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School of Electrical and Computer Engineering

Prof. Inseok Hwang

School of Aeronautics and Astronautics

Prof. Jinghai Hu

School of Electrical and Computer Engineering

Prof. Oleg Wasynczuk

School of Electrical and Computer Engineering

Approved by:

Dimitrios Peroulis,

Head of the School of Electrical and Computer Engineering



iii

To my parents Hana and Abdulhakeem, who support me always.

To my husband Mahmoud, who always is on my side.

To my daughters, Zahrah and Rania, who bring the joy to my life.



iv

ACKNOWLEDGMENTS

”He has not thanked God, who has not thank people” Prophet Mohammed (PBUH).

The words are not enough to express my deep appreciation and gratitude to my advisor,
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ABSTRACT

Alenezi, Badriah Ph.D., Purdue University, December 2020. State Observation and Un-
known Input and Output Disturbance Estimation in Networked Control Systems. Major
Professor: Stanislaw H. Żak.

In modern control systems, actuators and sensors are connected over communication net-

works. Such systems, referred to as networked control systems, can be subjected to various

disturbances. These disturbances can have form of malicious attacks on the communication

channels between the plant sensors and the controller and between the controller and the

actuators. To protect the networked control system against such attacks, detectors of incom-

ing attacks are needed. Attacks on the plant actuators are modeled as unknown bounded

inputs, while attacks on the plant sensors are represented as output disturbances.

Continuous-time (CT) and discrete-time (DT) unknown input observer (UIO) architectures

are developed to estimate the state, unknown inputs, and output disturbances in networked

control systems. Adaptive CT schemes for unknown input and state estimation are pro-

posed. Novel DT state and unknown input observers are proposed for a class of nonlin-

ear networked control systems whose nonlinearities can be characterized by incremental

multiplier matrices. Then, DT unknown input and output disturbance estimators are de-

veloped for the detection of attacks on the plant input and output channels. Delayed un-

known input and output disturbance estimators are proposed for DT networked control

systems for which the matrix rank condition for the existence of UIOs is not satisfied.

An observer-based decentralized control design method is proposed for networked control

systems where the communication network is modeled as a pure time-delay.



xvi

The results obtained can be applied to the observer-based decentralized control of net-

worked control systems in the presence of time-delays and disturbances resulting from the

presence of the communication networks.
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1. INTRODUCTION

1.1 Motivation

In modern control systems, actuators and sensors are connected over communication net-

works. Such systems, referred to as networked control systems, can be subjected to various

disturbances. These disturbances can have the form of adversarial attacks. To guaran-

tee safe operation of the entire system, it is desirable to detect such attacks. The attacks

could occur on the communication channels between the plant sensors and the controller

and between the controller and actuators. We model the attacks on the plant actuators as

bounded unknown inputs, while we model the attacks on the plant sensors as output distur-

bances.

In our activity, we will be using state observers. A state observer or state estimator or just

observer is a dynamical system that generates an estimate of the plant state using only the

input and output measurements of the plant. The state observer was first proposed by D.

G. Luenberger for linear systems in the early sixties [1–3]. A block diagram of the state

observer is shown in Figure 1.1.

As we mention above, we model adversarial attacks on the networked control system as

unknown inputs and output disturbances. We propose to use unknown input observers

(UIOs) to detect and monitor such attacks. An unknown input observer (UIO) is an observer

that estimates the plant state in the presence of unknown input. The design of UIOs can be

categorized into two classes: (i) UIOs for the state estimation in the presence of unknown

inputs, and (ii) UIOs for the state and unknown input estimation. A block diagram of an

unknown input observer is given in Figure 1.2.
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Fig. 1.1.: A block diagram of a state observer, where u is the known input, y is the output
signal, x̂ is the state estimate of the plant.

Fig. 1.2.: A block diagram of an unknown input observer, where u1 is the known input, u2
is the unknown input, y is the plant output, x̂ is the state estimate of the plant, and û2 is the
estimate of the unknown input.
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The problem of designing observers for linear systems with unknown inputs was already

studied by Basile and Marro [4] in 1969. Since then, different UIO architectures were de-

veloped, see [5] for an overview of early UIO developments, [6–8] for early UIO designs,

and [9] for a comparative study of some UIO architectures.

The unknown input observer has been used in many applications, such as, fault detec-

tion [10–14], stress estimation in humans [15], secure state estimation in cyber physical

systems (CPS) [16–18], fault detection in hydraulic valves [19], detection of sensor faults in

a wind turbine [20], and recovery of hidden messages in the transmitted signals [21].

We use observer-based decentralized controller to control large scale networked control

systems. Examples of large scale decentralized systems are power networks [22], urban

traffic networks [23], and robotic systems [24].

1.2 Problem Statement

We propose continuous-time (CT) and discrete-time (DT) unknown input observers for

the state, unknown input, and output disturbance estimation in networked control systems.

We also propose observer-based decentralized controller to control large scale networked

control systems.

1.3 Literature Overview

In this section, we review the literature related to the research reported in this thesis. We

divide the review into parts corresponding to the types of the observers analyzed in the

thesis.
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1.3.1 Adaptive unknown input observers

Different unknown input observer architectures were proposed in the literature. Sliding

mode and higher-order sliding mode observers for unknown input reconstruction were used

for fault detection in [10, 11, 13] and for stress estimation in humans in [15]. A Lyapunov-

type conditions were developed for the existence of an estimator that can estimate the state

and the unknown input to any degree of accuracy in [25]. These conditions are also suffi-

cient for the existence of a sliding mode unknown input observer that asymptotically esti-

mates the plant state and the unknown input. In [26], high-gain approximate differentiator

based sliding mode observer architecture were proposed for linear systems with unknown

inputs that do not satisfy the so-called observer matching condition. The estimation error

was proved to be uniformly ultimately bounded. A reduced-order observer for linear sys-

tems with unknown inputs was presented in [6], where the state and the unknown input were

estimated. Another reduced-order unknown input observer was presented in [27]. A full-

order state observer for linear systems with unknown input was proposed in [7]. In [28], a

distributed decoupled observer was presented using an equivalent ”free of unknown input”

system to simplify the design procedure.

The design of observers for a class of nonlinear systems in the presence of bounded dis-

turbance inputs were reported in [29]. Linear matrix inequalities were given for the design

of state and unknown input observer that guarantees the state estimation error to satisfy a

prescribed degree of accuracy using the L∞-stability concept.

Adaptive unknown input observers were proposed recently in [30–32]. The adaptive un-

known input observer proposed in [30] uses multiple observers. It is a modified form of

the standard UIO where a bank of parallel observers are constructed to generate resid-

ual signals, which are used to detect and isolate actuator faults. To apply this scheme, n

independent measurements should be available for the n-th order plant which limits the

applicability of this approach. In [31], unknown input observer was used to estimate the

torque in a vehicle engine. In [32], the plant state was estimated using a robust adaptive

UIO for secure communication.
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In our design, bounded adaptive unknown input estimators are proposed to estimate the

plant state and the unknown input.

1.3.2 State observers and unknown input estimators for nonlinear systems charac-
terized by incremental multiplier matrices

Unknown input observers (UIOs) were proposed for different classes of dynamical systems.

Continuous-time (CT) UIOs were reported in [33, 34]. In [8], state and unknown input

estimation was considered for a class of uncertain linear systems and a state dependent,

time varying unknown input. In [35–37], discrete-time (DT) UIOs were constructed for

linear DT systems. A DT state observer for a class of nonlinear systems using dissipativity

theory was proposed in [38]. In [9], a CT UIO was designed using a projection operator

approach. In our design, we adopt this projection method to propose a novel DT UIO

architecture.

The UIO design for a class of DT nonlinear systems with locally Lipschitz nonlinearities

was considered in [39] and this was generalized in [40] to a class of DT nonlinear systems

characterized by incremental multiplier matricesIn [41], sliding mode observers were pro-

posed for the state and unknown input estimation of CT nonlinear systems characterized by

incremental multiplier matrices. We consider a class of DT nonlinear systems character-

ized by incremental multiplier matrices. We propose an observer architecture to estimate

the state and the unknown input for such class of plants.

1.3.3 State, unknown input, and output disturbances estimation in DT linear net-
work systems

A state observer for DT systems in the presence of disturbances on the sensors and actua-

tors of the plant was proposed in [42]. In [43], a DT UIO was proposed to estimate the plant

state in the presence of unknown inputs. In [44], designs of estimators and controllers were

proposed for linear systems with the plant actuators or sensors under malicious attacks.

A secure state estimator was proposed in [45] when the communication channel between
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a sensor and a remote estimator is corrupted by jamming attacks. In [46], a distributed

attacks detectors and distributed state estimators were proposed for networked control sys-

tems under malicious attacks. A secure state estimator of distributed power systems un-

der cyber-physical attacks and communication failure was presented in [47]. A so-called

fixed-time observer for DT singular systems corrupted by unknown inputs was considered

in [48], where the observer matching condition and the strong observability condition were

satisfied.

We propose an observer architectures to simultaneously estimate the state, unknown in-

put, and output disturbance for linear network systems corrupted by actuator and sensor

attacks.

1.3.4 Delayed estimation of unknown input and output disturbances

One of the conditions for the existence of an UIO is the matrix rank condition, rank(CB2) =

rank(B2), where B2 is the input matrix corresponding to the unknown input and the matrix

C is the output measurement matrix. However, in many cases, the plant model does not

satisfy this condition. When the matrix rank condition is failed, the vector recovery method

reported in [49] was recently used. In [50, 51], the vector recovery method is applied to

detect malicious packet drop attacks in a networked control system. The main idea of

the method is to transform the state and unknown input estimation problem into a 0-norm

minimization problem with equality constraints. The resulting problem is then solved using

the 1-norm approximation of the 0-norm minimization problem. However, this approach

has its limitations in that the unknown input has to be sparse. That is, the disturbance

vector must have more zero entries than non-zero entries. The sparsity requirement is

needed in order to obtain accurate approximation of 0-norm minimization by the 1-norm

minimization [52]. In [53], DT UIO was constructed using the vector recovery method for

DT linear network systems corrupted by sparse unknown input and output errors.

In [54], Hautus observed that if the plant is strongly detectable but the matrix rank condition

is not satisfied, a delayed observer can be constructed such that the state is estimated with
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a delay. Following this idea, a sequence of extra output measurements is collected in order

to relax the matrix rank condition in [55,56]. In [57], the actuators and sensors of the plant

are assumed to be corrupted by the same disturbance signals. For the same type of plant

models, a DT UIO was constructed in [58], where the observation error was guaranteed to

be bounded with a prescribed performance level.

We propose unknown input and output disturbance estimators for DT linear network sys-

tems when the matrix rank condition for the existence of an UIO is not satisfied.

1.3.5 Decentralized networked control systems

The design of decentralized controllers were reported in [59–63]. In [59, 64], local feed-

back control laws that depend only on partial system outputs were used to stabilize a linear

time-invariant multivariable system. This gives a good starting point for the investigation

of the stabilization of decentralized control systems. In [61], decentralized dynamic pole

placement was used along feedback stabilization to the design of decentralized controllers.

In [62], the decentralized controller design was formulated as a linear quadratic optimal

regulator problem. In [63], an observer-based controller was implemented using decen-

tralized functional observers at each local station. This results in a global state feedback

controller using only local input-output information available at each station.

Data transmission error in communication networks is inevitable [65, 66]. The unknown

errors occur when the control signals and measurements are transferred between the plant

and the decentralized control system (DCS) through a communication network. Different

communication network models were proposed in the literature. For example, in [67] a

model of communication network was proposed that combines Gaussian random noise with

sparse malicious packet drops for a remotely controlled cyber physical system. Another

model of the networked system was reported in [68] which considers the packet dropout

and transmission delays.
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In [69–72], communication networks were modeled as pure time-delays. This type of com-

munication network model simplifies the stability analysis of the decentralized networked

control system (DNCS). It was shown in [73] and [74] that large time-delays degrade the

performance of NCS or even destabilize the system. When the stability is not affected

by the duration of the time-delay, then the control system stability is independent of the

time-delay duration, see for example, [75]. Usually, however, the stability of the DNCS is

dependent on the communication time-delays [76].

In our thesis, we propose a new approach to the design of a dynamical decentralized con-

troller that implements the static centralized controller selected by the designer. We use

results reported by Schoen [77] to obtain an upper bound on the communication network

time-delay that will guarantee the stability of the decentralized networked control system

(DNCS).

1.4 Thesis Organization

The rest of the document is organized as follows. In Chapter 2, an adaptive continuous-

time CT scheme for unknown input and state estimation for a class of uncertain systems is

presented. We consider two types of unknown inputs: constant and bounded not necessar-

ily constant unknown input. Linear matrix inequality (LMI) conditions for both cases are

derived. The state and bounded unknown input estimation with guaranteed performance is

proved using L∞-stability approach. In Chapter 2.6, a novel DT unknown input observer

for a class of nonlinear systems characterized by incremental multiplier matrices is pre-

sented. Then, linear matrix inequality condition is derived for the proposed UIO. Also, an

unknown input estimator is proposed that reconstructs the unknown input with one sam-

pling period time-delay.

In Chapter 3.7, a state observer and unknown input and output disturbance estimators are

proposed for discrete-time (DT) linear network systems. The state, unknown input, and

output disturbance estimation errors are guaranteed to be l∞-stable with prescribed perfor-
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mance level. The design of the state observer and disturbance estimators are given in terms

of LMIs. In Chapter 4.11, delayed unknown input and output disturbance estimators are

proposed. The delayed observers are required when the existence condition of unknown

input observer (UIO) is not satisfied. Thus, a backward sequence of the output is used to

relax the existence condition. The unknown input and output disturbance estimation errors

are l∞-stable with performance level.

In Chapter 5.7, an observer-based decentralized controller is proposed for the decentralized

networked control system (DNCS), where the control loop is closed by a communication

network. The communication network is modeled as pure time-delay. An observer-based

decentralized controller is designed using LMIs. Finally, in Chapter 7, we present open

problems that we will work on to extend our research in the future.
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2. ADAPTIVE UNKNOWN INPUT AND STATE OBSERVERS

2.1 Introduction

This chapter presents a novel adaptive continuous-time (CT) observer architectures for si-

multaneous unknown input and state estimation for a class of uncertain systems. The adap-

tive unknown input estimator is bounded. The unknown input in the system plant is consid-

ered to be constant or bounded not necessarily constant unknown inputs. Using a Lyapunov

approach, conditions are derived that ensure the state and unknown input estimation errors

converge to zero for a constant unknown input. Next, combining a Lyapunov approach and

linear matrix inequalities (LMIs), conditions are given that guarantee a prescribed perfor-

mance level for state and unknown input estimation for a bounded not necessarily constant

unknown input. We use L∞-stability approach presented in [29], where a linear-in-state-

error estimator is used.

2.2 Problem Statement

We consider a class of dynamical systems modeled by

ẋ(t) = Ax(t)+B1u1(t)+B2u2(t) (2.1a)

y(t) =Cx(t), (2.1b)

where x(t) ∈ Rn is the state vector, u1(t) ∈ Rm1 is the control input, u2(t) ∈ Rm2 is the

unknown input, and y(t) ∈ Rp is the measured output. The system matrices are A ∈ Rn×n,

B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , and C ∈ Rp×n.
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Our objective is to design adaptive state and unknown input observers for the dynamical

system with constant and bounded not necessarily constant unknown inputs using available

input-output information.

2.3 Observer Design

In this section, we propose an observer for adaptive state estimation in the presence of con-

stant unknown input. The proposed method also allows for reconstruction of the constant

unknown input.

2.3.1 Proposed observer architecture

The proposed observer for system model (2.1) is given by

˙̂x = Ax̂+L(y− ŷ)+B1u1 +B2û2 (2.2a)

ŷ =Cx̂, (2.2b)

where x̂(t) is the state x(t) estimate, and û2 is an adaptive estimator of u2. The observer

gain matrices L and F are obtained from the following conditions

(A−LC)>P+P(A−LC)≺ 0, (2.3a)

B>2 P = FC, (2.3b)

P =P> � 0, (2.3c)

where the matrix F will be defined later. For system theoretical interpretation of condi-

tions (2.3a), and (2.3b), we refer to [78, 79]. The adaptive estimator of the unknown input

has the form

˙̂u2 = Γσ , (2.4)
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where

Γ = diag{Γ1,Γ2, · · · ,Γm2} ,Γi > 0, for i = 1,2, · · · ,m2,

σ =
[

σ1 σ2 · · · σm2

]>
= F(y− ŷ).

Remark 1 Conditions (2.3a) and (2.3b) have been proven by Corless and Tu [8] and Ed-

wards and Spurgeon [25] to be equivalent to the following two conditions:

Condition 1 rank(CB2) = rank(B2).

Condition 2 For every complex number λ with nonnegative real part,

rank

A−λ I B2

C O

= n+ rank(B2).

The existence of observers for continuous-time systems where the system has two types of

inputs and outputs (measured and unmeasured) has been investigated by Hautus in [54],

in which the concepts of strong and strong∗ detectability have been introduced. Hautus

showed that the strong observability implies the strong detectability and that the existence

of the state observer is equivalent to the strong∗ detectability. Hautus gave the conditions

for the existence of a strong observer to estimate unknown input using only measured out-

put. The existence conditions for our proposed adaptive unknown input and state observers

are the same as Hautus’ conditions for strong∗ detectability. Conditions 1 and 2 are neces-

sary and sufficient for the existence of the strong observer of Hautus [54].
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2.3.2 Error dynamics

Let the state estimation error be e = x− x̂. Then, the observation error dynamics have the

form

ė = (A−LC)e+B2(u2− û2). (2.5)

We now present Lyapunov-Like Lemma from [80, Subsection 4.12] that we use through

our proof of the results in this section.

