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ABSTRACT

Ruan, Keyu. Ph.D., Purdue University, December 2020. Modeling, Estimation, and Control
in Highway Traffic Based on Discrete Event Dynamic Systems. Major Professors: Lingxi
Li & Jianghai Hu.

Petri net (PN) is a useful tool for the modeling and analysis of complex systems and

has been widely used in a variety of practical systems. This dissertation aims at study-

ing highway transportation systems using Petri nets and investigating several fundamental

problems related to the modeling, state/structure estimation, and control of highway traffic.

This dissertation starts with two kinds of modeling schemes. The first one uses the

Probabilistic Petri net to model a highway segment. The traffic movement probabilities

have also been shown. The second scheme uses the traditional Petri net structure to model

the traffic network around a city’s metropolitan area, where places represent the destina-

tions of interests and tokens represent time units.

After that, two estimation algorithms and one control algorithm have been proposed, re-

spectively, based on external observations. The first algorithm deals with labeled Petri nets

and the objective is to estimate the minimum initial marking that has (have) the smallest

token sum. The second algorithm estimates the Petri net structures from the observations

of finite token change sequences in terms of the minimum number of transitions and con-

nections. At last, the traffic volume control algorithm is to keep the traffic volume within

capacity. The controller will be applied in each evolution step depending on observation.

Since we have been focusing on the optimization problems of the structure and mark-

ings of the Petri net, it is directly related to the optimal route planning problems in highway

traffic scenarios. Thus, we can obtain optimized traveling routes by applying proposed al-

gorithms to the traffic systems.
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1. INTRODUCTION

1.1 Background and Motivation

With the fast development of autonomous vehicles, the optimization and planning of

highway traffic become more and more important in the aspects of enhancing driving safety

and saving traveling time. The various advanced sensing techniques and control units that

have been utilized make the basis of the highway traffic studies. For instance, in [1], a tech-

nique was introduced for guidance control of the parallel parking, where unskilled drivers

can benefit from it in parking tasks. In [2], the authors studied the strategies of decision-

making and driving state control of unmanned vehicles. The objectives were achieved

with interval type-2 fuzzy sets, fuzzy comprehensive evaluation, and fuzzy control rules.

Authors in [3] surveyed the topics on traffic signal management and control using Model

Predictive Control (MPC) algorithms. Driver behavior data were collected and analyzed in

[4] for the evaluation of in-vehicle camera-based driver state sensing system that can be an

objective and reliable source for improving driving safety. Other than these systems, intel-

ligent vehicles can also provide braking assistance to ensure occupant safety. For example,

the Automatic Emergency Braking (AEB) systems, such as Crash Imminent Braking (CIB)

system and Dynamic brake support (DBS) system, are believed to be technologies repre-

senting the significant advances in vehicle safety. The evaluation of the CIB system [5]

showed that the system can apply automatic braking to mitigate damages and avoid po-

tential collisions. It is proved that these systems operate very well within a certain speed

range towards pedestrians and bicyclists, in particular, the braking behavior of pedestrian

AEB systems was analyzed in [6]. The authors of [7] evaluated Road Departure Preven-

tion systems (RDPSs), which can potentially reduce the crash risk by issuing visual/audible

warning signals to the driver and engage automatic steering adjustment when the vehicle is

detected to deviate from the current lane or the road edge.
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In order to evaluate the performance of these techniques and devices, other researches

have been done to develop the standard procedure of performance evaluation. For instance,

in [8], a testing protocol has been proposed with the scoring criteria to evaluate the perfor-

mance of Crash Imminent Braking (CIB) systems. The same group of authors extended the

work in [9], which combined the warning system into the performance evaluation. In [10]-

[14], a large number of vehicle tests have been done in simulated scenarios with different

collision targets, i.e., a pedestrian and a bicyclist. The testing results showed that Auto-

matic Emergency Braking (AEB) systems have ideal performance in pedestrian detection

and crash avoidance within a certain speed interval. Authors in [15] filled the vacancy of

the emergency braking system performance evaluation in the vehicle to vehicle scenarios

by proposing their approach. In [16], the AEB system has been further studied to find the

limitations in its performance with multiple complex scenarios. In the evaluation methods

mentioned above, the researchers have used the percentage of kinetic energy reduction as

the main criterion. There are also many other studies that are based on other parameters.

The authors in [17] assessed the AEB system based on the vehicle speed change. A weight-

ing method called the ”analytic hierarchy process” has been utilized for the data analysis.

The speed reduction was used as the main basis in [18] for the assessment of the behavior

of the AEB system. In the study in [19], the performance of the AEB system was evaluated

with the initiating distance of the auto-braking. The AEB system has been compared with

the human driver in emergency situations in [20], which proved that the AEB system had

much better performance in aspects like the onset distance and braking distance.

Besides the aforementioned works, the high-definition (HD) map is also an essential

technique and is widely used for vehicle localization and path planning based on pre-

obtained environment information. The authors in [21] presented a method for HD map

updating with the cellular network that meets the requirements for highly automated driv-

ing. This work is claimed to be the first one that correlates the data requirements with the

network infrastructure. In [22], the authors provided a control scheme for predictive cruise

control, which utilized the HD map information. The proposed predictive cruise control

system helped achieve a higher rate of fuel-saving. Other than the highway and urban driv-
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ing, the HD map technique has also been used in many other situations. The authors in [23]

used HD maps in transfer vehicles in smart factories, in order to perform better interactions

with the environment. They proposed an HD map update strategy to solve the open prob-

lem for the sustainability of the performance. The HD map technique has also been used

for underwater vehicles in [24], where the authors tried to analyze water situations and find

solutions for water resources management.

Although the HD map technique has been well received in the research community, its

accuracy remains to be evaluated. The authors in [25] used a framework that contains an

automated ground-truth process, which provides the user with a unique visualization of the

captured video and quickly generates the ground-truth information. They have also used

this framework in a night-time lane detection system presented in [26]. The authors in [27]

presented an efficient solution in evaluating the road marking detection algorithms. They

have validated this evaluation process with a virtual database.

Furthermore, a variety of algorithms and technologies that can provide vehicles with

more advanced capabilities were developed. The authors in [28] have proposed an ap-

proach for estimating the rotated angle of the steering wheel. A particle filtering algorithm

was used for the estimation. By applying a deep learning-based regression framework, the

patterns of normal driving and driving toward an obstacle have been evaluated. The work

in [29] focused on obtaining a control structure that is used for stabilizing the vehicle when

facing emergency scenarios. The structure prioritizes collision avoidance among conflict-

ing objectives, which is implemented using model predictive and feedback controllers. In

[30], another group of researchers has proposed a system using Unified Map built with

various onboard sensors to detect collision risks. This system can have the information of

all nearby obstacles, which makes it an efficient planner for collision-free paths.

The other researches paid their attention to the traffic emergencies on the highway. The

most representative case is traffic congestion, which is extremely dangerous for the coming

vehicles from downstream. In [31], the authors investigated the statistic data of the fatal

traffic accidents on the highway and found that in congested driving conditions, there was

a much higher crash rate, where the back-of-queue crash was about 13% of all highway
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fatal accidents. Because of that, the studies in [32] [33] made contributions to smoothing

the driving from free flow to congestion. At the same time, works have also been done

to improve the awareness of the drivers while approaching congestion. In [34], a queue

warning system has been implemented, which could alert the motorists with the variable

message signs. A specially designed communication system has been utilized to transmit

the warning for a distance that was over 100 km. Based on the data from the authors, they

have successfully reduced the rate of rear-end collision. The author in [35] developed an

end-of-queue warning system based on an artificial neural network model-based algorithm.

The portable variable message signs have been used for warning delivery. An end-of-queue

warning system has been proposed by Y. Liu. et al. in [36]. Different traffic data like the

real-time traffic velocity helped the establishment of the system. The influence of other

factors, such as the road parameters, communication range, and penetration rate have also

been considered. Besides, many researchers were interested in improving the performance

of congestion detection methods. In [37], in order to measure the length of the queue

during a certain time period, a method has been proposed, which could estimate the time

needed for a certain amount of vehicles to leave the queue along with the average delay

caused by the queue. The authors in [38] proposed another algorithm to estimate the queue

length, which could be used in an intersection scenario. The scheme of stochastic gradient

descent was utilized in this study. The study in [39] was done to evaluate the effects of

the enforcement vehicles at upstream of work zones. Based on the collected data of the

traffic speed, deceleration, and traffic volumes, it has been proved that the officers with

their enforcement vehicles could make a reasonable solution for the congested traffic with

the assistant of certain analytic approaches.

Thanks to contributions done by the researches above, it is clear that driving safety

and efficiency are critical for model life. However, there still much other work that could

be done. In this dissertation, we would like to focus on the optimization, estimation, and

control of the highway traffic, which is indispensable for further scheduling and planning

of the traffic. In order to better analyze these problems in highway traffic, discretization of

the highway traffic network could be considered as a necessary preliminary step. Suppose
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there is a situation that a passenger wants to travel from the starting place to the finishing

place. During this path, this passenger also would like to visit some other destinations,

such as a supermarket. For different research purposes, we could focus on different sizes of

the traffic network. When doing discretization, each discretized part of the network could

have different practical meaning, such as a block of the road or a destination of interest.

We could apply the algorithms to optimize, estimate, or control the structure and states of

the network and obtain the best solutions.

Before we get any deeper into the content of this dissertation, we would like to first

introduce the Discrete Event Dynamic System (DEDS), which is the modeling tool we

would like to use in this dissertation. Discrete Event Dynamic System (DEDS) is a class of

asynchronous dynamic systems that have event-driven state evolution. DEDSs have been

developed in the 1940s but became widely used in researches and applications since the

1980s. A lot of theoretical models and analysis schemes from different aspects have been

developed. In normal cases, only a finite number of discrete values will be taken as the state

of these systems, which corresponds to possible practical conditions like the status of the

system components, the number of parts waiting to be dealt with, or the indicators of the

tasks like planning and scheduling. The changes of the states are because of the occurrence

of certain events, such as the change of certain environmental conditions and the start or

finish of system operation. DEDSs have been widely used in practical applications and are

important in research areas like computer networks, transportation systems, and intelligent

vehicles, which makes it an ideal tool for theoretical analysis and practical applications in

large and complex processing and systems. In order to make the full use of the robustness

of the DEDSs and provide the optimal solutions to the practical problems, the research

targets have been focusing on integrating the various models and theoretical methods to

form a multi-level, multi-model theory system in the recent studies.

In this dissertation, one of the DEDS models, the Petri nets [40], [41] will be the main

tool for our study. A Petri net is a kind of mathematical and graphical language that de-

scribes the distributed dynamic systems. The powerfulness of the Petri net makes it very

suitable for the simulation of the dynamic features of the asynchronous concurrent systems.
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Besides, the Petri net is also ideal for the modeling and analysis of complex systems. With

the tool of Petri net, in this dissertation, firstly, we use two schemes to model the traffic

network. The first one uses Probabilistic Petri net to model the traffic in a highway seg-

ment. The movement of the vehicles has been assigned with different probabilities based

on traffic data from a database. The second one models the traffic network with a larger

scale using the traditional Petri net. Important destinations of interest are marked as the

places in the modeled Petri net and the paths between these destinations are denoted with

transitions and arcs. Weights on the arcs depend on the distances and traffic loads.

After that, an approach has been proposed to estimate the Petri net structures with the

minimum scale from asynchronous observations of token change sequences [42]. An algo-

rithm that can deal with the observed sequences with finite length has been proposed, which

is able to estimate the structure of the underlying Petri net with a polynomial computational

complexity in terms of the number of transitions. Note that there is implicit information

contained in the observed token change sequences, which includes the initial marking, fi-

nal marking, and the number of places. The solution of the proposed algorithm should be

consistent with the given observations and be the optimal structure(s) that has(have) the

least transitions and most sparse incident matrix, i.e., the most zero entries in the incident

matrix. Besides that, another algorithm has been developed to check the consistency of the

solution obtained from the first algorithm, which is to check whether the estimated Petri

net structure can match future observations.

In the next part, based on the state-of-art studies, we extend the results of minimum

initial marking estimates problem in labeled Petri nets only observable transitions into the

ones with unobservable transitions (with certain special structure). Several algorithms for

the minimum initial marking estimation (MIM-UT) [43] have been proposed. The mini-

mum initial marking estimation problem is originally to model the industrial production

process, which obtains the best production sequence with minimum source cost that can

produce the same output that satisfies some certain processes. In particular, it is assumed

that we have full knowledge of the structure of the target Petri net and the unobservable

subnet has a special structure called contact-free. Given the observed label sequence, the
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goal is to obtain the minimum initial marking estimate set, in which each marking has the

smallest token sum, and is able to fire a sequence that is consistent with the observation.

We develop an algorithm to obtain the minimum initial marking estimate set with the com-

plexity that is polynomial in terms of the length of the observed label sequence. Besides,

two heuristic algorithms have been proposed to further reduce the computational complex-

ity. We also provide an illustrative example to evaluate the performance of the proposed

algorithms and compare their outputs.

After that, an algorithm has been proposed for the traffic volume control, where the

traffic network of interest is represented with the Petri net structure. Each place represents

one road segment and the transitions denote intersections and junctions. The transitions are

assigned with an alphabet or empty labels depending on their observability, which makes

the Petri net a labeled Petri net. Therefore, based on a given observed label sequence, we

would like to control the network to avoid the traffic volume to be exceeding the capacity

of each road segment. A controller has been given during each observation to control each

transition, representing the traffic control in the intersections and junctions.

After the brief introduction of the content of this dissertation, before we can get any

deeper of the details, we would like to talk about some related studies that are closely

related to our topics and consider their contributions and extendable future work.

1.2 Related Work

1.2.1 Traffic Modeling

The Petri net structure is widely used in traffic modeling. Authors in [44] modeled the

railway traffic with three Petri net models and did further simulation and analysis. Based

on these, they built a modular approach to do traffic coordination. In [45], the timed Petri

net has been used to design a traffic-signal emergency control policy. This policy could

improve traffic incident response and control. X. Zhu in [46] applied the Petri net to the

dynamic modeling for airport apron. The apron traffic system was divided into disjoint

zones to fit the requirement of the Petri net and a method for apron conflict control is
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proposed. U. Bhanja [47] did optimization of traffic flow in an urban area with different

techniques. The work mainly focuses on communication between roadside units and ve-

hicles. The Petri net plays an important role in the author’s work as the validation of the

proposed techniques. Authors in [48] used the Petri net structure to model the urban traffic

network either. The traffic network has been divided into intersections and roads, which

have limited capacities. The Petri nets play a key role to represent the dynamic of traffic.

The first step to model traffic is to discretize the traffic into segments. With the devel-

oped advanced sensing and driver-assistance systems, it is feasible for intelligent vehicles

to make decisions to reduce the risk of crashes based on the traffic and road conditions.

Studies have been done with many different schemes. For instance, in [49], R. Aziz et.

al. proposed an algorithm for segmenting the highway network. Their method of the seg-

menting was based on the transmitted GPS data interval. Some further work has been done

to identify the break-points for the trips within each interval. These segments have been

used for trip planning, infrastructure management, and other decision-making tasks. Y.

Guan et. al. in [50] studied the problem of decision making of self-driving cars. Several

highway scenarios are designed, which are discretized in both space and speed. Markov

decision process has been applied to the discretized system in order to deal with the de-

cision marking problem. Another approach has been proposed in [51], which is used for

the optimization of the sensor placement on the highway for a better observation of traffic

conditions. In [52], J. Brown et. al. proposed a method to discretize the road network in

intersections in order to study the safety impact on short segments. With the discretized

system, the authors have shown the differences between rural signalized and unsignalized

intersections. G. Gentile et. al. in [53] developed a traffic discretization method to study

dynamic traffic assignment problems. The method includes three different levels of dis-

cretization: flow, space, and time. The authors have implemented in existing commercial

software for transport analysis. These methods for traffic discretization made it possible

for further traffic studies of the motion planning and decision making based on discretized

structures.
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After the discretized model has been obtained, many researchers have modeled traffic

flow with DEDS and done some optimization/minimization work. In [54], T. Nishi et. al.

proposed an approach with the Petri net to optimize route planning problems for automated

guided vehicles. Their goal is to minimize total transportation time. The effectiveness

of the proposed method is demonstrated with a practical-sized problem. C. Tolba et. al.

proposed an approach in [55] that represents all the variables of traffic flow with continuous

Petri nets with variable speed. The proposed Petri net model is suggested for the analysis

of both motorway and road junctions. L. Zhang et. al. [56] used hybrid Petri nets in their

work to specify and control traffic at an intersection. With the assistance of some other

models, the system is proved to be suitable to perform traffic optimization between two

adjacent intersections. In [57], B. Huang et. al. proposed a hybrid model of extended

fluid stochastic Petri net for urban traffic systems. The discrete part of the system is used to

model the decision making and traffic lights control part. The illustrative example presented

showed that the model is effective.

1.2.2 Petri Net Estimation and Optimization

The applications of Petri net mentioned above show that the Petri net is a well-accepted

tool in practical systems, such as the microgrid systems and traffic systems. In our research,

the estimation and optimization algorithms are also related to these fields. The objective

of the optimization of the Petri nets could be structure-wise, such as the least transitions

and connections, which can imply the smallest number of devices and parts in a practical

system; or marking-wise, such as the minimum number of initial tokens, which could rep-

resent the cost of input resources in industrial production. These optimization operations

will significantly save time and resource costs in transportation or manufacturing. In lit-

erature, researchers have been studying the Petri net structure and marking optimization

problem based on external observation [58]– [62]. Before we could study the optimization

of Petri nets in detail, some more similar studies that relate to our topics will be introduced

and we would like to point out the similarities and differences.
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Reconstruction of Unknown Petri Net Structures from Asynchronous Observations

of Token Change Sequences

Because the behaviors in the modern systems become increasingly complex, researchers

in recent studies paid significant attention to the problem of system identification based on

external observation of underlying system behavior, which includes the transition firing se-

quences, the label sequences, the token changes, etc. For example, in [63] approaches based

on integer programming have been proposed in order to identify Petri net structure and the

initial marking from the observed finite language, which assumes the full knowledge of the

transitions and the places. Authors in [64] have extended the previous approaches by using

the linear programming approach. Based on the observation of an event sequence that gen-

erates corresponding output vectors, the studies in [65] and [66] discussed the problem of

identification of the Petri net structure, where the integer linear programming was utilized.

We can also obtain a summary of the research related to this direction in [67] and [68].

