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Ẇ power

X equipment cycling duty or input vector

∆A differential area

∆q differential heat transfer rate

∆V differentaial volume

α model coefficient

δ differential distance

ε heat exchanger effectiveness

θ parameter vector or thermal resistance (used only in chapter4)

ρ density

Subscript:

ADP apparatus dew point

Bal balance point



xix

c cooling (mode) or convective

D design condition

DA daily average

dband dead band

eff effective

fg vaporization of water

fl full load

G transfer function

h heating

ID indoor

i ith datapoint or index of row or index of datapoint

in inlet

int internal

k index of a temperature bin

l latent

m number of temperature bin or internal mass node

max maximum

OD outdoor

out outlet

rat rated

ref refrigerant

s sensible or sheet metal

SA supply air

sp setpoint

t total

vr virtual room

z zone air node



xx

ABBREVIATIONS

AHRI Air-conditioning, Heating, and Refrigeration Institute

ASHRAE American Society of Heating, Refrigeration and Air-conditioning

Engineers

CSA Canadian Standards Association

DX Direct Expansion

EIR Energy Input Ratio

HSPF Heating Seasonal Performance Factor

MAPE Mean Absolute Percentage Error

NEMA National Electrical Manufacturers Association

RMSE Root Mean Square Error

TEC Thermal Electric Cooler

TMY Typical Meteorological Year



xxi

ABSTRACT

Cheng, Li PhD, Purdue University, December 2020. Laboratory Load-Based Test-
ing, Performance Mapping and Rating of Residential Cooling Equipment. Major
Professors: Jim Braun and Travis Horton.

In the U.S., unitary residential air conditioners are rated using standard AHRI

210/240 that is inadequate to credit equipment with advanced controls and variable-

speed components since the ratings are based on results of steady-state laboratory

tests. Contrarily, a load-based testing and rating approach is presented in this work

that can capture equipment performance with its integrated controls and thermostat

responses that is more representative of the field. In this approach, representative

building sensible and latent loads are emulated in a psychrometric test facility at

different indoor and outdoor test conditions utilizing a virtual building model. The

indoor test room conditions are continuously adjusted to emulate the dynamic re-

sponse of the virtual building to the test equipment sensible and latent cooling rates

and the equipment dynamic response is measured. Meanwhile, the inlet temperatures

to the test equipment thermostat are independently controlled to track the same vir-

tual building response using a thermostat environment emulator that encloses the test

thermostat, that provides typical flow conditions and of which the design and con-

trol are presented in this work. Climate-specific cooling seasonal performance ratings

can be determined by propagating load-based test results through a temperature-

bin method to estimate a seasonal coefficient of performance (SCOP). In addition,

a next-generation rating approach is developed that extends load-based testing for

performance mapping, such that the SCOP can be obtained using building simu-

lations that incorporate specific building types, climates and an equipment-specific

performance map.
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In this work, the proposed approaches were implemented to test and rate a

variable-speed residential heat pump operating in cooling mode. Trained with re-

sults from only 12 load-based test intervals carried out using the test equipment, a

quasi-steady-state mapping model was able to map the equipment performance across

almost the entire operating envelope within ±10% errors and the R2 values were very

close to 1. Using the identified performance map, the next-generation SCOP was

obtained based on an annual simulation deployed in EnergyPlus, where the map

was coupled to a typical single-family building in Albuquerque,NM. Compared to the

temperature-bin-based rating, this simulation-based rating is able to comprehensively

and appropriately reflect equipment annual field performance associated with a spe-

cific building type and climate, as the rating is extended from automated laboratory

load-based testing and performance mapping.
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1. INTRODUCTION

The seasonal energy efficiency ratio is a primary performance indicator for residen-

tial air conditioners and heat pumps reported by each manufacturer. To determine

equipment seasonal performance, current rating standards utilize a steady-state test-

ing approach where the equipment native controls are overridden. However, as these

standards were originally developed for equipment with simple on/off controls, they

are deficient in estimating the seasonal performance characteristics of equipment with

advanced technologies that employ variable-speed drives with sophisticated control

algorithms. To better capture these behaviors, a load-based testing methodology and

associated rating approaches are presented and demonstrated in this work, where the

equipment is tested together with its integrated controls in an automated, repeatable

and reproducible fashion.

The target systems for this methodology are electrically powered direct expansion

vapor compression cycle residential air conditioners. A load-based testing approach is

particularly appropriate for variable-speed equipment but is also applicable to single-

stage and discrete multi-stage equipment. In this work, the methodology was applied

to a state-of-the-art high efficiency, variable-speed, 2-ton ducted split system. The

approach can be also extended to ductless or packaged equipment. Definitions and

categories of equipment can be found in a book by Mitchell and Braun [1]. A pair

of psychrometric test chambers with reconditioning equipment and controls is the

major testing apparatus employed for testing equipment performance in this work. In

addition, a thermostat environment emulator is the other required testing apparatus

that will be introduced in chapter 4.
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1.1 Background and motivation

AHRI 210/240 [2] forms the basis for rating unitary residential air conditioners

and heat pumps in the U.S. This standard applies steady-state testing that requires

overriding of the integrated controls to achieve specified part-load conditions and

therefore does not include dynamic control interactions that occur in the field. Proctor

and Cohn [3] studied field performance of four dual-stage air conditioners and found

that their actual seasonal energy efficiency ratios (SEERs) were between 59% and

84% of their rated SEERs. Hart et al. [4] noted that the benefits of a number of

potential energy-saving measures in addition to base efficiency were not captured with

the current steady-state testing procedure (e.g. AHRI 210/240), such as equipment

control configuration and cycling effects.

Unlike single-stage and multi-stage equipment, variable-speed air conditioners are

equipped with electronically commutated motors (ECM) for fans and inverter-driven

compressors. Variable-speed equipment can be controlled more intelligently for part-

load conditions by modulating both the air-side and refrigerant-side mass flow rates

without cycling off the compressor and fan, except at very low capacity conditions.

As a result, variable-speed equipment in the field can have significantly better sea-

sonal energy efficiency than single-stage equipment. However, AHRI 210/240 has

shortcomings in characterizing equipment part-load performance in a manner that

is representative of the field. For on/off cycling behavior, the standard prescribes

a specific cycling pattern in order to estimate a cycling degradation effect for the

equipment. This “prescribed” test configuration does not account for differences in

the cycling behavior of various equipment due to different controller designs, ther-

mostat responses, and thermostat temperature deadbands. Also, the actual cycling

pattern and its effect on equipment performance changes directly with the load so

that a single cyclic pattern and test result is not representative. For variable-speed

behavior, the steady-state tests in the AHRI 210/240 specify that manufacturers

provide overrides to the equipment controller using a proprietary test mode to run
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the equipment at minimum, intermediate, and maximum speed. This can lead to

behavior that does not represent in-situ performance.

Furthermore, the seasonal energy performance of a system can have a strong

dependence on building type and climate zone. Although AHRI 210/240 specifies

different climate zones for evaluating heating seasonal performance factor (HSPF),

the SEER determination is not climate specific. As a result, an air conditioner that

has significantly different seasonal performance in marine and hot climates due to very

different part-load distributions and latent loads would have the same performance

rating. This shortcoming was noted by Fairey et al. [5] in their simulation study of the

climatic impacts on SEER and HSPF. In addition, variable-speed systems may better

handle building latent and sensible loads across different building types and climate

zones since the on-board controller is able to independently adjust evaporator air

flowrate and evaporating temperature. Therefore, the building and climate impacts

on seasonal energy performance for variable-speed equipment could be even more

significant, which needs to be captured in the testing methodology.

To address these shortcomings, the motivation for this work was the investiga-

tion of a new load-based testing methodology and associated rating approaches. An

improved methodology should reflect the combined effects of the system and its inte-

grated controls in evaluating performance under representative field operating condi-

tions. The testing should be automated to reduce time and resource requirements and

the results should be useful in generating climate-specific performance ratings. The

ratings and the test equipment behaviors should be repeatable within a testing facility

and reproducible across different test facilities. In addition to performance ratings,

load-based testing should be useful as a tool for engineers in the early development

and validation of improved feedback and supervisory control algorithms.
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1.2 Previous load-based testing development

Cremaschi and Perez Paez [6] investigated a load-based testing approach for light

commercial rooftop units (RTUs) with economizers where the environmental cham-

bers are controlled to provide specified sensible and latent gains and the equipment

attempts to maintain a thermostat setpoint temperature. The loads that they em-

ployed in their testing were based on simulation results for a representative commer-

cial building that were generated prior to testing. In this way, the indoor test room

served as a proxy for an actual building in which the space temperature and humid-

ity responded dynamically per the energy balance between the equipment capacity

and prescribed loads. However, Cremaschi and Perez Paez had difficulty in achiev-

ing repeatable test results within their test rooms due to variations in implemented

sensible and latent loads because of hardware control limitations. In general, this ap-

proach has the disadvantage that environmental test chambers have unique dynamic

responses, making it difficult to achieve reproducible results across different facilities.

Furthermore, the temperature and moisture response dynamics of a test facility will

not be representative of an actual building.

To address this issue, Hjortland and Braun [7] recently presented an alternative

load-based testing approach for unitary equipment, that utilizes the indoor environ-

mental chamber controls to regulate the temperature and humidity of the equipment

return air inlet in a manner that emulates the response of a representative building.

This approach requires the use of a virtual building model with inputs that include

real-time equipment sensible and latent cooling rates along with indoor and outdoor

room temperatures. The outputs from the virtual building model are indoor environ-

mental temperature and humidity setpoints for environmental chamber controls that

mimic the response of an actual building.

Using this approach, Hjortland and Braun compared the performance charac-

teristics of an RTU in three different control modes: single-stage, two-stage and

variable-speed. The test unit operating under variable-speed mode showed a higher
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part-load efficiency compared to single-stage and two-stage mode. Patil et al. [8]

provided a limited description of the methodology and presented some sample re-

sults. Dhillon et al. [9] presented some initial comparisons of seasonal performance

estimates based on the load-based testing approach with results obtained using the

AHRI 210/240 steady-state testing approach for two different variable-speed heat

pumps. They found that the steady-state testing approach estimates higher seasonal

efficiency than the load-based testing approach for cooling as well as heating. These

developments were carried out in collaboration with the development of a new Cana-

dian testing standard (CSA EXP-07 [10]) that is focused on residential heat pumps

and air conditioners.

1.3 Thermostat environment emulators

In load-based testing, since the temperature of the indoor environmental chamber

that simulates indoor conditions continuously tracks virtual room temperature set-

points that are adjusted based on outputs from the virtual building model, the test

equipment thermostat senses the floating air temperature and communicates with

the test equipment as if it were installed in the field. In order to achieve realistic

dynamic behavior, it is important to guarantee that the thermostat inlet airflow con-

ditions and inlet temperature dynamics be representative of field conditions and be

reproducible across different test facilities. The current CSA EXP-07 [10] specifies

that the thermostat be located in the return to the indoor test unit. This ensures

that both the thermostat and equipment see the same conditions and was thought to

have the best chance of achieving reproducible results across different facilities.

Cheng et al. [11] studied the impact of thermostat location in load-based testing

and found that a test thermostat installed at three different locations led to sig-

nificantly different load-based testing behaviors and performance. The dynamics of

the thermostat varied significantly with location due to non-uniform air velocity and

temperature distribution within the indoor chamber. Locating the thermostat in the
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return air stream led to the fastest thermostat dynamics, but it is far from being repre-

sentative of typical conditions that a thermostat would experience in the field. In the

interest of achieving representative and reproducible results for load-based testing, it

is important to ensure that the test equipment thermostat has an inlet temperature

that is the same as (or has a fixed offset with respect to) the test unit return air

temperature, but with an air flow that is representative of convection experienced in

a room. This requires that the thermostat have its own emulated environment that

tracks virtual building setpoints.

The development of a thermostat environment emulator that can provide realistic

and reproducible inlet conditions to the test thermostat in load-based testing was

another goal of the work embedded in the overall load-based testing methodology.

The environment emulator should include a plenum or a small chamber that encloses

the test thermostat, air velocity controls that provide representative flow conditions

and air temperature controls that emulate the virtual building dynamics to the test

thermostat. The design and operation of the thermostat environment emulator should

be reproducible across different test facilities in order to be standardized as a universal

solution to the test equipment thermostat configuration in load-based testing.

Since 1943, the residential controls section of the National Electrical Manufactur-

ers Association (NEMA) has maintained a standard for room thermostats [12] that

describes a testing apparatus to emulate a test environment for thermostats. The

original NEMA thermostat testing apparatus incorporated an internal heater, while

the cooling function was obtained by installing the chamber in an ambient of ap-

proximately 40°F. However, working in and maintaining a 40°F ambient was found

to be very inconvenient and therefore Boldt [12] developed the second version of the

testing apparatus for NEMA that integrates both heating and cooling as described

in the most recent standard [13]. The primary purpose of the NEMA testing appa-

ratus is to test cycling behaviors of a thermostat. As illustrated in figure 1.1, the

dimension is 28.5”x40”x84.5”. Air is circulated through a cooling coil, a heating coil

and the thermostat using a blower in the apparatus. The thermostat is connected to
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the apparatus controller for the purpose of determining whether the thermostat inlet

temperature should ramp up or down (cycling) with prescribed rates of change.

Fig. 1.1. NEMA thermostat testing apparatus

In terms of providing typical flow conditions to the test thermostat, the NEMA

standard specifies that air should flow across the thermostat vertically and uniformly

with a nominal velocity of 30 ft/min. This is thought to be representative of a wall-

mounted thermostat and is the basis for the air velocity specification in the current

work. However, the overall NEMA testing apparatus was thought to be too bulky for

integration with a test unit in the indoor environmental chamber and have too slow

a response for load-based testing. The inlet temperature to a test thermostat needs
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to closely track (be controlled to) the virtual building temperature dynamics during

load-based testing.

In terms of the test thermostat inlet air temperature control, lower-cost, smaller

and faster responding cooling/heating devices or alternative approaches are preferred

for integration within a thermostat environment emulator as compared with the evap-

orator coil and electric heater utilized in the NEMA testing apparatus. One approach

considered in this work is to sample the indoor test equipment return air and draw

it to the inlet of the test thermostat inside an emulator, with the goal of having

consistent inlet conditions for both the thermostat and the test equipment in load-

based testing. The emulator developed using this approach is called an “air sampling

apparatus”. Figure 1.2 shows a sampling device described in the standard AHRI

550/590 [14] that can be adapted and used in an air sampling apparatus to draw air

from the indoor test equipment return air inlet.

Fig. 1.2. Air sampling tree in the AHRI 550/590

Another approach considered in this work involved building a smaller version of

the NEMA testing apparatus using fast responding thermoelectric devices. The use
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of separate cooling/heating devices instead of the air sampling device requires that

the thermostat inlet temperature “mirror” the response of the return air temperature

with both independently controlled to temperature setpoints dictated by the virtual

building model. This thermostat environment emulator is referred to as the “indepen-

dently conditioned apparatus.” Bustamante et al. [15] demonstrated the concept of

utilizing thermoelectric coolers in combination with a thermal blanket within a minia-

ture thermostat test chamber. Although this small chamber could not provide typical

flow conditions or realistic building dynamics for a test thermostat, it inspired the

use of thermoelectric coolers (TECs) for our thermostat environment emulator. TECs

can be readily scaled to a small thermostat emulator, can provide a fast response,

and can provide either heating or cooling when their power polarity is reversed.

1.4 Residential cooling equipment performance mapping

The seasonal performance of unitary residential equipment for various climate

zones can be rated by directly propagating test results for COP at different ambient

temperatures into estimates of seasonal performance ratings based on temperature

bins and weight for each bin (e.g. calculation of HSPF and SEER in AHRI 210/240

[2]). However, a ”holy grail” for load-based testing and performance rating is to be

able to map equipment performance from automated testing results measured over a

relatively short period of time. This performance map can then be implemented as

a ”model” in building simulations to generate seasonal energy efficiency ratings that

are specific to various building types and climates.

Previously, performance mapping of unitary air conditioners has been well stud-

ied. A significant number of modeling approaches have been investigated for mapping

equipment capacity and power under different operating conditions. It is important

to adopt approaches that can be employed to extend load-based testing results to gen-

erate a performance map. For example, since load-based testing results are harvested

after the equipment reaches a quasi-steady or steady-period condition as a response to
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fixed building loads (Patil et al. [8]), dynamic equipment models are not necessary for

the intended purpose. In addition, this work focuses on mapping of variable-speed

equipment, since this is the more general case and a load-based testing approach

is particularly important for the next generation of equipment with variable-speed

drives and advanced on-board controls.

Component-based forward modeling approaches capture equipment performance

accurately. For example, Shen [16] estimated the evaporator heat transfer rate with

an average deviation of 2.0% when using detailed models with finite segment heat

exchanger models that use detailed geometry descriptions. Bell [17] developed ACHP

that is a detailed model for direct expansion residential heat pumps and air condition-

ers. However, forward modeling approaches incorporate numerous geometrical and

other parameters that would be time consuming to collect and implement in a model.

Also, construction, tuning and simulation of such a model requires significant exper-

tise and computational time. This approach is not suitable for mapping load-based

test performance results.

Component-based inverse modeling approaches use simplified semi-physical (semi-

empirical) models with key model parameters trained from experimental data. Che-

ung [18] successfully generated a simulation database for different equipment operat-

ing scenarios under both faulted and non-faulted conditions where the models were

generated using an inverse modeling approach. Cai and Braun [19] employed a gray-

box model structure for the vapor compression cycle. However, these component-

based models only represent the equipment performance at steady-state without con-

sideration of their integrated controllers. Also, the model training required a signif-

icant number of different measurements over a wide range of operating conditions.

The typically data available from current equipment rating procedures would not be

useful in developing equipment-specific models using this approach.

The controls for single-stage equipment are relatively straight-forward and typi-

cally involve cycling the compressor and condenser fan on and off in response to a call

for heating or cooling from the thermostat. The equipment operates at full capacity
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when it is on and turns off in cooling when thermostat temperature falls below its

setpoint by a dead-band built into the thermostat logic. Under dead-band control,

the equipment cycles with a cycle duty that depends on the part-load conditions.

Full-load performance is usually recorded in equipment catalogs as a result of manu-

facturers steady-state rating tests and this data can be used to map the equipment

full-load performance.

Yang and Li [20] proposed a generic rating-data-based DX coil model that predicts

both wet-coil and dry-coil conditions of an air conditioner. Brandemuehl et al. [21]

presented a polynomial estimation approach to predict single-stage equipment total

cooling capacity and energy input ratio (EIR) in the ASHRAE secondary toolkit.

Rated total capacity and EIR are corrected using factors that capture the effects of

inlet air wet bulb temperature to the evaporator, inlet air dry bulb temperature to

the condenser and airflow rate. Air conditioner sensible heat ratio is calculated using

a bypass factor (BF) method. This overall approach is based on the approach used in

the DOE-2 [22] building simulation program. Henderson et al. [23] further developed

part-load curves for use in the DOE-2 model to predict performance degradation of

single-stage equipment at part-load conditions.

Based on the ASHRAE toolkit approach, Cai and Braun [24] proposed a modifi-

cation to enable mapping of multistage equipment by adding a factor that corrects

equipment total capacity and energy input ratio to performance at different stages.

Hjortland [25] further applied this model to variable-speed equipment using a com-

pressor speed correction factor to replace Cai’s compressor stage factor. However, this

particular approach employs indoor fan airflow rate and compressor speed (stage) as

model inputs which are essentially control signals or outputs of variable-speed equip-

ment on-board controls. Therefore, the equipment controller is not characterized in

these approaches.

Variable-speed embedded control decisions are difficult to quantify even with the

help of a load-based testing approach which outputs the overall behavior of equipment

with its controller. Different equipment manufacturers use different control logic. The
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variable-speed equipment tested by Hjortland and Braun [7] used two PI controllers

that maintained equipment discharge air temperature and indoor room temperature

separately. This logic is an example but cannot represent a generic variable-speed

equipment controller design. The variable-speed equipment model [26] in EnergyPlus

utilizes four discrete cooling coil speed levels each of which is represented by a DOE-2

performance polynomial. Selection of the speed level is a result of comparison between

the capacity of each speed level to the building load requirement. This approach lumps

fan speed and compressor speed into cooling coil speed, but still cannot represent a

generic control logic.

Nyika et al. [27] proposed a generalized performance map for variable-speed heat

pumps that employed equipment total load and indoor fan airflow rate as model inputs

along with indoor and outdoor temperatures. This model is essentially still a vapor

compression cycle model, but Nyika proposed an empirical algebraic controller model

to be coupled with the equipment model that correlated equipment part-load ratio

to indoor fan speed. Therefore, indoor fan speed becomes an intermediate variable

in this model. Nyika’s model can be used to generate data that can be employed

to identify and validate future model forms that map the complete equipment and

controller performance. In addition, future quasi-steady-state equipment mapping

should consider the idea of using an empirical approach to model on-board control

logic, due to its limited known physics.

It is possible to decouple a variable-speed equipment model into controller and

vapor compression cycle sub-models. However, this could significantly increase model

complexity and requirements for training data. The approach proposed in this work

starts with a model that maps the lumped performance of equipment and its inte-

grated controls. Nyika’s model and Cai’s model are the basis for the performance

mapping model form of this work.

After the identification of a performance mapping model form, a critical future

step is to consider optimal experimental design that specifies the testing requirements

for mapping equipment performance using the proposed model form. The goal is to
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determine an acceptably small number of test conditions required to determine the

model that can accurately represent equipment quasi-steady-state performance over

its operating envelope.

Alternatively, a more general experimental design approach can be obtained that

focuses more on uniform, complete and unbiased coverage of the operating envelope

for any variable-speed air conditioners. In particular, an acceptably small number

of the test points sampled from the experiment design space should be able to well

represent the whole space. In this work, both the optimal experiment design approach

and the unbiased sampling experiment design approach were investigated.

There are various approaches to achieve uniform and unbiased sampling from a

design space, when probability distributions are not considered. Uniform sampling

is the most commonly used approach. In this case, a fixed number of alterations

are uniformly sampled for each dimension (design variable) in the space, and the full

combinations of these alterations from each dimension compose the whole set of sam-

pled points. This approach is very useful when the design space is one-dimensional or

two-dimensional. However, too many points will be required when sampling from a 3-

dimensional space or hyperspace. Nevertheless, some advanced sampling approaches

start from a candidate set that is obtained using the uniform sampling approach.

Random sampling is another commonly used approach, but the sampled points are

not ensured to be uniform and be repeatable.

Hierarchical clustering is an algorithm that groups objects over a variety of scales

by creating a hierarchical clustering tree. The tree is not a single set of clusters, but

rather a multilevel hierarchy, where clusters at a lower level are joined as clusters at a

higher level of the hierarchical tree. Objects in a cluster are similar to each other, while

objects from different clusters are dissimilar. Therefore, the similarities/dissimilarities

of objects in each level are used as criteria for partitioning/grouping. There are various

choices of similarity metrics, and the Euclidean distance between two objectives in

their space is a popular measurement that will also be used in this work. Every object

at the lowest level of the hierarchical tree is a cluster itself. In an upper level, two
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clusters from the lower level that are in the closest proximity to each other are grouped

into a new cluster. In this way, the complete set of all the objects form the last and

final cluster at the very top level of the hierarchical tree. A user of the algorithm

can decide which level of clustering/partitioning is needed in different applications.

Chopping off the hierarchical tree at the lower level results in more clusters while a

higher level cut off results in less clusters.

The goal of applying hierarchical clustering in experimental design is to group

similar test points in one cluster and partition the design space into dissimilar clusters.

Therefore, the test points sampled from these clusters (e.g. cluster centroids) can

represent the entire experimental design space well. Compared to random sampling

from the design space, test points sampled after clustering should better span across

the space and be more repeatable.

Fig. 1.3. Clustering result of a compressor operating envelope

As an example, Aute et al. [28] utilized the clustering approach to group candidate

test points within a compressor operating envelope (a two-dimensional space) into

different clusters, with different colors in figure 1.3. As each cluster can be represented
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by its geometric centroid, these centroids combine into a set that well represents the

whole domain.

1.5 Research objectives and approaches

The objectives of this work were to: 1) develop an updated, more complete,

and archival description of the laboratory load-based testing methodology that in-

cludes the basis for development, necessary steps for automation and convergence

criteria; 2) design and validate a thermostat environment emulator that can provide

realistic and reproducible inlet conditions to a test thermostat for the purpose of

load-based equipment testing; 3) demonstrate and validate the complete load-based

testing methodology using residential equipment within a laboratory setup; 4) de-

velop a methodology that employs load-based testing for performance mapping that

captures both the equipment performance and its integrated controllers under quasi-

steady-state operation; 5) compare both a traditional approach and a next-generation

approach for determining the seasonal coefficient of performance index for rating of

residential unitary cooling equipment.

A flow chart of the associated approaches are shown in figure 1.4. For the first

objective, a single-node-structure virtual building model was specified for load-based

testing that incorporates prescribed sensible/latent building loads, and that dynam-

ically responds to the test equipment and its native controls in a realistic fashion.

Alternative building models were also considered in terms of the impact on testing

and implementation requirements. Moreover, automated testing procedures along

with convergence criteria were developed to measure equipment steady-periodic per-

formance during load-based testing. This is crucial to minimize the test time, and to

improve repeatability and reproducibility across different test facilities.

To further improve test reproducibility, another important task is to configure

the test thermostat in a realistic and reproducible fashion. Therefore, for the second

task, the thermostat environment emulator was developed that is able to emulate the
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Fig. 1.4. Objectives and proposed approach of this work

virtual building dynamics to the test thermostat and provide airflow that is represen-

tative of a typical indoor environment. The design and operation of this thermostat

environment emulator are reproducible across different test facilities in order to be

standardized as a universal solution to the test thermostat configuration in load-based

testing. Two types of thermostat environment emulators were developed and evalu-

ated in this work: 1) an air sampling apparatus, and 2) an independently conditioned

apparatus.

For the third objective, the proposed overall methodology was implemented to test

and rate a state-of-the-art high efficiency, variable-speed, 2-ton ducted split system,

that was installed in a pair of psychrometric test chambers. Furthermore, the sen-

sitivity of load-based testing results to virtual building parameters was investigated.

Finally, repeatability results from the load-based testing approach are presented.
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For the fourth objective, the investigation of applying load-based testing for per-

formance mapping started with the identification of an appropriate model form for

variable-speed air conditioners. Input and output variables were established as ex-

tended from the load-based test inputs and outputs but modified for mapping pur-

poses. Both a heuristically optimal experimental design approach and a clustering

approach were considered for generating an overall test matrix for performance map-

ping. A comprehensive evaluation of the mapping model form and the experiment

design approaches is presented after analysis of the test results.

For the last objective, the traditional seasonal equipment performance rating ap-

proach is presented that uses a temperature-bin method for generating climate-specific

ratings. Then a next-generation rating approach is developed and evaluated that in-

corporates equipment performance map into building simulation to generate seasonal

energy performance ratings that are both building-type and climate-zone specific.

1.6 Thesis organization

In chapter 2 of this dissertation, the automated load-based testing methodology

is introduced along with the traditional temperature-bin-based seasonal coefficient of

performance rating approach, followed by the experimental evaluation and demon-

stration using a residential 2-ton split cooling system. In chapter 3, a two-node

building sensible load model is developed and evaluated as an alternative virtual

building structure for utilization in load-based testing. In chapter 4, the effect of

thermostat configuration on load-based testing results is investigated followed by the

presentation and evaluation of two thermostat environment emulators. In chapter

5, the residential cooling equipment performance mapping methodology is developed

and presented along with the next-generation seasonal performance rating approach

that utilizes the performance map. Chapter 6 concludes this work and proposes future

steps.
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2. LOAD-BASED TESTING METHODOLOGY AND

EXPERIMENTAL EVALUATION

In this chapter, the automated load-based testing methodology is introduced along

with the temperature-bin-based seasonal coefficient of performance rating approach,

followed by the experimental evaluation and demonstration for a 2-ton split system.

The virtual building model for load-based testing is explained in section 2.1. The

automated testing procedures are described in section 2.2. Section 2.3 describes

the temperature-bin-based seasonal performance rating approach. The experimental

evaluation of the load-based testing methodology and the associated rating approach

is discussed in section 2.4.

Figure 2.1 shows a schematic of the load-based methodology test setup and testing

approach. In load-based testing, the virtual building model determines the magnitude

of the thermal and moisture loads based on an outdoor temperature associated with

a test interval and parameters that are chosen to be typical of a residential building

and that are scaled to the test equipment design capacity. For each test interval, the

outdoor test room conditions are kept constant, while the indoor test room conditions

are continuously adjusted to emulate the dynamic response of the virtual building to

the test equipment sensible and latent cooling rates that are adjusted using the test

equipment thermostat and integrated controls. As a result, the test unit cooling

rates must be determined from real-time measurements and provided as inputs to the

virtual building model. Then, based on the difference between the test unit cooling

rates and building loads, the virtual building temperature and humidity conditions

are updated and provided as setpoints to the indoor test room reconditioning system.

In this way, the indoor psychrometric test room behaves as a proxy for the response of

an actual building. The test unit thermostat, installed in the indoor test room, senses

this dynamic temperature and humidity variation, and the test equipment responds
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accordingly. In this manner, the test equipment dynamic performance is similar to

what would be expected in the field at each outdoor test condition.

Fig. 2.1. Load-based test apparatus and emulated virtual building

2.1 Virtual building model

A virtual building model for load-based testing needs to reasonably capture dy-

namic interactions between the test equipment, zone air, and building thermal mass,

be relatively easy to implement and scale for different size equipment, and should en-

able convergence to steady-periodic conditions within a reasonable time frame. High-

order models that require many parameters to specify could be difficult to implement

and scale and require very long testing times to achieve steady-periodic results that

would be reproducible across different test facilities, as can be seen in chapter 3.

The approach presented in this chapter is easy to apply and provides representative
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dynamic responses for testing equipment with their integrated controls. In addition,

the model is specified with parameters that are automatically scaled with rated ca-

pacity of the test equipment and that have been tuned to provide dynamic response

representative of measurements obtained in the field.

The virtual model assumes simple single-node representations for the internal

temperature and humidity responses as originally presented by Patil et al. [8] and

Hjortland and Braun [7]. In this model, the dynamics of the internal temperature

(TID) are expressed using a simple sensible energy balance as

Cs
dTID
dt

= Q̇int,s + UA(TOD − TID)− Q̇c,s (2.1)

where Cs is an effective sensible thermal capacitance that captures the combined ef-

fects of the “near surface” building thermal mass, internal air, and thermostat, Q̇int,s

represents sensible heat gains associated with any internal (people, lights, equipment)

and solar sources, UA is an effective steady-state conductance for heat gain between

the outdoor (TOD) and indoor (TID) temperatures that accounts for envelope conduc-

tion and infiltration, and Q̇c,s is the test equipment sensible cooling rate determined

from measurements.