Lemma 1 (”Lyapunov-Like Lemma”) Given a real-valued function V (t,e) such that

1. V (t,e) is bounded below,

2. V̇ (t,e) is negative semidefinite, and

3. V̇ (t,e) is uniformly continuos in time,

then

V̇ (t,e)→ 0 as t→ ∞

We give conditions for an adaptive state and unknown input reconstruction in the presence

of constant unknown input in the form of the following theorem.

Theorem 1 Suppose u2 in the plant model given by (2.1) is constant and B2 is a full column

rank matrix. If there exist a symmetric matrix P � 0 and matrices L and F such that the

conditions in (2.3) are satisfied, then the state observation error e converges to zero.

Proof Consider the ideal error system dynamics

ė = (A−LC)e. (2.6)
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By (2.3a), V = e>Pe is a Lyapunov function of (2.6). Let

Q =−((A−LC)>P+P(A−LC)).

Note that by (2.3a), Q = Q> � 0. Then, V̇ = −e>Qe < 0. We proceed by evaluating the

derivative of V on the trajectories of (2.5) to obtain

V̇ =−e>Qe+2e>PB2(u2− û2).

Let the augmented Lyapunov function candidate be

Va =V +(u2− û2)
>

Γ
−1(u2− û2)> 0

in the augmented space (e,u2− û2). Evaluating the time derivative of Va on the trajectories

of (2.5) gives

V̇a = V̇ +
d
dt
((u2− û2)

>
Γ
−1(u2− û2)). (2.7)

Let

∆u2 = [∆u21 ∆u22 · · · ∆u2m2
]> = u2− û2,

σ = [σ1 σ2 · · · σm2 ]
> = B>2 Pe.

Then,

V̇ =−e>Qe+2σ
>

∆u2 =−e>Qe+2
m2

∑
i=1

σi∆u2i. (2.8)

Taking into account the assumption that u2 is constant, the second part of (2.7) becomes

d
dt
(∆u>2 Γ

−1
∆u2) =−2∆u>2 Γ

−1 ˙̂u2 =−2
m2

∑
i=1

1
Γi

∆u2i
˙̂u2i. (2.9)
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Combining (2.8) and (2.9) gives

V̇a =−e>Qe+2
m2

∑
i=1

∆u2i(σi−
1
Γi

˙̂u2i). (2.10)

Note that if ˙̂u2i = Γiσi, then

V̇a =−e>Qe≤ 0 (2.11)

in the (e,∆u2)
> space, which implies that e and ∆u2 are bounded. We now use the Lyapunov-

like lemma, see, for example, [80, 81]. For this, we need to show that V̇a(e(t),∆u2(t)) is

uniformly continuous in time. Taking the second time derivative of Va gives V̈a =−2e>Qė,

which is bounded, since e and ė are bounded. Therefore, V̇a is uniformly continuous, and

by the Lyapunov-like lemma,

lim
t→∞

V̇a→ 0. (2.12)

From (2.11) and (2.12), we have to have limt→∞ e(t)→ 0, which completes the proof.

2.3.3 Practical implementation of the adaptation law

To ensure the boundedness of the estimates, we employ the following unknown input esti-

mator

dû2i

dt
=


0 if û2i ≥ û2i and σi > 0

0 if û2i ≤ û2i
and σi < 0

Γiσi otherwise

, Projû2i
(Γiσi), (2.13)

where û2 = [û21 û22 · · · û2m2
] and û2 = [û21

û22
· · · û2m2

] are the upper and lower bounds

of the unknown input u2.
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We now show that we also have limt→∞ e(t)→ 0 for the above u2 estimator. Substitut-

ing (2.13) into (2.10) yields

V̇a =−e>Qe+2
m2

∑
i=1

∆u2i(σi−
1
Γi

Projû2i
(Γiσi)).

It is easy to verify that ∆u2i(σi− 1
Γi

Projû2i
(Γiσi)) ≤ 0. Therefore, V̇a ≤ −e>Qe. By the

Lyapunov-like lemma, limt→∞ e(t)→ 0.

2.3.4 Estimating the unknown input

Applying Theorem 1 with the adaptation law (2.13), we now show that û2→ u2 as t→ ∞.

To proceed, we need to show that ė is uniformly continuous. Note that ė is uniformly

continuous if ë is bounded. Taking the second derivative of e, we obtain ë = (A−LC)ė−

B2 ˙̂u2. Since ˙̂u2i = Projû2i
(Γiσi) and ė are bounded, ë is bounded and hence, ė is uniformly

continuous. By the Lyapunov-like lemma, limt→∞ ė(t)→ 0. In the steady state, e = 0 and

ė = 0. But ė = (A−LC)e+B2(u2− û2), so B2(u2− û2) = 0. For B2 of full column rank,

û2 = u2 in the steady state.

2.4 State and Unknown Input Estimation with Guaranteed Performance

In this section, we extend our adaptive state and unknown input estimation to the case when

u2 is a bounded unknown input not necessarily constant.

2.4.1 Guaranteed performance

Assumption 1 The unknown input u2 is bounded with bounded derivative.

Letting ζ = [e, ∆u2]
> and then combining (2.4) and (2.5), we obtain

ζ̇ = Ã ζ + B̃ u̇2, (2.14)
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where

Ã =

A−LC B2

−ΓB>2 P O

 , B̃ =

 O

Im2

 , (2.15)

and where O denotes a zero matrix. To proceed, we define L∞-stability with performance

level (p.l.) γ for the system (2.14).

Definition 1 The system

ζ̇ = Ã ζ + B̃ u̇2 (2.16a)

z = Hζ = [O Im2] ζ , (2.16b)

where z is the output and H ∈ Rm2×(n+m2), is globally uniformly L∞-stable with perfor-

mance level γ if the following conditions are satisfied:

1. Ã has eigenvalues in the open left half plane.

2. For every initial condition ζ (t0) = ζ0, where t0 ≥ 0, and every bounded unknown

input derivative u̇2(·), there exists a bound β (ζ0, ||u̇2(·)||∞) such that

||ζ (t)|| ≤ β (ζ0, ||u̇2(·)||∞), ∀t ≥ t0. (2.17)

3. For zero initial condition, ζ (t0) = 0, and every bounded unknown input derivative

u̇2(·), we have

||z(t)|| ≤ γ||u̇2(·)||∞, ∀t ≥ t0. (2.18)

4. For every initial condition, ζ (t0) = ζ0, and every bounded unknown input derivative

u̇2(·), we have

limsup
t→∞

||z(t)|| ≤ γ||u̇2(·)||∞. (2.19)



19

For more details on the L∞-stability with level of performance, we refer to [82]. For zero

initial error, γ is defined as the upper bound on the L∞ gain.

We now present a lemma from [29] that we use in our proof of the main result of this

Chapter.

Lemma 2 Consider a system with bounded input w and performance output z described

by

ė = F(t,e,w) (2.20a)

z = G(t,e), (2.20b)

where e(t) ∈ Rn, w ∈ Rnw , and z(t) ∈ Rnz . Suppose there exists a differentiable function

V : Rn→ R and scalars α,β1,β2 > 0 and µ1,µ2 ≥ 0 such that

β1‖e‖2 ≤V (e)≤ β2‖e‖2, (2.21)

and

DV (e)F(t,e,w)≤−2α(V (e)−µ1||w||2), (2.22a)

||G(t,e)||2 ≤ µ2V (e), (2.22b)

for all t ≥ 0, where DV denotes the derivative of V . Then system (2.20) is globally uniformly

L∞-stable with performance level γ =
√

µ1µ2.

The proof of Lemma 2 is given in [29].

2.4.2 Stability of Ã

The stability of Ã in (2.15) is critical in the state and unknown input estimation. We in-

vestigated if the stability of Ã is implied by the stability of (A−LC). In the following, we

provide a couple of examples to illustrate our discussion.
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Example 1 Consider the RLC circuit shown in Figure 2.1. Let x1 be the current through

the inductor and x2 be the capacitor voltage. The RLC circuit is modeled by the following

equations, ẋ1

ẋ2

=

−R0+R1
L − 1

L
1
C − 1

CR2

x1

x2

+
 1

L

0

u2, y =
[
R0 1

]x1

x2

 ,
where L = 1 H, R1 = R2 = 1Ω, C = 1 F, and R0 = 0.1Ω.

Fig. 2.1.: RLC circuit of Example 1.

Solving (2.3), we obtain

P =

1.815 18.15

18.15 405.2

 , L =

239.52

−10.65

 .
For Γ = 20, the matrix Ã has the form

Ã =


−25.05 −240.52 1

2.06 9.65 0

−36.3 −362.98 0

 .

The eigenvalues of Ã are located at −6.96±− j14.91, and −1.48. This Ã is Hurwitz.
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Next, we give an example where the matrix (A− LC) is Hurwitz while Ã is not Hur-

witz.

Example 2 Consider the induction motor model in [41], where

A =



−2379.2 0 0 0 0

0 −2.3 0 0.21 0

0 0 −2.3 0 0.21

0 267.5 0 −43.83 0

0 0 267.54 0 −43.83


,

B2 =



68245 0 0

0 −2 0

0 0 2

0 232.75 0

0 0 −232.75


, C =


1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

Solving (2.3), we obtain

P =



13.13 0 0 0 0

0 6597 −137.57 56.69 −1.18

0 −137.58 6597 −1.18 56.69

0 56.69 −1.18 59.25 −0.059

0 −1.18 56.69 −0.059 59.25


,

L =



−1489.5 0 0

0 0.912 0.0467

0 0.0467 0.9119

0 151.97 0.125

0 0.125 151.97


.
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Therefore, the matrix (A−LC) is Hurwitz. For Γ = 20I3, the matrix Ã has its eigenvalues

located at −444.876± j1.1059×106, −98.988± j7981.95, −99.113± j7975.34, 0, and

0. Thus, in this example the matrix Ã is not Hurwitz.

In conclusion, the stability of (A−LC) does not imply the stability of Ã. The stability of Ã

as a function of its parameters requires further investigation.

2.4.3 Sufficient conditions for the state and unknown input estimation

Using results of [29], we present now sufficient conditions for the design of the state and

unknown input observer when u2 is a bounded unknown input. We also provide the perfor-

mance level of the proposed observer.

Theorem 2 Suppose u̇2 is bounded, Ã is asymptotically stable in the plant model given

by (2.14), and there exist a symmetric matrix P � 0, matrices L and F such that condi-

tions (2.3) are satisfied. If there exist α > 0, µ ≥ 0, a symmetric matrix P̃ � 0 such that

the matrix inequalities

φ� 0 (2.23a)P̃ ∗

H µI

� 0 (2.23b)

are satisfied where

φ=

φ11 P̃B̃

∗ −2αI

 (2.24)

and

φ11 = P̃Ã+ Ã>P̃+2αP̃, (2.25)
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then observer (2.2) yields L∞-stable state and unknown input error dynamics with perfor-

mance level γ =
√

µ for the performance output z = Hζ .

Proof We evaluate the Lyapunov derivative of Ṽ (ζ ) = ζ>P̃ζ on the trajectories of (2.14)

to obtain

˙̃V (ζ ) = DṼ (ζ )ζ̇ = 2ζ
>P̃(Ãζ + B̃u̇2).

Let q = [ζ> u̇>2 ]
>. Performing manipulations gives

q>φq =
[
ζ> u̇>2

]φ11 P̃B̃

∗ −2αI

ζ

u̇2


= 2ζ

>P̃Ãζ +2ζ
>P̃B̃u̇2 +2αζ

>P̃ζ −2α u̇>2 u̇2

= DṼ (ζ )ζ̇ −2α||u̇2||2 +2αṼ (ζ ).

Since φ� 0, then

DṼ (ζ )ζ̇ −2α||u̇2||2 +2αṼ (ζ ) = q>φq≤ 0. (2.26)

Rearranging (2.26) gives

DṼ (ζ )ζ̇ ≤−2α(Ṽ (ζ )−||u̇2||2). (2.27)

Therefore, condition (2.22a) in Lemma 2 holds with µ1 = 1.

Next, taking the Schur complement of (2.23b), we obtain

P̃−H>µ
−1H = P̃−µ

−1H>H � 0. (2.28)

Pre-multiplying (2.28) by ζ> and post-multiplying it by ζ gives

ζ
>P̃ζ −µ

−1
ζ
>H>Hζ ≥ 0. (2.29)
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Rearranging the above gives

||Hζ ||2 ≤ µṼ (ζ ). (2.30)

So condition (2.22b) in Lemma 2 holds for µ2 = µ . From (2.27) and (2.30), we conclude

that the assumptions of Lemma 2 are satisfied. Therefore the state and unknown input error

dynamics are L∞-stable with performance level γ =
√

µ .

We summarize our discussion with Algorithm 1 for the design of the adaptive observer.

Algorithm 1: Adaptive unknown input observer design
1 For the dynamical system (2.1), solve conditions (2.3) for (P,L,F) by letting Y = PL

and solving the following LMIs for (P,Y,F) using CVX,

A>P+PA−C>Y>−YC ≺ 0,

B>2 P =FC, P = P> � 0.

2 Choose the estimator gain Γ and set ˙̂u2 = ΓF(y− ŷ).
3 Construct state and unknown input error dynamics system (2.14) and check that Ã is

Hurwitz.
4 Let H = [O Im2], choose the design parameter α and solve LMIs (2.23) for P̃ and µ .

Note that Theorem 2 uses the same first set of conditions (2.3) as Theorem 1 for the un-

certain system (2.1) with extra conditions (2.23) for the linear system in (2.14). Theorem 1

technique allows us to prove in addition that the unknown input has bounded unknown

input estimate dynamics given by (2.13). While in Theorem 2, we use a linear unknown

input estimator in state error e given by (2.4).

Now we consider the case when u2 is constant. If we apply Theorem 2, since u̇2 is zero,

then the plant model (2.14) reduces to the plant ζ̇ = Ã ζ , where Ã is asymptotically stable

and conditions (2.17) and (2.19) reduce to

||ζ (t)|| ≤ β (ζ0),
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and

limsup
t→∞

||z(t)|| ≤ 0.

Therefore, the estimation error of the state and unknown input in Theorem 2 will converge

to zero in the constant unknown input case. Thus, Theorem 2 is a generalization of Theo-

rem 1 for the case when u2 is any bounded unknown input not necessarily constant.

2.5 Example

In this section, we present an example to illustrate the effectiveness of the proposed ob-

server to estimate the state and unknown input for a nonlinear system with bounded un-

known input and bounded unknown input derivative. LMIs of Theorem 2 have been solved

using CVX [83, 84].

Example 3 We consider the flight path rate demand missile (two-loop) autopilot system

from [85]. The state variables of the system are:

x1: flight path rate demand,

x2: pitch rate,

x3: elevator deflection,

x4: rate of change of elevator deflection.
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The output of the system are state variables x1 and x2. The state space model of the two-

loop autopilot system has the form:


ẋ1

ẋ2

ẋ3

ẋ4

=


− 1

Ta

a+σ2w2
b

Ta

−kbσ2w2
b

Ta
−kbσ2wb

2

− 1+w2
bT 2

a
Ta(1+σ2w2

b)
1
Ta

(T 2
a −σ2)kbw2

b
Ta(1+σ2w2

b)
0

0 0 0 1

0 0 −w2
a −2ζawa




x1

x2

x3

x4

+


0

0

0

kqw2
a

u1 +


1

0

1

0

u2,

y =

1 0 0 0

0 1 0 0




x1

x2

x3

x4

 .

The numerical values of the model parameters are shown in Table 2.1. The unknown input

u2 is taken to be u2 = sin(10t).

Table 2.1.: Parameter values for the two-loop autopilot example.

Parameter Value
Ta 0.36 s
σ2 0.00029 s2

wb 11.77 rad/s
ζa 0.6
kb -9.91 s−1

wa 180 rad/s
kq -0.07
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We apply Theorem 2 for the autopilot model. Note that the conditions of the existence of

UIO are satisfied, where rank(B2) = rank(CB2) = 1. We use the CVX software to compute

(L,F,P) that satisfy the conditions in (2.3). We obtain

L =


−16.088 −66.420

69.632 222.372

−28.867 −98.993

3692.687 9301.315

 , F =
[
8899.1 2651.55

]
.

We set Γ = 20, û2 = 10, and û2 =−10. The error estimation dynamics (2.14) take the form

ζ̇ = Ã ζ + B̃ u̇2

=



13.3 69.3 1.1 0.4 1

−120.24 −219.6 −474.1 0 0

28.9 99 0 1 1

−3692.7 −9301.3 −32400 −216 0

−177981.5 −53031.1 0 0 0


ζ +



0

0

0

0

1


u̇2,

where Ã is asymptotically stable with the eigenvalues located at−101.535± j474.156,−32.823±

j133.833, and −153.569.

We solve the LMIs given by (2.23), and obtain the observation error performance level

γ = 0.124. In our simulation, we use the initial condition of the system to be x(0) =

[0.5,−10,5,−3]> and the initial conditions on the adaptive observer dynamics are zero.

