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ABSTRACT

Jajoo, Akshay Ph.D., Purdue University, December 2020. Exploiting the Spatial
Dimension of Big Data Jobs for Efficient Cluster Job Scheduling. Major Professor:
Y. Charlie Hu.

With the growing business impact of distributed big data analytics jobs, it has

become crucial to optimize their execution and resource consumption. In most cases,

such jobs consist of multiple sub-entities called tasks and are executed online in a large

shared distributed computing system. The ability to accurately estimate runtime

properties and coordinate execution of sub-entities of a job allows a scheduler to

efficiently schedule jobs for optimal scheduling.

This thesis presents the first study that highlights spatial dimension, an inherent

property of distributed jobs, and underscores its importance in efficient cluster job

scheduling. We develop two new classes of spatial dimension based algorithms to

address the two primary challenges of cluster scheduling.

First, we propose, validate, and design two complete systems that employ learning

algorithms exploiting spatial dimension. We demonstrate high similarity in runtime

properties between sub-entities of the same job by detailed trace analysis on four

different industrial cluster traces. We identify design challenges and propose principles

for a sampling based learning system for two examples, first for a coflow scheduler,

and second for a cluster job scheduler.

We also propose, design, and demonstrate the effectiveness of new multi-task

scheduling algorithms based on effective synchronization across the spatial dimension.

We underline and validate by experimental analysis the importance of synchronization

between sub-entities (flows, tasks) of a distributed entity (coflow, data analytics jobs)

for its efficient execution. We also highlight that by not considering sibling sub-
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entities when scheduling something it may also lead to sub-optimal overall cluster

performance. We propose, design, and implement a full coflow scheduler based on

these assertions.
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1 INTRODUCTION

Increasing digitization has led to the generation of an unprecedently large volume

of data. Additionally, the rapid evolvement of cloud computing has ushered a new

dimension in computing capabilities. Leveraging these two developments computer

scientists are building a variety of, generic and diverse, cloud based distributed appli-

cations to rapidly process enormous amounts of data and draw meaningful insights

from them. Applications of this type are popularly known as big data analytics ap-

plications. They could be log analysis [1,2], machine learning [3–5], SQL queries [6,7]

and many others.

Diverse fields ranging from public policy to DNA analysis are employing big data

analytics. A recent estimate by Statista shows that big data analytics is a $56 billion

market currently and is predicted to be a $103 billion market by 2027 [8]. Principles

of distributed computing are playing an important role in big data analytics [9], and

the distributed big data analytics applications are the most widely used format. With

their growing business impact, researchers naturally started focusing on optimizing

its execution. Significant work has been done and is going on for optimizing their

runtime and resource consumption [10–17]. In this thesis, we propose a new and

practical approach to learn runtime properties and scheduling distributed analytics

jobs.
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1.1 Distributed Big Data Analytics Jobs

1.1.1 Overview

A large amount of digital data is being generated at an increasingly fast rate.

According to a report by statista in May 2020, 26 Zettabytes (ZB)1 of data was gen-

erated worldwide in 2017. That is expected to be 59 ZB in 2020 and, projections

show that it will be 149 ZB by 2024. Table 1.1 shows the number of activities that

happened per minute for different internet services in 2017 and 2020 [18]. Given such

a huge amount of data which is anticipated to grow at an exponential rate (so data

will also become obsolete in a short span), fast processing time becomes crucial to be

able to draw any useful insights from the data. Supercomputers can be one obvious

solution for that. However, they are highly expensive, and distributed computing has

been a successful alternative to it [19, 20]. Engineers, intuitively, started using mul-

tiple machines to speed up data processing for long. In 2000, Seisint Incorporation

(now LexisNexis Risk Solutions) developed a distributed platform for data processing,

the HPCC (High-Performance Computing Cluster) Systems [21]. It remained private

until 2011. The HPCC system automatically partitions, distributes, stores and de-

livers structured, semi-structured, and unstructured data across multiple commodity

servers. However, the big breakthrough in distributed big data analytics happened

in 2004 when Google proposed a formal framework, MapReduce, for distributed data

analytics [1]. Several distributed data analytics applications like Apache Hadoop [2],

Apache Hive [6], Spark [22] and, Apache Tez [7] have been developed inspired by this

framework. A typical independent entity in these applications is called a job that

consists of several sub-units called tasks. These tasks generally run in two parallel

phases map and reduce. A job usually splits the input data-set into independent

chunks that are first processed by the map tasks in a completely parallel manner.

The framework sorts the outputs of the maps, and inputs them to the reduce tasks.

The final output is stored in filesystems by the reduce tasks [1, 23].

11 ZB = 1015 Megabyte
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Table 1.1.: Amount of Internet activities per minute in 2017 and anticipated to be
generated in 2020 [18].

Activities 2020 2017
Emails sent 200 million 150 million
Google searches 4.2 million 3.8 million
Tweets constructed 480,000 448,800
Instagram images uploaded 60,00 66,00
YouTube videos viewed 4.7 million 4.2 million
Facebook new users 400 360

1.1.2 Distributed Nature and Communication Phase

The distributed big data analytics jobs run on distributed computing systems.

Distributed computing systems are networks of a large number of attached nodes or

entities connected through a fast local network [24]. The use of network communica-

tion is extensive in the complete execution of these jobs, where the primary use is for

transmitting data between different phases of the job [1,25]. Hence, efficient network

performance is also crucial for job performance.

1.2 Scheduling in Shared Clusters

1.2.1 Challenges

Clusters are being shared among multiple users to execute a variety of distributed

jobs. Such jobs typically arrive online and compete for shared resources. To best

exploit the cluster and to ensure that jobs also meet their service level objectives,

efficient job scheduling is essential. Since jobs arrive online, their runtime character-

istics are not known a priori. This lack of information makes it challenging for the

scheduler to determine the right order for running the jobs that maximize resource

utilization and meets the application service level objective (SLOs). Additionally,

jobs have different SLOs.
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For some it is necessary to respect deadlines. For some others, faster completion

or minimizing the use of a particular resource may be the requirement. Such a diverse

set of objectives pose further challenges to effective job scheduling [10,12,14,26–29].

1.2.2 Learning in Cluster Scheduling

An effective way to tackle the challenges of cluster scheduling is to learn the

runtime characteristics of pending jobs, as accurately estimating job runtime charac-

teristics allows the scheduler to exploit offline scheduling algorithms that are known

to be optimal, e.g., Shortest Job First for minimizing the average completion time.

Indeed, there has been a large amount of work [12–16, 29–31] on learning job

runtime characteristics online (real-time) to facilitate cluster job scheduling.

In essence, all of the previous online learning algorithms learn job runtime char-

acteristics from observing historical executions. In practice, however, as shown in

several previous works [10, 12, 14,30] learning from history is not very accurate. Our

analysis of two production cluster traces has also validated it (details in chapter 4).

Another class of learning techniques employed is Least-Attained-Service (LAS) [32]

based. Which is essentially a “try and miss” approach to approximate SJF and

have very high learning overhead (details in chapter 3). Its variants like CLAS, D-

CLAS [11] are used in coflow scheduling and Kairos [33] in cluster job scheduling.

1.2.3 Synchronizations in Cluster Scheduling

In typical distributed data analytics jobs, there are multiple phases like a Map-

Reduce job has three phases - map, shuffle (communication) and, reduce [1]. Each

of these phases has multiple entities like multiple tasks in the map and reduce phase

and multiple flows in the shuffle phase. However, all of these components are working

towards the same goal, i.e., job completion. And for job completion, all components

of all of its phases should finish. Also, the phases may have a dependency on the

previous ones like, in principle, in map-reduce job’s shuffle cannot begin till the map
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finishes, and reduce cannot begin till shuffle finishes. This makes synchronization

across phases as well as within phases important for efficient execution.

For instance, by speeding up the communication (shuffle) stage, where the data

is transferred between compute nodes, we can speed up the job. However, improving

network level metrics such as flow completion time may not translate into improve-

ments at the application level metrics (such as job completion time). The coflow

abstraction [25] was proposed to bridge such a gap. The abstraction captures the

collective network requirements of applications, which is then used to improve the

network level performance that directly translates into application performance im-

provements.

Additionally, most of the existing works have directly translated the algorithms

designed for single CPU systems to the domain of distributed systems [11]. They

have just made some simple changes for adaptations and have not harnessed the

opportunity which arises from the distributed nature of such jobs. When taking into

account the distributed nature of jobs, it is evident that SJF is not optimal in the first

place. Intuitively, in a single-CPU job scheduling of N jobs, scheduling any job to

run first will block the same number of other jobs, N − 1. In scheduling a distributed

job (entity) across multiple machines, however, since different jobs (entities) can have

different numbers of tasks (sub-parts) distributed at different machines, scheduling a

different job first can block a different number of other jobs (at the tasks where its

machines lie). We denote this degree of competition as contention. In other words, the

waiting time for other jobs will depend on the duration as well as the contention of the

jobs. Hence it is important to consider this aspect of distributed jobs too. Heuristics

like Smallest Effective Bottleneck First (SEBF) [34] have only partly attempted to

address this issue.
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1.3 Thesis

1.3.1 Statement

Exploiting the spatial dimension of big data jobs can improve cluster job scheduling

as it enables developing effective online learning of job runtime properties and better

syncrohnization of job tasks.

1.3.2 Key Idea

The core idea behind distributed systems is to partition any given work (job) into

smaller parts (tasks) such that the outcome of all the parts when put together is

the desired outcome of the job. It is very natural to do the partition such that the

distribution of workload is equal across tasks. Several works have been motivated

solely to achieve the goal of equal partitioning like Late [35], SkewReduce [36] and

LEEN [37]. Analysis using cluster scheduling trace from 2Sigma [38] (figure 1.3) and

network-flows trace from Facebook [39] (figure 1.2) supports this assertion.

The above described nature of a distributed job or entity can be summarized as

follows: A distributed job or entity has many constituent sub-entities which are similar

and are working towards one common goal. We abstract this collection of sub-entities

as spatial dimension (see figure 1.1). The observation of this spatial dimension leads

us to the following two ideas: (1) The spatial dimension can be exploited to efficiently

learn information about jobs online as sub-entities can reveal information about each

other ; (2) Synchronizing execution of sub-entities can make scheduling efficient.

1.3.3 Contributions

Leveraging the observation of spatial dimension, an inherent property of dis-

tributed jobs, we have developed a new class of efficient and practical scheduling

algorithms for distributed systems.
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Figure 1.1.: The spatial dimension in distributed jobs originates from data partition-
ing and distributed processing. This figure illustrates the idea.

Figure 1.2.: CDF of normalized standard deviations in the lengths of flows of the
communication phase of a distributed job across the jobs in a publicly available trace
from the Facebook cluster [39].
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Figure 1.3.: CDF of the coefficient of variation (CoV) in the duration of tasks of the
same distributed jobs. The figure shows the curve for cluster scheduling trace from
2Sigma [38]

As the first demonstration of our approach, we developed such types of algorithms

for scheduling network flows in data centers. We have also designed a novel online

(real-time) learning technique that exploits the spatial dimension of distributed jobs.

Our technique predicts with 4.23× (5.02×) more average accuracy than the state-of-

the-art history based predictor when tested on industrial cluster traces from 2Sigma

(Google). Based on this learning technique we developed a cluster job scheduler that

improves average job completion time by 1.65×.

The following are the two main contributions in this thesis:

1.3.3.1 Contribution 1: A New Class of Online Learning Algorithms based on Sam-

pling the Spatial Dimension.

We propose, validate, and design two complete systems that employ sampling

based learning. We validate our claim of high similarity in runtime properties between

sub-entities of the same job by detailed trace analysis on four different industrial
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cluster traces. We also present quantitative and experimental analysis for this. We

propose design challenges and principles for a sampling based learning system for

two examples, first for a coflow [25] scheduler and second a cluster job scheduler.

To the best of our knowledge, we are the first ones to propose, validate, design and

implement sampling based learning systems.

1.3.3.2 Contribution 2: New Multi-Task Scheduling Algorithms by Synchronizing the

Spatial Dimension.

We underline and validate by experimental analysis the importance of synchro-

nization between sub-entities (flows, tasks) of a distributed entity (coflow [25], data

analytics jobs) for its efficient execution. We also highlight that by not considering

sibling sub-entities when scheduling something it may also lead to sub-optimal overall

cluster performance. We propose, design, and implement a full coflow [25] scheduler

based on these assertions.

In this thesis, we further describe our fully designed systems for efficient coflow [25]

scheduling of big data jobs and efficient cluster job scheduling.
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2 Saath

This chapter is based on a publication in Proceedings of CoNEXT’17 by ACM [40].
Following is its DOI: https://doi.org/10.1145/3143361.3143364 .

In this chapter, we discuss Saath, an online coflow scheduler that improves coflow

scheduling by explicitly synchronizing intra-coflow and inter-coflow scheduling across

spatial dimension.

2.1 Introduction

In analytics at scale, speeding up the communication stage directly helps to speed

up the analytics jobs. In such settings, network-level metrics such as flow comple-

tion time (FCT) do not necessarily improve application-level metrics such as job

completion time [11, 25, 41]. The coflow abstraction [25] is proposed to capture the

network requirements of data-intensive applications so that improving network-level

performance directly improves application-level performance.

In particular, a coflow consists of multiple concurrent flows within an application

that are semantically synchronized; the application cannot make progress until all

flows in a coflow have completed. Since in compute clusters, each job may consist of

one or more coflows, and multiple jobs share the network fabric, it raises the coflow

scheduling problem with the objective of minimizing the overall Coflow Completion

Time (CCT) (NP-hard [34,42]).

State-of-the-art coflow schedulers such as Aalo [11] in essence apply the classic

online approximate Shortest-Job-First (SJF) algorithm using priority queues, where

shorter coflows finish in high priority queues, and longer coflows do not finish in high

priority queues, and are moved to and will finish in low priority queues.
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Since a coflow has many flows distributed at many network ports, Aalo approx-

imates the online SJF, designed for a single CPU, in a distributed setting. It uses

a global coordinator to sort the coflows to the logical priority queues based on the

progress made (total bytes sent); the flows of a coflow are assigned to the same pri-

ority queue at all network ports. At each port, the local scheduler applies a FIFO

policy to schedule flows in each priority queue.

We make a key observation that this way of dividing the coflow scheduling task

fundamentally does not take into account the spatial dimension of coflows scheduling,

i.e.,once assigned to the priority queues, the individual flows of a coflow are scheduled

without any coordination until the coflow switches the queue or its flows finish. Such

lack of coordination in turn leads to two problems that negatively impact the quality

of the scheduling algorithm.

Out-of-sync problem: First, the flows of a coflow at different ports can get

scheduled at different times, which we refer to as the out-of-sync problem. Since the

CCT is determined by the flow that completes the last, the flows that completed

earlier did not help the CCT, but unnecessarily blocked or delayed the flows of some

other coflows in their respective local ports, affecting the CCT of those coflows. Our

evaluation using a production cluster trace shows that the out-of-sync problem is

prevalent and severe (§2.2.2): over 20% of coflows with equal-length flows experience

over 39% normalized deviation in FCT.

Contention-Oblivion problem: Second, when taking into account the spatial

dimension of coflows, we observe that SJF (based on the total bytes of coflows) is

not optimal in the first place. Intuitively, in a single-CPU job scheduling of N jobs,

scheduling any job to run first will block the same number of other jobs, N − 1.

In scheduling coflows across ports, however, since different coflows have different

numbers of flows distributed at the ports, scheduling a different coflow (its flows)

first can block a different number of other coflows (at the ports where its flows lie).

We denote this degree of competition as coflow contention. In other words, the waiting

time of other coflows will depend on the duration as well as the contention of the
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coflow across its ports. Both SJF and Smallest Effective Bottleneck First (SEBF) [34]

only consider coflow duration, and ignore the contention which can result in poor

CCT.

In this chapter, we propose a new online coflow scheduling algorithm Saath.1 Like

Aalo, Saath is an online coflow scheduler that does not require apriori knowledge of

coflows. Unlike Aalo, Saath explicitly takes into account the spatial dimension in

scheduling coflows to overcome the out-of-sync and contention-oblivion drawbacks of

prior coflow scheduling algorithms. Saath employs three key ideas. First, it mitigates

the out-of-sync problem by scheduling coflows using an all-or-none policy, where all

the flows of a coflow are scheduled simultaneously. Second, to decide on which coflow

to schedule first following all-or-none, Saath implements contention-aware coflow

scheduling. As the coflow durations are not known apriori, Saath adopts the same

priority queue structure as Aalo and starts all coflows from the highest priority queue

on their arrival. Instead of FIFO, Saath schedules coflows from the same queue using

Least Contention First (LCoF), where the contention due to one coflow is computed as

the number of other coflows blocked on its ports when the coflow is scheduled. LCoF

prioritizes the coflows of less contention to reduce the total waiting time. Saath

further uses coflow deadlines to avoid starvation. In contrast, Aalo [11] uses FIFO

for online coflow scheduling, and other scheduling policies in Varys [34] (including

SEBF) are offline and require apriori knowledge about coflow sizes.

Third, we observe that using the total bytes sent to sort coflows to priority queues

ignores the spatial dimension and worsens the out-of-sync problem. When some flows

of a coflow are scheduled due to out-of-sync, that coflow will take longer to reach

the total-bytes queue threshold, which leads to other coflows being blocked on those

ports for longer durations, worsening their CCT. Saath addresses this problem by

using a per-flow queue threshold, where when at least one flow crosses its share of

the queue threshold, the entire coflow moves to the next lower priority queue.

1Saath implies a sense of togetherness in Hindi.
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Additionally, Saath handles several practical challenges in scheduling coflows in

compute clusters in the presence of dynamics, including stragglers, skew and failures.

We implemented and evaluated Saath using a 150-node prototype deployed on a

testbed in Microsoft Azure, and large-scale simulations using two traces from produc-

tion clusters. Our evaluation shows that, in simulation, compared to Aalo, Saath

reduces the CCT in median case by 1.53× and 1.42× (P90 = 4.5× and 37×) for the

two traces while avoiding starvation. Importantly, this CCT reduction translates into

a reduction in the job completion time in testbed experiments by 1.46× on average

(P90 = 1.86×).

In summary, contributions presented in this chapter are following:

• Using a production datacenter trace from Facebook, we show the prevalence of the

out-of-sync problem in existing coflow scheduler Aalo, where over 20% of coflows

with equal-length flows experience over 39% normalized deviation in FCT.

• We show that the SJF (and also Shortest-Remaining-Time-First) scheduling poli-

cies are not optimal in coflow scheduling as they ignore contention across the

parallel ports when scheduling coflows.

• We present the design, implementation and evaluation of Saath that explicitly

exploits the spatial dimension of coflows to address the limitations of the prior art,

and show the new design reduces the median (P90) CCT by 1.53× (4.5×) and

1.42× (37×) for two production cluster traces.

2.2 Prior-art and its Drawbacks

In this section, we briefly discuss the limitations of the Aalo scheduler which

Saath overcomes.

2.2.1 Aalo Scheduler

Aalo [11] was proposed to schedule coflows online without any prior knowledge.

Aalo approximates SCF using: (1) discrete priority queues, and (2) transitioning the
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(a) Setup (b) Aalo (FIFO) (c) Optimal

Figure 2.1.: The out-of-sync problem in Saath. The arrival time for coflow C1 <
C2 < C3 < C4. The individual CCTs in Aalo (average=1.75·t) and optimal case
(average=1.25·t) are denoted in Fig 2.1(b) and 2.1(c).

coflows across the queues using the total bytes sent so far by a coflow. In particular,

Aalo starts all coflows in the highest priority queue and gradually moves them to

the lower priority queue as the coflows send more data and exceed the per-queue

thresholds. This design choice facilitates the completion of shorter coflows as known

longer coflows move to lower priority queues, making room for potentially shorter

coflows in the higher priority queues.

To implement the above online approximate SCF in a distributed setting, Aalo

uses a global coordinator to assign coflows to logical priority queues. At each network

port, the individual local ports then act independently in scheduling flows in its local

priority queues, e.g., by enumerating flows from the highest to lowest priority queues

and using FIFO to order the flows in the same queue. In doing so, Aalo is oblivious to

the spatial dimension, i.e., it does not coordinate the flows of a coflow across different

ports, which leads to two performance drawbacks.

2.2.2 Drawback 1: Out-of-Sync Problem

As individual ports locally have flows of different coflows, FIFO can result in the

out-of-sync problem, i.e., flows of a coflow are scheduled at different times at different
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ports, as shown in the example in Fig. 2.1. The out-of-sync problem can substantially

worsen the overall CCT in two ways:

1. Since the CCT depends on the completion time of the bottleneck (slowest) flow

of the coflow, even if non-bottleneck flows of a coflow finish earlier, doing so

does not improve the CCT of that coflow. Instead, such scheduling could block

other potentially shorter coflows at those ports, and hence worsen their CCT

(Fig. 2.1).

2. Aalo uses the total bytes sent so far to move coflows down the priority queues

which further worsens the above problem. When only a subset of the flows

of a coflow are scheduled, it would take longer to reach the same total-bytes

queue-crossing threshold compared to when all the flows are scheduled. Hence,

the scheduled flows occupy their ports for longer time, which does not improve

their CCT, yet may worsen the CCT of other coflows that otherwise could have

been scheduled.