In this part of the dissertation, a similar problem will be considered, which aims at

system estimation and reconstruction but with a different observation, assumptions. In

particular, the objective is to estimate the Petri net structure(s) based on the observed se-

quences of token changes at each place. More specifically, we assume that the information

of token changes of each place in the Petri net can be provided individually. After receiving

information regarding the token changes, the task is to estimate the Petri net structure(s)

that is(are) consistent with the observed token changes sequences. However, since the se-

quences are asynchronous, we are unaware of neither the order of the token change nor

the transition firing sequence. Therefore, the external observation can only provide partial

information about the state evolution of this Petri net. The study in [69] used a similar

setup but has a different research purpose, which is to reconstruct all possible transition

firing sequences with the full knowledge of the Petri net structure. The proposed algorithm

in [69] could reconstruct all valid transition firing sequences, with relatively high computa-

tional complexity. Authors in [70] extended the previous work, which slightly reduced the

complexity by adding the counting places.
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Minimum Initial Marking Estimation in Labeled Petri Nets with Unobservable Tran-

sitions

When studying the Petri net, the estimation of the markings or states is an important and

fundamental problem, which has the objective to estimate the state of the system modeled

by a Petri net structure with external observations. In [71], an application has been proposed

related to Petri net deadlock prevention, where the Petri net structure contains unobservable

transitions. The authors in [72] studied a marking estimation problem in an unlabeled P-

time Petri net. The unobservable transitions were also involved. Only partial observation

from the state observer could be obtained in the proposed approach. The study in [73] also

applied the scheme of the observer for the estimation of both the markings and the firing

vectors. The authors in [74], [75], [76], and [77] introduced several techniques of the Petri

net marking estimation based on external label observations. With proper assumptions,

these techniques were not affected by the length of the observation. Authors in [78], [79]

utilized a probabilistic setting and proposed an marking estimation approach. A finite set

of initial markings were assumed to be known with priori probabilities. Given the label

observations, the goal was to obtain the marking estimates with conditional probabilities.

Although the studies mentioned above have a significant contribution to the Petri net

marking estimation area, most of them assumed that they have full or partial knowledge

of the initial marking of the system. On the other hand, in the minimum initial marking

estimation problem that we would like to study in this dissertation, the objective is dif-

ferent, which is to estimate the initial marking set based on the observed label sequence

that is caused by the system’s underlying transition firing activities. Besides, in our study,

some transitions in the Petri net are unobservable, which means that the firing of these

transitions can occur without being observed. The study of this problem is inspired by the

problem of initial resource allocation during the process of product manufacturing, where

the proper planning and scheduling should be done with the least resources to complete a

set of necessary pre-set processes or tasks [80].
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There are also studies related to similar topics. For example, in [81], the authors pro-

posed a heuristic method for the minimum initial marking estimation. In the study, it was

assumed that we have full knowledge of the structure and transition firings, but each tran-

sition could only be fired for limited times. The objective was also to obtain the initial

marking with the least token sum. Authors in [82], [83], and [84] studied the minimum

initial marking estimation problem in labeled Petri nets, which have observable transitions

only, and proposed algorithms to estimate the minimum initial markings.

1.2.3 Other Practical Use of Petri Net

There are also other practical applications of the Petri net, which are also important

topics that many researchers have been studying. In [85], the authors used a device called

middleware in the sensor network, where the structure of the network could be represented

by the Petri net. The devices in this network could be denoted by places and transitions,

while the connections of the network could be represented by the arcs. In [86], the authors

talked about the application of the Petri net in the area of the process flow. In this study, the

process of the system has been modeled with the Petri net, where places, transitions, arcs

represent the states of the system, the actions that cause state evolution, and the connections

between states and actions, respectively. The initial state of the Petri net had one token in

the place named Ready. During the work process of the system, the token will be moved

from state to state and reach the final place called End Session at the end, which marked

the end of the process flow. The study in [87] applied the Petri net to detect the failure

components in a system. The places and transitions were used to represent the failure

modes and the conditions that cause the failure modes, respectively. Since the failure modes

and the causes were undetectable, the authors also did structure identifications in their

study. D. Li et al. [88] modeled the reversion losses and shoot-through currents in switched-

capacitor DC-DC converter with Petri net structure. The Petri net models are proved to be

reliable for their work. In [89], the complex flexible manufacturing systems were modeled

with the Petri net. The author has used the traditional Petri net for the simulation with P-
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invariants to be the supervisor and used the timed Petri net for the performance evaluation.

In [90], the authors applied the Petri net into the networked control system, which is used

to communicate and exchange data via a network. A modified Petri net structure called

Colored Petri net is used in their work. Z. Ding et al. in [91] also used a modified Petri net

structure called stochastic-differential Petri net to model the switched stochastic system,

which is used to describe hybrid systems with randomness. The proposed model has been

examined with a checking technique and proved to be correct and meet the requirements.

The previous work and studies of the practical applications of the Petri net could be

valuable references for our study in this dissertation, where we could still help to improve

their results and extend the conclusion based on our researches. In later chapters of this

dissertation, we will talk about the algorithms that are used for the estimation, optimization,

and control of certain systems, which could be modeled with the Petri net structures. In

the next part of the introduction, we will briefly talk about the major contributions of each

chapter.

1.3 Major Contribution

Traffic Modeling

In this dissertation, our first objective is to discretize the traffic network with DEDS

(mainly Petri net). The idea of road discretization is not new. However, different ap-

proaches have been used for different applications. There is still much room to model and

simulate the traffic system in a more complete way. In this dissertation, we proposed two

different ways of traffic modeling with the Petri net. Firstly, we propose a probabilistic

Petri net model for studying the driving behavior of vehicles on each lane of a certain

highway segment. This method is quite general and can be applied to different highways

with different geometries and traffic volume. In particular, the contributions of this part

are summarized as follows: 1) The highway segment is discretized into blocks that are

homogeneously distributed in terms of distance. 2) Driving behavior data of vehicles are

classified in terms of time. The original driving dataset is studied with a reasonable sam-
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pling rate. 3) The Probabilistic Petri net model is developed by fitting the driving behavior

data into the discretized highway blocks. The movement of vehicles will follow a certain

probability assigned by the model according to the traffic data available.

Following that, in the second way, we are modeling a relatively larger traffic network

around a city rather than only a segment on the highway with the traditional Petri net

structure. The discretization techniques that we have been using are different from common

ways, which discretize the traffic network uniformly and study the traffic dynamic within a

small area. We study the route planning problem on a large scale of traffic networks around

a major U.S. city. The scenario design is inspired by the daily driving case, which starts

at home and ends at the workplace. During the way, some destinations of interest, such as

a supermarket or a gas station will be visited. Many research directions could be yielded

from this scenario. For example, how to find the best alternative way, which passes by the

least destinations of interest; or how to minimize the traveling time if we want to start from

home and end at the workplace and visit several certain destinations of interest. Thus, the

study aims at saving travel time and improve driving safety. It is a very practical and useful

topic in our daily life.

When converting the traffic network into a Petri net structure, each place in the Petri net

represents a place of interest (POIs). Thus, the time cost of traveling between places will

be different. Each token in this Petri net represents one unit time. Hence, the time cost of

traveling between places will be reflected by the reduction of different amounts of tokens

when firing a transition. The arc weights will show how many tokens will be consumed,

which depends on both the distance between two places and the traffic condition. Note that

in order to simplify the problem, only one direction of the roads is considered, which aims

to remove the loops in the Petri net. The direction of the roads depends on the location of

the starting place and the finishing place. Besides, since only highway/freeway and major

local roads are considered when modeling the traffic network, it is possible that there exist

alternative routes that are better in some sense, which makes the optimization of the Petri

net structure a reasonable topic.
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Minimum Initial Marking Estimation in Labeled Petri Nets with Unobservable Tran-

sitions

In this part of the dissertation, the objective is to extend the work in [84] to the la-

beled Petri net structures that have unobservable transitions, which means to deal with the

problem of minimum initial marking estimation in labeled Petri nets with unobservable

transitions (MIM-UT). The MIM estimation could be used to simulate the industrial pro-

duction, which follows a sequence of certain production processes and to minimize the

required input resources. In previous work in [84], the MIM estimation problem with only

observable transitions has been solved. By applying some techniques, the redundant mark-

ings are removed so that the algorithm could reach complexity that is polynomial in terms

of the length of label observations.

However, the problem would become more challenging with unobservable transitions.

Before each observation label, there could be an unobservable transition fired. In our work,

we could show that with some proper assumptions of the structure of an unobservable

subnet, it is possible to find the set of MIM-UT estimates through an algorithm that has a

complexity that is polynomial in terms of the length of the observed label sequence. We

provided an illustrative example in a later chapter to show that this algorithm can work

properly and generate the exact solution set.

Moreover, we have proposed two heuristic algorithms that could reduce the computa-

tional complexity. Although the heuristic algorithms cannot give the most accurate and

comprehensive solutions, it is a trade-off between resource consumption/time cost and ac-

curacy. However, for practical use, most of the time we don’t need the exact solution,

which needs more time to find. A sub-optimal solution is also acceptable when it cost

much less computation resource. The provided illustrative example is also used to evaluate

and compare the performance of the heuristic algorithms with the main algorithm.
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Reconstruction of Unknown Petri Net Structures from Asynchronous Observations

of Token Change Sequences

Our objective in this part is quite different from the other researches and is to estimate

the Petri net structure based on the observations of the token change sequence in each

place. As mentioned above, we could obtain information including the initial marking,

the final marking, and the number of places. An algorithm has been developed, which is

able to estimate the optimal structure of the Petri net structure that has the least transitions

and the most sparse incident matrix, based on the token change observations. The length

of the sequences is assumed to be continuously growing. However, when the observation

sequence is extracted at a certain time stamp and to be used it as the input of an algorithm,

the length of the extracted observation snippet is fixed, regardless of what will be generated

later. This feature could be used so that only the current observation snippet is focused to

save the computation resource.

Since the input observation sequences are with constant length, the work of scanning

markings, firing vectors, and solving state equations have become simpler. With the con-

stant length of given sequences, A finite number of markings could be obtained from the

observed token change sequences and could have a finite number of transitions and the up-

per and lower bounds of the number of transition firings. Then we need to know the bounds

of markings and firing vectors. They will be used to determine the breaking conditions of

the scanning loops. Both of them could be found with mathematical methods.

Furthermore, another algorithm has been developed for consistency check, which is to

examine whether the obtained Petri net structure from the previous algorithm could still be

consistent with the future observation sequences with finite-length. As mentioned above,

with the growth of the observation sequences, the estimated Petri net structure from the

previous algorithm could be potentially not consistent with the observation. Because of

that, we first do the consistency check to the estimated Petri net with the new observation.

If the consistency check fails, a new estimation is needed to be calculated. It could be

shown that the consistency check algorithm can run with constant complexity.
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Traffic Volume Control based on Observed Label Sequences

A traffic network in a certain area is modeled with the labeled Petri net and then con-

trol the traffic flow in order to control the traffic volume and reduce the rate of collision.

Although there exists some similar work that also used the Petri net as the modeling tool

and applied control method, they either used the Petri net structure that was too simple or

didn’t consider enough elements that could occur in real traffic conditions. In my work, the

traffic network in a certain area is modeled with the Petri net that contains both observable

and unobservable transitions, where observable transitions represent traffic intersections on

main roads that normally have traffic controllers assigned, like traffic lights and signs, and

unobservable transitions represent junctions that connect small roads with the main traffic

network, which possibly don’t have any control method to guild the drivers. Because of

the existence of the unobservable transitions, it will be more challenging to design a con-

troller to achieve our objective, which also makes our work valuable and be an extension

and supplement of the state-of-art studies.

1.4 Organization

This dissertation is organized as follows: After the introduction in Chapter 1, Chapter

2 introduces necessary mathematical notations and background knowledge of the Petri net

structure; Chapter 3 shows two methods of traffic modeling based on two different Petri

net structures for different network scales and research purposes; Chapter 4 talks about the

algorithm of minimum initial marking estimation in labeled Petri nets with unobservable

transitions with its application in traffic planning; Chapter 5 introduces the second algo-

rithm that is used to estimate and reconstruct the Petri net structure based on the observed

token change sequences in the places; Chapter 6 proposes a control algorithm that is used

to limit the traffic volume based on labeled Petri net with unobservable transitions, aiming

to reduce congestion and collision. The algorithm is also based on external label sequence

observation. At last, the summary and conclusion are given in Chapter 7.
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2. PETRI NET PRELIMINARIES

The notation and preliminary definitions that will be used in this dissertation will be intro-

duced in this chapter. In the 1960s, Carl Adam proposed the Petri net, which models and

describes the distributed systems with a mathematical language. Petri net has the advan-

tages of intuitive graphical expression and rigorous mathematical formulation. Both of the

advantages make the Petri net an excellent tool for solving practical problems. The target

systems could be expressed with intuitive mathematical formulation, which would be more

convenient for problem-solving. [40] and [41] provide more specific information about the

Petri nets.

2.1 Basic Knowledge of the Petri Net

2.1.1 Structure

A Petri net structure is a weighted bipartite graph Ne = (Pl, Tr, Ar, We). The finite

set of places is denoted by Pl = {p1, p2, . . . , pn}, where the places are drawn as circles.

The finite set of transitions is denoted by Tr = {t1, t2, . . . , tm}, where the transitions are

drawn as bars. The set of arcs between places and transitions is denoted by Ar ⊆ (Pl×

Tr)∪ (Tr×Pl) and the weight function on the arcs is denoted by We : Ar→{1, 2, 3, . . .}.

Fig. 2.1 shows an example of a simple Petri net:

We could represent the relationship between places and transitions by notations. The

input transition set for a pi or input place set for a ti could be represented with →pi or →ti,

where pi ∈ Pl and ti ∈ Tr. The set of output transition set for a pi or output place set for

a ti could be represented with p→i or t→i . Also, →p→i =→pi ∪ p→i (→t→i =→ti ∪ t→i ) could

represent both input and output transitions or places for pi or ti.
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Fig. 2.1. A Simple Petri Net.

Example 1: Consider the Petri net in Fig. 2.1. Place set, transition set, arcs and

weights are denoted by Pl = {p1, p2, p3}, Tr = {t1}, Ar = {(p1× t1), (p2× t1), (t1× p3)}

and We(p1, t1) = 2, We(p2, t1) = 1, We(t1, p3) = 1, respectively. The relationship between

places and transitions are represented by p→1 = {t1}, p→2 = {t1} ,→p3 = {t1},→t1 = {p1, p2},

t→1 = {p3}.

2.1.2 Marking

The vector Mk : Pl → Z+ denotes the marking, which assigns a non-negative integer

number of tokens to each place of the Petri net. The tokens are drawn as black dots. The

initial marking of the Petri net is denoted by Mk0. Thus, a Petri net system is denoted by

< Ne,Mk0 >. The number of tokens in place p, i.e., the marking of place p, is denoted

with Mk(p).

Example 2: Consider the Petri net shown in Fig. 2.1. The number of tokens that are

assigned to place p1, p2, and p3 are two, two, and zero. Hence, the marking of this Petri

net is Mk0 = [2, 2, 0]T .
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2.1.3 Incident Matrices

The input incident matrix In− = [in−i j ] (respectively the output incident matrix In+ =

[in+i j ]) is defined to be a matrix with dimension n by m and in−i j (respectively in+i j) at its (i,

j) position. Here in−i j denote the integer weight of the arc from place pi to transition t j, and

in+i j denote the integer weight of the arc from transition t j to place pi (1≤ i≤ n, 1≤ j≤m).

The difference In ≡ In+− In− is defined to be the incident matrix of the Petri net. Note

that if there is no arc connecting place pi and transition t j, the value of in−i j or in+i j is set to

be zero.

Example 3: The incident matrices of the Petri net in Fig. 2.1 are shown as follows:
2

1

0

 ,


0

0

2

 ,


2

1

−2

 (2.1)

From top to bottom, the three matrices are input incident matrix In−, output incident

matrix In+, and incident matrix In for the Petri net shown in Fig. 2.1, respectively.

2.1.4 Enabling and Firing Transitions

In order to enabled a transition t, each of its input places p should have at least In−(p, t)

tokens. Notation Mk[t〉 is used to denote that t is enabled at marking Mk. If t is enabled,

it may fire. When it fires, In−(p, t) tokens are removed from each of its input place and

In+(p, t) tokens are deposited to each of its output place, which generates a new marking

Mk′= Mk+ In(:, t). Here In(:, t) denotes the column of In that corresponds to t. This firing

action could also be denoted by Mk[t〉Mk′, which also means that marking Mk′ is reachable

from initial marking Mk by firing transition t.

Example 4: Consider the Petri net in Fig. 2.1. We know the initial marking and the

input incident matrix are Mk0 = [2, 2, 0]T and In− = [2, 1, 0]T from the previous sections.

Because we have Mk0 ≥ In−(:, t1), transition t1 could be enabled.
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Example 5: Consider the Petri net in Fig. 2.1. Since t1 is enabled by the marking

[2, 2, 0]T , we could fire it. During the firing, two tokens will be removed from place p1

and one token will be removed from place p2 according to In−(:, t j) = [2, 1, 0]T . After

that, two tokens will be deposited to place p3 according to In+(:, t j) = [0, 0, 2]T . So after

t1 fired, Mk1 = [0, 1, 2]T . This process is denoted by Mk0[t1〉Mk1.

2.1.5 Firing Sequence, Firing Vector, and State Equation

The transition firing sequence is denoted by δ = ti1ti2 . . . tik (ti j ∈ Tr). The sequence δ is

said to be enabled with respect to Mk if Mk[ti1〉Mk1[ti2〉 . . .Mkk−1[tik〉 where Mk j ≥ 0 ( j ∈

{1,2, . . . ,k− 1}) denote a set of markings in the net. This process is denoted by Mk[δ 〉.

Notation Mk[δ 〉Mk′ is used to denote the firing of δ from Mk yields Mk′. Meanwhile, |δ (t)|

is used to represent the total number of occurrences of transition t in δ . More specifically,

the firing vector that corresponds to δ is denoted by v f = [|δ (t1)| |δ (t2)| . . . |δ (tm)|]T .

Note that after firing an enabled sequence δ from marking Mk, the new marking Mk′ can

also be computed from the state equation as follows.

Mk′ = Mk+B · v f (σ). (2.2)

Example 6: Consider the Petri net in Fig. 2.2.

Fig. 2.2. The Petri Net Used in Example 6.

The incident matrix is: 
−1 0

1 −1

0 1
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At stage 0, the initial marking is Mk0 = [1 1 1]T . Therefore, transitions t1 and t2 could

be fired. Suppose Mk1 = [0 0 3]T is the marking at stage 1, which means that t1 has been

fired once and t2 has been fired twice. The corresponding firing vector v f = [1 2]T . Thus,

the state equation of the process should be:
−1 0

1 −1

0 1

∗
 1

2

=


1

1

1

−


0

0

3


From the example above, we could see that the entries of the firing vector v f are actually

the number of firing times of every transition, which means that the v f vector could also be

written as the sum of all vis (i=1,2,....), where vi is firing vector of single firing action with

only one nonzero entry. In example 6, v f = v1 + v2 + v2 = [1 0]T +[0 1]T +[0 1]T , where

v1 shows that one firing of t1 and v2 shows one firing of t2.

2.1.6 Reachability Graph

There existing other Petri nets with more complex structures, which would have many

more firing options that are hard to be analyzed. In that case, we use a scheme called the

reachability graph to enumerate all the possible firing action branches.

The reachability graph consists of the reachable markings from the initial marking Mk0

and the corresponding fired transition sequences. Because of that, to study a finite Petri net,

we only need to know its reachability graph instead of it structure. Following that, other

mathematical methods like the state equation would be applied for problem-solving.

Example 7: Consider the Petri net in Fig. 2.3. Its reachability graph or reachability

tree has been given in the following Fig. 2.3:

The graph in Fig. 2.3 consists of the reachable markings, which are directed with

arcs marked with the fired transitions, where each arc shows a potential firing branch.

