the effect that finite diffusion in the extradendritic liquid has on the macroscale transport 

phenomena. The liquid diffusion coefficient, 𝑏, is a function of interfacial parameters yet to be 

defined, namely the grain fraction 𝑔𝑔, interfacial area of the grain  𝑆𝑔, and liquid diffusion length 

𝛿𝑒. 

In general, the formulation of the interfacial expressions begins with a nucleation model to 

prescribe a grain number density, 𝑛 . This approach is avoided here due to the uncertainties 

involved in nucleation model inputs. Instead, a final effective grain radius 𝑅𝑓 is prescribed, which 

invokes the assumption that the grain number density is constant. This assumption is justified by 

evaluating the relationship between the two parameters for spherical grains: 
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𝑅 = (
3

4𝜋𝑛
)

1
3
 (3.29) 

 

which indicates that the grain radius is insensitive variations in 𝑛. To include the effect of 

nucleating spherical grains, a lower limit for the grain fraction is used that is equal to the 

assumed volume fraction of nucleated grains: 

𝑔𝑔
∗ = max(𝑔𝑔, (

𝑅𝑜
𝑅𝑓
)

3

) (3.30) 

 

where 𝑅𝑜 is the radius of the nucleated grains, assumed to be 𝑅𝑜 = 0.5 µm in this work. The local 

grain radius is then calculated according to: 

𝑅 = 𝑔𝑔
∗
1
3𝑅𝑓 (3.31) 

 

and is used to evaluate the interfacial area per unit volume of the grain: 

𝑆𝑔 = min(
1 − 𝑔𝑠

1 − 𝜋√3 8⁄
, 1) 3𝑔𝑔

∗
2
3𝑅𝑓

−1 (3.32) 

 

The first term inside the min(∙) operator, which return the minimum of the two arguments, is an 

Avrami-like factor that accounts for grain impingement for FCC structures [77].  

The growth of the dendritic grain is assumed to be governed by the growth of isolated 

dendrite tips. According to the Lipton-Glicksman-Kurz (LGK) model [30], the velocity the 

dendrite tips are: 

�̅�𝑛𝑔 =
𝐷𝑙𝑚𝑙(𝑘𝑝 − 1)𝐶�̅�,𝑖

𝜋2𝛤𝐺𝑇
[Iv−1(Ω)]2 (3.33) 

 

where 𝛤𝐺𝑇 is the Gibbs-Thomas coefficient. The form of the inverse Ivantsov function Iv−1(Ω) 

depends on the geometric approximation made for the tip. Assuming a hemispherical dendrite tip 

[29], the inverse Ivantsov function is 

Iv−1(Ω) = Ω (3.34) 
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where Ω is the supersaturation 

Ω =
𝐶�̅�,𝑖 − 𝐶𝑒

𝐶�̅�,𝑖(1 − 𝑘𝑝)
= (

𝑔𝑙
1 − 𝑔𝑔∗

)
𝐶�̅�,𝑖 − 𝐶𝑙

𝐶�̅�,𝑖(1 − 𝑘𝑝)
 (3.35) 

 

Instead, if the tip is assumed to be paraboloid of revolution (hereinafter “paraboloidal”), the inverse 

Ivantsov function is approximated by [67]: 

Iv−1(Ω) = 0.4567 (
Ω

1 − Ω
)
1.195

 (3.36) 

 

A comparison of these geometric tip approximations (Figure 3.4) shows that hemispherical tip 

model predicts higher growth velocities for typical supersaturations (10−4 − 10−1), and therefore, 

will tend to predict more dendritic grain morphologies compared to the paraboloidal tip model for 

the same conditions [57,78]. 

With the grain radius (𝑅) and grain growth velocity (�̅�𝑛𝑔) defined, the liquid diffusion 

length can be calculated. The smoothly varying analytical solution of Bedel [79], 

𝛿𝑒 =

[
 
 
 
1

𝑅
+

(𝑅𝑓
2 − 𝑅2)
2∆

(𝑅𝑓
2 − 𝑅2)
2 − ∆ (𝑅𝑒 + ∆ − (𝑅𝑓 + ∆)𝑒

𝑅−𝑅𝑓
∆ )]

 
 
 
−1

 (3.37) 

 

based on the original work of Martorano et al. [80] is used in this dissertation. Numerical 

experimentation found this expression to be well-behaved across a wide range of morphological 

and cooling conditions. Additionally, Eqn. (3.37) is easy to implement into a numerical model 

because it does not require numerical integration, and obeys the growth restraint: 

𝛿𝑒 ≤ ∆=
𝐷𝑙
�̅�𝑛𝑔

 (3.38) 

 

under which 𝑑𝐶𝑙/𝑑𝑡 is greater than zero.  

Finally, an additional phase transport equation for the grain is solved, 

𝜕

𝜕𝑡
(𝜌𝑔𝑔𝑔) + ∇ ∙ (𝜌𝑔𝑔𝑔𝑼𝑠) = 𝜌𝑔𝑆𝑔�̅�𝑛𝑔 (3.39) 
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at which point all interfacial parameters in the liquid diffusion coefficient 𝑏 in Eqn. (3.28) are 

defined. In Figure 3.4 the liquid diffusion coefficient is plotted as a function internal solid fraction 

𝑔𝑠,𝑖 and the final grain radius 𝑅𝑓 to illustrate the effect of grain morphology and size on solute 

diffusion into the extradendritic liquid. The diffusion coefficient reaches a maximum value when 

the grain fraction goes to unity, enforcing the condition of complete mixing in the liquid. 

Additionally, the magnitude of the term depends on the final grain radii supplied as an input 

parameter and will tend to force mixing of the extradendritic liquid as the grain size is reduced. 

 

 

Figure 3.4: Comparison of the inverse Ivantsov function for small supersaturations using different 

dendrite tip geometry assumptions (left). Grain diffusion coefficient as a function of solid fraction 

for various grain sizes and morphologies (right). 

 

3.2.3 Verification 

In order to verify the volume-averaged model and its closure relationships for equiaxed 

dendritic growth, solidification of an Al-5wt%Si alloy is simulated, based on Rappaz and Thévoz 

[76]. Predicted cooling curves are compared to the results from Wang and Beckermann [67] in 

Figure 3.5 for a cooling rate of 45 Ks−1 and three different final grain radii (𝑅𝑓). The calculations 

are in excellent agreement with the benchmark solutions. It is demonstrated that hemispherical 



 

 

83 

model tends to predict shallower recalescence curves due to the increased grain growth rates (see 

Figure 3.4). Therefore, the hemispherical model will systematically predict more dendritic grains 

than the paraboloidal model (Figure 3.6) and will have a total liquid composition closer to the 

interfacial liquid composition 𝐶�̅�,𝑖  due to the increased amount of interdendritic liquid during 

solidification. The numerical procedure used for calculating the previous system of equations 

describing volume-averaged microsegregation and grain growth is presented in Chapter 5. The 

influence that the undercooling predicted by the volume-averaged model has on transport 

phenomena during equiaxed solidification is investigated in Chapter 7. Further the reliability of 

the predicted grain structures is also evaluated. 
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Figure 3.5: Effect of the dendrite tip geometry assumption on the predicted recalescence curves 

with the final grain radii of (A) 100 µm, (B) 1 mm, (C) 10 mm. The predictions of Wang and 

Beckermann [67] and Rappaz and Thevoz [76] are coincident with the complete model. 

 

 

Figure 3.6: Effect of the dendrite tip geometry assumption on the predicted grain fraction with the 

final grain radii of (A) 100 µm, (B) 1 mm, (C) 10 mm. The predictions of Wang and Beckermann 

[67] are coincident with the complete model with the exception of 𝑔𝑔 > 0.95 due to the limiting 

used here for numerical stability.  
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 NUMERICAL METHODS 

In this chapter, the numerical methods used for solving the model equations developed in the 

previous chapters are described. The finite volume method (FVM) on co-located is used to solve 

the continuum transport equations. The purpose of numerical discretization is to transform 

differential equations into a system of linear algebraic equations which can be solved by an 

appropriate method. The implementation and solution of the linear system of equations is done 

using OpenFOAM, an open-source computational fluid dynamics (CFD) platform based on the 

finite volume method (FVM). A brief description of the finite volume method on co-located grids 

is provided following Jasak [81] and Rusche [82]. Then, coupling of pressure and velocity and the 

formulation of phase mass fluxes are discussed in detail and novel methods for handling 

discontinuities across the discrete packing interface are developed. 

 

 

 

Figure 4.1.Illustration of a finite control volume with a single neighbor on a co-located grid. 

 

4.1 Finite Volume Method 

The main principle of the finite volume method is the subdivision of the problem domain 

into control volumes (CVs) over which the equations are integrated (Figure 4.1). Integrations over 
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each CV are approximated by numerical integration using field values represented at control 

volume centers. Using the transport equation for a general transport quantity 𝜙, 

𝜕

𝜕𝑡
(𝜌𝜙)

⏟    
storage

+ ∇ ∙ (𝜌𝒖𝜙)⏟      
advection

= ∇ ∙ (𝛤∇𝜙)⏟      
diffusion

+ 𝑆⏟
source

 
(4.1) 

 

a finite volume discretization is formulated by integrating over the local volume 𝑉𝑃 and time: 

∫

[
 
 
 
 

∫
𝜕𝜌𝜙

𝜕𝑡
𝑑𝑉

𝑉𝑝⏟      
storage

+∫ ∇ ∙ (𝜌𝒖𝜙)𝑑𝑉
𝑉𝑝⏟          

advection ]
 
 
 
 

𝑑𝑡
𝑡+∆𝑡

𝑡

= ∫

[
 
 
 

∫ ∇ ∙ (𝛤∇𝜙)𝑑𝑉
𝑉𝑝⏟          

diffusion

+∫ 𝑆𝑑𝑉
𝑉𝑝⏟    
source ]

 
 
 

𝑑𝑡
𝑡+∆𝑡

𝑡

 (4.2) 

 

where the subscript 𝑃 denotes index of the current control volume and ∆𝑡 the time step. The 

advection and diffusion terms are converted from volume integrals to surface integrals using the 

Gauss’s theorem for both divergence and gradient operations: 

∫ ∇⊗𝜙𝑑𝑉
𝑉𝑃

= ∫ 𝜙⊗𝒏𝑑𝑆
𝑆𝑃

 (4.3) 

 

where the symbol ⊗ is used to represent any tensor product. In order to evaluate these surface 

integrals on a numerical grid, the values of 𝜙 must be interpolated from the cell-centers to the 

face-centers bounding the control volume [82]. The methods used to approximate the 

volume integrals in Eqn. (4.2) are discussed in the following sections. 

4.1.1 Face Interpolation 

Interpolation of cell-centered values to the face-centers is a fundamental requirement of 

the finite volume method to evaluate surface integrals. Many face interpolation schemes exist, 

however the two most important for this work are central differencing and upwind differencing. 

Central differencing is a second order accurate method defined as: 

𝜙𝑓(𝐶𝐷) = 𝑓𝑥𝜙𝑃 + (1 − 𝑓𝑥)𝜙𝑁 (4.4) 

 



 

 

87 

where 𝑓𝑥 = |𝒙𝑓 − 𝒙𝑁|/(|𝒙𝑓 − 𝒙𝑁| + |𝒙𝑓 − 𝒙𝑃|) is a weighting factor and 𝒙 is the position vector, 

shown in Figure 4.2. This method is used to interpolate all thermophysical properties from cell-

centers to face-centers, and is also used to define the mass flux through a face when approximating 

the advection terms: 

F𝑓 = (𝜌𝒖)𝑓(𝐶𝐷) ∙ 𝑺𝑓 (4.5) 

 

where 𝑺𝑓 = 𝒏𝑑𝑆 is the outward facing surface area vector of face 𝑓. The scheme can be subject to 

numerical instabilities when interpolating quantities during evaluation of the advection terms [83].  

The most common remedy to numerical instabilities of higher-order methods is first-order 

upwind differencing. In this method, the value of 𝜙 at the face is approximated by the upstream 

cell-center value, and thus, depends on the direction of the mass flux across the face: 

𝜙𝑓(𝑈𝐷) = pos(F𝑓)𝜙𝑃 +  pos(−F𝑓)𝜙𝑁 (4.6) 

 

where the operator pos(∙) returns one if the value is greater than zero and returns zero otherwise. 

The convention used for the orientation of mass fluxes in this work is that a positive flux indicates 

flow out of cell 𝑃 across face 𝑓 and a negative flux indicates flow into cell 𝑃 across face 𝑓. This 

convention is chosen based on the orientation of the outward facing surface area vector 𝑺𝑓. 

The previous two interpolation schemes are illustrated in Figure 4.2. It can be shown that 

the leading truncation error of upwind differencing resembles a diffusive flux [83], however, it 

guarantees boundedness of the solution and the numerical diffusion can be mitigated to some 

extent by grid refinement. Following the definition of these face interpolation methods, the 

advection terms used throughout this work can be defined according to the approximation: 

∫ ∇ ∙ (𝜌𝒖𝜙)𝑑𝑉
𝑉

= ∫ (𝜌𝒖𝜙) ∙ 𝒏𝑑𝑆
𝑆

≈∑(𝜌𝒖)𝑓(𝐶𝐷)𝜙𝑓(𝑈𝐷) ∙ 𝑺𝑓
𝑓

≈∑F𝑓𝜙𝑓(𝑈𝐷)
𝑓

 (4.7) 
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Figure 4.2. Illustration of the interpolation of the cell-center values (W,P) to the face-center value 

(𝑤). 

 

4.1.2 Gradients 

Two different evaluations of the gradient terms are used in this work. The first operation 

produces a cell-centered gradient of 𝜙 using Gauss integration. The discretization is performed 

by applying Gauss’s theorem to the volume integral: 

∫ ∇𝜙𝑑𝑉
𝑉

= ∫ 𝜙𝒏𝑑𝑆
𝑆

≈∑𝜙𝑓(𝐶𝐷)𝑺𝑓
𝑓

 (4.8) 

 

where the face value of 𝜙𝑓(𝐶𝐷) is evaluated by central differencing. The second operation produces 

a face-centered normal gradient that is approximated using:  

∇𝑓
⊥𝜙 =

𝜙𝑁 − 𝜙𝑃
|𝐝|

 (4.9) 

where the 𝐝 is the vector between the center of cell 𝑃 and its neighbor 𝑁. This approximation is 

second order accurate on the orthogonal grids. In the case of non-orthogonal grids, a correction 

term can be introduced by interpolating the previous Gauss method [81,82]. 

Following the definition of gradient operators for orthogonal grids, discretization of the 

diffusion terms is performed similarly to the previous advection terms: 

∫ ∇ ∙ (Γ∇𝜙)𝑑𝑉
𝑉

= ∫ (Γ∇𝜙) ∙ 𝒏𝑑𝑆
𝑆

≈∑Γ𝑓(𝐶𝐷)∇𝑓
⊥𝜙

𝑓

=∑(Γ𝑓(𝐶𝐷)
𝜙𝑁 − 𝜙𝑃
|𝐝|

)

𝑓

 (4.10) 

 

where Γ is the diffusion coefficient at the face-center evaluated by central differencing. 
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4.1.3 Source Terms 

Before proceeding to the development of basic rules for time integration, some attention is 

given to the source term appearing in Eqn. (4.2). When the source term depends on 𝜙, it is desirable 

to include this dependence when constructing the discretized equation [84]. Since the techniques 

used for the linear system of equations can only formally account for linear dependences, the 

source term must be linearized according to:  

𝑆 = 𝑆𝑃𝜙𝑃 + 𝑆𝐶 (4.11) 

 

where 𝑆𝑃 is a coefficient of 𝜙𝑃 (not 𝑆 evaluated at 𝑃) and 𝑆𝐶 is the constant part of 𝑆. Iterative 

methods can be used to handle such situations by splitting a given expression in terms of 𝑆𝑃 and 

𝑆𝐶, which are calculated from the new values of 𝜙 at each iteration. How these terms are evaluated 

depends on their interaction with other terms in the transport equation and its influence on the 

boundedness and accuracy of the solution. The rules for constructing these expressions are covered 

in detail by Patankar [84]. 

4.1.4 Time Integration 

Discretization of the unsteady term is performed using Euler time differencing. For a static 

mesh, a linear variation of 𝜙 over the time step ∆𝑡 is: 

∫
𝜕𝜌𝜙

𝜕𝑡
𝑑𝑉

𝑉𝑝

≈
𝜌𝑃𝜙𝑃 − 𝜌𝑃

𝑜𝜙𝑃
𝑜

∆𝑡
 (4.12) 

 

where 𝑜 denotes old values from the previous time step. Using the definitions of the spatial and 

temporal terms, the discrete form of the transport equations can be written as: 

∫ [
𝜌𝑃𝜙𝑃 − 𝜌𝑃

𝑜𝜙𝑃
𝑜

∆𝑡
𝑉𝑝 +∑F𝑓𝜙𝑓(𝑈𝐷)

𝑓

] 𝑑𝑡
𝑡+∆𝑡

𝑡

= ∫ [∑(Γ𝑓(𝐶𝐷)
𝜙𝑁 − 𝜙𝑃
|𝐝|

)

𝑓

+ 𝑆𝑃𝜙𝑃𝑉𝑝 + 𝑆𝐶𝑉𝑝] 𝑑𝑡
𝑡+∆𝑡

𝑡

 

(4.13) 
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There are two methods used in this work for treating the time integrals of transport equations: 

explicit and implicit methods. Explicit time discretization is a first order accurate method which 

evaluates the spatial terms from the previous time. For the advection terms, this method becomes 

unstable if the Courant number, 

𝐶𝑜 =
𝑢∆𝑡

∆𝑥
 (4.14) 

 

is greater than 1. Therefore, a strict time step limit is required for numerical stability of the solution. 

A similar time step limit for the diffusion terms based on the Fourier number is also enforced [84]. 

The explicitly discretized equation reads: 

𝜌𝑃𝜙𝑃 − 𝜌𝑃
𝑜𝜙𝑃

𝑜

∆𝑡
𝑉𝑝 +∑F𝑓𝜙𝑓(𝑈𝐷)

𝑜

𝑓

=∑Γ𝑓(𝐶𝐷)
𝜙𝑁
𝑜 − 𝜙𝑃

𝑜

|𝐝|
𝑓

+ 𝑆𝑃𝜙𝑃𝑉𝑝 + 𝑆𝐶𝑉𝑝 (4.15) 

 

Again, there is some freedom is choosing how to evaluate 𝑆𝑃𝜙𝑃  and 𝑆𝐶  depending on the 

linearization method chosen. Therefore, these terms are written arbitrarily since 𝑆𝑃𝜙𝑃 could be 

solved in the following ways: (1) using previous time value for 𝜙𝑃, (2) using the previous iteration 

value for 𝜙𝑃, or (3) being combined with the term 𝜌𝑃𝜙𝑃 ∆𝑡⁄  on the left hand side. The explicit 

solution for 𝜙𝑃 at the new time can be solved directly using: 

𝜙𝑃 =
𝜌𝑃
𝑜

𝜌𝑃
𝜙𝑃
𝑜 +

∆𝑡

𝜌𝑃𝑉𝑝
[∑F𝑓𝜙𝑓(𝑈𝐷)

𝑜

𝑓

+∑Γ𝑓(𝐶𝐷)
𝜙𝑁
𝑜 − 𝜙𝑃

𝑜

|𝐝|
𝑓

+ 𝑆𝑃𝜙𝑃𝑉𝑝 + 𝑆𝐶𝑉𝑝] (4.16) 

 

Alternatively, implicit time discretization is another first order accurate method which 

evaluates the spatial terms at the new time. This method is unconditionally stable and guarantees 

boundedness of the solution. The final implicitly discretized equation reads: 

𝜌𝑃𝜙𝑃 − 𝜌𝑃
𝑜𝜙𝑃

𝑜

∆𝑡
𝑉𝑝 +∑F𝑓𝜙𝑓(𝑈𝐷)

𝑓

=∑(Γ𝑓(𝐶𝐷)
𝜙𝑁 − 𝜙𝑃
|𝐝|

)

𝑓

+ 𝑆𝑃𝜙𝑃𝑉𝑝 + 𝑆𝐶𝑉𝑝 (4.17) 

 

Although 𝑆𝑃𝜙𝑃 and 𝑆𝐶 are still meant to be arbitrary, it is generally recommended for numerical 

stability to combine this term with 𝜌𝑃𝜙𝑃 ∆𝑡⁄  for implicit time discretization whenever possible. 

This is known as an implicit source term, and the rules for its use are explained in ref. [84]. The 
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implicit solution for 𝜙𝑃 cannot be evaluated directly since it depends on the values of neighboring 

cells 𝜙𝑁: 

(
𝜌𝑃
∆𝑡
− 𝑆𝑃)𝜙𝑃𝑉𝑝 +∑F𝑓𝜙𝑓(𝑈𝐷) −

𝑓

∑(Γ𝑓(𝐶𝐷)
𝜙𝑁 − 𝜙𝑃
|𝐝|

)

𝑓

=
𝜌𝑃
𝑜𝜙𝑃

𝑜

∆𝑡
+ 𝑆𝐶𝑉𝑝 (4.18) 

 

However, Eqn. (4.18) is a linear algebraic system which can be solved according to the methods 

described in the subsequent section. 

4.1.5 Solution Methods for Linear Algebraic Systems 

The discretization and linearization procedures outlined up to this point produce a linear 

algebraic equation for each control volume. The exact form of these linear algebraic equations 

depends on the governing equation and the discretization methods used, but can be written in the 

general form: 

𝑎𝑃𝜙𝑃 +∑𝑎𝑁𝜙𝑁
𝑁

= b𝑃 (4.19) 

 

The value of 𝜙𝑃 depends on the values of the neighboring cells (𝑁), creating a system with one 

equation for each cell of the space domain. These systems can be expressed in a matrix form  

[A][x] = [b] (4.20) 

 

where [A] is a sparse square matrix with coefficients 𝑎𝑃  on the main diagonal and 𝑎𝑁  off the 

diagonal, [x]  is a column vector of the dependent variable and [b]  is the source vector. The 

description of these values as “vectors” comes from general matrix terminology, a list of values 

defined at the centers of the control volumes, and do not indicate the type of field it may contain. 

The solution of this system is commonly achieved using iterative (as opposed to direct) 

methods. Iterative methods begin with an initial guess and subsequent iteration to improve the 

approximation until some specified tolerance it met. It is beyond the scope of this dissertation to 

discuss these methods in detail, however a variant of the original conjugate gradient (GC) method, 

proposed by Hestenes and Stiefel [85] is used to implicitly solve momentum and energy. In this 

method, conjugation of the residuals is used to construct search directions for the solution. Because 
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the residual is orthogonal to the previous search direction, it guarantees to always produce a new, 

linearly independent search direction until the residual is zero and the exact solution is obtained. 