To understand the extent of the out-of-sync problem, we analyze the variance of

the flow completion time of each coflow under Aalo, using a trace from Facebook

clusters [39]. First, Fig. 2.2(a) plots the distribution of the number of flows per

coflow, and Fig. 2.2(b) plots the distribution of the standard deviation of flow lengths

per coflow, normalized by its average flow length. We see that in the FB trace,

23% of the coflows have a single flow, 50% have multiple, equal-length flows, and

the remaining 27% have multiple, unequal-length flows. We then plot the standard

deviation of FCT of each of the multi-flow coflows, normalized by the average FCT

of its flows. We note that the flows of a coflow can be of uneven length, which can

contribute to uneven FCT. To isolate this factor, in Fig. 2.2(c), we separately show

this distribution for coflows with equal and unequal flow lengths (excluding single-flow

coflows). We see that the out-of-sync problem under Aalo is severe: the FCT of 50%

(20%) of the equal-flow-length coflows have over 12% (39%) normalized deviation,
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(a) Distribution of coflow width (b) Normalized standard devia-
tion of flow lengths

(c) Normalized standard devia-
tion in FCTs for Aalo

Figure 2.2.: The out-of-sync problem in Aalo. (a) Distribution of number of flows
in a coflow. (b) Distribution of standard deviation of flow lengths normalized by the
average flow length, per coflow. (c) Distribution of normalized standard deviation of
FCTs for multi-flow coflows under Aalo. In (c), we have excluded the coflows with
single flows (23%).

and of the coflows with multiple, uneven-length flows, 50% (20%) have over 27%

(50%) normalized deviation in FCT.

2.2.3 Drawback 2: SJF is Sub-optimal for Coflows

Assuming that the flows of each coflow are now scheduled in synchrony, the coor-

dinator still needs to decide which coflows should go first to reduce the overall CCT.

SCF derived from SJF has been a de-facto policy [11, 41]. We observe that SCF

based on the total bytes sent by coflows is not optimal in coflow scheduling even in

the (ideal) offline settings when the coflow sizes are known apriori. Similarly, even the

Shortest-Remaining-Time-First (SRTF) which improves SJF by allowing preemption

is not optimal even when coflow sizes are known apriori. The key reason is that these

scheduling policies are designed for scheduling jobs serially on a single work engine.

They are oblivious to the spatial dimension of coflows, i.e., different flows of a coflow

may be scheduled concurrently and contend with different numbers of other coflows

(empirically proven in Appendix). Intuitively, two coflows C1 and C2 with durations

t1 and t2 may block k1 and k2 other coflows when their flows are scheduled across

individual ports. For example, in Fig. 2.1, k1=1, k2=3, k3=k4=1. Thus, the increase

of the total waiting time of other coflows when scheduling C1 and C2 would be t1 · k1
and t2 · k2, respectively. SJF and SRTF only consider t1 and t2, and miss out the k1
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and k2 factors, which can result in higher total waiting time for the rest of coflows

and thus sub-optimal CCT.

As a quick evidence that SJF is not optimal for coflow scheduling, we compare it

with a Least-Waiting-Time-First (LWTF) policy. In LWTF, the coflows are sorted

based on the increase in the total waiting time of other coflows, i.e., t · k. We then

compare the improvement of the CCT of individual coflows as well as the overall CCT

under LWTF, SCF and SRTF over Aalo in the ideal offline settings where the coflow

sizes are known, using the FB trace. Fig. 2.3 shows LWTF outperforms SRTF and

SCF, suggesting SCF and SRTF are not optimal, and considering contention when

scheduling coflows leads to better CCT.

2.3 Key Ideas

To address the two limitations of Aalo, we propose a new online coflow scheduler

called Saath that explicitly takes into account the spatial dimension of coflows, i.e.,

the flows of each coflow across different network ports. Specifically, Saath directly

tackles the two limitations of Aalo: (1) the out-of-sync problem is mitigated by

scheduling all flows of a coflow together; (2) the contention among coflows across the

ports is explicitly considered in scheduling coflows. In the following, we detail on

these core ideas that shape the Saath design.

(1) All-or-none: The first key idea in Saath is to schedule the coflows using an

all-or-none policy, i.e., either all the flows of a coflow are scheduled together, or none.

This design choice effectively alleviates the out-of-sync problem in Aalo, as the ports

that used to schedule a subset of flows of a coflow early can now delay scheduling

them, without potentially inflating the CCT of that coflow, since its CCT depends

on the completion of its last flow. The scheduling slots at those ports can be used for

some other coflows, potentially improving their CCT.

Our key insight is that, in the context of conventional flow scheduling, typically the

FCT of one flow cannot be improved without degrading the FCT of another flow [43].
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Overall CCT in (b) is the average CCT for all coflows.

However, this is not true in the context of coflows, as the CCT of a coflow comprising

of many flows depends on the completion of the last flow, and thus a delay in the

earlier finishing flows of a coflow should not inflate its CCT but could improve the

CCT of other coflows. In doing so, the CCT of one coflow can be improved without

worsening the CCT of other coflows.

However, all-or-none alone can potentially result in poor port utilization because

it requires all ports of a coflow to be available when scheduling; if not all ports

needed by a coflow are available, they may be all sitting idle as shown in the example
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Figure 2.4.: Unused ports in all-or-none can elongate CCT as in (b), with average
CCT = 2·t. (c) Work-conservation can speedup coflows (average CCT = 1.67·t).

in Fig. 2.4(b). Saath carefully designs the work conservation scheme to schedule

additional flows at ports that are otherwise left idle, as shown in Fig. 2.4(c) (§2.4.2).

One may observe that, as shown in Fig. 2.4(c), applying work conservation appears

to break away from all-or-none. We argue that it does not re-create the out-of-sync

limitation in Aalo. Recall that the out-of-sync limitation in Aalo was caused due to

scheduling a coflow at a time slot that otherwise could have been used for a potentially

shorter coflow. In Saath, work-conservation schedules a coflow in an otherwise empty

time slot, which does not push back other coflows. Instead it will only speed up the

coflows.

We note that if the flow lengths in a coflow are skewed, all-or-none may not

finish all the flows of a coflow together. Since Saath is an online coflow scheduler,

it does not know the flow lengths beforehand. As a result, in some cases, it may

end up delaying scheduling a longer flow to align with other flows, which may delay

completion of that flow and worsen the CCT of the coflow. Our evaluation (§2.6.2)

shows that such cases are rare, and overall all-or-none improves CCT.

(2) Faster coflow-queue transition: Since the flow durations are not known

apriori, like Aalo, Saath uses the priority queue structure to approximate the general
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notion of Shortest Coflow First, by helping shorter coflows finish (early) in high

priority queues.

The key challenge in priority queue-based design is to quickly determine the right

queue of the coflow, so that the time that longer coflows contend with the shorter

coflows is minimized. Like Aalo, Saath starts all the coflows from the highest priority

queue. Unlike Aalo, Saath uses per-flow queue thresholds. When an individual flow

of a coflow reaches its fair share of the queue threshold before others, e.g., from work

conservation, we move the entire coflow to the next lower priority queue.

In essence, if a coflow is expected to cross the queue threshold, using per-flow

queue thresholds effectively speeds up such queue transition as shown in Fig. 2.5,

where a coflow is transitioned to the next queue in time t instead of 2 · t as in Aalo.

Such faster queue transition has an immediate benefit: it frees the ports where the

remaining flows of that coflow are falling behind sooner, i.e., by moving them to the
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next lower priority queues at their corresponding ports, so that other high priority

coflows could be scheduled sooner, potentially improving their CCT.

In Saath, we calculate the fair share threshold by simply splitting the queue

threshold equally among all the flows of a coflow. More sophisticated ways can be

used in clusters with skewed flow duration distribution.

(3) Least-Contention-First policy within a queue: Once the coflows are

assigned to the priority queues, the next challenge is to order and schedule the coflows

from the same queue. In Saath, we propose the Least-Contention-First (LCoF)

policy, where the contention of a coflow is calculated as the number of other coflows

blocked when that coflow is scheduled at all of its ports.2 Under LCoF, all the

coflows in each queue are sorted according to the increasing order of contention,

and the scheduler scans the sorted list from each queue, starting from the highest

priority queue, and schedules the coflow that competes against the least number of

other coflows, as long as there is enough port bandwidth remaining. In essence, by

scheduling coflows in the LCoF manner, Saath allows more coflows (who have less

contention) to be scheduled in parallel in conforming to all-or-none and hence more

coflows to finish earlier. Our evaluation results (Fig. 2.10) confirm that Saath gains

significant improvement by use of LCoF.

In summary, Saath improves the CCT of the coflows from the same priority

queue using LCoF and all-or-none, and accelerates the coflow queue transition using

per-flow queue thresholds to further improve the overall CCT.

2.4 Online Scheduler Design

In addition to the three key ideas for improving CCT, Saath also needs to (1)

provide starvation-free guarantee for continuous progress, as LCoF can indefinitely

2We note the contention thus defined is an approximation to the impact scheduling that coflow does
to the overall CCT, which should be weighted by the remaining flow lengths of the coflow, which
however is not known.
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delay scheduling a coflow that always has higher contention than other coflows, and

(2) speed up coflows during cluster dynamics such as node failures and stragglers.

In this section, we present the detailed Saath design to overcome these challenges.

The key design features in Saath are summarized as follows:

1. All-or-none: mitigates the out-of-sync problem;

2. Per-flow queue threshold : speeds up queue transition;

3. LCoF : orders coflows within a queue in a contention-aware manner;

4. Work-conservation: improves port utilization and the overall CCT;

5. Handling cluster dynamics : speeds up the flows of a coflow due to dynamics such

as failures and stragglers by moving the coflow back to higher priority queues;

6. Starvation-free: provides starvation-free guarantees.

2.4.1 Saath Architecture

Fig. 2.6 shows the Saath architecture. The key components are the global coordi-

nator and local agents running at the individual ports. A computing framework such

as Hadoop or Spark first registers (removes) the coflows when a job arrives (finishes).

At every fixed scheduling interval, the global coordinator computes the schedule for

all the ports based on the coflow information from the framework and flow statistics

sent by the local agents (which update the global coordinator at each scheduling in-

terval, details in §2.4.2). The coordinator then pushes the schedule back to the local

agents. Local agents maintain the priority queues and use them to schedule coflows.

They continue to follow the current schedule until a new schedule is received from

the global coordinator.

Saath uses the same queue structure as Aalo, and has the same parameter settings

. In Saath, there are N queues, Q0 to QN−1, with each queue having lower queue

threshold Qlo
q and higher threshold Qhi

q , and Qlo
0 = 0, Qhi

N−1 =∞, Qlo
q+1 = Qhi

q . Saath

uses exponentially growing queue thresholds, i.e., Qhi
q+1 = E · Qhi

q .
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Figure 2.6.: Saath architecture.

2.4.2 Saath Scheduler

Fig. 2.7 shows the scheduling algorithm used by the global coordinator to period-

ically compute the schedule to minimize the CCT using all-or-none, per-flow queue

threshold, and LCoF, and to provide starvation-free guarantee.

Input: The input to the algorithm includes (1) the set of coflows (C), (2) traffic

sent by the longest flow of every coflow (tc,f ), (3) starvation-free deadline (dc), (4)

the ports used by individual coflows (pc,p), (5) Total capacity (bandwidth) available

at pth port (Bp).

We calculate kc, the number of coflows contending with the c-th coflow across all

the ports. This is used in implementing the LCoF policy.

Output: f.rate, i.e., the bandwidth assigned to each coflow at each port.

Objective: Minimize the average CCT.

D1. Overall algorithm: (1) First, the coordinator determines the queue of

the coflows based on the maximum data sent by any flow of a coflow, i.e., mc =

max(∀f∈fc , tc,f ) and per-flow threshold (see D3, D4) (line 2). (2) Next, it sorts the

coflows, starting from the highest priority queue to the lower priority queues. (3)

Within each queue, it sorts the coflows using LCoF, i.e., based on their kc values

(line 3:4). (4) It then scrolls through coflows one by one, and if all the ports of a
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1: procedure Schedule((coflows C))
2: AssignQueue(C ) . Assign queues
3: for q in Q do
4: L = SortLCoF(C, q) . Sort using LCoF
5: missed = {}
6: for CoFlow c in L do
7: if AllOrNoneSchedule(c) then
8: rate = min. available rate for all flows
9: for flow f in c do f.rate = rate

10: UpdateAvailableBandwidthForSenders(c)
11: UpdateAvailableBandwidthForReceivers(c)
12: else
13: missed.add(c)

14: WorkConservation(missed)

15: procedure AssignQueue((C))
16: for c in C do
17: c.queue = GetQueue(c.width,c.maxFlowLength)

18: procedure WorkConservation(Cm)
19: for c in Cm do
20: for f in c do
21: f.rate = min(f.sender.remainBW, f.receiver.remainBW)

22: UpdateAvailableBandwidthForSenders(c)
23: UpdateAvailableBandwidthForReceivers(c)

Figure 2.7.: Saath scheduling algorithm.

coflow (sender and receiver) have available bandwidth (line 7), the coflow is sched-

uled. Saath assigns the bandwidth as discussed in D2 below, based on which the

port allocated bandwidth is incremented (line 9, 10). If any of the ports are un-

available, the coordinator skips that coflow and moves to the next coflow. (5) The

algorithm terminates when all coflows are scanned or all bandwidth is exhausted by

work conservation (see D4 below).

D2. Assigning flow bandwidth: As in MADD [34], Saath assigns equal rates

(bandwidth) at the ports as there is no benefit in speeding-up flows at certain ports

when the CCT depends on the slowest flow. At a port, we use max-min fairness

to schedule the individual flows of a coflow (to different receivers). Hence, the rate
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of the slowest flow is assigned to all the flows in the coflow, and the port-allocated

bandwidths at the coordinator are incremented accordingly.

D3. Determining coflow queue: Similar to Aalo, Saath uses exponentially

growing queue thresholds. To realize faster queue transition, we divide the queue

threshold (Qhi
q ) equally among all the flows (flow count = Nc ) of a coflow. For

example, when a queue threshold is 200MB, a coflow with 100 flows has a per-flow

queue threshold of 2MB. Saath assigns coflow to a queue based on the maximum

data sent by any of its flows, using Eq. (2.1):

Qhiq−1
Nc

≤ mc ≤
Qhiq
Nc

(2.1)

D4. Work conservation: When following the all-or-none policy, it is possible

that some of the ports do not have flows scheduled (§2.3); these ports can be used

to schedule coflows outside all-or-none, triggering work conservation (line 14, 18-23).

In work conservation, the coflows are scheduled based on the ordered list of the un-

scheduled coflows.

D5. Starvation Avoidance: Recall that FIFO provides starvation-free guaran-

tee as every flow in a queue is guaranteed forward progress [11]. Such guarantees are

not offered by LCoF. To avoid starvation, the coordinator sets a deadline for each

coflow. Importantly, this deadline is derived based on FIFO. Whenever a coflow ar-

rives in a queue, a fresh deadline is set for it. For that, the coordinator first generates

FIFO ordering at all ports by enumerating all the coflows in that queue. If there are

Cq coflows in the queue, and t is the minimum time a coflow needs to spend in the

queue based on the queue threshold, the deadline for the new coflow for that queue

is set to d · Cq · t, where d is a constant (d = 2 in our prototype §3.9). Saath then

prioritizes the coflows that reach their deadlines. Essentially, Saath provides the

same deadline guarantee (within a factor of d) as a FIFO based scheduler.
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2.4.3 Handling Cluster Dynamics

Compute clusters in datacenters frequently undergo a variety of dynamics in-

cluding node failures and network congestion. Moreover, even individual jobs may

experience stragglers and data skew, multiple stages and waves. In this section, we

detail on how Saath adapts to such dynamics to reduce their impact on the CCT.

Improving tail due to failures, stragglers, skew: Cluster dynamics such as

node failures and stragglers can delay some flows of a coflow, which can result in poor

CCT as CCT depends on the completion of the last flow. We observe in such cases,

some flows of the coflow may have already finished. In such cases, we heuristically

make use of the flow length of the completed flows to approximate the SRTF policy to

potentially speed up such coflows, as follows: (1) the coordinator estimates the length

of unfinished flows of a coflow using the median flow length of its currently finished

flows (fe). (2) It estimates the remaining flow lengths for straggling/restarted flows

f remi = fe − fi, where fi is the flow length so far for the i-th unfinished flow. (3) It

estimates the remaining time of a coflow as mc = max(f remi ) since the CCT depends

on the last flow, and uses mc to re-assign the coflow to a queue using Eq. 2.1.

The intuition behind the optimization is that, once some of the flows finish, we

no longer need to use the priority queue thresholds to estimate flow lengths – we

can simply use mc as above. The benefit of this approximated SRTF policy is that

Saath can move up a coflow from low to high priority queues when its flows start to

finish; as the remaining flows send more data, fi increases and thus f remi decreases.

Moving the coflow to a higher queue will accelerate its completion, while following

SRTF. We note that calculating fe as the median of the finished flows is a heuristic;

more sophisticated schemes such as Cedar [44] can be used to estimate flow lengths,

which we leave as future work.

In contrast, Aalo does not move the coflow to the higher priority queues even

when fewer and fewer flows are pending, because coflow is assigned to a queue based
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on the total bytes sent so far, which only grows as the flows of a coflow send more

data.

Scheduling Multi-stage DAG and multiple waves: Often times, a single an-

alytics query consists of multiple co-dependent stages, where each stage has multiple

jobs. Such queries are represented as a Directed Acyclic Graph (DAG) to capture

the dependencies (e.g., Hive [6] on Hadoop or Spark). The DAG representation is

available before the start of the query while the scheduler builds the query plans. In

Saath, instead of having one coflow for every job in a stage, we have one coflow for

every stage. This optimization helps Saath to slow down some of the fast jobs in one

stage without affecting the overall completion time, as the completion of the DAG

stage depends on the completion of the slowest job in that stage.

Similarly, a single MapReduce job may have its map and reduce tasks scheduled

in multiple waves, where a single wave only has a subset of the map or reduce tasks.

We represent such cases again as a DAG, where a single wave is represented as a

single coflow, and the DAG consists of serialized stages, each with one single coflow.

In such cases, the goal of DAG scheduling is the same as the coflow scheduling, and

the same coflow scheduling design can be used.

Un-availability of the data: Another important challenge is that the data may

not always be available in the communication stage as the computing frameworks

often pipeline the compute and communication stages [45], i.e., the subset of the data

is sent from one phase to another as soon as it becomes available, without waiting

for the completion of the whole stage. In such frameworks, not all flow data is always

available [45] due to some slow or skewed computation. If the coordinator schedules

a coflow when some of its data is not available, that time slot is wasted.

To address this problem, in Saath, the ports first accumulate enough data on

each of the flows of the coflow for one δ, i.e., the interval at which local agents co-

ordinate with the coordinator, and explicitly notify the coordinator when such data

is available. This information is piggybacked in the flow statistics sent periodically
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and thus has minimal overhead. The coordinator only schedules the coflows that have

enough data to send.

2.4.4 LCoF Limitation

Although LCoF substantially outperforms other scheduling policies (§3.9, §3.10),

there are rare cases where LCoF performs worse. The key reason is that LCoF

schedules coflows based on the contention; if there are coflows that have less contention

but are longer in size, scheduling such coflows using LCoF would be sub-optimal

as shown by the example in Fig. 2.8. However, our trace shows that such coflows

only constitute a minor fraction of the total coflows (§2.6.2, bin-2 in Fig. 2.11 and
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Fig. 2.12), and hence their impact is dwarfed by the improvements on other coflows

from using LCoF.

2.5 Implementation

We implemented Saath consisting of the global coordinator and local agents

(Fig. 2.6) in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the coflows based on the operations

received from the framework and traffic statistics from the local agents. The key

implementation challenge for the coordinator is that it needs to be fast in computing

and updating the schedules. The Saath coordinator is multi-threaded and is opti-

mized for speed using a variety of techniques including pipelining, process affinity,

and concurrency whenever possible.

Conceptually, the coordinator computes new schedules in fixed intervals e.g., the

time required to send 1MB at a port, which is 8ms with our setting. In practice, due

to the delay in computing and propagating the schedules, the coordinator and local

agents work in a pipelined manner. In each interval, the coordinator computes a new

schedule consisting of the coflow order and flow rates, based on the flow stats received

during the previous interval, and pushes them to local agents right away. How local

agents react is described below.

Since the coordinator makes scheduling decisions on the latest flow stats received

from the local agents, it is stateless, which makes it easy for the coordinator to

recover from failures. When the coordinator fails, new deadlines are calculated for

each coflow.

Local agents: Upon receiving a new schedule from the coordinator, each local

agent schedules the flows accordingly, i.e., they comply to the previous schedule

until a new schedule is received. In addition, the local agents periodically, at the

same frequency at which the coordinator calculates new schedules, send the relevant

coflow statistics, including per-flow bytes sent so far and which flows finished in this
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interval, to the coordinator. To intercept the packets from the flows, local agents

require the compute frameworks to replace datasend(), datarecv() APIs with the

corresponding Saath APIs, which incurs very small overhead. Lastly, the local agents

are optimized for low CPU and memory overhead (evaluated in §2.7.3), enabling them

to fit well in the cloud settings [46].

Coflow operations: The global coordinator runs independently from, and is not

coupled to, any compute framework, which makes it general enough to be used with

any framework. It provides RESTful APIs to the frameworks for coflow operations:

(a) register() for registering a new coflow when it enters, (b) deregister() for

removing a coflow when it exits, and (c) update() for updating coflow status whenever

there is a change in the coflow structure, particularly during task migration and

restarts after node failures.

2.6 Simulation

We evaluated Saath using a 150-node testbed cluster in Azure that replays the

Hive/MapReduce trace from Facebook (FB). In addition, we evaluate Saath using

large-scale simulations using traces from production clusters of Facebook and a large

online service provider (OSP). The FB trace is for 150 ports and is publicly available

at [39]. The OSP trace is from a Microsoft cluster and has O(1000) jobs collected

from O(100) ports.3 The highlights of these evaluation are:

• Saath significantly improves the overall CCT. In simulation using the FB trace,

the CCT is improved by 1.53× in the median case (P90 = 4.50×). For the OSP

trace, the improvements in CCT are 1.42× in the median case (P90 = 37.2×).