The idea behind the simple model of equation (2.1) is that it captures both the

steady-state effects of ambient temperature on heat gains and the short-term dynam-

ics associated with equipment and building interactions with feedback control. For

a set of building parameters and outdoor temperature, this differential equation can

be numerically integrated over a fixed time step to provide updated setpoints to the

indoor room conditioning system in response to measured equipment cooling rates.

However, in order to scale the steady-state heat gains with equipment size, the model

is further simplified by defining an overall building sensible cooling load as

BLc,s = Q̇int,s + UA(TOD − TID) (2.2)

For a design indoor temperature and heat gain, the virtual building sensible cool-

ing load is a linear function of outdoor temperature as shown in figure 2.2 and has
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a zero-load intercept at an outdoor temperature that is equal to a design balance

point temperature (TBal,D). In the load-based testing procedure, the design balance

temperature is specified along with the design outdoor temperature (TOD,D). The

design sensible building cooling load (BLc,s,D) associated with (TOD,D) is scaled ac-

cording to the test equipment design sensible cooling capacity (Q̇D,s). At the design

point outdoor temperature, the sensible building load is assumed to be equal to the

equipment design sensible cooling divided by a sizing factor (BLc,s,D = Q̇D,s/F ).

The CSA EXP-07 draft standard assumes a sizing factor (F ) of 1.2, meaning that the

equipment rated sensible cooling capacity is 20% greater than the sensible building

load at the design condition.

Fig. 2.2. Sensible building cooling load line

In implementing load-based testing, the outdoor room temperature is specified

and held constant for each test interval and the indoor room temperature varies near

the test unit thermostat setpoint based on dynamic interaction between the test unit

controls and the virtual building. The building sensible load at any given time is

determined as

BLc,s =
1

F

Q̇D,s

TOD,D − TBal,D
(TOD − TBal) (2.3)

where, TBal is the balance point temperature corresponding to the current indoor

room temperature (TID) and is determined as
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TBal = TBal,D + (TID − TID,D) (2.4)

where TID,D is the indoor temperature setpoint for the test unit thermostat (design

value for TID).

The test equipment design sensible cooling rate that is used to scale the virtual

building load is determined from the rated overall cooling capacity (Q̇D,s) and an

estimate of the sensible heat ratio (SHR) of the equipment as

Q̇D,s = SHR× Q̇D,t (2.5)

The rated overall cooling capacity is determined from a full-load equipment test,

while the sensible heat ratio is controlled in load-based testing to values that depend

on the climate type. The CSA EXP-07 draft standard considers wet-climate testing

with SHR = 0.8 and dry-climate testing with SHR = 1.0.

It is also necessary to determine an appropriate effective building thermal ca-

pacitance that provides representative dynamics for residential buildings and that is

scaled with the test equipment size. In an actual building, the thermal mass is highly

distributed in different building materials and furnishings. Zone air and near-surface

thermal mass respond faster to heat transfer inputs compared to the slow responding

deep thermal mass of a building. For load-based testing at a given outdoor condition,

we are only interested in the “shallow” mass, which is closely coupled to the zone

air, in capturing the short-term dynamics associated with equipment and building

interactions for feedback control.

In terms of the short-term dynamics, for single-stage or multi-stage residential

equipment at part-load condition, integrated controls tend to cycle equipment be-

tween different stages to maintain a room indoor condition within the thermostat

dead band. Therefore, in order to provide a representative response that is fast

enough to realize equipment cycling behavior that is observed in field applications,

the virtual building model should have a sensible capacitance that primarily charac-

terizes a combination of the zone air and shallow thermal mass.
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Henderson (1989) [29] simulated combined thermostat, air conditioner and build-

ing performance in a house and found the maximum cycling rate to be 3.4 cycles per

hour. In addition, Henderson (1991) [30] collected field data for 30 air conditioners

and their thermostats in Florida and found the maximum cycling rate was 2.5 cycles

per hour. Both of these cycling frequencies were based on a thermostat dead band

∆Tdband of 1 °F which is defined as difference between upper limit and lower limit of

room temperature fluctuation. For the purposes of this study, 3 cycles per hour was

assumed as a maximum cycling rate to derive capacitance for virtual building model

that can be scaled with equipment cooling capacity.

The cycling performance of a single-stage AC/thermostat/building system can be

described by equation (2.6). This equation is known as the NEMA thermostat cycling

rate curve [31]. N is defined as cycling frequency in units of 1/hr. X is the cycle duty

which is the fraction of on time for each complete on and off cycle. Nmax is the peak

of the curve(maximum cycling rate), which occurs when the cycle duty is 0.5.

N = 4NmaxX(1−X) (2.6)

The maximum cycling rate can also be related to the equipment design sensible

capacity, thermostat deadband, and the sensible capacitance for the virtual building

model according to equation (2.7).

Nmax =
Q̇D,s

8Cs ∗∆Tdband
(2.7)

The maximum cycling rate occurs at a cycle duty of 0.5, which is approximated

as a 0.5 part-load ratio. Therefore, a 0.5 cycle duty means that, in half of a complete

on and off cycle, the equipment is cooling down the indoor temperature from the

upper limit to the lower limit of the dead band by a net cooling rate that is half of

equipment sensible capacity. It is also assumed that Nmax = 3/hr, ∆Tdband = 1°F and

Q̇D,s = 0.8Q̇D,t in determining a sensible capacitance to be used in load-based testing.

After plugging in all these assumptions, equation (2.7) can then be reformatted as
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equation (2.8) to determine a sensible capacitance that scales with rated total cooling

capacity.

Cs = k1 × Q̇D,t (2.8)

where k1 = 120s/°F with Q̇D,t having units of Btu/s. The field data for equipment

cycling frequency from Henderson [30] included the short-term dynamic interactions

of the thermostat, equipment, and building mass in a manner that is consistent with

the goal for the virtual building model.

The dynamics of the internal humidity ratio (wID) are expressed using a simple

single-node latent energy balance as

Cwhfg
dwID
dt

= BLc,l − Q̇c,l (2.9)

where Cw is an effective moisture capacitance that is meant to capture the short-

term dynamic interactions between the equipment and “shallow” moisture storage

within the air and building (carpet, furnishings and other “soft” materials), hfg is

the heat of vaporization of water, BLc,l is the virtual building latent load, and Q̇c,l is

the test equipment measured latent cooling rate. In this simple model, the moisture

capacitance is actually an effective mass of air associated with moisture absorption

and desorption and is greater than the mass of air within the conditioned space due

to carpet, furnishings, etc.

No representative data could be found for an effective moisture capacitance in

residential buildings that characterizes short-term dynamic interactions. Moisture

dynamics can be highly variable, depending strongly on the type of interior furnishings

and whether carpeting is present. Therefore, a simple approach was taken where the

moisture capacitance is estimated as 1.5 times the mass of dry air associated with a

typical volume that would be conditioned by the test equipment. A typical equipment

sizing rule of thumb of 1 ton of rated total cooling capacity per 700ft2 of floor space

was assumed in order to scale the capacitance with the test equipment capacity. For
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this scaling, the interior ceiling height is assumed to be 7.5 ft and the density of dry

air at standard conditions is used to obtain the relation for moisture capacitance.

Cw = k2 × Q̇D,t (2.10)

where k2 = 180lbm− s/Btu with Q̇D,t having units of Btu/s.

2.2 Automated load-based testing procedures

To test and rate residential cooling equipment using the proposed load-based test-

ing methodology, CSA EXP-07 defines a set of dry-coil and wet-coil cooling tests at

different conditions that generate data used in evaluating seasonal performance. This

section presents testing procedures that can be fully automated to generate the neces-

sary data, whereas the next section presents the seasonal performance determination.

Implementation of the virtual building model for load-based testing requires spec-

ification of 6 parameters to define the building sensible and latent load lines (TOD,D,

TID,D, TBal,D, Q̇D,t, F , SHR) and 2 parameters that define the dynamics of the

internal temperature and humidity (Cs, Cw). Table 2.1 summarizes the values or ap-

proaches used to determine the values of these 8 parameters. CSA EXP-07 specifies

test intervals for dry-coil and wet-coil tests in terms of the outdoor dry-bulb temper-

atures shown in table 2.2. The outdoor conditions are the same, except the dry-coil

sequence includes a 113°F desert condition.

The automated testing sequence begins at the lowest outdoor temperature. At

each test interval, the outdoor temperature is used as a setpoint for the outdoor

chamber conditioning system and as an input to the building load model. The tem-

perature of the indoor room is indirectly controlled by the test equipment thermostat

with its setpoint adjusted to the indoor design temperature (TID,D) specified in table

2.1. The indoor room reacts as if it were controlled by test equipment thermostat.

This is accomplished by updating the room temperature setpoint for the indoor test
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Table 2.1.
Summary of Virtual Building Model Parameters for Load-Based Testing

Parameter Value or Approach Comments

TOD,D
Dry-coil tests: 105°F

Wet-coil test: 95°F

The higher design outdoor air

temperature for the dry coil tests

is meant to handle hot-dry climates.

TID,D
Dry-coil tests: 79°F

Wet-coil test: 74°F

The design indoor temperature is

also used as the setpoint for the test

equipment thermostat. A higher

setpoint is assumed for a drier climate.

TBal,D
Dry-coil tests: 72°F

Wet-coil test: 67°F

The design balance point is 7°F

lower than the design indoor

temperature due to typical internal

and solar gains.

Q̇D,t

Determined from AHRI

210/240 A2 test

This is a one-time test determined

prior to load-based testing. Units

of Btu/s are consistent with units

for Cs and Cw.

F 1.2

This denotes that the sensible capacity

of the equipment is 20% greater than

the sensible building load at the design

outdoor temperature.

SHR
Dry-coil tests: 1.0

Wet-coil tests: 0.8

For dry-coil tests, this forces the latent

load to be zero and the equipment

design sensible cooling capacity to

match the total rated cooling capacity.

Cs Cs = k1Q̇D,t k1 = 120s/°F

Cw Cs = k2Q̇D,t k2 = 180lbm− s/Btu
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Table 2.2.
Outdoor dry-bulb temperature TOD,j of the jth cooling test interval

j=1 j=2 j=3 j=4 j=5

Wet-coil test 77°F 86°F 95°F 104°F N/A

Dry-coil test 77°F 86°F 95°F 104°F 113°F

room reconditioning system at short time intervals according to a discretized version

of the dynamic sensible virtual building model.

TID,sp(t+ ∆t) = TID,sp(t) + ∆t
BLc,s(TOD,j)− Q̇c,s(t)

Cs
(2.11)

where ∆t is the time step for updating the setpoints during the load-based tests. The

test equipment sensible cooling rate, Q̇c,s, is determined from real-time measurements

of air flow rate and temperature differences across the cooling coil as documented in

CSA EXP-07. Both the data sampling and setpoint updating timesteps should be

no greater than 5 seconds to avoid large changes in the room setpoints that could

result in poor psychrometric chamber control. The building sensible cooling load

BLc,s(TOD,j) is updated in real-time based on the current indoor room temperature

setpoint TID,sp(t), using the following equation.

BLc,s(TOD,j) =
1

F
× SHR ∗ Q̇D,t

TOD,D − TBal,D
(TOD,j − TBal(t)) (2.12)

where

TBal(t) = TBal,D + (TID,sp(t)− TID,D) (2.13)

The design total cooling capacity Q̇D,t, is the measured capacity determined using

the AHRI 210/240 A2 test condition, as reported by the equipment manufacturer.

For wet-coil tests, it is also necessary to control the indoor humidity in a manner

that emulates the virtual building and its interactions with the test equipment. At
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each updating interval, a setpoint for the indoor humidity ratio is updated using a

discretized version of the dynamic latent energy balance.

wID,sp(t+ ∆t) = wID,sp(t) + ∆t
BLc,s(TOD,j)(

1
SHR
− 1)− Q̇c,l(t)

hfgCw
(2.14)

The test equipment latent cooling rate, Q̇c,l, is determined from real-time mea-

surements of air flow rate, inlet humidity, and outlet humidity as described in CSA

EXP-07. For dry-coil tests, SHR=1 and there is no latent load. This can be imple-

mented by setting an indoor room humidity setpoint with a dewpoint that is below

the expected lowest surface temperature of the test equipment evaporator. Alterna-

tively, application of Equation (2.14) will converge to an indoor humidity where the

indoor coil is dry for SHR=1.

According to CSA EXP-07, the temperature and humidity sensors for feedback

control of the indoor room and the test equipment thermostat should be located in the

inlet to the return air for the test unit. This is meant to ensure reproducible dynamic

interactions and performance across different test facilities. The downside is that the

thermostat dynamics are faster than what would be expected in the field. To address

this issue, a separate thermostat environment emulator was developed and presented

in chapter 4 in this work that provides conditions that are representative of residential

installations. For the following sample load-based tests, the test thermostat was

enclosed within the thermostat emulator and the thermostat inlet temperature was

almost perfectly controlled to the virtual room temperature setpoints. The humidity

sensor for feedback control of the indoor humidity ratio was located at the inlet duct

to the test equipment.

The goal of load-based testing is to determine average equipment coefficient of per-

formance for each outdoor temperature (COP (TOD,j)), as a ratio of average equip-

ment air-side total capacity over average power consumption) that can be used as

input for the seasonal performance rating described in the next section. The auto-
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mated load-based cooling test procedure for both the dry-coil and the wet-coil tests

is detailed in the following steps and in the flow chart of figure 2.3.

Fig. 2.3. Flow chart of cooling test procedure

1. Initializations: The initial setpoint temperatures for the environmental cham-

bers are set as 77°F for the outdoor room and the test equipment target setpoint for

dry or wet-coil testing as specified in table 2.1. After the rooms are close to the desired
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temperatures, the test unit is turned on with a test thermostat setpoint correspond-

ing to the target value for dry or wet-coil testing (table 2.1). The virtual building

sensible model is initialized with TID,sp(0) set equal to the test unit thermostat set-

point. For dry-coil tests, the virtual building latent model can be initialized with a

value of wID,sp(0) corresponding to a low relative humidity (e.g., 20%) at the ther-

mostat setpoint temperature. For wet-coil tests, wID,sp(0) should be initialized to a

value associated with a representative relative humidity (e.g., 45%) at the thermostat

setpoint temperature.

2. Dynamic Updating for Load-Based Testing: The indoor temperature and hu-

midity setpoints for the environmental reconditioning system are updated at regular

short intervals using Equations (2.11) and (2.14). Both indoor and outdoor room

measurements must track (be controlled to) the setpoints (TOD,j, TID,sp and wID,sp)

within specified tolerances in order to initiate data processing of test equipment per-

formance.

3. Full-Load Testing Evaluation and Execution: If the test equipment maximum

sensible cooling capacity is not sufficient to meet the sensible building load, then the

indoor room temperature setpoint will rise above the test unit thermostat setpoint.

In order to evaluate this condition, the average virtual building temperature setpoint

(TID,sp) for a moving sampling window of 20 min is compared with the test unit ther-

mostat setpoint (TID,D) and if the difference is greater than 2°F , then it is assumed

that the unit does not have sufficient capacity for the current test interval. At this

point, load-based testing is abandoned and full-load testing is implemented for the

current and subsequent test intervals at higher outdoor temperatures. For full-load

testing, the sensible virtual building model is deactivated, the test equipment re-

turn air temperature is controlled to the indoor design temperature (TID,D), and the

equipment thermostat setpoint is set to its lowest possible value to ensure that the

equipment will be fully loaded. The latent building model is still utilized for updating

the indoor humidity according to the prescribed SHR value. However, the measured
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sensible capacity of the equipment is used in place of the sensible building load in

equation (2.14). At each test interval under full-load testing, test convergence and

COP determination are carried out as described in step 4 for variable-speed operation.

4. Load-Based Testing Convergence Evaluation: Data processing for convergence

evaluation at a given load-based test interval involves evaluating an overall COP

determined from integration over a moving window. If the test equipment is cycling

on and off in a test interval, an integrated COP for each on/off cycle is determined as

the ratio of the total cooling delivered to the total unit electrical consumption over

the on/off cycle. Convergence is achieved when the difference between the COP for

successive on/off cycles is less than a specified convergence tolerance (e.g. 1%). If the

test equipment is running continuously in variable-speed mode, then the integrated

COPs for two neighboring moving 20-minute sampling windows are compared until

the difference is less than the convergence tolerance (1%). For both cycling and

variable-speed modes, there should be a testing time limit for each test interval to

handle situations where convergence criteria cannot be achieved. For an unconverged

test interval, the integrated COP should be based on all of the measurement samples

obtained after the criteria for the virtual room setpoint control errors are satisfied

and data processing begins.

5. Test Termination and Outputs: For load-based testing, steps 2 to 4 are repeated

until all of the test intervals for outdoor temperature in table 2.2 are considered. If

the test unit doesn’t have sufficient capacity to maintain the indoor temperature at

the thermostat setpoint, then the full-load testing procedure under step 3 is applied

for the remainder of the test intervals The primary outputs from the testing are

converged COP values for each of the test intervals.
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2.3 Seasonal performance rating

The converged values of COP for the test intervals are used in calculating a sea-

sonal coefficient of performance using a temperature-bin-based approach as outlined

in CSA EXP-07 and given by

SCOPc =

∑m
k=1(DCR(Tk)× nk)∑m
k=1(

DCR(Tk)
COP (Tk)

× nk)
(2.15)

where m is the number of temperature bins for the cooling climate zone, DCR(Tk)

is a sensible building load for the kth temperature bin, nk is the number of hours in

the kth temperature bin during the cooling season and COP (Tk) is the COP for the

kth temperature bin estimated by interpolation using the test outputs (COP (TOD,j)).

Thus, the seasonal cooling coefficient of performance (SCOPc) is the ratio of a total

cooling load to a total electrical usage over the cooling season. This performance index

does not include stand-by power associated with times that the cooling equipment is

not operating. However, the CSA EXP-07 also presents an approach for calculating

SCOP that includes non-active-mode power consumption, which is useful in climate

zones where equipment has a lot of standby hours.

Table 2.3.
Load-based tests used for climate zones in seasonal performance ratings for cooling

Very cold Cold/dry Cold/humid Marine

Cooling test Wet-coil test Dry-coil test Wet-coil test Dry-coil test

Mixed Hot/humid Hot/dry

Cooling test Wet-coil test Wet-coil test Dry-coil test

The sensible load line of equation (2.12) evaluated at the design indoor temper-

ature is used along with bin data for outdoor temperature to determine DCR(Tk).

Temperature bin data for each climate zone can be found in CSA EXP-07 [10]. The

climate zones and load-based test results used for cooling performance ratings in



33

North America are summarized in table 2.3. For example, ratings of cooling perfor-

mance for very cold, cold/dry, and hot/dry climates use results from dry-coil cooling

tests.

2.4 Experimental evaluation of load-based testing

This section presents results from applying the load-based testing and rating

methodology to a state-of-the-art high-efficiency residential heat pump. In addition,

the sensitivity of the results to building load sizing parameters is evaluated. Repeata-

bility results associated with testing on three different days are presented. Last but

not the least, impact of uncontrolled residual capacity of the test equipment when it

cycles off is discussed along with a possible solution.

2.4.1 Test setup

An experiment was set up to test a 2-ton variable-speed ducted split direct-

expansion heat pump operating in cooling mode. The manufacturer’s rated char-

acteristics are tabulated in table 2.4. Indoor and outdoor units for this equipment

were installed in adjacent psychrometric chambers to simulate indoor and outdoor

conditions. The system was charged with 13 lb 12 oz of refrigerant R410A with 35 ft

of piping separating the indoor and outdoor units.

Table 2.4.
Test equipment rating characteristics

Cooling capacity @95 °F 25200 Btu/hr

EER cooling Rating 16

SEER Rating 20.5

Heating capacity @47 °F 23600 Btu/hr

Region IV HSPF Rating 13

Heating capacity @17 °F 24800 Btu/hr
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Refrigerant-side measurements

Refrigerant-side measurement locations are shown in figure 2.4. T represents

a T-type immersion thermocouple and P represents a pressure transducer. In the

refrigerant circuit of the test heat pump, temperatures and pressures at six locations

are measured, including indoor unit inlet and outlet, outdoor unit inlet and outlet,

compressor suction and discharge. Refrigerant pressure is measured using 500 psi full

scale range Honeywell PX2 sensors.

Refrigerant flow rate is measured using a Micro-Motion R025 Coriolis mass flow

meter. The configuration with subcooled liquid flow maintains the accuracy of the

measurement and reduces the pressure drop and its impact on system performance.

Fig. 2.4. Refrierant-side measurement locations

Equipment refrigerant-side capacity is calculated as the product of refrigerant

mass flow rate and enthalpy difference between indoor unit inlet and outlet. Capacity

measurement is accurate when single-phase refrigerant mass flow is measured, and the

enthalpy calculation is valid. When the indoor unit inlet or outlet has its refrigerant in
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a two-phase region, enthalpy cannot be characterized by measurement of temperature

and pressure only. For example, in cooling mode, when outdoor ambient and building

load are is low, two-phase refrigerant will often flow through the mass flow meter.

Determination of refrigerant-side capacity in cooling mode is shown in equation (2.16).

Q̇ref = ṁref (href,out − href,in) (2.16)

Outdoor unit consumed power is measured by a OSI PC5-059C AC watt trans-

ducer and indoor unit power is measured by a OSI PC5-002C transducer. The sum of

the indoor and outdoor unit real-time measurements of consumed power is the total

equipment power that is used in evaluating performance.

Air-side measurements

In order to acquire air-side capacity, indoor unit return air and supply air en-

thalpies are needed along with air flow rate. In order to determine air enthalpy,

drybulb temperature, dewpoint temperature and air pressure are measured.

Fig. 2.5. Air-side measurement locations: Indoor unit
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The average value of a 9 T-type thermocouples grid is used to represent indoor

unit inlet air dry-bulb temperature. Both indoor unit and outdoor unit air inlet

pressure is considered as atmospheric pressure and are measured using a barometer.

Four ports with plastic tubes sample humid air at the indoor unit inlets and outlets.

These tubes are connected to General Eastern (GE) D-2 chilled mirror sensors that

measure dew point temperature. Measurements for supply air are taken 3-ft above

the discharge of indoor fan in the duct and so are the grid of 9 thermocouples, 4

pressure tabs and 4 humid air tabs. Gauge pressure of the supply air is measured

using a SETRA 260 sensor (0.5 inH2O full scale range). An array of Ebtron GP1

Type-A hot wire anemometer (2 probes with a total of 4 velocity sampling holes)

are used to measure the air flow rate 2’ above the discharge of the indoor fan in the

supply air duct.

Air-side total capacity is calculated as the product of air flow rate and enthalpy

difference between indoor unit return air and supply air, shown by equation (2.17).

Air-side sensible capacity is calculated as the product of air flow rate, constant pres-

sure specific heat and temperature difference between indoor unit return air and

supply air, shown by equation (2.18). The constant pressure specific heat is repre-

sented as an average value for the return air and supply air. Latent capacity is shown

in equation (2.19).

Q̇c,t = ṁair(hair,in − hair,out) (2.17)

Q̇c,s = ṁair
Cpin + Cpout

2
(Tair,in − Tair,out) (2.18)

Q̇c,l = Q̇c,t − Q̇c,s (2.19)

In load-based testing, the measured indoor unit return air dry-bulb temperature

and humidity level were used as inputs to controller the psychrometric chamber re-

conditioning system. The controller attempts to control these conditions to track
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variable setpoints that are outputs from the virtual building model. In figure 2.6, the

inlet air dry-bulb temperature of the outdoor unit is also measured and controlled

to the setpoints specified in each test interval. The specified accuracy of each sensor

and a description of its use are summarized in table 2.5.

Fig. 2.6. Air-side measurement locations: Outdoor unit

Table 2.5.
Sensor accuracy

Sensor Accuracy

T-type thermocouple 0.9F

Chilled mirror dewpoint sensor 0.5F

Hot-wire anemometer 3%

Air pressure sensor 1% F.S.

Refrigerant pressure sensor 0.25%

Coriolis mass flow meter 0.50%

Outdoor unit power meter 0.5% F.S.

Indoor unit power meter 5W

As a first step for application of load-based testing, an AHRI 210/240 [2] A2

steady-state test was conducted and the test results are presented in table 2.6. The

air-side total capacity only differs from the refrigerant-side capacity by 2%, which is
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smaller than the 6% maximum discrepancy allowed by AHRI 210/240. Therefore,

Q̇D,t = 9639W was utilized for load-based testing in determining the load line.

Table 2.6.
AHRI 210/240 A2 steady-state test

Indoor dry-bulb

temperature

Indoor wet-bulb

temperature

Outdoor dry-bulb

temperature

80°F 67°F 95°F

Air-side

total capacity

Refrigerant

-side capacity

Total

Power

Air

flowrate

9639W 9487W 1576W 1010 cfm

2.4.2 Load-based testing and rating results

Results of a dry-coil cooling automated test sequence for all of the outdoor con-

ditions are shown in figure 2.7, including the sensible cooling rate of the equipment

(green line), sensible building load (red line), and total unit power (blue line). This

test, consisting of a sweep of 5 test intervals, was a fully automated implementation

of the load-based testing procedures. The test equipment cycled on/off at the 1st and

2nd test intervals where the sensible building load was smaller than the minimum

sensible cooling rate of the test equipment, while at the 3rd and 4th test intervals, the

equipment tried to modulate its compressor and indoor fan speed to match its cooling

rate to the building load. Unlike steady-state tests, dynamic behaviors of the equip-

ment, such as cycling and speed modulations can be observed here, as the equipment

and its integrated controls respond in a realistic way to the imposed building loads.

Temperatures in the dry-coil test are shown in figure 2.8, where the red line indi-

cates outdoor temperature, the green line indicates indoor temperature (indoor unit

return air temperature) and the blue line indicates the virtual room temperature

setpoints that are updated using the virtual building model. The different outdoor
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Fig. 2.7. Sensible cooling rate, sensible load, and power measured in
dry-coil load-based testing

temperatures in the figure echo the 5 test intervals that correspond to the building

loads of figure 2.7. The temperature of the indoor psychrometric chamber tracks the

virtual room temperature setpoints well. The fluctuation in the virtual room tem-

perature is due to the test unit controller’s behavior, and was maintained between

roughly 77°F to 80°F during the first four test intervals, as the test equipment ther-

mostat setpoint was 79°F . When the outdoor temperature shifted to 113°F in the

5th test interval, the moving averaged virtual room temperature became higher than

81°F , which marked the termination of the dynamic tests, and the activation of a

full-load test for the 5th test interval, since the test equipment did not have enough

capacity to meet the virtual building load. For the full-load test, the return air tem-

perature was controlled to a constant setpoint of 79°F instead of a dynamic virtual

room temperature, since the sensible virtual building model was deactivated.
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Fig. 2.8. Temperatures in dry-coil load-based test testing

Summary results for each test interval of this dry-coil test are presented in table

2.7. COP decreases with increased outdoor temperature and larger building load.

The 1st test interval converged as the last two cycling patterns were identical to each

other in figure 2.7. In the 2nd test interval, the test equipment cycled on/off with

a larger duty cycle compared to the 1st interval, due to the increased sensible load.

The difference of the COPs between the last two cycles in the 2nd test interval was

less than 1%. Although the equipment sensible cooling rate fluctuated significantly

during the 3rd test interval and did not closely track the sensible building load, the

moving averaged COP converged. In the 4th test interval, the equipment was able to

track the load and the test converged to a nearly steady state condition.

Figure 2.9 presents sensible cooling rate, sensible building load and power results

for a wet-coil test using the same legend as employed for figure 2.7. Four test intervals

can be observed. In the 1st interval, the test equipment cycled on/off while in the 2nd

and 3rd intervals, the equipment was able to operate in variable-speed mode. Figure
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Table 2.7.
Results for dry-coil test

Tj 77°F 86°F 95°F 104°F 113°F

Behavior Cycling Cycling
Variable

-speed

Variable

-speed

Out of

capacity

COP (Tj) 5.593 5.334 4.563 4.015 3.328

Uncertainty ±0.398 ±0.364 ±0.286 ±0.265 ±0.227

Test duration 3.6hrs 2.6 hrs 1.6 hrs 1.0 hrs 1.4 hrs

Cycle period 0.7 hrs 0.9 hrs - - -

Fig. 2.9. Sensible cooling rate, sensible load, and power measured in
wet-coil load-based testing

2.10 shows temperature variations during the wet-coil test using the same legend as

figure 2.8. The indoor return temperature was maintained by the test equipment

roughly between 72°F and 75°F during the first three test intervals. In the 4th test
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interval, the equipment could not maintain the indoor temperature and a full-load

test was performed.

Fig. 2.10. Temperatures in wet-coil load-based testing

Figure 2.11 presents additional results for this wet-coil test including real-time

measurements of the test equipment latent capacity (green line), indoor return air

relative humidity (magenta line), and total power consumption (blue line) along with

virtual building model dynamic outputs of latent building load (red line) and virtual

room relative humidity setpoints (cyan line). The latent building load was calculated

using the real-time sensible building load associated with a prescribed sensible heat

ratio of 0.8 in the wet-coil test. In the 1st test interval, as the equipment turned on

its indoor fan in each cycle, negative latent capacity was observed, since the conden-

sate on the indoor coil re-evaporated to add moisture to the room. Indoor relative

humidity was maintained between 47% and 52% during this test, and its return air

relative humidity was well controlled to the virtual building relative humidity set-

points adjusted based on the virtual building model outputs. In the 4th test interval,
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Fig. 2.11. Latent results in wet-coil load-based testing

although the equipment did not have sufficient sensible capacity to meet the sensible

load and a full-load test was activated, the latent virtual building was still active.

In dynamically updating the return air humidity setpoint using Equation (2.14), the

latent load was updated according to a real-time measurement of equipment sensible

cooling rate and a sensible heat ratio of 0.8. Summary results for each test interval

of this wet-coil test are presented in table 2.8. All four test intervals converged suc-

cessfully. The 3rd interval converged with variable-speed behavior of the equipment

after one on/off cycle.

Overall COP test results for both the dry-coil and wet-coil test intervals are shown

in figure 2.12. The green line represents the dry-coil test, while the blue line represents

the wet-coil test. For each test interval, the wet-coil COP is observed to be higher than

the dry-coil COP with the same outdoor temperature, due to a higher evaporating

temperature and the additional latent cooling associated with the wet-coil test. A

0.5K thermocouple uncertainty in return and supply air measurement is the most
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Table 2.8.
Results for wet-coil test

Tj 77°F 86°F 95°F 104°F

Behavior Cycling
Variable

-speed

Variable

-speed

Out of

capacity

COP (Tj) 6.420 5.745 5.069 4.294

Uncertainty ±0.465 ±0.424 ±0.349 ±0.308

Test duration 3.3 hrs 2.3 hrs 1.4 hrs 1.3 hrs

Cycle period 0.9 hrs - - -

Fig. 2.12. COPs for cooling test intervals

significant source of measurement uncertainty, especially for low-load test intervals.

