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ABSTRACT

Liu, Bangde MS, Purdue University, December 2020. Multi-fidelity model with di-
mension reduction. Major Professor: Guang L. Professor.

In scientific and engineering applications, often sufficient low-cost low-fidelity data

is available while only a small fractional of high-fidelity data is accessible. The multi-

fidelity model integrates a large set of low-cost but biased low-fidelity datasets with a

small set of precise but high-cost high-fidelity data to make an accurate inference of

quantities of interest. Under many circumstances, the number of model input dimen-

sions is often high in real applications. To simplify the model, dimension reduction is

often used. The gradient-free active subspace is employed in this research for dimen-

sion reduction. In this work, we build a predictive model for high-dimensional nonlin-

ear problems by integrating the nonlinear multi-fidelity Gaussian progress regression

and the gradient-free active subspace method. Numerical results demonstrated that

the proposed approach can not only perform effective dimension reduction on the orig-

inal data but also obtain accurate prediction results thanks to the effective dimension

reduction procedure.
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1. INTRODUCTION

The main idea of the multi-fidelity models [1–5] can be constructed by combining

computational-expensive high accurate (high-fidelity) data with low-cost less accurate

data (low-fidelity). Nowadays, most of the multi-fidelity approaches are set up on

the Gaussian process (GP) [6] with the order-one autoregressive model proposed

by [7]. GP [8–15] is a suitable method for the multi-fidelity problems, because it has

ability to use the prior belief to learn how different fidelities are related. However,

the traditional autoregressive multi-fidelity models are only suitable when different

fidelities relationship is linear. To cope with the nonlinear relation between fidelities,

a method called nonlinear information fusion algorithm [16] that is based on the GP

and nonlinear autoregressive scheme had been developed. This method proposes a

more general form of the multi-fidelity model structure. Thanks to this method, It

can deal with both the linear and nonlinear multi-fidelity problems effectively.

In the scientific and engineering applications, people use computer models to study

the input and output relations. In most cases, the dimension of the input space is

usually very large that makes the models to be computational expensive. Reducing

dimensions can help otherwise infeasible parameter studies. To enable such studies,

people usually use various methods to decrease the dimensions of the input space.

There have many popular dimension reduction methods, such as principal component

analysis (PCA) [17,18], forward feature selection, backward feature elimination, and

gradient-free active subspace approach [19]. Active subspace is a dimension reduction

tool to identify the important directions of the input space. However, the classic active

subspace method is based on the gradient information. In most cases, it is hard to get

the gradient information. To avoid this shortcoming, a gradient-free active subspace

method [19] is proposed.
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In this work, a novel nonlinear multi-fidelity predictive model is built for high-

dimensional problems that is based on the nonlinear multi-fidelity scheme and gradient-

free active subspace method. In particular, the low-fidelity data can be used to cal-

culate the BIC score to determine the active subspace dimensions that is used as

the input of the gradient-free active subspace method to get the dimension reduction

matrix. To improve the predictive accuracy, Bayesian active learning method [20] is

employed to augment our original data based on the high-fidelity data to enhance ac-

curacy. Bayesian active learning method indicates where a function will be evaluated

next under a limited budget. In the proposed model, these new samples are explored

according to where the largest variance of function is located. By using largest vari-

ance as the sample location indicator, new samples are added using Bayesian active

learning to augment our original data size. Then the dimension reduction matrix

is employed to perform the dimension reduction on our new low- and high-fidelity

data. Finally, we use the data after dimension reduction as the input of our nonlinear

multi-fidelity scheme to build the nonlinear multi-fidelity predictive model.

Our contribution in this paper is two-fold:

1. We propose a new surrogate model that can perform gradient-free dimension

reduction to the original data and make an accurate model prediction based on data

after dimension reduction.

2. We implement our proposed model and make a systematic comparison of the

proposed model with the standard multi-fidelity model on nonlinear high-dimensional

problems. We show the feasibility of our method by running some examples. Besides,

we compare the new proposed model with the standard multi-fidelity model to show

its advantage. The structure of this work is organized as follows: in Section 2, we

introduce basic definitions of Gaussian process regression, gradient-free active sub-

space, nonlinear autoregressive algorithm, and Bayesian active learning. The main

algorithm of our method is presented in Section 2.5, and numerical results are shown

in Section 3. Summary and discussion are presented in Section 4.
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2. METHODOLOGY

In practice, the number of dimensions of our inputs is relatively high, which makes

the computation costly. To relieve the computational cost, low-fidelity data is first

employed as the training data for dimension reduction, then the projected data is

applied for the multi-fidelity work. Moreover, to get accurate results, Bayesian ac-

tive learning method is employed to add additional samples to augment our original

training data size for the multi-fidelity model. The goal of this work is to construct

a nonlinear multi-fidelity predictive model for high-dimensional problems that can

perform dimension reduction based on original data and make accurate prediction

according to the projected data after dimension reduction. In conclusion, the new

proposed model consists of Gaussian process regression, gradient-free active subspace

method, multi-fidelity model, and Bayesian active learning approaches.

2.1 Gaussian Process Regression

GP regression is known as a nonparametric method. It is a supervised machine

learning method. We assume our observation dataset as D = {xi,yi} = (x, y) of

i = 1, . . . , N , and have:

y = f(x) (2.1)

Where f(·) is the response surface, and x ∈ RD×N .

GP regression calculates all the possible probability distribution over functions

rather than the parameters of the specific function. The following steps are performed

for GP regression:

First, a prior with zero mean is assigned to the response surface f(·). For example,

f ∼ GP (f |0, k (x,x′; θ)). Here k is known as the kernel function or a covariance
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matrix in the form Kij = k (xi,xj; θ) ,K ∈ RN×N and is defined positive symmetric.

θ is the hyperparameters in the kernel function. Using Bayes rule, we can get the

posterior GP by combining the prior belief with observation.

Hyperparameters θ can be obtained by maximizing the model’s log-likelihood

function:

log p(y|x, θ) = −1

2
log |K| − 1

2
yTK−1y − N

2
log 2π (2.2)

Using the knowledge of the Bayes rule, the posterior distribution p(f |y,x) and

the prediction of the new output f∗ with new input x∗ can be got:

p (f∗|y,x,x∗) = N (f∗|µ∗,Σ∗) (2.3)

µ∗ = k∗K
−1y (2.4)

Σ∗ = k∗∗ − k∗K−1kT∗ (2.5)

Where k∗ = k (x,x∗) and k∗∗ = k (x∗,x∗). Prediction can be obtained using

posterior mean µ∗.

