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ABSTRACT

Danial, Josef A. MS, Purdue University, December 2020. Advanced Low-Cost Electro-
Magnetic and Machine Learning Side-Channel Attacks. Major Professor: Shreyas
Sen.

Side-channel analysis (SCA) is a prominent tool to break mathematically secure

cryptographic engines, especially on resource-constrained devices. SCA attacks utilize

physical leakage vectors like the power consumption, electromagnetic (EM) radiation,

timing, cache hits/misses, that reduce the complexity of determining a secret key

drastically, going from 2128 for brute force attacks to 212 for SCA in the case of

AES-128. Additionally, EM SCA attacks can be performed non-invasively without

any modifications to the target under attack, unlike power SCA. To develop defenses

against EM SCA, designers must evaluate the cryptographic implementations against

the most powerful side-channel attacks. In this work, systems and techniques that

improve EM side-channel analysis have been explored, making it lower-cost and more

accessible to the research community to develop better countermeasures against such

attacks. The first chapter of this thesis presents SCNIFFER, a platform to perform

efficient end-to-end EM SCA attacks. SCNIFFER introduces leakage localization

– an often-overlooked step in EM attacks – into the loop of an attack. Following

SCNIFFER, the second chapter presents a practical machine learning (ML) based EM

SCA attack on AES-128. This attack addresses issues dealing with low signal-to-noise

ratio (SNR) EM measurements, proposing training and pre-processing techniques to

perform an efficient profiling attack. In the final chapter, methods for mapping from

power to EM measurements, are analyzed, which can enable training a ML model

with much lower number of encryption traces. Additionally, SCA evaluation of high-



xv

level synthesis (HLS) based cryptographic algorithms is performed, along with the

study of futuristic neural encryption techniques.



1

1. INTRODUCTION

Side-channel analysis allows adversaries to recover secret information using far less

processing than brute force attacks by taking advantage of additional information

from a side-channel such as execution time, power consumption, electromagnetic emis-

sions, or even sound. These side channels give attackers information based on the

implementation of a cryptographic algorithm, and can be used to efficiently recover

secrets even if the cryptographic algorithm itself is secure. This thesis focuses on

attacks using the electromagnetic side-channel, and the closely related power side-

channel. In order to create effective defenses against side-channel attacks, designers

must subject cryptographic implementations to the most powerful side-channel at-

tacks, thus by improving side-channel attacks, more effective countermeasures can be

developed, and the security of cryptography implementations more accurately esti-

mated.

Of critical importance to the practicality of EM and power based side-channel

attacks is the signal to noise ratio (SNR) of the EM/power measurements. In the

study of side-channel analysis, SNR has a particular meaning: SNR = V AR[Q]
V AR[N ]

, where

Q is the targeted side-channel leakage, and N is the noise. Noise - in the side-channel

sense - has two main components: First, the traditional measurement noise due to

thermal effects and quantization errors during measurement, and second, algorithmic

noise. Algorithmic noise is composed of any variation in the side channel signal

originating from the targeted device, but not caused by the specific operation being

analyzed. This could be due to other processes executing concurrently, or even a part

of the algorithm under analysis that does not provide useful information.

Measurement noise can be addressed relatively easily by averaging, amplification,

or the use of high precision measurement equipment. Algorithmic noise on the other
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hand does not benefit from amplification or high precision measurements, as the

source of the noise is the same as the information leakage. Averaging can help reduce

some types of algorithmic noise, but not always. This leads to one of the main

benefits of EM measurements over power, that being the ability to selectively collect

leakage from a particular section of a cryptographic implementation. By measuring

EM leakage from a specific location, algorithmic noise can be reduced, as the signal

recorded is related to only the informative leakage, and other sources of algorithmic

noise are not sensed. While EM measurements do allow for reduced algorithmic

noise, they often also result in increased measurement noise. Furthermore, for EM

measurements to reduce algorithmic noise, the measurements must be made at the

correct position, and locating this position can be difficult and time consuming, but

is often overlooked in existing literature. Additionally, while measurement noise is

frequently regarded as a non-issue, modern countermeasures specifically inject noise

or attenuate leakage signals beyond what can be addressed through amplification

or higher precision measurements. While averaging can fix this, it requires more

measurements to be made - meaning the countermeasure is effective.

By addressing these issues, more powerful side-channel attacks can be created.

The fist chapter introduces SCNIFFER a platform for efficiently localizing exploitable

EM leakage. This allows attackers to benefit from the reduced algorithmic noise of

localized EM measurements without exhaustively searching for a high leakage posi-

tion. The next chapter presents a practical machine learning based EM attack. In

this attack, various processing methods are proposed to address the problem of low

SNR EM measurements, allowing powerful ML attacks to use EM measurements. In

the final chapter a variety of topics are covered, starting with an additional method

to improve EM-ML SCA attacks - power to EM mapping. Following this is an SCA

evaluation of cryptographic implementations created through high level synthesis.

Finally, neural network based cryptosystems are studied.
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1.1 SCNIFFER

The first chapter proposes SCNIFFER: a low-cost, automated EM Side Channel

leakage SNIFFing platform to perform efficient end-to-end Side-Channel attacks.

Presently, to perform EM SCA on an embedded device, the entire chip is manu-

ally scanned and the MTD (Minimum Traces to Disclosure) analysis is performed at

each point on the chip to reveal the secret key of the encryption algorithm. However,

an automated end-to-end framework for EM leakage localization, trace acquisition,

and attack has been missing. Using a leakage measure such as Test Vector Leakage

Assessment (TVLA), or the signal to noise ratio (SNR), we propose a greedy gradient-

search heuristic that converges to one of the points of highest EM leakage on the chip

(dimension: N × N) within O(N) iterations, and then perform Correlational EM

Analysis (CEMA) at that point. This reduces the CEMA attack time by ∼ N times

compared to an exhaustive MTD analysis, and by > 20× compared to choosing an

attack location at random. We demonstrate SCNIFFER using a low-cost custom-built

3-D scanner with an H-field probe (< $500) compared to > $50, 000 commercial EM

scanners, and a variety of microcontrollers as the devices under attack. The SCNIFFER

framework is evaluated for several cryptographic algorithms (AES-128, DES, RSA)

running on both an 8-bit Atmega microcontroller and a 32-bit ARM microcontroller

to find a point of high leakage and then perform a CEMA at that point.

1.2 Cross Device EM-ML SCA

The second chapter presents a Cross-device Deep-Learning based Electromag-

netic (EM-X-DL) side-channel analysis (SCA), achieving > 90% single-trace attack

accuracy on AES-128, even in the presence of significantly lower signal-to-noise ra-

tio (SNR), compared to power SCA. With an intelligent selection of multiple training

devices and proper choice of hyperparameters, the proposed 256-class deep neural net-

work (DNN) can be trained efficiently utilizing pre-processing techniques like PCA,

LDA, and FFT on the target encryption engine running on an 8-bit Atmel microcon-
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troller. Finally, an efficient end-to-end SCA leakage detection and attack framework

using EM-X-DL demonstrates high confidence of an attacker with ¡20 averaged EM

traces.

1.3 Additional Side-Channel Attacks

The final chapter investigates three topics: Power to EM mapping, the secu-

rity of high-level synthesis generated implementations of AES, and neural encryption

through adversarial training. Power to EM mapping would allow EM-ML SCA mod-

els, such as the one in the previous chapter, to be trained by collecting high SNR

power traces and using a mapping to create EM trace. Through this the number

of measurements would be reduced. Different methods for finding a mapping are

compared, and the performance of generated EM traces in an ML-SCA model is in-

vestigated. Finally, neural encryption is studied as a possible target for side channel

attacks. The security of a neural cryptosystem is analyzed, and it is to be rather

insecure, able to be broken without needing side-channel information.
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2. SCNIFFER: LOW-COST, AUTOMATED, EFFICIENT
ELECTROMAGNETIC SIDE-CHANEL SNIFFING

2.1 Introduction

As the internet of things (IoT) continues to grow, security of many edge nodes has

become critical. With many of these edge nodes being simple microcontrollers, side-

channel attacks pose a powerful threat to their security. In the world of cryptography,

side-channel attacks have long been identified as a threat to the security of comput-

ing and communication systems attempting to provide confidentiality and integrity

of sensitive data, since the introduction of Differential Power Analysis in [1]. By

analyzing physical side-channel information, such as power consumption, timing, or

electromagnetic emissions, cryptographic algorithms that are mathematically secure

can be broken efficiently.

EM side-channel analysis (SCA) is a method of using the information found in

the electromagnetic emissions of a cryptographic system to extract the secret key,

compromising the security of such a system. Such attacks have been shown to be

capable of actually extracting secret key information, as in [2] and [3]. These EM

emissions originate from current consumption of an IC running cryptographic algo-

rithms, which while flowing through the metal layers of an IC cause EM radiation as

described in [4]. The EM emissions can either be caused by key-dependent operations

or other operations. EM emissions caused by key-dependent operations contribute to

the side-channel signal, while EM emissions caused by other operations contribute to

algorithmic noise. EM SCA attacks have successfully been used in the real world on

PCs, shown in [5] and [6], and also on Smart Cards, in [7] [8]. One powerful and com-

monly used side-channel analysis technique is correlational electromagnetic analysis

(CEMA). In CEMA, EM measurements are taken while a cryptographic algorithm is
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Converge to of High Leakage point 
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SNR analysis and an intelligent 

gradient search algorithm, and then 

perform an EM SCA attack at that point

b)

Integrated

Integrated

Fig. 2.1. (a, b) Comparison between existing EM SCA systems and
SCNIFFER. While current frameworks have integrated trace collection and
attack and analysis, SCNIFFER integrates EM scanning as well. (c) High
level overview of proposed SCNIFFER framework. SCNIFFER analyzes EM
leakage and uses a gradient descent algorithm to locate points of high
informative leakage at which the EM SCA attack should be performed.

executing on the target system (each measurement is known as a trace), and these

traces are correlated with a leakage model, such as the Hamming Weight or Hamming

Distance of data at a particular point in an algorithm [1], under a hypothesis of a

subset of the secret key. In a successful attack, the hypothesis that results in max-

imum correlation corresponds to the secret key. Thanks to the divide and conquer

nature of side-channel analysis, the cost of performing an SCA attack is linear in the

key size, rather than exponential, as in brute force or other cryptanalysis methods.

2.1.1 Motivation

EM side-channel attacks, while powerful in that they are non-invasive and do

not require any physical changes to the system being attacked, and benefit from

allowing an attacker to choose the location with maximum information leakage (SNR),

introduce a number of additional challenges compared to the power SCA attacks.
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Comparison of MTD for Different Chip Locations

MTD = 250

MTD = 250

MTD = 5,000

MTD > 10,000

Fig. 2.2. The difference in MTD between a CEMA attack at a point of
high leakage vs. at a point of low leakage for both an 8-bit XMEGA
microcontroller (a, b) and a 32-bit STM32F3 microcontroller (c, d). At a
location of high leakage, the correct key separates in 250 traces for both
microcontrollers, while a low leakage location requires > 20× more traces
on the XMEGA. At a low leakage location on the STM32F3, the key does
not separate at all within 10,000 traces.

Firstly, as the EM signals go through a power to EM transformation that reduces

amplitude compared to the measurement noise floor, meaning more traces, or more

expensive measurement equipment may be needed to perform an attack. Secondly,

unlike power attacks, EM attacks require attackers to choose the location of the attack

in the system to capture the EM traces. However, scanning a device to determine

this point is is not currently integrated into current frameworks (Figure 2.1(a)). This

choice of location can have a drastic impact on the effectiveness and efficiency of an

attack. As seen in Figure 2.2, depending on where the EM probe is placed on a chip,
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the MTD for a CEMA attack can vary by > 20×, even for the small 9mm x 9mm

Atmega and STM microcontrollers used as the target devices for this chapter. Current

methods for determining the best location to perform CEMA are based on exhaustive

search, simply performing a CEMA attack at most locations. Alternatively, it is also

possible to choose an arbitrary location, and use as many traces as necessary to

perform the CEMA. Practically, if the size of the system is larger, finding the correct

location of the EM leakage becomes extremely challenging and requires scanning the

entire chip/system.