For test intervals with higher loads, air-side enthalpy difference across the indoor unit

becomes larger, and therefore the measurement errors of the moist air contribute less

to the overall COP uncertainty. For each test interval, the wet-coil test has a larger
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COP uncertainty compared to the dry-coil test, due to additional measurement errors

of the moist air dewpoints.

The dry and wet-coil test results for COP at different outdoor temperatures were

used to calculate seasonal coefficients of performance for the 7 climate zones listed

in table 2.3. The results are presented in table 2.9. Not surprisingly, seasonal COPs

are lower in the climate zones where the dry-coil test results were employed. The

hot/dry climate has the lowest performance. For the same outdoor temperature, this

test unit performs significantly better when removing moisture. For the climate zones

where wet-coil tests were utilized, the differences in seasonal performance are small.

Compared to dry climates, wet climates have larger uncertainties in their seasonal

coefficients of performance since these coefficients were obtained using wet-coil test

COPs that have larger uncertainties. CSA EXP07 [10] requires that SCOPc be

reported with resolution of 0.05 that is smaller than the measurement uncertainties

calculated here, and therefore sensors need to be carefully selected and instrumented

in order to obtain accurate seasonal performance ratings of test equipment.

Table 2.9.
Seasonal coefficients of performance for cooling

Climate zone Very cold Cold/dry Cold/humid Marine

SCOPc 5.83 5.02 5.81 4.92

Uncertainty ±0.25 ±0.18 ±0.24 ±0.17

Climate zone Mixed Hot/humid Hot/dry

SCOPc 5.77 5.86 4.78

Uncertainty ±0.23 ±0.25 ±0.15

2.4.3 Evaluation of sensitivity to building load parameters

The part-load performance of the equipment depends on its cooling capacity in

relation to the load. In load-based testing, this is controlled by a sensible load sizing
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factor, F. As F increases, the equipment will operate more of the time at lower speeds

and off cycles. In evaluating new control strategies or equipment designs, it useful to

understand how changes in the sizing factor affect overall performance.

Fig. 2.13. COPs for dry-coil test intervals with different sizing factor F

Figure 2.13 shows dry-coil load-based test results for sizing factors (F) of 0.72,

0.96, and 1.2 where COP is plotted as a function of outdoor temperature. The

goal was to demonstrate how load-based testing captures the effects of sizing on

performance. At the lowest outdoor temperature of 77°F , the building load is low and

all three of the sizing factors led to on/off cycling behavior. However, the performance

associated with the largest sizing factor is considerably lower. As the part-load ratio

decreases with increasing sizing factor, the equipment is off more of the time (low

duty cycle) and there is greater relative performance penalty associated with cycling

the equipment on. For the outdoor temperature of 86°F , the equipment operated

in variable-speed mode for the smallest sizing factor of 0.72 and in on/off cycling

mode for the other 2 cases. However, all three cases had a similar efficiency since the

duty cycle was relatively high for the cycling behaviors with a relatively low cyclic
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degradation. At the outdoor temperature of 95°F , the equipment ran out of cooling

capacity for the F=0.72 test and therefore full-load testing was performed, while the

larger sizing factors resulted in variable-speed operation under load-based testing.

At this condition, variable-speed performance was considerably better than full-load

performance. At the outdoor temperature of 104°F , the equipment operated at full

load for the two smaller sizing factors and both cases had the same performance

that was lower than that for the largest sizing factor. All 3 sizing factors resulted in

full-load operation at 113°F yielding the same overall performance. Uncertainty for

each COP is not shown in figure 2.13, but these variations will be used to generate

uncertainties for seasonal coefficient of performance in table 2.10.

Table 2.10 summarizes the seasonal coefficient of performance (SCOPc) for three

dry climate zones with the three different sizing factors. For the range of sizing

factors considered, SCOPc decreases significantly with decreasing sizing factor (i.e.

undersized equipment) for all climate zones due to performance degradation associ-

ated with greater full-load operation. Increasing the sizing factor above 1.2 should

also ultimately decrease performance due to increasing on/cycling losses.

Table 2.10.
SCOPc for dry climate zones with different F values

F Cold/dry Marine Hot/dry

0.72 5.44±0.20 5.30±0.19 5.12±0.17

0.96 5.76±0.23 5.60±0.21 5.34±0.19

1.2 5.95±0.24 5.78±0.22 5.52±0.19

Equipment performance also depends on the latent load in relation to the total

load. In load-based testing, this is controlled by the building sensible heat ratio,

SHR. As SHR decreases for a given outdoor temperature (i.e., fixed sensible load),

increasing moisture condensation on the evaporator coil leads to both a higher total

cooling rate and higher evaporating temperature. This generally leads to an increase



48

in COP of the equipment. This effect is seen in the results of figure 2.14 for wet-coil

load-based tests performed for two different values of SHR with F=1.3. In addition to

the significantly higher COP for the lower SHR of 0.75, the test equipment runs out

of capacity at a lower outdoor temperature than for SHR=0.95 (95°F versus 104°F ).

Table 2.11 shows the effect of SHR on SCOPc for four humid climate zones. As

expected, the performance increases significantly with decreasing SHR.

Fig. 2.14. COPs for wet-coil intervals with different building SHR when F=1.3

Table 2.11.
SCOPc for humid climate zones with different SHR

SHR F Very cold Cold/humid Mixed Hot/humid

0.95 1.3 5.91±0.29 5.89±0.28 5.83±0.27 5.92±0.30

0.75 1.3 6.39±0.26 6.36±0.26 6.29±0.25 6.39±0.27



49

These parametric studies illustrate the ability of load-based testing to capture

the impacts of different building-load interactions. These types of studies could be

useful to an engineer in the process of developing improved equipment and controller

technology. For developing a performance rating approach, it is important to have

representative and repeatable test conditions for fair comparisons of different equip-

ment. Any rating scheme, including AHRI 210/240, has a strong dependence on the

specific conditions assumed for the tests and therefore it is important that these con-

ditions be representative. The value of F=1.2 specified for CSA EXP-07 was chosen

based on typical sizing approaches and experience in applying the load-based testing

procedure in the laboratory. In addition, it was found that SHR=0.8 leads to indoor

humidity conditions that are within the comfort zone and is representative of more

humid climates.

2.4.4 Evaluation of repeatability

Repeatability of load-based testing is essential in ensuring a reliable testing and

rating procedure. Repeatability across different facilities depends on many factors,

including specification of standard measurement approaches and enforcement of strict

criteria for tracking virtual building temperature setpoints and achieving convergence.

These issues are addressed by specifications in the CSA EXP-07 and are beyond

the scope of this work. However, repeatability of testing and rating results for a

given installation can be an issue if the control algorithms within the test equipment

are adaptive or their response is sensitive to a time history of behavior. The test

equipment considered in this study is considered to be on the cutting edge in terms

of performance and sophisticated control. Therefore, repeatability of load-based test

results was a potential issue that was addressed by performing three sets of dry-coil

load-based tests on 3 different days using the same experimental setup.

Results for the three test sequences are tabulated in table 2.12. For each test

interval, the results include whether a test interval converged according the specified
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Table 2.12.
Results for three dry-coil tests

Tj 77°F 86°F 95°F 104°F 113°F

Test 1

Convergence Yes No Yes No Yes

Behavior Cycling Cycling Variable Cycling Variable

COP (Tj) 6.952 6.023 5.214 4.401 3.613

Uncertainty ±0.756 ±0.467 ±0.361 ±0.298 ±0.263

Test 2

Convergence Yes Yes Yes Yes Yes

Behavior Cycling Cycling Variable Variable Variable

COP (Tj) 6.982 6.204 5.278 4.412 3.658

Uncertainty ±0.725 ±0.480 ±0.353 ±0.289 ±0.248

Test 3

Convergence No Yes Yes Yes Yes

Behavior Cycling Cycling Variable Variable Variable

COP (Tj) 6.986 6.179 5.305 4.446 3.626

Uncertainty ±0.739 ±0.469 ±0.344 ±0.279 ±0.238

criteria, whether the equipment was cycling or operating in variable-speed mode, and

the resulting COP. The COPs of the equipment for test 1 are somewhat lower than

for tests 2 and 3, primarily because the equipment cycled more frequently and less

stably for test 1, especially at the outdoor temperature of 86°F when the test did

not converge. The results for tests 2 and 3 are relatively close. SCOPc values are

tabulated in table 2.13 for three dry climates. Due to faster cycling behavior, test 1

leads to ratings that are between 1.6% and 1.7% less than test 3. Test 2 and test 3

lead to ratings that are consistent with each other within a 0.2% relative difference.

2.4.5 Impact of residual capacity in cycling tests

Uncontrolled air-side residual capacity in load-based tests is seen when equipment

compressor and indoor fan cycle off at low load conditions, but the psychrometric
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Table 2.13.
SCOPc for three dry-coil tests

Climate zone Cold/dry Marine Hot/dry

Test 1
SCOPc 5.82 5.68 5.47

Uncertainty ±0.25 ±0.23 ±0.20

Test 2
SCOPc 5.91 5.76 5.55

Uncertainty ±0.25 ±0.23 ±0.20

Test 3
SCOPc 5.92 5.77 5.56

Uncertainty ±0.24 ±0.22 ±0.20

SCOPc

difference

SCOPc,3−SCOPc,1

SCOPc,1
1.7% 1.6% 1.6%

SCOPc,3−SCOPc,2

SCOPc,2
0.2% 0.2% 0.2%

chamber fan keeps circulating some air through the indoor coil. For a residential

unitary air conditioner operating in the field, the airflow through the indoor coil is

only the result of operation of the indoor fan and this is typically cycled off with the

compressor. Therefore, test performance and behavior with residual capacity does

not correctly represent field results. In addition, this uncontrolled residual capacity

could be significantly different in different test facilities having different air distri-

bution methods. This residual capacity could bias the results for load-based testing

performance ratings to different degrees depending on the test equipment and test

facility. Figure 2.15 indicates residual capacity during one cycle in a red dashed box.

As can be seen, it took 15 minutes for residual capacity to attenuate to zero after the

compressor and indoor unit fan cycled off.

In order to eliminate uncontrolled capacity when the unit is off in load-based test-

ing, it is suggested that a damper be installed downstream of the indoor equipment

in the supply air duct. This damper should completely block airflow when the indoor

unit fan is off and not restrict airflow when the indoor fan is on. Therefore, mea-

surement of airflow using a nozzle box or similar instruments will only reflect airflow
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Fig. 2.15. Residual capacity in load-based test

Fig. 2.16. Diagram of supply air damper
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circulated by the indoor unit fan. A schematic is shown in figure 2.16. The actuator

of the damper needs a control signal for the indoor unit fan on/off status to properly

operate the damper. There are various choices regarding criterion for evaluating the

indoor unit fan on/off status, such as a threshold on differential static pressure across

the indoor unit ductwork for a ducted system, or a threshold on indoor unit power. In

this work, a pseudo damper is introduced in load-based testing to serve this purpose

equivalently with a threshold on indoor unit power.

Figure 2.17 illustrates the logic of the pseudo damper for airflow in the load-based

tests. The pseudo damper algorithm is convenient when given a measurement of in-

door unit power. A threshold is prescribed to compare to real-time indoor unit power.

If power is smaller than the threshold, which means the indoor unit fan is not running,

measured airflow will be overridden to zero. It is important to select the appropriate

threshold on either indoor unit power or differential static pressure. For example, a

higher threshold on indoor unit power will filter out fan operation with low speed,

while a lower threshold on power will falsely regard equipment operation in standby

mode as active operation of the indoor fan. A 20W threshold was implemented for

indoor unit power measurement for the test equipment, which is slightly larger than

the standby power of 18W. The logic of using a threshold on indoor power can be

directly transferred to control of an actual damper in load-based tests and then it

would not be necessary to override the airflow measurement.

The proposed pseudo damper logic was implemented on the previously collected

load-based cooling data and modified test results are shown along with the original

results for a 77°F dry-coil test interval in figure 2.18. The green solid line indicates

equipment capacity with the pseudo damper while the green dashed line indicates

capacity without the pseudo damper. The residual capacity is filtered out by the

damper and the on/off pattern of capacity is more consistent with that of equipment

power and what would be expected in the field. In addition, it is observed that the

equipment cycling dynamics in load-based testing are slightly faster with the damper

implemented. Both virtual room temperature dead band and cycle period shrink
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Fig. 2.17. Pseudo damper logic based on threshold of indoor power

slightly since the virtual room temperature rises faster without residual capacity

when the equipment is cycled off.

Fig. 2.18. 77 °F test interval performance with supply duct pseudo damper
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In order to compare the impact of the damper on performance ratings, two com-

plete dry-coil load-based tests were conducted with and without the supply duct

damper. As can be seen in table 2.14, with the implementation of the damper, the

COP for the 77 °F test interval decreased significantly since residual capacity was not

integrated into performance calculation. For the 86 °F test interval, the equipment

ran with a higher cycle duty and residual capacity was less involved in a cycle, but

COP still decreased with the damper. For the 95 and 104 °F test intervals, the equip-

ment ran in variable-speed mode with the indoor fan running continuously, such that

the COP was not affected. In addition, the damper should not affect the full-load

113 °F test interval at all.

Table 2.14.
COPs for dry-coil test intervals with and without damper

COP (Tj) 77°F 86°F 95°F 104°F 113°F

Without damper 6.794 5.801 4.925 3.825 2.646

With damper 6.032 5.728 5.054 3.753 2.646

Comparisons of seasonal performance are given in table 2.15. With the implemen-

tation of the damper, SCOPc for each climate zone dropped. The Hot/Dry climate

has less reduction in seasonal performance with the damper since the equipment had

larger loads and ran more in variable-speed mode compared to the other two zones.

Table 2.15.
SCOPc for dry climate zones with and without damper

Climate zones Cold/dry Marine Hot/dry

Without damper 5.54 5.36 5.09

With damper 5.41 5.24 5.01

With implementation of an automated damper in the supply air duct, load-based

tests can better represent equipment behavior in the field due to elimination of un-
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controlled capacity, which has a significant impact on the test results. Test repro-

ducibility is enhanced across different test facilities since air-side capacity will not be

significantly affected by the characteristics of the test facility air distribution system.

Overall, performance ratings will be more realistic and repeatable.

2.5 Interim conclusions

Currently, performance ratings for unitary residential air conditioners and heat

pumps in the U.S. marketplace are based on results of steady-state laboratory tests

according to the procedures and methodology established by standard AHRI 210/240

[2]. However, this current methodology fails to appropriately rate and credit equip-

ment that has improved part-load performance due to the employment of variable-

speed components and advanced controls. The automated load-based testing method-

ology presented in this chapter better reflect the field performance of test equipment

with its native controls. This methodology is already implemented within the Cana-

dian Standards Association (CSA) EXP-07 draft standard and is likely to be a basis

for future testing and rating standards within the United States and elsewhere. The

key element of the methodology is that the dynamic response of a virtual building is

emulated using the psychrometric chamber controls to interact with the test equip-

ment in real-time, such that the equipment behaves as if it were installed in the

field.

This chapter is an extension of the CSA EXP-07 standard in that it includes

background on the development of the virtual building modeling approach and its

parameters and also provides example dynamic testing results for a state-of-the-art

high efficiency, variable-speed heat pump operating in cooling mode. The paper pre-

sented and demonstrated standardized procedures that automatically test different

dynamic load-based test intervals as a whole sweep using convergence criteria applied

to individual test intervals. In demonstrating the approach for the variable-speed

heat pump, typical dynamic behaviors of the equipment were observed such as on/off
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cycling, continuous capacity modulation due to feedback control of compressor speed,

indoor humidity variation with operating conditions and controller fluctuations, and

capacity limits that lead to loss of indoor temperature conditions. The type of in-

formation obtained during these dynamic tests can be extremely useful in evaluating

advanced controllers during the development process and provide appropriate incen-

tives for improving performance within rating procedures.

This chapter also presented and demonstrated the temperature-bin-based method

for propagating load-based test results through a seasonal coefficient of performance

as a means of rating equipment. It was found that seasonal ratings were significantly

higher in humid climates for the equipment considered in this study because of better

test performance for wet-coil than dry-coil conditions. The highest rating occurred for

a hot/humid climate, whereas the worst performance was for a hot/dry climate. The

effect of building parameters on performance was also investigated and illustrated the

ability of load-based testing to capture the impacts of different building-load interac-

tions. This capability for load-based testing could be very useful in the development

process for improved equipment and controller technology.

In addition, repeatability of results for the test equipment and installation was

addressed by performing three sets of dry-coil load-based tests on 3 different days.

Repeatability is a potential issue for high efficiency equipment that has sophisticated

control algorithms that are adaptive or have overall responses that are sensitive to a

time history of behavior. Although some differences in control behavior were observed

for the repeatability tests applied to the high efficiency equipment considered in this

study, the overall seasonable efficiency differences were less than 1.7%. Last but not

the least, this chapter introduced the automated supply air damper that will close

to eliminate uncontrolled residual capacity when the test equipment cycles off. Test

repeatability and performance rating results will benefit from implementation of this

damper.
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3. ALTERNATIVE VIRTUAL BUILDING MODEL

In this chapter, a virtual building model with two nodes is studied as an alterna-

tive model form to understand the effect of using a more complicated virtual building

structure on load-based testing. The structure of the two-node virtual building model

is introduced in section 3.1. Subsection 3.2.1 discusses how two-node model parame-

ters for sensible loads are identified from a detailed model of a prototypical building.

Furthermore, in subsection 3.2.2, model parameters are scaled and tuned to have

equivalent high frequency dynamics that match equipment cycling behavior observed

in the field. Finally, results of load-based testing using a two-node virtual model for

sensible loads are presented in section 3.3.

3.1 Overview of two-node virtual building model

A single-node virtual building model with lumped capacitance was introduced

in section 2.1, where the single node characterizes a combination of zone air and

its nearby shallow mass. For conciseness, this node is denoted as the zone node in

this chapter. An electrical analog circuit of the one-node virtual building model for

sensible loads with energy flows is illustrated by figure 3.1. The primary concern of

employing this simple model form is whether it realistically and comprehensively char-

acterizes the dynamics of a building interacting with test equipment under feedback

control in load-based tests.

A good approach to address this concern is to investigate the effect of using a more

detailed model in load-based testing. Cai and Braun [32] developed a thermal network

model which captured dynamics of a single zone building with inputs of internal gains,

ambient temperature, and solar radiation. Bacher and Madsen [33] proposed several

gray-box RC network building models with significant reduction of complexity with
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Fig. 3.1. Diagram of one-node model for sensible building loads

lumped thermal nodes for the envelope mass and internal mass. Touretzky [34] used a

building model with a structure of a zone air node and an external wall mass node to

study control of energy recovery. In spite of these various higher-order model forms,

one step further from the single-node model is a good starting point. Therefore, a

two-node model for cooling load-based tests is investigated.

3.1.1 Mathematical description

In addition to a zone shallow mass node, a deeper internal mass node is introduced

within the two-node model in this chapter for use in load-based testing. Compared

to the zone node that represents zone air and nearby shallow mass, the internal mass

node represents indoor furniture and deeper internal mass (e.g. partition/demising

wall). The model structure is described by equations (3.1) and (3.2) and illustrated

with the diagram in figure 3.2. The zone node is coupled to the outdoor air tem-

perature TOD and the internal mass node through thermal resistances, and directly

excited by internal heat gains Q̇int,s and the cooling associated with the test equip-

ment Q̇c,s, while the temperature of the internal mass node Tm is only excited by the

heat transfer from zone air node in return. Within the overall building dynamics, the

zone node is supposed to have relatively fast dynamics, whereas the internal deeper
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mass tends to slow down the overall dynamic response. The zone node capacitance

Cz, external resistance Rz, internal mass capacitance Cm and internal resistance Rm

are four parameters that need to be estimated for the model’s implementation in

load-based testing.

Cz
dTz
dt

= Q̇int,s +
TOD − Tz

Rz

+
Tm − Tz
Rm

− Q̇c,s (3.1)

Cm
dTm
dt

=
Tz − Tm
Rm

(3.2)

Fig. 3.2. Diagram of sensible two-node model

3.2 Estimates of virtual building parameters

In order to identify/estimate representative values of the four virtual building pa-

rameters for the sensible two-node model, dynamic responses of a detailed building

simulation model were employed to generate training data used in regression/estimation.

After the parameters were obtained, they were fine tuned/scaled when coupled with

an equipment model in order to match typical cycling patterns of equipment observed

in the field. A residential prototype building model [35] in EnergyPlus [36] was uti-

lized as the detailed building simulation model for the purpose of two-node building

model identification.
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3.2.1 Regression using detailed building model simulations

The simulated single-family prototype building located in suburban Indianapolis

has building geometry shown in figure 3.3 and table 3.1. For the purpose of two-

node building model identification, a few modifications were made to the original

EnergyPlus prototypical building model.

Fig. 3.3. Prototype building geometry

Table 3.1.
Building geometry information

Zones:
2 zones: living zone

and attic zone
Floor area:

40ft x 30ft

for each floor

Floors:
2 floors in living zone

and an attic
Location:

Indianapolis

international airport

1. The simulation time step was changed from 15min to 1min in order to obtain

the short-term responses of the building dynamics.

2. Vertical heat transfer from the ground was not considered as an input to the

two-node mode, and therefore the ground floor was modified to be adiabatic. Also,
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the ceiling that separates the living and attic zones was treated as adiabatic, since

dynamics of the attic zone are not included in the two-node model.

3. HVAC equipment was removed since only the dynamic building responses were

needed for the purpose of two-node building model identification.

4. Solar radiation was removed from the weather data since this was not considered

as a dynamic input in the sensible two-node model.

5. The internal sensible heat gain Q̇int,s was configured as a fast-changing random

signal peaking at 1000W, in order to generate a rich set of dynamic data for regression.

Fig. 3.4. Dynamic building response and the associated inputs

Dynamic building responses were generated over a whole year using EnergyPlus

for the subsequent usage of regression. Sample data from March 13 to 14 are shown in

figure 3.4. The zone air temperature as the major building response, trended upwards
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or downwards in response to the variations in outdoor temperature, but had faster

dynamics resulting from fast-changing internal gains.

XT,i = [TOD,i, Q̇int,s,i] represents an input training data vector at timestep i, while

θT represents a sensible two-node model parameter vector. For the regression of the

two-node model, the optimization cost JT (θT ) associated with the usage of parameter

vector θT is shown in equation (3.4) as a root mean of square error between the zone

air temperature Tz simulated in EnergyPlus and the predicted zone air temperature

Tair(XT |θT ) using the two-node model. After using 20 days of training data in Febru-

ary within the regression process, the optimal θ̂T was obtained that best predicts the

building responses according to equation (3.5).

θT = [Rz, Cz, Rm, Cm] (3.3)

JT (θT ) =

√√√√ 1

N20days

N20days∑
i=1

(Tz,i − Tair(XT,i|θT ))2 (3.4)

θ̂T = argmin(JT (θT )) (3.5)

The optimal estimates of parameters are listed as the third column in table 3.2.

The optimal cost associated with the set of parameters was 0.2784K, as the building

dynamic response was predicted well. The sensible two-node model identified from

the prototype building simulation was used to predict outside of the training period

as a validation that includes 24 hours of prediction plotted in figure 3.5. In the upper

plot, the original zone air temperature is represented by the red line and the predicted

zone air temperature using the two-model and the associated optimal parameters is

shown by the green line. The predicted internal mass node temperature is represented

by the cyan line, which is smoother than the zone air temperature since the internal

mass node is trained to have a larger capacitance compared to the zone node.

Table 3.2 also compares the building external resistances Rz and zone capacitances

Cz between the one-node and two-node models. The one-node capacitance was de-
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Fig. 3.5. Zone air temperature prediction by sensible two-node model

Table 3.2.
Parameters in sensible virtual building model

Model parameters One-node model Two-node model

Rz 4.60× 10−3K/W 4.60× 10−3K/W

Cz 1.35× 106J/K 7.27× 105J/K

Rm N/A 7.60× 10−4K/W

Cm N/A 6.60× 106J/K
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termined using equation (2.8) in terms of the required equipment cooling capacity.

An external resistance for the one-node model was determined using equations (2.12)

and (2.13). The expression for the external resistance building Rz is given in equation

(3.6) in terms of the equipment capacity and other inputs defined in section 2.2. The

equipment total capacity used in determining the one-node building parameters was

estimated to be 1.78 tons sized by EnergyPlus for the prototypical building.

Rz =
1.2(TOD,D − TBal,D)

SHR Q̇D,t

(3.6)

According to table 3.2, the external thermal resistances Rz for the two model

forms are identical. However, the zone node thermal capacitance (Cz) values differ

by about a factor of two with a smaller Cz for the sensible two-node model. This

makes sense because the Cz in the single-node model represents both the zone air and

shallow mass, while the Cz in the two-node model is supposed to be more decoupled

from the internal mass.

3.2.2 Scaling and tuning of parameters for the two-node model

Similar to the single-node model, it is important to have an approach to scale the

parameters of the two-node model for different test equipment in load-based testing.

Equation (3.6) can be directly used to determine Rz in the two-node model in terms of

test equipment capacity. However, it is still necessary to be able to determine Cz, Rm

and Cm using an scaling approach.The next subsection presents an approach to scale

Cz. In terms of Rm and Cm, it is assumed that the internal mass capacitance Cm is

proportional to the zone capacitance Cz and that the internal thermal resistance Rm

is proportional to the external thermal resistance Rz. For the purpose of performing

load-based testing using the two-node model, these proportionality constants were

determined using table 3.2 results in the following fashions.

Cm
Cz

=
6.60× 106

7.27× 105
≈ 9 (3.7)



66

Rm

Rz

=
7.60× 10−4

4.60× 10−3
≈ 1/6 (3.8)

Tuning of zone node capacitance

It is importance to properly choose a value for zone node capacitance Cz in the

two-node building model for use in load-based testing, since equipment dynamic be-

haviors are very sensitive to the virtual building dynamic response (virtual room air

temperature) that will be strongly affected by Cz. As can be seen from table 3.2,

the values of Cz for the two models differ by about a factor of two. Therefore, the

scaling approach to obtain the value of Cz for the two-node model is based on tuning

the value determined for the one-node model from Equation (2.8) that is repeated in

Equation (3.9). The scaling/tuning is achieved using a tuning factor TF as expressed

in equation (3.10).

Cz,1node = k1 × Q̇D,t (3.9)

where k1 = 120s/°F .

Cz = TF × Cz,1node (3.10)

In order to determine an appropriate tuning factor, simulation was performed

to study cycling rates of equipment when coupled with the one-node and two-node

building models. In this approach, the equipment was simply modeled as a single-

stage air conditioner with a constant sensible capacity and on/off control to maintain

the indoor temperature within a 1°F dead band up and down the equipment (ther-

mostat) setpoint. The goal was to determine a tuning factor for zone capacitance of

the two-node model that provides a thermostat cycling rate curve that matches the

NEMA thermostat cycling rate curve [31].

Figure 3.6 illustrates sample cycling behaviors (patterns) for the two models after

the two-node mode was properly tuned. The outdoor temperatures for both simu-
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(a) One-node model (b) Two-node model

Fig. 3.6. Sample cycling behaviors for two virtual building models

lations were fixed at 81 °F . The simulated single-stage equipment cycled on with a

7000W capacity that was also used to scale the virtual buildings for both models.

The equipment thermostat setpoint was 79 °F and the thermostat dead band was 1

°F up and down, such that the temperature varied between 78 to 80 °F in response to

the equipment cycling behaviors. The cycling rates of the two models are identical,

although the zone air node building loads fluctuate differently since heat transfer from

the internal mass node is included in the dynamic zone air node building load for the

two-node model. However, the average loads over the cycles for both models are the

same, because the net heat transfer from the internal mass node to the zone air node

in a cycle must be zero at steady state.

The cycling rates for various part-load conditions or cycle duties of the single-stage

equipment were acquired by changing the outdoor temperature in the simulations.

Simulated cycling rates as a function of cycle duty are compared to NEMA cycling

rate dome [31] in figure 3.7. The NEMA cycling rate equation (3.11) is a mathematical

description of the single-stage equipment cycling rate N with respect to cycle duty X.

Based on field data for residential buildings, Nmax was prescribed to be 3 times/hr at

a cycle duty of 0.5 for determining the one-node model sensible capacitance in section

2.1.
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Fig. 3.7. Cycling rate domes for both building models compared to
the NEMA dome

N = 4NmaxX(1−X) (3.11)

The cycling rate dome of the one-node model matches the NEMA cycling dome,

which is of no surprise since the one-node model capacitance was chosen to reflect

this cycling behavior. The two-node model was tuned with TF = 0.96 such that

its dynamic simulation behavior had a maximum cycling rate of 3 times per hour.

Therefore, the cycling rate dome of the two-node model shown in figure 3.7 also

matches the one-node model and NEMA cycling domes.

Frequency responses of zone air temperature to indoor convective heat transfer

rate (e.g. sensible building loads, equipment cooling rate) can introduce a different

perspective to the comparison of the two model forms. To implement frequency

analysis, transfer functions for both building models were first acquired using Laplace
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transforms, indicated by equations (3.12) and (3.13). Bode diagrams are presented

in figure 3.8.

G1node(s) =
1/Cz,1node

s+ 1/(RzCz,1node)
(3.12)

G2nodes(s) =
s
Cz

+ 1
CzRmCm

s2 + ( 1
RzCz

+ 1
RmCm

+ 1
RmCz

)s+ 1
RzCzRmCm

(3.13)

Fig. 3.8. Frequency response of virtual building models

The high-frequency and low-frequency responses of the two models agree well with

each other. However, the two-node model response is much slower within mid-range

frequencies from 10−6 to 10−3Hz, since its internal mass node stabilizes the indoor

air temperature. The consistency between the cycling rate domes echoes the similar

system responses for input frequencies higher than 10−3Hz.
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3.3 Load-based testing using sensible two-node model

In order to apply this model for load-based testing, two differential equations

(one for the virtual room air temperature dynamics and the other for internal mass

temperature dynamics) were discretized using a finite time step ∆t.

