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LIST OF SYMBOLS

ε Symbol of the empty word

A The set of letters in the alphabet. By convention, an alphabet set com-

posed of ` letters is A = {a1, a2, · · · , a`};

if ` = 2, then A = {a, b}.

A∗ The set of all words of finite length on the alphabet A;

The set A∗ includes the empty word ε

U A set of pattern words. A set of patterns composed of r pattern words

is U = {u1, u2, · · · , ur}.

w A word (text)

|w| The length of a word w

|w|uk
(also |w|k) The number of occurrences of the pattern uk in the word w,

where k ∈ {1, 2, . . . , r}.

When no ambiguity exists, |w|uk
can be simplified to |w|k.

In particular, |w|uk
= 1 if w = uk.

u The decorated word of a word u. Any words in Sans Serif font are

decorated (either monocolored or bicolored, depending on the context).

û The last letter of a word u

c (also Skel(c)) The skeleton of a cluster c.

c̃ (also Flip(c)) The Flip of a skeleton c. It is a set of clusters which share

the same skeleton c, and can also be represented by a fully bicolored

decorated text.

[ · ] The square bracket displays the letter or word immediately before the

word of interest.

e.g., [a]w signifies that the word w starts after a letter a.

π(w) (also or πw) The weight of a word w

aπ(w) (also aπw) The weight of a word w, which starts after the letter a. (Used

in Markov processes)
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pij (also pi,j, or p(i, j)) The transition probability from letter i to letter j,

in a Markovian stochastic process of order 1

P(`×`) The transition matrix in a Markov order 1 stochastic process, where ` is

the size of the alphabet

E(Xn) The expectation of a random variable Xn

J·K Iverson indicator notation. JSK =

 0 if S is false

1 if S is true
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ABSTRACT

In this dissertation, we provide combinatorial methods to obtain the probabilistic mul-

tivariate generating function that counts the occurrences of patterns in a text generated by

a Markovian source. The generating function can then be expanded into the Taylor series

in which the power of a term gives the size of a text and the coefficient provides the proba-

bilities of all possible pattern occurrences with the text size. The analysis is on the basis of

the inclusion-exclusion principle to pattern counting (Goulden and Jackson, 1979 and 1983)

and its application that Bassino et al. (2012) used for obtaining the generating function in

the context of the Bernoulli text source. We followed the notations and concepts created by

Bassino et al. in the discussion of distinguished patterns and non-reduced pattern sets, with

modifications to the Markovian dependence. Our result is derived in the form of a linear

matrix equation in which the number of linear equations depends on the size of the alphabet.

In addition, we compute the moments of pattern occurrences and discuss the impact of a

Markovian text to the moments comparing to the Bernoulli case. The methodology that

we use involves the inclusion-exclusion principle, stochastic recurrences, and combinatorics

on words including probabilistic multivariate generating functions and moment generating

functions.
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1. LITERATURE REVIEW

The study of pattern occurrence problems can be traced back to the late 1970s and early

1980s, when Guibas and Odlyzko established the foundations of the analysis from a combina-

torial viewpoint in their two publications in 1981 [ 19 ] [ 18 ]. They also introduced the notion

of correlations between words in order to represent how a word overlaps with another. An-

other foundational work was done by Goulden and Jackson in 1979 [ 17 ] and 1983 [ 16 ]. They

introduced a very powerful method to count pattern occurrences in a text, when the pattern

set is reduced. In a reduced set of patterns, no pattern word is a substring of another pattern

word. Their method is referred to as the inclusion-exclusion method (or cluster method in

some publications), and characterized by counting patterns in which some occurrences are

labeled.

A very detailed publication by Apostolico [ 2 ] in 1985 introduced the use of a suffix tree

in computer science. A suffix tree plays a core role in pattern matching and has been used

in some exceptional algorithms, such as Knuth-Morris-Pratt [ 22 ] for string searching and

Lempel-Ziv 77 [ 33 ] for lossless data compression. As the research of pattern matching prob-

lems became more important and useful in computer science, more people started working

on this problem.

Several authors studied the topic of no pattern occurrences during 1980s and early 1990s.

In Blom et al. [ 6 ] and Breen et al. [ 7 ], this problem was considered in a probabilistic approach

by using probability generating functions, in which one is more interested in the probability

of certain occurrences, rather than the enumeration. Gerber et al. [ 14 ] treated the question

in a inspired viewpoint through martingale argument in addition to general theory of Markov

chain.

In 1991, Chrysaphinou et al. [ 8 ] developed the independent case of Guibas and Odlyzko.

They assumed that the letters in a text are not generated independently. Instead, the letters

are generated by a source that follows Markov of order 1 dependence. They also studied

the generating function of waiting time for multiple patterns, and provided results that no

pattern occurs in a text produced by a Markovian source.
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In 1995, Prum et al. [ 28 ] considered the Markov model, and provided the limiting distribu-

tion of pattern occurrences but with no precise variance computation. By using a martingale

approach and a conditional approach, they proposed two asymptotically standard normal

statistics to find and classify words when a first-order Markov chain model is assumed.

In 1997, Flajolet et al. [ 12 ] used a bivariate generating function which follows asymptotics

of singularity perturbation, and studied the number of pattern occurrences in a random

binary search tree (BST). Their results demonstrate that on average, the frequency of the

occurrence of any specific pattern is proportional to the size of a randomly grown BST. In

contrast, the probability of BSTs with forbidden patterns is exponentially small. The small

probability can be described in the form of Bessel functions.

Since the late 1990s, on the foundation of the results in nearly 20 years, three approaches

were developed quite independently in the study of the pattern occurrences problem.

1.1 Inclusion-exclusion

The aforementioned inclusion-exclusion counting method was developed by Goulden and

Jackson. It is usually in the form of a multivariate generating function, in which each pattern

can be tracked by a formal parameter. In 1999, Noonan and Zeilberger [ 26 ] extended the

inclusion-exclusion method beyond the reduced set of patterns and solved the general non-

reduced case.

The method of inclusion-exclusion is then formalized by Bassino et al. [  3 ][ 4 ][ 5 ]. They

introduced new notations and concepts, and presented a state-of-the-art approach so that

the general counting problem can be solved by obtaining the multivariate generating function.

Their approach can be applied to Bernoulli texts with reduced or non-reduced pattern sets.

This thesis can be considered an extension of Bassino et al.’s method to Markovian

sources, in a probabilistic point of view.

1.2 Pattern frequency occurrences

The univariate analysis by Guibas and Odlyzko [  19 ][ 18 ] was further extended to the

multivariate case by Szpankowski, Régnier and Jacquet [ 21 ][ 30 ][ 31 ]. In the case of the re-

13



duced pattern set, their studies of pattern correlation enables handling overlapping patterns

precisely, and counting several patterns simultaneously.

Building on the these results, Vallée [ 32 ] applied the previous analysis to dynamical

sources. Lothaire [  23 , Chapter 7], a pseudonym adopted to represent a group of authors,

considered a Markovian source on the symbol emission.

The methodology is important in the application on data structures, and particularly

useful in analyzing the complexity of tries and trees. Subsequent works include Jacquet

and Szpankowski [ 20 ], Régnier and Denise [ 29 ], Fayolle and Ward [ 11 ], Gheorghiciuc and

Ward [ 15 ], and Park, Hwang, Nicodème, and Szpankowski [ 27 ].

1.3 Automaton

The algorithm of automaton was originally invented by Aho and Corasick [ 1 ] in order to

keep track the occurrences of finite patterns in a text. In 2002, Nicodème et al. [ 25 ] provided

an algorithm to construct a “marked automata” which can identify one regular expression for

either the Bernoulli or Markovian case. This algorithm was then extended by Nicodème [  24 ]

for the purpose of counting multiple patterns simultaneously and handling pattern matching

with errors. The classical Aho-Corasick automaton [  1 ] can also be used when the pattern

set is finite.

For an algorithm treatment of pattern matching, see Crochemore et al. [ 10 ] [  9 ].

14



2. DEFINITIONS AND NOTATIONS

In this chapter, we introduce the notations and fundamental concepts that are used through-

out all chapters.

2.1 Basic definitions

Alphabet. Let A be the alphabet consisting of all letters under consideration. In

general, an alphabet is a set of ` letters denoted as A = {a1, a2, . . . , a`}. A two-element

alphabet is called a binary alphabet, e.g. A = {a, b} or A = {0, 1}. We will use a binary

alphabet in most of our examples for simplicity.

Pattern words. The set of pattern words is denoted by U = {u1, u2, . . . , ur}, where r

is finite. Each pattern word in U is distinct. If there is only one pattern word, we omit the

subscript index and refer to the pattern word as u.

The pattern set U is reduced if no pattern in U is a factor (i.e., a substring) of another.

Otherwise the pattern set is non-reduced.

Occurrences. For a given pattern set U = {u1, u2, . . . , ur} and a text w of length |w|,

we follow the definition given by Bassino et al. [ 5 ] and define a sequence of occurrences

index O = (Oi)|w|i=1 as

Oi := {j |uj has an occurrence ending at position i of w}

Example 2.1.1 Given pattern words U = {u1 = abb, u2 = bba, u3 = aabb} and a text w =

aabbaaabbabbbba (therefore, |w| = 15), the sequence of occurrence index O is

Oi =



{1} if i ∈ {12}

{1, 3} if i ∈ {4, 9}

{2} if i ∈ {5, 10, 15}

∅ otherwise

Therefore, all occurrences are recognized by (Oi)15
i=1.

15



In Example  2.1.1 , all occurrences are recognized and recorded in the non-empty sets

from (Oi)15
i=1. However, when needed, we can select a subset of the occurrences from (Oi)ni=1.

The occurrences that are selected are referred to as distinguished occurrences. The distin-

guished occurrence indices are denoted by D := (Di)|w|i=1 such that Di ⊆ Oi for all 1 ≤ i ≤ |w|.

Decorated text. Given a pattern set U and a text w of length |w|, a decorated text w

is a pair w = (w,D), where D specifies which occurrences are distinguished (i.e., recognized).

The text w is referred to as the support of w [ 5 ].

Example 2.1.2 We select a subset of (Oi)15
i=1 from Example  2.1.1 , and use the notation D =

(Di)15
i=1 to denote the subset as follows

Di =



{1} if i ∈ {4}

{1, 3} if i ∈ {9}

{2} if i ∈ {15}

∅ otherwise

A straightforward visual way to represent a decorated text is to label the pattern in-

dices Di above the letter at position i. In this way, the aforementioned decorated text w =

(w,D) is then represented as

aab
¶

baaab

¶
¸

babbbb
·
a (2.1)

A text is fully decorated when D = O. The fully decorated text in Example  2.1.1 is

aab

¶
¸

b
·
aaab

¶
¸

b
·
ab

¶

bbb
·
a (2.2)

From ( 2.2 ) we can see there are 8 occurrences in the fully decorated text. In fact, there are a

total of 28 = 256 decorated texts sharing the same support aabbaaabbabbbba. The examples

( 2.1 ) and ( 2.2 ) are two of the 256 possible decorated texts.

The idea of decorated texts was first introduced in Bassino et al. [ 5 , Section 4]. It is

a very succinct and efficient way to display the distinguished occurrences of patterns by

marking numbers above the corresponding letters.

16



We note that if a fully decorated text has exactly k occurrences of patterns, then there

are 2k decorated texts associated with it. It is because each of the k occurrences in the fully

decorated text could be distinguished or not. Two decorated texts with the same support

but decorated differently are considered distinct. Therefore, there are a total of 2k decorated

texts sharing the same support with the fully decorated text.

2.2 Probabilistic models of texts

We consider a text w of length n := |w| a substring {Xk}j+n−1
k=j from a one-sided infinite

sequence of random variables {Xk}∞k=1, where each random variable Xk is a letter generated

over a pre-defined alphabet A, with a probability measure.

Weights. The weight of a word w ∈ A∗ is denoted by π(w) or πw. As our focuses are

the probabilities of pattern word occurrences, the weight of w is the probability of w in the

model, namely, π(w) = Pr(w). Notice that in a enumerative model (counting the number of

occurrences), we instead use π(w) = 1.

Assuming w = xjxj+1 · · ·xj+n−1, the weight of w, representing its probability mass, is

given by

π(w) = Pr(w) = Pr
j+n−1⋂

k=j
{Xk = xk}


= Pr (Xk = xk; j ≤ k ≤ j + n− 1)

(2.3)

where the lower-case letters xk stand for the realization of a stochastic process. Here we

discuss two types of stochastic processes—a memoryless source and a Markov of order one

source.

Memoryless source. If a text w is generated by a memoryless source, each random

variable Xk in the sequence {Xk}∞k=1 occurs independently from one another and the Xk are

identically distributed. In other words, every letter aj in the alphabet A = {a1, a2, . . . , a`}

has a probability measure, denoted by π(aj) or πaj
, which satisfies ∑`

j=1 π(aj) = 1. There-

fore, {Xk}∞k=1 is an outcome of an infinite sequence of Bernoulli trials.

17



According to Equation ( 2.3 ), with a memoryless source, the weight of a word w is obtained

by

π(w) = Pr({Xk}j+n−1
k=j )

= Pr (Xk = xk; j ≤ k ≤ j + n− 1)

=
j+n−1∏
k=j

π(xk)

(2.4)

Markov source. When the source follows a Markov chain of order one, each random

variable Xk in the sequence {Xk}∞k=1 occurs with a conditional probability based on its

previous letter (except the first one, X1, which can be a designated letter or a random letter

with a given probability).

An ` × ` stochastic matrix P(`×`) should be pre-defined, providing the transition proba-

bilities from any letter to another, as follows:

P(`×`) :=



pa1,a1 pa1,a2 · · · pa1,a`

pa2,a1 pa2,a2 · · · pa2,a`

... ... . . . ...

pa`,a1 pa`,a2 · · · pa`,a`


(2.5)

where pi,j (or p(i, j), or pij when there is no ambiguity) describes the conditional probability

of the occurrence of letter j immediately after letter i:

pi,j = Pr(Xk+1 = j | Xk = i), where i, j ∈ A. (2.6)

If a word w = xjxj+1 · · ·xj+n−1 is generated by a Markov source of order 1, then π(w),

the weight of the word, must be dependent on the letter Xj−1. In order to specify this letter,

we add a left superscript on the weight of w.

απ(w) = Pr (Xk = xk; j ≤ k ≤ j + n− 1 | Xj−1 = α)

= p(α, xj) · p(xj, xj+1) · p(xj+1, xj+2) · · · p(xj+n−2, xj+n−1)
(2.7)

where α and xk ∈ A.
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2.3 Cluster

When a text is decorated by distinguished occurrences, we can define clusters to help

identify the parts of a text which are covered by the decorated distinguished occurrences.

The concept of cluster was created by Goulden and Jackson [  17 ][ 16 ], and adopted by Bassino,

Clément, Fayolle and Nicodème [ 4 ][ 5 ].

Cluster. A cluster c with respect to a pattern set U is a decorated text such that

• every letter of c must be covered by at least one distinguished occurrence;

• it is not possible to split the word into two parts without splitting a distinguished

occurrence.

We use CU to denote the class of all clusters with respect to the pattern set U . The

subscript can be skipped when no ambiguity occurs.

In order to clarify the definition of a cluster, we have the next two examples.

Example 2.3.1 Consider a patter set U = {u1 = ab, u2 = abab}. The decorated pattern

words are

u1 = a
¶

b, and u2 = aba
·

b

By definition, we can name a few clusters, such as

a
¶

b, aba
·

b, a
¶

ba
·

b, aba

¶
·

b, a
¶

ba

¶
·

b, aba
·

ba
·

b, a
¶

ba
·

ba
·

b, aba
·

ba

¶
·

b, aba
·

ba
·

ba
·

b, etc. (2.8)

We also list some examples of decorated texts that violate the definition, therefore, do

not belong to clusters:

ab, aa
¶

b, aa
¶

bb, a
¶

bab, a
¶

ba
¶

b, aba
·

bab, ababa
·

b, a
¶

baba
·

b, a
¶

ba

¶
·

ba
¶

ba

¶
·

b, etc. (2.9)

Each item in the list (  2.9 ) has one or more characters that conflict with the definition of

a cluster. Some of the items may contain letters that are not covered by any distinguished

occurrences, such as

ab, aa
¶

b, aa
¶

bb, a
¶

bab, aba
·

bab, ababa
·

b
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where the bold letters are not covered by any occurrences.

Some other items in ( 2.9 ) have all of their letters covered by at least one cluster. However,

it is possible to split the word into two parts without splitting a distinguished occurrence.

Such decorated words in ( 2.9 ) are

a
¶

b|a
¶

b, a
¶

b|aba
·

b, a
¶

ba

¶
·

b|a
¶

ba

¶
·

b

where “|” is a splitter.

Here we make two remarks.

(1) A decorated pattern word in which only the pattern per se is distinguished, is always

a cluster. For instance, u1 = a
¶

b and u2 = aba
·

b are both clusters.

(2) A decorated text in which any distinguished occurrence has an overlap with another

distinguished occurrence, is not necessarily a cluster, even if every letter in this decorated

text is covered by at least one distinguished occurrence. 

1
 

The decorated text a
¶

ba

¶
·

ba
¶

ba

¶
·

b is an example. Although every letter is covered by two

distinguished occurrences (therefore, overlapped occurrences), it can still be split into two

parts, a
¶

ba

¶
·

b|a
¶

ba

¶
·

b, without breaking any of its distinguished occurrences.

Example 2.3.2 We analyze the clusters of two decorated texts shown in Example  2.1.2 ,

where the pattern set is U = {u1 = abb, u2 = bba, u3 = aabb} and the support text is w =

aabbaaabbabbbba.