The convergence rate depends on the dispersion of the eigenvalues of the matrix and can be 

improved through preconditioning. In this work, the Diagonal-based Incomplete LU (DILU in 

OpenFOAM) preconditioner is used for this purpose. The solver adopted for asymmetric matrices 

is then a preconditioner variant of the Bi-Conjugate Gradient Stabilized (PBiCGStab in 

OpenFOAM) by Van Der Vorst [86]. It will be demonstrated in the next section that a linear system 

for the pressure equation is also obtained. The method used to solve the pressure equation is 

GAMG (Geometric Algebraic Multi-Grid). The basic idea behind multi-grid solvers is to use a 

coarse grid with fast solution times to smooth high frequency errors and the generate an initial 

condition for finer grids. This solver was combined with a DIC (Diagonal-based Incomplete 

Cholesky) smoother.  

4.2 Pressure-Velocity Coupling 

In order to couple the pressure and velocity fields, segregated algorithms are commonly 

used. These methods solve the pressure and velocity equations separately using iterative solution 

procedures. In general, when the velocity fields are be stored at the center of a control volume 

along with scalar quantities (i.e. co-location), the influence of pressure is not properly represented 

in the discretized momentum equation. This is known to cause oscillations in the velocity fields, 

sometimes referred to as “checker-boarding”. To mitigate this numerical issue, staggered grids [87] 

have been adopted in which the velocity fields are treated on a separate grid centered around the 

faces of the scalar variable control volumes. Given that the velocities are needed at the faces to 

calculate the advection terms in the conservation equations, this approach has some merit. The 

staggered grid approach has been widely used within the solidification modeling community but 

is no longer the standard method employed in most commercial CFD codes (e.g. Fluent, 

OpenFOAM, starCCM+) because it is not well-suited for parallelization and complex geometries 

due to the difficult bookkeeping of the multiple numerical grids. 

Currently, the most common method to avoid pressure-velocity decoupling on co-located 

grids is the Rhie-Chow method [88], which interpolates velocities to the control volume faces 

when evaluating the continuity equation to imitate the staggered grid approach. The conservative 

field is the mass flux across control volume faces. Although this interpolation has been extremely 
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successful in solving decoupling issues on co-located grids, it was originally developed for flow 

fields without rapidly varying pressure gradients [89] or large body forces [90], and does not 

guarantee non-oscillatory fields for such systems. In particular, Zhang at al. [91] highlighted that 

the standard Rhie-Chow interpolation gives unsatisfactory results for buoyancy-driven flows in 

the vicinity of strong heat sources or large concentration gradients, and for flows through resistive 

materials with large gradients or discontinuities in the resistance. Because each of these situations 

are prevalent during solidification, corrections to the Rhie-Chow interpolation are necessary to 

accurately model solidification processes on co-located grids. 

Several corrections to the Rhie-Chow interpolation have been presented in the literature. 

The most successful of these methods can be classified as balanced-force methods [92] where the 

pressure gradients and body forces are considered at the control volume faces, so that the body 

forces acting on the flow are more accurately balanced by the corresponding pressure gradients. 

Zhang et al. [91] proposed a correction for smoothing out the pressure gradient on cell faces by 

introducing body forces explicitly into the calculation. However, the explicit treatment of the 

momentum equation limits its application to certain flow conditions. A solution of this problem 

was proposed by Nordlund et al. [93] in which the drag coefficient in the cells near discontinuities 

was calculated by interpolation of the drag coefficient at the cell faces. Although this solution 

allows for an implicit velocity equation to be solved, the proposed formulation does not guarantee 

flux-velocity coupling and conservation errors can become prohibitively large despite producing 

a smooth velocity field. In another approach, Aguerre et al. [94] proposed to reconstruct the 

velocities from the conservative face flux inspired by a flux difference minimization to obtain an 

oscillation-free solution. However, the proposed reconstruction method used was only evaluated 

on cartesian, uniform meshes, so further studies are necessary for it to be considered a general 

improvement. Based on the development of these methods, a face-based drag and buoyancy 

formulation is developed here based on the PISO algorithm (Pressure-Implicit with Splitting of 

Operators) proposed by Issa [95]. 
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4.2.1 The PISO Algorithm 

The discretized forms of the mass and momentum equations are: 

𝜌𝑃 − 𝜌𝑃
𝑜

∆𝑡
+∑ F𝑓

𝑓

= 0 (4.21) 

and 

𝑎𝑃𝒖𝑃 +∑𝑎𝑁𝒖𝑁
𝑁

= 𝑎𝑝
𝑜𝒖𝑃

𝑜 − ∇p𝑃 + 𝐛𝑃 (4.22) 

 

where 𝐛𝑃 represents the collection of body forces: 

𝐛𝑃 = 𝜌𝑒𝑓𝑓,𝑃
𝐵 𝐠 + 𝐷𝑃𝒖𝑃 (4.23) 

 

The PISO algorithm [95] is a common procedure for coupling the velocity and pressure fields, 

which are both unknown upon evaluation of Eqn. (4.22). The first step of the PISO algorithm, 

known as the “momentum predictor”, involves calculating the momentum field using an 

intermediate pressure field: 

𝒖𝑃 =
𝐇𝑝

𝑎𝑃
−
1

𝑎𝑃
∇p (4.24) 

 

As an initial guess in a given time step, p is the converged solution from the previous time step 

and 𝐇𝑝 includes the explicit temporal term, the off-diagonal terms, and the body forces: 

𝐇𝑝 = 𝑎𝑝
𝑜𝑢𝑃

𝑜 −∑𝑎𝑁𝒖𝑁
𝑁

+ 𝐛𝑃 (4.25) 

 

The continuity constraint is applied to the condition of a divergence-free mass flux in Eqn. (4.21), 

and therefore, a consistent method for interpolating the velocity field between the cell-centers and 

face-centers must be constructed. Interpolating the momentum predictor, Eqn. (4.24), to the faces 

gives an expression for the mass flux across the face: 

F𝑓 = [𝜌𝑃]𝑓 [
𝐇𝑃
𝑎𝑃
]
𝑓

∙ 𝑺𝑓 −
[𝜌𝑃]𝑓
[𝑎𝑃]𝑓

|𝑺𝑓|∇𝑓
⊥(p𝑃) (4.26) 
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where the operator  [∙]𝑓 will represent central differencing face-centered values to cell-centered 

values going forward, and ∇𝑓
⊥(∙)  denotes the surface normal gradient at the given face 

approximated by Eqn. (4.9). Substitution of this expression into the continuity equation, Eqn. 

(4.21), gives the pressure correction equation: 

 

∑(
[𝜌𝑃]𝑓
[𝑎𝑃]𝑓

|𝑺𝑓|∇𝑓
⊥(p𝑃)) =

𝜌𝑃 − 𝜌𝑃
𝑜

∆𝑡
+∑([𝜌𝑃]𝑓 [

𝐇𝑃
𝑎𝑃
]
𝑓

∙ 𝑺𝑓)

𝑓𝑓

 (4.27) 

 

the solution of which returns the pressure field that produces the conservative fluxes and corrected 

velocity fields when substituted into Eqn. (4.26) and Eqn. (4.24), respectively.  

4.2.2 Cell-Based Drag Method 

The method described in Section 4.2.1 is the standard Rhie-Chow interpolation [88], 

because the continuity constraint is applied to face-center values in Eqn. (4.27). The main 

shortcoming of this approach is that the explicit body forces 𝐛𝑃 are collected into 𝐇𝑃 and may not 

properly balance the pressure gradient across the face in the continuity constraint if large gradients 

in the body forces exist. To improve the interpolation of the buoyancy force, a reduced pressure is 

commonly employed, defined as the difference of the total pressure and the hydrostatic component: 

p𝑅 = p − 𝜌𝑒𝑓𝑓
𝐵 𝐠 ∙ 𝐡  

 

where 𝐡 is the displacement vector in the direction of gravity from some reference point. One 

benefit of performing calculations with the reduced pressure is that the buoyancy force is in the 

continuity constraint is evaluated in terms of its surface normal gradient at the face-centers: 

∇𝑓
⊥(p𝑃

𝑅) + 𝜌𝐵𝐠 ∙ 𝐡 = ∇𝑓
⊥(p𝑃

𝑅) + gh∇𝑓
⊥(𝜌𝑒𝑓𝑓,𝑃

𝐵 ) (4.28) 

 

making it consistent with the pressure correction calculated in Eqn. (4.27). Because the buoyancy 

and pressure terms are evaluated at the face-centers in the continuity constraint, the cell-centered 

vector used to calculate the velocity field should be reconstructed from face-centered values. The 

expression of Weller et al. [96,97] is used for this operation: 
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ℛ[𝜙𝑓] = (∑
𝑺𝑓𝑺𝑓

|𝑺𝑓|𝑓

)

−1

∙∑𝜙𝑓
𝑺𝑓

|𝑺𝑓|𝑓

= 𝝓𝑃 (4.29) 

 

where the operator ℛ[∙] denotes the interpolation of a face-centered fields (𝑄𝑓) to a cell-centered 

vector (𝝓𝑃). If the drag term is evaluated at the cell-centers is either collected into 𝑎𝑃 if evaluated 

as an implicit source term, or collected into 𝐇𝑃 if evaluated as an explicit source term and the 

momentum predictor becomes: 

𝒖𝑃 =
𝐇𝑃
𝑎𝑃
−
1

𝑎𝑃
ℛ[|𝑺𝑓|∇𝑓

⊥(p𝑃
𝑅) + gh|𝑺𝑓|∇𝑓

⊥(𝜌𝑒𝑓𝑓,𝑃
𝐵 )] (4.30) 

 

Since the buoyancy force is no longer specified as a source term in 𝐇𝑃 , the flux corrector is 

modified, such that: 

F𝑓 = [𝜌𝑃]𝑓 {[
𝐇𝑃
𝑎𝑃
]
𝑓

∙ 𝑺𝑓 −
1

[𝑎𝑃]𝑓
[|𝑺𝑓|∇𝑓

⊥(p𝑃
𝑅) + gh|𝑺𝑓|∇𝑓

⊥(𝜌𝑒𝑓𝑓,𝑃
𝐵 )]} (4.31) 

4.2.3 Face-Based Drag Method 

Although the previous cell-based drag scheme treats the buoyancy and pressure terms at 

the face-centers, a consistent method for evaluating all body forces at the faces would require the 

removal of the cell-centered drag term (𝐷𝑃) from the diagonal of the solution matrix (𝑎𝑃). A fully 

explicit formulation of the drag term similar to [91], i.e.: 

𝒖𝑃 =
𝐇𝑃
𝑎𝑃
−
1

𝑎𝑃
ℛ[|𝑺𝑓|∇𝑓

⊥(p𝑃
𝑅) + gh|𝑺𝑓|∇𝑓

⊥(𝜌𝑒𝑓𝑓,𝑃
𝐵 ) + 𝐷𝑓F𝑓] (4.32) 

 

would be prone to numerical instabilities due to the large value of the explicit source term 𝐷𝑓F𝑓 

compared to all other terms, where 𝐷𝑓 is the drag coefficient evaluated at the face-center. In order 

to obtain a “face-based” drag approach while also retaining numerical stability gained by including 

the drag coefficient on the diagonal of the solution matrix, a semi-implicit formulation of the 

momentum predictor is proposed here, i.e.: 

𝒖𝑃 = (
1

1 + 𝑎𝑃
−1𝐷𝑃

) {
𝐇𝑃
𝑎𝑃
−
1

𝑎𝑃
(ℛ[|𝑺𝑓|∇𝑓

⊥(𝑝𝑃
𝑅) + gh|𝑺𝑓|∇𝑓

⊥(𝜌𝑒𝑓𝑓,𝑃
𝐵 ) + 𝐷𝑓F𝑓] − 𝐷𝑃ℛ[F𝑓])} (4.33) 
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This formulation assumes that 𝜌𝑃𝒖𝑃 ≈ ℛ[F𝑓] upon convergence, which is already a requirement 

to maintain consistency between the velocity and flux fields. Therefore, the cell-centered drag 

terms cancel each other upon convergence but provide numerical stability during the iterative 

procedure. A consistent form of the mass flux can be expressed as: 

F𝑓 = (
[𝜌𝑃]𝑓

1 + [𝑎𝑃
−1]𝑓𝐷𝑓

) {[
𝐇𝑃
𝑎𝑃
]
𝑓

∙ 𝑺𝑓 −
1

[𝑎𝑃]𝑓
[|𝑺𝑓|∇𝑓

⊥(p𝑃
𝑅) + gh|𝑺𝑓|∇𝑓

⊥ (𝜌
𝑒𝑓𝑓,𝑃
𝐵 )]} (4.34) 

 

where 𝐷𝑓 is the drag coefficient calculated at the face.  

An immediate advantage of this formulation is that 𝐷𝑓 is no longer limited to the same 

interpolation method as 𝑎𝑃 (i.e. central differencing). For solidification models, it is desirable to 

interpolate the solid faction to the face-centers, and calculating the drag term using the interpolated 

value [98], which was previously not possible on co-located grid. This method for evaluating the 

drag coefficient at the face-centers is used for the remainder of this dissertation. Another advantage 

of this formulation is that the level of numerical diffusion introduced to the solution by the 

reconstruction operator can be controlled through modification of the final term in Eqn. (4.33) and 

(4.34). If a stronger bias towards the cell-based drag formulation is desired, then 𝐷𝑃ℛ[F𝑓] can be 

replaced with a blended formulation, 

𝐷𝑃ℛ[F𝑓] → 𝐷𝑃[𝜔ℛ[F𝑓] + (1 − 𝜔)𝒖𝑃] (4.35) 

 

where 𝜔 is the blending factor: From a theoretical standpoint, it appears that the proposed face-

based drag scheme is an improvement across a wide range of possible flow conditions. For cases 

where the drag term dominates the momentum transport terms (𝐷𝑃 ≫ 𝑎𝑃), the method approaches 

the face-based momentum scheme (i.e. 𝜌𝑃𝒖𝑃 = ℛ[F𝑓]), and therefore, tends towards a smoother 

velocity field in the presence of body force discontinuities. On the other hand, for cases the drag 

term is negligible (𝐷𝑃 ≪ 𝑎𝑃), the method recovers the Rhie-Chow interpolation, and introduces 

no additional numerical diffusion. 

4.2.4 Pressure Oscillations 

The two method for evaluating drag on co-located grids in Section 4.2.2 and Section 4.2.3 

are applied to a simple 1-D Cartesian case with a uniform velocity in each control volume and a 
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body force 𝐹 located only at control volume 𝑃, shown in Figure 4.3. This case is taken from 

Réthoré and Sørensen [99] and modified for application to the current methods. The discrete form 

of the 1-D velocity equation  in control volume 𝑃 is: 

𝑎𝑃𝑢𝑃 +∑𝑎𝑁𝑢𝑁
𝑁

= 0.5(p𝐸 − p𝑊)∆𝑦 + 𝐹𝑃∆𝑥∆𝑦 (4.36) 

 

which simplifies by continuity (𝑢𝑃 = 𝑢𝑁) to give the pressure drop across cell 𝑃: 

p𝐸 − p𝑊 = 2𝐹𝑃∆𝑥 = 2𝐹∆𝑥 (4.37) 

 

Applying this same procedure for cell 𝑊 and 𝐸 (where there is no volumetric force) gives: 

p𝑃 − p𝑊𝑊 = 2𝐹𝑊∆𝑥 = 0    and    p𝐸𝐸 − p𝑃 = 2𝐹𝐸∆𝑥 = 0 (4.38) 

 

These pressure profiles are oscillatory around cell 𝑃 for the cell-based drag method, shown in 

Figure 4.3. However, when the body forces are determined at the faces, the following pressure 

profile is obtained for cell 𝑃 

p𝐸 − p𝑊 = (𝐹𝑤 + 𝐹𝑒)∆𝑥 = 2𝐹∆𝑥 (4.39) 

 

and similarly, for cell 𝑊 and 𝐸: 

p𝑃 − p𝑊𝑊 = (𝐹𝑤𝑤 + 𝐹𝑤)∆𝑥 = 𝐹∆𝑥    and    p𝐸𝐸 − p𝑃 = (𝐹𝑒 + 𝐹𝑒𝑒)∆𝑥 = 𝐹∆𝑥     (4.40) 

 

These pressure profiles correctly account the pressure drop across control volume 𝑃  without 

oscillations in the adjacent cells, shown in Figure 4.3.  
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Figure 4.3: Simplified example of the pressure profiles given across a discontinuous volumetric 

force at control volume 𝑃 for the cell-based drag and face-based drag methods. The latter is free 

of oscillations. 

 

4.3 Phase Flux Discretization 

Up to this point, the numerical discretization and the pressure-velocity coupling method have 

been formulated in a manner believed to be free of spurious oscillations of the mixture flux. 

However, departure of the phase flux from the mixture flux across the packing interface is still 

possible depending on the assumptions made upon its evaluation. This issue is addressed in the 

current section, and a correction method based on proper handling of the phase fluxes across this 

transition is proposed. 

A common feature of equiaxed solidification models is the localized formation of highly 

solute depleted control volumes. Plotkowski and Krane [45,46] characterized the formation of 

these features using a continuum mixture model, similar to the one used in this work, but 

implemented on a staggered grid. The authors demonstrated a tendency for the discretization 

method to cause depleted control volumes near the chilled vertical wall where the buoyancy-driven 

flows are largest. The frequency and severity of these features were shown to increase with 
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refinement of the numerical grid, motivating their classification as numerical artifacts since their 

initiation and propagation do not occur on a physically representative length scale. The standard 

methodology also tended to suppress these artifacts as the drag force at the packing interface was 

increased, either by increasing the packing fraction or by decreasing the characteristic length scale 

used in Eqn. (2.51). 

 To further investigate the behavior of the mixture flux and phase fluxes across the packing 

interface, the discretization of the mixture composition equation,  

𝜕

𝜕𝑡
(𝜌𝐶) + ∇ ∙ (𝜌𝑠𝑔𝑠𝒖𝑠𝐶𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙𝐶𝑙) = 0 (2.85)   

 

is evaluated. If the solid flux across each face of a packed cell is zero, explicit integration of the 

mixture composition in the rigid mush for constant density gives: 

𝐶𝑃 = 𝐶𝑃
𝑜 +

∆𝑡

𝜌
∑𝐹𝑓𝐶𝑙,𝑓(𝑈𝐷)
𝑓

 (4.41)   

 

The most problematic cells will be those along the packing interface that are permeable enough to 

allow the enriched liquid to be carried out of the packed cell and replaced with dilute liquid from 

the upwind slurry cell. This situation will tend to occur for cells with a “stair-step” configuration 

on 2-D co-located grids. To demonstrate this point further, this configuration is prescribed in 

Figure 4.4 for a uniform grid (∆𝑥 = ∆𝑦). An inflow across face 𝑛 is balanced by the outflow across 

face 𝑤, such that 𝑢𝑛∆𝑥 = −𝑢𝑤∆𝑦 and: 

𝐶𝑃 = [𝐶𝑃
𝑜 + 𝑢𝑛∆𝑥(𝐶𝑙,𝑁 − 𝐶𝑙,𝑃)]∆𝑡 (4.42)   

 

Because the packed cell is at a higher liquid composition than the upwind slurry cell (i.e. 𝐶𝑙,𝑃 >

𝐶𝑙,𝑁) a composition sink forms in cell 𝑃. The rate of depletion is a function of both the strength of 

the flow 𝑢𝑛, and the local composition difference (𝐶𝑙,𝑁 − 𝐶𝑙,𝑃). From this simplified analysis, it is 

demonstrated that these depleted cells will tend to form at finer grid spacings where the 

composition gradients increase, and when the permeability of the packing interface is higher. This 

composition sink will continue until either the local solid fraction in the packed cell becomes high 

enough to restrict liquid flow across the faces, or until sufficient heat is removed from either cell 
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𝑁 or cell 𝑊 to cause the packing interface to move. Because composition depletion accelerates 

solidification in cell 𝑃, and delays solidification in cell 𝑊, the packing interface will stall in this 

configuration and further deplete cell 𝑃. 

Previous authors  [45,100–102] have attempted to artificially diffuse this transition over 

some predefined solid fraction range. However, this numerical phenomenon depends on both the 

source terms used in mixture momentum equation and the model chosen for transitioning the solid 

from a mobile to a packed states so these models are only situational corrections. An improved 

approach is to directly treat the solid fluxes across the packing interface. It is proposed here to 

formulate an artificial solid flux at the outflow face (𝐹𝑤) which tends to limit the amount of 

enriched liquid advected out of the interface cells, i.e.: 

𝐶𝑃 = [𝐶𝑃
𝑜 + 𝑢𝑛∆𝑥(𝐶𝑙,𝑁 − 𝐶𝑙,𝑃) + 𝐹𝑤𝐶𝑙,𝑃]∆𝑡 (4.43) 

 

This method remains local to the problematic “stair-step” cells, and thus, is not expected to change 

the overall macrosegregation trends. In addition to the previous numerical rationale, this method 

can also be justified using the same physical reasoning used to support transition function models   

[45,100–102]: the packing interface is a sub-grid feature, with part of the CV packed and the rest 

still free floating, so a numerically diffuse approach is a better representation than an interface 

strictly at the CV boundaries. In order to implement this method, the previous handling of the 

phase fluxes based on the work of  Vreeman and Incropera [73] is reevaluated. 

 

 

Figure 4.4: Schematic of the problematic “stair-step” cell which tend to produce composition 

artifacts during simulations of equiaxed solidification on co-located grids. Packed cells are 

indicated in grey, slurry cells in white. 
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4.3.1 Mixture Flux Method 

Vreeman and Incropera [73] demonstrated that the macrosegregation predictions for 

equiaxed solidification can be extremely sensitive to the interpolation method used for calculating 

the phase mass fluxes in the species equation. Limiting attention to the slurry flow regime for now, 

the solid velocity is calculated as a function of the mixture and relative velocities. 