For instance, from the initial marking Mk0 = [1, 1, 1]T to the marking Mk1 = [0, 2, 1]T ,

transition t1 need to be fired. Alternatively, from the initial marking Mk0 = [1, 1, 1]T to the
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Fig. 2.3. The Reachability Graph for the Petri Net in Fig. 2.2.

marking Mk2 = [0, 0, 3]T , the fired transitions could form a firing sequence, which could

be either t1t2t2 or t2t1t2.

As we can see, in a reachability graph of a Petri net, sometimes we could have more

than one firing sequence from initial marking Mk0 to another marking Mki. Although we

have multiple firing sequences, the corresponding firing vector v f will be the same, since

we have the same incident matrix In and the same value of Mki−Mk0. Hence, the state

equation will generate the same solution for v f . This feature could be very important in

practical problem-solving in this dissertation.

2.1.7 External Observation

Besides the structural parameters of the Petri net mentioned in the previous sections,

several external observed terms that are also important to our research in this dissertation.

There are two kinds of external observations used in this dissertation: token change obser-

vation and label observation.
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Token Change Observation

First, we introduce the token change observation sequences, which are defined as:

Definition 1: [69] Let S n denote the space of sequences of markings in (Z+)n and

define ΓQ : S n→S Q be the projection that focuses on the sequence of marking changes

at places indexed by the set Q and also removes repeated elements in the sequence.

For example, the projection Γpi of the sequence of markings Mk[0],Mk[1], . . . ,Mk[k] at

the ith place is given by:

Γpi(Mk[0]→Mk[1]→ . . .→Mk[ j1]→ . . .→Mk[ jk]→ . . .→Mk[k]) =

Mk(pi)[0]→Mk(pi)[ j1]→Mk(pi)[ j2]→ . . .→Mk(pi)[ jk],

where { j1, j2, . . . jk} gives the time epoch set, where at each time epoch the the number of

tokens in place pi changes. More specifically, { j1, j2, . . . jk} satisfies

Mk(pi)[0] = Mk(pi)[1] = . . .= Mk(pi)[ j1−1] 6= Mk(pi)[ j1]

Mk(pi)[ j1] = Mk(pi)[ j1 +1] = . . .= Mk(pi)[ j2−1] 6= Mk(pi)[ j2]

, and so forth.

Suppose that the token change in each place is reported separately. The observed to-

ken change sequence at each place pi (i ∈ {1,2, . . . ,n}) is denoted by si = Mk(pi)[0]→

Mk(pi)[ j1]→Mk(pi)[ j2]→ . . .→Mk(pi)[ jk] (0 < j1 < j2 < .. . < jk). The initial (final)

number of tokens in place pi is denoted by Mk(pi)[0] (Mk(pi)[ jk]). The symbol S is used

to denote the set of observed sequences of token changes, i.e., S = {s1,s2, . . . ,sn}.

Definition 2: [69] Suppose δ = ti1ti2 . . . tik is a transition firing sequence and we have

Mk0[ti1〉Mk1[ti2〉 . . . [tik〉Mkk, where Mk j ≥ 0 ( j ∈ {1,2, . . . ,k}) represents a marking se-

quence. δ is said to be a consistent transition firing sequence with respect to the observed

token change sequence si of place pi if it satisfies Γpi(Mk0→Mk1→Mk2→ . . .→Mkk) =

si. Similarly, suppose we have the observed token change sequence set S = {s1,s2 . . .sn}, δ

is also defined as a consistent transition firing sequence with respect to S if it is consistent

with each sequence si (i ∈ {1,2, . . . ,n}).
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Example 8: Consider the Petri net shown in Fig. 2.4 with place set Pl = {p1, p2, p3},

transition set Tr = {t1, t2}. The initial marking is set to be Mk0 = [1, 1, 1]T .

Fig. 2.4. The Petri Net Used in Example 8.

We are given the set of observed token change sequence set S = {s1,s2,s3} as follows:

s1 : 1→ 0,

s2 : 1→ 2→ 1→ 0,

s3 : 1→ 2→ 3.

In this case, it is clear that t1t2t2 is the only legal transition sequence that is consistent

with the observations in S. The marking evolution under t1t2t2 is given by Eqn. 2.3. It can

also be verified that the number of token changes at each place (after projection Γpi in each

place pi) satisfies the conditions in Eqn. 2.4 to Eqn. 2.6.
1

1

1

 t1−→


0

2

1

 t2−→


0

1

2

 t2−→


0

0

3

 (2.3)

Γp1(Mk0→Mk1→Mk2→Mk3) = s1, (2.4)

Γp2(Mk0→Mk1→Mk2→Mk3) = s2, (2.5)

Γp3(Mk0→Mk1→Mk2→Mk3) = s3. (2.6)
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Observation of the Label Sequence

The other external observation used in this dissertation is the observation of the label

sequence. First, we would like to introduce the labeled Petri net structure. A labeled Petri

net structure is denoted by NeL = (Pl,Tr,Ar,We,Labels,∆), where N = (Pl,Tr,Ar,We) is

a Petri net structure and the labeling function Labels : Tr→ ∆∪{ε} assigns each transition

a given alphabet label from the set ∆, or the empty label ε if the transition is unobservable.

Note that a label could be shared between two or more transitions. For a label l ∈ ∆, we

use Trl to denote the set of transitions with label l, and |Trl| to denote the total number of

transitions associated with label l.

In this dissertation, we will consider the labeled Petri net structure with unobservable

transitions. Therefore, the transition set Tr is divided into two sets: observable subset Tro

and unobservable subset Tru, where Tr = Tro∪Tru and Tro∩Tru = /0. When plotted, Tro

is represented with empty bars and Tru is represented with solid bars.

Definition 3: Given a labeled Petri net with unobservable subset Tru ⊆ Tr. The unob-

servable subnet of the given labeled Petri net is defined as the net NePu =(Pl, Tru, In−u , In+u ),

where In−u and In+u consist of the columns that correspond to unobservable transitions in

the input and output incident matrices In− and In+.

Definition 4: [92] Two transitions ti and t j are said to be contact-free, if they satisfy

the following conditions:

→t→i
→⋂

t→j = /0, →ti
⋂

t→i = /0, and →t j∩ t→j = /0

i.e., the two transitions do not share any input or output places and don’t have self-loops.

In this dissertation, all unobservable transitions in the Petri net are assumed to be

contact-free. The Petri net in Fig. 2.5 with its unobservable subset in Fig. 2.5.(b) has

been provided. Note that the unobservable transitions t5 and t6 are contact-free.
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Fig. 2.5. A Labeled Petri Net (a), and its Unobservable Subnet (b).

2.1.8 Probabilistic Petri Net

Based on the study in [93], the probabilistic Petri nets have similar structures with

regular Petri nets except the firing of each transition is associated with a probability, which

captures its likelihood to occur. In particular, a probabilistic Petri net is a five-tuple Npp =

(Pl,Tr,Ar,We, prob), where Pl, Tr, Ar, and We are the same as regular Petri nets, the

probability function prob is defined as prob : Tr→ [0, 1], which assigns each transition a

number between 0 and 1 for its likelihood to occur if it is enabled.
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Fig. 2.6 shows an example of a probabilistic Petri net structure. Note that if all transi-

tions share the same input place, the sum of probabilities of all these transitions is one. In

Fig. 2.6, for instance, prob1 + prob2 + prob3 = 1.

Fig. 2.6. An Example of a Probabilistic Petri Net.
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3. HIGHWAY TRAFFIC MODELING WITH THE PETRI NET

In this chapter, two different traffic modeling schemes have been introduced. The first one

applies the Probabilistic Petri net structure to a highway period, which discretizes the road

into blocks, and movement of the traffic has been assigned with probabilities. The second

one models the traffic in a larger area with the traditional Petri net structure, which focuses

on the destinations of interest (DOI) during the traveling path. These modeling schemes

make the first step of the study in this dissertation.

The first section of this chapter will introduce the modeling scheme with the probabilis-

tic Petri net while the second section will be focused on the modeling scheme based on the

traditional Petri net. Detailed modeling procedures and necessary parameters will also be

discussed in each section.

3.1 Highway Traffic Modeling with the Probabilistic Petri Net

In this section, a novel method for modeling the highway traffic using Probabilistic

Petri nets (PPNs) is proposed. More specifically, the highway has been partitioned into dis-

crete segments and probabilistic measures are derived based on the traffic data considering

the vehicle movements. The proposed model is validated through the study of a publicly

available dataset called Active Transportation Demand Management (ATDM) Trajectory

Level Validation, which provides the real traffic data from different driving scenarios. The

proposed method will generate a graphical structure of the PPN as well as all the important

attributes related to the real traffic data. The output model can be used for path planning

and collision avoidance for highway traffic.
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3.1.1 Data Filtering

The dataset we study is called ATDM Trajectory Level Validation [95] by the U.S.

Department of Transportation, which provides driving data on local roads and highway.

It includes a variety of data attributes such as datetime, latitude, longitude, speed, and

laneID. The data attributes needed for our analysis are latitude, longitude, speed, laneID,

and testing datetime. Note that the recorded data includes data points for both local and

highway scenarios. Since we are only interested in the driving scenarios on the highway,

the data points with inappropriate speed will be removed.

Furthermore, the fast data sampling rate of the original dataset is not suitable for our

case because the short period of time will not generate much difference in vehicle position

and speed. Hence, we need to find an appropriate sampling ratio. From the work in [50],

the suggested time interval is 1 to 3 seconds. In our work, we select the lower bound of the

suggested values, which is 1 second.

3.1.2 Highway Segment Discretization

Since the original database does not provide the detail of the driving route, road geom-

etry, and traffic conditions, there are two key assumptions in this study: A1) Only straight

highway geometry is considered; A2) There is no heavy traffic or congestion that will sig-

nificantly affect the driver’s intention. The reason of the assumptions is for our calculations.

Specifically, we choose to accumulate the traveling distance between data points with lat-

itudes and longitudes to estimate the length of the highway segment. The estimation is

valid because of the short time gap between two consecutive data, regardless of highway

geometry. Under these two assumptions, it is feasible to determine the total length of the

highway. Calculating the distance that each vehicle traveled between two data points is

straightforward. Equations 3.1–3.3 below show the Haversine formulas [96], which is used

to calculate the distance d with latitude and longitude:

a = sin2(
φdi f f

2
)+ cosφ1 · cosφ2 · sin2(

λdi f f

2
)) (3.1)
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c = 2 ·atan2(
√

a,
√

1−a) (3.2)

d = R · c (3.3)

where φ1, φ2, φdi f f , λdi f f , and R represent the two latitudes, the difference of the latitudes

(in radians), the difference of the longitude (in radians), and the radius of the earth, respec-

tively. Furthermore, we can find the longest data segment from the filtered dataset. The

total length of the highway could be considered as the accumulated distance of the longest

data segment.

The average length of common compact cars in the U.S. is from 4.3 to 4.6 meters,

while the larger-sized cars could be 0.2 to 0.5 meters longer. Hence, it is reasonable to

make the length of each discretized segment to be 10 meters, which is about the length

of two vehicles. The distance is practical since it is close enough for the crash imminent

braking (CIB) system to be triggered (CIB triggering distance is from 5 to 15 meters as

suggested in [5]), while still leaves room for the following vehicles to avoid a potential

collision. With the information on the total length of the highway of interest and the length

of the proposed discretized segment, it is not difficult to create the discretized model.

Definition 5: A real number is assigned to each transition that represents its Reward,

denoted by r.

The Reward is used to represent the level of occupation of the following place. Different

from prob, Reward is positively correlated with the emptiness of the following place, hence

driving safety, which could be more intuitive than prob. The value of Reward is calculated

with the probability prob that one vehicle transiting from one block to another, as shown

in Equation 3.4.

r =−logprob
10 (3.4)

The method to obtain the prob values for all transitions is through the prepared dataset.

It is simple to know the place that each data point belongs to since we have calculated

accumulated distance. Therefore, we have the distribution of the whole dataset in all the

places. Then, the prob values are calculated with the Monte Carlo method. Starting from

one certain place, excluding the ones with zero probability, we can have the set of places
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Fig. 3.1. Highway Segment Discretization.

that the token would be transited to. By doing statistics, the probabilities of transiting to

these ”son” places could easily be obtained.

Example 9: Consider a highway segment with three lanes. Fig. 3.1 shows the way of

the discretization of it:

The discretized highway segment could generate the Probabilistic Petri net that we

need. As shown in Fig. 3.1, each block is treated as a place in the Petri net. Vehicles

driving on the highway is considered to be the tokens. Transition t1, t2 and t3 will be used

to connect places. We assume there are two data points in place p11 and one data point

in place p13. Therefore, the probability value prob1 = prob2 = 0.5, since two tokens in

p11 are transited to p22 and p32, respectively. One the other hand, the probability value

prob3 = 1 since the only token in p13 is transited to p31. Calculating the r values with Eqn.

3.4, the Petri net is created as shown in Fig. 3.2:

In Fig. 3.2, the places that have not evolved in the transition firing are not shown in

order to simplify the structure. We can see that p22 and p32 each obtained one token from

the two tokens in place p11. Hence, the probabilities of t1 and t2 are both 0.5. Similarly,

since the only token in p13 has been transited to p31, the probability of t3 is 1. The reward
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Fig. 3.2. The Probabilistic Petri Net Created from Fig. 3.1.

values are also listed as r1 = r2 = 0.301 and r3 = 0. Since prob∈ [0, 1],−logprob
10 is always

positive and is monotonous decreasing related to prob. Hence, it is equivalent to find the

smallest prob value or to obtain the largest r value. The corresponding incident matrix In

of the Petri net in Fig. 3.2 is shown in Equation 3.5:

In =

p11

...

p13

...

p22

...

p31

p32

...



−1 −1 0

... ... ...

0 0 −1

... ... ...

1 0 0

... ... ...

0 0 1

0 1 0

... ... ...



(3.5)
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Note that the constructed Petri net in Fig. 3.2 has transitions with a single input and a

single output, each column of the incident matrix In will at most has two non-zero entries,

which are ±1. The columns can also contain only zeros when there is the existence of the

self-loop.

3.1.3 Driving Data Fitting

After obtaining the Petri net with reward values, it is feasible to fit the driving data in the

database to a certain model. Note that since we consider only the highway scenarios, there

is one constraint for the token moving: The tokens on all lanes have to move synchronously.

Since the Petri net model is used to simulate the highway traffic and the vehicles cannot

stop on the highway, the tokens representing vehicles are regulated to move synchronously.

In order to achieve the constraint in the Petri net, the tokens will be transited in sequence,

which means only when all tokens are transited once, the newly generated marking is con-

sidered as a reachable marking. We use Fig. 3.1 to illustrate it. In the figure, we can see

that two lanes have vehicles in them. Since the vehicles should move synchronously, in one

phase, we need to move the vehicle in place p11 to place p22 or p32 and move p13 to place

p31, according to the possible transition relationship in the figure.

Known the idea above, we can represent the constraint with the state equation of Petri

net, which has the form of Mk j = Mki + In · v f , where i, j = 0,1,2, .... Expanding the state

equation into matrix form, we have Equation 3.6 below:
Mk j1

Mk j2

...

Mk jn

=


Mki1

Mki2

...

Mkin

+


In11 In12 ... In1m

In21 In22 ... In2m

... ... ... ...

Inn1 Inn2 ... Innm




v f1

v f2

...

v fm

 (3.6)
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Applying the constraint to the Petri net in Example 9, the firing vector v f should always

have two non-zero entries to represent synchronously moving of the traffic on the two lanes,

which means:
m

∑
index=1

v findex = 2 (3.7)

The non-zero v findex pairs can be determined from Mki. Example 10 has shown the

process.

Example 10: For the Petri net in Example 9, consider the starting marking Mk0 in

Equation 3.8 below.

Mk0 =



1

0

1

...

0


(3.8)

Looking up the constructed incident matrix in Equation 3.5, we can find the negative

entries in rows corresponding to p11 and p13. For p11, negative entries are in column 1 and

column 2. For p13, negative entry is in column 3. Hence, We could fire is t1, t2, and t3. The

candidates of the firing vector and reward value are as shown in Eqn. 3.9 to Eqn. 3.12.

v f1 =


1

0

1

 , (3.9)

v f2 =


0

1

1

 , (3.10)

r1 =−log0.5·1
10 = 0.301, (3.11)

r2 =−log0.5·1
10 = 0.301. (3.12)
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Thus, substituting the values of the firing vectors, we can also obtain the set of the

reachable markings in the next firing stage, denoted as Mk1, by solving the state equation.

In the case of this example, the set includes:

Mk1 =

p11

p12

...

p22

...

p31

...



0

0

...

1

...

1

...


or Mk1 =

p11

p12

...

p31

p32

...



0

0

...

1

1

...


(3.13)

These two Mk1 markings could be used as the starting markings for the further calcula-

tion. By doing the iterative calculations, all the reachable markings that represent the traffic

environment could be obtained. They are stored in different layers based on the times of

firing from the initial marking Mk0.

3.1.4 Data Fitting Results

In this section, we will use the method proposed above to discretize the highway seg-

ment and model the driving behavior in the dataset. In order to simplify the calculation,

We are using data from the first three lanes of the dataset. We apply the data filtering and

highway discretization introduced above so that we can obtain the features of the filtered

database and discretized highway as shown in Table 3.1:

Note that each filtered data segment is treated as a separate driving circuit in our study.

The number of blocks will be equal to the number of places in the Petri net we are con-

structing.

Furthermore, by fitting the data points into the discretized blocks, we can obtain the

values of the reward of each transition. There are only 314 places and 818 transitions in

this Petri net since there are places without any connection which are ignored. Because of
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Table 3.1.
Features of the Filtered Database and Discretized Highway.

Features of the dataset Value

#Filtered data segments 1660

#Data points 24600

Time gap (s) 1

Features of the highway Value

Total length (m) 1261.3

Length of each block (m) 10

#Lanes 3

#Blocks 127*3

the massive size of the Petri net, Fig. 3.3 shows only the first three layers of the generated

Petri net. The reward values of transitions have also been provided in Table 3.2 in a matrix

corresponding to the incident matrix of the Petri net.

Once the Petri net has been generated, we can obtain its reachable markings. The

scenario that we are using is as illustrated in Example 9 and Example 10 in the previous

sections, in which the vehicles all follow the driving behavior in the filtered dataset. The

total number of the reachable markings is 1984, with 49 layers. The number of markings

in each layer is listed in Table 3.3.

Note that every marking could be generated from different paths with different proba-

bilities along with different reward values. Meanwhile, the modeling of the highway traffic

with the Probabilistic Petri net could be applied to many realistic problems, such as the

path planning for the ego vehicle that has the least collision risk. Moreover, the probability

and reward values of the arcs could be converted to the costs or weights values. Therefore,

the Probabilistic Petri net could be converted into a traditional Petri net with extra features.

In the next section, we would like to introduce another modeling scheme that uses this kind

of traditional Petri net.
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Fig. 3.3. Part of the Petri Net Generated from the Discretized Highway.
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Table 3.2.
Reward Values of the Transitions in Fig. 3.3.

