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ABSTRACT

Minaei, Mohsen Ph.D., Purdue University, December 2020. Privacy Preserving Sys-
tems with Crowd Blending. Major Professor: Aniket Kate Professor.

Over the years, the Internet has become a platform where individuals share their

thoughts and personal information. In some cases, these content contain some dam-

aging or sensitive information, which a malicious data collector can leverage to exploit

the individual. Nevertheless, what people consider to be sensitive is a relative matter:

it not only varies from one person to another but also changes through time. There-

fore, it is hard to identify what content is considered sensitive or damaging, from

the viewpoint of a malicious entity that does not target specific individuals, rather

scavenges the data-sharing platforms to identify sensitive information as a whole.

However, the actions that users take to change their privacy preferences or hide their

information assists these malicious entities in discovering the sensitive content.

This thesis offers Crowd Blending techniques to create privacy-preserving systems

while maintaining platform utility. In particular, we focus on two privacy tasks for

two different data-sharing platforms— i) concealing content deletion on social media

platforms and ii) concealing censored information in cryptocurrency blockchains. For

the concealment of the content deletion problem, first, we survey the users of social

platforms to understand their deletion privacy expectations. Second, based on the

users’ needs, we propose two new privacy-preserving deletion mechanisms for the next

generation of social platforms. Finally, we compare the effectiveness and usefulness of

the proposed mechanisms with the current deployed ones through a user study survey.

For the second problem of concealing censored information in cryptocurrencies, we

present a provably secure stenography scheme using cryptocurrencies. We show the

possibility of hiding censored information among transactions of cryptocurrencies.



1

1. INTRODUCTION

In recent years, with the emergence of data-sharing and social platforms, the problem

of data privacy has become increasingly prominent as the content and activities of

individuals are traceable and accessible worldwide. To cope with such privacy con-

cerns, many regulations within different jurisdictions have been introduced; Yet, the

long-term exposure of data still raises numerous longitudinal privacy concerns for

users.

The boundaries of what is considered private differ among societies and individuals

and mutate with time. Therefore, from the perspective of a global observer that does

not focus on specific users, it is difficult to pinpoint sensitive information. However,

users’ actions taken to hide such information can help the observer in identifying

sensitive content. A closely associated phenomenon is called the “Streisand Effect” [1],

which suggests that any attempt to hide certain information has the unintended

consequence of drawing public attention to it.

Consequently, as long as the content and actions of an individual are blended with

sufficient similar content and actions, an outsider observer will not be able to pinpoint

the sensitive content of a user. A similar concept exists in the survivalist community

known as the Gray Man Theory [2,3], which elaborates on techniques of disappearing

into the crowd and being able to move unnoticed when disaster strikes.1 Similar

techniques can be used in data-sharing platforms to protect the privacy of users in

the presence of a persistent observer that monitors the platforms in large-scale, not

particularly devoted to specific users.

In this thesis, we use crowd blending techniques to create privacy-preserving sys-

tems by hiding private and sensitive data (activity) of a user among similar data
1The same tactic is used in nature by many plants and animals to avoid predators or sneak up on
prey.
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(activity) of other users within the system. We study this technique in two parts: i)

concealment of deletions within social media platforms and ii) concealment of cen-

sored information in cryptocurrency blockchains. Although the two fields seem to

differ significantly, we show that similar techniques can be leveraged to create privacy-

preserving systems.

1.1 Concealing Content Deletion from Persistent Observers

People freely open up about their personal life and opinions on online social platforms

(e.g., Facebook, Twitter). The shared information remains available (to intended re-

cipients as well as unintended observers) and is archived by archival services until

(and if) the information is eventually deleted (or confined) by its creator. This long-

term exposure of shared data raises numerous longitudinal privacy concerns [4–6].

Both celebrities and non-celebrities are regularly harassed and blackmailed by data

scavengers. These scavengers stalk their victims to identify and abuse sensitive con-

tent from the shared data. Nevertheless, the sensitivity of a post is relative; it varies

from person to person and changes through time, based on life events.

Thus, effective (high precision and recall) mining of available large-scale data to

find suitable victims is not always feasible for scavengers. The task should have be-

come more difficult as platforms and Internet archives honor users’ requests to delete

their data. However, these deletions leave the users more vulnerable to the scavengers

who can now focus only on the withdrawn posts to find sensitive content. We find

this problem associated with content deletions to be very feasible—today multiple

web services find and hoard deleted content across different social platforms. Polit-

woops [7] for Twitter, ReSavr [8] and Uneddit [9] for Reddit, StackPrinter-Deleted [10]

for Stack Overflow, and YouTomb [11] for Youtube are some of the prominent exam-

ples. These services enable attackers to specifically mine deleted posts of users for

nefarious purposes.
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In this thesis, we study the full-scale problem of deletion privacy within social

and archival platforms. First, we perform a qualitative and quantitative study on the

users of social media platforms to investigate their deletion experiences and privacy

expectations. Next, we introduce two new deletion mechanisms that aim to provide

privacy for damaging and sensitive deletions. Finally, we analyze factors that govern

the effectiveness and usefulness of the introduced and existing deletion mechanisms.

1.2 Censorship Resistant Rendezvous using Cryptocurrencies

One of the most ubiquitous and challenging problems faced by the Internet today

is the restrictions imposed on its free use. Repressive and totalitarian governments

censor the Internet content to their citizens. Censors employ several techniques rang-

ing from IP address filtering to deep-packet inspection to block disfavored Internet

content [12]. Censored users are thereby prevented from accessing information on the

Internet and expressing their views freely. Given that, several circumvention systems

have been proposed over the last decade [13]. Nevertheless, censorship remains a

challenge to be fully resolved.

Nowadays, Bitcoin [14] has gained a worldwide presence. This presence is also

prevalent in countries with large-scale censorship, such as China [15]. The same

holds for other cryptocurrencies focused on smart contracts as in Ethereum [16] or

privacy-preserving coin transfers as in Zcash [17] and Monero [18].

The availability of cryptocurrencies across different geopolitical contexts makes

them a suitably distributed rendezvous to post steganographic messages. In fact,

censored users can leverage from their highly cryptographic structure to encode cen-

sored data while maintaining undetectability. To that end, in the presence of a global

censor that observes all network communications, we use cryptocurrencies as a censor-

ship circumvention rendezvous. More specifically, we study the feasibility of blending

the steganographic messages among the normal daily transactions of users within

different cryptocurrencies.
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In summary, this thesis focuses on demonstrating the following statement:

In the presence of a global adversary that observes and scavenges data-

sharing platforms for sensitive content, it is possible to create a privacy-

preserving system that blends sensitive content (activity) of a user with

similar content (activities) of other users within the system.

1.3 Contributions

The technical contributions of this thesis can be broadly partitioned as followed.

i. Unveiling the users’ perceptions of deletion privacy in social platforms.

For the first time, we investigate the systematic access rules to regulate the discov-

erability of deletion events. This work takes the first step towards understanding

and operationalizing user perceptions of deletion privacy. In particular, quantify the

need for deletion privacy in social platforms with a 191 participant user survey. We

establish a strong user-need for ensuring deletion privacy in social platforms. Our

results show that users indeed care for deletion privacy. Further, we demonstrate

the context-dependency of the rules for preserving deletion privacy. We identify key

contextual factors that future developers should consider to better align their system

functionalities with user expectations.

ii. Proposal for the next generation of social and archival platforms to

enhance deletion privacy and evaluating their effectiveness.

We present two new deletion mechanisms that can be adopted by the next genera-

tion of social platforms. First, we propose Lethe [19], a novel solution to this problem

of content deletion in the presence of a persistent observer. Lethe employs an inter-

mittent withdrawal mechanism that protects privacy by toggling the observable state

of the posts between up (or visible) and down (or hidden) states. As Lethe is applied

to all the available (non-deleted) posts, the adversary observing a post in a down
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(hidden) phase, cannot immediately discern whether the post is hidden by Lethe or

deleted by the user.

Next, we propose Deceptive Deletions [20], which raises the bar for the adversary

in identifying damaging content using a special deception technique. Given a set

of damaging posts (posts that adversary can leverage to blackmail the user) that

users want to delete, the Deceptive Deletion system (also known as a challenger)

selects k additional posts for each damaging post and deletes them along with the

damaging posts. The system-selected posts, henceforth called the decoy posts, are

taken from a pool of non-damaging non-deleted posts provided by volunteers. Since

a global adversary can only observe all of these deletions together, his goal is to

distinguish deleted damaging posts from the deleted (non-damaging) decoy posts.

Intuitively, Deceptive Deletion is more effective if the selected decoy posts are similar

to the damaging posts. These two opposite goals create a minmax game between the

adversary and the challenger that we further analyze.

Finally, by conducting a survey from 158 participants, we compare the currently

deployed deletion mechanisms with our proposed mechanisms based on their effec-

tiveness in preserving deletion privacy. Furthermore, we highlight the key factors that

lead to the usefulness of these mechanisms.

iii. Introducing cryptocurrencies as a new medium for bootstrapping the

censorship resistance proxies. We present MoneyMorph [21], a secure and

privacy-preserving censorship-resistance bootstrapping scheme using cryptocurren-

cies. MoneyMorph enables an entity residing outside of the censored region to trans-

mit bootstrapping credentials of an entry point for a censorship-circumvention pro-

tocol (e.g., Tor Bridge [22]) to the censored user in the presence of the censor. We

describe how MoneyMorph works using Bitcoin, Zcash, Monero, and Ethereum as

rendezvous. We carry out a comparative study of the different rendezvous by thor-

oughly evaluating their tradeoffs in terms of available bandwidth, monetary costs,

and percentage of sibling transactions to blend in the bootstrapping transactions.
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1.4 Outline of the Thesis

This dissertation is organized in two parts. Part I includes how crowd-blending can

be used to conceal content deletion from persistent observers and comprises Chapter

2-5. In particular, in Chapter 2 we unpack the users’ perceptions of deletion privacy

in social platforms. In chapters 3 and 4, we propose two new deletion mechanisms

namely Lethe and Deceptive Deletions to protect the users’ damaging and sensitive

deletions. In chapter 5, the last chapter of this part, we compare the different deletion

mechanisms based on their effectiveness and usefulness. Part II focuses on how we

can use crowd-blending techniques for bootstrapping censorship resistance tools using

cryptocurrencies as rendezvous which consists of chapter 6. Finally, we summarize

this dissertation in Chapter 7.



Part I

Concealing Content Deletion from

Persistent Observers

7
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People freely open up about their personal life and opinions on online social plat-

forms (e.g., Facebook, Twitter) today. The shared information remains available on

these platforms (to intended recipients as well as unintended observers) and is archived

by archival services until (and if) the information is eventually deleted (or confined)

by its creator. This long-term exposure of the shared data raises numerous longi-

tudinal privacy concerns [4–6] for the users: not only celebrities but non-celebrities

get regularly harassed and blackmailed by data scavengers, who stalk their victims

to identify sensitive content from the shared data. Nevertheless, the sensitivity of a

post is relative; it varies from person to person, and also with life events and time

in general. Thus, effective (high precision and recall) mining of available large-scale

data to find suitable victims are not always feasible for scavengers.

The task should have become more difficult as platforms and Internet archives

honor users’ requests to delete their data. However, these deletions in fact leave

the users more vulnerable to the scavengers who can now focus only on the with-

drawn posts to find sensitive content.2 Indeed, we found this problem associated

with content deletions to be very practical—today multiple web services find and

hoard deleted content across different social platforms. Politwoops [7] for Twitter,

ReSavr [8] and Removeddit [23] for Reddit, StackPrinter-Deleted [10] for Stack over-

flow, and YouTomb [11] for Youtube are some of the prominent examples. A malicious

data-collector can simply leverage these notifications to flag deleted posts as possibly

damaging and further use them against the users [24–26]. Importantly, the hand-

picked politicians and celebrities are not the only parties at the receiving end of these

attacks. We find that malicious data-collector can develop learning models to auto-

mate the process and perform a non-targeted (or global) attack at a large-scale; e.g.,

Fallait Pas Supprimer [27] (i.e., “Should Not Delete” in English) is a Twitter account

that collects and publishes the deleted tweets of not only the French politicians and

celebrities but also noncelebrity French users with less than a thousand followers.
2Closely associated phenomenon, “Streisand effect,” suggests that any attempt to hide some infor-
mation has the unintended consequence of bringing particular attention of public to it.
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In this part of the thesis, we do a full-scale study on the problem of deletion pri-

vacy. We first investigated the prior experiences of the participants regarding their

post deletions and corresponding deletion privacy expectations. We then leverage the

contextual integrity theory [28] to identify key contextual factors (as perceived by

users) for regulating access and ensuring the preservation of deletion privacy. Next,

we introduce two new deletion mechanisms that aim to provide privacy for the dam-

aging and sensitive deletions of the users. Finally, we unearth the factors governing

the usefulness of the introduced and already existing deletion privacy preservation

mechanisms.
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2. USERS’ PERCEPTIONS OF DELETION PRIVACY

Preserving deletion privacy involves designing and enforcing access control rules to

regulate when and how information about the deletion events (and deleted content)

is revealed to others, and that earlier research did not investigate systematic access

rules to regulate the discoverability of deletion events. In general, there is no prior

work on understanding the need for providing deletion privacy to general social media

users. In other words, there was no evidence quantifying the importance of preserving

deletion privacy for social platform users. This works takes the first step towards

understanding and operationalizing user perceptions of deletion privacy.

In our study, we collected quantitative and qualitative data from 191 participants

spanning both Europe and the US regarding their perceptions about deletion privacy.

We first investigated the prior experiences of the participants regarding their post

deletions and corresponding deletion privacy expectations. We then leverage the con-

textual integrity theory [28] to identify key contextual factors (as perceived by users)

for regulating access and ensuring the preservation of deletion privacy. Specifically,

we investigate the following research questions (RQ).

RQ1: Have users faced violation of deletion privacy in social platforms? In other

words, did some other users or organizations focused on their deleted social posts?

How? (Section 2.3.1)

We investigated this RQ by asking each participant detailed questions regarding

their experience about deletions on the social platforms. We note that 82% of our

participants have deleted some of their posts. Interestingly, 51% of the participants

felt that a deleted post is indeed sensitive, damaging or embarrassing to its owner.

Furthermore, 54 participants had their deletions noticed in social platforms, and even
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within our small sample of fewer than 200 participants, nine participants proclaimed

that when their deletions were noticed by others, it resulted in discomfort.

While establishing the need for deletion privacy was a prime goal of this work, a

social platform would also need to know if its users feel (un)comfortable in revealing

their deletions in certain contextual factors. We explore this question next.

RQ2: On what contextual factors (such as recipient) do policies regarding accept-

ability of revealing deletion events depend on? How? (Section 2.3.2)

We used the contextual integrity theory [28] to create a set of contextual variables

(e.g., recipients) and enumerated possible values for each set of variables (e.g., family

member, friend, coworker, a company, government). We then collected user feedback

for combinations of all of those contextual variables in our survey. We observe that

majority of the users seek to preserve deletion privacy against large-scale data col-

lectors (e.g., corporations and government), but not so much against their family,

friends, and even co-workers.

In summary, we begin to quantify the need for deletion privacy in social platforms

with a 191 participant user survey. Our contributions include:

1. Establishing a strong user-need for ensuring deletion privacy in social platforms.

Our results show for the first time that users indeed care for deletion privacy.

2. Showing the context-dependency of the rules for preserving deletion privacy.

We identify the key contextual factors that future developers should consider to better

align their system functionalities with user expectations.

2.1 Background and Related Work

In this section, we place our work in the context of related research on different

deletion techniques and contextual integrity.
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2.1.1 Deletion in Social Platforms

Deletion or the ability to remove content is a crucial functionality in social platforms—

often needed due to social nature of these platforms as well as personal nature of social

content. Earlier work studied in detail the reasons behind social content deletion.

These reasons range from removing regrettable content to removing content which

became irrelevant over time [6, 29–33]. However, even though deletion is crucial and

widely adopted, in some cases, the removal of a post can be a simple and very effective

indication about the sensitive and/or damaging nature of that social content [19,20].

Thus simple removal might create an opportunity for an attacker to potentially harass

and blackmail the users. Such deletion based surveillance is not only relevant to public

figures, but also for normal social platform users, e.g., a French Twitter account,

@FallaitPasSuppr, identify and re-publishes the deleted content of both French public

figures as well as normal users [27]. However, no earlier work investigated if this

shortcoming of social content deletion is truly affecting the general populace. We fill

this gap.

2.1.2 Deletion Privacy as Contextual Integrity

Contextual Integrity (CI) [28] theory provides a systematic framework for studying

privacy norms and expectations. CI defines privacy as appropriate flows of informa-

tion. Each information flow consists of five parameters about the information: sub-

ject, sender, recipient, information type (or attribute), and transmission principle.

The appropriate information flows conform to the socially acceptable values of these

parameters. Earlier work demonstrated that we can infer privacy norms (i.e., rules

regulating acceptable information flow) by measuring the acceptability of different

information flows (created with varying combination of CI parameter values) [34,35].

For example, users in general might be comfortable when a fitness tracker (sender)

sends user’s heart rate (attribute) to the doctor (recipient) to monitor the health sta-
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tus (transmission principle), but uncomfortable if the recipient is a health insurance

provider.

In this section, we aim to discover the effect of context on the acceptability of

deletion events getting noticed (RQ2). Thus, we leveraged CI to systematically unroll

the contextual factors in the scope of deletion privacy. We selected the CI parameter

values relevant to deletion privacy by surveying earlier work and conducting pilot

studies. Table 2.1 contains the full list of our CI parameter values. Note that, this

list is not exhaustive. However, as a first, it does cover a range of information flows

in the scope of deletion privacy and demonstrates the generality of our approach.

Section 2.2.1 details the exact questions asked in our survey. Next we present our CI

parameter values.

Sender & Subjects for each deletion, the sender of the information flow will be

the user itself. However, a deleted post can have different subjects. We consider prior

work on ego networks and social circles to design four distinct subjects [36, 37]—(i)

the user, (ii) family members, (iii) friends, (iv) coworkers/acquaintance. We also

included “not specifying a subject” as null i.e., control condition.

Recipients for social content deletion is the individual (or organization) that

notices the user’s deletion. We include users’ social circles in our list recipients along

with two other entities–a company that collects and archives the deletions of the users

and the government.

Transmission Principles in this scenario is the method that a recipient uses

to discover the deletion. We consider three discovery methods—(i) discovery due

to checking/observing the user profile regularly to observe any change in the user’s

profile (ii) discovery due to an interaction with the post (e.g., liking, commenting,

reposting, sharing, etc.), (iii) not specifying a discovery method (null i.e., control

condition).

Attributes, we consider the reason of the deletion to be the attribute in the infor-

mation flows. We adapt the categories defined by Zhou et al. [38] for the regrettable

deleted tweets as attributes. We further add “fixing spelling/grammar” from earlier
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Table 2.1.: Contextual integrity (CI) parameter values used to generate information
flow of deletion events

Sender Transmission Principle
user itself because they were checking/observing your user profile regularly
Subject because they were mentioned in the post or interacted with the post
that contained some information about yourself null
that contained some information about your family members Attributes
that contained some information about your friends Post did not get enough attention
that contained some information about your coworkers Fixing Spelling/Grammar
null Cleaning up profile for new job
Recipient Cleaning up profile for new relationship
your family member Racial/Religious/Political reason
your friend Being irrelevant due to time passing
your coworker/acquaintance Removing sexual content
a company Removing drug/alcohol related content
the government Removing violence/cursing related content
anyone Removing health related content

work [39] as well as two other reasons—“post did not get enough attention” and “being

irrelevant due to time passing” based on our study pilot. We obtained feedback on

acceptability for each of the information flows generated using the combination of all

of these CI parameter values.

2.2 Methodology

In this section, we discuss the design and methodology of our study in detail. We

begin with our survey instrument that paves the path for understanding the need

for deletion privacy, unrolling the deletion privacy norms using Contextual Integrity

(CI), and evaluating the effectiveness of deletion mechanisms in providing privacy to

the deletions.

2.2.1 Survey Instrument

Our survey contained two sections: (1) Experiences about prior post deletions, (2)

CI-parameter based questionnaire about deletion privacy. Our full survey instrument

can be accessed at https://tinyurl.com/y4zceoma.

Experiences about prior post deletions (RQ1). We started by asking partici-

pants about the usage of different social platforms and whether they have ever deleted

https://tinyurl.com/y4zceoma
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any of their content. We further asked how old was the content at the time of dele-

tion as well as the reasons behind their deletions. Next, we asked the participants

to explain whether they have ever faced any discomfort because of their deletions

and what problems do they anticipate in the future for their possible deletions. We

then inquired if the participants are aware of other users noticing their deletions

and whether they have noticed other users’ deletions. Lastly, we investigated how

the users feel about the sensitivity of deleted content by asking them whether they

agree or disagree with the statement—“when someone deletes a social media post, it

indicates that the content of that post is sensitive/damaging/embarrassing to that

individual.”

CI-based questionnaire: deletion privacy (RQ2). Taking inspiration from

earlier research [34,35], we adapted a CI-based questionnaire to investigate the users’

expectations of deletion privacy in social platforms. We detail our adaptation of CI

to the scope of deletion privacy in Section 2.1.2. Here, we will focus on the setup of

our survey.

Recall that we needed to obtain users’ perception of acceptability for the informa-

tion flows created by all combinations of the parameter values presented in Table 2.1.

In total, we have 900 distinct information flows (5 subjects × 3 transmission princi-

ples × 6 recipients × 10 attributes), and asking each participant to evaluate all the

flows is infeasible. Therefore, we divided the flows into 30 blocks with 30 information

flows each1.

To randomly assign participants to one of these blocks, each participant was ran-

domly assigned to a fixed value for the subject and transmission principle variable.

That participant was also randomly assigned to one of the two pre-defined sets of

recipient variable values2 (each set contained three recipient values).
1Each block was assigned to at least 6 participants.
2First set of recipient variable values or recipient_A: [your family member, your close friend, your
coworker]. Second set of recipient variable values or recipient_B:[anyone, a company, the govern-
ment]
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As a result, in each block, we repeated the below matrix question three times by

replacing the recipient variable with the values from the assigned recipient set (re-

cipient_A or recipient_B), but keeping the same subject and transmission principle

values each time. The rows of this matrix question represent the attribute variable

values (an attribute value represents the reason behind a deletion). Therefore, each

row of a question signifies one of the information flows, which the participants were

asked to rate its acceptability, using a five-point Likert scale: Completely Acceptable,

Somewhat Acceptable, Neutral, Somewhat Unacceptable, Completely Unacceptable.

CI-Q: “We are putting a few possible reasons behind post deletions in the table below

(leftmost column). Imagine a situation where you deleted a post [subject] from one

of your social media accounts due to that reason. In each of these situations, please

indicate how acceptable is it for you that [recipient] notices your deletion [transmission

principle]?”

Figure 2.1 presents part of a question block. This example belongs to a block with

the subject “your coworkers” and transmission principle “because they were check-

ing/observing your user profile regularly”. Then in the presented question matrix we

set the recipient to “anyone” and iterated through all the attributes to create final

information flows.

Quality control. To ensure the quality of responses, we incorporated multiple

attention check questions in the survey. In particular, we repeated two of the multiple-

choice questions in random locations in the survey and compared the answers with

their previous responses to the same question. Moreover, we added a fake social

platform named “Cybersocial” in questions that asked about their usage of social

platforms, to monitor whether they indicate using this platform or not. Further, we

used time-based filtering to ensure that participants gave attention while watching

the videos in our survey.
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Fig. 2.1.: Measuring acceptability of information flow with a fixed subject (your
coworkers), fixed transmission principle (because they were checking/observing your
user profile regularly), fixed recipient (anyone) and varying attributes (not all are
shown).

2.2.2 Pilot Studies

Prior to the deployment of the survey, we conducted two pilot studies to evaluate

the procedure of the study, determine the average duration, and test the comprehen-

sibility of the questions.

In the first pilot, we tested the study on ten colleagues (without prior knowledge

of the study and its goals) from different departments in our university. As a result,

we removed four questions from the questionnaire as they were somewhat redundant

or too imprecise. Moreover, some of the choices in the questions were modified/added

to eliminate any invasiveness and confusion. For example, in one of the questions,

we had “stalking a profile” as a method of noticing other people’s deletions which

the word stalking seemed to make the participants uncomfortable. We ultimately
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changed the choice to “checking the individual’s profile regularly”. Further, we ob-

served that in some questions, a significant number of participants entered the same

answer in the “other” choice box (free-text boxes). Therefore, we added them to

the predefined choices in the final version. For example, we added “Post not getting

enough attention” and ”Irrelevant due to time passing” as choices for deleting a post.

After applying the changes above, in the second stage of the pilot, we deployed the

survey on the Prolific Academic [40] and recruited ten participants. The results from

the qualitative responses showed that the changes made from the first pilot were effec-

tive and participants had a good understanding of the questions. This point was also

confirmed by the responses that the participants gave to our cognitive question at the

end of the survey—“Did you find the questions in this survey to be understandable?”.

Eight of the participants responded with “completely understandable” and “mostly

understandable.” The remaining two responded with “neutral” and “mostly not un-

derstandable”, however, without any feedback on which sections they had difficulty

in understanding. Further, we asked—“How fair do you find the compensation of the

survey, compared to the amount of time you took for completion?”. Nine participants

responded with “very fair” and “fair”, giving us confidence in a fair payment.

2.2.3 Recruitment

We recruited our participants from Prolific Academic [40], a platform regularly

used for advertising academic surveys [41]. We screened participants to ensure they

were 18 years old or above, had not taken our pilot study, had taken a minimum of

50 prior surveys on the platform, had a minimum approval rate of 95%, fluency in

English, and having a social media account currently or in the past.3. While designing

our survey instruments we strongly aimed to minimize bias (i.e., leading or priming)

and ambiguity. We did not screen our participants based on deletion behavior and
3These settings produced high-quality pre-study responses.
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designed our recruitment text and strategy accordingly. We carefully avoided priming

participants by not using words like “security” or “privacy” in our study.

The survey was advertised as “A study about social media usage and post dele-

tions”, and deployed in same sized batches (i.e., 20 participants at a time) over a

one-week period, at different times of the day. We did this to counter anomalous

time dependency in our results due to the effect of events happening at a specific

time [42]. The average time for completion of the survey was 12.5 minutes and com-

pensation was $1.5. In total we obtained 205 responses (103 from the US and 102

from Europe).

2.2.4 Participant Demographics

A total of 205 participants completed the survey. We discarded the responses that

did not pass the validity checks (see Section 2.2.1) and we were left with 191 (93 from

the US and 98 from Europe).

Our population sample was nearly gender-balanced; 50.8% identified as female,

47.6% as male, and 1.1% as other. The sample skewed young, with 26.7% between 18

and 24, 39.3% between 25 and 34, 20.4% between 35 and 44, and 13.6% age 45 or older.

Our participants were slightly more educated than the general U.S. population [43],

where 55% of the participants either had a bachelor or a graduate degree. The median

annual household income of the participants was $40,000 - $59,999, where the majority

had an income of $20,000 - $39,999 (23%). Despite the fact that participants in

crowdsourcing platforms (e.g., Amazon Mechanical Turk and Prolific) are considered

to be tech-savvy [44], 67% of our participants reported that they do not have any

background (e.g., study, work, etc.) experience in the IT field. We present the detailed

demographics of our population in Table 2.2.

The usage pattern of different social platforms by the participants are shown

in Figure 2.2. Our participants are active users of popular social media platforms.

We note that 74.9% of the participants reported the usage of at least one social
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Table 2.2.: Demographics

US # (%) Europe # (%)

Gender
Female 48 (52%) 49 (50%)
Male 42 (46%) 49 (50%)
Other 2 (2%) —
Age
18 - 24 29 (31%) 22 (22%)
25 - 34 36 (39%) 39 (40%)
35 - 44 18 (19%) 21 (21%)
45 - 54 4 (4%) 12 (12%)
55 - 64 4 (4%) 3 (3%)
65 - 74 1 (1%) 1 (1%)
Native Language
English
Other languages
Ethnicity
White or Caucasian 59 (64%) 83 (85%)
Hispanic or Latino 13 (14%) 1 (1%)
Black 9 (10%) 3 (3%)
Asian 9 (10%) 6 (6%)
Multiple races 2 (2%) 2 (4%)
Prefer not to answer — 1 (1%)
Education
Bachelor degree 35 (38%) 34 (35%)
Some college 20 (22%) 22 (22%)
Graduate degree 15 (16%) 20 (20%)
High school degree 11 (12%) 15 (15%)
Associate degree 10 (11%) 4 (4%)
Less than high school 1 (1%) 2 (2%)
Prefer not to answer — 1 (1%)

US # (%) Europe # (%)

Marital Status
Single, never married 55 (60%) 49 (50%)
Married/domestic
partner

31 (34%) 44 (45%)

Divorced 4 (4%) 4 (4%)
Separated 2 (2%) —
Prefer not to answer — 1 (1%)
Employment
Full-time employment 40 (43%) 52 (53%)
Part-time employed 17 (18%) 13 (13%)
Unemployed 14 (15%) 6 (6%)
Student 11 (12%) 17 (17%)
Other 4 (4%) 2 (2%)
Full-time uncompen-
sated

4 (4%) 5 (5%)

Retired 2 (2%) 2 (2%)
Prefer not to answer — 1 (1%)
Income
$0 - $19,999 9 (10%) 22 (22%)
$20,000 - $39,999 18 (20%) 26 (26%)
$40,000 - $59,999 14 (15%) 16 (16%)
$60,000 - $79,999 15 (16%) 13 (13%)
$80,000 - $99,999 9 (10%) 7 (7%)
$100,000 or more 23 (25%) 5 (5%)
Prefer not to answer 4 (4%) 9 (9%)
Background in IT

Yes 29 (32%) 31 (31%)
No 62 (67%) 66 (67%)
Prefer not to answer 1 (1%) 1 (1%)

platform daily and 91.1% use a platform at least once a week, showing the suitability

of the participants for this study. Facebook, Youtube, Instagram, WhatsApp, and

Twitter were the most frequently used social platforms in our population.

2.2.5 Analysis Method

Coding Free Text Answers. We coded free text answers obtained from our survey

to uncover users’ perceptions. In our analysis, two researchers independently coded

free-text responses using a shared codebook. Across questions, Cohen’s κ (inter-rater

agreement [45]) ranged from 0.7 to 1, indicating substantial to perfect agreement.

The coders met to resolve disagreements and choose a final code.

Statistical Analysis. We leveraged statistical hypothesis testing to investigate sig-

nificant deletion privacy norms. Specifically, for such analysis, we converted five-point
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Fig. 2.2.: The usage pattern (in %) of different social platforms by the participants.

Likert scales to the ordinal variable as follows: Completely Acceptable (2), Somewhat

Acceptable (1), Neutral (0), Somewhat Unacceptable (-1), Completely Unacceptable

(-2). Unless otherwise stated, we used the nonparametric Mann Whitney U test to

compare the responses across different groups. For all tests, the level of significance

(α) was 0.05 and further adjusted using Bonferroni multiple-testing correction.

2.2.6 Ethical Considerations

We have taken great care to adhere to principles of ethical research. In the recruit-

ment process, each participant was informed the purpose of the study, that they can

withdraw at any time without giving any reasons, and that we would not store any

personally identifying information (PII). We also informed the participants about the

estimated duration of the study and their compensation in our consent form. Respon-

dents who did not consent were not allowed to proceed with the study. Our study

protocol was thoroughly examined and approved by the lead author’s Institutional

Review Board (IRB).



22

2.2.7 Limitations

We have planned and conducted our study thoroughly. However, our sampling

approach introduces certain limitations. We used the Prolific Academic to recruit

our participants, which might have resulted in younger and more tech-savvy users.

Moreover, as our survey and videos were in English, we required the participants

to be fluent in English, which could have created a language as well as cultural

bias. However, since the majority of popular social platforms today have a bias

towards younger English-speaking users, we strongly believe our study still captures

the perceptions of a very important part of the population. Future research could

validate and extend our findings to a more diverse sample.

2.3 Results

In this section, we present our findings of the deletion privacy exploration. We

begin with the users’ past deletion experiences.