𝒖𝑠 = 𝒖 +
𝜌𝑙𝑔𝑙
𝜌
𝒖𝑟 (4.44) 

where 

𝒖𝑟 =
4

3

(1 − 𝑔𝑔)𝑔𝑠,𝑖(𝜌𝑠
𝐵 − 𝜌𝑙

𝐵)𝑑𝑔
2

𝐶𝐷𝑅𝑒𝑔𝜇𝑙
𝐠 = �̃�𝑟𝐠 (4.45) 

 

The intrinsic solid mass phase flux across face 𝑓 can be written as: 

F𝑠,𝑓 =
𝜌𝑠
[𝜌]𝑓

([𝜌𝒖]𝑓 + 𝜌𝑙𝑔𝑙,𝑓[�̃�𝑟]𝑓𝐠) ∙ 𝑺𝑓 (4.46) 

 

where the gravity vector is separated from the relative velocity coefficient �̃�𝑟 in Eqn. (4.45). It is 

convenient to retain separation of the mixture mass flux, F𝑓 , and the relative flux, F𝑟,𝑓, when 

writing the volume-averaged solid mass phase flux, such that: 

〈F𝑠,𝑓〉 =
𝜌𝑠
[𝜌]𝑓

[𝑔𝑠,𝑓F𝑓 + 𝑔𝑠,𝑓〈F𝑟,𝑓〉] (4.47) 

where  

〈F𝑟,𝑓〉 = 𝑔𝑙,𝑓F𝑟,𝑓 (4.48) 

and  

F𝑟,𝑓 = 𝜌𝑙[�̃�𝑟]𝑓𝐠 ∙ 𝑺𝑓 (4.49) 

 

At this point, the solid and liquid fractions must be interpolated to the faces. Vreeman performed 

this interpolation by upwind differencing using the mixture flux, which give the following 

expression for the average solid flux: 
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〈F𝑠,𝑓〉 =
𝜌𝑠
[𝜌]𝑓

[pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]F𝑓 

+
𝜌𝑠
[𝜌]𝑓

[pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]〈F𝑟,𝑓〉 

(4.50) 

where 

〈F𝑟,𝑓〉 = 𝜌𝑙[pos(F𝑓)𝑔𝑙,𝑃 + pos(−F𝑓)𝑔𝑙,𝑁]F𝑟,𝑓 (4.51) 

 

According to mass conservation, the average liquid mass flux is then: 

〈F𝑙,𝑓〉 = F𝑓 − 〈F𝑠,𝑓〉 (4.52) 

 

The original motivation for the previous discretization scheme was to consistently interpolate the 

phase fractions with the mixture composition in their formulation of the species equation: 

𝜕

𝜕𝑡
(𝜌𝐶) + ∇ ∙ (𝜌𝒖𝐶) = ∇ ∙ (𝜌𝒖𝐶 − 𝜌𝑠𝑔𝑠𝒖𝑠𝐶𝑠 + 𝜌𝑙𝑔𝑙𝒖𝑙𝐶𝑙) (4.53)   

 

However, the mixture advection terms must sum to zero for a conservative scheme, and this 

“mixture flux method” forces both the phase fractions and phase compositions to be interpolated 

in the direction of the mixture flux regardless of their individual flux orientations. This can lead to 

inconsistent interpolation of these terms, which can have unintended consequences on the 

numerical predictions. 

4.3.2 Phase Flux Method 

The most obvious alternative to the previous scheme is to interpolate each phase fraction 

by upwinding it in the direction of its corresponding flux, but this method does not guarantee 

boundedness or conservativeness of the phase fractions since continuity is solved in terms of the 

mixture [82]. Therefore, a combined interpolation of the phase fractions with respect to the mixture 

flux and the relative flux is desired. Recalling that 𝒖𝑟 = 𝒖𝑙 − 𝒖𝑠 , the liquid fraction can be 

interpolated with respect to −F𝑟,𝑓 to approximate the direction its corresponding flux: 

〈F𝑟,𝑓〉 = 𝜌𝑙[pos(−F𝑟,𝑓)𝑔𝑙,𝑃 + pos(F𝑟,𝑓)𝑔𝑙,𝑁]F𝑟,𝑓 (4.54) 
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The solid fraction can then be interpolated with respect to F𝑓 and 〈F𝑟,𝑓〉: 

〈F𝑠,𝑓〉 =
𝜌𝑠
[𝜌]𝑓

[pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]F𝑓 

+
𝜌𝑠
[𝜌]𝑓

[pos(〈F𝑟,𝑓〉)𝑔𝑠,𝑃 + pos(−〈F𝑟,𝑓〉)𝑔𝑠,𝑁]〈F𝑟,𝑓〉 

(4.55) 

 

This interpolation method was originally proposed by Weller [103] and despite introducing 

numerical diffusion [82], it helps interpolate the phase fraction in the direction of its corresponding 

flux. During equiaxed solidification, this situation will tend to occur near the packing interface and 

in quiescent regions of the slurry where grains tend to settle.  

The numerical diffusion introduced by the previous phase flux formulation is more obvious 

when evaluating the terms in the rigid mush. From the mixture relationships, the relative phase 

flux in the rigid mush is: 

〈F𝑟,𝑓〉 = −F𝑓 (4.56) 

 

and therefore, the solid fraction interpolated with respect to both F𝑓 and −F𝑓: 

〈F𝑠,𝑓〉 =
𝜌𝑠
[𝜌]𝑓

[pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]F𝑓 

−
𝜌𝑠
[𝜌]𝑓

[pos(−F𝑓)𝑔𝑠,𝑃 + pos(F𝑓)𝑔𝑠,𝑁]F𝑓 

(4.57) 

 

which is nonzero wherever 𝑔𝑠,𝑃 ≠ 𝑔𝑠,𝑁. Because the flow of enriched liquid in the rigid mush is 

important to the macrosegregation development, it is not desirable for this diffusive flux to be 

applied everywhere in the rigid mush. Instead, it should be limited to the problematic faces which 

tend to cause highly solute depleted cells at the packing interface, shown in Figure 4.4. To perform 

this limiting, the interface of the rigid mush is first identified using the outward pointing normal 

of the marker function 𝑚 interpolated to the cell-faces: 

𝒏𝑚,𝑓 = −(
[∇𝑚]𝑓

|[∇𝑚]𝑓| + 1 × 10−8 ∀̅
1
3⁄
) ∙ 𝑺𝑓 (4.58) 
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where ∀̅ is the average volume of the control volume in the domain used to prevent division by 

zero. This term is zero everywhere except for the cells along the packing interface. To further 

identify faces with an outflow of the mixture flux, an indicator function, 𝜁, is defined:  

𝜁 = 𝜂pos(𝒏𝑚,𝑓F𝑓)  

 

where 0 ≤ 𝜂 ≤ 1 is a coefficient which controls the amount of numerical diffusion introduced to 

the solid phase flux. When 𝜂 = 0, the scheme is equivalent to a discretely packed interface. After 

combining terms and utilizing the marker function, the average solid flux at any face in the domain 

is: 

〈F𝑠,𝑓〉 =
𝜌𝑠
[𝜌]𝑓

([pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]F𝑓 + (1 −𝑚𝑓)〈F𝑟,𝑓〉 + 𝑚𝑓F𝐷,𝑓) (4.59) 

 

where the newly introduced diffusion flux is: 

F𝐷,𝑓 = 𝜁[pos(−F𝑓)𝑔𝑠,𝑃 + pos(F𝑓)𝑔𝑠,𝑁]F𝑓 

−(1 − 𝜁)[pos(F𝑓)𝑔𝑠,𝑃 + pos(−F𝑓)𝑔𝑠,𝑁]F𝑓 
(4.60) 

  

Finally, it is noted that in order to ensure that no solid flows into an already packed cell, the marker 

function at the face-centers, 𝑚𝑓 in Eqn. (4.59), must be evaluated using a local maximum scheme. 

  



 

 

106 

 THERMODYNAMIC SOLUTION ALGORITHM 

 In the previous chapter the spatial and time discretization used for the finite volume method 

was discussed. In this chapter, the iterative procedure used to linearize the latent heat source term 

is addressed. A review of the open literature suggests that the most robust and efficient numerical 

procedures for solving the highly coupled thermodynamic equations describing solidification are 

based on the linearized source-based method of Swaminathan and Voller [38,39]. Such procedures 

generally require 2-4 iterations per time step to decrease the normalized residuals for solid fraction 

and temperature to values below 10−4. For comparison, Wu et al. [104] report that their iterative 

procedure for solving volume-averaged microsegregation models can take up to 60 iterations for 

similar convergence criteria. It is of general interest to the solidification modeling community to 

understand what features of the linearized source-based method produce numerical stability and 

rapid convergence, and to what degree this method can be extended to more generalized 

microsegregation models. This iterative procedure is evaluated and applied to both the analytical 

and volume-averaged microsegregation models formulated in Chapter 3. 

5.1 Semi-Implicit Source Term Linearization 

Assuming a constant solid density, the solid transport equation will have the following form 

for an explicit time integration: 

𝜌𝑠 (
𝑔𝑠 − 𝑔𝑠

𝑜

∆𝑡
) +∑〈F𝑠,𝑓〉

𝑓

= Γ𝑠 (5.1) 

 

where the average solid mass flux 〈F𝑠,𝑓〉 is calculated using the methods described in Section 4.3. 

The discrete form of the energy equation for an implicit time integration is then: 

𝑎𝑃𝑇𝑝 = 𝑎𝑃
𝑜𝑇𝑃

𝑜 +∑𝑎𝑁𝑇𝑁
𝑁

+ 𝐿𝑓 [𝜌𝑠(𝑔𝑠 − 𝑔𝑠
𝑜) + ∆𝑡∑〈F𝑠,𝑓〉

𝑓

] (5.2) 

 

The transient latent heat term can be linearized by approximating the solid fraction using a Taylor 

series expansion of the form: 
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𝑔𝑠 = 𝑔𝑠
∗ +

𝑑𝑔𝑠
𝑑𝑇

(𝑇 − 𝑇∗) (5.3) 

 

Substitution of this expression into the discrete energy equation yields: 

[𝑎𝑃 − 𝜌𝑠𝐿𝑓
𝑑𝑔𝑠
𝑑𝑇
]𝑇𝑝 = 𝑎𝑃

𝑜𝑇𝑃
𝑜 +∑𝑎𝑁𝑇𝑁

𝑁

+ 𝐿𝑓 [𝜌𝑠 (𝑔𝑠
∗ − 𝑔𝑠

𝑜 −
𝑑𝑔𝑠
𝑑𝑇

𝑇∗) + ∆𝑡∑〈F𝑠,𝑓〉

𝑓

] (5.4) 

 

The first beneficial feature of this method is that the latent heat source term now contains an 

implicit component which improves the numerical stability and convergence rate of the linear 

algebra solver [84]. Because the implicit method is unconditionally stable, the time step taken to 

solve the energy equation can theoretically be as large as the desired time accuracy of the solution. 

This time-stepping behavior can have a dramatic effect on the calculation time compared to 

previous multi-time step methods [105] or explicit time integration methods [74]. Both methods 

require relatively small time steps in the thermodynamic solution algorithm to assist convergence.  

The second beneficial feature of this method is that it is a Newton-Raphson method, which 

exhibits quadratic convergence. Eliminating all terms in the energy equation that are not found in 

the Taylor’s series expansion gives an expression for temperature that is more recognizable as a 

Newton-Raphson method: 

𝑇𝑃 = 𝑇
∗ − [

𝑑𝑔𝑠
𝑑𝑇
]
−1

𝑔𝑠
∗ (5.5) 

 

Implementation of this iterative method requires an estimate of the solution (𝑇∗) and an expression 

for solid fraction that is differentiable with respect to temperature to obtain the solid fraction slope 

(𝑑𝑔𝑠 𝑑𝑇⁄ ). When latter requirement is not possible, the slope can be approximated using a finite 

difference approximation [40]. This approach is a known as a secant method and exhibits a slightly 

slower rate of convergence (about 1.6 times more iterations per time step [40]). Although these 

iterative methods are sensitive to the estimate of the solution, transient solidification problems are 

generally well behaved and a good initial estimate is made by calculating 𝑇∗ as a function of 

previous iteration field values, in this case 𝑔𝑠
∗. In the subsequent sections, expressions for 𝑑𝑔𝑠 𝑑𝑇⁄  

and 𝑇∗ are derived for both the analytical microsegregation model and the volume-averaged 

microsegregation model. 
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5.2 Analytical Microsegregation Algorithm 

Implementation of the previous method is straightforward when an algebraic expression for 

the solid fraction exists. For the generalized analytical model formulated in Chapter 3: 

𝑔𝑠 =
1

(1 − 𝑘𝑝∗𝛽)
[1 − (

(𝑇 − 𝑇𝑚)(1 − 𝑘𝑝
∗) + 𝜆𝑚𝑙𝑖𝑞𝐶

𝑚𝑙𝑖𝑞𝐶(1 − 𝑘𝑝∗ + 𝜆)
)

1−𝑘𝑝
∗𝛽

𝑘𝑝
∗−1

] (3.13) 

 

the solid fraction slope and temperature estimate can be evaluated directly, such that: 

𝑑𝑔𝑠
𝑑𝑇

=
1

𝜆𝑚𝑙𝑖𝑞𝐶𝑜 + (𝑇 − 𝑇𝑚)(1 − 𝑘𝑝∗)
(
(𝑇 − 𝑇𝑚)(1 − 𝑘𝑝

∗) + 𝜆𝑚𝑙𝑖𝑞𝐶

𝑚𝑙𝑖𝑞𝐶(1 − 𝑘𝑝∗ + 𝜆)
)

1−𝑘𝑝
∗𝛽

𝑘𝑝
∗−1

 (5.6) 

 

and  

𝑇∗ = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶𝑙 (5.7) 

where 

𝐶𝑙 = 𝐶 [(
𝜆

(1 − 𝑘𝑝∗)
+ 1) [1 − (1 − 𝑘𝑝𝛽)𝑔𝑠]

𝑘𝑝
∗−1

1−𝑘𝑝
∗𝛽 −

𝜆

(1 − 𝑘𝑝∗)
] (5.8) 

 

It is noted that the expression for the temperature estimate is equal to the liquidus surface and can 

be calculated from the liquid composition at the previous iteration, i.e. 𝑇∗ = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶𝑙. These 

expressions are valid during primary solidification between the liquidus and eutectic temperatures. 

During a eutectic reaction, the remaining liquid is assumed to solidify isothermally as an 

equilibrium eutectic. This type of reaction is isothermal and a large amount of latent heat can be 

released for alloys containing a significant eutectic fraction, 𝑔𝑠
𝑒𝑢𝑡. To improve numerical stability, 

the eutectic reaction is artificially spread over a numerically convenient range ∆𝑇𝑒𝑢𝑡, where a value 

of ∆𝑇𝑒𝑢𝑡 = 0.1 is used in this work. A linear expression for the solid fraction that meets the general 

requirement for a Newton-Raphson (i.e. a differentiable function of temperature) is used: 

𝑔𝑠 = 1 − [
𝑔𝑠
𝑒𝑢𝑡 − 1

∆𝑇𝑒𝑢𝑡
] (𝑇∗ − 𝑇𝑒𝑢𝑡) (5.9) 
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Therefore, the solid fraction slope and temperature estimate are 

𝑑𝑔𝑠
𝑑𝑇

=
𝑔𝑠
𝑒𝑢𝑡 − 1

∆𝑇𝑒𝑢𝑡
 (5.10) 

and 

𝑇∗ = 𝑇𝑒𝑢𝑡 − [
∆𝑇𝑒𝑢𝑡
𝑔𝑠
𝑒𝑢𝑡 − 1

] (𝑔𝑠
∗ − 1) (5.11) 

 

The rapid convergence rate of the iterative procedure during a eutectic reaction is maintained using 

this method and justifies the additional memory load of storing 𝑔𝑠
𝑒𝑢𝑡 at each control volume. This 

field is calculated when the temperature drops below the eutectic temperature so that the solid 

fraction slope remains constant until the control volume is fully solidified. To facilitate remelting 

of the eutectic, the auxiliary eutectic fraction is limited to a maximum value of 0.99. 

5.3 Volume-Averaged Microsegregation Algorithm 

Implementation of this iterative method is slightly more complicated for the volume-

averaged microsegregation models and has yet to be performed in the literature. This 

microsegregation model provides the phase change rate 𝛤𝑠, and therefore, does not contain an 

explicit relationship for 𝑔𝑠. In order to provide this relationship in a manner suitable to the semi-

implicit source method, an operator splitting method is used. Založnik and Combeau [106] have 

formally shown that the influence of the advection term and the phase change term can be included 

separately without a significant loss of accuracy.  

Operating splitting is a well-established concept in CFD and is explained here in the specific 

context of the phase transport equation. First, 𝑔𝑠 is integrated over [𝑡𝑜 , 𝑡𝑜 + ∆𝑡] with the initial 

condition 𝑔𝑠(𝑡𝑜) = 𝑔𝑠
𝑜, without the influence of growth. The solid fraction obtained in this step is 

denoted as 𝑔𝑠
𝑡 . In a second stage, the growth contributions are integrated over the same time 

interval [𝑡𝑜 , 𝑡𝑜 + ∆𝑡] with the initial condition 𝑔𝑠(𝑡𝑜) = 𝑔𝑠
𝑡.  The two contributions are summed to 

obtain the total variation. The discrete form of the solid transport equation using explicit time 

integration is 

𝜌𝑠 (
𝑔𝑠 − 𝑔𝑠

𝑜

∆𝑡
) + ∑〈F𝑠,𝑓〉

𝑓⏟    
advection term

=
𝑎(𝐶�̅�,𝑖 − 𝐶𝑙) + 𝑏(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) +

𝜌𝑙𝑔𝑑
∆𝑡 (𝐶�̅�,𝑖 − 𝐶�̅�,𝑖

𝑜
)

(1 − 𝑘𝑝)𝐶�̅�,𝑖⏟                                
phase change term

 
(5.12) 
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If the advection term is accounted for in a separate transport stage, i.e.: 

𝑔𝑠
𝑡 = 𝑔𝑠

𝑜 −
∆𝑡

𝜌𝑠
∑〈F𝑠,𝑓〉

𝑓

 (5.13) 

 

then an explicit solid fraction expression due to growth is obtained: 

𝑔𝑠 = 𝑔𝑠
𝑡 +

∆𝑡

𝜌𝑠
[
𝑎(𝐶�̅�,𝑖 − 𝐶𝑙) + 𝑏(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) +

𝜌𝑙𝑔𝑑
∆𝑡 (𝐶�̅�,𝑖 − 𝐶�̅�,𝑖

𝑜
)

(1 − 𝑘𝑝)𝐶�̅�,𝑖
] (5.14) 

 

This expression becomes a differentiable function of temperature once the condition of interfacial 

equilibrium, 𝑇∗ = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶�̅�,𝑖, is employed. The expression for the temperature estimate needed 

for the Newton-Raphson method is obtained following algebraic rearrangement of Eqn. (5.14), 

such that: 

𝑇∗ = 𝑇𝑚 +𝑚𝑙𝑖𝑞∆𝑡 [
𝑎𝐶𝑙 + 𝑏𝐶𝑠 +

𝜌𝑙𝑔𝑑
∆𝑡 𝐶�̅�,𝑖

𝑜

(𝑘𝑝 − 1)𝜌𝑠(𝑔𝑠 − 𝑔𝑠
𝑡) + ∆𝑡 (𝑎 + 𝑏 +

𝜌𝑙𝑔𝑑
∆𝑡 )

] (5.15) 

 

Similarly, the derivative of Eqn. (5.14) provides the necessary the solid fraction slope: 

𝑑𝑔𝑠
𝑑𝑇

=
∆𝑡

𝜌𝑠
[𝑚𝑙

𝑎𝐶𝑙 + 𝑏𝐶𝑠 −
𝜌𝑙𝑔𝑑
∆𝑡 𝐶�̅�,𝑖

𝑜

(1 − 𝑘𝑝)(𝑇 − 𝑇𝑚)2
] (5.16) 

 

Finally, substitution of the solid fraction at the previous time in Eqn. (5.13) into the Eqn. (5.2) 

gives the following form of the energy conservation equation for the volume-averaged 

microsegregation model: 

[𝑎𝑃 − 𝜌𝑠𝐿𝑓
𝑑𝑔𝑠
𝑑𝑇
]𝑇𝑃 = 𝑎𝑃

𝑜𝑇𝑃
𝑜 +∑𝑎𝑁𝑇𝑁

𝑁

+ 𝜌𝑠𝐿𝑓 [𝑔𝑠
∗ − 𝑔𝑠

𝑡 −
𝑑𝑔𝑠
𝑑𝑇

𝑇∗] (5.17) 

 

Closure of the volume-averaged microsegregation model still requires the solution of the solid and 

liquid phase composition transport equations, Eqns. (2.83) and (2.84), which can be expressed in 

the following manner for an explicit time integration: 
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𝐶𝑠 =
1

(𝑔𝑠 + 𝜑𝑠)
{(𝑔𝑠

𝑜 + 𝜑𝑠)𝐶𝑠
𝑜 − ∆𝑡 [∑(〈F𝑠,𝑓〉𝐶𝑠,𝑓(𝑈𝐷))

𝑓

−
1

𝜌𝑠
J𝑠]} (5.18) 

and 

𝐶𝑙 =
1

(𝑔𝑙 + 𝜑𝑙)
{(𝑔𝑙

𝑜 + 𝜑𝑙)𝐶𝑙
𝑜 − ∆𝑡 [∑(〈F𝑙,𝑓〉𝐶𝑙,𝑓(𝑈𝐷))

𝑓

+
1

𝜌𝑙
J𝑠]} (5.19) 

 

where 𝜑𝑘 is a stabilization coefficient used to bound the solution in the dilute limits of phase 𝑘: 

𝜑𝑘 = max (1 × 10
−6 − 𝑔𝑘, 0) (5.20) 

For the current operator splitting method, the interfacial solute transfer into the solid phase due to 

phase change and diffusion can be expressed as: 

J𝑠 =
𝜌𝑠
∆𝑡
(𝑔𝑠 − 𝑔𝑠

𝑡)𝑘𝑝𝐶�̅�,𝑖 + 𝑎(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) (5.21) 

 

where 𝑘𝑝𝐶�̅�,𝑖 is replaced with the solid composition at the previous time, 𝐶𝑠
𝑜, for remelting and the 

liquid composition at the previous time, 𝐶𝑙
𝑜 , during a eutectic reaction to ensure solute 

conservation as the relevant phase fractions approaches zero. 

5.4 Summary of Algorithms 

At the beginning of a time step, all mixture properties are calculated and the iterative packing 

algorithm is performed to update the marker function 𝑚. Next, the source terms for the momentum 

equations are calculated and the PISO algorithm, outlined in Section 4.2, is solved for the mixture 

flux F𝑓 and mixture velocity 𝒖. The average solid phase flux 〈F𝑠,𝑓〉 and average liquid flux 〈F𝑙,𝑓〉  

are then calculated using the discretization in Section 4.3. Finally, the thermodynamic algorithms 

based on the semi-implicit source scheme outlined in the current chapter are solved for temperature 

𝑇, phase volume fractions (𝑔𝑠, 𝑔𝑙 ), and phase compositions (𝐶𝑠, 𝐶𝑙). The specific form of the 

algorithm depends on which microsegregation model is employed. The procedure is outlined in 

Table 5.1 for the analytical microsegregation model, and Table 5.2 for the dendritic multiphase 
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microsegregation model. Once these algorithms converge, the corresponding mixture composition 

is updated and the solution advances in time. 