Transition Reward Transition Reward

t73 0.1146 t455 5.7944

t74 4.0540 t456 8.6018

t75 6.2416 t457 9.6018

t76 8.4115 t516 0.5595

t119 0.0439 t517 1.6938

t120 7.2288 t518 9.3376

t121 5.4215 t519 9.3376

t166 2.2305 t520 9.3376

t167 0.3831 t521 8.3376

t168 7.2192 t702 4.1293

t169 6.2192 t703 3.5443

t206 7.7649 t704 0.2713

t207 1.0784 t705 5.1293

t208 0.9705 t729 0

t209 6.7649 t752 3.7004

t210 8.7649 t753 0.2410

t422 0.0240 t754 4.7004

t423 6.5580 t755 4.7004

t424 8.1430 t773 4.3923

t425 8.7279 t774 0.5850

t454 0.0319 t775 1.8074
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Table 3.3.
The Number of Reachable Markings in each Layer.

Layer Number Layer Number

1 1 26 44

2 16 27 48

3 69 28 44

4 76 29 44

5 70 30 44

6 66 31 32

7 68 32 24

8 72 33 36

9 66 34 28

10 63 35 28

11 66 36 28

12 62 37 24

13 62 38 20

14 63 39 12

15 63 40 16

16 54 41 16

17 55 42 8

18 56 43 12

19 44 44 12

20 60 45 12

21 68 46 12

22 60 47 4

23 60 48 4

24 48 49 4

25 40
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3.2 Highway Traffic Network Modeling with Traditional Petri Net

In this section, we discuss the method of modeling the highway traffic network with the

traditional Petri net. Inspired by the study in [97], traffic congestion has a great influence on

driving safety and travel efficiency. We would like to further study the topic of optimizing

route planning in order to improve safety and efficiency issues. Before that, the traffic net-

work has been analyzed and modeled with the Petri net. In order to simplify the problem,

there are several prerequisites: 1) Only highway/freeway and major local roads are con-

sidered. 2) Some local roads are considered as one-directional. This section is organized

as follows. First, we discuss the method of modeling highway traffic with the Petri net;

Then we describe the algorithm for minimum initial marking estimation in labeled Petri

nets with unobservable transitions; At last, we provide the estimation results after applying

the algorithm to the Petri net generated from the traffic network.

3.2.1 Problem Formulation

The scenario design is as follows: we would like to simulate the daily driving that starts

from home and commute to work. During the way, several other destinations of interest

(DOIs) are designed to be visited. Obviously, the driver has multiple choice for each DOI.

For example, the driver would like to visit a McDonald’s for lunch, while he will have quite

a lot of branches to choose from. Thus, these choices of each DOI will be marked. These

DOIs could be used to form the place set Pl in the Petri net we would like to form. Once

we have the place set Pl, transition set Tr could be used to represent the traveling between

DOIs. Hence, the locations of transitions should follow the layout of the target highway

traffic network.

Next, we would like to determine the weights of the arcs that connect the places and

transitions. The arc weights depend on the traveling time from one DOI to another, which is

constrained by the speed limit and also influenced by the distance and the traffic condition.

There are many open-source databases online that provide traffic information that provides

current real-time traffic speed and speed limits.



42

Since both the speed limit and real-time traffic speed are available, we could determine

the time needed to travel between two DIOs. To use the Google map API to check the speed

limit, we would like to further discretize the segment between two DOIs. Every 0.5 miles,

we would obtain the speed limit and calculate the required travel time. Since the interval

between data points is very small, our calculation will use the average of the starting and

the ending speed limit value of a single interval, in case of that they are different.

Taking into consideration of the traffic congestion, we will make use of the real traffic

data from INDoT database. Since the starting point is given in the database and the research

in [97] has provided a way to calculate the queue length, it is possible to calculate the

required time to travel within the traffic congestion. Hence we could conclude the way to

calculate the value of delta arc (wdi f f ) weight in the following equation 3.14:

wdi f f = Σ
linterval

vsli
+Σ

linterval

vsc j

, i = 1,2...N, j = 1,2...,M. (3.14)

where linterval is the length of each interval, which equals to 0.5 miles. vsli represents the

average speed limit in the i− th un-congested interval. vsc j is the real-time traffic speed in

the j−th congested interval. Note that there are N un-congested intervals and M congested

intervals, and N +M should be the number of total intervals between the two DOIs.

From the equation in Eqn. 3.14, we could see that the difference of the arc weights could

be affected significantly by the number of congested intervals as well as the traffic speed

in each congested interval. Hence, traffic congestion will be somehow reflected as a large

arc weight difference in this generated Petri net. When applying optimization algorithms,

those large arc weights should be considered to be avoided.

The arc weights have some features, which represent the consumption of time: 1) The

weight of the input arc of a transition ti will also be strictly larger than the weight of its

output arc. Hence, wdi f f will be always strictly positive. 2) The arc weights on both input

and output arcs should be the smallest numbers that could generate wdi f f , so that we have

the following values in 3.15:

In−ti = 1, In+ti = 1+wdi f f , i = 1,2, ...m (3.15)
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3.2.2 Illustrative Example

We would like to take the metropolitan traffic network of Indianapolis as an example to

show the modeling method. Consider the map in the following Fig. 3.4:

Fig. 3.4. The Metropolitan Highway Traffic Network around Indianapolis.

From the study in [97], it is possible to obtain real-time traffic information from the

Indiana Department of Transportation (INDoT) database [98]. INDoT has provided us

the real-time probe vehicle queue data that is open to the public. The data, which will

be updated every minute, could be accessed on a server with the . json format. We could

develop a program to fetch the data. Each data segment includes the road name, road direc-
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tion, mileage of the data point, and current real-time traffic speed. Speed limit information

could be obtained from the Google map API [99]. Some local roads that don’t have real-

time speed information provided in the database. In that case, the traveling speed could be

estimated from the historical data in Google map API.

As shown in the figure, the starting place for the commuting route is set at the north-

most part of the map at the city Carmel, since it is a common residential area around

Indianapolis. The finishing place is at the IUPUI campus, which is at the south-most part

of this map. The traffic network consists of highway/freeway (Interstate-465, Interstate-

65, Interstate-70, and US-31), and major local roads (Meridian St., Michigan Rd., Binford

Blvd, etc.). During the path of driving from the starting place to the finishing place, several

DOIs are required to be visited. Simulating the real-daily life, we would like to visit a

McDonald’s, a Walmart supermarket, an Asian market, and a gas station. We could search

the map for these DOIs, and save those in the traffic network we formed. Thus, connecting

these DOIs, we could mark all of them on the map and obtain the following Fig. 3.5.

The DOIs we have saved will generate the place set Pl in a Petri net. The transition

set Tr represents the traveling within DOIs along the highway traffic network. Since the

arc weights depend on the traveling time from one DOI to another, which is influenced by

the distance, we need to obtain the distance between the DOIs. The distances could be

measured by using the measuring tools provided in the online map.

As we have talked about previously, we also consider the traffic condition and speed

limit to settle the arc weights. Equation 3.14 could be used to determine all the arc weights

we need. We use the following Example 11 to show the detail of arc weights calculation:

Example 11: Consider the highway traffic segment that is between two DOIs. The

direction is westbound and the total distance is 4.72 miles. Based on the INDoT database,

the first 0.5 miles on the road are shown to have slow traffic (marked as red).

Since we have previously defined that the unit distance of each interval as linterval =

0.5 mile, we could divide the segment into 10 intervals (rounded up if not enough), with

nine un-congested intervals and one congested interval (N = 9, M = 1). For the first 0.5

miles with slow traffic, the real-time traffic speed is shown as 47 mph, which is vsc1 =
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Fig. 3.5. The Highway Traffic Network with DOIs Marked.

Fig. 3.6. Traffic Segment Between Two DOIs used in Example 11.
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0.7833 mile/minute. For the other un-congested miles, the speed limit is constantly 55

mph, which is vsl1 = ...= vsl9 = 0.9167 mile/minute. Hence, based on Equation (3.14), we

could have:

wdi f f = Σ
linterval

vsl1
+ ...+Σ

linterval

vsl1
+Σ

linterval

vsc1

≈ 6. (3.16)

Therefore, from Equation 3.15, the weights of the input and output arcs of the target

transition could be determined as:

In−t = 1, In+t = 7. (3.17)

The highway segment in Fig. 3.6 could be converted into the Petri net structure in the

following Fig. 3.7:

Fig. 3.7. Generated Petri Net from the Highway Segment in Fig. 3.6.

Therefore, for the complete traffic network in Fig. 3.5, we could convert it into a Petri

net structure with the obtained place set, transition set, and arc weights. The converted

Petri net is shown as follows in Fig. 3.8.

Consider the Petri net in Fig. 3.8, which has 13 places and 37 transitions, the starting

point, and finishing point are marked as transition t1 and t37. Since t1 is the only output

transition of the place p1, when the token transition happens starting from p1, we can

observe t1 firing. We have a similar case for t37 since it is the only input transition for

the destination p13. Every other place of the Petri net represents a destination of interest.

Most of them appear at a traffic intersection, which is reasonable since DOIs like markets

or restaurants are normally built where traffic and population gather. Note that transitions

t14, t15, and t34 are unobservable transitions, which could provide an alternative firing route.

Moreover, we could consider the traffic condition in rush hour and the generated Petri net
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Fig. 3.8. The Petri Net Structure Converted from the Highway Traffic
Network without Congestion.

structure could be slightly different from the previous one, where the differences are mainly

reflected in the values of arc weights. The more congestion or slow traffic, the weights of

the transition input arcs will be larger. We use the traffic data collected at 8 am as an

instance and could have the following Petri net structure shown in Fig. 3.9. With the Petri

nets generated from the traffic network around Indianapolis, we could apply the algorithm

we present in the following chapter for route optimization.
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Fig. 3.9. The Petri Net Structure Converted from the Highway Traffic
Network with Congestion.

3.3 Summary

In this chapter, firstly, we proposed a method to discretize the highway segment and

model driving behaviors with probabilistic Petri nets. This method discretized the contin-

uous highway into discrete blocks. By fitting real-time traffic data, a probabilistic Petri

net structure was developed, with places representing blocks on the highway, transitions
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representing driver’s intention, and tokens representing the vehicles. Additional reward

values are marked to each transition based on the probability of each transition firing. Af-

ter the Petri net model is developed, the reachable markings could be obtained. Note that

the reachable markings in our case are different from the well-known concept. Because

our Petri net is to model the highway traffic, only the reachable markings with all tokens

moved synchronously are considered.

Secondly, a scheme that is used to discretize the highway traffic network has been

proposed based on the traditional Petri net. The highway network around the Indianapo-

lis metropolitan has been used as an example. The highway network consists of high-

way/freeway and major local roads. The scenario that we studied is a daily driving case,

that starts at home and ends at school. During the way, several other destinations o f

interest (DOI) are required to be visited. Based on this scenario, we discretized the contin-

uous traffic network and modeled it with the Petri net structure. We represented the DOIs

with the place set Pl and represented the traffic network connection between DOIs with

transition set Tr. Arc weights are determined from the distances between DOIs and traffic

loads. When traveling between the places, time will be consumed. The discretized time

units (set to be one minute) are represented by tokens in the net.

Note that, although the first scheme is as powerful as the second scheme and has many

possible realistic applications, we focus on the second scheme in our research in this disser-

tation because of the following reasons: 1) As mentioned previously, the Probabilistic Petri

net could be converted into a traditional Petri net by converting the probability or reward

values into cost or weight values. 2) The traditional Petri net structure is sufficient for the

algorithms developed in this dissertation.
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4. MINIMUM INITIAL MARKING ESTIMATION IN LABELED
PETRI NETS WITH UNOBSERVABLE TRANSITIONS

In this chapter, we consider the problem of minimum initial marking estimation in labeled

Petri nets. The problem is based on the externally observed label sequence and with the

purpose of seeking the initial marking that has the minimum token sum. In order to do

that, we developed an algorithm based on the conclusion of the study in [84]. The main

difference between the study in [84] and ours is the existence of the unobservable transi-

tions. After including the unobservable transitions into the Petri net, more potential firings

are necessary to be considered.

This chapter is organized as follows: firstly, some of the important conclusions in [84]

have been reviewed at the beginning. The definitions of the initial markings have been

given. Meanwhile, the way to find the minimum initial marking in the Petri net that is

unobservable transition-free has been reviewed. Secondly, we extend the method into the

Petri net with the existence of the unobservable transitions. The differences have been

discussed. After a simple example, we then describe the proposed algorithm in detail,

along with the complexity analysis. In order to increase the complexity cost, we have also

used the other two heuristic methods. After that, we apply the algorithm to an illustrative

simulation. An application in a scenario related to traffic planning has also been provided.

4.1 Problem Formulation

4.1.1 Petri Nets with Observable Transitions

In this section, we first consider the labeled Petri net that has observable transitions only.

Suppose we are given a Petri net structure with labeling function Labels: NePL=(Pl, Tr, Ar,

We, Labels, ∆). An observed label sequence θ = l1l2 . . . lk, where l j ∈ ∆ and j = 1,2, . . . ,k,
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has been generated by underlying transition activities. The study in [84] has proposed a

method to find the minimum initial marking estimate set with computational complexity

that is polynomial in terms of the length of θ . There are some necessary definitions pro-

posed in [84] that could be used by us in the later sections, when dealing with the nets with

the existence of the unobservable transitions. These definitions are shown as follows:

Definition 6: [84] Given a label observation sequence θ , the initial marking estimates

set with respect to θ is defined by Z(θ)= {Mk∈ (Z+
0 )n | ∃δ ∈ Tr∗ : Mk[θ〉 and Labels(δ )=

θ}.

Definition 7: [84] Given a label observation sequence θ , the minimal initial marking

estimates set with respect to θ is defined by Zminimal(θ) = {Mk ∈ Z(θ) | @Mk′ ∈ Z(θ) :

Mk′ ≤Mk and Mk′ 6= Mk}.

Definition 8: [84] Given a label observation sequence θ , the minimum initial marking

estimates set with respect to θ is defined by Zminimum(θ) = {Mk ∈ Zminimal(θ) | |Mk| ≤

|Mk′| for all Mk′ ∈ Zminimal(θ)}.

[84] has also provided the equation to calculate the minimal initial markings, which

are shown in Equation 4.1 below:

Mk j+1
0 = max{Mk j

0 + In · y j−1, In−(:, ti j)}− In · y j−1, j = 1,2, . . . ,k. (4.1)

In the equation, y j−1 represents the ( j− 1)th firing vector at the j− 1th time epoch of

the transition firing sequence ti1ti2 . . . ti j−1 . Mk1
0 denotes an n-dimensional vector with all

zero entries, i.e.,~0n. Similarly, y0 denotes an m-dimensional vector with all zero entries,

i.e.,~0m. Note that markings Mk j
0 and Mk j+1

0 represent the initial marking estimate before

and after the firing of transition ti j .

To show the calculation procedure of the Equation 4.1 more intuitively, the trellis dia-

gram has been introduced in [84], which enumerates all possible firing path. The structure

of the trellis diagram is as shown in Fig. 4.1.

In the diagram, each node, which is denoted as a black dot, represents a (yi j,Mk0
i j) pair,

where Mk0
i j is a minimal initial marking estimate, which is consistent with the observed

label sequence θ , i.e., Mk0
i j ⊆ Z(θ). yi j is the firing vector belonging to one or more
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Fig. 4.1. Trellis Diagram that Capturing the Firing Procedure while Show-
ing Firing Vectors and Minimal Markings.

transition firing sequences that are fired from the corresponding Mk0
i j and are consistent

with the observed label sequence θ at ith time epoch.

After scanning the entire observed label sequence, the minimum initial marking esti-

mate set can be found from the minimal initial marking estimate set, which are the ones

with the least token sum, that is:

Mk0
Minimum = argmin

Mk0
ki

n

∑
i=1

Mk0
ki(pi). (4.2)

4.1.2 Petri Nets with the Existence of Unobservable Transitions

Before we could get any deeper, it is necessary to make it clear that if the Petri net

has the unobservable subnet, the number of firing sequences can grow exponentially in

terms of the length of the observed label sequence. In the worst case, there could be infi-

nite possibilities of the transition firings for one observed label. In that case, we assume

that all the unobservable transitions are forward-backward-conflict-free (|→p→i | = 1) and
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forward-backward-concurrent-free (|→t→i | = 1), or contact-free by combing the two con-

cepts. Before establishing more procedures, We need to define a notion called implication

that helps to make ideas of the algorithm clear.

Definition 9: [84] Consider a labeled Petri net with unobservable transitions. Given

an observable transition t ∈ Tro, an implication δ is a firing sequence consistent with

unobservable transitions ti ∈ Tru, i = 1,2...|Tru|, that starting from an initial marking Mk0,

and can lead the markings to enable t, i.e., E(Mk0, t) = {δ |Mk0[δ 〉Mk′, Mk′ ≥ In−(t)}.

Definition 10: Define Eminimal(Mk0, t), the minimal implication towards t ∈ Tro, to be

the implication δ starting from a marking Mk ∈ Zminimal(θ) that satisfy the observation

label sequence.

Definition 11: Define Eminimum(Mk0), the minimum implication towards t ∈ Tro, to be

the implication δ starting from a marking Mk ∈ Zminimum(θ) that satisfy the observation

label sequence θ .

Remark 1: The problem of MIM-UT in Petri net that has unobservable transitions can

be treated as problems of finding minimum implications Eminimum(Mk0) of the target ob-

servable transition t ∈ Tro.

To simplify the calculation, in this chapter we would like to make the following assump-

tions: A1) The unobservable subnet is contact-free. A2) One and only one unobservable

transition can be fired before each observable transition firing that is consistent with the

current label.

Note that since tu does not have any corresponding observed label, it can potentially

be fired for infinite times before the next observation. Therefore, assumption A2) is a con-

straint for the firing of each tu, which makes it possible to enumerate all firing sequences.

Based on assumption A2), for each observed label l j, the consistent firing sequences should

be in the form of t or tut, where t ∈ Tro, tu ∈ Tru, and Labels(t) = l j. Known these, we

could apply Equation 4.1 to these sequences after each observed label to obtain the firing

vectors y along with the associated marking estimates. We will demonstrate the procedure

of determining the minimum initial marking estimates in a Petri net that has unobservable

transitions with the following example:
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Example 12: Consider the labeled Petri net with the unobservable transitions shown

in Fig. 2.5.(a). The goal is to obtain the minimum initial marking estimates based on the

observed label sequence θ = aa. Through the conclusion in [84], we could know that the

trellis diagram shows the enumeration of all possible firing path. The trellis diagram of this

example is shown in Fig. 4.2 as follows:

Fig. 4.2. Trellis Diagram of the Observable Subnet in Example 12 [84].

In this example, only observable transitions are considered. It is clear that the min-

imum initial marking estimate that is consistent with the observed label sequence aa is

[2, 0, 0, 0, 0, 0]T via transition sequence t1t1 and firing vector y = [2, 0, 0, 0, 0, 0, 0]T .

However, when unobservable transitions are included, the number of transition firing se-

quences will be significantly larger. For example, for each observed label a, the follow-

ing firing sequences will need to be considered: {t1, t4, t5t1, t6t1, t5t4, t6t4}. By applying

Equation 4.1 to these firing sequences, the minimal initial marking estimate set could be
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obtained, where we can obtain the minimum initial marking estimate(s). The obtained

minimal initial marking estimate set and the associated firing vectors are shown in Table

4.1. Due to space considerations, Table 4.1 does not include all transition firing sequences.

Those marking estimates that are not minimal have been removed.