(1) The fully decorated text is

aab

¶
¸

b
·
aaab

¶
¸

b
·
ab

¶

bbb
·
a (2.10)

The fully decorated text ( 2.10 ) is only composed of three concatenating clusters c1, c2,

and c3, where

c1 = aab

¶
¸

b
·
a, c2 = aab

¶
¸

b
·
ab

¶

b, c3 = bb
·
a

1The reason we make this remark is that in Bassino et al. [ 5 , Section 4], the definition of a cluster might
include this situation, which should have been avoided.
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Fig.  2.1 provides details of how occurrences overlap in the three clusters. From the figure

we can clearly see that (  2.10 ) = c1c2c3.

(2) There are 8 occurrences in the fully decorated text. Therefore, the total number of

decorated texts is 28 = 256. The following decorated text is one of them.

aab
¶

baaab

¶
¸

babbbb
·
a (2.11)

The decorated text ( 2.11 ) includes both clusters and letters which do not belong to a

cluster. We define the following clusters

c1 = ab
¶

b, c2 = aab

¶
¸

b, and c3 = bb
·
a

Then ( 2.11 ) = a c1 a c2 abb c3, as shown in Fig.  2.2 

aab

¶
¸

b
·
a aab

¶
¸

b
·
ab

¶

b bb
·
a

abb
bba

aabb

bba
abb

bba

c1 c2 c3

aabb
abb

Figure 2.1. aab

¶
¸

b
·
aaab

¶
¸

b
·
ab

¶

bbb
·
a = c1c2c3. The fully decorated text ( 2.10 ) is

composed of three clusters.

a ab
¶

b a aab

¶
¸

b abb bb
·
a

abb aabb
abb

bba

c1 c2 c3

Figure 2.2. aab
¶

baaab

¶
¸

babbbb
·
a = a c1 a c2 abb c3. The decorated text ( 2.11 )

contains letters (which do not belong to any clusters) and clusters.
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3. GENERATING FUNCTIONS OF DECORATED TEXTS

Generating functions of decorated texts will be discussed in detail in this chapter. By

applying techniques of analytic combinatorics to the multivariate generating function, we

may obtain statistics such as mean, variance and covariance. The methodology of generating

functions and combinatorial analysis are provided in Flajolet and Sedgewick [ 13 ].

We will start with memoryless probability models, and then take Markov sources into

account.

3.1 Generating function

In general, for any set of texts H, we define the univariate generating function

H(z) =
∑
h∈H

π(h)z|h|

where z is a formal variable for marking the length of the texts. In particular, the alphabet

set A = {a1, a2, . . . , a`} is a set of texts such that each text is one letter. The generating

function of the alphabet is

A(z) =
∑
α∈A

π(α)z

A text is generated randomly by a source, which could follow a memoryless or a Markovian

stochastic process. What we are interested in are the probabilities for the occurrences of

pattern words U = {u1, u2, . . . , ur} from the set of all texts A∗, according to

(1) the word length, and

(2) the number of occurrences (with possible overlap) of pattern words from U .

Therefore, extra formal variables are needed to mark each {uj}r1. We use xj to serve this

purpose. The multivariate generating function is

FU(z,x) = F (z,x) :=
∑
w∈A∗

π(w) · z|w| · x|w|11 · x|w|22 · · · x|w|rr (3.1)
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where x := {x1, x2, · · · , xr}, and |w|i is the total number of occurrences of pattern word ui

in w. The notation |w|i is standard, and was used in Bassino et al. [ 5 ] and Flajolet and

Sedgewick [ 13 , Chapter 3].

A generalized version of Equation ( 3.1 ) is to replace the set of all texts A∗ with any set

of texts H, where H is a subset of A∗.

The generating function that provides the probabilities of all possible pattern occurrences

in every text length is

H(z,x) :=
∑
w∈H

π(w) · z|w| · x|w|11 · x|w|22 · · ·x|w|rr (3.2)

Example 3.1.1 (1) Consider the case in which all texts are generated by a memoryless

source on the alphabet A = {a, b}. Let the text set be H = {aaa, aaba, abaa}, and the

pattern set be U = {u1 = aa, u2 = ab}. We have the following generating function.

H(z, x1, x2) =
∑
w∈H

π(w) · z|w| · x|w|11 · x|w|22

= π3
a · z3 · x2

1 + π2
aπbπa · z4 · x1x2 + πaπbπ

2
a · z4 · x2x1

= π3
a · z3 · x2

1 + 2π3
aπb · z4 · x1x2

(2) When H = A∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, · · · }, where ε stands for the

empty text, and if we again use U = {u1 = aa, u2 = ab}, then the generating function is

F (z, x1, x2) = 1 + πaz + πbz + π2
az

2x1 + πaπbz
2x2 + πbπaz

2 + π2
bz

2

+ π3
az

3x2
1 + π2

aπbz
3x1x2 + · · ·

When H includes only one text H = {w}, Equation ( 3.2 ) becomes

H(z,x) = π(w) · z|w| · x|w|11 · x|w|22 · · ·x|w|rr (3.3)

In Equation ( 3.2 ) and ( 3.3 ), all occurrences must be distinguished. In other words, the

generating function H(z,x) considers the fully decorated text (w, (Oi)|w|i=1).
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Let Q denote the complete set of the decorated texts associated with a fully decorated

text. Remember that when there are k occurrences in the fully decorated text, the number

of decorated texts is 2k.

Example 3.1.2 Let w = abab, and U = {u1 = ab, u2 = ba}. The fully decorated text is

a
¶

b
·
a

¶

b

There are 3 occurrences in the fully decorated text, and therefore, 23 = 8 decorated texts,

which are enumerated in the set Q.

Q = {abab, a
¶

bab, ab
·
ab, aba

¶

b, a
¶

b
·
ab, a

¶

ba
¶

b, ab
·
a

¶

b, a
¶

b
·
a

¶

b} (3.4)

In a decorated text, not every occurrence is necessarily recognized. In such situations,

we shall replace the formal variables xj in the generating function (  3.3 ) with tj in order to

mark the distinguished occurrences. Thus, the generating function of Q is given by

Q(z, t) :=
∑
w∈Q

π(w) · z|w|· t(# distinguished occurrences of u1)
1

· t(# distinguished occurrences of u2)
2

· · ·

· t(# distinguished occurrences of ur)
r

(3.5)

Example 3.1.3 Continuing the Example  3.1.2 . Assuming the text is generated by a mem-

oryless source, the generating function of the complete set of decorated texts, i.e., ( 3.4 ),

is
Q(z, t1, t2) = π2

aπ
2
bz

4 + π2
aπ

2
bz

4t1 + π2
aπ

2
bz

4t2 + π2
aπ

2
bz

4t1

+ π2
aπ

2
bz

4t1t2 + π2
aπ

2
bz

4t21 + π2
aπ

2
bz

4t1t2 + π2
aπ

2
bz

4t21t2

= π2
aπ

2
bz

4(1 + 2t1 + t2 + 2t1t2 + t21 + t21t2)

(3.6)

The generating function of the fully decorated text a
¶

b
·
a

¶

b is

H(z, x1, x2) = π2
aπ

2
bz

4x2
1x2 (3.7)
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From Equation ( 3.6 ) and ( 3.7 ), we can observe that

Q(z, t1, t2) = H(z, t1 + 1, t2 + 1)

In fact, it is true for any set of texts H, according to the following theorem. This classical

theorem has been known for decades, and plays a fundamental role in [ 5 ] and [ 13 , Chapter

3].

Theorem 3.1.1 Given the set of patterns U = {u1, u2, · · · , ur}, for any set of texts H, the

two generating functions,

(1) H(z, x1, x2, · · · , xr), the generating function of the fully decorated text, and

(2) Q(z, t1, t2, · · · , tr), the generating function of the complete set of decorated texts,

have the following relation.

Q(z, t1, t2, · · · , tr) = H(z, t1 + 1, t2 + 1, · · · , tr + 1) (3.8)

or equivalently,

H(z, x1, x2, · · · , xr) = Q(z, x1 − 1, x2 − 1, · · · , xr − 1) (3.9)

Proof 1 In the generating function H(z, x1, x2, · · · , xr), the operation of replacing an xj

with tj + 1, stands for the fact that the occurrence of the corresponding uj may be distin-

guished (represented by tj) or not (represented by 1).

Therefore, by replacing every xj with tj + 1, we obtain the generating function of the

complete set of decorated texts.

With Theorem  3.1.1 , we have the following corollary.

Corollary 3.1.1 Given the set of patterns U = {u1, u2, · · · , ur}, let T denote the complete

set of decorated texts on the support of A∗. Its generating function T (z, t) satisfies

T (z, t1, t2, · · · , tr) = F (z, t1 + 1, t2 + 1, · · · , tr + 1) (3.10)
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or equivalently,

F (z, x1, x2, · · · , xr) = T (z, x1 − 1, x2 − 1, · · · , xr − 1) (3.11)

Proof 2 Remember that F (z, x1, x2, · · · , xr) is defined by Equation ( 3.1 ).

When H = A∗, we have

H(z, x1, x2, · · · , xr) = F (z, x1, x2, · · · , xr)

Because T, Q are the complete sets of decorated texts of A∗, H, respectively, we have T =

Q in this case. Thus, by Theorem  3.1.1 , we obtain ( 3.10 ) and ( 3.11 ).

3.2 Generating function of clusters

A cluster is a substring in a decorated text. Thus, it is also considered a decorated text.

When the pattern set U = {u1, u2, . . . , ur} is given, there exists the set of all clusters, C,

on A∗. The generating function of a set of clusters CU (or C, if no ambiguity), denoted

by ξ(z, t), is computed by

ξ(z, t) :=
∑
c∈C

π(c) · z|c|· t(# distinguished occurrences of u1)
1

· t(# distinguished occurrences of u2)
2

· · ·

· t(# distinguished occurrences of ur)
r

(3.12)

A cluster is not necessarily fully decorated. If we are interested in fully decorated clusters,

then the generating function can be directly obtained by t→ x− 1, according to Theorem

 3.1.1 .

3.3 Generating functions of decorated texts from Markov sources

When a text is generated by a Markov source, the weight απ(w) of the text is defined in

Equation (  2.7 ). The left superscript α is the letter to the left of w, but not in w itself.
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As long as the source is Markovian, a left superscript is necessary for all generating

functions. Since we only consider first-order Markov dependence, one letter on the left

superscript is enough. For higher-order Markov dependence, the left superscripts must be

adjusted according to the order of the Markov dependence.

In the following example, we compare the generating functions of clusters in two stochastic

processes—memoryless and Markovian.

Example 3.3.1 Let the alphabet A = {a, b}, and consider the pattern set U that contains

only one pattern word U = {u} = {aba}.

(1) If the text source is memoryless, i.e., each letter, either a or b, is generated as a

Bernoulli trial, with a probability πa or πb, respectively (πa + πb = 1).

Let the decorated pattern u = ab
¶
a represent a distinguished pattern in a text. Then the

set of all clusters is

C = {ab¶
a, ab

¶
ab

¶
a, ab

¶
ab

¶
ab

¶
a, . . .} (3.13)

Equivalently, it can be summarized as

C = ab
¶
a · (b¶

a)∗ (3.14)

It is straightforward to obtain the generating function of ( 3.14 ). (See Flajolet and

Sedgewick [ 13 ] for the analogous combinatorics structures.)

ξ(z, t) = tπ2
aπbz

3

1− tπaπbz2 (3.15)

(2) If the text source is Markovian of order 1. In this case, the weight of any texts must

depend on the letter immediately before the text. We introduce the convenient notation of

putting the pre-word letter in a square bracket [ · ].

For instance, a decorated word ab
¶
a immediately after a letter a is [a]ab¶

a, which has a

weight
aπ(ab¶

a) = paapabpbaz
3t
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Similarly, the weight of [b]ab¶
a is

bπ(ab¶
a) = pbapabpbaz

3t = pabp
2
baz

3t

The generating function must consider the difference in weight. Thus, we group all the

clusters with a pre-word [a] as

aC = {[a]ab¶
a, [a]ab¶

ab
¶
a, [a]ab¶

ab
¶
ab

¶
a, . . .} = [a] ab¶

a · (b¶
a)∗

with the generating function
aξ(z, t) = paapabpbaz

3t

1− pabpbaz2t
(3.16)

For all the clusters with a pre-word [b], we have

bC = {[b]ab¶
a, [b]ab¶

ab
¶
a, [b]ab¶

ab
¶
ab

¶
a, . . .} = [b] ab¶

a · (b¶
a)∗

and the generating function

bξ(z, t) = pbapabpbaz
3t

1− pabpbaz2t
= pabp

2
baz

3t

1− pabpbaz2t
(3.17)

In many cases in the following chapters, the single pre-word letter is determined by the

last letter of the pre-word text. Hence, we use the symbol û to denote the last letter of the

text u.
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4. INCLUSION-EXCLUSION METHOD FOR REDUCED

PATTERNS WITH A MARKOVIAN TEXT SOURCE

In a set of pattern words, it is possible that some patterns are factors (i.e., substrings) of

other patterns. For instance, in the set {aa, ab, aba}, the word ab is a factor of aba. It

appears more difficult to keep track of these patterns simultaneously when some patterns

are in others. Therefore, in this chapter, we start our analysis with the simpler reduced set

of patterns, in which every pattern is not a factor of others. Then in the next chapter, we

will discuss non-reduced pattern sets.

4.1 Inclusion-exclusion method

The inclusion-exclusion method was introduced by Goulden and Jackson [ 17 ] [  16 ] to

count occurrences of patterns from a reduced set of pattern words. The weight of words in

the generating functions enables the probability models, for either memoryless or Markovian

sources.

The power of inclusion-exclusion itself goes far beyond enumerating texts. In Goulden

and Jackson [ 16 ], the number of derangements for permutations is obtained. Flajolet and

Sedgewick [ 13 , pp. 209] provides another application of counting rises in permutations.

In corollary  3.1.1 , we have introduced T, the complete set of decorated texts on the

support of A∗. Let U be the set of pattern words, and CU (or C) the class of all clusters for

the pattern set U .

The inclusion-exclusion method provides an elegant relation of T, A and C. Note that we

continue to use the notation of Bassino et al. [ 5 ], to which the following relation is attributed:

T = (A+ C)? (4.1)

By making use of the symbolic inclusion-exclusion principle and denoting by |w|u the

number of occurrences of u in w, we directly get

F (z,x) =
∑
w∈A∗

π(w)z|w|x|w|u = 1
1− A(z)− ξ(z,x− 1) (4.2)
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4.1.1 An alternative: recursive point of view

When the alphabet is A = {a, b}, a decorated text could only start with 4 possible cases:

empty (the text is empty), a letter a which does not belong to a cluster, a letter b which

does not belong to a cluster, or a cluster.

T =



ε

a · · ·

b · · ·

cluster · · ·

Therefore,

T (z, t) = 1 + πa · z · T (z, t) + πb · z · T (z, t) + ξ(z, t) · T (z, t)

= 1 + (πa · z + πb · z) · T (z, t) + ξ(z, t) · T (z, t)

= 1 + A(z) · T (z, t) + ξ(z, t) · T (z, t)

= 1 + (A(z) + ξ(z, t)) · T (z, t)

(4.3)

We then obtain

T (z, t) = 1
1− A(z)− ξ(z, t) (4.4)

According to Corollary  3.1.1 , (  4.4 ) is equivalent to ( 4.2 ).

4.1.2 Markovian source

When a Markovian source of order 1 is considered, these probability generating functions

do not only depend on the letters in the strings, but also on the previous one letter before

the strings.

Consider a pattern u = aba. Using a square bracket to display the letter directly before

the cluster, we write

[a] C = [a] ab¶
a · (b¶

a)∗ (4.5)
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and

[b] C = [b] ab¶
a · (b¶

a)∗ (4.6)

to represent the clusters with a previous letter a or b, respectively.

The generating functions are

aξ(z, t) = paapabpba · t · z3

1− pabpba · t · z2 (4.7)

and
bξ(z, t) = p2

bapab · t · z3

1− pabpba · t · z2 (4.8)

As for the set of decorated texts T, we use similar notations and denote the texts that

start after a letter a by aT (z, t). When the alphabet is A = {a, b}, a decorated text could

only start with 4 possible cases: empty (the text is empty), a letter a which does not belong

to a cluster, a letter b which does not belong to a cluster, or a cluster.

aT = [a]



ε

a · · ·

b · · ·

cluster · · ·

Thus, the following equation holds for aT (z, t).

aT (z, t) = 1 + paaz ·aT (z, t) + pabz ·bT (z, t) +aξ(z, t) ·aT (z, t) (4.9)

Similarly, for texts start after a letter b,

bT (z, t) = 1 + pbaz ·aT (z, t) + pbbz ·bT (z, t) +bξ(z, t) ·aT (z, t) (4.10)

Note that the last term in ( 4.9 ) is aξ(z, t) ·aT (z, t) and the last term in ( 4.10 ) is bξ(z, t) ·
aT (z, t). In both terms aT (z, t) appears. This is because the pattern word is u = aba and

then the clusters can be only structured in the form of ( 4.5 ) or ( 4.6 ). Therefore, no matter

a cluster starts after a letter a or a letter b, all clusters must end with a letter a.

31



We write ( 4.9 ) and ( 4.10 ) together, and have

 aT (z, t)
bT (z, t)

 =

 1

1

+

 paa pab

pba pbb

 z ·
 aT (z, t)

bT (z, t)

+

 aξ(z, t)
bξ(z, t)

 ·aT (z, t) (4.11)

The equation above is the Markovian equivalent of T = (A+C)? with a Bernoulli source.