The design parameter α = 1. We can see from Figures 2.2 and 2.3 that the adaptive observer

estimates the system states well. The unknown input is reconstructed accurately as can be

seen in Figure 2.4 and 2.5.
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Fig. 2.2.: Plot of the state x3 and its estimate in Example 3.
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Fig. 2.3.: Plot of the state x4 and its estimate in Example 3.

2.6 Conclusions

We propose adaptive CT state and unknown input observers for uncertain systems when

the unknown input is constant or bounded not necessarily constant. We give conditions for

existence of the proposed observers in terms of LMIs. The state estimation and unknown

input estimation errors are shown to have a degree of accuracy with a guaranteed level of

performance for the class of bounded unknown inputs. An open problem is to investigate
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Fig. 2.4.: Plot of unknown input estimation in Example 3.
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Fig. 2.5.: Plot of the absolute value of the unknown input estimation error in Example 3.

the conditions under which the matrix Ã in (2.15) is Hurwitz. At present, the design pa-

rameters α , and µ in Theorem 2 are selected by trial and error. More systematic procedure

to select the parameters is desired.
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3. STATE OBSERVERS AND UNKNOWN INPUT ESTIMATORS
FOR DISCRETE-TIME NONLINEAR SYSTEMS

CHARACTERIZED BY INCREMENTAL MULTIPLIER
MATRICES

3.1 Introduction

In this chapter, we propose a novel discrete-time state and unknown input observers for a

class of continuous-time (CT) nonlinear systems whose nonlinearity can be characterized

by incremental multiplier matrices. We represent these nonlinear models as linear models

by treating the nonlinearity as a nonlinear input with a known structure. The input to

the original nonlinear system is allowed to have an unknown component. Then, the linear

model is discretized using the exact discretization method. We present a novel discrete-time

state observer for such systems. The condition for the existence of the observer is presented

in terms of a linear matrix inequality (LMI). A novel unknown input estimator is then used

to estimate the system unknown input with one sampling period time-delay.

3.2 Background Results and Problem Statement

We consider a CT nonlinear model of the form

ẋ(t) = Ax(t)+B1u1(t)+B2u2(t)+Bφ Φ(x(t))

y(t) = Cx(t),

where A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , Bφ ∈ Rn×m3 , and C ∈ Rp×n. We assume m2 ≤

p ≤ n. The control input is u1(t) ∈ Rm1 , while u2(t) ∈ Rm2 is an unknown input. The

vector-valued function Φ(x(t)) ∈ Rm3 models the plant’s nonlinearities.
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We discretize the CT plant model. Using a DT model allows one to construct an unknown

input estimator. We can use the Euler discretization method. If all inputs are approximately

constant over the sampling time Ts, then we could use the exact discretization method. In

either case, the discretized model has the form

x[k+1] = Adx[k]+B1du1[k]+B2du2[k]+BφdΦ(x[k])

y[k] = Cx[k].

 (3.1)

We assume that the matrix C is full row rank, that is, rank(C)= p, and that the pair (Ad,B1d)

is controllable and the pair (Ad,C) is detectable—see [54] for a discussion of the role

of detectability in the existence of both CT and DT UIOs. For more information on the

modeling and properties of discrete-time systems, see, for example [86, Subsection 1.1.2

and Chapter 2] or [87].

We further assume that the matrix B2d has full column rank and rank(CB2d) = rank(B2d) =

m2.

For notational convenience, we introduce the following. Let M be a R(n+m3)×(n+m3) matrix.

We define the quadratic form, for a ∈ Rn and b ∈ Rm3 ,

QM(a,b) =
[
a> b>

]
M

a

b

 (3.2)

Definition 2 (Compare with [40]) A symmetric (n+m3)× (n+m3) matrix M is an incre-

mental multiplier matrix (δMM) for Φ if for every x,δ ∈ Rn,

QM(δ ,Φ(x+δ )−Φ(x))≥ 0.

The usefulness of this concept will be demonstrated in Theorem 3. Note that the existence

of a δMM for Φ provides useful information on Φ only when the δMM is not positive

definite.
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Remark 2 Lipschitz continuity is a special case of δMM. Let

M =

β 2I 0

0 −I

 .
Then, it is easy to see that

QM(δ ,Φ(x+δ )−Φ(x)) = β
2‖δ‖2−‖Φ(x+δ )−Φ(x)‖2

and thus QM(δ ,Φ(x+δ )−Φ(x))≥ 0 is equivalent to ‖Φ(x+δ )−Φ(x)‖ ≤ β‖δ‖.

We say that a nonlinear system is δMM if its nonlinearity has a δMM matrix. We assume

in the remainder of the chapter that the systems we consider are δMM. It is interesting to

note that the concept of δMM nonlinearity is related to the dissipativity concept proposed

in [38, 88].

Our objective is to construct state and unknown input estimators/observers for DT non-

linear systems whose nonlinearities have incremental multiplier matrices using DT ob-

servers.

3.3 State Observer Design

In this section, we propose a novel DT observer architecture for DT systems modeled

by (3.1). We begin by representing x[k] as

x[k] = x[k]−Hy[k]+Hy[k] = (I−HC)x[k]+Hy[k],

where H ∈ Rn×p. The selection of H is discussed below. Let

z[k] = (I−HC)x[k],
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then we have

x[k] = z[k]+Hy[k].

Recall that our objective is to estimate x[k]. We use the above relation to obtain the state

estimate, that is,

x̂[k] = z[k]+Hy[k],

where we obtain z[k] from the relation,

z[k+1] = (I−HC)x[k+1].

Substituting into the above the dynamics of the DT system gives

z[k+1] = (I−HC)
(
Adz[k]+AdHy[k]+B1du1[k]+B2du2[k]+BφdΦ(x[k])

)
.

In the above equation for z[k+ 1], we replace Φ(x[k]) with Φ(x̂[k]) in our construction of

the state observer. To proceed, let e[k] = x[k]− x̂[k] be the state estimation error. Then after

simple manipulations, we obtain

e[k+1] = (I−HC)Ade[k]+ (I−HC)B2du2[k]+ (I−HC)Bφd
(
Φ(x[k])−Φ(x̂[k])

)
.

If we select H so that (I−HC)B2d = 0, then we obtain

e[k+1] = (I−HC)Ade[k]+ (I−HC)Bφd
(
Φ(x[k])−Φ(x̂[k])

)
.

We can see from the above that we do not have any control over the estimation error conver-

gence dynamics, which is determined by the matrix (I−HC)Ad . To improve the estimation

error convergence dynamics, we add the term L(y[k]− ŷ[k]), where L ∈ Rn×p and

ŷ[k] =Cx̂[k] =C(z[k]+Hy[k]). (3.3)
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With the introduction of L, we obtain our projection-based closed-loop observer:

z[k+1] =(I−HC)(Adz[k]+AdHy[k]+B1du1[k]+BφdΦ(x̂[k]))

+L(y[k]−Cz[k]−CHy[k]) (3.4a)

x̂[k] =z[k]+Hy[k], (3.4b)

The state estimation error dynamics are,

e[k+1] =
(
(I−HC)Ad−LC

)
e[k]+ (I−HC)B2du2[k]+ (I−HC)Bφd(Φ(x[k])−Φ(x̂[k])).

Recall that H was chosen so that (I−HC)B2d = 0. Let

Ã = (I−HC)Ad and B̃ = (I−HC)Bφd,

then the estimation error dynamics can be represented as,

e[k+1] =(Ã−LC)e[k]+ B̃
(
Φ(x[k])−Φ(x̂[k])

)
=(Ã−LC)e[k]+ B̃∆Φ[k], (3.5)

where ∆Φ[k] = Φ(x[k])−Φ(x̂[k]).

We next present a necessary and sufficient condition for the solvability of the matrix equa-

tion (I−HC)B2d = 0.

Lemma 3 The equation (I−HC)B2d = 0 is solvable if and only if rank(CB2d)= rank(B2d),

where

H = B2d
(
(CB2d)

† +H0(Ip− (CB2d)(CB2d)
†)
)
. (3.6)

The superscript † denotes the Moore-Penrose pseudo-inverse operation and H0 ∈Rm2×p is

a design parameter matrix.
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Proof See [9].

Our objective is to select the observer gain L so that e[k]→ 0 as k → ∞ for a class of

nonlinearities characterized by the incremental quadratic constraints given by Definition 2.

We have the following theorem.

Theorem 3 Suppose (I−HC)B2d = 0 and that M ∈ R(n+m2)×(n+m2) is an δMM for Φ. If

there exist matrices P = P> � 0, L, and a scalar κ ≥ 0, such that

Γ+κM≺0, (3.7)

where

Γ =

(Ã−LC)>P(Ã−LC)−P (Ã−LC)>PB̃

B̃>P(Ã−LC) B̃>PB̃

 ,
then e[k]→ 0 as k→ ∞.

Proof Let V [k] = e[k]>Pe[k] be a Lyapunov function candidate for the estimation error

dynamics given by (3.5). We evaluate the difference ∆V [k] =V [k+1]−V [k] on the trajec-

tories of (3.5) to obtain

∆V [k] =e[k]>
(
(Ã−LC)>P(Ã−LC)−P

)
e[k]+2e[k]>(Ã−LC)>PB̃∆Φ[k]

+∆Φ[k]>B̃>PB̃∆Φ[k].

Let ∆q = [e[k]> ∆Φ[k]>]>. Premultiplying and postmultiplying the matrix inequality (3.7)

by ∆q> and ∆q, respectively, and taking into account the above equality, we obtain

∆V [k]+κ∆q[k]>M∆q[k]< 0.

Since M is an δMM for Φ(x[k]), we have ∆V [k]< 0.
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3.3.1 LMI synthesis

We present a method to solve matrix inequality (3.7) using an LMI. Since P = P> � 0, it is

nonsingular and we can write P = PP−1P. Therefore, solving the discrete-time Lyapunov

inequality,

(Ã−LC)>P(Ã−LC)−P≺ 0

for P = P> � 0, is equivalent to solving the matrix inequality

(Ã−LC)>PP−1P(Ã−LC)−P≺ 0.

Let Y = PL. Then using the Schur complement, we represent the above matrix inequality

as an LMI,  −P Ã>P−C>Y>

PÃ−YC −P

≺ 0. (3.8)

Partition the incremental multiplier matrix as

M =

M11 M12

M>12 M22

 .
Let

Ω11 =

−P+κM11 Ã>P−C>Y>

PÃ−YC −P

 ,
Ω12 =

(Ã>P−C>Y>)B̃+κM12

O

 ,
Ω22 = B̃>PB̃+κM22
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where O is a matrix of zeros of compatible dimensions. Then, we can represent matrix

inequality (3.7) as an LMI, Ω11 Ω12

? Ω22

≺ 0. (3.9)

We solve (3.9) for P = P> � 0, Y ∈ Rn×p, and κ ≥ 0.

We summarize our discussion of the DT state observer design in Algorithm 2.

Algorithm 2: State observer design
1 Check if rank(CB2d) = rank(B2d) = m2 for plant model (3.1).
2 Compute H using (3.6).
3 Solve (3.9) for P = P> � 0, L = P−1Y , and κ ≥ 0.
4 Construct state observer given by (3.4).

3.4 Unknown Input Estimation

In this section, we propose a DT estimator of the unknown input u2(t) of the CT plant.

Remark 3 If rank(CB2d) = rank(B2d) = m2, then there exists a matrix (CB2d)
† ∈ Rm2×p

such that (CB2d)
†CB2 = Im2 , where (CB2d)

† =
(
(CB2d)

>CB2d
)−1

(CB2d)
>.

In the remainder of the Chapter, we let T = (CB2d)
† for notational convenience. Premulti-

plying both sides of (3.1) by the matrix TC, we obtain

TCx[k+1] =TCAdx[k]+TCB1du1[k]+TCB2du2[k]+TCBφdΦ(x[k]). (3.10)

From Remark 3, TCB2d = Im2 . We can thus rewrite (3.10) as

u2[k] = Ty[k+1]−TCAdx[k]−TCB1du1[k]−TCBφdΦ(x[k]).
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Using the above equation, we propose the following unknown input estimator:

û2[k] = Ty[k+1]−TCAd x̂[k]−TCB1du1[k]−TCBφdΦ(x̂[k]). (3.11)

Since the unknown input estimate in (3.11) depends on y[k+ 1], we can estimate the un-

known input with one sampling period time-delay as,

û2[k−1] = Ty[k]−TCAd x̂[k−1]−TCB1du1[k−1]−TCBφdΦ(x̂[k−1]). (3.12)

Let eu2[k] = u2[k]− û2[k] be the unknown input estimation error. Then, we have

eu2[k] = TCAd(x[k]− x̂[k])+TCBφd(Φ(x[k])−Φ(x̂[k])).

In our subsequent analysis, we assume that B̃ = (I−HC)Bφd has full column rank. By

Theorem 3, x[k]− x̂[k]→ 0 as k→ ∞. It follows from (3.5) that B̃(Φ(x[k])−Φ(x̂[k]))→

0. Since by assumption B̃ = (I −HC)Bφd has full column rank, we can conclude that

Φ(x[k])−Φ(x̂[k])→ 0. Therefore eu2[k]→ 0 as k→ ∞ and u2[k]− û2[k]→ 0. Hence we

can asymptotically estimate the unknown input with one sampling period time-delay. We

summarize our discussion in Algorithm 3.

Algorithm 3: DT unknown input estimator design
1 Check if rank(CB2d) = rank(B2d) for DT plant (3.1).
2 Check if B̃ has full column rank.
3 Compute T = (CB2d)

†.
4 Set x̂[−1] = 0, and u1[−1] = 0.
5 Collect y[k]. Compute x̂[k] and u1[k], where k ≥ 0, using Algorithm 2.
6 Construct the unknown input estimator given by (3.12).
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3.5 An Example of a State and Unknown Input Estimation for a Nonlinear Sys-
tem

A block diagram of a continues-time (CT) nonlinear plant controlled by a discrete-time

(DT) observer-based controller is depicted in Figure 3.1. The output measurement y(t)

of the CT nonlinear plant is sampled and the sampled signal is transmitted to the state

observer and the unknown input estimator. The control signal is u1[k] =−Kd x̂[k], where Kd

is a constant state feedback gain obtained, for example, using the discrete linear-quadratic

regulator (LQR) method. Then, the unknown input estimator uses the estimated DT state

and the control input with one sampling period time-delay to reconstruct the unknown

input. The DT control signal u1[k] is passed through the zero-order-hold (ZOH) element

and then sent to the CT nonlinear plant.

Fig. 3.1.: Closed-loop system with the combined controller-observer compensator and an
unknown input estimator.
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We consider a single-link manipulator with revolute joints from [39]. The nonlinear system

model is described by

θ̇m = ωm + mgb
Jl

u2

ω̇m = k
Jm
(θl−θm)−

B f
Jm

ωm + Kτ

Jm
u1

θ̇l = ωl

ω̇l = k
Jl
(θl−θm)− mgb

Jl
sin(θl),


(3.13)

where θm, ωm are the angular rotation and angular velocity of the motor, θl , ωl are the

angular rotation and angular velocity of the link, u1 is the input motor torque, and u2 is the

unknown input affecting the angular rotation of the motor. The parameters of the model

are shown in Table 3.1. The state vector of the plant model is x = [θm ωm θl ωl]
>. We

Table 3.1.: Parameter values for the single-link flexible robot.

Parameter Description Value
Jm Inertia of dc motor 0.0037 kgm2

Jl Inertia of the controlled link 0.0093 kgm2

m Link mass 0.21 kg
b Center of mass 0.15 m
k Elastic constant 0.18 Nm/rad

B f Viscous friction coefficient 0.0083 Nm/V
Kτ Amplifier gain 0.08 Nm/V
g Acceleration due to gravity 9.81 m/s2

represent the the nonlinear plant model in the form,

ẋ(t) =


0 1 0 0

−km
Jm
−B f

Jm

km
Jm

0

0 0 0 1

−km
Jl

0 −km
Jl

0

x+


0
Kτ

Jm

0

0

u1 +


mgb
Jl

0

0

0

u2 +


0

0

0

−mgb
Jl

sin(x3(t)),
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and the output is

y(t) =

1 0 0 0

0 1 0 0

x.

The above system is “slow.” Therefore, for sufficiently small sampling period Ts, we can

use the exact discretization method to discretize the above model because the inputs to

the system are approximately constant over sufficiently small sampling period. We use

MATLAB’s function, c2d, with Ts = 0.02 sec, to obtain the DT model (3.1) with

Ad = 10−2×


99.0423 1.9495 0.9564 0.0064

−94.9625 94.6692 94.7146 0.9564

−0.3862 −0.0025 99.6125 1.9974

−38.5357 −0.3805 −38.7837 99.6125

 ,

B1d = 10−2×


0.4253

42.1505

−0.0003

−0.0551

 , B2d = 10−2×


66.2418

−31.8204

−0.0856

−12.8333

 ,

Bφd = 10−2×


−0.0011

−0.2128

−0.6641

−66.3690

 , C =

1 0 0 0

0 1 0 0

 ,

where the nonlinearity of the model is Φ(x[k]) = sin(x3[k]). Note that C is full row rank and

the rank condition of our DT plant model is satisfied, that is, rank(CB2d) = rank(B2d) =

1. By solving the discrete-time algebraic Riccati equation, we obtain the feedback con-

troller

u1[k] =−
[
2.2263 0.4538 2.6579 −0.5152

]
x̂[k].
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To proceed with our observer design given by (3.4), we solve for H so that (I−HC)B2d = 0

to obtain

H =


0.8125 −0.3903

−0.3903 0.1875

−0.0011 0.0005

−0.1574 0.0756

 .