Table 4.1.
The Estimated Minimal Initial Markings and Associated Firing Vectors in Example 12.

Labels Sequences Minimal marking estimates Firing vectors

aa

t1t1 [2 0 0 0 0 0]T [2 0 0 0 0 0 0]T

t1t4 [1 0 3 0 0 0]T [1 0 0 1 0 0 0]T

t4t4 [0 0 6 0 0 0]T [0 0 0 2 0 0 0]T

t6t1t1 [2 0 0 0 1 0]T [2 0 0 0 0 1 0]T

t1t5t1 [2 0 0 0 0 0]T [2 0 0 0 1 0 0]T

t1t6t1 [2 0 0 0 1 0]T [2 0 0 0 0 1 0]T

t6t1t4 [1 3 0 0 1 0]T [1 0 0 1 0 1 0]T

t1t5t4 [1 0 0 0 0 0]T [1 0 0 1 1 0 0]T

t5t4t4 [0 3 1 0 0 0]T [0 0 0 2 1 0 0]T

t6t4t4 [0 6 0 0 1 0]T [0 0 0 2 0 1 0]T

t5t1t5t4 [1 0 1 0 0 0]T [1 0 0 1 2 0 0]T

t6t1t5t4 [1 0 0 0 1 0]T [1 0 0 1 1 1 0]T

t6t1t6t4 [1 3 0 0 2 0]T [1 0 0 1 0 2 0]T

t5t1t5t1 [2 0 1 0 0 0]T [2 0 0 0 2 0 0]T

t6t1t5t1 [2 0 0 0 1 0]T [2 0 0 0 1 1 0]T

t6t1t6t1 [2 0 0 0 2 0]T [2 0 0 0 0 2 0]T

t5t4t5t4 [0 0 2 0 0 0]T [0 0 0 2 2 0 0]T

t5t4t6t4 [0 3 1 0 1 0]T [0 0 0 2 1 1 0]T

t6t4t6t4 [0 6 0 0 2 0]T [0 0 0 2 0 2 0]T
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It is obvious that the minimum initial marking estimate that is consistent with the ob-

served label sequence aa is [1, 0, 0, 0, 0, 0]T via transition firing sequence t1t5t4. This

minimum initial marking estimate has a smaller token sum compared to the result obtained

by the method that considers observable transitions only.

4.2 Descriptions of the Algorithms

4.2.1 Main Algorithm

In this section, we propose a recursive algorithm to seek the minimum initial marking

estimate set based on an observed label sequence θ = l1l2 . . . lk that has length k in a labeled

Petri net with the unobservable transitions. In Algorithm 1, for each observed label, we

consider one unobservable transition, which is followed by the observable transitions that

are consistent with the observed label (based on assumption A2)). The firing vectors and

the corresponding minimal initial marking estimate sets are calculated recursively based on

the trellis diagram. An indicator Flag is used to denote the transition under consideration.

When Flag is set to be T RUE, we are dealing with an observable transition. Otherwise, an

unobservable transition is being considered.

4.2.2 Complexity Analysis

Based on the results in [84], the upper bound of the number of firing vectors in observ-

able transition only cases at the jth stage is O(n j) =O( jb), where b is a parameter related to

the structure of the Petri net. Meanwhile, since we can fire one and only one unobservable

transition for each observed label, the total number of different unobservable firing vectors

is mu, where mu is the number of unobservable transitions. Therefore, at the jth stage,

there would be n j = (mu j)b different firing vectors. Meanwhile, at the ( j−1)th stage, each

stored firing vector can generate at most mu×mo new firing vectors, where mo denotes the

number of observable transitions. Thus, at the jth stage, the number of newly generated

firing vectors is upper bounded by O(mu×mo×n j−1) = O(momu(mu j)b). When doing the
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Algorithm 1
Minimum Initial Marking Estimation in a Labeled Petri Net with Contact-
free Unobservable Transitions.

Input: A labeled Petri net with contact-free Tru and θ = l1l2 . . . lk of length k.

Output: Minimum initial marking estimate(s).

1: Mk1
0 =

~0n, y0 =~0m, Flag == T RUE.

2: nodes = (Mk1
0,y0,Flag)

3: for i = 1 to k do

4: Search nodes to find the ones with ti ∈ Trli .

5: for each node ∈ nodes(:, i) with ti ∈ Trli do

6: for each transition t ∈ Trli ∪Tru do

7: Call Algorithm 2.

8: end for

9: end for

10: end for

11: Output the minimum initial marking estimate set

comparisons of the firing vectors, which determine their uniqueness, the largest number is

represented by n j while each comparison is upper bounded by O(mu +mo) = O(m). If the

uniqueness check fails, we need to do the comparison between the newly calculated mark-

ing estimate with the existing ones. The maximum number of comparisons is represented

by q j, while the complexity for each comparison is upper bounded by O(n).

The parameter q j denotes the number of minimal initial marking estimates correspond-

ing to each firing vector at the jth stage. We are trying to find markings that share the same

firing vector but not comparable. For observable cases, based on the results from the exist-

ing study, the q j is bounded by O( jn). For unobservable cases, since we assume that each

unobservable transition can fire one and only one time for each observed label, the firing

sequence under consideration would have a length of 2 j. In that case, q j is upper bounded

by O((2 j)n) = O( jn). Based on the analysis above, it is clear that the computational com-
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Algorithm 2
Main Loop of Algorithm 1

1: Update Mki+1
0 using Equation (4.1) and the values of Mki

0 and y j−1 stored in node.

2: Update the firing vector yi with the values of yi−1 and the current transition t.

3: if There is duplication of the value of yi then

4: Compare Mki+1
0 with Mkminimal that share the same yi.

5: if Mk0
i+1 is not comparable with Mkminimal then

6: Store node in nodes(:, i)

7: else if Mki+1
0 ≤Mkminimal then

8: Replace the original node in Mkminimal with the current node in nodes(:, i).

9: end if

10: end if

11: if t ∈ Tru then

12: Set Flag == FALSE

13: else

14: Set Flag == T RUE

15: end if

16: if Flag == FALSE then

17: for each t ∈ Trli do

18: Goto 7

19: end for

20: end if

plexity of Algorithm 1 is upper bounded by: ∑
k
j=1[O(n j−1×mo×mu× (m× n j + q j−1×

q j×n))], which is ∑
k
j=1[O(momu(mu j)b× [mmu(mu j)b+ jn×n× jn])]. It can be simplified

as:

O(momm2b+2
u k2b+1 +monmb+1

u k2n+b+1) = O(k2b+1 + k2n+b+1).
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We can see that the complexity of Algorithm 1 is polynomial in terms of the length of

the observed label sequence k. On the other hand, it also has exponential complexity with

respect to some parameters related to the structure of the Petri net, such as the number of

the places n and the structural parameter b mentioned above.

4.2.3 Heuristic Methods

In some practical applications, it is more important for the algorithm to work in real-

time than to be exactly accurate. Thus, there could be a trade-off between computational

cost and accuracy. Hence, when high accuracy is not required, we can further reduce the

complexity of the proposed algorithm. In this section, two heuristic methods are proposed,

which can improve the time cost of solving the minimum initial marking estimation prob-

lem but can only find a subset or an approximation of the real solution.

The first heuristic algorithm is inspired by the Hill−Climbing algorithm [101]. In each

iteration, from the legal candidates, only the marking(s) with the smallest token sum, which

is(are) called the current−best, will be kept for further calculations.

Algorithm 3 Heuristic Method 1 (Hill-Climbing) for the Minimum Initial Marking

Estimation Problem

Input: A labeled Petri net with contact-free Tru and θ = l1l2 . . . lk of length k.

Output: Minimum initial marking estimate(s).

1: Mk1
0 =

~0n, y0 =~0m, Flag == T RUE.

2: nodes = (Mk1
0,y0,Flag)

3: for i = 1 to k do

4: Search nodes to find all candidates that have the smallest token sum in the current

stage, and saved as set nodesmin.

5: for each node ∈ nodesmin do

6: for each transition t ∈ Trli ∪Tru do

7: Update Mki+1
0 by applying Equation (4.1) from the values of Mki

0 and y j−1 .
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8: Update the firing vector yi based on the values of yi−1 and the transition t.

9: if Uniqueness check of yi fails then

10: Compare Mki+1
0 with existing Mkminimal that share the yi.

11: if Mk0
i+1 is not comparable with Mkminimal then

12: Store node in nodes(:, i)

13: else if Mki+1
0 ≤Mkminimal then

14: Replace the original node in Mkminimal with the newly calculated node.

15: end if

16: end if

17: if t ∈ Tru then

18: Set Flag == FALSE

19: else

20: Set Flag == T RUE

21: end if

22: if Flag == FALSE then

23: for each t ∈ Trli do

24: Goto 7

25: end for

26: end if

27: end for

28: end for

29: end for

30: Output the minimum initial marking estimate set

The second heuristic method is similar to the work introduced in the study in [84],

which considers only the observable part of the Petri net. Without the unobservable subnet,

the candidates of the consistent transition sequences would be much less, which also makes

the structure of the associated trellis diagram much simpler. But it could still be ideal for

some practical applications when the unobservable events would not affect much or the

size of the unobservable part is relatively small.
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Algorithm 4 Heuristic Method 2 (Observable Subnet Only) for the Minimum Initial

Marking Estimation Problem

Input: A labeled Petri net with contact-free Tru and θ = l1l2 . . . lk of length k.

Output: Minimum initial marking estimate(s).

1: Mk1
0 =

~0n, y0 =~0m, Flag == T RUE.

2: nodes = (Mk1
0,y0,Flag).

3: for i = 1 to k do

4: Search nodes to find all candidates with ti ∈ Trli .

5: for each node ∈ nodes(:, i) with ti ∈ Trli do

6: for each transition t ∈ Trli do

7: Update Mki+1
0 by applying Equation (4.1) from the values of Mki

0 and y j−1.

8: Update firing vector yi from the values of yi−1 and the transition t.

9: if Uniqueness check of yi fails then

10: Compare Mki+1
0 with minimal initial marking estimates Mkminimal that share the same

yi.

11: if Mk0
i+1 is not comparable with Mkminimal then

12: Store node in nodes(:, i).

13: else if Mki+1
0 ≤Mkminimal then

14: Replace the original node in Mkminimal with the newly calculated node.

15: end if

16: end if

17: if t ∈ Tru then

18: Set Flag == FALSE

19: else

20: Set Flag == T RUE

21: end if

22: if Flag == FALSE then

23: for each t ∈ Trli do
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24: Goto 7

25: end for

26: end if

27: end for

28: end for

29: end for

30: Output the minimum initial marking estimate set

The performance of the main algorithm and the two heuristic algorithms will be com-

pared in the following illustrative example.

4.3 Illustrative Example

In this section, an example of a manufacturing system that is modeled by Petri nets

will be used to evaluate the performance of the three proposed algorithms. Consider

the labeled Petri net shown in Fig. 4.3, which is modified from an example in [94].

This Petri net has 10 different places Pl = {p1, p2, . . . , p10} and 12 different transitions

Tr = {t1, t2, . . . , t12}. The labeling function is shown as: Labels(t3) = Labels(t5) = a,

Labels(t6) = b, Labels(t7) = Labels(t8) = c, Labels(t9) = d, Labels(t1) = e, Labels(t2) =

f , Labels(t11) = g, Labels(t12) = h and Labels(t4) = Labels(t10) = ε . Note that the two

unobservable transitions t4 and t10 are contact-free.

The observed label sequence is also provided as: θ = e f abcdcbgh with a length of 10.

Algorithm 1 and the two heuristic algorithms have been applied to this example. Perfor-

mance is evaluated in the following two aspects: 1) The number of minimal initial marking

estimates for each observed label; 2) The accuracy of the final output of the minimum initial

marking estimate(s).

Table 4.2 lists the number of minimal initial marking estimates obtained by the three

algorithms for each observed label. In the headers of the table, Main, HM1, HM2 stand

for the main algorithm (Algorithm 1), Heuristic Method 1 and Heuristic Method 2, respec-

tively. It is clear that the main algorithm generates many more candidates than the two
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Fig. 4.3. Petri Net Model of the Illustrative Example.

heuristic algorithms. Fig. 4.4 plots the growing trends of minimal initial marking estimates

of the three algorithms with respect to the length of the observed label sequence, respec-

tively. In order to show that the algorithmic complexity is polynomial in terms of the length

of the observed label sequence, the curve of the function y = k4 has been included in Fig.

4.5 for comparisons. It is obvious that the growing trends of the number of minimal initial

markings obtained by the three algorithms are bounded by O(k4), which shows that they

have polynomial computational complexities in terms of the length of the observed label

sequence k.

In Table 4.3, the sets of minimum initial marking estimate(s) have been listed as the

final output of the three algorithms. As expected, the main algorithm has taken more min-

imal initial marking estimates into consideration during each step. Hence, it obtained the

most completed and accurate minimum initial marking estimate(s) set, where each marking
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Table 4.2.
The Numbers of Minimal Initial Marking Estimates Obtained by the Three Algorithms.

Length of the Label Sequence Main HM1 HM2

1 5 5 1

2 11 5 1

3 39 8 2

4 62 5 2

5 184 8 4

6 310 5 4

7 468 8 7

8 694 5 7

9 1,140 5 7

10 1,318 5 7
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Fig. 4.4. The Numbers of Minimal Initial Marking Estimates Obtained by
the Three Algorithms.
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Fig. 4.5. The Number of the Minimal Initial Marking Estimates Obtained
by the Three Algorithms, Compared with a Polynomial Function k4.

Table 4.3.
Final Output of the Minimum Initial Marking Estimates Obtained by the
Three Algorithms.

Main HM1 HM2

[1 4 1 2 0 2 3 0 0 0]T [1 4 1 2 0 2 3 0 0 0]T [1 3 4 0 0 1 5 0 0 10]T

[1 4 2 0 0 1 5 0 0 0]T

[1 5 0 0 0 1 5 0 1 0]T

estimate has a token sum of 13. Meanwhile, HM1 and HM2 ignored part of the candidates

during the calculation, which accelerated the speed of computation, while the provided so-

lutions are not as good as the main algorithm. For instance, HM1 is able to find only a

subset of the estimates obtained by the main algorithm (one marking that has a token sum

of 13) and HM2 can only find an approximation (one marking that has a token sum of 24).

Therefore, after the comparison of the three algorithms, we could see that the main algo-



66

rithm is able to obtain a complete set of minimum initial marking estimates with a higher

computational cost. The two heuristic methods are able to find a partial or an approxima-

tion of the set of the estimates from the main algorithm with a lower computational cost.

For different application purposes, different methods could be applied depending on needs.

4.4 Application of the Minimum Initial Marking Estimation in a Traffic Scenario

for Time Cost Minimization

4.4.1 Scenario Description and Simulation Results

In this section, we illustrate the way to apply the algorithm of minimum initial marking

estimation to the Petri net in Fig. 3.5. First of all, since we would like to always start

at p1 and end at p13, we assign label s to transition t1 and f to transition t37 and insert s

to the beginning of the label sequence and f to the end of the label sequence. The other

observable transitions are assigned with labels based on different DOIs types, where a, b

and c represent food/coffee/restaurants, markets, and the others, respectively. The labeling

mapping relationship is shown as follows:

Labels(t1) = s (4.3)

Labels(t2, t3, t4, t5, t6, t7, t12, t13, t18, t19, t29) = a (4.4)

Labels(t8, t9, t10, t11, t16, t17, t22, t23, t35, t36) = b (4.5)

Labels(t20, t21, t24, t25, t26, t27, t28, t30, t31, t32, t33) = c (4.6)

Labels(t37) = f (4.7)

Thus, we could have the observation label sequence θ . Different from the fixed se-

quence in the algorithm mentioned above, the label sequence in the scenarios of this simu-

lation example could be variable, which only needs to satisfy the requirement of the number

of all the labels. For instance, we require the label sequence with two a, three b, and three c

in the simulation example. Thus, after adding s in front and f at the end, we could have 560

different label sequence combinations and they are similar to the format of the sequence
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θ = saabcbbcc f , where the sequence length is ten. We first run the updated algorithm and

two heuristic algorithms on the Petri net in Fig. 3.8, which is based on the situation without

heavy traffic. Then, we run the algorithms on the Petri net in Fig. 3.9, which is based on the

traffic situation in rush hours. The performance of these algorithms are compared in several

aspects: 1) The number of solutions, and 2) The optimality of the obtained solutions.

For both Petri nets that are generated from un-congested and congested traffic networks,

we have 39 different feasible label sequences, as shown in Table 4.4 and Table 4.5:

As we can see in Table 4.4 and Table 4.5, in situation one, there is no traffic considered

and the optimal solutions are label sequences sabcbbcac f and sabccabbc f (the correspond-

ing firing sequences are t1t2t10t20t23t22t21t28t32t37 and t1t2t10t20t21t28t36t35t32t37), which have

53 tokens. That means the minimum required time should be 53 minutes if we want to visit

all these DOIs during the path from the starting point to the finishing point. On the other

hand, in situation two, the traffic data was captured at 8 am on non-holiday weekday, traffic

congestion was happening in the traffic network. The optimal solutions are label sequence

sabaccbbc f (the corresponding firing sequence is t1t4t8t18t30t33t36t35t32t37), which has 81

tokens. That means the minimum required time should be 81 minutes in rush hours. Fig.

4.6 and Fig. 4.7 show the analysis of the results:

In the un-congested cases, the average value of time cost for observable paths only is

59.0857 minutes and the time cost for both observable and unobservable paths is 79.7414

minutes, 35% higher. Meanwhile, in the congested cases, the values are 98.1429 minutes

and 134.431 minutes 37% higher. Moreover, for observable paths only situation, congested

traffic cases cost averagely 98.1429 minutes, 66% higher than the un-congested case. For

situations with both observable and unobservable paths, congested traffic cases cost aver-

agely 134.431 minutes, 69% higher than the un-congested case. The increasing rates for

both situations are similar. These plotted curved could be fitted with linear functions and

see the trends of how the time cost growing when the route is changed. The functions are

shown in the equations below from Eqn. 4.8 to 4.11, including all the cases mentioned

above (the observable and unobservable paths in congested case, observable paths only in

congested case, observable and unobservable paths in un-congested case, and observable
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Table 4.4.
First Half of List of Route Solutions for Petri Net in Fig. 3.8.

ID θ #Firing Sequences
Optimal Solution

(No traffic / Congested)

1 saabbbccc f 1 (0 w/ unobservable) 55 / 82

2 saabbcbcc f 10 (10 w/ unobservable) 68 / 109

3 saabbccbc f 3 (0 w/ unobservable) 56 / 87

4 saabbcccb f 4 (4 w/ unobservable) 72 / 119

5 saabcbbcc f 2 (1 w/ unobservable) 59 / 99

6 saabccbbc f 2 (0 w/ unobservable) 55 / 91

7 saabccbcb f 1 (1 w/ unobservable) 76 / 123

8 saacbbbcc f 1 (1 w/ unobservable) 77 / 119

9 saacbbbcc f 2 (0 w/ unobservable) 66 / 119

10 saacbbccb f 2 (2 w/ unobservable) 76 / 123

11 saacbcbbc f 1 (1 w/ unobservable) 74 / 115

12 saacbccbb f 1 (1 w/ unobservable) 83 / 134

13 saaccbbbc f 1 (0 w/ unobservable) 56 / 96

14 saaccbbcb f 2 (2 w/ unobservable) 79 / 132

15 sababbccc f 5 (1 w/ unobservable) 57 / 90

16 sababccbc f 5 (0 w/ unobservable) 58 / 90

17 sabacbbcc f 1 (1 w/ unobservable) 75 / 111

18 sabaccbbc f 4 (0 w/ unobservable) 57 / 81

19 sabbabccc f 3 (0 w/ unobservable) 55 / 93

20 sabbacbcc f 5 (5 w/ unobservable) 78 / 132
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Table 4.5.
Second Half of the List of Route Solutions for Petri Net in Fig. 3.8.