TID,sp(t+ ∆t) = TID,sp(t) +
∆t(BL2nodes − Q̇(c, s))

Cz
(3.14)

BL2nodes = BL+
Tm(t)− TID,sp(t)

Rm

(3.15)

Tm(t+ ∆t) = Tm(t) +
∆t

RmCm
(TID,sp(t)− Tm(t)) (3.16)

TID,sp is the virtual room air temperature that will be sent as the setpoint to

the indoor psychrometric chamber reconditioning system at each timestep. Tm is the

internal mass temperature updated at each timestep. BL is the sensible building load

used for the one-node model introduced in section 2.1 per Equation (2.12). However,

the real-time zone node building load for the two-node model, BL2nodes includes

another term that reflects real-time heat transfer from the internal mass node, as

indicated in equation (3.15). In load-based testing using the two-node virtual building

model, if the test equipment successfully reaches steady-state in variable-speed mode,

the internal mass temperature will be equal to the zone air temperature, and therefore

BL2nodes will be equal to BL.

When implementing the method, model parameters for the two-node model were

determined using equations (3.17) through (3.20). Constants and parameters in equa-

tions (3.17) and (3.19) can be found in section 2.1.

Cz = 0.96× k1 × Q̇D,t (3.17)

Cm = 9× Cz (3.18)
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Rz =
1.2(TOD,D − TBal,D)

SHR Q̇D,t

(3.19)

Rm =
1

6
×Rz (3.20)

Fig. 3.9. Energy rates in load-based testing using two-node model for sensible loads

A complete sweep of dry-coil load-based testing using the two-node model was

conducted using the same experimental setup introduced in section 2.4. In figure 3.9,

the blue line represents equipment power, the green line is equipment capacity, the

red line represents BL2nodes and the magenta line is BL. BL2nodes is the building load

that the equipment needs to handle to maintain the virtual room air temperature (i.e.

zone node temperature), whereas BL is the building load excluding heat transfer from

the internal mass node.

For the 77°F , 86°F and 95°F test intervals, the test equipment cycled on and off

since BL2nodes was smaller than the minimum capacity of the test equipment. The
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Fig. 3.10. Temperatures in load-based testing using two-node model
for sensible loads

86°F interval had the highest cycling rate of approximately 3 times per hour since

its cycle duty was close to 0.5. For the 104°F test interval, the test equipment was

working in variable-speed mode.

Temperatures are shown in figure 3.10 for the load-based test using the two-node

model. The return air temperature (in blue) to the test unit was controlled to the

virtual room air temperature setpoint (in red). The virtual internal mass temperature

is represented by the green line and its initial value at the beginning of the test was

79°F . Throughout the four test intervals, the internal mass temperature increased

continuously and slowly . It is obvious that the testing time was insufficient for

this internal mass node temperature to converge to the mean value of the zone air

temperature either during each test interval or during the whole sweep of the test,

because of the large internal mass node capacitance. Moreover, since the virtual

internal mass was cooler than the virtual room air for the most of the time during the
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test, the virtual mass served as an additional heat sink that helped the test equipment

cool the zone air and that is why BL2nodes was generally smaller than BL during the

test, as can be seen in figure 3.9. Therefore, a quasi-steady state/convergence for

internal mass node was never achieved in this test.

3.4 Interim conclusion

In this chapter, a two-node model for sensible building loads was developed and

evaluated for use in load-based testing. In addition to the zone node that repre-

sents zone air and nearby shallow mass, an internal mass node was introduced that

represents indoor furniture, deeper and heavier internal mass. Compared to the one-

node virtual building model proposed in chapter 2, the two-node model has similar

building dynamics when responding to thermal inputs that have higher frequencies

associated with feedback control of the equipment. However, the two-node model

showed much slower building dynamics when responding to thermal inputs with in-

termediate frequencies between 10−6 to 10−3 Hz that are associated with, for example,

diurnal changes of outdoor temperature. Compared to the one-node model, these in-

termediate frequency responses can be captured by the two-node model due to its

higher-order model structure, where a heavy internal mass node was introduced.

When implemented in load-based testing, the additional internal mass node starts

to show some deficiencies, as it responds very slowly in a test due to its heavy thermal

capacitance. Therefore, quasi-steady states/convergence for the internal mass node

cannot be achieved in a reasonable time scale. As a result, the use of the two-node

model or other more complicated higher-order models is not recommended compared

to the lumped capacitance one-node virtual building for load-based testing. The

single-node model has the advantages of fast response and a simple model structure,

which significantly benefit load-based testing test time and repeatability.
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4. THERMOSTAT ENVIRONMENT EMULATOR

To properly rate and credit unitary residential air conditioners that have improved

part-load performance and advanced controls, a load-based testing methodology has

been enhanced in this work and explained in chapter 2. In load-based testing, a virtual

building model is used along with real-time measurements of the test equipment

cooling rates to emulate building-equipment interactions at different conditions. The

air temperature of an environmental chamber that simulates indoor conditions is

continuously controlled to virtual room temperature setpoints that are adjusted based

on outputs from the virtual building model. The test equipment thermostat senses

the floating zone air temperature and communicates with the test equipment as if

it were installed in the field. Therefore, it is important to properly configure the

test thermostat such that the associated load-based testing outputs reflect the field

behaviors of the test equipment.

A natural starting point for the test thermostat configuration in load-based testing

is to find a realistic and representative installation location in the indoor psychromet-

ric chamber. In this chapter, three thermostat installation locations were studied in

section 4.1, but the results demonstrate that the dynamics of the test thermostat

can vary significantly with location due to non-uniform air velocity and temperature

within the indoor test room. The inconsistency could be more significant when repro-

ducing load-based tests in different test facilities due to their different air distribution

methods and reconditioning systems.

In order to address this reproducibility issue, the current CSA EXP-07 draft stan-

dard [10] specifies that the thermostat be located in the return to the test unit. This

ensures that both the thermostat and the equipment see the same conditions and

was thought to have the best chance of achieving reproducible results across different

facilities. However, locating the thermostat in the return air stream leads to signifi-
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cantly fast thermostat dynamics according to the results in section 4.1, and it is far

from being representative of typical conditions that a thermostat would experience in

the field. Therefore, it is very challenging to directly define a thermostat installation

location within a indoor test room that is both representative and reproducible across

different testing facilities.

Fig. 4.1. Thermostat environment emulator in load-based testing

In the interest of achieving representative and reproducible results for load-based

testing, a thermostat environment emulator approach is introduced in this chapter

that can provide to the test thermostat air inlet, both typical airflow conditions and

appropriate virtual building dynamics associated with varying inlet temperatures.

The overall setup of load-based testing using thermostat environment emulator can

be seen in figure 4.1. The test equipment is installed across a pair of psychromet-

ric chambers, where the equipment thermostat is installed inside the environment

emulator within the indoor test room. In load-based testing, the temperature and
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humidity setpoints for the indoor chamber are determined according to the virtual

building dynamics. In addition, the thermostat environment emulator must track the

virtual building temperature setpoints with airflow that is representative of a typical

indoor environment.

Two different apparatuses were developed and compared that represent two dif-

ferent designs of thermostat environment emulator. The first apparatus is introduced

in section 4.2 that continuously samples air from the indoor test equipment return air

inlet with the goal of providing consistent inlet temperature variations for both the

thermostat and the test equipment. Hence, this emulator is called an ”air sampling

apparatus”. However, the air sampling apparatus was found to be not adequate since

there were non-negligible temperature differences between the two inlet conditions

during testing and therefore it would be difficult to achieve reproducible conditions

in different facilities.

In section 4.3, the second apparatus that was developed and tested is found to be

able to independently and dynamically control the thermostat inlet air temperature

to the virtual room temperature setpoints using thermoelectric devices, while the

indoor test equipment return air temperature is controlled to the same setpoints by

the psychrometric chamber. This thermostat environment emulator is referred to as

an ”independently conditioned apparatus”.

Using the independently conditioned apparatus, sample load-based testing results

were obtained and presented in subsetion 4.3.3 to demonstrate its ability to track

emulated building responses during load-based testing. A detailed description of the

design and control of the apparatus is provided in subsection 4.3.1 with sufficient de-

tail to allow future researchers to reproduce the device. In addition, a two-dimensional

dynamic numerical model of the apparatus is presented in subsection 4.3.2 that was

used to guide the overall design process and that could be useful to others in devel-

oping improvements to the apparatus in the future. It is believed that this apparatus

could be the basis for a standardized solution for applying load-based testing to air
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conditioning and heat pumping equipment that is reproducible across different facil-

ities.

4.1 Impact of thermostat location on load-based testing

In this section, dry-coil cooling tests were carried out to investigate the impact of

thermostat installation location. In order to provide a range of representative test-

ing results, three different locations were chosen in the psychrometric chamber that

represents the indoor room. In all three tests, the indoor unit return air temperature

was controlled to the setpoints determined based on outputs from the virtual building

model, while the test thermostat and the equipment controls would respond to the

variations of the local air temperature that the thermostat sensed.

4.1.1 Thermostat locations in test chamber

The same test setup and test equipment were used here, as described in section

2.4. In figure 4.2, three thermostat locations were considered for this study that are

indicated by colored dots. The figure shows the interior of the psychrometric chamber

that mimics the indoor environment for the test unit. The red and yellow locations

are on the indoor unit of the equipment that is studied. The red dot is location A

with the thermostat mounted on the sidewall of the indoor unit cabinet at about

5 feet above the floor. The yellow dot is location B with the thermostat mounted

across the air inlet where the indoor unit draws return air from the conditioned space.

The return air temperature is also measured using a thermocouple grid at location B.

The blue dot is location C, which is roughly 15 feet away from the indoor unit and

roughly 5 feet above the chamber floor. In this psychrometric chamber, conditioned

air is supplied from the floor in the left three-quarters of the chamber and return air

is collected at the right upper corner of figure 4.2. The airflow pattern can be seen

schematically from the blue arrows in figure 4.2. Location C is the closest to the

chamber return air inlet among the three locations in this study.
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Fig. 4.2. Three thermostat locations in test chamber

Fig. 4.3. Three thermostat locations in closer looks

Figure 4.3 shows the thermostat installations for the three locations. The black

thermostat shown in figure 4.3 was mounted on a 0.5-inch-thick wooden layer to

thermally isolate it from the metal panels. The thermostat temperature is primarily

affected by convective heat transfer from the surrounding air and the air that flows
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through the device. A Logitech HD Webcam C525 was installed facing the screen of

the thermostat to record videos of thermostat readings throughout load-based tests.

For location B, the thermostat was attached using cable ties to the grid that holds

the return air filter at the bottom of the indoor unit. The thermostat at location C

was suspended from a support structure. Characteristics of the three locations are

summarized in table 4.1.

Table 4.1.
Characteristics of three locations

Location A Location B Location C

Height

from floor
5 ft 2 ft 5 ft

Distance

from unit return air inlet
3 ft 0 ft 15 ft

Comments: 1.Location B has the largest air velocity.

2.Location C is far from chamber supply air outlet.

4.1.2 Dry-coil test results

Test results associated with the thermostat location A are shown in figure 4.4.

The test unit cycled on and off for the 77°F and 86°F test intervals, but modulated

its speed to match sensible cooling rates to the sensible building loads at the 95°F

and 104°F test intervals. The unit ran out of capacity for the 113°F interval.

As is shown in figure 4.5 for location B, the test unit also cycled on and off for

the 77°F and 86°F test intervals. The cycling patterns for the 86°F test interval were

not perfectly identical to each other, which may result from the faster dynamics of

the test thermostat when mounted in the return air stream at location B. However,

the subsequent two test intervals with equipment variable-speed behaviors converged
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Fig. 4.4. Dry-coil test results with thermostat mounted at location A

Fig. 4.5. Dry-coil test results with thermostat mounted at location B
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relatively quickly. Thus, thermostat location B is somewhat advantageous in terms

of testing time for reaching steady state under variable-speed operation.

For location C, the 77°F and 86°F test intervals did not converge in terms of

COP, as can be seen in figure 4.6. This test took longer time than those at location

A and B, since the air velocity is lower here leading to slower thermostat dynamics.

Also, there were significantly larger temperature variations for the C location test. In

addition, the test unit was not able to deliver cooling continuously without cycling

on/off even for the 95°F test interval where the sensible building loads are relatively

large.

Fig. 4.6. Dry-coil test results with thermostat mounted at location C

Before launching the whole sweep of load-based cooling tests, the CSA EXP07

draft standard [10] requires that test operators offset/calibrate thermostat display

temperature based on a comparison between the indoor unit return air temperature

measurement and the pre-calibrated thermostat display temperature when the return
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air temperature is controlled in steady state to the thermostat setpoint of the cooling

test (i.e. 79°F for these dry-coil tests).

This test thermostat displays temperatures in increments of 1°F that is also the

resolution of offset. An offset of +1°F means that the thermostat reading is lower

compared to the test unit return air temperature and the thermostat reading should

be calibrated upwards by +1°F using a bias adjustment. It is interesting to note

that location A has no offset, location B has a +1°F offset and location C has a

−1°F offset. These differences can be used to roughly estimate the steady-state air

temperature maldistribution within the indoor test chamber.

Fig. 4.7. Equipment Return air temperatures in three tests

The return air temperatures of the test unit in the three dry-coil tests are plotted

against normalized test time in figure 4.7. The average temperature for each test is

also marked on figure 4.7. Although all three return air temperatures were controlled

close to 79°F throughout the tests, it is obvious that the test with thermostat location
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Table 4.2.
Results for three dry-coil tests

Tj 77°F 86°F 95°F 104°F 113°F

Location

A

Behavior Cycling Cycling
Variable

-speed

Variable

-speed

Out of

capacity

Convergence Yes Yes Yes Yes Yes

COP 6.747 6.279 4.972 4.021 3.356

Uncertainty ±0.656 ±0.456 ±0.335 ±0.267 ±0.249

Test duration 1.4hrs 2.1hrs 2.7hrs 2.5hrs 1hr

Cycle period 0.47hrs 0.70hrs - - -

Cycle duty 0.40 0.64 - - -

Location

B

Behavior Cycling Cycling
Variable

-speed

Variable

-speed

Out of

capacity

Convergence Yes Yes Yes Yes Yes

COP 6.235 5.771 5.008 3.963 3.356

Uncertainty ±0.707 ±0.424 ±0.335 ±0.270 ±0.249

Test duration 2.2hrs 2.2hrs 0.9hrs 1.3hrs 1hr

Cycle period 0.44hrs 0.55hrs - - -

Cycle duty 0.36 0.84 - - -

Location

C

Behavior Cycling Cycling Cycling
Variable

-speed

Out of

capacity

Convergence No No Yes Yes Yes

COP 6.352 5.927 4.987 4.264 3.356

Uncertainty ±0.709 ±0.461 ±0.335 ±0.274 ±0.249

Test duration 3.1hrs 3.1hrs 3.3hrs 1.7hrs 1hr

Cycle period 1.03hrs 1.03hrs 1.65hrs - -

Cycle duty 0.39 0.69 0.91 - -
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B had the smallest temperature fluctuation, while the test with location C had the

most significant fluctuation.

Details of the three dry-coil tests are provided in table 4.2. The cycling peri-

ods were shortest for location B and longest for location C. The test duration under

variable-speed operation was also shortest for location B. There were significant dif-

ferences in COPs for the different thermostat locations at test conditions where the

unit cycled on and off. The results for the 113°F test interval was identical for the

three tests, since full-load dry-coil test results are not sensitive to thermostat location.

Table 4.3.
SCOPc for three dry-coil tests

Climate zone Cold/dry Marine Hot/dry

Location A
SCOPc 5.72 5.54 5.31

Uncertainty ±0.23 ±0.21 ±0.19

Location B
SCOPc 5.47 5.33 5.12

Uncertainty ±0.23 ±0.21 ±0.19

Location C
SCOPc 5.56 5.43 5.24

Uncertainty ±0.24 ±0.22 ±0.19

SCOPc

difference

SCOPc,A−SCOPc,B

SCOPc,A
4.5% 3.9% 3.4%

SCOPc,A−SCOPc,C

SCOPc,A
2.8% 2.1% 1.2%

The impacts of thermostat location on seasonal performance are presented in

table 4.3 for three dry climates in terms of SCOPc. As can be seen, SCOPc for all

three dry climates were the highest with the thermostat installed at location A and

lowest for location B. Relative differences of SCOPc varied from 1% to 5%. The

SCOPc differences are partly due to different thermostat and test unit dynamics

that led to different cycling behaviors. The SCOPc differences also resulted from

the differences in the average return air temperature, as can be seen from figure

4.7, because of the poor resolution (1°F ) in the thermostat temperature offset. The
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average return air temperature was highest for tests at location A that led to better

seasonal performance.

The results demonstrate that the seasonal performance is somewhat sensitive to

thermostat location and dynamics. In terms of reasonable thermostat dynamics and

test behaviors, location A seems to be a reasonable choice. However, it is likely that

the same thermostat location (e.g. location A) would result in different test behavior

and performance in a different psychrometric test chamber and test reproducibility

is likely to be no better than 5% in terms of SCOPc. Frankly speaking, there is no

guarantee that the “location A” (thermostat mounted on the indoor unit sidewall 5

ft above floor) will be identical to each other across different test facilities.

Location B and C were meant to represent a range of dynamic behaviors for the

thermostat. Location C had slow dynamics, whereas location B had relatively fast

dynamics. One advantage of location B is that it is likely the most repeatable choice

for different facilities since the thermostat is located in a flow stream with a known

air flow and a temperature that is the test unit return air temperature. It also has the

fastest dynamics, which could reduce the testing time. However, a drawback is that

the thermostat dynamics are not representative of a field application. The seasonal

performance at location B was the worst among the three locations, which could have

resulted jointly from the most sensitive response of the thermostat and the lowest

average return air temperatures maintained during the dry-coil test for location B.

Understanding the influence of thermostat location within the indoor test room on

equipment performance is extremely important towards understanding the potential

for reproducibility of load-based test results across different test facilities. This study

demonstrated that the dynamics of the test thermostat can vary significantly with

location due to non-uniform air velocity and temperature distribution within the

room. Locations with higher air velocity and faster thermostat dynamics result in

faster convergence of test intervals but more unsteady equipment cycling behaviors.

Thus, it is important to define a strategy that provides a reproducible environment

for the test thermostat across different laboratory facilities.
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4.2 Air sampling apparatus

Since the study on a range of thermostat installation locations demonstrated that

the dynamics of the test thermostat in load-based testing can vary significantly with

location due to non-uniform air velocity and temperature within the indoor test room,

it is challenging to directly define a realistic installation location that can be repro-

duced across different testing facilities.

As an alternative approach, a thermostat environment emulator could be em-

ployed that emulates inlet conditions to the thermostat that are representative of field

conditions and that can be reproduced across different test facilities. This includes

providing typical flow conditions and the appropriate virtual building dynamics asso-

ciated with varying inlet temperatures to the test thermostat. Meanwhile, the indoor

test room where the emulator is located emulates/provides the same virtual building

dynamics to the test equipment associated with its varying return air temperatures,

as is shown in figure 4.1. The environment emulator should include a plenum or a

small chamber that encloses the test thermostat, air velocity controls that provide

representative flow conditions and air temperature controls that emulate the virtual

building dynamics to the test thermostat.

In terms of providing typical flow conditions to the test thermostat, the NEMA

standard [13] specifies that air should flow across the thermostat vertically and uni-

formly with a nominal velocity of 30 ft/min. This is thought to be representative

of a wall-mounted thermostat and is the basis for the air velocity specification in the

current work.

In terms of the test thermostat inlet air temperature control, low-cost, small and

fast-responding cooling/heating devices or alternative approaches are preferred for

integration within the thermostat environment emulator. The approach considered

in this section is to sample the indoor test equipment return air and draw it to the

inlet of the test thermostat inside the emulator, with the goal of having consistent
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inlet conditions for both the thermostat and the test equipment in load-based testing.

The emulator developed using this approach is called an “air sampling apparatus.”

The air sampling apparatus is composed of an air sampling tree, an air sampling

plenum, a variable-speed fan, and controls. Figure 4.8 includes a diagram of the

air sampling apparatus along with an assembled prototype. Airflow is drawn from

the indoor test equipment return air inlet through the air sampling tree to the test

thermostat inside the air sampling plenum using an axial fan. The test thermostat is

mounted on a plywood board with thermocouples measuring the air temperature 1”

upstream of (below) the thermostat. This measurement is used as the reference for

feedback control of the indoor psychrometric chamber during load-based testing with

the setpoints determined dynamically by the virtual building model outputs.

Fig. 4.8. Air sampling apparatus

The air sampling tree was designed and constructed according to AHRI 550/590

[14]. Air is drawn through the sampling holes on the branches of the tree to merge

into the main trunk and then enters the downstream components of the apparatus.
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The branches were constructed using 2”-diameter PVC pipes and connection parts.

The main trunk that connects the sampling tree to the sampling plenum uses 4” PVC

pipes.

Fig. 4.9. Drawing of air sampling plenum

The air sampling plenum was designed to generate uniform airflow upstream of

the test thermostat and fabricated using transparent material (acrylic) to be able

to view the thermostat display. The plenum design is shown in figure 4.9. The

square plenum is 5’ long and has an internal dimension of 12” x 12”, so that most

common size thermostats can be accommodated inside the plenum. A smaller cross-

sectional area could result in uneven distribution of internal airflow, while a larger

cross-sectional area will be unnecessary and more expensive. The thickness of the

acrylic enclosure is 3/8”. The 1’-long pyramid shape piece at the inlet to the plenum
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serves as a transition for air to flow inside and expand smoothly from the sampling

tree. In the center of the plenum, where the airflow pattern is relatively stable and

uniform, there is a slot for a thermostat mounting panel. Inside the slot, there are

additional smaller pieces attached to help hold the panel. A plenum cap above the

slot can seal the apparatus with 4 latches. In figure 4.8, the wires for instrumentation

and the thermostat connection run through the plenum cap. With this design, it is

convenient to insert or pull the thermostat panel into or out of the sampling plenum.

Downstream of the sampling plenum there is a nozzle fabricated from sheet metal

that acts as a transition to the axial fan.

The variable-speed axial fan is controlled to maintain 30 ft/min (0.15m/s) air-

flow across the test thermostat according to NEMA DC 3-2013 [13]. A Mechatronics

G1338H DC axial fan was selected that allows its speed to be controlled using a vari-

able DC drive. A DROK 200085 Boost DC voltage regulator and a 12VDC power

supply (Harrison Laboratories 6206A, 64VDC (variable), 0.5A power supply, config-

ured at 12 VDC) jointly serve as the variable DC drive. The 12 VDC output from the

power supply is scaled linearly from 0 to 100% by the voltage regulator according to

a 0 to 5 VDC control signal that the regulator receives. An air velocity measurement

location can be seen in figure 4.8 where a thermal anemometer (SensoAnemo series

5100LSF transducer with omnidirectional sensor) was installed 1’ upstream of the

test thermostat. The tip of the probe is located at the center of the plenum (and

the thermostat). The measurement was utilized to control the DC fan speed. For

load-based tests, the plywood board where the thermostat was mounted was cut into

a wood frame with an upstream opening and the thermostat was mounted on a thin

sharp-edge plastic strip that doesn’t disturb the airflow upstream of the thermostat

as is shown in figure 4.12. This leads to a more uniform airflow distribution inside

the plenum upstream of the thermostat. Feedback control of the fan speed based on

measurement of the air velocity was implemented to ensure constant airflow across the

thermostat. The proportional gain and integral time for the air sampling apparatus

DC fan controller were tuned to be 0.05 VDCmin/ft and 50s.
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Fig. 4.10. Sensible cooling rate, sensible load, and power measured in
dry-coil load-based testing using air sampling apparatus

To evaluate the air sampling apparatus, a dry-coil load-based test was conducted

using the experimental setup and test procedures presented in chapter 2. Results for

the variable-speed air conditioner test are shown in figure 4.10 and figure 4.11. In

figure 4.10, the green line represents a real-time measurement of the test equipment

sensible cooling rate, the red line represents the sensible virtual building load that the

equipment responds to and the blue line represents a measurement of the equipment

total power. The whole sweep of the dry-coil load-based test included four dynamic

test intervals that utilized 77°F , 86°F , 95°F , and 104°F outdoor temperatures and

their associated sensible building loads. The dynamic responses of the test equipment

and its integrated controls to the building loads is evident, which significantly dis-

tinguishes load-based testing from traditional steady-state testing. For example, the

test equipment cycled on and off to satisfy the thermostat during the 1st, 2nd and 3rd

test intervals, while within the 4th interval, the equipment continuously modulated its
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Fig. 4.11. Temperatures in dry-coil load-based test testing using air
sampling apparatus

compressor and indoor fan speed in trying to maintain the thermostat setpoint and

match its cooling rate to the building load. Speed modulations were also observed

when the equipment cycled on during the first three test intervals.

In figure 4.11, the green line represents the indoor test equipment return air tem-

perature measurement, the red line represents the thermostat upstream temperature

measurement in the apparatus, and the blue line represents the virtual room tem-

perature setpoints adjusted based on outputs from the virtual building model in real

time. As can be seen in figure 4.11, the air sampling apparatus failed to achieve

its goal of having consistent inlet temperatures for both the thermostat (red line)

and the indoor test equipment (green line). There were fluctuations in the indoor

equipment return air temperature that were much larger and out of phase compared

with the variations of the thermostat upstream temperature. This occurred because

the thermostat upstream temperature response was damped by a significant thermal
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mass associated with the acrylic air sampling plenum that was thermally coupled to

the airflow inside the plenum through convective heat transfer. Therefore, the return

air temperature fluctuated in response to feedback control of the psychrometric cham-

ber reconditioning system trying to maintain the thermostat upstream temperature

to the time-varying virtual room temperature setpoints (blue line). The amplitude

of the fluctuations increased with increasing load at conditions where the equipment

was cycling on and off. In addition, the slow transient response of the thermostat up-

stream temperature to the variations in return air temperature led to poor feedback

control tracking to the setpoints from the virtual building model. Sluggish response

of the thermostat led to unrealistic behavior of the test equipment with frequent full-

load (high speed) operation occurring in part-load test intervals where the equipment

was also cycling on and off.

Additional modifications were investigated to improve the apparatus dynamic

response that included adding internal insulation inside of the apparatus plenum and

increasing the overall apparatus air flow while providing a flow restriction to maintain

a target velocity upstream of the thermostat. However, the air sampling apparatus

could not achieve the goal of providing thermostat inlet temperatures that closely

match inlet temperatures to the test equipment with air flows representative of a wall

mount within a building. A single degree of freedom in temperature control of the

indoor room is not sufficient to ensure that both the equipment and thermostat inlet

temperatures adequately track the desired response. Therefore, this approach was

abandoned in favor of an independently controlled apparatus.

4.3 Independently conditioned apparatus

An independently conditioned/controlled apparatus is basically a smaller version

of the NEMA testing apparatus [13] using fast-responding thermoelectric devices. The

use of separate cooling/heating devices instead of the air sampling device requires that

the thermostat inlet temperature “mirror” the response of the return air temperature
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with both independently controlled to temperature setpoints dictated by the virtual

building model. As the dedicated cooling/heating devices, TECs (thermoelectric

coolers) can be readily scaled to a small thermostat emulator/apparatus, can provide

a fast response, and can provide either heating or cooling when their power polarity is

reversed. CP45H series TEC modules from CUI devices are used, whose dimensions

can be found in figure 4.15 and whose performance specifications can be found in

figure 4.17 and table 4.4.

Fig. 4.12. Independently conditioned apparatus

The independently conditioned apparatus is composed of four parts: 1) thermostat

plenum (enclosure), 2) thermostat inlet air velocity control, 3) TEC heat exchanger

(TECHX), and 4) thermostat inlet air temperature control, as is illustrated by the

left-hand-side schematic in figure 4.12. There is also a picture of the whole setup

inside the indoor psychrometric chamber including the indoor test equipment, the
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apparatus and insulation that was added to the plenum. During load-based testing,

the plenum fan on the top constantly draws airflow into the plenum through the

TECHX at the bottom, such that the air velocity across the test thermostat is main-

tained at 30 ft/min according to NEMA DC 3-2013 [13]. The measurements taken by

thermocouples located 1 inch upstream of the test thermostat are used as a control

input to regulate the TECHX to track virtual room temperature setpoints that are

outputs from the virtual building model. The TECs assembled within the TECHX

provide heat pumping between a crossflow air stream and the air that vertically enters

the apparatus.

The thermostat plenum and the air velocity control were adapted from the air

sampling apparatus introduced in section 4.2. Therefore, the independently condi-

tioned apparatus is still a pass-through device that draws air from the indoor chamber

and exhausts air to the chamber. As the indoor psychrometric chamber controls the

indoor equipment return air temperature to the virtual room temperature setpoints

during load-based testing, the inlet conditions of the apparatus at its inlet are close to

the desired setpoints. Hence, the TECHX only needs to address the dynamics associ-

ated with the thermostat plenum in order to control the thermostat inlet temperature

to the same setpoints. In addition to the plenum used in the air sampling apparatus,

there are thermal insulation layers attached internally to the plenum upstream of the

test thermostat to reduce convective heat transfer between the airflow and the acrylic

plenum, as can be seen in figure 4.12. Also, a web camera is utilized to record the

thermostat display temperature and to better monitor the test thermostat behaviors.

The design and controls of the TECHX are described in subsection 4.3.1 with

sufficient detail to allow future researchers to reproduce the device. A two-dimensional

dynamic numerical model of the TECHX is introduced in subsection 4.3.2 to predict

its response that was used to guide the overall design process. This model could be

useful to others in developing future improvements to the apparatus. Load-based

test results acquired using the independently conditioned apparatus are presented in

subsection 4.3.3 that validate its ability to meet the target objectives.
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4.3.1 Design and controls of the TEC heat exchanger

3D drawings of the TEC heat exchanger assembly are shown in figure 4.13. The

drawing on the left shows that the whole assembly is flanged to the bottom of the

acrylic thermostat plenum. When the thermostat inlet temperature is above the

target temperature setpoint established by the virtual building model (i.e. TECHX

is in cooling mode), airflow that enters the thermostat plenum will be cooled as it flows

upwards through the vertical conditioning channels (see figure 4.15) of the TECHX. In

this mode, the crossflow air will be heated as it flows through the horizontal ambient

air channels. When the TECHX is in heating mode, the air that flows through the

conditioning channels will be heated while the ambient air through the horizontal

channels will be cooled.