2.2 Active Subspace

2.2.1 Classic active subspace approach

In this section, the classic active subspace method which is based on the gradient

information [21–28] has been introduced. Let f be the multivariate response surface

with D � 1. By putting input x ∈ RD×N into f(·), the output is f(x), assume we

have N input points and our measured points:

x =
{
x1, . . . ,xN

}
(2.6)
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y =
{
y1, . . . ,yN

}
(2.7)

Working in the high dimension regime, it is hard to discover and exploit the

structure of the f(x) unless it has some special structure. In this work, the response

surface can be approximated in the following form:

f(x) ≈ g
(
W Tx

)
(2.8)

Here the matrix W ∈ RD×d is called projected matrix. It projects the high

dimension space RD to the low dimension space Rd (active subspace), and g is the

link function. Denote that the form of Eq. (2.8) can be described in other ways to

make the response of the columns of W correspond to the directions of the input

space that is the most sensitive. Mathematically, W ∈ Vd
(
RD
)
, where Vd

(
RD
)

is

the D × d matrix with orthonormal columns,

Vd
(
RD
)

:=
{
A ∈ RD×d : ATA = Id

}
(2.9)

with Id is the d× d unit matrix. Vd
(
RD
)

is the Stiefel manifold.

Here we review the classic active subspace method to find out the active subspace

according to the gradient information. To deal with the response surface in high

dimension, Eq. (2.8) is introduced. The classic approach finds the active subspace in

the following two steps. First, it uses the gradient information to get the projection

matrix W . Secondly, all inputs are projected to the active subspace, and the map

between the projected inputs and the output can be learned by using the GP regres-

sion. Since this method needs gradient information, assume its gradient of f(·) at

each input point:

g =
{
g1, . . . , gN

}
(2.10)

Where g = ∇f (x) ∈ RD×N , and ∇f(·) is the gradient of f(·)
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∇f(·) =

(
∂f(·)
∂x1

, . . . ,
∂f(·)
∂xD

)
(2.11)

(1) Finding out active subspace using gradient information

First, the matrix C can be defined:

C :=

∫
(∇f(x))(∇f(x))Tρ(x)dx (2.12)

Where the ρ(x) is the PDF of the input space, since C is symmetric positive

definite, it can be written as:

C = V ΛV T (2.13)

Where Λ = diag (λ1, . . . , λD) is a diagonal matrix, λi is the eigenvalue of C,

λ1 ≥ · · · ≥ λD ≥ 0, and V ∈ RD×D is an orthogonal matrix. By choosing d, the

largest eigenvalue from the whole eigenvalue, we can get:

Λ =

 Λ1 0

0 Λ2

 (2.14)

V =
[
V1 V2

]
(2.15)

Where Λ1 = diag (λ1, . . . , λd), V1 = [v11, . . . , v1d] and Λ2, V2 are defined similarly.

Our projection matrix is W = V1.

Since it is hard to calculate Eq. (2.12) directly, Monte Carlo method [29–31] can

be used to approximate the integral. Assuming that the observed inputs are drawn

from ρ(x), the observed gradients can be used to approximates C , see Eq. (2.10),

by:

CN =
1

N

N∑
i=1

gi
(
gi
)T

(2.16)

To get the eigenvalue and eigenvector of CN , the singular value decomposition

(SVD) [32] method can be applied. The dimensionality d can be determined by

looking for the spot with sharp changes in the value of CN .
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(2) Exploring the correlation between projected inputs and output

After the projection matrix W had been calculated, the projected inputs z ∈

Rd×N can be got in the following form:

z =
{
z1, . . . ,zN

}
(2.17)

Where z = W Tx, the link function g(·) that connects the projected inputs to the

output, see Eq. (2.8), it can be identified by using GP regression.

2.2.2 Gradient free active subspace method

In the previous part, the classic approach to find the active subspace had been

discussed. To get the active subspace using the classic method, the gradient infor-

mation is necessary. In practice, collect gradient information is a quiet challenge.

In most cases, the gradient information can be obtained through the finite-difference

method (FDM). However, this method is computational expensive. What’s more,

the approximate gradients can be gained by approximating models learning from the

data. In general, the problem is a black-box problem and it is difficult to get the

gradient information, not to speak to calculate the active subspace. To eliminate this

limitation, [19] introduced a new method to obtain the active subspace without the

gradient information. This new method can be achieved in the following two steps:

(a) In the GP regression, we assign a GP prior to using the mean and covariance

function. Then a new covariance matrix can be defined and make the active subspace

W as hyperparameters which can be learned from the data. the following GP kernel

form had beed proposed to express the prior knowledge about the active subspace

structure that is shown in Eq. (2.8):

kAS (x,x′) = kbase
(
W Tx,W Tx′

)
(2.18)

Where the kbase(·, ·) is the standard covariance matrix, for instance, Matern or

Radial basis function (RBF) kernel. The newly defined kernel is used to express the
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prior knowledge about the link function g(·). If our new active subspace kernel kAS(·, ·)

is identified, the hyperparameters can be calculated by getting the maximization of

the log marginal likelihood function below:

W , θ, σ = argmax log p(y|x,W , θ, σ) (2.19)

Where θ is the hyperparameters of the base kernel, and σ is the standard deviation

of the likelihood noise.

(b) We need to enforce the positivity constraint on all hyperparameters. It is

not difficult to set positive constraints to the hyperparameters (θ, σ) = ψ. However,

it is quite challenging and important to strengthen the orthogonality constraints on

the dimension reduction matrix W . This goal is achieved by applying the com-

plete methodology of paper [19] which introduces the iterative two-step likelihood

maximization scheme. This scheme keeps W as a constant when optimizing the

hyperparameter ψ and vice versa. We use the L-BFGS algorithm [33] to optimize

the hyperparameter ψ, and apply a adaptive gradient-ascent method on the Stiefel

manifold [34] when the projection matrix W is optimized.

2.2.3 Determine the active subspace dimension

Here we will show how to identify the optimal active subspace dimension. Bayesian

model selection provides us a possible solution. The rules of probability theory are

employed to select among different hypotheses. The Bayesian model selection using

the Bayesian information criterion (BIC). BIC score is one of the Bayesian criteria

used for Bayesian model selection and it tends to be one of the most popular criteria.

The BIC score of the d-dimensional model is:

BICd = L (θd;x,y)− 1

2
# (θd) logN (2.20)

Where θd = (W d,ψd), (x,y) is the observation, L is the log-likelihood function.

N is the number of observations, and #θd is the number of estimated parameters θd
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which is consist of the number of the active dimension matrix #W d and the number

of the hyper-parameter #ψd:

#θd = #W d + #ψd = dD + #ψd (2.21)

In Equation 2.20, the BIC is equal to the maximum log-likelihood function minus

a term 1
2
# (θd) logN which is used to penalize the model complexity. Now we will

show how to determine the optimal number of active subspace dimensions. Assume

the original dimension of model MD is D, then the gradient-free active subspace

method can be help us to get the model at d dimension which can be denoted as Md,

where D ≥ d. Assume BICMd+1
− BICMd

= ∆. If ∆>0, we draw the conclusion

that Md is better than Md+1. If the ∆>5, the evidence is stronger. In other words,

if there is a sharp increase of BIC from d to d+ 1, Md is closer to the truth. At this

point, the optimal dimension of the active subspace is d.

2.3 Multi-fidelity Modeling

2.3.1 Linear autoregressive multi-fidelity model (AR1)

The main scheme of the multi-fidelity method is GP regression and autoregressive

scheme. GP regression is a non-parametric regression model to construct the prob-

ability model that enables the combination of different fidelity information sources.