ID θ #Firing Sequences
Optimal Solution

(No traffic / Congested)

21 sabbaccbc f 3 (0 w/ unobservable) 54 / 93

22 sabbacccb f 2 (2 w/ unobservable) 82 / 142

23 sabbbcacc f 1 (1 w/ unobservable) 76 / 129

24 sabbcacbc f 1 (1 w/ unobservable) 75 / 124

25 sabbcbcac f 2 (2 w/ unobservable) 75 / 120

26 sabcabbcc f 6 (6 w/ unobservable) 64 / 111

27 sabcabccb f 2 (2 w/ unobservable) 75 / 124

28 sabcaccbb f 1 (1 w/ unobservable) 76 / 129

29 sabcbacbc f 3 (2 w/ unobservable) 62 / 107

30 sabcbaccb f 1 (1 w/ unobservable) 78 / 136

31 sabcbbacc f 1 (1 w/ unobservable) 80 / 137

32 sabcbbcac f 3 (0 w/ unobservable) 53 / 93

33 sabcbcabc f 2 (2 w/ unobservable) 77 / 146

34 sabcbcbac f 1 (1 w/ unobservable) 81 / 144

35 sabcbccab f 1 (1 w/ unobservable) 93 / 153

36 sabccabbc f 2 (0 w/ unobservable) 53 / 89

37 sabccbacb f 2 (2 w/ unobservable) 75 / 128

38 sabccbbac f 1 (1 w/ unobservable) 64 / 107

39 sabcccabb f 2 (2 w/ unobservable) 84 / 155
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Fig. 4.6. Time Cost Analysis through Only Observable Paths.

Fig. 4.7. Time Cost Analysis through Both Observable and Unobservable Paths.
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paths only in un-congested case, respectively). From Equation 4.8 to 4.11, we can see that

the two congested ones have similar increasing rates (higher than 0.8), which is higher than

the un-congested ones (around 0.36). It will be always more time-consuming in rush hour

when we change the route in the Indianapolis area.

y = 0.8166x+110.34 (4.8)

y = 0.36048x+69.107 (4.9)

y = 0.80924x+83.576 (4.10)

y = 0.35322x+52.728 (4.11)

Based on the analysis, we can see that the in the area of Indianapolis metropolitan, in

most of the case, use only the paths represented by observable transitions will have much

lower time cost, which means that these paths satisfy the needs of visiting the DOIs and

daily commuting. This conclusion is for the particular label set and label function in our

illustration example. For label sets or label functions based on the situation of other cities,

the conclusion could be different.

4.4.2 Comparison with Other Shortest Path Algorithm

From the description above, our algorithm has many similarities with the other shortest

path algorithms. Therefore, we would like to take the Dijkstra algorithm as an example

to compare our algorithm with these algorithms in the aspects of the applicable scenarios

and computational complexity. First, we consider the applicable scenarios of the two al-

gorithms. As shown in [100], the Dijkstra algorithm aims to find an optimized route in

terms of arc weights between two points beforehand, regardless of any action observation.

On the other hand, our algorithm is based on a sequence of observed action labels, from

which the optimized route is generated accordingly. Thus, the Dijkstra algorithm cannot be

used to solve the problem in this chapter, which has the constraint of the label observation.

We could easily find a counterexample that the Dijkstra algorithm cannot find the optimal

solution. Consider the following Petri net in Fig. 4.8:
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Fig. 4.8. The Petri Net Structure Converted from a Dijkstra Example.

The transitions are labeled following the label functions:

Label(t1, t4, t5, t10, t13, t16) = a (4.12)

Label(t2, t6, t8, t11, t14, t17) = b (4.13)

Label(t3, t7, t9, t12, t15, t18) = c (4.14)

This Petri net is converted from the example on the Wikipedia web page of the Dijkstra

algorithm. To satisfy the condition of an undirected graph, every two places are connected

with two transitions that form a loop. Applying the Dijkstra algorithm to the Petri net, since
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only the arc weights are taken into consideration, the optimized route from the starting

place p0 to the finishing place p7 should be δdi j = t3t11t14, which has cost 20. However, if

we define the label observation sequence to be acbcc, the feasible transition sequence set

will not include δdi j because it does not satisfy the requirement of initial marking estimates

in Definition 3. Instead, there are two solutions that are shown below, which satisfy the

observation: δMIM1 = t1t7t8t9t18 or δMIM2 = t5t12t8t9t18. δMIM2 = t5t12t8t9t18 has smaller

cost that equals 47, which makes it the optimal solution. Although δMIM2 has a higher cost

than δdi j, it is the solution we want in the scenario of this chapter. Therefore, it is clear

that the existing shortest path algorithms are not suitable to solve the kind of optimal path

problems with observation information mentioned in this chapter. It is also obvious in Fig.

4.8 that the Dijkstra algorithm doesn’t give the correct answer following the label sequence.

Furthermore, we could compare the performance of the two algorithms in terms of

computational complexity. From the conclusions in [100], we could know that the com-

plexity of Dijkstra algorithm is O(|E|+ |V |log |E|
|V |log|V |), where |E| is the number of the

edges and |V | is the number of vertices, which could be written as O(|T |+ |P|log |T |
|P|log|P|)

in our case, where |T | is the number of transitions and |P| is the number of places. We can

see that the Dijkstra algorithm has polynomial computational complexity in terms of the

size of the graph structure. For the minimum initial markings estimation algorithm, on the

other hand, has relatively higher complexity according to the conclusion from [43], which

is O(kb), where k represents the length of the observation sequence and b is a parameter

related to the Petri net structure. Moreover, in the scenario of this chapter, since we have

multiple combinations of observation sequences instead of one, and the number of obser-

vation sequences is k!
i1!i2!...i j!...il!

, where i j represents the number of the jth label (1≤ j ≤ l,

l ≤ k) in the label sequence and l is the number of different label types that appear in the

label sequence. We have k = i1 + i2 + ...+ il . It can be proved that the minimum value of
k!

i1!i2!...i j!...il!
appears when all the terms in the numerator are all the same, which also means

that in the worst case, there are k!
l∗ k

l !
different combinations of observation label sequences.

Hence, the revised computational complexity of the minimum initial estimation algorithm

in this chapter is O( k!
l∗ k

l !
∗ kb).
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4.5 Summary

In this chapter, we first talked about the problem of minimum initial marking estima-

tion in labeled Petri nets that have contact-free unobservable transitions. Extended from

the similar problem on the Petri net structures that have observable transitions only, an al-

gorithm has been developed that can obtain the minimum initial marking estimate set with

a computational complexity that is polynomial in terms of the length of the observed label

sequence. In addition, the other two heuristic algorithms have been proposed, which can

find a partial/approximated set of solutions, but with a lower computational cost. An illus-

trative example has been provided, which is used to evaluate the performance of these three

proposed algorithms.

After that, the algorithm has been applied to the traditional Petri net obtained from the

traffic network modeling in the previous chapter to estimate the initial required time. The

algorithm needs labels as input. The labels are assigned to transitions and a label set is

formed with a certain number of each label. The label set was used as the constraint and

would like to find an optimal route that meets the requirement. Applying the algorithm to

the discretized Petri net generated from the traffic network, the candidates of the possible

routes were obtained in un-congested and congested traffic conditions. Then the results

have been analyzed in different aspects and assess the traffic condition and driving strategy

in the Indianapolis area.
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5. RECONSTRUCTION OF THE UNKNOWN PETRI NET
STRUCTURES FROM ASYNCHRONOUS OBSERVATIONS OF

TOKEN CHANGE SEQUENCES

In some cases, we would like to know the structure but can only observe the asynchronous

state evolution of a system. In that case, in this chapter, we would like to propose a way

to obtain necessary information from the observation and construct an estimation of the

system structure with the minimum scale, which can be consistent with the observation.

This chapter is organized as follows: In the first section, we discuss how this problem

could be turned into the Petri net language. In the second section, we talk about the nec-

essary parameters with the way to determine their values or bounds. In the third section,

the detailed algorithm will be provided with the complexity analysis. In the fourth section,

an illustrative example will be provided to evaluate the performance of the algorithm. In

the fifth section, we apply the algorithm to a traffic scenario, which is to estimate the struc-

ture traffic network between several stations. In the sixth section, another algorithm will

be given for the consistency check of the output of the algorithm in the third section. We

summarize in the seventh section.

5.1 Problem Formulation

The problem we deal with in this chapter is as follows. Given the observed token change

sequence set S = {s1, s2, . . . sn} for the n places in the net. The objective is to find the

optimal Petri net structure(s) that is (are) consistent with S. The optimality is in terms of

the least scale of the Petri net structure, which has the minimum number of transitions and

the minimum number of connections (i.e., the most sparse incident matrix In).
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In this chapter, we have made two assumptions for our subsequent reconstruction pro-

cedure: 1) The underlying Petri net structure does not have self-loops and source/sink

transitions; 2) All transitions should be fired at least once.

Based on the setup above, this chapter is organized as follows: we first find bounds of

the number of total transition firings, along with the bounds of the number of transitions.

Based on different combinations of the numbers of transition firing and transitions, we

could form different transition firing sequences. Then we form marking sequences based

on the given observation sequence S. With the candidates of the transition firing sequences

and marking evolution sequences, we can solve the state equation and obtain the optimal

solution(s) that has(have) the minimum number of nonzero entries in In. We propose a

detailed reconstruction algorithm that has a complexity that is polynomial in terms of the

number of transitions in the net. Illustrative examples and applications have also been

given.

5.2 Problem Analysis

Given the set of place token change sequences S. We first consider the token evolution

in S for further analysis and then use a simple example to illustrate the process.

Definition 12: Given S, Sinc(pi) is defined as the set of token-increasing occurrences

for each adjacent token observations for each place pi, where i = 1,2, . . . ,n; Similarly, the

set of token-decreasing occurrences for each place is defined as Sdec(pi).

Definition 13: Given S, L(si), where i= 1,2, . . . ,n, is defined as the total number of the

token change occurrences in si for place pi. Moreover, Lmax =max{L(s1),L(s2), . . . ,L(sn)}

is defined to be the maximum number of token change occurrences among all si for each

place pi.
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Example 13: Consider the token change sequences S shown below:

s1 : 2→ 1→ 2→ 3→ 2→ 3,

s2 : 1→ 2→ 1

s3 : 1→ 2→ 0→ 1,

s4 : 1→ 2→ 1→ 0.

It is obvious that Sinc(p1) = {1 → 2, 2 → 3, 2 → 3}, Sinc(p2) = {1 → 2}, Sinc(p3) = {1

→ 2, 0 → 1}, and Sinc(p4) = {1 → 2}; There are seven token increasing occurrences in

total. Hence we have |Sinc| = 7, where | · | denotes the size of the set. Similarly, for the

decreasing occurrences, we have Sdec(p1) = {2→ 1, 3→ 2}, Sdec(p2) = {2→ 1}, Sdec(p3)

= {2→ 0}, and Sdec(p4) = {2→ 1, 1→ 0}; There are six token decreasing occurrences in

total and we have |Sdec|= 6. Besides, we have L(s1) = 5, L(s2) = 2, L(s3) = 3, L(s4) = 3.

Therefore, Lmax = L(s1) = 5.

Proposition 1: The total number of transition firings, denoted by Fa, satisfies the fol-

lowing conditions: Lmax ≤ Fa ≤min{|Sinc|, |Sdec|}.

Proof: Since each observation of token changes implies that at least one transition has

fired, in order to be consistent with the given token change sequences S, the number of

transition firings, Fa, should at least be as large as the longest observation sequence in S,

which is Lmax. Thus, we have Lmax ≤ Fa.

When a certain transition fires, it should remove move token(s) in at least one of its

input places and at least one of its output places (since there is no self-loop or source/sink

transition based on assumption 1). The largest number of transition firings corresponds to

the number of steps of token changes in S, which is captured by min{|Sinc|, |Sdec|}. Thus,

we have Fa ≤min{|Sinc|, |Sdec|}. �

Remark 1: From Proposition 1, it is obvious that Lmax ≤ min{|Sinc|, |Sdec|}. Sup-

pose we are given an observation sequences S, and the kth sequence has the largest length,

i.e., |sk| = Lmax. Assume that there are Linc increasing occurrences and Ldec decreas-

ing occurrences in sk, we have Lmax = Linc + Ldec. Then, in other sequences si where
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i = 1,2, . . . ,k−1,k+1, . . . ,n, the minimum number of decreasing occurrences L′dec should

be L′dec = Linc. Similarly, the minimum number of increasing occurrences L′inc should

be L′inc = Ldec. Therefore, the minimum number of increasing occurrences in S should be

Linc+L′inc = Linc+Ldec = Lmax and the minimum number of decreasing occurrences should

be Ldec+L′dec = Ldec+Linc = Lmax. When multiple-input multiple-output transitions exist,

Linc+L′inc and Ldec+L′dec will be larger, which makes Lmax the lower bound of their values.

Proposition 2: The bounds of the number of transitions m satisfies 1≤ m≤ Fa.

Proof: It is clear that the lower bound is one since a legal Petri net should have at least

one transition. For the upper bound, based on assumption 2, each transition should be fired

at least once, which implies that m should be no larger than the number of transitions firings

Fa. Otherwise, it will be a contradiction of assumption 2. Therefore, the result follows. �

Known the bounds of Fa and m, the structure of the Petri net could be analyzed based

on different possible (Fa,m) pair. Before that, we also need to characterize all possible

markings from the observation sequences S. Therefore, the number of possible markings

for a certain (Fa,m) pair should be calculated.

For each sequence si (i = 1,2, . . . ,n), let Ii = 1,2,3, . . . , |si| be the set of position indices

for sequence si. More specifically, for ki ∈ Ii, si[ki] is the number of tokens at place pi after

(ki−1)th token changes in that place.

Proposition 3: Consider one position index increase for every place pi (i.e., si[ki−

1]→ si[ki] for every i ∈ {1,2, . . . ,n}) and ki ∈ Ii. Define the number of increasing oc-

currences as ninc and the number of decreasing occurrences as ndec. Then, the upper

bound of the number of markings during one position index increasing should be Mkmax# =

(2ninc−1)(2ndec−1).

Proof: Since ninc+ndec = n, we have the bounds of both ninc and ndec to be in between

of 1 and n− 1 based on assumption 1. Then, we use combinatorial operations to find the

upper bound of the number of markings. In particular, it is obvious that there are ninc ways

to pick up one increasing occurrence among all candidates, ninc(ninc−1)
2! ways to pick up two

increasing occurrences from all candidates, . . . , one way to pick up all increasing occur-

rences. Summing up all the above possibilities, we have (ninc+
nin(ninc−1)

2! + ...+ ninc!
ninc!) ways
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for candidate selection, which equals (2ninc − 1) according to Binomial Series. Similarly,

we can also find the number of ways of candidate selection for decreasing occurrences.

Thus, the upper bound of markings during one position index increasing is the product,

i.e., Mkmax# = (2ninc−1)(2ndec−1). The results follow. �

Example 14: Consider the observation sequences S in Example 13. For every place

pi, from si[0]→ si[1] we have three token increasing occurrences and one token decreasing

occurrences. Therefore, we have ninc = 3 and ndec = 1. It is obvious that ninc and ndec could

have different values for different position index increasing.

Proposition 3 provides the upper bound of the number of markings that could be gener-

ated during one position index increasing. Therefore, given S, the total number of markings

should be upper bounded by Mkmax#×Lmax. This result will be used for algorithmic com-

plexity analysis in later sections. In the next section, we will go through the following steps

and introduce the detailed reconstruction algorithm.

5.2.1 Marking Scanning

Given S, in order to find the marking evolution sequences, we start from the initial

marking and consider one position index increasing at a time to find all markings. Repeat

this process until we reach the final marking, where inconsistent marking sequences will be

neglected. After we enumerated all markings that are consistent with the observation, every

path of marking evolution from the initial marking to the final marking could be identified

and stored.

5.2.2 Firing Vector Searching

To obtain the firing vectors v f , we try all combinations of the (Fa,m) pair. Note that

we characterized the range of Fa and m in the two propositions mentioned above. Hence,

for each possible (Fa,m) pair, we calculate the number of ways of distributing Fa into m

(we have proved that m ≤ Fa). A simple example is used to illustrate the process, shown

as follows:
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Example 15: Consider the observation sequences S, which has six times of transition

firings, i.e., Fa= 6, and five transitions, i.e., m= 5. Since we have the assumption that each

transition should be fired at least once, the problem of determining the number of possible

transition firing vectors v f is equivalent to separating six elements into five slots with no

empty slot. Based on the rules of combinatorial calculation, the total number of different

v f s is 5×P(5,5), where P(n,k) stands for k-permutations of n.

Note that the lower and upper bounds for Fa and m can be found in Propositions 1 and

2, respectively.

5.2.3 State Equation Solving

Now we have obtained the sequence of marking evolution from the given S and the

transition firing sequences based on different values of v f , we can solve the state equation

and obtain the incident matrices In. In order to do that, we pair each transition firing se-

quence with different marking evolution sequences. The incident matrix In has dimension

n×m where n is the number of places and m is the number of transitions. After all the

transition firing sequences and marking evolution sequences are paired for the calculation,

the legal candidates of incident matrices In will be stored. The most sparse ones, which

have the largest number of zero entries will be the optimal solutions.

For the same S, it is possible to find multiple optimal solutions, which have the same

number of transitions and the same number of nonzero entries. Our algorithm will keep all

of these solutions.

5.3 Reconstruction Algorithm

Based on the analysis in the previous sections, we propose the details of the algorithm

as follows in Algorithm 5, which summaries the procedure of seeking the set of the opti-

mal incident matrix(matrices), starting from determining the bounds of the parameters and

ending up with the solving of the state equation.
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5.3.1 Description of the Algorithm

Algorithm 5
Petri net Structure Reconstruction and Optimization based on External To-
ken Change Observation Sequences

Input:

Observed token change sequences S.

Output:

Optimal incident matrices Inopt , which has the least scale.

1: Load S.

2: Obtain the lower and upper bounds of the number of transition firings Fa.

3: Obtain the lower and upper bounds of the number of transitions m.

4: Obtain valid marking evolution sequences from S.

5: Obtain valid firing vectors v f based on the range of Fa and m.

6: Obtain valid transition firing sequences based on different values of v f .

7: Obtain the candidates of the incident matrix In by solving the state equation.

8: Output those Inopt , which are the most sparse.

