
ZIPTHRU: A SOFTWARE ARCHITECTURE THAT
EXPLOITS ZIPFIAN SKEW IN DATASETS FOR

ACCELERATING BIG DATA ANALYSIS
by

Ejebagom John Ojogbo

A dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Electrical and Computer Engineering

West Lafayette, Indiana

December 2020

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. T.N. Vijaykumar, Co-chair

School of Electrical and Computer Engineering

Dr. Mithuna S. Thottethodi, Co-chair

School of Electrical and Computer Engineering

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. Samuel P. Midkiff

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

2

To my parents, friends, and advisors. I could not have done any of this without your

support.

3

ACKNOWLEDGMENTS

I would like to acknowledge all those that helped and supported me throughout the

research process, especially my advisors Profs T.N. Vijaykumar and Mithuna Thottethodi,

and the rest of my committee. Thank you all for your help, advice, and guidance.

4

TABLE OF CONTENTS

LIST OF TABLES . 7

LIST OF FIGURES . 8

ABSTRACT . 9

1 INTRODUCTION . 11

2 BACKGROUND . 15

2.1 MapReduce . 15

2.2 Memory Access Patterns in Single-Server MapReduce 16

2.2.1 Input Data . 17

2.2.2 Intermediate State . 17

2.2.3 Final Reduced State . 20

2.3 Zipfian/Power Law Skew in Big Datasets . 21

3 ZIPTHRU . 23

3.1 Concurrent Execution of Map and Reduce Tasks 23

3.2 Caching Final Reduced State for Popular Keys 26

3.3 Distinguishing between Popular and Unpopular Keys 28

3.3.1 Lookup Table for Popular Keys . 29

3.4 Load Balancing Map and Reduce Tasks . 30

3.4.1 Static Partitioning of Map and Reduce Tasks 30

3.4.2 Dynamic Load Balancing of Map and Reduce Tasks 32

5

4 EXPERIMENTAL METHODOLOGY . 37

4.1 Datasets . 37

4.2 ZipThru configuaration . 38

4.3 Hardware . 39

5 RESULTS AND ANALYSIS . 41

5.1 Memory Accesses . 41

5.2 Performance . 42

6 RELATED WORKS . 46

7 CONCLUSION . 48

REFERENCES . 49

VITA . 53

6

LIST OF TABLES

Table Page

4.1 Datasets used to evaluate ZipThru . 38

4.2 Coverage of keys cached by ZipThru . 39

4.3 Hardware used to evaluate ZipThru . 39

7

LIST OF FIGURES

Figure Page

2.1 Traditional MapReduce workflow . 15

2.2 Accesses to mapper’s intermediate state . 18

2.3 Accesses to reducer’s intermediate state . 20

2.4 Twitter’s data distribution . 21

2.5 Friendster’s data distribution . 22

3.1 Concurrent execution in ZipThru . 24

3.2 Various states of ZipThru’s lock-free queues 26

3.3 Accesses to ZipThru’s reduced state during concurrent execution 28

3.4 Decision tree for threads under ZipThru’s dynamic load balancing 33

5.1 Memory access counts on Intel Xeon . 41

5.2 Speedup on Intel Xeon . 43

5.3 Speedup on AMD Opteron . 44

8

ABSTRACT

In the past decade, Big Data analysis has become a central part of many industries

including entertainment, social networking, and online commerce. MapReduce, pioneered

by Google, is a popular programming model for Big Data analysis, famous for its easy

programmability due to automatic data partitioning, fault tolerance, and high performance.

Majority of MapReduce workloads are summarizations, where the final output is a per-key

“reduced” version of the input, highlighting a shared property of each key in the input

dataset.

While MapReduce was originally proposed for massive data analyses on networked clus-

ters, the model is also applicable to datasets small enough to be analyzed on a single server.

In this single-server context the intermediate tuple state generated by mappers is saved to

memory, and only after all Map tasks have finished are reducers allowed to process it. This

Map-then-Reduce sequential mode of execution leads to distant reuse of the intermediate

state, resulting in poor locality for memory accesses. In addition the size of the intermediate

state is often too large to fit in the on-chip caches, leading to numerous cache misses as the

state grows during execution, further degrading performance. It is well known, however,

that many large datasets used in these workloads possess a Zipfian/Power Law skew, where

a minority of keys (e.g., 10%) appear in a majority of tuples/records (e.g., 70%).

I propose ZipThru, a novel MapReduce software architecture that exploits this skew to

keep the tuples for the popular keys on-chip, processing them on the fly and thus improving

reuse of their intermediate state and curtailing off-chip misses. ZipThru achieves this using

four key mechanisms: 1) Concurrent execution of both Map and Reduce phases; 2) Holding

only the small, reduced state of the minority of popular keys on-chip during execution; 3)

Using a lookup table built from pre-processing a subset of the input to distinguish between

popular and unpopular keys; and 4) Load balancing the concurrently executing Map and

Reduce phases to efficiently share on-chip resources.

Evaluations using Phoenix, a shared-memory MapReduce implementation, on 16- and

32-core servers reveal that ZipThru incurs 72% fewer cache misses on average over tradi-

9

tional MapReduce while achieving average speedups of 2.75x and 1.73x on both machines

respectively.

10

1. INTRODUCTION

Big Data analysis has become a cornerstone sector in computing in the past decade. As the

number of devices and services on the Internet has grown, the amount of data generated by

consumers using these devices and services has increased tremendously. This data provides

much needed information, context, and value for products in many fields, from entertainment

to online commerce, social networking, and more, and its unabated growth has pushed

demand for quicker and more efficient means of analyzing, organizing, and extracting useful

information from the data.

In response the computing industry has come up with a variety of tools to tackle Big

Data analysis. Because of the vast amounts of data and its disparate sources most solutions

have been built around distributed computing on networked clusters, usually following the

MapReduce paradigm[1] and other related variants (e.g., Dryad[2]).

The MapReduce programming model, pioneered by Google and inspired by the Map

and Reduce functions used in functional programming, is popular mainly due to its high

programmability. This programmability is facilitated by the framework’s built-in support for

task management, data management, and fault tolerance, features that are indispensable for

distributed analyses on networked machines. The most widespread MapReduce framework

is Apache Hadoop[3].

In MapReduce execution is split into two phases: a Map phase and a Reduce phase. The

Map phase produces key-value tuples from the input data (e.g., <word, 1> where the word

is the key and the value is 1). Each tuple is then sent to a specific reducer based on its key,

which performs a user-defined Reduce operation on all the tuples for a given key (e.g., a

simple summation to determine each word’s count).

While the MapReduce model supports any program whose work can be split into Map and

Reduce phases, majority of the workloads performed with the paradigm are summarization

workloads where the final output is a per-key “reduced” version of the input data, like the

word count example above. The goal in such workloads is to extract some information on

each key in dataset, producing a smaller, compressed version of the input data that highlights

the target property.

11

Other distributed computing frameworks/models used for Big Data analysis include the

Bulk-Sychronous Parallel Model[4], which focuses on streamlining communication and syn-

chronization between nodes in a distributed network; and Apache Spark[5], built for in-

memory computing and geared mainly towards both iterative and query-based programming

models for use in neural nets and databases.

Despite these frameworks’ focus on analyzing huge amounts of data across distributed

clusters, many real-world analyses are performed on (relatively) smaller datasets that can

be processed efficiently on a single machine. These single-server workloads still benefit from

the features of the MapReduce model, however; in fact the computations performed by

individual nodes in distributed workloads use MapReduce to process their local data before

sending their output on the network for global reduction. Apache Spark, which supports

many different execution models, specifically targets such use.

While there has been a plethora of recent work in accelerating the local execution on

single servers and individual nodes in distributed clusters, most of this work[6][7] has focused

on integrating application-specific, data-agnostic FPGA accelerators and GPUs within the

compute process. Because many of these frameworks are written in high-level managed

languages and run on general purpose CPUs, researchers have focused on speeding up local

execution by allowing the easy integration of accelerators into compute[8], in some cases

allowing the user to customize the architectures to their specific computing needs [9] .

However, it is well known that many datasets possess a skewed key distribution, one that

is either Zipfian in nature or adheres to some other Power Law formula. In these datasets

a minority of keys (e.g., 10%) are present in a majority of tuples (e.g, 70%), leading to a

majority of accesses to the tuples with these keys. A prime example of a Zipfian dataset that

has uses in many Big Data contexts is words in the English language. Just the top word

alone (the) accounts for over 7% of all word occurrences in regular English use [10]. This

example illustrates the power of this distribution, as word identification and analysis is used

in variety of Big Data contexts such as keyword search, sort, and tagging. Social networks

provide another example, where a small minority of more popular users usually possess

a disproportionate number of links/edges compared to the majority of users. Algorithms

12

analyzing graphs in Big Data are ubiquitous and would benefit from any architecture that

optimizes for such skew.