 

Table 5.1:Solution algorithm for the analytical microsegregation model 

1. Calculate solid fraction slope and reference temperature†:  \ 

𝑑𝑔𝑠
𝑑𝑇

=
1

𝜆𝑚𝑙𝑖𝑞𝐶𝑜 + (𝑇 − 𝑇𝑚)(1 − 𝑘𝑝
∗)
(
(𝑇 − 𝑇𝑚)(1 − 𝑘𝑝

∗) + 𝜆𝑚𝑙𝑖𝑞𝐶

𝑚𝑙𝑖𝑞𝐶(1 − 𝑘𝑝
∗ + 𝜆)

)

1−𝑘𝑝
∗𝛽

𝑘𝑝
∗−1

 (5.6) 

𝑇∗ = 𝑇𝑚 +𝑚𝑙𝑖𝑞𝐶𝑙 (5.7) 

2. Solve implicit energy equation:  

[𝑎𝑃 − 𝜌𝑠𝐿𝑓
𝑑𝑔𝑠
𝑑𝑇
] 𝑇𝑝 = 𝑎𝑃

𝑜𝑇𝑃
𝑜 +∑𝑎𝑁𝑇𝑁

𝑁

 

+𝜌𝑠𝐿𝑓 [𝑔𝑠
∗ − 𝑔𝑠

𝑜 −
𝑑𝑔𝑠
𝑑𝑇

𝑇∗] + ∆𝑡𝐿𝑓∑〈F𝑠,𝑓〉

𝑓

 

(5.4) 

3. Update and bound the phase fractions due to phase change:  

𝑔𝑠 = min(𝑚𝑎𝑥 (𝑔𝑠
∗ +

𝑑𝑔𝑠
𝑑𝑇

(𝑇 − 𝑇∗), 0) , 1) (5.3) 

𝑔𝑙 = 1 − 𝑔𝑠 (2.4) 

4. Explicitly calculate the composition equations:  

𝐶𝑙 = 𝐶 [(
𝜆

(1 − 𝑘𝑝
∗)
+ 1) [1 − (1 − 𝑘𝑝𝛽)𝑔𝑠]

𝑘𝑝
∗−1

1−𝑘𝑝
∗𝛽 −

𝜆

(1 − 𝑘𝑝
∗)
] 

 

(5.8)  

𝐶𝑠 =
(𝜌𝑠𝑔𝑠 + 𝜌𝑙𝑔𝑙)𝐶 − 𝜌𝑙𝑔𝑙𝐶𝑙

𝜌𝑠𝑔𝑠
 (3.2) 

5. Iterate steps 1 through 4 until residual convergence below tolerances  

† Replace with eutectic expressions when necessary 
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Table 5.2. Solution algorithm for the volume-averaged dendritic microsegregation model 

1. Solve the bounded solid phase transport equation and update the liquid fraction: \ 

𝑔𝑠 = min(𝑚𝑎𝑥 (𝑔𝑠
𝑜 −

∆𝑡

𝜌𝑠
∑ 〈F𝑠,𝑓〉

𝑓
, 0) , 1) (5.13) 

𝑔𝑙 = 1 − 𝑔𝑠 (2.4) 

2. Store the phase fractions from the transport stage: 𝑔𝑠
𝑡 = 𝑔𝑠 and 𝑔𝑙

𝑡 = 𝑔𝑙   

3. Calculate the interfacial relationships outlined in Section 3.2.2 

4. Calculate solid fraction slope and reference temperature†: 

𝑑𝑔𝑠
𝑑𝑇

=
∆𝑡

𝜌𝑠
[𝑚𝑙

𝑎𝐶𝑙 + 𝑏𝐶𝑠 − 𝑐�̅�𝑙,𝑖
𝑜

(1 − 𝑘𝑝)(𝑇 − 𝑇𝑚)
2
] (5.16) 

𝑇∗ = 𝑇𝑚 +𝑚𝑙∆𝑡 [
𝑎𝐶𝑙 + 𝑏𝐶𝑠 +

𝜌𝑙𝑔𝑑
∆𝑡

𝐶�̅�,𝑖
𝑜

(𝑘𝑝 − 1)𝜌𝑠(𝑔𝑠 − 𝑔𝑠
𝑡) + ∆𝑡 (𝑎 + 𝑏 +

𝜌𝑙𝑔𝑑
∆𝑡 )

] (5.15) 

5. Solve the implicit energy equation: 

[𝑎𝑃 − 𝜌𝑠𝐿𝑓
𝑑𝑔𝑠
𝑑𝑇
] 𝑇𝑃 = 𝑎𝑃

𝑜𝑇𝑃
𝑜 +∑𝑎𝑁𝑇𝑁

𝑁

+ 𝜌𝑠𝐿𝑓 [𝑔𝑠
∗ − 𝑔𝑠

𝑡 −
𝑑𝑔𝑠
𝑑𝑇

𝑇∗] (5.17) 

6. Update and bound the phase fractions due to phase change: 

𝑔𝑠 = min(𝑚𝑎𝑥 (𝑔𝑠
∗ +

𝑑𝑔𝑠
𝑑𝑇

(𝑇 − 𝑇∗), 0) , 1) (5.3) 

𝑔𝑙 = 1 − 𝑔𝑠 (2.4) 

7. Update and bound liquid interface composition: 

𝐶�̅�,𝑖 = min((𝑇 − 𝑇𝑚) 𝑚𝑙𝑖𝑞⁄ , 𝐶𝑒𝑢𝑡) (3.1) 

8. Update the composition source term†: 

J𝑠 =
𝜌𝑠
∆𝑡
(𝑔𝑠 − 𝑔𝑠

𝑡)𝑘𝑝�̅�𝑙,𝑖 + 𝑎(𝑘𝑝𝐶�̅�,𝑖 − 𝐶𝑠) (5.21) 

9. Explicitly calculate the composition equations: 

𝐶𝑠 =
1

(𝑔𝑠 + 𝜑𝑠)
{(𝑔𝑠

𝑜 + 𝜑𝑠)𝐶𝑠
𝑜 − ∆𝑡 [∑(〈F𝑠,𝑓〉𝐶𝑠,𝑓(𝑈𝐷))

𝑓

−
1

𝜌𝑠
J𝑠]} (5.18) 

𝐶𝑙 =
1

(𝑔𝑙 + 𝜑𝑙)
{(𝑔𝑙

𝑜 + 𝜑𝑙)𝐶𝑙
𝑜 − ∆𝑡 [∑(〈F𝑙,𝑓〉𝐶𝑙,𝑓(𝑈𝐷))

𝑓

+
1

𝜌𝑙
J𝑠]} (5.19) 

10. Iterate steps 4 through 9 until residual convergence below tolerances 
 

† Replace with eutectic expressions when necessary 
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 NUMERICAL EXERCISES AND VERIFICATION 

The purpose of this chapter is to verify the implementation of the fully coupled equiaxed 

solidification model on the OpenFOAM platform. Verification of the numerical methods used to 

formulate the drag term (Section 4.2) and the phase mass fluxes (Section 4.3) on collocated grids 

is first performed using reduced physics problems which neglect solidification. Next, the behavior 

of the solidification model including the thermodynamic solution algorithm (see Chapter 5) is 

studied for a static casting test case considering both columnar and equiaxed solidification. The 

nature of composition artifact formations on collocated grids is investigated and suggestions are 

made to mitigate their formation, specifically the use of the face-based drag formulation (see 

Section 4.2.3) and the diffuse phase flux transition model (see Section 4.3.2). Finally, predictions 

using the full DC casting model are compared to data taken from an industrial scale DC cast ingot 

[47]. 

6.1 Porous Plug 

Before proceeding to the verification of the fully coupled solidification model, it is useful 

to demonstrate the behavior of the two drag formulations presented in the previous chapter on a 

simplified test case limited to incompressible forced convection through an isotropic porous plug. 

This case was originally proposed by Costa  [107] and later evaluated by Nordlund et al. [93] and 

Aguerre et al. [94] on co-located grids. A schematic of the test cased is provided in Figure 6.1. A 

2-D channel of height H = 50 mm and length L = 8H is fed by a fully developed parabolic flow 

on the left boundary with a mean velocity 𝑢𝑖𝑛. The Darcy number of the porous plug is defined as 

𝐷𝑎 = 𝐾 𝐻2⁄ , where 𝐾 is the isotropic permeability. A value of 𝐷𝑎 = 10−5 was previously shown 

to cause spurious oscillations in the velocity field for the cell-based drag formulation and is used 

here for verification of the proposed face-based drag formulation [94]. Central differencing is used 

to interpolate the drag term to the face-centers for the face-based drag approach. 

 Figure 6.2 shows that each momentum formulation correctly predicts fully developed 

parabolic profile far from the plug and a uniform profile inside of the plug for a Reynolds number  

𝑅𝑒 = 25 . However, the cell-based drag formulation causes spurious velocities at the porous 

interface, while the face-based drag formulation predicts a smooth and continuous transition 
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between regions. A more detailed insight into the velocity profiles is presented in Figure 6.3, where 

the normalized x-component of the centerline velocity are compared for the different drag 

formulations. For the cell-based drag formulation, the amplitude of the velocity oscillation 

decreases as the Darcy number decreases to 10−3, and therefore, drag becomes less dominant. 

From these results, it is demonstrated that the face-based drag formulation which exhibits a 

continuous variation of the velocity profiles across the interface regardless of the flow conditions. 

 

   

Figure 6.1: Illustration of the numerical domain for the porous plug verification case 

 

 

 

Figure 6.2: Steady state velocity field calculated for the porous plug test case (Da = 10−5 and 

Re = 25) using different momentum formulations. 
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Figure 6.3: Centerline normalized x-component velocity for the porous plug test case with Da =
10−5  (left) and 10−3  (right) using different drag formulations. The velocities magnitudes are 

linearly interpolated to the face-centers to represent the oscillation of the flux. The results from 

Aguerre et al. [94] are coincident with those obtained here. 

 

6.2 Settling Column 

In order to verify the implementation of the phase flux discretization method (Section 

4.3.2), model predictions are compared to the settling experiment of Pham Van Bang et al. [108]. 

This experiment suspended polystyrene spheres (𝑑𝑔 = 290 ± 30 µm, 𝜌 = 1.05 kg m−3) in a 2.5 

x 10 cm column of silicon oil (𝑣 = 20 kg (m s)−1 , 𝜌 = 0.95 kg m−3 ). Magnetic Resonance 

Imaging (MRI) tracked the evolution of the particle concentration in the column. The solid-liquid 

interface and the packing interface evolutions over time were reported. A mixing procedure was 

used to create a homogenous suspension with a volume fraction of 0.48 at an initial height of 5.5 

cm. To simulate this case, a 2-D orthogonal mesh with a uniform grid spacing of 1 mm was used. 

It was assumed that the particles packed at a volume fraction of 0.6. Three different drag models 

that are commonly used in equiaxed solidification models are evaluated. The 𝐶𝑑𝑅𝑒 expressions 

characterizing the generalized drag coefficient used in the relative solid-liquid velocity expression, 

Eqn. (2.70), are provided in Table 6.1. 
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Each drag model considers the effect of multiple spherical particles on the relative phase 

velocity. The Agarwal-O’Neil model [25] and the Gidaspow model [109] transition from semi-

empirical correlations developed using the submerged object model in the dilute region to 

correlations developed using the porous medium approach (e.g. Kozeny-Carmen [110]) in the 

dense region. The Wang-Beckermann model [35] also transitions between these two regimes, 

however unlike the previous models, it does so in a continuous manner. While the model 

overpredicts the drag coefficient relative to all other models for solid spheres (see Figure 6.5), it 

was specifically developed for equiaxed dendrites. More complicated expressions of this term are 

available which can account for the permeability of the interdendritic structure and the sphericity 

of the dendrites.  

Contour plots of the predicted solid fraction field and solid velocity streamlines at various 

times are provided in Figure 6.4 for the mixture flux method and the phase flux method formulated 

in Section 4.3. Both calculations were performed using the Wang-Beckermann drag model. The 

solid-liquid surface is indicated by the top black line and the packing interface is indicated by the 

remaining black lines. The phase flux method formulated in Section 4.3.2 predicts a continuous 

evolution of both the solid-liquid interface and the packing interface, in agreement with 

experimental observations. However, the mixture flux method predicts unphysical agglomeration 

of particles near the solid-liquid interface, and the formation of an inhomogeneous packed bed. It 

is noted that the same unphysical agglomeration near the solid-liquid interface is observed in 

another model of equiaxed solidification compared against the same case [111]. The results here 

suggest that the current phase flux model is an improvement over the previous method applied for 

equiaxed solidification [73] because its better captures the physics of settling and sedimentation 

of grains.  

In Figure 6.5 the evolution of the solid-liquid interface and the packing interface for each 

drag model are compared to experiments [108]. The Agarwal and O’Neil model [25] overpredicts 

the sedimentation rate (indicated by the bottom line), the Wang et al. [35] model underpredicts the 

sedimentation rate, while the Gidaspow model  [109] is in excellent agreement with experiments. 

While both the Wang et al. and the Gidaspow models predicted solid-liquid interface evolution 

agrees with experiments, the Agarwal and O’Neil model overpredicts the interface. These trends 

can be directly related the drag coefficient predicted in the range of solid fractions of interest here, 

i.e. Wang-Beckerman gives the highest drag at a given solid fraction, Gidaspow gives intermediate 
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drag, and Agarwal and O’Neil gives the lowest drag. Despite the Gidaspow model’s good overall 

agreement with this experiment, it is emphasized that the conditions are not directly analogous to 

equiaxed solidification. Equiaxed dendrites can have a considerably higher surface area to volume 

ratio compared to spheres, so drag models developed for spherical particles may underestimate the 

drag induced on the free-floating dendritic structure. Because the Wang-Beckermann model was 

developed specifically for such structures and gives satisfactory predictions for the settling rates 

of perfect spheres, it is adopted for the remainder of this work. 

 

Table 6.1. Relationships for the drag coefficient of as a function of liquid volume fraction and 

grain Reynolds number 
Model Drag coefficient, 𝐶𝐷 

Agarwal and O’Neil (1988) [25] 
𝐶𝐷 =

48𝐶𝑘𝑒𝑔𝑔

𝑅𝑒𝑔
∗ + 𝐶𝑖𝑒 

𝐶𝑘𝑒 =

{
 
 

 
 

 

1

2
(
(1 − 𝑔𝑔)

3

𝑔𝑔
)
1 + 4.7𝑔𝑔

1 − 1.83𝑔𝑔
___________________𝑖𝑓 𝑔𝑝 ≤ 0.5

25

6
______________________________________________𝑖𝑓 𝑔𝑝 > 0.5

 

𝐶𝑖𝑒 =

{
 
 

 
 

 

24(10𝐸 − 1)

𝑅𝑒𝑔
∗ [1.0 − 0.9(0.75 − 𝑔𝑔)

1 3⁄
𝑔𝑔
2 3⁄
]
3 _________𝑖𝑓 𝑔𝑝 ≤ 0.5

7

3
________________________________________________𝑖𝑓 𝑔𝑝 > 0.5

 

𝐸 = 0.261𝑅𝑒𝑔
∗0.369 − 0.105𝑅𝑒𝑔

∗0.431 −
0.124

1 + (𝑙𝑜𝑔10𝑅𝑒𝑔
∗)
2 

Gidaspow (1994) [109] 

𝐶𝐷 =

{
 
 

 
 

 

24

𝑅𝑒𝑔
(1 + 0.15𝑅𝑒𝑔

∗0.687)𝑔𝑔
−2.65_________________𝑖𝑓 𝑔𝑝 ≤ 0.2

4

3
[150

𝑔𝑝
𝑅𝑒𝑔

∗ + 1.75] _________________________ ___𝑖𝑓 𝑔𝑝 > 0.2

 

Wang et al. (1995) [35] 
𝐶𝐷 =

16

3

𝛽2

𝑅𝑒𝑔

(1 − 𝑔𝑔)
2

𝑔𝑔
 

𝛽 = [
9

2
𝑔𝑔

2 + 4 3⁄ 𝜂5

2 − 3𝜂 + 3𝜂5 − 2𝜂6
1

1.26log10 (
1

0.163)
]

1 2⁄

 

†where 𝑅𝑒𝑔
∗ = (1 − 𝑔𝑔)𝑅𝑒𝑔 
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Figure 6.4: Solid volume fraction field and solid velocity streamlines at different times for the 

settling validation case. The top block line indicates the solid-liquid interface and the bottom black 

line indicates the packing interface. The mixture upwind method of ref. [73] predicts unphysical 

settling and accumulation behavior, while the phase-flux method proposed in Section 4.3.2 

predicts the physically correct solution. 
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Figure 6.5: Comparison of the (left) drag coefficients and (right) the evolution of the solid-liquid 

interface and the packing interface for various drag models. 

 

6.3 Solidification Numerical Benchmarks 

Having verified the pressure-velocity coupling on co-located grids and the discretization of 

phase fluxes, the full solidification model is applied to the SMACS numerical benchmark problem 

[112]. This benchmark is based on the well-known Hebditch-Hunt experiment [113], where an 

insulated cavity is cooled from two vertical side walls. Because the casting is symmetric about its 

vertical centerline, only the right half of the domain is simulated using a 2-D domain that is 

5 cm × 6 cm. A schematic of the test case is shown in Figure 6.6. Two different alloys are 

investigated: Pb-18wt%Sn and Sn-10wt%Pb. Thermophysical properties and phase diagram 

information are provided in . The analytical microsegregation is used in this study assuming no 

back-diffusion of solute into the solid phase (i.e. the Scheil assumption). It is noted that shrinkage 

is not considered in these numerical simulations. For columnar solidification, the solid phase is 

assumed fixed at the liquidus so the only source of relative motion causing macrosegregation is 

enriched interdendritic liquid motion driven by thermosolutal buoyancy. For equiaxed 

solidification, the solid phase is mobile until some critical solid fraction and an additional source 

of relative motion is the settling of depleted grains. 
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In Section 6.3.1, the solidification model is applied to columnar solidification of Pb-

18wt%Sn. Reference solutions are available in ref. [72], focused on the prediction of channel 

segregates. Channel segregates are localized regions of intense segregation, presenting as thin 

columns. On an experimental micrograph cross-section, these highly enriched regions manifest 

themselves as small circles, so they are often referred to as “freckles”. Numerical simulation of 

freckle formation is difficult because the instability that initiate and propagate their formation 

occurs on a length scale below the resolution of volume-averaged models. Therefore, the numerical 

prediction of channel segregates will strongly depend on the mesh size and numerical methods 

used to solve the transport equations. Because previous authors [49,72,114] have been able to 

obtain reasonable predictions for this benchmark on co-located grids without special treatment of 

the drag term, it is of interest to investigate possible changes in the numerical predictions when 

the face-based drag formulation is used. 

After the columnar benchmark, the solidification model is applied to a case of equiaxed 

solidification in Section 6.3.2. No reference solutions exist for this system, so Sn-10wt%Pb is 

chosen based on its cooperative thermal and solutal buoyancy forces. This alloy provides a closer 

analogue to the Al-Cu alloys investigated for DC casting later in this work. A comparison between 

the cell-based and face-based drag formulations, and a comparison between the discrete and 

diffuse phase flux transitions are made. Two different packing fractions for globular grains (𝑔𝑠𝑖 =

1) are examined, 𝑔𝑠,𝑝 = 0.15  and 𝑔𝑠,𝑝 = 0.30, to investigate situations where buoyancy forces 

drive flow across the packing interface cells, and situations where drag forces effectively damp 

flow across the packing interface cells. 
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Figure 6.6: Description of the SMACS benchmark case and domain including thermal conditions 

and locations used for evaluating model predictions. 

 

6.3.1 Columnar Solidification Benchmark 

Before proceeding to the numerical results, the nature of composition channel formation is 

discussed. Composition channels are initiated by convective instabilities that form near the 

liquidus front. For most alloys, including the lead-tin alloy studied here, solute is rejected into the 

liquid during solidification which locally changes the liquid density and induces solutal buoyancy 

forces. If the solutal buoyancy forces are strong enough to overcome the drag force exerted by the 

mushy zone, enriched liquid will be transported by the local flow field. When the enriched liquid 

is driven towards regions of lower solid fraction (i.e. towards the liquidus front), solidification will 

be delayed or even reversed due to the thermodynamic conditions. The local permeability of the 

mushy zone will increase, allowing subsequent enriched liquid to flow in this direction and 

propagate a channel.  

The evolution of channel propagation using the cell-drag formulation is shown in Figure 

6.7. To remain consistent with the reference solutions [72], a grid spacing of 0.25 mm  and 

constant time step of 0.005 s are used. In the rigid mush, positive solutal buoyancy dominates the 



 

 

123 

negative thermal buoyancy and a counterclockwise flow cell develops in the casting. Channel 

segregates are present in the upper right corner by 25 seconds. As solidification progresses, 

channels continue to initiate and propagate in the upper right quadrant of the casting. The 

extradendritic liquid is continuously enriched during solidification due to the transport of enriched 

interdendritic liquid out of the rigid mush. As a result, the upper left-hand corner, which is the last 

to solidify, is positively segregated. The bottom right region is negatively segregated due to the 

counterclockwise circulation of interdendritic liquid. 

Figure 6.8 shows the final composition profiles for both drag formulations at different mesh 

spacings. The qualitative predictions of both formulations are similar and converge to 

approximately the same solution at a grid spacing of 0.25 mm. The face-drag formulation tends 

to predict more solute enriched channels than the cell-drag formulation on coarser grids. This is 

attributed to the different methods used to calculate permeability at the face. In the cell-drag 

formulation, the permeability term is interpolated by central differencing, while in the face-based 

drag formulation, the solid fraction is interpolated to the face by central differencing before 

permeability is calculated. Because permeability is a highly nonlinear function of solid fraction, 

the face-drag formulation will exert less resistance to the buoyancy driven flow near the liquidus 

front than the cell-drag formulation, which allows channel segregates to form more readily. 

Figure 6.9 shows the composition profiles along x = 0.005 m at various grid spacings. The 

quantitative predictions of both formulations are very similar and converge to approximately the 

same solution at a grid spacing of 0.25 mm. As the grid is refined from 1 mm to 0.25 mm, the 

number of channels increases from three to five. Additionally, the average width of the channels 

decreases, and the level of positive segregation in the channels increases, as the grid is refined 

below the length scale of the channels. To investigate the grid dependence of the two models, the 

global macrosegregation index is used: 

𝐺𝑀𝐼 =
1

𝑉
∑ |

𝐶𝑃 − 𝐶𝑜
𝐶𝑜

| 𝑑𝑉

𝑛

𝑃=1

 (6.1) 

 

The agreement between the coarsest and finest grids is slightly worse for the face-based drag 

formulation compared to the cell-based drag formulation, attributed to the numerical diffusion 

introduced by the former method. However, a convenient feature of the proposed face-based drag 
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formulation is the ability to bias the solution towards a cell-based drag formulation using the 

blending factor in Eqn. (4.33). Either the blending factor or mesh refinement can be used to remove 

the numerical diffusion if desired. Nonetheless, the macrosegregation predicted by each drag 

formulation are essentially equivalent. 

Since channel formation is highly dependent on the buoyancy-drag balance, it should be 

expected that any attempt to improve the consistency in handling these terms in the momentum 

formulation would improve the consistency in numerical predictions. In the porous plug case, it 

was demonstrated that the cell-based drag formulation can lead to spurious oscillations in the 

momentum field. Such oscillations could set up the proper conditions to initiate channels in the 

numerical solution. However, because the drag term is introduced continuously in columnar 

solidification, the cell-drag formulation does not suffer from this discretization error. In the next 

section, the two drag formulations are compared for equiaxed solidification where discontinuities 

in the drag term exist. 
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Figure 6.7: The bold solid line show the columnar dendrite tip front and the light lines are streamlines varying from -0.06 to -0.01 kg/s 

with constant increments. 
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Figure 6.8: Final composition profiles of the Hebditch-Hunt benchmark case for different mesh 

spacings (∆𝑥 = 2, 1, 0.5, and 0.025 mm) and momentum schemes. 
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Figure 6.9: Comparison of composition profiles at various grid spacings, and the mesh 

convergence of the global macrosegregation index for the cell-drag and face-drag momentum 

formulations. 
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6.3.2 Equiaxed Solidification Verification 

In this section, the SMACS numerical benchmark is performed for equiaxed solidification 

of Sn-10wt%Pb. The focus is shifted towards the formation of numerical artifacts in models of 

equiaxed solidification, presenting as localized regions of highly depleted cells. The two drag 

formulations are compared to investigate their behavior in the presence of a discontinuous drag 

term at the packing interface. For the cell-based drag formulation, a discrete transition (𝜂 = 0) of 

the solid phase flux is used. For the face-based drag formulation, both a discrete (𝜂 = 0) and a 

diffuse (𝜂 = 1) transition of the solid phase flux are investigated. 