• In testbed experiments, compared to Aalo, Saath improves job completion

time by 1.46× on average (P90 = 1.86×);

• The Saath prototype is fast and has small memory and CPU footprints;

3We cannot specify the exact numbers for proprietary reasons, which are also excluded from Fig. 2.2
in §4.2.
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• The breakdown of the improvement justifies the effectiveness of LCoF, all-or-

none, and faster queue transition design ideas.

We present detailed simulation results in this section, and the testbed evaluation

of our prototype in §3.10.

Setup: In replaying the traces (FB and OSP), we maintain the same flow lengths

and flow ports. The default parameters in the experiments are: starting queue thresh-

old (Qhi
0 ) is 10MB, exponential growth factor (E) is 10, the number of queues (K) is

set to 10, and the new schedule calculation interval δ is set to 8ms. Our simulated

cluster uses the same number of nodes (network ports) and link capacities as per

the trace. We assume full bisection bandwidth supporting 1 Gbps/port is available,

and congestion can happen only at the network ports. The simulator is written in 4

KLOC in C++.

We compare Saath against two start-of-the-art coflow schedulers, Aalo and Varys,

which are open-sourced [47]. All the experiments use the above default parameters

including K,E, S, unless otherwise stated. Since Varys does not use multiple queues,

there is no use of queueing parameters for Varys related experiments.

2.6.1 CCT Improvements

We first compare the speedup of Saath over other scheduling policies. We define

the speedup using Saath as the ratio of the CCT under other policy to the CCT

under Saath for individual coflows. The results are shown in Fig. 2.9. The Y-axis

denotes the median speedup, and error bars denote the 10-th and 90-th percentile

speedups. We show the results for the FB and OSP traces. The key observation

is that Saath improves the CCT over Aalo by 1.53× (median) and 4.5× (P90) for

the FB trace, and 1.42× (median) and 37.2× (P90) for the OSP trace. Interestingly,

Saath achieves the speedup close to that of SEBF in Varys [34] even though SEBF

runs offline and assumes the coflow sizes are known apriori, whereas Saath runs

online without apriori coflow knowledge.
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Figure 2.9.: Speedup using Saath over other scheduling policies. Saath achieves
speedup of 154× and 121× (median) over UC-TCP for two traces.

The higher speedup at P90 for the OSP trace over the FB trace is attributed to

larger improvement to the CCT of small and narrow coflows using all-or-none and

LCoF (§2.6.2). We observe that the ports are busier (i.e., having more coflows queued

at individual ports) for the OSP trace than the FB trace, which when coupled with

FIFO in Aalo, amplifies the waiting time for short and narrow coflows in the OSP

trace. In contrast, LCoF facilitates such coflows, resulting in dramatic reduction in

their waiting time.

We also compare Saath against an un-cordinated coflow scheduler (UC-TCP)

under which individual ports independently schedule the arriving coflows without any

global coordinator. In UC-TCP, there are no queues, and all the flows are scheduled

upon arrival as per TCP. Lack of coordination, coupled with lack of priority queues

severely hampers the CCT in UC-TCP. Saath achieves a median speedup of 154×

and 121× over UC-TCP in the FB and OSP traces, respectively.

These results show that Saath is effective in accelerating the coflows compared

to Aalo, and is close in performance compared to Varys which assumes prior knowl-

edge of coflow lengths, and achieves high speedups compared to other un-coordinated

scheduler.
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Figure 2.10.: Saath speedup breakdown across three complimentary design ideas.
Y-axis shows the median speedup. Abbreviations: (1) A/N: all-or-none, (2) PF:
per-flow queue threshold, (3) LCoF: Least-Contention-First.

Table 2.1.: Bins based on total coflow size and width.

width ≤ 10 width > 10

size ≤ 100MB bin-1 bin-2

size > 100MB bin-3 bin-4

2.6.2 Impact of Design Components

In this experiment, we evaluate the impact of the individual design components

on the speedup in CCT over Aalo. The results are shown in Fig. 2.10. To better

understand the impact, we also show the CCT improvement grouped into different

bins based on their width and size of the coflows (Table 2.1) in Fig. 2.11 and Fig. 2.12.

We make the following key observations.

First, only using all-or-none (A/N) and FIFO, i.e., without LCoF and per-flow

queue threshold (P/F), the speedup over Aalo using FB (OSP) trace is 1.13× (1.1×)

in median case and 3.05× (7.2×) at P90. Fig. 2.11 and Fig. 2.12 show that all-or-none

is effective for small, thin coflows, i.e., coflows with fewer flows, as the probability

of finding all the ports available is higher. For other bins, the benefits are lower due
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Figure 2.11.: Saath speedup breakdown into bins based on size and width shown in
table 2.1 for FB trace. The numbers in x-label denote fraction of all coflows in that
bin. Y-axis shows the median speedup.
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Figure 2.12.: Saath speedup breakdown into bins based on size and width shown in
table 2.1 for OSP trace. We omit the distribution of coflows in individual bins for
proprietary reasons. Y-axis shows the median speedup.

to the use of FIFO, where a wide coflow causes Head-of-Line (HoL) blocking other

potentially short coflows.

Second, while all-or-none only addresses one limitation of the out-of-sync prob-

lem, using per-flow queue thresholds (P/F) addresses the second limitation of out-of-

sync problem by quickly jumping the queues (§2.3). As a result, A/N+P/F improves
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Figure 2.13.: Normalized standard deviation of FCTs of multi-flow coflows, under
Saath and Aalo using FB trace. We have excluded the coflows with width = 1
(23.5%).

the speedup over Aalo in the FB (OSP) trace to 1.3× (1.32×) in the median case,

and 3.83× (13×) at P90.

We again zoom into the improvement in using P/F on coflows in different bins,

shown in Fig2.11 and Fig. 2.12. P/F is highly effective for coflows in bins 2 and 4,

which are wider (width > 10). The larger numbers of flows in these wider coflows

increase the chance of at least one flow crossing the per-flow queue threshold and thus

move the coflows to the next queues faster.

Third, we replace FIFO with LCoF and retain A/N and P/F from previous

experiment. This combines all the three complimentary ideas in Saath, and is labeled

as Saath in Fig. 2.10. We see that using LCoF achieves a median speedup over

Aalo of 1.53× (P90=4.5×) for the FB trace, and of 1.42× (P90=37×) for the OSP

trace. This is primarily because LCoF schedules coflows using Least Contention First

and reduces the HoL blocking in FIFO. As shown in Fig. 2.11 and Fig. 2.12, LCoF

improves the CCT of coflows in all bins. Particularly, it substantially benefits short

and thin coflows (bin-1), as HoL blocking due to FIFO blocks these coflows the most,
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(d) Arrival time scaling (A)
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Figure 2.14.: Saath sensitivity analysis.

without significantly impacting the coflows in other bins. This shows that LCoF on

top of all-or-none is effective.

Lastly, Fig. 2.13 shows the CDF of the standard deviation of FCTs of individual

coflows with more than one flow under Saath and Aalo for the FB trace. We show

results separately for coflows with equal and unequal flow length. We see that Saath

significantly reduces the variation in FCTs: 40% of coflows with equal flow lengths

finished their flows at the same time, as opposed to 20% in Aalo, and 71% of them had

normalized FCT deviation under 10%, compared to 47% in Aalo. We note that Saath

does not completely eliminate the out-of-sync problem because of work conservation

(§2.3). We do not show the results for the OSP trace for proprietary reasons.

2.6.3 Sensitivity Analysis

We next evaluate the sensitivity of Saath and Aalo to various design parameters.

Due to space limitation, we only show the results for the FB trace. The results for

the OSP trace are similar.

Start queue threshold (S): In this experiment, we vary queue threshold of the

starting (highest priority) queue, which controls how long coflows stays in the starting
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queue. Fig. 2.14(a) shows that Aalo is highly sensitive to S. This is because as S

grows, more coflows stay in the highest priority queue, and Aalo performs worse due

to HoL blocking under FIFO, which is addressed by LCoF in Saath. In contrast,

Saath is relatively insensitive to S, precisely because LCoF alone addresses the HoL

blocking weakness of FIFO.

Multiplication factor (E): In this experiment, we vary the queue threshold

growth factor E from 2 to 32. Recall that the queue thresholds are computed as

Qhi
q = Qhi

q−1 · E. Thus, as E grows, the number of queues decreases. As shown in

Fig. 2.14(b), Saath and Aalo are both insensitive to E.

Synchronization interval (δ): Recall that the global coordinator calculates a

new schedule every δ interval. In this experiment, we vary δ and measure its impact

on the CCT. Fig. 2.14(c) shows as δ increases, the speedup in Aalo and Saath

both diminish. As shown in §2.7.3, Saath comfortably finishes calculating each new

schedule within 8 msec even during busy periods (with an average of 0.57 msec and

P90 of 2.85 msec). Thus when δ increases, the CCT increases because the ports may

finish the current scheduled flows and become idle before receiving a new schedule

from the coordinator. This shows that in general shorter scheduling intervals help to

keep all the ports busy which in turn requires the global coordinator to be able to

calculate schedules quickly.

Coflow arrival time (contention): In this experiment, we vary the arrival

time (A) between the coflows to vary the coflow contention. The x-axis in Fig. 2.14(d)

shows the factor by which the arrival times are sped up. For example, A = 0.5 denotes

that coflows arrive 0.5× faster (2× slower), whereas A = 4 denotes that coflows arrive

4× faster. The y-axis shows the speedup compared to the default Aalo, i.e., Aalo with

A = 1. Fig. 2.14(d) shows that as A increases, the overall speedup in both Saath

and Aalo decreases. This is expected because increasing A causes more contention

and the coflows are queued up longer increasing their CCT under both schemes.
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More importantly, when we increase A, the speedup of Saath over Aalo increases,

from 1.53× to 1.9×, showing the higher the contention, the more Saath outperforms

Aalo, using the LCoF policy.

Coflow deadline (d): Recall that LCoF by default does not provide the starvation-

free guarantees, and can starve the coflows with high contention. To avoid starvation,

Saath assigns each coflow a deadline of d ·Cq · t (D5 in §2.4.2), where Cq · t denotes

the estimated deadline based on current coflows if scheduled under FIFO. In this

experiment, we measure the impact of d on the CCT speedup, where d is varied from

1 to 16. Fig. 2.14(e) shows that Saath is insensitive to d, and comfortably sched-

ules the coflows within the deadline. Even when the deadlines are as per FIFO (d

= 1), Saath can achieve a median speedup of 1.5× over Aalo. A small drop in the

speedup at d = 1 is because starvation-free scheduling occasionally kicks in, and the

coflows that passed the deadline are forced to be scheduled, which would not have

been under LCoF only, resulting in worse CCT. At higher values of d (> 2), Saath

has more freedom to re-order the coflows to facilitate their CCT without violating

the deadlines.

2.7 Testbed Evaluation

Testbed setup: Similar to simulations, our testbed evaluation keeps the same

job arrival times, flow lengths and flow ports in trace replay. All the experiments use

the default parameter values of K,E, S, δ. For the testbed experiments, we rerun the

trace on Spark-like framework on a 150-node cluster in Microsoft Azure [48]. We use

the FB trace as it has a cluster size similar to that of our testbed. The coordinator

runs on a Standard F4s VM (4 cores and 8GB memory) based on the 2.4 GHz Intel

Xeon E5-2673 v3 (Haswell) processor. Each local agent runs on a D2v2 VM (2 cores

and 7GB memory) based on the same processor and with 1 Gbps network connection.
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Figure 2.15.: [Testbed] Speedup in CCT in Saath.

In testbed evaluation, we compare Saath against Aalo. The primary evaluation

metric is the speedup in CCT. We also compare the speedup in job completion time

and Saath scheduling overheads.

2.7.1 Improvement in CCT

In this experiment, we measure the speedup in Saath compared to Aalo. Fig.2.15

shows that the ratio of CCT under Saath over that under Aalo ranges between 0.09-

12.15×, with an average of 1.88× and a median of 1.43× compared to under Aalo,

which is close to the reduction observed in the simulation experiments. Although

Saath improves the CCT for the majority of CoFlows (>70%), it slows down some

of the CoFlows. These CoFlows are favored by FIFO as they arrived early. The

same CoFlows would be pushed back by Saath if they observe high contention.

Additionally, the starvation avoidance rarely kicked in (< 1%) even for d = 2. This

experiment shows that Saath is effective in improving CCT in real settings.
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Figure 2.16.: [Testbed] Speedup in job completion time using Saath over Aalo. X-
axis shows the fraction of total job time spent in shuffle phase.

2.7.2 Job Completion Time

Next, we evaluate how the improvements in CCT affects the job completion time.

In data clusters, different jobs spend different fractions of their total job time in data

shuffle. In this experiment, the fraction of time that the jobs spent in the shuffle

phase follows the same distribution used in Aalo [11]. Fig. 2.16 shows that Saath

substantially speeds up the job completion time of the shuffle-heavy jobs (shuffle

fraction ≥50%) by 1.83× on average (P50 = 1.24× and P90 = 2.81×). Additionally,

across all jobs, Saath reduces the job completion time by 1.42× on average (P50 =

1.07× and P90 = 1.98×). This shows that the benefits in improving CCT translates

into better job completion time. As expected, the improvement in job completion time

is smaller than the improvements in CCT because job completion time depends on

time spent in both compute and communication (shuffle) stages, and Saath improves

only the communication stage.
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Table 2.2.: [Testbed] Resource usage in Saath and Aalo.

Saath Aalo
Average P90 Average P90

Global CPU (%) 37.8 42.7 33.5 35.5
co- Memory (MB) 229 284 267 374

ordinator Total time 0.57 2.85 0.1 0.2
(LCoF / (0.02 / 0.24) (0.03 / 0.7)

All-or-none)
(msec)

Local CPU (%) 5.6 5.7 5.5 5.7
node Memory (MB) 1.68 1.7 1.75 1.78

2.7.3 Scheduling Overhead

We next evaluate the overheads in Saath at the coordinator and the local agents.

Table 2.2 shows the overheads in terms of CPU and memory utilization for both

Saath and Aalo. We measure the overheads in two cases: (1) Average: the average

utilization during the entire execution of the trace, (2) Busy: the 90-th percentile

utilization indicating the performance during busy periods when a large number of

CoFlows arrive. As shown in Table 2.2, Saath has a very small overhead at the

local nodes, where the CPU and memory utilization is minimal even during busy

times. The global coordinator also uses the server resources economically – compared

to Aalo, overall Saath incurs 4.3% increase in average CPU utilization. Finally,

the scheduling latency is overall small, although higher than Aalo due to all-or-none,

LCoF and per-flow scheduling. The time it takes the coordinator to calculate new

schedules is 0.57 msec on average and 2.85 msec at P90.

We also break down the computation time at the coordinator in Saath into the

time spent in ordering CoFlows (using per-flow thresholds and LCoF), scheduling

using all-or-none, and the rest which is for assigning rates for work conservation.

Table 2.2 shows that most of the computation time is spent on assigning rates for

work conservation; ordering the CoFlows using LCoF accounts for less than half of

the schedule compute time.
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In summary, our overhead evaluation shows that the cost of the Saath scheduling

algorithm is moderate, and that the CCT improvement in Saath outweighs its costs.

2.8 Summary

In this chapter, we have shown that the prior-art coflow scheduler Aalo suffers

from the out-of-sync problem and uses a simple FIFO intra-queue scheduling policy

which ignores coflow contention across ports. We present Saath that addresses

the limitations in Aalo by exploiting the spatial dimension in scheduling coflows.

Saath uses all-or-none to schedule all flows of a coflow together, and the Least-

Contention-First policy to decide on the order of coflows from the same priority

queue. Our evaluation using a 150-node testbed in Microsoft Azure and large scale

simulations using traces from two production clusters shows that compared to Aalo,

Saath reduces the CCT by 1.53× and 1.42× in median, and 4.50× and 37× at the

90-th percentile for two traces.

Appendix A: SJF for Coflows is Sub-optimal

Fig. 2.17 illustrates that SJF is not optimal even when all the coflows arrive at the

same time, and their durations are known apriori. When an i-th coflow is scheduled,

the increase in the waiting time of other coflows is ti ·ki, where ti is the duration coflow

i is scheduled, and ki is the contention, i.e., the number of other coflows blocked. In

coflows, ki is non-uniform as different ports have different coflows and differen coflows

reside at different numbers of ports. However, SJF only considers ti, and is agnostic

to ki, and thus results in higher waiting time as shown in Fig. 2.17. In this example,

k1 = 2, k2 = k3 = 1, and t1, t2, t3 are shown in the figure. SJF schedules coflow C1

first as it is the shortest. However, C1 blocks the other two coflows, increasing the

total waiting time by 2 · 5t, which leads to sub-optimal average CCT.
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3 Philae

This chapter is based on a publication in 2019 Annual Technical Conference by
USENIX Association [49].
Following is its DOI: https://www.usenix.org/conference/atc19/presentation/jajoo

In Chapter 2, we show that by synchronizing in space, we can significantly improve

the average coflow completion time. In this chapter, we focus on learning coflow sizes

online, another crucial aspect of online coflow scheduling, by exploiting the spatial

dimension, where the coflow size is the total size of its constituent flows.

3.1 Motivation and Problem Statement

In big data analytics jobs, speeding up the communication stage where the data

is transferred between compute nodes is important to speed up the jobs. However,

improving network level metrics such as flow completion time may not translate into

improvements at the application level metrics such as job completion time. The

coflow abstraction [25] was proposed to bridge such a gap. The abstraction captures

the collective network requirements of applications, as reduced coflow completion time

(CCT) can directly lead to faster job completion time [41,50].

Scheduling coflows in non-clairvoyant settings, i.e., without any apriori knowledge,

is a daunting task. Ideally, if the coflow sizes (bytes to be transfered) are known

apriori, then one can apply variations of the classic Shortest-Job-First (SJF) algorithm

(e.g., [34]).

There have been a number of efforts on network designs for coflows [34, 51, 52]

that assume complete prior knowledge of coflow sizes. However, in many practical

settings, coflow characteristics are not known a priori. For example, multi-stage jobs
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pipeline data from one stage to the next as soon as the data is generated, which makes

it difficult to know the size of each flow [53, 54]. A recent study [53] shows various

other reasons why it is not very plausible to learn flow sizes from applications, for

example, learning flow sizes from applications requires changing either the network

stack or the applications.

The major challenge in developing an effective non-clairvoyant coflow scheduling

scheme has centered around how to learn the coflow sizes online quickly and accu-

rately, as once the coflow sizes (bytes to be transferred) can be estimated, one can

apply variations of the classic Shortest-Job-First (SJF) algorithm such as Shortest

Coflow First [34] or apply an LP solver (e.g., [52]).

3.2 Existing Approach for Learning Coflow Sizes and its Limitations

State-of-the-art online non-clairvoyant schedulers such as Saath [40], Gravtion [55]

and Aalo [11] in essence learn coflow sizes and approximate SJF using discrete priority

queues, where all newly arriving coflows start from the highest priority queue, and

move to lower priority queue as they send more data (without finishing), i.e., cross the

per-queue thresholds. In this way, the smaller coflows finish in high priority queues,

while the larger coflows gradually move to the lower priority queues where they finish

after smaller coflows.

To realize the above idea in scheduling coflows which have flows at many network

ports, i.e., in a distributed setting, Aalo uses a global coordinator to assign coflows

to logical priority queues, and uses the total bytes sent by all flows of a coflow as

its logical “length” in moving coflows across the queues. The logical priority queues

are mapped to local priority queues at each port, and the individual local ports then

schedule the flows in its local priority queues, e.g., by enumerating flows from the

highest to lowest priority queues and using FIFO to order the flows within each queue.

In essence, Aalo learns coflow sizes by actually scheduling the coflow, a “try and

miss” approach to approximate SJF. As coflow sizes are not known, in each queue,
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Aalo schedules each coflow for a fixed amount of data (try). If the coflow does not

finish (miss), it is demoted to a lower priority queue. Afterwards, such a coflow will

no longer block coflows in higher priority queues.

Using multiple priority queues to learn the relative coflow sizes of coflows this way,

however, negatively affects the average CCT and the scalability of the coordinator:

(1) Intrinsic queue-transit overhead: Every coflow that Aalo transits through

the queues before reaching its final queue worsens the average CCT because during

transitions, such a coflow effectively blocks other shorter coflows in the earlier queues

it went through, which would have been scheduled before this coflow starts in a perfect

SJF.

(2) Overhead due to inadvertent round-robin: Although Aalo attempts to

approximate SJF, it inadvertently ends up doing round-robin for coflows of similar

sizes as it moves them across queues. Aalo assigns a fixed threshold of data transfer

for each coflow in each queue. Assume there are “N” coflows in a queue that do not

finish in that queue. Aalo schedules one coflow (chosen using FIFO) and demotes it

to a lower priority queue when the coflow reaches the data threshold. At that point,

the next coflow from the same queue is scheduled, which joins the previous coflow

at a lower priority queue after exhausting its quantum, and this cycle continues as

coflows of similar sizes move through the queues. Effectively, these coflows experience

the round-robin scheduling which is known to have the worst average CCT [56], when

jobs are of similar sizes.

(3) Limited scalability from frequent updates from local ports: To sup-

port the try-and-error style learning, the coordinator requires frequent updates from

all local ports of the bytes sent for each coflow in order to move coflows across multi-

ple queues timely. This results in high load on the central coordinator from receiving

frequent updates and calculating and sending new rate allocations, which limits the

scalability of the overall approach.
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Figure 3.1.: CDF of learning overhead per coflow, i.e., the time to reach the correct
priority queue as a fraction of CCT, excluding coflows directly scheduled by Philae
or finish in Aalo’s first queue.