Since |sin(x3[k])− sin(x̂3[k])| ≤ |x3[k]− x̂3[k]| by the Mean Value Theorem, Φ(x[k]) =

sin(x3[k]) is Lipschitz. Therefore, we can use the following incremental multiplier ma-

trix,

M =

I 0

0 −I

 .
Solving (3.9) for P, L, and κ using the cvx toolbox, we obtain

P =


94.33051 18.0754 −36.0293 0.1537

18.0754 96.8613 −61.7687 0.2902

−36.0293 −61.7687 54.7671 −0.3795

0.1537 0.2902 −0.3795 0.0050

 ,

L =


0.4317 1.3569

1.0290 2.7607

2.2369 3.5281

63.3664 85.5940

 , and κ = 8.1364×10−4.

In our simulation, we let x[0] = [3 2 3 − 2]>, zero initial condition for the state observer,

x̂[−1] = [0 0 0 0]>, and u[−1] = 0. A plot of the unknown input u2 is shown in the top

subfigure of Figure 3.4. We simulate the closed-loop system shown in Figure 3.1 with the

state observer given by (3.4), and the unknown input estimator given by (3.12). To show the

results of the state estimates more clearly, we use 150 samples. Figure refstates contains
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the plots of the true state components, and their estimates. The control input is shown in

Figure 3.3, where the top plot shows the DT control signal, while the bottom plot shows

the input to the actuator after zero-order hold (ZOH) operation on the DT control signal.

The unknown input estimate is shown in the bottom subfigure of Figure 3.4. We note that

the state and the unknown input estimators perform as expected.

-2
0
2
4
6

0 50 100 150

-50

0

50

0 50 100 150

-5

0

5

10

0 50 100 150

-200

0

200

0 50 100 150

Fig. 3.2.: State estimates of the nonlinear plant model.

3.6 An Application of the Proposed Unknown Input Estimator to Reconstruct Mali-
cious Packet Drops During the Control Signal Transmission

The proposed unknown input estimator in this Chapter can also be used to reconstruct

malicious packet drops in the communication between the controller and the actuators. We

illustrate this on a linear DT plant model,

x[k+1] = Adx[k]+Bdua[k]

y[k] = Cx[k],

 (3.14)
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Fig. 3.3.: The control signal and the input to the actuator.
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Fig. 3.4.: A plot of the unknown input signal and its estimate.

where Ad ∈ Rn×n, Bd ∈ Rn×m has full column rank, and C ∈ Rp×n. ua[k] is the input

received by actuators, y[k] ∈ Rp is the output measured by sensors.
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A block diagram of the network control system under consideration is shown in Figure 3.5.

The plant is to be remotely controlled through a communication network: the sensor mea-

surements, y[k], are sent to the controller through a reliable part of network so that the

sensor measurements are always received correctly, while the control signals, uc[k], are

sent to the plant through a part of the network that causes an additive error ea[k]. As

Fig. 3.5.: A network control system experiencing malicious packet drops between the con-
troller and the actuators.

in [50], we note that the communication error ea[k] can be used to model the presence of

malicious attackers that causes packet drops during the control signal transmission. We

model these packet drops using the matrix Λ(k) = diag{λ1(k),λ2(k), . . . ,λm(k)}, where

λi(k), i = 1, . . . ,m, are Boolean variables, with 1 for packet received and 0 for packet

dropped. Therefore, the signal received by the actuators is ua[k] = Λ(k)uc[k]. Substituting

the above and ua[k] = uc[k]+ ea[k] into (3.14), we obtain the closed-loop network control

system dynamics,

x[k+1] = Adx[k]+Bd(uc[k]+ ea[k])

y[k] = Cx[k],

 (3.15)

where ea[k] = Λ(k)uc[k], and Λ(k) = Λ(k)− Im.
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We assume the output measurements y[k] and the control signal uc[k] are known at every

time instant k. Using Algorithm 3, we obtain estimates of the malicious packet drops of the

form,

êa[k−1] = Ty[k]−TCAd x̂[k−1]−TCBduc[k−1].

We now illustrate the proposed unknown input estimator reconstructing the malicious packet

drops between the controller and actuators with one sampling period time-delay.

Example 4 We consider a DT state-space model of a coupled mass-spring-damper system,

where

Ad =


0.9907 0.0047 0.0903 0.0002

0.0047 0.9907 0.0002 0.0903

−0.1805 0.0900 0.8100 0.0044

0.0900 −0.1805 0.0044 0.8100

,

Bd =


0

0.0047

0.0002

0.0903

, C =

 1 0 0 0

0 1 0 0

.

See [89, p. 148] for modeling equations of such a system.

In our simulation, we assumed uc[−1] = 0, x̂[−1] = [0 0 0 0]>, and 30% input transmission

packet drops. We can see in Figure 3.6 that the unknown input estimator reconstructs well

the unknown input with one sampling period time-delay.

3.7 Conclusions

We proposed a novel unknown input observer (UIO) architecture for a class of continuous-

time nonlinear systems. The proposed UIO design is in the DT domain. The design of the

UIO was formulated in terms of an LMI. A novel unknown input estimator was also pro-

posed. We showed how this unknown input estimator can be used to reconstruct malicious
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Fig. 3.6.: Malicious packet drops reconstruction with 30% input transmission packet drops.

packet drops in a network control system experiencing malicious packet drops during the

control signal transmission. The proposed unknown input estimator can also be used to

detect faulty actuators.
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4. SIMULTANEOUS ESTIMATION OF THE STATE, UNKNOWN
INPUT, AND OUTPUT DISTURBANCE IN DISCRETE-TIME

LINEAR SYSTEMS

4.1 Introduction

In this Chapter, a state observer and unknown input and output disturbance estimators are

proposed for discrete-time (DT) linear systems corrupted by bounded unknown inputs and

output disturbances. Sufficient conditions for the existence of the state observer and dis-

turbance estimators are given. Relationships with the strong observer of Hautus are inves-

tigated. The state, unknown input, and output disturbance estimation errors are guaranteed

to be l∞-stable with prescribed performance level. The design of the state observer and dis-

turbance estimators are given in terms of linear matrix inequalities (LMIs). The proposed

estimators can be applied to detect adversarial attacks on the communication channels be-

tween the controller and actuators and between the plant sensors and the controller. The

unknown input can represent the attacks between the controller and actuator, while the

output disturbances can represent the attacks between the sensor and the controller.

4.2 Notations

In our analysis, we use the following notation. For a vector v∈Rn, we use standard notation

for the Euclidean norm of a vector: ‖v‖=
√

v>v. For a sequence of vectors {v[k]}∞
k=0, we

denote ‖v[k]‖∞ , supk≥0 ‖v[k]‖. We say that a sequence {v[k]} ∈ l∞ if ‖v[k]‖∞ ≤ ∞.
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4.3 Problem Statement

We consider a class of DT dynamical systems modeled by

x[k+1] = Ax[k]+B1u[k]+B2w[k]

y[k] =Cx[k]+Dv[k],

 (4.1)

where A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C ∈ Rp×n, and D ∈ Rp×r. The control input

is u[k] ∈ Rm1 . The unknown input and output disturbance to the system are modeled by

w[k] ∈Rm2 and v[k] ∈Rr, respectively. See, for example [86, Subsection 1.1.2 and Chapter

2] or [87] for a discussion on modeling of DT systems.

Fig. 4.1.: A combined UIO-controller compensator and an estimator of unknown input and
output disturbance for system modeled by (4.1).

Our objective is to construct an observer to estimate the system state in the presence of

unknown input w[k] and output disturbance v[k]. In addition, we also wish to estimate the

unknown input and output disturbance.

We make the following assumptions:

Assumption 2 The pair (A,C) is detectable.

Assumption 3 Matrices B2 and D have full column rank.

Assumption 4 The unknown input w[k] and output disturbance v[k] are uniformly bounded

as functions of k.
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4.4 Proposed UIO Architecture

In this section, we propose an observer architecture to estimate the state of system given

by (4.1). The estimated state can then be used to synthesize a combined UIO-controller

compensator as shown in Figure 4.1.

We begin by representing x[k] as

x[k] = x[k]−MCx[k]+MCx[k] = (I−MC)x[k]+M(y[k]−Dv[k]), (4.2)

where M ∈ Rn×p is to be determined. We select M such that

MD = On×r, (4.3)

where On×r is an n-by-r matrix of zeros. We discuss a method for finding M in the follow-

ing section.

To proceed, let z[k] = (I−MC)x[k]. Taking into account (4.3), we represent (4.2) as

x[k] = z[k]+My[k]. (4.4)

We will now show that an estimate of the state x[k] can be obtained from

x̂[k] = z[k]+My[k]. (4.5)

The signal z[k] is obtained from the equation, z[k+1] = (I−MC)x[k+1]. Substituting (4.1)

into the above gives

z[k+1] = (I−MC)(Ax[k]+B1u[k]+B2w[k]) (4.6)
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We select M such that (4.3) is satisfied and

(I−MC)B2 = On×m2. (4.7)

Next, substituting (4.4) and (4.7) into (4.6), we obtain

z[k+1] =(I−MC)(Az[k]+AMy[k]+B1u[k]).

To proceed, let e[k] = x[k]− x̂[k] be the state estimation error. Performing some manipula-

tions gives

e[k+1] = (I−MC)Ae[k].

We can see from the above that we do not have any control over the estimation error conver-

gence dynamics, which is determined by the matrix (I−MC)A. To improve the estimation

error convergence dynamics, we add the innovation term L(y[k]− ŷ[k]), where L ∈ Rn×p

and

ŷ[k] =Cx̂[k] =C(z[k]+My[k]).

Then,

z[k+1] = (I−MC)(Ax̂[k]+B1u[k])+L(y[k]− ŷ[k]). (4.8)

Combining (4.5) and (4.8), we obtain the proposed UIO architecture,

z[k+1] = (I−MC)(Az[k]+AMy[k]+B1u[k])+L(y[k]−Cz[k]−CMy[k])

x̂[k] = z[k]+My[k].

 (4.9)
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The error dynamics for the UIO given by (4.9) are

e[k+1] =x[k+1]− x̂[k+1]

=Ax[k]+B1u[k]+B2w[k]− z[k+1]−My[k+1]

=Ax[k]+B1u[k]+B2w[k]− (I−MC)(Ax̂[k]+B1u[k])−L(y[k]−Cz[k]−CMy[k])

−M(Cx[k+1]+Dv[k+1]).

Substituting the state dynamics of (4.1), equation (4.3), and (4.5) into the above, we ob-

tain

e[k+1] =Ax[k]+B1u[k]+B2w[k]− (I−MC)(Ax̂[k]+B1u[k])−L(y[k]−Cx̂[k])

−MC(Ax[k]+B1u[k]+B2w[k]).

Performing some manipulations and taking into account (4.7) gives

e[k+1] = ((I−MC)A−LC)e[k]−LDv[k].

Let Ã = (I−MC)A, then

e[k+1] = (Ã−LC)e[k]−LDv[k]. (4.10)

A necessary condition for the stability of the above error dynamics is that (Ã−LC) is Schur

stable. To solve for such an L, the pair (Ã,C) is required to be detectable.

Remark 4 We note that if an L exists such that (Ã−LC) is Schur stable and LD = On×r,

then the error dynamics in (4.10) are asymptotically stable. However, for general systems,

it may not be feasible to satisfy the condition LD = On×r. In our further analysis, we do

not impose the constraint LD = On×r. We present conditions for the stability of the error

dynamics (4.10) and conditions for the existence of the UIO gain matrix L in Section 4.8.
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In the following section, we give the existence condition for a matrix M to satisfy (4.3)

and (4.7).

4.5 Solving for M

In this section, we present a sufficient condition for the existence of a matrix M with the re-

quired properties. This sufficient condition would be one of the conditions for the existence

of our proposed UIO. To proceed, we first prove the following lemma.

Lemma 4 A necessary and sufficient condition for (I−MC)B2 = O to have a solution M

is that rank(CB2) = rank(B2).

Proof Suppose there exists a matrix M such that (I−MC)B2 = O. Equivalently,

MCB2 = B2.

Hence,

rank(MCB2)≤ rank(CB2)≤ rank(B2).

Therefore, we must have rank(CB2) = rank(B2). Conversely, if rank(CB2) = rank(B2),

then the row spaces of B2 and CB2 must be the same and so the rows of B2 are in the row

space of CB2. It follows that there is a matrix M such that B2 = MCB2.

We now give a condition for the existence of M that solves matrix equations (4.3) and (4.7)

simultaneously.

Theorem 4 If

rank[CB2 D] = rank(B2)+ rank(D), (4.11)
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then there exists a solution M to

(I−MC)B2 = On×m2, (4.12a)

MD = On×r. (4.12b)

Proof We represent (4.12a) and (4.12b) as

M
[
CB2 D

]
=
[
B2 On×r

]
. (4.13)

By (4.11), the matrix [CB2 D] has full column rank and therefore it is left invertible. For

example, [CB2 D]† is a left inverse of [CB2 D]. Therefore,

M = [B2 On×r][CB2 D]† (4.14)

is a solution to (4.12a) and (4.12b), which concludes the proof.

Note that a class of solutions to (4.12a) and (4.12b) has the form

M =[B2 On×r]
(
[CB2 D]† +H0(I− [CB2 D][CB2 D]†)

)
, (4.15)

where H0 ∈ Rn×p is a design parameter matrix.

Remark 5 For the matrix [CB2 D] to have full column rank, it is necessary that r≤ p−m2.

Equivalently, the number of outputs should be greater than or equal the number of unknown

inputs and output disturbances.

4.6 The UIO Synthesis Conditions

In our further discussion, we use the following lemma.
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Lemma 5 If the pair (Ã,MC) is detectable, then the pair (Ã,C) is detectable. Furthermore,

if M has full column rank, then the converse is also true. (Note that in our application, we

need MD = O and thus unless D is the zero matrix, M can never have full column rank.)

Proof We prove the lemma by contraposition. Assume that the pair (Ã,C) is non-detectable.

Then, there exists an eigenvalue |z1| ≥ 1 such that

rank

z1I− Ã

C

< n.

Therefore, there exist a vector v1 ∈ Cn such thatz1I− Ã

C

v1 = 0,

and hence, Cv1 = 0. Premultiplying the above equation by M gives MCv1 = 0. We conclude

from the above that z1I− Ã

MC

v1 = 0. (4.16)

Thus, z1 also an unobservable eigenvalue of the pair (Ã,MC), that is, the pair (Ã,MC) is

non-detectable.

Note that, z1I− Ã

MC

=

 I O

O M

z1I− Ã

C


and if M has full column rank, then its pseudoinverse M† exists andz1I− Ã

C

=

 I O

O M†

z1I− Ã

MC

 .
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Hence, if M has full column rank, then the pair (Ã,MC) is detectable ⇐⇒ the pair (Ã,C)

is detectable.

We now present a theorem that gives sufficiency conditions for the existence of the pro-

posed UIO.

Theorem 5 1. If (4.11) holds, then there exists M that satisfies (4.12) and thus the UIO

given by (4.9) can be constructed with this M.

2. Suppose in addition, for this M, the pair (Ã,C) =
(
(I−MC)A,C

)
is detectable. Then

there is a matrix L and a constant γ such that (Ã− LC) is Schur stable and the

observer error given by equation (4.10) satisfies

limsup
k→∞

‖e[k]‖ ≤ γ limsup
k→∞

‖v[k]‖. (4.17)

Proof By Theorem 4, condition (4.11) is sufficient for the existence of M that solves (4.12).

The detectability of the pair (Ã,C) is necessary and sufficient for the existence of L such

that (Ã−LC) is Schur stable. By Assumption 4, v[k] is uniformly bounded as a function

of k. Combining this with (Ã−LC) being Schur stable yields (4.17) which complete the

proof.

The following lemma gives conditions for the detectability of the pair (Ã,MC) of the system

given by

x[k+1] = Ax[k]+B1u[k]+B2w[k]

My[k] = MCx[k]+MDv[k].

 (4.18)

We will use this lemma in our further analysis. To proceed, note that by construction,

MD = O.

Lemma 6 If

• rank(CB2) = rank(B2) = m2,
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• rank(In−MC) = n−m2,

then the following conditions are equivalent

1. (Ã,MC) is detectable,

2. rank

z(In−MC)− Ã

MC

= n for all |z| ≥ 1,

3. rank

zIn−A −B2

MC On×m2

= n+m2 for all |z| ≥ 1.

Proof First, we show that conditions 1 and 2 are equivalent. The pair (Ã,MC) being

detectable is equivalent to

rank

zIn− Ã

MC

= n for all |z| ≥ 1,

which is equivalent to

rank

(In −zIn

O In

zIn− Ã

MC

)=rank

z(In−MC)− Ã

MC

= n, for all |z| ≥ 1,

which proves that conditions 1 and 2 are equivalent.

Next, we will show that conditions 2 and 3 are equivalent. Since B2 has full column rank,

it is left invertible, for example, we can take B2
† as a left inverse of B2. Then, we have

B2
†B2 = Im2 . Therefore,

ker (B2
†)∩ker (In−MC) = {0}

and hence

rank

In−MC

B2
†

= n.