Macrosegregation Evolution 

Figure 6.10 compares the predicted evolution of Pb composition fields, flow fields, and the 

packing interface for each method using a packing fraction of 𝑔𝑠,𝑝 = 0.15. Since no superheat is 

provided, the slurry region quickly occupies the entire domain upon cooling from the right wall. 

Buoyancy forces near the chill drive a clockwise flow cell. For the cell-based drag formulation, 

the control volumes along the bottom wall become packed after a few seconds. Similarly, the 

control volume along the chilled wall up to a height of 0.05 m are packed by 15 s. At the onset of 

packing, the strength of the natural convection along the vertical packing interface is high, 

indicated by the closely spaced streamlines. An area of severe depletion (< −20 %) forms near 

the right wall, due to the significant flow across the packing interface. The packing interface stalls 

in this region as the interface cells soldify and continue to shed solute. After 50s, thermal and 

solutal mixing of the slurry is suffient enough to reduce the strength of the flow and the “L-shaped” 

packing moves towards the upper right corner. During this process, the slurry beomes positively 

segregated as depleted grains settle out of suspension. When the entire cavity is occupied by the 

rigid mush, the clockwise circulation of enriched interdendritic liquid causes a region of positive 

segregation along the bottom wall. 

For the face-based drag formulation with a discrete solid flux transition (𝜂 = 0), the general 

development of macrosegregation is similar to the previous case, but with a few exceptions. The 

vertical wall packs slower and is 35 mm below the previous prediction at 15 s. As solidification 

progresses, the grains tend to accumulate along the horizontal packing interface at a higher rate 

causing a less angular packing interface. The region of positive segregation along the bottom wall 
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at the end of solidification is similar to the previous cause, however the positive segregation in the 

upper left quadrant is significantly less. This is attributed to the lower predicted volume of high 

depleted cells. Instead of composition artifacts manifesting as one large feature, the depleted cells 

are now distributed along the right wall and confined to a few local cells. The spacing between the 

depleted cells decreasing as solidification progresses and the themosolutal buoyancy forces 

weakens. The formation of these artifacts are qualitatively similar to those reported for static 

casting of aluminum alloys on staggered grids by Plotkowski and Krane [45,46]. The 

macrosegregation predicitons using the diffuse solid flux transition (𝜂 = 1) are nearly identical to 

the discrete case (𝜂 = 0), the only difference being the suppresion of composition artifacts along 

the right wall. 

If the proposed mechanism that these artifacts form due to the advection of enriched liquid 

out of the edge of the rigid mush is valid, then reducing the permeability of these cells would tend 

to suppress their formation. The previous calculations are repeated with a packing fraction of 

𝑔𝑠,𝑝 = 0.30, shown in Figure 6.11. The permeability along the packing interface is several orders 

of magnitude less for this case, and thus, the flow across these control volumes should be negligible 

and the solution free from artifacts. While this is true for the face-based drag formulation, the 

volume of highly depleted control volumes is significantly increased for the cell-based drag 

formulation. The only possible explanation for this behavior is strong oscillations in the mixture 

flux across these control volumes, similar to those observed in the porous plug case in Section 6.1. 

Figure 6.12 shows histograms of the artifact cells for each of the previous cases. Again, 

artifacts are defined as have segregation below −20 % of the nominal value in this case. For the 

cell-drag formulation, an increased packing fraction noticeably increases the occurrence of 

artifacts but does not necessarily increase the severity. In the most extreme cells for a packing 

fraction of 𝑔𝑔
𝑐 = 0.15, the depletion is nearly 90% below the nominal value. For the face-drag 

formulation, only five artifact cells appear when a discrete transition is used for a packing fraction 

𝑔𝑔
𝑐 = 0.15, and no artifacts form for a packing fraction of 𝑔𝑔

𝑐 = 0.30. The solution is completely 

free of artifacts when the diffuse solid flux transition is used. 

  



 

 

130 

 

 
Figure 6.10: Pb composition fields at intermediate times during solidification for the cell-based 

drag and face-based drag formulations evaluated with different levels of diffusion in the solid flux, 

𝜂 = 0.0 and 𝜂 = 1.0. The bold line show the packing interface and the light lines are streamlines 

varying from 0.05 to 0.3 kg/s in increments of 0.025 kg/s. Simulations were performed with a grid 

spacing of 1 mm and a critical packing fraction of 𝑔𝑔
𝑐 = 0.15. 
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Figure 6.11: Pb composition fields at intermediate times during solidification for the cell-based 

drag and face-based drag formulations evaluated with different levels of diffusion in the solid flux, 

𝜂 = 0.0 and 𝜂 = 1.0. The bold line show the packing interface and the light lines are streamlines 

varying from 0.05 to 0.3 kg/s in increments of 0.025 kg/s. Simulations were performed with a grid 

spacing of 1 mm and a critical packing fraction of 𝑔𝑔
𝑐 = 0.30. 
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Figure 6.12: Histograms of the depleted composition artifacts for the cell-based and face-based 

drag formulations. Simulations were performed with a grid spacing of 1 mm. 

Grid Dependence Study 

A common feature of previous equiaxed solidification models is the inability to obtain 

composition predictions that are not highly sensitive to the numerical grid due to the formation of 

composition artifacts. Therefore, it is important to determine if the face-based drag formulation 

and the diffused solid flux transition improve the grid dependence of the solution. Three different 

grid sizes evaluated: 3 mm, 2 mm, and 1 mm.  

The predicted Pb segregation fields are shown in Figure 6.13 for a packing fraction of 

𝑔𝑠,𝑝 = 0.1, and in Figure 6.14 for a packing fraction of 𝑔𝑠,𝑝 = 0.30. The overall macrosegregation 

trends are similar for an individual case when the grid is refined. However, the size and severity 

of the depletion zone along the right wall demonstrates a significant grid dependence when the 

discrete solid phase flux transition (𝜂 = 0) is used. These artifacts begin to form at a grid spacing 

of 2 mm, accompanied with an increase in the level of positive segregation in the slurry. Although 

no such model is included here, it is noted that the dendritic multiphase models use the 

undercooling in the slurry to predict the nucleation and growth of grains. Therefore, it is not 

surprising that the grain structures and corresponding macrosegregation would be highly sensitive 

to the numerical grid. In contrast to the previous method, the diffuse solid flux transition model 

(𝜂 = 1) exhibits excellent qualitative grid convergence and appears to be a general improvement 

for numerically handling the transition from the slurry to rigid mush. 
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Figure 6.13: Comparison of the grid dependence of the final Pb segregation field for the cell-drag 

formulation and the face-based drag formulation evaluated with different levels of diffusion in the 

solid flux, 𝜂 = 0.0 and 𝜂 = 1.0. The packing fraction was 𝑔𝑔
𝑐 = 0.15 for each case. 
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Figure 6.14: Comparison of the grid dependence of the final Pb segregation field for the cell-drag 

formulation and the face-based drag formulation evaluated with different levels of diffusion in the 

solid flux, 𝜂 = 0.0 and 𝜂 = 1.0. The packing fraction was 𝑔𝑔
𝑐 = 0.30 for each case. 
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Nature of Composition Artifact Formation 

In this section, the mechanism for composition artifact formation on co-located grids with 

a grid spacing of 1 mm is more closely investigated by studying the development of artifacts along 

the packing interface. Figure 6.15 provides a series of composition field plots showing the 

initiation and propagation of composition artifacts along the cooled wall for the cell-based drag 

formulation. The problematic “stair-step” cells at the edge of the packing interface are highlighted 

in red with their coupled slurry cells to help visualize the outflow of enriched liquid at these 

locations. Once a problematic cell forms, neither the inflow nor outflow are damped using this 

drag formulation, even though the local solid fraction increases to high enough levels to make the 

cell essentially impermeable. Each “stair-step” cell has a corresponding “checker-boarding” in the 

local velocity field, clearly shown at t ≥ 71 s for a packing fraction of 𝑔𝑠,𝑝 = 0.3. Due to this 

velocity “checkerboarding”, the most highly depleted cells tend to alternate every other cell along 

the height of the cavity, clearly demonstrating that composition formation is tied to the numerical 

discretization and not to some physical phenomenon. These depleted cells propagate into the cavity 

along the same height due to the coupled nature of the local composition field with the 

thermodynamic model. The advection of enriched liquid out of one stair-step cell is driven directly 

downward locally delaying solidification in the adjacent slurry cell, which stabilizes this packing 

interface orientation. This enriched liquid is then drive across another “stair-step” cell two rows 

below and one column over leading to the formation of another composition artifact. 

Figure 6.16 provides a series of contour plots showing the initiation of composition 

artifacts along the right wall for the face-based drag formulation. For a packing fraction of 𝑔𝑠,𝑝 =

0.15 , the outflow velocity from “stair-step” cells are correctly damped during solidification. 

Similarly, the upstream velocity is damped and has a more horizontal orientation during 

solidification, indicating that the flow is diverted around the “stair-step” as the cell becomes less 

permeable. Unlike the cell-based formulation, “checkboarding” along the packing interface cells 

no longer occurs. Furthermore, composition artifacts do not tend to initiate other artifacts, 

remaining local to individual cells. For a packing fraction of 𝑔𝑠,𝑝 = 0.30, the model correctly 

predicts negligible inflow across the packing interface and no artifacts form for this case. 

Figure 6.17 provides a series of contour plots showing the initiation of composition 

artifacts along the right wall for the face-based drag formulation with the diffuse solid flux 

transition (𝜂 = 1). As the packing interface moves through control volumes, the mixture flow 
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across the packing interface is similar to the discrete transition model, however artifact cells no 

longer form due to relaxation of the requirement for the solid velocity to be zero at the packing 

interface. The successful removal of these artifacts without influencing the overall 

macrosegregation predictions confirms the suspected nature of their formation and verifies a 

successful method to remove theme. 

Based on the results from this investigation, it is suggested that the face-based drag 

formulation be adopted for simulations of equiaxed solidification. The cell-based drag formulation 

suffers from spontaneous numerical instabilities in the mixture flux that cannot be supported by 

physical rationale and can lead composition artifacts. Additionally, because predictable coupling 

of the mixture flux and phase flux is required to suppress artifact formation, special handling of 

the phase fluxes to treat composition artifacts may not be effective for the cell-based drag 

formulation. It is further recommended to use the diffuse solid phase flux transition since it 

removes composition features tied directly to the numerical grid. The value of the recommended 

diffusion coefficient, 𝜂, is evaluated in the next section for DC casting.  
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Figure 6.15: Pb composition fields in the rigid mush and velocity fields in the slurry near the packing interface for the cell-based drag 

formulation. Problematic “stair-step” cells which have a propensity to form composition artifacts are shown in red, paired with the 

outflow velocity vector. Simulations were performed with a grid spacing of 1 mm.  
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Figure 6.16: Pb composition fields in the rigid mush and velocity fields in the slurry near the packing interface for the face-based drag 

formulation. Problematic “stair-step” cells which have a propensity to form composition artifacts are shown in red, paired with the 

outflow velocity vector. Simulations were performed with a grid spacing of 1 mm. 
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Figure 6.17: Pb composition fields in the rigid mush and velocity fields in the slurry near the packing interface for the face-based drag 

formulation and the blended solid-flux method (𝜂 = 1.0). Problematic “stair-step” cells which have a propensity to form composition 

artifacts are shown in red, paired with the outflow velocity vector. Simulations were performed with a grid spacing of 1 mm. 
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6.4 DC Casting Verification 

The objective of this section is to directly compare the numerical predictions to data taken 

from an industrial scale DC casting process. In particular, the face-based drag formulation and 

different values of the flux diffusion coefficient, 𝜂, are evaluated. An additional source of relative 

phase motion compared to the previous equiaxed solidification cases is the shrinkage driven flow 

in the rigid mush.  

Vreeman et al. [47] cast a 450 mm diameter Al-6wt%Cu billet at 60 mm/min using a hot-

top mold. Grain refiner was added to promote a fully equiaxed microstructure. An aluminum rod 

was inserted through the top of the mold during casting to measure the sump depths, defined as 

the distance between the mold height and the packing interface. When the sump depth became 

constant, the system was assumed to be at steady state. After casting, composition was measured 

using X-ray fluorescence (XRF) at 10 different radial positions and two different cast lengths 

within the steady-state regime, for a total of 20 measurements.  

 To simulate this process, a 2-D axisymmetric 225 mm × 800 mm domain is used with a 

uniform grid spacing of 2.5 mm. Symmetry is assumed at the centerline (the left side), while heat 

is extracted from the outer radius (the right side) though the mold and direct chill. Because 

boundary conditions were not provided in ref. [14], a mold height 70 mm is assumed with a heat 

transfer coefficient of 150 Wm−2K−1. Below the mold, impingement of the water jets is assumed 

to occur over 10 mm with a heat transfer coefficient of 20,000 Wm−2K−1. Film boiling is assumed 

to occur over the remainder of the left side with a heat transfer coefficient of 10,000 Wm−2K−1. 

Additionally, an isothermal inlet (943 K) is assumed across the entire top surface. Although the 

casting trial fed liquid metal through a constrained inlet, the opening was wide enough that the 

inflow was immediately entrained to the mold. The prior assumption will not affect 

macrosegregation predictions since none of the mechanisms for relative phase motion are changed 

[49]. Finally, a zero gradient condition is assumed along the bottom of the domain. The 

thermophysical properties for Al-6wt%Cu used in this study are provided in Table A1.  

Figure 6.18 shows the steady state solid fraction and mixture composition contours for 

three values of the flux diffusion coefficient 𝜂 = 0.0, 0.5, and 1. Going from top to bottom, the 

solid black lines mark the liquidus, the packing interface, the interface between the loosely packed 

and tightly packed rigid mush, and the solidus. The general macrosegregation features are similar 

for each case, consisting of a depleted centerline due to shrinkage driven flow in the rigid mush 
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and, to a lesser extent, the accumulation of solute depleted grains. For the higher packing fraction, 

the sump is a about 5 mm shallower and the slurry more enriched due to a higher volume of grains 

is transported to the centerline. For a given packing fraction, the mushy zone shape is similar in 

the outer half of the billet for each value of the flux diffusion coefficient. However, the length of 

the loosely packed bed near the centerline increase with increasing diffusion coefficient. The 

loosely packed bed is primarily attributed to thermal and solutal stratification in the core of the 

sump. In this stratified layer, the packed bed retains a solid fraction close to the packing fraction 

until it passes through a region of accelerated cooling where solidification intensifies until 

completion. When the transition from slurry to packed states is diffused, stratification is enhanced, 

and the loosely packed region is lengthened.   

In Figure 6.19, the steady state radial segregation profiles are compared to experiments. 

The profiles are nearly identical for a packing fraction of 𝑔𝑠,𝑝 = 0.3 since the mixture flow is 

sufficiently damped upon packing. For a packing fraction of  𝑔𝑠,𝑝 = 0.15, the centerline depletion 

tends to increase with level of diffusion introduced to the solid. This is attributed to the removal 

of the slightly depleted region near the surface. Because the current system is axisymmetric, small 

changes in the composition profiles at the periphery of the billet will have significant changes near 

the centerline due to the volume difference. Therefore, suppressing depletion near the surface tends 

to enhance depletion at the centerline according to solute mass conservation. In order to provide a 

solution that is not overly diffuse, but still retains the ability to suppress composition artifacts in 

equiaxed solidification, an intermediate value of 𝜂 = 0.5 is recommended for the flux diffusion 

coefficient and used for the remainder of this work. 
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Figure 6.18: Copper (wt. fr.) for different values of the solid-flux diffusion coefficient. The 

contours in decreasing order of z-position are the liquidus, the packing interface, the demarcation 

of the loose packed grain region, and the solidus. Simulations were performed with a critical 

packing fraction of 𝑔𝑔
𝑐 = 0.15 (top) and 𝑔𝑔

𝑐 = 0.30 (bottom). 
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Figure 6.19: Profiles of Cu segregation from simulations with different values of the solid-flux 

diffusion coefficient. The model predictions are compared to the experimental profiles of Vreeman 

et al [47]. 

 

6.5 Summary 

In this chapter, the implementation of the physical model on co-located grids was carefully 

evaluated through a series of incremental verification cases. First, the porous plug case verified 

that the cell-based drag formulation creates spurious oscillations in the flow field near 

discontinuous drag terms. This erroneous behavior is correct using the face-based drag formulation. 

Next, the settling column case verified that the Vreeman and Incropera [73] formulation of the 

phase flux caused inconsistent interpolations of the solid fraction, which was corrected using the 

phase flux formulation proposed in this work (see Section 4.3.2). Additionally, the drag model of 

Wang and Beckermann [35] was selected based on its conservative settling velocity predictions of 

spheres and extendibility to porous envelopes. Then, the solidification model was verified against 

the SMACS benchmark case, and while the previous developments are not necessary to reasonably 

predict segregation trends in simulations of columnar solidification, the face-based drag 

formulation and the diffuse solid phase flux formulation should be used for simulations of 
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equiaxed solidification. Finally, the model was verified against DC casting data from Vreeman et 

al. [47] and an intermediate flux diffusion coefficient of 𝜂 = 0.5 was recommended. 

 SENSITIVITY OF MACROSCALE PREDICTIONS TO UNCERTAIN 

MICROSCALE PARAMETERS 

In order to justify the use of the dendritic volume-averaged microsegregation model over the 

simpler analytical microsegregation model, it must be first demonstrated that this model more 

accurately captures the physical phenomena occurring during equiaxed. This chapter is dedicated 

to studying the behavior of the macrosegregation and grain structures predicted by this model in 

order to determine which features, if any, are necessary for modeling equiaxed solidification. First, 

the SMACS Pb-10wt%Sn benchmark case previously investigated in Section 6.3.2 is evaluated. 

Then, the DC casting case from Vreeman et al. [47] investigated in Section 6.4 is evaluated. 

7.1 Description of Transport Phenomena 

Before investigating the sensitivity of macrosegregation predictions to different 

microsegregation model inputs, the controlling transport phenomenon during equiaxed 

solidification are more closely investigated for the Gulliver-Scheil microsegregation model. 

Contour plots of the composition field, packing interface, and streamlines are shown in Figure 7.1. 

Since no superheat is provided and the microsegregation model assumes zero undercooling, the 

slurry region quickly occupies the entire domain upon cooling from the right wall. Buoyancy 

forces near the chill drive a clockwise flow cell and negative segregation develops near the bottom, 

left corner as the depleted grains accumulate. These grains become immobilized while the enriched 

liquid continues with the buoyancy-driven flow cell causing progressive enrichment of the slurry. 

A second packing interface begins to form along the chilled right wall shortly before 50 s. These 

two packing interfaces converge and grow vertically upwards until about 200 s when the entire 

domain is occupied by the rigid mush. The enriched region along the top surface, particularly near 

to top right wall, is the result of the progressive enrichment of the slurry until the packing interface 

reaches this location. At this point, the clockwise recirculation of enriched interdendritic liquid 

driven by solutal buoyancy widens the enrichment zone in bottom right corner and narrows the 
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depletion zone in the bottom left corner. The final composition field at 600 s due to this combined 

transport is shown in Figure 7.1. 

7.2 Influence of Undercooling on Macrosegregation 

To determine the total possible the influence of liquid undercooling on macrosegregation 

development during equiaxed solidification, two primary model inputs of the dendritic multiphase 

microsegregation model are varied: the liquid mass diffusivity 𝐷𝑙 and the final grain radius 𝑅𝑓. 

These inputs are varied over a range encompassing equiaxed solidification, specifically 𝐷𝑙 =

2 × 10−9 − 1 × 10−8m2 s⁄  and 𝑅𝑓 = 37.5 − 500 µm.  The change in predicted 

macrosegregation using the volume-averaged microsegregation model from the Gulliver-Scheil 

predictions is quantified using the mean absolute percentage error: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝐹𝑃 − 𝐴𝑃
𝐴𝑃

|

𝑛

𝑃=1

 (7.1) 

 

where 𝐹𝑖  is the local composition at each control volume 𝑃  and 𝐴𝑃  is the local composition 

predicted using the Gulliver-Scheil model. Shown in Figure 7.2, the absolute difference in the final 

segregation is less than 1% across the 30 calculations observing the possible parameter space for 

equiaxed solidification. These results indicate that liquid undercooling does not play a significant 

role in the final macrosegregation predictions for the current equiaxed case. 

Figure 7.1 also shows contour plots of the final Pb composition fields for the volume-

average model with the minimum MAPE (i.e. hemispherical tip, 𝑅𝑓 = 37.5 µm , and 𝐷𝑙 =

1 × 10−8m2 s⁄ ) and maximum MAPE (i.e. paraboloidal tip, 𝑅𝑓 = 125 µm , and 𝐷𝑙 = 2 ×

 10−8m2 s⁄ ). The paraboloidal tip predicts a slower growth rate than the hemispherical tip, and 

therefore, maintains some undercooling in the extradendritic liquid at intermediate grain radii since 

there is not enough interfacial area for complete mixing of the extradendritic liquid. Additionally, 

grain impingement, which causes complete mixing of the total liquid, does not occur until the later 

stages of solidification in the rigid mush. This feature of the tip model explains why there is a 

hump in the MAPE curve for the paraboloidal model, while the hemispherical model predicts that 

the deviation from Scheil decreases as 𝑅𝑓  decreases. Although the predictions from the 
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paraboloidal model illustrate an interesting trend which may highlight the interplay between 

competing factors during grain nucleation and growth, there is no experimental evidence 

supporting whether this trend is realistic for the current system. 

Nevertheless, these results show that some finite amount of undercooling exits in the 

extradendritic liquid, which slightly effects the thermal history during solidification and causes to 

packing interfaces to merge a few seconds before the Gulliver-Scheil model. Figure 7.3 shows the 

thermal and solid fraction history at the midheight, 1 mm from the chill. The thermal predictions 

show that the maximum MAPE case has a more pronounced recalescence curve than the minimum 

MAPE case and progresses with about 1 K of undercooling near the chill. Although it has been 

demonstrating that the volume-averaged microsegregation model can predict some physical trends 

that are of interest to the solidification community, these phenomena (i.e. recalescence and slight 

liquid undercooling) have a negligible effect of the macrosegregation predictions during equiaxed 

solidification. Therefore, the assumption of a well-mixed liquid phase employed in most analytical 

solidification paths seems reasonable. 
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Figure 7.1: Evolution of the composition fields, flow field, and packing interface using the Scheil 

microsegregation model compared to volume-averaged microsegregation with input parameters 

showing the best agreement (hemispherical tip, 𝑅𝑓 = 37.5 µm, and 𝐷𝑙 = 1 × 10
−8m2 s⁄ ) and 

input parameters showing the poorest agreement (paraboloidal tip, 𝑅𝑓 = 125 µm , and 𝐷𝑙 =

2 × 10−9m2 s⁄ ) at different times. 
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Figure 7.2: The mean absolute percent error (MAPE) measuring deviation of the macrosegregation 

predictions using the volume-averaged microsegregation models from the Gulliver-Scheil 

predictions for different values of liquid mass diffusivity and final grain size in microsegregation 

model. 
 