Empirical measurement We quantify the coflow size learning overhead of Aalo,

defined as the portion of the bytes of a coflow that has been transferred (or the

fraction of its CCT spent in doing so) before reaching its correct queue, using a trace

from Facebook clusters [39] (see detailed methodology in §3.9). Figure 3.1 shows that

40% of the coflows that moved beyond the initial queue reached the correct priority

queue after spending more than 20% of their CCT moving across early queues.

3.3 Background and Problem Statement

We start with a brief review of the coflow abstraction and the need for non-

clairvoyant coflow scheduling. We then state the network model and problem formu-

lation.

Coflow abstraction In data-parallel applications such as Hadoop [2] and Spark [22],

the job completion time heavily depends on the completion time of the communication

stage [50,57]. The coflow abstraction [25] was proposed to speed up the communica-

tion stage to improve application performance. A coflow is defined as a set of flows
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between several nodes that accomplish a common task. For example, in map-reduce

jobs, the set of all flows from all map to all reduce tasks in a single job forms a

typical coflow. The coflow completion time (CCT) is defined as the time duration

between when the first flow arrives and the last flow completes. In such applications,

improving CCT is more important than improving individual flows’ completion time

(FCT) for improving the application performance [11,34,40,41,55].

Non-clairvoyant coflows Data-parallel directed acyclic graphs (DAGs) typically

have multiple stages which are represented as multiple coflows with dependencies be-

tween them. Recent systems (e.g., [?, 54, 58, 59]) employ optimizations that pipeline

the consecutive computation stages which removes the barrier at the end of each

coflow, making knowing flow sizes of each coflow beforehand difficult. Thus in this

chapter, we focus on non-clairvoyant coflow scheduling which do not assume knowl-

edge about coflow characteristics such as flow sizes upon coflow arrival.

Non-blocking network fabric We assume the same non-blocking network fabric

model in recent network designs for coflows [11, 34, 40, 52, 55], where the datacenter

network fabric is abstracted as a single non-blocking switch that interconnects all the

servers, and each server (computing node) is abstracted as a network port that sends

and receives flows. In such a model, the ports, i.e., server uplinks and downlinks, are

the only source of contention as the network core is assumed to be able to sustain

all traffic injected into the network. We note that the abstraction is to simplify our

description and analysis, and is not required or enforced in our evaluation.

Problem statement Our goal is to develop an efficient non-clairvoyant coflow

scheduler that optimizes the communication performance, in particular the average

CCT, of data-intensive applications without prior knowledge, while guaranteeing star-

vation freedom and work conservation and being resilient to the network dynamics.

The problem of non-clairvoyant coflow scheduling is NP-hard because coflow schedul-

ing even assuming all coflows arrive at time 0 and their size are known in advance is
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already NP-hard [34]. Thus practical non-clairvoyant coflow schedulers are approx-

imation algorithms. Our approach is to dynamically prioritize coflows by efficiently

learning their flow sizes online.

3.4 Key Idea

Our new non-clairvoyant coflow scheduler design, Philae, is based on a key obser-

vation about coflows that a coflow has a spatial dimension, i.e., it typically consists of

many flows. We thus propose to explicitly learn coflow sizes online by using sampling,

a highly effective technique used in large-scale surveys [60]. In particular, Philae

preschedules sampled flows, called pilot flows, of each coflow and uses their mea-

sured sizes to estimate the coflow size. It then resorts to SJF or variations using the

estimated coflow sizes.

Developing a complete non-clairvoyant coflow scheduler based on the simple sam-

pling idea raises three questions:

(1) Why is sampling more efficient than the priority-queue-based coflow size learn-

ing? Would scheduling the remaining flows after sampled pilot flows are completed

adversely affect the coflow completion time?

(2) Will sampling be effective in the presence of skew of flow sizes?

(3) How to design the complete scheduler architecture?

We answer the first two questions below, and present the complete architecture

design in §3.5.

3.4.1 Why is Sampling more Efficient?

Scheduling pilot flows first before the rest of the flows can potentially incur two

sources of overhead. First, scheduling pilot flows of a newly arriving coflow consumes

port bandwidth which can delay other coflows (with already estimated sizes). How-

ever, compared to the multi-queue based approach, the overhead is much smaller for

two reasons: (1) Philae schedules only a small subset of the flows (e.g., fewer than
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1% for coflows with many flows). (2) Since the CCT of a coflow depends on the

completion of its last flow, some of its earlier finishing flows could be delayed without

affecting the CCT. Philae exploits this observation and schedules pilot flows on the

least-busy ports to increase the odds that it only affects earlier finishing flows of other

coflows.

Second, scheduling pilot flows first may elongate the CCT of the newly arriving

coflow itself whose other flows cannot start until the pilot flows finish. This is again

typically insignificant for two reasons: (1) A coflow (e.g., from a MapReduce job)

typically consists of flows from all sending ports to all receiving ports. Conceptually,

pre-scheduling one out of multiple flows from each sender may not delay the coflow

progress at that port, because all flows at that port have to be sent anyway. (2)

Coflow scheduling is of high relevance in a busy cluster (when there is a backlog of

coflows in the network), in which case the CCT of coflow is expected to be much

higher than if it were the only coflow in the network, and hence the piloting overhead

is further dwarfed by a coflow’s actual CCT.

3.4.2 Why is Sampling Effective in the Presence of Skew?

The flow sizes within a coflow may vary (skew). Intuitively, if the skew across

flow sizes is small, sampling even a small number of pilot flows will be sufficient to

yield an accurate estimate. Interestingly, even if the skew across flow sizes is large,

our experiment indicates that sampling is still highly effective. In the following, we

give both the intuition and theoretical underpinning for why sampling is effective.

Consider, for example, two coflows and the simple setting where both coflows share

the same set of ports. In order to improve the average CCT, we wish to schedule the

shorter coflow ahead of the longer coflow. If the total sizes of the two coflows are very

different, then even a moderate amount of estimation error of the coflow sizes will

not alter their ordering. On the other hand, if the total sizes of the two coflows are

close to each other, then indeed the estimation errors will likely alter their ordering.
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However, in this case since their sizes are not very different anyway, switching the

order of these two coflows will not significantly affect the average CCT.

Analytic results. To illustrate the above effect, we show that the gap between

the CCT based on sampling and assuming perfect knowledge is small, even under

general flow size distributions. Specifically, coflows C1 and C2 have cn1 and cn2 flows,

respectively. Here, we assume that n1 and n2 are fixed constants. Thus, by taking c

to be larger, we will be able to consider wider coflows. Assume that each flow of C1

(correspondingly, C2) has a size that is distributed within a bounded interval [a1, b1]

([a2, b2]) with mean µ1 (µ2), i.i.d. across flows. However, the exact distributions can

be arbitrary. Let T c be the total completion time when the exact flow sizes are known

in advance. Let T̃ c be the average CCT by sampling m1 and m2 flows from C1 and

C2, respectively. Without loss of generality, we assume that n2µ2 ≥ n1µ1. Then,

using Hoeffding’s Inequality, we can show that,

lim
c→∞

T̃ c − T c

T c
≤ 4 exp

− 2(n2µ2 − n1µ1)
2(

n2(b2−a2)√
m2

+ n1(b1−a1)√
m1

)2
 n2µ2 − n1µ1

n2µ2 + 2n1µ1

(3.1)

(Note that here we have used the fact that, since both coflows share the same set of

ports and c is large, the CCT is asymptotically proportional to the coflow size.)

Equation (3.1) can be interpreted as follows. First, due to the first exponential

term, the relative gap between T̃ c and T c decreases as b1−a1 and b2−a2 decrease. In

other words, as the skew of each coflow decreases, sampling becomes more effective.

Second, when b1−a1 and b2−a2 are fixed, if n2µ2−n1µ1 is large (i.e., the two coflow

sizes are very different), the value of the exponential function will be small. On the

other hand, if n2µ2 − n1µ1 is close to zero (i.e., the two coflow sizes are close to each

other), the numerator on the second term on the right hand side will be small. In

both cases, the relative gap between T̃ c and T c will also be small, which is consistent

with the intuition explained earlier. The largest gap occurs when n2µ2−n1µ1 is on the

same order as n2(b2−a2)√
m2

+ n1(b1−a1)√
m1

. Finally, although these analytical results assume
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that both coflows share the same set of ports, similar conclusions on the impact of

estimation errors due to sampling also apply under more general settings.

The above analytical results suggest that, when c is large, the relative performance

gap for CCT is a function of the number of pilot flows sampled for each coflow, but

is independent of the total number of flows in each coflow. In practice, large coflows

will dominate the total CCT in the system. Thus, these results partly explain that,

while in our experiments the number of pilot flows is never larger than 1% of the total

number of flows, the performance of our proposed approach is already very good.

Finally, the above analytical results do not directly tell us how to choose the

number of pilot flows, which likely depends on the probability distribution of the

flow size. In practice, we do not know such distribution ahead of time. Further,

while choosing a larger number of pilot flows reduces the estimation errors, it also

incurs higher overhead and delay. Therefore, our design (§3.5) needs to have practical

solutions that carefully address these issues.

3.5 Philae Design

In this section, we present the detailed design of Philae, which addresses three

design challenges: (1) Coflow size estimation: How to choose and schedule the pilot

flows for each newly arriving coflow? (2) Starvation avoidance: How to schedule

coflows after size estimation using variations of SJF that avoid starvation? (3) Coflow

scheduling: How to schedule among all the coflows with estimated sizes?

3.5.1 Philae architecture

Fig. 3.2 shows the Philae architecture. Philae models the entire datacenter as

a single big-switch with each computing node as an individual port. The scheduling

task in Philae is divided among (1) a central coordinator, and (2) local agents that

run on individual ports. A computing framework such as Spark [61] first registers

(removes) a coflow when a job arrives (finishes). Upon a new coflow arrival, old
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Figure 3.2.: Philae architecture.

coflow completion, or pilot flow completion, the coordinator calculates a new coflow

schedule, which includes (1) coflows that are to be scheduled in the next time slot,

and (2) flow rates for the individual flows of a coflow, and pushes this information

to the local agents which use this information to allocate their bandwidth. The local

agents will follow the current schedule until they receive a new schedule.

3.5.2 Sampling pilot flows

As discussed in §3.4, Philae estimates the size of a coflow online by actually

scheduling a subset of its flows (pilot flows) at their ports. We do not schedule the

flows of a coflow other than the pilot flows until the completion of the pilot flows in

order to avoid unnecessary extra blocking of other potentially shorter coflows.
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How many pilot flows? When a new coflow arrives, Philae first needs to deter-

mine the number of pilot flows. As discussed at the end of §3.4, the number of pilot

flows affects the trade-off between the coflow size estimation accuracy and scheduling

overhead. For coflows with skewed flow sizes, accurately estimating the total coflow

size potentially requires sampling the sizes of many pilot flows. However, scheduling

pilot flows has associated overhead, i.e., if the coflow turns out to be a large coflow

and should have been scheduled to run later under SJF.

We explore several design options for choosing the number of pilot flow. Two

natural design choices are using a constant number of pilot flows or a fixed fraction

of the total number of flows of a coflow. In addition, we observe that typical coflows

consist of flows between a set of senders (e.g., mappers) and a set of receivers (e.g.,

reducers) [1]. We thus include a third design choice of a fixed fraction of sending

ports. This design also spreads the pilot flows to avoid having multiple pilot flows

contending for the same sending ports. We empirically found that (§3.9.2) limiting

the pilot flows to 5% to 10% of the number of its sending ports (e.g., mappers in a

MapReduce coflow) strikes a good balance between estimation accuracy and overhead.

We note the total number of flows sampled in this case is still under 1%.

Finally, we estimate the total coflow size as S = fi ·N , where N is the number of

flows in a coflow, and fi is the average size of the sampled pilot flows.

Which flows to probe? Second, Philae needs to decide which ports to schedule

the chosen number of probe flows for a coflow. For this, we use a simple heuristic

where, upon the arrival of a new coflow, we select the ports for its pilot flows that are

least busy, i.e., having pilot flows from the least number of other coflows. Philae

starts with the least busy sending port and iterates over receiving ports starting with

the least busy receiving port and assigns the flow if it exists. It then updates the

statistics for the number of pilot flows scheduled at each port and repeats the above

process. Such a choice will likely delay fewer coflows when the pilot flows are scheduled

and hence reduce the elongation on their CCT. We note that such an online heuristic
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may not be optimal; more sophisticated algorithms can be derived by picking ports

for multiple coflows together. However, we make this design choice for its simplicity

and low time complexity to ensure that the coordinator makes fast decisions.

How to schedule pilot flows? In Philae, we prioritize the pilot flows of a new

coflow over existing flows to accelerate learning the size of the new coflow. In par-

ticular, at each port, pilot flows have high priority over non-pilot flows. If there are

multiple outstanding pilot flows (of different coflows) at a port, Philae schedules

them in the FIFO order.

3.5.3 Coflow scheduling with starvation avoidance

Once the sizes of coflows are learned, we can apply variations of the SJF policy to

schedule them. However, it is well known that such policies can lead to starvation.

There are many ways to mitigate the starvation issue. However, a subtlety arises

where even slight difference in how starvation is addressed can result in different

performance. For example, the multiple priority queues in Aalo has the benefit of

ensuring progress of all coflows, but assigning different time-quanta to different prior-

ity queues can result in different average CCT for the same workload. To ensure the

fairness of performance comparison with Aalo, we need to ensure that both Philae

and Aalo provide the same level of starvation freedom (or progress measure).

For this reason, in discussions and experiments mentioned in this report, we inherit

the multiple priority queue structure from Aalo for coflow scheduling. As in Aalo,

Philae sorts the coflows among multiple priority queues. In particular, Philae uses

N queues, Q0 to QN−1, with each queue having lower queue threshold Qlo
q and higher

threshold Qhi
q , where Qlo

0 = 0, Qhi
N−1 =∞, Qlo

q+1 = Qhi
q , and the queue thresholds grow

exponentially, i.e., Qhi
q+1 = E · Qhi

q .

The overall coflow scheduling in Philae works as follows. After the coflow size

is estimated using pilot flows, Philae assigns the coflow to the priority queue using

inter-coflow policies discussed in §3.5.4. Within a queue, we use FIFO to schedule
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coflows. Lastly, we use weighted sharing of network bandwidth among the queues,

where a priority queue receives a network bandwidth based on its priority. As in

Aalo, the weights decrease exponentially with decrease in the priority of the queues.

Using FIFO within the priority queue and weighted fair sharing among the queues

together ensure the same starvation freedom and thus meaningful performance com-

parison between Philae and Aalo [11].

3.5.4 Inter-coflow scheduling policies

In Philae, we explore four different scheduling policies based on different com-

binations of coflow size and contention, two size-based policies (A, B) as in Aalo, a

contention-based, similar to the intra-queue policy used in Saath [40] (C ), and a new

contention-and-length-based policy (D):

(A) Smallest job first: Coflows are sorted based on coflow size (l · n).

(B) Smallest remaining data first: Coflows are sorted based on remaining

data (l · n− d).

(C) Least contention first: Coflows are sorted based on their contention (c).

(D) Least length-weighted total-port contention first: Coflows are sorted

based on the sum of port-wise contention times estimated flow length
∑
p

cp · l.

We use the following parameters of a coflow to define the metrics in scheduling

algorithms: (1) average flow length (l) from piloting, (2) number of flows (n), (3)

number of sender and receiver ports (s, r), (4) total amount of data sent so far (d),

(5) contention (c), defined as the number of other coflows sharing any ports with the

given coflow, and (6) port-wise contention (cp), defined as the number of other coflows

blocked at a given port p.

Philae uses Policy D by default, as it results in the least average CCT (§3.9).

For all policies, we continue to use the priority-queue based scheduling, and the

algorithms only differ in what metric they use in assigning coflows to the priority

queues. In contrast, Aalo does not handle inter-coflow contention, and uses the total

bytes sent so far (d) to move coflows across multiple priority queues.
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3.5.5 Rate Allocation

Once the scheduling order of the coflows is determined, we need to determine the

rates for the individual flows at each port. First, since we want to quickly finish the

pilot flow, at any port that has pilot flows, Philae assigns the entire port bandwidth

to the pilot flows. For the remaining ports, as discussed in §3.5.3, across multiple

queues, Philae assigns weighted shares of the port bandwidth, by assigning them

varying numbers of scheduling intervals according to the weights assigned to each

priority queues.

Second, at each scheduling interval, Philae assigns rates for the flows of the

coflow in the head of the FIFO queue as follows. It assigns equal rates at all the ports

containing its flows as there is no benefit in speeding-up its flows at certain ports

when its CCT depends on the slowest flow. At each port, we could use max-min

fairness to schedule the individual flows of the coflow (to different receivers), and

then assign the rate of the slowest flow to all the flows in the coflow. Afterwards,

the port-allocated bandwidths are incremented accordingly at the coordinator, which

then allocates rates for the next coflow in the same FIFO queue, and so on.

Though the above max-min approach has the advantage of minimizing bandwidth

wastage, it slows down the coordinator which has to iterate over many flows. In our

experiments, we used a simple scheme where we assign the entire bandwidth at the

sender and receiver ports to one flow of the coflow at the head of the FIFO queue

at a time. We found that this simple scheme has very marginal effect on CCTs but

makes the rate assignment process considerably faster.

3.5.6 Additional design issues

Thin coflow bypass Recall that, in Philae, when a new coflow arrives, Philae

only schedules its pilot flows. All other flows of that coflow are delayed until the pilot

flows finish and coflow size is known. However, such a design choice can inadvertently
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lead to higher CCTs for coflows, particularly for thin coflows, e.g., a two-flow coflow

would end up serializing scheduling its two flows, one for the piloting purpose.

To avoid CCT degradations for thin coflows, we schedule all flows of a coflow if

its width is under a threshold (set to 7 in Philae; §3.9.6 provides sensitivity analysis

for thresholds).

Failure tolerance and recovery Cluster dynamics such as stragglers or node

failure can delay some of the flows of a coflow or start new flows, increasing their CCT.

The Philae design automatically self-adjusts to speed up coflows that are affected

by cluster dynamics using the following mechanisms: (1) It adjusts the coflow size as

the amount of data left by the coflow, which is essentially the difference between the

size calculated using pilot flows and amount of data already sent. (2) It calculates

contention only on the ports that have unfinished flows.

Work Conservation By default, Philae schedules non-pilot flows of a coflow only

after all its pilot flows are over. This can lead to some ports being idle where the non-

pilot flows are waiting for the pilot flows to finish. In such cases, Philae schedules

non-pilot flows of coflows which are still in the sampling phase at those ports. In

work conservation, the coflows are scheduled in the FIFO order of arrival of coflows.

3.6 Scalability Analysis

Compared to learning coflow sizes using priority queues (PQ-based) [11,40], learn-

ing coflow sizes by sampling Philae not only reduces the learning overhead as dis-

cussed in §3.4.1 and shown in §3.9.2, but also significantly reduces the amount of

interactions between the coordinator and local agents and thus makes the coordina-

tor highly scalable, as summarized in Table 3.1.

First, PQ-based learning requires much more frequent update from local agents.

PQ-based learning estimates coflow sizes by incrementally moving coflows across pri-

ority queues according to the data sent by them so far. As such, the scheduler needs
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Table 3.1.: Comparison of frequency of interactions between the coordinator and local
agents.

Update Update of Rate
of data sent flow completion calculation

Philae No Yes Event triggered

Aalo Periodic (δ) Yes Periodic (δ)

frequent updates (every δ ms) of data sent per coflow from the local agents. In con-

trast, Philae directly estimates a coflow’s size upon the completion of all its pilot

flows. The only updates Philae needs from the local agents are about the flow

completion which is needed for updating contentions and removing flows from active

consideration..

Second, PQ-based learning results in much more frequent rate allocation. In

sampling-based approach, since coflow sizes are estimated only once, coflows are re-

ordered only upon coflow completion or arrival events or in the case of contention

based policies only when contention changes, which is triggered by completion of all

the flows of a coflow at a port. In contrast, in PQ-based learning, at every δ interval,

coflow data sent are updated and coflow priority may get updated, which will trigger

new rate assignment.

Our scalability experiments in §3.10.3 confirms that Philae achieves much higher

scalability than Aalo.

3.7 Implementation

We implemented both Philae and Aalo scheduling policies in the same framework

consisting of the global coordinator and local agents (Fig. 3.2), in 5.2 KLoC in C++.

Coordinator: The coordinator schedules the coflows based on the operations

received from the registering framework. The key implementation challenge for the

coordinator is that it needs to be fast in computing and updating the schedules. The

Philae coordinator is optimized for speed using a variety of techniques including

pipelining, process affinity, and concurrency whenever possible.
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Local agents: The local agents update the global coordinator only upon com-

pletion of a flow, along with its length if it is a pilot flow. Local agents schedule the

coflows based on the last schedule received from the coordinator. They comply to the

last schedule until a new schedule is received. To intercept the packets from the flows,

local agents require the compute framework to replace datasend(), datarecv() APIs

with the corresponding Philae APIs, which incurs very small overhead.

Coflow operations: The global coordinator runs independently from, and is not

coupled to, any compute framework, which makes it general enough to be used with

any framework. It provides RESTful APIs to the frameworks for coflow operations:

(a) register() for registering a new coflow when it enters, (b) deregister() for

removing a coflow when it exits, and (c) update() for updating coflow status whenever

there is a change in the coflow structure, e.g., during task migration and restarts after

node failures.

Table 3.2.: Performance improvement over Aalo for varying pilot flow selection
schemes.