Assuming there have s levels of information sources, the inputs and output are de-

noted as xq and yq, then the datasets at different levels of fidelity can be denoted

as Dq =
{
xq,yq

}
, q = 1, . . . , s. Whereas ys denotes the most accurate but compu-

tational expensive output, y1 is the low-cost but least accurate output. After these

settings, the linear autoregressive scheme [7,35] had been introduced:

fq(x) = ρfq−1(x) + δq(x) (2.22)
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Where fq and fq−1 are the GP models at the fidelity levels q and q − 1, respec-

tively. ρ is just a constant which measures the correlation between the model outputs{
yq,yq−1

}
. And δq (xq) follows the Gaussian distribution, and its mean µδq and

covariance function kq. It can be written as δq ∼ GP
(
δq|µδq , kq

(
xq,x

′
q; θq

))
.

The linear autoregressive multi-fidelity scheme can be constructed by introducing

the idea put forward by paper [35]. The main idea of the their method is to replace

the GP prior fq−1(x) with the lower fidelity’s GP posterior f∗q−1(x), and assume

that the our datasets {D1, D2, . . . , Ds} are a nested structure datasets. It can be

written as D1 ⊆ D2 ⊆ Ds. Generally speaking, this statement means that our high-

fidelity level’s training inputs are the subset of the low-fidelity levels training inputs.

According to [35], this structure can be treated the same way as Gaussian posterior

prediction by [36]. At this point, this problem is just a GP regression problem. The

Gaussian posterior distribution at different fidelity p
(
f q|yq,xq, f∗q−1

)
, q = 1, . . . , s

can be obtained, and the predictive mean and variance can be written in the following

form:

µ∗q = ρµ∗q−1 + µδq + k∗qK
−1
q [yq − ρµ∗q−1 (xq)− µδq ] (2.23)

Σ∗q = ρ2Σ∗q−1 + k∗∗ − k∗qK−1q kT∗q (2.24)

2.3.2 Nonlinear autoregressive multi-fidelity model (NARGP)

However, the GP basis of the autoregressive model is suitable when the mapping

between fidelities is linear. This model is not working when the mapping between

fidelities is non-linear. The model proposed in [37–40] can be employed as follows:

fq(x) = ρq (fq−1(x)) + δq(x) (2.25)

(1) General formulation
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Different from the previous section, ρ is a non-linear transformation here. Accord-

ing to the structure of the model and the assumption between the GPs for modeling

the ρq (fq−1(x)) and δq(x), the right hand side of Eq. (2.25) can be combined as a new

GP whose inputs is x and f ∗q−1(x). f ∗q−1(x) denotes the sample from the posterior of

the GP modeling at the q − 1 fidelity evaluated at x. Under this circumstance, Eq.

(2.25) can be written in the following form:

fq(x) = gq
(
f ∗q−1(x),x

)
(2.26)

Although this scheme can be used to construct our nonlinear autoregressive algo-

rithm, the covariance function of gq’s structure maybe have a different form because

our inputs are f ∗q−1(x) and x now. To reflect the autoregressive nature of Eq. (2.25),

a more structured prior for gq had been introduced . We consider the covariance

kernel in the following form:

kqg = kqρ
(
x,x′; θqρ

)
· kqf

(
f∗q−1(x), f∗q−1 (x′) ; θqf

)
+ kqδ (x,x′; θqδ) (2.27)

Where kqg , kqf and kqδ are the covariance function and θqρ , θqf , θqδ denote their

hyperparameters.

(2) Non-linear multi-fidelity prediction

The lowest fidelity (q = 1) level of non-linear multi-fidelity scheme is trained by

using the first fidelity data {x1,y1}. In this case, the posterior distribution follows

a Gaussian distribution. The posterior’s mean and variance can be got from Eq.

(2.4) and (2.5), respectively. However, the following fidelities (q ≥ 2) whose posterior

distribution does not follow Gaussian distribution anymore, because the prediction

can only be computed by using new the test input point
(
x∗, f∗q−1 (x∗)

)
. At this

point, f∗q−1 (x∗) no longer follows Gaussian distribution. Note that it follows Gaussian

distribution when q = 2. When q ≥ 2, we need to obtain the prediction by giving new

inputs x∗. Then, the following form of the posterior distribution can be obtained:
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p(f∗q(x∗)) := p(fq(x∗, f∗q−1(x∗)|f∗q−1 ,x∗,yq,xq)

=

∫
p(fq(x∗, f∗q−1(x∗))|x∗,yq,xq)p(f∗q−1(x∗))dx∗

(2.28)

At this point, the dependence of all the hyper-parameters can be ignored, whereas

p
(
f∗q−1 (x∗)

)
is the Gaussian posterior distribution at the fidelity level (q − 1). All

posteriors p
(
f∗q (x∗)

)
, q ≥ 2 ’s predictive mean and variance can be calculated by

using Monte Carlo integration of Eq. (2.28).

(3) Workflow of nonlinear multi-fidelity method

Now the workflow of this nonlinear autoregressive method will be introduced.

Given the multi-fidelity input and output pairs
{
xq,yq

}
which sorted in ascending

fidelity’s level q = 1, . . . , s, and our datasets are nested and noiseless, then we perform

the following steps:

Step 1: The lowest fidelity data {x1,y1} and the kernel function k1 (x1,x
′
1; θ1)

can be employed to train the GP regression model Eq. (2.1) by maximizing the

log-likelihood Eq. (2.2).

Step 2: For other fidelity levels from q = 2, . . . , s, We use the data
{(
xq, f∗q−1 (xq)

)
,yq
}

and new kernel function Eq. (2.27) to train the new GP regression model Eq. (2.1) by

maximizing the log-likelihood Eq. (2.2). The dimension of the GP model is (d+1). In

order to ensure the result converges to a local optimal, the gradient descend L-BFGS

algorithm can be applied.

Step 3:
{(
xs, f∗s−1 (xs)

)
,ys
}

at s fidelity level can be used to train our last GP

model, the new test point x∗ can be applied to calculate the posterior predictive mean

and variance by using the Monte Carlo integration of Eq. (2.28). This procedure needs

to sample the posteriors at different fidelity levels p
(
f∗q (x∗)

)
, q = 1, . . . , s, and the

output of the lower fidelity can be used as the input of the next-higher fidelity.
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2.4 Bayesian Active Learning with GPs

In most cases, the size of low-fidelity observation is large and the number of high-

fidelity data is limited or small. We usually want to add more data points to augment

the original data size to make more accurate inferences, however, it is very hard for

us to get high-fidelity data.

With the help of Bayesian active learning method, additional samples are obtained

at the location where the maximum variance value is located. After obtaining the

maximum variance value at samples x∗, the new samples {x∗,y∗L} , {x∗,y∗H} can be

obtained. Finally, these new samples can be added to the original data.