Given the limitations of present attack systems, in this chapter, we propose a low-

cost, fully automated, end-to-end platform for performing efficient EM side-channel

attacks. SCNIFFER integrates EM scanning, trace collection, and attack/analysis into

a single framework (Figure 2.1(b)). A high level overview of the SCNIFFER frame-

work is shown in Figure 2.1(c). The core of this framework is a ∼ $200 3-D printer,

which we have modified to utilize as a low-cost EM scanner. SCNIFFER also uses a

greedy gradient-search heuristic using a leakage measure, such as test vector leak-

age assessment (TVLA), or SNR to quickly and automatically locate a point of high

data-dependant leakage (referred to as simply high leakage throughout this work).

Finally, once the point is determined, the proposed SCNIFFER framework performs

the correlational or differential EM analysis (CEMA/DEMA) at this point. While

both CEMA and DEMA are possible attacks, in this chapter, we will demonstrate re-

sults with CEMA. Such an automated low-cost attack platform significantly increases

the threat surface for IoT devices, however, it should be noted that SCNIFFER does

not constitute a new attack; and existing countermeasures against EM SCA attack

are effective against SCNIFFER. The SCNIFFER system presented in this chapter is

published in [9].

2.1.2 Contribution

Specific contributions of this chapter are:
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• Low-cost Automated EM Side-channel Analysis Framework: A fully-

automated system for efficiently scanning a cryptographic chip and finding a

location of high leakage to mount an end-to-end EM SCA attack is proposed.

The entire attack set-up is extremely low-cost, owing to the custom-built EM

scanner (adapting a∼ $200 3-D printer) used for mounting the attack, compared

to the commercially available EM probe stations, which are very costly (>

$50, 000). The system achieves 100µm spatial resolution, and has a scan range

of 220mm × 220mm, and is easily replicable (Section 3).

• Integrated EM Scanning, Trace Collection, and Attack: EM Scanning

is brought in the loop of the attack framework through the proposed greedy

gradient-descent heuristic algorithm, which analyzes leakage on-the-fly to effi-

ciently scan the chip and locate a point of high leakage. This algorithm con-

verges to a high leakage location on an N×N chip within O(N) iterations. This

algorithm is evaluated with both TVLA and SNR as the measures of leakage,

and results for the complete system on a variety of cryptographic targets are

shown (Sections 4, 5, 6).

2.1.3 Chapter Organization

The remainder of the chapter is organized as follows. Section 2 provides the back-

ground and summarizes the existing works on EM Scanning and side-channel attacks.

In Section 3, the SCNIFFER framework is introduced and the low cost, custom-built

EM scanning platform is presented. Section 4 describes two options for measuring

leakage, TVLA and SNR, and provides motivation for finding a point of high leakage.

In Section 5, the gradient-descent algorithm for efficiently determining a point of high

information leakage is proposed. Next, Section 6 provides results of running the sys-

tem on microcontrollers of varying architectures, cryptographic algorithms executed,

and measures of leakage. Finally, Section 7 concludes the chapter.
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2.2 Background and Related Work

IoT devices have been successfully attacked using side channel attacks, for example

CPA was used to extract encryption keys from Philips Hue smart lamps in [10].

EM side-channel attacks were first proposed in [11], and share many properties with

power side-channel attacks, however, can be performed at a distance, even up to one

meter, as in [12]. One of the most powerful EM SCA attacks is CEMA, which is the

straightforward application of Correlation Power analysis (CPA) [13] on EM traces.

However, to make these profiled and non-profiled EM SCA attacks more practical

and real-time on any embedded platform/device, the trace capture and the attack

needs to be automated and more efficient.

SCNIFFER can use several methods of assessing leakage, for instance, simple signal

magnitude, Test Vector Leakage Assessment (TVLA) [14], or SNR [15]. In TVLA,

two sets of traces are collected. In one set, both the key and plaintext used as

input to the algorithm under test are kept fixed, and in the other the plaintext

is varied randomly, while the key remains fixed. To assess the leakage, one then

performs Welch’s t-test for each time point of the trace. Welch’s t-test is given by

t = X̄1−X̄2√
s21
N1

+
s22
N2

, where X̄1, X̄2 are the sample means of the two sets, s1, s2 are sample

standard deviations for the sets, and N1, N2 are the sizes of the sets. If the maximum

t-value at a point is above 4.5, one can conclude leakage is present with 99.999%

confidence. Meanwhile, we consider the signal to noise ratio as defined in [15], to

be SNR = V AR[Q]
V AR[N ]

, where Q is the side channel leakage, and N is the noise. Unlike

TVLA, which does not guarantee exploitable leakage, SNR defined in this way can

be directly related to the success rate of a CEMA attack [15].

Once SCNIFFER has chosen a point to attack, CEMA is used to recover the secret

key. CEMA revolves around making hypotheses on secret values, then predicting the

EM leakage of an intermediate variable based on the key. Measurements (traces) are

taken while the device performs encryption, then the measurements are correlated

with the predicted leakage for all hypotheses. The hypothesis that results in the
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Table 2.1.
Comparison with previous works. SCNIFFER is significantly lower cost
compared to previous works, and additionally is the only system designed
to maximize the effectiveness of an attack, as other systems seek only the
location of most informative leakage.

Search 
Technique

Search 
Metric

Attack 
Technique

Positioning 
Accuracy

Cost System 
Focus

[18] Exhaustive 
Search

SNR CEMA 100µm >$10,000* Leakage 
Localization

[19] Exhaustive 
Search

Difference 
of Means

Template 
Attack

50µm >$10,000* Leakage 
Localization

[20] Greedy 
Search

DEMA DEMA 2.5µm >$50,000* Leakage 
Localization

This 
work

Gradient 
Search

TVLA/SNR CEMA 100µm ~$500 End-to-End 
Attack

* Estimated cost of system based on listed components and specifications  

largest correlation is taken as the guess for the secret value. The number of traces

needed to recover the key in this way is then the minimum traces to disclosure (MTD).

In this chapter, the secret values are the bytes of the AES key, and the intermediate

variable is the first round sbox output, and Hamming Weight, that is, the number of

1’s in the binary representation of this variable, is used as the leakage model of data

at this point.

Addressing the issue of finding where a chip leaks the most EM radiation has been

investigated in [16], and [17]. EM scanning with a focus on side-channel attacks, that

is, determining where the most cryptographic information leaks within a chip has

been addressed in [18], [19], and [20]. However, such methods focus on observing the

leakage over the entire chip, not efficiently finding the point or region of the maximum

leakage. This causes these methods to take a long time and a majority of the time

is spent collecting data that is unnecessary for an attacker. More recently in [21], an

adaptive method to determine the location of greatest cryptographic leakage without

resorting to exhaustive search is presented. However, this method performs a full SCA

attack at each location analyzed, again making it unsuitable for an attacker, whose

goal is only a single successful attack. By creating a framework that minimizes this
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Fig. 2.3. (a) The complete EM Scanning and trace capture set-up system,
including the 3-D printer, Chipwhisperer system, EM probe, amplifier,
and victim. (b) Close-up of scanner, showing probe and victim board.
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unnecessary data collection, EM side-channel attacks can be made more efficient,

powerful, and practical, requiring far fewer traces to reveal the secret key of the

cryptographic algorithm. Additionally, these platforms can be orders of magnitude

more costly than the system proposed in this chapter, for instance the Riscure EM

Probe station [22] itself can cost ∼ $50, 000, while the entire SCNIFFER system costs

< $500. Table 2.1 compares the SCNIFFER system to previous works. Note that while

all previous works as shown in the table aim to locate the point of greatest informative

leakage, only SCNIFFER focuses on minimizing the total number of traces needed for

a successful attack. SCNIFFER is the first fully-automated, efficient EM SCA attack

framework and the system is described in the following section.

2.3 SCNIFFER: Low Cost Automated EM Scanning

The SCNIFFER system is designed for low cost and automation. In this section,

we first describe the physical components that make up SCNIFFER, then discuss the

automation aspect of the system.

2.3.1 Low Cost EM Scanning Setup

The scanning hardware consists of an Ender-3 3-D printer [23] with a 10mm loop

diameter H-field probe attached to the extruder, the Chipwhisperer [24] platform for

interfacing with the victim (The CW309T-XMEGA mounted on the 308 UFO Target

board) and trace collection, an amplifier to amplify the EM probe output, and finally a

PC to control both the 3-D printer and the Chipwhisperer Lite capture board. While

such EM scanning systems do exist, for instance, Riscure’s EM Scanning Station, we

chose to create such a system from scratch for the following reasons: 1) Commercial

scanning systems (like Riscure [22]) scanning station is orders of magnitude more

expensive and 2) It is very straightforward to interface with the custom system to

develop the scanning algorithm. As seen in Table 2.2, the cost of a commercial scanner

is orders of magnitude higher than SCNIFFER, and while it is hard to know if this price
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Table 2.2.
Summary of the main components of the SCNIFFER system, their costs,
performance, and a comparison to Riscure’s EM Probe Station.

Scanner Amplifier Probe

Picture

Cost $200 $50 $10

SCNIFFER
Specifications

100 µm 20dB 16mm^2

Riscure EM Probe
Station 
Specifications

2.5 µm - 1mm^2

has been inflated by the selling company, it is reasonable for prices to be higher, as

there are not many EM scanners on the market.

To manipulate the probe, an Ender-3 3-D printer, running stock firmware was

used. This model of printer has a minimum step size of 0.1mm, and can be controlled

via a USB serial connection. It has a maximum movement speed of 180 mm/s, with

a print area of 220mm× 220mm× 250mm. The precision and speed offered by this

3-D printer are sufficient to complete a 50 × 50 scan of the 9mm × 9mm IC used

in testing in an acceptable time. Additional justification for the choice of printer,

beyond the cost includes the ease of interfacing, the form factor, maintainability, and

software support. The open source firmware used by this printer is well documented,

and can be controlled through an exposed serial port, making interfacing very easy.

The printer also has an open form factor that allows the probe and victim board

to be mounted easily. While the durability and hardware support would not be as

good as a commercial EM scanner, the simple construction and use of off-the-shelf

components make maintenance straightforward. The software support is quite strong,

being open source, and the printer is plug-and-play compatible with any device with
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a serial port. The system is capable of performing a 30 × 30 scan of the chip in

∼ 15 minutes, and perform an amplitude scan in ∼ 75 minutes. The probe used

is a commercial H-field probe for performing EMC measurements, and the signal is

amplified before being passed to the Chipwhisperer capture board. While the probe

used does not have extremely high spatial resolution, the probe resolution matches the

scan resolution, allowing heatmaps such as the one in Figure 2.4(a) to be created, and

Chipwhisperer is able to capture enough information leakage for the target devices

considered, leading to low MTDs when probed at appropriate locations, as seen in

figure 2.2, while still being low cost. Even though this probe is on the larger side,

the SCNIFFER platform is compatible with more sensitive probes and is expected to

become more precise with such probes. The complete system is shown in Figure 2.3(a)

showing the 3-D printer, the probe, Chipwhisperer system, and PC. The probe and

victim IC are shown in detail in Figure 2.3(b). The probe position can be controlled

manually, through the 3-D printer controls, or programmatically through the serial

connection to a PC, as it is in the SCNIFFER system.