In traditional MapReduce programs no special attention is paid to the organization of

the data or its inherent properties. Thus during the Map phase the intermediate tuple state

for all keys is saved/sent to the reducers and only after all Map tasks have concluded are

reducers allowed to proceed. This Map-then-Reduce sequential mode of execution means

that the tuples are reduced far in the future after being produced by Map, resulting in

poor locality due to distant reuse. In addition the intermediate state produced by mappers

usually cannot fit in the on-chip caches due to its size. As a result mappers and reducers

suffer numerous cache misses and memory accesses as execution progresses, which in turn

degrades performance.

To address these issues I propose ZipThru, a novel MapReduce software architecture that

exploits the inherent skew in big datasets and processes the state for popular keys on the

fly, thus improving reuse, preserving locality, and boosting performance. ZipThru achieves

this via four key mechanisms:

• First, instead of the sequential Map-then-Reduce mode of execution which induces

distant reuse, ZipThru employs concurrent Map-and-Reduce to produce and consume

the popular keys’ tuples on-chip immediately, facilitating near reuse.

• Second, ZipThru takes advantage of the fact that in summarization workloads the

reduced state of the popular keys is a small fraction of the total reduced state of the

full dataset. As a result ZipThru can hold this smaller state on-chip as it reduces the

tuples for the popular keys, greatly improving locality and curtailing off-chip misses.

The tuples/intermediate state for the unpopular keys follow the default MapReduce

flow and are reduced later in a separate, final Reduce phase.

• Third, ZipThru employs a lookup table to identify the tuples with popular keys. This

lookup table is populated based on an offline, pre-processing step on a subset of the

input data, the cost of which is amortized over numerous MapReductions due to the

naturally slow-changing nature of popularity.

13

• And fourth, in contrast with sequential MapReduce which uses all system resources for

the Map and then Reduce phases and as a result is naturally load balanced, ZipThru’s

concurrency introduces the need to efficiently balance system resources between the

simultaneously executing Map and Reduce tasks. Thus ZipThru offers two load-

balancing schemes: a static scheme that fixes the number of threads that execute

each task at the start of execution, and a dynamic scheme that uses all system threads

for both tasks, switching modes between Map and Reduce depending on the workload

in order to achieve load balance.

ZipThru is completely transparent to existing MapReduce programs and can run them

with little modification. In addition, because of the broad applicability of the MapReduce

model, ZipThru’s optimizations are also applicable to cluster-scale workloads as well as the

single-server context that is the focus of this work.

Evaluations using Phoenix[11], a shared-memory MapReduce implementation, on two

16- and 32-core servers reveal that ZipThru incurs an average of 72% fewer cache misses over

traditional MapReduce programs, as well as average speedups of 2.75x and 1.73x on both

servers respectively.

The rest of this work is structured as follows: First I provide more background on the

traditional MapReduce paradigm and the limitations and drawbacks that exist in the cur-

rent mode of execution. Next I describe ZipThru and the key mechanisms it employs to

take advantage of the skew in large datasets in order to improve performance. Then I cover

experimental methodology and show comparisons between ZipThru and traditional MapRe-

duce for a number of datasets with varying degrees of inherent skew. Lastly I discuss related

works in the field and highlight ZipThru’s novelty before concluding.

14

2. BACKGROUND

2.1 MapReduce

As mentioned in Chapter 1 traditional MapReduce programs have their execution defined

in two sequential, non-overlapping phases: a Map phase and a Reduce phase, illustrated in

Figure 2.1 .

INPUT DATA MAP TASKS
INTERMEDIATE

STATE REDUCE TASKS OUTPUT DATA BARRIER

Figure 2.1. Traditional MapReduce workflow

During the Map phase mappers process separate chunks of input data and emit key-value

tuples, placing these tuples into individual buckets based on their keys (the intermediate state

in Figure 2.1) for future Reduce. Then after the barrier i.e., once the Map tasks have finished

processing their inputs, the intermediate state is communicated/shuffled from mappers to

reducers and reducers perform a user-defined operation on the tuples of each of their assigned

keys, generating their output. A classic example of a MapReduce workload is word count,

15

where mappers will emit tuples <word, 1> for each word they encounter in the input data,

and reducers sum all the tuples for a given word to determine the word’s count in the dataset.

Because of the size of the intermediate state generated by mappers while processing the

input, summarization MapReduce programs often include a combiner function, which takes

data emitted by local Map tasks and “pre-reduces” or combines it in order to pare down its

footprint before placing the new data in reducer buckets. This combining reduces pressure on

memory in the single-server context and saves network bandwidth in multi-cluster workloads.

Despite the MapReduce model’s applicability to both single and multi-cluster execution

the challenges faced by programs executing in the two contexts are quite different. In multi-

cluster workloads special attention is paid to fault tolerance and task management across

multiple machines, along with network optimizations to make communicating tuples between

mappers and reducers more efficient.

Single-server workloads do not have to deal with these issues. The built-in multi-

threading supported by the local machine’s operating system, along with the shared-memory

infrastructure used by mappers and reducers for saving/sending tuples, provides automatic

support for communication. In addition, the fact that all execution takes place on a single

machine obviates the need for fault tolerance.

As a result the key challenges faced by programs in the single-server context mainly deal

with efficient use of local CPU resources, particularly the on-chip caches shared by mappers

and reducers. This work is focused on boosting performance by optimizing memory access

for MapReduce programs operating in this context.

2.2 Memory Access Patterns in Single-Server MapReduce

When running as a multi-threaded program there are three main sources of memory

accesses in MapReduce: 1) The input data, which is partitioned and fed into the Map

tasks; 2) The intermediate state, which is produced by the Map tasks and read by reducers

to generate the final output; and 3) The final reduced state of the data, which reducers

produce as they process the intermediate state for each of their assigned keys.

16

2.2.1 Input Data

In the shared-memory context input data can be represented as a contiguous memory-

mapped file. Map tasks read this data sequentially and in general will process each block

only once. Even for Map tasks that don’t access their input blocks once, temporal locality

will still be fairly high during execution. While access patterns in input processing are

highly dependent on both the dataset and the specific function the Map tasks are executing,

this sequential-access/high-locality assumption is a fundamentally emergent property of the

MapReduce paradigm. Programs that don’t benefit from implicit partitioning of input data

and allow independent functioning of Map tasks already make a poor fit for MapReduce

and will be unable to take advantage of its benefits. As a result it is reasonable to expect

very simple, high locality memory accesses from Map tasks processing independent chunks

of input data.

The upshot of this is that input processing in MapReduce needs very little by way of

memory optimizations; sequential, high-locality memory access patterns are already well

served by hardware and software prefetching [12].

2.2.2 Intermediate State

Memory accesses to the intermediate state in traditional MapReduce suffer from a major

deficiency that hurts performance: poor locality from distant reuse due to the sequential

nature of the traditional Map-then-Reduce paradigm. This distant reuse leads to numerous

off-chip misses as a result of the sheer size of the intermediate state generated by mappers.

As mappers process their inputs and emit tuples for each key they encounter, they must

insert these tuples into reducer-specific queues/buckets for later reduction. Because each

mapper operates on independent chunks of input data each mapper maintains private queues

for every future reducer, allowing them to insert tuples into these queues without worrying

about synchronization and interference from other concurrently executing Map tasks.

For each tuple <K1, V1> encountered for a given key K1, a mapper must insert it into the

appropriate queue for K1’s reducer. Regardless of the data structure used to hold this queue

all mappers will have to contend with the compute cost and memory accesses that come with

17

handling constantly growing intermediate state. For a sufficiently large and unsorted input

each mapper can be expected to see a tuple for almost every key in the dataset, leading to

a huge amount of intermediate state stored in each mapper’s private queues.

Unlike input processing, where mappers can be expected to make simple high-locality

accesses to each input block, the access patterns for the intermediate state are unpredictable

and as a result offer poor locality. A mapper accessing the state for key K1 assigned to

reducer R1 in no way guarantees that the next tuple it encounters will belong to either K1

or R1. Thus as intermediate state grows during execution, and as mappers encounter tuples

belonging to different keys, mappers will make multiple disparate memory accesses to various

portions of their queues. If the state cannot be held in the on-chip caches - a certainty when

dealing with large datasets - then each mapper will suffer cache misses as various portions

of their queues are brought in and out of the cache.

K1

K2

K3

K4

K3

K4

K5

K6

K6

K2

K1

K5

LRU

MRU

U

T0 T1 T2

Insert K5 and K6

Insert K2, K1 and

K5

Figure 2.2. Accesses to mapper’s intermediate state

Figure 2.2 offers an illustration of how these access patterns would hurt locality. For

simplicity it displays the cache state of a single mapper and assumes that the per-key inter-

mediate state doesn’t grow. The replacement policy of the cache is LRU.