2.4.1 Workflow of Bayesian active learning

To further improve the prediction accuracy, the Bayesian active learning has been

employed, which can guide us where to evaluate a function next using the maximum

variance criteria. In that case, the algorithm will be introduced step by step:

(a) Firstly, assuming our training data set consisting of N input-output observa-

tions:

DN =
(
x1:N ,y1:N

)
. (2.29)

(b) For N,N + 1, . . . , we start do the following: the current dataset DN can

be applied to quantify our state of knowledge about f(x). For example, Gaussian

process regression or any other Bayesian regression method can be used to obtain the

predictive distribution:

f(·)|DN ∼ p(f(·)|DN). (2.30)

Then we pick the most informative sample to evaluate next by maximizing an

acquisition function aN(x) which depends on our current state of knowledge. The

acquisition function quantifies how much value or how much information is in eval-
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uating x. Assuming that it is a non-negative function. So, to pick the next sample,

the problem can be denoted in the following form:

xN+1 = arg max aN(x). (2.31)

The next sample with the maximum value or the maximum information is picked. If

the maximum value of the acquisition function is smaller than a threshold, then stop

searching at this sample. Otherwise, we evaluate the function at the selected xN+1

to obtain:

yN+1 = f(xN+1). (2.32)

This process will let us obtain a dataset to minimize predictive variance, (xN+1,yN+1).

the new observation can be got:

DN+1 =
(
(x1:N ,xN+1), (y1:N ,yN+1)

)
. (2.33)

Bayes’ rule can be applied to update our state of knowledge:

f(·)|DN+1 ∼ p(f(·)|DN+1) ∝ p(yN+1|xN+1, f(·))p(f(·)|DN). (2.34)

(c) At this point, we report our current state of knowledge about the maximum

variance of the function. In a word, the index of where the maximum variance value

is located can be found.

i∗ = arg max
1≤i≤N

var(yi), (2.35)

And the maximum variance is var(yi
∗
) and the location of the maximum is xi

∗
.

Note that currently the active learning is performed without dimension reduction,

because we want to ensure the dimension reduction matrix W to be invertible.
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2.4.2 Acquisition function

The acquisition function which used in Bayesian active learning will be introduced.

There are several different acquisition functions, such as maximum upper interval,

probability of improvement and expected improvement. In this paper, we focused on

the maximum upper interval. It is defined to be:

aN(x) = µN(x) + ψσN(x), (2.36)

Note that µN(x) is the predictive mean and σN(x) is variance, ψ ≥ 0. The

parameter ψ controls how much emphasis you put on exploitation and exploration.

The choice ψ = 0 is full-on exploitation. You are just looking at the predictive mean.

The greater ψ is, the more emphasis you put on the predictive standard deviation, i.e.,

the more you try to explore. A large ψ value is used for finding where the maximum

variance is located.

2.5 Summary of Multi-fidelity model with dimension reduction method

In the proposed method, we only consider two fidelities. Given our low- and high-

fidelity training datasets {x,yL} , {x,yH}. A summary of the multi-fidelity with

dimension reduction method is shown below:

Step 1: The original input low- and high-fidelity data is denoted as {x,yL} , {x,yH},

respectively. The low-fidelity data can be employed to calculate BIC score to deter-

mine the active subspace dimension d. Based on d, dimension reduction matrix W

can be obtained based on the low-fidelity data.

Step 2: Secondly, according to the high-fidelity data, find where the largest vari-

ance is located, x∗, by using Bayesian active learning method. We combine the new

sample {x∗,y∗L} , {x∗,y∗H} with our original data {x,yL} , {x,yH}. The new com-

bined point can be denoted as
{
xnew,yLnew

}
,
{
xnew,yHnew

}
. Then we perform the

dimension reduction on the Bayesian-active-learning-enriched new data, it can be

written as
{
xDR,yLnew

}
,
{
xDR,yHnew

}
. Here xDR = W Txnew.
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Step 3: Apply the nonlinear multi-fidelity method to do the prediction, our input

data is
{
xDR,yLnew

}
,
{
xDR,yHnew

}
. We use the low fidelity data

{
xDR,yLnew

}
and

kernel function kL (xDR,x
′
DR; θL) to train GP regression model by maximizing the

log-likelihood function.

Step 4: The data
{

(xDR, f∗L (xDR)) ,yHnew
}

and new kernel function Eq. (2.27)

are employed to train our new GP regression model. The L-BFGS algorithm is applied

to ensure the result converges to a local optimal.

Step 5: Finally, the new test sample is employed to obtain the posterior predictive

mean µpre and variance σ2
pre by calculating Eq. (2.28) according to Monte Carlo

integration method. The new predicted output is µpre.
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3. RESULT

In the previous section, the workflow of new proposed method had been introduced. In

this section, some numerical examples will be presented to show the performance and

accuracy of the proposed model. Linear and nonlinear autoregressive multi-fidelity

model denote as AR1 and NARGP, respectively. We first calculate the BIC score to

find the best active subspace dimension and use the gradient-free active subspace to

get the dimension reduction matrix based on low-fidelity data. Secondly, the Bayesian

active learning method is applied to add new samples according to the high-fidelity

data into our original data. Then the data after dimension reduction or projected

data is employed as the inputs of the NARGP model. To compare the performance

of the NARGP to the AR1 method, we also use the data before dimension reduction

or original data to train the NARGP and AR1 model. In this paper, the cases with

two fidelities had been discussed. In order to check the performance of our model,

some test samples for model prediction had been generated. Where DR stands for

dimension reduction. The NARGP result (after DR) is our model result.

3.1 Validation example 1

This function is a four-dimensional test function:

fH(x) = exp (x1 + x2 + x3 + x4) (3.1)

fL(x) = x4fH(x) (3.2)

Low- and high-fidelity training data {x,yL} , {x,yH} can be obtained from yL =

fL(x) and yH = fH(x), respectively. Our input variable is x = (x1, ..., xi)(i = 4), xi

follows the uniform distribution, we can draw training samples x from the interval
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[0, 1]4. Here we take NL = 60, NH = 20, Ntest = 10, where NL and NH denote the

training data size of the {x,yL} and {x,yH}, Ntest is the number of test points. Note

that Example 1 is a four-dimensional problem.

In order to identify the active subspace dimension, we first use the low-fidelity

data as the observation data to get the BIC score of different input dimensions, as

shown in Fig. 3.1.
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Figure 3.1. Example 1 - BIC score vs the input dimensions.

From Figure 3.1, the sharp increasing slope is at d = 2. Hence, the active subspace

dimension is chosen as 2. In other words, original dimension can be decreased from

D = 4 to d = 2. In that case, the dimension reduction matrix W is a 4× 2 matrix.

W =


0.28 0.50

0.28 0.50

0.28 0.50

0.87 −0.49

 (3.3)

Bayesian active learning method is employed to add 10 more samples. The training

data size becomes NL = 70, NH = 30. The model can be denoted as:

fH(x) = h1(xDR) (3.4)
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Where h1 is the mapping between data after dimension reduction and true obser-

vation. And xDR = (xDR1,xDR2), xDR1 is x times the first column of W , xDR2 is x

times the second column of W .

xDR1 = 0.28x1 + 0.28x2 + 0.28x3 + 0.87x4

xDR2 = 0.5x1 + 0.5x2 + 0.5x3 − 0.49x4

(3.5)

Finally, we use the data after dimension reduction (d = 2) as the inputs to run

the proposed model. The data without dimension reduction (D = 4) is also employed

as inputs to run the AR1 and NARGP methods for comparison. Numerical results

are shown in Figs. 3.2, 3.3, 3.4 and 3.5.
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Figure 3.2. (a) Example 1 - Correlation before DR (AR1 and
NARGP), (b) Correlation after DR (NARGP).