58

Let

S =


In−MC On×p

B2
† Om2×p

Op×n Ip

 , T =

 In On×m2

B2
†(zIn−A) Im2

 ,
where S ∈ R(n+p+m2)×(n+p), T ∈ R(n+m2)×(n+m2), and rank(S) = n+ p. We then have

rank

zIn−A −B2

MC O

= rank

(
S

zIn−A −B2

MC O

T

)

= rank


z(In−MC)− Ã O

O −Im2

MC O


= rank

z(In−MC)− Ã

MC

+m2

= n+m2.

This proves that conditions 2 and 3 are equivalent.

The following theorem gives us insight into the role of system zeros on the existence of the

proposed UIO.

Theorem 6 If

• the matrix rank condition (4.11) is satisfied,

• the matrix

−B2

D

 is defined and has full column rank,

• rank

I−MC O

O M

= n,

• rank

z(In−MC)− Ã

MC

= n for all |z| ≥ 1,
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then

rank

zIn−A −B2

C D

= n+m2 for all |z| ≥ 1. (4.19)

Proof By Theorem 4, if matrix rank condition (4.11) is satisfied then there exists a solution

M that satisfies I−MC O

O M

−B2

D

= O.

Let

M̃ =

I−MC O

O M

 .
There exists M1 ∈ R(p−m2)×(n+p) such that M1

−B2

D

= O and rank

 M̃

M1

= n+ p−m2.

Then, since

−B2

D

 has full column rank, its pseudoinverse is also its left inverse, that is,

−B2

D

†−B2

D

= Im2.

Therefore,

ker

 M̃

M1

∩ker

−B2

D

†

= {0},



60

and

rank


M̃

M1−B2

D

†

= n+ p.

Let

S =


M̃

M1−B2

D

†

 ,

and

T =


In O

−

−B2

D

†zIn−A

C

 Im2

 .

Then,

rankS

zIn−A −B2

C D

T = rank



M̃

zIn−A

C

 O

M1

zIn−A

C

 O

O Im2


= rank


M̃

zIn−A

C


M1

zIn−A

C



+m2.

(4.20)
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Note that

M̃

zIn−A

C

=

z(I−MC)− Ã

MC

 .
Hence, (4.19) holds if

rank

z(I−MC)− Ã

MC

= n, for all |z| ≥ 1.

Remark 6 By Lemma 5 and Theorem 5, the above condition also implies that the pair

(Ã,C) is detectable.

4.7 Relations With the Strong Observer of Hautus

In this section, we discuss relationships between our UIO existence conditions and the

strong observer existence conditions of Hautus [54]. Our conditions are applicable to a

general class of linear systems when the unknown input and output disturbance are differ-

ent as given by (4.1). Hautus, on the other hand, gives the strong observer existence con-

ditions for a class of linear systems with the same unknown input and output disturbance.

The Hautus’ necessary and sufficient conditions for the existence of his strong observer

are:

rank

CB2 D

D O

= rank(D)+ rank

B2

D

 , (4.21)

and system zeros of the system defined by quadruple (A,B2,C,D) are in the open unit

disk.
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Our plant model is more general than that of Hautus. Therefore, we cannot apply his

conditions to our plant model. However, we can represent our plant model in the form of

the Hautus plant model as follows,

x[k+1] = Ax[k]+B1u[k]+
[
B2 O

]w[k]

v[k]


y[k] =Cx[k]+

[
O D

]w[k]

v[k]

 ,


(4.22)

where O is used to represent matrices of zeros with compatible dimensions. Note that the

above plant model has the same unknown input and output disturbance. Thus, we can

apply the conditions of Hautus to this plant model for the existence of the strong observer

of Hautus. We first concern ourselves with the matrix rank condition of Hautus given

by (4.21). Applying (4.21) to (4.22) gives

rank

CB2 O O D

O D O O

= rank
[
O D

]
+ rank

B2 O

O D

 . (4.23)

Rearranging the left hand side of the above gives

rank

CB2 O O D

O D O O

=rank

CB2 D O

O O D

= rank
[
CB2 D

]
+ rank(D). (4.24)

Rearrange the right hand side of the rank condition (4.23) as

rank
[
O D

]
+ rank

B2 O

O D

= 2rank(D)+ rank(B2) (4.25)

Comparing (4.24) and (4.25). We see that the matrix rank condition (4.23) is the same as

the matrix rank condition (4.11).
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Next, the system zeros condition for the system modeled by (4.22) is

rank

zI−A −B2 O

C O D

= n+m2 + r for all |z| ≥ 1. (4.26)

If the rank condition (4.19) is not satisfied, and B2 and D have the same number of columns,

then there are β1,β2, not both zero, such thatzI−A −B2

C D

β1

β2

= 0.

Then, it is easy to see that

zI−A −B2 O

C O D




β1

β2

β2

= 0.

That is, the system zeros condition (4.26) implies the system zeros condition (4.19).

The following example shows that there are general systems given by (4.1) such that our

proposed UIO can be constructed, however, the strong observer of Hautus cannot be con-

structed for the equivalent augmented system given by (4.22).

Example 5 We consider a plant model (4.1) with

A =


−1 0 0

0 −2 0

0 0 −0.3

 , B2 =


−2

−3

−4

 , C =

1 0 0

0 1 0

 , D =

2

2

 .
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To design our proposed UIO for the above system, we first check the UIO existence condi-

tions given in Theorem 5. The matrix rank condition (4.11) is satisfied, where

rank
[
CB2 D

]
= rank

−2 2

−3 2

= rank(B2)+ rank(D) = 2.

We solve (4.14) to obtain,

M =


−2 2

−3 3

−4 4

 .

Next, we construct the matrix Ã = (I3−MC)A to obtain

Ã =


−3 4 0

−3 4 0

−4 8 −0.3

 .

which has the eigenvalues {−0.3, 1, 0}. We check the detectability of the pair (Ã,C), by

checking that the unstable eigenvalue is observable, that is,

rank

I3− Ã

C

= 3.

Therefore, the pair (Ã,C) is detectable. Hence, there exists a matrix L such that (Ã−LC) is

Schur stable. Since v[k] is uniformly bounded, then there exists a constant γ such that (4.17)

is satisfied. Therefore, both existence conditions of our proposed observer are satisfied.

If one wishes to construct the strong observer of Hautus for this example, it is required that

the unknown input and output disturbance are the same. It is easy to check that, in this

case, the strong observer of Hautus can be constructed.
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Now suppose that the unknown input and output disturbance are not the same. To construct

the strong observer, we represent the system of this example in the Hautus format given

by (4.22). We next check the Hautus’ existence conditions. It is easy to check that the

matrix rank condition of Hautus is satisfied. Then, we check the system zeros condition.

The system zero condition is not satisfied for z1 = 1. Indeed,

det

I3−A −B O

C O D

= 0.

In conclusion, one can construct our proposed observer for this example but not the strong

observer of Hautus.

In our further discussion, we will use the following notation for the various matrix rank

conditions:

1. S ⇐⇒ rank
[
CB2

]
= rankB2.

2. G ⇐⇒ rank
[
CB2 D

]
= rankB2 + rankD.

3. M ⇐⇒ rank(CB2 +D) = rank

B2

D

, when CB2 +D is defined.

4. H ⇐⇒ Hautus’ matrix rank condition:

rank

CB2 D

D O

= rank

B2

D

+ rankD.

For any matrix M, we let

c(M) = Number of columns of M,

kerM = {v : Mv = 0}.
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We will make frequent use of the well known equality

c(M) = rankM+dimkerM. (4.27)

First note that G implies that rank(CB2) = rankB2 and thus CB2v = 0 if and only if B2v = 0,

or equivalently, ker(CB2) = kerB2.

If u,v are column vectors, we let u⊕ v =

u

v

 and if U,V are vector spaces of column

vectors, we let

U⊕V = {u⊕ v|u ∈U,v ∈V} .

It is easy to see that dim(U⊕V )= dimU+dimV . (Note that if {u1, . . . ,up} and {v1, . . . ,vq}

are bases of U,V , respectively, then {u1⊕ 0, . . . ,up⊕ 0,0⊕ v1, . . . ,0⊕ vq} is a basis for

U⊕V .)

Next, we give the following lemmas that we will use in the proof of our main theorem in

this section.

Lemma 7 If G , then ker(
[
CB2 D

]
) = kerB2⊕kerD.

Proof We have from G and equality (4.27) that

dimker(
[
CB2 D

]
) = c(

[
CB2 D

]
)− rank(

[
CB2 D

]
)

= c(CB2)+ c(D)− rank(B2)− rankD

= dimkerB2 +dimkerD

= dim(kerB2⊕kerD).

Since it is immediate that kerB2⊕kerD⊂ ker(
[
CB2 D

]
), we must have ker(

[
CB2 D

]
)=

kerB2⊕kerD.

Lemma 8 If G , then ker(CB2 +D) = kerB2∩kerD.
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Proof Clearly we have

kerB2∩kerD⊂ ker(CB2 +D).

Suppose (CB2 +D)v = 0. Then

[
CB2 D

]v

v

= 0.

It follows from Lemma 7 that v

v

 ∈ kerB2⊕kerD.

Therefore B2v = 0 and Dv = 0 and the lemma follows.

Lemma 9 If G , then M .

Proof Observe that

ker

B2

D

= kerB2∩kerD.

Thus by Lemma 8, we have

ker(CB2 +D) = ker

B2

D

 ,
which is equivalent to the claim of the lemma since the two matrices have the same number

of columns.

The following theorem states that the matrix rank condition for the existence of our pro-

posed UIO is also sufficient for the matrix rank condition of the strong observer of Hau-

tus.
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Theorem 7 The matrix rank condition (4.11) implies the matrix rank condition (4.21) of

Hautus.

Proof Assume G . Then the above lemmas hold (and all will be used.) Hautus matrix rank

condition is

rank

CB2 D

D O

= rank

B2

D

+ rankD.

By Lemma 9, this is equivalent to

rank

CB2 D

D O

= rank(CB2 +D)+ rankD,

which is equivalent to

rank

CB2 D

D O

= rank

CB2 +D O

O D

 .
We prove the above by showing that the two matrices have the same kernel. SupposeCB2 D

D O

u

v

= 0.

Then,

[
CB2 D

]u

v

= 0, and Du = 0.

By Lemma 7,

CB2u = 0, Dv = 0, and Du = 0,
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and it follows that CB2 +D O

O D

u

v

= 0.

Conversely, suppose CB2 +D O

O D

u

v

= 0.

Then,

(CB2 +D)u = 0, and Dv = 0.

By Lemma 8,

CB2u = 0, Du = 0, and Dv = 0.

Thus CB2 D

D O

u

v

= 0.

Therefore the two matrices in question have the same kernel and therefore the same rank

(since they clearly have the same number of columns.)

In the next section, we analyze the stability of the error dynamics given by (4.10).

4.8 Stability of the Error Dynamics

In this section, we analyze the error dynamics stability and give the conditions for finding

the UIO gain matrix L in terms of linear matrix inequalities. To proceed, we define l∞-

stability with performance level (p.l.) γ .
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Definition 3 The system

e[k+1] = f (k,e[k],v[k]) (4.28)

is globally uniformly l∞-stable with performance level γ if the following conditions are

satisfied:

1. The undisturbed system, (that is, v[k] = 0 for all k ≥ 0) is globally uniformly expo-

nentially stable with respect to the origin.

2. For zero initial condition, e[k0] = 0, and every bounded unknown input v[k], we have

‖e[k]‖ ≤ γ‖v[k]‖∞, ∀k ≥ k0.

3. For every initial condition, e[k0] = e0, and every bounded unknown input v[·], we

have

limsup
k→∞

‖e[k]‖ ≤ γ‖v[k]‖∞.

For more details on the l∞-stability for discrete-time systems with level of performance, we

refer to [40]. We now present a lemma from [40] that we use in our proof of the theorem

that gives the design condition of the proposed UIO in LMI format.

Lemma 10 Suppose that for the error dynamics given by (4.28) there exists a function

V : Rn→ R and scalars δ ∈ (0,1), β1,β2 > 0 and µ1,µ2 ≥ 0 such that

β1‖e[k]‖2 ≤V (e[k])≤ β2‖e[k]‖2, (4.29)
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and

∆V [k]≤−δ (V (e[k])−µ1‖v[k]‖2), (4.30a)

‖e[k]‖2 ≤ µ2V (e[k]), (4.30b)

for all k≥ 0, where ∆V [k] =V (e[k+1])−V (e[k]). Then system (4.28) is globally uniformly

l∞-stable with performance level γ =
√

µ1µ2 with respect to the output disturbance v[k].

Our objective is to select the UIO gain matrix L so that the state error dynamics (4.10) is

l∞-stable with performance level γ .

To proceed, consider the error dynamics equation given by (4.10). Let E = Ã−LC, and

N =−LD. Then, we have the following theorem.

Theorem 8 Suppose Assumption 4 is satisfied. If there exist matrices P = P> � 0 and L,

and α ∈ (0,1) such that the matrix inequalities

E>PE− (1−α)P ∗

N>PE N>PN−αI

� 0 (4.31a)

P ∗

I µI

� 0, (4.31b)

are satisfied, then the state observation error dynamics are l∞-stable with performance

level γ =
√

µ .

Proof Let V [k] = e[k]>Pe[k] be a Lyapunov function candidate for the estimation error

dynamics given by (4.10). We evaluate the first forward difference ∆V [k] =V [k+1]−V [k]

on the trajectories of (4.10) to obtain

∆V [k] =e[k]>(E>PE−P)e[k]+2e[k]>E>PNv[k]+ v[k]>N>PNv[k].
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Let ζ = [e[k]> v[k]>]>. Premultiplying and postmultiplying the matrix inequality (4.31a)

by ζ> and ζ , respectively, and taking into account the above equality, we obtain

∆V [k]+α(V [k]−‖v[k]‖2)� 0.

Therefore, condition (4.30a) in Lemma 10 holds with µ1 = 1. Next, taking the Schur

complement of (4.31b), we obtain

P−µ
−1I � 0.

Premultiplying the above inequality by e[k]> and postmultiplying it by e[k] gives

e[k]>Pe[k]−µ
−1e[k]>e[k]≥ 0.

Rearranging the above yields

‖e[k]‖2 ≤ µV (e[k]).

By Lemma 10, the state error dynamics (4.10) are l∞-stable with performance level γ =
√

µ .

We present a method to solve matrix inequality (4.31a) in Theorem 8 using an LMI. Let

Z = PL, then solving the matrix inequality (4.31a) is equivalent to solving the following

LMI for P and Z, −P ∗

Ω21 Ω22

� 0, (4.32)

where

Ω
>
21 =

[
PÃ−ZC −ZD

]
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and

Ω22 =

−(1−α)P On×r

Or×n −αI

 .
Since P = P> � 0, taking Schur complement of (4.32) gives,

Ω22 +Ω21P−1
Ω
>
21 � 0,

which, in turn, yields matrix inequality (4.31a).

4.9 Unknown Input and Output Disturbance Reconstruction

In this section, we propose estimators for the unknown input w[k] and the output disturbance

v[k] of system model (4.1).

4.9.1 Unknown input reconstruction

By Assumption 3, the matrix B2 has full column rank, therefore, B†
2 = (B>2 B2)

−1(B2)
>

exists. Premultiplying both sides of the state dynamics given by (4.1) by the matrix B†
2, we

obtain

B†
2x[k+1] = B†

2Ax[k]+B†
2B1u[k]+B†

2B2w[k].

Since B†
2B2 = Im2 , we rewrite the above equation as

w[k] = B†
2x[k+1]−B†

2Ax[k]−B†
2B1u[k].

Using this equation, we obtain the following unknown input estimator:

ŵ[k] =B†
2x̂[k+1]−B†

2Ax̂[k]−B†
2B1u[k].
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The above unknown input estimator depends on x̂[k + 1]. Therefore, we delay the argu-

ment by one sampling period time-delay to obtain our proposed estimator of w[k] of the

form

ŵ[k−1] =B†
2x̂[k]−B†

2Ax̂[k−1]−B†
2B1u[k−1]. (4.33)

To prove l∞-stability of the unknown input estimates, we let ew[k] = w[k]− ŵ[k] be the

unknown input estimation error. Then, we have

ew[k] = B†
2e[k+1]−B†

2Ae[k].

By Theorem 8, we have

limsup
k→∞

‖e[k]‖ ≤ γ‖v[k]‖∞.

Hence the bound on the unknown input estimation steady-state error satisfies

limsup
k→∞

‖ew[k]‖ ≤ ‖B†
2‖(γ‖v[k+1]‖∞ +‖A‖γ‖v[k]‖∞)

≤ ‖B†
2‖(1+‖A‖)

√
µ‖v[k]‖∞.

Thus, the unknown input estimator estimates the unknown input with performance level

γw = ‖B†
2‖(1+‖A‖)

√
µ .

4.9.2 Output disturbance reconstruction

By Assumption 3, the matrix D has full column rank, therefore it has left inverse. Premul-

tiplying both sides of the output equation of model (4.1) by D† gives

D†y[k] = D†Cx[k]+D†Dv[k].
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Rearranging the above equation, we obtain

v[k] = D†y[k]−D†Cx[k].