Example 4.1.1 (One pattern word Markovian) The given pattern set only contains

one word, i.e., U = {u} = {aba}. Consider the transition matrix

P =

 paa pab

pba pbb

 =

 1/2 1/2

3/5 2/5

 (4.12)

As we discussed in ( 4.5 ) and ( 4.6 ), the clusters are in the form of

[a] C = [a] ab¶
a · (b¶

a)∗

[b] C = [b] ab¶
a · (b¶

a)∗

Therefore we have their generating functions of clusters, as follows:

aξ(z, t) = paapabpba · t · z3

1− pabpba · t · z2 =
(1

2 ·
1
2 ·

3
5 · t · z

3
)/(

1− 1
2 ·

3
5 · t · z

2
)

(4.13)

bξ(z, t) = p2
bapab · t · z3

1− pabpba · t · z2 =
((3

5

)2
· 1

2 · t · z
3
)/(

1− 1
2 ·

3
5 · t · z

2
)

(4.14)

Applying Equation ( 4.11 ) (or equivalently, Equations ( 4.9 ) and ( 4.10 ) combined), we

obtain

aT (z, t) = 1 + 1
2 · z ·

aT (z, t) + 1
2 · z ·

bT (z, t) +aξ(z, t) ·aT (z, t) (4.15)

bT (z, t) = 1 + 3
5 · z ·

aT (z, t) + 2
5 · z ·

bT (z, t) +bξ(z, t) ·aT (z, t) (4.16)

It follows that
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aT (z, t) = 100 + 10z − 30tz2 − 3tz3

2 · (50− 45z − 5z2 − 15tz2 + 6tz3) (4.17)

bT (z, t) = 5 (10 + z − 3tz2)
(50− 45z − 5z2 − 15tz2 + 6tz3) (4.18)

The corresponding generating functions are

aF (z, x) = aT (z, x− 1)

= − 3(z + 10) (−(10/3) + (x− 1)z2)
100 + (12x− 12)z3 + (−30x+ 20)z2 − 90z

= 1 + z + z2 +
(17

20 + 3
20 · x

)
z3 +

(137
200 + 63

200 · x
)
z4

+
(1133

2000 + 777
2000 · x+ 9

200 · x
2
)
z5 +O(z6)

(4.19)

bF (z, x) = bT (z, x− 1)

= 50 + (−15x+ 15)z2 + 5z
50 + (6x− 6)z3 + (−15x+ 10)z2 − 45z

= 1 + z + z2 +
(41

50 + 9
50 · x

)
z3 +

(329
500 + 171

500 · x
)
z4

+
(2741

5000 + 1989
5000 · x+ 27

500 · x
2
)
z5 +O(z6)

(4.20)

The last part of Equation ( 4.19 ) and ( 4.20 ) can be further expand to any order of interest.

They provide straightforward probabilities of any number of pattern occurrences, with a

given text length.

For instance, in Equation ( 4.20 ), we have

bF (z, x) = · · ·+
(2741

5000 + 1989
5000 · x+ 27

500 · x
2
)
z5 +O(z6)

The information it conveys is:

Assume a binary text is generated by a Markovian source of order one, with the transition

matrix Eq. ( 4.12 ). In a text of length 5 following a letter b, the probability that the pattern

word u = aba does not occur is 2741/5000. The pattern word may occur only once, with the

probability 1989/5000. Or, it may occur twice, with the probability 27/500.
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4.1.3 Generalization of 1-pattern case

In a generalized case, when the alphabet is A = {a1, a2, . . . , a`}, and we are only consid-

ering one pattern u, we have



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


=



1

1
...

1


+ P(`×`) · z ·



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


+



a1ξ(z, t)
a2ξ(z, t)

...
a`ξ(z, t)


· ûT (z, t) (4.21)

where P(`×`) stands for the Markovian transition matrix, and û denotes the last letter in the

pattern u. The letter û ∈ A is solely determined by the pattern u.

4.2 Reduced 2-pattern case

When two or more patterns exist, we start with the reduced case—meaning no pattern

is a part of another, for simplicity.

Let us start with an example. We consider u1 = abb, u2 = bba, with binary alphabet A =

{a, b}. The set of clusters C of {u1, u2} is given by

C = (ab
¶

b, bb
·
a) ·

 ∅ {·
a, b

·
a}

{b
¶

b} ∅


∗

·

 ε

ε

 (4.22)

Then the generating functions under the condition of the previous letter are as follows.

aξ(z, t1, t2) =
(
z3t1 · paapabpbb, z3t2 · pabpbbpba

)

·

I−
 0 zt2 · pba + z2t2pbbpba

z2t1pabpbb 0



−1

·

 1

1



= aη(z, t1, t2) ·

 1

1


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where
aη(z, t1, t2) =

(
z3t1 · paapabpbb, z3t2 · pabpbbpba

)

·

I−
 0 zt2 · pba + z2t2pbbpba

z2t1pabpbb 0



−1

Similarly, we have

bξ(z, t1, t2) =
(
z3t1 · pbapabpbb, z3t2 · p2

bbpba
)

·

I−
 0 zt2 · pba + z2t2pbbpba

z2t1pabpbb 0



−1

·

 1

1



= bη(z, t1, t2) ·

 1

1


where

bη(z, t1, t2) =
(
z3t1 · pbapabpbb, z3t2 · p2

bbpba
)

·

I−
 0 zt2 · pba + z2t2pbbpba

z2t1pabpbb 0



−1

Both aη(z, t1, t2) and bη(z, t1, t2) are 1× 2 row vectors, in the form of

(
(· · · )

¶

b, (· · · )·
a

)

With alphabet A = {a, b}, a text (directly after a letter a) could only start with the

following possible cases: empty (the text is empty), a letter a which does not belong to a

cluster, a letter b which does not belong to a cluster, a cluster ending in
¶

b, or a cluster ending

in ·
a.
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Thus, we have the following combinatorial structure for aT.

aT = [a]



ε

a · aT

b · bT

(a cluster ending in
¶

b) · bT

(a cluster ending in ·
a) · aT

Therefore, the set of decorated texts T has the following recurrence relations:

aT (z, t1, t2) = 1 + paaz · aT (z, t1, t2) + pabz · bT (z, t1, t2) + aη(z, t1, t2) ·

 bT (z, t1, t2)
aT (z, t1, t2)


and

bT (z, t1, t2) = 1 + pbaz · aT (z, t1, t2) + pbbz · bT (z, t1, t2) + bη(z, t1, t2) ·

 bT (z, t1, t2)
aT (z, t1, t2)


Or, in a well-organized form:

 aT (z, t1, t2)
bT (z, t1, t2)

 =

 1

1

+

 paa pab

pba pbb

 · z ·
 aT (z, t1, t2)

bT (z, t1, t2)



+

 aη(z, t1, t2)
bη(z, t1, t2)

 ·
 bT (z, t1, t2)

aT (z, t1, t2)

 .

Keep in mind that both aη(z, t1, t2) and bη(z, t1, t2) are 1× 2 row vectors.

4.3 Generalization of reduced multi-pattern case

Reduced multi-pattern cases can be derived by the same approach of the reduced 2-

pattern case. Hence, we have the following theorem.
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Theorem 4.3.1 Consider a random text that is generated by a first-order Markovian source

with the alphabet A = {a1, a2, . . . , a`}. Let U = {u1, u2, . . . , ur} denote the set of reduced

pattern words. Then we can obtain ajT (z, t1, t2, . . . , tr), the generating function of decorated

text following the letter aj(j = 1, 2, . . . , `), by the following linear equations:



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


=



1

1
...

1


+ P(`×`) · z ·



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


+



a1η(z, t)
a2η(z, t)

...
a`η(z, t)


·



û1T (z, t)
û2T (z, t)

...
ûrT (z, t)


. (4.23)

Some remarks regarding the notations:

(1) t stands for the set {t1, t2, · · · , tr}.

(2) Every ajη(z, t) (where j ∈ {1, 2, . . . , `}) is a 1× r row vector, in the form of

(
(· · · )

¶

û1, (· · · )
·

û2, . . . , (· · · )
r
ûr

)
.

(3) û1, û2, · · · , ûr denotes the last letter of u1, u2, . . . , ur, respectively,

where {û1, û2, · · · , ûr} ∈ A;

Then we have the generating functions ajF (z, x1, x2, . . . , x`) that give the probability of

occurrences for each pattern word:

ajF (z, x1, x2, . . . , xr) = ajT (z, x1 − 1, x2 − 1, . . . , xr − 1)

4.4 An application of Theorem  4.3.1 

Theorem  4.3.1 enables us to count the occurrences for multiple reduced pattern words in

a first-order Markovian text. We make an example to present the procedures.

Example 4.4.1 (Three reduced patterns, Markovian case) We consider a set of pat-

terns that contains three words, namely U = {u1, u2, u3} = {aa, bb, aba}. The transition

matrix is

P =

 paa pab

pba pbb

 =

 1/2 1/2

3/5 2/5

 (4.24)
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As we discussed, the clusters are in the form of

[a] C = [a] (a¶
a, b

·

b, ab
¸
a) ·


¶
a ∅ b

¸
a

∅
·

b ∅
¶
a ∅ b

¸
a


∗

·


ε

ε

ε



[b] C = [b] (a¶
a, b

·

b, ab
¸
a) ·


¶
a ∅ b

¸
a

∅
·

b ∅
¶
a ∅ b

¸
a


∗

·


ε

ε

ε


Their generating functions are as follows.

aξ(z, t1, t2, t3) =
(
z2t1 · p2

aa, z
2t2 · pabpbb, z3t3 · paapabpba

)

·

I−

zt1 · paa 0 z2t3 · pabpba

0 zt2 · pbb 0

zt1 · paa 0 z2t3 · pabpba




−1

·


1

1

1



=
(

5z2t1
20− 10zt1 − 6z2t3

,
z2t2

5− 2zt2
,

3z3t3
20− 10zt1 − 6z2t3

)
·


1

1

1



= aη(z, t1, t2, t3) ·


1

1

1



(4.25)

where
aη(z, t1, t2, t3) =

(
5z2t1

20− 10zt1 − 6z2t3
,

z2t2
5− 2zt2

,
3z3t3

20− 10zt1 − 6z2t3

)
(4.26)
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We also have,

bξ(z, t1, t2, t3) =
(
z2t1 · pbapaa, z2t2 · p2

bb, z
3t3 · p2

bapab
)

·

I−

zt1 · paa 0 z2t3 · pabpba

0 zt2 · pbb 0

zt1 · paa 0 z2t3 · pabpba




−1

·


1

1

1



=
(

3z2t1
10− 5zt1 − 3z2t3

,
4z2t2

25− 10zt2
,

9z3t3
50− 25zt1 − 15z2t3

)
·


1

1

1



= bη(z, t1, t2, t3) ·


1

1

1



(4.27)

where

bη(z, t1, t2, t3) =
(

3z2t1
10− 5zt1 − 3z2t3

,
4z2t2

25− 10zt2
,

9z3t3
50− 25zt1 − 15z2t3

)
(4.28)

Applying Formula ( 4.23 ) in Theorem  4.3.1 , we have

 aT (z, t1, t2, t3)
bT (z, t1, t2, t3)

 =

 1

1

+

 1/2 1/2

3/5 2/5

 · z ·
 aT (z, t1, t2, t3)

bT (z, t1, t2, t3)



+

 aη (z, t1, t2, t3)
bη (z, t1, t2, t3)

 ·


aT (z, t1, t2, t3)
bT (z, t1, t2, t3)
aT (z, t1, t2, t3)


(4.29)

Note that aη (z, t1, t2, t3) and bη (z, t1, t2, t3) are 1×3 row vectors. Substituting ( 4.26 ) and

( 4.28 ) into (  4.29 ), and solving the two linear equations, we are able to obtain aT (z, t1, t2, t3)

and bT (z, t1, t2, t3), namely,
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aT (z, t1, t2, t3)

= (4zt2 − z − 10) (3z2t3 + 5zt1 − 10)
100 + 12t3(t2 + 1)z3 + ((20t1 + 20)t2 + 20t1 − 30t3 − 10) z2 − (50t1 + 40t2 + 90)z

(4.30)

and

bT (z, t1, t2, t3)

= (2zt2 − 5) (3z2t3 + 5zt1 − z − 10)
50 + 6t3(t2 + 1)z3 + ((10t1 + 10)t2 + 10t1 − 15t3 − 5)z2 − (25t1 + 20t2 + 45)z

(4.31)

The corresponding generating functions aF (z, x1, x2, x3) and bF (z, x1, x2, x3) are

aF (z, x1, x2, x3)

= aT (z, x1 − 1, x2 − 1, x3 − 1)

= (4(x2 − 1)z − z − 10) (3(x3 − 1)z2 + 5(x1 − 1)z − 10)
100 + 12(x3 − 1)x2z3 + (20x1(x2 − 1) + 20x1 − 30x3)z2 − (50x1 + 40x2)z

= (4zx2 − 5z − 10) (3z2x3 + 5zx1 − 3z2 − 5z − 10)
100 + 12(x3 − 1)x2z3 + (20x1x2 − 30x3)z2 − (50x1 + 40x2)z (4.32)

and

bF (z, x1, x2, x3)

= bT (z, x1 − 1, x2 − 1, x3 − 1)

= (2(x2 − 1)z − 5) (3(x3 − 1)z2 + 5(x1 − 1)z − z − 10)
50 + 6(x3 − 1)x2z3 + (10x1(x2 − 1) + 10x1 − 15x3)z2 − (25x1 + 20x2)z

= (2zx2 − 2z − 5) (3z2x3 + 5zx1 − 3z2 − 6z − 10)
50 + 6(x3 − 1)x2z3 + (10x1x2 − 15x3)z2 − (25x1 + 20x2)z

(4.33)

Computing the Taylor expansion at z = 0 for (  4.32 ) and ( 4.33 ), we have

aF (z, x1, x2, x3) = 1 + z +
(11

20 + x1

4 + x2

5

)
z2

+
(11

50x2 + 3
20x3 + 3

20 + 11
40x1 + 1

8x
2
1 + 2

25x
2
2

)
z3 + O

(
z4
) (4.34)
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and

bF (z, x1, x2, x3) = 1 + z +
(27

50 + 3x1

10 + 4x2

25

)
z2

+
( 27

125x2 + 9
50x3 + 3

25 + 27
100x1 + 3

20x
2
1 + 8

125x
2
2

)
z3 + O

(
z4
) (4.35)

The Taylor series of aF (z, x1, x2, x3) and bF (z, x1, x2, x3) can be expanded further to any

order of interest. We are able to obtain the probabilities of certain patterns from these

coefficients.

For instance, consider the z3 term

bF (z, x1, x2, x3) = · · ·+
( 27

125x2 + 9
50x3 + 3

25 + 27
100x1 + 3

20x
2
1 + 8

125x
2
2

)
z3 + O

(
z4
)

(4.36)

The z3 term indicates the following information.

Assume that a binary text is generated by a Markovian source of order one, with the

transition matrix ( 4.24 ). We are interested in counting pattern words {u1 = aa, u2 = bb,

u3 = aba}. In a text of length 3 following a letter b, the probability that:

– none of the three patterns occurs, is 3/25;

– pattern u1 = aa occurs exactly once and no other patterns occur, is 27/100;

– pattern u2 = bb occurs exactly once and no other patterns occur, is 27/125;

– pattern u3 = aba occurs exactly once and no other patterns occur, is 9/50;

– pattern u1 = aa occurs exactly twice and no other patterns occur, is 3/20;

– pattern u2 = bb occurs exactly twice and no other patterns occur, is 8/125;

and all other situations have 0 probability.

As expected, the probability values above should sum up to 1.

27
125 + 9

50 + 3
25 + 27

100 + 3
20 + 8

125 = 1.
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5. INCLUSION-EXCLUSION METHOD FOR NON-REDUCED

PATTERNS

5.1 Skeleton and Flip

In the previous chapter, we discussed reduced decorated texts, in which there is no

distinguished occurrence being a factor of another distinguished one.

However, when there are multiple pattern words, it is possible that one or more patterns

are factors of others. We continue to follow the notation of Bassino et al. [ 5 ].

Example 5.1.1 (Non-reduced case) Given a pattern set U = {u1 = ab, u2 = aba, u3 =

baba}, a cluster text ababa could be labeled in a number of ways for distinguished pattern

words, listed below as c1 through c16:

c1 = a
¶

bab
¸
a c2 = a

¶

ba
¶

b
¸
a c3 = a

¶

bab

·
¸
a c4 = a

¶

ba
¶

b

·
¸
a

c5 = ab
·
ab

¸
a c6 = a

¶

b
·
ab

¸
a c7 = ab

·
a

¶

b
¸
a c8 = ab

·
ab

·
¸
a

c9 = a
¶

b
·
a

¶

b
¸
a c10 = a

¶

b
·
ab

·
¸
a c11 = ab

·
a

¶

b

·
¸
a c12 = a

¶

b
·
a

¶

b

·
¸
a

c13 = ab
·
ab

·
a c14 = a

¶

b
·
ab

·
a c15 = ab

·
a

¶

b
·
a c16 = a

¶

b
·
a

¶

b
·
a

This list could be extremely lengthy when there are more pattern words or with a longer

cluster text. To help us better understand the different ways of labeling, skeletons are

introduced (see Bassino et al. [ 5 , Section 5]).

Definition 5.1.1 (Skeleton) A skeleton is a cluster such that no distinguished occurrence

is a factor of another distinguished occurrence.

Two dual operations, denoted by Skel and Flip, were introduced by Bassino et al. [ 5 ,

Section 5] to relate clusters and skeletons, defined as follows.

- Let c be a cluster. The skeleton Skel(c) (denoted by c) of a decorated text c is obtained

from c by undistinguishing (moving the status of an occurrence from “distinguished” to “not

distinguished”) any occurrence that is a factor of another distinguished occurrence in c.

- Let c be a skeleton. Then the Flip operation associates to c the set Flip(c) of all clusters

whose Skeleton is c. Flip(c) can be also written as c̃.
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It is easy to prove that the skeleton of a cluster c is uniquely defined. Just repeatedly

remove distinguished occurrences that are factors of other distinguished occurrences, until

none of these remain. This process is always unambiguous, as we will demonstrate.

5.2 Bicolored decorated cluster

Back to Example  5.1.1 , one should observe that c1, c2, c3, c4 share the same skeleton

Skel(c1) = Skel(c2) = Skel(c3) = Skel(c4) = a
¶

bab
¸
a

This skeleton is identical to c1.