Fig. 4.13. 3D drawings of TECHX assembly

The right-hand-side drawing of figure 4.13 presents a closer look at the whole

assembly of the TECHX. The heat exchanger is sandwiched by two L-shape panels

and two acrylic panels with six bolts running through the assembly. The two L-shape

sheet metal panels also jointly serve as a flange to connect to the thermostat plenum

above. The transition piece connects the rectangular heat exchanger to the circular

heat exchanger fan mounted on the flange in figure 4.13. The heat exchanger fan
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Fig. 4.14. TECHX assembly

needs to be distinguished from the plenum fan mentioned above. The plenum fan is

installed on the top of the apparatus and is used to draw 30 cfm airflow vertically

through the apparatus (assuming the internal airflow is 30 ft/min uniformly across

the 1ft x1 ft plenum cross-section area), while the heat exchanger fan here draws 300

cfm crossflow ambient air to serve as a heat sink in the cooling mode and a heat

source in the heating mode of the TECHX. There is no feedback control for the heat

exchanger fan and it is directly powered to its maximum speed (approximately 300

cfm), since the higher the airflow, the better the performance of the TECHX. Figure

4.14 shows the manufactured TECHX where the white parts are TECs and the blue

plastic is the 3D-printed transition piece according to the drawing above.

Figure 4.15 presents more details of the TECHX. One pair of the conditioning

and ambient air channels is shown in subfigure (a) where a layer of six TECs is
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Fig. 4.15. (a) Schematic of airflow pattern (b) 3D drawing of TECHX
(c) Arrangement of TEC layer

sandwiched between the two channels. Both the air channels are made of 30-gauge

(1/80” thickness) sheet metal. The polarity of the six TECs is consistent within

this layer. In cooling mode, the left-hand-side surfaces of the six TECs are cold to

cool down the conditioning channel on the left. The vertical airflow will then be

cooled within this 1/4”-gap conditioning channel. Heat will be pumped to the right-

hand-side surfaces of the TECs and sink to the right-hand-side 1/4”-gap ambient air

channel, and ultimately to the crossflow air within this channel. In heating mode, the

heat transfer direction is reversed along with the polarity of the supplied voltage to

the TECs. The whole TECHX is shown in subfigure (b), as 4 ambient air channels

and 3 conditioning channels are sandwiched in a staggered pattern along with the 6

TEC layers. There is one more ambient air channel than the conditioning channels.
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Therefore, each conditioning channel is sandwiched by two ambient air channels along

with the TECs to ensure adequate uniformity of the discharge air temperature among

the three conditioning channel discharge ports. The polarity of each TEC layer is

reversed compared to its neighboring layer(s) in order to achieve a consistent heat

pumping direction between the cooled and heated air streams. The overall thickness

of the TECHX is approximately 3”.

The TEC layout that includes 6 TECs per layer is shown in subfigure (c) of figure

4.15. There are 6 TECs/layer×6 layers=36 TECs used in the overall design. The

height of each TECHX air channel is 8 − 1/4” and its width is 4”. Each TEC is

2”× 2”× 0.2”. Each TEC layer has three rows of TECs and each row has two TECs

placed side by side. There is a 3/4”-wide wiring spacing above each row of two TECs.

The air gaps within these wiring spacings could become thermal bridges between the

conditioning channels and ambient air channels when ventilated; therefore, the gaps

were blocked using insulating materials once the wiring was complete. In addition,

the TECs were adhered to the neighboring air channels using thermally conductive

tape.

Since the air velocity across the test thermostat in the independently conditioned

apparatus is constantly maintained at 30 ft/min by its feedback controller, the air-side

capacity of the TECHX can only be modulated by modulating the power supplied

to the TECs. In addition, switching between cooling mode and heating mode of

the TECHX can be accomplished by switching the polarity of the supplied power.

Ultimately, the inlet temperature of the test thermostat should be controlled to the

virtual room temperature setpoints that are adjusted based on outputs from the

virtual building model in load-based testing. Therefore, the feedback controller of

the TECHX compares the measurement of the test thermostat inlet temperature to

its setpoints and then outputs a bipolar control signal.

A schematic of the TECHX control is shown in figure 4.16. The feedback control

signal has its polarity decoupled from its magnitude. The magnitude of the signal

is used to scale the voltage of the DC power from 0 to 100% by voltage regulator 1.
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Fig. 4.16. Schematic of the TECHX control

Then, the scaled power is connected to a dual-pole-dual-throw (DPDT) relay (PRD

Series power relay from TE connectivity), indicated by the yellow block in figure

4.16. Meanwhile, the polarity of the feedback control signal is interpreted by voltage

regulator 2, and this regulator outputs a voltage signal to the coil of the DPDT relay

to trigger the switch of its contacts. Therefore, the DPDT relay can output a bipolar

and modulated power to the TECHX.

A 48V 15.7A power supply was selected to power all 6 TEC circuits that are in

parallel. Each circuit has 6 TECs connected in series that belong to one TEC layer

shown in figure 4.15. Therefore, the 6 TECs in each layer are thermally in parallel

while electrically connected in series. Voltage supplied to the TECHX can range from

-48V to 48V, echoing the -100% to 100% range indicated by figure 4.16. Negative

voltage triggers cooling mode of the TECHX and positive voltage triggers its heating

mode. A feedback PI controller for the TECHX was tuned to have a proportional

gain of 38.4V/°F and an integral time of 4 min.
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4.3.2 Dynamic model of a thermoelectric heat exchanger

A 2D dynamic model of the TECHX is introduced in this subsection to predict

its thermal response to applied power. This dynamic model was useful in finalizing

the design of the TECHX, including sizing the TEC modules and power supply. It

was important to consider the dynamics because the TECHX needed to respond

quickly to provide adequate control of the thermostat inlet temperature in response

to changes in the apparatus inlet temperature. The primary dynamics are associated

with the thermal characteristics of the heat exchanger metal materials, whereas the

TEC modules are assumed to respond quickly and are modeled using quasi-steady

relationships.

Lineykin et al. [37] introduced a model that characterizes TEC steady-state per-

formance using only a small amount of manufacturer’s rating data as the model

parameters, which involve TEC electric resistance R, TEC maximum input voltage

Vmax, maximum input current Imax and maximum achievable temperature difference

between hot and cold end of the TEC ∆Tmax. Model inputs involve cold-side tem-

perature Tcold, hot side temperature Thot and voltage V (or current I, determined by

how power is applied to the TEC) of the supplied power. The TEC steady-state

model is utilized in the dynamic TECHX model of this work assuming that the TECs

used in the heat exchanger have fast dynamics compared to the dynamics of the heat

exchanger material.

The Seeback coefficient that characterizes the thermoelectric cooling effect is es-

timated using equation (4.1), which is the ratio of maximum input voltage to hot

end temperature in Kelvin. A thermal resistance of the module θ is determined using

equation (4.2). Then the current of the module is calculated using equation (4.3).

S =
Vmax
Thot

(4.1)

θ =
∆Tmax
ImaxVmax

2Thot
Thot −∆Tmax

(4.2)
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I = (V − S(Thot − Tcold))/R (4.3)

The cold-end cooling capacity of the TEC module is calculated using equation

(4.4), whereas the heating rate on the other end of the TEC module is determined

from an overall energy balance using equation (4.5). The COP of the TEC module in

cooling mode is calculated using equation (4.6) as the ratio of the cooling rate over

the supplied power.

Q̇c = STcoldI −
1

2
I2R− ∆T

θ
(4.4)

Q̇h = Q̇c + IV (4.5)

COP =
Q̇c

IV
(4.6)

Manufacturers data for the TECs used in the design of the independently con-

ditioned apparatus is given in table 4.4. This data was utilized to generate a set

of performance curves for the TEC module (figure 4.17) using the model above. In

figure 4.17, the curves generated by this model are very consistent with the perfor-

mance curves provided by the TEC manufacturer, particularly at low currents and

with small temperature differences, which is the region where the TECs were designed

to operate. It is fair to conclude that this TEC steady-state model can adequately

characterize the performance of this TEC for the apparatus.

Table 4.4.
TEC manufacturer’s data

Thot Vmax Imax R Q̇c,max ∆Tmax

27°C 15.7V
4.5A 2.5Ω

41W 70K

50°C 17.3V 45W 77K
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Fig. 4.17. Comparison of TEC predicted (solid lines) and manufac-
turer’s (dashed lines) performance for cooling

A numerical dynamic heat transfer model was developed and applied for the cool-

ing mode of the TECHX. In heating mode, the TECHX should have faster response

and more capacity, since the TEC heating rate is always significantly higher than

its cooling rate (equation (4.5)) under the same TEC temperature difference and

supplied power.

The problem setup for the dynamic TECHX model is depicted in figure 4.18.

In the right-hand-side schematic, only one pair of the conditioning and ambient air

channels is modeled. For analysis purposes, the inlet condition for the cooled channel

was assumed to be 10 cfm, as 30 cfm divided by 3 conditioning channels) and 79°F

(indoor design temperature for dry-coil load-based testing in the CSA EXP-07 draft

standard [10]), whereas the inlet condition for the ambient channel was 75 cfm (300

cfm divided by 4 ambient air channels) at 79°F . In the left-hand-side schematic of

figure 4.18, the conditioned airflow, conditioning channel sheet metal, ambient air
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channel sheet metal and ambient airflow were meshed in the vertical direction into 84

cells with a differential cell height of 8.25”/84 ≈ 0.01”. Therefore, each airflow cell was

a 4”×0.25”×0.01” air strip and each sheet metal cell was a 4”×0.0125”×0.01” steel

bar. Heat that is transferred between neighboring cells involves convection from air

to sheet metal, conduction in the sheet metal, heat pumping through the TECs and

the thermal insulation filled within the TEC wiring spacings. The cooling rates and

the heating rates of the TECs characterized by the TEC steady-state model above

were treated as heat sinks/sources uniformly distributed on the surfaces of the air

channel sheet metal cells that are contacting the TECs. Since the mesh grid extends

in the vertical direction and the direction across different heat exchanger layers, there

are two geometric dimensions (2D) in this TECHX model.

Fig. 4.18. Problem setup for dynamic TECHX model

A large number of discretized equations are involved in this model, but only two

are listed below to illustrate the heat transfer mechanisms captured by the model.



104

Equation (4.7) describes a cell of the conditioning channel sheet metal that contacts

the cold ends of the TECs. ρs, Cs, ks are the sheet metal density, specific heat and

thermal conductivity, respectively. ∆Vs is the sheet metal cell volume and ∆t is the

differential time step of the dynamic model. T ti,2 is the temperature of the cell at the

current time step. Subscript i represents the row number of the cell in the vertical

direction. Subscript 2 indicates that the cell belongs to the column of cells that

represent the conditioning channel sheet metal. In this model, columns 1, 2, 3 and 4

represent the conditioned airflow, the conditioning channel sheet metal, the ambient

air channel sheet metal and the ambient airflow separately. T t+1
i,2 is the temperature

of the cell for the next timestep. hc is the convective heat transfer coefficient at the

film of the conditioning channel, that is acquired using the correlations introduced by

Gnielinski [38]. ∆A is the differential convective heat transfer area. As is the sheet

metal cross-section area. δ is the differential height of each cell. ∆qc is the differential

heat removal due to the TEC modules. The unsteady term is on the left side of the

equation, while the right side of the equation is a summation of a convective heat

transfer term, two conductive heat transfer terms and a heat sink term. Equation

(4.8) describes a cell of the conditioned airflow. The convective heat transfer term is

doubled here since the cell is cooled on both sides in this conditioning channel. The

last term represents the heat transported in and out associated with the fluid flow.

ρair and Cpair are the air density and specific heat. ∆Vair is the airflow cell volume

and Vair is the 10 cfm conditioned air flowrate.

ρsCs∆Vs
T t+1
i,2 − T ti,2

∆t
= hc∆A(T ti,1 − T ti,2)+

Asks
T ti−1,2 − T ti,2

δ
+ Asks

T ti+1,2 − T ti,2
δ

−∆qc (4.7)

ρairCpair∆Vair
T t+1
i,1 − T ti,1

∆T
= 2hc∆A(T ti,2 − T ti,1) + ρairCpairV̇air(T

t
i−1,1 − T ti,1) (4.8)

Initially, the temperature profile was set to 79°F everywhere. During the sim-

ulation, the TECHX responds to a constant voltage across the six TECs that are
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Fig. 4.19. TECHX temperature distribution responding to 20V power
after 50 seconds

connected in series, and ultimately reach a steady state. Figure 4.19 shows the sim-

ulated temperature distribution of the TECHX after 50 seconds in response to a

supplied voltage of 20V where the heat exchanger reached steady state. Each col-

ored block has a size of 8 − 1/4” × 4”, which is the actual size of each layer of the

TECHX. From left to right, the four blocks indicate temperature distribution of the

conditioned airflow, the conditioning channel sheet metal, the ambient air channel

sheet metal and the ambient airflow. The left-hand-side and right-hand-side graphs

use different color scales. In the left-hand-side graph of figure 4.19, the TECHX is

able to cool the 79°F air gradually down to approximately 73°F . To cool the air, the

conditioning channel sheet metal has the temperature of its coldest cell dropped to

about 53°F . The hottest sheet metal cell reaches a temperature of about 69°F . The

sheet metal temperature distribution is strongly affected by the airflow temperature

gradient on one side and the arrangement of the six TECs on the other side. Similar

results can be observed on the right-hand-side graph of figure 4.19. The ambient

air channel sheet metal has its temperature distributed from about 84°F to 103°F .

However, ambient air temperature has a smaller range (80°F to 82°F ) compared to
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the conditioned air, as air is drawn through the ambient air channels at a much higher

rate.

Fig. 4.20. Air-side response of TECHX to 20V power

Figure 4.20 shows the air-side dynamic response of the TECHX to the 20V signal.

The left axis shows the air-side temperature, while the right axis indicates air-side

heat transfer rate. The conditioning channel outlet temperature (green line) and the

ambient air channel outlet temperature (magenta line) start to deviate from 79°F

while the heat exchanger inlet temperature (yellow line) stays constant at 79°F . The

conditioning channel outlet temperature drops significantly in the first 10 seconds and

reaches a steady state of about 72.8°F within 50 seconds. The ambient air channel

outlet temperature, which is calculated as the average of all ambient airflow cells,

reaches a steady state of about 80.7°F . Air-side cooling rate (blue line) and heating

rate (red line) were determined from the simulated temperature differences between

the inlets and the outlets of the air channels. At steady state, the air-heating rate is

significantly higher than the air-cooling rate, since the TECs dissipate more heat on
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their hot ends than the heat they absorb on their cold ends. All the air-side responses

are fast within the first 10 seconds and reach steady state within about 50 seconds.

A slight overshoot is observed in the heating response, since the heat exchanger can

dissipate more heat at the beginning when the temperature difference is much smaller

than at steady state.

Fig. 4.21. TECHX responses to different supplied voltages

Figure 4.21 shows how the TECHX conditioning channel outlet air temperature

responds to various supplied voltages ranging from 10V to 40V. The conditioning

channel outlet air temperature is the most important response of the TECHX since

this conditioned airflow is then discharged into the thermostat plenum to control the

test thermostat inlet temperature. As can be seen from figure 4.21, the TECHX re-

sponds more quickly as the applied voltage increases. In addition, from 10V to 30V,

the steady-state conditioning channel outlet temperature decreases with increasing

voltage. However, with a 40V supplied voltage, an undershoot of the outlet tempera-

ture is observed and the steady-state temperature is roughly equal to the temperature
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associated with the 30V supplied voltage. The reason is that there is a tradeoff be-

tween increasing cooling rate with increased current and decreasing cooling rate due

to joule heating and conduction losses with increasing current and temperature differ-

ence across the TEC (see equation (4.4)). This sensitivity study was useful in terms

of sizing the TECHX power supply and designing the TECHX control.

Table 4.5.
TEC steady-state results for different applied voltages

Supplied

voltage
(Thot − Tcold)average

TEC

current
Q̇c,average COPaverage

10V 12.64K 0.40A 1.05W 1.57

20V 24.99K 0.80A 1.72W 0.64

30V 37.30K 1.20A 2.05W 0.34

40V 49.80K 1.59A 2.08W 0.20

Average steady-state performance measures were determined for the six TECs

operating within the TECHX for the different supply voltages and are presented in

table 4.5. With increasing supplied voltage, steady-state TEC temperature difference

increases significantly and roughly linearly. A dramatic steady-state COP decrease

can be observed as voltage changes from 10V to 20V. With further increased supplied

voltage, the COP keeps dropping. The TEC cooling rate also increases in response

to increasing voltage, but the capacity begins to saturate between 30 and 40 V. The

maximum achievable steady-state cooling capacity for this design and configuration

(79°F ambient air, 30 cfm plenum airflow, 300 cfm crossing airflow, etc.) can be

estimated as 2.08W×36TECmodules ≈ 75W associated with a 40V ×1.59A/layer×

6TEClayers ≈ 382W supplied power.



109

Fig. 4.22. Sensible cooling rate, sensible load, and power measured in
dry-coil load-based testing using independently conditioned apparatus

4.3.3 Load-based testing results

To evaluate the thermostat environment emulator, dry-coil and wet-coil load-

based cooling tests were conducted using the experimental setup and test procedures

presented in chapter 2. The dry-coil test results can be seen in figure 4.22 and

4.23. In figure 4.22, the green line indicates measurement of the equipment sensible

cooling rate, the red line indicates sensible virtual building load and the blue line is

the measurement of the equipment total power consumption. Four load-based test

intervals can be observed with the test equipment frequently cycling on/off at low

loads, longer operation at moderate loads, and continuous operation at high loads

(the 4th test interval). After the 4th interval, the equipment could not maintain the

indoor temperature since its sensible capacity was unable to match the increased

building load.
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Fig. 4.23. Temperatures in dry-coil load-based testing using indepen-
dently conditioned apparatus

Figure 4.23 shows the measured test thermostat inlet (red line) temperatures,

the measured test equipment return air inlet temperatures (green line), the virtual

room temperature setpoints (blue line) and the thermostat display temperatures (red

dashed line). It is important to note that the return air and thermostat inlet tem-

peratures were almost perfectly controlled to the virtual room temperature setpoints

throughout this test. Specifically, red, green and blue lines overlap each other very

well. The indoor temperature was maintained within a dead band between 78°F and

80°F for most of the time by the test unit thermostat that had a 79°F setpoint. The

thermostat displayed a 79°F temperature for most of the time. It briefly shifted to

80°F twice due to the surges in sensible building load. One such event was seen after

the test shifted from the 2nd to the 3rd interval and the other was seen after the test

shifted from the 3rd to the 4th interval.
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Fig. 4.24. Thermostat inlet temperature control

The upper subplot of figure 4.24 presents a closer look at these temperatures. Al-

though both the thermostat inlet temperature and the indoor test equipment return

air temperature tracked the virtual room temperature setpoints well, the thermostat

inlet condition controlled by the TECHX generally followed the setpoints better than

the return air temperature controlled by the indoor psychrometric chamber recondi-

tioning system. For example, when the virtual room temperature changed direction,

the temperature overshoot or undershoot of the thermostat inlet temperature was

smaller than the return air temperature. The voltage supplied to the TECHX in the

same duration is shown in the lower subplot of figure 4.24. To control the thermo-

stat inlet temperature to the virtual room temperature setpoints, the TECHX ran in

cooling mode (negative voltage) for most of the time. The magnitude of the supplied

voltage ranged roughly from 0V to 40V. As the virtual room temperature decreased,

a larger voltage was supplied to the TECHX to track the decreasing setpoints. High

frequency noise can be observed in both the supply voltage and the thermostat inlet
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temperature. The reason could be real-time thermal disturbances generated by the

test thermostat which was actively self-heating. Thermal mass associated with the

thermostat sensor undoubtedly damps this noise but thermocouple measurements

upstream of the thermostat have a much faster response. If the airflow inside the

thermostat plenum were designed to be downwards (opposite to the current design),

the heat generated by the thermostat would lead to even larger disturbances in the

temperature measurement upstream of the thermostat, since the heat gains in terms

of upwards natural convection could work against the downward cooling airflow.

Fig. 4.25. Sensible cooling rate, sensible load, and power measured in
wet-coil load-based testing using independently conditioned apparatus

The wet-coil test results can be seen from figure 4.25 to 4.27. Three test intervals

with different sensible building loads can be observed in figure 4.25. In the 1st interval,

the test equipment cycled on/off, while in the 2nd and 3rd intervals, the equipment was

able to modulate its speed and match its sensible cooling rate to the load without

cycling off. After the 3rd interval, the equipment could not maintain the indoor
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Fig. 4.26. Temperatures in wet-coil load-based testing using indepen-
dently conditioned apparatus

temperature associated with the thermostat setpoint of 74°F . Figure 4.26 shows both

the indoor equipment return air temperature and the thermostat inlet temperature

were almost perfectly controlled to the virtual room temperature setpoints throughout

the test using the independently conditioned apparatus. During the first three test

intervals, the thermostat displayed a temperature of 74°F , as the indoor temperature

was maintained by the test equipment within a dead band between 73°F and 75°F ,

while the sensible building load ranged roughly from 2000W to 6000W. As a variable-

speed air conditioner, the test equipment maintained the indoor temperature to its

thermostat setpoint (74°F ) better when it modulated its speed, since the indoor

temperature variations during the 2nd and 3rd test intervals were significantly smaller

than the 1st interval when it was cycling on/off. The temperatures rose above the

setpoint in the 4th test interval when the equipment cooling capacity was no longer

sufficient to meet the load.
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Fig. 4.27. Latent results in wet-coil load-based testing using indepen-
dently conditioned apparatus

Figure 4.27 describes the latent results for this wet-coil test including real-time

measurements of the test equipment latent cooling rate (green line), total power con-

sumption (blue line), indoor return air relative humidity (magenta line), and virtual

building model dynamic outputs such as latent building load (red line) and virtual

room relative humidity setpoints (cyan line). The latent building load was calculated

using the real-time sensible building load associated with a prescribed sensible heat

ratio of 0.8 in the wet-coil test. In the 1st test interval, as the equipment turned

on its indoor fan in each cycle, negative latent cooling rate was observed, since the

condensate on the indoor coil reevaporated to add moisture to the room. Indoor

relative humidity was maintained between 45% and 50% during this test, and its re-

turn air relative humidity was well controlled to the virtual building relative humidity

setpoints adjusted based on the virtual building model outputs.
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In this test setup, although the test thermostat incorporates a humidity sensor

with a default indoor relative humidity setpoint, it was observed that a dehumidifying

mode was not triggered on during this wet-coil test and the equipment native controls

responded merely according to the thermostat temperature setpoint, since the latent

building load was not extremely high and the room humidity level was moderate.

Nevertheless, the thermostat environment emulator cannot achieve humidity control

using its cooling/heating device (TECHX), and it could be necessary to modify the

emulator to incorporate humidifying/dehumidifying devices if there were significant

differences in the humidity dynamic behavior between the inlet to the unit and the

inlet to the thermostat. This should be the subject of future work.

4.4 Interim conclusion

A thermostat environment emulator was developed for use in load-based testing as

a means of emulating inlet conditions to a test thermostat that are representative of

field conditions and that can be reproduced across different test facilities. This device

provides typical flow conditions and appropriate virtual building dynamics associated

with varying inlet temperatures to a thermostat connected to its test equipment.

The environment emulator includes a plenum that encloses the test thermostat, air

velocity controls that maintain representative internal airflow and air temperature

controls that emulate the virtual building dynamics to the test thermostat that are

needed in load-based testing. The chapter provided a detailed description of the

design and operation of this thermostat environment emulator that can be used as

a basis for providing a standardized solution for applying load-based testing to air

conditioning equipment that is reproducible across different facilities. A model of the

emulator was also developed and described in detail and could be used to investigate

future improvements.

In developing the thermostat environment emulator, two different approaches were

investigated: air sampling and independently conditioned methods. The air sampling
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approach draws from the return air inlet to the test equipment with the goal of having

consistent inlet temperature variations for both the thermostat and the indoor test

equipment. However, significant transients associated with the apparatus led to poor

performance of this approach and it was abandoned. The independently conditioned

device is designed to be located in the indoor environmental chamber and draws

air that is similar in temperature and humidity to the test equipment return air

at an airflow that is typical of that encountered for a wall-mounted thermostat in

a building. The air is cooled or heated, as needed, using thermoelectric coolers

(TECs) that are controlled to maintain the thermostat inlet temperature in response

to setpoints established by the virtual building model used for load-based testing. A

two-dimensional dynamic numerical model of the TEC heat exchanger was developed

to predict its response, size different types of TEC modules and choose the associated

power supply. The apparatus was integrated into load-based cooling tests for dry-

coil and wet-coil climate conditions as specified in chapter 2. The device was able

to control the thermostat inlet temperature almost perfectly to the virtual room

temperature setpoints for both tests.

Future work is needed to eliminate the high frequency noise that was observed

in both the supply voltage and the thermostat inlet temperature in figure 4.24. The

reason for the noise could be real-time thermal disturbances generated by the test

thermostat which was actively self-heating. It should be possible to eliminate this

noise through more advanced or better tuned control of the TECHX. It also may be

necessary to consider TECHX devices with more cooling capacity to accommodate

potential environmental chambers and situations with inlet temperatures that are

significantly warmer than the desired setpoints.
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5. EXTENDING LOAD-BASED TESTING FOR

EQUIPMENT PERFORMANCE MAPPING

The seasonal performance of unitary residential air-conditioning equipment for vari-

ous climate zones can be rated by a traditional temperature-bin-based approach, as

is introduced in chapter 2. However, a “holy grail” for load-based testing and per-

formance rating is to be able to map equipment performance from automated testing

results measured over a relatively short period of time. This performance map can

then be implemented as a “model” in a building simulation to generate seasonal

performance ratings that are specific to various building types and climates.

Fig. 5.1. Conceptual comparison between temperature-bin-based and
simulation-based performance rating approaches

Figure 5.1 presents a conceptual comparison between the temperature-bin-based

and simulation-based seasonal performance rating (SCOPc) approaches. The tra-
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ditional approach starts with carrying out load-based tests according to the test

matrix/intervals determined by the CSA EXP-07 [2] building load lines. The bin-

averaged SCOPc for each climate zone can then be obtained as the test COPs are

effectively averaged according to specific ambient temperature bin hour fractions and

EXP-07 building load for each bin. A potential disadvantage of this rating approach is

that the SCOPc values are merely associated with EXP-07 building load lines instead

of characterizing different residential building load responses.

A next-generation performance rating approach is developed to determine a rating

based on an equipment performance map that is an output from automated load-

based testing. As a result of experimental design, a test matrix is defined for load-

based testing that generates desired test outputs to be used in training a map of

the test equipment that can represent equipment performance across its operating

envelope with acceptable accuracy. Based on prescribed building and climate types,

test equipment SCOPc can be obtained using building simulation that incorporates

the equipment performance map.

In section 5.2, the investigation of extending load-based testing for performance

mapping started with identification of an appropriate model form for residential cool-

ing equipment. A steady-state model form is needed for the intended purposes, since

the automated load-based testing results are harvested after the equipment reaches a

quasi-steady or steady-periodic condition. In addition, this model form should have

the ability to map both the equipment performance and its integrated controllers, as

both are captured by load-based testing. Moreover, the development of model form

should focus on mapping of variable-speed equipment, since it is the more general

case and the load-based testing methodology is particularly important for the next-

generation equipment with variable-speed drives and advanced on-board controls.

After the identification of a mapping model form, it is important to optimally

search/design an acceptably small number of load-based tests required to train the

model. Alternatively, a more general experimental design approach can be obtained

that focuses more on sampling test points that provide uniform, complete and unbi-
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ased coverage of the operating envelope of equipment, instead of depending on the

mapping model form. In order to finalize a test matrix, section 5.4 presents both an

optimal/heuristic experimental design approach and an unbiased sampling approach

using a clustering algorithm. Compared to the EXP-07 test intervals, the test inputs

determined by these approaches are not constrained by specific building load lines.

As load-based tests were carried out according to the experimental design ap-

proaches, an optimal set of 12 datapoints from the test results was obtained to train

the mapping model, while the test results outside the range of the optimal set were

used to validate the trained model. As presented in section 5.5, this optimal per-

formance map is able to well represent the test equipment in terms of cooling rates

and COPs in various working conditions and could be incorporated into a building

simulation.

Section 5.6 demonstrates a co-simulation approach that couples the obtained map-

ping model to building dynamics under the framework of EnergyPlus [36]. The

simulation-based SCOPc was calculated as a sum of annual equipment total cooling

rate over a sum of annual consumed power of the test equipment that was mapped,

which marks the last step of a next-generation seasonal performance rating approach.

The rating result was then compared against the rating obtained using the traditional

temperature-bin-based approach, followed by a discussion of pros and cons between

the two approaches.

5.1 Input and output variables in performance mapping

The identification of a mapping model form should begin with establishing its

input and output variables. Since the performance mapping will be an extension of

load-based testing, its inputs and outputs can be imported from the test inputs and

outputs but modified according to the mapping purposes. Per chapter 2, the out-

door dry bulb temperature, sensible building load, thermostat setpoint and building

sensible heat ratio are the test inputs.
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Outdoor dry bulb temperature, TOD, is selected as an input to the performance

mapping model because it influences the equipment condensing temperature and ef-

ficiency. The test unit return air indoor dry bulb temperature, TID, is also important

because it influences the equipment evaporating temperature and efficiency for dry

indoor coil operations. Sensible building load, BLc,s, is another important input to

the performance mapping since the air-conditioning equipment is controlled to match

the load using its sensible cooling rate and maintain the temperature of the space

to its setpoint. This input is particularly important in ensuring that the equipment

performance mapping is able to capture equipment part-load performance and the

associated control decisions, which are very important in determining seasonal per-

formance. Latent effects are captured by including the indoor wet bulb temperature,

BID in the mapping inputs, since combined heat and mass transfer to the coil is

largely dependent on wet bulb temperature for conditions where moisture condensa-

tion is occurring.

Indoor air flowrate is not employed as a performance mapping input variable, since

it is modulated at part-load conditions according to decisions made by the embedded

controllers of some variable-speed equipment. It could be used as an intermediate

variable, if this were preferred by a particular mapping model form. In the map-

ping model proposed in section 5.2, the rated or maximum air flowrate is used as a

model parameter but not an input variable once the model for an air conditioner is

established.

A load-based cooling test interval outputs a converged COP that is used directly

in the rating approach based on temperature bins. However, more output variables

are needed for the purposes of performance mapping with a rating approach based on

simulation. For example, equipment total cooling rate Q̇t is another primary output

beside equipment COP. Equipment latent cooling rate Q̇l and equipment sensible

heat ratio SHR can be derived using equipment total cooling rate and equipment

sensible cooling rate (equal to the sensible building load for quasi-steady equipment

behavior). Equipment power consumption Ẇ can be derived as a ratio of Q̇t over
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Fig. 5.2. Input and output variables in performance mapping of this study

COP. The primary input and output variables that will be used in a performance

mapping model are illustrated in figure 5.2.

5.2 A load-based quasi-steady-state model for a variable-speed air con-

ditioner

In this section, an approach for mapping the quasi-steady-state performance of a

variable-speed air conditioner is described that utilizes inputs and outputs introduced

above. The model is semi-empirical (“graybox”) and utilizes some physical under-

standings of the processes with the hope that they will reduce the amount of training

data required for the mapping compared to a purely “blackbox” modeling approach.