From the above, we obtain the output disturbance estimator,

v̂[k] = D†y[k]−D†Cx̂[k]. (4.34)

To prove the l∞-stability of the output disturbance estimate, we let ev[k] = v[k]− v̂[k] be the

output disturbance estimation error. Then, we have

ev[k] =−D†Ce[k].

By Theorem 8,

limsup
k→∞

‖e[k]‖ ≤ γ‖v[k]‖∞.

We use this to obtain a bound on the output disturbance steady-state estimation error,

limsup
k→∞

‖ev[k]‖ ≤ ‖D†‖‖C‖γ‖v[k]‖∞ = ‖D†‖‖C‖
√

µ‖v[k]‖∞.

Thus, the performance level of the output disturbance estimator is γv = ‖D†‖‖C‖√µ .

We summarize our discussion in the form the following observer design algorithm.

Algorithm 4: Unknown input estimator synthesis
1 Check if matrix rank condition (4.11) is satisfied for system model given by (4.1).
2 Solve (4.14) for M.
3 Solve LMIs (4.32) and (4.31b) for L and P using, for example, CVX toolbox.
4 Set x̂[−1] and u[k−1] to zero.
5 Construct the state observer, unknown input estimator, and output disturbance

estimator given by (4.9), (4.33), and (4.34), respectively.
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4.10 Examples

In this section, we consider two examples to illustrate our obtained results.

Example 6 We consider a discrete-time dynamical system model, where

A =


0.5 0 0

0 0.5 0

0 0 0.5

 , B2 =


1

1

0

 , C =

0 2 1

1 0 0

 , D =

 0

0.2

 .

In this example, the control input is set to zero. The matrix rank condition (4.11) is satisfied,

thus we can proceed with our proposed UIO design. Solving (4.14) for M yields

M =


0.5 0

0.5 0

0 0

 .

Next, we construct the matrix Ã = (I3−MC)A to obtain

Ã =


0.5 −0.5 −0.25

0 0 −0.25

0 0 0.5

 .

It is easy to see that the pair (Ã,C) is detectable.

We set α = 0.95 and solving LMIs (4.32) and (4.31b), we obtain P = P> � 0 and the

observer gain matrix

L =


−0.066086 0.783868

−0.151477 −0.027697

0.739215 1.017137

 .

The performance level γ = 1.4901×10−8.
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In our simulations, we randomly selected the state initial condition,

x[0]> =
[
0.967710 0.086768 0.173477

]
.

We selected the observer state initial condition and x̂[−1] to be zero. The unknown input

and output disturbance are:

w[k] = 0.2cos
√

5k and v[k] = 0.25cos
√

k.

We see in Figure 4.2 that the states are being estimated correctly with negligible estimation

error. Figure 4.4 and Figure 4.5 show plots of the unknown input and the output distur-

bances and their estimates.
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Fig. 4.2.: The state and its estimate.
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Fig. 4.3.: The state estimation error.
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Fig. 4.4.: Top plot shows the unknown input and its estimate. Bottom plot shows the
unknown input reconstruction error norm.
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Fig. 4.5.: Top plot shows the sensor disturbance and its estimate. Bottom plot shows the
output disturbance reconstruction error norm.

4.11 Conclusions

We proposed a novel unknown input observer (UIO) architecture for a class of discrete-

time linear systems in the presence of unknown input and output disturbance. An UIO

existence condition was given and proven to be a generalization of existence condition in

the literature. The design of the UIO was formulated in terms of an LMI. Unknown input

and output disturbance estimators were also proposed.
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5. DELAYED ESTIMATION OF UNKNOWN INPUT AND OUTPUT
DISTURBANCES IN DISCRETE-TIME LINEAR SYSTEMS

5.1 Introduction

Unknown input and output disturbance estimators are proposed for DT linear network sys-

tems corrupted by bounded unknown inputs and output disturbances. One of the necessary

conditions for the existence of unknown input observers (UIOs) is a matrix rank condition.

The proposed estimator architectures are for the plants for which the matrix rank condition

for the existence of UIOs is not satisfied.

In our approach, we first analyze the case when the unknown input is bounded and there is

no output disturbance. We then consider the case where the plant is subjected to bounded

unknown input and output disturbances. We collect δ observations that are used to form a

delayed system that satisfies the matrix rank condition, where δ is a design parameter. The

design of the unknown input and output disturbance estimators are given in terms of linear

matrix inequalities (LMIs). The unknown input and output disturbance estimation errors

are guaranteed to be l∞-stable with prescribed performance level. The proposed estimators

can be applied to detect adversarial attacks on the communication channels between the

controller and actuators and between the plant sensors and the controller. Adversarial at-

tacks on the plant actuators can be modeled as unknown plant inputs, while attacks on the

plant sensors are modeled as output disturbances.



81

5.2 Problem Statement

We consider a class of DT dynamical systems modeled by

x[k+1] = Ax[k]+B1u[k]+B2w[k]

y[k] =Cx[k]+Dv[k],

 (5.1)

where A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C ∈ Rp×n, and D ∈ Rp×r. The control input

is u[k] ∈ Rm1 . The unknown input and output disturbance to the system are modeled by

w[k] ∈Rm2 and v[k] ∈Rr, respectively. See, for example [86, Subsection 1.1.2 and Chapter

2] or [87] for a discussion on modeling of DT systems.

Our objective is to construct unknown input and output disturbance estimators for system

modeled by (5.1).

We make the following assumptions:

Assumption 5 The pair (A,C) is observable.

Assumption 6 Matrices B2 and D have full column rank.

Assumption 7 The unknown input w[k] and output disturbance v[k] are uniformly bounded

as a function of k.

5.3 Delayed Unknown Input Observer For Plants With Uncorrupted Output Mea-
surements

In this section, we consider the plant model given by (5.1) with unknown input w[k] and

uncorrupted output measurements. Thus, the plant model we analyze has the form,

x[k+1] = Ax[k]+B1u[k]+B2w[k]

y[k] =Cx[k].

 (5.2)
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We assume that the matrix rank condition for the existence of an UIO is not satisfied, that

is, rank(CB2) 6= rank(B2).

5.3.1 Delayed system model

Since the matrix rank condition for system (5.2) is not satisfied, we use a sequence of output

measurements to relax this condition. We collect (δ +1) measurements of y and represent

them in the following format:
y[k]

y[k−1]
...

y[k−δ ]

=


CAδ

...

CA

C

x[k−δ ]+


CB1 · · · CAδ−1B1

... . . . ...

Op×m1 · · · CB1

Op×m1 · · · Op×m1




u[k−1]
...

u[k−δ ]



+


CB2 · · · CAδ−1B2

... . . . ...

Op×m2 · · · CB2

Op×m2 · · · Op×m2




w[k−1]
...

w[k−δ ]

 .

We represent the above equation in a compact form as

Yk−δ = Oδ x[k−δ ]+J1Uk−δ +J2Wk−δ , (5.3)

where Oδ ∈ R(δ+1)p×n, J1 ∈ R(δ+1)p×δm1 , and J2 ∈ R(δ+1)p×δm2 .

To proceed, let Fi =
[
On×(δ−1)mi Bi

]
∈ Rn×δmi for i = 1,2, and

t = k−δ . (5.4)

Then we rewrite x[k+1] = Ax[k]+B1u[k]+B2w[k] as

x[t +1] = Ax[t]+F1Ut +F2Wt . (5.5)
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Let now Ỹt = Yt−J1Ut . Combining (5.3) and (5.5), we obtain the delayed plant model of

the form
x[t +1] = Ax[t]+F1Ut +F2Wt

Ỹt = Oδ x[t]+J2Wt ,

 (5.6)

where x[t] ∈ Rn, Ut ∈ Rδm1 , Wt ∈ Rδm2 , and Ỹt ∈ R(δ+1)p are the state, control input se-

quence, unknown input sequence, and output measurements, respectively. A block diagram

of the unknown input and output disturbance estimators to be constructed is shown in Fig-

ure 5.1.

Fig. 5.1.: A block diagram of the delayed unknown input and output disturbance estimators
for system model given by (5.1).

Remark 7 Ỹt is a combination of the output and control input measurements over the inter-

vals [k, k−δ ] and [k−1, k−δ ], respectively. We assume that the system starts its operation

at k = 0. We let y[−1] to y[−δ ] and u[−1] to u[−δ ] all equal to zero, then Ỹt is known at

all k. Since t = k−δ , the delayed system given by (5.6) is delayed by δ sampling periods

compared with the DT plant modeled by (5.2).
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We select the number of past measurements δ so that the delayed plant (5.6) satisfies the

matrix rank condition of Hautus [54] for the existence of the strong observer, that is,

rank

Oδ F2 J2

J2 O(δ+1)p×δm2

= rankJ2 + rank

 F2

J2

 . (5.7)

The idea here is that we collect enough output measurements until the above matrix rank

condition is satisfied. For a discussion of this matrix rank condition in the context of the

delayed systems, we refer to [55–57].

5.3.2 Delayed UIO architecture

In this subsection, we propose an UIO architecture for the delayed plant model (5.6). We

begin by representing x[t] as

x[t] = x[t]−MOδ x[t]+MOδ x[t] = (I−MOδ )x[t]+M(Ỹt−J2Wt), (5.8)

where M ∈ Rn×(δ+1)p. We select M such that

MJ2 = O, (5.9)

where O is a matrix of zeros with appropriate dimensions. A necessary condition for (5.9)

to have a solution is that (δ + 1)p ≥ δm2. Equivalently, the delayed system (5.6) should

have at least as many outputs as the number of unknown inputs. Let

z[t] = (I−MOδ )x[t]. (5.10)

Then we represent (5.8) as x[t] = z[t] +MỸt . Recall that our objective is to estimate x[t].

We will show that the state estimate has the form,

x̂[t] = z[t]+MỸt , (5.11)
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where we obtain z[t] from the dynamical system,

z[t +1] = (I−MOδ )x[t +1].

Substituting into above (5.5) and performing manipulations gives

z[t +1] = (I−MOδ )(Az[t]+AMỸt +F1Ut +F2Wt). (5.12)

Note that Wt is unknown to us, so we select M such that in addition to (5.9), we have

(I−MOδ )F2 = O. (5.13)

Then (5.12) takes the form,

z[t +1] = (I−MOδ )(Az[t]+AMỸt +F1Ut). (5.14)

To proceed, let e[t] = x[t]− x̂[t] be the state estimation error. Performing simple manipula-

tions gives

e[t +1] = x[t +1]− x̂[t +1] = (I−MOδ )Ae[t].

We can see from the above that we do not have any control over the estimation error con-

vergence dynamics, which is determined by the matrix (I−MOδ )A. To improve the es-

timation error convergence dynamics, we add the term L(Ỹt − Ŷt) to the right hand side

of (5.14), where L ∈ Rn×δ p and

Ŷt = Oδ x̂[t] = Oδ (z[t]+MỸt),

to obtain

z[t +1] = (I−MOδ )(Az[t]+AMỸt +F1Ut)+L(Ỹt−Oδ z[t]−Oδ MỸt). (5.15)
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Combining (5.11) and (5.15), we obtain the proposed UIO architecture,

z[t +1] = (I−MOδ )(Az[t]+AMỸt +F1Ut)+L(Ỹt−Oδ z[t]−Oδ MỸt)

x̂[t] = z[t]+MỸt .

 (5.16)

The state estimation error dynamics for the above UIO are

e[t +1] =
(
(I−MOδ )A−LOδ

)
e[t]−LJ2Wt . (5.17)

For notational convenience, we let Ã = (I−MOδ )A, E = Ã−LOδ and N =−LJ2. Then,

the error dynamics become

e[t +1] = Ee[t]+NWt . (5.18)

Our objective is to find L such that the matrix E = Ã−LOδ is Schur stable. A sufficient

condition for the existence of such an L is that the pair (Ã,Oδ ) is detectable. Note that the

observability implies the detectability. We will show that Assumption 5 implies that the

pair (Ã,Oδ ) is observable.

Lemma 11 If the pair (A,C) is observable, then the pair (Ã,Oδ ) is observable.

Proof If the pair (A,C) is observable then for some δ , rank(Oδ ) = n. Therefore,

rank

z1I− Ã

Oδ

= n, for any z1 ∈ C.

That is, the pair (Ã,Oδ ) is observable.

Remark 8 A necessary and sufficient condition for (I−MOδ )F2 = O to have a solution

M is that rank(Oδ F2) = rank(F2). This is because

rank(Oδ F2)≤min{rank(Oδ ),rank(F2)} ≤ rank(F2).
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5.4 Stability of the Error Dynamics

In this section, we analyze the error dynamics stability and give the conditions for finding

the UIO gain matrix L. To proceed, we define l∞-stability with performance level γ .

Definition 4 The system

e[t +1] = f (t,e[t],Wt) (5.19)

is globally uniformly l∞-stable with performance level γ if the following conditions are

satisfied:

1. The undisturbed system, (that is, Wt = 0 for all t ≥ 0) is globally uniformly exponen-

tially stable with respect to the origin.

2. For zero initial condition, e[t0] = 0, and every bounded unknown input Wt , we have

‖e[t]‖ ≤ γ‖Wt‖∞, ∀t ≥ t0.

3. For every initial condition, e[t0] = e0, and every bounded unknown input w(·), we

have

limsup
t→∞

‖e[t]‖ ≤ γ‖Wt‖∞.

For more details on the l∞-stability with level of performance, we refer to [40].

Theorem 9 The error dynamics system given by (5.18) is globally uniformly l∞-stable with

performance level γ if E is Schur stable and either condition 2) or 3) of Definition 4 is

satisfied.

Proof It is easy to verify that for linear systems, conditions 2), and 3) of Definition 4 are

equivalent.
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We now present a lemma from [40] that we use in our proof of the stability of the error

dynamics system.

Lemma 12 Consider the error system in (5.19). Suppose there exists a function V :Rn→R

and scalars ξ ∈ (0,1), β1,β2 > 0 and µ1 ≥ 0 such that

β1‖e[t]‖2 ≤V (e[t])≤ β2‖e[t]‖2, (5.20)

and

∆V [t]≤−ξ (V (e[t])−µ1‖Wt‖2), (5.21)

for all t ≥ 0, where ∆V [t] =V (e[t +1])−V (e[t]). Then system (5.18) is globally uniformly

l∞-stable with performance level γ =
√

µ1/β1 with respect to disturbance sequence Wt .

Our objective is to select the UIO gain matrix L so that the state error dynamics (5.18) are

l∞-stable with performance level γ . We now state and prove the following theorem.

Theorem 10 Suppose Assumption 7 is satisfied. If there exist matrices P = P> � 0, L, and

scalars α ∈ (0,1) and µ > 0 such that

E>PE− (1−α)P ∗

N>PE N>PN−αI

� 0 (5.22a)

P ∗

I µI

� 0, (5.22b)

then the state observation error dynamics are l∞-stable with performance level γ =
√

µ .

Proof Let V [t] = e[t]>Pe[t] be a Lyapunov function candidate for the estimation error

dynamics given by (5.18). We evaluate the first forward difference ∆V [t] =V [t +1]−V [t]

on the trajectories of (5.18) to obtain

∆V [t] = e[t]>(E>PE−P)e[t]+2e[t]>E>PNWt +W>t N>PNWt . (5.23)
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Let ζ = [e[t]> W>t ]>. Premultiplying and postmultiplying the matrix inequality (5.22a) by

ζ> and ζ , respectively, and taking into account (5.23), we obtain

∆V [t]+α(V [t]−‖Wt‖2)� 0.

Therefore, condition (5.21) in Lemma 12 holds with µ1 = 1. Next, taking the Schur com-

plement of (5.22b), we obtain

P−µ
−1I � 0.

Premultiplying the above inequality by e[t]> and postmultiplying it by e[t] gives

e[t]>Pe[t]−µ
−1e[t]>e[t]≥ 0.

Rearranging the above gives

||e[t]||2 ≤ µV (e[t]).

Hence by (5.20), we can take µ = 1/β1. By Lemma 12, the state error dynamics are l∞-

stable with performance level γ =
√

µ .

We now present a method to solve matrix inequality (5.22a) in Theorem 10 using an equiv-

alent LMI. Let Z = PL, then solving the matrix inequality (5.22a) is equivalent to solving

the following LMI for P and Z, −P ∗

Ω21 Ω22

� 0, (5.24)

where

Ω
>
21 =

[
PÃ−ZOδ −ZJ2

]
,

and

Ω22 =

−(1−α)P On×δm2

Oδm2×n −αI

 .
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Since P = P> � 0, taking Schur complement of (5.24) gives

Ω22 +Ω21P−1
Ω
>
21 � 0,

which, in turn, yields matrix inequality (5.22a).

5.5 Unknown Input Reconstruction

In this section, we propose a DT estimator of the bounded unknown input w. By Assump-

tion 6, the matrix B2 has full column rank, then B†
2 is a left inverse of B2. Premultiplying

both sides of the state dynamics given by (5.6) by the matrix B†, we obtain

B†
2x[t +1] =B†

2Ax[t]+B†
2F1Ut +B†F2Wt . (5.25)

Since F2Wt = B2w[t] and B†
2B2 = Im2 , we rewrite (5.25) as

w[t] = B†
2x[t +1]−B†

2Ax[t]−B†
2F1Ut .

Using this equation, we obtain the following unknown input estimator,

ŵ[t] = B†
2x̂[t +1]−B†

2Ax̂[t]−B†
2F1Ut .