Figure 3.2 represents the correlation between the prediction and the true observa-

tion. Blue stars are the numerical results of AR1 method based on the original data

(D = 4), the red triangles represent the results of NARGP method based on the orig-

inal data (D = 4). Note that the training data size is NL = 60, NH = 20. Green dots

are the proposed model results based on the data after dimension reduction (d = 2)



20

0.6 0.8 1.0 1.2 1.4
xDR1

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
f

Prediction before DR (NARGP)
Prediction before DR (AR1)
True observation

(a)

0.6 0.8 1.0 1.2 1.4
xDR1

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

f

Prediction before DR (NARGP)
Prediction after DR (NARGP)
True observation

(b)

Figure 3.3. Example 1 - (a) f vs xDR1 (AR1 and NARGP), (b) f vs
xDR1 (NARGP).
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Figure 3.4. Example 1 - (a) f vs xDR2 (AR1 and NARGP), (b) f vs
xDR2 (NARGP).
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Figure 3.5. Example 1 - (a) Error vs xDR1 (AR1 and NARGP), (b)
Error vs xDR1 (NARGP).
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and the training data size is NL = 70, NH = 30. Purple dash lines are the perfect

correlation between the prediction and the true observation.

Figures 3.3 and 3.4 provide the prediction of f vs xDR1 and xDR2, respectively.

The blue line presents the numerical results of AR1 method based on the original

data. The red line shows the numerical results of NARGP method based on the

original data. Note that the training data size is NL = 60, NH = 20. The green line

is the proposed model results based on the data after dimension reduction and the

training data size is NL = 70, NH = 30. The purple dash line is the true observation

vs xDR1 and xDR2, respectively.

Figure 3.5 shows the error vs xDR1. The error is defined as the absolute value of the

prediction minus the true observation. The blue stars represent the numerical results

of AR1 method based on the original data. The red triangles present the numerical

results of NARGP method based on the original data. Note that the training data

size is NL = 60, NH = 20. The green dots show the proposed model result based on

the data after dimension reduction (d = 2) and the training data size is NL = 70,

NH = 30.

As demonstrated in Figure 3.2 (a), the red triangles are closer to the perfect

correlation line than the blue stars. As shown in Figures 3.3 (a) and 3.4 (a), the red

line is nearly on the track of the true observation line. In addition, in Figure 3.5

(a), the red triangles are closer to the error = 0 line. Hence, the NARGP method

performs better than the AR1 method based on the original data. As shown in Figure

3.2 (b), the green dots are closer to the perfect correlation line than the red triangles.

As shown in Figures 3.3 (b) and 3.4 (b), the green line nearly matches with the true

observation line. In addition, in Figure 3.5 (b), the green dots is closer to the error

= 0 line. Hence, we can conclude that the proposed model results based on the data

after dimension reduction is better than the NARGP method based on the original

data.
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3.2 Validation example 2

This function is a five-dimensional test function:

fH(x) = exp (1.2(x1 + x2 + x3)) (3.6)

fL(x) = sin (x4 + x5)fH(x) (3.7)

Low- and high-fidelity training data {x,yL} , {x,yH} can be acquired from yL =

fL(x) and yH = fH(x), respectively. Our input variables x = (x1, ..., xi)(i = 5),

xi follows the uniform distribution. The training data points x are drawn from the

interval [0, 1]5. Here we take NL = 100, NH = 30, Ntest = 100, where NL and NH

denote the training data size of the {x,yL} and {x,yH}, Ntest is the number of test

samples. Example 2 is a five-dimensional problem.

In order to identify the active subspace dimension, we first employ the low-fidelity

data as the observation data to obtain the BIC score of different input dimensions as

shown in Fig. 3.6.
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Figure 3.6. Example 2 - BIC score vs the input dimensions.

From Figure 3.6, the sharp increasing slope is at d = 2. The active subspace

dimension is chosen as 2. In other words, the original dimension can be decreased
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from D = 5 to d = 2. In that case, the dimension reduction matrix W is a 5 × 2

matrix.

W =



0.17 0.55

0.17 0.55

0.17 0.55

0.68 −0.21

0.68 −0.21


(3.8)

Bayesian active learning method is employed to add 20 more samples. The training

data size becomes NL = 120, NH = 50. The proposed model can be denoted as:

fH(x) = h2(xDR) (3.9)

Where h2 is the mapping between the data after dimension reduction and the true

observation. And xDR = (xDR1,xDR2), xDR1 is x times the first column of W , xDR2

is x times the second column of W .

xDR1 = 0.17x1 + 0.17x2 + 0.17x3 + 0.68x4 + 0.68x5

xDR2 = 0.55x1 + 0.55x2 + 0.55x3 − 0.21x4 − 0.21x5

(3.10)

Finally, the data after dimension reduction (d = 2) is employed as the inputs to

run the proposed model. The data without dimension reduction (D = 5) is employed

as the inputs to run the AR1 and NARGP methods for prediction. The numerical

results are shown in Fig. 3.7.

Figure 3.7 represents the correlation between the prediction and the true obser-

vation. The blue stars present the numerical results of the AR1 method based on the

original data (D = 5). The red triangles show the numerical results of the NARGP

method based on the original data (D = 5). Note that the training data size is

NL = 100, NH = 30. The green dots present the proposed model results based on

the data after dimension reduction (d = 2) and the training data size is NL = 120,
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Figure 3.7. Example 2 - (a) Correlation before DR (AR1 and
NARGP), (b) Correlation after DR (NARGP).
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Figure 3.8. Example 2 - (a) f vs xDR1 (AR1 and NARGP), (b) f vs
xDR1 (NARGP).
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Figure 3.9. Example 2 - (a) f vs xDR2 (AR1 and NARGP), (b) f vs
xDR2 (NARGP).
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Figure 3.10. Example 2 - (a) Error vs xDR1 (AR1 and NARGP), (b)
Error vs xDR1 (NARGP).
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NH = 50. The purple dash line is the perfect correlation between the prediction and

the true observation.

Figures 3.8 and 3.9 present the prediction f vs xDR1 and xDR2, respectively. The

blue line shows the numerical results of the AR1 method based on the original data.

The red line is the numerical results of the NARGP method based on the original

data. Note that the training data size is NL = 100, NH = 30. The green line

represents the proposed model results based on the data after dimension reduction

and the training data size is NL = 120, NH = 50. The purple dash line shows the

true observation vs xDR1 and xDR2, respectively.

Figure 3.10 shows the error vs xDR1. The error is defined as the absolute value of

the prediction minus the true observation. The blue stars show the numerical results

of the AR1 method based on the original data. The red triangles are the numerical

results of the NARGP method based on the original data. Note that the training data

size is NL = 100, NH = 30. The green dots are the proposed model results based on

the data after dimension reduction (d = 2) and the training data size is NL = 120,

NH = 50.