Utilization of the model starts with prediction of the maximum cooling capac-

ity of the equipment. Equation (5.1) provides an empirical correlation of equipment

cooling capacity based on rated capacity, indoor wet bulb temperature, and outdoor

dry bulb temperature. This cooling capacity is evaluated as an intermediate vari-

able here, since it may be revisited and updated through multiple iterations. Indoor

wet bulb and outdoor dry bulb temperatures are normalized by the rating conditions

(BID,rat = 67°F , TOD,rat = 95°F ) resulting in dimensionless coefficients in the polyno-

mial relationship. At rating conditions (BID = BID,rat, TOD = TOD,rat), evaluation of
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equation (5.1) is supposed to return Q̇t,max = Q̇rat, i.e. α ×
∑5

j=0 aj = 1. Therefore,

Q̇t,max is forced to physically represent the cooling capacity. It is important to guar-

antee that the predicted Q̇t,max physically and numerically makes sense, such that the

model will be able to distinguish the equipment part-load operation from its full-load

operation. Without this constraint, model training could numerically return α and ai

that do not guarantee that the equipment cooling capacity is physically represented

by equation (5.1).

Q̇t,max = Q̇rat × α× (a0 + a1
BID

BID,rat

+ a2
TOD
TOD,rat

+

a3(
BID

BID,rat

)2 + a4(
TOD
TOD,rat

)2 + a5
BID

BID,rat

TOD
TOD,rat

) (5.1)

The second step is to evaluate equipment sensible capacity at specific indoor and

outdoor temperatures. A bypass factor approach from the ASHRAE toolkit model

[21] is utilized here. This approach is like the NTU-effectiveness calculation procedure

used in air-to-refrigerant heat exchanger analysis when Cmin/Cmax = 0. The bypass

factor, BF, is defined in equation (5.2) where the NTU is the maximum number of

transfer unit when the indoor fan draws the maximum amount of indoor air flowrate

V̇ID,max, with its full speed.

BF = 1− ε = exp(−NTU) (5.2)

Since both the return air dry bulb temperature and wet bulb temperature are

known, the return air enthalpy can be calculated using psychrometric relations. The

supply air enthalpy is then calculated using an energy balance in equation (5.3),

where the supply and return air enthalpy difference is determined using equipment

total capacity divided by maximum indoor air mass flowrate.

hSA = hID −
Q̇t,max

ρIDV̇ID,max
(5.3)

The bypass factor is the ratio of the airflow that bypasses the cooling coil over

the total airflow that is drawn through the coil by indoor fan. The bypassed air is
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assumed to have the same psychrometric conditions as the return air, while the airflow

that is not able to bypass the coil is assumed to be effectively conditioned to the

dewpoint of the moist air at an effective cooling coil surface temperature. These two

streams of airflow are assumed to be evenly mixed in proportion to the bypass factor.

The air enthalpy at the apparatus dewpoint enthalpy, hADP , can be solved using

an energy balance for the mixing process (equation (5.4)). The apparatus dewpoint

temperature can then be calculated according to psychrometrics using hADP and an

assumed air pressure of 1 bar. The supply air temperature, TSA, can be solved using

a sensible energy balance equation (equation (5.5)) for the mixing process. Then the

equipment sensible capacity can be calculated using equation (5.6) as a product of the

maximum indoor air mass flowrate, the specific heat and the temperature difference

between return and supply air.

As a model parameter, bypass factor BF distinguishes itself from model coeffi-

cients such as ai, bi, etc., since it has significant physical meaning that characterizes

evaporator heat and mass transfer at equipment full-load scenarios. Although BF can

be obtained in model training along with ai, bi using quasi-steady-state datapoints,

it was found that BF sometimes could be trained to be a negative value that makes

no physical sense. Therefore, it was decided to obtain BF merely using equipment

performance at rating conditions (TID,rat = 80°F , BID,rat = 67°F , TOD,rat = 95°F ).

In this way, BF will be obtained before optimization associated with the training

introduced in section 5.3, where the other model coefficients will be accommodated

with respect to the pre-determined BF value.

(1−BF )hADP +BF × hID = hSA (5.4)

(1−BF )TADP +BF × TID = TSA (5.5)

Q̇s,max = ρIDV̇ID,maxCp(TID − TSA) (5.6)
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SHRfl =
Q̇s,max

Q̇t,max

(5.7)

Q̇l,max = Q̇t,max − Q̇s,max (5.8)

The sensible heat ratio at equipment full-load scenarios SHRfl, can be calculated

using equation (5.7) as a ratio of equipment sensible capacity over equipment total

capacity. A value of SHRfl that is determined to be larger than one means that the

indoor coil is dry and the indoor wet bulb temperature should not be directly used

to characterize equipment total capacity in equation (5.1). For a dry coil, the heat

transfer across a dry evaporator coil is driven by the indoor dry bulb temperature

instead of the indoor wet bulb temperature. However, an effective indoor wet bulb

temperature, BID,eff , at this full-load scenario can still be used here, if it is located

at the boundary between the dry-coil condition and wet-coil condition. This effective

value is higher than the actual wet bulb temperature, and it can be solved iteratively

using equations (5.1) to (5.7), in order to achieve SHRfl = 1. If the calculated SHRfl

is smaller than one, no iterations are needed and the predicted Q̇s,max can directly be

used. After the determination of the equipment sensible capacity, its latent capacity

can be calculated using equation (5.8).

The third step is to evaluate the sensible part-load ratio of this equipment using

equation (5.9). If the sensible building load, BLc,s, is larger than the equipment

sensible capacity, Q̇s,max, the equipment will run full out and a part-load ratio of one

is forced. When the building load is smaller than the sensible capacity, the equipment

sensible cooling rate at part load, Q̇s, is set equal to the sensible building load BLc,s.

PLR = min(
BLc,s

Q̇s,max

, 1) (5.9)

Q̇s = PLR× Q̇s,max (5.10)
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The fourth step is to relate the equipment latent capacity (calculated in equation

(5.8)) to the equipment latent cooling rate in terms of the specific sensible part-load

ratio using (5.11). Therefore, the equipment total cooling rate can be calculated using

equation (5.12) as a sum of equipment sensible cooling rate (5.10) and latent cooling

rate (5.11). Subsequently, the sensible heat ratio at equipment part-load scenarios is

evaluated using equation (5.13).

Q̇l = Q̇l,max(b1PLR + b2PLR
2 + b3PLR

3 + b4PLR
4) (5.11)

Q̇t = Q̇s + Q̇l (5.12)

SHR =
Q̇s

Q̇t

(5.13)

The last step in applying the mapping model is to calculate equipment coeffi-

cient of performance. Equation (5.14) corrects equipment rated COP (obtained as

Q̇rat/Ẇrat) to equipment COP at specific operating conditions and part-load ratio

using two correction factors. Equation (5.15), presents the correction factor for oper-

ating conditions, fCOP,T , as a bi-quadratic polynomial in terms of normalized outdoor

dry bulb temperature and effective indoor wet bulb temperature, BID,eff , that was

obtained in the second step above. Equation (5.16) presents the correction factor for

part-load effects, fCOP,PLR, as a cubic polynomial in terms of sensible part-load ratio.

Equipment power consumption can be obtained using equation (5.17) as a ratio of Q̇t

over COP.

COP = fCOP,TfCOP,PLR × COPrat (5.14)

fCOP,T = c0(1 + c1
BID,eff

BID,rat

+ c2
TOD
TOD,rat

+

c3(
BID,eff

BID,rat

)2 + c4(
TOD
TOD,rat

)2 + c5
BID,eff

BID,rat

TOD
TOD,rat

) (5.15)
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fCOP,PLR = d0 + d1PLR + d2PLR
2 + d3PLR

3 (5.16)

Ẇ =
Q̇t

COP
(5.17)

The overall procedure to implement this load-based quasi-steady-state model is

illustrated schematically using figure 5.3. The steps are to evaluate: 1) equipment

total cooling capacity; 2) equipment sensible capacity using the bypass factor ap-

proach; 3) equipment sensible part-load ratio and sensible cooling rate by comparing

the sensible building load to the equipment sensible capacity; 4) equipment latent

cooling rate at part-load conditions and the associated total cooling rate and SHR;

5) equipment COP at specific outdoor drybulb temperature, effective indoor wetbulb

temperature and part-load ratio.

Fig. 5.3. Implementation procedure for the load-based quasi-steady-state model

This model can distinguish between equipment full-load and part-load operations

by comparing sensible building load to equipment sensible capacity that is evaluated

using a bypass factor approach. This model can also handle both equipment dry-
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coil and wet-coil scenarios at part-load by employing an effective indoor wet bulb

temperature that is solved iteratively as the sensible heat ratio is enforced to one.

5.3 Model training and validation based on a simulation database

In order to evaluate the performance mapping model form presented above, a sig-

nificant amount of equipment performance data is required that reflects the operation

of the equipment associated with its integrated controls. It is challenging to acquire

a large amount of data through load-based testing because of the significant time and

cost required. As a result, for the initial development of the mapping approach, data

were acquired by simulation using another semi-empirical performance model with a

prescribed algebraic control logic that is described in this section.

Nyika et al. [27] developed a semi-empirical generalized model for variable-speed

ducted residential equipment. This model represents equipment sensible cooling rate

and power consumption at steady states using equipment total cooling rate, indoor air

flowrate, outdoor dry bulb temperature, indoor dry bulb and wet bulb temperatures as

model inputs. The inputs and outputs are slightly different than the variables for our

purposes. In particular, Nyika’s model utilizes indoor air flowrate as an input variable

and therefore the model does not incorporate an integrated equipment controller that

dictates air flowrate. However, Nyika additionally presented an empirical algebraic

controller model to be coupled with the equipment model that correlated equipment

part-load ratio to indoor air flowrate linearly. In this formulation, indoor air flowrate

was an intermediate variable, and therefore the combined model was able to map

both the equipment performance and its controls. Nyika’s model was used in this

chapter to generate a simulation database. Although the details of Nyika’s model

won’t be covered in this section, the process of generating simulated data using the

model is described.

Nyika’s model was developed for a four-ton variable-speed air conditioner. The

equipment rated performance is tabulated in table 5.1 below. Its rated capacity and
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power are based on operating conditions of TID = 80°F , BID = 67°F and TOD = 95°F ,

consistent with AHRI210/240 [2].

Table 5.1.
Rated information for a four-ton variable-speed air conditioner

Q̇rat ẆOD,rat ẆID,rat V̇ID,max

14241 W 3160 W 394 W 1500 cfm

In order to acquire realistic and representative simulation data, the applicable

range of this model should be limited to the range of regression data used by Nyika

et al., and is summarized in table 5.2. Therefore, an input matrix for our simulation

was sampled using the ranges shown in table 5.2. For example, TOD was sampled

from 70°F to 115°F using a sampling step of 5°F . TID was sampled from 65°F to

85°F using a step of 4°F . BID was sampled using a step of 3°F from 50°F to 77°F

or TID, whichever was lower. The applicable range for equipment total cooling rate,

Q̇t, is not explicitly tabulated in table 5.2, but out-of-range total cooling rates were

filtered out by comparing calculated equipment part-load ratios to their applicable

range tabulated in table 5.2. Prior to filtering, Q̇t was initially sampled from 2kW to

20kW using a step of 1kW .

Table 5.2.
Applicable range of Nyika’s model

TOD BID TID
Q̇t

Q̇t,max

V̇ID
V̇ID,max

Lower bound 67°F 49.4°F 65°F 0.31 0.5

Upper bound 115°F 77°F 85°F 1 1

The simulated data were filtered using the applicable ranges specified for both

Q̇t

Q̇t,max
and V̇ID

V̇ID,max
. In addition, some datapoints were dropped when the equipment

sensible heat ratio was lower than 0.5, since this SHR is already associated with an un-



129

realistically high latent cooling. Overall, 2960 datapoints were acquired that covered

the complete operating envelope of this four-ton variable-speed air conditioner.

The database of 2960 datapoints is too large to be represented/predicted using

the proposed mapping model form that incorporates psychrometric functions and nu-

merical iterations. Therefore, 197 datapoints as a subset from this database were

evenly sampled to cover the operating envelop of the four-ton variable-speed air con-

ditioner. These 197 datapoints were used as a validation dataset, Svalidation, in order

to validate prediction accuracy of the performance mapping model trained using a

separate training dataset Straining.

Heuristically, a few rules of thumb are preferred for the training set. 1) Fewer

datapoints than the validation set should be included since ultimately the training

dataset will be obtained by load-based testing which is expensive and time-consuming.

2) Training datapoints as potential test points should have their inputs consistent

with load-based testing (i.e. the outdoor drybulb temperature, sensible building

load, indoor drybulb temperature and building sensible heat ratio are inputs, as is

mentioned in section 5.1). 3) As an input for each datapoint, sensible building load

should be decoupled from outdoor drybulb temperature since it is not preferred that

the performance map is trained using datapoints constrained by a specific building

load line. 4) At least for the load-based quasi-steady-state model presented in section

5.2, wet-coil data are preferred as training data, since no iterations are required

for wet-coil performance determination during the training process such that model

training will be faster and more stable. 5) The training dataset should originate from

the same source (Nyika’s model) as the validation dataset.

In order to obtain Straining, a candidate dataset Scandidate was generated from which

a smaller training dataset could be selected. For Scandidate, TOD was sampled from

77°F to 104°F using a sampling step of 9°F ; TID had two values: 73°F and 77°F ;

sensible heat ratio had three values: 0.65, 0.8 and 0.95; sensible building load had

three values: 1/4Q̇rat, 1/2Q̇rat and 3/4Q̇rat. 56 datapoints were left after datapoints

were filtered according to the ranges specified in table 5.2. Currently, it was decided
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to select 12 datapoints as a training subset from the candidate dataset to train the

load-based quasi-steady-state model and obtain its coefficients.

5.3.1 Model training

Before the model training process, the bypass factor BF as a model parameter is

obtained using equations (5.2) to (5.7) and equipment rated performances for sensible

capacity, total capacity, full-speed indoor airflow rate that are measured at TID,rat =

80°F , BID,rat = 67°F , TOD,rat = 95°F . Other model parameters/coefficients are

trained subsequently using datapoints from the training dataset.

For each training dataset, the process to train the model is briefly introduced

below. The model coefficients are grouped as two coefficient vectors that are trained

separately since they serve two different cost functions. As is shown in equation

(5.19), θQ represents the coefficient vector that is used for equipment cooling rate

prediction. The coefficient vector includes the polynomial coefficients in equation

(5.1) and (5.11). In equation (5.18), XQ,i represents an input data vector for each

training datapoint. The optimization cost function for this non-linear regression of

the sub-model of equipment cooling rate prediction is a root mean of square errors

between the original equipment latent cooling rate Q̇l and the predicted equipment

latent cooling rate Q̇l(XQ|θQ). In order to force Q̇t,max in equation (5.1) to represent

the equipment cooling capacity, α is constrained by the selections of aj, as is shown

in equation (5.21). In addition, the correction factor in equation (5.11) should be

equal to one, when PLR = 1, since equipment latent cooling rate prediction at part-

load should be equal to its latent capacity prediction with PLR = 1. This can be

formulated as equation (5.22). Both equation (5.21) and (5.22) are constraints to the

optimization process in equation (5.20). When the cost function is minimized, the

optimal θ̂Q represents the best estimate.

XQ,i = [TOD,i, BID,i, TID,i, BLc,s,i], 1 ≤ i ≤ Ntrain (5.18)
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θQ = [α, ao, a1, a2, a3, a4, a5, b1, b2, b3, b4] (5.19)

θ̂Q = argmin
θQ

√√√√ 1

Ntrain

Ntrain∑
i=1

(Q̇l,i − Q̇l(XQ,i|θQ))2 (5.20)

α×
5∑
i=0

aj = 1 (5.21)

4∑
j=1

bj = 1 (5.22)

The parameter estimation for the sub-model of equipment COP prediction is con-

ducted similarly. Before the estimation process, θ̂Q and the associated cooling rate

prediction sub-model should be employed to determine sensible part-load ratio, PLRi,

and effective indoor wet bulb temperature, BID,eff,i, for each training datapoint.

Therefore, the input data vector of each training datapoint includes outdoor dry bulb

temperature, effective indoor wet bulb temperature, and sensible part-load ratio, as

is shown in equation (5.23). In equation (5.24), θCOP represents the coefficient vector

that is used for equipment power prediction, which includes the polynomial coeffi-

cients in equation (5.15) and (5.16). The optimization cost function for the regression

of the sub-model of equipment COP prediction is a root mean of square errors be-

tween the original COP and the predicted COP (XCOP,i|θCOP ). The correction factor

in equation (5.16) should be equal to one, when PLR = 1, since equipment COP

prediction at part-load should be equal to full-load COP prediction with PLR = 1.

This can be formulated as equation (5.26), which is a constraint to the optimization

process in equation (5.24). The optimal θ̂COP represents the best estimate.

XCOP,i = [TOD,i, BID,eff,i, PLRi], 1 ≤ i ≤ Ntrain (5.23)

θCOP = [co, c1, c2, c3, c4, c5, d0, d1, d2, d3] (5.24)
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θ̂COP = argmin
θCOP

√√√√ 1

Ntrain

Ntrain∑
i=1

(COPi − COP (XCOP,i|θCOP )) (5.25)

3∑
j=0

dj = 1 (5.26)

This overall training process is utilized in an optimal search of the training dataset

based on the simulation database and future manipulation with load-based test re-

sults. In this training process, both of the coefficient vectors were estimated using a

trust region nonlinear optimization approach developed by Byrd et al. [39].

5.3.2 Acquisition of the optimal training dataset

A successive optimization approach was used to search for the best training subset

Ŝtraining that includes 12 datapoints sampled from the candidate dataset Scandidate that

has 56 datapoints, such that Ŝtraining can be utilized to train the proposed model form

(introduced in section 5.2) that best predicts the 197 datapoints from the validation

dataset Svalidation. The beginning of section 5.3 introduced how Scandidate and Svalidation

were generated.

The successive optimization process is composed of an inner-loop optimization

and an outer-loop optimization. Given a specific training subset Straining selected

from Scandidate, the inner-loop optimization is to search for the best estimate of the

coefficient vector θ̂Q(Straining) for equipment cooling rate prediction sub-model, fol-

lowing the training procedure indicated by equations from (5.18) to (5.22). For

the purpose of conciseness, the procedure is represented by equation (5.27), where

RMSEQ̇l
(Straining, θQ) indicates the root mean square error obtained given a specific

coefficient vector and a specific training dataset.

θ̂Q(Straining) = argmin
θQ

RMSEQ̇l
(Straining, θQ) (5.27)
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Given the validation dataset, Svalidation, the outer-loop optimization is to search

for the best estimate of the training subset, Ŝtraining, from Scandidate, in terms of

comparing how models associated with their equipment cooling rate prediction co-

efficient vectors trained using different Straining can predict the Svalidation. How the

Svalidation is predicted in terms of COP is not considered here, since at least with

respect to the simulation database, it is observed that COP is easier to be captured

by the model trained using good selection of Straining, while equipment cooling rates

are more difficult. This outer-loop optimization is shown in equation (5.28), where

RMSEQ̇l
[Svalidation, θ̂Q(Straining)] indicates the root mean square error obtained given

the Svalidation and the θ̂Q(Straining) estimated by the inner-loop optimization for a spe-

cific Straining. A genetic algorithm [40] was used here for the outer-loop optimization.

Ŝtraining = arg min
Straining

RMSEQ̇l
[Svalidation, θ̂Q(Straining)],∀Straining ⊂ Scandidate (5.28)

Fig. 5.4. Histogram of unique training datasets

Since the computation cost was high during the overall successive optimization,

1096 unique training datasets were evaluated without reaching convergence of the

genetic algorithm. Most of the evaluation results are shown in the histogram in figure

5.4. 80% of the training datasets led to models with equipment latent cooling rate
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prediction of Svalidation having an RMSE less than 350W. 30% of the training datasets

led to RMSE values less than 200W.

Table 5.3.
Optimal training dataset with respect to the simulation database

Datapoint TOD[°F ] TID[°F ] BLc,s

Q̇rat
SHR

1 77 77 0.75 0.8

2 86 77 0.5 0.65

3 86 77 0.5 0.95

4 95 73 0.25 0.65

5 95 73 0.75 0.95

6 95 77 0.5 0.65

7 95 77 0.25 0.8

8 95 77 0.75 0.8

9 95 77 0.5 0.95

10 104 73 0.5 0.65

11 104 73 0.75 0.95

12 104 77 0.5 0.8

Among the 1096 datasets that were evaluated, the best/optimal 12-point training

dataset (with respect to the simulation database) is shown in table 5.3. These 12

datapoints are distributed through the equipment wet-coil operating envelope but

with preferences for 95°F outdoor drybulb temperature and 0.5Q̇rat sensible building

load (both seen with 6 datapoints). It was hoped that this optimal training dataset

would inform heuristic rules for performing load-based tests on any variable-speed

equipment that can lead to a performance map with similar accuracy.
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Fig. 5.5. Parity plot for equipment total cooling rate prediction

5.3.3 Prediction results obtained using the optimal training dataset

The load-based quasi-steady-state model was first identified using the 12-point

optimal training dataset from the simulation database. Then, the prediction accuracy

of the model was assessed, as the model was used to predict the validation dataset with

197 datapoints that cover the complete operation envelope of the four-ton variable

speed air conditioner.

Prediction results are shown from figure 5.5 to 5.9 that compare predictions of

equipment total cooling rate, latent cooling rate, sensible heat ratio, COP and power

consumption with the original simulation data. Root mean square error and R2 are

shown at the left-upper corner of each figure. The parity plots for equipment latent

cooling rate, SHR, COP have color representing the sensible building load of each

datapoint. The parity plots for equipment total cooling rate and power consumption

have color representing the equipment sensible heat ratio of each datapoint.
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Fig. 5.6. Parity plot for equipment latent cooling rate prediction

Fig. 5.7. Parity plot for equipment sensible heat ratio prediction
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Fig. 5.8. Parity plot for equipment COP prediction

Fig. 5.9. Parity plot for equipment power prediction
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As can be seen from these plots, the equipment total cooling rate, COP and power

are well predicted by the model and the R2 values are very close to 1. However,

figure 5.7 shows some points with overprediction in sensible heat ratio at low sensible

building loads and low SHRs. This overprediction of SHR echoes the underprediction

of equipment latent cooling rate at low loads indicated by some dark blue points

in figure 5.6. In general, the model does better at higher part-load ratios. This

could be due to inadequate treatment of the effect of the modulated airflow on heat

and mass transfer of the evaporator using the bypass factor approach in lower part-

load scenarios. Nevertheless, the prediction results for COP and power consumption

are very good, such that, at least for this equipment represented by the simulation

database, this mapping model form shows promise for use in representing quasi-

steady-state variable-speed cooling equipment performance throughout its operating

envelope. Moreover, the trained model with acceptable accuracy can be obtained

using only 12 training datapoints that are optimally found.

5.4 Performance mapping experimental design

An optimal training dataset of 12 datapoints was obtained in the section above

that can be used to train the proposed mapping model form that is able to represent

the simulation database with acceptable prediction accuracy. It was hoped that this

optimal training dataset with respect to the 4-ton equipment simulation database

would inform heuristic rules for performing load-based tests on any equipment type

that can lead to a performance map with similar accuracy. A heuristic experimental

design is proposed that inherits the datapoints determined from the section above

with some additional test points to form a test matrix of 15 test points that are

tabulated in table 5.4, where the first 12 points are identical to table 5.3. The last

three points were added as a supplement because they are at low loads that could

possibly trigger the test equipment cycling on/off behaviors.
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Table 5.4.
Test matrix obtained using heuristic experimental design

Test point TOD[°F ] TID[°F ] BLc,s

Q̇rat
SHR

1 77 77 0.75 0.8

2 86 77 0.5 0.65

3 86 77 0.5 0.95

4 95 73 0.25 0.65

5 95 73 0.75 0.95

6 95 77 0.5 0.65

7 95 77 0.25 0.8

8 95 77 0.75 0.8

9 95 77 0.5 0.95

10 104 73 0.5 0.65

11 104 73 0.75 0.95

12 104 77 0.5 0.8

13 77 71 0.25 0.65

14 77 79 0.25 0.95

15 86 71 0.25 0.8

Although the datapoints in table 5.4 work well for model training applied to

the four-ton air conditioner simulation data, it is not known how well this would

work for other equipment. Therefore, a more general clustering experimental design

approach was developed that generates a uniform, complete and unbiased coverage

of the operating envelope for any variable-speed air conditioner.

Hierarchical clustering is an algorithm that groups objects over a variety of scales

by creating a hierarchical clustering tree. The tree is not a single set of clusters, but

rather a multilevel hierarchy, where clusters at a lower level are joined as clusters at a

higher level of the hierarchical tree. Objects in a cluster are similar to each other, while
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objects from different clusters are dissimilar. Therefore, the similarities/dissimilarities

of objects in each level is the criteria of partitioning/grouping. There are various

choices of similarity metrics, and the Euclidean distance between two objectives in

their vector space is a popular measurement that was used in this section. Every

objective at the lowest level of the hierarchical tree is a cluster itself. In an upper

level, two clusters from the lower level that are in the closest proximity to each other

are grouped into a new cluster. In this way, the complete set of all the objectives

form the last and final cluster at the very top level of the hierarchical tree. A user of

the algorithm can decide which level of clustering/partitioning is needed in different

applications. Chopping off the hierarchical tree at a lower level results in more clusters

while a higher-level cut-off results in less clusters.

The goal of applying hierarchical clustering in experimental design is to group sim-

ilar test points in a cluster and partition the experiment design space into dissimilar

clusters. Therefore, the test points sampled from these clusters (e.g. cluster cen-

troids) can represent the entire experimental design space well. Compared to random

sampling from the design space, test points sampled after clustering should better

span across the space. Another benefit is that the sampled test points are repeatable

using the clustering approach, while the results from random sampling are not. This

will contribute to the repeatability of the experimental results.

When utilizing the algorithm for the current application (sampling/designing rep-

resentative test points from the complete operating envelope of any variable-speed

air conditioner), points were compared to each other in terms of their proximity in

a hyperspace of four dimensions: outdoor dry bulb temperature, indoor dry bulb

temperature, sensible building load and building sensible heat ratio (test inputs to

load-based testing). In this section, clustering involving two dimensions will be pre-

sented first as an example followed by the final results of clustering in the hyperspace,

since two-dimensional clustering and sampling are easier to explain and visualize.



141

Fig. 5.10. Uniform sampling of candidate test points

5.4.1 Clustering of test points in a 2-dimensional experimental design

space

This subsection will explain how to group 20 test points into 6 clusters within

a 2-dimensional experiment design space (outdoor temperature and indoor tempera-

ture for an experimental study of an single-speed air conditioner in dry climates, for

example). The outdoor temperature ranges from 68°F to 104°F , and the indoor tem-

perature ranges from 69°F to 81°F . The first step is to uniformly sample 20 candidate

test points covering the complete design space, as can be seen in figure 5.10. Five

alterations of outdoor temperature are introduced in the candidate set, along with

four alterations of indoor temperature. More candidate test points can be sampled,

but this will require more computational effort and may also possibly end up with

different clustering results.



142

Fig. 5.11. Hierarchical clustering tree

Fig. 5.12. 6 clusters of 20 candidate test points
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Fig. 5.13. 6 cluster centroids

The second step is to normalize the 20 values in each dimension before calculating

the distance information such that they are centered and have a mean of zero, and

are scaled to have a standard deviation of one. Therefore, the discrepancies in scales

of the two dimensions won’t distort the proximity calculations. This is particularly

important when Euclidean distance is extended to a four-dimensional design space in

next subsection.

The third step is to calculate the Euclidean distances between every two candidate

test points among the 20 points. The fourth step is to link two test points that are

the closest to each other together into clusters. If one test point is equally close to

more than one point, it will be paired to its first neighbor. Therefore, the sequence of

test points provided to the algorithm does affect the clustering results. Afterwards,

these newly formed clusters should be linked to each other to create bigger clusters at

higher levels until all the test points are grouped together in a hierarchical tree. For

this example, the hierarchical tree is shown in figure 5.11. When calculating distance
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between two clusters that have more than one test point, the average distance of test

points between clusters should be considered.

The fifth step is to chop off the hierarchical tree in order to obtain a desired

number of clusters. For this example, the 20 test points are grouped into 6 clusters,

and therefore the hierarchical clustering tree should be chopped off at the Euclidean

distance of roughly 1.1 , which is illustrated using a red cut-off line in figure 5.11.

The 6 clusters of points can be seen in figure 5.12 that are represented by different

colors. The very last step is to find the centroid of each cluster, in order to represent

these clusters, as can be seen in figure 5.13. In this way, 6 representative test points

are sampled from the 2-dimensional experimental design space.

5.4.2 Clustering of test points in a 4-dimensional experimental design

space

In this subsection, following the steps illustrated in the previous subsection, rep-

resentative test points were clustered and sampled from the operating envelope of

a variable-speed air conditioner, in terms of a hyperspace of four dimensions: out-

door dry bulb temperature, indoor dry bulb temperature, sensible building load and

building sensible heat ratio.

Candidate test points that uniformly span the hyperspace were initially sampled.

In this case, TOD was sampled from 68°F to 104°F using a sampling step of 9°F .

TID was sampled from 69°F to 81°F using a step of 4°F . Sensible building load

BLc,s was sampled as a fraction of air conditioner rated capacity Q̇rat using a step

of 0.2Q̇rat from 0.2Q̇rat to Q̇rat. Sensible heat ratio SHR was sampled from 0.6 to 1

using a step of 0.1. Totally, there were 500 combinations with these alterations in

the four dimensions. However, 331 candidate test points were left after the rest were

filtered out according to the full-load curve of the model by Nyika et al. [27]. It is not

useful to incorporate candidate test points that will over load an air conditioner using

significantly high sensible building load or low sensible heat ratio, since these points
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Table 5.5.
Test matrix obtained using clustering experimental design

Test point TOD[°F ] TID[°F ] BLc,s

Q̇rat
SHR

1 74 78 0.81 0.93

2 76 71 0.49 0.7

3 76 79 0.64 0.72

4 77 71 0.2 0.65

5 77 71 0.2 0.89

6 77 79 0.3 0.7

7 77 79 0.4 0.95

8 78 71 0.59 0.96

9 95 69 0.6 0.75

10 97 79 0.8 0.95

11 98 78 0.6 0.72

12 100 71 0.3 0.65

13 100 71 0.38 0.91

14 100 79 0.3 0.65

15 100 79 0.38 0.91

are outliers with respect to an air conditioner’s operating envelope. Different full-load

curves can be used, such as the default capacity curves from EnergyPlus [36], as long

as these curves are able to determine a reasonable air conditioner full-load envelope.