The major cost savings in the SCNIFFER system come from using a low cost 3-D

printer to control the probe, instead of a high cost motorized table. The total cost

of the 3-D printer, probe and amplifier used in SCNIFFER is ∼ $500, which is a few

orders of magnitude less expensive than many motorized tables by themselves, and

nearly two orders of magnitude less expensive than systems such as Riscure’s EM

probe station (∼ $50, 000). While more expensive scanners, probes and measurement

systems could improve spatial and frequency resolution, such a system would only

be available to very sophisticated attackers. As SCNIFFER aims to demonstrate that

practical, low-cost attacks are possible using systems two orders of magnitude cheaper

than existing scanners, high-cost, high resolution components are not used. Table 2.2

summarizes these components, including their costs and performance compared to

the Riscure system.
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17

b)

X

Y

t-
v
a
lu

e

a)

b)

t-value

N
u

m
b

e
r 

o
f 

O
c
c
u

rr
e
n

c
e
s

3-D AES TVLA Surface Plot

Distribution of t-values at a Point of High Leakage 

Fig. 2.5. (a) TVLA surface plot. Again, the surface is not smooth or
monotonic, as there are many local minima and maxima, as in Figure
2.6(a). (b) Histogram of TVLA measurements at a single point. 50 TVLA
measurements were made at a point of high leakage, each done as in (a),
using 400 traces each. Given the distribution much wider seen in (b), the
increased roughness of the surface in (a) can be explained.
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2.3.2 Automated EM Scanning

Now that the SCNIFFER system’s low cost hardware has been described, we move

to the automated scanning and attack procedure. The basic premise of the automated

system is to locate a point on the target device where the chosen leakage measure is

high by using the scanning algorithm specified in Section 5, and then to automatically

perform CEMA at this point. This removes the need for an expert to manually analyze

example traces to choose a location for an attack.

During an attack, the probe is positioned at a location dictated by the intelligent

scanning algorithm, then, the appropriate ADC phase for trace collection is deter-

mined by capturing traces at varying ADC phases, and the phase giving the largest

average amplitude is chosen for further measurements at that particular point. The

signal is sampled at 29.48MHz, 4× the clock frequency of 7.37MHz, so clock edges are

aligned to samples. The signal is amplified by the external amplifier, as well as the

Chipwhisperer internal amplifier (set to a gain of 34.5dB), but no other prepossessing

is performed. Chipwhisperer is then used to capture traces for leakage measurement

(through SNR, TVLA or other measures) and finally CEMA is performed at the loca-

tion found by the algorithm to have the highest leakage. Example leakage measures

tested with SCNIFFER, and the development of the intelligent scanning algorithm,

along with detailed results are described in the following sections.

2.4 Signal Leakage Measurement using SCNIFFER

As the choice of probe location is a major factor in determining the number of

traces needed to recover a key in CEMA as shown in Figure 2.2, this location must

be chosen intelligently. Currently, this is done by either exhaustive search of the

entire chip, or by an expert evaluating sample EM traces at several locations, and

choosing a location based on visual inspection of the traces. While an exhaustive

search will certainly produce the best location to attack, it requires a large amount of

time, especially for systems with a large initial MTD. Choosing a location based on
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visual inspection of traces may result in a location that can be attacked, however not

necessarily the best in terms of MTD. Additionally, this method requires an expert

to perform the inspection of traces. In this chapter, we aim to fully automate the

process of choosing a location as an expert might, by looking at measures of leakage,

and finding a location with high leakage. As with a manual choice, this location

may not be the location corresponding to the lowest MTD, but should leak enough

information to be attacked in a reasonable amount of time, without the need for an

expert.

SCNIFFER is designed such that any measure of leakage can be used. For example

signal amplitude, Test Vector Leakage Assessment (TVLA) [14], or SNR could be

used, and the SCNIFFER platform will be able to converge to a location where the

leakage measure is high in O(N) measurements. We provide results using both TVLA

and SNR, both described, and then compared in the following subsections.

2.4.1 Signal Amplitude for Leakage Measurement

As motivation for why side-channel leakage measures must be used with SCNIFFER

to locate low MTD locations, we measure the signal amplitude at each point of

the victim chip, producing the heatmap seen in Figure 2.7(b). The amplitude was

measured as the mean square amplitude of each trace, averaged across 10 traces. As

can clearly be seen in that figure, the amplitude does not correlate to the MTD at

all, as expected.

Hence, further results are shown using one of the two leakage measures explained

in the following sections, TVLA and SNR. While these are the measures chosen for

demonstrating SCNIFFER, they are by no means the best nor the only measures that

can be used, as SCNIFFER does not rely on specific leakage type, only requires that

the leakage correlate with the MTD. Determining the best measures of leakage in

terms of the attack success rate and minimum number of traces required is a future

research direction.
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Fig. 2.6. (a) SNR surface plot of the same scan as Figure 2.4(a). Here it
can be clearly seen that the surface is not smooth or monotonic, as there
are many local minima and maxima. (b) Histogram of SNR measurements
at a single point. 50 SNR measurements were made at 1 point. This
distribution can explain some of the roughness of the surface seen in (a).
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Fig. 2.7. 10 × 10 heatmap of (a) TVLA values (b) signal amplitudes (c)
SNR values and (d) MTDs. From these plots TVLA and SNR appear to
correlate to MTD much better than the signal amplitude. While ampli-
tude is easy to measure, it is clear that high amplitude of leakage does
not necessarily correspond to high information leakage.

2.4.2 TVLA for Leakage Measurement

While signal amplitude is quick to measure, it has no relationship to side channel

leakage. As the goal of SCNIFFER is to locate a position with high side channel

leakage, amplitude is therefore not a good measure. A measure that does consider

side channel leakage, and may be a better fit for SCNIFFER is TVLA. While high

t-values from TVLA may not necessarily imply a low MTD, it allows locations where
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leakage is detected with high confidence to be focused on. The TVLA performed is

the non-specific, fixed versus random t-test. We choose N = 200 for the number of

traces in each group, for a total of 400 traces per TVLA performed. This number

of traces creates large separation between points of low leakage and ones of high

leakage, as seen in Figure 2.5(a), where the high leakage location reaches a t-value of

22, while the low leakage location only reaches a t-value of 4. Note that the TVLA

surface is rough, with many local minima and maxima. Even at a fixed location

there is variance in the TVLA measurements, shown in Figure 2.5(b). However, it

is infeasible to perform many TVLA measurements at each point to average out this

noise.

2.4.3 SNR for Leakage Measurement

Compared to amplitude and TVLA, SNR, as defined in [15] requires more traces,

however has a direct relationship to the MTD. Given this relationship, one can es-

timate the MTD, thus a location maximizing SNR will minimize MTD. 1000 traces

were used to calculate the SNR, as for the 8-bit microcontroller used, this gave large

separation between locations of high and low leakage, as seen in Figure 2.6, where

the SNR varies from -30dB to 3dB. SNR is calculated using the same intermediate

variable and leakage model as the CEMA used, that is, the first round sbox output

and the the Hamming Weight model, respectively. Like with TVLA, the surface is

somewhat rough, but again it is infeasible to take many SNR measurements to average

out this noise.

2.4.4 Correlation among Amplitude, TVLA, SNR, MTD

While signal amplitude, TVLA, and SNR can all be used with SCNIFFER as mea-

sures for leakage, since the end goal of the SCNIFFER system is to perform an attack,

we investigate how these measures compare to the MTD at each location. To compare

the measures, a 10× 10 scan of the chip was carried out, and CEMA was performed
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using 1,000 traces at each point. The resulting heatmap, along with heatmaps for

SNR, TVLA, and amplitude, are shown in Figure 2.7. From these results, clearly

TVLA and SNR both appear to correlate to the MTD strongly, however amplitude

correlates very poorly. While signal amplitude is easy to measure, there is no guar-

antee that this measure correlates to the MTD, as high signal leakage does not imply

high information leakage. Additionally, an uncorrelated EM source having high sig-

nal leakage could confuse an attacker into choosing a poor location to attack. While

TVLA also does not guarantee high exploitable leakage, it can be used to identify

and focus on regions where leakage is detected with confidence. Additionally, for the

microcontroller considered in this chapter, TVLA does empirically correlate to the

MTD quite well, even if it is not guaranteed to be the case in general. Finally, as

SNR is directly related to the attack success rate, it unsurprisingly is highly corre-

lated in practice. Further, due to this correlation, the location of highest SNR will

theoretically be the location of lowest MTD, achieving SCNIFFER’s goal.

2.5 Greedy Gradient-Search Heuristic

A critical piece of the SCNIFFER system is the algorithm for locating the point of

high leakage at which the attack should be performed. It is through this algorithm

that the SCNIFFER attack framework gains benefits over an exhaustive search, as the

high leakage location in an N×N grid can be found with N measurements as opposed

to N2. As an example, we use SNR as the leakage measure to demonstrate the per-

formance of the SCNIFFER greedy gradient-search algorithm throughout this section.

The remainder of this section describes the algorithm in detail, and provides results of

running the algorithm on an Atmel XMEGA 8-bit processor running software AES.

2.5.1 Algorithm Description

To avoid taking measurements at all possible points, we propose a heuristic search

algorithm for finding a point of high leakage in a minimum number of scans. The
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search algorithm works in two phases. In the first phase, the search space is divided

into an M × M grid, where M is the initial grid size parameter, and the leakage

is measured at the center of each grid cell. This initial grid must be more coarse

than the measurement grid, which would be N × N Then in the second phase, a

gradient search algorithm is started from the point of the highest leakage found in

the first phase. The gradient is computed by measuring the leakage of the four grid

cells adjacent to the current cell, then treating each measurement as the magnitude

of a vector whose direction is the direction from the cell where the gradient is being

estimated to the cell where the measurement was made. The sum of these vectors is

treated as the estimate of the gradient. The next point to measure is determined by

adding a vector in the direction of the gradient with a magnitude of stepSize to the

current location. This location is then mapped to a grid cell, and the leakage is next

measured in the center of this resulting grid cell. Given this method, movement is

restricted to be between grid cells, and is not entirely arbitrary, however movement

to diagonal cells or moving multiple cells at once are possible moves, depending on

the stepSize parameter.

If the algorithm attempts to measure outside the search space, it will instead move

only to the edge and then stop. A maximum number of iterations can also be specified,

along with an “iterations without improvement” stopping criteria. The “iterations

without improvement” parameter should be set to a sizeable fraction of the grid

resolution N, for values too small, several iterations may pass without improvement,

especially for noisy surfaces, and the algorithm may stop prematurely. This two phase

process is described in Algorithm 1.