2.3.1 Users’ Perception of Content Deletion (RQ1)

Following the survey instrument in Section 2.2.1 we present our key observations

from the participants responses.

Many users delete their outdated posts. Among the 191 participants, a signifi-

cant majority of 82% reported that they have deleted a post(s) in the past. 78% report

that they have deleted a post(s) from Facebook, 46% from Instagram, and 34% from

Twitter. These numbers match with earlier work on social content deletion [6, 46].

We further asked the participants, who have deleted posts in the past, to indicate

how frequently they have deleted them in different periods after their publication

(i.e., the percentages of deletions made in different periods). The frequency results

are shown in Figure 2.3. We note that the after-the-fact responses may have resulted
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Fig. 2.3.: Self-reported percentage of deleted content removed at different time periods
after publishing the post

in approximate percentages for each period; However, as will see next, the responses

are in-line with prior works.

We see that 24% of the deletions are within less than two minutes from the pub-

lishing time (similar to [47], reporting 22% of deletions happening within a minute of

their publication in Twitter), perhaps hinting at fixing misspelling or grammar.

The “2 minute - 1 hour”, “1 - 24 hours”, and “1 - 7 days” periods have similar

frequency percentages (11-16%). These are periods where possible feedbacks are

given by the users’ family/close friend group (that closely follow the user’s activities),

coworkers/social friends (that check on their acquaintance’s activities daily), and a

much larger audience when posts go viral after a couple of days.

Interestingly, the largest category belongs to the deletions “after a week” with

more than one third (35%) of all the deletions (similar to [32], where they report that

one third of all posts are deleted after 6 years of their publication). This indicates

that old posts on social platforms are not necessarily ignored, and users actively care

about them and remove the unwanted ones.

Users delete their posts for non-obvious reasons. So far, we observed that

over 80% of the participants have deleted at least one of their posts within the social

platforms. The next question that comes to mind is what are the reasons behind

users’ deletions. We followed up with the 156 participants (that had deleted a post

before) and asked what were the reasons behind their deletions. Nine different rea-
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sons (shown in Table 2.3) were presented to them (taken from previous works [38,39]

and pilot studies) and further given an “other” option that they could have provided

additional ones in a free text box. After categorizing the text responses we added

four other reasons (i.e., “removing due to controversy/harassment”, “removing embar-

rassing content”, “personal reason” and “other”) to the list.

The participants reported that the main reason for deleting their posts was that

they became irrelevant as time passed (i.e., 64% of the users). This highlights the fact

that 35% of deletions occurred after a week. About half of the participants indicated

that they have removed a post due to the obvious reason of fixing spelling/grammar

and factual checking. This reason is in-line with the 24% of deletions happening

within a very short time of publishing (less than 2 minutes).

Observing Table 2.3, we see that a significant number of the participants have

reported sensitive topics (drug, alcohol, race, politics, carnal, violence, etc.) as the

reason for their deletion(s). In addition, 23 of the participants (15%) self-reported

that they have deleted their posts to remove contents that were embarrassing to them

or caused some controversy and harassment. This raises the question—Are deletions

an indication of hiding some sensitive or damaging content?

Table 2.3.: Reasons of Deletion

Reasons # (%)
Being irrelevant due to time passing 100 (64%)
Fixing Spelling/Grammar/FactCheck 77 (49%)
Post did not get enough attention 46 (29%)
Cleaning up my profile for new relationship 36 (23%)
Cleaning up my profile for new job 36 (23%)
Removing drug/alcohol/sexual related content 18 (12%)
Removing Racial/Religious/Political content 15 (10%)
Removing due to controversy/harassment 13 (8%)
Removing violence/cursing related content 11 (7%)
Removing embarrassing content 10 (6%)
Removing health related content 8 (5%)
Personal reason 7 (4%)
Other 6 (4%)
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Table 2.4.: Users’ agreement with the statement—“deletions indicate that the content
of that post is sensitive/damaging/embarrassing to that individual.”

Strongly agree 17 (9%)
Somewhat agree 81 (42%)
Neither agree nor disagree 45 (24%)
Somewhat disagree 35 (18%)
Strongly disagree 13 (7%)

Table 2.5.: Reasons for considering deletions as sensitive/damaging or not.

Reasons Agree # (%) Neutral # (%) Disagree # (%)

Embarrassing, inappropriate, emotional 73 (74%) 4 (9%) 3 (6%)
Irrelevant, factCheck, grammar, spelling 8 (8%) 12 (27%) 29 (60%)
Context dependent 2 (2%) 24 (53%) 14 (29%)
No attention 3 (3%) — 1 (2%)
Privacy 5 (5%) — 1 (2%)
Political 4 (4%) — —
Job related 6 (6%) — —
Racism 1 (1%) — —
Other 1 (1%) 5 (10%) 2 (4%)

Majority of the users consider deletions as an indication of hiding some-

thing sensitive. We asked the participants whether they agree or disagree with the

following statement—“when someone deletes a social media post, it indicates that the

content of that post is sensitive/damaging/embarrassing to that individual”.

The participant responses are shown in Table 2.4. More than half of the partici-

pants, to some degree, agreed with the statement and 25% disagreed. The remaining

24% neither agreed nor disagreed.

The question was followed by asking the respondents to provide an example in

support of their answer. We categorized the responses and present them in Table 2.5.

74% of the respondents that considered deletions to contain some sensitive/damaging

content indicated that users delete their posts as it contains some embarrassing,

inappropriate, or emotional content. For example, participant P29 wrote: “Someone
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would probably delete posts that would be embarrassing or legally damaging for the

public to know about”.

On the other hand, we see that 60% of the participants that disagreed with the

statement see deletions as removing irrelevant content or fixing grammatical and

spelling mistakes, Hence, containing no sensitive or damaging content. For example,

participant P61 wrote: “I’ve posted things that looking back an hour later I just think

are dumb, nothing embarassing or offensive”.

More than half of the participants that did not agree nor disagree with the state-

ment indicated that it is dependent on the context of the posts and can be considered

either damaging or non-damaging. Therefore, they chose to be neutral about the

statement. For example, participant P3 wrote: ‘Those could be the reasons why, but

they could also just think it’s irrelevant/outdated, stupid, not worth having up, or

factually wrong.’.

Many users are likely unaware of their deletions being noticed. Previously

we saw that 82% of the participants reported that they have deleted their posts

in the past. To see if these deletions have been noticed by anyone, we asked those

participants—“have you ever become aware of someone noticing that you have deleted

one of your posts?”. The results are presented in Table 2.6.

Table 2.6.: Number of participants that their deletions have been noticed by others
and the number of participants that noticed others’ deletions.

Participant’s deletion
noticed by others

Participant noticed
others’ deletions

Deletion Notice
Yes 54 (35%) 130 (68%)
No 82 (53%) 60 (31%)
Don’t know 20 (13%) 1 (1%)

Social Circles [Who]
Family member 22 (41%) 22 (17%)
Friends 50 (93%) 91 (70%)
Coworkers/Acquaintances 12 (22%) 43 (33%)
Stranger 5 (9%) 55 (42%)
Prefer not to say — 2 (2%)
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A significant minority of 54 participants (i.e., 35%) self-reported that they have

became aware that someone noticed their deletions. The remaining 65% either said

no or didn’t know if someone has noticed their deletions.

We repeated the question by changing the roles, meaning that we asked the par-

ticipants whether they have noticed anyone deleting their posts. Among all the 191

participants, 68% (130) of them reported that they have noticed at least one other

user’s deletion(s). The difference between these two settings hint that many users are

likely unaware of their deletions getting noticed.

A significant percentage of deletions are being noticed by people outside

the users’ close social groups. In the previous subsection, we observed that many

users become aware of others’ deletions. Following this observation, we set to answer

who are the individuals that are noticing the deletions? To affirmatively answer these

questions, we asked the participants (i.e., those that are aware of others noticing their

deletions) to identify the social group(s) that have noticed their deletion(s). Once

again, we changed the roles and asked the participants (i.e., those that have noticed

someone else’s deletions) to specify whose deletions they have noticed. The results

for these two sets of questions are presented in Table 2.6.

As shown in Table 2.6, the majority (93%) of the participants’ deletions were

noticed by their friends’ group. Their family members took second place by noticing

41% of the deletions and not surprisingly, a very small number (9%) of strangers

noticed the participants’ deletions.

Conversely, these percentages change in the scenario of participants noticing other

users’ deletions. Again, the friend group stands out as the highest, but with a lower

percentage of 70%. Surprisingly, the second highest-ranked is the stranger group with

42% (an increase of 33 percentage points). This point hints that many of the users’

deletions are being noticed by people outside the users’ close social groups, and the

users are not aware of it.

Majority of the users anticipate some sort of a discomfort due to others

notice their deletions. We saw that majority of the users consider deletions to
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contain some sensitive, damaging, or embarrassing content. To see if participants

have had any negative experiences from others noticing their deletions, we asked—

“did you face any issues/problems/discomforts due to others noticing your deletions?”.

Nine individuals (17%) among the 54 participants (i.e., those that their deletions

were noticed by others) reported some sort of an issue or discomfort. For example,

participant P56 stated— “It was an awkward conversation as I’d posted the post in

a fit of anger/stress and then felt differently a day or so later. My friend wanted to

talk about it and I didn’t.”.

Further, to get a perspective about the potential issues and discomforts that the

users foresee for their future deletions, we asked the participants—“Suppose you were

to delete one or more of your social media posts; What possible issues/problems/dis-

comforts do you think you might face if you become aware of someone noticing your

post deletion(s)?”

We categorized the responses into seven different categories shown in Table 2.7.

One-third of the participants report that there will be no to minimum consequences

for others noticing their deletions. However, the remaining 67% feel that they will

face some sort of a discomfort. 28% report that they will be needing to explain and

justify the reasons that they have deleted their posts, while 17% of the users think

that they will face some sort of a harassment and dislike from others noticing their

deletions. Participant P18 wrote—“I would probably receive potential backlash. Also,

maybe I might get some questioning, whether it is supposed to be funny (like ironic),

Table 2.7.: Possible discomforts due to deletions.

Possible Discomforts # (%)

Minimum consequence 59 (33%)
Explaining/justifying/worried 49 (28%)
Publicizing/harassment/dislike 31 (17%)
Embarrassment/shame/insecure 25 (14%)
Loss of privacy 7 (4%)
Loss of archival value 2 (1%)
Other 5 (3%)
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or serious”. In another example, Participant P40 wrote—“I could be banned from the

platform or suffer some kind of angry mob that follows me around pointing out my

socially unacceptable views”.

Loss of privacy was another discomfort that 7 of the participants mentioned in

their responses. For example, participant P93 stated—“I might be uncomfortable be-

cause that means someone might be visiting my profile a lot and stalking it. This would

make me wary about the media I post.”, and participant P70 wrote—“If someone I

don’t know notices all the posts that I have ever deleted I would become uncomfortable

and I would block them”.

This shows that although many users have not yet faced any issues or problems

from their deletions, a significant majority of them do think that their deletions may

lead to negative consequences.

2.3.2 Uncovering Contextual Norms of Deletion Privacy

Next, we analyze the contextual norms of deletion privacy using data collected

from the CI-driven questions. We visualize the average acceptability scores, ranging

from -2 (completely unacceptable) to 2 (completely acceptable) as explained in Sec-

tion 2.2.5, for all information flows with the pairs of recipient and subject, transmis-

sion principle, or attribute in Figure 2.4 using heatmaps.

Users seek deletion privacy against large-scale data collectors. The average

acceptability scores of information flows that have “the government” as their recipient

are mostly negative (Figure 2.4). This indicates that most of the participants consider

these flows as “completely unacceptable” or “somewhat unacceptable”. Although less

severe, the same is true for “a company” as the recipient. In contrast, the average

scores of flows with the recipient “family members”, ”friends”, and “coworkers” are

all positive and mostly above one. This score difference between flows with large-

scale data collectors (governments and private companies) as recipients versus the

closely connected individuals (family, friends, and coworkers) holds regardless of other
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Fig. 2.4.: Average acceptability scores of information flows grouped by recipients and
subjects, transmission principles, or attributes. Scores range from -2 (completely
unacceptable) to 2 (completely acceptable).
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CI parameters (information transmission principle, subject, attribute). On average,

information flows with large-scale data collectors as the recipient are 0.94 Likert-scale

points less acceptable than their other recipient counterparts (p < 0.00001).

This result provides the first quantitative evidence that social platform users are

indeed concerned about their deletions being noticed by third party services and

state agencies. This result urges the social platform developers to proactively create

different deletion privacy policies for different classes of recipients.

Deleted posts that are about the users themselves need more protection.

One of the CI parameters that we explored in this study is the subject of the deleted

posts. We performed a pairwise statistical test (i.e., 20 tests) between all the possible

subjects (the significant value was adjusted to 0.05/20) to see any significant differ-

ences. The only post subject that has acceptability scores with a different distribution

than all other subjects is the “user itself” (p < 0.002). This difference is shown in the

average scores, where the flows with the subject “user itself” have a 0.35 Likert-scale

point less acceptability.

Not knowing how deletions were noticed is less acceptable to the users.

In Section 2.1.2, we defined two methods of noticing the deletions (i.e., the transmis-

sion principle). We also considered the null transmission principle where no discovery

method is specified to the participants. By statistically comparing the distributions

of the flows with the null transmission principle versus the non-null transmission prin-

ciples we see that there is a significant difference (p < 0.00001). The mean of the null

transmission principle is 0.23 Likert-scale points smaller (less acceptable) than the

non-null transmission principles. This is consistent with human desire for cognitive

closure [48] that not knowing how deletions were noticed is less acceptable.

Users want to hide their non-popular posts more than any other post.

The attribute parameter, of the CI flows, in this study corresponds to the reasons

for removing a post. We identified ten different reasons for the deletions shown

in Table 2.1 (bottom portion). Similar to the subject parameter, we performed a
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pairwise statistical test (i.e., 90 tests) between all the attributes (the significant value

was adjusted to 0.05/90).

We found that the attributes “Fixing Spelling/Grammar” and “Post did not get

enough attention” are statistically different (p < 0.0001) than all other attributes.

These two deletion reasons are at the opposite ends of the acceptability scores. Flows

with the attribute “Fixing Spelling/Grammar” have the highest average acceptability

score (0.98 on the Likert-scale points), and the flows with the attribute “Post did not

get enough attention” have the lowest (0.24 on the Likert-scale points). We further

analyzed the low-scored flows by checking the correlation between the scores given

by users who had self-reported deleting content for that reason. Interestingly, for

“Post did not get enough attention”, the negative scores primarily came from people

who did not delete content because of that reason. This finding hints at the fact

that our participants perceived digging up forgotten posts by virtue of deletion as a

serious violation of the deletion privacy. In other words, the platforms should consider

providing stronger deletion privacy to non-popular posts than popular posts.

Effect of demographics on deletion privacy. We considered different demo-

graphic categories (gender, age, education, income, and marital status) to see their

effect on the scores given to the information flows. We performed five comparison

tests and set the threshold for significance to α = 0.05/5 = 0.01 to account for the

Bonferroni multiple-testing correction.

Among the above demographics, all of them had some significant difference (p <

0.01), as we explain below, except the income category. We divided the participants

into two groups of higher household income ($80,000 and more) and lower house-

hold income (less than $80,000). The statistical test showed no significant difference

between the two groups.

Female users and higher educated users are more concerned about their

deletions. The average score of the information flows labeled by the female partici-

pants is 0.51 on the Likert-scale points and is significantly different from the average

score of the male participants that scored an average of 0.7. We observe a similar



33

result with the same average scores between the participants that have a university

degree (bachelor or graduate degrees) compared to all other participants.

Younger participants (millennials and generation Z) are less concerned

about their deletions. We see that there is a significant difference between the

average scores of participants that identified themselves between the age of 18-34 to

all other older participants. The younger generation has a higher acceptability score

with an average of 0.65 Likert-scale points compared to all other participants, with

an average score of 0.46.

Individuals that have ended their relationship in the past are more conser-

vative. We found that on average, individuals that had identified their marital status

as divorced or separated had a lower acceptability score (0.22 Likert-scale points) com-

pared to the individuals that identified themselves as single, never married, or in a

current relationship (0.62 Likert-scale points).

Differences between the US and Europe. In what follows we highlight the main

differences between the responses observed from the US and European participants.

Coworkers are considered a closer social group in the US. Observing Fig-

ure 2.5, we can see the differences between the US and Europe when the recipient

is a “coworker”. By applying the statistical test between the flows of the recipients

“coworker” and “family” for the US participants we see no significant difference. How-

ever, considering the same conditions, there is a significant difference in Europe (p <

0.00001).

The opposite is true when comparing the distribution of the flow where the re-

cipient is “coworker” and “a company”. In this case, there is no significant difference

between the distributions in Europe, but one exists for the US (p < 0.00001). We

conclude that in the US, individuals consider their coworkers to be in a closer social

group compared to European individuals.

Stalking is more of a concern in Europe. Earlier, we saw that users are much

more comfortable if they know what transmission principle (method of noticing the

deletion) is used to notice their deletions. However, we observe a difference between
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Fig. 2.5.: Average acceptability scores of information flows grouped by recipients and
subjects, transmission principles, attributes, gender, age, or background IT informa-
tion. Scores range from -2 (completely unacceptable) to 2 (completely acceptable).

the acceptability of the US users and European users when looking at the trans-

mission principle “checking and observing the user profile regularly” (in other words

stalking). We compared the scores that participants in the US and Europe gave to the
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two defined transmissions separately. We observe no significant difference between

the two transmission principles for the US participants. However, there is a signifi-

cant difference between checking/observing the users’ profile regularly (stalking) and

interacting with the post in Europe (p < 0.00001). The stalking method is seen as a

less acceptable means of noticing the deletions compared to noticing due to a prior

interaction with a difference of 0.4 Likert-scale points.

2.4 Concluding Remarks

In this study, we observed that the majority of the users are deleting their posts

every day. There is a strong user-need for ensuring deletion privacy in social platforms,

as users consider deletions a tool for removing sensitive, damaging, and embarrassing

content. Further, using contextual integrity we demonstrated the context-dependency

of the rules for preserving deletion privacy. The study identified that it is acceptable

for the users if the one-hop individuals (family members, friends) on their social

graphs become aware of their deletions but not the large-scale data collecting actors

(e.g., web-service data collectors or the government).
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3. INTERMITTENT WITHDRAWAL MECHANISM TO
CONCEAL CONTENT DELETION

The large-scale identification and hoarding of deleted content from social sites and

archives pose a serious violation of “Right to be Forgotten” and the ill-effects of this

phenomena on our social behavior will be far reaching. For example, in one case,

singer Ed Sheeran’s deletion of a tweet from 2011 was found and widely publicized in

media [24] leading to his brief disappearance from Twitter. In another case, an SNL

cast member’s deletion of racist tweets back in September 2016 [25] were tracked by

third parties and subsequently publicized. Not only celebrities but normal users also

fell prey to this phenomenon when links delisted by Google in Europe (to honor Right

to be Forgotten requests) were identified, publicized and scrutinized by media [26].

In general, the users today are extremely vulnerable due to the fact that, whatever

content they delete (ironically, to protect their privacy) will possibly be identified,

dissected and abused.

In spite of this threat, not surprisingly, without any better alternatives available,

information exposure control in the form of deletions still remains a common phe-

nomenon on the social platforms; Mondal et al. [6] observe that a significant fraction

(∼35%) of all Twitter users have now deleted or confined (i.e., made private) their

public Twitter posts made in 2009. Consequently, as any persistent onlooker can keep

track of such changes and go after the deleted posts, users aiming to make observers

forget their posts are left with a “damned if I do, damned if I don’t” dilemma. This

work aims to provide a solution to the problem.

A trivial solution is to make users not publish sensitive content in the first place;

but this is infeasible even for extremely careful users as the sensitivity of shared data

changes drastically and unpredictably with time and life events. A growing number

of users have now shifted to ephemeral social platforms such as Snapchat [49], where
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everything gets deleted in a premeditated fashion. However, given the huge historical,

cultural, and economical value of user-generated data, it is extremely unlikely that

most next-generation social or archival platforms will adapt to this model.

This leaves us with a hard research question: can we offer an alternative to the

next-generation social or archival platforms that achieves the best properties of both

deleting everything (i.e., privacy) and keeping an archive of posts and events (i.e.,

availability)? The aim of this work is to answer this question affirmatively and develop

a privacy mechanism that retains the archival values of posted content and still allows

deletions while providing deniability and protection to the users after some time of

deletion, i.e., those deletions will not be immediately discernible to even persistent

onlookers.

A simple-yet-drastic proposal. We offer a simple-yet-drastic proposal towards

mitigating the problem of concealing content deletions in presence of persistent ob-

servers while maintaining high availability of archived content. In our proposed sys-

tem, Lethe1, we very conservatively assume that the adversary has complete access

to the archival platform and can view any post. We presume the platform adminis-

trator is working with the data creator (or owner) to protect the privacy of deletions.

Lethe employs an intermittent withdrawal mechanism that protects privacy using two

public, infinite-support time distributions—one we call the up (or online) distribution

and the second is called down (or offline) distribution. Just before publishing a post,

Lethe samples a time duration from the up distribution and for that time duration

makes that post available (i.e., visible) to everyone. After the up duration passes

Lethe takes an instance from the down distribution and for that time duration hides

the post from viewers.

In the same way, Lethe continues to toggle between the up and down durations

as long as the post has not been deleted or its privacy preference has not changed.
1In Greek mythology, Lethe was the river of forgetfulness: all those who drank from it experienced
complete forgetfulness. The word Lethe also means oblivion, forgetfulness, or concealment.
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Since Lethe also hides non-deleted posts, it will be confusing for the adversary to

distinguish whether a post is hidden by Lethe or deleted by the owner.

In particular, we make four key contributions.

Firstly, to the best of our knowledge, this is the first systematic study of the prob-

lem with content deletion in the presence of persistent onlookers. We formalize the

problem with content deletion in the presence of a very powerful adversary who can

take snapshots of the whole platform at any point in time. We define and analytically

quantify the necessary security notions: privacy–likelihood ratio of a post deleted or

not at any particular time, availability–fraction of time the posts are visible and ad-

versarial overhead–adversary’s precision on detecting deleted posts. Based on our

formalization, we propose and evaluate a novel scheme, Lethe, to provide privacy for

users’ deletions.

Secondly, we show that privacy is correlated with the up and down distributions:

(i) inversely proportional to the hazard rate of up distribution, and (ii) inversely

proportional to the complementary cumulative distribution function (CCDF) of down

distribution. Moreover, we show that by picking geometric and negative binomial

distributions as the up and down distribution, not only we achieve good privacy

guarantees, but our notion of privacy is simplified to a decision threshold period—

duration an adversary is willing to wait before identifying a (hidden) post in a down

period as deleted.

Thirdly, we present the trade-offs between the notions mentioned above using data

from Twitter. We show that in the case of 95% content availability, the adversary, with

an uninterrupted access to the entire platform, will have a precision value associated

with adversarial overhead below 20% even when a post has been down for more than

90 days. In the case of a more forbearing adversary that has a decision threshold of

180 days, the precision will only increase to 35%. However, the system administrator

can reduce the availability of the system by a small fraction and set it to 90%, which

drops the adversary’s precision back to 20%. For a large-scale system such as Twitter,

with trillions of tweets, even precision of 80% can result in a significant overhead for
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the adversary (investigating 20 million non-deleted tweets falsely marked as deleted

each day).

Finally, we evaluate the effect of our scheme on Twitter dataset to show the feasi-

bility of Lethe in a real-world scenario. We show that our proposal, while maintaining

a trade-off between availability and privacy, also allows interactions in the system

without much interruption. Specifically, leveraging real-world interaction data from

Twitter we show that, by applying Lethe the utility (i.e. user interactions with posts)

remains above 99% even when content availability is 85%.

3.1 Context and Motivation

User-initiated spontaneous deletions. One of the widely employed form of con-

tent deletion today is user-initiated deletion; i.e., system operators remove content

when the owners explicitly asked them to do so. Almost all real world social data

sharing platforms today (e.g., Facebook, Twitter or YouTube) provide users option to

delete their uploaded content. Recent studies [6,50] have shown that users extensively

use this mechanism to protect the privacy of their past content—users delete around

35% of posts within six years of posting them. The European Union (EU) regula-

tion of “Right to be forgotten” [26, 51] which is part of EU General Data Protection

Regulation (GDPR) [52] is also trying to accomplish exactly this same, albeit at a

much more elaborate scale. They wish to enable users to remove historical data about

themselves from multiple systems, including removing results from leading search en-

gines. Nevertheless, as we already suggest, those deleted content attract unwanted

attention [26].

Premeditated withdrawals. Complementary to these user-initiated spontaneous

deletions, a number of premeditated withdrawal methodologies have been proposed

and employed today.

Many of those aim to protect content privacy via withdrawing all posts after a

predefined viewership or time of posting; we call those the age-based withdrawals.
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Recent ephemeral social content sharing sites like Snapchat [49] or Dust [53] are

prominent examples of age-based withdrawal. Several academic projects also try to

enforce age-based withdrawal in different context; e.g., Vanish [54, 55] in distributed

hash tables (DHTs), EphPub [56] and [57] using DNS caches, and Ephemerizer [58]

and its improvement [59] using trusted servers. A user’s inability to a priori predict

the right time (or viewership) for her content withdrawal remains to be the key issue

with the age-based withdrawals. This prevents deriving the best possible content

availability.

Mondal et al. [6] suggest inactivity-based withdrawal to eliminate the burden on

the users to decide expiry times and to facilitate continued discussions around inter-

esting content. Unlike in age-based withdrawals, where a post is withdrawn after a

predefined time or viewership, in inactivity-based withdrawal posts can be withdrawn

only when it becomes inactive over time, i.e., it does not generate any more interac-

tions (e.g., sharing the post by other users). Recently proposed Neuralyzer [60] uses

a similar concept to maintain the availability of content as long as there is sufficient

demand for it, and leverages the caching mechanisms of DNS to keep track of the

activity. A similar idea is also employed on sites like 4chan [61, 62], where posts are

withdrawn as users stop contributing to them for a prolonged time.

Problems with premeditated withdrawals: No historical data. The above

premeditated withdrawal methodologies remove every post from the public view even-

tually; thus, there is no archived history of user data. However, existence of archival

data can be important to not only the system but also the users. A recent survey [4]

shows that users have a keen interest in going back to the past social content they

have uploaded, e.g., for reminiscing old memories. Moreover, as social media sites

are often perceived as a mirror of the real world, reflecting events in the past and

how people reacted to them, archiving the past uploaded content has immense histor-

ical value; e.g., US Library of Congress [63] is already archiving all uploaded public

Twitter data.
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Moreover, if a user deletes her post before the predefined time (or viewership) limit

on the post, an adversary can be certain that it is a user-initiated content deletion.

In this case, the current premeditated schemes provide no privacy or deniability to

the user.

Our Approach. Our challenge is to devise a privacy mechanism that offers pro-

tection to user-initiated content deletions (from a persistent onlooker with pervasive

access) without reducing the content’s archival value. We demonstrate how to achieve

these contrasting privacy and availability goals by systematically withdrawing and

resurrecting non-deleted posts from public view.

3.2 Problem and Key Idea

3.2.1 System and Adversary Model

We model a user-generated data sharing platform (e.g., Twitter) as a public bulletin

board where individuals can upload and/or view content. Below we define prominent

players and their roles in our setup: Platform is the system, which maintains the

bulletin board (used to upload and view user generated content); Data Owner is a

user who uploads her posts to the bulletin board. Adversary can view the uploaded

posts on the bulletin board and is constantly in search of posts which have been

deleted by their owners (possibly to scavenge for the posts that are sensitive to their

owners).

In our generic model, all the subscribers (including the adversary) have complete

access to the bulletin board and can view the posts as they wish. After a data owner

decides to delete a post, the post will be removed from the bulletin board and will

not be visible to anyone. We expect the publisher to be honest and assist towards

achieving the privacy goal.

Our adversary accesses the bulletin board continuously and takes snapshots at

will. He can determine the deleted posts by comparing the two snapshots taken at

different times and pinpointing the posts that existed in the first one but not in
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the second one (the same strategy used to find deleted tweets in previous studies [6,

64]). The adversary is capable of adding posts and deleting them from the bulletin

board; however, it will not be able to delete some other users’ posts. Although the

adversary is ultimate in terms of the data access, given the manual nature of the task

of determining sensitive deletions, his goal will be to flag and analyze as few non-

deleted posts as possible. In the real world, an adversary would be actually limited

in its capability; consequently, all the privacy guarantees we observe in this work are

actually lower bound (Section 8). Finally, we expect all aspects of our system and its

parameters to be public, and the adversary to be aware of those.

3.2.2 Security Goals

Towards our goal to conceal deletions from the adversary without significantly affect-

ing the availability, we propose the following security properties:

Deletion privacy is the uncertainty of the adversary about a post having been

deleted or just temporarily withdrawn by the platform at a given point of time. In

other words, it is the deniability of deleting a post for the data owner. As the post

remains down for a longer duration, the adversary becomes more certain about its

deletion, achieving a particular level of privacy is directly related to having a certain

Decision Threshold on the observed down periods for declaring that posts are deleted

beyond that point.

Platform availability represents the average availability of a post within a period.

The goal is to provide privacy guarantees to users while obtaining high levels of

availability. It is easy to observe that introducing down periods creates a trade-off

between privacy and availability. For example, assuming the mean up duration is

fixed, as the mean of down distribution increases the availability of the platform will

decrease; however, when a post is deleted, it remains unnoticed to the adversary for

longer periods due to higher decision thresholds.
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It is natural to ask why the adversary cannot select his decision threshold in-

dependent of down distribution (and subsequently availability). The answer lies in

the difficulty of distinguishing sensitive posts from non-sensitive ones. Sensitivity of

a post varies from person to person, and also with life events and time in general,

therefore, pinpointing sensitive posts for each user is a hard task. Moreover, there

is a huge discrepancy between the content creation and deletion rates on social sites

today (social sites are generating new content at the rate around ten times more than

deletions).

This brings us to our third property of adversarial overhead as we expect our

adversary to be concerned with flagging many non-deleted posts (false positives).

Adversarial overhead. is associated with the number of non-deleted posts falsely

flagged as deleted (false-positives) that the adversary has to investigate along with

the detected actual deleted posts (true-positives). We capture it by the precision

measure:

Precision =
True Positives

True Positives+ False Positives

Towards offering a balanced viewpoint, we also consider the recall measure cap-

turing false-negatives (i.e., posts that are flagged as non-deleted but will eventually

be deleted):

Recall =
True Positives

True Positives+ False Negatives
.

There is a trade-off between privacy and adversarial overhead similar to the trade-

off between privacy and availability. Ideally, the adversary overhead should be high

which implies that the precision should be low. If the adversary needs to keep its

overhead low (less false positives), it has to provide better privacy (deniability) to its

victim by increasing its decision threshold period.
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3.2.3 Key Idea

We plan to provide privacy for a post deletion by intermittently withdrawing the

non-deleted posts such that the adversary cannot distinguish between a temporarily

withdrawn post and a permanently deleted post for some long time duration after

the deletion. At its core, our intermittent withdrawal mechanism consists of choosing

alternating up and down periods of random durations. This obviously adversely

affects the availability of posts: increasing withdrawal time of a post can improve

the deletion privacy; however, it reduces the overall availability. Therefore, our key

challenge is to determine distributions (and their parameters) for these intermittent

withdrawals such that we achieve a satisfactory level of deletion privacy without

significantly affecting the availability of the posts.

We illustrate our distributions selection process through the following two Straw-

man proposals.

Straw-man proposal I. As a simple example, consider the degenerate (or fixed-

value) distribution for up and down duration of a post. With 90% availability in

mind, we consider an alternating series of fixed up period of nine hours and fixed down

period of an hour. Here, every post once withdrawn remains down for a complete

hour. Thus, the adversary cannot flag a post as deleted until it remains down for

more than an hour as any flagging during the first hour down time cannot be better

than just randomly flagging the posts. However, the adversary becomes certain about

the deletion right after this one hour of down period. Moreover, if the deletion occurs

sometime during the up period of nine hours, the adversary can break the privacy

immediately.