18

At T0, the mapper is holding intermediate state for 4 different keys in its cache, K1

through K4. The cache is full. Then at T1 the mapper encounters tuples for keys K5 and

K6 and attempts to insert them, leading to evictions of the states of keys K1 and K2, the

least recently used blocks in the cache. Because the states for K5 and K6 are off-chip the

mapper also incurs slowdowns due to cache misses as it fetches their states from memory in

order to update them.

Once again at time T2 the mapper encounters new tuples, this time belonging to K2,

K1, and K5. However because K1 and K2 were evicted at T2 due to the cache being at

capacity, their accesses now miss in the cache and once again slow down execution.

As mentioned in the previous section, MapReduce programs often include a combiner

function used by the framework to pare down intermediate state as it is being created in

order to control its size. As illustrated in Figure 2.2 however, even if the per-key state is

kept fixed due to aggressive combining, for sufficiently large datasets the full intermediate

state would still be too large to fit on-chip and as a result would still suffer slow memory

accesses due to off-chip misses.

Once mappers have finished and reducers start executing, each reducer must access the

intermediate state held in all mappers’ private queues in order to collect all the tuples for

their assigned keys. Once again, depending on the access patterns in the previous phase and

the size of the intermediate state, many of the tuples read by reducers for processing will not

be in the on-chip caches. This poor locality due to distant reuse of the tuple state means

that reducers will be fetching their state from memory in order to process it, resulting in

much slower execution as they wait for their cache misses to be resolved.

These access patterns are illustrated in Figure 2.3 . Once again for simplicity the figure

only includes the state for a single reducer and assumes its cache is holding state generated

by the mapper in Figure 2.2 .

At time T3 the reducer attempts to read and reduce the states for keys K3 and K4. Even

though those keys’ states were in the cache at T1 in Figure 2.2 , they have since been evicted

to make room for subsequent updates to other keys’ intermediate state. The reducer’s reuse

of their state, being too far in the future to take advantage of their prior presence in the

cache, incurs a cache miss and leads to an off-chip memory access.

19

K1

K5

K3

K4

K3

K4

K1

K5

K1

K5

K2

K6

LRU

MRU

U

T3 T4 T5

Read K1 and K5 Read K2 and K6 Read K3 and K4

Figure 2.3. Accesses to reducer’s intermediate state

At time T4 the reducer attempts to read and reduce the states for K1 and K5. Because

these are still on-chip, however, the accesses hit in the cache and the reducer can quickly

read and process those keys before moving on.

Finally at time T5 the reducer reads keys K2 and K6 and encounters a similar situation

to the one at T3. Both states suffer from distant reuse and as a result are no longer in the

cache, leading to cache misses and much slower memory accesses.

2.2.3 Final Reduced State

Much like access patterns for input data, memory accesses to the final reduced state in

MapReduce programs can often be expected to be high-locality and as a result fast.

During the Reduce phase, each reducer will read the state for all tuples for given key,

process and reduce them into their final state, and then move on to the next assigned key.

While the process of reading the intermediate state for each key may generate multiple

accesses both on- and off-chip (as illustrated in Figure 2.3), the actual per-key final reduced

state will be accessed very frequently as it is computed and updated, keeping it on-chip.

20

As a result memory accesses to the final reduced state of the data also need little to no

optimization. The primary cause of slowdowns rests mainly in both the Map and Reduce

phases’ interactions with the data’s intermediate state.

2.3 Zipfian/Power Law Skew in Big Datasets

While the classic MapReduce paradigm specifies execution phases and has underlying

frameworks designed to optimize parallelism and communication, it is largely data-agnostic.

Thus little work has been done to optimize performance for datasets that possess certain

features and naturally generate certain kinds of memory accesses.

It is well known, however, that many datasets used in Big Data analysis possess a Zip-

fian/Power Law distribution and would benefit from frameworks specifically designed to

take advantage of it. Already mentioned in Chapter 1 is word distribution in the English

language, a canonical example of a Zipfian distribution.

Figure 2.4. Twitter’s data distribution

To further this point Figures 2.4 and 2.5 show the data distributions for two social

networking datasets, Twitter[13][14] and Friendster[15]. The X-axes in both figures show

the percentile of keys in the dataset, while the Y-axes show the percentage of tuples each

21

percentile is responsible for. While the intensity of the skew differs between the social

networks, they both show that a small minority of keys is responsible for a large majority

of tuples/connections. For Twitter we can see that the top 10% of users account for about

76% of all connections in the graph, while Friendster has a more modest 10%-59% skew.

Figure 2.5. Friendster’s data distribution

This skew offers huge opportunity for improving the performance of Big Data analysis

programs. A small minority of keys showing up in a large majority of tuples/records means

that if these tuples can be reduced on the fly the distant reuse suffered by reducers would be

eliminated, as the immediate processing would consume the tuples as they are emitted by

the mappers. This near reuse of the intermediate state would in turn lead to a reduction in

the memory accesses/off-chip misses associated with handling and updating said state, thus

boosting performance.

ZipThru exploits this inherent skew to facilitate near reuse and reduce the memory

footprint of MapReduce programs analyzing large datasets. I discuss ZipThru and the key

mechanisms it uses to achieve this in the next chapter.

22

3. ZipThru

In order to reduce memory footprint and facilitate near reuse of intermediate state ZipThru

extends the traditional MapReduce framework to provide support for immediate processing

of popular keys. It does this in a completely transparent fashion, allowing programs designed

for the traditional MapReduce paradigm to run as is, with very little modifications. ZipThru

achieves it’s goals via four key mechanisms:

• Concurrent execution of the Map and Reduce Phases to enable immediate consumption

of intermediate state;

• Caching only the small, final reduced state of the popular keys on-chip in order to

boost locality and curtail off-chip misses;

• Using a lookup table built from pre-processing the input to identify tuples belonging

to popular keys; and

• Load balancing Map and Reduce tasks to make efficient use of on-chip resources during

concurrent execution.

I go into further detail about each of these features below.

3.1 Concurrent Execution of Map and Reduce Tasks

In order to ensure that constantly growing intermediate state is kept on-chip it needs to

be processed/reduced immediately. To do this ZipThru allows both Map and Reduce tasks

to run at the same time. This concurrent execution is in stark contrast with the traditional

sequential MapReduce model where, as mentioned in Chapter 2.1 , mappers first process the

input data and save the intermediate state into private queues and then reducers read these

queues and process them once mappers are finished.

ZipThru bypasses this intermediate step by scheduling both Map and Reduce tasks con-

currently and by having the mappers send their tuples directly to the reducers for immediate

analysis and reduction, illustrated in Figure 3.1 .

23

COMMUNICATION QUEUES

Popular keys’ reduced
state

Unpopular keys’

intermediate state

MAP TASKS REDUCE TASKS REDUCERS’ MEMORY

Popular keys’ reduced
state

Unpopular keys’

intermediate state

Figure 3.1. Concurrent execution in ZipThru

Figure 3.1 shows a high-level overview of how two mappers and two reducers would

operate as they run concurrently. Both types of tasks communicate using shared-memory

queues. Much like sequential MapReduce each mapper maintains a private queue for each

reducer and each reducer has to read tuples from all its assigned queues. The mapper inserts

tuples at one end of the queue and the reducer drains tuples from the other end.

When a reducer reads a tuple from the queue, it checks to see whether or not this tuple

belongs to a popular key using a lookup table. I go into more detail on the mechanics of

this table lookup later in this chapter (3.3). Tuples belonging to popular keys are reduced

immediately and their final state is saved. Tuples belonging to unpopular keys are treated

much like the classic MapReduce and are saved into a secondary intermediate state for later

reduction.

Because the new communication queues will now be shared by concurrently executing

tasks, an emergent challenge is ensuring correctness by avoiding races between the mappers

inserting tuples into the queues and the reducers draining tuples from the queues.

A naive way to address this challenge would be the use of synchronization primitives

shared by the different threads. Synchronization, however, is bound to slow down execution

24

considerably, since a mapper would have to acquire and release a lock to insert a tuple and

a reducer would have to acquire and release the same lock to drain the tuple.

Such a naive implementation ignores the unique producer-consumer relationship that

exists between mappers and reducers. Map tasks only insert and never drain and Reduce

tasks only drain and never insert, and so they need only touch completely separate parts of

the queue during execution, obviating the need for any kind of coarse-grained synchronization

between the threads.

ZipThru takes advantage of this producer-consumer relationship between mappers and

reducers to implement lock-free queues for communication between the two task types. In

ZipThru, mappers maintain control of pointers to the tail of the queue, where they insert

new tuples as they process them. Reducers maintain control of the head of the queue, where

they read and remove new tuples for reduction. To limit memory use the queue is circular,

and insertion and deletion proceed in a round-robin fashion.

Because of the circular nature of the queue both tasks have to compute the number of

elements currently present before modifying, thus avoiding inserts to a full queue and deletes

from an empty one. In other words, mappers have to make sure that their tail pointer does

not overtake the head and reducers have to make sure that their head pointer does not

overtake the tail.