Constant Proportional to number of senders Proportional to number of flows
2 5% 10% 20% 50% 100% 1% 10%

Avg. error 13.21% 6.14% 5.42% 4.94% 5.53% 4.25% 4.15% 2.90%
Avg. CCT 1.27x 1.51x 1.45x 1.50x 1.50x 1.50x 1.43x 0.49x

P50 speedup 1.75x 1.78x 1.76x 1.71x 1.52x 1.40x 1.33x 0.69x
P90 speedup 9.00x 9.58x 9.00x 9.15x 8.33x 8.45x 8.23x 8.23x

3.8 Evaluation Highlights

We evaluated Philae using a 150-node and a 900-node testbed cluster in Azure

and using large scale simulations by utilizing a publicly available Hive/MapReduce

trace collected from a 3000-machine, 150-rack Facebook production cluster [39] and

multiple derived traces with varying degrees of flow size skew to measure Philae’s

robustness to skew.
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• Facebook (FB) trace: The trace contains 150 ports and 526 (> 7 × 105

flows) coflows, that are extracted from Hive/MapReduce jobs from a Facebook

production cluster. Each coflow consists of pair-wise flows between a set of

senders and a set of receivers.

Due to the lack of other publicly available coflow trace1, we derived three addi-

tional traces using the original Facebook trace in order to more thoroughly evaluate

Philae under varying coflow size skew:

• Low-skew-filtered: Starting with the FB trace, we filtered out coflows that

have skew (max flow length/min flow length) less than a constant k. We gener-

ated five traces in this class with k = 1, 2, 3, 4, 5. The filtered traces have 142,

100, 65, 51 and 43 coflows, respectively.

• Mantri-like: Starting with the FB trace, we adjusted the sizes of the flows

sent by the mappers, keeping the total reducer data the same as given in the

original trace, to match the skew of a large Microsoft production cluster trace

as described in Mantri [57]. In particular, the sizes are adjusted so that the

coefficients of variation across mapper data are about 0.34 in the 50th percentile

case and 3.1 in the 90th percentile case. This trace has the same numbers of

coflows and ports as the FB trace.

• Wide-coflows-only: We filtered out all the coflows in the FB trace with the

total number of flows ≤ 7, the default thin coflow bypass threshold (thinLimit)

in Philae. The filtered trace has 269 coflows spreading over 150 ports.

The primary performance metrics used in the evaluation are CCT or CCT speedup,

defined as the ratio of a CCT under other baseline algorithms and under Philae,

piloting overhead, and coflow size estimation accuracy.

The highlights of our evaluation results are:

1A challenge that has also been faced by previous work on coflow scheduling such as [11,51,55,62].
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(1) Philae significantly improves the CCTs. In simulation using the FB trace,

the average CCT is improved by 1.51× over the prior art, Aalo. Individual CCT

speedups are 1.78× in the median case (P90 = 9.58×). For the Mantri-like trace, the

average CCT is improved by 1.36× and individual CCT speedups are 1.75× in the

median case (P90 = 12.0×).

(2) The CCT improvement mainly stems from the reduction in the learning over-

head (in terms of latency and amount of data sent) in determining the right queue for

the coflows. Compared to Aalo, median reduction in the absolute latency in finding

the right queue for coflows in Philae is 19.0×, and in absolute amount of data sent

is 20.0× (§3.9.2).

(3) Philae improvements are consistent when varying the skew among the flow

sizes in a coflow (§3.9.5).

(4) Philae improvements are consistent when varying its parameters (§3.9.6).

(5) The Philae coordinator is much more scalable than that of Aalo (§3.10.3).

3.9 Simulation

We present detailed simulation results in this section, and the testbed evaluation

of our prototype in §3.10.

Experimental setup: Our simulated cluster uses the same number of nodes (send-

ing and receiving network ports) as in the trace. As in [11], we assume full bisection

bandwidth is available, and congestion can happen only at network ports.

The default parameters for Aalo and Philae in the experiments are: starting

queue threshold (Qhi
0 ) is 10MB, exponential threshold growth factor (E) is 10, number

of queues (K) is set to 10, the weights assigned to individual priority queues decrease

exponentially by a factor of 10, and the new schedule calculation interval δ is set

to 8ms for the 150-node cluster 2, the default suggested in its publicly available

simulator [11]. In Philae, a new schedule is calculated on demand, upon arrival

28ms is the time to send 1MB of data.
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of a new coflow, completion of a coflow, or completion of all pilot flows of a coflow.

Finally, in Philae the threshold for thinLimit (T) is set to 7, the number of pilot

flows assigned to wide coflows are max(1, 0.05 ·S), where S is the number of senders,

and the default inter-coflow scheduling policy in Philae is Least length-weighted

total-port contention.

3.9.1 Pilot Flow Selection Policies

We start by evaluating the impact of different policies in choosing the pilot flows

for a coflow in Philae. Table 3.2 summarizes the improvement in average CCT of

Philae over Aalo and average error in size estimation normalized to the actual coflow

size, when varying the pilot flow selection policy while keeping other parameters as

the default in Philae, using the FB trace.

Unsurprisingly, the estimation accuracy increases when increasing the number

of pilot flows across the three selection schemes: constant, fraction of senders, and

fraction of total flows. However, as the number of pilot flows increases (over the

range of parameter choices), the CCT speedup (P50 and P90 of individual coflow

CCT speedups) decreases. This is because the benefit from size estimation accuracy

improvement from using additional pilot flows does not offset the added overhead

from completing the additional pilot flows and the delay they incur to other coflows.

We find sampling 5% of the number of senders per coflow strikes a good trade-

off between piloting overhead and size estimation accuracy leading to the best CCT

reduction. We thus set it (0.05 · S) as the default pilot flow selection policy.

3.9.2 Piloting Overhead and Accuracy

Next, using the default pilot selection policy, we evaluate Philae’s effectiveness

in estimating coflow sizes by sampling pilot flows. Fig. 4.3 shows a scatter plot of

the actual coflow size vs. estimated size from running Philae under the default

settings. We observe that Philae coflow’s size estimation is highly accurate except
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Figure 3.3.: Philae coflow size learning accuracy. Coflows that did not go through
the piloting phase (48%) are not shown.

for a few outliers. Overall, the average and standard deviation of relative estimation

error are 0.06 and 0.15, respectively, and for the top 99% and 95% coflows (in terms

of estimation accuracy), the average (standard deviation) of relative error are only

0.05 (0.12) and 0.03 (0.07) respectively. Interestingly, a few coflows experience large

estimation errors, and we found they all have very high skew in their flow lengths;

the mean standard deviation in flow lengths, normalized by the average length, of the

bottom 1% (in terms of accuracy) ranges between 4.6 and 6.8.

Fig. 3.1 shows the cost of estimating the correct queue for each coflow in Philae

and Aalo, measured as the time in learning the coflow size as a fraction of the coflow’s

CCT in Philae and Aalo. We see that under Philae, about 63% of the coflows

spent less than 1% of their CCT in the learning phase, while under Aalo, 63% coflows

reached the correct priority queue after spending up to 22% of their CCT moving

across other queues. Compared to Aalo, Philae in the median case sends 20× less

data in determining the right queue and reduces the latency in determining the right

queue by 19×.
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3.9.3 Inter-Coflow Scheduling Policies

Philae differs from Aalo in two ways: online size estimation and inter-flow

scheduling policy. Here, we evaluate the effectiveness of the four inter-coflow schedul-

ing policies of Philae discussed in §3.5.4, keeping the remaining parameters as the

default. Such evaluation allows us to decouple the contribution of sampling-based

learning from the effect of scheduling policy difference.

Table 3.3 shows the CCT Improvement of Philae under the four inter-flow

scheduling policies over Aalo. We make the following observations.

First, Philae with the purely sized-based policy, Smallest job first (A), which

uses the same inter-queue and intra-queue scheduling policy as Aalo and only differs

from Aalo in coflow size estimation, reduces the average CCT (P50) of Aalo by 1.40x

(1.48x).

In contrast, the default Philae uses Least length-weighted total-port con-

tention (D), which uses the sum of size-weighted port contention to assign coflows

to priority queues, and slightly outperforms the size-based policy A; it reduces the

average CCT (P50) of Aalo by 1.51x (1.78x). This is because it captures the diversity

of contention at different ports, which happens often in real distributed settings, and

at the same time accounts for the coflow size by using length-weighted sum of the

port-wise contention. The above results for policy A and policy D indicate that the

primary improvement in Philae comes from its sampling-based coflow size estimation

scheme.

Shortest remaining time first (B) performs similarly as smallest job first.

This is because the preemptive nature of SRTF will kick in only on arrival of new

coflows. Also, although SRTF is advantageous for small coflows, since Philae already

schedules thin coflows at high priority, many thin and thus small coflows are anyways

being scheduled at high priority under both policies A and B, and as a result they

perform similarly.
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Table 3.3.: CCT speedup in Philae under different inter-coflow scheduling policies
(§3.5.4) over Aalo.

Priority estimation metric P50 P90 Avg. CCT

Estimated size (A) 1.48x 8.27x 1.40x
Remaining size (B) 1.54x 8.34x 1.37x

Global Contention (C) 0.75x 8.26x 0.13x
Length-weighted total-port contention (D) 1.78x 9.58x 1.51x

(Philae)

Finally, Least contention first (C) performs poorly. This is because contention

for a coflow is defined as the unique number of other coflows that share ports, and as

a result such a policy completely ignores the size (length) of the coflows.

3.9.4 Average CCT improvement

We now compare the CCT speedups of Philae against 5 well-known coflow

scheduling policies: (1) Aalo, (2) Aalo-Oracle, which is an oracle version of Aalo

where the scheduler knows the final queue of a coflow upon its arrival time and di-

rectly starts the coflow from that queue, (3) SEBF in Varys [34] which assumes the

knowledge of coflow sizes apriori and uses the Shortest Effective Bottleneck First

policy, where the coflow whose slowest flow will finish first is scheduled first. (4)

FIFO, which is a single queue FIFO based coflow scheduler, and (5) FAIR, which

uses per-flow fair sharing. We do not include Saath [40] in the comparison as it does

not provide the same liveliness guarantees as Philae which as discussed in §3.5.3 can

obscure the comparison result. All experiments use the default parameters discussed

in the setup, including K,E, S, unless otherwise stated. The results are shown in

Fig. 3.4(a). We make the following observations.

First, we compare CCT under Philae against under Aalo-Oracle, where Aalo-

Oracle starts all coflows at the correct priority queues (i.e., no learning overhead).

Philae improves the average CCT by 1.18× and P50 CCT by 1.40×, respectively.
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(c) Using 5 Low-skew-filtered traces.
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(d) Using the Mantri-like trace.

Figure 3.4.: CCT speedup using Philae compared to using other coflow schedulers
on different traces. In Fig. 3.4(c), the x-axis denotes the minimum skew in the 5
Low-skew-filtered traces.

Since Aalo-Oracle pays no overhead for coflow size estimation, its worse performance

suggests that using length-weighted total-port contention in assigning coflows to the

priority queues in Philae outperforms Aalo’s size-based, contention-oblivious policy

in assigning coflows to the queues.

Second, Philae improves the average CCT over Aalo by 1.51× (median) and P50

by 1.78. The significant additional improvement on top of the gain over Aalo-Oracle

comes from fast and accurate estimation of the right queues for the coflows (Fig. 3.1).

Third, Philae, which requires no coflow size knowledge a priori, achieves compa-

rable performance as SEBF [34]; it reduces the average CCT by 1.16×. Again this is

because its total-port contention policy outperforms the contention-oblivious SEBF.
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Figure 3.5.: Performance breakdown into
bins shown in Table 3.4.
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Figure 3.6.: [Testbed] Distribution of
speedup in CCT and JCT in Philae us-
ing the FB trace.

Finally, Philae significantly outperforms the single-queue FIFO-based coflow

scheduler, with a median (P90) CCT speedup of 3.00 (77.96)× and average CCT

speedup of 3.16×, and the un-coordinated flow-level fair-share scheduler, with a me-

dian (P90) CCT speedup of 70.82× (1947×) and average CCT speedup of 5.66×.

To gain insight into how different coflows are affected by Philae over Aalo, we

group the coflows in the trace into four bins defined in Table 3.4, and show in Fig. 3.5

the CCT speedups for each bin. We see that Philae improves CCT for all coflows

in bin 1 and 3 and for large fraction in bin-4. Most of the underperforming coflows

fall in bin-2. Coflows in bin-2 have width > 7 and size < 100MB, i.e., the flows are

short but wide. Because the width exceeds the thinLimit, Philae schedules the pilot

flows to estimate the coflow size first (§3.5). Thus, although the remaining flows are

short, they get delayed until the completion of the pilot flows, which results in CCT

increase.

Finally, since thin coflows benefit from Philae’s scheme of bypassing probing for

thin coflows, we also compare Philae with other schemes using the Wide-coflows-only

trace which consists of all coflows wider than the default thinLimit (7) in Philae.

Fig. 3.4(b) shows that Philae continues to perform well, reducing the average CCT

by 1.54×, 1.15×, and 1.12× over Aalo, Aalo-Oracle, and SEBF, respectively.
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Table 3.4.: Bins based on total coflow size and width (number of flows). The numbers
in brackets denote the fraction of coflows in that bin.

width ≤ 7(thin) width > 7(wide)

size ≤ 100MB (small) bin-1 (44.3%) bin-2 (24.1%)

size > 100MB (large) bin-3 (4.5%) bin-4 (27.1%)

3.9.5 Robustness to Coflow Data Skew

Next, we evaluate Philae’s robustness to flow size skew by comparing it against

Aalo using traces with varying degrees of skew. First, we evaluate Philae using the

Mantri-like trace. Fig. 3.4(d) shows that Philae consistently outperforms prior-art

coflow schedulers. In particular, Philae reduces the average CCT by 1.36x compared

to Aalo. Second, we evaluate Philae using the Low-skew-filtered traces which have

low skew coflows filtered out. Fig. 3.4(c) shows that Philae performs better than

Aalo even with highly skewed traces and reduces the average CCT by 1.45×, 1.44×,

1.44×, 1.40× and 1.38× for the five Low-skew-filtered traces containing coflows with

skew of at least 1, 2, 3, 4 and 5, respectively.

3.9.6 Sensitivity Analysis

Compared to Aalo, Philae has only two additional paramaters: thinLimit and

flow sampling rate. We already discussed the choice of sampling rate in §3.9.1. Be-

low, we evaluate the sensitivity of Philae to thinLimit and other design parameters

common to Aalo by varying one parameter at a time while keeping the rest as the

default.

Thin coflow bypassing limit (T ) In this experiment, we vary thinLimit (T) in

Philae for bypassing coflows from the probing phase. The result in Fig. 3.7(a)

shows that the average CCT remains almost the same as T increases. This is because

the average CCT is dominated by wide and large coflows, which are not affected by

thinLimit. However, the P50 speedup increases till T = 7 and tapers off after T = 7.

The reason for the CCT improvement until T = 7 is that all flows of thin coflows
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(a) Thin coflow bypass
threshold

(b) First queue capacity (Qhi
0 ) (c) Exponent (E)

Figure 3.7.: [Simulation] Philae sensitivity analysis. We vary one parameter of
Philae keeping rest same as default and compare it with Aalo.

(with width ≤ 7) are scheduled immediately upon arrival which improves their CCT,

and the number of thin coflows is significant.

Start queue threshold (Qhi
0 ) We next vary the threshold for the first priority

queue from 2 MB to 64 MB. Fig. 3.7(b) shows the average CCT of Philae over Aalo.

Overall, Philae is not very sensitive to the threshold of first priority queue and the

CCT speedup over Aalo is within 8% of the default Philae (10 MB). The speedup

appears to oscillate with a periodicity of 5x to 10x. For example, the speedups for 2

MB and 64 MB are close to that of the default (10 MB), while for 4 MB and 32 MB

are lower. This can be explained by the impact of the first queue threshold on job

segregation; with the default queue threshold growth factor of 10, every time the first

queue threshold changes by close to 10x, the distribution of jobs across the queues

become similar.

Multiplication factor (E) In this experiment, we vary the queue threshold growth

factor from 2 to 64. Recall that the queue thresholds are computed as Qhi
q = Qhi

q−1 ·E.

Thus, as E grows, the number of queues decreases. As shown in Fig. 3.7(c), smaller

queue threshold multiplication factor which leads to more queues performs better

because of fine-grained priority segregation.
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Table 3.5.: [Testbed] CCT improvement in Philae as compared to Aalo.

P50 P90 Avg. CCT

FB Trace 1.63× 8.00× 1.50×
Wide-coflow-only 1.05× 2.14× 1.49×

3.10 Testbed Evaluation

Next, we deployed Philae in a 150-machine Azure cluster and a 900-machine

cluster to evaluate its performance and scalability.

Testbed setup: We rerun the FB trace on a Spark-like framework on a 150-node

cluster in Microsoft Azure [48]. The coordinator runs on a Standard DS15 v2 server

with 20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor and 140GB memory.

The local agents run on D2v2 with the same processor as the coordinator with 2-core

and 7GB memory. The machines on which local agents run have 1 Gbps network

bandwidth. Similarly as in simulations, our testbed evaluation keeps the same flow

lengths and flow ports in trace replay. All the experiments use default parameters

K,E, S and the default pilot flow selection policy.

3.10.1 CCT Improvement

In this experiment, we measure CCT improvements of Philae compared to Aalo.

Fig. 3.6 shows the CDF of the CCT speedup of individual coflows under Philae

compared to under Aalo. The average CCT improvement is 1.50× which is similar to

the results in the simulation experiments. We also observe 1.63× P50 speedup and

8.00× P90 speedup.

We also evaluated Philae using the Wide-coflow-only trace. Table 3.5 shows that

Philae achieves 1.52× improvement in average CCT over Aalo, similar to that using

the full FB trace. This is because the improvement in average CCT is dominated by

large coflows, Philae is speeding up large coflows, and the Wide-coflow-only trace

consists of mostly large coflows.
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Table 3.6.: [Testbed] Average (standard deviation) coordinator CPU time (ms) per
scheduling interval in 900-port runs. Philae did not have to calculate and send new
rates in 66% of intervals, which contributes to its low average.

Rate Calc. New Rate Send Update Recv. Total

Philae 2.99 (5.35) 4.90 (11.25) 6.89 (17.78) 14.80 (28.84)

Aalo 4.28 (4.14) 17.65 (20.9) 10.97 (19.98) 32.90 (34.09)

Table 3.7.: [Testbed] Percentage of scheduling intervals where synchronization and
rate calculation took more than δ for 150-port and δ′(= 6× δ) for 900-port runs.

150 ports 900 ports

Philae 1% 10%

Aalo 16% 37%

3.10.2 Job Completion Time

Next, we evaluate how the improvement in CCT affects the job completion time

(JCT). In data clusters, different jobs spend different fractions of their total job time

in data shuffle. In this experiment, we used 526 jobs, each corresponding to one

coflow in the FB trace. The fraction of time that the jobs spent in the shuffle phase

follows the same distribution used in Aalo [11], i.e., 61% jobs spent less than 25%

of their total time in shuffle, 13% jobs spent 25-49%, another 14% jobs spent 50-

74%, and the remaining spent over 75% of their total time in shuffle. Fig. 3.6 shows

the CDF of individual speedups in JCT. Across all jobs, Philae reduces the job

completion time by 1.16× in the median case and 7.87× in the 90th percentile. This

shows that improved CCT translates into better job completion time. As expected,

the improvement in job completion time is smaller than the improvement in CCT

because job completion time depends on the time spent in both compute and shuffle

(communication) stages, and Philae improves only the communication stage.
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3.10.3 Scalability

Finally, we evaluate the scalability of Philae by comparing its performance with

Aalo on a 900-node cluster. To drive the evaluation, we derive a 900-port trace by

replicating the FB trace 6 times across ports, i.e., we replicated each job 6 times,

keeping the arrival time for each copy the same but assigning sending and receiving

ports in increments of 150 (the cluster size for the original trace). We also increased

the scheduling interval δ by 6 times to δ′ = 6×δ.

Philae achieved 2.72× (9.78×) speedup in average (P90) CCT over Aalo. The

higher speedup compared to the 150-node runs (1.50×) comes from higher scalability

of Philae. In 900-node runs, Aalo was not able to finish receiving updates, calculat-

ing new rates and updating local agents of new rates within δ′ in 37% of the intervals,

whereas Philae only missed the deadline in 10% of the intervals. For 150-node

runs these values are 16% for Aalo and 1% for Philae. The 21% increase in missed

scheduling intervals in 900-node runs in Aalo resulted in local agents executing more

frequently with outdated rates. As a result, Philae achieved even higher speedup in

900-node runs.

As discussed in§3.6, Aalo’s poorer coordinator scalability comes from more fre-

quent updates from local agents and more frequent rate allocation, which result in

longer coordinator CPU time in each scheduling interval. Table 3.6 shows the average

coordinator CPU usage per interval and its breakdown. We see that (1) on average

Philae spends much less time than Aalo in receiving updates from local agents, be-

cause Philae does not need updates from local agents at every interval – on average

in every scheduling interval Philae receives updates from 49 local agents whereas

Aalo receives from 429 local agents, and (2) on average Philae spends much less

time calculating new rates and send new rates. This is because rate calculation in

Philae is triggered by events and Philae did not have to flush rates in 66% of the

intervals.
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3.11 Summary

State-of-the-art online coflow schedulers approximate the classic SJF by implic-

itly learning coflow sizes and pay a high penalty for large coflows. In this chapter

we proposed the novel idea of sampling in the spatial dimension of coflows to explic-

itly and efficiently learn coflow sizes online to enable efficient online SJF scheduling.