Although it is possible to increase down time while maintaining the same availabil-

ity, the adversary can simply wait longer before becoming certain about the deletion.

Larger down time may also not be acceptable to platforms expecting content to be

highly available.
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Straw-man proposal II. We can replace the above degenerate distribution by the

uniform distribution with mean value of nine hours for the up distribution and mean

value of one hour for the down distribution. Here, the deletion can happen anytime

during the up duration without the adversary becoming certain about the deletion.

However, the problem with the down period remains: with the finite support of the

down distribution (two hours for our example), the adversary will be sure about

deletion after two hours.

Towards Lethe. As we do not expect the platform and the users to accurately

predict the waiting time (i.e., decision threshold) for the adversary, we propose to

use the distributions with infinite support. Here, the adversary can never be certain

about the deletions; but it is easy to see that once the post is deleted, the adversary

becomes more certain about it as time progresses.

Towards building and analyzing Lethe, we measure privacy as likelihood ratio in

Section 3.3, and find it to be inversely proportional to both hazard rate of the up

distribution and complementary cumulative distribution of the down distribution. We

measure availability as the ratio of mean up distribution and sum of means of both

(up and down) distributions. In Section 3.4, we then explore different distributions

with infinite support to select an up and down distribution that offers an excellent

trade-off between deletion privacy, availability and adversarial overhead. Finally, in

Section 3.5, we evaluate the system for the estimated Twitter dataset.

3.2.4 Non-Goals

Firstly, we consider all withdrawn posts to be equal, and do not consider the

sensitivity of a post’s content. Several other studies [65–67] investigated the sensitivity

of posts in general and resulting privacy leaks. Those studies provide complementary

privacy guarantees and can be used in addition to our approach.

Secondly, we do not take into account correlations between posts, and instead,

assume individual posts to be independent in this first proposal for a very difficult
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problem. Given extremely unpredictable and context-dependent nature of correla-

tions between posts on social sites, considering correlations where they are apparent,

will be an interesting future work.

Finally, similar to the usage of salting in password hashing against the dictionary

(or rainbow table) attacks, our goal is to protect the privacy of withdrawn posts on

a large scale, and our adversary scavenges through all the withdrawn posts to find

as many sensitive deletions as possible. We do not aim to protect against a devoted

stalker who stalks a particular user or post over a long duration. For example, an

adversary with prior knowledge of users (e.g., posting patterns) will have an advantage

that we do not consider. Nevertheless, as compared to the state-of-the-art, we aim

at increasing the workload of devoted attackers and at delaying the deletion privacy

loss at least by a few arguably important weeks.

3.3 Problem Formalization

3.3.1 Formalized Intermittent Withdrawals

In the proposed system, time is discretized in seconds. We denote by tc the current

time. We treat each post independently, and therefore, the privacy and availability

analyses focus on an individual post. Let t0 denote the creation time of the post.

The intermittent withdrawal mechanism introduces a disconnection between the

real state of a post (deleted or non-deleted) and the observed state of the post (publicly

visible or withdrawn). The real state of the post is available only to the platform and

the owner, while the adversary can only see the observed state of the post.

Real state: Let R(t) denote the real state (either non-deleted or deleted) of the post

at time t. By convention, we say that R(t) = 1 if the post is not deleted at time t

and R(t) = 0 if the post is deleted. For example, at creation time t0, R(t0) = 1.

We assume that a post cannot be undeleted (or resurrected) and thus can be

deleted only once. Consequently, we define the deletion time tdel > t0 such that

R(t) = 1 for all t ∈ [t0, tdel) and R(t) = 0 for all t ≥ tdel. We also assume that tdel
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is not a choice variable of the platform and remains unknown to the platform at any

time before tdel.

Observable state: At any time t, by accessing the bulletin board, the adversary or

any user only sees if the post is up (visible) or down (withdrawn). Let O(t) denote

this observable state of the post at time t ≥ t0. By convention, we say that O(t) = 1

if the post is up and O(t) = 0 if the post is down.

For a post, the platform can decide O(t) for all t0 < t < tdel. In particular, for

each post, the platform chooses a sequence of positive integer values (T ju)j∈Z+ and

(T jd )j∈Z+ , interpreted as up and down time durations respectively. The observable

state is set as follows.

For all t ∈ [t0, tdel) : (3.1)

O(t) = 1 if, for some i ≥ 0,

t ∈

t0 +
i∑

j=1

T ju +
i∑

j=1

T jd , t0 +
i+1∑
j=1

T ju +
i∑

j=1

T jd

 ;

O(t) = 0 if, for some i ≥ 0,

t ∈

t0 +
i+1∑
j=1

T ju +
i∑

j=1

T jd , t0 +
i+1∑
j=1

T ju +
i+1∑
j=1

T jd

 .

For all t ≥ tdel : O(t) = 0.

Figure 3.1 illustrates the observable state (from an adversary’s point of view) for

a post due to the sequences of up and down duration. As the deletion time tdel is

not known to the platform at any time before tdel, we can assume without loss of

generality that large sequences (T ju)j∈Z+ and (T jd )j∈Z+ are chosen by the platform at

the creation time t0. As a result, the observable state in Equation equation 3.1 can be

intuitively interpreted as follows. The post is initially up and stays up for a duration

T 1
u . After the duration T 1

u , it goes down and stays down for a duration T 1
d before

coming up again. This process continues indefinitely until the post is deleted by the
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Fig. 3.1.: Timeline of a post. The post is created at time t0, T iu is the duration of an
up phase and T id is the duration of a down phase. In up phases the post is visible to
the adversary, in down phases it is not.

owner. Finally, when a post is deleted, it goes down immediately even if it is in

middle of an up duration, and stays down forever.

Our objective is to control the observable state so that it becomes difficult for the

adversary to be certain about the deletion of a post. In the proposed intermittent

withdrawal mechanism, (T ju)j∈Z+ and (T jd )j∈Z+ are mutually independent i.i.d. se-

quences of random variables drawn from probability mass functions (PMFs) fTu and

fTd respectively. We define the intermittent withdrawal mechanism as follows:

Definition 3.3.1 (Intermittent withdrawal mechanism) We defineMIW (fTu , fTd)

as an algorithm that draws mutually independent i.i.d. sequences (T ju)j∈Z+ and (T jd )j∈Z+

from fTu and fTd respectively, and sets O(t) as in Equation equation 3.1.

As elaborated later in Section 3.4 and onwards, We choose parameters PMFs fTu

and fTd of the MIW to satisfy the contrasting privacy, availability, and adversarial

overhead requirements. Throughout the analysis, FTu and FTd represent the cumu-

lative distribution functions (CDFs), and FTu and FTd represent the complementary

cumulative distribution functions (CCDFs) of fTu and fTd respectively. We assume

that the platform can efficiently sample values from distributions fTu and fTd , and

that these distributions are known to the adversary.

Next, we formally analyze our security goals in the context ofMIW (fTu , fTd).
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3.3.2 Deletion Privacy

The notion of deletion privacy should quantify the uncertainty of the adversary in

distinguishing between a post being really deleted by the owner or just in one of its

down durations. We define this likelihood of adversary detecting an actual deleted

post as the likelihood ratio of the observed sequence of observable states since post

creation conditioned on the post being deleted or not at the current time tc.

Definition 3.3.2 For any time tc, we define the privacy of mechanismMIW (fTu , fTd)

as a ratio (LR)

LR =
supt≤tc Pr(OMIW

([t0, tc]) | tdel = t)

supt>tc Pr(OMIW
([t0, tc]) | tdel = t)

, (3.2)

where OMIW
([t0, tc]) is the observed state for posts due toMIW in the interval [t0, tc].

The above ratio is the classical likelihood ratio (LR) statistic [68] for the test to

determine if the post was deleted or not, i.e., the test with null hypothesis H0 :

{R(tc) = 1} (equivalent to {tdel > tc}) and alternative hypothesis H1 : {R(tc) = 0}
(equivalent to {tdel ≤ tc}). It is known that likelihood ratio tests have good properties

and are often the most powerful tests that the adversary can do to determine if the

post was deleted [68]. Hence, limiting this likelihood ratio is the best way of limiting

the possibility for the adversary of accurately testing if the post was deleted or not.

Increase in the LR value for a post denotes increase in certainty of the adversary

about a post deletion; in short, lesser value of LR denotes better privacy. Since the

adversary knows the up and down time distributions it can compute the likelihood

ratio of the deletion privacy. Our definition of deletion privacy parallels with the

definition of differential privacy [69], however there is subtle difference between them

which is explained Section 3.7.

We will use Equation (3.2) to analyze the privacy using the Frequentist approach.

We refer interested readers to our paper [19] for the Bayesian analysis of Equa-

tion (3.2).
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Fig. 3.2.: Observing the status of a single post from its creation and precisely looking
at the last up and down duration, ∆tu and ∆td respectively. tc is the current time,
tiu denotes the last up toggle and similarly tid is the last down toggle time.

Deletion Privacy for the Intermittent Withdrawal Mechanism Using Fre-

quentist Approach. As deletion privacy (or LR value) depends on O([t0, tc]) (i.e.,

the sequence of observable states chosen by the platform) and consequently on the

distributions fTu and fTd , we need to quantify this dependency to understand the

deletion privacy offered by intermittent withdrawal mechanism.

In our intermittent withdrawal mechanism, up and down durations are drawn i.i.d.

until the post is deleted. Therefore, the probability of the sequence is the product of

probability of observing each duration which is the same regardless of if the post was

deleted or not except for the last up and down durations; one of the last up and down

durations could be cut by the deletion. As a result, the ratio LR depends only on

the last up and down durations. We denote last up and down duration by ∆tu and

∆td respectively and by extension by O(∆tu,∆td) the observed state in those times

(see illustration on Figure 3.2). Then the likelihood ratio on the lhs of equation 3.2

can be simplified as

LR =
supt≤tc Pr(O(∆tu,∆td) | tdel = t)

supt>tc Pr(O(∆tu,∆td) | tdel = t)
. (3.3)
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Now we compute the numerator and denominator separately. The denominator

is simply the likelihood of observing O(∆tu,∆td) if the post was not yet deleted at

time tc (i.e., R(tc) = 1), which is

Pr(O(∆tu,∆td) | R(tc) = 1) = fTu(∆tu) · FTd(∆td − 1). (3.4)

As the post has not been deleted at time tc (i.e., R(tc) = 1), the probability of

observing ∆tu is fTu(∆tu). Moreover, since the post is in middle of a down period

the probability of observing ∆td is Pr(T id ≥ ∆td) = FTd(∆td − 1).

For the numerator, we compute the probability of O(∆tu,∆td) conditioned on the

deletion time being t for each t between the last toggle tid and the current time tc

and take the maximum of those probabilities. (It is not necessary to consider earlier

deletion times since the probability of O(∆tu,∆td) would then be zero.) We treat

separately the case where tdel = tid which corresponds to a deletion happening during

(or at the end of) an up period and the cases tdel ∈ (tid, tc] which correspond to a

deletion happening during a down period. In the second case, for t ∈ (tid, tc], we have

Pr(O(∆tu,∆td) | tdel = t) = fTu(∆tu) · FTd(t− tid − 1),

which is maximized for t = tid + 1 where FTd(t − tid − 1) = FTd(0) = 1. In the case

where tdel = tid, then the last up period could have been either of exactly ∆tu or of

more, hence

Pr(O(∆tu,∆td) | tdel = tid) = FTu(∆tu) + fTu(∆tu).

Since FTu(∆tu) ≥ 0, we conclude that

sup
t≤tc

Pr(O(∆tu,∆td) | tdel = t) = FTu(∆tu) + fTu(∆tu). (3.5)
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Substituting equation 3.4 and equation 3.5 into equation 3.3, we get the final

expression of the likelihood ratio:

LR =

(
FTu(∆tu)

fTu(∆tu)
+ 1

)
· 1

FTd(∆td − 1)
. (3.6)

Equation equation 3.6 captures the relation between the LR (i.e., deletion privacy)

and the choice of up and down time distributions: (i) the LR is (almost) inversely

proportional to the hazard rate fTu(∆tu)/FTu(∆tu) of the up distribution; and (ii)

the LR is inversely proportional to the CCDF FTd(∆td − 1) of the down distribu-

tion. We need to optimize for these two functions while choosing up and down time

distributions for controlling privacy guarantee ofMIW .

3.3.3 Availability Property

The intermittent withdrawal mechanism provides deletion privacy at the cost of re-

ducing availability of the post. The post is not visible to the adversary as well as

any benign observer during the down periods. Intuitively, the availability of a post is

simply the fraction of time the post is visible to an observer. Formally, for mechanism

MIW (fTu , fTd) the availability is:

Availability =
µfTu

µfTu + µfTd
, (3.7)

where µfTu is the mean of the up time distribution fTu and µfTu is the mean of the

down time distribution fTd .

The LR equation 3.6 and availability equation 3.7, both are functions of the up

and down time distributions and thus are correlated. For instance, when posts in the

archive are always down (e.g., fTu is a finite distribution and fTd is a distribution with

infinite mean), the archive has zero availability and perfect privacy (the LR value is

1). On the other hand, when posts in the archive are always up (e.g., fTd is a uniform

distribution with mean 0), the archive has perfect availability of 1 and no privacy
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(LR value is ∞). In non-extreme cases, the relationship of availability and privacy

is more intricate and depends on specific choices of up and down distributions. We

explore this trade-off empirically in Section 3.5.

3.4 Lethe Design

We parameterized the security guarantees in section 3.3, but we still need to determine

exact specifications for these parameters to effectively control the guarantees. The

required parameters include the mean up (down) times for the up (down) distributions

as well as choices of PMFs for those distributions. The key design challenge for Lethe

is: How to choose suitable parameters for Lethe to give good availability and privacy

guarantees? Here, we resolve this design challenge empirically.

3.4.1 Choosing Distribution Mean Values to Control Availability

Availability of Lethe, the average fraction of up time, depends upon the mean for

up and down distributions (Equation equation 3.7). While choosing mean values

of up and down time distributions, the platform operator needs to decide upon the

required availability of the platform. From a practical perspective, we envision that

the platform would need the availability to be around 90%.

The absolute value of the down time is also interesting from a usability viewpoint:

Hypothetically if an operator expecting 90% availability sets the mean down time

as one year and mean up time as nine years, a particular post will be hidden on

average for one year. However, a year of down time on average is unacceptable in

many real-world scenarios: the users may leave the system if the non-deleted content

is not available for such large durations. Therefore, unless otherwise stated, we set

mean for down time distributions as one hour and mean for up time distributions as

nine hours.
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Fig. 3.3.: Variation of inverse hazard rate with time for four choices of up time
distributions (with same mean). Increase in the rate signifies increase in LR value.

3.4.2 Selecting Proper Distributions to Control Deletion Privacy

The platform operator needs to control the deletion privacy guarantee of Lethe via

setting some suitable choices for up and down time distributions (i.e., their PMFs).

Her aim is to minimize the LR value.

Geometric distribution is a suitable choice for up time distribution. Recall

that the value of LR, is inversely proportional to the hazard rate for the up time dis-

tribution (Equation (3.6)) at the last up duration. To select the up times distribution,

we considered a wide range of distributions varying in their main characteristics and

we present here four distributions with infinite support and the same mean of nine

hours—zeta, poisson, geometric and negative binomial [70]—that illustrate the main

rationales behind our choice. Figure 3.3 shows the inverse hazard rate for these four

choices of up time distributions for different values of last up durations (ranging up to

24 hours). The trends remain similar for longer time durations. Note that, negative

binomial distribution requires a parameter called the shape parameter or n, which is

set to 0.15 in Figure 3.3 for demonstration. The take away in this figure remains the

same for other values of n. The key observation is that only the memoryless geometric

distribution has a constant inverse hazard rate for different last up durations. If we

take geometric distribution as our up time distribution function, any value of last up
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duration will have the same effect on the value of LR, i.e., the value of LR will not be

affected even when a deletion happens in middle of an up duration (and effectively

cut short the original up duration).

However, this is not the case for other distributions—their inverse hazard rate

changes with the value of last up duration. Thus, aside from geometric distribution,

any other choice of up time distributions poses two problems: (i) the inverse hazard

rate (and consequently LR value) would be very high at some point for the last up

duration, as evident from Figure 3.3 and (ii) if a post is deleted in the middle of

last up duration the LR value will change for that post (since deletion effectively

changes the original value of last up duration) compare to the case of no deletion.

This phenomenon might provide additional hint to the attacker. Thus we strongly

prescribe to use geometric distribution as a suitable choice of up time distribution.

We note that our choice is conservative—for other distributions, there will be

instances where inverse hazard rate (and subsequently the LR value) is lower compare

to geometric distribution (see Figure 3.3). However, we prefer predictability in the

inverse hazard rate of geometric distribution (thus value of LR) for a deployment.

Negative binomial distribution is a suitable choice for down time distribu-

tion. Similar to up time distribution analysis, we have experimented with a wide

range of distributions for down times. Recall that the LR value, is proportional to

the inverse CCDF of a given down time distribution (Equation (3.6)). Figure 3.4

presents the inverse of CCDF of down time distribution in log scale for different val-

ues of last down time duration (ranging up to 24 hours) for our four representative

choices—zeta, geometric, Poisson and negative binomial [70] (each with a mean of one

hour). The trends remain similar for longer time durations. We first observe that for

a small down duration, the Poisson distribution has the lowest inverse CCDF value

(thus lowest LR). However, at the mean down duration, the value quickly jumps and

becomes the highest amongst the different distributions tested. The reason is that

most values in the Poisson distribution are concentrated around the mean. Hence,

before the mean, the CCDF is close to 1 but quickly after the mean it becomes close
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Fig. 3.4.: Variation of inverse of CCDF values in log scaled (proportional to value of
LR) for four choices of down distributions in the last down duration.

to zero (intuitively, for Poisson distribution there is a negligible chance that a non-

deleted post observes a down time much larger than the mean; thus observing one

gives a very strong signal to the attacker).

Similarly, any other distribution with value concentrated around a mode would

suffer the same limitation and it is preferable to select a distribution with a decreasing

PMF such as geometric, zeta or negative binomial. Amongst those three, geometric

has lowest LR for small down time durations, but it increases rapidly for large down

time durations. Comparatively, zeta has higher LR for small down time durations and

smaller values for large down time duration. This difference is because the geometric

distribution has a light tail and its PMF decreases faster whereas the zeta distribu-

tion has a heavy tail and therefore assigns higher weights to very large values–hence

observing even a very large value has a non-negligible probability to happen under

no deletion if the down time distribution is zeta. Finally, the key observation from

Figure 3.4 is that the inverse CCDF value of negative binomial distribution provides

a balance between these two patterns and thus presents itself as a nice choice for

down time distribution.

However, there is a challenge while using negative binomial distribution: it takes

another parameter (in addition to mean down time), called the shape parameter and

denoted “n”. In Figure 3.4, n is set to 0.15 for demonstrating trends, but a practical
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deployment of Lethe requires a systematic guideline for setting n. Specifically, if the

platform operator can have an estimate θ∗ for adversary’s decision threshold, then

it can choose n such that the value of LR is lowest for decision threshold θ∗. The

platform operator may even base θ∗ on user perception, e.g., operator decides that it

is ok, if an adversary finds out deletion of a post after six months or more.

As evident in Figure 3.4, zeta distribution will outperform negative binomial dis-

tribution at some point in time. However, we claim that for all the decision thresholds

that we have considered (even years), there exists a shape parameter for the negative

binomial distribution that provides lower LR value for that threshold compared to

zeta distribution. On the other hand, if the platform cannot come up with any rea-

sonable θ∗ it might use zeta distribution, since eventually it will perform better than

negative binomial distribution; however, this comes at the cost of lowering privacy,

i.e., increased LR value, for some period of time. In general, we expect the platform

operators, based on their experience, to estimate the range of decision threshold θ∗

values reasonably well.

Next, we discuss the procedure to calculate the value of the shape parameter (n)

of negative binomial distribution (given the mean down time and the adversary’s

decision threshold) and its effect on the LR value.

3.4.3 Effect of Negative Binomial Shape Parameter

What is a suitable shape parameter for negative binomial distribution?

We present an analytical approach to set an optimal n, given platform operator’s

estimate of decision threshold θ∗. Since we set the up time distribution as geomet-

ric distribution with a constant inverse hazard rate (which we will denote by “c”),

Equation equation 3.6 becomes

LR =
c+ 1

FTd(∆td − 1)
.
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Table 3.1.: The best shape parameter n i.e. the lowest LR value when the estimated
decision threshold for the adversary is θ∗ days. The mean of our negative binomial
distribution is one hour.

Estimate of decision
threshold is θ∗ days 30 60 90 120 150 180

Shape parameter n for
lowest LR ×10−4

6 3 2 1.5 1.2 1

Ideally, the platform operator should set n such that, when the adversary’s decision

threshold is θ∗ (i.e., the adversary flags a post as deleted after not observing the post

for time θ∗ or more), the post has the lowest LR value. In other words, LR value should

be lowest when the last down duration is θ∗. Thus, by deciding negative binomial

distribution with mean µd and shape parameter n, we would want FTd(∆td − 1) to

reach a maximum at ∆td = θ∗. Thus, we take the derivative of FTd(∆td − 1) with

respect to shape parameter n and equate it to 0 at ∆td = θ∗, i.e.,

∂

∂n
FTd(θ

∗ − 1) =
∂

∂n
I(

1−n 1−µd
µd

)(θ∗, n) = 0 (3.8)

where Ix(a, b) is the incomplete beta integral. Now setting µd = 1 hour, we solve for

n to determine the best shape parameter for a given value of θ∗.

Table 3.1 shows the best shape parameters for different values of θ∗. An archive

operator can choose any of these values according to her choice of θ∗ or even calculate

suitable values of n for her estimated θ∗ using our analytical technique.

Effect of Negative binomial Shape Parameter on LR value: Furthermore,

in Figure 3.5, we demonstrate how parameter n impacts the LR value by plotting

the LR for some of the shape parameters in table 3.1 (corresponding to θ∗ 1, 2

and 6 months). We have set the mean up and down time to nine and one hours

respectively. As evident there is no shape parameter that performs best for all the

times, however, we can observe that for each of the decision thresholds θ∗ in Table 3.1

the corresponding shape parameter has the lowest LR value. We also observe that
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for all the chosen parameters, LR value for negative binomial is lower than the case

of picking zeta as down distribution.

3.4.4 Lethe Algorithm

Input: platform availability percentage, mean down time, adversary’s decision thresh-

old.

Algorithm:

1. Acquire the mean up time based on the provided mean down time and avail-

ability values.

2. Obtain the shape parameter using the derivative procedure based on Equa-

tion equation 3.8 using the mean down time and decision threshold from input.

3. Initialize the up and down distributions by passing the mean up and down times

along with the shape parameter for the down distribution.

4. Upon a post creation, set the real state of the post to 1 and instantiate the first

up period from the up distribution. Set observable state of the post to 1.
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5. Upon a toggle signal for a post, if the post was in a up period instantiate a down

period from the down distribution and set the observable state to zero; Other-

wise instantiate an up period from the up distribution and set the observable

state to one.

6. Upon a deletion request for a post from the owner, set the real and observable

state to zero and remove the post from the active set (i.e. posts that toggle).

These steps provide a platform operator the basic algorithm to run Lethe. How-

ever, from a system design point of view a relevant question is—how to efficiently

implement these steps? For example, a simple but inefficient (not scalable) imple-

mentation for the platform is to just assign one process per post to track the observ-

able state for that post (which is toggled due to Lethe). We find that pre-computing

future up and down durations and updating them lazily results in efficient Lethe im-

plementation. We direct interested readers to Appendix A.1 for an efficient Lethe

implementation sketch.

Note that we expect the platform to run Lethe to provide privacy to their users;

however, some platform may even let the post owners themselves enforce the inter-

mittent withdrawal mechanism for their posts; Our analysis remains same in those

cases as well.

3.5 Evaluation of Lethe

We evaluate the usefulness of Lethe by answering a key question: In practice, how

hard is it for an adversary to detect deleted posts in presence of Lethe (adversarial

overhead for identifying deleted posts)?

The posts, which are deleted by the users, will be in a down period for an infinite

time. Thus, the down period of such posts will at some point exceed the adversarially

chosen decision threshold θ (associated with the LR values) and be flagged by the

adversary. These deleted posts, once correctly flagged by an adversary, constitute the

true-positives TPθ. Conversely, when a down period T id for some non-deleted posts
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exceed the decision threshold, these falsely flagged posts constitute the false positives

FPθ. On the other hand, the posts that are flagged as non-deleted but will eventually

be deleted will be the false negatives FNθ.

Thus, for a decision threshold θ set by our adversary, if his strategy gives the TPθ,

FPθ and FNθ, we measure the adversarial overhead as the precision Precisionθ =

TPθ
TPθ+FPθ

and the recall Recallθ = TPθ
TPθ+FNθ

.

To evaluate usefulness of Lethe we empirically explore the relation between ad-

versarial precision, availability and decision threshold set by the adversary.

Data Collection: Today, such an intermittent withdrawal mechanism does not exist

in the domain of social media and archives. To evaluate the feasibility and perfor-

mance of Lethe, we take Twitter data as a good model platform. To that end, we

need numbers for non-deleted and deleted posts on Twitter, and the rate of deletion

and new tweets addition in Twitter.

Using reports such as [71, 72], we estimate that there are one trillion non-deleted

tweets in the Twitter platform as of 2015. To determine the rates of deletion/addition

of tweets, we resort to the 1% random sample provided by Twitter [73]. Specifically,

we collected 1% random sample for 18 months (from October 2015 to April 2017). In

our 1% random sample, daily on average, 3.2 million tweets are created, i.e. in the

whole Twitter 320 million new tweets are created daily. Further, the 1% sample also

provides us deletion notices; using those notices we determine how many of archived

tweets are deleted daily [50]. We found that on average around 1 million tweets are

deleted daily from 1% sample. So daily, on average 100 million tweets are deleted

from the whole Twitter archive. Thus, the ratio between the volume of deleted and

non-deleted tweets in the Twitter platform is approximately 0.01%. As time passes,

this ratio will become smaller (assuming deletion volume will not change too much).

Finally, daily 220 million non-deleted tweets are added to the archive.

Experimental setup: For our experiment, we set 1 day as our time unit and pick

three system availabilities to experiment—85%, 90% and 95%, all with the mean down

time of one hour. Consequently, for 85%, 90% and 95% availability the mean up times
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Fig. 3.6.: CCDF value of up and down durations. The up distribution is a geometric
distribution with the mean of 9 hours. The down distribution is a negative binomial
distribution with the mean of 1 hour.

are respectively 5.7, 9 and 19 hours. Next, we set the up and down time distributions

as geometric and negative binomial respectively (as discussed in Section 3.4). We use

Table 3.1 to set the shape parameter n for our negative binomial distribution.

To make the Lethe simulation feasible with our available resources, we scale down

the absolute numbers of deleted/non-deleted tweets to 0.01% of their original values.

In other words, we simulate Lethe on a scaled down version of Twitter (our archival

platform). We consider that our platform contains 100 million non-deleted tweets

(0.01% of 1 trillion) already archived in the platform Moreover, 32k tweets are created

each day and 10k tweets are deleted (thus adding 22k non-deleted tweets each day)

in our platform.

Experimental methodology: For the evaluation of Lethe we take the Frequentist

design explained in Sections 3.3.2 and 3.4. We note that in order to simulate Lethe we

don’t need the exact timestamps for each post creation and deletion. Lethe is applied

to the posts as if all of them were created on the first day of experiment. We take

1 day as our time unit and for our simulation, we assume that creation and deletion

notifications are received in batch in every time unit. We continue this experiment for

10 years (considering creation and deletion of tweets each day). Figure 3.6 presents

the CCDF value of the up and down durations for the chosen distributions at the
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Fig. 3.7.: Variation of adversarial precision against decision threshold periods for
different availability values in flag-once scenario. In this scenario, each tweet can be
flagged only once.

90% availability. More than 99% of the down durations are less than or equal to one

minute. The mean up duration in Figure 3.6 is 9 hours and more than 90% of the up

durations are longer than 3 hours.

Leveraging our aforementioned experimental set-up we simulate Lethe and mea-

sure adversarial overhead (i.e. precision and recall) at different decision thresholds.

In our set up the true positive for the adversary is simply: number of daily deletions

× (experiment duration - decision threshold). The false positives for our adversary,

on the other hand, are non-deleted tweets that get flagged based on the adversary’s

decision threshold. Further, we note that our adversary might decide to flag the false

positives either once or multiple times (i.e., remove flag from a tweet when the tweet is

resurrected after a long time and again flag it later). We consider these two scenarios

separately.

Adversary investigates a flagged tweet only once: In this scenario, if a non-

deleted post gets flagged the adversary will investigate it and after its investigation, it

will remove that tweet from his consideration. Thus, the adversary will not consider

the post again in the future, even though the post is visible again. We call this scenario

flag-once. Figure 3.7 is showing the variation of adversarial precision for different

decision thresholds in X-axis. As the decision threshold increases the adversary’s
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Fig. 3.8.: Variation of adversarial recall against decision threshold periods for different
availability values in flag-once scenario.

confidence about a tweet being deleted also increases which result in higher precision

values. Note that even for 85% and 90% platform availability the adversarial precision

is around (or less than) 35% even when the decision threshold is as high as six months

or 180 days , i.e., due to Lethe a deletion will go unnoticed for as long as six months.

This scenario checks a flagged post only once and will not consider it later again.

Thus, it is possible that a non-deleted post flagged at time t will actually be deleted

at a time later than t. So some posts might be deleted but not considered by the

adversary, introducing false negatives. Figure 3.8 shows the variation of adversar-

ial recall of deleted posts for different decision thresholds in X-axis. We make two

observations. First, the adversary’s recall increases with decision threshold. This is

because, with increasing threshold, tweets that are not deleted at time t (but deleted

later) will have more time to become visible (not getting flagged) before their actual

time of deletion. Second, the recall increases with system availability. The reason is

that the number of down periods decreases with increasing system availabilities and

thus it is less likely to obtain larger down periods to flag tweets. This results in higher

recall.

Adversary investigates a flagged tweet multiple times: This scenario is oppo-

site of the previous one in the sense that once a non-deleted tweet has been flagged

and investigated it will return to the set of non-deleted. We call this scenario flag-
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Fig. 3.9.: Variation of adversarial precision against decision threshold periods for
different availability values in flag-multi scenario. In this scenario a tweet can be
falsely flagged multiple times.

multi. The rationality behind this scenario is: it is true that the falsely flagged tweets

are not deleted at the current time, but they might be at a future point in time, since

sensitivity changes with time and life events. Thus the adversary would also like to

take into consideration the real deletion of false positive tweets. Figure 3.9 shows the

adversarial precision with varying decision thresholds. Compared to the scenario in

Figure 3.7 the adversary has a lower precision for different thresholds for all values of

platform availability. The reason is, in this case, a tweet can be flagged multiple times

and result in higher false positives. Specifically, in Figure 3.9, for the case of 90%

availability, Lethe keeps adversarial precision around 20% even when the adversary’s

decision threshold is as high as 6 months.

In this scenario if a post is flagged it can again be considered for investigation.

Since, a deleted post will remain in a down period forever, the adversary will flag it

as soon as the decision threshold is over. Thus, all the deletions will be identified

eventually. Consequently, in this case there are no type II errors (false negatives) and

recall will always be 100%.

Overhead of investigating falsely flagged tweets: Finally, we address one aspect

of Lethe that we did not consider so far: the astronomical number of falsely flagged

tweets that an adversary has to investigate (i.e., extra work) in either of these scenar-
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ios. Table 3.2 presents the raw number of non-deleted tweets falsely flagged (i.e. false

positives) for both of the aforementioned scenarios. In the worst case, the adversary

falsely flagged 13 trillion tweets in the flag-multi scenario when the availability and

decision threshold are respectively 85% and 30 days. As Table 3.2 shows, even in

the best case, with 95% availability and 180 day decision threshold in the flag-once

scenario, the adversary needs to investigate 340 billion falsely flagged tweets.