Since the above unknown input estimator depends on x̂[t + 1], and x̂ is estimated with δ

sampling periods time-delay. Recall that t = k−δ . We therefore can estimate the unknown

input with (δ + 1) sampling periods time-delay. That is, the proposed estimator has the

form

ŵ[k−δ −1] =B†
2x̂[k−δ ]−B†

2Ax̂[k−δ −1]−B†
2F1Ut−1, (5.26)
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To prove the l∞-stability of the unknown input estimates, we let ew[t−1] = w[t−1]− ŵ[t−

1] be the unknown input estimation error. Then,

ew[t−1] = B†
2e[t]−B†

2Ae[t−1].

By Theorem 10, limsupt→∞ ‖e[t]‖ ≤ γ‖Wt‖∞. Hence the bound on the unknown input

estimation steady-state error satisfies

‖ew[t−1]‖ ≤ ‖B†
2‖(γ‖Wt‖∞ +‖A‖γ‖Wt−1‖∞) = ‖B†

2‖(1+‖A‖)
√

µ‖Wt‖∞. (5.27)

Hence the performance level of the unknown input estimator is γw = ‖B†‖(1+‖A‖)√µ .

We summarize our discussion in the form the algorithm.

Algorithm 5: Unknown input estimator synthesis
1 If rank(CB2)< rank(B2), determine δ such that condition given by (5.7) is satisfied.
2 Collect (δ +1) output measurements and construct model (5.6).
3 Solve for M such that (5.9) and (5.13) are satisfied.
4 Solve LMs (5.24), and (5.22b) for L and P.
5 Set all past values of state x[k−δ ], control input u[k−δ ], unknown input w[k−δ ],

and state estimates x̂[k−δ ] to zero.
6 Construct the state and the unknown input estimator given by (5.16) and (5.26).

Example 7 We consider a plant from [58, 90], where

A =


0.8 0 0

2.1 −1.3 −0.6481

0 0.6481 0

 , B2 =


1

1

0

 , C =
[
0 0 1.543

]
.

The above linear system does not satisfy the matrix rank condition for the existence of an

UIO. Indeed, rank(CB2)< rank(B2). In this example, the control u[k] is zero. We proceed

with Algorithm 5. We collect δ -output measurements to form the system given by (5.6),
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where δ = 6. The matrix rank condition (5.7) is satisfied for the delayed system (5.6). We

solve (5.9) and (5.13) to obtain

M =


O1×5 0.999981700334884 0

O1×5 0.999981700334884 0

O1×5 0 0


Next, using a line search method, we find α = 0.82472919. Then, using this α , we solve

LMIs (5.24) and (5.22b) using CVX toolbox. We obtain P = P> � 0, the observer gain

matrix L, and performance level γ = 1.4901× 10−8 and the unknown input performance

level γw = 3.8545× 10−8 . Comparing with [58], our performance level is much smaller

than the performance level obtained in [58], which was 0.083.

In our simulations, we use the initial state as in [58, 90], that is, x[0] = [5 − 15 10]> and

we set zero initial condition for the observer state. We set all past δ values of the plant

state x[k], the estimated state x̂[k], as well as the unknown input w[k] to zero. We generate

the unknown input w[k] as in [58, 90]. Figure 5.2 shows the reconstructed unknown input

and the norm of the unknown input reconstruction error. Our proposed UIO was able to

reconstruct the unknown input with negligible reconstruction error.

5.6 Unknown Input Observer for Linear Systems with Unknown Input and Output
Disturbances

We consider the plant model given by (5.1) with both unknown input and output distur-

bance. Our objective now is to reconstruct both the unknown input and output disturbance

when the matrix rank condition for the existence of an UIO is not satisfied.
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Fig. 5.2.: Top and middle plots shows the unknown input and its estimate. Bottom plot
shows the unknown input reconstruction error norm. In the middle plot, ŵ has been shifted
by (δ +1) sampling periods to compare with the true values of w.

5.6.1 Delayed system model

We proceed by collecting (δ +1) observations to obtain

Yk−δ =


y[k]

y[k−1]
...

y[k−δ ]

, Oδ x[k−δ ]+J1Uk−δ +J̃2Ũk−δ ,
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where Yk−δ ∈ R(δ+1)p, J̃2 ∈ R(δ+1)p×((δ+1)r+δm2), and Ũk−δ ∈ R(δ+1)r+δm2 . The matri-

ces Oδ , J1, and the vector Uk−δ are defined in Section 5.2. The remaining matrices and

vectors are

D̃ =


D Op×r . . . Op×r

Op×r D . . . Op×r
...

... . . . ...

Op×r Op×r . . . D

 , Vk−δ =


v[k]

...

v[k−δ ]

 .

Let

J̃2 = [D̃
... J2]

Ũk−δ = [Vk−δ

... Wk−δ ]

Ỹk−δ = Yk−δ −J1Uk−δ

and

F̃2 =
[
On×(δ−1)m2+(δ+1)r · · · B2

]
.

Recall that t = k−δ . We represent the delayed system as

x[t +1] = Ax[t]+F1Ut + F̃2Ũt ,

Ỹt = Oδ x[t]+J̃2Ũt .

 (5.28)

Since the delayed model (5.28) has the same structure as the delayed model given by (5.6),

we can use the observer structure given by (5.16). The UIO for (5.28) has the form

z[t +1] = (I− M̃Oδ )(Az[t]+AM̃Ỹt +F1Ut)+ L̃(Ỹt−Oδ z[t]−Oδ M̃Ỹt)

x̂[t] = z[t]+ M̃Ỹt .

 (5.29)

We solve for a matrix M̃ ∈ Rn×(δ+1)p such that M̃J̃2 = O and (I− M̃Oδ )F̃2 = O. The

state error dynamics become

e[t +1] = Ẽe[t]+ ÑŨt , (5.30)
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where Ẽ = (I− M̃Oδ )A− L̃Oδ , and Ñ = −L̃J̃2. Since this state error dynamics system

has the same structure as (5.18), we use Theorem 10 to calculate the observer gain matrix L̃.

We then use the unknown input estimator given by (5.26) to reconstruct w[k] with (δ +1)

sampling periods time-delay.

In the next subsection, we propose an estimator for the output disturbance v.

5.6.2 Output disturbance reconstruction

Since by Assumption 6, the matrix D has full column rank, therefore we can take D† as

its left inverse. Premultiplying both sides of the output equation of model (5.1) by D†

gives

D†y[k] = D†Cx[k]+ v[k].

Rearranging the above equation, we obtain

v[k] = D†y[k]−D†Cx[k].

From the above, we obtain the output disturbance estimator,

v̂[k] = D†y[k]−D†Cx̂[k].

Since we have only available x̂[k−δ ], the output disturbance estimator is

v̂[k−δ ] = D†y[k−δ ]−D†Cx̂[k−δ ]. (5.31)

To prove the l∞-stability of the output disturbance estimate, we let ev[k− δ ] = v[k− δ ]−

v̂[k−δ ] be the output disturbance estimation error. Then, we have

ev[k−δ ] =−D†Ce[k−δ ].
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By Theorem 10,

limsup
k→∞

‖e[k−δ ]‖ ≤ γ‖Ũk−δ‖∞.

The bound on the output disturbance steady-state estimation error is

‖ev[k−δ ]‖ ≤ ‖D†‖‖C‖γ‖Ũk−δ‖∞ = ‖D†‖‖C‖
√

µ‖Ũk−δ‖∞.

The performance level of the output disturbance estimator is γv = ‖D†‖‖C‖√µ .

Example 8 We consider a system, where

A =


1 −0.5 −0.5 −0.5

0 0.5 1 −2

0 0 0 1

0 0 −0.5 1.5

 , B2 =


0

0

0

0.4

 , C =


1 0 0 0

0 1 0 0

0 0 1 0

 , D =


0

0

10

 .

We have rank(CB2)< rank(B2). The matrix rank condition (5.7) is satisfied for the delayed

system (5.28) for δ = 1. We solve for M̃ such that M̃J̃2 =O, and (I−M̃Oδ )F̃2 =O, where

M̃ =


0.000000001336419 −0.000000000334105 O1,4

0.000000000428138 −0.000000000107035 O1,4

−0.000000000060461 0.000000000015115 O1,4

−0.111738036588382 −0.472065490852906 O1,4

 .

Now select α = 0.85 and solve LMIs (5.24) and (5.22b) to obtain P = P> � 0, the observer

gain matrix L̃, and the performance level indicator γ = 1.4901×10−8. In our simulations,

we select the state initial condition randomly, x[0] =
[
0.7537 0.3804 0.5678 0.0758

]>
,

and set the observer state initial condition to zero. We set all past δ values of the state x[k],

the estimated states x̂[k], the unknown input w[k], and the output disturbance v[k] to zero.

The unknown input and the output disturbance have the form

w[k] = 0.2cos(
√

5k) and v[k] = 0.25cos(
√

k).
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Figures 5.3 and 5.4 show plots of the unknown input and the output disturbance and their

estimates.
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Fig. 5.3.: Top plot shows the unknown input and its estimate with time delay (δ + 1).
Bottom plot shows the unknown input reconstruction error norm.

5.7 Conclusions

We proposed a novel unknown input and output disturbance estimators for DT linear sys-

tems when the existences condition for an UIO is not satisfied. We collect output mea-

surements and formulate an delayed system for which the existence condition of an UIO

is satisfied. The conditions for the existence of the estimators are presented as LMIs. The

observation error of the unknown input and output measurements are guarantee with a pre-

scribe performance level.
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Fig. 5.4.: Top plot shows the sensor disturbance and its estimate with time delay δ . Bottom
plot shows the output disturbance reconstruction error norm.
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6. OBSERVER-BASED CONTROLLER SYNTHESIS FOR
DECENTRALIZED NETWORKED SYSTEMS

6.1 Introduction

We use observer-based decentralized controller to control large scale networked control

systems. A decentralized networked control system (DNCS) is a system with a feedback

decentralized control loop closed by a communication network. A block diagram of the

decentralized observer-based controller is shown in Figure 6.1.

Fig. 6.1.: A block diagram of a decentralized networked control system, where yi are the
outputs of the system, ui are the local control inputs, and τ is the communication network
time-delay.

The efficient control of such systems uses only local information available to each local

controller. This, in turn, reduces significantly the cost of communication needed to imple-

ment local controllers as compared with communication needed to implement a centralized

controller.
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In this chapter, a new approach to the DNCS design is proposed, where the control loop

is closed by a communication network. The communication network is modeled as a pure

time-delay. We adopt the design of the observer-based controller in [63] which uses de-

centralized functional observers at each local station. An observer-based decentralized

controller is designed using linear matrix inequalities (LMIs). The stability of the DNCS

is analyzed using results reported by Schoen [77] to obtain a sufficient upper bound on

the communication network time-delay that guarantees the stability of the DNCS. The ob-

tained results are applied to the design of a decentralized system consisting of two remotely

controlled mobile robots.

6.2 Problem Statement

We consider a plant that is a large scale system with N local control stations modeled

by

ẋp(t) = Apxp(t)+
N

∑
i=1

Biui(t) (6.1a)

yi(t) =Cixp(t), i = 1,2, · · · ,N, (6.1b)

where xp(t) ∈Rn is the state vector of the plant, ui(t) ∈Rmi , and yi(t) ∈Rri are the control

input and the measured output of each local station, respectively. The system matrices are

Bi ∈ Rn×mi and Ci ∈ Rri×n. Let

Bp = [B1 B2 · · · BN ]

Cp = [C>1 C>2 · · · C>N ]
>

u(t) = [u>1 (t) u>2 (t) · · · u>N (t)]
>

y(t) = [y>1 (t) y>2 (t) · · · y>N (t)]
>.
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Then, the plant model can be described in a centralized format as

ẋp(t) = Apxp(t)+Bpu(t) (6.2a)

y(t) =Cpxp(t). (6.2b)

The plant given by (6.2) will be controlled by an observer-based decentralized controller

through a communication network modeled as a pure time-delay. We first present a method

for the design of the decentralized controller of the above decentralized control system

(DCS). Then, we give an upper bound on the network time-delay that guarantees the sta-

bility of the closed-loop decentralized networked control system (DNCS).

6.3 Controller Design and Stability Analysis of the Decentralized Control System

In this section, we first review the observer-based decentralized control design proposed by

Ha and Trinh in [63] on which our design method is based. Then, we provide LMIs for the

design of the decentralized controller. Finally, we formulate a sufficiency condition for the

stability of the closed-loop decentralized system.

As in [63], we make the following assumptions that are required for the implementation of

the proposed decentralized controller.

Assumption 8 The plant model given by (6.2) is controllable and observable.

Assumption 9 There are no unstable decentralized fixed modes associated with (Ap,Bi,Ci),

i = 1,2, . . . ,N.

Assumption 10 Information available at the i-th control station contains only the output

and input of that station.

Assumption 11 A global, centralized, state-feedback controller of the form u(t)=−Fxp(t),

where F ∈ Rm×n, can be constructed so that the closed-loop system possesses desired prop-

erties.
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We can design an optimal state-feedback u(t) = −Fxp(t) using, for example, the linear

quadratic regulator approach.

6.3.1 Observer-based decentralized controller design

As in [63], we assume that the decentralized local inputs in (6.1) have the form,

ui(t) =−Fixp(t) =−Kizi(t)−Wiyi(t), i = 1,2, ...,N, (6.3)

where Fi ∈ Rmi×n is a sub-matrix of F ∈ Rm×n, Ki ∈ Rmi×pi and Wi ∈ Rmi×ri are constant

design matrices to be computed. The vector zi(t) = Lixp(t) ∈ Rpi is a state vector of the

dynamical system

żi(t) = Eizi(t)+LiBiui(t)+Giyi(t), i = 1,2, . . . ,N, (6.4)

where Ei ∈ Rpi×pi is a real constant design matrix chosen to be asymptotically stable ac-

cording to the required dynamics of the observer. The matrices Li ∈ Rpi×n and Gi ∈ Rpi×ri

are real constant matrices to be determined.

Note that each i-th decentralized controller in (6.3) depends only on the local input and

output of the i-th station.

As in [63], we define the error vector,

ei(t) = zi(t)−Lixp(t),

for i = 1,2, . . . ,N. Combining (6.3) and (6.4), we obtain the following error dynam-

ics,

ėi(t) = Eiei(t)+(GiCi +EiLi−LiAp)xp(t)−LiBriuri, (6.5)
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for i = 1,2, . . . ,N. Note that Bri ∈ Rn×(m−mi) is the sub-matrix of the matrix Bp after

removing from Bp the sub-matrix Bi. The vector uri is composed of N−1 input vectors of

the remaining N−1 control stations.

Following [63], we select in (6.5) the matrix Ei to be Hurwitz and the design matrices Gi,

Li, Ki, and Wi, i = 1,2, . . . ,N, are chosen to satisfy the following conditions:

LiBri = 0, (6.6a)

KiLi +WiCi = Fi, (6.6b)

GiCi +EiLi−LiAp = 0. (6.6c)

Remark 9 The above equations are the synthesis equations of a dynamic decentralized

controller approximating the static centralized controller selected by the designer. The

controller design using the above equations directly are highly nontrivial. In the following

subsection, we present a novel method for solving the above equations using LMIs.

6.3.2 LMIs for the design of the observer-based decentralized controller

In this subsection, we present a novel systematic approach for the design of the observer-

based decentralized controller using convex optimization approach.

First, to satisfy constraint (6.6a), L>i is chosen to be in the null space of B>ri
.

Solving for Gi, Ki, and Wi in (6.6b) and (6.6c) is represented as solving two matrix inequal-

ities,

(KiLi +WiCi−Fi)
>(KiLi +WiCi−Fi)≺ εi1

2Imi, (6.7a)

(GiCi +EiLi−LiAp)
>(GiCi +EiLi−LiAp)≺ εi2

2Ipi, (6.7b)
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where εi1,εi2 > 0, i = 1,2, . . . ,N are design parameters.

Using the Schur complements, we formulate the design problem as an optimization prob-

lem of the form,

min ∑
N
i=1(εi1 + εi2)

subject to

 εi1Imi (KiLi +WiCi−Fi)

(KiLi +WiCi−Fi)
> εi1Imi

� 0,

 εi2Ipi (GiCi +EiLi−LiAp)

(GiCi +EiLi−LiAp)
> εi2Ipi

� 0,

εi1 , εi2 > 0, i = 1,2, . . . ,N.



(6.8)

Solving (6.8), we obtain Gi, Ki, Wi, εi1 , and εi2 .

6.3.3 Stability analysis of the decentralized closed-loop system

Solving the problem presented in the previous subsection yields approximate solutions to

the design matrices Gi, Ki, and Wi. This necessitates the need for the stability analysis of

the closed-loop decentralized system. To proceed, we define error matrices,

∆Mi = GiCi +EiLi−LiAp, (6.9a)

∆Fi = Fi−KiLi−WiCi. (6.9b)
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Then, the local error dynamics can be written as

ėi(t) = Eiei(t)+∆Mixp(t), i = 1,2, . . . ,N. (6.10)

The global error dynamics can be represented as

ė(t) = Ee(t)+∆Mxp(t), (6.11)

where E = diag(Ei), for i = 1,2, . . . ,N, and ∆M = [∆M1 ∆M2 · · · ∆MN ]
>. Now, the local

control inputs have the form

ui(t) =−Fixp(t)+∆Fixp(t), i = 1,2, . . . ,N. (6.12)

Therefore, the global input vector of the system becomes

u(t) =−Fxp(t)+∆Fxp(t), (6.13)

where F = [F1 F2 · · · FN ]
>, and ∆F = [∆F1 ∆F2 · · · ∆FN ]

>.