In a normal linear array this can be done by simply subtracting the head from the tail. A

simple subtraction, however, would make it impossible to determine the difference between

a full queue and an empty one, since both states would produce a value of 0. To distinguish

between states ZipThru maintains a one slot gap in the queue. The head and the tail meet

only when the queue is empty; if the queue is full the tail remains one slot behind the head.

The various states of the head and tail pointers and what they mean for the length of

the queue are shown in Figure 3.2 . The last two examples show the difference between a

full queue and an empty one. In the full queue the tail is one slot away from the head; as

a result a mapper that encounters a queue in this state would be unable to insert a new

tuple and move the tail forward. In the empty the queue the tail and the head are equal

and a reducer that encounters a queue in this state would be unable to drain any tuples

and update the head. All other combinations of the head and tail values allow mappers and

25

 HEAD TAIL

 0 1 2 3 4 5 6

HEAD = 1, TAIL = 4, QUEUE LENGTH = 3

 TAIL HEAD

 0 1 2 3 4 5 6

HEAD = 5, TAIL = 2, QUEUE LENGTH = 4

 TAIL HEAD

 0 1 2 3 4 5 6

HEAD = 4, TAIL = 3, QUEUE LENGTH = 6 (FULL)

 HEAD, TAIL

 0 1 2 3 4 5 6

HEAD = 3, TAIL = 3, QUEUE LENGTH = 0 (EMPTY)

Figure 3.2. Various states of ZipThru’s lock-free queues

reducers to insert and drain from the queues at the same without the need for locks and

synchronization.

Thus by using lock-free shared-memory queues ZipThru provides mappers and reducers

with a fast and accurate communication channel to facilitate concurrent execution.

Once the tuples have arrived at the reducers, reducers have to decide whether to reduce

them in-place due to the popularity of their keys or to save their state for later. I discuss

the rationale behind this decision in the next section

3.2 Caching Final Reduced State for Popular Keys

In summarization MapReductions the final reduced state of the data is much smaller

than the original input data, since the workloads generally aim to compute some aggregate

property/properties of each key in the dataset. ZipThru exploits this fact, along with the

26

fact that the popular keys are a minority of the total key space, to make very efficient use

of on-chip cache capacity during concurrent execution. These two features provide ZipThru

with two distinct benefits.

First, the frequent accesses to the popular keys’ reduced state as reducers read and

process their tuples leads to high temporal locality for this state in the caches. This locality

ensures that the state is very likely to remain on-chip at the expense of other blocks of

memory, guaranteeing fast access as popular keys are encountered and reduced.

Second, because the popular keys constitute a minority of all keys in the dataset, their

reduced state will be smaller than the already relatively small final reduced state of the full

dataset. This size makes their reduced state more likely to fit in the limited on-chip caches

during execution, further reducing the likelihood of the already rare cache misses that would

have occurred due to distant reuse of their cache state.

These two advantages make the on the fly reduction of popular keys very fast under

ZipThru, boosting performance significantly.

For the other majority of keys with their much fewer tuples ZipThru defaults to the

classic MapReduce workflow: tuples belonging to unpopular keys are saved to queues for a

separate final reduction. However, because these tuples are a minority of all the tuples in

the dataset, this secondary intermediate state is still smaller than the global intermediate

state handled by mappers and reducers in the traditional MapReduce, and as a result is less

taxing on the cache.

Figure 3.3 illustrates this phenomenon. The figure shows the cache state of a Reduce task

reading tuples from a lock-free queue. This task is in charge of keys K1 through K10. Keys

K2, K4, and K5 are popular keys and their reduced state is shown in green. The secondary

intermediate state for the other unpopular keys is shown in blue.

At time T0 the reducer has K1, K5, K2, and K4 in its cache. The cache is full. Then at

T1 it receives tuples for K3, K5, and K4. K5 and K4 are popular keys whose state is already

in the cache, and so they are reduced immediately and these accesses are very fast. K3 is

unpopular, and so to update its intermediate state the reducer has to go off-chip to fetch it

and evict K1 to save it.

27

K2

K3

K5

K4

K4

K6

K2

K5

K2

K1

K4

K5

LRU

MRU

U

T1 T2 T3

Insert K6

Reduce K2 and K5

Insert K1,

Reduce K4 and K5

Insert K3,

Reduce K5 and K4

K1

K5

K2

K4

T0

LRU

MRU

U

Figure 3.3. Accesses to ZipThru’s reduced state during concurrent execution

A similar situation transpires at T2 and T3, where more tuples for the popular keys

show up, guaranteeing that those blocks get touched frequently and as a result remain in

the cache. Thus even though the reducer suffers the occasional misses for the intermediate

state of its unpopular keys, majority of its accesses are cache hits due to the skew that the

minority of popular keys enjoys.

In order to take proper advantage of these features, Reduce tasks have to be able to tell

popular keys and unpopular keys apart. I discuss how ZipThru makes this distinction in the

next section.

3.3 Distinguishing between Popular and Unpopular Keys

To distinguish between popular and unpopular keys, reducers must know which keys are

in the popular minority before they arrive. This means that some analysis of the dataset must

28

have been performed prior to the start of execution. ZipThru once again takes advantage of

the inherent skew in the dataset to optimize this initial analysis.

Because the popular minority of keys are over-represented in the dataset, a simple sample

of a subset of the data is all it takes to reveal the top keys. Prior to execution in ZipThru

a traditional MapReduction can be performed on a small sample of the data to determine

which keys are over-represented. This pre-processing can even be baked into the process

that the creates the dataset for analysis. Collecting all the data into a single unified file

for MapReduce will inevitably require database queries to whatever backing store is holding

the state of the graph/dataset to be analyzed. By periodically sampling the records as they

arrive while building the input a fairly accurate set of the most popular keys can be obtained

with little cost/overhead.

Analysis of this tiny sample of the data will take a fraction of the time required for overall

execution, and once done will provide a bootstrap list of popular keys for ZipThru to use in

its own execution. With the naturally slow changing nature of popularity it is reasonable to

assume that across many runs/analyses the top keys in the data will see very little churn.

As a result the cost of analyzing this initial sample will be amortized over hundreds of runs

before it needs to be performed again.

Once this bootstrap list has been obtained reducers need a way of checking received keys

against the keys in the list in order to determine their popularity. ZipThru enables this by

way of a lookup table.

3.3.1 Lookup Table for Popular Keys

At the start of execution the user (i.e. the person that wishes to perform analysis on a

given dataset) provides the bootstrap list of popular keys from the dataset. ZipThru takes

this list and, using the key partitioning algorithm also supplied by the user, determines which

of these keys will be sent to which reducers during execution.

Each reducer is then tasked with building its own lookup table of popular keys before it

begins draining its queues. Once a tuple has been read from the queues a reducer will hash

it to determine its location in the table, and then check if the key stored at that location

29

corresponds with the key within its received tuple. If the received key is one of the popular

keys from the bootstrap list it performs an in-place reduction and saves the updated state.

In using the lookup table ZipThru once again takes advantage of the inherent benefits

that come from the skew within the dataset.

First are the advantages of fast lookup conferred by using a fixed-size hash table. Reduc-

ers in ZipThru only have to keep track of popular keys and their reduced state. This is in

contrast with the continually expanding list of keys and tuples that mappers in traditional

MapReduce frameworks must hold on to, the overhead of which will inevitably use more

compute resources than a simple hash over a non-expanding list.

Locating the addresses of the final reduced state of the popular keys is also made easier

and quicker by the lookup table. Each reducer in ZipThru pre-allocates pointers to the final

reduced state for each of their popular keys at the start of execution and includes them in

the payload of the lookup table. Thus when a key is looked up not only would a reducer

know whether or not it is a popular key, it would also know where to go to fetch its current

reduced state and update it.

3.4 Load Balancing Map and Reduce Tasks

Traditional MapReduce frameworks have no need for load balancing of any kind between

mappers and reducers because both phases of execution are non-overlapping. Thus at any

given point in time all of the machine’s resources are fully dedicated to the current phase’s

needs.

By forcing concurrent execution of Map and Reduce, however, ZipThru must now manage

how much CPU time is spent mapping vs reducing as execution progresses. ZipThru achieves

this load balancing in two ways: static partitioning and dynamic load balancing.

3.4.1 Static Partitioning of Map and Reduce Tasks

Under static partitioning ZipThru provides the user with the option of specifying how

many of the host system’s threads are to be used for Map tasks and how many are to be used

30

for Reduce tasks. As the name implies this partitioning is fixed at the start of execution and

will not change throughout the duration of the MapReduction.

Despite its simplicity and low implementation overhead static partitioning has some

significant drawbacks. The most obvious is a failure to properly anticipate how many threads

are sufficient for each task type. Because the partitioning is fixed at the start of execution

it can lead to two different kinds of deficiencies for the two different thread types: mapper

blocking and reducer idling.