2.5.2 Algorithm Performance

Based on experimental results, the algorithm is able to locate a point of high

leakage in a N×N grid of possible measurements in ≈ N SNR measurements. Figure

2.8 demonstrates that as the search grid size increases by N2, the number of tests
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N = Grid Resolution;
maxLeakage = 0;
initLocs = getInitialLocations(initialGridSize, N);
for loc ∈ initLocs do

moveProbe(loc);
leakage = getLeakage();
if leakage > maxLeakage then

maxLeakage = leakage;
startLoc = loc;

end

end
moveProbe(startLoc);
bestLoc = startLoc;
m = startLoc;
while Not Converged do

delta = getDelta(get4Neighbors());
m = m−stepSize∗delta;
moveProbe(m);
leakage = getLeakage();
if leakage > maxLeakage then

maxLeakage = leakage;
bestLoc = loc;

end

end
Algorithm 1: Gradient Search Heuristic to find the high leakage location

required only increases by N , showing the improvement over an exhaustive search

is more drastic as the size of the scan increases, either due to increased resolution

or larger scan area. We also see the effect of the parameters of the algorithm, and

see how varying them affects performance. In Figure 2.9(a), where, by increasing

the resolution of the initial search grid, the lowest MTD found for a given number

of measurements changes. As expected, as more initial points are scanned, fewer

gradient steps are required to converge to the high leakage location. In Figure 2.9(b),

the step size is varied, and we see that for a small step size, the algorithm gets stuck

in a local minimum, and does not converge to the point of high leakage the other

step sizes do. It is worth noting that even though the algorithm gets stuck in a

local minimum, the initial grid search, SCNIFFER still finds a relatively low MTD
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Fig. 2.8. Leakage vs. number of SNR measurements for varying grid
scales. Each SNR measurement is computed using 1000 traces collected
at the measured location. The data for the 30× 30 grid was the same as
in Figures 2.4 and 2.6(a). The full 60 × 60 and 10 × 10 grids were also
collected, allowing the performance of the algorithm to be seen at various
degrees of measurement resolution. Through these results, it can be seen
that even as the size of the search space increases by N2, the time to
converge increases by only N .

location. A larger step size also converges, and if the step size is too large however,

the convergence is slower, and less smooth, as it may step over the best point. Note

that the effective step size is a function of both the resolution of the scan, N , and the

step size parameter of the algorithm. This, along with the dimensions, L, of the chip

allow calculating the effective step size as 1
N
∗L mm ∗StepSize. Given these results,

one can see that for reasonable choices of parameters, the algorithm is observed to

converge to a point of high leakage in O(N) steps for an N×N grid of measurements,

providing SCNIFFER with a significant improvement over an exhaustive search.
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Effect of Parameters on Algorithm Performance

Number of SNR Measurements

Effect of Step Size

M
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D

Effect of Starting Sample Grid
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D
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Stuck in local minimum

0.54 mm 
(1 Cell)
0.84 mm 
(2 Cells)
1.14 mm 
(3 Cells)

Fig. 2.9. (a) MTD vs number of SNR measurements performed for varying
the initial sample grid size parameter. Note that the 2× 2 and 3× 3 grids
locate the point of high leakage within 40 SNR measurements, while a
single initial sample point results in a higher MTD, and after 45 such
measurements. For all initial sample grid sizes, a step size of 1.14mm
was used. (b) This demonstrates the effect of step size on performance.
A step size too small can result in the algorithm getting stuck in a local
maximum, and in this case as the step size increased, convergence sped
up, however, for much larger step sizes, it is possible to overshoot the
location of highest leakage, resulting in slower, less smooth convergence.
For all step sizes, a 2 × 2 initial sample grid was used. Both (a) and (b)
used a 30× 30 scan resolution.
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Fig. 2.10. Heatmaps for AES running on the 8-bit microcontroller, with
the path taken by SCNIFFER shown for TVLA in (a), and SNR in (b).
The same search algorithm parameters were used in all cases.
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Fig. 2.11. MTD plots at locations found by SCNIFFER using TVLA as a
leakage measure (a), and SNR as a leakage measure (b). While the MTD
is not the minimum, it is fairly close to the minimum for both measures,
with SNR having a slightly lower MTD than TVLA.

2.6 Results

In this section, we provide results of using the SCNIFFER framework in various

scenarios. We start with the results of an attack using TVLA, then with SNR.

Following this, we provide a short discussion of the number of traces needed in a

SCNIFFER attack. We then show the performance of the TVLA and SNR based

attacks for a variety of cryptographic algorithms. Next, results comparing the 8-bit

architecture chip used so far to a 32-bit architecture chip are shown, again for both

TVLA and SNR measures. Finally, we show results showing the effects of a masking

countermeasure, using the SNR based attack.

2.6.1 TVLA Based SCNIFFER

While it is not guaranteed to correlate with MTD, TVLA can be used with the

SCNIFFER algorithm. The path taken for this case is shown in Figure 2.10(a). This

path remains in the zone of high TVLA values, and as TVLA correlates well with

MTD in our experiments, this location has a very low MTD, seen in Figure 2.11(b),
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Table 2.3.
Comparison of different leakage measures used with SCNIFFER, as well as
results of a full exhaustive search. The total traces includes the traces
needed for the initial search, gradient search, and CEMA. The exhaustive
search total traces includes a 1000 trace CEMA at all 100 locations.

Leakage Measure
Convergence
Location

MTD Total Traces

TVLA (2, 2) 183 5,807
SNR (7, 10) 134 10,134
Exhaustive (3, 6) 91 100,000

and is among the lowest on the chip. TVLA at each location requires a total of 400

traces to compute TVLA, and additional traces would be needed for systems with

lower SNR, as we describe in section IV D. Additionally, as the TVLA surface is not

smooth, convergence is slightly slowed, increasing the attack time.

2.6.2 SNR Based SCNIFFER

In contrast to TVLA, which does not guarantee leakage found is exploitable, SNR

does, as it is related to the MTD. We see that SNR based SCNIFFER does take a

different path than TVLA, and converges to a different location. The MTD at this

location is slightly lower than the TVLA location, but still not the absolute lowest

found on the chip. Furthermore, to accurately measure SNR, more traces than TVLA

are needed for measurement, increasing the number of traces needed, and this number

increases as the SNR reduces, as discussed in section IV D. Despite this, once the

SNR reduces below a certain point, shown in Figure 2.12, a SNR-based SCNIFFER

attack becomes as efficient as a TVLA-based attack, with the additional guarantee

of exploitable leakage.
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Fig. 2.12. Number of traces required for TVLA and SNR based SCNIFFER

compared to exhaustive search vs. SNR for the case of a 10 × 10 scan.
The ∼ 100× reduction is due to the fact that an exhaustive search must
perform a CEMA at each location, while SCNIFFER only visits N loca-
tions.

2.6.3 Number of Traces Needed For SCNIFFER Attacks

The performance of the SCNIFFER platform can be quantified and compared to

other methods by investigating how the total number of traces needed to perform an

attack changes as the SNR of the device under attack changes. Previous works have

shown in [25] and [15] that the MTD for a CEMA attack is related to the SNR of the

signal used in the attack by MTD = k0 ∗ 1
SNR2 . Additionally, [26], [27] have shown

that the number of traces needed to perform a TVLA (NTV LA) or calculate SNR

(NSNR) is also related to SNR by NTV LA = c0 ∗ 1
SNR

and NSNR = c1 ∗ 1
SNR

. From

there, it is straightforward to quantify the performance of an exhaustive search and

SCNIFFER using both TVLA and SNR as follows,
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NSCN−TV LA = N ∗ c0 ∗
1

SNR
+ k1 ∗

1

SNR2
(2.1)

NSCN−SNR = N ∗ c1 ∗
1

SNR
+ k1 ∗

1

SNR2
(2.2)

Nexh = N2 ∗ k1 ∗
1

SNR2
(2.3)

where N × N is the resolution of the grid scan, and k0, k1, and c0 are arbitrary

constants chosen such that the models match the results presented.

A SCNIFFER attack requires measurements to be made at approximately N points

for an N ×N grid, as the search algorithm requires O(N) measurements, with each

requiring NTV LA in the TVLA case and NSNR in the SNR case. Additionally a single

CEMA attack requiring MTD traces is needed, resulting in equations (2.1) and (2.2).

An exhaustive search on the other hand would require a CEMA to be performed at

all N2 locations, resulting in equation (2.3). These trends are pictured in Figure 2.12,

which clearly shows the 100× reduction in required traces in the case of a 10×10 scan

for low values of SNR. This reduction can be explained by the fact that the number

of traces needed to measure TVLA or SNR changes as 1
SNR

, compared to the MTD

which changes as 1
SNR2 . Additionally, the number of points traversed is only N , as

opposed to N2 for an exhaustive search. Also, we see TVLA slightly outperforms

SNR in terms of number of traces needed to perform an attack when SNR is high.

For low SNR, the performance of both measures is mostly equivalent, as the number

of traces needed is dominated by the CEMA, and using SNR as the leakage measure

gives guarantees on the success rate of the CEMA, which TVLA does not.

2.6.4 Effect of Cryptographic Algorithm on Convergence

Next, in Figure 2.13(a), the effect of different cryptographic algorithms running on

the target microcontroller can be seen, when using TVLA. For AES, DES, and RSA,
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Fig. 2.13. (a) Max t-value vs. number of TVLA tests performed for
all cryptographic algorithms (AES, DES, RSA), showing the scanning
algorithm performs well, finding the point of max leakage within 40 TVLA
tests in all cases, with a grid size of 30×30. The initial sampling grid was
2× 2 and the step size was 0.84mm. Note that for RSA, one of the initial
samples is already close to the maximum, and this maximum is found in
just one step. For AES and DES, whose leakage patterns are less smooth,
and have smaller areas of high leakage, the time to converge is higher.
(b) Max SNR vs. number of SNR measurements for all algorithms (AES,
DES, RSA). The search algorithm again performs well, converging in all
cases in about O(N) measurements (N = 30 in this case).



34

Number of SNR Measurements

M
a
x
im

u
m

 S
N

R
 (

d
B

)

Number of TVLA Measurements

Effect of Architecture on SCNIFFER 

Algorithm Convergence

M
a
x
im

u
m

 t
-v

a
lu

e

a)

b)

Fig. 2.14. (a) Max t-value vs. number of measurements for both the
8-bit XMEGA microcontroller and the 32-bit STM32F3 microcontroller.
The algorithm converges within O(N) measurements, where N = 30 in
both cases. the algorithm parameters used are the same as in Figure
2.13. (b) Max SNR vs. number of measurements for both microcontroller
architectures, again showing convergence in O(N) measurements. The
parameters used are the same as those in part (a).

the gradient search algorithm converges a point of high leakage in a similar number of

traces. A 30×30 scan was performed for all algorithms, and the parameters were fixed

at a 2 × 2 starting grid and step size of 0.54 mm for all cases. A similar plot, using
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Fig. 2.15. Max SNR vs. number of SNR measurements for the unmasked
and a masked implementation of AES on the 8-bit microcontroller. The
algorithm converges within O(N) measurements, where N = 30 in both
cases. The algorithm parameters used are the same as in Figure 2.13.

the same parameters but SNR as opposed to TVLA can be seen in Figure 2.13(b).

Again, the search converges in approximately the same number of measurements

for all algorithms. Through this, we see that the greedy gradient search algorithm

performs well regardless of the specific cryptographic algorithm, and regardless of the

leakage measure chosen.

2.6.5 Effect of Architecture on Convergence

Additionally, we investigate the effect of different architectures (microcontrollers)

on SCNIFFER. Up to now, the results shown have been obtained with an 8-bit XMEGA

microcontroller. We now use a 32-bit STM32F3 microcontroller running software
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AES as the target device. The STM32F3 uses the same clock frequency as the 8-

bit XMEGA, 7.37MHz, and sampling is again done at 4× this frequency. Similarly

the amplifier gain is the same as the 8-bit case. Given the same parameters for the

greedy gradient search, the algorithm converges to a location of high leakage within N

measurements, with N = 30 in this case. These results are shown in Figure 2.14(a) for

TVLA, and Figure 2.14(b) for SNR. In both figures, the 8-bit and 32-bit architectures

are compared, given the same measurement and search algorithm parameters. In this

context, it is worth mentioning that as the size of the chip under attack increases,

finding the location of the cryptographic engine could be a difficult task. In scenarios

such as attacking large systems, the SCNIFFER framework would be extremely useful

in efficiently determining the position of high leakage and then performing the attack

at that point.

2.6.6 Effect of Masking on Convergence

Lastly, the effects of a masking countermeasure with a fixed mask on the perfor-

mance of SCNIFFER have been investigated. The same 8-bit XMEGA microcontroller

was used as the target device, now running the masked implementation of AES-

128 from [28]. We again use the same measurement and search parameters, and for

both cases, the SCNIFFER algorithm converges in approximately O(N) measurements.