5.3.2 Complexity Analysis

It has been proved in the previous sections that for one position index increasing, the

number of markings is upper bounded by (2ninc−1)(2ndec−1), which is O(2n) since ninc+

ndec = n. It is exponential with respect to the number of places, i.e., n. In our case, when

S is given as the external observation, the number of places is fixed by the number of

observation sequences. Hence, n is constant. Therefore, the computational complexity of

this step could be treated as a constant. To find all the firing vectors, a table with dimension

(Fa−m)×m(Fa−m) has been used. Since the range of m has been proved to be 1 ≤ m ≤

Fa, which shows that in the worst case the dimension of the table is (Fa− 1)×m(Fa−1).

Note that Fa ≤ Lmax× n, where Lmax and n are fixed by S, i.e., constant. The complexity
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in this part should be O(m(Lmax×n−1)). For the state equation solving, since we have m

equations and m×n unknowns, the complexity of solving these equations will be O((m×

n)3) = O(m3). To sum up, the total computational complexity is O(m(Lmaxn+2)), which is

polynomial in terms of the number of transitions m.

5.4 Illustrative Example

5.4.1 Marking Evolution Sequences

In this section, we use a simple example to illustrate Algorithm 5. Consider the obser-

vation sequences S as follows:

s1 : 2→ 1→ 0

s2 : 1→ 0

s3 : 0→ 1→ 2→ 3

It is clear that the s3 has largest length, which is Lmax = 3. We can also find the number

of increasing occurrences to be |Sinc| = 3 and the number of decreasing occurrences to be

|Sdec| = 3. Therefore, the number of transition firings Fa, which should satisfy Lmax ≤

Fa≤min(|Sinc|, |Sdec|), can only be 3.

In the next step, we would like to find the marking evolution sequences that are valid

to the firing rules and are consistent with the observed sequences. By searching through S,

we can obtain the marking evolution sequences as shown in Table 5.1:

5.4.2 Transition Firing Sequences

In the next step, we would like to find all the legal transition firing sequences from

different combinations of Fa and m. Since Fa has only one value, which is 3, so there is

only one loop for Fa. The value of m is between 1 and 3. Here we use m = 2 as an example.
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Table 5.1.
Marking Evolution Sequences.

Marking 1 Marking 2 Marking 3 Marking 4

1 [2, 1, 0]T [1, 1, 1]T [0, 1, 2]T [0, 0, 3]T

2 [2, 1, 0]T [1, 1, 1]T [1, 0, 2]T [0, 0, 3]T

3 [2, 1, 0]T [2, 0, 1]T [1, 0, 2]T [0, 0, 3]T

Firstly, we determine the value of the firing vector v f . Because we have assumed that

every transition should be fired for at least once, we assign 1 to each entry of v f , and we

can get:

v f =

 1

1

 .

Since in this example we have Fa = 3, which indicates that we can assign an additional

1 to one of the two entries in v f , which will generate the following two firing vectors shown

below:

v f1 =

 2

1

 , v f2 =

 1

2

 .

Note that those firing vectors are not sufficient for state equation solving. We need to

determine the transition firing sequences based on the firing vectors. Hence, in the next

step, we divide the firing vectors into one-step firing vectors. It is obvious that both v f1 and

v f2 can be separated into three one-step firing vectors, [1, 0]T , [1, 0]T , and [0, 1]T , but with

different orders. These one-step firing vectors are listed in Table 5.2 with all the possible

orders:

We repeat these operations to try all (Fa,m) pairs. Using the marking evolution se-

quence and firing sequence pair that has the same Fa value, we solve the state equation

to obtain the legal values of the incident matrix In. In this example, we have three valid

incident matrices In1, In2, and In3, which are shown as follows:
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Table 5.2.
One-step Firing Vectors from v f1 and v f2 with Different Orders.

1 2 3

1 [1, 0]T [1, 0]T [0, 1]T

2 [1, 0]T [0, 1]T [1, 0]T

3 [0, 1]T [1, 0]T [1, 0]T

In1 =


−1 0

0 −1

1 1

 ; In2 =


0 −1

−1 0

1 1

 ;

In3 =


−1 −1 0

0 0 −1

1 1 1

 .

Obviously, In3 has larger scale than In1 and In2. Hence it should be excluded from the

candidates. The incident matrices In1 and In2 have the same sparse level, which means the

same number of zero entries. Therefore, they are both optimal solutions reconstructed from

the given observation. The corresponding Petri net structures built from these two matrices

are shown in Fig. 5.1:

Note that the computational cost of the algorithm would be affected by the length of

the observation sequences significantly. We provide the time cost of the observation with

different length, which are shown in Table 5.3. From the values in Table 5.3, we could

also obtain a plot to show growing trend of the algorithm’s computational cost in terms

of the observation length in a more intuitive way. The plot is shown in Fig. 5.2. It is

clear that although the algorithm would be affected by the length of the observation, in this

example, it still has a better growing trend than the polynomial function x5, which shows
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Fig. 5.1. Reconstructed Optimal Petri Net Structures.

its excellence. The simulation is operated in a laptop equipped with a 2.50 GHz processor,

8GB RAM. The simulation environment is based on Matlab R2013a.

Table 5.3.
Computational Cost in terms of the Length of the Observation Sequence.

Length 3 4 5

Time cost (sec) 0.00877 0.04401 1.08690

Length 6 7 8

Time cost (sec) 30.47965 339.94708 14582.21290

5.5 Application in a Traffic-Related Scenario

The traditional Petri net structure is also very suitable for modeling the traffic network.

Therefore, we would like to apply the proposed algorithm to a scenario involving the traffic

network. The problem could be formulated as follows: Suppose we have several stations

that could let vehicles stay, based on observation of the vehicle number change in each

station, the optimal traffic network with the simplest structure could be obtained. In this

case, these stations could be represented as the places in the Petri net, and vehicles could

be denoted by the tokens. We would like to construct the Petri net structure based on the

observation of token change in each place. As a practical application, limited by the fea-
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Fig. 5.2. The Growing Trend of the Computational Cost of the Proposed
Algorithm in terms of the Observation Length.

tures of the Petri net structure, there will be several constraints in the observation sequence,

which are listed as: C1) The number of token changes in each place can only be one in one

step. C2) The number of increasing arcs and decreasing arcs should always be the same.

C3) Because of C2, the sum of the length of observation sequences for all places should be

even.

These constraints are easy to be understood. Since we don’t consider the sink and

source transitions, the represented traffic network will have a constant number of vehicles.

Moreover, each token denotes one vehicle and the one transition firing represents the move-

ment of a vehicle between two stations. Therefore, limited by the mechanism of the Petri

net, each time only one token can be transited by firing a transition, which is one token

increased, and one token decreased in two places reflected in the observation sequence. In

that case, if we want a legal solution from the observation sequence, there should always
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be the same amount of token increasing and token decreasing, so that they can make token

change pairs that denote the vehicle movement. Otherwise, the unpaired token change will

be illegal in our case. We use the following observation sequence as an example:

s1 : 2→ 1→ 2→ 3→ 2→ 3

s2 : 1→ 2→ 1

s3 : 1→ 2→ 1→ 0

s4 : 1→ 2→ 1→ 0→ 1

which implies that the Petri net should be four places with the initial marking Mkinitial

and final marking Mk f inal to be:

Mkinitial =


2

1

1

1

 ; Mk f inal =


3

1

0

1

 . (5.1)

Applying the algorithm, we could obtain 93 legal marking sequences as candidates.

Keeping only the ones with the least number of transitions (i.e., the ones with incident

matrices that have most zeros), we have three different Petri net structures as the result,

shown in Fig. 5.3, Fig. 5.4 and Fig. 5.5, with the corresponding marking sequences and

transition sequences listed (Equation. 5.2 and 5.5 for Fig. 5.3, Equation. 5.3 and 5.6 for

Fig. 5.4 and Equation. 5.4 and 5.7 for Fig. 5.5):

t3→ t5→ t4→ t4→ t1→ t2→ t5 (5.2)

t3→ t4→ t1→ t5→ t2→ t3→ t2 (5.3)

t4→ t3→ t5→ t2→ t1→ t4→ t1 (5.4)
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Fig. 5.3. The Constructed Petri Net Structure 1.

Fig. 5.4. The Constructed Petri Net Structure 2.
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Fig. 5.5. The Constructed Petri Net Structure 3.
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2

1

1

1

→


1

1

1

2

→


2

1

1

1

→


2

2

1

0

→


2

1

2

0

→


3

1

1

0

→


2

1

1

1

→


3

1

0

1

 (5.7)

5.6 Solution Update

Since the observation sequence can be continuously growing, in this section, we would

like to develop an algorithm to check whether the reconstructed optimal Petri net struc-

ture(s) would be consistent with newly provided observations. The consistency check al-

gorithm is shown in Algorithm 6. The incident matrix (matrices) In that is (are) identified

from Algorithm 5 has (have) been used as the input of this algorithm. Based on the values

of In, we could solve the state equation to calculate the difference of markings. Because

we have knowledge of the current marking, it is possible to obtain future markings to see if
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they are consistent with the new observations. The detailed consistency checking algorithm

is shown as follows, which takes the solution from the previous algorithm as the input and

output YES or No as the result of the consistency check.

Algorithm 6
Algorithm of Consistency Checking

Input:

Optimal incident matrices In obtained from Algorithm 5;

New observed sequences with largest length L′max and the final marking Mkk,

Output:

Whether In matches the newly observed sequences.

1: Load In matrix (matrices) and the new observed sequences S1.

2: Compute the bounds of the number of transition firings.

3: Try each possible firing to check whether the optimal In matrix (matrices) satisfies

(satisfy) the state equation.

4: If there is one transition firing sequence that let the In to be consistent with the obser-

vation, output YES.

5: Otherwise, output NO.

The computational complexity of this algorithm is obtained as follows: Firstly, the

scanning of the marking evolution sequences runs in the constant time since the longest

length of the new observed sequences, i.e., L′max, is treated as a constant. Then, based on

the results in [69], the complexity of obtaining all possible marking sequences is upper

bounded by O(mL′max), which is polynomial in terms of m because L′max is treated as a

constant. Secondly, solving the state equation has complexity O(n3), which is also constant

since n is treated as constant. Thus, the total computational complexity is O(mL′max), which

is polynomial in terms of m.
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5.6.1 Illustrative Example

We would like to use a simple example to illustrate Algorithm 6. Recall that we have

obtained two optimal incident matrices In1 and In2 from Algorithm 5. We use In1 for the

illustration in this example. The process is shown below.

In1 =


−1 0

0 −1

1 1

 .

Suppose we are given the following new observed sequences:

s1 : 0→ 1

s2 : 0→ 1→ 2

s3 : 3→ 2→ 1→ 0

From the newly generated observation sequences, we could obtain the bounds of the

number of transition firings Fa′, where 3 ≤ Fa′ ≤ 3, i.e., Fa′ = 3. Thus, it indicates that

there is only one loop for Fa′. Scan the new observed sequences, we can obtain three

different markings that are as follows:

Mk1 =


1

0

2

 , Mk2 =


0

1

2

 , Mk3 =


1

1

2

 .

In the next step, we calculate potential future markings by solving the state equation

with the incident matrix In1. The results are shown as follows:

Mk11 =


−1

0

4

 , Mk12 =


0

−1

4

 .
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We can see that there are negative entries in these results, which yields that the incident

matrix In1 is not consistent with the new observed sequences. In that case, for further

analysis, we need to re-identify the optimal Petri net structures with new observations by

applying Algorithm 5.

5.7 Summary

In this chapter, we developed an approach to reconstruct optimal Petri net structure(s)

from the asynchronous observations of the token change sequence with finite length in each

place. The optimality is in terms of the least scale, which has the least transitions, the most

sparse incident matrix, and is consistent with the given observations. An algorithm has been

developed to find such structure(s). Moreover, we developed another algorithm to check

the consistency of the identified Petri net structure with newly generated observations with

finite-length, for scalability.
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6. TRAFFIC VOLUME CONTROL BASED ON OBSERVATION OF
LABELED PETRI NET

With the rapid development of autonomous vehicle techniques, traffic planning and traf-

fic volume control become critical issues. With reasonable traffic control, the problem of

traffic jams and collisions could be significantly relieved. In this chapter, a traffic volume

control algorithm based on the labeled Petri net will be introduced. Firstly, the traffic net-

work is modeled with the Petri net structure, where places represent the road segments and

transitions represent the connection between them. Labels are assigned to transitions based

on their heading directions. Then the control algorithm is introduced. Different from some

existing control strategies which aim to avoid collision and don’t allow multiple tokens ap-

pearing in the same place, we would like to keep the traffic volume within a certain level

and reduce congestion. Traffic capacities have been assigned to the places that represent

the road segments. A controller is also applied to keep the number of tokens smaller than

the values of capacities. The existence of unobservable transitions also generates more

possibilities.

This chapter is organized as follows: Firstly, the proposed method with a simple exam-

ple will be described. In the next section, the detailed algorithm and the complexity analysis

will be provided. An illustrative example will be given then to show the performance of

the proposed algorithm.

6.1 Problem Formulation

Inspired by the study in [102], which focused on traffic network controller design to

avoid the collision, the objective in this chapter will also be related to traffic network con-

trol. A place in the Petri net represents a road segment, and a transition represents an

intersection or a junction between road segments. Each transition has been assigned an
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alphabet label or empty label ε . The same label could be shared between multiple transi-

tions. Different from the former study who divided the transition set into the controllable

part and the uncontrollable part, we are considering a more challenging task, which is to

treat some of the transitions to be unobservable. In that case, we can neither observe nor

control the events related to some of the transitions. Another difference from the state-

of-art studies, we don’t limit our work to collision avoidance to reflect a more realistic

situation, since in real work each road segment should have the capacity to contain a cer-

tain amount of vehicles. Before we get into it any deeper, we would like to mention some

preliminary assumptions that we will need in this chapter: A1) All unobservable transitions

are contract-free. A2) Unobservable transition firing will be considered before analyzing

each observed label.

Assumption A1 ensures that our method will not be stuck in loops of firing unobserv-

able transitions since the observation sequences only cannot limit the number of the firing

of unobservable transitions. Assumption A2 helps to reduce the confusion caused by un-

observable transition firings. A firing sequence corresponding to one label should either

consist of one and only one observable transition or end up with an observable transition.

Based on these conditions, we could transfer a road network into a Petri net structure.

A simple road network is shown in Fig. 6.1, which is consisted of a three-directional

intersection and a road junction, which connected with two one-directional small junctions.

It is clear in Fig. 6.1, we can observe and control the junction between road segments

1 and 2, and the intersection between road segments 3, 4, and 5 with cameras and traffic

signs. But, the two small junctions between the two main roads, which could be roads in

a residential area or small country roads, normally would not have any cameras or signs.

In this road network, when traffic control is needed, we could block certain lanes in the

intersection and junction by changing the duration of the traffic lights or use temporary

signs. Besides, since each road segment could allow a certain amount of traffic within it,

it is not realistic if we define a collision to be two vehicles that appear in the same road

segment. Hence, we need a term to define the capacity of a road segment.
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Fig. 6.1. A Simple Traffic Network.

Definition 14: The capacity of each road segment is defined with a column vector ζ ,

called the capacity vector:

ζ =



c1

c2

...

ci

...

cm


, i = 1,2...,m (6.1)

Where ζ is a m-dimensional vector and each positive entry corresponds to one road

segment.
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Therefore, the constraints of our model are adjustable by changing the capacity of each

road segment, which will be more flexible based on needs. Known the information above,

we could model the road network in Fig. 6.1 with the Petri net structure in Fig. 6.2 below:

Fig. 6.2. The Petri Net Structure Generated from the Road Network in Fig. 6.1.

Reflecting all the terms in the road network into the Petri net, the objective is to avoid

exceeding token capacity by enabling/disabling each controllable transition and obtain all

legal markings. The initial marking and an observed label sequence are given. Following

the observed label sequence, in each step, we consider the movement of only one vehicle,

in order to meet the rules of the Petri net structure. Thus we could conclude all the con-

straints about the transition sequence δ , observed label sequence θ and the new generated

marking Mk′ in our problem: C1) The transition sequence δ must satisfy the observed label

sequence θ . C2) Mk′ is reachable from the initial marking Mk0 through firing δ . C3) If a

reachable marking Mk′ has an entry larger than the corresponding entry in ζ , this Mk′ is
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illegal. C4) If a reachable marking Mk′ enables an unobservable transition tu, which yields

another marking Mk′′ by firing tu, and Mk′′ has an entry larger than the corresponding entry

in ζ , this Mk′ is also illegal.

Definition 15: The controller for the Petri net is defined with a column vector η , called

the controller vector:

η =



e1

e2

...

ei

...

en


, i = 1,2...,n (6.2)

Where η is a n-dimensional vector with only zero and one entries.

The controller η we used to achieve these constraints could be considered as an n-

dimensional binary vector, whose entries correspond to the transitions in the Petri net.

When an entry is set to be one, the corresponding transition could be enabled by the tokens

in the net. Otherwise, if the entry is set to be zero, the transition cannot be fired at any time.

In this way, we could block or release the transitions depending on whether the constraints

are satisfied.

In order to show how the method works in a more intuitive way, we will use the follow-

ing example to show the idea.

Example 16: Consider the traffic network represented by a Petri net structure in Fig.

6.2, which is generated from the road network in Fig. 6.1. Places p1 to p5 represent five

different road segments. Transitions t1 and t2 form the junction between p1 and p2. Tran-

sitions t5 to t10 form the three-directional intersection between p3, p4, and p5. t3 and t4 are

unobservable transitions represent the small junctions connecting the two parts. The label-

ing function follows the rule that the same directions share the same label. For example,

since t1 and t3 are both going straight towards the north, they share label a. Because t8 and t9

are both turning left, they share label c. Hence we have: Label(t1, t5) = a, Label(t2, t6) = b,

Label(t8, t9) = c, Label(t7, t10) = d, and Label(t3, t4) = ε .



98

Initially, we insert one token to places p1 and p5, which means there is initially one

vehicle in each of these two road segments. Suppose the observation label sequence is

θ = abda, we could have the following Table 6.1 shows all reachable markings:

Table 6.1.
Reachable Markings Based on the Observed Sequence Without Constraints.

Observed Label(s) Transition Sequence Markings

a
t1 [0,1,0,0,1]T

t5 None

ab
t1t2 [1,0,0,0,1]T

t1t4t6 [0,0,1,0,1]T

abd

t1t2t7 [1,0,1,0,0]T

t1t2t10 None

t1t4t6t7 [0,0,2,0,0]T

t1t4t6t10 None

abda

t1t2t7t1 [0,1,1,0,0]T

t1t2t7t5 [1,0,0,1,0]T

t1t4t6t7t3t1 [0,1,1,0,0]T

t1t4t6t7t5 [0,0,1,1,0]T

There is something we need to emphasize in Table 6.1. 1) None in the Markings col-

umn means that the corresponding transition sequence cannot be enabled to generate a new

marking. 2) When transitions t3 or t4 appear, it means that transition sequence could gen-

erate a new marking through firing unobservable transitions. 3) The transition sequence

t1t4t6t7 generates a new marking [0,0,2,0,0]T . If we follow the constraint in [102], this

is an illegal marking, which will lead to a collision. However, in our case, if we set the

capacity of place p3 to be no smaller than two, it is a legal marking. That is to say, if the

capacity of a place is set to be one, our problem is yielded to a normal collision avoidance

problem. 4) Some of the generated markings could enable unobservable transitions. For
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instance, [1,0,1,0,0]T after firing t1t2t7 will enable t3. Since we cannot control t3, if the

capacity of p1 is one, we must block t7 before it is fired, which means the controller vector

has the following value:

η =



1

1

...