When mappers wish to send tuples to reducers, they must insert these tuples at the tails

of the lock-free queues described in Section 3.1 . Because these queues are fixed size however,

at some point in execution a mapper is bound to encounter a full queue, and once it does its

insert will fail. ZipThru’s design is relatively simple on the mapper end; there is no support

for saving tuples for full queues so that they can be retried later while the mapper continues

processing the input. As a result failure to insert into a queue leads to mapper blocking,

where a mapper simply spins in a loop as it attempts to insert until the reducer in charge of

draining that queue frees up space and allows the insert to succeed.

If the thread count chosen by the user at the start of execution is too biased in favor of

mappers this mapper blocking event will be far more likely and will lead to mappers spending

an inordinate amount of execution time just waiting for queues to open up so that they can

insert.

Biasing the thread count in favor of the reducers comes with its own issue however.

Because the queues used by mappers to send tuples to reducers are private, a reducer will

have to drain tuples from as many queues as there are mappers on the system. In order to

avoid preference for any mapper reducers in ZipThru drain tuples in a round-robin fashion,

constantly cycling through all their queues and checking if there are any tuples in them to

reduce. For every queue only one tuple is drained per visit, once again to avoid spending

too much time on one mapper at the expense of another.

Too many reducers, while sure to guarantee that instances of mapper blocking are much

fewer, will inevitably lead to more situations where a certain reducer has no tuples in its

queue for reduction. Again, because the thread assignment is fixed at the start of execution,

a reducer that sees that all its queues are empty cannot simply quit and switch to mapping.

31

It must continue to idle on its empty queues until either a tuple arrives for it to reduce or

all mappers signal that they have finished mapping, implying that no new tuples will ever

be arriving again.

As a result static partitioning puts pressure on the user to be able to independently gauge

how many mappers and reducers to use for a given workload/dataset. For the workloads

tested while evaluating ZipThru I discovered that a simple half-way split is usually enough

to provide good performance over the baseline. On machines with lower thread counts, or on

datasets with a large amount of tuples, a bias in favor of reducers sometimes provided better

performance than splitting evenly. Arriving at this point required a lot of experimentation,

however, and it’s possible that the perfect split for each workload lies in a configuration I

did not test.

To avoid making users independently figure out which thread split is optimal for their

dataset on their specific hardware ZipThru also includes a dynamic load balancing scheme.

3.4.2 Dynamic Load Balancing of Map and Reduce Tasks

Much like the traditional MapReduce the dynamic scheme in ZipThru allows all threads

on a given system to execute both Map and Reduce tasks. The high-level benefits of such

a setup are clear: a mapper that finds itself blocking due to a full queue can spend its time

reducing/clearing its queues instead, and a reducer that finds all its queues empty can switch

back to mapping instead of idly waiting for tuples to arrive for reduction.

The challenge under this new scheme now becomes balancing how much time threads

spend in either mode of execution. As was the case with static partitioning, biasing in favor

of one vs the other will either lead to higher cases of blocking while mapping or time wasted

on queues that aren’t full while reducing.

To deal with this ZipThru uses watermarking. During Map threads have a high water-

mark for how many elements should be present in a queue before they consider switching to

Reduce, and during Reduce threads have a low watermark for how many elements should be

leftover in their queues before they can safely switch back to Map. The complete decision

tree for ZipThru’s dynamic load balancing is shown in Figure 3.4

32

Insert

new tuple

Set owner’s

flag

TRUE FALSE

MAP REDUCE

Current

queue

above

watermark?

Thread flag

set?

All queues

checked?

Current

queue

below

watermark?

FALSE

FALSE

TRUE

Remove

tuple

Clear thread

flag

TRUE

TRUE

FALSE

Figure 3.4. Decision tree for threads under ZipThru’s dynamic load balancing

To further increase thread efficiency and reduce needless mode-switching ZipThru uses

explicit signals between the threads to determine whether or not to switch. Such communi-

cation is made necessary by one key observation: the fact that the particular queue that a

thread is attempting to insert into is full in no way implies that the inserting thread’s reducer

queues are full or are in danger of being filled. Switching to Reduce simply because a given

thread is blocking on Map, while beneficial for all the other threads that are inserting into

its queue, does nothing to alleviate its blocking. In fact it could easily lead to a situation

where the inserting thread needlessly switches back and forth instead of simply waiting for

the blocked queue to open up.

As a result ZipThru has threads communicate the presence of full queues to each other

with a simple flag, also shown in Figure 3.4 . At the start of execution ZipThru creates flags

to indicate the status of each thread’s queues and sets them to false. If while mapping a

33

thread finds the queue it wants to insert into is above the high watermark it sets the flag for

the owner of the queue. Whether or not it succeeds in inserting its tuple it checks the status

of its own flag. If its flag has been set it switches to reducing/clearing its queues. If its flag

has not been set it simply continues trying to insert into the full queue or, in the event that

its insert was successful, moves on to processing more input data.

The introduction of this new avenue of communication once again raises questions about

correctness and synchronization. Much like the lock-free queues however ZipThru exploits

the relationship between the threads to obviate the need for locks.

First, as mentioned before, every thread gets a single flag. This flag can be set by any

other thread, but can only be cleared by the owner. The inevitable races for setting/clearing

the flag are thus not a problem from the perspective of correctness. If two threads attempt

to set the flag for a third, the end result is still that the flag gets set. If a thread clears its

flag after draining all its queues and another thread sets it right after, that is still a valid

signal that some queue is blocked or about to be, and so that thread is well within its rights

to switch back to Reduce. Lastly, if there is a race between clearing and setting the flag,

the thread attempting to set it will still eventually discover that the queue it wants to insert

into is above the watermark and so it will try setting the flag again. By clearly demarcating

which threads can do what to the flag ZipThru once again allows for fast communication

without the overhead of locks or synchronization.

On the Reduce end, a thread stays in Reduce until all of its queues have fallen below the

low watermark. Queues that are already below the watermark are ignored, since they pose

no threat of being full any time soon, and queues that are above the watermark are drained

continuously until they fall.

This method is in direct contrast to the manner of drainage under static partitioning,

where each queue only gets one tuple removed at a time. Because switching to Reduce is

an indication that at least one thread has set the flag for a given thread’s queues, priority

should be given to every single queue that is above the low watermark. Continually draining

offending queues until they fall below the watermark guarantees that a thread will only be

forced to switch to Reduce when absolutely necessary and that it would be a while before

any thread that was previously blocking on its queues encounters that situation again.

34

The only tuning required under dynamic load balancing is setting the high and low

watermarks. While this could also be exposed to the user it would lead to a similar situation

as static partitioning, where users are compelled to experiment with different watermarks to

gain optimal performance.

At the moment ZipThru’s watermarks are set to 100% and 12.5% for high and low

respectively. Setting the high watermark to 100% essentially tells ZipThru to prioritize

mapping; threads will only set the flags for other threads if those queues are full. In my

testing this was revealed to have the best performance across all surveyed datasets. At a

high level this makes sense: Mapping is what produces the data for reduction and provides a

bound on how long execution will take. It doesn’t matter how many resources are dedicated

to Reduce if the input takes too long to process, and forcing threads to switch to Reduce

even though they are perfectly capable of continuing to Map will only serve to slow down

input processing.

Setting the low watermark to 12.5% (1/8th the size of the queues) also required some

experimentation.. With the low watermark the challenge is ensuring the threads don’t have

to frequently switch back to Reduce because they’re not clearing their queues enough each

time. In my tests it seems 1/8th the queue length is sufficient to achieve this goal without

spending too much time in Reduce at the expense of Map.

To summarize, ZipThru employs four key mechanisms to boost performance while run-

ning MapReduce on datasets with Zipfian/Power Law skew:

• It schedules Map and Reduce tasks concurrently, allowing reducers to consume/reuse

the intermediate state generated by mappers as it is created;

• It caches only the small reduced state of the minority of popular keys on-chip, boosting

locality due to frequent accesses and reducing cache pressure due to its relatively small

size;

• It employs a lookup table built from offline pre-processing of a subset/sample of the

input data to distinguish between popular and unpopular keys; and

35

• It offers various mechanisms to load balance concurrently executing Map and Reduce

tasks, allowing them to make efficient use of CPU and on-chip resources.

In the next chapter I cover the experimental methodology I use to test the effects

ZipThru’s contributions had on performance, and then I move on to the results of my tests.

36

4. EXPERIMENTAL METHODOLOGY

To test ZipThru I use Phoenix[11], a shared-memory MapReduce implementation. I imple-

ment ZipThru on top of existing Phoenix code and compare runtimes for the same work-

load/dataset running on both baseline Phoenix and ZipThru.

The default Phoenix implementation includes an extra step of sorting the final reduced

data which is not a part of the traditional MapReduce workflow and is also not the focus of

ZipThru’s optimizations. As a result this step is omitted in the baseline Phoenix experiments

as well as in ZipThru.