We have also considered one extreme case—setting the platform availability to

99% (results not shown), i.e., setting the mean down and up time respectively to

1 hour and 99 hours. Although the precision, in that case, is higher compared to

the ones in Figure 3.7 and 3.9, we found that even with 99% availability, in the

best case (decision threshold 6 months, flag-once scenario) the adversary still needs

to investigate 70 billion falsely flagged tweets. In short, We emphasize that the

number of falsely flagged tweets is astronomical, and without incurring very high

infrastructural cost an adversary can not support such investigation. Thus, much

higher decision thresholds are needed for the adversary.

Note that, if an adversary targets a subset of all users, then precision/recall values

for both scenarios remain the same and it will only proportionately effect actual

number of falsely flagged tweets mentioned in Table 3.2. For example, if the adversary

Table 3.2.: Falsely Flagged Tweets (FFT) with different availabilities, which the ad-
versary needs to investigate under different scenarios. DT denotes decision threshold.

#FFT (in trillions)
for flag-once scenario
and diff availability %

#FFT (in trillions)
for flag-multi scenario
and diff availability %

DT
(days) 85% 90% 95% 85% 90% 95%

30 1.64 1.54 1.23 13.05 8.7 4.35
60 1.45 1.24 0.83 6.39 4.26 2.13
90 1.25 1.01 0.62 4.18 2.78 1.39
120 1.09 0.84 0.48 3.07 2.04 1.02
150 0.95 0.71 0.40 2.40 1.60 0.80
180 0.84 0.61 0.34 1.96 1.30 0.65
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is targeting 0.1% of all the users then number of falsely flagged tweets in Table 3.2

will be in billions instead of trillions. Furthermore, as the number of users decreases,

the prior knowledge of the adversary about the deletion patterns of the users becomes

more precise. This advantage results in a more accurate adversarial model that lowers

the privacy of the users.

3.6 Effect of Lethe in Practice

Platforms would like to make sure that their users are able to normally interact with

the content they want and thus utility of their system is preserved when Lethe is in

place. This guarantee differs from availability since even with 99% availability, the 1%

non-available content might be the ones users are interested in. We identify one key

factor that captures the distinction between availability and utility—the interaction

with content in many platforms go down with time passing. E.g., [74, 75] shows

that tweets receive more than 60% of their retweets and replies within the first hour

of posting and it quickly becomes negligible as time passes. Thus, in this section

we investigate how Lethe preserves the utility and not hinder the normal platform

operations.

3.6.1 Quantifying Utility of a Platform

In order to evaluate the effect on utility in a real world scenario, we leverage data

from Twitter. But first, we need to concretely define the utility of each post as well

as the utility of the platform in the context of Twitter.

Utility of a post and of the platform: We take “retweets” as a proxy for inter-

actions (temporal utility) around a tweet. We quantitatively measure the collective

utility of the platform to be the fraction of retweets allowed when Lethe is in place.

Although retweets are only a subset of all interactions (other interactions might be

replies or user mentions) and may not capture the entirety of interactions, it is still

one of the widely employed proxies of activity around a tweet [6, 76, 77].
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Collecting a utility dataset: We need to ensure that Lethe preserves utility for all

normal users of our system. To create a collective random sample of such users, we

first take all the users who appeared in the 1% random Twitter sample collected in the

first week of November 2011. Then we divide the users into five exponential buckets

based on their number of followers (i.e. by their popularity) and randomly sampled

500 users from each bucket. We did this subsampling in mid-February 2016. Thus

we end up with 2,500 random users. We collected all the tweets posted by these users

(respecting Twitter’s limit of 3200 most recent tweets per user) and all the retweets of

those tweets on end of February 2016. Out of 2,500, 6 users have made their account

private between the time of subsampling and the time of all-tweets collection. So we

end up collecting data from rest of the 2,494 users. There are a total of 4,858,014

tweets in our dataset. Among them there are 730,055 tweets with at least one retweet

and these tweets have 8,836,706 retweets in total. We use this dataset to check the

Lethe’s effect on platform utility.

3.6.2 How Does Lethe Affect Utility?

We simulate Lethe on our utility dataset with the following set-up for Lethe’s param-

eters.

Setup for measuring utility in presence of Lethe: We have experimented with

setting the platform availability to 85%, 90% and 95%. We again set the mean

down time to 1 hour and set mean up times to satisfy the availability requirements.

The up and down distributions are geometric and negative binomial respectively.

Recall that the negative binomial distribution needs a shape parameter along with

the mean. Although we are not considering the adversary in the utility experiment,

to be consistent with the privacy analysis, we repeat the experiment for the shape

parameters from Table 3.1.

Specifically, we simulate Lethe for each of the posts in our utility dataset. Note

that, an original retweet happening in a down duration (i.e., when the tweet is hidden)
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Table 3.3.: Utility for Twitter in presence of Lethe operating with different availabil-
ities and different decision thresholds. All cases the utility of the system is above
99%, and as the availability increases the utility increases. DT stands for Decision
Threshold.

DT (days) 30 60 90 120 150 180

Availability
85% 99.25 99.46 99.55 99.61 99.63 99.68
90% 99.50 99.66 99.72 99.76 99.79 99.82
95% 99.76 99.83 99.87 99.89 99.90 99.91

is essentially missed and thus platform utility is affected. However, retweets happen-

ing in an up duration essentially remain unaffected. We count all the retweets that

would have been missed if Lethe was in place and calculate the fraction of retweets

missed due to Lethe. Note that, here we do not consider the effect of missed retweets

on future retweets, modeling such effect are part of our future work. Finally, the

utility of our system will be simply 1 - fraction of retweets missed.

Lethe has minimal effect on system utility: Table 3.3 shows the utility of the

platform in presence of Lethe with varying decision thresholds (for each of them the

optimal shape parameter is used). The table is showing the utility, i.e., the fraction of

retweets allowed, for 85, 90 and 95% availability. For each of the availabilities, we have

chosen six different decision thresholds with their corresponding shape parameter from

Table 3.1. The key observation is: for all the cases the utility is quite high. Difference

between the utilities are at most 0.5% for different availabilities, and if 99% utility is

sufficient for the platform, the platform can simply choose 85% availability over 95%

to provide better privacy to the users while maintaining utility.

In summary, Lethe can indeed hide deletion of users while having minimal effect

on platform utility. For a successful Lethe deployment, even 85% or less availability

might provide a good trade off between privacy, availability, adversarial overhead and

platform utility.
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3.7 Enhancements and Discussion

Real-world restricted adversary. In this work, we considered an adversary that

can consistently observe each and every post of our platform and has full access to

the Lethe up/down distribution parameters. However, a real-world adversary will

have a much more restricted view of the platform (e.g., Twitter normally allows the

developers to collect only 1% random sample of their data) or even of the Lethe

deployment (e.g., the adversary has to estimate the exact parameters of up/down

distribution). Further, in the real world, non-state-level adversaries will be severely

limited by computing power and memory. Hence a possible extension of Lethe is

to restrict the adversary model (i.e., capabilities of the adversary) with practical

restrictions on the adversary’s resources and considering the estimation overhead

of Lethe parameters. The privacy guarantees provided by Lethe will significantly

improve for such restricted, real-world adversaries.

Providing privacy guarantees based on users’ needs. We note that by choosing

different up/down time distributions, a platform operator can provide a range of

privacy guarantees for Lethe. For example, if a user needs privacy specifically for

2 or 3 days (e.g., during an uprising) then the system operator can provide short-

term privacy by choosing appropriate distributions (where LR value is very low for

a short term, then increase rapidly). On the other hand, some celebrity might want

long term privacy, where the privacy guarantee is not very high, but it is relatively

stable over time. In other words, another possible extension will be to match users’

need for privacy by simply tweaking the parameters and distributions in Lethe. The

privacy guarantees can further be improved in case a user does not mind deleting

their content only in down periods. Recall that, we choose geometric distribution as

a suitable up distribution primarily since it enables the users to delete their content

in both up and down time durations without any effect on the privacy. In case post

deletions are restricted only to down durations, we can also explore other choices for

up distributions.
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Will six month be sufficient?. Lethe provides plausible deniability guarantees for

a deletion even after 3 to 6 months of deletion. We argue that delaying an adversary

3 to 6 months to detect deletions might be sufficient in many scenarios. The reason

is twofold: (i) Recent work [78] modeled users of social platforms as limited memory

information processing actors; these actors care less and less about old information.

In fact, this model is supported by the phenomena that almost all large social media

sites today show the posts in reverse chronologically. (ii) Usually, curious people may

focus on some specific user’s posts related to some offline (i.e., physical work) event

(e.g., in the case of the SNL cast member [25], it was her joining the SNL); however

due to the very same reason the user in focus might decide to delete her posts at that

time. If Lethe can delay the revelation of this deletion even for a few days, it should

be sufficient to dissuade the observers.

Opt-outs and Delayed Execution. In some cases, users wish to maintain unin-

terrupted availability of some of their posts infinitely (e.g., pinned tweets on Twitter)

or for the first few days. Lethe can easily skip such posts specifically marked by

the user. Although these posts do not affect privacy and only improve availability,

they can improve adversarial precision: such posts are hardly deleted and thus, their

continuous presence will result in lesser false positives. Nevertheless, given the very

high utility provided by Lethe, we expect the number of such posts to remain limited.

Difference between Deletion Privacy and Differential Privacy. Our notion

of deletion privacy has parallels with differential privacy [69] in that we consider the

ratio of likelihood of observed states, but there is also a subtle difference. The privacy

parameter defined in Definition 3.3.2 depends on the specific observed states O. This
is in contrast with differential privacy where the relevant ratio eε (for the parameter

ε) is defined as a worst-case bound for all possible observations. The reason for

choosing this definition instead of differential privacy is that it is not possible to find

a meaningful bound on the ratio in Equation equation 3.2 valid for all observations: as

time-since-deletion increases, the adversary becomes more certain about deletion. In
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short we can interpret our deletion privacy definition as a way to capture the certainty

of an adversary for detecting post deletion with his observed states over time.

Deception for Intrusion Detection and Surveillance Systems. Lethe can have

interesting applicability beyond the content deletion scenario. Consider an intrusion

detection or surveillance system that continuously monitors accesses to a system.

Assume an intruder with a side channel that allows him to determine if the system

is not functioning for maintenance, power outage or crash. The intruder wishes to

exploit this side channel to attack the system; nevertheless, the attack might be time-

consuming, and the stakes can be very high such that he does not like to get caught

in action. Lethe’s approach can be used in this context as a deceptive technology,

deterring the intruder even when the system goes down. It will be confusing for

the intruder as it cannot determine if the system is in a sleep mode due to Lethe

or has crashed. Interestingly, this approach will also be helpful towards making

the surveillance system energy-efficient as it will not have to be online and operate

constantly.

3.8 Concluding Remarks

In the world with perfect and permanent memory, we are in dire need of mechanisms

to restore the ability to forget. Against an adversary who can persistently observe

a user’s data, the user’s deletions make her more vulnerable by directly pointing the

adversary to sensitive information. In this work, we have defined, formalized, and

addressed this problem by designing Lethe.

In particular, we have formally defined a novel intermittent withdrawal mecha-

nism, quantified its privacy, availability, and adversarial overhead guarantees in the

form of a tradeoff. We leverage this mechanism to design Lethe which provides users

deniability for their deletions while having very little impact on the system availabil-

ity against an extremely powerful adversary having complete knowledge about the

archival platform. Still, even in the case of such an adversary, leveraging real-world
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data we have demonstrated the efficacy of Lethe in providing a good tradeoff between

privacy, availability, adversarial overhead and platform utility. For example, we have

shown that while maintaining 95% availability and utility as high as 99.7%, we can

offer deletion privacy for up to 3 months from the time of deletion while still keeping

the adversarial precision to 20%.
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4. DECEPTIVE DELETIONS FOR PROTECTION OF
DAMAGING POSTS

In Chapter 3, we observed that asking the users not to post regrettable content on

social platforms in the first place may seem like a good first step. However, users

cannot accurately predict what content would be damaging to them in the future

(e.g., after a breakup or before applying to a job). Zhou et al. [79] and Wang et

al. [80] propose multiple types of classifiers (Naive Bayes, SVM, Decision Trees, and

Neural Networks) to detect regrettable posts using users’ history and to proactively

advise users even before the publication of posts. However, this proactive approach

cannot prevent users from publishing future-regrettable posts. It is inevitable to focus

on reactive mechanisms to assist users with protecting their post deletions.

In our first deletion mechanism proposal Chapter 3 we proposed an intermit-

tent withdrawal mechanism to tackle this challenge of hiding user-initiated deletions.

Lethe offers a deniability guarantee for user-initiated deletions in the form of an

availability-privacy trade-off and ensure that when a post is deleted, the adversary

cannot be immediately certain if it was actually deleted or temporarily made un-

available by the platform. The trade-off could be useful for future social and archival

platforms; however, in current commercial social media platforms like Twitter, sacri-

ficing even a small fraction of availability for all the posts may be undesirable.

To this end, our next research question is straightforward, yet highly relevant—

can we enhance the privacy of the deleted and possibly damaging posts at scale without

excessively affecting the functionality of the platform?

Contributions. In this chapter, we make the following contributions.

First, we demonstrate the impact of deletion detection attacks by performing a

proof-of-concept attack on real-world social media posts to identify damaging content.
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Specifically, we use a crowdsourced labeled corpus of deleted posts from Twitter to

train an adversary (a classifier). We demonstrate that our adversary is capable of

detecting damaging posts with high probability (an increase of 27 percentage points

in its F-score). Thus, it is feasible for the adversary to use automated methods for

detecting damaging posts on a large scale. In fact, we expect systems such as Fallait

Pas Supprimer [27] to employ analogous learning techniques soon to improve their

detection.

Second, to overcome the problem of detecting damaging deletions, we introduce a

novel deletion mechanism, Deceptive Deletions, that raises the bar for the adversary

in identifying damaging content. Given a set of damaging posts (i.e., posts that

adversary can leverage to blackmail the user) that users want to delete, the Deceptive

Deletion system (also known as a challenger) carefully selects k additional posts for

each damaging post and deletes them along with the damaging posts. The system-

selected posts, henceforth called the decoy posts, are taken from a pool of posts (i.e.,

non-damaging non-deleted) provided by volunteers. The deletions of the decoy posts

will confuse the adversary in distinguishing damaging posts from the (non-damaging)

decoy posts. Intuitively, Deceptive Deletion is more effective if the selected decoy

posts are similar to the damaging posts. These two opposite goals create a minmax

game between the adversary and the challenger that we further analyze.

Third, we introduce the Deceptive Learning Game, which formally describes the

minmax game between the adversary and the challenger. We start by considering a

static adversary that tunes the parameters of its system (e.g., classifier for determining

the damaging posts) up until a certain point in time. However, powerful adversaries

are adaptive and continually tune their models as they obtain more deletions including

the decoy deletions made by the challenger. Therefore, in the second phase, we

consider an adaptive adversary and describe the optimization problem of the adaptive

adversary and challenger as a minmax game.1

1See [81] for another example of a minmax game in adversarial learning.
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We identify conditions under which either only the adaptive adversary or only

the challenger provably wins the minmax game and discuss the scenarios in-between

these two extremes. To the best of our knowledge, this is the first attempt to develop

a computational model for quantitative assessment of the damaging deletions in the

presence of both static and adaptive adversaries.

Finally, we empirically demonstrate that with access to a set of non-damaging

volunteered posts, we can leverage Deceptive Deletions to hide damaging deletions

against both static and adaptive adversary effectively. We use real-world Twitter

data to demonstrate the effectiveness of the challenger. Specifically, we show that

even when we consider only two decoy posts per damaging deletion, the adversarial

performance (F-score) drops to 42% from 75% in the absence of any privacy-preserving

deletion mechanism.

4.1 Background and Related Work

In addition to the mentioned content deletion mechanisms prevalent in today’s

social media (see Section 3.1), we observe that Tianti et al. [46] offer intuitions for

predicting posts deletions on Instagram with the goal of managing the storage of posts

on the servers: Once a post is archived, it becomes computationally expensive to erase

it; thus, predicting deletions can help in reducing the overheads of being compliant

with the “right to be forgotten” regulations. These predictions in the non-adversarial

setting, however, does not apply to our minmax game between the adversary and the

challenger.

Recently Garg et al. [82] formalize the right to be forgotten using platforms as

a cryptographic game. While being interesting, their definitions and suggested tools

such as history-independent data structures are not applicable to our setting where

the adversary has continuous and complete access to the collected data.
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4.1.1 Obfuscation Using Noise Injection

There has been a line of work in the area of (non-cryptographic) private information

retrieval [83–86] that obfuscates the users’ interest using dummy queries as noise

to avoid user profiling. Howe et al. proposed TrackMeNot [83, 87], which issues

randomized search queries to popular search engines to prevent the search engines in

building any practical profile of the users based on their actual queries. GooPIR [85]

is a similar work that uses a Thesaurus to obtain the keywords to constructs k − 1

other queries (dummy ones) and submit all k queries at the same time. This way,

timing attacks by the search engines are eliminated. However, it only addresses single

keyword searches; these schemes do not address full-sentence searches. Murugesan

et al. propose “Plausibly Deniable Search" (PDS) [84] that analogous to GooPIR

generates k − 1 dummy queries using latent semantic indexing based approach. In

their mechanisms, each real query is converted into a canonical query which protects

against deanonymization attacks based on typos and grammar mistakes.

We note that all of the systems mentioned so far consider hiding each query

separately. However, a determined adversary may be able to find a user’s interests

by observing a sequence of such obfuscated queries. Multiple works have investigated

such weaknesses [86, 88,89].

Some relatively new techniques further try to overcome these shortcomings by

smartly generating the k − 1 queries. For example, Petit et al. proposed PEAS [90],

where they provide a combination of unlinkability and indistinguishability. However,

apart from introducing an overhead for encrypting the user queries, their method also

requires two proxy servers that are non-colluding, hence weakening the adversarial

model. K-subscription [91] is yet another work that proposes an obfuscation based

approach that enables the user to follow privacy-sensitive channels in Twitter by

requiring the users to follow k − 1 other channels to hide the user interests from

the microblogging service. However, the K-subscription has a negative social impact

for the user as the user’s social connections will see the user following these dummy
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channels. These shortcomings, both social and technical, motivated our particular

design decision for Deceptive Deletions.

4.1.2 Adversarial Machine Learning

Traditional adversarial learning settings [92] involve two players: a classifier and an

attacker. The classifier seeks to label the inputs whereas the attacker tries to modify

the inputs such that the classifier will misclassify them. Adversarial machine learning

has also been used as a defense with the roles reversed where the defender attacks

the adversary’s classifier. For example, in [93], the adversary tries to extract users’

private attributes from their public data while the defender modifies the public data

of the users in order to fool the adversary’s classifier. Our setting is different in that

we are not allowed to modify the examples. Instead, the challenger wishes to attack

the adversary’s classifier by injecting hard-to-classify examples into the adversary’s

train/test datasets (i.e., the deletion set). A key constraint for the challenger is that it

has to select the examples from a preexisting set of volunteered posts. This is because

the challenger can only delete existing posts, and cannot generate fake posts.

As we detail in the subsequent sections, the adaptive adversary trains on these

injected examples as well. With a faint relation to our work, data poisoning at-

tacks [94,95] focus primarily on injecting poisoned samples into a classifier’s training

data with the sole purpose of deteriorating the classifier. In contrast, our primary goal

is to inject examples only into the adversary’s test dataset, especially because data

poisoning attacks typically require the freedom to arbitrarily construct data samples,

which is not possible in our setting.
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previous interval are deleted
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Fig. 4.1.: Overview of Deceptive Deletions. In each interval, the deletions are shown
by gray squares with ‘δ’. The deleted posts could be of three types: users’ damaging
deletions shown by red squares with ‘+’, users’ non-damaging deletions shown by
green squares with ‘−’ and challengers’ decoys posts shown by green squares with ‘∗’.
Further, we denote the volunteer posts offered to the challenger during each interval
by green squares with ‘−’ to indicate that they are non-damaging.

4.2 System Model and Overview

4.2.1 System

We consider a data-sharing platform (e.g., Twitter or Facebook) as the public

bulletin board where individuals can upload and view content. Users are the post

owners that are able to publish/delete their posts, and view posts from other users.

In this work, we consider discrete time intervals in which the users upload and delete

posts (Figure 4.1 1 ). A time interval could be as small as a minute or even a week,

depending on the platform. We define two types of posts.

• User-deleted posts A user could delete a post for two primary reasons [6,19,50]:

– Damaging posts: the post contained damaging content to the user’s personal

or professional life, or

– Non-damaging posts: the post was out-dated, contained spelling mistakes,

etc.
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An adversary’s goal is to find the damaging posts among all the deleted ones that

could be used to blackmail the corresponding owners of the post.

• Volunteered posts We consider a subset of non-deleted posts that users willingly

offer to be deleted to protect the privacy of other users whenever needed. These

volunteered posts are non-damaging and cannot be used by the adversary to black-

mail the user of the post. We discuss the challenges of obtaining volunteered posts

in Section 4.5.

A challenger’s goal is to select a subset of volunteered posts (i.e., non-damaging)

and delete them such that the aforementioned adversary is unable to distinguish

between the damaging and the non-damaging post deletions. We denote the posts

selected by the challenger as decoy posts.

Notation. We use a subscript t to denote the time interval and superscripts δ,+, v, ∗
to denote the post type. In particular, Dt is all the uploaded and deleted posts in time

interval t. Then we denote all the deleted posts (user- and challenger-deleted) in that

interval as Dδ
t , the damaging posts as D+

t , and volunteered posts by Dv
t . The

decoy posts that a challenger selects for deletion to fool the adversary is denoted

by G∗t . Note that G∗t ⊆ Dv
t ⊆ Dt\Dδ

t .

4.2.2 Adversary’s Actions and Assumptions

Task. At a given time interval, the task of the adversary is to correctly label all

the deleted posts as being damaging to the post-owner or not. Similar to the threat

model in Lethe Section 3.2.4, we do not focus on local attackers (or stalkers) targeting

individuals or small groups of users.2 Our global adversary instead seeks damaging
2Such stalkers can easily label their posts manually, and protecting against such an attack is ex-
tremely hard if not impossible. For example, consider the case that a stalker continuously takes
snapshots of its targeted user profile with the goal of identifying the user’s deletions. With its back-
ground/auxiliary information about the user (i.e., knowing what contents are considered sensitive
to the target), the stalker can effectively identify the damaging deletions. We claim that, in the
current full-information model, protection against such a local adversary is impossible.
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deletions on a large scale, rummaging through all the deleted posts to find as many

damaging ones as possible. Fallait Pas Supprimer [27] (from Chapter 4) is a real-world

example of the global adversary.

Data access. At any given time interval, we assume that the adversary is able to

obtain all the deleted posts by comparing different archived snapshots of the platform.

Although this strong data assumption benefits the adversary tremendously, we show

in Section 4.4.4 that Deceptive Deletions can protect the users’ damaging deletions.

Further, we discuss a few techniques that the platforms can use to restrict and limit

the adversary’s access to the users’ profile in Section 4.5.3.

Labels. Our global, non-stalker adversary is not able to obtain the true label (dam-

aging or non-damaging) of the post from the user. Instead, the adversary uses a

crowdsourcing service like Mechanical Turk (MTurk) [96] to obtain a proxy for these

true labels. Although the labels obtained from the Mechanical Turkers (MTurkers)

reflect societal values and not the user’s intention, following previous work [80], we

assume they closely match the true labels in our experiments. This is reasonable as

the adversary can expend a significant amount of effort and money to obtain these

true labels, at least for a small set of posts, that will ultimately be used to train a

machine learning model.

Budget. Since there is a cost associated with acquiring label for each deleted

post from the MTurkers, the aim of the adversary is to learn to detect the damaging

deletions under a budget constraint. We consider two types of budget constraints:

• limited budget where the adversary can only obtain the labels for a fixed number

of posts Bstatic, and

• fixed recurring budget where the adversary obtains the labels for a fixed number

of posts Badapt in each interval.

The adversary with a limited budget is called the static adversary since it does

not train after exhausting its budget. On the other hand, the adversary with a fixed
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recurring budget keeps adapting to the new deletions in each time interval, and hence

is dubbed the adaptive adversary.

Player actions. At every time interval t, the adversary obtains a set of posts Aδ
t for

training by sampling part of the deleted posts, say p, from Dδ
t , an operation denoted

by Aδ
t

p∼ Dδ
t . The adversary uses MTurk to label the sampled dataset Aδ

t . After

training, the task of the adversary is to classify the rest of the deleted posts of that

time interval. Additionally, as the adversary gets better over time, it also relabels all

the posts deleted from the past intervals. The test set for the adversary is all the

deleted posts from current and previous time intervals that were not used for training;

i.e.,
⋃
t′≤t(Dδ

t′ \ Aδ
t′). Figure 4.1 2 shows the adversary’s actions.

Note that although an adaptive adversary can sample p = Badapt deleted posts

at every time interval and use MTurkers to label them, a static adversary can only

obtain the labels until it runs out of the limited budget (after τ = Bstatic/p time

intervals). After this period, a static adversary does not train itself with new deleted

posts.

Performance metrics. The adversary wishes to increase precision and recall for the

classification of deleted posts into damaging and non-damaging sets. At every time

interval t, we report adversary’s F-score3 over the test set described above: deleted

posts of all the past intervals, i.e.,
⋃
t′≤t(Dδ

t′ \ Aδ
t′).

4.2.3 Challenger’s Actions and Assumptions

Task. In the presence of an adversary as described above, the task of a challenger

is to obtain volunteered posts (i.e. non-damaging and non-deleted posts) from users,

select a subset of these posts and delete them in order to fool the adversary into

misclassifying these challenger-deleted posts as damaging. The challenger is honest,

does not collude with the adversary, and works with the users (data owners) to protect
3F-score = 2 · precision · recall/(precision+ recall)
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their damaging deletions. Other than the platforms themselves, third party services

such as “tweetDelete” [97] can take the role of the challenger as well.

Data access. The challenger can be implemented by the platform or a third-party

deletion service [97–99], that has access to the posts of the users. Additionally, we

assume that there are users over the platform who volunteer a subset of their non-

damaging posts to be deleted anytime (or within a time frame) by the challenger,

possibly, in return for privacy benefits for their (and other users’) damaging deletions.

Labels. The challenger is implemented as part of the platform (or a third-party

service permitted by the user). Thus, unlike the adversary that obtains proxy labels

from crowdsourcing platforms, it has access to the true labels— damaging or non-

damaging, from the owner of the post. This is easily implemented: before deleting

a post, the user can specify whether the post is damaging (and needs protection).

This access to the true labels is an advantage that challenger has over the adversary

and hence can train more accurate models.

Access to the adversary. The challenger not only knows the presence of a global

adversary trying to classify the deleted posts into damaging and non-damaging posts

but also can observe its behaviour.4. As a result, we consider three types of accesses

to the adversary:

• no access where the challenger has no information about the adversary.

• monitored black-box access with a recurring query budget of Bg where the

challenger can obtain the adversary’s classification probability for a limited number

of posts Bg every time interval, but the access is monitored, i.e., the adversary can

take note of every post queried and treat them separately.

• black-box access where the challenger can obtain the adversary’s classification

probabilities for any post.

Here, no access is the weakest assumption that defines the lower-bounds for our chal-

lenger’s success. Nevertheless, we expect the challenger to have some access to the
4Fallait Pas Supprimer [27] posts all its output on Twitter itself.
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adversary’s classification. An unrestricted black-box access serves as an upper bound

for the challenger assuming that it can train a precise surrogate model of the ad-

versary’s classifier using its own training data. While employing such a surrogate

model is common practice in the literature [100,101], it can be hard to obtain in real

world without knowing the adversary’s exact architecture and training data. Our

monitored black-box assumption with a recurring query budget (henceforth, inter-

changeably called the restricted black-box access) balances practicality of the access

versus the feasibility of defending against an adversary with that access. In Sec-

tion 4.3, we introduce three challengers (oracle, D2 and random) corresponding to

the three types of accesses.

Player actions. At every time interval t, the challenger receives new volunteer posts

from the users and adds them to a set that stores the volunteered posts collected up

until this point. Next, based on the type of access, it obtains the adversary’s classifi-

cation probabilities for some number of volunteer posts (the number is dependent on

the access which we detail in Section 4.3). Finally, it selects decoy posts, a subset of

the volunteered posts collected up until this point and deletes these posts in interval

t+1 (hence the adversary sees these challenger-deleted posts in interval t+1 as part

of the deleted set Dδ
t+1). Figure 4.1 3 shows the challenger’s actions.

Performance metrics. The challenger, in direct contrast to the adversary, wishes

to decrease adversary’s precision and recall for the classification of deleted posts.

Adversary’s precision will decrease if it classifies the injected decoy posts as damaging

(increased false-positives). On the other hand, adversary’s recall will decrease if it

learns to be conservative in order to ignore the decoy posts (increased false-negatives).

4.3 The Deceptive Learning Game

The deceptive learning game is a two-player zero-sum non-cooperative game over

time intervals t = 1, 2, ... (units) between an adversary who wishes to find users’ dam-

aging deletions, and a challenger who wishes to hide the said damaging deletions. The



85

challenger achieves this by deleting volunteers’ non-damaging posts as decoys. While

the adversary’s goal is to maximize its precision/recall scores on the classification

task, the challenger’s goal is to minimize them.

We denote each post by (x, y), where x ∈ X represents the features of the post

(i.e., text, comments, etc.) and y ∈ {0, 1} denotes its true label such that y = 1 if

the post is damaging and y = 0 if it is non-damaging. In the following subsections,

we describe the actions of each player in the time interval t.

4.3.1 Adversary

We denote the adversary’s classifier at the beginning of interval t by a( · ; θt−1) :

X → [0, 1] parameterized by θt−1 such that a(x; θt−1) := P (ŷ = 1 | x; θt−1) is the

predicted probability of the post x being damaging. The adversary collects all the

deletions that happen in this interval (i.e., Dδ
t ) and samples p posts, denoted by Aδ

t .

The adversary then uses MTurk to obtain a proxy for the true labels of these p posts.

The adversary uses this labeled training data in the following optimization problem

to update its parameters,

θt = arg min
θ
LNLL(θ;Aδ

t ) , (4.1)

where LNLL is the standard negative log-likelihood loss for the classification task,

given by,

LNLL(θ;Aδt ) =
∑

(x,y)∈Aδt

−y log (a(x; θ))− (1− y) log (1− a(x; θ)) .

After training, the adversary uses the trained model a( · ; θt) to predict the labels of

the rest of the deleted posts of time interval t, i.e., Dδ
t \Aδ

t along with all the deleted

posts that it had already predicted in the past. This way the adversary hopes to

capture damaging posts that were missed earlier. Hence, we report the adversary’s

performance on all the past deletions (not including the training data):
⋃
t′≤t(Dδ

t′\Aδ
t′).
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Algorithm 1: Adversary
input : Dδ; /* Deleted posts in this interval */

1 Sample p posts Aδ p∼ Dδ;
2 Query MTurk and obtain labels for Aδ ;
3 Obtain optimal parameters θ∗ by solving Equation (4.1) ;
4 return a( · ; θ∗)

Static vs Adaptive Adversary. Since the static adversary has a limited budget,

first it chooses the number of time intervals for training, say τ , and accordingly

samples p = Bstatic/τ posts for querying MTurk to obtain labels.

The adaptive adversary has a fixed recurring budget of Badapt and hence, can

sample p = Badapt posts every interval. This allows the adaptive adversary to train

itself with new training data (of size Badapt) every interval indefinitely. Algorithm 1

depicts adversary’s actions within a time interval (subscript t removed for clarity).

4.3.2 Challenger

In the presence of such an adversary, the challenger’s goal is to collect volunteered

posts (non-damaging) from users and selectively delete these posts in order to confuse

the adversary.

As described before, Dv
t is the set of posts volunteered by users in the time interval

t. Let G∗≤t be the set of decoy posts deleted by the challenger in the current and past

intervals. At the end of interval t, the challenger collects all the volunteered posts from

the current and past intervals (except the posts that it has already used as decoys).

The available set of volunteered posts is denoted by Dv
≤t ≡ (

⋃
t′≤tDv

t′) \ (
⋃
t′≤tG∗t′).

Note that (x, y) ∈ Dv
≤t =⇒ y = 0, i.e., the volunteered posts are non-damaging by

definition. For ease of notation, let Nv := |Dv
≤t| be the number of volunteered posts

collected till interval t.