 

Figure 7.3: Temperature and liquid fraction histories at a location 1mm from the chill at the 

midheight of the cavity for a cause equiaxed solidification using variation microsegregation 

models. The maximum deviation from Scheil (maximum MAPE) shows a recalescence curve and 

about 1 K of undercooling. 
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7.3 Influence of Grain Structure on Macrosegregation 

In the previous section, it was demonstrated that the finite amount of undercooling predicted 

by the microsegregation model during equiaxed solidification had a negligible effect on the 

macrosegregation predictions. This is not surprising since the undercoolings for equiaxed 

solidification are expected to be relatively small due the amount of interfacial area supplied by the 

high grain number densities. However, several previous studies have advocated for the use of such 

models due to their ability to improve the model through grain morphology predictions. To 

investigate the effect of different input parameters on the grain morphology predictions, the 

previous calculations are repeated and the internal solid fraction upon packing is tracked.  

Figure 7.4 shows contour plots of the internal solid fraction at packing for both tip geometry 

models using different values of 𝑅𝑓. For large grain radii (𝑅𝑓 = 500 µ𝑚), the hemispherical tip 

model predicts highly dendritic grains with little variation, while the paraboloidal tip model 

predicts intermediate grain morphologies that tend to coarsen as solidification progresses towards 

to symmetry plane. For intermediate grain radii (𝑅𝑓 = 125 µ𝑚), the hemispherical model predicts 

grain morphologies transitioning from dendritic to globular as solidification progresses to the 

upper corner of the symmetry plane, while the paraboloidal tip model predicts a completely 

globular structure. For smaller grain radii (𝑅𝑓 = 75 µ𝑚 ), the hemispherical model predicts 

intermediate to coarse grain following the same coarsening path as the intermediate case, while 

the paraboloidal tip model still predicts a fully globular structure.  

Since the internal solid fraction directly influences settling tendency of the grains and the 

solid fraction at packing, it is important to know its value to some degree of certainty. It is well-

understood that the packing fraction is one of the most important parameters for macrosegregation 

predictions since it determines the volume of solute-depleted grains in the slurry and the range of 

permeabilities in the mushy zone which restrict the transport of enriched interdendritic liquid. 

Figure 7.5 shows that the macrosegregation predictions noticeably change when the local grain 

morphology prediction can change the hydrodynamics. These results show different tip geometry 

models attempting to model the same system for the same input parameter, 𝑅𝑓 = 75 µm. It is 

reminded that these same of parameters previously predicted macrosegregation fields in near 

perfect agreement when the grain morphology predictions were neglected the hydrodynamics 

model. 
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Probabilities densities of the internal solid fraction at packing for the two tip models are 

compared in Figure 7.6. It is shown that the hemispherical model predicts a somewhat wide range 

of intermediate morphologies (0.6 ± 0.21) while the paraboloidal model predicts a narrow range 

of globular morphologies (0.96 ± 0.04). Therefore, the hemispherical model tends to pack more 

quickly than the paraboloidal model, reaching the top surface nearly a minute before the 

paraboloidal model, resulting in a significantly smaller depletion region along the bottom surface. 

Comparison to the permeability of the rigid mush near the packing interface indicate that the 

hemispherical model will have a more permeable rigid mush, and as a result, the enrichment region 

along the bottom region is more pronounced. While the trends in these transport phenomena are 

physically correct, it is concerning that the macrosegregation predictions are significantly 

influenced by a highly uncertain closure relationship in the model [115]. The choice of one model 

over another appears to be circumstantial with conflicting justification. 
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Figure 7.4: Internal solid fraction at packing for each tip geometry models for different final grain 

radii. 
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Figure 7.5: Evolution of the Pb composition fields, flow field, and packing interface using the 

hemispherical tip and paraboloidal tip models to control the grain morphology using 𝑅𝑓 = 75 µm, 

and 𝐷𝑙 = 2 × 10
−9m2 s⁄ . 
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Figure 7.6: Probability density of the internal solid fraction at packing predicted by each tip 

geometry model for 𝑅𝑓 = 75 µm  and 𝐷𝑙 = 2 × 10
−9m2 s⁄  (left) and the range of inverse 

permeabilities restricting interdendritic liquid flow across these packing fractions. 

 

7.4 Simplified Grain Morphology Model 

In an attempt to establish trends more clearly in the grain structure prediction, the internal 

solid fraction at packing is plotted against 1/𝑅𝑓 for both the hemispherical and paraboloidal tip 

models, shown in Figure 7.7. The hemispherical tip model consistently predicts more dendritic 

grain morphologies compared to the paraboloidal model. From these numerical results it is shown 

that the morphology at coherency predicted by the model is inversely related to the assumed final 

grain radii used as input to the numerical model. This same trend appears to fit a selection of data 

taken from experiments relating coherency fraction vs. grain size for aluminum foundry alloys 

cooled at 0.7 K s-1 with different level of grain refiner additions. While this data was originally 

reported for different rheological experiments by Arnberg and coworkers [31,32], the values here 

were collected by Yuan et. al [116]. Despite the experimental data having some scatter because of 

the different types and concentrations of alloying elements, there is still a relatively strong 

correlation of the internal solid fraction to 1/𝑅𝑓, with an 𝑅2 value of 0.72. 

To determine if the transient variation of the grain morphology significantly effects the 

numerical predictions, and further, if more pragmatic closure laws for the grain morphology could 

be used in future work, the following linear fits were determined for each tip geometry: 
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𝑔𝑠𝑖
𝐻 = 0.05 + 36.27 (

1

𝑅𝑓
) (7.2) 

and 

𝑔𝑠𝑖
𝑃 = 0.11 + 107.72 (

1

𝑅𝑓
) (7.3) 

 

The 𝑅2 values for the proposed fits are 0.988 for the hemispherical and 0.962 paraboloidal curves. 

Although the hemispherical tip data appears to be in better agreement with the experimental trends, 

there are too many differences between experiments and calculations to draw any conclusions. 

However, it is noted that this is the first time that this specific relationship has been observed by 

the kinetics-based models and may inspire future investigations. 

Using the above relationships, the evolution of macrosegregation, packing interface, and 

flow field are compared to the full microsegregation and grain structure prediction models for the 

most dendritic and most globular cases. Figure 7.8 shows the results from the most dendritic case 

(i.e. 𝑔𝑠𝑖
𝐻 = 0.048) corresponding to a hemispherical tip model. These results are similar to the 

columnar solidification case previously reported in ref. [117] since the grains are immobilized at 

low solid fractions. A vertical packing interface progress from the right wall and a clockwise 

recirculation cell driven by solutal buoyancy transports a significant amount of solute from the top 

to the bottom of the domain causing a depletion on the top surface and enrichment of the bottom 

surface region. All three methods for solving the features of the sub-grid scale phenomena appear 

to be equally valid due to the excellent qualitative agreement between cases. Similar agreement is 

found for the most globular case (i.e. 𝑔𝑠𝑖
𝑃 = 1) corresponding to the paraboloidal tip model. These 

results suggest that the transient evolution of grain morphologies does not significantly affect the 

macrosegregation results, and constant values may be used to capture the correct qualitative trends 

in transport phenomena. 
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Figure 7.7: A. Experimental grain morphologies taken from ref. [117] B. Average calculated 

internal solid fraction at the onset of packing for both tip geometry models and the primary inputs 

to the microsegregation model (𝑅𝑓 , 𝐷𝑙). 
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Figure 7.8: Evolution of the composition fields and packing interface using the hemispherical tip 

model 𝑅𝑓 = 500 µm , and 𝐷𝑙 = 6 × 10
−9m2 s⁄  with the calculated morphological conditions 

compared using a constant packing fraction obtained from the linear fit in Eqn. (7.2) for the 

equivalent volume-averaged and Scheil microsegregation models. 
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Figure 7.9:  Evolution of the composition fields and packing interface using the paraboloidal tip 

model 𝑅𝑓 = 37.5 µm , and 𝐷𝑙 = 6 × 10
−9m2 s⁄  with the calculated morphological conditions 

compared using a constant packing fraction obtained from the linear fit in Eqn. (7.3) for the 

equivalent volume-averaged and Scheil microsegregation models. 
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7.5 Sensitivity Study 

Up to this point it has been established that finite undercooling in the liquid does not 

significantly affect the macrosegregation predictions for equiaxed solidification simulations. 

Instead, it is the influence of the grain morphology prediction on the hydrodynamics of the system 

which has a significant effect on macrosegregation. The relative sensitivities of the outputs to 

changes in the input parameters are determined using the Elementary Effects Method (EEM). An 

elementary effect is calculated for an input parameter by independently varying it over a constant 

step change while other parameters remain constant, and thus, measures the change in the output 

over some fraction of the input range. A distribution of elementary effects is then calculated for 

each input parameter and the mean sensitivity 𝜇∗ us used to estimate the sensitivity of the output 

over the input range, i.e.: 

𝜇∗ =
1

𝑟
∑|

∆𝑌𝑗

∆𝑋𝑗
| (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

𝑟

𝑗=1

 (7.4) 

 

Figure 7.10 shows that the internal solid fraction at packing is very sensitive to the value of 𝑅𝑓 

used in the hemispherical model, and a lesser extent, the liquid mass diffusivity for intermediate 

grain radii of practical importance for industrial castings. In this range, the paraboloidal model 

predicts a fully globular structure so its sensitivities are significantly smaller. However, if the 

model tends to uniformly predict globular grains under these conditions, then there is no need to 

attempt modeling the grain structure further supporting the claims for simplified models made in 

this chapter. 

Figure 7.11 shows that the macrosegregation index is very sensitive to 𝑅𝑓 and 𝐷𝑙 for the 

hemispherical tip model due to the significant changes in grain morphology prediction, and 

insensitive to these values for the paraboloidal tip model due to constant grain morphology 

prediction. When the approximate relationship for the hemispherical grain morphology is used 

(𝑔𝑠𝑖
𝐻 ), this model sensitivity almost completely removed. Therefore, it can be stated that if a 

characteristic internal solid fraction can be determined to a higher degree of certainty than the 

inputs and closure laws used to the grain growth model, then those relationships should be used in 

place of the more complicated models. This appears to be the case for equiaxed solidification in 
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DC casting, where the packing fraction in the range of 0.2-0.3 has historically produces good 

agreement with casting experiments. 

 

 

Figure 7.10: Sensitivities of the internal solid fraction at packing to the grain growth model input.  
 

 

Figure 7.11:  Sensitivities of macrosegregation predictions to uncertain microscale model input. 
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7.6 Influence of Undercooling on DC Casting Predictions 

Because the level of undercooling in the extradendritic liquid tends to increase with the 

cooling rate, its influence on macrosegregation should be more pronounced for DC casting than 

the previous static casting cases. A description of the DC casting case used for this comparison 

has already been provided in Section 6.4. In addition to the macrosegregation measurements, 

Vreeman et al. [47] inserted a thermocouple rake into the sump to record the temperature histories 

at different radial positions during casting. The rake was solidified into the billet and thermal 

profiles were obtained near the centerline (r = 10 mm), midradius (r = 106 mm), and the surface 

(r = 220 mm). The predicted temperature profiles are also compared to observe any differences 

caused by finite undercooling. 

Figure 7.12 compares the steady state solid fraction and mixture composition contours for 

the Scheil, hemispherical tip, and paraboloidal tip microsegregation models. Going from top to 

bottom, the solid black lines mark the liquidus, the packing interface, the interface between the 

loosely packed and tightly packed rigid mush, and the solidus. The dotted lines indicate the 

position of these flow regime demarcations for the Scheil model to aid comparison. The general 

macrosegregation features are similar for each case, consisting of a depleted centerline due to 

shrinkage driven flow in the rigid mush and, to a lesser extent, the accumulation of solute depleted 

grains. The most significant qualitative change is the segregation is the absence of the enrichment 

zone in the slurry for the volume-averaged microsegregation models. It is not clear is this is due 

to the handling of remelting by the different models, due to the Scheil model overpredicting the 

segregation along the packing interface at the outer- and midradius causing a larger volume of 

enriched liquid to be advected into the slurry, or a combination of these two factors. 

Figure 7.13 shows the radial segregation profiles and temperature profile along the pool 

depth. The volume-averaged microsegregation models predict more positive segregation near the 

surface, and therefore, less positive segregation at the midradius. Because the solid fraction 

contours in the rigid mush are similar for each case, so is the centerline depletion which is mostly 

dependent on shrinkage induced flow. For all cases, the predicted segregation profiles are within 

the uncertainty of the experimental data and the temperature profiles are indistinguishable.  

As expected, the worst agreement between the position of flow regime demarcations is the 

liquidus surface where recalescence occurs and delays solidification in the mold causing the 

liquidus to shift down about 15 mm for the volume-averaged models. In the region between the 
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liquidus and the packing demarcation, the volume-averaged models predict a wider and flatter 

rigid mush, attributed to finite undercooling that occurs in this region due to the relatively high 

cooling rates enacted by the direct chill. Despite these differences at the outer radius, the percent 

change in the predicted sump depth when the microsegregation model considers undercooling is 

only  ≈ 3.5%. Since the final grain radius used here (𝑅𝑓 = 125 µm) is approaching the largest 

interfacial structures found in grain-refined DC casting, it also represents the maximum effect of 

undercooling on the model predictions. For comparison, Fezi and Krane [118] showed that the 

uncertainty in the sump depth for a similar alloy and casting parameters was ≈ 14.1%. Therefore, 

it appears that the total epistemic uncertainty in the microsegregation model is within the aleatoric 

uncertainty of the thermophysical property inputs and the Scheil approximation of the 

microsegregation behavior is sufficient for modeling grain-refined DC casting.  

 

 

Figure 7.12: Copper distribution in the billet for different microsegregation models. The contours 

in decreasing order of y-position are the liquidus, the packing interface, the demarcation of the 

loose packed grain region, and the solidus. Simulations were performed with a critical packing 

fraction of 𝑔𝑔
𝑐 = 0.30  and volume-averaged calculations used a final grain radius of 𝑅𝑓 =

125 μm.  
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Figure 7.13: Profiles of Cu concentration from simulations with different microsegregation 

models. The model predictions are compared to the experimental profiles of Vreeman et al. [47] 

(left). Comparison of predicted and measured temperature profiles (right). 

 

7.7 Summary 

In this chapter, the Scheil microsegregation was compared to the more complicated volume-

averaged microsegregation models to characterize the difference in macroscale predictions. First, 

the effect that finite undercooling in the extradendritic liquid had on equiaxed solidification 

benchmark was determined to have a mean absolute percent error of less than 1% over the entire 

parameter range for equiaxed solidification. Then, it was demonstrated that the grain structures 

predicted by the volume-averaged models are largely unreliable and can significantly affect the 

macrosegregation predictions. Comparing the models to DC experiments showed that the 

difference in the model predictions were within the experimental uncertainty and the aleatoric 

uncertainty of thermophysical property inputs. These results suggest that it is not necessary to 

include complicated microsegregation models to obtain reasonable predictions of the macroscopic 

transport occurring in equiaxed solidification. Therefore, the analytical model will be used, and 

the grain size and morphology will be prescribed for the remainder of this work. 
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 INVESTIGATION OF GRAIN TRANSPORT IN HORIZONTAL 

DIRECT CHILL CASTING 

In this chapter, the role of forced convection on the transport of solute-depleted grains during 

equiaxed solidification is investigated for horizontal direct chill (HDC) casting. The mixture model 

summarized in Table 2.3 and Table 2.4 is used with the face-based drag formulation (Section 4.2.3) 

and diffuse solid flux transition model with a numerical diffusion coefficient of 𝜂 = 0.5 (Section 

4.3.2). Additionally, the analytical microsegregation model (Section 3.1) is used assuming no 

back-diffusion into the solid phase (𝛽 = 0)  during solidification (i.e. the modified-Scheil 

assumption). The grains are assumed to be fully globular 𝑔𝑠,𝑖 = 1, the grain volume fraction upon 

coalescence is 𝑔𝑔
𝑐 = 0.4, and the characteristic length scale of the rigid mush is 𝜆 = 65 µm 

8.1 Background 

Although vertical direct chill casting (VDC) is the most common technology to produce 

wrought aluminum alloy ingots, HDC allows for ingots to be cast without interruption. Since there 

is no requirement for deep casting pits and expensive hydraulic rams, the startup cost is 

significantly lower than VDC. Additionally, the increased casting rates in HDC (due to thinner 

slabs) allow for a higher annual throughput per strand, making it an economically viable alternative 

for certain wrought products [2]. However, because the casting axis in HDC casting is 

perpendicular to gravity, the natural convection driven flows in the melt are not symmetric about 

the casting axis as in VDC. In the case of equiaxed solidification, there will be a tendency for 

grains to settle along the bottom of the slab causing a region of negative segregation. Numerical 

simulations are used to provide estimates of inflow conditions which tend to suspend these grains 

for an Al-4.5wt%Cu slab. Thermophysical properties for Al-4.5wt%Cu are provided in Table A1. 

The numerical domain is similar to that of Krane and Vušanović [119], extended to 3-

dimensions, shown in Figure 8.1. The slab is 80 mm thick and terminates 300 mm from the inlet. 

Three different slab widths are investigated: 200 mm, 400 mm, and 600 mm. Liquid metal enters 

the model through a constrained inlet that is 20 mm thick and 80 mm wide. The mold is 45 mm 

long and secondary cooling is applied over the rest of the top, bottom, and side surfaces. Due to 

the assumption of symmetry along z = 0 mm, only half of the physical domain is modeled for 3-
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D calculations. The heat transfer in the mold varies linearly with position from mold contact, h =

1500W m2K⁄ , to air cooling, h = 150W m2K⁄ . The secondary cooling for the top and side 

surface,  h = 10,000W m2K⁄ , and bottom surface h = 6,000W m2K⁄ , correspond to the ratio 

suggested in ref. [120]. 

 

Figure 8.1: Schematic of horizontal direct chill (HDC) casting. The red outline indicates the 

position of the domain used for 2-D calculations. 

 

8.2 Influence of Different Transport Phenomena 

Before proceeding to the results of the 3-D model it is useful to distinguish various features 

of the flow field. In this section, the influence of different transport phenomena on the flow field 

and macrosegregation formation are evaluated for a case of equiaxed solidification, with a final 

grain diameter of 𝑑𝑔,𝑓 = 150 µm. According to mass conservation, the liquid metal entering the 

mold must compensate the mass loss due to the movement of the rigid mush at the casting velocity. 

The presence of body forces in the sump (i.e. buoyancy, shrinkage, and grain motion) does not 

change this requirement, only the path of the liquid between the inlet and the moving rigid mush. 

Figure 8.2 shows the different mechanisms driving flow for two different inlet positions: one at 

the midheight and one along the bottom of the mold. In the absence of any body forces, the inflow 

is initially driven into the mold by the hydrostatic head of liquid metal in the furnace. The 

constricted flow expands as it enters the mold to fill the volume of the moving rigid mush. The 

expansion of streamlines indicate that the inflow decelerates to the casting speed upon entering the 
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rigid mush. The final heights of the streamlines in the rigid mush are the same regardless of the 

inlet position. Because there are no sources of relative solid-liquid motion in this case, no 

macrosegregation forms. 

When thermosolutal natural convection is considered, the superheated liquid metal entering 

the mold immediately rises towards the chilled top surface driven by positive thermal buoyancy. 

At the chilled surface, negative buoyancy (liquid is being cooled and enriched in Cu) drives this 

the fluid downwards along the rigid mush. Each streamline enters the rigid mush at the same 

position as the previous case. Due to the modified path that the superheated liquid metal takes, 

solidification near the top of the mold is delayed and solidification near the bottom of the mold is 

accelerated. Although it is not shown here, a shear driven recirculation cell forms in the slurry 

rotating clockwise. Particularly for the midheight inlet, a region of thermal stratification and 

relatively quiescent flow develops in the slurry below the inlet. The macrosegregation due to the 

natural convective flow of enriched liquid in the rigid mush is small; the relatively low 

permeability of the rigid structure almost prevents any liquid exchange at the packing interface. 

When grain motion is considered, the entrainment rate of the inflow is higher, indicated by 

the more tightly spaced streamlines. This is due to the added negative buoyancy force from the 

mobile solid grains forming near the chill. Noticeable macrosegregation develops in the ingot as 

solid grains accumulate along the bottom half of the slab. The top half of the slab becomes 

positively segregated, while the bottom half is negatively segregated. The accumulation of 

depleted grains is more significant for the midheight inlet than the bottom inlet because the latter 

prevents the formation of a thermally stratified zone and resuspends the grains carried into this 

region. The resulting solute depletion along the bottom of the ingot is noticeably less for the bottom 

inlet. 

When shrinkage is considered, the path of the inflow is nearly identical to the previous case, 

with the addition of a small flow induced by shrinkage parallel to the direction of the local solid 

fraction gradient. This is the only remaining flow deep in the rigid mush, and although small, it 

causes significant solute depletion in the middle of the ingot. The negative centerline segregation 

is due to the transport of highly enriched liquid away from this location towards the top and bottom 

of the ingot. From this evaluation of different transport mechanisms in HDC casting, it can be 

determined that shrinkage driven flow independently causes the depleted centerline, while grain 

motion causes the asymmetry in the final macrosegregation profile. Additionally, feeding liquid 
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metal from the bottom inlet improves the symmetry of the segregation by preventing the localized 

accumulation of depleted solid along the bottom of the ingot. 

 

 

Figure 8.2: Steady state composition fields and streamlines for  various transport mechanisms in 

HDC with two different inlet positions. Bold black lines denote liquidus, packing interface, and 

solidus. 
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8.3 Grain Suspension Due to Forced Convection 

 In order to better determine the competition between the grain settling due to buoyancy 

forces and grain suspension due to forced convection, the final composition fields for different 

grain sizes are provided in Figure 8.3. As the grain size increases, the macrosegregation becomes 

less symmetric for the midheight inlet, attributed to a larger volume of solute-depleted grains 

transported to the thermally stratified region below the inlet where they accumulate along the 

bottom. For 200 µm grains, the negative segregation near the bottom of the ingot becomes the 

most intense composition feature with a copper depletion of −11%. As the bottom half of the ingot 

becomes more depleted, the top half becomes more enriched. In Figure 8.4, the composition 

profiles across the thickness are compared for various grains sizes, demonstrating significant 

asymmetry for the midheight inlet which increases with increasing grain diameter. For the bottom 

inlet, forced convection from the inlet is strong enough to suspend a large volume of grains. For 

200 µm grains, the negative segregation near the bottom of the ingot is only −4% compared to 

−11% for the midheight inlet. These results demonstrate that selective forced convection from 

specially designed liquid metal distribution systems can be used to suspend grains during equiaxed 

solidification, and furthermore, it is demonstrated that such phenomena can be sufficiently 

captured by the current numerical model. 
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Figure 8.3: Effect of inlet position and grain size on grain suspension and the steady state 

composition profiles in HDC casting. 
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Figure 8.4: Comparison of macrosegregation profiles in HDC for a center and bottom jet. 