As shown in Figure 3.7 (a), the red triangle is closer to the perfect correlation line

than the blue stars. As shown in Figures 3.8 (a) and 3.9 (a), the red line is nearly on

the track of the true observation line. In addition, in Figure 3.5 (a), the red triangles

are closer to the error = 0 line. Hence, the NARGP method performs better than

the AR1 method based on the original data.

From Figure 3.7 (b), it is hard to tell which results are better. As shown in

Figures 3.8 (b) and 3.9 (b), it seems the red and the green lines match with the true

observation line well. In addition, in Figure 3.10 (b), the green dots are closer to the

error = 0 line. Hence, we can conclude that the proposed model results based on

the data after dimension reduction is better than the NARGP method based on the

original data.
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3.3 Poisson equation

In this numerical example, ten-dimensional (10D) Poisson equation has been in-

troduced and it’s shown in Eq. (3.11). The source term f(x) is assumed to follow

the form of Eq. (3.12). The solution u(x) of the Poisson equation follows the form

of Eq. (3.13).

10∑
d=1

∂2

∂x2d
u(x) = f(x) (3.11)

fH(x) = −32π2 sin (2π(x1 + x3))

fL(x) = 0.8fH(x)− 4π2 sin (2πx2) .
(3.12)

uH(x) = 4 sin (2π(x1 + x3))

uL(x) = 0.8uH(x) + sin (2πx2) .
(3.13)

Low- and high-fidelity training data {x,uL} , {x,uH} can be got from uL(x) and

uH(x), respectively. The input variables are x = (x1, ..., xi)(i = 10). Here xi follows

the uniform distribution. The training data points x can be drawn from the interval

[0, 1]10. Here we take NL = 150, NH = 20, Ntest = 100, where NL and NH denote the

training data size of the {x,uL} and {x,uH}, Ntest is the number of test points.

In order to identify the active subspace dimension, we first use the low-fidelity

data to get BIC score of different input dimensions, as shown in Fig. 3.11.

In Figure 3.11, the sharp slope is at d = 2. The active subspace dimension is

chosen as 2. In other words, we can decrease the original dimension from D = 10 to

d = 2. In that case, the dimension reduction matrix W is a 10× 2 matrix.
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Figure 3.11. Poisson equation - BIC score vs the input dimensions.
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W =



0.71 0.02

−0.02 1

0.71 0.02

0 0

0 0

0 0

0 0

0 0

0 0

0 0



(3.14)

Bayesian active learning method is employed to add 30 more samples. The training

data size becomes NL = 180, NH = 50. The proposed model can be denoted as:

uH(x) = h3(xDR) (3.15)

Where h3 is the mapping between the data after dimension reduction and the true

observation. We denote W = (W 1,W 2), W 1 is the first column of W , W 2 is the

second column of W . xDR = (xDR1,xDR2):

xDR1 = W T
1 x

xDR2 = W T
2 x

(3.16)

Finally, the data after dimension reduction (d = 2) is employed as the inputs to

run the proposed model. The data without dimension reduction (D = 10) is also

employed as the inputs to run the AR1 and NARGP models for prediction. Results

are shown in Fig. 3.12.

Figure 3.12 represents the correlation between the prediction and the true ob-

servation. The blue stars represent the numerical results of the AR1 method based

on the original data (D = 10). The red triangles show the numerical results of

the NARGP method based on the original data (D = 10). Note that the training
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Figure 3.12. Poisson equation - (a) Correlation before DR (AR1 and
NARGP), (b) Correlation after DR (NARGP).
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Figure 3.13. Poisson equation - (a) u vs xDR1 (AR1 and NARGP),
(b) u vs xDR1 (NARGP).
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Figure 3.14. Poisson equation - (a) u vs xDR2 (AR1 and NARGP),
(b) u vs xDR2 (NARGP).
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Figure 3.15. Poisson equation - (a) Error vs xDR1 (AR1 and NARGP),
(b) Error vs xDR1 (NARGP).
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data size is NL = 150, NH = 20. The green dots show the proposed model results

based on the data after dimension reduction (d = 2) and the training data size is

NL = 180, NH = 50. The purple dash line represents the perfect correlation between

the prediction and the true observation.

Figures 3.13 and 3.14 present the prediction u vs xDR1 and xDR2, respectively.

The blue line presents the numerical results of the AR1 method based on the original

data. The red line shows the numerical results of the NARGP method based on the

original data. Note that the training data size is NL = 150, NH = 20. The green

line is the proposed model results based on the data after dimension reduction and

the training data size is NL = 180, NH = 50. The purple dash line presents the true

observation vs xDR1 and xDR2, respectively.

Figure 3.15 shows the error vs xDR1. Error is defined as the absolute value of

prediction minus true observation. The blue stars show the numerical results of the

AR1 method based on the original data. The red triangles present the numerical

results of the NARGP method based on the original data. Note that the training

data size is NL = 150, NH = 20. The green dots show the proposed model results

based on the data after dimension reduction (d = 2) and the training data size is

NL = 180, NH = 50.

In Figure 3.12 (a), the red triangles are closer to the perfect correlation line than

the blue stars. The blue stars are totally off from the perfect correlation line. As

shown in Figures 3.13 (a) and 3.14 (a), the red line is nearly on the track of the true

observation line. In addition, in Figure 3.15 (a), the red triangles are closer to the

error = 0 line. Hence, the NARGP method performs better than the AR1 method

based on the original data.

In Figure 3.12 (b), it is hard to tell which results are better. As shown in Figures

3.13 (b) and 3.14 (b), it seems the red and the green lines match with the true

observation line well. In addition, in Figure 3.15 (b), the green dots are closer to the

error = 0 line. Hence, we can conclude that the proposed model results based on the
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data after dimension reduction are better than the NARGP model results based on

the original data.

3.4 KdV equation

In this example, the Korteweg-de Vries (KdV) equation [41–46] is studied:

∂u

∂t
(x, t; ξ)− 6u(x, t; ξ)

∂u

∂x
(x, t; ξ) +

∂3u

∂x3
(x, t; ξ) = f(t; ξ), x ∈ (−∞,+∞) (3.17)

u(x, 0; ξ) = −2 sech2(x) (3.18)

Defining

W (t; ξ) =

∫ t

0

f(y; ξ)dy (3.19)

The analytical solution of the KdV equation is:

u(x, t; ξ) = W (t; ξ)− 2 sech2

(
x− 4t+ 6

∫ t

0

W (z; ξ)dz

)
(3.20)

We define f(t; ξ) as a Gaussian random field and KL expansion (KLE) [47] can

be employed to represent it below:

f(t; ξ) = σ
d∑
i=1

√
λiφi(t)ξi (3.21)

Where σ is a constant, ξ = ξi, i = 1, ..., dmax and {λi, φi(t)}dmaxi=1 are eigenpairs of

the exponential covariance kernel C (x, x′). In this problem, we set lc = 0.25.