Then, the goal of the challenger is to construct the decoy set G∗t+1 ⊆ Dv
≤t and

delete these posts during the next time interval t+1 in order to fool the adversary into
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misclassifying these challenger-deleted non-damaging posts as user-deleted damaging

posts. Formally, we want to choose K decoy posts (denoted by a K-hot vector w)

that maximizes the negative-log likelihood loss for the adversary’s classifier, given by

the following optimization problem,

w∗ = arg max
w

V (w;Dv
≤t)

s.t. ||w||1 = K, w ∈ {0, 1}Nv
, (4.2)

where

V (w;Dv
≤t) =

Nv∑
i=1

−wi · log(1− a(xi; θt)) , (4.3)

and xi is the i-th volunteered post in Dv
≤t. The cost function V (w;Dv

≤t) in Equa-

tion (4.3) is simply the negative log-likelihood of the adversary over the set Dv
≤t

weighted by a K-hot vector w. Equation (4.3) uses the fact that the set only con-

tains non-damaging posts (i.e., yi = 0).

Consequently, w∗ optimized in such a fashion selects K posts from the set Dv
≤t

that maximizes the adversary’s negative log-likelihood loss. The set of K selected

posts can be trivially constructed as G∗t+1 = {xi : i ∈ {1, . . . , Nv} ∧ wi = 1}. The

challenger deletes G∗t+1 over the next time interval t+1 (hence the adversary sees these

posts as part of the deleted set Dδ
t+1). Note that the challenger uses the adversary’s

classifier a( · ; θt) to create decoy posts for t+1. However, as per Section 4.3.1, in

interval t+1 the adversary first trains over a sample of the deleted posts (including

the decoy posts) and updates its classifier to a( · ; θt+1) before classifying the rest of

the deleted posts of t+1. Hence, the challenger is always at a disadvantage (one step

behind).

Next, we describe three challengers corresponding to the access types discussed in

Section 4.2.3: no access, black-box access and monitored black-box access with a query

budget.
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Random challenger (no access). We begin with the case where the challenger

has no access to the adversary’s classifier and there is no side-information available to

the challenger. With no access to the adversary’s classification probabilities a( · ; θt),

the optimization problem in Equation (4.2) cannot be solved. We introduce the

naive random challenger that simply samples K posts randomly from the available

volunteered posts Dv
≤t and deletes them, i.e., G∗t+1

K∼ Dv
≤t. This is the only viable

approach if the challenger has no information about the adversary’s classifier.

Oracle challenger (black-box access). Next we consider the challenger that

has a black-box access to the adversary’s classifier with no query budget, i.e., at

any time interval t, the challenger can query the adversary with a post x and ex-

pect the adversary’s predicted probability a(x; θt) in response without the adversary’s

knowledge. Armed with the black-box access, oracle challenger can simply maximize

Equation (4.2) by choosing the top K posts with highest values for a(xi; θt).

D2 Challenger (monitored black-box access with query budget Bg). The

oracle challenger assumes an unmonitored black-box access to the adversary with an

infinite query budget which can be hard to obtain in practice. In what follows, we relax

the access and assume a monitored black-box access with a recurring query budget

of Bg. In other words, queries to the adversary, while being limited per interval,

are also monitored and possibly flagged by the adversary. The adversary can simply

take note of these queries as performed by a potential challenger, hence negating any

privacy benefits from injecting decoy posts. Whenever the adversary sees a deleted

post identical to one that it was previously queried about, it can ignore the post as

it is likely non-damaging.

Here we design a challenger, henceforth dubbed D2, that trains to select decoy

posts from any given volunteered set. In other words, the D2 challenger makes use

of the monitored black-box access to the adversary only during training. Hence it

can be used to find the decoy posts without querying the adversary; for example

in a held-out volunteered set (separate from the training set). Additionally, the D2

challenger queries the adversary for only Bg posts every time interval.
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We denote the challenger’s model at the beginning of interval t by g( · ;φt−1) :

X → R parameterized by φt−1. For a given volunteer post x, g(x;φt−1) gives an

unnormalized score for how likely the post will be mislabeled as damaging; higher the

score, higher the misclassification probability.

First, the D2 challenger samples Bg posts for training from the available volun-

teered set Dv
≤t collected till interval t. We denote the train and test sets of the D2

challenger as Dv,train
≤t and Dv,test

≤t of sizes Bg and Nv − Bg respectively. Then, the

goal of the D2 is to find optimal parameters φt by solving a continuous relaxation of

Equation (4.2) presented below,

φt = arg max
φ

Ṽ (φ;Dv,train
≤t ) (4.4)

where

Ṽ (φ;Dv,train
≤t ) =

Bg∑
i=1

−α(xi;φ,Dv,train
≤t ) log(1− a(xi; θt)) ,

and

α(xi;φ,Dv,train
≤t ) =

exp (g(xi;φ))∑Bg
j=1 exp (g(xj;φ))

,

is a softmax over the challenger outputs for all the examples in Dv,train
≤t . The softmax

function makes sure that 0 ≤ α( · ;φ,Dv,train
≤t ) ≤ 1 and

∑Bg
j=1 α(xj;φ,Dv,train

≤t ) = 1.

The continuous relaxation in Equation (4.4) allows the D2 challenger to train a neural

network model parameterized by φ via backpropagation.

We now show that optimizing the relaxed objective in Equation (4.4) results in

the best objective value for Equation (4.2).

Proposition 4.3.1 For any given volunteered set Dv with N non-deleted posts,

max
φ

Ṽ (φ;Dv) = max
w1,...,wN

V (w1, . . . , wN ;Dv)
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Algorithm 2: Challenger
input : Dv, K, accessType

1 G∗ ← ∅ ;
2 if accessType = none then

/* Random challenger */

3 G∗ K∼ Dv ;

4 else if accessType = black-box then
/* Oracle challenger */

5 G∗ ← {xi : xi ∈ Dv ∧ a(xi; θ) is in the top K} ;
6 else if accessType = monitored black-box (budget Bg) then

/* D2 challenger */

7 Sample Bg posts for training Dv,train Bg∼ Dv;
8 Dv,test ← Dv \ Dv,train ;
9 Query a(xi; θ) for all (xi, yi = 0) ∈ Dv,train ;

10 Obtain optimal parameters φ∗ by solving Equation (4.4) ;
11 G∗ ← {xi : xi ∈ Dv,test ∧ g(xi;φ

∗) is in the top K} ;
12 return G∗ ;

Finally, the D2 challenger with optimal parameters φt computes g(x;φt) for all

(x, y = 0) ∈ Dv,test
≤t , and constructs G∗t+1 by choosing the examples with top K values

for g( · ;φt). Algorithm 2 shows the actions of the challenger within a time interval

(subscript t removed for clarity).

4.3.3 Deceptive Learning Game

Algorithm 3 presents the game between the adversary and the challenger. In

each time interval, users independently delete and volunteer posts (line 4). The

platform/deletion-service additionally deletes the challenger-selected decoy posts (line

5). The adversary obtains all the deleted posts and queries the MTurk with a small

subset of the posts for labels (if the adversary has not exhausted the budget). With

this labeled set of deleted posts, the adversary trains its classifier (lines 6-7). The

challenger collects new volunteered posts (line 8) and builds decoy posts to be injected
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Algorithm 3: Deceptive Game
input : accessType, K

1 G∗1 ← ∅ ;
2 Dv

≤0 ← ∅ ;
3 for t← 1 to n do
4 Dδ

t , Dv
t ← Users(t) ; /* deleted and volunteered posts of the

users at interval t */
5 Dδ

t ← Dδ
t ∪G∗t ; /* user- and challenger-deleted posts at

interval t */
6 if Adversary’s budget has not exhausted then
7 a( · , θt)← Adversary(Dδ

t ) ;
8 Dv

≤t ← (Dv
≤t−1 \G∗t ) ∪ Dv

t ; /* available volunteered set */
9 G∗t+1 ← Challenger(Dv

≤t, K, accessType)

in the next interval (line 9). This results in a real-life game between the adversary

and the challenger, where each adapts to the other.

4.4 System Evaluation on Twitter Deletions

In this section we evaluate the efficiency of an adversary when Deceptive Deletions

is applied to the real-world problem of concealing damaging deletions in Twitter.

In this evaluation we first create and prepare sets of (non)damaging tweets. Then

we use these sets to train the challenger and adversary classifiers and analyze their

performance.

4.4.1 Data Collection

In this work, we select Twitter as our experimental social media platform. We

note that it was certainly plausible to perform the exact experiment on other social

platforms. However we chose Twitter due to its popularity and feasibility of data

collection. Specifically, in order to evaluate the challenger we needed a real-world

dataset which includes (i) both deleted and non-deleted tweets (i.e., Twitter posts)
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and (ii) deleted tweets that contain both damaging and non-damaging tweets. To

that end, we use two data sources to create such a dataset.

Deceptive Deletion dataset

We collected 1% of daily random tweet samples from the Twitter API from Oct

2015 - May 2018. Eliminating non-English tweets, we accumulated over one billion

tweets. In the next step, we construct the damaging and volunteered sets.

To construct the damaging set, we first needed to identify the deleted tweets. We

sampled 300,000 tweets from the aforementioned collected data, and leveraging the

Twitter API, we identified the tweets that were deleted at the time of our experiment

(Jan 30th, 2020). In total, we identified 92,326 deleted tweets. The next step was

to obtain ground truth labels for the deleted tweets—i.e., detect and assign “true”

labels to damaging tweets and “false” labels to rest. We used the crowdsourcing

service Amazon Mechanical Turk (MTurk) [96] to obtain a proxy for these true labels.

However, there were two challenges– First, it was impractical to ask our annotators to

label 92,326 tweets. Second, since the dataset was highly imbalanced, a simple random

sample of tweets for labeling would have resulted in a majority of non-damaging

tweets.

Thus, we followed prior work [79,80] and filtered the deleted tweets using a simple

sensitive keyword-based approach [79] (i.e., identify posts with sensitive keywords)

to have a higher chance of collecting possibly damaging tweets. The complete list of

keywords (over 1500 words) can be found in http://bit.ly/1LQD22F. This approach

resulted in 33,000 potentially damaging tweets, and we randomly sampled 3,500 tweets

to be labeled by annotators on MTurk. The mean number of sensitive keywords in

each tweet within our data set was 2.55.

Note that, in addition to the cursing and sexual keywords, our sensitive keyword-

based approach also considered keywords related to the topics of religion, race, job,

relationship, health, violence, etc. Intuitively, if a post does not contain any such

http://bit.ly/1LQD22F
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sensitive keywords then the likelihood of the post being damaging is very low. We

confirmed this intuition by asking MTurk annotators to label 150 tweets which did not

contain any sensitive keyword as damaging/non-damaging. We noted that more than

97% of these 150 tweets were labeled as non-damaging by annotators. We surmised

that in practice, the adversary will also leverage a similar filtering approach to reduce

its overhead and increase its chances of finding damaging posts. Note that, in this

experiment we have only considered the text of the tweets. However, the adversary

can use additional user information, but labeling the posts (for training) based on

the entire sets of posts of the users is infeasible for a large-scale attack.

In total, out of our sampled 3,500 deleted tweets, we obtained labels for 3,177

tweets (excluding annotations from Turkers who failed our quality control checks as

described later). Among the labeled tweets, 1,272 were identified as damaging, and

1, 905 were identified as non-damaging.

Data labeling using MTurk. We acknowledge that ideally, the tweet labels

should have been assigned by the posters themselves. However, since we collected

random tweets at large-scale using the Twitter API, we could not track down and

pursue original posters to label their deleted tweets. Furthermore, following up with

specific users for labeling their deleted posts is likely to cross the ethical boundary

of this academic work (see Section 4.4.2). To that end, we note that there is a

crowdsourcing based alternative which is already leveraged by earlier work to assign

sensitivity labels [80,102,103]. Specifically, these studies determined the sensitivity of

social media posts by simply aggregating crowdsourced sensitivity labels provided by

multiple MTurk workers (Turkers). Thus, we took a similar approach as mentioned

next.

On MTurk, tasks (e.g., completing surveys) are called Human Intelligence Tasks or

HITs. Turkers can participate in a survey by accepting the corresponding HIT only if

they meet all the criteria associated with that HIT (set by the person(s) who created

the HIT). We leverage this feature to ensure the reliability of our results. Specifically

we asked that the Turkers taking our survey should: (i) have at least 50 approved
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HITs. (ii) have an assignment approval rate higher than 90%, and (iii) have their

location set to United States. This last criterion ensured consistency of our Turkers’

linguistic background. In our experiment each HIT consisted of annotating 20 tweets

with true (damaging) or false (non-damaging) labels. We allowed the Turkers to skip

some tweets in case they feel uncomfortable for any reason. We compensated 0.5 USD

for each HIT and on average it took the Turkers 193 seconds to complete each HIT.

To control the quality of annotation by Turkers, we included two hand-crafted

control tweets with known labels in each HIT. These control tweets were randomly

selected from two very small sets of clearly non-damaging or damaging tweets and

were inserted at random locations within the selection of 20 tweets. For example

a damaging control tweet was: “I think I have enough knowledge to make a suicide

bomb now! Might need it New Year’s Eve" and non-damaging control tweet was:

“Prayers with all the people in the hurricane irma". If for a HIT, the responses to

these control tweets did not match the expected label, we conservatively discarded

all twenty annotations in that HIT.

We countered possible bias resulting from the order of presentation of tweets via

randomizing the order of tweets in every HIT. Even if two Turkers annotated the

same set of tweets, the order of those tweets was different. Furthermore, to ease

the subjectivity of the labels from each participant, for each tweet we collected the

annotations of multiple Turkers and took the majority vote. In our experiment, we

created the HITs such that each tweet was annotated by 3 distinct Turkers. After

receiving the responses, for each tweet we assigned the final label (indicating damaging

or non-damaging) based on the majority vote.

We emphasize that in the real world, the burden of labeling the posts via crowd-

sourcing is on the adversary. The challenger, on the other hand, can be implemented

as a service within the platform and can obtain the true labels directly from the

post-owners. Therefore, existence of any mislabeled data will negatively impact only

the adversary.



95

#Donttweet dataset

Recently Wang et al. [80] proposed “#Donttweetthis”. “#Donttweetthis” is a quan-

titative model that identifies potentially sensitive content and notifies users so that

they can rethink before posting those content on social platforms. Wang et al. cre-

ated the training data for their model by (i) identifying possibly sensitive tweets by

checking for the existence of sensitive keywords within the text and then (ii) using

crowd-sourcing (i.e., using MTurk) to annotate the sensitivity of each tweet by three

annotators.

The data collection approach used by “#Donttweetthis” (section 3 of [80]) is very

similar to ours. Therefore, to enrich our dataset and be able to evaluate the challenger

over more intervals, we acquired their labeled tweets. Using the Twitter API, we

queried the tweets using their corresponding IDs and identified the deleted ones (at

the time of writing, Jan 30th, 2020). In total, we obtained 851 deleted tweets, where

418 were labeled as sensitive (damaging), and the remaining 433 were labeled as non-

sensitive (non-damaging). The mean of sensitive keywords in each tweet within this

set was 1.7.

Summary of collected data. In summary, combining the two datasets explained

above, we obtained labels for 4, 028 deleted tweets establishing the user deleted set.

Among the deleted tweets 1, 690 were labeled as damaging constructing our damaging

set (D+). As we will demonstrate in the results section, in our evaluation the four

thousand labeled tweets (larger than that of prior works [79,80]) allows for 10 intervals

for the game between the adversary and challenger.

Furthermore, for our experiment, we consider k = 1, 2, 5 (i.e., number of decoy

posts for each damaging post). To accommodate these values of k and construct a

volunteer pool that the challenger can make meaningful selections from, we sampled

100,000 non-deleted tweets uniformly at random from the 1% daily tweet samples

posted between Jan 1st, 2018 – May 31st, 2018 to build the volunteered set. The

non-deleted tweets are assumed to be non-damaging. We consider this assumption
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to be reasonable as if a tweet contains some damaging content then its owner would

not keep that post on its profile. In practice, we can forgo this assumption as the

volunteer users themselves offer the volunteer posts. The average number of sensitive

keywords in each tweet in this set was 0.41.

4.4.2 Ethical Considerations

Recall that in order to create our evaluation dataset we needed to show some

deleted tweets to Turkers for the annotation task. Thus, we were significantly con-

cerned about the ethics of our annotation task. Consequently, we discussed at length

with the Institutional Review Board (IRB) of the lead author’s institute and deployed

the annotation task only after we obtained the necessary IRB approval. Next we will

detail, how, in our final annotation task protocol we took quite involved precautionary

steps for protecting the privacy of the users who deleted their tweets.

We recognize that, in the context of our evaluation, the primary risk to the deleted-

tweet-owners was the possibility of linking deleted tweets with deleted-tweet-owner

profiles during annotation. This intuition is supported by prior research [6, 104] who

suggested applying selective anonymization for research on deleted content. Thus, we

anonymized all deleted tweets by replacing personally identifiable information or PII

(e.g., usernames, mentions, user ids, and links) with placeholder text. For example, we

replaced user accounts (i.e., words starting with @) and url-links with “UserAccount"

and “Link” respectively. Moreover, one of the authors manually went over each of

these redacted posts to ensure anonymization of PII before showing them to Turkers.

4.4.3 Experiment Setup

Partitioning the data for different time intervals. Recall from Section 4.2

that we discretize time into intervals. In our experiments, we choose T = 10 intervals

in total (a choice made based on the number of collected tweets). Consequently, we

partition our dataset into 10 intervals. Ideally, the partitions should be based on the
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creation and deletion timestamps of the tweets. Unfortunately however, the Twitter

API does not provide deletion timestamps. Hence, we randomly shuffle the tweets

and divide them into 10 equally sized partitions.

BERT model. In line with our approach to model the most-powerful adversary

as best as we possibly can, we use a state-of-the-art natural language processing

model: the BERT (Bidirectional Encoder Representations from Transformers) lan-

guage model [105], both for the adversary and for the challenger. Specifically, we

use BERTBASE model that consists of 12 transformer blocks, a hidden layer size of

768 and 12 self-attention heads (110M parameters in total). BERT has been shown

to perform exceedingly well in a number of downstream NLP tasks [105]. We use

HuggingFace’s [106] implementation of the BERT model that was already pre-trained

on masked language modeling and next sentence prediction tasks.

BERT uses WordPiece embeddings [107] to convert each word in the input tweet

to an embedding vector. The concatenated embedding vector is passed to the BERT

neural network model. In our experiments, we only give the text of the tweet as input

to both the adversary and the challenger to make it amenable to the pre-trained BERT

models. Other tweet features such as deletion timestamps, number of likes, etc. could

be used by both the adversary and the challenger to improve their performance.

We fine-tune the BERT model on our datasets as prescribed by Devlin et al

[105]. In each interval, the adversary’s classifier is fine-tuned for the classification

of tweets into damaging and non-damaging using the negative log-likelihood loss in

Equation (4.1). We use a batch size of 32 and sample equal number of damaging and

non-damaging tweets in each batch. This procedure results in better trained models as

it avoids the scenario where a randomly sampled batch is too imbalanced (for example,

no damaging tweet sampled in the batch). A separate BERT model is fine-tuned for

the challenger using the loss function in Equation (4.4). Note that no balancing is

required here since all the input tweets to the challenger model are non-damaging.

We note that explaining the exact strategy employed by BERT models to classify text

is an active research topic and complementary to our efforts. However, we highlight
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that our challenger does not use any information about either the adversary’s exact

model or its parameters.

Budget constraints: We allow a limited budget of Bstatic = 200 deleted tweets for

the static adversary and set τ = 1, i.e., the static adversary only trains during the

first out of the ten intervals. Similarly for the adaptive adversary, we allow a fixed

recurring budget of Badapt = 200 deleted tweets every interval. There are no budget

restraints for random and oracle challengers (having no access and black-box access

respectively). However, we restrict the D2 challenger to have the same (recurring)

query budget as the adaptive adversary’s recurring budget to keep the game fair, i.e.,

Bg = Badapt = 200.

We simulate the deceptive learning game described in Algorithm 3 with an adver-

sary and a challenger, both implemented as BERT language models, with 10 different

random seeds. We repeat the experiments for k = 1, 2, 5 where k denotes the number

of decoy posts added per damaging deletion.

4.4.4 Results

Figures 4.2 and 4.3 show the F-scores (with 95% confidence intervals), precision

and recall for different adversaries over 10 time intervals. We make the following key

observations from the results.

Detection of damaging deletions in social media platforms is a serious

concern. We start by considering the case where no privacy-preserving deletion

mechanism is in place (i.e., no challenger to inject decoy deletions). In such a scenario,

we compare the efficiency of different types of adversaries over ten intervals shown

in Figure 4.2.

The random adversary labels the posts based on the prior distribution of the

deleted tweets (around 42% damaging and 58% non-damaging every interval). As

expected, the adversary achieves a 42% precision and 58% recall resulting in an F-

score of about 48% in each interval.
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Fig. 4.2.: F-score of different adversaries (random, static, adaptive) when no privacy
preserving deletion mechanism is in place. Shaded areas represent 95% confidence
intervals.

As shown in Figure 4.2, in the first interval, the static adversary achieves a 17

percentage points (i.e., a 35%) increase in its F-score compared to the random ad-

versary, and remains almost constant over the rest of the intervals. On the other

hand, the adaptive adversary receives new training data every interval and trains its

classifier continually, and hence is able to increase its F-score even further by about

10 percentage points (56% increase compared to the random adversary) at the end

of the 10th interval.

This shows that even normal users of social media platforms, not only celebrities

and politicians, are vulnerable to the detection of their damaging deletions. Further-

more, the adversaries can automate this attack on a large-scale with an insignificant

amount of overhead (access to a small dataset of posts with the corresponding labels),

highlighting the necessity for a much-needed privacy-preserving mechanism for the

users’ damaging deletions in today’s social platforms.

Injecting decoy deletions decreases the adversarial performance. As ex-

plained in Sections 4.2 and 4.3, we consider three challengers corresponding to the

three types of accesses to the adversary’s model – no access, black-box access, and

restricted black-box access. In the following, we compare the performance of the
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(a) Random (k = 1)
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(b) Random (k = 2)
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(c) Random (k = 5)
(No access.) Adversaries in the presence of random challenger with k = 1, 2, 5.
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(d) Oracle (k = 1)
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(e) Oracle (k = 2)
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(f) Oracle (k = 5)
(Black-box access.) Adversaries in the presence of oracle challenger with k = 1, 2, 5.
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(g) D2 (k = 1)
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(h) D2 (k = 2)
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(i) D2 (k = 5)
(Restricted black-box access.) Adversaries in the presence of D2 challenger

Fig. 4.3.: F-score (with 95% confidence intervals), precision and recall for the three
adversaries (random, static and adaptive) in the presence of different challengers
corresponding to different accesses with k = 1, 2, 5.

adversaries in the presence of the respective challengers against the adversaries’ per-

formance in the absence of any challenger.

No access: The top row of Figure 4.3 shows the performance of the three adver-

saries (random, static, and adaptive) in the presence of the random challenger. We
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observe that although the F-score of both the static and the adaptive adversary de-

creases for all values of k, the reduction is not significant (only 7 percentage points for

k=1 compared to the no-challenger case) In fact, both the adversaries still perform

much better than the random adversary. This shows that protection of damaging

deletions in the no-access scenario is possible but severely limited.

Black-box access: The middle row of Figure 4.3 shows the performance of the

adversaries in the presence of an oracle challenger. Not surprisingly, this approach

is very effective at lowering the (static and adaptive) adversaries’ F-scores (close to

random for k=1, 2; i.e., 20 and 35 percentage point reduction in the case of k=1 for

the static and adaptive adversary respectively compared to the no-challenger case).

We also observe a major difference between the static and the adaptive adversaries

in the presence of a competitive challenger. The static adversary retains the same

recall performance (as in the no-challenger case) but loses drastically in precision,

i.e., it classifies a large number of decoy posts as damaging. On the other hand,

the adaptive adversary tries to adapt to the presence of decoy posts and becomes

highly conservative – retains the same precision performance (as in the no-challenger

case) but suffers heavily in the recall performance, i.e., it classifies a large number of

damaging posts as non-damaging.

Restricted black-box access: The bottom row of Figure 4.3 shows the performance

of the adversaries in the presence of the D2 challenger. The performance of the D2

challenger is comparable to the oracle challenger. The adversaries’ F-scores in the

presence of the D2 challenger is close to 45% for the case of k=1 (20 and 30 percentage

point reduction for the static and adaptive adversaries respectively compared to the

no-challenger case). We also observe a precision-recall trade-off separating the static

and the adaptive adversary (i.e., the static adversary loses in precision, whereas the

adaptive adversary loses in recall) similar to the one described in the presence of an

oracle challenger .
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Overall, we conclude that the D2 challenger is able to successfully raise the bar for

the adversaries in identifying damaging deletions without requiring an unmonitored

black-box access with infinite query budget.

The increase of decoy posts (k) results in lower adversarial performance

with diminishing returns. While examining each row of Figure 4.3 individually,

we see that the performance of the adversaries always decreases as k, the number

of decoy deletions per damaging deletion, increases. However, we also observe that

k = 1 is enough to reduce the F-scores of the adversaries to 45% (close to the random

adversary). Further, the goal of most social platforms is to retain as many posts as

possible, it would not be in the platform’s best interests to use much larger values of

k or to delete the entire volunteered set.

Observation of damaging and decoy posts. In Table 4.1, we show damaging

tweets (as labeled by the AMT workers), decoy tweets (chosen by the D2 challenger

from a set of non-deleted tweets), and non-damaging tweets in our database. We

observe that even though the decoy tweets typically seem to have sensitive words,

they do not possess content damaging to the owner.

Table 4.1.: Sample tweet text extracts from the damaging, decoy, and non-damaging
datasets. The real user accounts within the tweets have been replaced with @UserAccount.
Some letters in the offensive keywords have been replaced by *.

Tweets’ text extract Tweet Type

“#GrowingUpInTexas Seeing a black person pass by ya front yard and telling your son to pass you the
shotgun so you can play shoot em ups”

damaging

“@UserAccount its gods way of punishing you for your sins. fag**t.” damaging
“I think I might have the biggest douche for a boss hands down breaking point” damaging
“Show up to work on meth once and your nickname is Tweaker for the rest of your life ” damaging
“gotta love watching two gay men having sex next to my homophobic parents” damaging
“Listening to this deuchbag behind me at Chipotle diss every girl who comes in hot body but she has no
face news check you re fugly”

decoy

“I grab a beer from the fridge put on my Bob Marley record crank that f**ker up and light up a fat one
my professor is the shit”

decoy

“Kids having kids That sh*t is f**kin crazy to me I d rather be that cool a** uncle that buys the booze” decoy
“This guy smacked his girlfriends ass in public That’s disrespectful” decoy
“I don’t understand why people say that watermelon and fried chicken is for black people I love that sh*t” decoy
“I want to eat to rid my emotions but I don’t want the calories ya feel me” non-damaging
“The middle is not the end, but a process you must grow through to get to your new beginning.” non-damaging
“@UserAccount @UserAccount Did you guys win it or did you burgle it from a classmate’s house again?” non-damaging
“Love is not about turning human relationships into billions of isolated couples.” non-damaging
“I’m pretty sure one of my professors has me mistaken for another black woman in my class.” non-damaging
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4.5 Discussion

4.5.1 Adversarial Deception Tactics

The adversary can use different techniques to sabotage the challenger. Here, we

mention some prominent systems attacks and their effects on the challenger.

Denial of Service attack. One of such attacks could be a simple Denial of Service

(DoS), where the attacker submits requests for many damaging deletions to consume

all the volunteer posts. First, we remind that the volunteered posts are a renewable

resource, not a finite resource, as the users create, volunteer and delete posts in each

time interval. Regardless, a DOS attack is possible wherein the adversary can use up

all volunteered posts collected up until this point.

A standard way to avoid such attacks is to limit the number of damaging deletions

that can be protected for each user in one time interval (we assume that the adversary

can have many adversarial users to help with the DoS attack but is not allowed to

use bots [108–113]). The challenger’s defense is dependent on the distribution and

number of volunteered posts. If there are more adversarial users than volunteers,

then the adversary can win the game. We implemented the DoS attack as follows: in

every interval, the adversary deletes as much as the standard deletions. We observed

that the F-score did not change in this situation.

Volunteer Identification attack. In a volunteer identification attack, the adver-

sary deletes a bunch of posts and uses the process of doing so to identify individuals

who volunteer posts to the challenger for deletion. First, we note that in each time in-

terval there is a large number of posts being deleted (> 100 million tweets daily [19]).

Thus the posts deleted by the adversary (to try to identify volunteers) and the cor-

responding decoy deletions are mixed with other (damaging/non-damaging/decoy)

deletions. In such a case, identifying the volunteers is equivalent to separating the

decoy deletions from the damaging deletions; reducing to the original task. Addition-

ally, the challenger does not delete the decoy posts at the same time as the original

damaging deletion but does so in batches spread out within the time interval.
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Further, the volunteers can also have damaging deletions of their own. Even if

an adversary is able to identify volunteers, the adversary still needs to figure out

which of the volunteer’s deletions are decoys. If the adversary ignores all posts from

volunteers, then a simple protection for the users is to become a volunteer, which

helps our cause.

Adversary disguising as volunteer. In this attack, the adversary can take the

role of a volunteer (or hire many volunteers) to offer posts to the challenger. Subse-

quently, the challenger may select the adversary’s posts as decoys in the later inter-

vals; however, these posts do not provide deletion privacy as the adversary will be

able to discard these decoy posts easily. This effect can be mitigated with the help of

more genuine volunteers and increasing the number of decoys per damaging deletion.

This points to a more fundamental problem with any crowdsourcing approach: if the

number of adversarial volunteers is more than the number of genuine volunteers, the

approach fails.

Differentiating between different damaging categories. In this work, all the

damaging posts are treated the same. However, in practice, the damaging posts fall

into different categories, and some may be more harmful to the users than others.

As a result, the adversary can focus on those categories more carefully. In such a

case, the challenger’s outputs and loss function need to be modified—the challenger

needs to output a weight per damaging category for each decoy post (indicating

the likelihood of fooling the adversary as a damaging post of that category). The

challenger would also have to balance the different categories of decoy posts to keep

the same distribution of categories as in the real damaging posts.

4.5.2 Obtaining Volunteered Posts From Users

Volunteer posts are a significant component of our system. We identify that there

are already deletion services which enable users to delete their content in bulk (e.g.,

“twitWipe” [114] and “tweetDelete” [97] for Twitter, “Social Book Post Manager” [115]
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for Facebook, “Cleaner for IG” [116] for Instagram, “Nuke Reddit History” [117], and

multiple bots on RequestABot subreddit for Reddit). Our system can benefit from

these bulk deletions to construct the volunteered posts pool. In such a scenario,

whenever a user bulk-deletes it will mark its damaging posts and the remaining posts

will be considered as “volunteered” with a guarantee that they will be deleted within

a fixed time period.

We contacted the deletion services mentioned above and shared our proposal,

Deceptive Deletions, for the privacy of users’ damaging deletions. The responses

that we received have been positive. They attest that, with Deceptive Deletions, an

attacker that observes the deletion of users in large numbers will have a harder time

figuring out which of the deleted posts contain sensitive material.

Nevertheless, other strategies could be more effective, for instance, one based

on costs and rewards. Under such a strategy, each user seeking privacy for his/her

damaging deletions is required to pay a cost for the service, whereas the users that

volunteer their non-damaging posts to be deleted by the challenger (at any future

point in time) are rewarded5. The costs and rewards can be monetary or can be

in terms of the number of posts themselves (i.e., a user has to volunteer a certain

number of her non-damaging posts to protect her damaging deletion). Nevertheless,

in an ideal world, the volunteered set could also be obtained from altruistic users who

offer their non-damaging posts for the protection of other users’ deletions.