On the other hand, c5 through c12 share another skeleton, which is identical to c5,

Skel(c5) = · · · = Skel(c12) = ab
·
ab

¸
a

Lastly, clusters c13 through c16 share the third skeleton, which is identical to c13,

Skel(c13) = Skel(c14) = Skel(c15) = Skel(c16) = ab
·
ab

·
a

This example demonstrates that even for the same text (here ababa), there could be

multiple distinct skeletons for different groups of clusters. Each cluster can only map to one

skeleton. The Flip operation yields the set of all clusters that share a skeleton. Using c =

a
¶

bab
¸
a to represent the skeleton of c1 through c4, Figure  5.1 illustrates the mapping relations

of the Skel and Flip operations.

c1
c2
c3
c4

Skel

c Flip {c1, c2, c3, c4} = a
Ê

ba
À

b

Á
Ì
a

Figure 5.1. c1 through c4 in Example  5.1.1 share the same skeleton, a
¶

bab
¸
a.

Flip(c) returns the set {c1, c2, c3, c4}.
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In order to simplify our notation, the set of clusters given by a Flip operation can be

denoted by a bicolored decorated cluster. Considering our Example  5.1.1 , when the Flip

operation is applied to c (remember that c is the common skeleton of c1, c2, c3, and c4), we

have

c̃ = Flip(c) = {c1, c2, c3, c4} = a
¶

ba
¬

b

­
¸
a

Here we use the bicolored decorated cluster a
¶

ba
¬

b

­
¸
a to represent the set {c1, c2, c3, c4}.

It is a convenient notation adopted by Bassino et al. [ 5 ]. The black filled cirlces are

located above the ending letters of those occurrences in the skeleton. Meanwhile, the white

filled circles are placed above the factor occurrences. In this way, all clusters that share the

same skeleton can be represented in one bicolored decorated cluster.

In a bicolored decorated cluster, each factor occurrence (labelled by a white filled circle)

could be distinguished or not. Therefore, given a bicolored decorated cluster, one can easily

write the full set of decorated clusters.

The full set of decorated clusters represented by a
¶

ba
¬

b

­
¸
a includes 22 = 4 decorated clusters,

i.e.,

{c1 = a
¶

bab
¸
a, c2 = a

¶

ba
¶

b
¸
a, c3 = a

¶

bab

·
¸
a, c4 = a

¶

ba
¶

b

·
¸
a}

They all have the same skeleton, a
¶

bab
¸
a.

Likewise, the set of clusters

{c5 = ab
·
ab

¸
a c6 = a

¶

b
·
ab

¸
a, c7 = ab

·
a

¶

b
¸
a, c8 = ab

·
ab

·
¸
a,

c9 = a
¶

b
·
a

¶

b
¸
a, c10 = a

¶

b
·
ab

·
¸
a, c11 = ab

·
a

¶

b

·
¸
a, c12 = a

¶

b
·
a

¶

b

·
¸
a}

can be written as a
¬

b
·
a

¬

b

­
¸
a, which includes 23 = 8 decorated clusters, all listed above. These 8

clusters share the same skeleton, ab·
ab

¸
a.

Lastly, the set of the other four clusters

{c13 = ab
·
ab

·
a, c14 = a

¶

b
·
ab

·
a, c15 = ab

·
a

¶

b
·
a, c16 = a

¶

b
·
a

¶

b
·
a}
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is equivalent to a
¬

b
·
a

¬

b
·
a (which indeed represents 22 = 4 clusters). The clusters c13 through c16

share the same skeleton ab
·
ab

·
a.

5.3 Notations regarding a bicolored decorated cluster

A fully bicolored decorated cluster c̃ is essentially a set of clusters which share the same

skeleton. The bicolored decoration is composed of three parts, (1) the text of the cluster, c;

(2) the distinguished occurrences defining the skeleton; and (3) the factor occurrences.

The following notations are used to represent the three parts. As an example, given

c̃ = a
¬

b
·
a

¬

b

­
¸
a, the three parts can be denoted by c,D and F , where

c = ababa

D = (D1,D2,D3,D4,D5) = (∅, ∅, 2, ∅, 3)

F = (F1,F2,F3,F4,F5) = (∅, 1, ∅, 1, 2)

Definition  5.3.1 gives the general definition of D and F .

Definition 5.3.1 Consider a skeleton c and its fully bicolored decorated cluster Flip(c),

or c̃.

We use Di to denote the index above the distinguished position i of the skeleton c, or ∅

if position i is not labelled by a distinguished occurrence in c.

We let Fi denote the factor index above position i of the bicolored decorated cluster c̃,

or ∅ if position i is not labelled by a factor occurrence in c̃.

Finally, we use D and F to denote the tuples of Di and Fi. i.e., D = (Di)1≤i≤|c| and F =

(Fi)1≤i≤|c|.

Thus, a fully bicolored decorated cluster c̃ can be denoted by the triple (c,D,F).

5.4 Right extension set

Let us introduce two more concepts, right extension set and bicolored right extension set.

Again, we follow the notation of Bassino et al. [ 5 ].
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Definition 5.4.1 (Right extension set) The right extension set of a pair of

words (u, v) is

Eu,v =
{
e | there exists e′ ∈ A+ such that ue = e′v with 0 < |e| < |v|

}

Given a right extension set, by adding the bicolored decorated numbers of distinguished

occurrences in v, we obtain the bicolored decorated right extension set. A right extension set

or a bicolored decorated right extension set is represented in a matrix.

Definition 5.4.2 (Bicolored decorated right extension set) Let u, v be two

words, and v be the bicolored decorated word of v. Then the bicolored decorated right

extension set of u, v is

Eu,v =
⋃

e∈Eu,v

Suff |e|(Flip(v))

This definition is illustrated by Fig.  5.2 .

u e

e Flip(v)
Eu,v =

Figure 5.2. The two long rectangles ue and ev represent two identical
strings: ue = ev. (Here, v is the bicolored decorated word of v.) The bi-
colored decorated right extension set Eu,v includes the part covered by the grid
area, which has the same string as e and which has the bicolored decorated
numbers corresponding to those in the suffix of v.

The following two examples provide more details of the two concepts.

Example 5.4.1 (Bicolored decorated right extension set) A pattern set

U = {ab, aba, bab, baba}

gives

u1 = a
¶

b, u2 = ab
·
a, u3 = ba

¸

b, u4 = bab
¹
a,
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and
Flip(u1) = {a

¶

b}, Flip(u2) = {a
¬

b
·
a},

Flip(u3) = {ba
¬
¸

b}, Flip(u4) = {ba
¬
®

b

­
¹
a}.

The right extension set E (without ambiguity, we omit the subscript of EU) is

E =



∅ ∅ ab aba

b ba b ba

∅ a ab aba

b ba b ba


and the bicolored decorated right extension set E

E =



∅ ∅ {a
¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}

∅ {·
a} {a

¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}


.

Here we only elaborate on the first row in E, which in turn lists Eu1,u1 , Eu1,u2 , Eu1,u3 ,

and Eu1,u4 .

Eu1,u1 = Eab,ab = a b

a
¶

b
= ∅

a b

Eu1,u2 = Eab,aba = a b

a
¬

b
·
a

= ∅
a b

b a

¬
¸

b

Eu1,u3 = Eab,bab = = {a
¬
¸

b}
a b a b

a
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b a

¬
®

b

­
¹
a

Eu1,u4 = Eab,baba = = {a
¬
®

b

­
¹
a}

a b a b a

a

Following similar ideas, the other rows in E can be obtained.

In Example  5.4.1 , every non-empty right extension set only contains one element. But

this is certainly not necessary. Depending on the pattern words, a right extension set could

contain many elements. Example  5.4.2 provides such a case.

Example 5.4.2 For U = {a3, a4}, we have

u1 = aa
¶
a, u2 = aaa

·
a

and

Flip(u1) = {aa¶
a}, Flip(u2) = {aa¬

a

¬
·
a}.

Then we have

E =

 a+ aa, aa+ aaa

a+ aa, a+ aa+ aaa


and

E =

 {
¶
a, a

¶
a} {¬

a

¬
·
a, a

¬
a

¬
·
a}

{¶
a, a

¶
a} {

¬
·
a,

¬
a

¬
·
a, a

¬
a

¬
·
a}

 .

5.5 Set of all clusters

The bicolored decoration enables us to write the set of clusters in a concise form similar

to that in reduced cases.

Given the set of pattern words U = {u1, · · · , ur}, the set of all clusters C can be obtained

by

C = (Flip (u1) , . . . ,Flip (ur)) · E∗ ·


ε
...

ε

 (5.1)
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This is a general result, not only for non-reduced cases. We emphasize that Equation ( 5.1 )

can be also used for reduced U , i.e., no pattern word in U is a factor of another. When U is

reduced, Equation ( 5.1 ) provides the form that we already used in previous chapters, such

as Equation ( 4.22 ).

5.6 Set of all skeletons

Each pattern word in U = {u1, · · · , ur} can be treated as a skeleton by itself, as we

did in Example  5.4.1 and Example  5.4.2 . Each of these skeletons only consists of a pattern

word uj and a monocolor label j upon ûj, the last letter of uj. These skeletons are denoted

by u1, u2, · · · , ur, respectively.

We also denote E = (Ei,j). For instance, in Example  5.4.2 , where

E =

 {
¶
a, a

¶
a} {¬

a

¬
·
a, a

¬
a

¬
·
a}

{¶
a, a

¶
a} {

¬
·
a,

¬
a

¬
·
a, a

¬
a

¬
·
a}



We have

E =

 {¶
a, a

¶
a} {a·

a, aa
·
a}

{¶
a, a

¶
a} {·

a, a
·
a, aa

·
a}

 .
Using these notations, we can write the set of all skeletons, denoted by C, in the following

form.

C = (u1, u2, · · · , ur) · E∗ ·


ε
...

ε

 (5.2)

In fact, if a skeleton includes exactly k + 1 occurrences, it is in the form of

Ck+1 = (u1, u2, · · · , ur) · Ek ·


ε
...

ε

 (5.3)
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where (u1, u2, · · · , ur) contributes the first occurrence, and Ek contributes the other k occur-

rences. For convenience, we define the concepts of a (k + 1)-skeleton and (k + 1)-cluster.

Definition 5.6.1 ((k + 1)-skeleton) A skeleton that is composed of k + 1 occurrences is

a (k + 1)-skeleton. A (k + 1)-skeleton is in the form of Equation ( 5.3 ).

Definition 5.6.2 ((k + 1)-cluster) A (k+1)-cluster is a cluster whose skeleton is a (k+1)-

skeleton.

When a Flip operation is applied to a (k+ 1)-skeleton c, every element in the set Flip(c)

(a.k.a. c̃) is a (k + 1)-cluster.

5.7 Generating functions of Flip with a Bernoulli text source

Consider a pattern set U = {u1, · · · , ur} and a fully bicolored decorated cluster

c̃ = (c,D,F)

with skeleton c. The text of the skeleton has length |c| = `, with c = α1α2 . . . α`, where D =

(Di)1≤i≤`, F = (Fi)1≤i≤`, and αi ∈ A. Here we use the notations introduced in Definition

 5.3.1 .

When a text is generated by a Bernoulli source, e.g., when a letter αi occurs with a

probability παi
, then the generating function c̃(z, t) of the set of clusters Flip(c) built upon

the skeleton c is

c̃(z, t) =
∏̀
i=1

παi
z ×

 ∏
j∈Di

tj

×
∏
s∈Fi

(1 + ts)
 (5.4)

where the variable tj (or ts) counts the occurrences of the pattern word uj (or us).

It is straightforward to verify Equation ( 5.4 ). Each Di represents an occurrence in the

skeleton c. Therefore, it must be distinguished. On the other hand, each Fi stands for an

occurrence of a factor pattern, which could be distinguished or not.

Let us apply Equation (  5.4 ) on the following example.

Example 5.7.1 By ( 5.4 ), we can write the generating functions of the Flips in Section  5.2 

as follows.
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(1) A Flip c̃ = a
¶

ba
¬

b

­
¸
a (with the skeleton c = a

¶

bab
¸
a) has the following generating function:

c̃(z, t) = πaz · πbzt1 · πaz · πbz(1 + t1) · πaz(1 + t2)t3

= π3
aπ

2
bz

5 · t1 · (1 + t1) · (1 + t2) · t3

(2) A Flip c̃ = a
¬

b
·
a

¬

b

­
¸
a (with the skeleton c = ab

·
ab

¸
a) has the following generating function:

c̃(z, t) = πaz · πbz(1 + t1) · πazt2 · πbz(1 + t1) · πaz(1 + t2)t3

= π3
aπ

2
bz

5 · (1 + t1)2 · (1 + t2) · t2 · t3

(3) A Flip c̃ = a
¬

b
·
a

¬

b
·
a (with the skeleton c = ab

·
ab

·
a) has the following generating function:

c̃(z, t) = πaz · πbz(1 + t1) · πazt2 · πbz(1 + t1) · πazt2

= π3
aπ

2
bz

5 · (1 + t1)2 · t22

As we see, although a Flip can be represented in two equivalent ways—either a set of

mono-color decorated clusters or a bicolored decorated cluster, the bicolored representation

makes it very efficient to conclude a Flip’s generating function.

5.8 Generating functions of Flip with a Markovian text source

Equation ( 5.4 ) can be readily modified when a text is generated by a Markovian source

of order 1. Assuming Flip(c) starts after the letter α0, the generating function α0 c̃(z, t) of

the set of clusters Flip(c) built upon the skeleton c is

α0 c̃(z, t) =
∏̀
i=1

pαi−1,αi
· z ×

 ∏
j∈Di

tj

×
∏
s∈Fi

(1 + ts)
 (5.5)

where pαi−1,αi
is the transition probability from letter αi−1 to letter αi.

In a Markovian scenario, Example  5.7.1 is modified into the following one.

Example 5.8.1 Let a c̃ denote a Flip c̃ starting after the letter a. By Equation ( 5.5 ), we

write the generating functions of the Flips in Section  5.2 , as follows.
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(1) A Flip a c̃ = a
¶

ba
¬

b

­
¸
a (with the skeleton c = a

¶

bab
¸
a) has the following generating

function:
a c̃(z, t) = pa,az · pa,bzt1 · pb,az · pa,bz(1 + t1) · pb,az(1 + t2)t3

= pa,ap
2
a,bp

2
b,az

5 · t1 · (1 + t1) · (1 + t2) · t3

(2) A Flip a c̃ = a
¬

b
·
a

¬

b

­
¸
a (with the skeleton c = ab

·
ab

¸
a) has the following generating

function:

a c̃(z, t) = pa,az · pa,bz(1 + t1) · pb,azt2 · pa,bz(1 + t1) · pb,az(1 + t2)t3

= pa,ap
2
a,bp

2
b,az

5 · (1 + t1)2 · (1 + t2) · t2 · t3

(3) A Flip a c̃ = a
¬

b
·
a

¬

b
·
a (with the skeleton c = ab

·
ab

·
a) has the following generating

function:
a c̃(z, t) = pa,az · pa,bz(1 + t1) · pb,azt2 · pa,bz(1 + t1) · pb,azt2

= pa,ap
2
a,bp

2
b,az

5 · (1 + t1)2 · t22

5.9 Generating functions of clusters

Now we are able to obtain c̃(z, t), the generating function of a Flip. The next construction

to consider is the generating functions of clusters ξ(z, t). In this section, we come back to

the non-Markov case, and continue to use the notations in Bassino et al. [ 5 , Section 5]. The

discussion of generating functions of clusters in a Markovian context will be given at the

beginning of the next chapter.

According to Equation ( 5.1 ), for a non-reduced pattern set U = {u1, . . . , ur}, the gener-

ating function ξ(z, t) of clusters is

ξ(z, t) = (U1(z, t), . . . , Ur(z, t)) · (I− E(z, t))−1 ·


1
...

1

 (5.6)
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where Ui(z, t) is the generating function of Flip(ui), and E(z, t) is the matrix in which every

element corresponds to a generating functions of a right extension sets. Note that all Flip(ui)

and right extension sets are bicolored [ 5 , Section 5].

Formula ( 5.4 ) already provides a direct form of Ui(z, t). In fact, this formula can be

also applied to the elements Ei,j in the matrix E, even though they are neither clusters nor

skeletons, but rather bicolored decorated right extensions.

The generating function of Ei,j is Ei,j(z, t), and therefore, we use E(z, t) to denote the

matrix of (Ei,j(z, t)).

Example 5.9.1 Let us calculate the generating functions of clusters in the following two

cases. In both cases, we assume a text is generated by a Bernoulli source.

(1) A pattern set U = {u1, u2, u3, u4} = {ab, aba, bab, baba}. We have

u1 = a
¶

b, u2 = ab
·
a, u3 = ba

¸

b, u4 = bab
¹
a,

and
Flip(u1) = {a

¶

b}, U1(z, t1, t2, t3, t4) = πaπbz
2t1

Flip(u2) = {a
¬

b
·
a}, U2(z, t1, t2, t3, t4) = π2

aπbz
3(1 + t1)t2

Flip(u3) = {ba
¬
¸

b}, U3(z, t1, t2, t3, t4) = πaπ
2
bz

3(1 + t1)t3

Flip(u4) = {ba
¬
®

b

­
¹
a}, U4(z, t1, t2, t3, t4) = π2

aπ
2
bz

4(1 + t1)(1 + t2)(1 + t3)t4

The bicolored decorated right extension set E is

E =



∅ ∅ {a
¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}

∅ {·
a} {a

¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}


.
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Therefore,

E (z, t1, t2, t3, t4)

=



0 0 πaπbz
2(1 + t1)t3 π2

aπbz
3(1 + t1)(1 + t2)(1 + t3)t4

πbzt1 πaπbz
2(1 + t1)t2 πbz(1 + t1)t3 πaπbz

2(1 + t1)(1 + t2)(1 + t3)t4
0 πazt2 πaπbz

2(1 + t1)t3 π2
aπbz

3(1 + t1)(1 + t2)(1 + t3)t4
πbzt1 πaπbz

2(1 + t1)t2 πbz(1 + t1)t3 πaπbz
2(1 + t1)(1 + t2)(1 + t3)t4


Thus, the generating function of clusters is

ξ(z, t1, t2, t3, t4) = (U1(z, t), . . . , U4(z, t)) · (I− E(z, t))−1 ·


1
...