Lowering the jet position in the model significantly reduces the macrosegregation in the ingot by 

suspending grains. 

 

 

 

Figure 8.5: Steady state streamlines and sump shape for the 400 mm width HDC cast slab. 
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8.4 Comparison of 2-D and 3-D Calculations 

Each of the previous 2-D calculations assumes that the dominant transport is in the x-y plane. 

While this assumption is reasonable for heat transfer calculations due to the aspect ratio of the 

slabs, it is not a valid assumption for flow calculations. Figure 8.5 shows the steady state sump 

profile and streamlines for a 400 mm wide slab fed with an inlet positioned at the midheight. The 

previously discussed continuity requirement causes a significant flow component not captured by 

the 2-D calculations. The effect that this flow has on the macrosegregation development is 

discussed by comparing the 2-D calculations to the 3-D calculations with various aspect ratios. 

Figure 8.6 shows the steady-state composition, flow, and sump profiles in the x-y plane. In 

each case, the qualitative predictions are similar, however there are a few subtle changes. First, the 

inlet jet velocity increases with slab width due to mass conservation. The resulting increased 

penetration depth of the superheated liquid causes the sump depth to increase, albeit marginally. 

Despite these changes, the curvature of the rigid mush which determines the direction of shrinkage 

driven flow, is relatively unchanged and the predicted centerline depletion is similar for each case. 

The segregation profiles between the 2-D calculation and the 3-D calculation of a 400 mm 

wide slab are quantitatively compared in Figure 8.7. For 2-D calculations, the flow in the slurry 

driven by buoyancy forces is constricted in the x-y plane. Therefore, the flow along the rigid mush 

is stronger in this plane and there is less of a tendency for solute depleted grains to accumulate 

along the bottom horizontal section of the rigid mush. Consequently, the 2-D calculation tends to 

underpredict the negative segregation in the bottom half of the slab and underpredict the positive 

segregation in the top half of the slab. Additionally, the reduced sedimentation rate of grains along 

the bottom horizontal section of the rigid mush shifts the packing interface down about 5 mm. 

These results indicate that the qualitative trends established for the transport phenomena and 

macrosegregation development in HDC are reasonably predicted using the 2-D model.  

This point is further demonstrated by evaluating the final composition profiles across the 

slab slice (i.e. y-z plane) in Figure 8.8. The basic segregation features are not a strong function of 

the position along the slab width. The top half of the slab is enriched, the bottom half is depleted, 

and the most severe depletion occurs at the centerline due to shrinkage driven flow. Therefore, if 

the 2-D model can reasonably predict the approximate sump shape, which is primarily dependent 

on the heat transfer across the slab thickness, then the general macrosegregation features will be 

sufficiently captured. Figure 8.9 shows the comparison between the predicted sump shape for the 
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2-D calculation and the 3-D calculation of a 400 mm wide slab for three slab thicknesses (60 mm, 

80 mm, and 100 mm) demonstrating that the 2-D model does sufficiently predict sump shape for 

the current system. However, if the inlet is constrained enough, the superheated liquid melt will 

penetrate the rigid mush causing the formation of an erosion crater at the centerline. This 

phenomenon must be studied using a 3-D model in order to capture the behavior of the jet. This 

situation is investigated in the next chapter for a variant of the VDC casting processes known as 

jet-stirred casting. 

 

 

Figure 8.6: Steady state composition fields and flow vectors a 2-D simulation and 3-D simulations 

at the centerline slabs with increasing width. Bold black lines denote liquidus and solidus, and 

dotted line denotes packing interface. 
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Figure 8.7: Comparison of 2-D and 3-D steady state composition profiles along the centerline of 

HDC cast slabs. 

 

 

Figure 8.8: Comparison of final macrosegregation fields in the ingot slice for HDC castings with 

different model widths are inlet configurations. 
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Figure 8.9: Influence of slab width on steady state sump profiles at centerline of HDC cast slabs 

(left). Comparison of 2-D (dotted) and 3-D (solid) results for different slab thicknesses (right). 

Each case have a midheight inlet. 
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 INVESTIGATION OF JET-STIRRED DIRECT CHILL CASTING 

In this chapter, a numerical study is performed to investigate the role that forced convection 

has on the macrosegregation development in vertical DC casting of large rolling slabs. The mixture 

model summarized in Table 2.3 and Table 2.4 is used with the face-based drag formulation (see 

Section 4.2.3) and the diffuse solid flux transition model (see Section 4.3.2) with a diffusion 

coefficient of 𝜂 = 0.5. Additionally, the analytical microsegregation model is used which accounts 

for solidification shrinkage (𝜆 = 0.05) and assumes no back-diffusion into the solid phase during 

solidification (𝛽 = 0) . Numerical predictions are compared to experimental trials that were 

performed during Sam Wagstaff’s doctoral research [121]. The experimental macrosegregation 

and grain structures shown in this chapter were previously published in ref. [9]. Experimental data 

and micrographs were courteously provided through personal communication with Sam Wagstaff.  

9.1 Motivation for Jet-Stirred Casting 

Fine equiaxed grains produce isotropic and uniform mechanical properties [4], which reduce 

hot-cracking sensitivity and permit higher casting speeds [122,123]. Such structures are generally 

obtained in DC casting by inoculating the melt with grain refiner particles to promote 

heterogeneous nucleation. The most widely used inoculants in aluminum are based on the Al-Ti-

B system consisting of TiB2 particles 0.1 to 10 µm in diameter [124]. While Al-Ti-B refiners can 

be used in many aluminum alloys, their effectiveness is not guaranteed in the presence of certain 

alloying elements [124], or for certain casting conditions [125,126]. Additionally, grain refinement 

in conventional DC casting promotes the formation of a quiescent zone in the slurry [53] that 

allows a significant number of solute-depleted grains to accumulate near the ingot centerline. The 

resulting chemical inhomogeneity on the ingot scale (macrosegregation) is problematic because it 

affects the amount of secondary phases providing mechanical strengthening to the ingot and cannot 

be mitigated by subsequent processing. 

An alternative, or complimentary, method to melt inoculation is shear-induced grain 

refinement [127]. There are a number of available techniques which demonstrate refinement by 

this mechanism, however most use liquid motion to partially remelt existing dendritic grains or 

deagglomerate existing inclusions [128,129] and inoculants [124], thus creating fragments of solid 
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that initiate grain growth. Wagstaff and Allanore [9–12] have demonstrated the ability to promote 

shear-induced grain refinement using forced convection in Al-4.5wt%Cu rolling ingots. In this 

“jet-stirred” casting process, a narrow downward jet was used to promote dendrite fragmentation 

at the bottom of the sump while simultaneously preventing grain accumulation at the centerline. 

Despite consistent experimental observations of the reduced centerline depletion across a wide 

range of jet conditions, no numerical investigation has been able to confirm suspicion that 

macrosegregation is reduced due to locally preventing the accumulation of solute-depleted grains. 

In addition to grain motion, solute redistribution on the macroscale is also influenced by 

thermosolutal convection and shrinkage driven flow in the rigid mush [4,130]. The degree to which 

each transport phenomena affects the development of macrosegregation in jet-stirred casting is not 

yet clear. Numerical process modeling is a useful method to gain insight into the fundamental 

differences in transport phenomena for this new process. 

The objective of this chapter is to investigate transport mechanisms influencing 

macrosegregation development in both jet-stirred and conventional casting of DC cast rolling slabs 

based on combined experimental and numerical studies. In the first section, the experimental grain 

structure and macrosegregation are characterized for both casting methods. The measured grain 

structure is used as input to the numerical model in the subsequent section. Properly accounting 

for the change in microstructure between the two processes enables verification of the 

macrosegregation predictions against experiments. With some confidence that the interplay 

between various transport phenomena is sufficiently captured by the model, the 3-D flow field is 

characterized including the combined effects of forced convection, natural convection, grain 

motion, and shrinkage driven flow. Finally, a parametric study is performed to further elucidate 

the relative importance of different physical phenomena on macrosegregation development. 

9.2 Experimental Trials 

An Al-4.5wt%Cu melt was obtained from a commercial gas burner furnace, and was 

degassed, filtered, and inoculated with 25ppm TiB2 commercial-grade grain refiner. A bi-level 

pour system was used to introduce liquid metal through a 22 mm diameter fused silica downspout 

to a 1540 mm x 600 mm Wagstaff LHCTM (low-head composite) mold, see Figure 9.1. During the 

initial 500 mm cast length, the casting speed and metal level were varied using a proprietary start-

up procedure to prevent hot-cracking. Two ingots were cast at 65 mm/min to a final cast length of 
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5000 mm: one with a combo-bag fitted around the downspout to uniformly introduce liquid metal 

(hereinafter referred to as conventional casting), and one with a 46 mm diameter eductor nozzle 

suspended about 25 mm beneath the downspout to promote stirring (hereinafter jet-stirred casting) .  

After casting and cooling, both ingots were sectioned into horizontal slices at cast lengths of 

1200, 1800 and 2200 mm. Each cross-section was divided into quadrants and a series of 45 samples 

were removed using a core drill for metallographic analysis. The opposite quadrant was marked 

with a set of 455 points for compositional analysis using an Olympus Delta Professional Alloy 

Plus XRF analyzer (see Figure 9.2). The metallographic samples were etched with dilute 

Tetrafluoroboric acid (HBF4) and analyzed in terms of grain size and secondary dendrite arm 

spacing (when appropriate) using an optical microscope and the line-intercept method at 50x 

magnification. The metallographic and compositional data taken at each cast length was compared 

to determine if time invariant trends were established in the so-called steady state regime of DC 

casting (considered to occur between 20% and 80% of the final cast length). For conventional 

casting, the grain structures and macrosegregation patterns were very similar at each cast length. 

However, for jet-stirred casting the centerline solute depletion at 2200 mm was more pronounced 

and the grains were slightly larger than at either 1200 mm or 1800 mm [9]. To simplify comparison 

between casting methods in the current study, a choice was made to only consider the data taken 

at 1800 mm. It is therefore emphasized that the transient variations in grain structure 

macrosegregation observed for jet-stirred casting are not considered in experimental results of this 

study. 
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Figure 9.1: Schematic of the low-head, jet-stirred DC caster and computational domain with a bi-

level feeding scheme. 
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Figure 9.2: Schematic of the ingot cross section used for cutting quadrants for metallographic and 

XRF analysis. 

 

9.2.1 Experimental Results 

Contour plots of the final grain size and macrosegregation in the examined ingot quadrants 

are provided in Figure 9.3 for both conventional and jet-stirred casting. The macrosegregation 

profiles have been reflected across the 𝑥‐ and 𝑧‐ axis to match the orientation of the quadrant used 

for metallographic analysis. In Figure 9.4, micrographs along 9A-E are provided for each case. 

For conventional casting, the most obvious segregation feature is the depleted region near 

the centerline extending 75 mm in the y-direction and 600 mm in the negative x-direction. Solute 

depletion is most severe (< −10%) in a narrow region extending 50 mm from the centerline, and 

less severe (about −5% to −10%) in the remaining area. Adjacent to this depletion region is an 

enriched region of similar size. Results from the metallographic analysis show that large diameter 

dendritic grains (about 250 μm) accumulate in this enriched region. From previous numerical and 

experimental studies [56], it is known that the majority of grains nucleate near the mold and remain 

close to the packing interface as they are swept downward by buoyancy forces. Solutal 

undercooling in the thermal boundary layer near the packing interface promote rapid growth until 

their eventual coalescence. The fact that the largest grains accumulate some distance from the 

centerline indicates a local flattening of the packing interface in this location, otherwise it is 

expected for these grains to continue toward the centerline. At the centerline, the grain size is 

noticeably reduced (about 150 μm ) indicating that smaller grains not captured by the local 
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flattening of the packing interface are advected into the solutally stratified core where they 

experience slow growth and significant coarsening until their eventual coalescence.  

The micrographs along 9A-E confirm the suggested growth history of the grains for 

conventional casting (see Figure 9.4). In the region about 75 mm from the centerline, the grains 

are noticeably larger and more dendritic than at the centerline, where the grains are either globular 

or coarse-cell dendrites, the distinction being difficult to determine in post-mortem metallographic 

analysis. The progressive growth of the dendritic grains as they travel down the packing interface 

are supported by the increase in grain size from the rolling face until about 75 mm from the 

centerline. 

For jet-stirred casting, the size and severity of the depletion region near the centerline is 

noticeably reduced. Establishing more general trends about macrosegregation in jet-stirred casting 

is more difficult than conventional casting since the segregation features are more randomly 

dispersed. Results from the metallographic analysis show than the grains are significantly refined 

and homogenized compared to conventional casting. Similar to conventional casting, the largest 

grains accumulate some distance from the centerline, however, these grains are refined by 

about 100 μm for jet-stirred casting. The micrographs along 9A-E further show that the grains are 

noticeably smaller and more globular compared to conventional casting (see Figure 9.4). 

 

 

Figure 9.3: Comparison of the grain size and macrosegregation profiles for conventional casting 

and jet-stirred Al-4.5wt%Cu. 
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Figure 9.4: Micrographs etched with HBF4 showing the final grain structure along the mid-length of convectional cast (top) and jet-

stirred (bottom) Al-4.5wt%Cu  slabs. 
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9.2.2 Experimental Discussion 

Histograms of macrosegregation are compared for conventional and jet-stirred ingot 

quadrants in Figure 9.5. For Al alloy 2014 (ASTM B209), the lower and upper specification limits 

for copper are 3.9wt% and 5.0wt%, respectively. These limits correspond to segregation of about 

-13% and 11%, as indicated by the vertical lines in Figure 9.5. Although jet-stirred casting does 

not eliminate the formation of depleted regions, the total ingot volume below the lower solute 

specification limit is significantly reduced. For conventional casting, 8.1% of the ingot quadrant 

is below the lower limit, attributed mostly to the depleted centerline, while for jet-stirred casting 

this amount is only 2.0%. Although the volume below the lower specification limit is noticeably 

reduced, jet-stirred casting causes an increase in total ingot volume over the upper specification 

limit of 5.0wt%Cu. When accounting for both specification limits, the total out-of-spec volume is 

9.9% for conventional casting and 6.0% for jet-stirred casting. 

While this decrease does not appear to be significant at first, it is important to realize that 

the majority of the out-of-spec volume for jet-stirred casting is located in a narrow region along 

the outer surface where it can be easily removed during subsequent processing. According to 

conventional casting practices about 15 mm of the ingot surface would be scalped for the current 

ingots. Although the spatial resolution of the XRF detector (about 25 mm) is lower than required 

to observe details of the scalped region, the effect of scalping on the final macrosegregation can 

be roughly investigated by omitting the compositional data taken at the surface. In this case, the 

total out-of-spec volume of the ingot is 2.0% for the jet-stirred ingot compared to 8.6% for the 

conventional ingot.  

Another significant benefit of jet-stirred casting is grain size reduction and improved grain 

morphology homogeneity. In Figure 9.6, the grain size probability densities are provided for 

conventional and jet-stirred casting. It is shown that the average grain size is reduced from 152 ±

35 µm for conventional casting to 97 ± 19 µm for jet-stirred casting, reported along with the 

sample standard deviation. Therefore, an average grain size reduction of 36% was observed for 

jet-stirred casting along with a 46% improvement in grain size uniformity. A measurement of 

secondary dendrite arm spacings could not be made for jet-stirred casting since it exhibits a mostly 

globular structure apart from some fine coarse-cell dendrites near the jet impact point. 

Nevertheless, secondary dendrite arm spacing probability densities are provided for conventional 

casting for completeness in Figure 9.6.  
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Figure 9.5: Histograms of macrosegregation measured across the ingot quadrant as-cast (left) and 

after scalping the surface (right). 

 

 
Figure 9.6: Comparison of histograms for final grain size (left) and dendritic arm spacing (right) 

measured across the ingot quadrant. 
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9.3 Numerical Investigation 

In this section, a numerical study is performed to elucidate details about the transport 

phenomena occurring in both conventional and jet-stirred DC casting of large rolling slabs. The 

computation domain is 875 mm × 1500 mm × 300 mm  with grid spacing of about 6 mm. 

Because the numerical model makes no attempt to predict the grain structure, it must be supplied 

from the experimental trials. The metallographic data shows an average grain size of 𝑑𝑔 = 152 ±

35 µ𝑚 for conventional casting and 𝑑𝑔 = 97 ± 19 µm for jet-stirred casting. The internal solid 

fraction at packing is difficult to determine from post-mortem metallographic analysis so three 

values are estimated here  𝑔𝑠𝑖 = 0.40, 0.55, and 0.70. Therefore, a total of nine simulations are 

performed for each casting method to cover the experimental uncertainty band in grain structures. 

A characteristic length scale of 𝜆 = 40 µm is used to calculate the permeability in the rigid mush 

based on the arm spacing reported in Figure 9.6. Thermophysical properties and phase diagram 

data for Al-4.5wt%Cu are provided in Table A1. 

9.3.1 Characterization of the Inflow Jet 

To provide insight into the basic features of the inflow and sump shape for both casting 

methods, solid fraction isocontours are shown in Figure 9.7. The white contours indicate the 

liquidus surface and the packing interface. The region between these two contours is the slurry 

where grains are mobile, and the region between the packing interface and the solidus is the rigid 

mush where grains are coalesced. While the inflow for conventional casting reaches a steady-state 

solution with a penetration depth of about 200 mm, two different flow states are found during jet-

stirred casting indicated at “A” and “B”. In the first state, the jet penetrates the packing interface 

forming an erosion crater in the rigid mush. In the second state, the jet retreats from this crater, but 

the crater shape remains unchanged. A period for the unsteady flow in jet-stirred casting was not 

determined; however, “A” and “B” are 500 s apart and correspond to the maximum and minimum 

penetration depths of the inflow captured. The unsteady flow during jet mixing gives some insight 

into why the experimental composition profiles vary along the ingot length [9]. 

During the experimental casting trials, the location of the packing interface was monitored 

by inserting a steel rod through the top of the liquid metal pool near the downspout and probing 

for the bottom of the sump indicated by a noticeable change in resistance. The difference between 
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this contact point and the top liquid surface is the sump depth. For jet-stirred casting, the change 

in resistance was immediate at about 700 mm, whereas for conventional casting the change in 

resistance was gradual between 500 mm and 700 mm indicating that a loosely packed bed may 

form. Although there is little evidence available to explain this phenomenon due to the difficulty 

of determining the packed mush zone structure, it is noted that the experimental trend is supported 

by the predicted sump positions in Figure 9.7. Because the thickness and orientation of the rigid 

mush control the amount and direction of solute-enriched liquid transported by shrinkage driven 

flow [131], the dramatic difference in the sump shape is believed to have a significant effect on 

the macrosegregation. With this transport mechanism in mind, the macrosegregation predictions 

are compared to the experiments in the following section. 
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Figure 9.7: Solid fraction isocontours for conventional and jet-stirred casting. The white line surrounding the inflow marks the liquidus 

surface and the other white line marks the packing interface. A was taken at upon the composition field reaching steady-state and B was 

taken 500 s later. 
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9.3.2 Numerical Results 

Using the values of grain diameter and internal solid fraction, final segregation maps were 

calculated for conventional and jet-stirred casting processes. A qualitative comparison of the 

numerical predictions of the composition fields to the experimental results is shown in Figure 9.8. 

The numerical predictions are reflected across the x-axis to aid visual comparison. Several gross 

macrosegregation features in the experiments are predicted by the model, most notably the 

reduction of centerline depletion for jet-stirred casting compared to conventional casting.  

For conventional casting, the geometry of the centerline depletion predicted by the model 

is in excellent agreement with experiments, both extending about ±600 mm in the -x direction and 

75 mm in the +y direction. Although the level of solute depletion directly at the centerline also 

agrees with experiments, the area occupied by the most severe depletion (< −10%) is under-

predicted. Disagreement in the geometry of this depletion zone may be due to several factors. First, 

the spatial resolution of the XRF (about 25 mm) is lower than the spatial resolution of the 

numerical grid (about 7 mm) and therefore, the model will tend to predict smoother variations in 

composition. Second, when sectioning the ingots into quadrants, 2-fold symmetry about the 

geometric centerlines was assumed so it cannot be claimed with certainty that the experimental 

quadrants are symmetric. In a previous experimental study [8], segregation maps were extended 

past the geometric centerlines to ensure that a symmetric quadrant could be constructed for 

comparison to numerical predictions.  

The model also appears to universally underpredict enrichment regions compared to the 

experimental results particularly near the ingot surfaces and adjacent to the centerline depletion 

zone when using the average grain parameters. This is not surprising since spatial variation in the 

grain parameters is shown to vary significantly in Figure 9.3 and can have a noticeable effect on 

macrosegregation development. It is shown in Section 5.1 that better agreement of the enrichment 

zones at the midthickness can be obtained using different grain morphology parameters in the 

model. Nevertheless, the general features of the centerline depletion region, of greatest concern in 

this study, are sufficiently captured by the numerical model using average values. A summary of 

the final segregation maps predicted for conventional casting over the experimental uncertainty 

band of grain size and morphology is provided in Figure 9.10. 

It is more difficult to make direct comparisons for jet-stirred casting due to the increased 

randomness in experimental macrosegregation. Nevertheless, some definitive trends regarding the 
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centerline depletion can be established. First, the size and severity of centerline depletion for jet-

stirred casting are reduced in both experiments and predictions. A narrow band of strong depletion 

(<-10%) near the centerline between 𝑥 = ±200 mm  and ±400 mm  continues around the 

periphery of the erosion crater formed by the local penetration of the hot jet (Figure 9.8). The crater 

geometry predicted by the model is elliptical, 200 mm along the x-axis and 100 mm along the y-

axis which agrees with the shape of the depletion regions in experiments and predictions. Directly 

beneath the impingement point of the jet a depletion region exists with the same diameter of the 

jet (about 45 mm). Between the depleted center and depleted periphery of the crater, a nominal to 

slightly enriched region is observed. Recalling that shrinkage-driven flow is directly related to the 

vertical length and orientation of the sump gives some confidence that the model accurately 

captures phenomena responsible for this macrosegregation feature in experiments. Similar to 

conventional casting, enrichment regions are found near the surfaces and adjacent to the centerline 

depletion region, all of which are under-predicted by the model. A summary of the final 

segregation maps predicted for jet-stirred casting over the experimental uncertainty band of grain 

size and morphology is provided in Figure 9.11. 

To further demonstrate the aforementioned macrosegregation trends, experimental values 

are averaged along the thickness profile from the representative area between x=-50 mm and x=0 

mm (Figure 9.8) and compared to the numerical predictions at x=0 mm along the same profile. 