Finally, we emphasize that (as observed in Section 4.4.4) even when there is one

decoy post for each damaging post (k = 1), the task of the adversary becomes signif-

icantly harder. Therefore, we can reckon that obtaining the pool of volunteer posts

is realizable.
5similar concept exist for other distributed systems such as BitTorrent [118,119].
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4.5.3 Rate Limiting the Adversary’s Data Access

In this work, we consider a very powerful adversary in terms of data access—

it is capable of taking snapshots of the entire platform at different times to identify

deleted posts (see Section 4.2.2). However, in practice, platforms can use rate-limiting

techniques to restrict access of the adversary to the users’ profile. Client-side strate-

gies [120, 121], deferred responding [122], and the common limitations on source IP

address, user, and API key [122, 123] are some of the well-known practices. A more

sophisticated approach is to use computational puzzles, where the adversary can only

access the data after successfully computing a puzzle given by the data platform.

Sample domains include data breach mitigation [124, 125], DDOS [126, 127], spam-

prevention [128], and practical cryptocurrencies [129]. These types of data limiting

restrictions are interesting future work and will only improve our results. In such a

case, the adversary will not be able to observe all the users’ profiles constantly, or it

will have blackout periods of the users’ profiles (not observing the deletions).

4.6 Concluding Remarks

In this chapter, we show the necessity for deletion privacy by presenting an at-

tack where an adversary is able to increase its performance (F-score) in identifying

damaging posts by 56% compared to random guessing. Such an attack enables the

system like Fallait Pas Supprimer to perform large-scale automated damaging deletion

detection, and leaves users with “damned if I do, damned if I don’t” dilemma.

To overcome the attack, we introduce Deceptive Deletions (which we also denote

as challenger), a new deletion mechanism that selects a set of non-damaging posts

(decoy posts) to be deleted along with the damaging ones to confuse the adversary

in identifying the damaging posts. These conflicting goals create a minmax game

between the adversary and the challenger where we formally describe the Deceptive

Learning Game between the two parties. We further describe conditions for two

extreme scenarios: one where the adversary always wins, and another where the chal-
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lenger always wins. We also show practical effectiveness of challenger over a real task

on Twitter, where the bar is significantly raised against a strong adaptive adversary

in automatically detecting damaging posts. Specifically, we show that even when we

consider only two decoy posts for each damaging deletion the adversarial performance

(F-score) drops to 65%, 42% and 38% where the challenger has no-access, restricted

black-box access and black-box access respectively. This performance indicates a sig-

nificant improvement over the performance of the same adversary (75% F-score) when

no privacy preserving deletion mechanism is in effect. As a result, we significantly

raise the bar for the adversary going after damaging deletions over the social platform.

Our work paves a new research path for the privacy-preserving deletions which

aim to protect against a practical, resourceful adversary. In addition, our deceptive

learning game can be adapted for current/future works in the domain of Private

Information Retrieval [83–86] that have a similar setting for injecting decoy queries

to protect the users’ privacy. Further, the challenger introduced in this work is

considered to be honest and to not misuse the damaging deletions against the users.

Considering distributed or federated protocols with multiple challengers as well as

private multiparty computation [130–133] can be a promising future work to mitigate

the complete trust of the challenger.
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5. EVALUATING THE EFFICACY OF DELETION
MECHANISMS

In the previous chapters, we observed different deletion mechanisms that are de-

ployed in the current social platforms (selective deletions and prescheduled dele-

tions). We further proposed two new deletion mechanisms: Intermittent withdrawal

(Lethe Chapter 3) and Deceptive Deletions (Chapter 4). In this chapter, we aim to

unearth the factors governing the usefulness of these four privacy preservation deletion

mechanisms. Specifically, we looked into the efficacy of the deletion-privacy enhancing

mechanisms, and identifying the key factors that led to the usefulness of mechanisms

to preserve deletion privacy. To that end, we ask: Are existing mechanisms useful for

enhancing deletion privacy? Why or why not?

We base this part of our study using four short videos. Those videos explained

the high-level functionalities of four different deletion mechanisms. These mechanisms

provide varying guarantees to protect deletion privacy. Users find selective deletions,

the current deletion mechanism used by most social platforms, to be ineffective in

protecting deletion privacy. The same users found other mechanisms more effective

than selective deletion. However, they also identify the shortcomings of these mech-

anisms. We provide a principled analysis of the pros and cons of each of the existing

mechanisms via mining the user perception for our participants.

5.1 Social Content Deletion Mechanisms

We identify four key mechanisms (the current deployed and our proposed mechanisms)

for facilitating deletion in social platforms:

Selective deletions: Majority of the social platforms today provide a selective

deletion mechanism–the posts are available on the platform until the user itself selects
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an unwanted post and deletes it. However, as we mentioned earlier, selective deletion

might attract unwanted attention to particular posts [19].

Prescheduled deletions: This mechanism automatically removes the users’ con-

tents when a specific criterion has been triggered (e.g., after a predefined time period

or after prolonged inactivity around post [134]), e.g., Snapchat and Instagram Stories

support this feature (e.g., delete content after 24 hours of posting). Prescheduled dele-

tions ensure that an adversary cannot single out specific deletions to find damaging

content (since all content will be deleted). However, on the down side, this mecha-

nism removes everything, implying there will not be any archive of social content for

users to reminiscence.

Intermittent withdrawal: Intermittent withdrawal [19] offers a deniability

guarantee for the users’ deletions in the form of an availability-privacy tradeoff. In this

mechanism, all of the non-deleted posts are intermittently hidden for some amount

of time. This hiding confuses an adversary while deciding if an unavailable post is

deleted by the user or just temporarily hidden by the platform.

Decoy deletions: In the decoy deletions [20] mechanism, given a set of sen-

sitive/damaging posts that users want to delete, the system selects k additional

non-sensitive/non-damaging posts for each sensitive/damaging post and deletes them

along with the damaging posts. The system-selected posts (decoy posts) are taken

from a pool of non-damaging non-deleted posts provided by volunteers. Decoy dele-

tions raises the bar for the adversary to identify deleted posts as they need to identify

the sensitive or damaging post among the k + 1 deleted posts.

5.2 Methodology

The methodology of this survey is the same as explained in Section 2.2. In this

section, we will only highlight the differences and refer the readers to Section 2.2 for

detailed explanation.
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5.2.1 Pilot Studies

Before deploying the survey, we conducted pilot studies to evaluate the procedure

of the study, determine the average duration, and test the comprehensibility of the

questions.

Initially, for this survey, we provided text descriptions of the threat model and

the characteristics of the deletion mechanisms. However, the participants found the

text descriptions to be monotonous, long, and more importantly hard to understand.

Understandably, this issue seemed to be more prominent for the Intermittent With-

drawal and Decoy Deletions, as they have not yet been implemented in any of the

popular platforms. As a result, we modified this part of the survey and created video

explanations of the deletion mechanisms (similar to [135]). This allowed us to provide

more information and present the mechanisms via examples and animations. We fur-

ther created another video for the explanation of the threat model prior to displaying

the mechanisms to the participants.

5.2.2 Survey Instrument

In this survey we captured the effectiveness and usefulness of different deletion

mechanisms from the perspective of the users. We presented the participants with four

deletion mechanisms—“Selective deletions”, “Prescheduled deletions”, “Intermittent

Withdrawal”, and “Decoy deletions” (detailed in Section 5.1). We realize that this

part involves possible hypothetical scenarios, as some participants may have never

used some of the mechanisms. Thus, we took a visual (audio and video) driven

approach to first educate the users on these mechanisms, and later ask about their

efficacy. This approach is similar to the ones used in prior work on familiarizing

participants on novel authentication mechanisms [135].

To have a fair comparison between the different mechanisms, prior to introducing

the mechanisms, we needed to present the threat model that we are considering

protection against. In this work, we adapted the same threat model considered in
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earlier works on deletion privacy–intermittent withdrawal and decoy deletions [19,20].

In this threat model, the adversary can observe the entire social platform. Therefore,

it can continuously access the platform to take snapshots of the posts with the goal

of identifying the damaging/sensitive deleted posts to use against the users. The

adversary aims to find as many as damaging/sensitive posts as possible and does

not perform targeted attacks on particular users. We demonstrated this threat model

using a short video at the beginning of this section and asked the participants whether

they have encountered attacks from such a malicious entity or how vulnerable do they

find themselves against it.

After presenting the threat model, we showed short (1-2 minute) videos (with

audio and subtitles) for each of the deletion mechanisms. Following each video, we

asked our participants how effective do they find the mechanism in hiding their dam-

aging/sensitive posts in the presence of the explained malicious entity. Further, we

asked them to explain under which scenarios the find the mechanism useful and/or

not useful.

For quality control of the survey, we used time-based filtering to ensure that

participants gave attention while watching the videos in our survey.

5.2.3 Limitations

The videos in our survey have been narrated by a non-native English-speaking

researcher, which may have caused some issues with the accent and pronunciations.

We made the best effort possible by recording multiple times and narrating according

to a script. Further, the videos have been uploaded to Youtube where the participants

have had the ability to use the subtitles if needed.

5.3 Evaluating Deletion Mechanisms

So far, we established the need for deletion privacy and uncovered its norms on

social platforms. In this section, we will compare the utility of deletion mechanisms
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for enhancing deletion privacy in the presence of a large-scale adversary. We begin

by investigating if the participants have ever experienced a negative scenario with the

explained adversary in Section 5.2.2.

Some users have been attacked by malicious entities

As detailed in Section 2.2.1, part II of the survey begins by explaining the malicious

entity (see Section 5.2.2) considered in this work, followed by asking the participants—

“Have you ever experienced a scenario where a malicious entity who collects all deleted

posts from a large number of users caused any issues/problems/discomforts for you

in any of the social media platforms?”

95% of the participants responded with “No”; However, 35% of them think that

this scenario is likely to happen to them. 34% responded that they don’t think it is

a likely scenario, and the remaining 31% were unsure.

Unfortunately, most of the 5% of the individuals that had a negative experience

did not provide details to the incident to extract meaningful patterns. However,

Participant P70 wrote—“I saw one of my deleted photos on a Pinterest account that

was not mine. It seemed like it was some kind of ad for earrings but it made me

a little uncomfortable.” In response to another question (usefulness of the Decoy

deletion mechanism), Participant P36 wrote about an experience that one of his/her

friend had in encountering such an attacker—“ ...such malicious entities surely exist.

My friend was contacted by one and threatened that the malicious entity would send

pictures to his mother.

5.3.1 The Current Deletion Mechanism Is Ineffective

For each of the deletion mechanisms (explained in Section 5.1): Selective deletions,

Prescheduled deletions, Intermittent Withdrawal, and Decoy deletions, a short video

was shown to explain the mechanism and its characteristics. Next, we asked—“In

your opinion, how effective is [Deletion Mechanism] in hiding your damaging/sensitive
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Fig. 5.1.: Effectiveness of deletion mechanisms

posts in the presence of a malicious entity who collects all deleted posts from a large

number of users?” We used a Likert scale for the responses: Not Effective at all

(0), Slightly Effective (1), Moderately Effective (2), Very Effective (3), Extremely

Effective (4). The results are depicted in Figure 5.1.

We statistically compared the effectiveness of different deletion mechanisms by

applying the Wilcoxon signed-rank test to find the likelihood that these four groups

of scores come from the same distribution. We performed six (i.e., pairwise) such

tests and set the threshold for significance to α = 0.05/6 = 0.008 to account for the

Bonferroni multiple-testing correction.

The results show that “Selective deletions” (i.e., the mechanism that is used by

many social platforms today) has a significantly different distribution from all the

other three mechanisms with a mean of 0.77 Likert-scale points compared to 2.01–

2.1. The remaining deletion mechanisms do not have a significant difference among

each other.

5.3.2 Useful Characteristics of the Deletion Mechanisms

In addition to the effectiveness question, in the form of a free-text box, we asked

the participant to describe cases where they find the mechanisms to be useful and/or
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Table 5.1.: Deletion Mechanisms’ Characteristics.

Deletion
Mechanism

Maintain
Privacy

User in
Control

Maintains
Archive

No Assistance
Needed No Privacy

Limited
User Control No Archive

Need of
Assistance

Selective 11 (8%) 28 (21%) 7 (5%) — 95 (70%) — — —
Prescheduled 63 (47%) — — — 18 (13%) 14 (10%) 56 (41%) —
Intermittent 77 (57%) 4 (3%) 7 (5%) 1 (1%) 23 (17%) 29 (21%) — —
Decoy 66 (49%) 1 (1%) 1 (1%) — 15 (11%) 10 (7%) 9 (7%) 27 (20%)

NOT useful to them. We categorized the responses into eight categories1, where

each corresponds to a characteristic of a mechanism in Table 5.1. The first four

characteristics cover the positive aspects of the deletion mechanisms, and the second

four characteristics point out their shortcomings.

In the previous section, we observed that “Prescheduled Deletions”, “Intermit-

tent Withdrawals”, and “Decoy Deletions” all have the same effectiveness in terms

of protecting the users’ damaging/sensitive deletions. In fact, providing privacy to

the removal of sensitive content was noted as the highlight of the mechanism in the

usefulness question as well. However, as we see in Table 5.1, each mechanism has a

particular deficiency that may become a barrier for their use.

Prescheduled Deletions. For this mechanism, participants particularly disliked

the fact that the platform will not have an archive of their posts and eventually every-

thing is deleted. Participant P19 states: “It could be EFFECTIVE (and thus, useful)

because it would take care of the issue of sensitive material being used maliciously.

However, effective doesn’t mean that I like the idea of it! It would NOT useful because

I like the idea of having access to my old content (great for memories, etc.) and do

NOT like the idea of losing it forever because of some system.”

Intermittent Withdrawal. In this mechanism, all the non-deleted posts are in-

termittently hidden for some amount of time by the system. Therefore, the users felt

a lack of control over their posts and profiles. Participant P15 said: “This system

could be useful if i made a sensitive post that I later decided to delete. However, it
1An additional “other” category was also used which we omit from the analysis.
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could also be problematic if a social platform randomly made an important post that

I needed my audience to see, invisible for a period of time.”

Decoy Deletions. In this mechanism, for each damaging/sensitive post, a set

of decoy posts that are not damaging/sensitive to their owners (other users in the

system) are selected to be deleted with the true damaging post. This procedure

confuses the malicious entity in distinguishing which of the posts in the deleted set

are the damaging/sensitive posts. Although many users found this tactic effective and

novel, the dependability on a pool of decoy posts from other users prevented them

from finding the mechanism useful. Participant P119 stated: “this technique could be

very effective if you want to delete a post and protect it from the entity. However it

is hard too find the decoy post.”

Selective Deletions. As we observed previously, “Selective Deletions” was voted the

least effective deletion mechanism in protecting the damaging deletions of the users.

However, in the usefulness question, we see that it holds a unique characteristic that

users admire. Giving the users full control of their posts and profile seems to be an

advantage of this mechanism. Participant P46 stated: “It’s not effective at all but it

is however the most popular among the bunch listed. People (even me) like to have

full control over our social medias and tweets. Regardless if a malicious bot tries to

collect sensitive information off of us.”

To no surprise, we see that in some cases, users will sacrifice their privacy over

the usability of the system. This work is an initial step towards discovering the needs

of the users and maintaining a balance between usability and deletion privacy.

5.4 Discussion and Future Work

5.4.1 Users Deeply Care About Their Old Posts

As we observed in Section 5.3, the major hurdle for using “Prescheduled Deletions”,

is the lack of users’ archival posts. Prior to the deployment of the survey, we suspected

that this problem would be a concern for the users. To that end, we added the
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following two questions to see how important is the value of post archives for the

users.

First, we asked—“How important is it for you that the social platform archives

all your posts (new and old) and gives you the ability to access/view them at any

time?”. 74% of the participants stated that having access to their posts at a later time

has some level of importance (24% extremely important, 33% very important, 17%

slightly important). The remaining 26% was split between 15% neutral and 11%, not

at all important.

We further asked—“How important is it for you that the social platform archives all

your posts (new and old) and gives others (i.e., those who you have given permission

to) the ability to access/view them at any time?”. 44% of the participants stated

this access pattern has some level of importance (9% extremely important, 14% very

important, 21% slightly important) to them. The remaining 56% was split between

26% neutral and 30%, not at all important.

This highlights the fact that users care about their old posts and not only want

to be able to access their own posts but also want others (to some level) to be able

to access them at later times.

5.4.2 Users’ Are Willing to Help to Enhance Deletion Privacy

In Section 5.1, we saw that “Decoy Deletions” benefits from a pool of volunteer

posts to provide privacy to the sensitive/damaging deletions. We further saw Sec-

tion 5.3 that users were worried about the need for assistance from other users’ of the

system for their sensitive/damaging deletions. Once again, before the deployment of

the survey, we suspected that the construction of the decoy pool could be a burden

for some of the users. However, to see the willingness of the users’ in protecting the

damaging deletions of themselves and others, we asked the participants—“Imagine

that Decoy Deletions is available to you on a platform. Would you be willing to offer

some of your non-sensitive/non-damaging posts that you won’t mind getting removed
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Table 5.2.: Users’ suggestions for other deletion mechanisms

Deletion Mechanism
# of
Votes

Platform
overhead

Users
overhead

Not posting regrettable content 19 None High
Proactive approaches 8 High Low
Rate-limiting the adversary 8 High None
Enhancing existing mechanisms 17 High Medium
Text Morphing 4 High Low

from your profile to be added to the decoy pool in order to protect the sensitive/dam-

aging deletions of yourself and other users?”. 41% of the participants responded Yes

(12% definitely yes, 29% probably yes), 39% of the participants responded No (13%

definitely no, 26% probably no), and the remaining 20% responded with “might or

might not”.

This shows that although the construction of the decoy pool and the need for

assistance from other users is a concern for some users, there are a significant number

of participants that are willing to contribute to the pool.

5.4.3 Future of Deletion Mechanisms

Before ending the survey, we wanted to capture whether participants could think

of other solutions for protecting sensitive deletions on social platforms. To that end,

we asked the participants—“Can you think of any other technique that can protect

user deletions in presence of the malicious entity mentioned above?”

In spite that many of the participants did not find any of the deletion mechanisms

to be very effective (see Figure 5.1), 54% (73 out of 135) stated that they cannot think

of any other technique for the protection of their deletions. Participant P36 wrote—“I

can’t think of any other technique because although I know someone it happened to I

never put much thought into the process”. We summarize the remaining responses

in Table 5.2
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Not posting regrettable content and non-globalization of the data. Asking

the users not to post regrettable content in the first place may seem like a good first

step. Indeed 14% (19 participants) of the participant suggested the same point. For

example, participant P23 responded with—“To be honest I think the best thing people

can do is think before they post”, and participant P83 stated—“The best defense is

don’t post sensitive stuff”. Although it is an effective method, it is impractical as it

puts lots of burden on the users. They cannot accurately predict what content would

be damaging to them in the future (e.g., before applying for a job position or after

a relationship breakup). On the positive side this method has no overhead challenge

for the platform. Further, ten participants suggested a non-globalization of the user

data by making the accounts private and only allowing the family members and close

friends to view the posts.

Proactively preventing the publication of sensitive content. Eight partic-

ipants pointed out different proactive approaches, similar to [38, 80]. In these pro-

posals, multiple types of classifiers (e.g., Neural Networks, Naive Bayes, etc.) detect

potential regrettable posts, to proactively advise users not to publish the posts. Par-

ticipant P186 clearly explains the proactive solution in his/her response—“Some kind

of bot/AI that, based on language and keywords, warn the user that their post may

be considered offensive or sensitive before they post it in the first place meaning they

can delete it before posting. Sometimes, I am not sure people realise that once they

post something, generally speaking the world online can see it. Even just asking ’Are

you sure?’ is enough to deter someone posting.”. Although helpful, in some cases,

this proactive approach cannot prevent users from publishing future-regrettable posts.

Further, these approaches create an overhead for the platform and slightly effects the

free publishing of the posts on the user side.

Rate-limiting the malicious entity. Eight participants pointed out that the

platforms should create some barrier for the malicious entities that collect the users’

data in large-scale. For example, participant P108 states—“Social networks could

make efforts to thwart bots and scrapers that collect posts and also monitor profiles
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for deletions. Maybe IP limiting or some sort of CAPTCHA style tech?.” In this

approach the adversary will not be able to observe all the users’ profiles constantly, or

it will have blackout periods of the users’ profiles (observing deletions with significant

delay). The downside of this approach is that all the burden will be on the platforms

and they have to be fully trusted.

Enhancing existing mechanisms. We further received 17 responses that pointed

back to one of the deletion mechanisms that we already presented to them (i.e., 10 for

Decoy, 5 for Prescheduled, and 2 for Intermittent). Some reiterated the mechanism

in their own words and some provided extra features that they found helpful.

For the “Prescheduled Deletions”, all five participants pointed out that the mech-

anism should have some sort of a selective archival procedure for at least the owner

of the post. Participants P16 goes one step further and requests availability of the

post for those who have interacted with the post as well—“Scheduled Privacy. After

a certain period of time/activity, all public posts automatically turn into private posts

that can only be viewed by the owner and those who interacted with it.”

For the “Decoy Deletions”, some participants mentioned that the users themselves

may generate some random and non-sensitive posts (or even posts that contradict the

original post) on their profiles and then at a later time delete them all together to

confuse the adversary. In another example, participants P55 and P60 mention that

the post that needs to be deleted should be hidden from the family members and

friends of the individual immediately and later using decoy deletions the platform

can remove it from the public (i.e., providing sufficient time to collect better decoy

posts).

Morphing the posts’ text. Finally, four of the participants suggest that rather

than deleting a sensitive post, users can edit them and when they become comfortable

enough with the edits then they can either delete it or just leave it on their profile.

Participant P62 wrote—“Altering the post completely and then delete it. If tried to

recover, the post would be completely different.” This interesting proposal can be

considered a feature of the platform itself, where this transition of the texts are
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automated. If this transition converts the sensitive posts to benign ones without

the users’ input, then the platform itself will not know what is sensitive to the user.

Hence removing the trust from the platform as well. The only burden that the users

will face is that the audience of the posts at a later time will be only able to see a

morphed version of the post and not the exact original text of the user.

5.5 Concluding Remarks

In this chapter, we saw that some users of the social platforms have experienced

a discomforting scenario against a malicious entity that collects all the deleted posts

from a large number of users. 35% of the remaining users that did not face such

attacks believe that it is a likely scenario that can happen to them. Furthermore,

we showed that selective deletions, the current deletion mechanism offered by many

social platforms, is inefficient in providing protection to the users’ deletions. Finally,

we highlighted the key factors that future social platform designers should consider

for attracting the users while providing them deletion privacy. These factors include

but not limited to—i) providing an archive of the users’ posts for future reference

ii) giving the users complete control of their posts, and iii) minimum or no need for

assistance from other users within the social platform.
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6. MONEYMORPH

One of the most ubiquitous and challenging problems faced by the Internet today is

the restrictions imposed on its free use. Repressive and totalitarian governments con-

tinue to censor Internet content to their citizens. Censors employ several techniques

ranging from IP address filtering to deep-packet inspection in order to block disfavored

Internet content [12]. Censored users are thereby prevented from not only accessing

information on the Internet but also from expressing their views freely. Given that,

several circumvention systems have been proposed over the last decade [13]. Never-

theless, censorship still remains a challenge to be fully resolved.

Nowadays, Bitcoin is observing a worldwide presence. Interestingly, this presence

is prevalent in countries with large-scale censorship [15, 136], and although possi-

ble in theory, completely censoring Bitcoin may not be in the best interest of most

countries [137]. The same holds true for other cryptocurrencies focused on smart

contracts as in Ethereum [16] or privacy-preserving coin transfers as in Zcash [17]

and Monero [18].

The availability of cryptocurrencies across different geopolitical corridors makes

them a suitable distributed rendezvous to post steganographic messages. In fact,

censored users can leverage their highly cryptographic structure to encode censored

data while maintaining undetectability. In this work, we thoroughly study the feasi-

bility of using the different available cryptocurrencies as a censorship circumvention

rendezvous.

In preparation, inspired from the key encapsulation mechanism (KEM), we con-

ceptualize the notion of stego-bootstrapping (SB) scheme that uses a two-way hand-

shake between a censored user and an uncensored entity (i.e., decoder) where a

decoder can transmit bootstrapping credentials of an entry point for a censorship-
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circumvention protocol (e.g., Tor Bridge) to the censored user in the presence of the

censor.

Our contributions. Firstly, we contribute MoneyMorph, our instantiation of the

SB scheme. The cornerstone of MoneyMorph consists in reusing functionality from

cryptocurrencies to make it seamlessly and interchangeably deployable with the major

cryptocurrencies available today. In fact, MoneyMorph works using Zcash, Bitcoin,

Monero, and Ethereum as rendezvous. Although we focus on widely deployed cryp-

tocurrencies, our techniques can be leveraged in many other cryptocurrencies that

share design principles with them. Supporting a wide range of cryptocurrencies in-

creases the rendezvous available for the censored users and thus their chances of

getting bootstrapping credentials.

Secondly, we carry out a comparative study of the different rendezvous by eval-

uating their effectiveness in terms of available bandwidth per transaction, monetary

costs, and percentage of sibling transactions. In our study, Zcash is the preferable

option with 1148 byte bandwidth per transaction costing less than 0.01 USD.

Finally, we have implemented MoneyMorph using Bitcoin, Ethereum, and Zcash

as rendezvous, demonstrating its practicality and backward compatibility. Our eval-

uation shows that encoding/decoding operations can be completed in less than 50

milliseconds. Moreover, at given block creation rates, the decoder and censored user

can simultaneously monitor several cryptocurrency blockchains looking for encoded

data in real-time, even with their commodity equipment.

6.1 Related Work

The traditional censorship circumvention systems such as VPNs [138, 139], Dy-

naweb [140], Ultrasurf [141], Lantern [142], Tor [143], and others [144] benefit from

establishing proxy servers outside of the censored area. However, these systems are

vulnerable to blockage. Censors actively scan and block the IP addresses of the prox-

ies. Circumvention systems respond with introducing new IP addresses. A prominent
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example of such a cat-and-mouse game is between Tor [143] and the Great Firewall of

China, which has resulted in introducing mirrors [145], bridges [22], and secret entry

servers [146] in the Tor system. At the same time, multiple attacks (e.g., active prob-

ing and insider attacks) have been proposed to discover the Tor bridges [147–149].

In recent years domain fronting [150, 151] has been introduced as a way to resist IP

address filtering. However, due to the high bandwidth and CPU usage, it can be

costly for the hosts [152]. To reduce the cost, we can benefit from the use of content

delivery networks (CDNs) namely CDNBrowsing [153, 154]. CDN’s disadvantage is

the unblocking of limited censored contents [153]. Moreover, as a central authority

controls these services, their support for censorship circumvention is not reliable [155].

The most recent line of work in censor circumvention is the decoy routing ap-

proach [156–161]. Decoy routing, unlike the typical end-to-end approach, it is an end-

to-middle proxy with no IP address. The proxy is located within the network infras-

tructure. Clients invoke the proxy by using public-key steganography to “tag” other-

wise ordinary sessions destined for uncensored websites. Other anti-censorship mech-

anisms available in the literature leverage blog pings as communication medium [162]

or hinder the harvesting attack by the censor relying on proof-of-work [163].

All of these approaches are orthogonal to what we present in this work. Mon-

eyMorph exploits the new form of a communication channel, blockchain, that has

been widely developed only recently. Hence, we believe it can coexist with current

approaches and help augment the plethora of possibilities for anti-censorship.

Stealth Addresses (SA) is a cryptographic technique that allows detaching public

keys from the intended receiver’s identity, thus providing anonymity. However, SA

does not define any data encoding mechanism. In this work, we not only ensure

the anonymity of the receiver but also investigate how we can use different parts

of the most used types of transactions in each of the cryptocurrencies to encode

bootstrapping information.

Concurrently to this work, Tithonus [164] contributed a censorship-resistant com-

munication tool that leverages the Bitcoin blockchain and the Bitcoin P2P network to
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Fig. 6.1.: Censorship circumvention bootstrapping problem. Censored user sends a
covertext to the decoder, who replies with another covertext including proxy’s details.
Then, the censored user can access censored information through the proxy. We focus
on the bootstrapping process (solid arrows).

enable communication between the censored and uncensored areas. While Tithonus

only considers Bitcoin as the communication channel, we instead define how to lever-

age other cryptocurrencies for rendezvous.

6.2 Problem Statement

We refer to the problem of bootstrapping communication into an uncensored area

as stego-bootstrapping. As shown in Figure 6.1, a censored user wants to receive

the credentials of a censorship-resistance protocol entry point (e.g., Tor bridge). For

that, the user encodes a challenge message into a short covertext cc (e.g., a blockchain

transaction) and sends cc to the rendezvous.

A decoder in the uncensored area provides the censored users with an entry point

credentials. For that, the decoder continuously inspects the chosen rendezvous for

covertexts, eventually getting the covertext cc, decoding it, and obtaining the chal-

lenge message from the user. Then, the decoder encodes the credentials in a new

response covertext rc and adds it to the rendezvous. The censored user can then

obtain rc, decode it, and get the bootstrapping details. What happens after this
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point is out of the scope of this work. We rely on complementary solutions for the

censorship-resistant communication.

The communication between censored user and decoder is hindered by the censor,

an entity that decides what messages enter or exit the censored area. The censor can

also run the protocol impersonating a censored user, learn the identity of the decoder,

and easily stop the messages that are directly addressed to it. Therefore, we require

a solution that communicates with the decoder without directly addressing messages

to it.

6.2.1 Stego-Bootstrapping Scheme

The stego-bootstrapping (SB) problem can be seen as a two-way handshake, a

challenge from the censored user to the decoder (forward direction), and the corre-

sponding response from the decoder to the censored user (backward direction). The

two-way handshake can be considered as two independent “one-way handshakes”, each

defined in terms of a public-key stegosystem [165], with a single setup, encoding and

decoding algorithms. This approach, however, requires the decoder and censored user

to know each other’s public keys in advance. In practice, instead, the censored user

knows the public key of the decoder, but the decoder does not know the public key

of the censored user. Therefore, inspired by the key encapsulation mechanism, we

consider the two-way handshake as a whole and only require that the censored user

knows in advance the decoder’s public key. Our SB scheme definition contains two

pairs of encoding and decoding algorithms, the first for the challenge operations and

the second for the response operations.

Here, λ is the security parameter; ε1(λ), ε2(λ) are negligible functions; Mc, Mr

are sets of challenge and response messages; Cc , Cr are sets of challenge and response

authenticated covertexts; and T is a set of tags. The f and b subscripts stand for

forward (challenge operation) and backward (response operations) directions.
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Definition 6.2.1 (Stego-Bootstrapping (SB) Scheme) The SB scheme is a tu-

ple of algorithms (SBSet, SBEncf , SBDecf , SBEncb, SBDecb) defined as below:

• vkd, skd, τ ← SBSet(λ). On input the security parameter λ, output a key pair vkd,

skd and a tag τ ∈ T .

• {((cc, σ), k),⊥} ← SBEncf (vkd, cm, τ). On input a public key vkd, a challenge

message cm ∈ Mc and a tag τ ∈ T , output either a tuple with an authenticated

challenge covertext (cc, σ) ∈ Cc and a symmetric key k; or the symbol ⊥ to indicate

an error.

• {(cm, k′),⊥} ← SBDecf (skd, (cc, σ), τ). On input a private key skd, an authenti-

cated challenge covertext (cc, σ) ∈ Cc and a tag τ ∈ T , output either a tuple with a

challenge message cm ∈Mc and a symmetric key k′; or ⊥.

• {(rc, σ′),⊥} ← SBEncb(skd, k′, rm). On input the private key skd, a symmetric

key k′ and a response message rm ∈ Mr, output either an authenticated response

covertext (rc, σ′) ∈ Cr; or ⊥

• {rm,⊥} ← SBDecb(vkd, k, (rc, σ′)). On input the public key vkd, a symmetric key

k and an authenticated response covertext (rc, σ′) ∈ Cr, output a response message

rm ∈Mr; or ⊥.

6.2.2 Threat Model

We consider the censor as a malicious adversary with network capabilities within

the censored area and additionally knows the public key of the decoder. The censor

does not control the decoder or its communications.

The censor is able to selectively inspect, fingerprint, block, or inject traffic within

the censored area. We assume, however, that the censor is restricted in two ways.