1

 .

(2) For U = {u1, u2} = {a3, a4}, we have

u1 = aa
¶
a, u2 = aaa

·
a

and
Flip(u1) = {aa¶

a}, U1(z, t1, t2) = π3
az

3t1

Flip(u2) = {aa¬
a

¬
·
a}, U2(z, t1, t2) = π4

az
4(1 + t1)2t2

Then we have

E =

 {
¶
a, a

¶
a} {¬

a

¬
·
a, a

¬
a

¬
·
a}

{¶
a, a

¶
a} {

¬
·
a,

¬
a

¬
·
a, a

¬
a

¬
·
a}


and

E (z, t1, t2) =

 πazt1 + π2
az

2t1, π2
az

2(1 + t1)2t2 + π3
az

3(1 + t1)2t2

πazt1 + π2
az

2t1, πaz(1 + t1)t2 + π2
az

2(1 + t1)2t2 + π3
az

3(1 + t1)2t2


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and finally,

ξ(z, t1, t2) = (U1(z, t1, t2), U2(z, t1, t2)) · (I− E(z, t1, t2))−1 ·


1
...

1

 . (5.7)
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6. INCLUSION-EXCLUSION METHOD FOR NON-REDUCED

PATTERNS WITH A MARKOVIAN TEXT SOURCE

6.1 Generating function of clusters

We follow our notations from the previous chapter. The set of pattern words is U =

{u1, · · · , ur}. The last letter of each pattern word is denoted by û1, û2, · · · , ûr, respectively,

where {û1, û2, · · · , ûr} ⊆ A.

Formula ( 5.6 ) provides the generating function of clusters in the Bernoulli case. When

first order Markovian dependence is considered, and assuming the previous letter immedi-

ately before the cluster is a, we rewrite the generating function in the following form.

aξ(z, t) = (aU1(z, t), . . . , aUr(z, t)) · (I− ÛE(z, t))
−1
·


1
...

1

 = aη(z, t) ·


1
...

1

 (6.1)

where
aη(z, t) := (aU1(z, t), . . . , aUr(z, t)) · (I− ÛE(z, t))

−1
(6.2)

and

ÛE(z, t) :=



û1E1,1(z, t) û1E1,2(z, t) . . . û1E1,r(z, t)
û2E2,1(z, t) û2E2,2(z, t) . . . û2E2,r(z, t)

... ... . . . ...
ûrEr,1(z, t) ûrEr,2(z, t) . . . ûrEr,r(z, t)


. (6.3)

6.2 Generating function of a decorated text T

With the alphabet A = {a1, a2, . . . , a`} and the pattern set U = {u1, u2, . . . , ur}, a

decorated text right after a letter ai could start with the following 1 + `+ r possible cases:

– there is no text, or
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– a letter aj which does not belong to a cluster (j ∈ {1, 2, · · · , `}), or, lastly,

– a cluster ending in F̂lip(us), where s ∈ {1, 2, · · · , r}.

The combinatorial structure of aiT is

aiT = [ai]



ε

a1 · a1T
...

a` · a`T

(a cluster ending in F̂lip(u1)) · û1T
...

(a cluster ending in F̂lip(ur)) · ûrT

We have

aiT (z, t) = 1 +
∑̀
j=1

pai,aj
· z · ajT (z, t) + aiη(z, t) ·


û1T (z, t)

...
ûrT (z, t)

 (6.4)

Therefore, we conclude the following theorem.

Theorem 6.2.1 Consider a random text that is generated by a first-order Markovian source

with the alphabet A = {a1, a2, . . . , a`}. Suppose that the set of pattern words is U =

{u1, u2, . . . , ur}. These patterns words could be non-reduced, i.e., some patterns may entirely

cover others.

We can obtain aiT (z, t1, t2, . . . , tr), the generating function of decorated text following the

letter ai (i = 1, 2, . . . , `), by solving the following linear equations, for all aiT (z, t1, t2, . . . , tr)



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


=



1

1
...

1


+ P(`×`) · z ·



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


+



a1η(z, t)
a2η(z, t)

...
a`η(z, t)


·



û1T (z, t)
û2T (z, t)

...
ûrT (z, t)


(6.5)
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where the notation aiη(z, t) is formally defined by Equation ( 6.2 ).

We reemphasize here that each aiη(z, t) (where i ∈ {1, 2, . . . , `}) is a 1× r row vector, in

the form of (
(· · · )F̂lip(u1), (· · · )F̂lip(u2), . . . , (· · · )F̂lip(ur)

)
.

Then we have the generating functions aiF (z, x1, x2, . . . , x`) that give the probability of

occurrences for each pattern word:

aiF (z, x1, x2, . . . , xr) = aiT (z, x1 − 1, x2 − 1, . . . , xr − 1)

Theorem  6.2.1 is the generalized version of Theorem  4.3.1 . It is not surprising that

Formula (  6.5 ) seems identical to Formula ( 4.23 ). In fact, the difference between them is the

process to obtain aiη(z, t). In a case of reduced patterns, all bicolored decorated words in

Formula ( 6.5 ) simply become monocolored. Thus, Formula ( 4.23 ) should apply.

6.3 An example

The pattern set in the following example is used in the previous chapter. We already

discussed its right extension matrix and the generating functions of clusters in Examples

 5.4.1 and  5.9.1 .

Example 6.3.1 A binary text is generated by a first-order Markovian source with the tran-

sition matrix

P =

 paa pab

pba pbb

 =

 1/2 1/2

3/5 2/5

 (6.6)

Consider a pattern set

U = {u1, u2, u3, u4} = {ab, aba, bab, baba}

The last letter of each pattern word is

û1 = b, û2 = a, û3 = b, û4 = a
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Now we write the generating functions of the Flips for each pattern word. Since the text

source is Markovian, we must consider the letter appearing before these bicolored decorated

texts.

Flip(u1) = {a
¶

b}. The generating functions for [a]Flip(u1) and [b]Flip(u1) are respectively

aU1(z, t1, t2, t3, t4) = paapabz
2t1

bU1(z, t1, t2, t3, t4) = pbapabz
2t1

Flip(u2) = {a
¬

b
·
a}. For [a]Flip(u2) and [b]Flip(u2), we have

aU2(z, t1, t2, t3, t4) = paapabpbaz
3(1 + t1)t2

bU2(z, t1, t2, t3, t4) = p2
bapabz

3(1 + t1)t2

Flip(u3) = {ba
¬
¸

b}. For [a]Flip(u3) and [b]Flip(u3), we have

aU3(z, t1, t2, t3, t4) = p2
abpbaz

3(1 + t1)t3
bU3(z, t1, t2, t3, t4) = pbbpbapabz

3(1 + t1)t3

Flip(u4) = {ba
¬
®

b

­
¹
a}. For [a]Flip(u4) and [b]Flip(u4), we have

aU4(z, t1, t2, t3, t4) = p2
abp

2
baz

4(1 + t1)(1 + t2)(1 + t3)t4
bU4(z, t1, t2, t3, t4) = pbbp

2
bapabz

4(1 + t1)(1 + t2)(1 + t3)t4

Next, we need the right extension matrix. With a Bernoulli text source, as discussed

in Example  5.9.1 (1), we obtained the bicolored right extension set E and the corresponding

matrix of generating functions, as follows.
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E =



∅ ∅ {a
¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}

∅ {·
a} {a

¬
¸

b} {a
¬
®

b

­
¹
a}

{
¶

b} {
¬

b
·
a} {

¬
¸

b} {
¬
®

b

­
¹
a}


.

and

E (z, t1, t2, t3, t4)

=



0 0 πaπbz
2(1 + t1)t3 π2

aπbz
3(1 + t1)(1 + t2)(1 + t3)t4

πbzt1 πaπbz
2(1 + t1)t2 πbz(1 + t1)t3 πaπbz

2(1 + t1)(1 + t2)(1 + t3)t4
0 πazt2 πaπbz

2(1 + t1)t3 π2
aπbz

3(1 + t1)(1 + t2)(1 + t3)t4
πbzt1 πaπbz

2(1 + t1)t2 πbz(1 + t1)t3 πaπbz
2(1 + t1)(1 + t2)(1 + t3)t4



Now, we should revise the E (z, t1, t2, t3, t4) above to ÛE(z, t1, t2, t3, t4) based on For-

mula ( 6.3 ). The result is the following.

In general, we have

ÛE(z, t1, t2, t3, t4) =



û1E1,1(z, t), û1E1,2(z, t), û1E1,3(z, t), û1E1,4(z, t)
û2E2,1(z, t), û2E2,2(z, t), û2E2,3(z, t), û2E2,4(z, t)
û3E3,1(z, t), û3E3,2(z, t), û3E3,3(z, t), û3E3,4(z, t)
û4E4,1(z, t), û4E4,2(z, t), û4E4,3(z, t), û4E4,4(z, t)



=



bE1,1(z, t), bE1,2(z, t), bE1,3(z, t), bE1,4(z, t)
aE2,1(z, t), aE2,2(z, t), aE2,3(z, t), aE2,4(z, t)
bE3,1(z, t), bE3,2(z, t), bE3,3(z, t), bE3,4(z, t)
aE4,1(z, t), aE4,2(z, t), aE4,3(z, t), aE4,4(z, t)


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In this case, this becomes

ÛE(z, t1, t2, t3, t4)

=



0 0 pbapabz
2(1 + t1)t3 p2

bapabz
3(1 + t1)(1 + t2)(1 + t3)t4

pabzt1 pabpbaz
2(1 + t1)t2 pabz(1 + t1)t3 pabpbaz

2(1 + t1)(1 + t2)(1 + t3)t4
0 pbazt2 pbapabz

2(1 + t1)t3 p2
bapabz

3(1 + t1)(1 + t2)(1 + t3)t4
pabzt1 pabpbaz

2(1 + t1)t2 pabz(1 + t1)t3 pabpbaz
2(1 + t1)(1 + t2)(1 + t3)t4


(6.7)

Thus, using Formula ( 6.1 ), we obtain the generating functions of clusters.

aξ(z, t1, t2, t3, t4) = (aU1(z, t), . . . , aU4(z, t)) · (I− ÛE(z, t))−1 ·



1

1

1

1



= aη(z, t) ·



1

1

1

1



(6.8)

and

bξ(z, t1, t2, t3, t4) =
(
bU1(z, t), . . . , bU4(z, t)

)
· (I− ÛE(z, t))−1 ·



1

1

1

1



= bη(z, t) ·



1

1

1

1



(6.9)

Hence, we can retrieve the values of aη(z, t) and bη(z, t) from ( 6.8 ) and ( 6.9 ). The

full expressions of aη(z, t) and bη(z, t) are too long to display here. Thus, we omit their
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expressions here and continue the procedures. The full expressions of aη(z, t) and bη(z, t)

are provided in Appendix  A .

In the next step, we will follow Formula ( 6.5 ) and compute the generating functions of

decorated texts by solving the following two linear equations, for aT (z, t) and bT (z, t).

 aT (z, t)
bT (z, t)

 =

 1

1

+ P · z ·

 aT (z, t)
bT (z, t)

+

 aη(z, t)
bη(z, t)

 ·


bT (z, t)
aT (z, t)
bT (z, t)
aT (z, t)


(6.10)

Not surprisingly, the results of aT (z, t) and bT (z, t) are very long. Hence, we again skip

the full expressions here. The full expressions of aT (z, t) and bT (z, t), along with the full

expressions of aF (z,x) and bF (z,x) that are obtained by ( 6.11 ) and ( 6.12 ), are all provided

in Appendix  A .

The generating functions aF (z,x) and bF (z,x) are given by

aF (z, x1, x2, x3, x4) = aT (z, x1 − 1, x2 − 1, x3 − 1, x4 − 1) (6.11)

and
bF (z, x1, x2, x3, x4) = bT (z, x1 − 1, x2 − 1, x3 − 1, x4 − 1) (6.12)

The last step is computing the Taylor expansion series for aF (z, x1, x2, x3, x4) and for
bF (z, x1, x2, x3, x4), at z = 0. The first few terms are as follows.

aF (z, x1, x2, x3, x4) = 1 + z +
(
x1

4 + 3
4

)
z2

+
(

19
40 + (6x2 + 6x3 + 9)x1

40

)
z3

+
(

111
400 + 3x2

1x2x3

40

+ (36x2x3x4 + 60x2 + 48x3 + 115)x1

400

)
z4 + O

(
z5
)

(6.13)
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and

bF (z, x1, x2, x3, x4) = 1 + z +
(3x1

10 + 7
10

)
z2

+
(

43
100 + (18x2 + 12x3 + 27)x1

100

)
z3

+
(

247
1000 + 9x2

1x2x3

100

+ (72x2x3x4 + 180x2 + 96x3 + 315)x1

1000

)
z4 + O

(
z5
)

(6.14)

We can look into one of the terms in ( 6.13 ) and ( 6.14 ), and verify the probabilities they

provide. For instance:

aF (z, x1, x2, x3, x4) = . . .+
(

111
400 + 3x2

1x2x3

40

+ (36x2x3x4 + 60x2 + 48x3 + 115)x1

400

)
z4 + O

(
z5
) (6.15)

The interpretation of the z4 term is that:

Assume a binary text is generated by a Markovian source of order 1, with the tran-

sition matrix ( 6.6 ). We are interested in counting four pattern words {u1, u2, u3, u4} =

{ab, aba, bab, baba}. In a text of length 4 following a letter a, the probability that:

– none of the four patterns occurs, is 111/400.

– pattern u1 = ab occurs exactly once and no other patterns occur, is 115/400;

– pattern u1 = ab occurs exactly twice, u2 = aba occurs exactly once, u3 = bab occurs

exactly once, and u4 = baba does not occur, is 3/40;

– each of the four patterns occurs exactly once, is 36/400;

– pattern u1 = ab occurs exactly once, u2 = aba occurs exactly once and no other patterns

occur, is 60/400;

– pattern u1 = ab occurs exactly once, u3 = bab occurs exactly once and no other patterns

occur, is 48/400;

and all other situations have 0 probability.
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The probability values above sum up to 1.

111
400 + 115

400 + 3
40 + 36

400 + 60
400 + 48

400 = 1.
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7. MOMENTS OF OCCURRENCES FOR PATTERNS IN A

BERNOULLI TEXT

In the next two chapters, we discuss the moments of pattern occurrences for two pattern

sets, U = {u1, u2, ..., ur}, and V = {v1, v2, ..., vs}. The two sets may have non-empty inter-

section. Therefore, we denote W := U ∩ V .

In our context, both pattern sets U and V may be non-reduced. Namely, it is possible

that a pattern word is entirely a part of another one.

To count the occurrences of patterns in U and V , we define two random variables Xn

and Yn—the number of total pattern occurrences of U and V , respectively, in a text of

length n.

In this chapter, we analyze the approach to achieving the covariance of Xn and Yn in

Bernoulli models. The results were first obtained in the non-Markovian case by Bassino

et al. [ 5 ]. Then in next chapter, we expand the results to Markovian models, and discuss the

limit.

7.1 The first moment for one pattern set

When considering the random variable Xn, we do not differentiate each single pattern

in the pattern set U = {u1, u2, ..., ur}. Instead, we count the total number of occurrences

for all patterns in U . The probability measure for the set U is the sum of the probabilities

overall the elements of U :

π(U) =
∑
u∈U

π(u) (7.1)

The first moment of Xn, i.e., E (Xn), can be obtained easily.

Theorem 7.1.1 The expected value of Xn is given by

E (Xn) =
∑
u∈U

π(u)(n− |u|+ 1) (7.2)

where |u| is the size of the pattern u.
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Proof 3 Let Xn(u) be the random variable representing the number of occurrences of pat-

tern u in a text of length n. Since the pattern set is U = {u1, u2, ..., ur}, then, by the

definition of Xn, we have

Xn =
∑
u∈U

Xn(u)

Therefore,

E (Xn) = E
(∑
u∈U

Xn(u)
)

=
∑
u∈U

E (Xn(u))

=
∑
u∈U

π(u)(n− |u|+ 1)

(7.3)

The last step in ( 7.3 ) considers substrings of length |u| in a text of length n, for any

specific pattern u. There are n− |u|+ 1 such substrings. As the text source is Bernoulli, all

these substrings have equal probability, π(u), to be the pattern u.

Applying Theorem  7.1.1 to Yn, we have E (Yn).

E (Yn) =
∑
v∈V

π(v)(n− |v|+ 1) (7.4)

where |v| is the size of the pattern v.

The computation of Cov (Xn, Yn) is much more complex than the first moment. Next,

we use several sections to organize the procedure.

7.2 Generating function for one pattern set

For the pattern set U , the generating function of occurrences, F (z, x), by definition (see

Equation (  3.1 )), can be written in the following form.

F (z, x) =
∑
n

∑
k

Pr(Xn = k) · znxk (7.5)

To reveal the relationship between the probability generating functions and moments

of the discrete random variable Xn with values in Z≥0, we introduce Theorem  7.2.1 . This
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result has a long history. We refer to Flajolet and Sedgewick [ 13 , Appendix A.3] for more

discussion.