C (x, x′) = exp

(
|x− x′|
lc

)
(3.22)

In this case, the exact one-soliton solution is:

u(x, t; ξ) = σ

dmax∑
i=1

√
λiξi

∫ t

0

φi(y)dy−2 sech2

(
x− 4t+ 6σ

dmax∑
i=1

√
λiξi

∫ t

0

∫ z

0

φi(y)dydz

)
(3.23)
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Figure 3.16. 3D Contour of the KdV equation.

Since the expression for the φi is known, it helps us to calculate the integrals in

the equation above more accurately.

Denoting

Ai =
√
λi
∫ t
0
φi(y)dy

Bi =
√
λi
∫ t
0

∫ z
0
φi(y)dydz

(3.24)

Here the quantities of interest is u(x, t; ξ) at x = 6, t = 1, σ = 1. The analytical

solution is:

u(ξ) = u(x, t; ξ)|x=6,t=1 =
dmax∑
i=1

Aiξi − 2 sech2

(
2 + 6

dmax∑
i=1

Biξi

)
(3.25)

The 3D contour of Eq. (3.23) with fixed ξ is shown in Figure 3.16. The three-axes

are x, t and u, respectively. Here x ∈ [1, 11], t ∈ [0, 5].

According to Eq. (3.25), the low-fidelity data (ξ,uL) is obtained by setting dmax =

2, and high-fidelity data (ξ,uH) is obtained by setting dmax = 10. The input variables

are ξ = (ξ1, ..., ξi)(i = 10). ξi follows the uniform distribution. The training samples

ξ are drawn from the interval [0, 1]10. Here we take NL = 10, NH = 3 and Ntest =

50 where NL and NH denote the number of training low- and high-fidelity data

separately, Ntest means the number of testing data.
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In order to identify the active subspace dimension, the low-fidelity data is em-

ployed to obtain the BIC score of different input dimensions, as shown in Fig. 3.17.
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Figure 3.17. KdV equation - BIC score vs the input dimensions.

In Figure 3.17, d = 2 is chosen according to the BIC score criterion. The active

subspace dimension is chosen as 2. In other words, the original dimension can be

reduced from D = 10 to d = 2. In that case, the dimension reduction matrix W is a

10× 2 matrix.

Bayesian active learning method is employed to add 30 more samples. The training

data size becomes NL = 40, NH = 33. The proposed model can be denoted as:

uH(ξ) = h4(ξDR) (3.26)

Where h4 is the mapping between the data after dimension reduction and the true

observation. And W = (W 1,W 2), W 1 is the first column of W , W 2 is the second

column of W . ξDR = (ξDR1, ξDR2):

ξDR1 = W T
1 ξ

ξDR2 = W T
2 ξ

(3.27)

Finally, the data after dimension reduction (d = 2) is employed as inputs to

run the proposed model. The data without dimension reduction (D = 10) is also
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employed as inputs to run the AR1 and NARGP models for prediction. Results are

shown in Fig. 3.18.
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Figure 3.18. KdV equation - (a) Correlation before DR (AR1 and
NARGP), (b) Correlation after DR (NARGP).

Figure 3.18 represents the correlation between the prediction and the true ob-

servation. The blue stars present the numerical results of the AR1 method based

on the original data (D = 10). The red triangles show the numerical results of the

NARGP method based on the original data (D = 10). Note that the training data

size is NL = 10, NH = 3. The green dots are the proposed model results based on

the data after dimension reduction (d = 2) and the training data size is NL = 40,

NH = 33. The purple dash line means the perfect correlation between prediction and

true observations.

Figures 3.19 and 3.20 provide the prediction u vs ξDR1 and ξDR2, respectively. The

blue line presents the result of the AR1 method based on original data. The red line

shows the numerical results of the NARGP method based on the original data. Note

that the training data size is NL = 10, NH = 3. The green line presents the proposed

model result based on data after dimension reduction and the training data size is
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Figure 3.19. KdV equation - (a) u vs ξDR1 (AR1 and NARGP), (b)
u vs ξDR1 (NARGP).
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Figure 3.20. KdV equation - (a) u vs ξDR2 (AR1 and NARGP), (b)
u vs ξDR2 (NARGP).
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Figure 3.21. KdV equation - (a) Error vs ξDR1 (AR1 and NARGP),
(b) Error vs ξDR1 (NARGP).
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NL = 40, NH = 33. The purple dash line shows the true observation vs xDR1 and

xDR2, respectively.

Figure 3.21 shows the error vs ξDR1. Error is defined the absolute value of pre-

diction minus true observations. The blue stars present the numerical results of the

AR1 method based on original data, the red triangle is the numerical results of the

NARGP method based on the original data, Here we need to note that the training

data size is NL = 10, NH = 3. The green dots represent the proposed model result

based on data after dimension reduction (d = 2) and the training data size is NL = 40,

NH = 33.

As shown in Figure 3.18 (a), the red triangles are closer to the perfect correlation

line than the blue stars. The blue stars are totally off from the perfect correlation

line. As shown in Figures 3.19 (a) and 3.20 (a), the red line is nearly on the track

of true observation line. In addition, in Figure 3.21 (a), the red triangles are closer

to the error = 0 line. Hence, the NARGP method performs better than the AR1

method based on the original data.

As shown in Figure 3.18 (b), the green dots distributed on the perfect correlation.

The red triangles are off from the perfect situation. As shown in Figures 3.19 (b) and

3.20 (b), the green line matches with the true observation better than the red line.

In addition, in Figure 3.21 (b), the green dots are closer to the error = 0 line. Hence,

we can conclude that the proposed model results based on the data after dimension

reduction is better than the NARGP model results based on the original data.

3.5 Elliptic equation

In this example, the elliptic differential equation with a random high-order coef-

ficient is considered:

− d
dx

(
a(x; ξ)du(x;ξ)

dx

)
= 1, x ∈ (0, 1)

u(0) = u(1) = 0
(3.28)

Where a(x; ξ) is a log-normal random field based on KL expansion:
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a(x; ξ) = a0(x) + exp

(
σ
dmax∑
i=1

√
λiφi(x)ξi

)
(3.29)

where ξi are i.i.d. standard Gaussian random variables, {λi, φi(x)}dmaxi=1 are the

largest eigenvalues and the corresponding eigenfunctions of the exponential covariance

kernel in the form of Eq. (3.22).

In the KL expansion, λi denotes the eigenvalue of the covariance kernel C (x, x′).

With this setting, a and u only depend on x and the solution of the deterministic

elliptic equation can be written in the following form:

u(x) = u(0) +

∫ x

0

a(0)u(0)′ − y
a(y)

dy (3.30)

And our boundary condition is u(0) = u(1) = 0, a(0)u(0)′ can be computed:

a(0)u(0)′ =

(∫ 1

0

y

a(y)
dy

)
/

(∫ 1

0

1

a(y)
dy

)
(3.31)

In this example, we set a0(x) = 0.1, σ = 0.2, lc = 0.2, x = 0.35. The equation

based on the equations (3.29) and (3.30) can rewritten in the following form:

u(ξ) =

∫ 0.35

0

a(0)u(0)′ − ξ
a(ξ)

dξ (3.32)

According to Eq. (3.29), low-fidelity data (ξ,uL) and the high-fidelity data (ξ,uH)

can be obtained by setting aL(x; ξ) and aH(x; ξ) in the following form:

aL(x; ξ) = a0(x) + exp

(
0.2

8∑
i=1

√
λiφi(x)ξi

)
+ exp

(
0.2

10∑
i=9

√
λiφi(x)ξi

)
(3.33)

aH(x; ξ) = a0(x) + exp

(
0.2

8∑
i=1

√
λiφi(x)ξi

)
(3.34)

Our input variables are ξ = (ξ1, ..., ξi)(i = 10). ξi follows the uniform distribution.