Phoenix also employs a relatively lazy/opportunistic memory allocation scheme for Map

threads when saving intermediate state for the Reduce phase. This can lead to an inordi-

nately high amount of calls to malloc by each thread when working on really large datasets,

which often has deleterious effects on performance that have nothing to do with the workload

or the MapReduce model.

Due to the automatic memory reduction provided by processing tuples on the fly ZipThru’s

implementation does not suffer from this problem. Thus to ensure fairer comparison the

baseline also includes a more greedy memory allocation scheme that reduces the number of

individual thread requests for more memory.

4.1 Datasets

I evaluate ZipThru on 5 different datasets, each with varying degrees of skew, in order to

provide a broad view of the performance benefits that come from optimizing for popular keys.

The datasets and the coverage of their top 10% of keys are shown in Table 4.1 . Twitter was

obtained from the Laboratory for Web Algorithmics (LAW) [16][13][14], while Friendster,

Stackoverflow, Orkut, and Amazon Books were obtained from the Stanford Network Analysis

Platform (SNAP) [15]. In order to make the datasets suitable for MapReduce some of them,

such as Amazon Books, had to undergo transformation/reorganization.

The workload is a simple ranking algorithm, akin to a single iteration of Google’s PageR-

ank, which determines the relative importance of the different keys in the datasets based on

reviews (for products) and edges (for social networks). The broad applicability of ranking

37

algorithms is easy to see. For social networks and web traffic ranking allows companies to

know which pages, people, and topics are popular/trending on any given day or for any given

slice of time. For web stores and online entertainment ranking tells companies which of their

products, in which categories, are being bought or viewed the most by their users.

Dataset Keys Tuples 10% coverage
Twitter 35.6 M 1.47 B 76% of tuples

Friendster 64.9 M 1.81 B 59% of tuples
Stackoverflow 2.3 M 63.4 M 72% of tuples

Orkut 3.0 M 117 M 39% of tuples
Amazon Books 2.3 M 22.5 M 68% of tuples

Table 4.1. Datasets used to evaluate ZipThru

I test each dataset multiple times, running each under baseline Phoenix and then under

ZipThru with static partitioning and dynamic load balancing. The smaller datasets (Stack-

overflow, Orkut, and Amazon Books) have runtimes in seconds, so to verify stability of the

results I run those datasets 10 times each. For the larger datasets, whose runtimes stretch

into minutes, 2 runs proved sufficient. I compute the average runtime and memory access

count for each dataset and use those to compute speedup and memory access savings.

4.2 ZipThru configuaration

ZipThru’s runs use a bootstrap list obtained from running a traditional MapReduction

on a 5% sample of the full datasets. As mentioned in Chapter 3.3 the cost of this pre-

processing step is a fraction of the overall execution time and would be amortized over

hundreds/thousands runs before the list needs to be updated.

ZipThru allows the user to specify how many keys to treat as popular from the bootstrap

list provided at the start of execution. Selecting this number involves balancing tuple cover-

age with on-chip capacity. As a result the smaller datasets cache 512 K keys while the larger

ones, due to the number of keys and tuples they have, cache 3 million. The percentage of

tuples covered in each dataset is shown in Table 4.2

38

Dataset No. of cached keys % of tuples covered
Twitter 3 M 73%

Friendster 3 M 38%
Stackoverflow 512 K 85%

Orkut 512 K 52%
Amazon Books 512 K 81%

Table 4.2. Coverage of keys cached by ZipThru

To properly evaluate ZipThru’s load balancing schemes, I test static partitioning with a

variety of thread splits and dynamic load balancing with different high and low watermarks.

The results in Chapter 5 , however, only show the best of these runs. As mentioned in

Chapter 3.4 , experimentation revealed that for most datasets an even split of the hardware’s

threads is enough to provide a good performance boost over the baseline.

For dynamic load balancing I use a high watermark of 100% and a low watermark of

12.5%, implicitly prioritizing mapping for threads in ZipThru. Among the watermark values

surveyed these provided the best performance for the test datasets.

4.3 Hardware

To test performance I run ZipThru and the baseline configuration on two different ma-

chines, shown in Table 4.3 . Both machines were selected due to the difference in available

resources. While their clock speeds are fairly identical, the AMD machine has double the

cores of the Intel Xeon and 3.2x the LLC capacity.

Intel Xeon E5-2623 v4 AMD Opteron 6320
Clock speed 2.6 GHz 2.8 GHz

Cores 8 cores/16 threads/2 sockets 16 cores/32 threads/4 sockets
LLC capacity 20 MB 64 MB

DRAM capacity 125 GB 256 GB

Table 4.3. Hardware used to evaluate ZipThru

Both machines also have significant DRAM capacity, nullifying any worries of paging due

to the sizes of the datasets evaluated.

39

To measure runtimes I use the built-in system timers on both machines. For memory

accesses I use the CPU’s hardware performance counters. I count the number of DRAM

column requests made by both ZipThru and the baseline during execution. Unfortunately

AMD offers poor support for its off-chip memory performance counters in Linux, and so no

memory access results are shown for the AMD machine.

I present and discuss the results in the next chapter.

40

5. RESULTS AND ANALYSIS

5.1 Memory Accesses

First I show the effects that ZipThru’s concurrent execution and immediate reduction of

only popular keys have on off-chip misses. As mentioned in the previous chapter, AMD’s

poor support for off-chip memory performance counters in Linux made it impossible to collect

those results for the Opteron machine.

Figure 5.1. Memory access counts on Intel Xeon

Memory access counts for the Intel Xeon machine are shown in Figure 5.1 . The Y-axis

plots the access counts for each dataset, normalized to 1 for the baseline. The X-axis plots

the results from 3 different configs: Baseline, ZipThru’s Static Partitioning, and ZipThru’s

Dynamic Load Balancing. The average memory access savings across all datasets is shown

on the far right.

Figure 5.1 shows that by consuming/reducing the popular keys’ intermediate state as it

is generated ZipThru saves considerably on memory accesses, with an average of 76% under

static partitioning and 67% under dynamic load balancing. This, as mentioned in Chapter

3.2 , is both because of the small size of the reduced state of popular minority and the much

41

smaller size of the secondary intermediate state of the unpopular keys in comparison to the

global intermediate state created in the baseline.

With the exception of Amazon Books (the smallest dataset), static partitioning con-

sistently provides better cache savings than dynamic load balancing. This is due to more

efficient use of the private on-chip caches guaranteed by threads in static partitioning. Under

static partitioning mappers need only hold the state for the input they’re processing in their

caches and reducers need only hold the reduced/intermediate state for their assigned keys.

As a result there is higher locality for these accesses in the private caches of both task types

and therefore less pressure on the lower level caches and DRAM.

In contrast dynamic load balancing forces threads to switch between mapping and reduc-

ing, and therefore hold different types of data with different kinds of access patterns in their

private caches. Having the input data compete with the reduced and intermediate states as

threads switch between tasks inevitably leads to more conflict and capacity misses for the

data, and as a result more accesses to memory. Despite this ZipThru still provides significant

memory savings over the baseline.

Next I show the effect ZipThru’s memory access savings has on performance on both

machines.

5.2 Performance

Figure 5.2 shows the speedups of the test workload across all datasets on the Intel Xeon

machine. The Y-axis plots the performance for each dataset, normalized to 1 for the baseline.

Unlike Figure 5.1 , Figure 5.2 plots speedup i.e., the performance improvement of ZipThru

over the baseline. The average speedup across all datasets is plotted on the far right.

The largest datasets Twitter and Friendster, with 10’s of millions of keys and more than

a billion tuples, show the best improvements over the baseline. Twitter reports a 3.87x/3.81x

improvement while Friendster reports 5.52x/6.07x for static partitioning/dynamic load bal-

ancing respectively. Such a huge performance boost is consistent with sizes of the datasets

and the capabilities of the test machine. The Intel Xeon machine has only 20 MB of on-

chip cache. For especially large datasets the poorly optimized sequential MapReduce model

42

Figure 5.2. Speedup on Intel Xeon

would put a lot of pressure on this limited cache capacity, leading to very costly misses and

significant slowdowns.

The other datasets show more modest but still impressive speedups. Orkut and Amazon

Books both show 1.49x/1.34x and 1.73x/1.72x speedups for static and dynamic load bal-

ancing respectively. Stackoverflow is the only dataset that fails to show any speedup over

the baseline, with 0.99x for static partitioning and 0.95x for dynamic load balancing. Inci-

dentally Stackoverflow also shows the smallest savings in memory accesses over the baseline

despite its 2.3 million key count. In fact it has savings comparable to Friendster, a dataset

with 64 million keys and two orders of magnitude more tuples.

This indicates that the memory access patterns for the baseline in Stackoverflow are not

quite as damaging to its performance as the other datasets’, leading to less opportunity for

ZipThru’s savings to boost performance.