The clustering procedure included the normalization of values in each dimension,

calculation of Euclidean distances and linkages in order to build a hierarchical clus-

tering tree. It was decided to chop off the tree in order to have 15 clusters and

ultimately 15 representative test points (same number of test points as the heuristic

experimental design). It is believed that a number of load-based tests ranging from

12 to 15 is appropriate in terms of having a reasonable testing burden and mapping
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accuracy for the purpose of air conditioner performance mapping. The centroids of

the 15 clusters that are listed in table 5.5 are the representative test points obtained

using the clustering experimental design approach.

Table 5.4 and table 5.5 were combined into an overall test matrix for load-based

testing in order to provide data for both training and validation. In the following

section, these tests will be carried out in order to evaluate how actual test results can

be used to train and validate the proposed mapping model form.

5.5 Load-based test results and an optimal performance map

Using the experimental setup introduced in chapter 2, load-based tests were car-

ried out with respect to the virtual building model, automated testing procedures,

convergence criteria described in chapter 2 and the thermostat environment emulator

described in chapter 4, except for the following modifications:

1. Throughout each test interval, the psychrometric chamber that simulates the

outdoor environment used temperature setpoints according to the TOD column in

table 5.4 and 5.5.

2. The sensible building load model used in load-based testing, equation (2.12) in

chapter 2, was not used and a fixed sensible building load BLc,s for each test point

specified in table 5.4 and 5.5 was used instead. Similarly, the fixed SHR values in

these two tables were used in equation (2.14) that characterizes virtual building latent

dynamics.

3. After the test unit was turned on, the test thermostat inside its environment

emulator had its setpoint adjusted according to the TID column in table 5.4 and 5.5

throughout each test interval except for full-load test scenarios.

4. When initializing the virtual building models, the initial values for the virtual

room humidity ratios wID,sp(0) were configured using the following rules of thumb.
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When the SHR value (see table 5.4 and 5.5) was below 0.75, a humidity ratio corre-

sponding to 60% relative humidity at the thermostat setpoint temperature was used

for wID,sp(0). When the SHR value was above 0.85, a humidity ratio corresponding

to 30% relative humidity was used. When the SHR value was in-between, a humidity

ratio corresponding to 45% relative humidity was used. These are reasonable initial

guesses for the floating virtual room humidity levels that differ from test to test, and

the humidity ultimately converged according to the test inputs in table 5.4 and 5.5.

Using the modifications above, load-based tests were performed according to the

test inputs specified in table 5.4 and 5.5, while still following the majority of the

procedures established in chapter 2. Since the sensible load line and its dependency

on ambient temperature, indoor, outdoor design temperatures and balance point

temperature were not used anymore, the building loads and the temperatures were

decoupled from each other as separate test inputs, and therefore these tests could

explore the complete operating envelope of the test equipment.

5.5.1 Dehumidifying mode test results

Detailed test results for the whole 30 tests are documented in the appendix of

the thesis. Most of them are similar to the wet-coil test results shown in chapter 2

and 4 in terms of the test equipment behaviors and the variation patterns for indoor

temperature and humidity, except for the following five tests that are shown below

in table 5.6.

It was observed that the five tests in table 5.6 had the test equipment running

in a dehumidifying mode instead of a regular cooling mode. Specifically, the indoor

room temperature was overcooled by the equipment to be lower than its thermostat

setpoint, as can be seen by comparing column 3 to 4 in table 5.6. Sensible building

loads for these five tests were small while latent building loads were significant. In

order to match the loads with equipment cooling rates and maintain a comfortable

indoor humidity level, the test equipment controller overrode its thermostat setpoint
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Table 5.6.
Test results for five dehumidifying mode tests

Test TOD[°F ]
Thermostat

setpoint [°F ]
TID[°F ] BID[°F ] Q̇s[W ] SHR COP

1 77 71 70.8 62.6 2385 0.64 7.37

2 77 71 69.4 61.5 1888 0.65 6.94

3 95 73 69.5 61.2 2492 0.66 5.03

4 100 79 77.2 66.7 2898 0.65 4.93

5 100 71 69.6 61.3 2895 0.65 4.63

Fig. 5.14. Sensible results of dehumidifying mode test 4 in table 5.6
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Fig. 5.15. Latent results of dehumidifying mode test 4 in table 5.6

in dehumidifying mode, leading to a lower indoor cooling coil sensible heat ratio than

would have occurred in normal cooling mode.

Test results for the dehumidifying mode test 4 in table 5.6 are shown in figure

5.14 and figure 5.15. Similar legends were used as the corresponding result plots

in chapter 2 and 4. As can be seen in figure 5.14, the virtual building dynamics

were not initiated until the thermostat upstream temperature and the return air

temperature were controlled to 78 °F , although the equipment was functioning before

that point. At that moment, even though the thermostat environment was 1°F lower

than the thermostat setpoint, the test equipment kept cooling the virtual room in

dehumidifying mode for more than half an hour before it cycled off. This was due

to the indoor relative humidity that was quite high (close to 60%) and due to the

significant latent building load that kept adding moisture to the virtual room, as

can be seen in figure 5.15. Since the sensible building load was not significant, the

indoor room temperature was always below the thermostat setpoint throughout the
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test as the equipment was cycling on and off. As a result, indoor room RH was

effectively maintained below 60% by the equipment under the dehumidifying mode.

This dehumidifying mode test is strong evidence for the fact that the laboratory load-

based testing methodology is able to reflect test equipment field behaviors guided by

its native controls with various operating modes.

Besides the 30 performance mapping load-based tests, results of additional 9 cool-

ing load-based test intervals introduced in subsection 2.4.2 are also included in the

following evaluation. For conciseness, these 9 points will be referred to as EXP-07 dat-

apoints since they were obtained according to the test matrix in chapter 2 that echoes

the CSA EXP-07 draft standard [10]. These 39 test points were obtained within a

month, and therefore uncertainties due to refrigerant leakage/discharge, environmen-

tal chamber/ductwork reconfiguration are thought to be negligible. It is important to

include these EXP-07 datapoints in order to ultimately compare the next-generation

performance rating approach against the traditional temperature-bin-based rating

approach (introduced in EXP-07 and chapter 2).

An important question that arises is whether the mapping model form proposed

in section 5.2 is able to map the test equipment performance in both regular cooling

mode and the dehumidifying mode, since different control strategies could be uti-

lized by the equipment controller in different modes. A preliminary way to answer

this question is to train the mapping model form with/without the 5 dehumidifying

mode test points. Comparative results from these approaches are shown below as

figure 5.16 and figure 5.17. Since the RMSE of the model representation was not

significantly inflated (RMSE increases from 0.1274 to 0.1580 only) when the 5 dehu-

midifying mode test points were introduced, it seems to be reasonable to utilize the

model form to also cover the dehumidifying mode performance at least for this test

equipment. Otherwise, there would need to be a separate mapping model form for

equipment dehumidifying mode and the mapping methodology would be significantly

more complicated since issues are difficult to address such as defining boundaries for

two maps and how to train maps separately.
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Fig. 5.16. Representation of 39 points including 5 dehumidifying mode points

Fig. 5.17. Representation of 34 points excluding 5 dehumidifying mode points
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5.5.2 Acquisition of the optimal training dataset

Although the prediction results of figure 5.16 and 5.17 seem promising, it is not

realistic to train the mapping model form using up to 34 or 39 datapoints that are

obtained by load-based testing, which is expensive and time-consuming. Similar to

the approach used in section 5.3, a training dataset Straining with 12 datapoints can

be optimally searched that best predict the whole 39 datapoints.

In this problem setup, the candidate dataset Scandidate includes the 30 performance

mapping load-based test points. The 9 EXP-07 datapoints were not considered in

Scandidate since they did not originate from the performance mapping experimental

design methods. However, the validation dataset Svalidation is composed of the whole

39 datapoints that includes the EXP-07 datapoints.

Similar to the approach presented in section 5.3, a successive optimization ap-

proach was utilized. Given a specific training subset Straining selected from Scandidate,

the inner-loop optimization searches for the best estimates of two coefficient vectors:

θ̂Q(Straining) for the equipment cooling rate prediction sub-model, and θ̂COP (Straining)

for the equipment COP prediction sub-model. The inner-loop optimization basically

follows the training procedures presented in subsection 5.3.1. Specifically, θ̂Q(Straining)

is obtained according to equation (5.29), and θ̂COP (Straining) is obtained according to

equation (5.30).

θ̂Q(Straining) = argmin
θQ

RMSEQ̇l
(Straining, θQ) (5.29)

θ̂COP (Straining) = argmin
θCOP

RMSECOP (Straining, θCOP ) (5.30)

Ŝtraining = arg min
Straining

{MAPEQ̇t
[Svalidation, θ̂Q(Straining)]+

MAPECOP [Svalidation, θ̂COP (Straining)]},∀Straining ⊂ Scandidate (5.31)
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Given the validation dataset Svalidation, the outer-loop optimization searches for

the best estimate of the training subset Ŝtraining from Scandidate, in terms of comparing

how models associated with their coefficient vectors trained using different Straining

can predict equipment total cooling rates and COPs in Svalidation. This outer-loop

optimization is shown in equation(5.31), where MAPEQ̇t
[Svalidation, θ̂Q(Straining)] in-

dicates the mean absolute percentage error (MAPE) of equipment total cooling rate

prediction for Svalidation using θ̂Q(Straining) that is estimated by the inner-loop opti-

mization for a specific Straining. MAPECOP [Svalidation, θ̂COP (Straining)] indicates the

MAPE of COP prediction for Svalidation using θ̂COP (Straining) that is also estimated

by the inner-loop optimization.

MAPEs are used here for the outer-loop optimization instead of RMSE, because

MAPE is non-dimensional, and therefore the cost function in equation (5.31) won’t

have a biased weight on total cooling rate prediction over COP prediction. MAPE of

total cooling rates is used here instead of latent cooling rates, since mean absolute per-

centage error of latent cooling rates could overemphasize the prediction errors when

latent cooling rates are close to zero and the cooling coil is dry. A non-dimensional

(1−R2) could also be used here.

A genetic algorithm [40] was chosen for the outer-loop optimization, with 25 evo-

lutionary generations. Each generation has 75 individuals. Each individual is actually

a Straining set with 12 datapoints sampled by the genetic algorithm and the fitness

of each individual is the sum of two MAPEs calculated according to equation (5.31).

For each generation, there is an elite individual that is guaranteed to survive and get

into the next generation. The genetic optimization process can be visualized using

figure 5.18.

The optimization took about 70 hours to finish, but the genetic algorithm still did

not converge as the average of a generation (blue line with dot) did not converge to the

minimum of a generation (green line with dots). However, the minimum values were

already very close to the red line, which is the minimized sum of MAPEs predicted

by a mapping model that was trained using the whole 39 points in Svalidation and is



154

Fig. 5.18. Cost function evaluated over generations

also the searching limit for the overall optimization process. The elite individual over

generations changed twice as the green line dropped twice in figure 5.18. The sum of

MAPEs can also be predicted by a mapping model that was trained using Sheuristic

that includes the 15 test points obtained according to the heuristic experimental

design approach. Indicated by the yellow line, this sum of MAPEs is better (smaller)

than any average values of a generation (blue line), and it is actually better than 61.4%

of all the evaluations during the overall optimization. The sum of MAPEs predicted

by a mapping model trained using Sclustering (magenta line) is not as good as the

prediction using Sheuristic. Sclustering includes the 15 test points obtained according to

the clustering experimental design approach.

Test results of the 12 optimal datapoints are tabulated in table 5.7. The cor-

responding test input matrix is shown in table 5.8. Comparing table 5.7 against

table 5.8, it is observed that the test results deviated slightly from the test inputs in

terms of TID, Q̇s

Q̇rat
and SHR. These deviations were strongly characterized by the test
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equipment behaviors such as cycling on/off, speed modulation, full-load operation

and cooling/dehumidifying modes.

Table 5.7.
Test results of the optimal training dataset

TOD[°F ] TID[°F ] BID[°F ] Q̇s

Q̇rat
SHR COP

74 78.6 60.3 0.8 0.93 7.00

76 71.3 61.4 0.49 0.70 7.52

77 77.3 63.3 0.75 0.80 7.84

77 78.1 66.7 0.3 0.69 7.75

77 79.3 61.7 0.39 0.94 6.73

95 69.5 61.2 0.26 0.66 5.03

95 69.9 59.5 0.61 0.76 4.87

95 76.0 63.0 0.25 0.80 4.96

95 77.2 66.0 0.5 0.65 5.56

95 77.3 60.1 0.5 0.94 4.59

104 77.4 64.0 0.5 0.79 4.37

104 73.0 56.6 0.69 0.95 3.81
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Table 5.8.
Test input matrix of the optimal training dataset

TOD[°F ] TID[°F ] BLc,s

Q̇rat
SHR

74 78 0.81 0.93

76 71 0.49 0.7

77 77 0.75 0.8

77 79 0.3 0.7

77 79 0.4 0.95

95 73 0.25 0.65

95 69 0.6 0.75

95 77 0.25 0.8

95 77 0.5 0.65

95 77 0.5 0.95

104 77 0.5 0.8

104 73 0.75 0.95
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5.5.3 The optimal performance map

Trained using the optimal training dataset Ŝtraining, model coefficients for the op-

timal performance map were obtained and are tabulated in table 5.9. Coefficient c0

is relatively small compared to the others, since the constant term in equation (5.15)

could be negligible. Prior to the training of these model coefficients, the indoor coil

bypass factor BF was determined as 0.07169 using the equipment rated performance

for sensible capacity, total capacity and full-speed indoor airflow rate that were mea-

sured at TID,rat = 80°F , BID,rat = 67°F , TOD,rat = 95°F . Based on table 5.9 and the

BF value, this mapping model can be reproduced outside this thesis.

Table 5.9.
Model coefficients of the optimal performance mapping model for the
test equipment

z0 z1 z2 z3 z4 z5

z=a 1.8181e2 1.5065e1 1.0758e2 1.2889e2 1.9334e1 -2.0607e2

z=b - -9.7014e-1 9.1578 -1.2912e1 5.7239 -

z=c 1.2476e-3 1.3826e3 4.5505e2 1.6661e3 6.0301e2 -3.2987e3

z=d 6.7166e-1 1.0476 -1.5545 8.3525e-1 - -

Representation of the whole 39 load-based test datapoints by the performance

map are shown from figure 5.19 to 5.23 that compare predictions of equipment total

cooling rate, latent cooling rate, sensible heat ratio, COP and power consumption

with the measured data. Root mean square error and R squared are shown at the

left-upper corner of each figure. Green scatter points on these figures represent the

12 optimal training datapoints that were used to obtain the performance map. Red

scatter points represent the other 18 performance mapping load-based tests that are

used to validate the prediction results here. Blue scatter points represent the 9 EXP-

07 datapoints.
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Fig. 5.19. Parity plot for equipment total cooling rate prediction

Fig. 5.20. Parity plot for equipment latent cooling rate prediction
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Fig. 5.21. Parity plot for equipment sensible heat ratio prediction

Fig. 5.22. Parity plot for equipment COP prediction
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Fig. 5.23. Parity plot for equipment power prediction

As can be seen from these plots, although a few latent cooling rate prediction

points (for example, two blue EXP-07 datapoints) lie outside of the ±10% dashed

error lines, the equipment total cooling rate, COP and power were well predicted

by the model and the R2 values are very close to 1. These representation results

are promising, considering that there are uncertainties for these test results originat-

ing from both instrumentation and test equipment control in particular. Since the

proposed quasi-steady-state load-based performance mapping model form can well

represent both the 4-ton variable-speed air conditioner simulation database and the

test equipment that was used throughout this work, it is believed that the accuracy

of this mapping model is adequate when used in estimating seasonal performance

ratings for variable-speed air conditioners.

Once a performance map for the test equipment is identified with acceptable pre-

diction accuracy, it is interesting to see whether the model prediction makes physical

sense or not by conducting a parametric study using the performance map. Figures
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Fig. 5.24. Parametric study of the optimal performance map: Impact
of TOD and BL on COP

5.24 to 5.26 show results for three parametric studies. A set of mapping data were

generated for figure 5.24 where indoor dry bulb temperature was held constant at 75°F

and indoor wet bulb temperature was held at 62°F . As the outdoor temperature in-

creases, the test equipment COP is predicted to drop significantly. In addition, as the

sensible building load increases while the outdoor temperature is held at a constant

value, the test equipment COP increases. It makes sense that COP at very low part-

load is smaller due to significant cycling degradation. However, whether a specific

variable-speed air conditioner has optimal performance at an intermediate part-load

or not, depends strongly on how the vapor compression cycle components are sized

and optimized in the design phase of the equipment. Nevertheless, the performance

map does not show an optimal COP with respect to the part-load variation, as was

evident from the test results (training datapoints).
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Fig. 5.25. Parametric study of the optimal performance map: Impact
of BID and BL on COP

Fig. 5.26. Parametric study of the optimal performance map: Impact
of BID and BL on SHR
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Another set of mapping data were generated for figure 5.25 where indoor dry bulb

temperature was held constant at 75°F and outdoor temperature was held at 86°F .

As the indoor wet bulb temperature increases, the test equipment COP is predicted

to increase significantly due to the increased latent cooling rate and the associated

moisture condensation on the indoor coil. When the indoor wet bulb temperature is

below 57°F , the indoor coil is dry, and the equipment COP shows no dependency on

the wet bulb temperature.

Figures 5.26 and 5.25 share the same set of mapping data. In figure 5.26, as

the indoor wet bulb temperature increases, the indoor coil sensible heat ratio drops

significantly due to the increased latent cooling rate compared to the sensible cooling

rate that is constant for each curve. The vertical dashed lines in figures 5.25 and 5.26

mark the separation of wet-coil and dry-coil scenarios. In the model form introduced

in section 5.2, the effective wetbulb temperature (BID,eff = 57°F here) is the critical

wet bulb temperature that separates dry-coil and wet-coil cooling. It is obtained using

iterations associated with the bypass factor approach at equipment full-load scenarios.

Since the bypass factor iterations cannot be employed during part-load where the

airflow rate is unknown, the critical wet bulb temperature is assumed unchanged

at part-load conditions. Therefore, the performance map here predicts the same

effective wet bulb temperature regardless of the sensible building load variations. In

reality, there should be some dependency of BID,eff on load. However, in the wet-coil

scenarios, the SHR curves show some dependency on the sensible building loads, as

the blue curve with respect to BLc,s = 2kW has larger SHR compared to the curves

associated with larger loads. A few SHR curves are mixed together when the SHR is

lower than 0.8. This could be a numerical issue resulting from the training process.

EXP-07 datapoints can be reproduced/predicted in terms of COP using the per-

formance map. The reproduced values can be further plugged into SCOPc calculation

in equation (2.15), in order to evaluate the impact of COP reproduction/prediction

on temperature-bin-based SCOPc. The comparison results can be seen in table 5.10.

After the COP reproduction, the SCOPc values across 7 climates zones increase by
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small percentages ranging from 0.9% to 1.3%, since each COP was slightly overpre-

dicted by the performance map, as can be seen in figure 5.22. These percentage

differences are as small as differences due to repeating CSA EXP-07 tests that were

presented in table 2.12.

Table 5.10.
Impact of reproduction of COPs on temperature-bin-based SCOPc

Climate zone Very cold Cold/dry Cold/humid Marine

Temperature-bin-based

SCOPc
5.83 5.02 5.81 4.92

SCOPc with COPs

reproduced by mapping
5.94 5.15 5.92 5.05

Percentage difference 0.9% 1.2% 0.9% 1.3%

Climate zone Mixed Hot/humid Hot/dry

Temperature-bin-based

SCOPc
5.77 5.86 4.78

SCOPc with COPs

reproduced by mapping
5.88 5.96 4.91

Percentage difference 0.9% 0.9% 1.3%

5.6 Next-generation performance rating using equipment performance

map

The most important application of a performance map involves integration of the

mapping model into a building simulation, in order to enable simulation-based sea-

sonal performance ratings that are both building-specific and climate-specific. Ideally,

the equipment performance map would be directly integrated within the framework

of a specific building simulation software that has typical and realistic building mod-
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els. For implementation within EnergyPlus [36], this would require cooperation of

the software developers, which was outside the scope of this study.

However, a framework or toolbox of co-simulation developed by Dostal [41] could

be used to allow the performance map to be programmed in a different platform and

coupled to an EnergyPlus simulation that is running in parallel.

Table 5.11.
Building geometry information

Zones:
3 zones: living zone

crawlspace and attic zone
Floor area:

40ft x 30ft

for each floor

Floors:
2 floors in living zone

and an attic
Location:

Albuquerque

international airport

A DOE prototype single-family building [35] was utilized here to interact with

the equipment performance map under co-simulation. The building was simulated

in Albuquerque, NM, and its information is tabulated in table 5.11. The building

geometry is very similar to the building shown in figure 3.3 from chapter 3. Only

the living spaces were conditioned that have two floors, and the conditioned area was

roughly 2377 ft2. A single thermostat with dual setpoints was used to maintain a

79°F cooling setpoint and a 72°F heating setpoint. EnergyPlus sized a 2-ton heat

pump for this building that only ran out of capacity for 3 hours in peak summer

throughout an annual simulation. Hence, the equipment performance map obtained

in the section above is very suitable to be co-simulated with the building in terms of

replacing the original heat pump, since the mapped equipment also has a 2-ton rated

cooling capacity.

During the EnergyPlus simulation, the conditioned zone air temperature is always

controlled within a deadband between the heating and cooling setpoints unless the

equipment has insufficient capacity. In order to achieve this, an approach of energy

rate control is utilized by EnergyPlus that can calculate the exact amount of required
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equipment heating/cooling rates/loads (i.e. ideal loads) with respect to the dual

setpoints based on a zone air energy balance for each simulation timestep.

This default EnergyPlus thermostat control approach is very suitable to be coupled

to the performance map, since the ideal sensible load can be directly used as an

input to the mapping model form (BLc,s). Typically, this energy rate control is used

along with an equipment model that is programmed within EnergyPlus. However,

there is an approach to indirectly utilize the default energy rate control to guide

an equipment model outside of EnergyPlus under the framework of co-simulation.

Procedures for running the co-simulation are illustrated using the flowchart in figure

5.27 and summarized in following steps.

Fig. 5.27. Flowchart of EnergyPlus and performance map co-simulation

1. To prepare for the co-simulation, the original EnergyPlus building model needed

to be pre-processed by carrying out an annual simulation in order to obtain a sequence

and associated timestamp of the ideal sensible loads with respect to the dual ther-

mostat setpoints using a simulation timestep of 1 hour.

2. In order to replace the original 2-ton heat pump in the EnergyPlus building

model by the equipment performance map proposed in this work, all associated com-
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ponents of the heat pump needed to be removed. Therefore, only the sensible and

latent building dynamics were left.

3. During the co-simulation, for each timestep, the pre-calculated ideal sensible

load is sent to the performance map as the sensible building load BLc,s. Meanwhile,

the building dynamics obtained in step 2 return real-time values of indoor dry bulb

and wet bulb temperatures, along with outdoor temperature to the map. The per-

formance map then calculates the corresponding equipment sensible/latent cooling

rates and input power. The cooling rates are then fed back to the building dynamics

as negative sensible/latent heat gains in real-time. When the ideal sensible load calls

for heating, the cooling performance map is not utilized and the ideal heating rate

is directly fed back to the building dynamics as sensible heat gain to maintain the

conditioned zone air temperature in heating season.

4. During the co-simulation, inputs and outputs of the performance map are

logged for post-processing associated with building responses and ambient conditions

such as indoor/outdoor temperature/humidity. After the co-simulation, a simulation-

based seasonal performance rating can be obtained as a sum of annual equipment

total cooling rate over a sum of annual consumed power for the mapped equipment.

Meanwhile, it is strongly suggested that plots be generated that illustrate part of

or the entire sweep of the co-simulation. For example, it is very interesting to see

whether the indoor temperature and humidity responded reasonably or not, to the

predicted equipment cooling rates.

5.6.1 Co-simulation results

Following the procedures above, co-simulation results were obtained and the an-

nual building responses are plotted in figure 5.28. In the upper subplot, outdoor

temperature is represented by the red line that varies dynamically on both a seasonal

and diurnal bases, according to the weather file for Albuquerque international airport.
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Fig. 5.28. Co-simulation results: annual building responses

The indoor dry bulb temperature is represented by the blue line that is perfectly con-

trolled within a deadband between 72°F and 79°F , since ideal sensible cooling and

heating rates were delivered to the living zone with respect to the dual-setpoint ther-

mostat. In the middle subplot, the outdoor humidity ratio (red line) and the indoor

humidity ratio (green line) follow a similar pattern due to infiltration. However, in

heating season, the indoor humidity ratio is slightly higher than the outdoor humidity

due to the indoor moisture gain, and in cooling season, the indoor humidity has peaks

that are lower than the outdoor humidity due to the simulated equipment’s moisture

removal. The latent cooling of the equipment is not very significant, since this a dry

climate. Rather than indoor humidity ratio, indoor comfort depends more on indoor

relative humidity that is shown in the lower subplot of figure 5.28. In heating season,

the indoor RH floats at about 20%, while in cooling season, the indoor RH floats at

about 40%. The maximum values of the RH are well controlled below 65% by the

simulated equipment that was mapped.



169

Fig. 5.29. Co-simulation results: building responses for three days in August

Fig. 5.30. Co-simulation results: equipment responses for three days in August
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In order to show more co-simulation details, results for three days (August 26, 27

and 28) are shown in figure 5.29 and 5.30. Since this was the beginning of fall, the

ambient temperature ranged roughly from 60°F to 83°F . The indoor temperature

was maintained at or below the cooling setpoint of 79°F . In the early mornings, due

to the relatively low ambient temperature and internal sensible gain, the indoor tem-

perature gradually dropped to roughly 75°F . Therefore, neither heating nor cooling

was needed, as can be seen in figure 5.30 that shows the equipment quasi-steady-state

responses for the three days in August. Sensible cooling rate in red line spiked up to

more than 2kW in the afternoons along with the power (in blue line), in response to

the increased ambient temperature. From about 14:00 to 15:00 in every afternoon,

roughly 500W latent cooling rate can be observed, as the equipment ran at higher

speed and the indoor environment was not very dry.

Fig. 5.31. Co-simulation results: building responses for three days in July

Figure 5.31 and 5.32 show co-simulation results for another three days (July 02,

03 and 04). Similar legends are used here. Since this was the middle of summer, the
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Fig. 5.32. Co-simulation results: equipment responses for three days in July

ambient temperature rose to more than 90°F in the afternoon, and therefore about

5kW sensible cooling was delivered by the equipment to the living zone for a few peak

hours. In the mornings, after the equipment ramped up its speed, moisture removal

was observed. However, at about 2:00 or 3:00 in the morning of July 02, the indoor

RH rose as high as 60% without latent cooling from the equipment. This can also be

observed in the early morning of August 26 in figure 5.29. Since the indoor tempera-

ture was low during the early mornings and the simulated equipment was controlled

according to the thermostat temperature setpoint, the equipment delivered neither

sensible cooling nor moisture removal to the living zone. Therefore, indoor RH could

rise uncontrollably. If the actual equipment that is studied in this work were installed

and turned on in the field, it would respond using its dehumidifying mode (seen in

subsection 5.5.1) to provide moisture removal while slightly overcooling the space.

Implementation of this mode should be addressed in future work, as a humidistat or

a thermostat with an RH setpoint should be programmed under the framework of
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co-simulation that calls for latent cooling associated with additional sensible cooling

to maintain an RH setpoint and slightly overcool the space. However, in the current

work using the co-simulation toolbox [41], this was difficult to achieve since the de-

termination of the amount of temperature overcool, that exactly maintains the RH

setpoint, requires iterations using building dynamics and the equipment performance

map jointly within a simulation timestep. This manipulation of the joint iterations

is beyond the scope of the EnergyPlus co-simulation toolbox [41]. However, the lack

of a humidistat for this co-simulation in the dry climate zone doesn’t significantly

influence the results, since the hours when RH is higher than 60% were very limited.

Fig. 5.33. Co-simulation results: annual equipment responses

Figure 5.33 shows the annual equipment responses. The blue line represents the

power consumption, red line represents the sensible cooling rate and green line rep-

resents the total cooling rate. The air conditioner ramped up during cooling season,

and the maximum total cooling rate was roughly 5.5kW, which is quite lower than

the rated capacity of the equipment. Although not significant for this dry climate,
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latent cooling can be frequently observed in the third quarter of the year. Finally,

the simulation-based seasonal performance rating SCOPc was obtained as a sum of

annual equipment total cooling rate over a sum of annual consumed power of the

simulated air conditioner, and was found to be 5.79.

5.6.2 Comparison of simulation-based SCOPc against temperature-bin-

based SCOPc

Before presenting comparison results, it is necessary to dig deeper into the deter-

mination of temperature-bin-based SCOPc than the concise introduction in section

2.3, in order to understand nuances that contribute to differences in SCOPc. Accord-

ing to CSA EXP-07 [10], temperature-bin-based SCOPc is determined using equation

(5.32).

SCOPc =

∑m
k=1(DCR(Tk)× nk)∑m
k=1(

DCR(Tk)
COP (Tk)

× nk)
(5.32)

where m is the number of temperature bins for the cooling climate zone, DCR(Tk) is

a sensible building load for the kth temperature bin, nk is the number of hours in the

kth temperature bin during the cooling season and COP (Tk) is the COP for the kth

temperature bin estimated by interpolation using EXP-07 test outputs (COP (TOD,j)).

Thus, the seasonal cooling coefficient of performance (SCOPc) is the ratio of a total

cooling load to a total electrical usage over the cooling season. The sensible load

line of equation (2.12) evaluated at the design indoor temperature is used along with

bin data for outdoor temperature to determine DCR(Tk). Temperature bin data for

each climate zone can be found in CSA EXP-07. According to the draft standard,

Albuquerque, NM, belongs to hot/dry climate zone, of which the temperature bin

hour fractions can be found in the fourth column (2nd major column) of table 5.12.