Averaging the experimental values is done to better elucidate the basic change in macrosegregation 

in the presence of penetrating jet. In Figure 9.9, the average experimental profiles (indicated by 

the black markers with the standard deviation of the 3 readings) are compared to numerical 

predictions across the range of experimental grain sizes and assumed internal solid fractions. The 

nominal predictions are indicated by the hollow red circles and remaining predictions are indicated 

using solid gray circles, meant to represent the aleatoric uncertainty band of the grain morphologies 

used in the simplified model. For both conventional casting, the subsurface is close to the nominal 

composition in both experiments and predictions. The segregation increases to a maximum 

enrichment at about 110 mm in the model and 125 mm in the experiments. However, it is noted 

that if a larger representative area were taken for the experiments, agreement in these positions 

would improve. Moving closer to the centerline, both model and experiments show the segregation 

drop to a maximum depletion of about -14%. Again, the extent of this maximum depletion region 

is slightly larger (about 25 mm) in the experiments compared to the predictions. For jet-stirred 
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casting, surface enrichment is underpredicted by the numerical model. Since this enrichment is 

consistent across several jet-stirred ingots, it is possible that permeability of the globular 

microstructure is underpredicted using the current model inputs parameters. The maximum 

depletion regions below the jet impingement point and along the periphery of the erosion crater 

are in excellent agreement between experiments and prediction and have the approximately the 

same severity as convectional casting (about -14%). From these combined results, it appears that 

the numerical model sufficiently captures the transport phenomena leading the macrosegregation 

in both conventional and jet-stirred casting. In order to elucidate the interplay between various 

transport phenomena controlling macrosegregation, a more complete description of the flow field 

is offered in the next section. 
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Figure 9.8: Comparison of the experimental segregation contours (left) to the numerical prediction 

(right) using the average grain size and morphology parameters for conventional and jet-stirred 

casting. 

 

 

Figure 9.9: Comparison of macrosegregation profiles across the quadrant thickness for 

convectional casting (left) and jet-stirred casting (right). The experimental data indicated by the 

solid black markers was averaged over a representative area extending 115 mm from the mid-

width. 

  



 

 

 

1
9
0
 

 

 

 

 

Figure 9.10: Comparison of final macrosegregation fields in the conventional ingot quadrant for various grain size and morphology 

parameters within the uncertainty band of the experimental data. 
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Figure 9.11: Comparison of final macrosegregation fields in the jet-stirred ingot quadrant for various grain size and morphology 

parameters within the uncertainty band of the experimental data. 
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9.3.3 Characterization of the Flow Field 

Visualization of the 3-D flow field presents a unique challenge for jet-stirred casting since 

the velocities in the sump span several orders of magnitude and the flow field is unsteady. The 

same features of the jet-stirred flow field make it difficult to compare to conventional casting 

where the flow in the core of the sump is quiescent. For this reason, previous studies have generally 

omitted the 3-D flow field characterization which is crucial towards the understanding of 

macrosegregation development [63,64]. Figure 9.12 shows contour plots of the z-component of 

mixture velocity for flow field “B” at different depths in the sump previously marked in Figure 

9.7. A symmetric logarithmic scaling is used for better visualization where red indicates upward 

flow and blue indicates downward flow in the sump. To highlight the direction of the secondary 

flow field, unit vectors of the x-component and y-component are shown.  

For conventional casting, the inflow penetrates to a depth of 200 mm before thermal 

buoyancy forces drive the inflow upwards towards the top surface indicated by the strong red 

region surrounding the inflow at z = -100 mm. The secondary flow field is uniformly rotating in a 

consistent counterclockwise direction at various depths in the sump. Along the packing interface, 

negative buoyancy forces initiated near the chilled surface drive the fluid downwards where it 

either becomes entrained into the mushy zone or enters the recirculation cell in the slurry where it 

has a slight upwards component.   

For jet-stirred casting, the inflow is strong enough to overcome buoyancy and shear effects 

and penetrated until the bottom of the sump is contacted at a depth of about -700 mm. Competition 

between the upward buoyancy forces in the hot jet and downward hydrostatic and electromagnetic 

forces persists as the jet is driven into the sump until buoyancy eventually forces the inflow towards 

the top surface. This is similar to the flow field reported in ref. [49] for axisymmetric billets and 

consistent with experimental observation of a perturbed top surface around the downspout. A 

counterclockwise rotation similar to conventional casting is observed for most of the secondary 

flow, however more lateral mixing occurs. The flow in most of the sump has a stronger upflow 

than conventional casting due to convergence of flow cells driven independently by forced 

convection and buoyancy along the chilled surface. 

Figure 9.13 shows contour plots of composition and corresponding unit vectors of the 

mixture velocity along the y=0 mm and x=0 mm planes. Again, it is shown that in both casting 

methods the inflow penetrates the top surface before it is primarily entrained to the short face. For 
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conventional casting, only a single recirculation cell appears bounded by buoyance driven wall 

jets. The rigid mush formation under these conditions is about 400 mm at x=0 mm. For jet-stirred 

casting the rigid mush is only about 20 mm along the erosion crater, however the significant 

inclination along the short face results in a large horizontal component to shrinkage driven flow 

contributing the depletion in this region. 

 

 

Figure 9.12: Contour plots of the z-component velocity at different depths in the sump for 

conventional and jet-stirred casting where a negative component (blue) indicates downward flow 

in the direction of casting. The vectors are plotted as unit vectors of the x-component and y-

component to highlight the direction of the secondary flow field. The solid black lines mark the 

solidus and liquidus surfaces, while the dotted black line marks the packing interface. 
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Figure 9.13: Contour plots of the segregation and solid fraction fields at the x-z plane at the centerline and y-z plane at the midwidth. 

The top solid line marks the liquidus surface while the bottom solid line marks the eutectic surface. The dotted line indicates the packing 

interface. 
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9.3.4 Influence of Different Transport Mechanisms 

To investigate the relative importance of different transport mechanisms contributing to 

macrosegregation development, three cases are investigated in Figure 9.14. The first case only 

considers natural convection (NC) which controls the formation of the primary flow structure in 

the sump characterized by a recirculation cell bounded by buoyant jets driving flow down the 

packing interface. Figure 9.15 shows that natural convection contributes +1.5% centerline 

segregation through the advection of solute-enriched liquid in the rigid mush towards the centerline 

via negative buoyancy. 

In the second case, the influence of relative grain motion (GM) is accounted for. Under 

these conditions, the flow in the slurry and rigid mush are essentially unchanged, however a loosely 

packed bed of grains accumulated near the centerline. As these grains coarsen and settle in the 

quiescent core of the sump, they cause negative segregation near the centerline. The accumulation 

of these grains enriches the slurry, which is recirculated and entrained into the rigid mush between 

x=100 and 200 m contributes to a positive segregation in this region. Thus, grain motion 

contributes -2.8% to centerline segregation due to the accumulation of solute-depleted grains at 

the centerline and +1.5% to the midthickness segregation due to the enrichment of the slurry.  

Based on the difference in packing interface between the previous cases, two different 

mechanism for grain coalesce can be identified. The first mechanism is for grains along the 

inclined sump to coalesce by a rapid growth and impingement. This is supported by the 

micrographs in Figure 9.4, which contains dendritic grains increasing in size towards centerline.  

The second mechanism is for the remaining grains to coarsen and settle in the thermally stratified 

region near the centerline where accumulate. This is also supported from the micrographs in Figure 

9.4, which contains globular grains near the centerline. 

While formation of this loosely packed bed of globular grains has long been attributed as 

the primary cause of depleted centerlines in DC casting, it is does not appear to independently 

cause this feature. When shrinkage drive flow is considered, a significant change in the orientation 

of the interdendritic liquid is observed in the rigid mush. The flow is now oriented normal to the 

solid fraction isocontours pulling highly enriched liquid away from the centerline and towards the 

midthickness. As shown in Figure 9.15, this flow field contributes the majority of 

macrosegregation, -10% to centerline and +2% to mid-thickness. 
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Figure 9.14: Segregation formation along the thickness for various transport mechanisms The top 

solid line marks the liquidus surface while the bottom solid line marks the eutectic surface. The 

dotted line indicates the packing interface. Streamlines are calculated in the ingot frame of 

reference. Three cases are provided: natural convection only (NC), natural convection and grain 

motion (NC+GM), and natural convection, grain motion, and shrinkage (NC+GM+SH). 
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Figure 9.15: Cu segregation profiles along the thin face of rolling slabs for different transport 

mechanisms. 

 

9.3.5 Conclusions 

The formation of a loosely packed bed of globular dendrites, which has long been suspected 

to contribute to centerline depletion in conventional casting has been confirmed both numerically 

and experimentally. The numerical study has shown that the accumulation of these solute-depleted 

grains does not independently contribute to centerline depletion. Instead, the accumulation of these 

grains tends to increase the thickness of the rigid mush which allows for a significant volume of 

solute-enriched liquid to be transported away from the centerline via shrinkage driven flow. 

Supplying a jet down the centerline tends to reduce the thickness of the rigid mush, prevent the 

accumulation of grains near the centerline, and significantly refines the microstructure via dendrite 

fragmentation. From these studies, it appears beneficial for DC casting practices to move towards 

agitated or stirred melts during the steady state casting regime, and away from distribution bags 

which tend to promote thermal stratification and severe centerline depletion. Further design of 

these jets is necessary to target the optimal conditions which observed in this study characterized 

by the formation of a small erosion crater in the rigid mush.  
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 CONCLUSIONS AND FUTURE WORK 

The purpose of this work was to investigate the role that grain motion plays in 

macrosegregation development during equiaxed solidification, particularly in the direct chill (DC) 

casting process. A mixture model was rigorously derived from the microscale transport equations 

in a form that retained appropriate relationships for the grain structure and microsegregation 

behavior during equiaxed solidification. Implementation of this model onto OpenFOAM, an open-

source CFD platform based on the finite volume method (FVM) for co-located grids, ensures that 

this model will continue to benefit from advances in state-of-the-art developments. The use of co-

located grids required a new formulation of the drag force used in the mixture momentum equation 

to prevent spurious velocities near discontinuous interfaces. A semi-implicit formulation that treats 

all body forces at the face-centers of the control volume was proposed and verified. This 

formulation has a general importance to the multiphase modeling community, far beyond the 

somewhat narrow scope of equiaxed solidification modeling. Additionally, a diffuse phase flux 

method was proposed and verified for reducing the sensitivity of composition predictions to the 

numerical grid and the orientation of the packing interface. Several previous attempts have focused 

on artificially smoothing the packing interface over a predefined solid fraction range; however, 

these methods only work under certain simulation conditions. The flux method proposed here is 

the first to target composition artifacts directly without changing the overall macrosegregation 

trends. 

Once the previous issues relating to spatial discretizations on co-located grids were addressed, 

attention was turned towards the microscale relationships used for thermodynamic model closure. 

A simplified analytical model which considers finite diffusion in the solid and density change 

during solidification was derived and implemented using a robust and efficient semi-implicit 

source based numerical algorithm. This same method was applied to the volume-averaged 

microsegregation models producing what is currently believed to be the fastest and most stable 

implementation of such a model to date. These two microsegregation models were compared and 

it was determined that the undercooling predicted by the volume-averaged microsegregation model 

had an insignificant effect of the transport phenomena and macrosegregation development in 

simulations of equiaxed solidification. Additionally, it was demonstrated that while the grain 

structures predicted by these models follow the correct physical trend that grain dendricity 
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increased as the final grain size increased, there is currently too much uncertainty in the closure 

relationships and model input parameters to confidently use them to predict actual casting grain 

structures. Although the morphology of grains is expected to differ across a casting, the spatial and 

transient variation of the internal solid fraction predicted by the model did not significantly affect 

the macrosegregation predictions compared to models where this parameter was fixed. Therefore, 

a more pragmatic approach was taken, and a single characteristic internal solid fraction and final 

grain size are supplied as inputs to the model. These parameters only affect the hydrodynamics of 

the system, specifically the solid fraction upon coalescence and the settling rate of grains.  

This simplified grain morphology model was used to investigate the role of grain motion on 

macrosegregation development in equiaxed solidification, specifically in horizontal and vertical 

DC casting. In horizontal DC casting, the casting axis is perpendicular to gravity and there is a 

tendency for grains to accumulate along the bottom of the casting. Feeding liquid metal through a 

constrained inlet near the bottom suspends grains in the slurry both reducing the overall 

macrosegregation and improving the macrosegregation symmetry in the ingot. In vertical DC 

casting, the casting axis is parallel to gravity and there is a tendency for grains to accumulate in 

the center of the ingot. It was determined that a strong localized jet at the centerline can suspend 

grains in the slurry and reduce negative centerline segregation. The change in segregation is 

attributed to a combination of reducing the accumulation of solute-depleted grains near the 

centerline and thinning the rigid mush where solidification shrinkage pulls enriched liquid away 

from the centerline. The strong localized jet also causes significant refinement and homogenization 

of the grain structure, which improves the mechanical properties of the ingot. These studies 

indicate that it is beneficial for DC casting practices to move towards agitated or stirred melts, and 

away from conventional practices which tend to promote thermal stratification and localized 

accumulation of equiaxed grains. 

10.1 Recommendations for Future Work 

The numerical model developed and implemented in this work has demonstrated that 

computationally efficient 3-D models can be applied towards parametric studies of large casting 

operations. In a broader context of solidification processing, this model can be used in other casting 

operations including continuous casting of steel, vacuum arc remelting (VAR), electroslag 

remelting (ESR), and plasma arc melting (PAM). In some cases, it is necessary to simulate the 
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casting operation in a fully transient manner. Such cases require dynamic meshes. This feature has 

been implemented into the current model and is explained in Appendix B of this dissertation.  The 

application of this transient model to a rolling slab cast by vertical DC casting is demonstrated. 

Future work on this model development should be focused on improving the parallelization 

efficiency of the code. Currently there is no implemented method for ensuring proper load 

balancing of the decomposed mesh on different CPUs as control volumes are added to the 

computational grid during the simulation. This feature would significantly improve the scalability 

of the current model. Another aspect of the model which should be tested is the use of higher order 

advection schemes, since it is not known how they will affect the numerical predictions. 

In order to optimize the jet-stirred casting process, turbulence should be included into the 

numerical model. The assumption of a laminar jet used in this work underpredicts viscous mixing 

in the slurry, and therefore, overpredicts the jet penetration depth. It is currently believed that an 

optimal jet should form a small erosion crater in the rigid mush allowing enough dendrite 

fragmentation to occur for grain structure refinement. Because the general shape of the erosion 

crater manifests itself in the final macrosegregation profiles (see Figure 9.8), the behavior of the 

jet for different processing conditions can be investigated through numerical studies and confirmed 

by comparison to experimental macrosegregation profiles. 

Future work should remain focused on improving the closure relationships used in the 

volume-averaged microsegregation and grain structure models, similar to ref. [58]. These models 

remain attractive since they would theoretically require less experimental trials needed to calibrate 

the simplified grain structure model to the actual casting microstructure. Alternatively, more 

pragmatic approaches to predicting grain structure may also be available following the work of 

Easton and StJohn [132], where simple analytical models for grain size as a function of 

solidification conditions in aluminum alloys are proposed. If the internal solid fraction could be 

related to the final grains size using the inverse relationship proposed in Section 7.4, then these 

simplified methods could replace the volume-averaged grain structure models altogether. 
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APPENDIX A. THERMOPHYSICAL PROPERTIES AND BINARY PHASE 

DIAGRAM INFORMATION 

Table A.1 Thermophysical properties and phase diagram data for different alloys investigated in 

this dissertation 

Property Symbol Al-4.5wt%Cu Al-6wt%Cu Pb-18wt%Sn Sn-10wt%Pb Units 

Solid density 𝜌𝑠 2632 2573 9250 7000 kg m3⁄  

Liquid density 𝜌𝑙 2460 2490 9250 7000 kg m3⁄  

Solid specific heat 𝑐𝑝,𝑠 1054 1045 176 260 J (kg K)⁄  

Liquid specific heat 𝑐𝑝,𝑙 958 950 176 260 J (kg K)⁄  

Solid thermal 

conductivity 
𝑘𝑠 180 162 17.9 55 J (m s K)⁄  

Liquid thermal 

conductivity 
𝑘𝑙 95 95 17.9 55 J (m s K)⁄  

Latent heat of fusion 𝐿𝑓 3.90 × 105 3.87 × 105 3.76 × 104 6.1 × 104 J kg⁄  

Liquid dynamic 

viscosity 
𝜇𝑙 1.3 × 10−3 1.4 × 10−3 1.1 × 10−3 1.0 × 10−3 m2 s⁄  

Solid density for grain 

buoyancy 
𝜌𝑠
𝐵 2632 2573 9250 7280 kg m3⁄  

Thermal expansion 

coefficient 
𝛽𝑇,𝑠 1.17 × 10−4 1.17 × 10−4 1.16 × 10−4 6.0 × 10−5 1 K⁄  

Solutal expansion 

coefficient 
𝛽𝐶,𝑙 −0.90 −0.90 0.49 −0.53 1 wt. fr.⁄  

Reference temperature 𝑇𝑜 953 943 558.638 493.15 K 

Reference liquid 

composition 
𝐶𝑙,𝑜 0.45 0.60 0.18 0.10 wt. fr. 

Solvent melting 

temperature 
𝑇𝑚 933.5 933.5 600.65 505.15 K 

Eutectic temperature 𝑇𝑒𝑢𝑡 821.4 821.4 456.15 456.15 K 

Maximum primary 

solid composition 
𝐶𝑚𝑎𝑥
𝛼  0.565 0.565 0.192 0.025 wt. fr. 

Eutectic composition 𝐶𝑒𝑢𝑡 0.331 0.331 0.619 0.381 wt. fr. 

Solutal back diffusion 

coefficient 
𝛽 0.0 0.0 0.0 0.0 − 

Shrinkage coefficient  λ 0.070 0.033 0.0 0.0 − 
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APPENDIX B. EXTENSION OF MODEL TO DYNAMIC MESHES 

 In order to simulate transient casting operations, a dynamic mesh is often required. A 

dynamic mesh refers to a computational grid that moves during the simulation. Implementation of 

dynamic meshes is not a trivial task, especially for the unstructured meshes used in OpenFOAM. 

The indexing of unstructured meshes is arbitrary, so the connectivity of elements (known as the 

mesh topology) must be defined and stored. This problem is further complicated when the mesh 

topology changes, and efficient parallelization is required. 

A general overview of the dynamic mesh methods used for developing a transient casting 

model is provided here. The conservation of a general transport quantity on an arbitrary moving 

volume 𝑉(𝑡), bounded by a closed surface 𝑆(𝑡) is written as [133]: 

𝑑

𝑑𝑡
∫ 𝜌𝜙𝑑𝑉
𝑉(𝑡)

+∫ 𝜌(𝒖− 𝒖𝑚)𝜙 ∙ 𝒏𝑑𝑆
𝑆(𝑡)

= ∫ 𝛤∇𝜙 ∙ 𝒏𝑑𝑆
𝑆(𝑡)

+∫ 𝑆𝑑𝑉
𝑉(𝑡)

 (B.1) 

 

where  𝒖  is the absolute velocity and 𝒖𝑚  is the mesh velocity. The difference between these 

velocities, 𝒖 − 𝒖𝑚, is the relative velocity. The relative flux is used for the dependent variable 𝜙 

for implicit time integration of the governing equation. However, absolute fluxes must be used for 

any explicit terms, such as the phase mass flux in the latent heat term of the temperature equation, 

Eqn.(2.82). As shown in Ferziger and Perić [134], a mass source can appear in the mass 

conservation equation as cell faces move. To avoid this erroneous source term, the Space 

Conservation Law (SCL) [135,136] is applied: 

𝑑

𝑑𝑡
∫ 𝑑𝑉
𝑉(𝑡)

−∫ 𝒖𝑚 ∙ 𝒏𝑑𝑆
𝑆(𝑡)

= 0 (B.2) 

 

which is the relationship between the rate of change of the volume and the velocity of the boundary 

surface. Calculating the volume swept by a face in a time step is handled by the meshphi() 

operation in OpenFOAM, described in [133,137]. If cells have undergone topology modification, 

the mass fluxes on the faces must be modified to ensure continuity. To do so, a corrective pressure 

equation like Eqn. (4.27) is solved using: 
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∑(
[𝜌𝑃]𝑓
[𝑎𝑃]𝑓

|𝑺𝑓|∇𝑓
⊥(pcorr)) =∑(F𝑓(𝑥, 𝑡

𝑜))

𝑓𝑓

 (B.3) 

 

where 𝐹𝑓(𝑥, 𝑡
𝑜) denotes the mass flux computed at the previous time step that is remapped onto 

the new mesh. The mass flux can then be corrected using: 

F𝑓 = F𝑓
𝑜 −

[𝜌𝑃]𝑓
[𝑎𝑃]𝑓

|𝑺𝑓|∇𝑓
⊥(pcorr) (B.4) 

 

With some understanding of the numerical considerations of dynamic meshing and 

topology changes having been established, focus can shift towards the specific implementation of 

these features for transient casting simulations. As shown in Figure B1, a list of cell faces is 

determined along a user specified reference plane, which provides the demarcation between the 

static and moving mesh. The cells on the moving side of the refence plane are marked for extrusion. 

These cells will expand to twice their original size before a topology change occurs, at which point 

a modified version of layeradditionremoval currently available in OpenFOAM is used to insert a 

new layer of faces in the middle of the extruded cells. For DC casting simulations, the reference 

plane is placed a few cells away from the top boundary and the extrusion direction is chosen in the 

direction of gravity.  

An example of a 3-D dynamic mesh simulation with topology modification for the nominal 

conventionally cast Al-4.5wt%Cu rolling slab studied in Chapter 9 is provided in Figure B2. Such 

simulations can be used to study the start-up procedures used in DC casting. The composition 

profiles along the casting direction at the centerline and 50 mm away from the centerline are 

provided in Figure B2. Enrichment near the ingot butt is attributed to shrinkage driven flow in the 

direction of gravity, and the steady casting regime occurs at about 1200 mm. These results are in 

excellent qualitative agreement with the experimental profiles provided in ref. [121]. Figure B4 

shows the sump profile 250 seconds after the start of jet-stirring with and without a combo-bag. 

Significant remelting of the solid shell along the bottom block occurs without the combo-bag 

causing a bleed-out and termination of casting. The two previous results could be used in 

conjugation to determine the optimal time to remove the combo-bag for jet-stirred casting. 
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Figure B.1: Illustration of the mesh motion and topology logic used for transient casting 

simulations. 
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Figure B.2: Composition profiles for a transient 3-D simulation of DC casting of Al-4.5wt%Cu rolling slab (1540 mm x 600 mm). 
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Figure B.3: Predicted development of centerline and off-centerline Cu segregation along the 

casting of an Al-4.5wt%Cu rolling slab (1540 mm x 600 mm). 

 

 

Figure B.3: Comparison of the sump profiles at 250 s after the start of casting for an Al-4.5wt%Cu 

rolling slab (1540 mm x 600 mm) with and without a combo-bag and fed with a narrow jet at the 

centerline. 
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