Our extensive simulation and testbed experiments have shown the new design offers

significant performance improvement over prior art. Further, the sampling-in-spatial-

dimension technique can be generalized to other distributed scheduling problems such

as cluster job scheduling.
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4 Slearn

The success of Philae (Chapter 3) in effectively learning coflow sizes online motivated

us to explore the broader applicability of sampling-based learning. We designed,

Slearn for predicting runtime properties like task durations of big data jobs online

by online sampling. This chapter discusses SLearn in detail.

4.1 Introduction

In big-data compute clusters, jobs arrive online and compete to share the cluster

resources. In order to best utilize the cluster and to ensure that jobs also meet their

service level objectives, efficient scheduling is essential. However, as jobs arrive online,

their runtime characteristics are not known a priori. Due to this lack of information,

it is challenging for the cluster scheduler to determine the right job execution order

that optimizes scheduling metrics such as maximal resource utilization or application

service level objectives.

An effective way to tackle the challenges of cluster scheduling is to learn the

runtime characteristics of pending jobs, as accurately estimating job runtime charac-

teristics allows the scheduler to exploit offline scheduling algorithms that are known

to be optimal, e.g., Shortest Job First (SJF) for minimizing the average completion

time. Indeed, there have been a large amount of work [12–16, 29–31] on learning job

runtime characteristics to facilitate cluster job scheduling.

In essence, all of the previous learning algorithms learn job runtime characteristics

from observing historical executions of the same jobs, which execute the same code

but process different sets of data, or of similar jobs, which have matching features such

as the same application name, the same job name, or the same user who submitted

the job.
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The effectiveness of the above history-based learning schemes critically rely on two

conditions to hold true: (1) The jobs are recurring; (2) The performance of the same

or similar jobs will remain consistent over time.

In practice, however, the two conditions often do not hold true. First, many

previous work have acknowledged that not all jobs are recurrent. For example, in

the traces used in Corral [14] and Jockey [10], only 40% of the jobs are recurrent,

and Morpheus [12] shows that only 60% of the jobs are recurrent. Second, even the

authors of history-based prediction schemes such as 3Sigma [30] and Morpheus [12]

strongly argued why runtime properties of jobs, even with the same input, will not

remain consistent and will keep evolving. The primary reason is due to updates in

cluster hardware, application software, and user scripts to execute the cluster jobs.

Third, our own analysis of three production cluster traces (§4.4) have also shown that

historical job runtime characteristics have considerable variations.

In this chapter, we explore an alternative approach to learning runtime properties

of distributed jobs online to facilitate cluster job scheduling. The approach is mo-

tivated by the following key observations about distributed jobs running on shared

clusters: (1) a job typically has a spatial dimension, i.e., it typically consists of many

tasks; and (2) the tasks (in the same phase) of a job typically execute the same code

and process different chunks of similarly sized data [63, 64]. These observations sug-

gest that if the scheduler first schedules a few sampled tasks of a job, known as pilot

tasks, to run till finish, it can use the observed runtime properties of those tasks to

accurately estimate those of the whole job. Effectively, such a task-sampling-based

approach learns job properties in the spatial dimension. We denote the new learning

scheme as SLearn, for “learning in space”.

Intuitively, by using the execution of pilot tasks to predict the properties of other

tasks, SLearn avoids the primary drawback of history-based learning techniques,

i.e., relying on jobs to be recurring and job properties to remain stationary over

time. However, learning in space introduces two new challenges: (1) its estimation

accuracy can be affected by the variations of task runtime properties, i.e., task skew;
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(2) delaying scheduling the remaining tasks of a job till the completion of sampled

tasks may potentially hurt the job’s completion time.

In this chapter, we perform a comprehensive comparative study of history-based

learning (learning in time) and sampling-based learning (learning in space), to sys-

tematically answer the following questions:

1. Can learning in space be more accurate than learning in time?

2. If so, can delaying scheduling the remaining tasks of a job till the completion of

sampled tasks be more than compensated by the improved accuracy and result

in improved job performance, e.g., completion time?

We answer the first question via quantitative analysis, and trace and experimental

analysis based on three production job traces, including two public cluster traces from

Google released in 2011 and 2019 [65, 66] and a private trace from 2Sigma [38]. We

answer the second question by designing a generic scheduler that schedules jobs based

on job runtime estimates to optimize a given performance metric, e.g., average job

completion time (JCT), and then plug into the scheduler different prediction schemes,

in particular, learning in time and learning in space, to compare their effectiveness

using three production job traces.

We summarize the major findings and contributions presented in this chapter as

follows:

• Based on literature survey and analysis using three production cluster traces,

we show that history is not a stable and accurate predictor for runtime charac-

teristics of distributed jobs.

• We propose SLearn, a novel learning approach that uses sampling in the spatial

dimension of jobs to learn job runtime properties online.

• Via quantitative, trace and experimental analysis, we demonstrate that SLearn

can predict job runtime properties with much higher accuracy than history-

based schemes. For the 2Sigma, Google 2011, and Google 2019 cluster traces,
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the median prediction error are 18.98%, 13.68%, and 51.84% for SLearn but

36.57%, 21.39%, and 71.56% for the state-of-the-art history-based 3Sigma, re-

spectively.

• We show that learning job runtime properties by sampling job tasks, although

delays scheduling the remaining tasks of a job, can be more than compensated by

the improved accuracy, and as a result reduces the average JCT. In particular,

our extensive simulations and testbed experiments using a prototype on a 150-

node cluster in Microsoft Azure show that compared to the prior-art history-

based predictor, SLearn reduces the average JCT by 1.28×, 1.56×, and 1.32×

for the extracted 2Sigma, Google 2011 and Google 2019 traces, respectively.

Despite these encouraging findings about learning in space, we envision several

motivations for exploring combining history- and sampling-based learning. (1) For

workloads with mixed recurring and first-time jobs, sampling-based learning can be

applied to first-time jobs while history-based learning can be applied to recurring

jobs. (2) History-based learning can be used to establish a prior distribution, and

sampling-based approach can be used to refine the posterior distribution. Such a

combination may potentially be more accurate than using either history or sampling

alone. (3) Though not seen in the production traces used in our study, in case task-

wise variation and job-wise variation fluctuate, adaptively switching between the two

prediction schemes may also help. We plan to pursue these directions in our future

work.

4.2 Background and Related Work

In this section, we provide a brief background on the cluster scheduling problem,

review existing learning-based schedulers, and discuss their weaknesses.
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4.2.1 Cluster Scheduling Problem

In both public and private clouds, clusters are typically shared among multiple

users to execute diverse jobs. Such jobs typically arrive online and compete for shared

resources. In order to best utilize the cluster and to ensure that jobs also meet their

service level objectives (SLOs), efficient job scheduling is essential. Since jobs arrive

online, their runtime characteristics are not known a priori. This lack of information

makes it challenging for the scheduler to determine the right order for running the jobs

that maximizes resource utilization and/or meets application SLOs. Additionally,

jobs have different SLOs. For some meeting deadlines is important while for others

faster completion or minimizing the use of networks is more important. Such a diverse

set of objectives pose further challenges to effective job scheduling [10,12,14,26–29].

4.2.2 Job Model

We consider big-data compute clusters running data-parallel frameworks such as

Hadoop [2], Hive [6], Dryad [58], Scope [67], and Spark [22] that run simple MapRe-

duce jobs [1] or more complex DAG-structured jobs, where each job processes a large

amount of data. Each job consists of one or multiple stages, such as map or reduce,

and each stage partitions the data into manageable chunks and runs many parallel

tasks, each for processing one data chunk.

4.2.3 Existing Learning-based Schedulers

An effective way to tackle the challenges of cluster scheduling is to learn runtime

characteristics of pending jobs. As such cluster schedulers using various learning

methods have been proposed [12–15,27,30,31,68–71]. In essence, all previous learning

schemes are history-based, i.e., they learn job characteristics by observations made

from the past job executions. In particular, existing learning approaches can be

broadly categorized into the following groups, as summarized in Table 4.1.
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Table 4.1.: Summary of selected previous work that use history-based learning tech-
niques.

Name Property Estimation Learning
estimated technique frequency

Corral Job runtime Offline model On arrival
[14] (not updated)

DCOSR Memory elasti- Offline model Scheduler
[13] city profile (not updated) dependent

Jockey Job runtime Offline Periodic
[10] simulator

3Sigma Job runtime Offline On arrival
[30] history dist. model

Learning offline models. Corral’s prediction model is designed with the primary

assumption that most jobs are recurring in nature, and additional assumptions such

as the latency of each stage of a multi-stage job is proportional to the amount of data

processed by it, which do not always hold true [14].

DCOSR [13] predicts the memory usage for data parallel compute jobs using

an offline model built from a fixed number of profile runs that are specific to the

framework and depend on the framework’s properties. Any software update in the

existing frameworks, addition of new framework or hardware update will require an

update in profile.

For analytics jobs that perform the same computation periodically on different

sets of data, Tetris [17] takes measurements from past executions of a job to estimate

the requirements for the current execution.

Learning offline models with periodic updates. Jockey [10] periodically char-

acterizes job progress at runtime, which along with a job’s current resource allocation

is used by an offline simulator to estimate the job’s completion time and update the

job’s resource allocation. The running time estimates made by the simulator are based

on performance statistics extracted from one or more previous runs of the recurring

job. Jockey relies on job recurrences and cannot work with new jobs.
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Learning from similar jobs. Instead of using execution history from the exact

same jobs, JVuPredict [72] matches jobs on the basis of some common features such

as application name, job name, the user who owns the job, and the resource requested

by the job. Additionally, it uses multiple metrics, such as rolling average and median,

in estimating the running time of a new job from such similar jobs.

3Sigma [30] extends JVuPredict [72] by introducing a new idea on prediction:

instead of using point metrics to predict runtimes, it uses full distributions of relevant

runtime histories. However, since it is impractical to maintain precise distributions

for each feature value, it resorts to approximating distributions, which compromises

the benefits of having full distributions.

4.2.4 Learning from History: Assumptions and Reality

Predicting job runtime characteristics from history information relies on the fol-

lowing two conditions to hold, which we argue may not be applicable to modern day

clusters.

Condition 1: The jobs are recurring. Many previous work have acknowledged

that not all jobs are recurrent. For example, the traces used in Corral [14] and

Jockey [10] show that only 40% of the jobs are recurrent and Morpheus [12] shows

that 60% of the jobs are recurrent.

Condition 2: The performance of the same or similar jobs will remain

consistent over time. Previous works [10, 12, 14, 30] that exploited history-based

prediction have considered jobs in one of the following two categories. (1) Recurring

jobs: A job is re-scheduled to run on newly arriving data; (2) Similar jobs: A job has

not been seen before but has some attributes in common with some jobs executed

in the past [30, 72]. Many of the history-based approaches only predict for recurring

jobs [10,12,14], while some others [30,70–72] work for both categories of jobs.



82

However, even the authors of history-based prediction schemes such as 3Sigma [30]

and Morpheus [12] strongly argued why runtime properties of jobs, even with the

same input, will not remain consistent and will keep evolving. The primary reason

is that updates in cluster hardware, application software, and user scripts to execute

the cluster jobs affect the job runtime characteristics. They found that in a large

Microsoft production cluster, within a one-month period, applications corresponding

to more than 50% of the recurring jobs were updated. The source code changed by

at least 10% for applications corresponding to 15-20% of the jobs. Additionally, over

a one-year period, the proportion of two different types of machines in the cluster

changed from 80/20 to 55/45. For a same production Spark job, there is a 40%

difference between the running time observed on the two types of machines [12].

For these reasons, although the state-of-the-art history-based system 3Sigma [30]

uses sophisticated prediction techniques, the predicted running time for more than

23% of the jobs have at least 100% error, and for many the prediction is off by an

order of magnitude. In our analysis of three production cluster traces (see Figure 4.1),

we observed similar levels of high variability in the runtime characteristics of the jobs

with the same attributes.

4.3 SLearn – Learning in Space

In this chapter, we explore an alternative approach to learning job runtime prop-

erties online in order to facilitate cluster job scheduling. The approach is motivated

by the following key observations about distributed jobs running in shared clusters:

(1) a distributed job has a spatial dimension, i.e., it typically consists of many tasks;

(2) all the tasks in the same phase of a job typically execute the same code with the

same settings [63,64,73], and differ in that they process different chunks of similarly

sized data. Hence, it is likely that their runtime behavior will be statistically similar.

The above observations suggest that if the scheduler first schedules a few sampled

tasks of a job to run till finish, it can use the observed runtime properties of those tasks
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Table 4.2.: Comparison of learning in time and learning in space of job runtime
properties.

Applicability Adapti- Accuracy Runtime
veness overhead

Time Recurring jobs No/Yes Depends No

Space New/Recurring jobs Yes Depends Yes

to accurately estimate those of the whole job. In a modular design, such an online

learning scheme can be decoupled from the cluster scheduler. In particular, upon a

job arrival, the predictor first schedules sampled tasks of the job, called pilot tasks,

till their completion, to learn the job runtime properties. The learned job properties

are then fed into the cluster job scheduler, which can employ different scheduling

polices to meet respective SLOs. Effectively, the new scheme learns job properties in

the spatial dimension, i.e.,learning in space. We denote the new learning scheme as

SLearn.

Intuitively, by using the execution of pilot tasks to predict the properties of other

tasks, SLearn avoids the primary drawback of history-based learning techniques,

i.e., relying on job properties to remain stationary over time.

Learning in Time vs. Learning in Space Table 4.2 summarizes the pros and

cons of the two learning approaches along four dimensions:

• Applicability: As discussed in §4.2.3, most history-based predictors cannot

be used for the jobs of a new category or for categories for which the jobs are

rarely executed. In contrast, learning in space has no such limitation; it can be

applied to any new job.

• Adaptiveness to change: Further, history-based predictors assume job run-

time properties persist over time, which often does not hold, as discussed in

§4.2.4.

• Accuracy: The accuracy of the two approaches are directly affected by how

they learn, i.e., in space versus in time. The accuracy of history-based ap-
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proaches is affected by how stable the job runtime properties persist over time,

while that of sampling-based approach is affected by the variation of the task

runtime properties, i.e., the extent of task skew.

• Runtime overhead: The history-based approach has an inherent advantage

of having very low to zero runtime overhead. It performs offline analysis of

historical data to generate a prediction model. Afterwards there is almost no

overhead in estimating runtime characteristics of newly arriving jobs. Variations

of history-based predictors that use runtime feedback to update the prediction

models may have some cost, but usually such systems are optimized to have

low runtime update overhead. In contrast, sampling-based predictors do not

have offline cost, but need to first run a few pilot tasks till completion before

scheduling the remaining tasks. This may potentially delay the execution of

non-sampled tasks.

The above qualitative comparison of the two learning approaches raises the fol-

lowing two questions: (1) Can learning in space be more accurate than learning in

time? (2) If so, can delaying scheduling the remaining tasks of a job till the com-

pletion of sampled tasks be more than compensated by the improved accuracy, so

that the overall job performance, e.g., completion time, is improved? We answer the

first question via quantitative, trace and experimental analysis in §4.4 and the second

question via a case study of cluster job scheduling using the two types of predictors

in §4.5.

4.4 Accuracy Analysis

In this section, we perform an in-depth study of the prediction accuracy of the two

learning approaches: learning in time (history-based learning) and learning in space

(task-sampling-based learning). Both approaches can potentially be used to learn

different job properties for different optimization objectives. In this chapter, we focus
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on job completion time because it is an important metric that has been intensively

studied in recent work [11,13,14,30,33,34,74,75].

We first derive analytical bounds on their prediction errors (§4.4.1). We then

measure and compare the bounds in real traces from two production datacenters

(§4.4.2). Finally, we experimentally compare the prediction accuracy of learning

in space with a history-based predictor 3Sigma [30] in estimating the job runtimes

(§4.4.3). We pick 3Sigma because it is a state-of-the-art history-based predictor that

can learn for non-recurrent jobs.

4.4.1 Quantitative Comparison

We first present a theoretical analysis to compare the two approaches. We cau-

tion that here we use a highly-stylized model (e.g., two jobs and normal task-length

distributions), which does not capture the possible complexity in real clusters, such as

heavy parallelism across servers and highly-skewed task-length distributions. Nonethe-

less, it reveals important insights that help us understand in which regimes history-

based schemes or sampling-based schemes will perform better. Consider a simple case

of two jobs j1 and j2, where each job has n tasks. The size of each task of j1 is known.

Without loss of generality, let us assume that the task size of j1 is 1. Thus, the total

size of j1 is n. The size of a task of j2 is however unknown. Let x denote the average

task size of j2, and this its total size is nx. Clearly, if we knew x precisely, then we

should have scheduled j1 first if x > 1 and j2 first if x ≤ 1. However, suppose that

we only know the following: (1) (Prior distribution:) x follows a normal distribution

with mean µ and variance σ2
o ; (2) Given x, the size of a random task of the job

follows a normal distribution with mean x and variance σ2
1. Intuitively, σ2

o captures

the variation of mean task-lengths across many i.i.d. copies of job j2, i.e., job-wise

variation, while σ2
1 captures the variation of task-lengths within a single run of job

j2, i.e., task-wise variation.

We note that the parameters σ2
o and σ2

1 are used below to understand the accuracy

of both history-based and sampling-based predictors, whose goal is to estimate the
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mean task-length x (and consequently the job runtime which equals x times the

number of tasks) of a new copy of job j2. The predictors themselves may not use the

knowledge of σ2
o and σ2

1. In practice, these parameters can be estimated offline from

historical data. We will see soon that the performance of history-based schemes will

mainly depend on σ2
o , while the performance of sampling-based schemes will mainly

depend on σ2
1.

Towards this end, let us consider two options: (1) A history-based approach

(§4.4.1.1) and (2) a sampling-based approach where we sample m tasks from j2

(§4.4.1.2).

4.4.1.1 History-based Schemes

Since no samples of job j2 are used, the best predictor for its mean task length

is µ. In other words, the scheduling decision will be based on µ only. The difference

between the true mean task length, x, and µ is simply captured by the job-wise

variance σ2
o .

4.4.1.2 Sampling-based Schemes

Suppose that we sample m tasks from j2. Collect the sampled task lengths into a

vector:

~y = (y1, y2, ..., ym).

Then, based on our probabilistic model, we have

P (yi|x) = 1√
2πσ1

e
− (yi−x)

2

2σ21

P (~y|x) =
∏m

i=1
1√
2πσ1

e
− (yi−x)

2

2σ21

We are interested in an estimator of x given ~y. We have

P (x|~y) = P (~y|x)·P (x)
P (~y)

= P (~y|x)·P (x)∫
x P (~y|x)·P (x)dx
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Table 4.3.: Summary of trace properties.

Trace Arrival Resource Resource Indiv. task
time requested usage duration

2Sigma Yes Yes No Yes

Google 2011 Yes Yes Yes Yes

Google 2019 Yes Yes Yes Yes

= 1√
2π

[
m
σ2
1

+ 1
σ2
o

] 1
2 · e

−
(

m

2σ21
+ 1

2σ2o

)x−∑m
i=1

1
σ21

yi+
1
σ2o

µ

m
σ21

+ 1
σ2o


,

where the last step follows from standard results on the posterior distribution with

Gaussian priors (see, e.g., [76]). In other words, conditioned on ~y, x also follows a

normal distribution with mean =

∑m
i=1

1

σ21
yi+

1

σ2o
µ

m

σ21
+ 1

σ2o

and variance = 1
m

σ21
+ 1

σ2o

.

Note that this represents the estimator quality using the information of both

job-wise variations and task-wise variations. If the estimator is not informed of the

job-wise variations, we can take σ2
o → +∞, and the conditional distribution of x

given ~y becomes normal with mean 1
m

∑m
i=1 yi and variance

σ2
1

m
.

From here we can draw the following conclusions. First, whether history-based

schemes or sampling-based schemes have better prediction accuracy for an unknown

job depends on the relationship between job-wise variations σ2
o and the task-wise

variation σ2
1. If the job-wise variations are large but the task-wise variation is small,

i.e., σ2
o >>

σ2
1

m
, then sampling-based schemes will have better prediction accuracy.

Conversely, if the job-wise variations are small but the task-wise variation is large,

i.e., σ2
o <<

σ2
1

m
, then history-based schemes will have better prediction accuracy.

Second, while the accuracy of history-based schemes is fixed at σ2
o , the accuracy

of sampling-based schemes improves as m increases. Thus, when we can afford the

overhead of more samples, the sampling-based schemes become favorable. Our results

from experimental data below will further confirm these intuitions.
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4.4.2 Trace-based Variability Analysis

Our theoretical analysis in §4.4.1 provides insights on how the prediction accura-

cies of the two approaches depend on the variation of job run times across time and

space. To understand how such variations fare against each other in practice, we next

measure the actual variations in three production cluster traces.

Traces. Our first trace is provided by 2Sigma [38]. The cluster uses an internal

proprietary job scheduler running on top of a Mesos cluster manager [77]. This trace

was collected over a period of 7 months, in July 2016, and from 441 machines and

contains approximately 0.4 million jobs [78]. Table 4.3 summarizes the information

available in the traces that are used in our analysis.

We also include two publicly available traces from Google released in May 2011

and May 2019 [65, 66], collected from 1 and 8 Borg [79] cells over periods of 29

and 31 days, respectively. The machines in the clusters are highly heterogeneous,

belonging to at least three different platforms that use different micro-architectures

and/or memory technologies [80]. Further, according to [63], the machines in the

same platform can have substantially different clock rates, memory speed, and core

counts. Since the original Google 2019 trace has data from 8 different cells located in

8 different locations, and given that we already have two other traces from the US,

we chose the batch tier of Cluster G in the Google 2019 trace, which is located in

Singapore [73], as our third trace to diversify our trace collection.

We calculate the variations in task runtimes for each job across time and across

space as follows.