Theorem 7.2.1 The generating functions of the first two moments of Xn are

∑
n≥0

E (Xn) zn = ∂

∂x
F (z, x)

∣∣∣∣∣
x=1

(7.6)

and

∑
n≥0

E
(
X2
n

)
zn = ∂2

∂x2F (z, x)
∣∣∣∣∣
x=1

+ ∂

∂x
F (z, x)

∣∣∣∣∣
x=1

(7.7)

Proof 4 From ( 7.5 ), we have

∂

∂x
F (z, x)

∣∣∣∣∣
x=1

=
∑
n

zn ·

∑
k≥1

k · Pr(Xn = k)


=
∑
n≥0

zn · E (Xn)

This proves Equation ( 7.6 ). In addition, we have

∂2

∂x2F (z, x)
∣∣∣∣∣
x=1

=
∑
n

zn ·

∑
k≥2

k(k − 1) · Pr(Xn = k)


Therefore, we obtain

∂2

∂x2F (z, x)
∣∣∣∣∣
x=1

+ ∂

∂x
F (z, x)

∣∣∣∣∣
x=1

=
∑
n

zn ·

∑
k≥1

k2 · Pr(Xn = k)


=
∑
n≥0

zn · E
(
X2
n

)

We emphasize that Theorem  7.2.1 applies to both Bernoulli models and Markovian models.

From the next section through the end of this chapter, we calculate the first and second

moments of Xn and Yn, including Cov(Xn, Yn). We refer to Bassino et al. [ 5 , Section 6] for

the origin of the method that we use in this chapter.
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7.3 Generating function for two pattern sets

When both pattern sets U and V are considered, the generating function of occurrences

becomes

F (z, x, y) :=
∑
n

∑
i

∑
j

Pr(Xn = i, Yn = j) · znxiyj (7.8)

To obtain the generating function of clusters, we should be aware that the intersec-

tion W = U ∩ V could be non-empty. Therefore, simply tracking the occurrences from U

and V is not enough. We must regroup all patterns from U ∪ V into three disjoint and

complete pattern sets: U\V , V\U , and U ∩ V . In the following generating function for the

decorated clusters, we explicitly count the occurrences for each of the three new sets, as

shown in Fig.  7.1 .

Υ (z, t1, t2, t3) = ξ(z, t)|tu=t1 for u∈U\V; tu=t2 for u∈V\U ; tu=t3 for u∈U∩V

=
∑
c∈C

π(c) · z|c|· t(# distinguished occurrences of patterns in U\V)
1

· t(# distinguished occurrences of patterns in V\U)
2

· t(# distinguished occurrences of patterns in U∩V)
3

(7.9)

U V

U \ V V \ U

(t1) (t2)(t3)

U ∩ V

Figure 7.1. U ∪ V = (U\V)⊕ (V\U)⊕ (U ∩ V)

In (  7.9 ), t1, t2, and t3 are used to respectively represent the distinguished occurrences

from the three disjoint pattern sets: U\V , V\U , and U ∩ V .
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Apply Corollary  3.1.1 and Equation ( 4.2 ), we have

F (z, x, y) = 1
1− z −Υ(z, x− 1, y − 1, xy − 1) (7.10)

The generating function of cluster Υ(z, x − 1, y − 1, xy − 1) in ( 7.10 ) comes from the

following replacements to (  7.9 ).
t1 → x− 1

t2 → y − 1

t3 → xy − 1

(7.11)

The reason for the mapping t3 → xy − 1 is that every distinguished occurrence in U ∩ V

should contribute to both the U set and the V set. If we only need to count the occurrences

in one pattern set, say U , we can simply perform the transformation

{t1 → x− 1; t2 → 0; t3 → x− 1}.

From ( 7.8 ) and ( 7.9 ), we have F (z, 1, 1) = 1/(1− z) and Υ(z, 0, 0, 0) = 0.

7.4 Moments for two pattern sets

Similar to Theorem  7.2.1 , we can obtain the following results from Equation ( 7.8 ).

∑
n≥0

E (Xn) zn = ∂

∂x
F (z, x, y)

∣∣∣∣∣
x=y=1

(7.12)

∑
n≥0

E (Yn) zn = ∂

∂y
F (z, x, y)

∣∣∣∣∣
x=y=1

(7.13)

∑
n≥0

E (XnYn) zn = ∂2

∂x∂y
F (z, x, y)

∣∣∣∣∣
x=y=1

(7.14)

The three equations will help us to obtain three expected values E (Xn), E (Yn), and

E (XnYn). Thus, we can compute Cov(Xn, Yn).
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In order to simplify the notations, we define

Υi(z) = ∂

∂ti
Υ (z, t1, t2, t3)

∣∣∣∣∣
t1=t2=t3=0

for i ∈ {1, 2, 3} (7.15)

Υij(z) = ∂2

∂ti∂tj
Υ (z, t1, t2, t3)

∣∣∣∣∣
t1=t2=t3=0

for i, j ∈ {1, 2, 3} (7.16)

Next, we use the transformation (  7.11 ) to map Υ(z, t1, t2, t3) to

Υ(z, x− 1, y − 1, xy − 1),

and we compute the following derivatives.

∂Υ(z, x− 1, y − 1, xy − 1)
∂x

∣∣∣∣∣
x=y=1

=
∂Υ(z, t1, t2, t3)

∂z
· ∂z
∂x

+ ∂Υ(z, t1, t2, t3)
∂t1

· ∂t1
∂x

+ ∂Υ(z, t1, t2, t3)
∂t2

· ∂t2
∂x

+ ∂Υ(z, t1, t2, t3)
∂t3

· ∂t3
∂x

∣∣∣∣∣∣
t1=t2=t3=0

=
0 + ∂Υ(z, t1, t2, t3)

∂t1
+ 0 + ∂Υ(z, t1, t2, t3)

∂t3
· y

∣∣∣∣∣∣
t1=t2=t3=0, y=1

= Υ1(z) + Υ3(z)

(7.17)

Similarly,
∂Υ(z, x− 1, y − 1, xy − 1)

∂y

∣∣∣∣∣
x=y=1

= Υ2(z) + Υ3(z) (7.18)

In addition,
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∂2Υ(z, x− 1, y − 1, xy − 1)
∂x∂y

∣∣∣∣∣
x=y=1

=
 ∂

∂y

(
∂Υ(z, t1, t2, t3)

∂t1
+ ∂Υ(z, t1, t2, t3)

∂t3
· y
)∣∣∣∣∣∣

t1=t2=t3=0, x=y=1

=
 ∂

∂z

(
∂Υ
∂t1

)
∂z

∂y
+ ∂

∂t1

(
∂Υ
∂t1

)
∂t1
∂y

+ ∂

∂t2

(
∂Υ
∂t1

)
∂t2
∂y

+ ∂

∂t3

(
∂Υ
∂t1

)
∂t3
∂y

+ y

(
∂

∂z

(
∂Υ
∂t3

)
∂z

∂y
+ ∂

∂t1

(
∂Υ
∂t3

)
∂t1
∂y

+ ∂

∂t2

(
∂Υ
∂t3

)
∂t2
∂y

+ ∂

∂t3

(
∂Υ
∂t3

)
∂t3
∂y

)

+ ∂Υ
∂t3

∣∣∣∣∣∣
t1=t2=t3=0, x=y=1

=
0 + 0 + ∂2Υ

∂t1∂t2
+ x · ∂2Υ

∂t1∂t3

+ 0 + 0 + y · ∂2Υ
∂t2∂t3

+ xy · ∂
2Υ
∂t23

+ ∂Υ
∂t3

∣∣∣∣∣∣
t1=t2=t3=0, x=y=1

= Υ12(z) + Υ13(z) + Υ23(z) + Υ33(z) + Υ3(z) (7.19)

7.4.1 Computing derivatives

We focus on a few partial derivatives of Υ (z, t1, t2, t3) in this subsection. The results will

be handy to use in later computations.

Combining ( 7.9 ) and ( 7.15 ), we have

Υi(z) = ∂

∂ti
Υ (z, t1, t2, t3)

∣∣∣∣∣
t1=t2=t3=0

=
∑

c′∈Ci

π (c′) · z|c′| (7.20)

where Ci is the set of clusters with exactly 1 distinguished occurrence of a pattern word

in U\V (for i = 1), V\U (for i = 2), or W = U ∩ V (for i = 3). A cluster with exactly 1

distinguished occurrence must be a pattern word. Therefore,

Υ3(z) =
∑
w∈W

π (w) · z|w| (7.21)
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Υ1(z) + Υ3(z) =
∑
u∈U

π (u) · z|u| (7.22)

Υ2(z) + Υ3(z) =
∑
v∈V

π (v) · z|v| (7.23)

A Taylor expansion at z = 1 gives

Υi(z) = Υi(1)− (1− z)Υ′i(1) + o(1− z) for i = 1, 2, 3 (7.24)

where Υ′i(1) is obtained from ( 7.21 ), ( 7.22 ), (  7.23 ):

Υ′3(1) = ∂

∂z
Υ3(z)

∣∣∣∣∣
z=1

=
∑
w∈W

π (w) · |w| (7.25)

Υ′1(1) + Υ′3(1) =
∑
u∈U

π (u) · |u| (7.26)

Υ′2(1) + Υ′3(1) =
∑
v∈V

π (v) · |v| (7.27)

Similarly, for Υij(z), we combine ( 7.9 ) and ( 7.16 ). For i 6= j, we have:

Υij(z) = ∂2

∂ti∂tj
Υ (z, t1, t2, t3)

∣∣∣∣∣
t1=t2=t3=0

=
∑

c′∈Cij

π (c′) · z|c′|
(7.28)

where Cij is the set of clusters with exactly 1 distinguished occurrence of i and exactly 1

distinguished occurrence of j.

Hence, we obtain

Υ13(1) =
∑

u∈U\V

∑
w∈U∩V

(
π(u) · |u|w + π(w) · |w|u + π(u) · π (Eu,w) + π(w) · π (Ew,u)

)
(7.29)
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Υ23(1) =
∑

v∈V\U

∑
w∈U∩V

(
π(v) · |v|w + π(w) · |w|v + π(v) · π (Ev,w) + π(w) · π (Ew,v)

)
(7.30)

Υ12(1) =
∑

u∈U\V

∑
v∈V\U

(
π(u) · |u|v + π(v) · |v|u + π(u) · π (Eu,v) + π(v) · π (Ev,u)

)
(7.31)

To clarify the notations, |u| represents the length of u, whereas |u|v (u 6= v) stands

for the number of v occurring in u. For instance, |aabbaabb| = 8, |aabbaabb|aab = 2,

and |aabbaabb|baa = 1.

Akin to ( 7.24 ), we have

Υij(z) = Υij(1)− (1− z)Υ′ij(1) + o(1− z) for i = 1, 2, 3 (7.32)

Applying ( 7.28 ), the derivative gives, for i 6= j,

Υ′ij(1) =
(
∂Υij(z)
∂z

)∣∣∣∣∣
z=1

=
 ∑

c′∈Cij

π (c′) · |c′| · z|c′|−1

∣∣∣∣∣∣
z=1

=
∑

c′∈Cij

π (c′) · |c′|

(7.33)

Therefore, we obtain

Υ′13(1) =
∑

u∈U\V

∑
w∈U∩V

π(u) · |u| · |u|w + π(w) · |w| · |w|u

+
∑

c′∈uEu,w

π (c′) · |c′|+
∑

c′∈wEw,u

π (c′) · |c′|
 (7.34)
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Υ′23(1) =
∑

v∈V\U

∑
w∈U∩V

π(v) · |v| · |v|w + π(w) · |w| · |w|v

+
∑

c′∈vEv,w

π (c′) · |c′|+
∑

c′∈wEw,v

π (c′) · |c′|
 (7.35)

Υ′12(1) =
∑

u∈U\V

∑
v∈V\U

π(u) · |u| · |u|v + π(v) · |v| · |v|u

+
∑

c′∈uEu,v

π (c′) · |c′|+
∑

c′∈vEv,u

π (c′) · |c′|
 (7.36)

We emphasize that (  7.28 ) and ( 7.33 ) are only valid for i 6= j. When i = j = 3, we have

Υ33(z) =
(
∂2Υ (z, t1, t2, t3)

∂t23

)∣∣∣∣∣
t1=t2=t3=0

=
∑

c′∈C33

2 · π (c′) · z|c′| (7.37)

where C33 is the set of clusters with exactly 2 occurrences of patterns in W = U ∩ V .

Replace z with 1 in ( 7.37 ), we have

Υ33(1) =
∑

c′∈C33

2 · π (c′)

=
∑
w1∈W

∑
w2∈W

2 ·
(
π (w1) · |w1|w2

· Jw1 6= w2K + π (w1) · π (Ew1,w2)
) (7.38)

where Jw1 6= w2K is an Iverson indicator notation, namely

Jw1 6= w2K =

 0 if w1 = w2

1 if w1 6= w2

To interpret ( 7.38 ), we recall that a cluster c′ ∈ C33 includes exactly 2 occurrences of

patterns in W — 1 occurrence of pattern w1 ∈ W and 1 occurrence of pattern w2 ∈ W .

In the case that w1 6= w2, one pattern word may

(1) entirely cover the other one (corresponding to π (w1) · |w1|w2
); or

(2) the second occurrence follows the end of the first occurrence with a right extension

(corresponding to π (w1) · π (Ew1,w2)).

74



On the contrary, when w1 = w2, only situation (2) is allowed. Because in situation (1),

although a pattern word entirely covers itself, we would only consider w1 and w2 as 1 occur-

rence, instead of 2. Therefore, the indicator Jw1 6= w2K is to ensure that we would not count

situation (1) when w1 = w2. (Recall that |w1|w2
= 1 if w1 = w2.)

We proceed from ( 7.38 ), and have

Υ′33(1) =
(
∂Υ33(z)
∂z

)∣∣∣∣∣
z=1

=
 ∑

c′∈C33

2 · π (c′) · |c′| · z|c′|−1

∣∣∣∣∣∣
z=1

=
∑

c′∈C33

2 · π (c′) · |c′|

=
∑
w1∈W

∑
w2∈W

2 ·
π (w1) · |w1| · |w1|w2

· Jw1 6= w2K +
∑

c′∈w1Ew1,w2

π (c′) · |c′|


(7.39)

Now we have prepared all needed derivatives of Υ for later use. Apart from them, the

following three expansion formulas will also be used.

1
1− z =

∞∑
n=0

zn

1
(1− z)2 =

∞∑
n=0

(n+ 1) · zn

1
(1− z)3 =

∞∑
n=0

(n+ 1)(n+ 2)
2 · zn

(7.40)

7.4.2 First moment for each pattern set

While Theorem  7.1.1 already gives E (Xn), we emphasize here that E (Xn) can be also

obtained from the partial derivative ∂F (z,x,y)
∂x

∣∣∣
x=y=1

, according to Theorem  7.2.1 . It does not

matter which approach we use when the text source is Bernoulli. However, when the text

source is Markovian, we have to calculate the partial derivatives of the generating functions

to obtain the moments of pattern occurrences. (We will discuss the Markovian case in

Chapter 8.)
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We provide the calculation details of Equation ( 7.41 ) in Appendix  B , and give the result

here.

∞∑
n=0

E (Xn) · zn = ∂F (z, x, y)
∂x

∣∣∣∣∣
x=y=1

=
∞∑
n=0

zn ·
(∑
u∈U

π(u) · (n+ 1− |u|)
) (7.41)

Hence, we obtain

E(Xn) =
∑
u∈U

π(u) · (n+ 1− |u|) (7.42)

Similarly, for Yn, we have

E(Yn) =
∑
v∈V

π(v) · (n+ 1− |v|) (7.43)

As expected, (  7.42 ) and ( 7.43 ) are respectively identical to ( 7.2 ) and (  7.4 ). The approach

of ( 7.41 ) will be used again in the second-order derivative of F (z, x, y).

7.4.3 Second-order derivative

We rely on a few results that we calculated in Section  7.4.1 to obtain ∂2F (z,x,y)
∂x∂y

∣∣∣
x=y=1

.

Here we skip the long details of the calculation and provide the result in Equation (  7.44 ).

One can refer to Appendix  B for the details.
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∞∑
n=0

E (XnYn) · zn

= ∂2F (z, x, y)
∂x∂y

∣∣∣∣∣
x=y=1

=
∞∑
n=0

zn · (n+ 1)(n+ 2)
(∑
u∈U

π(u)
)(∑

v∈V
π(v)

)

−
∞∑
n=0

zn · 2 · (n+ 1)
((∑

u∈U
π(u)

)(∑
v∈V

π(v) · |v|
)

+
(∑
v∈V

π(v)
)(∑

u∈U
π(u) · |u|

))

+
∞∑
n=0

zn · 2 ·
(∑
u∈U

π(u) · |u|
)(∑

v∈V
π(v) · |v|

)

+
∞∑
n=0

zn · (n+ 1) ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
−
∞∑
n=0

zn ·
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)

(7.44)

Therefore, we obtain E (XnYn).

E (XnYn)

= (n+ 1)(n+ 2) ·
(∑
u∈U

π(u)
)
·
(∑
v∈V

π(v)
)

− 2 · (n+ 1)
((∑

u∈U
π(u)

)(∑
v∈V

π(v) · |v|
)

+
(∑
v∈V

π(v)
)(∑

u∈U
π(u) · |u|

))

+ 2 ·
(∑
u∈U

π(u) · |u|
)(∑

v∈V
π(v) · |v|

)

+ (n+ 1) ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
−
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)

(7.45)

7.4.4 Covariance

Here we are eventually able to compute Cov(Xn, Yn). According to ( 7.42 ), ( 7.43 ) and

( 7.45 ), the covariance of Xn and Yn gives

Cov(Xn, Yn)
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= E (XnYn)− E (Xn) · E (Yn)

= (n+ 1)(n+ 2) ·
(∑
u∈U

π(u)
)(∑

v∈V
π(v)

)

− 2 · (n+ 1)
((∑

u∈U
π(u)

)(∑
v∈V

π(v) · |v|
)

+
(∑
v∈V

π(v)
)(∑

u∈U
π(u) · |u|

))

+ 2 ·
(∑
u∈U

π(u) · |u|
)(∑

v∈V
π(v) · |v|

)

+ (n+ 1) ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
−
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)
−
(∑
u∈U

π(u) · (n+ 1− |u|)
)
·
(∑
v∈V

π(v) · (n+ 1− |v|)
)

= n ·
∑
u∈U

∑
v∈V

π(u) · π(v) · (1 + |u|+ |v|)

+ (n+ 1) ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
− 2 · (n+ 1) ·

∑
u∈U

∑
v∈V

π(u) · π(v) · (|u|+ |v|) + o(n)

= n ·
∑
u∈U

∑
v∈V

π(u) · π(v) · (1− |u| − |v|)

+ n ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
+ o(n)

Therefore, we have the conclusion.