The draft standard utilized an approach of cooling degree days to determine the

bin hour fractions for the hot/dry climate based on the most current Typical Meteo-

rological Year (TMY) data of a few typical cities in Arizona, New Mexico, California
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Table 5.12.
Temperature bin hour fractions

Climate zone/location EXP-07 hot/dry Albuquerque Albuquerque

Approach to determine

bin hours

Cooling

degree days

Cooling

degree days

Utilizing Co

-simulation results

k Tk[°F ] Range [°F ] Bin hour fractions

1 72 <74.5 0.213 0.439 0.443

2 77 74.5-79.5 0.143 0.174 0.208

3 82 79.5-84.5 0.154 0.145 0.152

4 87 84.5-89.5 0.131 0.125 0.105

5 92 89.5-94.5 0.163 0.091 0.072

6 97 94.5-99.5 0.109 0.021 0.016

7 102 99.5-104.5 0.058 0.005 0.004

8 107 104.5-109.5 0.025 — —

9 112 >109.5 0.004 — —

and Texas. In this thesis, cooling degree days (CDDDaily) were evaluated for the

Albuquerque TMY data using equation (5.33) that compares daily averaged temper-

ature TDA to a prescribed balance point temperature (67°F ) and makes sure that

CDDDaily is positive. Moreover, weekly moving averaged cooling degree days were

calculated for each day associated with previous 6 days using equation (5.34). A

day was determined as a cooling day, if its CDDDaily was larger than 8°F or if its

CDDWeekly was larger than 2°F . All 24 hours of the day were binned according to

the 9 bins in table 5.12, if a day was deemed as a cooling day.

CDDDaily = max(TDA − 67, 0) (5.33)

CDDWeekly =

∑n
n−6CDDDaily

7
(5.34)
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Fig. 5.34. Daily averaged outdoor temperature and cooling degree
days for Albuquerque

Following this approach and utilizing the TMY3 weather data that were used for

the co-simulation, temperature bin hour fractions were determined specifically for

Albuquerque in this work and are shown in the fifth column of table 5.12. The upper

plot of figure 5.34 shows the daily averaged outdoor temperature and the lower plot

shows the cooling degree days on both daily and weekly averaged bases.

The last column of table 5.12 presents the temperature bin hour fractions deter-

mined from the co-simulation results using the Albuquerque TMY3 weather data.

In this case, whether an hour is deemed as an effective cooling hour depends on the

simulated ideal cooling sensible load for this hour obtained through co-simulation,

instead of using the approach of cooling degree days. If the simulated ideal cooling

sensible load for the hour was positive, the corresponding outdoor temperature was

binned, as the hour was deemed as a cooling hour.
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As can be seen in table 5.12, bin hour fractions determined for Albuquerque in

the fifth and sixth columns are very similar, although they were obtained using two

different approaches in terms of how to identify cooling days/hours. However, the

EXP-07 hot/dry climate bin hour fractions are significantly different from the two

columns on its right. The reason could be that climates of the typical cities that were

used by EXP-07 to determine hot/dry climate bin hour fractions doesn’t represent

the weather of the single location of Albuquerque, NM.

In addition to the temperature bins, two important factors that impact SCOPc

determination are the sensible building load (or demand cooling rate) DCR(Tk) and

the COP (Tk) for the kth temperature bin. Both of these are significantly influenced

by the sensible load line used in EXP-07 load-based testing shown in equation (2.12).

A different load line will result in different sensible building loads used in EXP-07

test intervals as test inputs and ultimately affect the test outputs (i.e. COP (TOD,j))

that dictate COP (Tk).

In order to evaluate sensitivity of SCOPc to the load line, it is possible to obtain

a specific sensible building load line for the single-family residential building in Al-

buquerque that was used in the co-simulation above. It would be very interesting to

see how the SCOPc will change when the EXP-07 load line is substituted with the

building-specific load line shown in figure 5.35.

The green line in figure 5.35 is a sensible load line that was identified using the

ideal sensible cooling loads obtained in the co-simulation in the section above, while

the red line is the EXP-07 sensible load line sized according to the rated capacity

of the mapped equipment that was used in the co-simulation. It’s obvious that the

equipment is oversized for the single-family building in Albuquerque and therefore

the EXP-07 load line prescribes a higher sensible load for the test equipment than

the building-specific load line when the outdoor temperature is larger than 82°F .

However, the Albuquerque building has a lower balance point temperature (63°F )

than the EXP-07 virtual building (72°F ) for the same indoor temperature setpoint

of 79 °F , possibly due to higher solar and internal gains.
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Fig. 5.35. Sensible building load line for the simulated single-family
building in Albuquerque

The performance map, different load lines and various temperature bin hour

fractions were used to compare different approaches for the temperature-bin-based

SCOPc with the simulation-based SCOPc. Comparison results are tabulated in table

5.13. SCOPc 1 is the EXP-07 SCOPc determined for the hot/dry climate. SCOPc

2 differs from SCOPc 1 only due to the performance mapping uncertainty as the

COPs utilized in SCOPc 2 were determined from the map using the EXP-07 load

line. SCOPc 3 and SCOPc 4 can be compared against SCOPc 2, since different tem-

perature bin hour fractions were used among the three according to table 5.12. Both

SCOPc 3 and SCOPc 4 are significantly larger than SCOPc 2, since they have larger

bin hour fractions at lower ambient temperatures where COPs are higher. SCOPc 3

and SCOPc 4 are close since their bin hour fractions are similar, although the frac-

tions were determined using different approaches. Instead of the EXP-07 load line,

the building-specific load line was used for the determination of SCOPc 5. Compared
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to SCOPc 4, SCOPc 5 is slightly larger although they were obtained using the same

bin hour fractions, since the sensible load line used for SCOPc 5 specifies higher loads

with low ambient, as can be seen in figure 5.35. On one hand, the COP from the

performance map at the 77°F test interval with a load from the building-specific load

line was higher compared to the COP at 77°F for the EXP-07 load line, since a higher

part-load contributes to less cycling degradation loss. On the other hand, the higher

COP for 77°F was weighted more heavily when averaging the COPs to obtain the

temperature-bin-based SCOPc, as the 77°F COP was used for both 72°F and 77°F

bins where the summed fraction is larger than 60% according to table 5.12.

The results obtained using the simulation-based approach (SCOPc 6) yielded

the highest SCOPc compared to the temperature-bin-based approach. SCOPc 5 is

the closet to SCOPc 6, since SCOPc 5 was obtained using the same performance

map, the same TMY3 weather data (to generate its temperature bins), and the same

residential building (to generate its sensible load line) as for the determination of

SCOPc 6. Possible reasons for a slightly higher value for SCOPc 6 than SCOPc 5

can be that building simulation is able to reflect higher COPs when the indoor coil is

wet (for a few hours that can be found in the co-simulation) and when the ambient is

slightly lower than 77°F . For the temperature-bin-based SCOPc, COP extrapolation

below 77°F is not considered. Since the determination of the temperature-bin-based

SCOPc 1 followed the procedures introduced in chapter 2 and the CSA EXP-07 draft

standard, SCOPc 1 is inherently different than the simulation-based SCOPc 6 due

to different weather data used, a different load line used, not being able to capture

very low ambient performance and not considering wet-coil hours even for the dry

climate. An advantage for SCOPc 1 is that COPs were obtained directly as test

outputs that won’t be compromised by potential mapping prediction uncertainty.

However, advantages for the simulation-based SCOPc are significant, since SCOPc 6

is literally both climate-specific and building-specific that comprehensively captures

the annual performance of the test equipment as if it were installed in a single-family

building in Albuquerque.
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Table 5.13.
Simulation-based SCOPc compared against a range of temperature-
bin-based SCOPc

SCOPc 1 SCOPc 2 SCOPc 3

Approach for

SCOPc

determination

Temperature-bin

-based SCOPc

Temperature-bin

-based SCOPc

Temperature-bin

-based SCOPc

COPs used

for five test

intervals

COPs tested

using EXP-07

load line

COPs reproduced

by the map using

EXP-07 load line

COPs reproduced

by the map using

EXP-07 load line

DCR used

for each bin
EXP-07 load line EXP-07 load line EXP-07 load line

Bin hour

fractions

used

EXP-07 hot/dry

climate bin hours

EXP-07 hot/dry

climate bin hours

Albuquerque bins

determined using

cooling degree days

SCOPc value 4.78 4.91 5.33

SCOPc 4 SCOPc 5 SCOPc 6

Approach for

SCOPc

determination

Temperature-bin

-based SCOPc

Temperature-bin

-based SCOPc

Simulation-

based SCOPc

COPs used

for five test

intervals

COPs reproduced

from mapping using

EXP-07 load line

COPs predicted

by the map using

the building-

specific load line

—

DCR used

for each bin
EXP-07 load line

The building-

specific load line
—

Bin hour

fractions

used

Albuquerque bins

determined using

building simulation

Albuquerque bins

determined using

building simulation

—

SCOPc value 5.38 5.50 5.79
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5.7 Interim conclusion

A next-generation approach for seasonal performance ratings was developed that

uses load-based testing for performance mapping. With this approach, equipment

seasonal performance can be rated using building simulations that incorporate specific

building types, climate zones and the identified equipment performance map.

In order to achieve this goal, a model form was identified that is able to map

both the equipment performance and its integrated controllers under quasi-steady-

state operation and that can be obtained using a small amount of training data. A

load-based quasi-steady-state model for variable-speed air conditioners was proposed

and demonstrated in this chapter. The inputs to the performance mapping model

were selected to include outdoor dry bulb temperature, indoor dry bulb and wet

bulb temperatures, and sensible building load. The outputs from the model include

equipment cooling rates and coefficient of performance. The demonstration involved

training and validation using datapoints sampled from an equipment performance

database that was acquired using simulation. Although some errors for equipment

sensible heat ratio and latent cooling rate prediction occurred at low load scenarios,

the model was able to accurately map the equipment total cooling rate, COP and

power consumption across its operating envelope.

A critical step was to define an optimal test matrix that specifies an acceptably

small number of testing requirements for mapping equipment performance using the

proposed model form. Starting from a simulation database and utilizing an approach

of optimal successive searching, it was shown that 12 datapoints can be used to train

a mapping model such that it is able to well represent equipment performance. It

was hoped that this optimal training dataset with respect to the simulation database

would inform general heuristic rules for performing load-based tests on any equip-

ment type that can lead to a performance map with similar accuracy. A heuristic

experimental design was proposed that incorporates the 12 datapoints with some

supplementary test points. In addition to the heuristic approach, a more general ex-
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perimental design approach was developed using hierarchical clustering analysis that

focused more on a uniform, complete and unbiased coverage of the operating envelope

for any variable-speed air conditioner. In order to accommodate both training and

validation analysis, an overall test matrix that incorporated 30 test points/intervals

was obtained using both the heuristic experimental design approach and the cluster-

ing experimental design approach.

Load-based tests were then carried out using designed test matrix and utilizing the

experimental setup associated with the test equipment used throughout this thesis

work. Although five dehumidifying mode test intervals were obtained instead of regu-

lar cooling mode when two test inputs (sensible heat ratio and sensible building load)

were both low, the proposed performance mapping model form was able to well rep-

resent all 30 performance mapping test intervals along with 9 previously determined

EXP-07 test intervals. Using the test data, the successive optimal searching approach

was utilized to obtain 12 optimal training datapoints from the test results that were

used to train the mapping model such that all test results were best predicted. There-

fore, the optimal performance map with respect to the test equipment was obtained.

Since this mapping model form can be trained using acceptably small number of

datapoints and can well represent both the 4-ton variable-speed air conditioner simu-

lation database and the test equipment, it is believed that the performance mapping

approach can be utilized in further estimation of seasonal performance ratings for

variable-speed air conditioners.

Experimental design for performance mapping needs to be further validated and

finalized in future work such that it can be applied to any residential cooling equip-

ment type. Although two optimal training datasets were obtained using a successive

optimal searching approach for a simulation database and a variable-speed air con-

ditioner in current work, it is premature to propose one of them as an universal test

matrix. However, it will be possible to obtain a near-optimal finalized experiment

design and associated test matrix, after additional pieces of equipment are tested and

mapped.
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The last step to obtain a next-generation seasonal performance rating was to cou-

ple the performance map to a building simulation for a specific climate type and a

specific building type. A framework of co-simulation with an EnergyPlus building

model was utilized to virtually install and operate the mapped equipment in a single-

family building in Albuquerque, NM, as a demonstration. A significant amount of

detailed building and equipment quasi-steady-state responses were observed during

the annual co-simulation and a SCOPc = 5.79 was obtained as a simulation-based

seasonal performance rating for the test equipment. The simulation-based SCOPc is

significantly higher than the temperature-bin-based SCOPc for the equipment, due to

the use of more appropriate weather data, building-specific load lines and because the

annual simulation was able to better capture very low ambient performance and wet-

coil hours even for dry climates. Therefore, it is believed that this next-generation

performance rating approach is able to comprehensively and appropriately reflect

annual field performance for cooling equipment that is specific to a climate and res-

idential building and that only requires a small number of data points to generate a

performance map from automated laboratory load-based testing.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Currently, performance ratings for unitary residential air conditioners and heat

pumps in the U.S. marketplace are based on results of steady-state laboratory tests

according to the procedures and methodology established by standard AHRI 210/240

[2]. However, this current methodology is inadequate to credit equipment that has

improved part-load performance due to the employment of variable-speed components

and advanced controls. The automated load-based testing and rating methodology

presented in this work better reflects the field performance of test equipment with

its native controls. This methodology is already implemented within the Canadian

Standards Association (CSA) EXP-07 draft standard [10] and is likely to be a basis for

future testing and rating standards within the United States and elsewhere. The key

element of the approach is that the dynamic response of a virtual building is emulated

using the psychrometric chamber controls to interact with the test equipment in real-

time, such that the equipment behaves as if it were installed in the field.

Starting from the CSA EXP-07 standard, an updated, more complete, and archival

description of the laboratory load-based testing methodology was introduced in chap-

ter 2 that includes the basis for development, necessary steps for automation and

convergence criteria. Specifically, background of the virtual building modeling ap-

proach and its parameters were introduced and example dynamic testing results for a

state-of-the-art high efficiency, variable-speed heat pump operating in cooling mode

were presented. Standardized procedures were also presented that can be used to

automatically test different dynamic load-based test intervals as a whole sweep using

convergence criteria applied to individual test intervals. In demonstrating the ap-

proach for the variable-speed heat pump, typical dynamic behaviors of the equipment
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were observed such as on/off cycling, continuous capacity modulation due to feedback

control of compressor speed, indoor humidity variation with operating conditions and

controller fluctuations, and capacity limits that lead to loss of indoor temperature

conditions. The type of information obtained during these dynamic tests can be ex-

tremely useful in evaluating advanced controllers during the development process and

provide appropriate incentives for improving performance within rating procedures.

In load-based testing, the test equipment thermostat senses the floating air tem-

perature and communicates with the test equipment as if it were installed in the field.

Therefore, it is important to properly emulate a test environment for the thermostat

that is representative of field conditions and that can be reproduced across differ-

ent test facilities. To address this, in chapter 4, a thermostat environment emulator

was developed for use in load-based testing as a means of emulating inlet conditions

to a test thermostat that are representative and reproducible. This device provides

typical flow conditions and appropriate virtual building dynamics associated with

varying inlet temperatures to a thermostat connected to its test equipment. The en-

vironment emulator includes a plenum that encloses the test thermostat, air velocity

controls that maintain representative internal airflow and air temperature controls

that emulate the virtual building dynamics to the test thermostat that are needed

in load-based testing. This part of work also provided a detailed description of the

design and operation of this thermostat environment emulator that can be used as

a basis for providing a standardized solution for applying load-based testing to air

conditioning equipment that is reproducible across different facilities. A model of the

emulator was also developed and described in detail and could be used to investigate

future improvements. The emulator was integrated into load-based cooling tests for

dry-coil and wet-coil climate conditions and was able to control the thermostat in-

let temperature almost perfectly to the virtual room temperature setpoints for both

tests.

In terms of obtaining performance ratings from load-based testing, a temperature-

bin-based method was presented and demonstrated in chapter 2, that echos the ap-
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proach used in CSA EXP-07. The temperature-bin-based climate-specific ratings are

estimations of seaonal coefficient of performance (SCOPc) for the test equipment,

determined by effectively averaging the load-based test results (COPs) according to

specific ambient temperature bin hour fractions for each climate and the EXP-07

sensible building load for each bin. It was found that seasonal ratings were signifi-

cantly higher in humid climates for the equipment considered in this study because

of better test performance for wet-coil than dry-coil conditions. The highest rating

occurred for a hot/humid climate, whereas the worst performance was for a hot/dry

climate. The effect of building parameters on performance ratings was also inves-

tigated and illustrated the ability of load-based testing to capture the impacts of

different building-load interactions. This capability for load-based testing could be

very useful in the development process for improved equipment and controller tech-

nology.

As an alternative to the temperature-bin-based traditional seasonal performance

rating approach, a next-generation approach was developed that uses load-based test-

ing for performance mapping that is combined with building simulations to determine

seasonal performance ratings that are both building-specific and climate-specific. A

load-based quasi-steady-state model for a variable-speed air conditioner was proposed

and demonstrated in chapter 5 as the mapping model form. The initial development

involved training and validation using datapoints sampled from an equipment perfor-

mance database that was acquired using simulation. Trained using acceptably small

number of datapoints, the model was able to accurately map the equipment total cool-

ing rate, COP and power consumption across its operating envelope. Based on the

proposed mapping model form and the simulation database, a heuristic experimental

design approach and a clustering experimental design approach were presented that

specified a test matrix for load-based tests that were carried out using the experi-

mental setup associated with the test equipment used throughout this thesis work.

Trained using only 12 optimal test points, the performance map was able to predict

the validation load-based test points within ±10% errors and with R2 values close
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to 1. Since the mapping model form can well represent both the variable-speed air

conditioner simulation database and the test equipment throughout their operating

envelopes, it is believed that the performance mapping approach can be utilized in

the future for estimation of seasonal performance ratings for variable-speed air con-

ditioners.

The next-generation seasonal performance rating approach was presented and

demonstrated in chapter 5 that coupled the identified performance map to a building

simulation with respect to a specific climate type and building type. A framework of

co-simulation with an EnergyPlus [36] building model was utilized to virtually install

and operate the mapped equipment in a single-family building in Albuquerque, NM,

as a demonstration. The simulation-based SCOPc is a more appropriate performance

rating for cooling equipment than the temperature-bin-based SCOPc, due to the

use of more specific weather data, consideration of building dynamics and because

the associated annual simulation is able to better capture a few subtle but non-

negligible building-equipment interactions. Therefore, it is believed that this is a

next-generation performance rating approach and will be able to comprehensively

and appropriately reflect annual field performance for a cooling equipment within a

specific climate and a residential building.

To summarize, this thesis work successfully presented: 1) an updated, more com-

plete, and archival description of the laboratory load-based testing methodology that

includes the basis for development, necessary steps for automation and convergence

criteria; 2) design and demonstration of a thermostat environment emulator that can

provide realistic and reproducible inlet conditions to a test thermostat for the purpose

of load-based equipment testing; 3) evaluation and validation of the complete load-

based testing methodology using residential equipment within a laboratory setup; 4)

a methodology to extend load-based testing for performance mapping that captures

both the equipment performance and its integrated controllers under quasi-steady-

state operation; 5) a next-generation approach for obtaining seasonal coefficient of

performance for rating of residential unitary cooling equipment that is based on sim-
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ulation that includes an equipment-specific performance map, specific building and

climate types.

6.2 Future work

Since this work focused on development and investigation of a standardized next-

generation testing and rating methodology for residential cooling equipment, the most

important and straightforward future work is to repeat and reproduce the proposed

approaches. In addition, seven potential future steps are proposed here in terms of

improvements to the current methodology.

1. The thermostat environment emulator should be reproduced across different

test facilities and be used to test different types of unitary cooling equipment. Specif-

ically, it is important to observe whether the reproduced emulator can always track

the virtual room temperature setpoints that are adjusted according to outputs from

the virtual building model. It may be necessary to consider thermoelectric devices

with more cooling capacity to accommodate potential environmental chambers and

situations with inlet temperatures that are significantly warmer than the desired set-

points. In addition, when a single-speed test equipment turns on its compressor and

fans in the 77°F low-load dry-coil test interval, the virtual room temperature set-

points will drop with a slope in time domain that could be too large to be tracked

by both the environmental chamber and the thermostat environment emulator con-

trols. This is another reason that the emulator might need to be redesigned to have

a larger cooling capacity in order to become a universal solution for any thermostat

in load-based testing.

2. Methods for addressing load-based testing with thermostats that include precise

humidity control in dehumidifying mode should be considered in future development

and investigation of the thermostat environment emulator. The emulator proposed

in this work cannot achieve humidity control using its cooling/heating thermoelectric
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devices. Therefore, if there were significant differences in the humidity dynamics

between the inlet to test unit and the inlet to test thermostat, it could be necessary to

modify the emulator to incorporate humidifying/dehumidifying devices or alternative

approaches. It could be a good idea to integrate the air sampling approach explored

in this work into the current design of the emulator, such that the thermostat inlet

humidity will mirror the test unit inlet humidity, as long as there is no moisture

condensation or addition during the sampling process.

3. The performance mapping model form could be improved in terms of deter-

mination of dry-coil scenarios. The model form proposed in the current work uses a

bypass factor approach [21] that requires iterations to determine the transition to a

dry coil when the indoor humidity level is low. Although the approach is effective

and accurate when evaporator airflow is known, it requires significant computational

effort during model training and during co-simulation due to the iterations. More-

over, the approach cannot be used when the part-load airflow is unknown, such that

some errors for equipment latent cooling rate prediction were observed in low-load

scenarios.

4. A significant future work is to investigate uncertainties that propagate through

load-based testing, performance mapping to seasonal performance ratings, although

current work has already covered error propagation from instrumentation to temperature-

bin-based SCOPc. On one hand, it is tricky to investigate error propagation through

the proposed mapping model form that incorporates iterations along with psychro-

metric relations. On the other hand, it is challenging to quantify equipment control

uncertainties.

5. Experimental design for performance mapping needs to be further validated

and finalized such that it can be applied to any residential cooling equipment type,

in order to obtain an acceptably accurate map trained using a small number of ex-

perimental results. Although two optimal training datasets were obtained using a
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successive optimal searching approach for a simulation database and a variable-speed

air conditioner in current work, it is premature to propose one of them as an universal

test matrix. However, it will be possible to obtain a near-optimal finalized experiment

design and associated test matrix, after additional pieces of equipment are tested and

mapped.

6. During determination of the next-generation simulation-based SCOPc, a hu-

midistat or a thermostat with a RH setpoint should be programmed under the frame-

work of co-simulation that calls for a dehumidifying mode to maintain RH setpoint

and override the temperature setpoint. This is important for a few hours within an

annual simulation in humid climate zones when latent load is high and sensible load

is low, such as early summer mornings. In order to achieve this in the future, the

performance map needs to be embedded and programmed deeper into the framework

of the building simulation (software).

7. The co-simulation of the equipment performance map obtained in the current

work can be carried out throughout the U.S. to couple to various residential building

types and climate zones, in order to fully evaluate the proposed approach of the next-

generation performance rating that is extended from automated laboratory load-based

testing and performance mapping.

8. The approaches proposed in this work for cooling equipment can be further

extended and applied to laboratory load-based testing, performance mapping and rat-

ing of unitary heat pumps operated in heating mode. The future investigation could

start from the CSA EXP-07 draft standard [10] that presents a detailed description

of load-based heating test procedures and associated temperature-bin-based seasonal

performance ratings.
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Results of 39 load-based test intervals are appended as follow in table 1, table 2 and

table 3. Future researchers will then be able to revisit the data for further investigation

of performance mapping approach. These datapoints were utilized in chapter 5 to

train and validate a mapping model form. As can be seen in table 1, performance

mapping tests 1 to 15 were obtained according to the heuristic experimental design

test matrix that was shown in table 5.4. In table 2, performance mapping tests 16 to

30 were obtained according to the clustering experimental design test matrix that was

shown in table 5.5. Table 3 presents the results of the 9 EXP-07 cooling test intervals

that were used to validate the performance map. These three tables present ratios of

the test equipment sensible cooling rates over the rated capacity of the equipment.

Therefore, the associated sensible cooling rates can be easily calculated, given the

9639W rated capacity.

In order to illustrate the associated dynamic testing process and the test equip-

ment behaviors, test plots are also appended as follow from figure 1 to 60. Associated

test number can be found in caption of each figure for tests 1 to 30. Test plots for the

9 EXP-07 test intervals can be seen in figures 2.7 to 2.11 in chapter 2, and therefore

are not represented here.
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Table 1.
Performance mapping load-based test results obtained according to
heuristic experimental design test matrix

Test TOD[°F ] TID[°F ] BID[°F ] Q̇s

Q̇rat
SHR COP Behavior

1 77 77.3 63.3 0.75 0.80 7.84 Variable-speed

2 86 77.1 66.1 0.50 0.65 6.73 Variable-speed

3 86 77.4 60.3 0.50 0.94 5.52 Cycling

4 95 69.5 61.2 0.26 0.66 5.03 Cycling

5 95 73.0 56.6 0.66 0.95 4.22 Full-load

6 95 77.2 66.0 0.50 0.65 5.56 Variable-speed

7 95 76.0 63.0 0.25 0.80 4.96 Cycling

8 95 77.0 63.5 0.69 0.80 5.30 Full-load

9 95 77.3 60.1 0.50 0.94 4.59 Cycling

10 104 73.3 63.8 0.50 0.65 4.52 Variable-speed

11 104 73.0 56.6 0.69 0.95 3.81 Full-load

12 104 77.4 64.0 0.50 0.79 4.37 Cycling

13 77 70.8 62.6 0.25 0.64 7.37 Cycling

14 77 79.2 62.8 0.24 0.93 6.74 Cycling

15 86 71.2 59.8 0.25 0.81 5.38 Cycling
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Table 2.
Performance mapping load-based test results obtained according to
clustering experimental design test matrix

Test TOD[°F ] TID[°F ] BID[°F ] Q̇s

Q̇rat
SHR COP Behavior

16 74 78.6 60.3 0.80 0.93 7.00 Variable-speed

17 76 71.3 61.4 0.49 0.70 7.52 Variable-speed

18 76 79.4 66.4 0.64 0.71 8.22 Variable-speed

19 77 69.4 61.5 0.20 0.65 6.94 Cycling

20 77 70.0 57.4 0.20 0.90 5.98 Cycling

21 77 78.1 66.7 0.30 0.69 7.75 Cycling

22 77 79.3 61.7 0.39 0.94 6.73 Cycling

23 78 71.3 55.1 0.59 0.95 6.11 Variable-speed

24 95 69.9 59.5 0.61 0.76 4.87 Variable-speed

25 97 79.0 60.8 0.78 0.95 4.84 Full-load

26 98 78.3 65.7 0.60 0.71 5.27 Variable-speed

27 100 69.6 61.3 0.30 0.65 4.63 Cycling

28 100 71.3 57.4 0.38 0.91 4.08 Cycling

29 100 77.2 66.7 0.30 0.65 4.93 Cycling

30 100 79.2 62.5 0.37 0.92 4.41 Cycling
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Table 3.
EXP-07 cooling load-based test results

TOD[°F ] TID[°F ] BID[°F ] Q̇s

Q̇rat
SHR COP Behavior

77 78.0 56.7 0.15 0.98 5.59 Cycling

86 78.0 56.2 0.39 0.99 5.33 Cycling

95 78.2 56.0 0.60 0.99 4.56 Variable-speed

104 80.2 57.0 0.76 1.00 4.02 Variable-speed

113 79.0 56.2 0.73 1.00 3.33 Full-load

77 73.1 60.8 0.26 0.81 6.42 Cycling

86 73.4 61.2 0.38 0.82 5.75 Variable-speed

95 74.5 61.9 0.66 0.80 5.07 Variable-speed

104 74.0 62.0 0.65 0.80 4.29 Full-load
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Fig. 1. Sensible results of performance mapping test 1

Fig. 2. Latent results of performance mapping test 1
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Fig. 3. Sensible results of performance mapping test 2

Fig. 4. Latent results of performance mapping test 2
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Fig. 5. Sensible results of performance mapping test 3

Fig. 6. Latent results of performance mapping test 3
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Fig. 7. Sensible results of performance mapping test 4

Fig. 8. Latent results of performance mapping test 4
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Fig. 9. Sensible results of performance mapping test 5

Fig. 10. Latent results of performance mapping test 5
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Fig. 11. Sensible results of performance mapping test 6

Fig. 12. Latent results of performance mapping test 6
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Fig. 13. Sensible results of performance mapping test 7

Fig. 14. Latent results of performance mapping test 7
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Fig. 15. Sensible results of performance mapping test 8

Fig. 16. Latent results of performance mapping test 8
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Fig. 17. Sensible results of performance mapping test 9

Fig. 18. Latent results of performance mapping test 9
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Fig. 19. Sensible results of performance mapping test 10

Fig. 20. Latent results of performance mapping test 10
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Fig. 21. Sensible results of performance mapping test 11

Fig. 22. Latent results of performance mapping test 11
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Fig. 23. Sensible results of performance mapping test 12

Fig. 24. Latent results of performance mapping test 12
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Fig. 25. Sensible results of performance mapping test 13

Fig. 26. Latent results of performance mapping test 13
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Fig. 27. Sensible results of performance mapping test 14

Fig. 28. Latent results of performance mapping test 14
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Fig. 29. Sensible results of performance mapping test 15

Fig. 30. Latent results of performance mapping test 15
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Fig. 31. Sensible results of performance mapping test 16

Fig. 32. Latent results of performance mapping test 16
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Fig. 33. Sensible results of performance mapping test 17

Fig. 34. Latent results of performance mapping test 17
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Fig. 35. Sensible results of performance mapping test 18

Fig. 36. Latent results of performance mapping test 18
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Fig. 37. Sensible results of performance mapping test 19

Fig. 38. Latent results of performance mapping test 19
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Fig. 39. Sensible results of performance mapping test 20

Fig. 40. Latent results of performance mapping test 20
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Fig. 41. Sensible results of performance mapping test 21

Fig. 42. Latent results of performance mapping test 21
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Fig. 43. Sensible results of performance mapping test 22

Fig. 44. Latent results of performance mapping test 22
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Fig. 45. Sensible results of performance mapping test 23

Fig. 46. Latent results of performance mapping test 23
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Fig. 47. Sensible results of performance mapping test 24

Fig. 48. Latent results of performance mapping test 24
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Fig. 49. Sensible results of performance mapping test 25

Fig. 50. Latent results of performance mapping test 25
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Fig. 51. Sensible results of performance mapping test 26

Fig. 52. Latent results of performance mapping test 26
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Fig. 53. Sensible results of performance mapping test 27

Fig. 54. Latent results of performance mapping test 27
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Fig. 55. Sensible results of performance mapping test 28

Fig. 56. Latent results of performance mapping test 28
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Fig. 57. Sensible results of performance mapping test 29

Fig. 58. Latent results of performance mapping test 29
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Fig. 59. Sensible results of performance mapping test 30

Fig. 60. Latent results of performance mapping test 30