These results are shown in figure 2.15, where we see the algorithm converges after

35-40 measurements for both masked and unmasked implementations. As one would

expect, the SNR for the masked implementation is significantly lower than the un-

masked implementation, but the SCNIFFER search algorithm is still able to locate a

higher SNR region through gradient search. While the measurement parameters used

here were the same as elsewhere, an important note is that for countermeasures that

reduce the SNR more drastically, would require more traces to be used to calculate

the SNR.
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2.7 Conclusions

This chapter has introduced SCNIFFER, a fully automated integrated system for

conducting end-to-end EM side-channel attacks against cryptographic systems. SCNIFFER

combines an EM leakage scanning platform, and correlation EM analysis into a single

system, which can perform all steps of an attack automatically. The system is com-

prised of a low-cost custom scanning hardware and gradient search heuristic based

scanning algorithm. We also plan to make our code for implementing the efficient

SCNIFFER framework and controlling the low-cost 3-D printer for scanning publicly

available.

SCNIFFER is capable of using a variety of measures of leakage, and the search

algorithm was shown to find a location of high leakage in an N × N chip search

space with O(N) measurements, providing a significant improvement over exhaustive

search, and performing all stages of the search and attack completely automatically,

removing the need for expert analysis.

Using this fully automated attack, it is possible to efficiently find a point of high

leakage and launch a CEMA attack at this location at the press of a button. The

attack uses a minimal number of traces, for a variety of microcontroller architectures

and cryptographic algorithms. Even as the size of the chip increases, or as protections

lowering the SNR, such as masking, are put in place, SCNIFFER retains efficiency.

Finally, we show that as the SNR of the system under attack decreases, SCNIFFER

attacks maintain their advantage over existing methods, reducing the number of traces

needed by a factor of N compared to an exhaustive search, for an N × N scan of a

chip.
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3. EM-X-DL: CROSS-DEVICE DEEP LEARNING
SIDE-CHANNEL ATTACK USING ELECTROMAGNETIC

SIGNATURES

3.1 INTRODUCTION

With the ever-increasing prevalence of embedded devices and the growth of the

Internet of Things (IoT), the security of these devices has become a major concern.

Some of the most serious threats to the security of these devices are side-channel

analysis (SCA) attacks. By analyzing physical leakage information regarding the

power [1], timing [29], or electromagnetic (EM) signatures [11], cryptographic secrets

can be extracted. The threat of EM attacks is particularly dangerous, as secrets can

be extracted from a distance, and work has been done to minimize EM emissions

by using the human body as a communication medium [30], [31]. Among the most

powerful of these side-channel attacks are profiled attacks [32], and recently machine

learning (ML) models have been shown to be very effective in this profiled SCA attack

scenario using both power and EM measurements [33,34].

3.1.1 Motivation

The main limitation of ML models for profiling SCA attacks is their portability

to other target devices. Specifically, these models have been shown to work when

the same device is used for both profiling and testing, however, in a real attack, the

attacker would use a device to profile, then attack a separate, identical device. The

device-to-device variation can be useful, such as with physical Unclonable Functions

(PUF’s) [35] but cause problems for profiled attacks. This issue of portability has

recently been addressed for power ML SCA models on AES-128 in [36], [37], and

also with a 3-class DNN attacking RSA implementations for EM SCA [38]. However,
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Fig. 3.1. (a) DNN training with raw power and EM traces. The model
learns quickly from power, but is unable to learn from raw EM traces. (b)
The variance of a point of interest (time sample 103) for both power and
EM traces, demonstrating significantly lower SNR of the EM traces.

these works only consider high SNR scenarios, and considering SNR reducing coun-

termeasures such as in [39], [40], [41], and [42] or low cost, low sensitivity EM probes,

practical attacks must address the reality of low SNR trace measurements. In this

work, we show a deep-learning based cross-device SCA attack in the case of low SNR

measurements. In this chapter, we show the first deep-learning based cross-device

EM (EM-X-DL) SCA attack on a symmetric key encryption algorithm (AES-128).

The EM-X-DL attack is published in [43].

A 256-class DNN model that can be trained successfully (> 99% validation ac-

curacy) [36] using raw time-domain AES-128 power traces (available at https://

github.com/SparcLab/X-DeepSCA) for a particular microcontroller is rendered futile

for EM SCA training even with traces collected from the same device (Figure 3.1(a)).

Figure 3.1(b) shows the variance of a point of interest (POI, determined using the

difference of means approach [32, 44]) across 10K EM and power traces. It clearly

shows that the variation in the EM traces is much higher than the power traces,

revealing significantly lower SNR for the EM signatures. On top of this, to solve the

problem of portability, we need to take into account the inter-device variations [45].

To resolve all these issues, we utilize averaging to enhance the SNR, analyze different

https://github.com/SparcLab/X-DeepSCA
https://github.com/SparcLab/X-DeepSCA
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pre-processing techniques to reduce the dimensionality of the data, and develop an in-

telligent algorithm to choose the set of training devices for efficient profiling. Finally,

we also propose an end-to-end EM-X-DL attack framework to perform EM scanning

and find the best point of leakage on an unseen target device. A combination of these

techniques allows us to achieve > 90% cross-device accuracy.

3.1.2 Contribution

The specific contributions in this chapter are:

• This chapter presents the first cross-device deep-learning based EM SCA (EM-

X-DL) on an AES-128 encryption engine using a 256-class DNN with ten devices

for training and tested on a different set of ten test devices (Sec. 3).

• Effect of different pre-processing techniques including principal component anal-

ysis (PCA), linear discriminant analysis (LDA), fast fourier transform (FFT),

spectrogram, on handling the portability issue is analyzed and compared, show-

ing that the LDA is the most efficient approach to achieve maximum average

cross-device key prediction accuracy of ∼ 91.5% with minimum training time

(Sec. 3.3).

• An algorithm for the optimal selection of the training devices is proposed, so

that the number of training devices and thus the effective training time is min-

imized (Sec. 4, Algo. 1).

• Finally, an end-to-end EM-X-DL attack using the trained DNN model is demon-

strated, starting from the EM scanning to finding the point of maximum leakage

on the chip, leading to a successful attack at the best location (Sec. 5).
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Table 3.1.
Literature Review for Profiled-Attack Scenario

Profiled Attack
Scenario

Measure-
ment Type

Profiling
Method

Corresponding
Article

Same-Device
Power

TA [32]
SVM, RF [33], [46]

DNN [47]

EM
TA [32]

DNN [34]

Cross-Device

Power
TA [44]

DNN [36], [37]

EM

TA [48]
3-Class
DNN

[38]
(RSA)

256-Class
DNN

This Work*
(AES-128)

*First EM Cross-Device Deep-Learning Attack on a Symmetric Key Al-
gorithm

3.2 BACKGROUND & RELATED WORK

3.2.1 EM Side Channel Attacks

Since the inception of power SCA [1], a wide variety of attacks have been

demonstrated, which can be broadly classified into non-profiled attacks like differ-

ential/correlational power/EM analysis (DPA, CPA, DEMA, CEMA) [13], [1], and

profiled attacks, such as the statistical template attacks [32] and ML SCA attacks.

While non-profiled attacks perform an attack in a single phase on a target device,

profiled attacks consist of two phases, a profiling phase, to learn a leakage pattern

and an attack phase, to attack with only a few traces, which practically operate on

different devices. During the profiling stage, the attacker will collect traces from a

”profiling” device identical to the victim device to build a model. During the attack,

this model is then used to recover cryptographic secrets from the victim device.
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3.2.2 ML-SCA Attacks

Template attacks have been shown [32] to be capable of recovering secret keys

with a small number of traces, making them among the most powerful side chan-

nel attacks. More recently, supervised ML techniques have been used for profiling

SCA [33]. Among these techniques, DNNs have been one of the most successful,

defeating many common countermeasures, such as masking [49] and clock jitter [50].

Table 3.1 provides the summary of related works on profiling attacks. Till date, only

one prior work [38] has focused on cross-device EM ML SCA attack using only one test

device running RSA. Note that this attack required a 3-class DNN [38], whereas the

proposed single-trace (averaged) EM-X-DL attack on AES-128 requires a 256-class

DNN, and thus the effects of portability across devices is significantly more promi-

nent. Hence EM-X-DL is the first cross-device EM ML SCA attack on a symmetric

key encryption algorithm (AES-128) and has been evaluated against ten different test

devices (8-bit Atmega microcontroller).

3.3 EM-X-DL SCA ATTACK

This section evaluates the single-trace (averaged) EM-X-DL attack on AES-128

using a 256-class DNN. For profiling the DNN, EM traces are collected from a set

of ten training devices (8-bit Atmega microcontrollers) using the Chipwhisperer [24]

platform, specifically the CW-Lite capture board, along with an off-the-shelf H-field

sensor (10mm loop diameter) and a 40dB wideband amplifier. The efficient selection

of the training devices is discussed in the subsequent section. For evaluating the

attack, ten different devices are reserved separately and the cross-device (EM-X-DL)

accuracy is reported as an average of these ten test devices.
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Fig. 3.2. Architecture of the proposed DNN. The network contains 3
dense layers, following each dense layer is a ReLU activation function,
batch normalization, and finally a dropout layer. The final output layer
provides the output class predictions - the key byte, and thus is size 256,
and uses a softmax activation function.

3.3.1 DNN Architecture & Training

Figure 3.2 shows the architecture of the proposed 256-class fully-connected (FC)

DNN for the EM-X-DL attack. It should be noted that the EM traces captured

using Chipwhisperer are time-synchronized and hence use of a convolutional layer is
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Fig. 3.3. Effect of averaging on the test accuracy of the 256-class DNN
when using raw traces and PCA-transformed traces. Increasing averaging
hardly allows the DNN to learn from the time-domain EM traces. With
PCA used as a pre-processing step, averaging upto 20× smoothly increases
the test accuracy to > 99% for the same device.

not necessary [51]. 3000 time samples for each trace were collected from the 8-bit

microcontrollers running AES-128 clocked at 7.37MHz.

The DNN, implemented using Tensorflow [52], has a 3000-neuron input layer,

followed by three hidden layers with 100, 1024, 512 neurons respectively, and finally

the 256-neuron output layer. Rectified Linear Unit (ReLU) activation functions along

with batch normalization and dropout used to achieve generalization are utilized for

training the DNN. The Adam optimizer, with an initial learning rate of 0.005, which is

halved whenever five consecutive training epochs pass without any validation accuracy

improvement, is used for training. The effect of different hyperparameters is shown in

Figure 3.4. A dropout of 0.45 is the most optimum for the first hidden layer (Figure

3.4(a)), while 1024 hidden neurons for the second hidden layer (Figure 3.4(b)) provides

the maximum cross-device accuracy without overfitting to the training devices. For

all the results that follow, unless otherwise mentioned, the DNN is trained with ten

devices for 100 epochs with a batch size of 64.
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Fig. 3.4. Effect of hyperparameters on both same- and cross-device test
accuracy for the PCA-DNN model. (a) Dropout between the first and
second hidden layers helps prevent overfitting, maximizing cross-device
accuracy at a dropout rate of 0.45. (b) Layer size also demonstrates a
similar trend, and reaches maximum cross-device accuracy at ∼ 1000 for
the second hidden layer.
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Fig. 3.5. PCA and LDA reach their respective peaks (250 and 10) with
relatively few features compared to the size of the original traces (3000).
As LDA features are chosen to maximize the class separation, while PCA
maximizes variance, LDA is a more efficient technique for this higher
dimensional data as it can train the DNN significantly faster.
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Now, as the raw EM traces collected from the ten training devices (100K traces

each) are fed to the DNN classifier, the validation accuracy remains low (< 1%) al-

though training accuracy increases, even after 100 epochs. Figure 3.3 (blue curve)

shows the effect of averaging on the same-device (test) accuracy. Even with 20× aver-

aging, the time-domain traces shows a test accuracy of < 1%, while a dimensionality

reduction using PCA achieves > 99% test accuracy for the same device. Next, we

will look into the effect of augmenting traces from ten training devices along with

20× averaging and different pre-processing strategies on the cross-device accuracy.