Theorem 7.4.1 Consider a random Bernoulli text of size n and two pattern sets U and V .

We allow for the case in which the intersection of the two pattern sets, W = U ∩ V , may

not be empty. Two random variables Xn and Yn are defined as follows: Xn is the number of

pattern occurrences from U in the text of size n;

Yn is the number of pattern occurrences from V in the text of size n.

We have

lim
n→∞

1
n

Cov (Xn, Yn)

=
∑
u∈U

∑
v∈V

π(u) · π(v) · (1− |u| − |v|)
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+
∑

u∈U\V

∑
v∈V\U

(
π(u) · |u|v + π(v) · |v|u + π(u) · π (Eu,v) + π(v) · π (Ev,u)

)

+
∑

u∈U\V

∑
w∈U∩V

(
π(u) · |u|w + π(w) · |w|u + π(u) · π (Eu,w) + π(w) · π (Ew,u)

)

+
∑

v∈V\U

∑
w∈U∩V

(
π(v) · |v|w + π(w) · |w|v + π(v) · π (Ev,w) + π(w) · π (Ew,v)

)

+
∑
w1∈W

∑
w2∈W

2 ·
(
π (w1) · |w1|w2

· Jw1 6= w2K + π (w1) · π (Ew1,w2)
)

+
∑
w∈W

π (w)

+ o(1) (7.46)

Proof 5 We already have the result of Cov(Xn, Yn), which gives

lim
n→∞

1
n

Cov (Xn, Yn) =
∑
u∈U

∑
v∈V

π(u) · π(v) · (1− |u| − |v|)

+
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
+ o(1)

The term
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
can be computed by results from

( 7.21 ), (  7.29 )–( 7.31 ) and ( 7.38 ), in Section  7.4.1 . This term becomes

∑
u∈U\V

∑
v∈V\U

(
π(u) · |u|v + π(v) · |v|u + π(u) · π (Eu,v) + π(v) · π (Ev,u)

)

+
∑

u∈U\V

∑
w∈U∩V

(
π(u) · |u|w + π(w) · |w|u + π(u) · π (Eu,w) + π(w) · π (Ew,u)

)

+
∑

v∈V\U

∑
w∈U∩V

(
π(v) · |v|w + π(w) · |w|v + π(v) · π (Ev,w) + π(w) · π (Ew,v)

)

+
∑
w1∈W

∑
w2∈W

2 ·
(
π (w1) · |w1|w2

· Jw1 6= w2K + π (w1) · π (Ew1,w2)
)

+
∑
w∈W

π (w)

Thus, Formula ( 7.46 ) is obtained.

We also have the following corollary.

Corollary 7.4.1 Let variable Xn count the number of pattern occurrences from pattern

set U in a random Bernoulli text of size n. We have

79



lim
n→∞

1
n

Var (Xn) =
∑
u1∈U

∑
u2∈U

π(u1) · π(u2) · (1− |u1| − |u2|)

+
∑
u1∈U

∑
u2∈U

2 ·
(
π (u1) · |u1|u2

· Ju1 6= u2K + π (u1) · π (Eu1,u2)
)

+
∑
u∈U

π (u) + o(1)

(7.47)

Proof 6 Since Var (Xn) = Cov (Xn, Xn), we respectively replace V with U , and Yn withXn,

in Theorem  7.4.1 . Equation ( 7.46 ) is then simplified because U\U = ∅, and U ∩ U = U .

Therefore, we obtain ( 7.47 ).

7.5 An example

We make an example in this section to demonstrate the power of Theorem  7.4.1 .

Example 7.5.1 Consider two pattern sets U = {a2, a3} and V = {a3, a4}. Let Xn, Yn

respectively count the number of pattern occurrences from U and V in a random Bernoulli

text of size n, where p = π(a) in this Bernoulli model. Our aim is the variance-covariance

matrix of Xn and Yn.

We start with the computation of Cov (Xn, Yn) using Theorem  7.4.1 . First, we calculate

∑
u∈U

∑
v∈V

π(u) · π(v) · (1− |u| − |v|)

= π(a2) · π(a3) · (1− |a2| − |a3|) + π(a2) · π(a4) · (1− |a2| − |a4|)

+ π(a3) · π(a3) · (1− |a3| − |a3|) + π(a3) · π(a4) · (1− |a3| − |a4|)

= p2 · p3 · (1− 2− 3) + p2 · p4 · (1− 2− 4)

+ p3 · p3 · (1− 3− 3) + p3 · p4 · (1− 3− 4)

= −4p5 − 10p6 − 6p7

As U and V have one pattern in common, we list three disjoint sets:

U\V = {a2}, V\U = {a4}, W = U ∩ V = {a3}
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Therefore,

∑
u∈U\V

∑
v∈V\U

(
π(u) · |u|v + π(v) · |v|u + π(u) · π (Eu,v) + π(v) · π (Ev,u)

)

+
∑

u∈U\V

∑
w∈U∩V

(
π(u) · |u|w + π(w) · |w|u + π(u) · π (Eu,w) + π(w) · π (Ew,u)

)

+
∑

v∈V\U

∑
w∈U∩V

(
π(v) · |v|w + π(w) · |w|v + π(v) · π (Ev,w) + π(w) · π (Ew,v)

)

+
∑
w1∈W

∑
w2∈W

2 ·
(
π (w1) · |w1|w2

+ π (w1) · π (Ew1,w2)
)

+
∑
w∈W

π (w)

= π(a2) · |a2|a4 + π(a4) · |a4|a2 + π(a2) · π (Ea2,a4) + π(a4) · π (Ea4,a2)

+ π(a2) · |a2|a3 + π(a3) · |a3|a2 + π(a2) · π (Ea2,a3) + π(a3) · π (Ea3,a2)

+ π(a4) · |a4|a3 + π(a3) · |a3|a4 + π(a4) · π (Ea4,a3) + π(a3) · π (Ea3,a4)

+ 2 ·
(
π
(
a3
)
·
∣∣∣a3
∣∣∣
a3

+ π
(
a3
)
· π (Ea3,a3)

)
+ π

(
a3
)

= 0 + 3p4 + p2 · p3 + p4 · p

+ 0 + 2p3 + p2 · p2 + p3 · p

+ 2p4 + 0 + p4 · (p+ p2) + p3 · (p2 + p3)

+ 2 ·
(
0 + p3 · (p+ p2)

)
+ p3

= 3p3 + 9p4 + 6p5 + 2p6

According to Theorem  7.4.1 , we have the covariance:

lim
n→∞

1
n

Cov (Xn, Yn) = (−4p5 − 10p6 − 6p7) + (3p3 + 9p4 + 6p5 + 2p6) + o(1)

= p3 ·
(
3 + 9p+ 2p2 − 8p3 − 6p4

)
+ o(1)
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Next, we compute limn→∞
1
n
Var (Xn) and limn→∞

1
n
Var (Yn) by applying Corollary  7.4.1 :

lim
n→∞

1
n

Var (Xn) =
∑
u1∈U

∑
u2∈U

π(u1) · π(u2) · (1− |u1| − |u2|)

+
∑
u1∈U

∑
u2∈U

2 ·
(
π (u1) · |u1|u2

+ π (u1) · π (Eu1,u2)
)

+
∑
u∈U

π (u) + o(1)

In this case, we have

lim
n→∞

1
n

Var (Xn) = π(a2) · π(a2) · (1− |a2| − |a2|) + π(a2) · π(a3) · (1− |a2| − |a3|)

+ π(a3) · π(a2) · (1− |a3| − |a2|) + π(a3) · π(a3) · (1− |a3| − |a3|)

+ 2 ·
(
π
(
a2
)
· π (Ea2,a2) + π

(
a2
)
· π (Ea2,a3)

+ π
(
a3
)
·
∣∣∣a3
∣∣∣
a2

+ π
(
a3
)
· π (Ea3,a2) + π

(
a3
)
· π (Ea3,a3)

)
+ π(a2) + π(a3) + o(1)

= p2 · p2 · (1− 2− 2) + p2 · p3 · (1− 2− 3)

+ p3 · p2 · (1− 3− 2) + p3 · p3 · (1− 3− 3)

+ 2 ·
(
p2 · p+ p2 · p2 + 2p3 + p3 · p+ p3 · (p+ p2)

)
+ p2 + p3 + o(1)

= p2 ·
(
1 + 7p+ 3p2 − 6p3 − 5p4

)
+ o(1)

The variance of Yn can be obtained similarly. We omit the details of computation and

give the result.

lim
n→∞

1
n

Var (Yn) = p3 ·
(
1 + 7p+ 8p2 + p3 − 10p4 − 7p5

)
+ o(1)

7.6 Higher moments

If needed, the tools that we use to compute the first and second moment of pattern

occurrence counting can be further expand to obtain higher moments. The mth order partial

derivative with respect to x on both sides of Equation ( 7.5 ) gives
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∑
n≥0

E
(
Xn(Xn − 1) · · · (Xn −m+ 1)

)
zn = ∂m

∂xm
F (z, x)

∣∣∣∣∣
x=1

This is the generalized version of Theorem  7.2.1 , and is known as the mth factorial

moment. (See the text by Flajolet and Sedgewick [ 13 , Appendix A.3].)

Therefore, by mathematical induction, we should be able to obtain the moment in any

higher order, though the computation is expected to be more complex.
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8. MOMENTS OF OCCURRENCES FOR PATTERNS IN A

MARKOVIAN TEXT

Suppose that our context is the same as that in a Bernoulli text. Namely, we have an

alphabet A = {a1, a2, . . . a`} and two sets of pattern words, U = {u1, u2, ..., ur}, and V =

{v1, v2, ..., vs}. The two sets may have non-empty intersection W = U ∩ V .

In Chapter 7, we use two random variables Xn and Yn to respectively count the occur-

rences of patterns from each pattern set. However, in a first-order Markovian context, we

need to specify a letter ai ∈ A that the text follows. Hence, the number of random variables

immediately jumps from 2 (i.e.,Xn and Yn) to 2|A|, i.e., a1Xn,
a1Yn,

a2Xn,
a2Yn, . . . ,

a`Xn,
a`Yn.

To obtain the first moment for any of these random variables, the corresponding gen-

erating function ajF (z, x, y) is needed. Thus, we should follow the procedures specified in

Theorem  6.2.1 , which requires solving linear equations



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


=



1

1
...

1


+ P(`×`) · z ·



a1T (z, t)
a2T (z, t)

...
a`T (z, t)


+



a1η(z, t)
a2η(z, t)

...
a`η(z, t)


·



û1T (z, t)
û2T (z, t)

...
ûrT (z, t)


(8.1)

Recall that each ajη(z, t) (where j ∈ {1, 2, . . . , `}) is a 1× r row vector, in the form of

(
(· · · )F̂lip(u1), (· · · )F̂lip(u2), . . . , (· · · )F̂lip(ur)

)
.

Without knowing the specific pattern words in U and V , it is impractical for us to go any

further than the general form of linear equations. Moreover, as the pattern words in one set

may have different ending letters, counting them together prevents us from systematically

determining the ending letter of a cluster.

Therefore, unlike texts with Bernoulli sources, we do not have an elegant result as The-

orem  7.4.1 when a Markovian source is involved.
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However, by utilizing the results in Chapter 6, we can still calculate the moments of

occurrences of pattern words (not pattern sets) in a Markovian text. In the next section,

we provide an example of Markovian case in which the first and second moment of pattern

occurrences are calculated.

8.1 Moments in a Markovian text

The generating functions of decorated texts can be obtained by Theorem  6.2.1 . In Ex-

ample  6.3.1 , we obtained two generating functions, namely, aF (z, x1, x2, x3, x4) from ( 6.11 )

and bF (z, x1, x2, x3, x4) from ( 6.12 ).

The following example is designed so that we can use the result of those generating

functions and then focus on calculating the moments.

Example 8.1.1 A binary text is generated by a first-order Markovian source with the tran-

sition matrix

P =

 paa pab

pba pbb

 =

 1/2 1/2

3/5 2/5

 (8.2)

Consider two patterns

u1 = ab, u2 = aba

and define four random variables aXn,
bXn,

aYn and bYn as follows:
aXn is the number of occurrences of u1 = ab in a text of length n following a letter a;
bXn is the number of occurrences of u1 = ab in a text of length n following a letter b;
aYn is the number of occurrences of u2 = aba in a text of length n following a letter a;
bYn is the number of occurrences of u2 = aba in a text of length n following a letter b.

In order to calculate the moments of aXn,
bXn,

aYn and bYn, we need to obtain the gener-

ating functions of the pattern occurrences, i.e., aF (z, x, y) and bF (z, x, y), where x, y is the

dummy variable to count the occurrence of u1 and u2, respectively.
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Observe that the two patterns u1 and u2 in this example are identical to u1 and u2 in

Example  6.3.1 . Therefore, we can obtain aF (z, x, y) and bF (z, x, y) directly by making the

following replacements to aF (z, x1, x2, x3, x4) and bF (z, x1, x2, x3, x4) of Example  6.3.1 .

x1 → x, x2 → y, x3 → 1, x4 → 1.

Thus, we have

aF (z, x, y) = 100− 3x(y − 1)z3 + (5 + (25− 30y)x)z2 + 10z
100 + 12x(y − 1)z3 + (20− 30xy)z2 − 90z (8.3)

and
bF (z, x, y) = 50− 15(y − 1)xz2 + 5z

50 + 6x(y − 1)z3 + (10− 15xy)z2 − 45z (8.4)

Now we calculate the first moments of aXn by Theorem  7.2.1 . The generating functions

of the first moment of aXn, bXn, aYn and bYn can be obtained by Theorem  7.2.1 as follows.

∑
n≥0

E (aXn) zn = ∂

∂x
aF (z, x, y)

∣∣∣∣∣
x=y=1

= z2(z + 5)
2(z − 1)2(z + 10) (8.5)

The Taylor expansion on the RHS of (  8.5 ) gives

z2(z + 5)
2(z − 1)2(z + 10) =

∑
n≥0

(3n
11 −

71
242 −

25
121

(
− 1

10

)n)
· zn

Hence, we have

E (aXn) = 3n
11 −

71
242 −

25
121 ·

(
− 1

10

)n
(8.6)

and

lim
n→∞

1
n

E (aXn) = 3
11 (8.7)

The first moment of bXn,
aYn and bYn can be obtained by performing similar procedures.

We skip the calculations and provide the results here.

For bXn, we have

E
(
bXn

)
= 3

121

(
11n− 10 + 10 ·

(
− 1

10

)n)
(8.8)
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and

lim
n→∞

1
n

E
(
bXn

)
= 3

11 (8.9)

For aYn, we have

E (aYn) = 3
1210

(
66n− 137 + 500 ·

(
− 1

10

)n)
(8.10)

and

lim
n→∞

1
n

E (aYn) = 9
55 (8.11)

For bYn, we have

E
(
bYn

)
= 9

605

(
11n− 21− 100

(
− 1

10

)n)
(8.12)

and

lim
n→∞

1
n

E
(
bYn

)
= 9

55 (8.13)

Next, we move forward to the variance of aXn,
bXn,

aYn and bYn. We perform the calcu-

lation of Var(aXn), and then give the results of Var(bXn), Var(aYn), and Var(bYn).

According to Theorem  7.2.1 , we have

∑
n≥0

E
(
aX2

n

)
zn = ∂2

∂x2
aF (z, x, y)

∣∣∣∣∣
x=y=1

+ ∂

∂x
aF (z, x, y)

∣∣∣∣∣
x=y=1

= z2(z + 5) (5z2 − 9z + 10)
2(z − 1)3(z + 10)2

(8.14)

The Taylor expansion on the RHS of (  8.14 ) gives

z2(z + 5) (5z2 − 9z + 10)
2(z − 1)3(z + 10)2 =

∑
n≥0

zn ·

9n2

121 −
129n
1331 + 4255

29282

− 1500
1331n

(
− 1

10

)n
+ 34475

14641 ·
(
− 1

10

)n
Hence, we have

E
(
aX2

n

)
= 9n2

121 −
129n
1331 + 4255

29282 −
1500
1331n

(
− 1

10

)n
+ 34475

14641 ·
(
− 1

10

)n
(8.15)

87



and

lim
n→∞

1
n2 E

(
aX2

n

)
= 9

121 (8.16)

The variance of aXn is given by

Var (aXn) = E
(
aX2

n

)
− (E (aXn))2

= 84n
1331 + 3469

58564 −
1350
1331n

(
− 1

10

)n
+ 32700

14641

(
− 1

10

)n
− 625

14641

(
− 1

10

)2n (8.17)

and therefore,

lim
n→∞

1
n

Var (aXn) = 84
1331 (8.18)

The other variance values can be obtain similarly. The results are as follows.

For bXn, we have

Var
(
bXn

)
= 84n

1331 + 870
14641 + 1620

1331n
(
− 1

10

)n
+ 30

14641

(
− 1

10

)n
−
( 30

121

)2 (
− 1

10

)2n
(8.19)

and

lim
n→∞

1
n

Var
(
bXn

)
= 84

1331 (8.20)

For aY n, we have

Var (aY n) = 4122n
33275 −

409263
1464100 + 44460

1331 n
(
− 1

10

)n
− 1985520

14641

(
− 1

10

)n
−
(150

121

)2 (
− 1

10

)2n (8.21)

and

lim
n→∞

1
n

Var (aY n) = 4122
33275 (8.22)

For bY n, we have

Var
(
bY n

)
= 4122n

33275 −
19224
73205 −

53352
1331 n

(
− 1

10

)n
+ 1195812

14641

(
− 1

10

)n
−
(180

121

)2 (
− 1

10

)2n (8.23)
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and

lim
n→∞

1
n

Var
(
bY n

)
= 4122

33275 (8.24)

Lastly, we calculate the covariance value Cov (aXn,
aY n), and also give the result of the

other covariance Cov
(
bXn,

bY n

)
.