First, we assume that there are negative (economic) consequences for the censor to

block all communications between censored users and the rendezvous system where



128

both censored user and decoder post their messages. While the censor can always

prevent the access to a rendezvous as it has happened before with Telegram or SSL

connections [12, 166], we believe that this assumption is realistic in practice using

cryptocurrencies as rendezvous system. As the user base for different cryptocurrencies

grows, even in countries with heavy censorship, banning them all may have economic

consequences for the censor and the censored area [137]. In fact, this assumption is

already followed by other works in the community [167]. Second, we assume that

the censor cannot alter the information included in the rendezvous (e.g., the censor

does control the majority of the Bitcoin network hash rate). We find this assumption

realistic as it is required for the security of the rendezvous itself.

6.2.3 System Goals

Sibling Transactions. The SB system must maximize the number of messages

that follow the structure of steganographic messages. Otherwise, the censor can deny

service to the uncommon messages and yet maintain a functional system.

Cost-Efficiency. The SB system must provide a bootstrapping solution at a reduced

cost for the honest censored users and the decoder. We measure the cost in the USD.

Bandwidth. The SB system must provide a bootstrapping solution that maxi-

mizes the bandwidth (number of Bytes available) between the censored users and the

decoder for transferring the bootstrapping information.

6.3 Key Ideas

Blockchain as Rendezvous. We leverage the blockchain as rendezvous for censored

messages encoded as blockchain transactions. The many blockchain systems existing

today such as cryptocurrencies (e.g., Bitcoin), privacy-preserving cryptocurrencies

(e.g., Zcash or Monero), or smart contracts (e.g., Ethereum) are managed by dis-

tributed users worldwide. We observe that the cryptographic structure of blockchain

transactions can be used to encode censored data.
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Using a blockchain system as rendezvous implies that covertexts remain visible

even after the bootstrapping has finished. However, this cannot be leveraged by the

censor because MoneyMorph is secure against chosen-covertext attacks. Therefore,

the adversary cannot tell better than guessing whether a covertext contains boot-

strapping data. The censor is thereby left with the choice of banning the complete

blockchain system or allowing it completely.

Steganographic Tagging Scheme. We design a cryptographic construction to

convert censored messages into ciphertexts that can then be encoded into a covertext

transaction. The several public-key steganographic tagging schemes in the litera-

ture [165, 168–171] assume, in general, high bandwidth not available in blockchain

transactions. We adapt the construction in [159] aiming to ciphertext succinctness:

A ciphertext has a group element (e.g., an elliptic curve point) representing a pub-

lic key and a random-looking bitstring of the size similar to the plaintext message.

Moreover, the group element can be easily included in a blockchain transaction as it

already handles public keys.

Fees. MoneyMorph introduces a fee overhead, which is inevitable due to the use

of cryptocurrencies: A fee is paid to the miners to process and confirm transactions.

Increased use of a cryptocurrency implies a fee raise. Fortunately, virtually all cryp-

tocurrencies have built-in mechanisms to handle it.

Paid Services. Currently, many censorship circumvention systems are paid services,

including even a premium account, to provide better performance [142,150,152,172].

MoneyMorph can be used to bootstrap free of charge services (e.g., Tor) as well as

the mentioned paid services. The fee of MoneyMorph compared to the actual cost

of the mentioned services is negligible. Ultimately, MoneyMorph is a bootstrapping

mechanism that is employed infrequently by the censored user, resulting in a low

amortized cost over a long period of time.
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6.4 Our Protocol

6.4.1 Building Blocks

Encoding Scheme. The encoding scheme allows to encode challenge and response

data as a transaction compatible with the rendezvous. We defer our instantiations

with different cryptocurrencies to Section 6.5.

Let Dc and Dr be a set of challenge and response data respectively. Let Ac and
Ar be a set of challenge and response auxiliary information. Let Tc and Tr be a set

of challenge and response transactions, respectively.

Definition 6.4.1 (Encoding Scheme) An encoding scheme is a tuple of algorithms

(TxEncf , TxDecf , TxEncb, TxDecb) defined as below:

• {ctx,⊥} ← TxEncf (cd, ca). On input challenge data cd ∈ Dc and the challenge

auxiliary information ca ∈ Ac, output a challenge transaction ctx ∈ Tc or the

special symbol ⊥ to indicate an error.

• {cd,⊥} ← TxDecf (ctx). On input a challenge transaction ctx ∈ Tc, output chal-
lenge data cd ∈ Dc or the special symbol ⊥ to indicate an error.

• {rtx,⊥} ← TxEncb(rd, ra). On input response data rd ∈ Dr and the response

auxiliary information ra ∈ Ar, output a response transaction rtx ∈ Tr or the special

symbol ⊥ to indicate an error.

• {rd,⊥} ← TxDecb(rtx). On input a response transaction rtx ∈ Tr, output response
data rd ∈ Dr or the special symbol ⊥ to indicate an error.

Definition 6.4.2 (Encoding Scheme Correctness) An encoding scheme is cor-

rect if for every challenge data cd ∈ Dc, challenge auxiliary information ca ∈ Ac,
response data rd ∈ Dr and response auxiliary information ra ∈ Ar, it holds that:

(i) Let ctx ← TxEncf (cd, ca). Then, cd∗ ← TxDecf (ctx) and cd∗ = cd. (ii) Let

rtx← TxEncb(rd, ra). Then, rd∗ ← TxDecb(rtx) and rd∗ = rd.
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Non-interactive Key Exchange. A non-interactive key exchange (NIKE) is a

tuple of algorithms (NIKE.KGen,NIKE.ShKey), where (vk, sk) ← NIKE.KGen(id)

outputs a public-private key pair vk, sk for a given party identifier id . The algorithm

k ← NIKE.ShKey(id1, id2, sk1, vk2) outputs a shared key k for the two parties id1

and id2. We require a NIKE secure in the CKS model. Static Diffie-Hellman key

exchange satisfies these requirements [173, 174]. Additionally, we require a function

ID(vku) that on input a public key vku returns the corresponding identifier idu. We

implement this function as the identity function.

Key Derivation Function. A key derivation function KDF(k, l) takes as input a

key k and a length value l and outputs a string of l bits. We use the hash-based key

derivation function (HKDF) in [175] as the secure key derivation function.

Our Construction. In MoneyMorph (see Figure 6.2), we aim at optimizing the

succinctness of the ciphertext. For that, we first use the Diffie-Hellman key exchange

to generate a symmetric key (kd) between the censored user (SBEncf , steps 1-2) and

the decoder (SBDecf , step 3). This symmetric key (kd) shared between censored user

and decoder becomes a master key for a key derivation function to derive three other

keys (sks, kc, kr). Note that this key derivation function does not require interaction

between the censored user (SBEncf , step 3) and decoder (SBDecf , step 4).

The key kc is used by the censored user to encrypt the challenge message (cm)

along with a message tag τ (SBEncf , step 4). Correspondingly, the decoder uses kc

to decrypt the ciphertext created by the censored user (SBDecf , step 5) and checks

whether the decryption contains the tag τ (SBDecf , step 6). The decoder thereby

checks whether the ciphertext was the one created by the censored user or it does

not contain any censored information otherwise. The key kr is used similarly by the

censored user and the decoder to encrypt (SBEncb, step 2) and decrypt (SBDecb, step

4) the response message rm. Note that SBEncb and SBDecb must be invoked with

the same symmetric key kd computed in SBEncf and SBDecf to ensure correctness.

The last key (sks) becomes a fresh private key shared between the censored user

and the decoder. From sks, the censored user can create a public key vkp (SBEncf ,
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• vkd, skd, τ ← SBSet(λ).

1. Generate vkd, skd ← NIKE.KGen(idd)

2. Set τ ← {0, 1}64; Return vkd, skd, τ

• {(cc, k),⊥} ← SBEncf (vkd, cm, τ).

1. Compute vku, sku ← NIKE.KGen(idu)

2. Compute kd ← NIKE.ShKey(ID(vku), ID(vkd), sku, vkd)

3. Compute sks||kc||kr ← HKDF(kd, λ+ lc + lr)

4. Compute vkp ← vksks
d and set ctc := (τ ||cm)⊕ kc

5. Compute cc← TxEncf ((vku,H(vkp), ctc), sku)

6. If cc = ⊥, return ⊥. Else, return the tuple cc, kd

• {(cm, k′),⊥} ← SBDecf (skd, cc, τ).

1. Compute cd← TxDecf (cc). If cd = ⊥, return ⊥
2. Parse vk′u,H(vk′p), ct′c ← cd
3. Compute k′d ← NIKE.ShKey(ID(vkd), ID(vk′u), skd, vk′u)

4. Compute sk′s||k′c||k′r ← HKDF(k′d, λ+ lc + lr)

5. Compute vkd ← gskd ; vk′′p ← vksk′s
d and set m′ := ct′c ⊕ k′c

6. Parse τ ′||cm′ ← m′. Set b := (τ ′ = τ) ∧ (H(vk′p) = H(vk′′p))

7. If b = 0, return ⊥. Else, return the tuple cm′, k′d

• {(rc, σ′),⊥} ← SBEncb(skd, k′, rm).

1. Compute sk′s||k′c||k′r ← HKDF(k′, λ+ lc + lr)

2. Compute sk′′p ← skd · sk′s; vk′′p := gsk′′p and set ctr := rm⊕ k′r
3. Compute rtx← TxEncb((ctr, vk′′p), sk′′p)

4. Parse rtx as (rc, σ′) and return (rc, σ′)

• {rm,⊥} ← SBDecb(vkd, k, rc).

1. Compute rd← TxDecb(rc). If rd = ⊥, return ⊥
2. parse ct′r, vkp ← rd
3. Compute sks||kc||kr ← HKDF(k, λ+ lc + lr)

4. Set rm := ct′r ⊕ kr
5. If vkp 6= vksks

d , return ⊥. Otherwise, return rm

MoneyMorph

Fig. 6.2.: The MoneyMorph construction. We denote by lc and lr the number of bits
for the challenge and response message respectively. We denote string concatenation
by ||. Here, H is a cryptographic hash as implemented in the encoding scheme and ⊥
represents an error generated by the encoding schemes.
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step 4) such that only the intended decoder knows the corresponding private key skp

(as computed in SBEncb, step 2). We call the key pair vkp, skp as the paying key

pair. This key pair is used by the censored user to pay for the service provided by

the decoder. The censored user can associate coins to vkp so that when vkp becomes

a funded address in the blockchain, the decoder, knowing skp, can use those coins to

cover the cost of sending the response covertext to the censored user.

Note that the decoder can use the coins at vkp because our construction recon-

structs the corresponding skp only at the decoder side. This allows the decoder to

claim economic rewards without providing the response covertext. However, a ratio-

nal decoder would arguably respond faithfully to keep the business with the censored

users. Further, the decoder is trusted not to be running by the censor, as otherwise,

it can trivially link the censored user to the chosen covertext that it can successfully

decode. In practice, similar to the Tor directory, trusted decoders can be publicly

identified by their public keys. We formalize our construction forMoneyMorph in Fig-

ure 6.2.

6.5 Cryptocurrency Encodings

6.5.1 Encoding Scheme in Bitcoin

Address and Transaction Format. A Bitcoin address is composed of a pair of

signing and verification ECDSA keys. A Bitcoin address is then represented by the

Base58 encoding for the hash of the verification key. Bitcoins are exchanged between

addresses by means of a transaction. In its simplest form, a transaction transfers a

certain amount of coins from one (or many) input address to one (or many) output

address.

The Bitcoin protocol uses a scripting system called Script [176] that governs how

bitcoins can be transferred between addresses within a transaction. In particular,

coins are locked in an address according to SPKey, a Script excerpt that encodes

the conditions to unlock the coins. The fulfillment of such conditions are encoded
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Table 6.1.: Description of the Script excerpts used in the Bitcoin transactions. Text
in blue denotes SPKey and orange denotes the corresponding SSig.

Lock’s name Script Description of unlocking conditions

Pay2PKey 〈<pubKey> OP_CHECKSIG〉
〈<sig>〉

Including a signature 〈<sig>〉 of the Bitcoin transaction verifiable using
the verification key 〈<pubKey>〉.

Pay2PKeyHash 〈OP_DUPOP_HASH160 < pubKeyHash >
OP_EQUALV ERIFY OP_CHECKSIG〉
〈<sig> <pubKey>〉

Including a verification key 〈<pubKey>〉 such that 〈<pubKeyHash>〉
= H(〈<pubKey>〉) and a signature 〈<sig>〉 of the Bitcoin transaction
verifiable using the verification key 〈<pubKey>〉

Pay2ScriptHash 〈OP_HASH160 H(script) OP_EQUAL〉
〈<sig> <redeem_script>〉

Include a 〈redeem_script〉 such that H(redeem_script) = H(script)
and Eval (redeem_script, 〈<sig>〉) returns true.

Pay2Null 〈OP_RETURN [data]〉
〈<empty>〉

Coins can never be unlocked. Data can contain up to 80 bytes [177].

Pay2Multisig 〈OP_M < pubkey1 >. . .< pubkeyn >
OP_NOP_CHECKMULTISIG〉
〈<sig1> . . . <sigm>〉

Including M signatures 〈<sig1> . . . <sigm>〉 of the Bitcoin transaction,
verifiable using the corresponding verification keys
〈<pubkey1> . . . <pubkeyn>〉

in another Script excerpt called SSig. A transaction is valid if coins unlocked (or

spent) in the transaction have not been spent previously; the sum of input coins is

greater or equal to the sum of output coins; and for each input SPKeyi there exists a

SSigi such that a function Eval(SPKeyi,SSigi) returns true, where Eval evaluates

whether SSigi contains the correct fulfillment for the conditions encoded in SPKeyi.

Possibilities for Encoding Data. Our approach consists on encoding the tagged

message originated by the censored user as (some of) the conditions defined in the

outputs SPKeyi. We describe the different possible formats of the Bitcoin standard

locking mechanism in Table 6.1. In the following, we describe how to re-use each of

them to encode data within a transaction.

Pay2PKey: Instead of including an actual verification key within the 〈<pubKey>〉
field, it is possible to encode 33 bytes of data simulating thereby an ECDSA verifica-

tion key. This encoding, however, implies the loss of locked coins as it is not feasible

to guess a signing key corresponding to the data encoded as verification key.

Pay2PKeyHash: Instead of including the 20 bytes corresponding to the hash of a

verification key within the 〈<pubKeyHash>〉 field, it is possible to encode 20 bytes

of data. This encoding does not restrict the encoded data to an ECDSA verification

key. Nevertheless, this encoding also implies the loss (or burnt in Bitcoin terms) of

the locked coins since it is not feasible to come up with the pre-image of a random

hash value.
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Pay2ScriptHash: Similar to the Pay2PKeyHash, it is possible to encode 20 bytes

of data replacing the field H(script). This approach allows the inclusion of arbitrary

random data at the cost of losing the locked coins.

Pay2Null: It allows the encoding of up to 80 bytes of data within the field 〈[data]〉.
Although, this lock mechanism provides the maximum bandwidth so far, it also im-

plies the loss of the locked coins.

Pay2Multisig: As only M verification keys are actually used in this lock mecha-

nism, it is possible to encode 33 bytes of data in each of the remaining N −M keys,

simulating thereby an N −M ECDSA verification keys. Advantage of this encoding

is that the locked coins can be unlocked as the necessaryM verifications are not mod-

ified. It is possible, however, to encode 33 bytes of data in each of the N verification

keys at the cost of losing the locked coins.

Implementation Details.

We encode the censored data within locking mechanisms of the type Pay2PKeyHash

(pkh) or Pay2ScriptHash (psh). Hereby, we use SPKeypkh(H(vk)) to denote the

sequence 〈OP_DUP OP_HASH160 H(vk) OP_EQUALV ERIFY OP_CHECKSIG〉 and

SPKeypsh(H(vk)) to denote the sequence 〈OP_HASH160 H(vk) OP_EQUAL〉. Simi-

larly, we denote by SSig(tx, sk, vk) the condition defined as 〈ECDSA.Sign(tx, sk) vk〉.
Finally, we denote by Extract an extraction function such that Extract{pkh,psh}(SPKey(x)) =

x and Extract(SSig(tx, sk, vk)) = vk.

{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > 20

bytes, return ⊥. Otherwise, create a Bitcoin transaction tx1 as described below.

We assume that ct has been padded with pseudorandom bytes so that |ct| = 20 bytes

and vku has been funded earlier with x BTC. This amount of coins encode the coins

to be burnt at the output SPKeypsh as well as the amount of coins required by the

decoder to pay for the transaction fee of the response covertext.
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tx1

Inputs SPKey′pkh(H(vku)), x BTC

Outputs SPKeypsh(ct), γ1BTC

SPKeypkh(H(vkp)), (x− γ1)BTC
Signature SSig(tx1, sku, vku)

{cd,⊥} ← TxDecf (ctx). If ctx does not have one input and two outputs or

the lock mechanisms are not of the type Pay2PKeyHash and Pay2ScriptHash, re-

turn ⊥. Otherwise, compute ct as ct ← Extract(SPKeypsh(ct)). Compute vku ←
Extract(SSig(tx, sku, vku)). Compute H(vkp) ← Extract(SPKeypkh(H(vkp))). Return

the tuple cd := (vku,H(vkp), ct).

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 40 bytes,

return ⊥. Otherwise, create a Bitcoin transaction tx2 as described below. Return tx2.

As before, here we assume that ct has been padded with pseudorandom bytes so that

|ct| = 40 bytes.

tx2

Inputs SPKey′pkh(H(vkp)), (x− γ1) BTC

Outputs SPKeypsh(ct[0 : 19]), γ2BTC

SPKeypkh(ct[20 : 39]), (x− γ1 − γ2)BTC
Signatures SSig(tx2, skp, vkp)

{rd,⊥} ← TxDecb(rtx). If rtx does not have one input and two outputs, return

⊥. If the lock mechanisms are not of the type Pay2PKeyHash and Pay2ScriptHash,

return ⊥. Otherwise, compute ct[0 : 19] ← Extract(SPKeypsh(ct[0 : 19)) and ct[20 :

39] ← Extract(SPKeypkh(ct[20 : 39])). Compute vkp ← Extract(SSig(tx, skp, vkp)).

Return rd := (ct, vkp).

System Discussion.

Sibling Transactions. We have downloaded a snapshot of the Bitcoin blockchain

containing blocks 580, 000 to 600, 000 (June-Oct 2019), containing around 45 million

Bitcoin transactions. In this dataset, we observe that the majority of the transac-

tions contain one input and two outputs. Furthermore, we examined the outputs’
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Fig. 6.3.: CDF of the value and age, in the outputs of Pay2PKeyHash transactions
that contain only one input and two outputs. The value is given in Satoshi (a Satoshi
is 10−8 BTC). The age is given in block height (on average each block in the Bitcoin
network is created every 10 minutes).

locking mechanisms and observed that the combination of one Pay2PKeyHash and

one Pay2ScriptHash construct 32% of all transactions followed by two Pay2PKeyHash

with 23%. To maximize the sibling transactions, we have selected the combination

of Pay2PKeyHash and Pay2ScriptHash as the lock mechanism to be used by Money-

Morph to raise the bar for the censor targeting a single transaction type. Nevertheless,

if the aforementioned transaction trend changes, any of the locking mechanisms men-

tioned earlier can be used to lock the coins while encoding censored data [178], which

provide the same bandwidth as Pay2PKeyHash or more. Therefore, MoneyMorph

users could dynamically adjust the encoding scheme based on the transaction output

distribution in Bitcoin at different times.

Cost. MoneyMorph (BTC) requires to pay two transaction fees (tx1 and tx2) as well

as burn coins three times because the SPKey outputs used to encode the ciphertexts

are no longer spendable. At the time of writing, the fastest and cheapest fee for a

transaction is about 4, 500 Satoshi (0.34 USD) [179]. If the censored user is willing to

wait two hours for its transaction to get into the blockchain, the cost is reduced to

2, 700 Satoshi (0.2 USD)

Furthermore, to find the minimum value for burning coins (γ1 and γ2) without

trivially being censored, we investigated all previous transactions with one input and
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two outputs. Section 6.5.1 shows the CDF value of the amounts in the outputs of such

transactions. We observed that in order to blend with at least 25% of the outputs,

the burned amount should be at least 2, 500 Satoshi (0.25 USD). We further analyzed

the UTXO set and observed that about 50% of the outputs remain unspent for more

than 9 months (Section 6.5.1) ; therefore, the MoneyMorph transactions could go

unnoticed for a long period of time. We note that Bitcoin has a supply of 21 million

Bitcoins. With the current amount of burnt coins per transaction, we would require

∼ 8∗1011 transactions to terminate the supply, and thus burnt coins have a negligible

effect on the economics of Bitcoin.

Bandwidth. MoneyMorph (BTC) uses SPKey fields to encode the data. Each SPKey

field is leveraged to encode exactly 20 bytes (using Pay2PKeyHash or Pay2ScriptHash).

This provides a 20 byte bandwidth for the challenge covertext, as one of the two

SPKey fields is used. On the other hand, the response covertext has a 40 byte

bandwidth as it uses both of SPKey fields to encode encrypted data.

Limitations. MoneyMorph (BTC) suffers from two limitations: (i) it requires to burn

coins; and (ii) forces the censored user to prepare a spendable input with the precise

value amount to generate transactions tx1 and tx2. These two limitations can be

mitigated by using the Pay2Multisig script in the encoding (as explained earlier in

this section and similarly used in the community [164]), or adding an extra output

as a change address. Both mitigations come at the cost of reducing the number of

sibling transactions. Alternatively, MoneyMorph can mitigate these limitations by

leveraging other cryptocurrencies discussed in this section.

6.5.2 Encoding Scheme in Zcash

Addresses and Transactions. Ben-Sasson et al. [17] proposed Zerocash, a privacy-

preserving cryptocurrency scheme. The core idea behind Zerocash has been imple-

mented in Zcash [180]. As the implementation slightly differs, we focus our description
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on the cryptocurrency as detailed in the paper [17] and extend the implementation

details when it applies.

Zerocash [17, 180] supports two types of addresses: transparent and shielded. A

transparent address is defined by an amount x of coins that are locked according to a

script excerpt SPKey that encodes the conditions to unlock the coins. The fulfillment

of such conditions are encoded in another Script excerpt called SSig. More details

are included in Section 6.5.1.

A shielded address (or coin) is a tuple of the form (pk,x, ρ, r, s, com), where pk is

a public key generated as PRFsk(0) with PRF being a pseudo-random function and

sk being a private key; x is the value associated to this coin, ρ, r and s are random

seeds and com is a commitment that represents the coin. We describe the format of

com later.

Zcash transactions transfer coins from input(s) to output(s) which can be both

transparent and shielded addresses. Figure 6.4 shows an example of such transac-

tion. Omit for a moment the transparent address in the input. Then, the rest of

the transaction is an example of a user that wants to split the coin (i.e., cold, snold)

into two new coins cnew
1 and cnew

2 . For that, she creates a single shielded output

(rt, snold, comnew
1 , ct1, comnew

2 , ct2, h, vk∗, σ∗,Πpour) as follows: rt denotes the root of a

Merkle tree whose leafs contains all the commitments {comi} included so far in the

blockchain; snold := PRFskold(ρ) is the serial number associated to the coin being

spent; comnew
1 and comnew

2 are the commitments formed as described for com but for

new values xnew
1 and xnew

2 . The values ctnew
1 and ctnew

2 are two ciphertext that con-

tain the corresponding (xnew
i , ρnew

i , rnew
1 , snew

1 ). These ciphertexts are encrypted for the

corresponding payee. The payee can then locally reconstruct the complete coin infor-

mation as cnew
i := (pknew

i ,xnew
i , ρnew

i , rnew
1 , snew

1 , comnew
i ). Finally, vk∗ is a fresh ECDSA

Input SPKey0, x0 ZEC
Output (rt, snold, comnew

1 , ct1, comnew
2 , ct2, h, vk∗, σ∗,Πpour)

Sign. SSig1

Fig. 6.4.: Example of transaction in Zcash.
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verification key, h := PRFskold(H(vk∗)), σ∗ is a signature of the complete output under

sk∗, and Πpour is a zero-knowledge proof of the correctness of the output (e.g., snold

corresponds to one of the shielded coins ever created or σ∗ can be correctly verified

using vk∗). We refer readers to [17] for a detailed explanation.

A transaction can have several transparent inputs and any combination of shielded

and transparent outputs. A transaction is valid if, for every shielded output, σ∗ is a

valid signature under verification key vk∗ and Πpour correctly verifies. Furthermore,

for every transparent output, the coins unlocked (or spent) have not been spent

previously; the sum of input coins is greater or equal to the sum of output coins; and

for each input SPKeyi there exists a SSigi such that a function Eval(SPKeyi,SSigi)

returns true, where Eval evaluates whether SSigi contains the correct fulfillment for

the conditions encoded in SPKeyi.

Possibilities for Encoding Data. In a shielded output, there are several fields

rt, snold or comnew
i that cannot be used to encode our data without making the zero-

knowledge proof Πpour fail. However, assume that a user creates a transaction to

send a coin to herself, then the data encrypted in cti is not required as the intended

payee is the user itself. Our insight then consists in encoding our data as the different

ciphertexts available in the shielded outputs for coins sent to the user herself. We note

that this ciphertext field contains an ephemeral public key for a Diffie-Hellman key

exchange, followed by a bitstring of encrypted data with the corresponding symmetric

key. The portion of encrypted data constitutes 584 bytes that can be reused to encode

steganographic data in our system.

Furthermore, some data can be encoded in the conditions SPKey of the trans-

action. In this work we consider the Pay2PKeyHash condition format that includes

the 20 bytes corresponding to the hash of a verification key. The SPKey (H (vk))

along with the SSig of the transaction allows us to encode a verification key. For

more details we refer to Section 6.5.1.

Implementation Details. Here, Extract is an extraction function working as fol-

lows: Extract(SPKey(x)) = x as well as Extract(SSig(tx, sk, vk)) = vk. Additionally,
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on input a field f and a transaction tx, it returns the value of f if present in the

shielded output of tx.

{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd and sku ← ca. If |ct| > 1148

bytes, return ⊥. Otherwise, create a Zcash transaction tx1 as shown below and return

tx1. Here, we assume that vku has been funded earlier with x ZEC and that there exists

an old coin with a value xold, previously funded in a shielded output, whose serial

number is snold.
tx1

Input SPKey1(H(vku)), x ZEC

Output (rt, snold, comnew
1 ,H(vkp)||ct[0, 563], comnew

2 , ct[564, 1147], h, vk′, σ,Πpour)

Sign. SSig(tx, sku, vku)

The pair (comnew
1 , ctnew

1 ) is set to an honest shielded coin for the censored user to

get the remaining coins back. Therefore, comnew
1 is well formed committing to a coin

with value x + xold − xy. However, as the censored user is sending coins to herself,

ct1 is not required and can be used to encode the public key vkp and ct[0, 563] (i.e.,

first 564 bytes). The value xy must be enough to pay for the transaction fee. Finally,

the pair (comnew
2 , ct2) is used to encode the rest of the ciphertext ct. For that, comnew

2

is set to a commitment for a coin with value x = 0 and set ctnew
2 := ct[564, 1147]. If

|ct| < 1148 bytes, ct is padded with pseudorandom bytes. Finally, a fresh key pair

vk′, sk′ is used for the signature σ and the hash h of the shielded output.

{cd,⊥} ← TxDecf (ctx). If ctx does not have a transparent input and a shielded

output, return ⊥. Otherwise, Compute H(vkp)||ct[0 : 563]← Extract(ctx, ct1), ct[564 :

1147]← Extract(ctx, ct2), and vku ← Extract(SSig(tx, sku, vku)). Return cd := (vku,H(vkp), ct).

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 1168 bytes,

return ⊥. Otherwise, create tx2 as shown below and return tx2.

tx2

Input SPKey(H(vkp)), x∗ ZEC

Output (rt, snold
1 , comnew

3 , ct[0, 583], comnew
4 , ct[584, 1167], h′, vk′′, σ′,Π′pour)

Sign. SSig(tx2, skp, vkp)
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This transaction spends the coins on vkp previously funded by the censored user

in tx1. The rest is constructed as in tx1, with the difference that we don’t include the

paying public key and thus gaining an extra 20 bytes that we can use for the encoding

of the response.

{rd,⊥} ← TxDecb(rtx). If rtx does not have a transparent input and a shielded

output, return ⊥. Otherwise, compute ct[0 : 583] ← Extract(rtx, ct3) and ct[584 :

1167] ← Extract(rtx, ct4). Extract vkp ← Extract(SSig(rtx, skp, vkp)). Return rd :=

(ct, vkp).

System Discussion.

Sibling Transactions. We have obtained blocks 0 to 480, 000 from the Zcash blockchain,

containing about 4.2 million transactions. First, we observe that around 11% of the

outputs are shielded. Although small, we note that shielded addresses have started to

be used, and in Oct 2019, 19% of the transactions contained shielded outputs [181].

Second, we observe that there exist two new coins (and thus two pairs of (com, ct))

for the shielded outputs. Third, we observe, from Figure 6.5, that around 60% of

shielded Zcash transactions included one transparent input. Therefore, to maximize

the blending with other transactions, we use transactions that are structurally iden-

tical to the most widely used shielded transactions in Zcash blockchain. We further

looked into the transactions from Aug 2019, and they showed the same trend of

observations from earlier months.

Cost & Bandwidth. MoneyMorph (ZEC) requires to pay only two transaction fees.

The rest of the coins are sent back to the censored user using the shielded coins. The

price of the transaction fee is 0.0001 ZEC (0.003 USD). MoneyMorph (ZEC) uses the

ciphertext cti of a Zcash transaction, encoding 1148 bytes for the challenge and 1168

bytes for the response covertexts.
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6.5.3 Encoding Scheme in Monero

Addresses and Transactions. A Monero address is of the form (A,B), where A

and B are two points of the curve ed25519, as defined in Monero. In order to avoid

the linkability of different transactions that use the same public key, a payer does not

send the coins to the Monero address of the payee. Instead, the payer derives a one-

time key verification key vk and an extra random point R, from the payee’s address

using the Monero Stealth Address mechanism [182]. Given an arbitrary pair (vk′, R′)

set as an output in the blockchain, a payee can use her Monero address to figure out

whether the pair (vk′, R′) was intended for her and, if so, compute the signing key sk′

associated to vk′. We note that while Stealth Addresses hide the intended receiver,

they do not define a mechanism to encode censorable data. We refer the readers

to [182] for further details.

A Monero transaction is divided into inputs and outputs. An input consists of a

tuple ({vki}, {Com(xi, ri)}, {Πi}), where {vki} is a ring of one-time keys that have

previously appeared in the blockchain, each Com(xi, ri) is a cryptographic commit-

ment of the amount of coins xi locked in the corresponding public key vki, and each

Πi is a zero-knowledge range proof proving that xi is in the range [0 : 2k], where k is

a constant defined in the Monero protocol.
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Inputs ({vki}, {Com(xi, ri)}, {Πi})
Outputs ((vk′1,R

′
1),Com(x′1, r

′
1),Π

′
1)

((vk′2,R
′
2),Com(x′2, r

′
2),Π

′
2)

Sign. σring

Fig. 6.6.: Illustrative example of a Monero transaction.

An output consists of a tuple ((vk′,R′), Com(x′, r′), Π′), where each element is

defined as aforementioned. Finally, a transaction contains a signature σring, created

following the linkable ring signature scheme [183]. A Monero transaction is valid if

the following conditions hold. First, σring shows that the sender knows the signing

key sk∗ associated to a verification key within the set {vki} and such key has not been

spent before. Second, let x∗ be the amount of coins encoded in the input commitment

corresponding to the one-time key being spent. Then it must hold that x∗ equals the

sum of the output values. Finally, all zero-knowledge range proofs correctly verify

that all amounts are within the expected range. An illustrative example of a Monero

transaction with one input and two outputs is depicted in Figure 6.6.

Linkable Ring Signature Scheme. Let λ be the security parameter, and let

Zp be a group of prime order p. Moreover, let G be a cyclic group generated by the

generator g as defined in the Monero protocol. Then, a linkable ring signature scheme

(LRS.KeyGen,LRS.Sign, LRS.Verify) is defined as:

• vk, sk← LRS.KeyGen(λ): Sample sk←$ Zp and compute vk := gsk.