Note that, unless otherwise specified, cross-device accuracy refers to the average key

prediction accuracy of the EM-X-DL attack across all the ten test devices.

3.3.2 Single-Trace Attack with Pre-Processing

In the previous sub-section, it was shown that the averaged time-domain EM

traces (100K × 10 devices) do not train the DNN efficiently, while dimensionality

reduction techniques like PCA have a significant impact in training the DNN. Here,

we study the effects of PCA [51], LDA [45] on the time-domain EM traces, as well

as the effects of frequency domain based processing (FFT, spectrogram [53, 54]) on

the cross-device accuracy.

Dimensionality Reduction using PCA & LDA

PCA transforms the input EM trace samples to their principal sub-space where

individual features maximize the variance, while LDA achieves the same effect by

maximizing the inter-class separation. As seen in Figure 3.5(a, b), the optimal number

of features to use in these techniques is much lower than the dimensionality of the

raw trace, around 250 in the case of PCA, and a mere 10 in the case of LDA. As

shown in Figure 3.6(a, b), both of these techniques lead to roughly similar cross-

device accuracy, 91%. However, LDA is more efficient as it requires significantly

lower training time (< 10×) than PCA to achieve the same level of accuracy.
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Input: Trace Samples from all Devices: TraceData, Number of Devices to
select: nDev

Output: Subset of size nDev

for dev = 1 : length(TraceData) do
µ1 = mean(TraceData[dev][:,POI[1])
µ2 = mean(TraceData[dev][:,POI[2])
meanMap.append(dev, (µ1, µ2))

end for
subset = [1]
for i = 1 : nDev−1 do
µtrain = mean(meanMap[subset])
nextDev = argmaxj ||µtrain−meanMap[j][2]||
subset.add(meanMap[nextDev][1])
meanMap.remove(nextDev)

end for
return subset

Algorithm 2: Algorithm for Device Selection

Frequency Domain Analysis using FFT & Spectrogram

Using FFT on the time-domain averaged (20×) EM traces produces an EM-X-DL

attack accuracy of ∼ 91% (Figure 3.6(b)), which is similar to PCA/LDA. However,

it requires higher training time than both PCA and LDA, and hence is not the

most efficient approach. Spectrogram combines both time- and frequency-domain

information and is naturally two-dimensional. Hence a 2-D CNN [55] is used for the

spectrogram, which achieves a cross-device accuracy of 74.6% (Figure 3.6(b)).

3.4 EM-X-DL SCA: EFFICIENT SELECTION OF TRAINING DEVICES

As shown in the previous works [36], [37], the challenge of a ML SCA model

being able to accurately classify traces collected from devices it has not been trained

with, can be addressed by training with a variety of devices, so that the model does

not overfit to the particular leakage pattern of one device. This remains true when

using EM traces, however, many more devices are required to gain a high level of

cross-device accuracy. Moreover, averaging clearly plays a key role, again increasing
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the number of traces required. Thus, it is of interest to be able to train using the

smallest possible set of devices, reducing both the number of traces needed as well as

the training time for the DNN. For this, two things must hold true: First, the choice

of devices must affect the cross-device accuracy for a given number of devices, and

second, there must be a way of determining whether or not to include a device for

training from a small sample of traces.

3.4.1 Cross-Device Accuracy Variance

To address the first point, the effect of the subset, the EM-X-DL model is trained

with a random subset of six devices, then tested against all the remaining fourteen

devices. As shown in Figure 3.7, the average cross-device accuracy can vary greatly

even for a set of only six devices, with accuracy ranging from 10% to 75% for different

six-device combinations. This shows that there are subsets of training devices that

can improve accuracy rather than simply adding more devices. However, as there are

a large number of possible subsets for a given size, an algorithm is necessary to choose

one such subset which results in high cross-device accuracy. Such an algorithm would

then enable an attacker to gather quick measurements from a large set of devices,

and determine a small subset of devices to collect a large number of traces from, for

training the DNN model.

3.4.2 Bivariate POI Based Device Selection

The proposed algorithm begins by identifying two points of interest (POIs) in the

traces. This can be done through any POI identification technique, here POIs are

chosen as time samples which have the highest difference of means (DOM). Once the

top two POIs are found, the mean µi = (µPOI1, µPOI2) of this POI pair is calculated

across all traces for each device. Then, to construct the subset of devices for training,

one device is initially chosen arbitrarily, and additional devices are added as follows:

The mean POI pair of all devices currently included in the training subset, µtrain is
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calculated. Then, the next device is chosen such that ||µi − µtrain||2 is maximized,

where i varies over all devices not already included in the training subset. In this way,

at each step, the device whose top two average POIs are furthest from the average

POIs of the currently selected devices is added to the training set. This method is

detailed in Algorithm 2.

Figure 3.8 shows the 2-D bivariate normal distribution of the first three devices

chosen using this algorithm, along with the total distribution of all devices. With

these three devices, a large portion of the distribution spanned by all the devices is

covered, revealing the successful operation of the algorithm. Importantly, this algo-

rithm also provides the desired results during training, shown in Figure 3.9, as using

this algorithm to choose the training devices gives higher cross-device (EM-X-DL)

accuracy for any number of devices. Additionally, training with the devices closest

to the current training set, as opposed to the furthest away, results in cross-device

accuracy significantly lower than the maximally different devices, and generally lower

accuracy than randomly selected devices as well. These results were obtained with

the proposed 256-class DNN, using 20× averaging and PCA-based pre-processing.

From Figure 3.9, we also see that to attain a certain cross-device accuracy, this algo-

rithm requires between 20%−40% fewer training devices compared to random device

selection.

3.5 EM LEAKAGE ASSESSMENT & ATTACK

Once the DNN model for the EM-X-DL SCA is trained, the main goal of an at-

tacker is to break the secret key with minimum number of traces from an identical but

unseen target device. This section demonstrates an end-to-end attack strategy using

the EM-X-DL model on a new device. By scanning the surface of the victim micro-

controller and collecting traces at each point (seen in Figure 3.10(a)), the heatmap

in Figure 3.10(b) was created by classifying the traces and determining the test ac-

curacy for each point. As all training traces were collected from the same location
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Table 3.2.
Cross-Device attack Performance of Deep Learning-based Methods for
different Pre-Processing Techniques

Preprocessing Cross−Device Accuracy (%)
Technique Minimum Average Maximum

Time Domain 0.28 0.37 0.45
PCA 81.27 90.72 96.77
LDA 81.21 91.52 96.42
FFT 82.40 91.07 95.50

Spectrogram 30.53 74.58 94.02

(with maximum leakage on the chip evaluated using test vector leakage assessment

(TVLA)), as expected the accuracy is highest in this region, then drops off sharply

further from the measurement point. Figure 3.10(c) shows the minimum traces to

disclosure (MTD) from a CEMA attack over the same chip. Comparing this to the

accuracy heatmap shows that the ML model can correctly classify traces that are

collected from a location which has an MTD less than 250.

Now, in this virtual grid, to converge to the best location for the EM-X-DL at-

tack on the new device, the attacker can query the EM-X-DL model with multiple

averaged traces collected from the test device and observe if the frequency of

the highest predicted key byte is distinguishable from the next. Should

leakage be present, the correct key byte would be predicted more often than others.

If leakage is not present, predictions would be split between several key values. Thus,

the ratio between the first and second most commonly predicted value provides a

measure of the attacker’s confidence in the prediction. This effect is shown in Figure

3.10(d), which shows the five most common predictions for both a location of high

leakage,(1,2) (left) and low leakage, (2,9) (right). Note that, with this prior knowl-

edge of the heatmap, the attacker can also divide the chip into 4 quadrants (for this

particular chip) and get the correct key from the left most quadrant with a very high

confidence.
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3.6 REMARKS & CONCLUSION

This chapter showed a Cross-device Deep Learning based EM (EM-X-DL) SCA

attack on a symmetric key encryption engine (AES-128). Utilizing a 256-class DNN,

averaged EM traces from 10 training devices with dimensionality-reduction based

pre-processing (like LDA) achieves ∼ 91.5% EM-X-DL single-trace (averaged) attack

accuracy against another set of ten test devices. Table 3.2 summarizes the EM-X-DL

attack accuracies for the different techniques studied in this chapter. An algorithm

for efficient selection of training devices is proposed to speed up the profiling phase.

Finally, an end-to-end attack using EM scanning is demonstrated showing that the

attacker can detect the position of highest leakage on the chip using the proposed

EM-X-DL model along with the secret key with high confidence.

For the future scope of this work, the end-to-end EM-X-DL attack can be more

generalized by capturing traces from multiple locations across the chip, rather than

a single location, for training the DNN. This would make the EM-X-DL attack much

more efficient and faster as the attacker would be able to extract the key without

having to detect one of the highest leakage locations on the chip.
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Fig. 3.6. Effect of the different pre-processing techniques on (a) the DNN
training accuracy, (b) the cross-device attack (EM-X-DL) accuracy. While
all the pre-processing techniques result in high validation (same-device)
accuracy, PCA, LDA, FFT result in > 90% cross-device accuracy, while
spectrogram yields 74.6% cross-device accuracy.
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Fig. 3.7. Distribution of cross-device accuracy of the 256-class PCA-DNN
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devices.
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Fig. 3.9. Depending on the choice of devices used for training, cross-device
accuracy varies significantly. Choosing ”dissimilar” devices by algorithm 2
gives high accuracy, while choosing ”similar” training devices yields a low
cross-device accuracy. Randomly selecting devices shows slightly higher
test accuracies than choosing ”similar” devices.
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Fig. 3.10. (a) 10× 10 virtual grid overlay of the chip. (b, c) Comparison
of EM-X-DL model accuracy to CEMA-MTD. The ML model is able to
predict with high accuracy in the region of the chip with low MTD values,
however, when the MTD rises above 250, the model is unable to correctly
predict the key values. (d) EM-X-DL model predictions on 20 samples
from a high leakage location (1,1), and a low leakage location (9, 4) on a
test device. At a location with high leakage, the frequency of the highest
predicted key byte value is distinguishable from the next, demonstrating
the high confidence of the attacker.
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4. ADDITIONAL SIDE-CHANNEL ATTACKS

4.1 Efficient EM Attack: Power to EM Mapping

4.1.1 Introduction

In the previous chapter, a variety of methods to improve EM-ML SCA attacks

were presented, particularly when dealing with low SNR measurements. This chapter

presents a new method for efficiently training an EM-ML SCA model by creating a

power to EM mapping function. Mapping power traces to EM traces would allow

attackers to collect high SNR power traces, convert them to high SNR EM traces,

and train an ML model with the generated EM traces, needing fewer measurements

than collecting only EM traces. This improves the efficiency of EM-ML SCA attacks,

increasing the power of an attack. Furthermore, determining the mapping between

power and EM for side-channel measurements may allow for the development of more

effective EM-SCA countermeasures, by designing around the transfer function to

minimize EM emissions. As electromagnetic emissions fundamentally originate from

changes in current/power, a mapping between the two must exist. However, finding an

appropriate mapping is nontrivial and evaluating a mapping can also be challenging.

In this section, two methods are investigated to find the power to EM mapping, and

a method of evaluating mappings is also presented.