ZipThru’s architecture also comes with its own set of unique overheads: mapper blocking

and reducer idling due to full and empty queues at various points in execution (Chapter

3.4). For datasets with less costly access patterns this overhead further limits how much

43

performance improvement ZipThru can offer and, as seen from Stackoverflow’s dynamic

results, could even lead to slowdowns.

Overall there is little difference between the performance benefits offered by static par-

titioning vs dynamic load balancing across all datasets. The simplicity of dynamic load

balancing from the user’s perspective makes it the more attractive option, however, since

there is no need to experiment with various thread splits in order to discover the optimal

balance for mappers and reducers.

Figure 5.3. Speedup on AMD Opteron

Figure 5.3 shows the speedup of all datasets on the AMD Opteron machine. Like Fig-

ure 5.2 the Y-axis is normalized to 1 for the baseline, and the average speedup is displayed

on the far right.

As expected, the more powerful AMD machine with its larger on-chip cache shows a

much smaller performance improvement for ZipThru than the Intel machine. Twitter and

Friendster, while still the best performing datasets, now have static/dynamic speedups of

1.70x/2.12x and 2.91x/3.12x respectively. The AMD machine’s twice as many cores and

64 MB cache provided benefits to both the baseline and ZipThru, but because ZipThru’s

optimizations specifically target memory accesses its delta with the baseline shrunk.

44

Stackoverflow, already barely breaking on the weaker Xeon machine, shows slowdowns of

0.92x/0.85x for static partitioning/dynamic load balancing on the Opteron. Here, with even

less pressure applied to the baseline’s caches due to increased capacity, ZipThru’s overheads

slow it down considerably.

Orkut, much like Twitter and Friendster, also shows more modest speedups of 1.15x

and 1.11x for the static and dynamic schemes. Amazon Books, however, with its small key

and tuple count, does even better on ZipThru with the more powerful machine for static

partitioning (1.83x on AMD vs 1.73x on Intel) and slightly worse for dynamic load balancing

(1.68x on AMD vs 1.72x on Intel).

Overall the trends seen on the Intel Xeon machine hold on the AMD Opteron, with

Twitter and Friendster performing best, and Stackoverflow performing worst. As was the

case with the Xeon, the results for static partitioning and dynamic load balancing are quite

similar when averaged across all datasets.

These results validate ZipThru’s central thesis of boosting performance by saving on

memory accesses and improving reuse of intermediate state. For large datasets running

under the MapReduce model, ZipThru’s concurrent execution and exploitation of Zipfian

skew provides significant benefits over the traditional data-agnostic sequential MapReduce

paradigm. ZipThru shows average memory access savings of 72% on the 16-core Intel Xeon

machine and average speedups of 2.75x and 1.73x on the Intel system and the 32-core AMD

Opteron respectively.

45

6. RELATED WORKS

Most work on speeding up MapReduce workloads has mainly targeted the integration of

FPGAs into the MapReduce workflow, with a key focus on improving the compute perfor-

mance, efficiency, and programmability of these new heterogeneous architectures. Works

like [6] and [7], for example, focus on integrating execution between multiple different and

disparate architectures. In [6] authors design a heterogeneous compute cluster, with each

node consisting of a combination of FPGAs, CPUs and GPUs which are selected based on

the specific workload being performed on the node. [7]’s single chip design uses only CPUs

and GPUs, dividing Map and Reduce tasks between them and using a novel pipeline de-

sign to facilitate task splitting and coordination between both kinds of devices. [8] designs

specialized FPGA-based hardware for Map tasks and a shared, application-based config-

urable accelerator for Reduce tasks. [9] focuses on integration of a reconfigurable fabric of

FPGAs connected to servers via PCIe, with the goal of dynamically scaling up and down

the number of accelerators used for analysis based on the current workloads on the servers.

Due to difficulty in programming and designing FPGAs works like [17]–[19], seek to abstract

low level FPGA intricacies away from developers, creating custom MapReduce frameworks

specifically designed for use on FPGAs.

Instead of attempting to speedup execution by creating a new kind of heterogeneous

architecture, ZipThru transparently extends traditional MapReduce and runs on off-the-

shelf hardware, relying on its novel software techniques to boost reuse of popular keys’ state

and by extension application performance.

Works like [20], [21], and [22] attempt to optimize the performance of graph analytic

frameworks such as Ligra[23], GraphLab[24], and Pregel[25], while also targeting graphs that

possess an inherent Power Law skew. [20] is hardware oriented, focusing on augmenting the

replacement policy of last-level caches in order to favor “hot” or popular vertices and prevent

their eviction, while [22] provides software techniques that modify the graph’s representation

in memory in order cut down random accesses to DRAM and make all off-chip accesses

sequential.

46

In contrast ZipThru is completely hardware-agnostic and targets MapReduce, an analytic

framework that can be used for many different kinds of datasets and workloads, not just

graph-specific analysis. Both [20] and [22] also require significant pre-processing/re-ordering

of the target dataset in order to make its features identifiable to their schemes. ZipThru on

the other hand only requires a quick, easily amortized analysis on a subset of the data to

identify the popular keys to cache.

The idea of prioritizing content based on its popularity is quite old, specifically in the

context of the Internet and its related technologies [26]–[28]. Due to the explosion of high

resolution content on the Internet more recent work has focused specifically on informa-

tion/content centric networks. Works like [29]–[31], for example, discuss analyzing content

popularity on the fly, adjusting the likelihood of caching packets or objects based on re-

quests/downloads and their predicted future popularity.

ZipThru does not include any predictive schemes and does not attempt to analyze the

popularity of the keys as it is performing the MapReduction. As mentioned earlier, ZipThru

is also focused specifically on Big Data analysis and MapReduce, and as such does not target

content delivery and traffic routing based on packet popularity.

47

7. CONCLUSION

MapReduce is a popular framework used for performing Big Data analysis, favored for its easy

programmability due to built-in support for fault tolerance and task and data management.

While originally designed for distributed computing on networked clusters the MapReduce

model is also applicable to datasets that can be analyzed efficiently on a single server. In this

single-server context the challenges presented to MapReduce revolve around efficient use of

local CPU resources, particularly the on-chip caches used to hold the data during execution.

Despite the well known fact that many big datasets possess a Zipfian/Power Law skew,

traditional MapReduce frameworks are largely data-agnostic. Their Map-then-Reduce se-

quential mode of execution thus leads to distant reuse of the intermediate state of popular

keys, resulting in poor locality and numerous off-chip memory accesses during execution.

This in turn has a degrading effect on performance.

To address this I propose ZipThru, a novel MapReduce software architecture that exploits

Zipfian skew in big datasets to process the state for popular keys on the fly, improving reuse,

preserving locality, and boosting performance. ZipThru does this via four key mechanisms:

1) Concurrent execution of Map and Reduce phases; 2) Holding only the small, reduced

state of the popular keys on-chip during execution; 3) Using a lookup table built from pre-

processing a subset of the input to distinguish between popular and unpopular keys; and 4)

Load balancing the concurrently executing Map and Reduce tasks based on the demands of

the dataset being analyzed.

Comparisons using Phoenix, a shared-memory MapReduce implementation, reveal that

for summarization workloads ZipThru provides an average memory savings of 72% on sur-

veyed datasets, with average speedups of 2.75x and 1.73x on 16- and 32-core servers respec-

tively.

By concurrently executing the Map and Reduce phases of execution and boosting reuse of

popular keys’ state ZipThru significantly improves the performance of single-server MapRe-

duce workloads, and due to the broad applicability of the MapReduce model, offers perfor-

mance improvements to local execution on multi-cluster workloads as well.

48

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008, issn: 0001-0782. doi: 10.1145/
1327452.1327492 . [Online]. Available: http://doi.acm.org/10.1145/1327452.
1327492 .

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-
parallel programs from sequential building blocks,” in Proceedings of the 2007 Eurosys
Conference, Association for Computing Machinery, Inc., Mar. 2007. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/dryad-distributed-
data-parallel-programs-from-sequential-building-blocks/ .

[3] Apache hadoop, https://hadoop.apache.org/ , 2018. [Online]. Available: https:
//hadoop.apache.org/ .

[4] L. G. Valiant, “A bridging model for parallel computation,” Commun. ACM, vol. 33,
no. 8, pp. 103–111, Aug. 1990, issn: 0001-0782. doi: 10.1145/79173.79181 . [Online].
Available: http://doi.acm.org/10.1145/79173.79181 .

[5] Apache spark, https://spark.apache.org/ , 2018. [Online]. Available: https://
spark.apache.org/ .

[6] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with fpgas and gpus,” in
Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’10, Monterey, California, USA: ACM, 2010,
pp. 115–124, isbn: 978-1-60558-911-4. doi: 10 . 1145 / 1723112 . 1723134 . [Online].
Available: http://doi.acm.org/10.1145/1723112.1723134 .