Variation across time. To measure the variation in mean task runtime for a job

across the history, we follow the following prediction mechanism defined in 3Sigma [30]

to find similar jobs.

As discussed in §4.2.3, 3Sigma [30] uses multiple features to identify a job and

predicts its runtime using the feature that gives the least prediction error in the past.
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We include all six features used in 3Sigma: application name, job name, user name

(the owner of the job), job submission time (day and hour), and resources requested

by the job.

For each feature, we define the set of similar jobs as all the jobs executed in the

history window (defined below) that had the same feature value. Next, we calculate

the average task runtime of each job in the set. Then, we calculate the Coefficient

of Variation (CoV) of the average task runtimes across all the jobs in the set. We

repeat the above process for all the features. We then compare the CoV values thus

calculated and pick the minimum CoV. Effectively, the above procedure selects the

least possible variation across history.

Varying the history length in prediction across time. 3Sigma used the en-

tire history for prediction. Intuitively, the length of the history affects the trade-off

between the number of similar jobs and the staleness of the history information. For

this reason, we optimized 3Sigma by finding and using the history length that gives

the least variation. Specifically, we define the length of history based on a window

size w, i.e., the number of past consecutive days. In our analysis below, we vary w

among 3, 7, and 14 for the three traces.

Variation across space. To measure the extent of variation across space, we look

at the CoV (CoV = σ
µ
) in the task runtimes within a job. As shown in §4.4.1, the

variance in the task runtime predicted from sampling is
σ2
1

m
, where σ2

1 is the variance

in the runtimes across all the tasks within the job and m is the number of tasks

sampled. Thus, we first estimate σ2
1 from all tasks within the job. We then report the

CoV of our task runtime prediction after sampling m tasks as σ1/
√
m

µ
. Our complete

scheduler design in §4.5.1 uses an adaptive sampling algorithm which mostly uses 3%

for the three traces. Thus, for measuring the extent of variation across space here,

we assume a 3% sampling ratio and plot σ1
(
√
0.03×numberOfTasksInJob )×µ .
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Figure 4.1.: CDF of CoV of runtime properties across space and across time with
varying history windows, using the 2Sigma, Google 2011 and Google 2019 traces.
Single-task jobs are excluded from the analysis across space.

Variability comparison. For consistency, all analysis results here are for the same,

shortest trace period that can be used for sliding-window-history based analysis,

e.g., the last 15 days under the 14-day window for the 29-day Google 2011 trace.

(The analysis then varies the length of the sliding window in history-based learning.)

Figure 4.2 visualizes the two CoVs for each of 70 randomly selected jobs from the

2Sigma trace in the order of their arrival, also using the best window size of 14 days.

For clarity, we first show the result for 70 jobs extracted at random from the 2Sigma

trace, plotted in the order of job arrival in Figure 4.2. For each job, we plot the

following two values on the y-axis: (1) the CoV in average task runtime for the jobs

in the job’s history window, for the feature that gives the least CoV, using 30-day

history window which was found to give the least variation across history as shown

in Figure4.1(a); and (2) the CoV in task runtimes of the job. We see that for both

traces, the variation across history is higher than the variation across tasks for more

than 85% of the jobs.
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Figure 4.2.: CoVs across time and space for 70 jobs selected randomly from the
2Sigma trace. The x-axis represents job ids in the order of their arrival.

Fig. 4.1(a)–Fig. 4.1(c) show the CDFs of CoVs in task duration measured across

space and across history for multiple history window sizes for the three traces. We see

that in general using a shorter sliding window reduces the prediction error of 3Sigma,

and the CoVs across tasks are moderately lower than the CoVs across history for the

Google 2011 trace but significantly lower for 2Sigma and Google 2019 traces. For

example, for the 2Sigma trace, the CoV across history is higher than the CoV across

tasks for 85.40% of the jobs (not seen in Fig. 4.1(a) as jobs are ordered differently in

different CDFs) and for more than 30% of the jobs, the CoV across history is at least

12.10× higher than the CoV across tasks.

Table 4.4 summarizes the results, where the CoVs across time correspond to the

best history window size, i.e., 3 days for both of the Google traces and 14 days for

the 2Sigma trace. As shown in the table, the P50 (P90) CoV across history are 1.00

(3.10) for the 2Sigma trace, 0.20 (0.73) for the Google 2011 trace, and 1.35 (1.67) for

the Google 2019 trace. In contrast, the P50 (P90) CoV value across the task duration

of the same set of jobs is much lower, 0.18 (0.55) for the 2Sigma trace and 0.04 (0.58)

for the Google 2011 trace. The P50 (P90) task duration CoV value for the Google

2019 trace, 0.70 (1.33), is higher compared to those of the other two traces, but is

still much lower when compared to the CoV across history for the same trace, 1.35

(1.67).
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Table 4.4.: CoV in task runtime across time and across space for the the 2Sigma,
Google 2011, and Google 2019 traces.

Trace CoV over Time CoV over Space
P50 P90 P50 P90

2Sigma 1.00 3.10 0.18 0.55

Google 2011 0.20 0.73 0.04 0.58

Google 2019 1.35 1.67 0.70 1.33

The CoV values across tasks is much lower because the tasks of a job run the same

code with the same flags, settings and priority, as mentioned in the trace schema

released by Google [63,73] and confirmed by 2Sigma engineers [64].

Fig. 4.1(d) and Fig. 4.1(e) further show the CDF of CoVs for CPU usage and Disk

IO time for the Google 2011 trace (such resource usage is not available in the 2Sigma

trace). The figures show that the variation in the values of these properties when

sampled across space is also considerably lower compared to the variation observed

over time.

4.4.3 Experimental Prediction Error Analysis

Recall from our analysis in §4.4.1 that lower task-wise variation than job-wise

variation (§4.4.2) will translate into better prediction accuracy of sampling-based

schemes over history-based schemes. While our analysis in §4.4.1 assumes normal

distribution, we believe that a similar conclusion will hold in more general settings.

To validate this, we next implement a sampling-based predictor SLearn, and exper-

imentally compare it against a state-of-the-art history-based predictor 3Sigma [30] in

estimating the job runtimes directly on production job traces.

Workload characteristics. Since the three production traces described in §4.4.2

are too large, as in 3Sigma [30], we extracted smaller traces for experiments using the

procedure described below. We denote the extracted traces which consist of roughly

1250 jobs each as 2STrace, GTrace11 and GTrace19, respectively.
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Since the history-based predictor 3Sigma needs a history trace, we followed the

same process as in [30] to extract the training trace for 3Sigma and the execution

trace for all predictors, in three steps. (1) We divided each original trace in chrono-

logical order in two halves. (2) We next selected the execution trace following the

process below from the second half; these became 2STrace, GTrace11 and GTrace19,

respectively. (3) We then selected jobs from the first half of each original trace that

are feature-clustered with those jobs in the execution trace to form the ”history” trace

for 3Sigma.

We extracted the execution trace from the above-mentioned second halves as

follows. In extracting 2STrace, since the original cluster from where the 2Sigma trace

was collected (441 nodes, each with 24 cores) is much larger than our experimental

cluster (150 single-core nodes), we resized the job widths to preserve the job-width-

to-cluster-size ratio by randomly dropping tasks and then randomly selected 1250

jobs with equal probability as the 2STrace. Similarly, since the Google traces do not

have many wide jobs yet the original clusters are very wide, with 12.5K machines, we

dropped jobs with more than 150 tasks, and randomly selected 1250 jobs with equal

probability from the remaining jobs to create GTrace11 ad GTrace19, respectively.

Finally, for each extracted trace, we adjust the arrival time of the jobs so that

the average cluster load matches that in the original trace [65, 66, 78]. Table 4.5

summarizes the workload per window of the extracted traces, where a window is

defined as a 1000-second interval sliding by 100 seconds at a time, and the load per

window is the total runtime of all the jobs arrived in that window, normalized by

the total number of CPUs in the cluster times the window length, i.e., 1000s. We

see that for all three traces, the average system load is close to 1, though the load

fluctuates over time, which is preserved by the random uniform job extraction.

Prediction mechanisms and experimental setups. We implement the 3Sigma

predictor following its description in [30]. After learning the job runtime distribution

(§4.4.2), it uses a utility function of the estimated job runtime associated with every
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Table 4.5.: Statistics for system load per 1000s sliding window.

Trace Average P50 P90

2STrace 1.05 0.13 2.47

GTrace11 1.01 0.29 1.49

GTrace19 1.04 0.09 0.91
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Figure 4.3.: Job runtime prediction accuracy.

job to derive its estimated runtime from the distribution, by integrating the utility

function over the entire runtime distribution. Since our goal is to minimize the average

JCT, we used a utility function that is inversely proportional to the square of runtime.

We kept all the default settings we learned from the authors of 3Sigma [30].

As in §4.4.2, SLearn samples max(1, 0.03·S) tasks per job, where S is the number

of tasks in the job. We only show the results for wide jobs (with 3 or more tasks) as

in the complete SLearn design (§4.5.1.1), only wide jobs go through the sampling

phase.

Results. Fig. 4.3 shows the CDF of percentage error in the predicted job runtimes

for the three traces. We see that SLearn has much better prediction accuracy than

3Sigma. For 2STrace, GTrace11, and GTrace19, the P50 prediction error are 18.30%,

9.15%, 21.39% for SLearn but 36.57%, 21.39%, 71.56% for 3Sigma, respectively,

and the P90 prediction error are 58.66%, 49.95%, 92.25% for SLearn but 475.78%,

294.52%, 1927.51% for 3Sigma, respectively.

We observe that the predictor error for GTrace19 is higher than that for 2STrace

and GTrace11 when we use either history-based or sampling-based prediction. This

is because GTrace19 has higher CoV values for the average task runtimes, both across



95

the history and across the tasks of the same job (Table 4.4). This result also confirms

that the prediction accuracy of both schemes are directly affected by the variance

(§4.4.1).

4.5 Integrating Sampling-based Learning with Job Scheduling: A Case Study

In this section, we answer the second key question about the sampling-based

learning: Can delaying scheduling the remaining tasks till completing the sampled

tasks be compensated by the improved prediction accuracy? We answer it through

extensive simulation and testbed experiments.

Our approach is to design a generic scheduler, denoted as GS, that schedules

jobs based on job runtime estimates to optimize a given performance metric, average

job completion time (JCT). We then plug into GS different prediction schemes to

compare their end-to-end performance. In particular, we compare four predictors: (1)

the sampling-based predictor SLearn, (2) the distribution based predictor proposed

in 3Sigma [30], (3) a point estimate predictor, and (4) a LAS estimator. (5) an Oracle

estimator, which always predicts with 100% accuracy. We further compare with a

FIFO-based scheme, where the scheduler simply prioritizes jobs in the order of their

arrival.

4.5.1 Scheduler and Predictor Design

4.5.1.1 Generic Scheduler GS

GS replaces the scheduling component of a cluster manager like YARN [81]. The

key scheduling objective of GS is to minimize the average JCT. Additionally, GS

aims to avoid starvation. so that all jobs can continually make progress.

The scheduling task in GS is divided into two phases, (1) job runtime estimation,

and (2) efficient and starvation-free scheduling of jobs whose runtimes have been
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estimated. We focus here on the scheduling mechanism and discuss the different job

runtime estimators in the following sections.

Inter-job scheduling. Shortest job first (SJF) is known to be optimal in minimiz-

ing the average JCT when job execution depends on a single resource. Previous work

has shown that scheduling distributed jobs even with prior knowledge is NP-hard

(e.g., [34]), and an effective online heuristic is to order the distributed jobs based on

each job’s total size [11]. In GS we use a similar heuristic; the jobs are ordered based

on their total estimated runtime, i.e., mean task runtime × number of tasks.

Starvation avoidance. SJF is known to cause starvation to long jobs. Hence, in

GS we adopt a well-known multi-level priority queue structure to avoid job starva-

tion [11,32,82,83]. Once GS receives the runtime estimates of a job, it assigns the job

to a priority queue based on its runtime. Within a queue, we use FIFO to schedule

jobs. Across the queues, we use weighted sharing of resources, where a priority queue

receives a resource share according to its priority.

In particular, GS uses N queues, Q0 to QN−1, with each queue having a lower

queue threshold Qlo
q and a higher threshold Qhi

q for job runtimes. We set Qlo
0 = 0,

Qhi
N−1 = ∞, Qlo

q+1 = Qhi
q . A queue with a lower index has a higher priority. GS uses

exponentially growing queue thresholds, i.e., Qhi
q+1 = E · Qhi

q . To avoid any bias, we

use the multiple priority queue structure with the same configuration when comparing

different job runtime estimators.

Basic scheduling operation. GS keeps track of resources being used by each

priority queue. It offers the next available resource to a queue such that the weighted

sharing of resources among the queues for starvation avoidance is maintained. Re-

sources offered to a queue are always offered to the job at the head of the queue.



97

4.5.1.2 SLearn

Since SLearn learns job runtimes online by sampling pilot tasks, it needs to

interact with the scheduler. To seamlessly integrate SLearn with GS, we need to

use one of the priority queues for scheduling sampled tasks. We denote it as the

sampling queue.

Fast sampling. One design challenge is how to determine the priority for the sam-

pling queue w.r.t. the other priority queues. On one hand, sampled tasks should be

given high priority so that the job runtime estimation can finish quickly. On the other

hand, the jobs whose runtimes have already been estimated should not be further de-

layed by learning new jobs. To balance the two factors, we use the second highest

priority in GS as the sampling queue.

Handling thin jobs. Recall that in Slearn, when a new job arrives, Slearn only

schedules its pilot tasks, and delay other tasks until the pilot tasks finish and the job

runtime is estimated. Such a design choice can inadvertently lead to higher JCTs

for thin jobs, e.g., a two-task job would experience serialization of its two tasks. To

avoid JCT degradations for thin jobs, we place a job directly in the highest priority

queue if its width is under a threshold thinLimit.

Basic operations. Upon the arrival of a new job, the cluster manager asynchronously

communicates the job’s information to GS, which relays the information to SLearn.

If the number of tasks in the job is under thinLimit, SLearn assigns it to the highest

priority queue; otherwise, the job is assigned to the sampling queue, where a subset

of its tasks (pilot tasks) will be scheduled to run. Once a job’s runtime is estimated

from sampling, it is placed in the priority queue corresponding to its runtime estimate

where the rest of its tasks will be scheduled.

How many and which pilot tasks to schedule? When a new job arrives,

Slearn first needs to determine the number of pilot tasks. Sampling more tasks can
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give higher estimation accuracy, but also consumes more resources early on, which

can potentially delay other jobs, if the job turns out to be a long job and should have

been scheduled to run later under SJF. Further, we found the best sampling ratio

appears to vary across difference traces. To balance the trade-off, we use an adaptive

algorithm to dynamically determine the sampling ratio, as shown in Figure 4.4. The

basic idea of the algorithm is to suggest a sampling ratio that has resulted in the

lowest job completion time normalized by the job runtime based in the recent past.

To achieve this, for every value in a defined range of possible sampling ratios (between

1% and 5%), it maintains a running score (srScoreMap), which is the average nor-

malized JCT of T recently finished jobs that used the corresponding sampling ratio.

In practice we found a T value of 100 works reasonably well. During system start-up,

it tries sampling ratios of 2%, 3%, and 4% for the first 3T jobs (Line 2–7). It further

tries sampling ratios of 1% and 5% if going down from 3% to 2% or going up from 3%

to 4% reduces the normalized JCT. Afterward, for each new job, it uses the sampling

ratio that has the lowest running score. Finally, upon each job completion, the score

map is updated (Line 16–24).

Once the sampling ratio is chosen, SLearn selects pilot tasks for a job randomly.

How to estimate from sampled tasks? Several methods such as bootstrapping,

statistical mean or median can be used to predict job properties from sampled tasks.

In GS, we use empirical mean to predict the mean task runtime.

Work conservation. When the system load is low, some machines may be idle

while the non-sampling tasks are waiting for the sampling tasks to finish. In such

cases, SLearn schedules non-sampling tasks of jobs to run on otherwise idle ma-

chines. In work conservation, the jobs are scheduled in the FIFO order of their

arrival.
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1: procedure GetCurrentSamplingPercentage(Job j)
2: if j in First T jobs then
3: return 3
4: else if j in Second T jobs then
5: return 2
6: else if j in Third T jobs then
7: return 4
8: minScore = getMinValue(srScoreMap)
9: if minScore.SR == 2 then

10: if 1.1*minScore.value < srScoreMap[3].value then
11: return 1
12: if minScore.SR == 4 then
13: if srScoreMap[3].value > 1.1*minScore.value then
14: return 5
15: return minScore.SR
16: procedure UpdateScoreOnJobCompletion(Job j)
17: sr = j.sr . Get j’s sampling ratio.
18: normalizedJCT = j.jct . Get j’s normalized JCT.
19: UpdateScoresMap(sr, normalizedJCT)

20: procedure UpdateScoreMaps(sr, normalizedJCT)
21: if Len(jobWiseSrScoresMap[sr])> T then
22: Drop first element of jobWiseSrScoresMap[sr]

23: jobWiseSrScoresMap[sr].append(normalizedJCT)
24: srScoreMap[sr].value = mean(jobWiseSrScoresMap[sr])

Figure 4.4.: Adaptive sampling algorithm in Slearn.

4.5.1.3 Baseline Predictors and Policies

We compare SLearn’s effectiveness against four different baseline predictors and

two policies: (1) 3Sigma: as discussed in §4.4.3. (2) 3SigmaTL: same as 3Sigma

but handles thin jobs in the same way as SLearn; they are directly placed in the

highest priority queue. This is to isolate the effect of thin job handling. (3) Point-

Est: same as 3Sigma, with the only difference being that, instead of integrating a

utility function over the entire runtime history, it predicts a point estimate (median

in our case) from the history. (4) LAS: The Least Attained Service [32] policy

approximates SJF online without explicitly learning job sizes, and is most recently

implemented in the Kairos [33] scheduler. LAS uses multiple priority queues and the

priority is inversely proportional to the service attained so far, i.e., the total execution
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time so far. We use the sum of all the task execution time to be consistent with all

the other schemes. (5) FIFO: The FIFO policy in YARN simply prioritizes jobs in

the order of their arrival. Since FIFO is a starvation free policy, there is no need for

multiple priority queues. (6) Oracle: Oracle is an ideal predictor that always

predicts with 100% accuracy.

4.5.2 Experimental Results

We evaluated SLearn’s performance against the six baseline schemes discussed

above by plugging them in GS and execute the 3 traces (2STrace, GTrace11, and

GTrace19) on a 150-node testbed cluster in Azure and using large scale simulations.

4.5.2.1 Experimental Setup

Cluster setup. We implemented GS, SLearn and baseline estimators with 11

KLOC of Java and python2. We used an open source java patch for Gridmix [84] and

open source java implementation of NumericHistogram [85] for Hadoop. We used

some parts from DSS, an open source job scheduling simulator [86], in simulation

experiments.

We implemented a proxy scheduler wrapper that plugs into the resource manager

of YARN [81] and conducted real cluster experiments on a 150-node cluster in MS

Azure [48].

Following the methodology in recent work on cluster job scheduling [30,70,72], we

model jobs as mapper-only jobs. We implemented a synthetic generator based on the

Gridmix implementation to replay mapper-only jobs that follow the arrival time and

task runtime from the input trace. The master runs on a standard DS15 v2 server

with 20-core 2.4 GHz Intel Xeon E5-2673 v3 (Haswell) processor and 140GB memory.

The slaves run on D2v2 with the same processor with 2-core and 7GB memory.
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Parameters. The default parameters for priority queues in GS in the experiments

are: starting queue threshold (Qhi
0 ) is 106 ms, exponential threshold growth factor (E)

is 10, number of queues (N) is set to 10, and the weights for time sharing assigned

to individual priority queues decrease exponentially by a factor of 10. Previous work

(e.g., [11]) and our own evaluation have shown that the scheduling results are fairly

insensitive to these configuration parameters. We omit their sensitivity study here

due to page limit. SLearn chooses the number of pilot tasks for wide jobs using the

adaptive algorithm described in §4.5.1.2 and the threshold for thin jobs is set to 3.

We evaluate the effectiveness of adaptive sampling in §4.5.2.2 and the sensitivity to

thinLimit in §4.5.2.8.

Performance metrics. We measure three performance metrics in the evaluation:

JCT speedup, defined as the ratio of a JCT under a baseline scheme over under

SLearn, the job runtime estimation accuracy, and job waiting time.

Workload. We used the same training data for history-based estimators and the

test traces (2STrace, GTrace11 and GTrace19) as described in §4.4.3. We could not

use the Mustang and Trinity traces released in [80] as they do not contain information

about individual task runtimes.

4.5.2.2 Effectiveness of Adaptive Sampling

In this experiment, we evaluate the effectiveness of our adaptive algorithm for task

sampling. Fig. 4.5 shows how the sampling ratio selected by the adaptive algorithm for

each job varies between 1% and 5% over the duration of the three traces. We further

compare average JCT speedup and P50 speedup under the adaptive algorithm with

those under a fixed sampling ratio, ranging between 1% and 10%. Table 4.6 shows

that the adaptive sampling algorithm leads to the best speedups for 2STrace and

GTrace19 and is about only 1% worse than the best for GTrace11. Interestingly, we

observe that no single sampling ratio works the best for all traces. Nonetheless, the
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Figure 4.5.: Sampling ratios selected by the adaptive sampling algorithm. The dura-
tion of initial 3T jobs appear varying due to uneven arrival times.
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Table 4.6.: Performance improvement of SLearn over 3Sigma under adaptive sam-
pling and fixed-ratio sampling.

Fraction of tasks chosen as pilot tasks
1% 2% 3% 4% 5% 10% Adap.