4.1.2 Background

4.1.3 Transfer Function Approximation Methods

Two methods have been used to generate an approximate power to EM transfer

function. First is adaptive filtering, which produces the optimal finite impulse re-



58

sponse (FIR) filter coefficients given an input trace and a corresponding target trace

using least squares optimization. The second method is polynomial fitting. While

adaptive filtering is limited to linear operations, polynomial curve fitting can model

higher-order effects, but does not take into account dependencies between time points

as a filter could. Examples of traces generated using both methods are shown in Fig-

ure 4.1, where at first glance both methods produce decent traces. One challenge

in performing this mapping is deciding on a metric for evaluating different transfer

functions. A straightforward approach would be to look at the MSE between the

generated traces and true measured traces. While MSE can give a sense of which

mapping performs better than another, it does not guarantee that the chosen map-

ping is useful for side channel analysis in practice. To measure the performance of a

learned mapping, a separate set of EM traces are used to train an ML-SCA model, the

EM traces generated by the mapping are then tested on this ML-SCA model, and the

resulting accuracy of the model tested on these generated traces is used as a measure

of the power to EM mapping performance. If the mapping is correct, the accuracy

on the generated traces should be as good as the accuracy of true measured traces.

If this accuracy is lower, then the mapping does not transform relevant side-channel

information from power to EM correctly.

4.1.4 Results

Adaptive Filtering

The first method chosen was adaptive filtering. Given we expect a power to EM

transformation to be mostly linear, this approach seems reasonable. Through this

method, a set of power traces are used as the input traces, and 10x averaged EM

traces were used as the target traces. The adaptive filtering was done in MATLAB,

and produces FIR filter coefficients for a filter of a specified size. The performance of

the filer is then estimated by the ML model accuracy, testing on the filter’s generated

traces. Figure 4.2 shows the effect of the filter size on the ML accuracy. Somewhat
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Adaptive Filtering - Filter Size: 15

Time Sample

Polyfit – Degree 2

Time Sample
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Fig. 4.1. (a) True EM trace compared to a trace generated with adaptive
filtering, with a filter size of 15. (b) True EM trace compared to a trace
generated with polynomial fitting and a degree of 2.

unsurprisingly, as the filter size increases, the accuracy increases, as more filter co-

efficients allow for more accurate filtering. Despite this, even for large sized filters,

accuracy never rose above 1.1%. This is above the accuracy of a random guess (0.43%)

but is drastically lower than the true EM test accuracy of 90%. So, while the adaptive

filtering method does convert power traces to EM to some degree, it does not com-

pletely preserve the leakage patterns the ML model expects. One possible reason is

that nonlinear effects play a more important role in side-channel leakage than initially

expected, so the next method chosen was polynomial fitting, to attempt to capture

these non-linear effects and preserve the true EM leakage pattern.

Polynomial Fitting

The polynomial fitting method estimates a polynomial mapping from power to

EM for each time point. This results in a polynomial like the one in Figure 4.3.

Unlike the adaptive filtering method, the polynomial method allows for non-linear

effects to be captured. However, the polynomial method does not capture effects

where one time point in EM relies on a combination of time points in the power

domain. Evaluating the polynomial fitting method in the same way as the adaptive
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Fig. 4.2. At small filter sizes, the generated traces are unable to be classi-
fied by the ML model. As filter size increases, the accuracy begins to rise
slightly above the level of a random guess, to a maximum of 1.1%.

filtering model, we see somewhat improved performance. With the polynomial fitting

method, the maximum accuracy achieved is 2.9%, nearly triple the accuracy of the

adaptive filtering method, but still far lower than the model’s accuracy on real traces.

So, while the polynomial method does perform better than adaptive filtering, it still

does not completely capture the leakage patterns in the generated EM traces.

4.1.5 Conclusion

Neither adaptive filtering nor polynomial fitting fully captured the power to EM

function, but both resulted in generated EM traces which could be classified with

above random accuracy by a trained ML-SCA model. Given this, it seems finding a

function that can map power to EM and preserve side-channel leakage is feasible. By

analyzing the MSE of the two methods, there appears to be a relationship between
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Fig. 4.3. Power vs. EM for time sample 96 and the polynomial fit for this
time sample. While not perfect, polyfit results in lower MSE and better
SCA-ML performance.

the MSE and ML accuracy, as we lower the error in the generated traces compared to

true traces, we also raise the ML accuracy. So, by reducing this error, a usable power

to EM mapping function may be found. Future efforts in this area might consider

using more powerful methods to estimate the power to EM mapping, or collecting

more and higher SNR power/EM traces to improve the model.

4.2 Side-Channel Resilience with High Level Synthesis

4.2.1 Introduction

In the face of side-channel threats such as SCNIFFER and X-EM-DL SCA, many

countermeasures have been proposed to reduce the efficacy of side-channel attacks.

One such countermeasure is to use high level synthesis (HLS) to produce SCA

resistant implementations. The directives one can provide to an HLS system can

drastically impact the side-channel leakage patterns, even if the underlying high level
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functional description is unchanged. However, even if the leakage changes, this does

not imply the system is any more secure against side-channel analysis. Thus, a

detailed white-box analysis of the digital logic generated by the HLS system is needed

to determine the security of the system.

4.2.2 Background

Side-Channel Countermeasures

Since the introduction of side-channel analysis, there have been numerous counter-

measures proposed to reduce the efficiency of attacks using side channel information.

These countermeasures can be broadly classified into three categories: Algorithm

level countermeasures, architecture level countermeasures, and circuit level counter-

measures. Broadly, algorithm level countermeasures change a specific algorithm in

a way that side channel leakage is lower. Architecture level countermeasures change

the implementation of an algorithm to reduce side channel leakage. Finally, circuit

level countermeasures change the physical hardware on which a cryptographic algo-

rithm operates. Algorithm level countermeasures are specific to an algorithm, such

as masking for AES or blinding for RSA. Countermeasures at the architecture level

change the implementation of an algorithm, without changing the logic of the algo-

rithm or the physical hardware. Examples of architecture level countermeasures are

the insertion of dummy operations or clock frequency shifting, both of which cause

misalignment from one trace to another. Circuit level countermeasures are the most

general countermeasures, and are not specific to any algorithm or implementation.

Circuit level countermeasures change physical hardware - either by changing the im-

plementation of logic cells, or by adding circuitry - to reduce side channel leakage.

One method of changing logic cells is dual-rail logic, which has a variety of imple-

mentations, such as those in [56] and [57], where logic gates are designed to consume

constant power regardless of the data processed. A second method is to reduce the

leakage of the whole cryptographic block by forcing the block to consume constant
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power. This approach is demonstrated in [58], and is generally lower overhead than

changing logic cells, and also lower overhead than many other countermeasure types.

High Level Synthesis Systems

High level synthesis (HLS) in digital system design is a process to take a high level

description of a system, for example an algorithm written in C++, and generating

synthesizeable hardware description language(HDL) code. Using high level synthesis,

designers can create hardware implementations without needing to write HDL code,

and can use algorithms as written in high level languages. This process does have some

drawbacks, as generated code is often less efficient in both hardware resources used

and execution time compared to handwritten HDL. In order to help improve this, HLS

systems allow the high level code to be annotated with ”hints” to the synthesis system

to effect how the generated code is constructed. Using these options, designers can

control things like loop unrolling, pipelining, and register use. The options provided

by HLS can cause effects similar to architecture level countermeasures. For instance,

changing loop unrolling has an effect similar to a shifting countermeasure.

4.2.3 Initial Leakage Assessment

To understand how HLS options effect side channel leakage, a high level AES

implementation [59] was used as the source for the HLS, and the generated Verilog

code was then further mapped to run on an Atrix-7 FPGA. Once again, the Chip-

whisperer [24] platform was used to collect power traces from the target FPGA while

it performed AES encryption.

To begin the analysis, TVLA [14] was used to gain insight to which HLS options

have the largest effect on side channel leakage. First, to establish a baseline, HLS

was used with default settings. The default settings resulted in a fully serial im-

plementation of AES, with each byte being operated on one at a time. Using 1000

traces for TVLA (500 fixed plaintext traces, 500 random plaintext traces) this fully
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serial implementation had a maximum t-value of 7.2. This is a somewhat low leakage

level, particularly since in a serial implementation, there is very little algorithmic

noise. With this as a baseline, four variants of the AES implementation were created

through varying HLS options. These initial variants unroll different loops in the AES

source code. From a hardware perspective, this has the effect of changing the number

of lookup tables created for the SBox operation in AES. For instance, the fully serial

variant uses 2 SBox blocks, one for the SubBytes step in a round of AES, and one for

the key expansion step of AES. Meanwhile, in the fully unrolled variant, there are 20

SBox units, one for each of the 16 bytes during the SubBytes step, and four for the

key expansion step. The remaining variants fall between these two extremes.

Now, looking at the TVLA analysis of the variants, all unrolled variants had

a much higher t-value, ranging from 18.7 to 24.4, all much higher than the serial

implementation which contained no unrolling. Figure 4.4 shows the TVLA results

for all variants. Table 4.1 summarizes the results, along with the performance (cycle

count per encryption) and overhead (FPGA resources used).

While this seems to imply the unrolled variants are far less secure than the original

variant, TVLA giving a high t-value does not imply the leakage is exploitable. So, to

determine the true security of the variants, CPA [13] was used to recover the key, and

the MTD was recorded for each variant. CPA requires a leakage model to be used,

and the model chosen is a common model for hardware implementations of AES,

the last-round state difference model. Under this model, leakage is proportional to

the number of bits in the AES state that change from the second to last round to

the last round (which is the ciphertext). Performing CPA with a total of 100,000

traces for each variant, the key was only recovered for two of the five variants. For

the default, serial variant the MTD was 31,000 traces, and for variant 2 the MTD

was ∼ 400 traces. For the other variants, even though the t-value was > 20, the

key was not recovered even after 100,000 traces. Given that the t-value and CPA

result do not align with expectations, this suggests the other variants are leaking, but

under a different model. To determine the appropriate leakage model, one must now



65

Number of Traces

T-
V

al
u

e

HLS TVLA Comparison

Fig. 4.4. Incremental TVLA for all variants investigated. The initial
serial implementation shows low leakage under TVLA, and the dynamic
implementation shows high leakage, however TVLA does not necessarily
correlate to the true security of an implementation.

perform a white-box analysis of the variants to determine a leakage location that is

exploitable, along with an appropriate leakage model.

4.2.4 White-Box Analysis

To determine at what point in the AES algorithm a particular implementation

may cause leakage, it is necessary to look into the HDL code defining the system. By

looking into the HDL code, it is easy to see that the two variants which CPA was able

to break leak in the expected last round model. The remaining variants do not leak

under the same model, as data flows through registers in a different way. Indeed, the
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Table 4.1.
Summary of AES-128 implementations produced through HLS. HLS op-
tions have a large effect on both the size and speed of an implementation as
well as the side channel leakage. The dynamic implementation combines
several variants, leading to the much higher resource use.

Serial All 
Unrolled

Variant 1 Variant 2 Variant 3 Dynamic

TVLA 7.2 20.4 24.4 18.7 20.9 8.0

LUT 1026 2784 1794 1430 1650 3667

FF 1797 2622 2041 1746 2426 4903

Cycle 
Count

707 32 185 25 512 ~250

other variants, while they do have a high t-value, do not leak in an exploitable way

in the last round.