[7] L. Chen, X. Huo, and G. Agrawal, “Accelerating mapreduce on a coupled cpu-gpu
architecture,” in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’12, Salt Lake City, Utah: IEEE
Computer Society Press, 2012, 25:1–25:11, isbn: 978-1-4673-0804-5. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389030 .

[8] C. Kachris, D. Diamantopoulos, G. C. Sirakoulis, and D. Soudris, “An fpga-based
integrated mapreduce accelerator platform,” Journal of Signal Processing Systems,
vol. 87, no. 3, pp. 357–369, Jun. 2017, issn: 1939-8115. doi: 10.1007/s11265-016-
1108-7 . [Online]. Available: https://doi.org/10.1007/s11265-016-1108-7 .

[9] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A.
Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y.
Xiao, and D. Burger, “A reconfigurable fabric for accelerating large-scale datacenter

49

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://www.microsoft.com/en-us/research/publication/dryad-distributed-data-parallel-programs-from-sequential-building-blocks/
https://www.microsoft.com/en-us/research/publication/dryad-distributed-data-parallel-programs-from-sequential-building-blocks/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://doi.org/10.1145/79173.79181
http://doi.acm.org/10.1145/79173.79181
https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://doi.org/10.1145/1723112.1723134
http://doi.acm.org/10.1145/1723112.1723134
http://dl.acm.org/citation.cfm?id=2388996.2389030
https://doi.org/10.1007/s11265-016-1108-7
https://doi.org/10.1007/s11265-016-1108-7
https://doi.org/10.1007/s11265-016-1108-7

services,” in Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14, Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 13–
24, isbn: 978-1-4799-4394-4. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2665671.2665678 .

[10] S. Fagan and R. Gencay, “An introduction to textual econometrics,” in Handbook of
Empirical Economics and Finance. CRC Press, 2010, pp. 133–153.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, “Evaluating
mapreduce for multi-core and multiprocessor systems,” in 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture, Feb. 2007, pp. 13–24.
doi: 10.1109/HPCA.2007.346181 .

[12] Tien-Fu Chen and Jean-Loup Baer, “Effective hardware-based data prefetching for
high-performance processors,” IEEE Transactions on Computers, vol. 44, no. 5, pp. 609–
623, 1995.

[13] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,” in
Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
Manhattan, USA: ACM Press, 2004, pp. 595–601.

[14] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social networks,” in Proceedings of the
20th international conference on World Wide Web, S. Srinivasan, K. Ramamritham, A.
Kumar, M. P. Ravindra, E. Bertino, and R. Kumar, Eds., ACM Press, 2011, pp. 587–
596.

[15] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection,
http://snap.stanford.edu/data , Jun. 2014.

[16] Laboratory for web algorithmics, http://law.di.unimi.it/datasets.php , 2018.
[Online]. Available: http://law.di.unimi.it/datasets.php .

[17] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr: Mapreduce framework
on fpga,” in Proceedings of the 18th Annual ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, ser. FPGA ’10, Monterey, California, USA: ACM,
2010, pp. 93–102, isbn: 978-1-60558-911-4. doi: 10.1145/1723112.1723129 . [Online].
Available: http://doi.acm.org/10.1145/1723112.1723129 .

[18] D. Diamantopoulos and C. Kachris, “High-level synthesizable dataflow mapreduce ac-
celerator for fpga-coupled data centers,” in 2015 International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Jul. 2015,
pp. 26–33. doi: 10.1109/SAMOS.2015.7363656 .

50

http://dl.acm.org/citation.cfm?id=2665671.2665678
http://dl.acm.org/citation.cfm?id=2665671.2665678
https://doi.org/10.1109/HPCA.2007.346181
http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
https://doi.org/10.1145/1723112.1723129
http://doi.acm.org/10.1145/1723112.1723129
https://doi.org/10.1109/SAMOS.2015.7363656

[19] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T. Condie, and J. Cong, “Pro-
gramming and runtime support to blaze fpga accelerator deployment at datacenter
scale,” in Proceedings of the Seventh ACM Symposium on Cloud Computing, ser. SoCC
’16, Santa Clara, CA, USA: ACM, 2016, pp. 456–469, isbn: 978-1-4503-4525-5. doi:
10.1145/2987550.2987569 . [Online]. Available: http://doi.acm.org/10.1145/
2987550.2987569 .

[20] P. Faldu, J. Diamond, and B. Grot, Domain-specialized cache management for graph
analytics, 2020. arXiv: 2001.09783 [cs.DC] .

[21] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph: Distributed
graph-parallel computation on natural graphs,” Oct. 2012, pp. 17–30.

[22] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and M. Zaharia, “Making caches
work for graph analytics,” in 2017 IEEE International Conference on Big Data (Big
Data), 2017, pp. 293–302.

[23] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for
shared memory,” SIGPLAN Not., vol. 48, no. 8, pp. 135–146, Feb. 2013, issn: 0362-
1340. doi: 10.1145/2517327.2442530 . [Online]. Available: https://doi.org/10.
1145/2517327.2442530 .

[24] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
Graphlab: A new framework for parallel machine learning, 2010. arXiv: 1006.4990
[cs.LG] .

[25] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski,
“Pregel: A system for large-scale graph processing,” Jan. 2009, p. 48. doi: 10.1145/
1582716.1582723 .

[26] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,” Glottometrics, vol. 3,
pp. 143–150, 2002.

[27] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like
distributions: Evidence and implications,” in INFOCOM, 1999.

[28] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the in-
ternet topology,” in Proceedings of the Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, ser. SIGCOMM ’99, Cam-
bridge, Massachusetts, USA: Association for Computing Machinery, 1999, pp. 251–
262, isbn: 1581131356. doi: 10.1145/316188.316229 . [Online]. Available: https:
//doi.org/10.1145/316188.316229 .

[29] K. Suksomboon, S. Tarnoi, Y. Ji, M. Koibuchi, K. Fukuda, S. Abe, N. Motonori, M.
Aoki, S. Urushidani, and S. Yamada, “Popcache: Cache more or less based on content

51

https://doi.org/10.1145/2987550.2987569
http://doi.acm.org/10.1145/2987550.2987569
http://doi.acm.org/10.1145/2987550.2987569
https://arxiv.org/abs/2001.09783
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530
https://arxiv.org/abs/1006.4990
https://arxiv.org/abs/1006.4990
https://doi.org/10.1145/1582716.1582723
https://doi.org/10.1145/1582716.1582723
https://doi.org/10.1145/316188.316229
https://doi.org/10.1145/316188.316229
https://doi.org/10.1145/316188.316229

popularity for information-centric networking,” in 38th Annual IEEE Conference on
Local Computer Networks, Oct. 2013, pp. 236–243. doi: 10.1109/LCN.2013.6761239 .

[30] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content caching,” in
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications, Apr. 2016, pp. 1–9. doi: 10.1109/INFOCOM.2016.7524381 .

[31] C. Bernardini, T. Silverston, and O. Festor, “Mpc: Popularity-based caching strategy
for content centric networks,” in 2013 IEEE International Conference on Communi-
cations (ICC), Jun. 2013, pp. 3619–3623. doi: 10.1109/ICC.2013.6655114 .

52

https://doi.org/10.1109/LCN.2013.6761239
https://doi.org/10.1109/INFOCOM.2016.7524381
https://doi.org/10.1109/ICC.2013.6655114

VITA

Ejebagom John Ojogbo was born in Ibadan, Oyo State, Nigeria, and grew up in Abuja,

Nigeria. He has a Bachelor of Science degree in Computer Science from Fisk University

(2012), and a Bachelor of Engineering degree in Electrical Engineering from Vanderbilt

University (2013). He began pursuing his PhD at Purdue University in 2013, and over the

course of his studies has worked both as a Research Assistant for the School of Electrical

and Computer Engineering and as a developer for the Purdue University Cyber Center.

He has interned for different companies, including ARM Inc, where he worked with the

Performance Modeling team on improving the models and tools used in designing their

cache-coherent interconnects. As a graduate student his work has focused on Computer

Architecture, Security, and Big Data Analysis.

His interests include reading science fiction and fantasy novels, as well as following current

affairs in technology and new advances in the computing industry.

53

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Background
	MapReduce
	Memory Access Patterns in Single-Server MapReduce
	Input Data
	Intermediate State
	Final Reduced State

	Zipfian/Power Law Skew in Big Datasets

	ZipThru
	Concurrent Execution of Map and Reduce Tasks
	Caching Final Reduced State for Popular Keys
	Distinguishing between Popular and Unpopular Keys
	Lookup Table for Popular Keys

	Load Balancing Map and Reduce Tasks
	Static Partitioning of Map and Reduce Tasks
	Dynamic Load Balancing of Map and Reduce Tasks

	Experimental Methodology
	Datasets
	ZipThru configuaration
	Hardware

	Results and Analysis
	Memory Accesses
	Performance

	Related Works
	Conclusion
	REFERENCES
	VITA