2STrace

P50 pred. error (%) 19.35 18.98 18.97 18.70 18.44 16.94 18.98
Avg. JCT speedup (×) 1.24 1.23 1.27 1.26 1.27 1.28 1.28

P50 speedup (×) 0.93 0.92 0.93 0.92 0.93 0.91 0.92

GTrace11

P50 pred. error (%) 14.38 14.04 13.62 13.11 12.69 9.09 13.68
Avg. JCT speedup (×) 1.52 1.55 1.54 1.56 1.58 1.51 1.56

P50 speedup (×) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GTrace19

P50 pred. error (%) 55.65 53.81 47.11 46.52 42.08 36.10 51.84
Avg. JCT speedup (×) 1.31 1.31 1.31 1.32 1.28 1.24 1.32

P50 speedup (×) 1.07 1.07 1.05 1.05 1.01 1.00 1.07

adaptive algorithm always chooses one that is the best or closest to the best in terms

of JCT speedup. More importantly, we see that the adaptive algorithm does not

always use the sampling ratio with the best prediction accuracy, which shows that it

effectively balances the tradeoff between prediction accuracy and sampling overhead.

4.5.2.3 Prediction Accuracy

SLearn achieves significantly more accurate estimation of job runtime over 3Sigma

– the details were already discussed in §4.4.3.

4.5.2.4 Average JCT Improvement

We now compare the JCT speedups achieved using SLearn over using the five

baseline schemes defined in §4.5.1.3.

Fig. 4.6(a) shows the results for 2STrace. We make the following observations.

(1) The JCT of Oracle serves as a lower-bound for all other schemes. Compared

to Oracle, SLearn achieves an average and P50 speedups of 0.79× and 0.73×,

respectively. This is because SLearn has some estimation error; it places 10.91% of
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Figure 4.6.: JCT speedup using SLearn as compared to other baseline schemes for
the three traces.

wide jobs in the wrong queues, 3.54% in lower queues and 7.37% in higher queues. (2)

SLearn improves the average JCT over 3Sigma by 1.28×. This significant improve-

ment of SLearn comes from much higher prediction accuracy compared to 3Sigma

(Fig. 4.3). (3) The improvement of SLearn over 3SigmaTL, 1.26×, is similar to that

over 3Sigma, confirming thin job handling only played a small role in the performance

difference of the two schemes. To illustrate SLearn’s high prediction accuracy, we

show in Table 4.7 the fraction of wide jobs that were placed in correct queues by

SLearn and 3Sigma. We observe that SLearn consistently assigns more wide jobs

to correct queues than 3Sigma for all three traces. (4) Compared to Point-Est,

which uses a point estimate generated from historical data, SLearn improves the

average JCT by 1.42×. Again, this is because SLearn estimates runtimes with

higher accuracy. (5) Compared to LAS, SLearn achieves an average JCT speedup
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Table 4.7.: Percentage of the wide jobs that had correct queue assignment.

Prediction SLearn 3Sigma
Technique

2STrace 89.09% 73.84%
GTrace11 86.45% 76.20%
GTrace19 73.96% 58.07%

of 1.91× and P50 speedup of 1.29×. This is because LAS pays a heavy penalty in

identifying the correct queues of jobs by moving them across the queues incremen-

tally. (6) Lastly, compared with FIFO, SLearn achieves an average JCT speedup

of 3.29× and P50 speedup of 8.45×.

Fig. 4.6(b) shows the results for GTrace11. Scheduling under SLearn again

outperforms all other schemes. In particular, using SLearn improves the average

JCT by 1.56× compared to using 3Sigma, 1.55× compared to using 3SigmaTL, 2.17×

compared to using Point-Est, and 1.65× compared to using the LAS policy. Fig. 4.6(c)

shows that scheduling under SLearn outperforms all other schemes for GTrace19

too. In particular, using SLearn improves the average JCT by 1.32×, 1.32×, 1.54×,

and 1.72× compared to using 3Sigma, 3SigmaTL, Point-Est and the LAS policy,

respectively.

In summary, our results above show that SLearn’s higher estimation accuracy

outweighs its runtime overhead from sampling, and as a result achieves much lower

average job completion time than history-based predictors and the LAS policy for the

three production workloads.

4.5.2.5 Impact of Sampling on Job Waiting Time

To gain insight into why sampling pilot tasks first under SLearn does not hurt

the overall average JCT, we next measure and compare the normalized waiting time of

jobs, calculated as the average waiting time of its tasks under the respective scheme,

divided by the mean task length of the job.
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Figure 4.7.: CDF of waiting times for wide jobs

Fig. 4.7(b) shows the CDF of the normalized job waiting time under SLearn and

3Sigma. We see that the CDF curves can be divided into three segments. (1) The first

segment, where both SLearn and 3Sigma have normalized waiting time (NWT) less

than 0.04, covers 36.58% of the jobs, and 35.57% of the jobs are common. The jobs

have almost identical NWT, much lower than 1 under both schemes. This happens

because during low system load periods, e.g., lower than 1, the scheduler will schedule

all the tasks to run under both scheme; under SLearn it schedules non-sampled

tasks of jobs to run before their sampled tasks complete due to work conservation.

(2) The second segment, where both schemes have NWT between 0.04 and 1.90,

covers 30.51% of the jobs, and 20.38% of the jobs are common. Out of these 20.38%,

29.81% have lower NWT under SLearn and 70.19% have lower NWT under 3Sigma.

This happens because when the system load is moderate, the jobs experience longer
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waiting time under SLearn than under 3Sigma because of sampling delay. (3) The

third segment, where both schemes have NWT above 1.90, cover 32.91% of the jobs,

and 24.68% of jobs are common. Out of these 24.68%, 83.08% have lower waiting time

under SLearn and 16.92% under 3Sigma. This happens because when the system

load is relatively high, although jobs incur the sampling delay under SLearn, they

also experience queuing delay under 3Sigma, and the more accurate prediction of

SLearn allows them to be scheduled following Shortest Job First more closely than

under 3Sigma.

Fig. 4.7(a) and fig. 4.7(c) shows the results for the 2STrace and GTrace19. The

plots for 2STrace are also similar to GTrace11, though the first segment here is rela-

tively small. For GTrace19, the first segment is almost negligible. Also, the P50 NWT

for SLearn in 2STrace is 1.17, and for GTrace19, it is 6.12. The NWT value for

GTrace19 is significantly greater than 1. These differences in 2STrace and GTrace19

are because of the nature of the traces. GTrace11 has a mix of batch and non-batch

jobs. However, the 2STrace and GTrace19 are purely batch job traces. Hence they

are more bustier as compared to GTrace11. The P95 of load per window, with the

definition of load the same as used in table 4.5, for GTrace11 is 3.35. Whereas, for

GTrace19 and 2STrace, it is 5.27 and 10.68, respectively. The jobs which arrive in

more bursty groups end up waiting for longer times.

In summary, as the system load fluctuates above and below 1 over time [65, 66],

sampling pilot tasks first under SLearn does not hurt job completion time when

the system load is low due to work conversation, and helps to reduce the average

job completion time when the system load is high from more accurate job runtime

prediction and hence more effective scheduling. A detailed timeline analysis of how the

system load of the trace affects the relative job performance under the two predictors

can be found in the appendix.
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Figure 4.8.: [Testbed] CDF of speedup of SLearn over 3Sigma.

Table 4.8.: Breakdown of jobs based on total duration and width (number of tasks)
for 2STrace. Shown in brackets are a bin’s share in term of job count and total job
runtime.

width < 3 (thin) width ≥ 3 (wide)

size < 103s (small) bin-1 (4.55%, 0.01%) bin-2 (28.73%, 0.06%)

size ≥ 103s (large) bin-3 (14.29%, 5.41%) bin-4 (52.43%, 94.52%)

4.5.2.6 Testbed Experiments

We next perform end-to-end evaluation of SLearn and 3Sigma on our 150-node

Azure cluster. Fig. 4.8 shows the CDF of JCT speedups using SLearn over 3Sigma

using 2STrace, GTrace11 and GTrace19. SLearn’s performance on the testbed is

similar to that observed in the simulation. In particular, SLearn achieves average

JCT speedups of 1.33×, 1.46×, and 1.25× over 3Sigma for the 2STrace, GTrace11,

and GTrace19 traces, respectively.

4.5.2.7 Binning Analysis

To gain insight into how different jobs are affected by SLearn over 3Sigma, we

divide the jobs into four bins in Table 4.8 for 2STrace and show the JCT speedups

for each bin in Fig. 4.9(a).
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Figure 4.9.: Performance breakdown into the bins in Table 4.8, 4.9, and 4.10 respec-
tively.

Table 4.9.: Breakdown of jobs based on total duration and width (number of tasks)
for GTrace11. Shown in brackets are a bin’s share in term of job count and total job
runtime.

width < 3 (thin) width ≥ 3 (wide)

size < 103s (small) bin-1 (35.25%, 0.66%) bin-2 (8.00%, 0.26%)

size ≥ 103s (large) bin-3 (1.60%, 0.51%) bin-4 (55.15%, 98.57%)

Table 4.10.: Breakdown of jobs based on total duration and width (number of tasks)
for GTrace19. Shown in brackets are a bin’s share in term of job count and total job
runtime.

width < 3 (thin) width ≥ 3 (wide)

size < 103s (small) bin-1 (0.80%, 0.00%) bin-2 (3.74%, 0.01%)

size ≥ 103s (large) bin-3 (1.99%, 0.56%) bin-4 (93.47%, 99.43%)
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We make the following observations. (1) SLearn improves the JCT for 82.46% of

the jobs in Bin-1 and the average JCT speedup for the bin is 10.54×. This happens

because the jobs in this bin are thin and hence SLearn assigns them high priorities,

which is also the right thing to do since these jobs are also small. (2) For bin-2,

SLearn achieves an average JCT speedup of 1.86× from better prediction accuracy

of SLearn. The speedups are lower than for bin-1 as the jobs have to undergo

sampling. However, Bin-1 and Bin-2 make up only 0.01% and 0.06% of the total

job runtime and thus have little impact on the overall JCT. (3) Bin-3, which has

14.29% of the jobs and accounts for 5.41% of the total job size, has a slowdown

of 20.00%. The main reason is that SLearn treats thin jobs in the FIFO order,

whereas 3Sigma schedules them based on predicted sizes. (4) Finally, Bin-4, which

accounts for a majority of the job and total job size, has an average speedup of 1.38×,

which contributes to the overall speedup of 1.28×. The job speedups come from more

accurate job runtime estimation of SLearn over 3Sigma.

The results for the GTrace11, and GTrace19 are similar and are shown in Fig-

ure 4.9(b), and Figure 4.9(c) respectively. The bin size distributions for GTrace11,

and GTrace19 is given in Table 4.9, and Table. 4.10.

4.5.2.8 Sensitivity to Thin Job Bypass

In this section, we evaluate SLearn’s sensitivity to thinLimt. The results in

Table 4.13 show that for GTrace11 and GTrace19, the average JCT speedup barely

varies with thinLimit, but for 2STrace, there is a big dip when increasing thinLimit

to four or five. This is because a significant number of jobs in 2STrace have width

four, which causes the number of thin jobs to increase from 5.41% to 13.84% when

increasing thinLimit from 3 to 4.
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4.5.2.9 Intuitive Explanation of JCT Speedups in SLearn over 3Sigma

Finally, we provide an intuitive explanation for SLearn’s improvement over

3Sigma. Figure 4.10 shows seven timeline values comparing SLearn and 3Sigma

for the 2STrace as follows:

• The top curve shows the total workload arrived in the past 1000 seconds, in

terms of execution duration. The values are plotted in steps of 1000 seconds

along the x-axis. A unit along the y-axis corresponds to the workload that

needs 1000 seconds of the entire cluster’s compute capacity. Thus a workload of

1 in steady state implies no queue build-up under 100% utilization of the whole

cluster.

• The next three curves show the resistance faced by newly arrived jobs under

Oracle, 3Sigma and SLearn, respectively, where resistance for a job is defined

as the amount of higher priority workload existing at the time of its arrival,

including the remaining duration of the already scheduled tasks. A unit along

the y-axis for these curves also corresponds to the workload that needs 1000

seconds of the entire cluster’s compute capacity. For wide jobs (i.e., with 3

or more tasks), under SLearn we show the resistance value corresponding to

the moment when the job’s size estimation is over and it has been placed in

its estimated priority queue. The resistance values are plotted along the x-axis

corresponding to each job’s arrival time.

• The next two curves correspond to the percentage prediction error in 3Sigma

and SLearn, respectively. They show signed error which are capped at 1000,

e.g., a value of -20 on error curves means the job was estimated to be 20%

smaller and a value of 1000 means job was estimated at least 1000% larger.

The values are plotted along the x-axis corresponding to each job’s arrival time.

• The bottom curve shows the job speedup (positive values) or slowdown (negative

values) of SLearn compared to 3Sigma, plotted along the x-axis corresponding
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Figure 4.10.: Correlation between load, resistance, estimation error and speedup for
2STrace.

to each job’s arrival time. Thus all values are either above 1, showing the

speedups of jobs under SLearn over under 3Sigma, or below -1, showing the

speedups of jobs under 3Sigma over under SLearn.

With the above definitions of the curves, we next discuss how these curves in

Fig. 4.10 demonstrate provides insights to when and why SLearn outperforms 3Sigma.

• The speedup curve (bottom) shows the speedup under SLearn over under

3Sigma happens when the workload is high, e.g., between 600s and 620s, and

800s to 840s. Conversely, when the workload is below 1, e.g., between 400

and 600s, the two scheme perform similarly and there is no speedup of either

scheme. In such cases, task sampling SLearn did not hurt jobs because non-
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sampled tasks did not have to wait for completion of sampled tasks due to work

conservation (§4.5.1.2).

• Intuitively, under any scheme, a job’s completion time is roughly proportional

to its own total runtime (which is independent of the scheduling) plus the re-

sistance it sees upon arrival, because the resistance value indicates the amount

of workload that needs to be scheduled before the arriving job gets to run.

• The resistance value, in turn, depends on the recently arrived workload and the

prediction error and hence the scheduling decision for them.

• First, if more workload has arrived in the recent past, it is likely that a newly

arrived job will face higher resistance. This is shown by the strong correlation

between the load curve and the Oracle resistance curve.

• Second, high runtime prediction error can lead to high resistance. When the job

runtime is estimated by the predictor to be larger than its actual size, it may

be misplaced in a lower priority queue. If the error is more than 1000% then

the job will definitely be placed in a lower priority queue. In such cases, the job

will likely face higher resistance than it would have with accurate estimation.

Conversely, when the job runtime is underestimated, it may be placed in a

higher priority queue. Though such a job will finish faster than otherwise, it

will create more resistance for other jobs that are actually smaller than it and

thus slow them down.

• The above impact of prediction error on resistance can be seen in Fig. 4.10.

Since the prediction accuracy of SLearn is high, it has less impact on the

resistance and as a result its resistance (fourth curve) is very similar to that

of Oracle (second curve). In contrast, the resistance curve for 3Sigma (third

curve) has many spikes, e.g., between 800s and 1050s, which happen when the

workload (top curve) is high and it has high positive prediction error (fifth

curve).
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Table 4.11.: Fraction of over-estimated and mis-placed jobs for 2STrace. Job perfor-
mance in the third and seventh column is relative to the Oracle.

Overestim- Misplaced over- Slowed mis- Average (P50)
ated jobs estimated jobs placed jobs Positive error

3Sigma 59.78% 17.50% 12.19% 898.45 (48.00)%

SLearn 43.75% 3.54 % 2.85% 30.65 (18.19)%

Table 4.12.: Fraction of under-estimated and mis-placed jobs for 2STrace. Job per-
formance in the third and seventh column is relative to the Oracle.

Underesti- Misplaced under Spedup mis- Average (P50)
mated jobs estimated jobs placed jobs Negative error

3Sigma 40.22% 8.65% 6.88% -37.0 (-28.57)%

SLearn 55.45% 7.37% 3.64% -26.79 (-20.69)%

• Finally, we can see that where ever there is higher resistance under 3Sigma

(third curve) compared to under SLearn (fourth curve), e.g., between 800s

and 1000s, jobs experience speedups under SLearn over under 3Sigma.

While the above explanation using Fig. 4.10 is based on the performance of

SLearn and 3Sigma relative to that of Oracle, Table 4.11 and table 4.12, gives a

direct comparison of the scheduling behavior of the jobs under the two schemes in

terms of runtime overestimation/underestimation, prediction error, and the resulting

misplacement to the priority queues. We see that a larger number jobs are misplaced

under 3Sigma compared to SLearn which led to the overall lower performance under

3Sigma.

In summary, whether a job finishes faster under SLearn compared to 3Sigma

depends on two factors: the recent workload and the runtime prediction error. Due

to higher prediction error of 3Sigma compared to SLearn, during high workload,

jobs are more likely to be misplaced to the priorty queues and hence face higher

resistance, which results in longer average completion time under 3Sigma.
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Table 4.13.: Sensitivity analysis for thinLimit. Table shows average JCT speedup
over 3Sigma.

thinLimit 2 3 4 5 6

2STrace 1.23x 1.28x 1.14x 0.97x 0.84x

GTrace11 1.54x 1.56x 1.55x 1.54x 1.53x

GTrace19 1.33x 1.32x 1.32x 1.30x 1.29x

4.6 Discussions and Future Work

Robustness to task skew. There are two factors that can potentially cause high

variations in the runtime properties of tasks (skew) of a job: heterogeneity in cluster

and computation skew. The three traces used in our analysis (§4.4) and experi-

ments (§4.5) are from production datacenter traces. Out of them, the Google traces

were collected from heterogeneous clusters, which already include task skew due to

cluster heterogeneity, and all traces already include computation skew observed in

real applications. Our analysis shows that for such real-world traces, sampling-based

learning outperforms the state-of-the-art history-based learning scheme in terms of

trace variability (§4.4.2), prediction accuracy (§4.4.3) as well as end-to-end perfor-

mance (§4.5.2).

4.7 Summary

In this chapter, we performed a comparative study of task-sampling-based predic-

tion and history-based prediction commonly used in the current cluster job schedulers.

Our study answers two key questions: (1) Via quantitative, trace and experimental

analysis, we showed that the task-sampling-based approach can predict job runtime

properties with much higher accuracy than history-based schemes. (2) Via extensive

simulations and testbed experiments of a generic cluster job scheduler, we showed

that although sampling-based learning delays non-sampled tasks till completion of

sampled tasks, such delay can be more than compensated by the improved accuracy

over the prior-art history-based predictor, and as a result reduces the average JCT by
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1.28×, 1.56×, and 1.32× for three production cluster traces. These results suggest

task-sampling-based prediction offers a promising alternative to the history-based

prediction in facilitating cluster job scheduling.
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5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

The ability to accurately estimate runtime properties of distributed entities (data

analytics jobs, communication flows of the same job (coflows)) allows a cluster sched-

uler to effectively schedule them. State-of-the-art online cluster schedulers try to

learn the properties using historical data or least-attained-service (LAS) based mul-

tiple priority queue techniques.

In this thesis, we performed a comparative study of sampling-based learning tech-

nique, which utilizes spatial dimension, against history-based and LAS-based multiple

priority queue learning techniques. Our study highlights the following key points: (1)

Via quantitative, trace, and experimental analysis, we demonstrate that the sampling-

based approach can predict job runtime properties with much higher accuracy than

history-based schemes and when compared to multiple priority queue techniques it

is much faster. (2) Via extensive simulations and testbed experiments on a 150-node

cluster in Microsoft Azure of a generic cluster job scheduler, we show delaying non-

sampled tasks till completion of sampled tasks in sampling-based learning can be

more than compensated by the improved accuracy over the prior-art history-based

predictor. As a result of it the average JCT improves 1.44× and 1.40×, for two pro-

duction cluster traces. (3) We also performed simulations and testbed experiments

using the same azure cluster for coflow scheduling. Compared to existing LAS based

schedulers we achieve 1.51× and 1.36× average CCT speedup on two different cluster

traces. These results suggest sampling-based prediction offers a promising alternative

to both history and LAS based learning mechanisms facilitating distributed cluster

scheduling.
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We also designed a coflow scheduler which focuses on better synchronization across

spatial dimension of coflows. By merely carefully considering the spatial dimension,

this designs achieves a median speedup in individual CCTs of 1.53× and 1.42× as

compared to existing state-of-the-art schedulers.

Our work suggests consideration of spatial dimension in cluster scheduling can

open up new promising options.

5.2 Future Work

Combining history and sampling-based learning. We envision a number of

directions for the further study of learning runtime properties of distributed jobs for

efficient cluster scheduling. There are several motivations for exploring combining

history and sampling-based learning. (1) History-based learning can be used to es-

tablish a prior distribution, and sampling-based approach can be used to refine the

posterior distribution. Such a combination may potentially be more accurate than

using either history or sampling alone. For example, knowing the distribution of task

lengths can help develop better max task length predictors. (2) Though not seen

in the production traces used in our study, in case task-wise variation and job-wise

variation fluctuate, adaptively switching between the two prediction schemes may

help. (3) As shown in §4.5.2.5, performance of sampling based prediction and history

based prediction also depend on system load. Under moderate load conditions history

performs better whereas under high load sampling. So, this is another potential to

merge the two learning approaches.

Learning for DAG jobs. For multi-phase DAG jobs, sampling-based prediction

can be applied in each phase to optimize the performance of each phase. An interest-

ing question is how to apply sampling if we wish to learn the runtime properties and

optimize the performance of a multi-phase job as a whole (e.g., [10, 75]). We expect

that it may again be helpful to combine history-based prediction of the parameters
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of future phases with sampling-based prediction of the current phase, which we plan

to study in future work.
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