Training samples ξ can be drawn from the interval [0, 1]10. Here we take NL = 15,

NH = 3 and Ntest = 50 where NL and NH denote the number of training low- and

high-fidelity data separately, Ntest means the number of testing data.
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In order to identify the active subspace dimension, the low-fidelity data is em-

ployed to get the BIC score of different input dimensions, as shown in Fig. 3.22.
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Figure 3.22. Elliptic equation - BIC score vs the input dimensions.

In Figure 3.22, the sharp slope is at d = 3. The active subspace dimension is 3.

In other words, the original dimensions can be decrease from D = 10 to d = 3. In

that case, the dimension reduction matrix W is a 10× 3 matrix.

Bayesian active learning method is employed to add 20 more samples. The pro-

posed training data size becomes NL = 35, NH = 23. The proposed model can be

denoted as:

uH(ξ) = h5(ξDR) (3.35)

Where h5 is the mapping between data after dimension reduction and the true

observation. And W = (W 1,W 2), W 1 is the first column of W , W 2 is the second

column of W , W 3 is the third column of W . ξDR = (ξDR1, ξDR2, ξDR3):

ξDR1 = W T
1 ξ

ξDR2 = W T
2 ξ

ξDR3 = W T
3 ξ

(3.36)

Finally, the data after dimension reduction (d = 3) is employed as the inputs to

run the proposed model. The data without dimension reduction (D = 10) is used
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as inputs to run the AR1 and NARGP models for comparison. Results are shown in

Fig. 3.23.
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Figure 3.23. Elliptic equation - (a) Correlation before DR (AR1 and
NARGP), (b) Correlation after DR (NARGP).

Figure 3.23 represents the correlation between the prediction and the true obser-

vation. The blue stars present the numerical results of the AR1 method based on

the original data (D = 10), the red triangles show the numerical results of NARGP

method based on the original data (D = 10). Note that the training data size is

NL = 15, NH = 3. The green dots are the proposed model results based on data

after dimension reduction (d = 3) and the training data size is NL = 35, NH = 23.

The purple dash line represents the perfect correlation between prediction and true

observations.

Figures 3.24, 3.25 and 3.26 provide the prediction u vs ξDR1, ξDR2 and ξDR3,

respectively. The blue line presents the numerical results of the AR1 method based

on the original data. The red line shows the numerical results of the NARGP method

based on the original data. Note that the training data size is NL = 15, NH = 3. The

green line represents the proposed model results based on the data after dimension
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Figure 3.24. Elliptic equation - (a) u vs ξDR1 (AR1 and NARGP), (b)
u vs ξDR1 (NARGP).
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Figure 3.25. Elliptic equation - (a) u vs ξDR2 (AR1 and NARGP), (b)
u vs ξDR2 (NARGP).
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Figure 3.26. Elliptic equation - (a) u vs ξDR3 (AR1 and NARGP), (b)
u vs ξDR3 (NARGP).
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Figure 3.27. Elliptic equation - (a) Error vs ξDR1 (AR1 and NARGP),
(b) Error vs ξDR1 (NARGP).
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reduction and the training data size is NL = 35, NH = 23. The purple dash line

shows the true observation vs ξDR1, ξDR2 and ξDR3, respectively.

Figure 3.27 shows the error vs ξDR1. Error is defined as the absolute value of

prediction minus true observation. The blue star presents the numerical results of

the AR1 method based on the original data. The red triangles show the numerical

results of the NARGP method based on the original data. Note that the training

data size is NL = 15, NH = 3. The green dots are the proposed model results based

on the data after dimension reduction (d = 3) and the training data size is NL = 35,

NH = 23.

From Figure 3.23 (a), the red triangles are closer to the perfect correlation line

than the blue stars. The blue stars are totally off from the perfect correlation line.

As shown in Figures 3.24 (a), 3.25 (a) and 3.26 (a), the red line presents nearly on

the track of true observation line. In addition, in Figure 3.27 (a), the red triangles

are closer to the error = 0 line. Hence, the NARGP method perform better than the

AR1 method based on the original data.

From Figure 3.23 (b), it is hard to tell which results are better. As shown in Figures

3.24 (b), 3.25 (b) and 3.26 (b), the green line matches with the true observation better

than the red line. In addition, in Figure 3.27 (b), the green dots are closer to the error

= 0 line. Hence, we can draw the conclusion that the proposed model results based on

the data after dimension reduction are better than the NARGP model results based

on the original data.

3.6 Summary of mean square error

In addition, the mean square error (MSE) of the different situation had been

summarized below, NARGP (after DR) is our model results. DR stands for dimension

reduction:

It can be observed from Table 3.1 that the NARGP method can make better

prediction than the AR1 method when the data before dimension reduction is inputs.
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Table 3.1.
MSE of AR1 and NARGP model prediction with data before dimension reduction

MSE AR1 (before DR) NARGP (before DR)

Simulation 1 0.4346 0.0749

Simulation 2 0.6523 0.0185

Poisson equation 1.8189 0.0046

KdV equation 0.0539 0.0019

Elliptic equation 1.7861 ×10−5 3.8738 ×10−8

Table 3.2.
MSE of NARGP model prediction with data before and after dimension reduction

MSE NARGP (before DR) NARGP (after DR)

Simulation 1 0.0749 0.0027

Simulation 2 0.0185 0.0001

Poisson equation 0.0046 4.3551×10−5

KdV equation 0.0019 0.0001

Elliptic equation 3.8738 ×10−8 1.4233 ×10−9

It is shown in Table 3.2 that the proposed model has better performance than the

NARGP method which is based on data without dimension reduction. From all the

results shown in this section, we draw conclusion that the proposed model can not

only perform dimension reduction but also make accurate prediction.
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4. CONCLUSION

In this work, a novel nonlinear multi-fidelity surrogate model is presented by inte-

grating the advantage of the gradient-free active subspace method and the NARGP

multi-fidelity scheme. The proposed model can not only reduce the input dimensions

but also make accurate model prediction based on the data after dimension reduc-

tion. Several numerical examples are investigated to show that the proposed model

can outperform the AR1 and NARGP multi-fidelity methods. In practice, the active

subspace dimension value varies in different cases. From simulation results in this

paper, it is a coincidence that most of the active subspace dimension is 2. Although

the multi-fidelity model is widely used in the engineering applications, we have to ac-

knowledge that the multi-fidelity method has not been fully explored and developed

in the machine learning [48–50] field. We hope our work can inspire some research

interest in this field.
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