Given the last round leakage model was not appropriate for many of the variants,

the main alternative is a first round model. In this model, under an assumption of a

zero register initial condition, CPA succeeded after 94,000 traces (Figure 4.5a). Seeing

a success, further analysis was done on the HDL code, and it was determined the initial

state of the relevant register was not zero, but a fixed constant 0x63, which is the

SBox output for a zero input. Further, this value was stored in the relevant register

every encryption, making the leakage easy to predict. Using this corrected model,

CPA then succeeded with only 2,000 traces(Figure 4.5b). This variant demonstrates

the importance of using the correct leakage model, as the attack needs 47× fewer

traces to recover the secret key. Additionally, we see that the loop unrolling HLS

options appear to be unable to meaningfully reduce exploitable leakage.

4.2.5 Dynamic Implementation

In an effort to reduce leakage effectively with HLS, options were changed such

that the loop unrolling changes from one encryption to another. While this does

incur large overhead, the changing leakage pattern makes attacks like CPA more
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Fig. 4.5. (a) CPA using a HW leakage model. The key is recoverd after
94,000 traces. (b) CPA using a HD model. The key is now recovered in
only 2,000 traces.

difficult. This is due to the fact that CPA operates on each time sample individually,

so if the leakage does not occur at the same point in each trace, CPA will not succeed.

However if there are a small, finite number of leakage patterns, then MTD is only

increased by a factor equal to the number of leakage patters, as a particular pattern

can be easily identified automatically, and a subset of traces which all have the same

leakage pattern can be created. Without separating traces, other leakage patterns

act as noise - increasing the MTD by a factor more than the number of patterns.

As a demonstration, an AES implementation was created that switches between four

variants. Initially CPA was performed without separating the traces by variant, and

the CPA attack succeeded after 81,000 traces, using the correct leakage model, as

shown in Figure 4.6 a). Next, the traces were separated by the leakage variant. This

separation was done by correlating a new trace with a template, and a correlation of

> 0.35 correctly identified all traces coming from the same variant as the template. By

creating this subset, CPA now succeeded in 5,000 traces, as seen in Figure 4.6 b). In

total, to get the required number of traces of a particular variant 20,000-25,000 total

traces were needed. So, while to a naive attacker, using a variety of implementations

greatly increases the MTD, to an intelligent attacker, the MTD increase is not nearly
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Fig. 4.6. (a) CPA performed on the dynamic implementation of AES,
with the attack succeeding at 81,000 traces. (b) After separating traces
by implementation, CPA succeeds after 5,000 traces.

as great. Further, the overhead cost of implementing multiple variants of the same

algorithm is very high, as seen in Table 4.1, and the security improvements to not

justify this level of overhead.

4.2.6 Conclusion

In the process of analysing methods of using HLS to improve side-channel security

for hardware AES implementations, a number of variants were produced and com-

pared. Starting with TVLA, and further investigating with different leakage models

for CPA it is clear that HLS options can have an effect on side channel security.

However this security comes with a large overhead relative to the added security.

While HLS is a powerful tool for digital circuit designers, and provides a large

variety of options to control HDL code generation, these built in options do not give

the capability to efficiently increase the side-channel security of a design. While they

can be used to improve side-channel attack resistance, the cost to do so is far higher

than existing countermeasures.
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4.3 Side-Channel Analysis on Future ML Systems: Neural Cryptography

with Generative Adversarial Networks

4.3.1 Introduction

Neural cryptography uses artificial neural networks to learn a cryptographic op-

eration, that is two functions, one that takes a plaintext and encrypts it, and another

function which takes the encrypted data and recovers the original plaintext. Gen-

erally, the functions also have access to a shared secret key to aid in keeping the

encrypted data secure.

4.3.2 Background and Related Works

The concept of neural encryption was introduced in [60], where adversarial train-

ing was used to create the symmetric encryption and decryption functions (Alice and

Bob, respectively), while an adversary network (Eve) was trained to recover the plain-

text with only access to the encrypted ciphertext, not the secret key. Training all

three networks simultaneously, Alice and Bob are attempt to communicate (minimize

Bob’s reconstruction error) while maintaining secrecy (maximizing eve’s reconstruc-

tion error). This forces Alice and Bob to learn a mapping that relies on the secret

key. While [60] showed this training was possible, [61] brought up a number of issues

with the initial implementation that prevent this method from producing a practical

cryptographic algorithm.

4.3.3 GAN Cryptography Security Analysis

The security of a neural cryptography system must be considered from both a

traditional cryptography viewpoint and the machine learning viewpoint. In the tradi-

tional cryptography viewpoint, the trained encryption and decryption models should

at least demonstrate good diffusion and confusion, while from an ML standpoint,
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an attacker should not be able to train a model like Eve to any meaningful level of

accuracy. This analysis has only been briefly touched on by previous works.

ML attack resistance

Neural cryptography obviously has some inherent resistance to machine learning

attacks, as it is trained via adversarial learning, but is not necessarily totally resis-

tant. During training, the “Alice” and “Bob” networks can continuously update their

communication to make it difficult for “Eve” to decode. However, in a real attack

scenario, the encryption and decryption networks ( “Alice” and “Bob”) would be

fixed, and the attacker could train for as long as needed on these fixed models. To

determine if a trained model is truly resistant against ML attacks, this real-world

attack was performed after training the neural encryption system. Figure 4.7 shows

the bits incorrect per encryption for both the encryption system and the attacker.

Once the encryption error stabilized (at about 800 iterations), the encryption and

decryption models were locked, and the attacker was allowed to continue training.

This shows that the attacker’s error while training the encryption/decryption models

is an overly optimistic estimate of the system’s security. At the end of training, the

attacker had 12 out of 32 bit incorrect, while after the attacker could train on the

fixed encryption model, the attacker now only had 10 out of 32 bits incorrect per

encryption. Optimistic or not, an attacker still is able to correctly predict 4-6 bits of

the 32 bit plaintext with access to only the ciphertext. Ideally, the attacker would

get 16 out of 32 bit incorrect, showing accuracy no better than guessing.

Diffusion and Confusion Analysis

Beyond resistance to machine learning based attacks, for neural encryption to be

usable, it must also be resistant to classical cryptanalyis. For an initial analysis, the

confusion and diffusion of the learned encryption/decryption models were analyzed.

During the initial analysis, the issue of non-binary ciphertexts came up quickly, as no
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Fig. 4.7. During the training phase, both Bob and Eve are able to reduce
decryption error at first, then Alice and Bob begin to use the secret key,
and Eve’s decryption error increases. Once training ends, the attack phase
begins. Eve is able to further reduce the decryption error during the
attack, but not to the level of Bob.

matter how many key or plaintext bits changed, the number of bit flips (that is, sign

changes) in the ciphertext never grew above four. This again shows the issue that

information is being stored in the ciphertext by small variations, not sign changes as

intended. Additionally, the trend of very few bit flips was not the only issue. For

some training runs, the number of sign changes in the ciphertext was equal to the

number of bit flips in the plaintext. This presents a different problem, as now the

encryption is extremely insecure, and performing an encryption with the same key

twice would likely reveal most if not all of the key.
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4.3.4 Real-World Limitations

One of the biggest challenges in this variety of neural cryptography is the encoding

of the ciphertext. Under the formulation of neural cryptography above, the ciphertext

is not required to be binary. While this does not mean the encryption/decryption

engines learned by the network are unusable, they would be extremely inefficient, as

each bit of ciphertext would need to be represented by a 32/64 bit floating point

representation of the ciphertext bit (depending on the datatype used in training).

This non-binary nature is seen in Figure 4.8 a). To counter this, two methods were

proposed in [61]. First, to add a term to the loss function which penalizes ciphertext

values that are far from the limits (-1, +1). The second method proposed a ”hard

tanh” activation function placed before the ciphertext, to push values towards the

limits. In practice, it was found that the first of these methods had the intended effect

on ciphertext values, as seen in Figure 4.8b, as we see the distribution of ciphertext

values is split between +1 and -1. However, the ”hard tanh” method does not achieve

the desired result, and the distribution of ciphertext values was constrained to the

linear part of the ”hard tanh” function, centered at 0. Even though the addition to

the loss function seems to achieve the desired results at first glace, the issue of non-

binary ciphertext is not actually resolved. While the ciphertext values are grouped

around the extremes, by mapping values < 0 to -1 and values > 0 to +1, the trained

decryption engine fails to recover the plaintext. From this, we can conclude that

information is being stored in the small variations around +/-1, not the difference

between the two extremes. So, while there is no method of converting the ciphertext

to be truly binary, neural encryption is still possible, but a much larger ciphertext

must be used to transfer a given amount of data.

In addition to the issue of the ciphertext being non-binary, an additional issue

with neural encryption is the inherent error rate of the system. Even without any

constraints on security or ciphertext being binary, recovery of plaintexts is not guar-

anteed, as it would be in a typical encryption/decryption scheme. The baseline error
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Fig. 4.8. (a) Distribution of ciphertext values for 1000 encryptions when
using the standard loss function and hard tanh activation functions. (b)
Distribution of ciphertext values for 1000 encryptions with binary loss
term and normal tanh activation functions. While ciphertexts appear
more binary, information is stored in small variations - not -1 to +1
changes.

rate is 0.1 out of 32 bits incorrect per encryption, but adding additional constraints

causes the error rate to increase. For example, by requiring the ciphertext values

to have binary distributions, the error increases to about 1 bit out of 32 incorrect

per encryption. Like the issue of the binary ciphertext, this does not make neural

cryptography unusable, but adds overhead, as error correction mechanisms will now

be required.

4.3.5 Conclusion

Neural encryption could provide devices with a method of performing encryption

with the same hardware as is used for neural network prediction. With the original

goal of analyzing the effects of side-channels on the security of neural encryption,

it was quickly found that a detailed analysis of the fundamental security of neural

encryption was lacking. In the process of developing a neural encryption system to

evaluate security, some problems arose. First, the issue that ciphertexts are not truly
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binary, which makes communication of ciphertexts difficult. Second, the error rate of

neural encryption which again makes neural encryption less appealing. Setting aside

these issues, neural encryption was found to have poor confusion and diffusion, mak-

ing it vulnerable to simple cryptanalysis. Essentially, neural cryptography performs

steganography rather than encryption, not making good use of the shared secret key.

Thus, there is not a clear target for attacks against neural cryptography systems

- traditional or side-channel. Until these issues are addressed, neural encryption is

unlikely to be a viable alternative to current encryption schemes, and side-channel

analysis of these methods would be premature. However, homomorphic encryption

- a different fast-growing field in cybersecurity would perhaps be a better target for

side channel analysis.
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5. CONCLUSION

This thesis has presented several advanced EM side-channel attacks, enabling design-

ers to easily evaluate cryptographic implementations against the most powerful side

channel attacks. These attacks work to address the SNR of measurements, which

directly effects the efficiency of an attack.

First, SCNIFFER addressed the algorithmic noise component of the SNR by pro-

viding a platform to quickly locate a position of high leakage. Such points have low

algorithmic noise and are easily attacked through methods like CEMA. SCNIFFER is

able to find such points efficiently through a gradient-ascent based search algorithm.

Searching intelligently in this way reduces the number of measurements in an attack

by a factor of N for and N ×N search space.

Next, a practical machine learning based EM attack, EM-X-DL is presented. This

attack works to address issues caused by high measurement noise by a combination of

pre-processing and efficient choice of training devices. the EM-X-DL attack achieved

91.5% single (averaged) trace accuracy on traces from unseen test devices, despite

lower SNR than equivalent power measurements.

Several topics are covered in the last chapter, starting with power to EM mapping

to improve EM-ML-SCA attacks, then moving to an investigation into the effect of

high-level synthesis on side channel security, then ending with an security analysis of

neural cryptography.

By addressing issues relating to the SNR of EM measurements, advanced attack

methods were developed. These attacks allow designers to evaluate the security of

cryptographic implementations as well as the effectiveness of SCA countermeasures.

Additionally, the low cost of the systems and tools used make the attacks accessible

to researchers developing new implementations and countermeasures.
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