1

0

1

...

1


← 7th entry

(6.3)

If we set the capacity vector following the values in Eqn. 6.4, the logic of the controller

could be applied to each step of firing. After removing all illegal markings, we can have

the following reachable markings in Table 6.2:

ζ =



1

1

2

3

3


(6.4)

Where each entry corresponds to the capacity of each place, and remove those that

could lead to exceeding capacity:

6.2 Descriptions of Proposed Algorithms

In this section, we will explain our recursive algorithm in detail. We are given the ini-

tial marking Mk0 and the observed label sequence θ as input and would like to have all the

legal reachable markings as output. In each iteration, all transitions that fit current label

are enumerated, including the observable transition t = {t ∈ Tro|Label(t) = lcurrent} and
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Table 6.2.
Reachable Markings Based on the Observed Sequence with Constraints.

Observed Label(s) Transition Sequence Markings

a t1 [0,1,0,0,1]T

ab
t1t2 [1,0,0,0,1]T

t1t4t6 [0,0,1,0,1]T

abd t1t4t6t7 [0,0,2,0,0]T

abda
t1t4t6t7t3t1 [0,1,1,0,0]T

t1t4t6t7t5 [0,0,1,1,0]T

the unobservable t ∈ Tru. New reachable markings will be calculated from these transi-

tions with two steps of examines applied. Firstly, compare each marking with the capacity

vector ζ element-wisely. Secondly, check whether any unobservable transitions tu ∈ Tru

are enabled and if so, fire these unobservable transitions and generate new parent mark-

ings to repeat the first examine to the newly generated marking. Only markings that are

element-wisely smaller than ζ will be kept for the calculation for the following iterations.

The detailed algorithm has been provided below.

Now we could analyze the complexity of the proposed algorithm. Each marking stored

in the list tree (except the leaf nodes in the last layer) will be used as parent marking to

generate new markings. The calculation has computational complexity to do that is upper

bounded by O(n3), which is the complexity of solving the state equation. Besides, since

we are considering the unobservable transitions, before each observed label, there could

be multiple unobservable transitions fired. On the other hand, duplication may happen

if we enumerate all reachable markings since different firing sequences could lead to the

same marking in the same layer. Based on the results in [82] and [103], if the observation

label sequence has length k the number of consistent markings is upper bounded by O((1+

a1 + a2k)n−nu(1+ c1 + c2k)nu), if the structure of the unobservable subnet is structurally

bounded, where a1, a2, c1 and c2 are parameters depending on the Petri net structure, label
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Algorithm 7
Capacity exceeding avoidance based on initial marking and label observation

Input: The incident matrix In of a labeled Petri net structure PNL =

(Pl,Tro,Tru,Ar,We,Label,δ ), label observation sequence θ , the initial marking

Mk0 = [Mk0 1,Mk0 2...,Mk0 m]
T and the capacity vector ζ .

Output: The set of legal reachable markings Tree.

1: Tree = {Mk0}, Parent = {φ}

2: for i = 1 to |θ | do

3: lcurrent = θ(i)

4: Tr f sbl = t|t ∈ Trlcurrent

5: for j = 1 to |Tr f sbl| do

6: t = Tr f sbl( j)

7: v f = [0,0, ...1, ...,0]T , the entry corresponds to t equals one.

8: for k = 1 to |Tree(i, :)| do

9: Mkparent = |Tree(i,k)|

10: Call Algorithm 2 with input In, Mparent, ζ , and obtain the additional parent marking

set Mku through firing unobservable transitions.

11: for Each Mk ∈Mparent ∪Mku do

12: Call Algorithm 3 with input In, Mk, t, v f , Tree, ζ .

13: end for

14: end for

15: end for

16: end for

17: Output Tree.
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Algorithm 8
Loop for algorithm 1 to calculate new markings through unobservable transitions

Input: The incident matrix In of a labeled Petri net structure PNL =

(Pl,Tro,Tru,Ar,We,Label,δ ), the current parent marking Mparent and the ca-

pacity vector ζ .

Output: The new legal marking set Mku.

1: Mku = φ

2: for Each tu ∈ Tru do

3: Form a vu = [0,0, ...1, ...,0]T , the entry corresponds to tu equals one.

4: if Mkparent enables tu then

5: Calculate new marking Mkchildu with equation Mkchildu = Mkparent + In · vu

6: Check the validation of the legality of Mkchildu by comparing it with ζ and check

duplication with the previous marking in Mku.

7: if Mkchildu is a legal marking then

8: Save it to Mku.

9: end if

10: end if

11: end for

function, and the token distribution in the initial marking. Since all unobservable transitions

in our case are assumed to be contact-free, the condition is satisfied. Therefore, the total

complexity can be calculated as:

O((1+a1 +a2k))n−nu(1+ c1 + c2k)nu)n3) (6.5)

We can see that the algorithm has polynomial complexity related to the length of label

observation l, label function, and the number of tokens in the net, but exponential to the

Petri net structure.
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Algorithm 9
Main loop for algorithm 1 to calculate new markings

Input: The incident matrix In of a labeled Petri net structure PNL =

(Pl,Tro,Tru,Ar,We,Label,δ ), current parent marking Mk, current observable

transition t, current firing vector v f , the legal marking set Tree and the capacity vector

ζ .

Output: A new legal marking Mk′.

1: if Mk enables t then

2: Calculate new marking Mkchild with equation Mkchild = Mk+ In · v f

3: Check the validation of the legality of Mkchild by comparing it with ζ and check dupli-

cation with previous markings in the same layer of Tree.

4: if Mk′ is a legal marking then

5: Save it to the first available slot in Tree(i+1, :).

6: end if

7: end if

6.3 Illustrative Example and Simulation Result

In this section, we will use an illustrative example to show the performance of the

proposed algorithm. Consider the Petri net structure in Fig. 6.3. The Petri net structure

represents a road network that consists of four three-directional intersections and one four-

directional intersection. Between every two three-directional intersections, there is also

a small one-way junction connecting them. In the figure we can see that the four three-

directional intersections are formed with place and transition sets shown in Eqn. 6.6 to

Eqn. 6.9.
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Fig. 6.3. The Petri Net Structure for Illustration.

bottom = {p1, p2, p4, t2, t3, t4, t5, t6, t7} (6.6)

le f t = {p3, p6, p8, t9, t10, t11, t12, t13, t14} (6.7)

right = {p5, p7, p10, t27, t28, t29, t30, t31, t32} (6.8)

top = {p9, p11, p12, t34, t35, t36, t37, t38, t39} (6.9)

Similarly, the four-directional intersection is formed by set:

middle = {p4, p6, p7, p9, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26}

The four one-way junctions are represented with unobservable transitions t1, t8, t33, and

t40. Besides, the labeling function is defined as follows, from Eqn. 6.10 to Eqn. 6.15.

The assignment of the labels is based on the directions of the transitions’ input and output

arcs. For example, since t9 has its input and output arcs straightly upwards (representing
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the direction of the road segments are north-wards), it shares the label a with t20 and t30

that also have the same direction. Transition t4 represents the connection of road segments

that are leading the traffic turning left. Hence, it shares the label e with other transitions

that have the same condition.

Label(t9, t20, t30) = a (6.10)

Label(t10, t21, t29) = b (6.11)

Label(t2, t19, t37) = c (6.12)

Label(t3, t22, t36) = d (6.13)

Label(t4, t6, t11, t14, t15, t18, t23, t26, t28, t31, t34, t39) = e (6.14)

Label(t5, t7, t12, t13, t16, t17, t24, t25, t27, t32, t35, t38) = f (6.15)

At last, we also assign the observation label sequence (θ ), the capacity vector (ζ ) and

the initial marking (Mk0) of this Petri net to be:

θ = aedbe f badc, (6.16)

ζ =
[

5 5 6 10 6 10 10 6 10 6 5 5
]T

, (6.17)

Mk0 =
[

2 4 0 6 3 7 7 3 6 2 1 4
]T

. (6.18)

Thus, the objective is to find the reachable markings at each observation steps follow-

ing the observation labels from the given initial marking, and obey the constraints of the

capacity vector at the same time. Our simulation has been done with Matlab 2019b and the

results have been provided below in Table 6.3 and 6.4.

The data in Table 6.3 shows the number of all legal markings consistent with the ob-

served label sequences while the data in Table 6.4 shows the number of the parent markings

via unobservable transitions that are used to calculate the legal markings in the next layer

(that is the reason that the last layer of Table 6.4 is N/A). We can see that more than one-

third of the parent markings generation involving unobservable transition sequence firing.
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Table 6.3.
The Number of Legal Reachable Markings in each Layer.

#Layer Observed Label Sequence #Legal Markings

1 a 2

2 ae 24

3 aed 72

4 aedb 180

5 aedbe 1,135

6 aedbef 10,053

7 aedbefb 17,775

8 aedbefba 24,088

9 aedbefbad 46,673

10 aedbefbadc 82,618

We can see the growing trends of the two sets of data with the following plots in Fig. 6.4

and 6.5.

We can see that in both of the two plots, the curves of the number of the markings have

a much slower growing speed than the polynomial function y = x5, which can prove the

conclusion in the complexity analysis.

6.4 Summary

In this chapter, we proposed an approach to model the traffic network in a certain area

with the labeled Petri net structure and then designed a control algorithm to limit traf-

fic volume and reduce the collision rate. To meet the real traffic network conditions, the

Petri net structure that we are using contain both observable and unobservable transitions,

where observable transitions represent intersections and junctions on main roads, while un-

observable transitions represent connections between main roads like residential areas or

country roads that normally cannot be observed with monitoring devices. By going through
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Table 6.4.
The Number of Legal Reachable Markings Via Unobservable Transitions in each Layer.

#Layer Observed Label Sequence
#Legal Marking via

Unobservable Transitions

1 a 0

2 ae 0

3 aed 0

4 aedb 0

5 aedbe 84

6 aedbef 3,081

7 aedbefb 6,612

8 aedbefba 10,350

9 aedbefbad 28,349

10 aedbefbadc N/A

unobservable paths, many more possibilities could appear, which makes the problem more

challenging and interesting. Also, different from other research works that studied collision

avoidance only, we assign the road segments (represented by places in the Petri net) with

traffic volume capacities, which are positive integer numbers and form the capacity vector.

In that case, each road segment could have multiple vehicles at the same time, which is

more realistic than other existing studies. In our algorithm description and illustrative ex-

ample sections, we presented our approach in detail and have proved that it is reliable and

feasible to be applied to the traffic system.
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Fig. 6.4. The Growing Trend of the Number of Legal Markings in Each Layer.

Fig. 6.5. The Growing Trend of the Number of Parent Markings Via Un-
observable Transitions.
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7. CONCLUSIONS AND FUTURE WORK

In this dissertation, many problems involving traffic planning and control applying the Petri

net structure have been studied. Firstly, two types of Petri nets have been utilized for traffic

network modeling. The first one is called the Probabilistic Petri net, whose transitions have

multiple output arcs with probabilities assigned, representing different options of token

transiting. This model has been used in a highway segment, which has been discretized into

blocks. The places that representing those blocks are connected based on an open-source

database obtained from the Internet. The probabilities are calculated from the number of

vehicles that traveled from place to place. After that, the probabilities are converted into

rewards by taking logarithm calculation, to make the values proportional to the safety level.

Part of the generated Probabilistic Petri net structure has been shown, which could be useful

for analyzing the dynamic of certain traffic flows.

The second one is the transitional Petri net structure that is used to discretize the high-

way traffic network in a larger area. We used the highway network around the metropolitan

area of Indianapolis as an example. The highway network consists of highway or freeway

(Interstate-65, Interstate-70, Interstate-465, and US-31) and major local roads (e.g. Merid-

ian Street, Michigan Road, Allisonville Road, Binford Boulevard...). The scenario that has

been studied is set to be a daily driving case, expressed as follows:

Suppose we start at home (the starting place) and would like to go to school (the fin-

ishing place). During the way, we want to visit some other destinations o f interest(DOI),

such as a supermarket, a McDonald’s, or a gas station. Since there are multiple choices for

these DOIs around the city, we could represent those DOI that we may potentially visit as

places in Petri net and connect them with transitions based on the connection relationship

of the highway network. When traveling between the places, time will be consumed. In

the discretized Petri net, time is also discretized into time units, which is represented as

tokens. We set the time unit equaling to one minute in real-world, rounded-up if less than
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one minute. The weights of the arcs connecting places and transitions show how many time

units will be consumed. The weights depend on the distance between two DOI as well as

the traffic condition on this path. Therefore, the highway network has been converted into a

discrete event system modeled by the Petri net. In this Petri net, place set Pl represents des-

tinations of interest DOI. Transition set Tr represents the possible traveling path between

each two DOI. Arc weights represent the time costs, which are determined by the distance

and traffic condition. Tokens represent the time units and will be consumed when firing a

transition.

After we have obtained the Petri net that modeling the highway traffic network, we

further developed two algorithms that are used to optimize the structure and initial marking

of the Petri net. Both of the two algorithms need external observations as input.

We first proposed an algorithm to optimize the initial marking of a labeled Petri net. The

external observation given for this algorithm is a sequence of labels. Each label is assigned

to a subset of the transition set of the Petri net. The goal is to find the minimum initial

marking(s) that could fire a transition sequence that satisfies the given label sequence. The

challenging part is that unobservable transitions are considered in our study. To simplify

the problem, we assume that the unobservable transitions are contact-free. Besides, before

each label observation, there will be one and only one unobservable transition fired. With

these assumptions, we are able to run the algorithm in polynomial complexity related to

the length of the observation sequence. An illustrative example has been provided to show

and the performance of the algorithm. The algorithm could work with polynomial time

complexity and get all the possible solutions that satisfy the requirements. Even though,

the algorithm still produces too much redundant information during the calculation. Hence,

we proposed two heuristic algorithms that save a lot of computation resources but will only

obtain some sub-optimal solutions. These sub-optimal solutions could also be a subset of

the optimal ones. Since for practical use, we usually don’t need all the optimal solutions

with high cost, the sub-optimal solutions are acceptable for real-life use. To illustrate our

algorithms, the illustrative example mentioned above has also been used to compare the

performance of the heuristic algorithms and the main one.
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Another algorithm has been developed to reconstruct the structure of the Petri net,

which aims to improve the transition efficiency when a token change sequence is observed.

The minimum transition number and connection between places and transitions are the ob-

jectives. This algorithm treats the length of an observation sequence as constant when we

take it as input, which makes it could generate an optimized Petri net structure from given

observation sequences in polynomial time. Then, we provided an example to evaluate the

performance of this algorithm. After the analysis and verification with the Matlab code, we

could see this algorithm could work properly.

The proposed algorithm has also been applied to a practical traffic scenario, which

consisted of a certain number of stations that could let vehicles stay. These stations are rep-

resented with places in the Petri net and vehicles are represented with the tokens. The goal

is to simplify the structure of the Petri net, i.e., the vehicle transiting network, based on the

observed token change sequences in the places. Because of the practicality of the vehicle

moving, several constraints of this application are emphasized to make the method realis-

tic. In the illustrative example, a traffic scenario with four stations has been evaluated, with

three optimized results selected from ninety-three candidates. The corresponding marking

sequences and transition firing sequences have also been provided.

The first algorithm has been applied to the second traffic modeling scheme that is men-

tioned above, which represents the traffic network around the metropolitan area of Indi-

anapolis with a traditional Petri net structure. In the built Petri net, different labels could

be assigned to the transitions depending on the DOI types that the transitions represent.

The labeling function shows the sets of different DOIs and the mapping relationship be-

tween the transitions and the DOI sets and the observed label sequence denotes the types

and order of the visited DOIs during the path from the starting point to the destination.

However, in the realistic situations, the order of visiting different DOIs normally cannot be

fixed. We can only limit the number of each label that appears in the observed sequence.

Therefore, the observed label sequence in the original algorithm has been turned into an

observed label set, which contain a fixed number of each label, and could generate multiple

label sequences with different permutations. The way to find all the combinations has been



112

provided in the corresponding chapter. By applying the second algorithm to each one of

these label sequences, it is possible to obtain an optimal route for the observed label set

that can visit all the required DOIs and reach the final destination with the least time cost.

In the next chapter, the traditional Petri net structure has been used to model another

type of traffic network, with further traffic control work being done. The traffic network

contains road segments, which are connected with intersections (with monitoring devices

and more than two directions), junctions (with monitoring devices and two directions), and

small connections (without monitoring devices). In the Petri net structure that is used to

model this traffic network, the places are used to represent the road segments. The observ-

able connections, including intersections and junctions, are represented with observable

transitions, while the unobservable connections are represented with unobservable transi-

tions. The objective is to control the network and limit the traffic volume within a certain

level following the given observed label sequence. Each of the places has been assigned a

number representing the maximum tokens that it can contain. The controller proposed in

this chapter is a binary vector with the length of the number of transitions, which enable and

disable the transitions to limit the movement of the tokens, to make sure that the number of

tokens in each place will not exceed its capacity limit. Meanwhile, because of the existence

of the unobservable transitions, more possibilities of the firing sequences have been consid-

ered. Before each observed label, all enabled unobservable transitions could also generate

many reachable markings that could be potential legal. Moreover, the unobservable tran-

sitions have also affected the judgment criteria of the legality for each reachable marking.

For each reachable marking, it is necessary to check one more step of firing, if it enables

any unobservable transitions. If the marking generated from the unobservable transition

firing is illegal, its parent marking is also illegal. At the end of the chapter, a simulation has

been done with the results, which shows the feasibility of the proposed algorithm.

To summarize, this dissertation focuses on traffic modeling, state and structure estima-

tion, optimization with the Petri net structure based on external observations of the token

changes or labels, and the traffic volume control within the traffic network modeled by

labeled Petri net based on external observation. Three algorithms have been proposed for
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state/structure optimization or token movement control, which have been applied to the

Petri nets that model different traffic networks with two modeling schemes for different

purposes. These algorithms and modeling schemes are proved to be reliable and feasible,

which could be applied to many more traffic scenarios in realistic situations.

There could be extensions in many possible directions. For the traffic modeling part,

the probabilistic model can be used to investigate path planning algorithms for collision

avoidance on the highway. It is also interesting to explore more traffic datasets to make

the model more realistic. For the Petri net structure reconstruction part, the external obser-

vation could be expanded to token change sequences with infinite length. The algorithm

needs to be updated to reduce complexity. For the minimum initial marking estimation

part, other special structures of the unobservable subnet could be considered. For that pur-

pose, the way to reduce the complexity also needs to be developed. When applying the

algorithm to the traffic network application, the traffic network could be further distributed

and more local roads could be included. A better data source could be used for higher

accuracy. Also, because we are applying many external data sources to our research, the

reliability of these data is also an aspect that must be considered. Therefore, the fault tol-

erance for noisy data processing and data robustness is also a potential research direction

in the future. For the traffic volume controlling part, a more complex controller could be

developed instead of a binary vector, in order to implement more flexible controlling opera-

tions. Besides that, when modeling the traffic network, we could consider the vehicles that

are entering and leaving the area-of-interest we are considering. Representing the scenario

with the Petri net structure, it will be the change of the total number of tokens in the Petri

net. These extensions will make the problems more challenging but also more applicable

to real applications.
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