• σ ← LRS.Sign((vk1, . . . , vkn−1, vkn), skn,m): Sample r ←$ Zp. Compute I :=

skn · H(vkn) and h0 ← H(m||gr||H(vkn)r). Then, sample s1, . . . sn−1 ←$ Zn−1p and

compute the following series:

hi := H(m||gsi · vkhi−1

i ||H(vki)si · Ihi−1)

Now, solve s0 such that H(m||gs0 · vkhn−1
n ||H(vkn)s0 · Ihn−1 = h0. For that, solve

gsn−1 · vkhn−2

n−1 = gr, getting that s0 = r − hn−1 · skn. Finally, output σ :=

(s0, s1, . . . , sn−1, h0, I).
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• {>,⊥} ← LRS.Verify((vk1, . . . , vkn),m, σ): Parse (s0, s1, . . . , sn−1, h0, I)← σ and

compute the series:

hi := H(m||gsi · vkhi−1

i ||H(vki)si · Ihi−1)

Return > if h0 = hn. Otherwise, return ⊥.

Possibilities for Encoding Data. As the information in an input tuple must pre-

viously exist in the blockchain, we cannot modify them. Our approach consists then

in crafting an output tuple that encodes certain amount of data while maintaining the

invariants for the validity of the transaction. In particular, our insight is that if a user

transfer coins to herself, she does not need to create the pair (vk,R) from her own

address (A,B), using the stealth addresses mechanism. However, the commitment

and the range proof must be computed honestly, as otherwise transaction verification

fails and the transaction does not get added to the blockchain.

Further, we can encode extra data within the signature (see Section 6.5.3). In

particular, we observe that the LRS.Sign algorithm samples n−1 random values from

Zp. Our insight is that instead of sampling random numbers, we use the corresponding

bytes from a ciphertexts as random numbers. As values s1, . . . , sn−1 are included in

the signature of the transaction, they allow to increase the bandwidth. Currently,

Monero establishes that the rings must contain 11 public keys and thus 10 random

numbers can encode data.

Implementation Details. Here we detail the encoding of covertexts into Monero

transactions.

{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct← cd and parse sku ← ca. Create

a transaction tx1 as shown below. The ciphertext ct is split in chunks of 32 bytes and

each chunk is included as a value si in the signature.
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tx1

Inputs ({vki1}, {Com(xi1, r
i
1)}, {Πi

1}),
({vki2}, {Com(xi2, r

i
2)}, {Πi

2})
Outputs ((vku,R′1),Com(x′1, r

′
1),Π

′
1),

((vkp,R′2),Com(x′2, r
′
2),Π

′
2)

Sign. σring := (s0, s1, . . . , sn−1, h0, I),

σ′ring := (s′0, s
′
1, . . . , s

′
n−1, h

′
0, I ′)

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and parse skp ← ra. Create a

Monero transaction tx2 as described below.

tx2

Inputs ({vki1} ∪ vkp, {Com(xi1, r
i
1)}, {Πi

1}),
({vki2}, {Com(xi2, r

i
2)}, {Πi

2})
Outputs ((vk′1,R

′
1),Com(x′1, r

′
1),Π

′
1),

((vk′2,R
′
2),Com(x′2, r

′
2),Π

′
2)

Sign. σring := (s0, s1, . . . , sn−1, h0, I),

σ′ring := (s′0, s
′
1, . . . , s

′
n−1, h

′
0, I ′)

{cd,⊥} ← TxDecf (ctx). Extract the ciphertext ct by concatenating the values

in the signature, and the pair vku, vkp from each of the outputs. Return the tuple

cd := (vku,H(vkp), ct).

{rd,⊥} ← TxDecb(rtx). Extract the ciphertext ct from the values included in the

signature and extract vkp from the input ring. Return rd := (vkp, ct).

System Discussion.

Sibling Transactions. We downloaded a snapshot of the Monero blockchain that con-

tains blocks 1, 890, 000 to 1, 940, 000 (July-Oct 2019), with more than 200 thousand

transactions. From this dataset, we have extracted the distribution of the number

of inputs and outputs used by the transactions. We observe that transactions with

one and two inputs, each consist of around 48% and 42% of the transactions. Fur-

thermore, around 89% of them have two outputs. Therefore, to maximize our sibling
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transactions and bandwidth goals, we opt for transactions with two inputs and two

outputs.

Cost & Bandwidth. MoneyMorph (XMR) requires to pay only two transaction fees.

The price of the transaction fee is 0.0005 XMR (0.03 USD). Each of the outputs provides

us with ten fields of 32 bytes, totaling the bandwidth of 640 bytes.

Traditional Privacy-Preserving Currencies vs. MoneyMorph. Privacy-

preserving currencies already support encrypted messaging; however, the straight-

forward use of private payments is disadvantageous with respect to MoneyMorph.

Our approach for Zcash enables more than twice the bandwidth compared to the

traditional use case. (i.e., the user pays to herself and memo must not include pay-

ment information for the receiver). The 32 bytes of the payment-id in Monero are

not enough to send a key (i.e., already 32 bytes) and some extra query data (e.g.,

proxy type). Instead, MoneyMorph provides ten times the bandwidth provided by

the straightforward use of Monero.

6.5.4 Encoding Scheme in Ethereum

In Ethereum, there exist two types of addresses: external addresses and contracts.

An external address is formatted as in Bitcoin and holds a certain amount of ETH,

the Ethereum native coin. They, however, differ in that unlike Bitcoin and Zcash,

addresses in Ethereum can be used multiple times. A contract has associated a piece

of software that implements a certain business logic. A contract invocation requires

data as input for the contract execution. In this work, we focus on the use of contracts

to encode steganographic data.

We have downloaded a snapshot of the Ethereum blockchain and extracted the

transactions invoking contracts. We observed that among them, the contract Etherdelta_2

(an exchange contract) [184] is the most invoked (8% of all transactions) and thus we

use it in our encoding mechanism. Nevertheless, the approach described here can be

easily extended if any other contract is invoked. The testTrade is a method in this
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contract that checks whether a trade between two different addresses can take place.

We will use this sample method to encode our data.

The signature of this method is as follow:

testTrade ( address tokenGet , u int amountGet , address tokenGive ,

u int amountGive , u int exp i r e s , i n t nonce , address user ,

u int8 v , bytes32 r , bytes32 s , u int amount , address sender )

Each address is 160 bits and the uint values are 256 bits. To minimize the suspi-

ciousness of the censor we only encode data in the amountGet, amountGive, expires,

amount fields and use the lower 32 bits (to simulate realistic amounts). We get a

total bandwidth of 20 bytes which is enough to bootstrap the censored user.

We denote H(vk) by address(vk). We denote by Extract(tx, tag) a function that

returns the value of the field tag, e.g. Extract(tx, Receiver) = H(vk2).

{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| > 20

bytes, return ⊥. Otherwise, first create an Ethereum transaction tx0 to fund the one-

time key vkp with x ETH as described below. The minimum value of x is 0.001 ETH

(0.15 USD), which is equivalent to one transaction fee (γ′) for calling the contract. The

transaction fee (γ) for transferring Ether to external accounts is about 0.0002 ETH

(0.03 USD).

tx0 (Fund one-time key)

Field Receiver Amount Fee Signature Data

Value H(vkp) x ETH γ ETH σ(sku), vku —

Next, create an Ethereum transaction tx1. Split the ciphertext ct in chunks of 5

bytes. Each chunk is included as a value vi in the low bit order of the amountGet,

amountGive, expires, amount fields of the data field of a contract call. Rest of the

fields are not changed and will contain proper addresses and values as aforementioned.

Moreover, we assume that ct has been padded with pseudorandom bytes so that

|ct| = 20 bytes. H(vke) denotes the address of the Etherdelta_2 contract. The value

is set to zero and the only cost will be the transaction fee. Return tx0||tx1.
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tx1

Field Receiver Amount Fee Signature Data

Value H(vke) 0 γ′ ETH σ(sku), vku v1, v2, v3, v4

{cd,⊥} ← TxDecf (ctx). Parse tx0||tx1 ← ctx. If tx1 does not have H(vke) as

the receiver, return ⊥. Otherwise, extract the ciphertext ct by concatenating the

values in data ← Extract(tx1, data). Compute σ(sku), vku ← Extract(tx1, signature).

Compute H(vkp)← Extract(tx0, receiver). If H(vkp) does not have at least 0.0003 ETH

associated coins, return ⊥. Otherwise, return the tuple cd := (vku, H(vkp), ct).

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > 20 bytes,

return ⊥. Otherwise, create an Ethereum transaction tx2 as described below. Return

tx2. As before, here we assume that ct has been padded with pseudorandom bytes so

that |ct| = 20 bytes.
tx2

Field Receiver Amount Fee Signature Data

Value H(vke) 0 γ′ ETH σ(skp), vkp v1, v2, v3, v4

{rd,⊥} ← TxDecb(rtx). If rtx does not have H(vke) as the receiver and vkp as

the verification key, return ⊥. Otherwise, extract the ciphertext ct by concatenating

the values of the amountGet, amountGive, expires, amount fields as contained in

data ← Extract(tx2, data). Compute σ(skp), vkp ← Extract(tx2, signature). Return

the tuple rd := (vkp, ct).

6.5.5 Mining-Based Encoding

A miner creates blocks with the transactions to be added to the blockchain. The

miner can decide on its own how to arrange the transactions within the block, except

for the coinbase transaction, that must always be the first. Our insight is that the

miner can arrange the transactions so that it conveys information for the intended

user. (see Table 6.2 for a comparison on the effectiveness in different cryptocurren-

cies).
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We denote by tx’ ← Π(k, tx) a permutation function that takes as input a list

of transactions sorted lexicographically tx and a permutation key k, and returns

a permuted list of the transactions tx’. We denote by k ← GetPerm(tx, tx’) an

algorithm that on input a list of transactions and its permutation, returns the key k

used for the permutation. We observe that both of the operations can be performed

efficiently in practice [185]. For simplicity, we denote by tx(vk, vk′,x) a transaction

that sends x coins from vk to vk′. In practice, we use this transaction to pay for

the service provided by the decoder. The details of this transaction depend on the

cryptocurrency used. Finally, we assume that the mechanism provides β bytes of

bandwidth. Here, β = log2(Ntx!), where Ntx is the number of transactions in the

block. .

{ctx,⊥} ← TxEncf (cd, ca). Parse vku,H(vkp), ct ← cd and sku ← ca. If |ct| >
β bytes, return ⊥. Otherwise, create a block with the set of transactions tx’ ∪
tx(vku, vkp,x), where tx’ := Π(ct, tx), and publish it.

{cd,⊥} ← TxDecf (ctx). Compute ct← GetPerm(tx, tx’). Extract vku and H(vkp)

from the extra transaction in the block of the form tx(vku, vkp,x). If x is not enough to

pay for a transaction fee, return ⊥. Otherwise, return the tuple cd := (vku,H(vkp), ct).

{rtx,⊥} ← TxEncb(rd, ra). Parse ct, vkp ← rd and skp ← ra. If |ct| > β

bytes, return ⊥. Otherwise, create a block that contains the set of transactions

tx’ ∪ tx(vkp, vk′,x), where tx’ := Π(ct, tx). Finally, publish the block. Here vk′ is a

change address to recover the coins spent from vkp.

Table 6.2.: Comparison of cryptocurrencies in terms of average number of transactions
per block, bandwidth (bytes) provided per block and block creation rate (seconds).

Cryptocurrency Tx per Block Bandwidth Block Time

Bitcoin 1500 1700 600
Zcash 9 2 150
Ethereum 115 77 20
Monero 5 1 120
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{rd,⊥} ← TxDecb(rtx). Compute ct ← GetPerm(tx, tx’). Moreover, extract vkp

from the extra transaction in the block of the form tx(vkp, vk′,x). Finally, return the

tuple cd := (vkp, ct).

6.5.6 Summary of Our Findings

We compare the feasibility of different cryptocurrencies as rendezvous in Table 6.3.

We observe that shielded Zcash transactions provide the most bandwidth with 1168

bytes at a low cost of less than 0.01 USD. The downside is that only 11% of the

transactions within Zcash are shielded, however, in the past month (Oct 2019) this

number has increased to 19% [181]. Moreover, Zcash currently has the lowest market

capitalization and exerts the lowest economic impact for a censor if it decides to ban

it when compared to the other cryptocurrencies in this work.

Bitcoin (presented in Section 6.5.1) provides 20 and 40 bytes for the challenge and

response messages correspondingly. Our Bitcoin-based solution relies on a transaction

type used by more than 32% of the Bitcoin transactions, therefore hindering the cen-

sor’s task. However, the fees in Bitcoin are the largest among all, and our encoding

method entails the loss of coins as they are sent to unrecoverable addresses. For-

tunately, it is possible to lower the cost by deploying the same encoding techniques

Table 6.3.: Comparison of the different rendezvous. Here, we consider the coins mar-
ket value [186] at the time of writing (Nov. 27th 2019). We denote Zcash transparent
by Z(Tr) and shielded by Z(Sh). Similar to Zcash(Tr), results for Bitcoin can be
applied to Altcoins following the Bitcoin transaction patterns.

Bitcoin Z(Tr) Z(Sh) Monero Ethereum

C
ha

lle
ng

e Bandwidth 20 20 1148 640 20
Tx fee $0.34 $0.003 $0.003 $0.03 $0.18

Lost coins $0.18 $0.01 — — —

R
es
po

ns
e Bandwidth 40 40 1168 640 20
Tx fee $0.34 $0.003 $0.003 $0.03 $0.15

Lost coins $0.36 $0.02 — — —
Sibling txs 32% 81% 19% 42% > 8%

Market cap $ 136B 230M 230M 950M 16B
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over Zcash transparent transactions as they are conceptually identical to Bitcoin

transactions. These transparent transactions have the lowest fees among all of the

cryptocurrencies, with only 0.003 USD.

After shielded Zcash, Monero (Section 6.5.3) provides the most bandwidth with

640 bytes. Interestingly, the fee associated with the Monero transactions are the sec-

ond lowest among the four cryptocurrencies. The type of transactions we consider in

Monero blends in with 42% of all Monero transactions, making it difficult for the cen-

sor to block all such transactions. Ethereum provides the least amount of bandwidth

(only 20 bytes in each direction according to the encoding scheme in Section 6.5.4)

and a moderate cost of 0.18 USD compared to the other cryptocurrencies.

6.6 Implementation and Evaluation

We have developed a prototypical python implementation [187] to show the fea-

sibility and practicality of MoneyMorph. We divide the implementation into two

separate tasks: i) cryptographic operations and ii) cryptocurrency specific transac-

tion encoding. In the remaining of this section, we detail each of the tasks.

6.6.1 Cryptographic Operations

As shown in Figure 6.2, the SB scheme requires two main cryptographic opera-

tions. First is the symmetric key derivation required by SBEncf and SBDecf , where

each party (a user or the decoder) uses its private key along with the public key of

the other party to perform the Diffie-Hellman key exchange. Next, using this shared

key, it obtains symmetric keys for the encryption and decryption of the challenge

and response messages. For the implementation, we leveraged the “ecdsa” [188] and

“cryptography” [189] libraries to perform the Diffie-Hellman key exchange and derive

the mentioned keys. The process of creating a fresh pair of keys takes the censored

user about 120 milliseconds and deriving the shared key and symmetric keys for the

encryption about 41 milliseconds on average.
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Second, we have the encryption and decryption of the challenge and response

messages. The timing of the encryption and decryption is dependent on the length

of the messages. In our experiment, both encryption and decryption take less than 1

milliseconds. The challenge message sent by the user was chosen as tor—obfs3 with

the tag 00000000. The hexadecimal representation of the message, key, and cipher is

presented below.

Message : 3030303030303030746 f722d2d2d2d6f62667333

Enc Key : 399 b8178571ea29a8094562e2200f6ad1b024f8f

Cipher : 09 abb148672e92aaf4fb24030f2ddbc279643cbc

For the operations mentioned above, we used a personal commodity machine with

an Intel Core i7, 2.2 GHz processor, and 16 GB RAM. Note that the blocks in all

cryptocurrencies are generated with some specified creation rate, resulting in a time

gap between the sequential blocks. We observe that a commodity machine, such as the

one that we have used, will have more than enough capabilities to serve the users in

multiple cryptocurrencies. Using higher performance machines will only improve the

timings of the mentioned operations; However, the end result remains the same as the

results will not be immediate for the users due to the time gap between the blocks.

We further investigated the possibility of hosting the decoder on cloud platforms

and observed that the price of a simple machine with 1TB of storage for multiple

blockchains would be less than 100 USD per month [190,191].

6.6.2 Transaction Encoding

After encrypting the challenge and response messages, the parties need to encode

them into one of the cryptocurrencies’ transactions. To show the feasibility and prac-

ticality of the instantiations mentioned in Section 6.5, we implemented the encoding

scheme for three of the cryptocurrencies and deployed the challenge and response

transactions to the corresponding test network.
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Fig. 6.7.: Snapshot of the challenge transaction on Bitcoin testnet. The high-
lighted hexadecimals are showing the Cipher mentioned above inside the scriptpubkey
(SPKey).

Bitcoin. The implementation details of the encoding scheme in Bitcoin are provided

in Section 6.5.1. In summary, using the “bitcoin-utils” library [192], we constructed

and deployed two transactions on to the Bitcoin’s blockchain. The first transaction,

tx1 (https://tinyurl.com/wvmlyyz) sent by the user, includes two outputs of the

type Pay2PKeyHash and Pay2ScriptHash. The first output is the paying address that

the decoder uses to send the response to the user. The second output is the 20 byte ci-

phertext mentioned in Section 6.6.1 (09abb148672e92aaf4fb24030f2ddbc279643cbc)

and shown in Figure 6.7. Similarly, the decoder encodes the response message into tx2

using the first output of tx1 (https://tinyurl.com/qsh5a7y). We further analyzed

the time it takes the decoder to process the transactions in a block. We observed that

it takes less than 100 milliseconds to retrieve a block that only contains the hashes

of its transaction. It takes an additional 2-5 millisecond for each of the transactions

to be fetched and decoded. Overall, a block of Bitcoin containing about 2, 000 trans-

actions can be examined by the decoder to find challenge messages in less than 15

seconds.

Ethereum. The implementation details of the encoding scheme in Ethereum are pro-

vided in Section 6.5.4. In summary, using the “web3” library, we encoded the challenge

and response messages into transactions that were sent to the etherdelta2 contract.

However, since we were working on the testnet (the Rinkeby network), first we needed

https://tinyurl.com/wvmlyyz
https://tinyurl.com/qsh5a7y
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to deploy the contract (presented in https://tinyurl.com/s7w9sxe). Next, the cen-

sored user funds the paying address (vkp) using tx0 (https://tinyurl.com/rqy4ns9)

and sends the challenge covertext via tx1 (https://tinyurl.com/vq6b3qn). Similar

to tx1, the decoder used the funds in vkp (obtained from tx0) and sends the re-

sponse covertext through tx2 (https://tinyurl.com/uol385r). Keep in mind that

the challenge and response ciphertexts are fragmented into 4 pieces and placed as

input values to the testTrade function. Similar to Bitcoin, we analyzed the time it

takes the decoder to process the transactions in an Ethereum block. Overall, a block

of Ethereum containing on average 100 transactions can be examined by the decoder

to find challenge messages in less than 1 second.

Zcash. The implementation details of the encoding scheme in Zcash are provided

in Section 6.5.2. We observed that, the most common transaction has one transparent

input and two shielded outputs. This allows parties to send funds to themselves

without loosing any coins (as the values and addresses of the shielded outputs are

hidden) other than the transaction fee1. For the implementation we used the “zcash-

cli” (command line client) to construct, send and receive transactions. The challenge

and response data were included in the memo field of tx1 (https://tinyurl.com/

wtku9ge) and tx2 (https://tinyurl.com/vnleyhb). We note that our tx1 includes an

extra transparent output for retrieving the remainder of the coins for testing purposes

and similar to tx2 (that has no transparent outputs) it can easily be omitted. Zcash,

compared to the other two cryptocurrencies, has a small number of transactions per

block. With an average of 5 transactions per block, it takes a decoder less than a

second to process a block and look for challenge messages.

Transaction Finality. Previously, we saw that the time it takes to process a block

to decode the challenge and response covertexts in all the three cryptocurrencies is in-

significant. However, the procedure for sending the challenge and response covertexts

is bounded by the transaction finality. We observe that transaction finality intro-
1This feature allows the users to send the shielded output directly to the shielded address of the
decoder known by all.

https://tinyurl.com/s7w9sxe
https://tinyurl.com/rqy4ns9
https://tinyurl.com/vq6b3qn
https://tinyurl.com/uol385r
https://tinyurl.com/wtku9ge
https://tinyurl.com/wtku9ge
https://tinyurl.com/vnleyhb
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duces a latency proportional to the rate of cryptocurrency blocks creation. Among

the three cryptocurrencies, Bitcoin has the slowest block creation time at 10 minutes

on average. Next is Zcash with an average block creation rate of 2.5 minutes and

lastly Ethereum with a fast creation rate of 15 seconds. These results show that the

throughput for any instantiation of MoneyMorph is only limited by the blocks gen-

eration rate. Fortunately, bootstrapping of censorship-resistance credentials does not

have to be real-time; instead, it is carried out infrequently by each user (e.g., emails

are currently used to find Tor bridges).

Simple Payment Verification. Although we recommend the censored users to

run a full node for the cryptocurrency used as rendezvous if storage and computa-

tion overhead is prohibitive, they can run the Simple Payment Verification (SPV)

client software to query expected blocks from available full nodes (multiple nodes for

redundancy and security). As explained in Section 6.5, MoneyMorph ensures that

clients know what stealth address should to query to retrieve the response, thereby

reducing the number of required blocks. While improving the usability, this approach

comes, however, with a tradeoff in security guarantees. First, SPV clients are more

susceptible to eclipse attacks similar to those in [193,194]. Second, the selective query

of transactions (e.g., using Bloom filters) could facilitate the detectability task of the

censor, similar to [195]. Recent advances aim to mitigate those detectability issues

in Bitcoin [196, 197] and Zcash [198], and similar techniques could be applied for

Ethereum and Monero.

6.7 Concluding Remarks and Future Work

Despite the many academic and practical alternatives for censorship resistance,

censorship remains an important problem that hinders numerous people from freely

accessing and communicating information. We explore the use of the widely deployed

blockchain technologies as a communication channel in the presence of a censor and

we observe that the blockchain transactions enable communication channels offering
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interesting tradeoffs between bandwidth, costs and censorship resistance. In particu-

lar, we describe for the first time communication channels fully compatible not only

with Bitcoin but also with Zcash, Monero, and Ethereum that allow censored users

to get bootstrapping credentials.

Nevertheless, this work only scratches the tip of the iceberg. The different permis-

sionless blockchains are in continuous development, and new features are being added

continuously that may come with yet unexplored possibilities to build a communica-

tion channel. For instance, the deployment of off-chain payment channels [199, 200]

adds a new locking mechanism to Bitcoin and the alike cryptocurrencies with extra

fields that can potentially be used to encode extra covertext bytes of the commu-

nication between censored user and decoder. This work sets the grounds for future

research works exploring the use of blockchain for censorship resistance communica-

tions.
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7. SUMMARY

In this dissertation, we have presented Crowd Blending techniques that can be used

to create privacy preserving systems while maintaining their utility. In particular,

we focused on two privacy tasks for two different data-sharing platforms presented

below.

Concealing content deletion on social media platforms. In the world with

perfect and permanent memory, we are in dire need of mechanisms to restore the

ability to forget. Providing users with the ability to delete their past data is insuf-

ficient. In fact, against an adversary who can persistently observe a user’s data, the

user’s deletions make her/him more vulnerable by directly pointing the adversary to

sensitive information.

To that end, to affirmatively understand the users’ perceptions for deletion pri-

vacy in social platforms, for the first time ever, we conducted user study with 191

participants. We investigate their prior deletion experiences, their expectations of

deletion privacy, and how effective do they find the current deletion mechanisms. We

find that the participants are significantly more concerned about their deletions being

noticed by large-scale data collectors (e.g., a third-party data collecting company or

the government) than any other individual from their social circle. To address the

concern of the users in protecting their damaging deletions against large-scale data

collectors we propose two new deletion mechanism that significantly raises the bar

for such adversaries in identifying the damaging deletions.

In the first mechanism we have defined, formalized, and addressed the problem

of deletion concealment by designing Lethe. In particular, we have formally defined

a novel intermittent withdrawal mechanism, quantified its privacy, availability, and

adversarial overhead guarantees in the form of a tradeoff. Leveraging real-world data



159

we have demonstrated the efficacy of Lethe in providing a good tradeoff between

privacy, availability, adversarial overhead and platform utility. For example, we have

shown that while maintaining 95% availability and utility as high as 99.7%, we can

offer deletion privacy for up to 3 months from the time of deletion while still keeping

the adversarial precision to 20%.

In the second mechanism, we introduce another novel deletion mechanism, Decep-

tive Deletions, that raises the bar for the adversary in identifying damaging content.

Given a set of damaging posts (posts that adversary can leverage to blackmail the

user) that users want to delete, the Deceptive Deletion system selects k additional

posts for each damaging post (similar to the damaging post) and deletes them along

with the damaging posts. As the global adversary can only observe all of these dele-

tions together, its goal will be to distinguish the damaging posts from the decoy

posts. Using real-world Twitter data we demonstrated the effectiveness of the sys-

tem. Specifically, we showed that even when we consider only two decoy posts per

damaging deletion, the adversarial performance (F-score) drops to 42% from 75% in

the absence of any privacy-preserving deletion mechanism.

Concealing censored information in cryptocurrency blockchains. Despite

the many academic and practical alternatives for censorship resistance, censorship re-

mains an important problem that hinders numerous people from freely accessing and

communicating information. We explore the use of the widely deployed blockchain

technologies as a communication channel in the presence of a censor and we observe

that the blockchain transactions enable multiple communication channels offering in-

teresting tradeoffs between bandwidth, costs and censorship resistance. In particular,

we describe for the first time communication channels fully compatible not only with

Bitcoin but also with Zcash, Monero and Ethereum that allows censored users to get

bootstrapping credentials.
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A. CONTENT DELETION APPENDIX

A.1 An Overview of Lethe Implementation

In section 3.4 we presented the basic steps of Lethe. However in our work we consid-

ered that Lethe should be applied to each single post. So a very practical question

is: How to efficiently implement Lethe in a platform? Here we provide a brief imple-

mentation sketch.

Basic setup for a platform. We assume a generic archival platform where each

post is stored as an Active Store Object (ASO) [201]. ASOs are simply key-value

pairs with some (optional) code to run on values. Traditionally this ASO code is

written in terms of handlers (e.g., code to handle deletion). Each post ASO will have

an unique post id as key, the user generated post content as value, identification of

the owner (as authentication token) and some metadata (e.g., the real state flag for a

post). We further assume that there is an internal trusted time server, which is used

throughout the platform for synchronizing operations. The platform internally does

not use any other timestamps. Any mention of timestamps in this section refers to

this internal timestamp. Extending this set-up to traditional databases is simple and

left to future work.

We use an architecture similar to Comet [201], where the platform operator as well

as platform users (including adversary) have some specific Application Programmer

Interfaces (API) to access/create/delete the posts. However note that in our adversary

model, the adversary can just query the posts and can not change them in any way.

Thus, unlike Comet in Lethe post ASO objects are immutable from the point of view

of an adversary.

Straw man implementation. A straightforward implementation of Lethe is to

add an “observable state” flag (binary) with meta data of each post ASO. Whenever
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Active Storage Object (ASO) for post 1 

State:
post id, content, owner auth token,
other metadata

Code (handlers)

ASO for
post 2

Time server ASO runtime
Active Subsystem

Routing substrate (searches and return ASOs)

Users
(including

adversaries)

Platform
operator

Fig. A.1.: A basic implementation schematic for Lethe. Each post is an ASO, and
using APIs and code handlers these ASOs can be accessed. An operator can add
more metadate to the ASO content according to requirement of the platform.

a post is created, the platform operator assigns a process (or a thread) to the post.

That process will apply Lethe algorithm to toggle the observable state. In case of

a view request, another user initiated process will seek the required ASO or ASOs,

check the “observable state” flag and return a post if the post is observable (i.e.,

observable state flag is TRUE). However, this design if definitely not scalable for a

platform with billions of posts. Thus we need an improved implementation.

Key insight. Our key insight is simple—the platform can precompute the times-

tamps for future up and down durations and then lazily update those duration times-

tamps. At any current time, for a view request, the platform operator can use the

current timestamp to determine if the post should be in up or down duration (using

the precomputed up/down duration timestamps) and return a post in case the post

is in up duration or return null otherwise. The only exception is if the data owner

requested to view her own post, the post should be returned, irrespective of up/down

duration.

An improved Lethe implementation. We note that instead of keeping track of

the observable state, a process can simply compute the observable state of an ASO
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using the current timestamp and the precomputed up/down duration timestamps.

Thus, when the platform operator adds each post ASO, they should also add (in bulk)

the timestamps corresponding to up and down durations for a large time period in

future (e.g., for next one year). Specifically we present the basic schematic of our

proposed implementation in Figure A.1. Each post ASO contains a state which

includes the post content, an authentication token to identify the owner of the post

(who can delete the post) and timestamps for future up and down durations. Both

users (including adversaries) and platform uses a routing substrate to find ASOs in

the distributed storage (e.g., via a hash table of keys). The active subsystem contains

a trusted time server and the ASO runtime, which converts platform and user API

calls to ASO handlers and executes the ASO handler code.

Table A.1 contains the summary of API and ASO handler code descriptions. We

use authentication (or auth) tokens to identify a user (to determine data owner or

not). Any user can create a post using her auth token with put or delete her posts

using delete. Handler code for call get first checks the auth token and if the request

is from data owner the platform always returns the post (if it is not deleted). If

the get request is not from a data owner, then (using the precomputed up/down

durations) the handler code checks if the current timestamp is within the up of down

time duration. If the current timestamp falls in an up duration for the post then

the platform returns the post’s content to the requesting user, otherwise the platform

returns null. In addition to get, put and delete, the platform operator internally runs

multiple processes with updateTS function to keep adding future up and down time

durations for ASO objects. The “post_ids” to update (given to updateTS) should be

divided in these processes based on a hash table of ASO keys. The mapping between

API and ASO handler codes is in 3rd column of Table A.1.

Possible optimizations of this implementation sketch. We emphasize that

this is just a sketch Lethe implementation with scopes for further optimization. E.g.,

updateTS can additionally delete up/down timestamps lesser than current timestamp

to optimize storage or there can be batch garbage collection after multiple calls to
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APIs for the user (including adversary)
Name Parameter Description Associated

ASO handlers
put post_content, authentica-

tion_token
Creates a post ASO for the data
owner, returns a post_id

onPut

get post_id, authentica-
tion_token

Returns a post ASO or null depend-
ing on (i) ownership and (ii) if the
post is in up/down duration.

onGet

delete post_id, authentica-
tion_token

deletes associated post and returns
null.

onDelete

Internal APIs for the platform
Name Parameter Description Associated

ASO handlers
updateTS list of post_ids to update Updates the future up/down times

in ASOs with post_ids.
onUpdate

Handlers in ASOs
Name Parameter Description Associated

ASO handlers
onPut post_content, authen-

tication_token, cur-
rent_timestamp

Creates an ASO object and assigns
up/down timestamps covering next
1 year.

-

onGet post_id, authenti-
cation_token, cur-
rent_timestamp

Check current timestamp and if in
up duration return post content, else
return null.

-

onDelete post_id, authenti-
cation_token, cur-
rent_timestamp

Assign one down timestamp—
infinity; remove post content.

-

onUpdate post_id, authenti-
cation_token, cur-
rent_timestamp

If current set of up/down times
cover less than 1 year, create more
up/down times.

-

Table A.1.: Summary of API and ASO handler code descriptions (and the mapping
between them) for Lethe sketch implementation. Note that data owner always gets
back her non-deleted posts irrespective of up/down duration.

delete. Further the input to updateTS can be chosen more intelligently e.g., by

keeping a min-heap to determine the ASO objects which are in immediate need to

update up/down timestamp. We leave exploration of these concrete system challenges

to future work.
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