Note that Cov
(
aXn,

bY n

)
and Cov

(
bXn,

aY n

)
do not exist, as the counting of u1 and u2

must be performed on the same text, which either follows a letter a or a letter b.

∑
n≥0

E (aXn
aY n) zn = ∂2

∂x∂y
aF (z, x, y)

∣∣∣∣∣
x=y=1

= 3z3 (2z2 + 5z − 25)
5(z − 1)3(z + 10)2

(8.25)

The Taylor expansion of the RHS of (  8.25 ) gives

3z3 (2z2 + 5z − 25)
5(z − 1)3(z + 10)2 =

∑
n≥0

zn ·

27n2

605 −
486n
6655 −

2346
73205

+ 750
1331n

(
− 1

10

)n
− 17100

14641

(
− 1

10

)n
Hence, we have

E (aXn
aY n) = 27n2

605 −
486n
6655 −

2346
73205 + 750

1331n
(
− 1

10

)n
− 17100

14641

(
− 1

10

)n
(8.26)

The covariance Cov (aXn,
aY n) is given by

Cov (aXn,
aY n) = E (aXn

aY n)− E (aXn) E (aY n)

= 90n
1331 −

7713
58564 + 345

1331n
(
− 1

10

)n
− 25605

29282

(
− 1

10

)n
+ 3750

14641

(
− 1

10

)2n

(8.27)

and therefore,

lim
n→∞

1
n

Cov (aXn,
aY n) = 90

1331 (8.28)
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A similar procedure gives the covariance Cov
(
bXn,

bY n

)
as follows

Cov
(
bXn,

bY n

)
= 90n

1331 −
1854
14641 −

414
1331n

(
− 1

10

)n
− 3546

14641

(
− 1

10

)n
+ 5400

14641

(
− 1

10

)2n (8.29)

and therefore,

lim
n→∞

1
n

Cov
(
bXn,

bY n

)
= 90

1331 (8.30)

8.2 Higher order moments

Similar to the first and second moments for Markovian text, a closed form for higher

moments does not exist. However, when the transition matrix and pattern set are given,

one can certainly follow the procedure in Section  8.1 , and compute any desired moment of

interest.

It is worth emphasizing that a drawback to the approach (comparing to that with a

Bernoulli source) is that we are not able to compute the moment of occurrences for an entire

pattern set with a closed form. The moments of the number of occurrences (of any order)

in a Markovian order 1 text, can be obtained for individual pattern words.

8.3 Remarks

One may have observed that in Example  8.1.1 , we have the following results.

lim
n→∞

1
n

E (aXn) = lim
n→∞

1
n

E
(
bXn

)
= 3

11

lim
n→∞

1
n

E (aYn) = lim
n→∞

1
n

E
(
bYn

)
= 9

55

lim
n→∞

1
n

Var (aXn) = lim
n→∞

1
n

Var
(
bXn

)
= 84

1331
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lim
n→∞

1
n

Var (aYn) = lim
n→∞

1
n

Var
(
bYn

)
= 4122

33275

lim
n→∞

1
n

Cov (aXn,
aYn) = lim

n→∞

1
n

Cov
(
bXn,

bYn
)

= 90
1331

These results indicate that in a long run (n→∞), the moments of a pattern occurrence

in a Markovian text may be independent of the letter that the text follows. Namely, the

moments of jXn or jYn are asymptotically independent of the letter j.

8.3.1 First moment in Markovian texts converges to Bernoulli

Without proof, we expect the statement is true with a time-homogeneous Markov chain

that is aperiodic and irreducible. Let the stationary distribution for the alphabet A =

{a1, a2, · · · , a`} be (
π1 π2 · · · π`

)
Suppose a pattern u = α1α2α3 · · ·α|u|, where each αi is a single letter from the alphabetA.

Then we have, in a long run,

ajπ(u) = π (α1) · Pα1,α2 · Pα2,α3 · · ·Pα(|u|−1),α|u| for ∀j ∈ {1, 2, · · · , `}

It is independent of aj, the letter that the entire text follows. i.e.,

ajπ(u) = π(u) for ∀j ∈ {1, 2, · · · , `}

Therefore, in a Markovian context, we have

lim
n→∞

E (ajXn) = n · π(u) + o(n)

or equivalently,

lim
n→∞

1
n

E (ajXn) = π(u) + o(1) for ∀j ∈ {1, 2, · · · , `} (8.31)
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Comparing to the first moment in Bernoulli texts (  7.3 ) or ( 7.42 ):

E (Xn) =
∑
u∈U

π(u)(n− |u|+ 1)

We have, in Bernoulli texts,

lim
n→∞

1
n

E (Xn) =
∑
u∈U

π(u) + o(1) (8.32)

The limit of the Markovian moment ( 8.31 ) is consistent with that of the Bernoulli mo-

ment ( 8.32 ), with the constraint that only one pattern is allowed in U .

The discussion above is easily verified with our results in Example  8.1.1 . Our transition

matrix

P =

 paa pab

pba pbb

 =

 1/2 1/2

3/5 2/5


has a stationary probabilities π(a) and π(b) where

π(a) = 6
11 , π(b) = 5

11

For large n, the probabilities of the two patterns, π(ab) and π(aba), are respectively

π(ab) = π(a) · pab = 3
11

and

π(aba) = π(a) · pab · pba = 9
55

Therefore,

lim
n→∞

1
n

E (aXn) = lim
n→∞

1
n

E
(
bXn

)
= π(ab)

lim
n→∞

1
n

E (aYn) = lim
n→∞

1
n

E
(
bYn

)
= π(aba)

These results are consistent with the non-Markovian case.
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9. SUMMARY

This thesis is a methodology and combinatorial structural analysis of counting the occur-

rences of patterns in a Markovian text.

We first introduced the fundamentals of generating functions and the inclusion-exclusion

method. We demonstrated how Bassino et al.’s novel approach [  5 ] counts the pattern occur-

rences on a sequence from a Bernoulli source. Then we build the combinatorial structure

from a recursive point of view, in order to adapt the Markovian dependence. For Bernoulli

texts, our model leads to the same results of Bassino et al. [ 5 ].

The difficulty of counting pattern occurrences in a Markovian text is the fact that each

letter is dependent on what have appeared directly before itself. Therefore, no matter for

a letter, a cluster, or a text, the construction of the generating function must consider all

possible letters that comes before it. In addition, since a text is considered a sequence of

letters and clusters, we also need to keep track of the ending letter of every block (e.g., a

letter of a cluster) as it is the pre-letter of the next block.

It is expected to cause a large amount of computation when the alphabet is huge. This

situation could happen when we need to consider higher order Markovian dependence, even if

for a small alphabet set. As for higher order Markovian, we can always expand the alphabet

and the corresponding transition matrix in order to boil down to the Markovian of order 1.

Due to the Markovian dependence, our results are given in the form of a linear matrix

equation. The generating functions that depend on all possible letters can be obtained. We

computed the first and second moments of pattern occurrences, and compared the results in

the Bernoulli case and our first-order Markovian case. We found that for a time-homogeneous

Markov chain that is aperiodic and irreducible, the first moment of pattern occurrences in

Markovian texts will converge to the Bernoulli case in a long run. The second moment in

Markovian texts does converge, but not to the corresponding Bernoulli case. The behavior

of the convergence could be a future direction of this topic.
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A. FULL EXPRESSIONS

Expressions from Example  6.3.1 are provided in this appendix.

Let aη(z, t) =
(

aη1(z, t), aη2(z, t), aη3(z, t), aη4(z, t)
)

. Then we have:

aη1(z, t) =
[
t1z

2
(
− 50 + 3(1 + t1)z2(5(1 + t2)(t3 + t4 + t3t4)

− 3(t2t3 + (1 + t2)(1 + t3)t4)z)
)]/

[
2
(
− 100 + 30(1 + t1)(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))z2

+ 9(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z4
)]

aη2(z, t) = −
[
3(1 + t1)t2z3

(
50 + 3z

(
10t3 − 5(t3 + (1 + t1)(1 + t2)(1 + t3)t4)z

+ 3(1 + t1)(1 + t2)(1 + t3)t4z2
))]/

[
10
(
− 100 + 30(1 + t1)(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))z2

+ 9(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z4
)]

aη3(z, t) =
[
3(1 + t1)t3z3

(
− 10− 5(t1 + t2 + t1t2)z + 3(1 + t1)t2z2

)]/
[
− 200 + 6(1 + t1)z2

(
10(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))

+ 3(−t2t3 + t1(1 + t2)(1 + t3)t4)z2
)]

aη4(z, t) =
[
9(1 + t1)(1 + t2)(1 + t3)t4z4

(
− 10− 5(t1 + t2 + t1t2)z + 3(1 + t1)t2z2

)]/
[
− 1000 + 30(1 + t1)z2

(
10(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))

+ 3(−t2t3 + t1(1 + t2)(1 + t3)t4)z2
)]
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Let bη(z, t) =
(

bη1(z, t), bη2(z, t), bη3(z, t), bη4(z, t)
)

. Then we have:

bη1(z, t) = −
[
3t1z2

(
50 + 3(1 + t1)z2(−5(1 + t2)(t3 + t4 + t3t4)

+ 2(t2t3 + (1 + t2)(1 + t3)t4)z)
)]/

[
5
(
− 100 + 30(1 + t1)(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))z2

+ 9(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z4
)]

bη2(z, t) = −
[
9(1 + t1)t2z3

(
50 + z

(
20t3 − 15(t3 + (1 + t1)(1 + t2)(1 + t3)t4)z

+ 6(1 + t1)(1 + t2)(1 + t3)t4z2
))]/

[
25
(
− 100 + 30(1 + t1)(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))z2

+ 9(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z4
)]

bη3(z, t) =
[
3(1 + t1)t3z3

(
− 20− 15(t1 + t2 + t1t2)z + 6(1 + t1)t2z2

)]/
[
− 500 + 15(1 + t1)z2

(
10(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))

+ 3(−t2t3 + t1(1 + t2)(1 + t3)t4)z2
)]

bη4(z, t) =
[
9(1 + t1)(1 + t2)(1 + t3)t4z4

(
− 20− 15(t1 + t2 + t1t2)z + 6(1 + t1)t2z2

)]/
[
25
(
− 100 + 30(1 + t1)(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))z2

+ 9(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z4
)]
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The full expressions of aT (z, t) and bT (z, t) in Example  6.3.1 are respectively listed as

follows.

aT (z, t) =
[
− 200 + z

(
− 20 + 10(t1 + 6t2 + 6t1t2 + 6t3 + 6t1t3 + 6t2t3 + 6t1t2t3

+ 6(1 + t1)(1 + t2)(1 + t3)t4)z + 6(1 + t1)(1 + t3)(t2 + t4 + t2t4)z2

+ 15(1 + t1)(−t2t3 + t1(1 + t2)(1 + t3)t4)z3
)]/

[
2
(
− 100 + z

(
90 + 10(1 + 3t3 + 3(1 + t3)t4 + 3t2(1 + t3)(1 + t4)

+ 3t1(1 + t2)(1 + t3)(1 + t4))z

− 3(1 + t1)(4t2 + 5t3 + 9t2t3 + 9(1 + t2)(1 + t3)t4)z2

+ 6(1 + t1)(t2t3 + (1 + t2)(1 + t3)t4)z3
))]

bT (z, t) =
[
− 500 + z

(
− 50 + 3(1 + t1)z

(
50(t3 + t4 + t3t4 + t2(1 + t3)(1 + t4))

+ 5(1 + t2)(t3 + t4 + t3t4)z

+ 3(−4t2t3 + (1 + 5t1)(1 + t2)(1 + t3)t4)z2
))]/

[
5
(
− 100 + z

(
90 + 10(1 + 3t3 + 3(1 + t3)t4

+ 3t2(1 + t3)(1 + t4) + 3t1(1 + t2)(1 + t3)(1 + t4))z

− 3(1 + t1)(4t2 + 5t3 + 9t2t3 + 9(1 + t2)(1 + t3)t4)z2

+ 6(1 + t1)(t2t3 + (1 + t2)(1 + t3)t4)z3
))]
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The full expressions of aF (z,x) and bF (z,x) in Example  6.3.1 are respectively listed as

follows.

aF (z,x) =
[
− 200 + z

(
− 20 + z

(
− 10 + x1

(
− 50 + 60x2x3x4 + 6x3(−1 + x2x4)z

+ 15(−1 + x2 + x3 − x1x2x3 + (−1 + x1)x2x3x4)z2
)))]/

[
− 200 + 2z(90 + z(−20 + 6x1z(−x3(−2 + z) + z)

+ 3x1x2(x3x4(−2 + z)− z)(−5 + 2z)))
]

bF (z,x) =
[
− 500 + z

(
− 50 + 3x1z

(
− 50 + 50x2x3x4 + 5x2(−1 + x3x4)z

+ 3(4(−1 + x3) + x2(4 + 5x1x3(−1 + x4)− 4x3x4))z2
))]/

[
− 500 + 5z(90 + z(−20 + 6x1z(−x3(−2 + z) + z)

+ 3x1x2(x3x4(−2 + z)− z)(−5 + 2z)))
]
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B. CALCULATIONS

Here is a detailed calculation of Equation ( 7.41 ) in Section  7.4.2 .

The following computation used the results from ( 7.10 ), ( 7.12 ), ( 7.17 ), ( 7.22 ), ( 7.24 ), and

( 7.26 ).

∞∑
n=0

E (Xn) · zn = ∂F (z, x, y)
∂x

∣∣∣∣∣
x=y=1

= 1
(1− z −Υ(z, 0, 0, 0))2 ·

∂Υ(z, x− 1, y − 1, xy − 1)
∂x

∣∣∣∣∣
x=y=1

= 1
(1− z)2 · (Υ1(z) + Υ3(z))

= 1
(1− z)2 ·

(
Υ1(1) + Υ3(1)− (1− z) · (Υ′1(1) + Υ′3(1)) + o(1− z)

)

= Υ1(1) + Υ3(1)
(1− z)2 − Υ′1(1) + Υ′3(1)

(1− z)

=
∞∑
n=0

(n+ 1) · zn ·
∑
u∈U

π (u)−
∞∑
n=0

zn
∑
u∈U

π (u) · |u|

=
∞∑
n=0

zn ·
(∑
u∈U

π(u) · (n+ 1− |u|)
)

(B.1)

Here is a detailed calculation of Equation ( 7.44 ) in Section  7.4.3 .

First we provide the detailed calculation of Equation (  7.44 ). The following equations

in Section  7.4.1 are used: ( 7.10 ), (  7.14 ), (  7.17 )–( 7.19 ), (  7.29 )–( 7.31 ), (  7.32 ), (  7.34 )–( 7.36 ),

( 7.38 ), and ( 7.39 ). We know that ∑∞n=0 E (XnYn) · zn = ∂2F (z,x,y)
∂x∂y

∣∣∣
x=y=1

. It follows that

∞∑
n=0

E (XnYn) · zn = 2 · 1
(1− z −Υ(z, 0, 0, 0))3 ·

∂Υ
∂y
· ∂Υ
∂x

∣∣∣∣∣
x=y=1

+ 1
(1− z −Υ(z, 0, 0, 0))2 ·

∂2Υ
∂x∂y

∣∣∣∣∣
x=y=1
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and now we calculate

∞∑
n=0

E (XnYn) · zn = 2 · 1
(1− z)3 ·

∂Υ
∂y
· ∂Υ
∂x

∣∣∣∣∣
x=y=1

+ 1
(1− z)2 ·

∂2Υ
∂x∂y

∣∣∣∣∣
x=y=1

= 2 · (Υ1(z) + Υ3(z)) · (Υ2(z) + Υ3(z))
(1− z)3

+ Υ12(z) + Υ13(z) + Υ23(z) + Υ33(z) + Υ3(z)
(1− z)2

= 2
(1− z)3 ·

(
Υ1(1) + Υ3(1)− (1− z) · (Υ′1(1) + Υ′3(1)) + o(1− z)

)
·
(
Υ2(1) + Υ3(1)− (1− z) · (Υ′2(1) + Υ′3(1)) + o(1− z)

)
+ 1

(1− z)2 ·
((

Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)
)

− (1− z) ·
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)
+ o(1− z)

)
= 2

(1− z)3 ·
(
Υ1(1) + Υ3(1)

)
·
(
Υ2(1) + Υ3(1)

)
− 2

(1− z)2 ·
(

(Υ1(1) + Υ3(1))(Υ′2(1) + Υ′3(1))

+ (Υ2(1) + Υ3(1))(Υ′1(1) + Υ′3(1))
)

+ 2
(1− z) · (Υ

′
1(1) + Υ′3(1)) · (Υ′2(1) + Υ′3(1))

+ 1
(1− z)2 ·

(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
− 1

(1− z) ·
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)
=
∞∑
n=0

zn · (n+ 1)(n+ 2)
(∑
u∈U

π(u)
)(∑

v∈V
π(v)

)

−
∞∑
n=0

zn · 2 · (n+ 1)
((∑

u∈U
π(u)

)(∑
v∈V

π(v) · |v|
)

+
(∑
v∈V

π(v)
)(∑

u∈U
π(u) · |u|

))

+
∞∑
n=0

zn · 2 ·
(∑
u∈U

π(u) · |u|
)(∑

v∈V
π(v) · |v|

)

+
∞∑
n=0

zn · (n+ 1) ·
(
Υ12(1) + Υ13(1) + Υ23(1) + Υ33(1) + Υ3(1)

)
−
∞∑
n=0

zn ·
(
Υ′12(1) + Υ′13(1) + Υ′23(1) + Υ′33(1) + Υ′3(1)

)
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