Let w(t) = [xp(t)> e(t)>]>, then the decentralized closed-loop system has the form as

in [63],

ẇ(t) = Jw(t)+∆Jw(t) (6.14)

where

J =

Ap−BpF O

O E

 , and ∆J =

Bp∆F O

∆M O

 , (6.15)

where O is a matrix of zeros with compatible dimensions. In [63], a sufficiency condition

for the closed-loop system to be asymptotically stable is given using a classical Lyapunov-

type argument. Note that J is asymptotically stable since Ap−BpF and E are designed to be
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asymptotically stable. Solving Lyapunov equation J>P+PJ =−Q, for some Q = Q> ≺ 0,

and then evaluating the Lyapunov derivative of V = w>Pw on the trajectories of (6.14), we

obtain that for any ∆J that satisfies the condition

‖∆J‖< λmin(Q)

2λmax(P)
, (6.16)

the closed-loop system is asymptotically stable. Note that this is only a sufficiency condi-

tion for the closed-loop system to be asymptotically stable.

Rather than using condition (6.16), we represent (6.14) as

ẇ(t) = [J+∆J]w(t). (6.17)

Then we have, a necessary and sufficiency condition for the closed-loop system to be

asymptotically stable is that the matrix [J+∆J] is Hurwitz.

We summarize the above considerations in the form of the decentralized control design

algorithm.

Algorithm 6: Decentralized control design
1 Design a global optimal state feedback controller u =−Fxp for system (6.2)
2 Partition system (6.2) and F according to (6.1)
3 Select Hurwitz matrices Ei

4 Compute Li = (null(B>ri
))>

5 Solve LMIs given by (6.8) for Gi, Ki, and Wi
6 Check if the matrix [J+∆J] is Hurwitz
7 If the matrix [J+∆J] is not Hurwitz, go to Step 3, else STOP.

6.4 Decentralized Networked Control System Stability Analysis

In the previous section, we presented a method for observer-based design of decentralized

local controllers. In this section, we analyze the effects of the presence of the communi-

cation network between the plant and the local controllers. The architecture we analyze is
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depicted in Figure 6.2. We model the communication network as a pure time delay. We

give an upper bound for the time delay duration for which the DNCS is guaranteed to be

asymptotically stable.

Fig. 6.2.: Decentralized networked control system.

The centralized state space plant model has the form,

ẋp = Apxp +Bpû

y = Cpxp,

 (6.18)

where û = [û>1 · · · û>N ]
> and û(t) = u(t− τ). The centralized controller, on the other hand,

has the form,
ż = Acz+Bcŷ

u = Ccz+Dcŷ,

 (6.19)
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where ŷ = [ŷ>1 · · · ŷ>N ]
>, ŷ(t) = y(t−τ), and z = [z>1 · · · z>N ]

>. The matrices Ac, Bc, Cc, and

Dc of the above controller are obtained by substituting (6.3) into (6.4). We get

ż = (E−LBpK)z+(G−LBpW )ŷ

u = −Kz−Wŷ,

 (6.20)

where

K = diag(K1,K2, · · · ,KN)

L = [L>1 L>2 · · · L>N ]
>

G = diag(G1,G2, · · · ,GN)

W = diag(W1,W2, · · · ,WN).

Comparing (6.19) and (6.20) gives

Ac = E−LBpK

Bc = G−LBpW

Cc =−K

Dc =−W.

We are now ready to write down the dynamics equation of the closed-loop system. Com-

bining (6.18) and (6.19) gives

ẋp(t) = Apxp(t)+BpCcz(t− τ)+BpDcCpxp(t−2τ).

The centralized controller dynamics (6.19) can be written as

ż(t) = Acz(t)+BcCpxp(t− τ).
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Combining the above yields ẋp(t)

ż(t)

 =

 Ap O

O Ac

 xp(t)

z(t)

+
 O BpCc

BcCp O

 xp(t− τ)

z(t− τ)


+

 BpDcCp O

O O

 xp(t−2τ)

z(t−2τ)

. (6.21)

The closed-loop model of the DNCS is a linear time-delay dynamical system with two

commensurate time delays. To analyze the stability of such a system, we use the results of

Schoen [77]. To proceed, we transform the two time-delay system into single-delay system

in the next section.

6.4.1 Transformation from multiple-delay system to a single-delay system

We consider a multiple time-delay system modeled as

ẋ(t) = A0x(t)+
k

∑
i=1

Aix(t− iτ), (6.22)

where the delays are commensurate, that is, the subsequent delays are integer multiples of

the fixed constant delay τ , where τ ∈ [0,∞). We follow the method of Schoen [77] to obtain

the single-delay transformed system corresponding to (6.22),

˙̄x(t) = Ā0x̄(t)+ Ā1x̄(t− kτ), (6.23)
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where

Ā0 =



A0 A1 . . Ak−1

A0 A1 . . Ak−1

. . . . .

. . . . Ak−1

. . . .

O . . .

. A1

A0



,

and

Ā1 =



Ak

Ak−1 Ak

. Ak−1 . O

. . . .

A1 . . . .

A1 . . . .

A1 . . . .

A1 . . Ak−1 Ak



.

Comparing the delay system (6.22) with the DNCS (6.21), we obtain the corresponding

matrices A0, A1, and A2 of the single-delay equivalent DNCS model,

A0 =

Ap O

O Ac

 , A1 =

 O BpCc

BcCp O

 , A2 =

BpDcCp O

O O

 .
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Therefore, the single-delay equivalent system model of the two-delay DNCS model is de-

scribed by (6.23), where

Ā0 =

A0 A1

O A0

 , Ā1 =

A2 O

A1 A2

 . (6.24)

In the following subsection, we use an approach proposed by Schoen in [77] to derive an

upper bound on the time-delay τ for which we are guaranteed the stability of the closed-

loop time-delay system modeled by (6.21).

6.4.2 Stability analysis of the DNCS

We present an upper bound on τ that guarantees the stability of the DNCS modeled by (6.21).

In our analysis, we use the following notation. The 2-norm of a matrix X is ||X ||2 =√
λmax(X>X). The function µ(·)2 of a real square matrix X is defined as µ(X)2 =

1
2λmax(X>+

X).

We use the following lemmas in our analysis.

Lemma 13 [91] Suppose A0+A1 is asymptotically stable. Then, system (6.22) with k = 1

is asymptotically stable, if there exists a symmetric positive-definite matrix P such that

τ <
−µ(P(A0 +A1))2

||A1(A0 +A1)||2

√
λmin(P)

λmax(P)3 . (6.25)

Lemma 14 [77] If the transformed system (6.23) is asymptotically stable, then the origi-

nal system (6.22) is asymptotically stable.

Remark 10 By the Lyapunov theorem, if (A0 +A1) is asymptotically stable, then, for a

given Q = Q> � 0, a matrix P = P> � 0 is obtained from the Lyapunov equation, (A0 +

A1)
>P+P(A0 +A1) =−Q, see [80] for more details.



112

Combining the above lemmas, we have the following

Proposition 1 System (6.21) is asymptotically stable if Ā0 + Ā1 in (6.24) is asymptotically

stable and if there exists a symmetric positive-definite matrix P such that

τ < τub ,
−µ(P(Ā0 + Ā1))2

2||Ā1(Ā0 + Ā1)||2

√
λmin(P)

λmax(P)3 . (6.26)

We summarize the above discussion in the form of an algorithm for calculating an allowable

time-delay upper bound τub.

Algorithm 7: Calculating upper bound for allowable time-delay τub

1 Transform the multiple-delay system (6.21) into a single time-delay system (6.23)
with k = 2

2 Check if (Ā0 + Ā1) is asymptotically stable
3 If (Ā0 + Ā1) is asymptotically stable, find P using the method described in Remark 10
4 Compute τub using (6.26).

6.5 Numerical Example

In this section, we apply the DNCS design method presented in the previous sections to a

system consisting of two interconnected mobile robots that are remotely controlled through

a communication network. We use the formation model proposed in [92]. The vectors

(x1,y1,θ1) and (x2,y2,θ2) are the position and orientation of robot 1 and robot 2, respec-

tively. The dynamics of each robot are

ẋi = vi cosθi

ẏi = vi sinθi

θ̇i = ωi,
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where i = 1,2 and vi and ωi are the velocity and angular velocity of the i-th robot, respec-

tively.

The following constraints are imposed:

x1 = x2,
y1 + y2

2
= 0, θ1 = θ2 = 0.

Let xp = [θ1 θ2 h1 h2]
>, where

h1 = x1− x2 +α(θ1−θ2)

h2 = y1 + y2 +β (θ1 +θ2)

are the so-called system (platoon) level functions, and α and β are constants that represent

the level of perturbation in distance measurements due to the robot orientation [92]. We

present the nonlinear formation trajectory of the two robots as:

θ̇1 = ω1

θ̇2 = ω2

ḣ1 = v1cosθ1− v2cosθ2 +α(ω1−ω2)

ḣ2 = v1sinθ1 + v2sinθ2 +β (ω1 +ω2).


(6.27)

The linearized formation trajectory of system (7.4) about vi = 2 and θi = 0 given in [92]

can be then obtained as

ẋp = Apxp +B1û1 +B2û2, (6.28)

where

Ap =


0 0 0 0

0 0 0 0

0 0 0 0

2 2 0 0

,B1 =


0 1

0 0

1 α

0 β

,B2 =


0 0

0 1

−1 −α

0 β

.

The control inputs are û1 = [v1− 2 ω1]
> and û2 = [v2− 2 ω2]

>. The decentralized in-

formation are collected as yout = [y>out1 y>out2]
> = Cpxp, where yout1 = [θ1 h1 h2]

> and
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yout2 = [θ2 h1 h2]
>. We construct the plant dynamical model of the DNCS in (6.18), where

û = [û>1 û>2 ]
>, and Bp = [B1 B2].

Solving the Algebraic Riccati Equation gives a global controller u =−Fxp for the central-

ized model, where

F =


−0.184 0.184 2.2209 0

3.3198 0.179 0.2602 2.2361

0.184 −0.1840 −2.2209 0

0.179 3.3198 −0.2602 2.2361

 .

Let Ei = −4I2. Solving (6.6a) and the LMIs in (6.8), for N = 2, we obtain the observer-

based decentralized controller in (6.20). The controller matrices for Robot 1 are:

K1 =

−0.092 −0.4114

1.6599 −0.4002

 ,W1 =

−0.092 2.2209 0.368

1.6599 0.2602 2.5941

 ,
L1 =

1 0 0 0

0 −0.4472 0 0.8944

 ,G1 =

 4 0 0

1.7889 0 3.5777

 .
The controller matrices for Robot 2 are:

K2 =

−0.4438 −0.2381

2.1761 −1.5355

 ,W2 =

0.1065 −2.2209 0.368

0.6867 −0.2602 2.594

 ,
L2 =

−0.2 0.8944 0 0.4

−0.4 −0.4472 0 0.8

 ,G2 =

 4.3777 0 1.6

−0.1889 0 3.2

 .
From (6.16), we obtain the upper bound on the ‖∆J‖ as 1.5551. In our system, we

have ||∆J|| = 3.4746× 10−6. Therefore, the sufficiency condition for the stability of the

observer-based decentralized controller is satisfied.
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We simulate the DNCS nonlinear plant model (6.27) using MATLAB’s dde23 package. The

initial state vector xp(0) = [1 2 −21.2 11.5]>. The initial state vector for the controller is

zero. We obtain the matrix (Ā0 + Ā1) which is Hurwitz with all its eigenvalues in the open

left-hand complex plane: −2.8674± j0.8498, −3.0503, −4.6364, −4. By Proposition 1,

the sufficiency condition for the stability of the DNCS is satisfied for τub = 0.0039.

In Figure 6.3, we show plots of the plant state trajectories for τ = 0.003 sec, where τ < τub.

As can be seen in Figure 6.4, the robots follow the desired paths. The upper bound on the

time-delay given by Proposition 1 is sufficient for the stability of the closed-loop system

but not necessary. Therefore, it is possible for the DNCS to be stable when τ is greater

than τub. To illustrate this, we simulate the system for τ = 0.01 sec in Figure 6.5, where

τ > τub, and the DNCS still behaves in a stable fashion. However, if τ is much greater than

τub, then the DNCS becomes unstable as can be seen in Figure 6.6, where τ = 0.1 sec. The

above analysis motivates further research to obtain tighter upper bound on the allowable

time-delay.

0 5 10 15 20 25

-20

-10

0

10

20

S
ta

te
s

Fig. 6.3.: Plot of the states for τ = 0.003.
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Fig. 6.4.: Plot of the path of robot 1 and robot 2 for τ = 0.003.
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Fig. 6.5.: Plot of the states for τ = 0.01.

6.6 Conclusions

We proposed a novel method for designing a decentralized controller using LMIs. We im-

plemented the obtained controller design for the decentralized networked control system
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Fig. 6.6.: Plot of the states for τ = 0.1.

(DNCS). The communication network was modeled as a pure time-delay. The stability of

the DNCS has been analyzed and an upper bound on the allowable time-delay of the com-

munication network was obtained. Open problems are to obtain a tighter upper bound on

the allowable time-delay for the communication network and to consider different commu-

nication time-delays during the the local control input and output signal transmission.
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7. SUMMARY AND OPEN PROBLEMS

7.1 Summary

In this thesis, we propose unknown input observers (UIOs) for the state, unknown input,

and output disturbance estimation of networked control systems. We first consider the case

when the networked system is linear with bounded unknown input. We then extend our

UIO designs to a class of nonlinear systems whose nonlinearities can be characterized by

incremental multiplier matrices. Then, we consider a linear networked system with un-

known inputs and output disturbances. We construct delayed unknown input and output

disturbance estimators for linear networked system for which the matrix rank condition for

the existence of an UIO is not satisfied. Next, we design a decentralized observer-based

controller for decentralized networked control system and provide a sufficient condition on

the duration of the network time delay guaranteeing the stability of the decentralized net-

worked control system. We illustrate the effectiveness of our proposed unknown input ob-

server designs and the decentralized observer-based control design with simulations.

7.2 Open Problems

In this section, we describe two problems of designing unknown input observer-based con-

troller for different types of networked control systems. In our opinion, these networked

control systems have a potential for significant practical applications. We hypothesize that

the design methods presented in this thesis can be used to design controllers for these sys-

tems. In the following subsections, we outline the proposed approach. In addition, the

effects of time-delays during the output and input transmission and disturbances on the

networked system performance need to be analyzed.
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7.2.1 A multi-agent networked system under decentralized information structure

We consider a large-scale system with N local control stations modeled by

ẋ(t) = Ax(t)+
N

∑
i=1

(Bi1ui1(t)+Bi2ui2(t)) (7.1a)

yi(t) =Cix(t), i = 1,2, . . . ,N, (7.1b)

where x(t) ∈ Rn is the state vector of the plant, ui1(t) ∈ Rmi1 , ui2(t) ∈ Rmi2 , and yi(t) ∈

Rri are the control input, unknown input, and the measured output of each local station,

respectively. The system matrices are Bi1 ∈ Rn×mi1 , Bi2 ∈ Rn×mi2 , and Ci ∈ Rri×n, where

∑
N
i=1 mi1 = m1, ∑

N
i=1 mi2 = m2, and ∑

N
i=1 ri = r. Let

B1 = [B11 B21 · · · BN1]

B2 = [B12 B22 · · · BN2]

C = [C>1 C>2 · · · C>N ]
>

u1(t) = [u11(t)> u21(t)> · · · uN1(t)>]>

u2(t) = [u12(t)> u22(t)> · · · uN2(t)>]>

y(t) = [y1(t)> y2(t)> · · · yN(t)>]>.

Then, the plant model can be described in a centralized format as

ẋ(t) = Ax(t)+B1u1(t)+B2u2(t) (7.2a)

y(t) =Cx(t). (7.2b)
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A block diagram of the multi-agent networked control system is shown in Figure 7.1.

The communication networks in Figure 7.2 are modeled as pure time-delays τi. There-

fore,

ûi1(t) = ui1(t− τi)

ŷi(t) = yi(t− τi).

Our first objective is to design a distributed unknown input observer (UIO) to estimate the

Fig. 7.1.: Decentralized networked UIO-based control for multi-agent system.

state and unknown input of the multi-agent networked system modeled by (7.1). Then, a

distributed UIO-based controller need to be designed using the method developed in Chap-

ter 5.7. The plant given by (7.2) will be controlled by the distributed UIO-based controller

and the effects of the disturbances on the performance of this distributed networked control

system will be analyzed.
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Example 9 We consider the example presented in Chapter 5.7 of two interconnected mo-

bile robots that are remotely controlled through a communication network. This system

can be found in [92]. Given that (x1,y1,θ1) and (x2,y2,θ2) are the position and orientation

of robot 1 and robot 2, respectively, then the dynamics of each robot can be modeled as:

ẋi = vi cosθi

ẏi = vi sinθi

θ̇i = ωi,

 (7.3)

where i = 1,2 and vi and ωi are the velocity and angular velocity of the i-th robot, respec-

tively.

The two robots are to be remotely controlled in parallel formation with respect to the

horizontal axis. To achieve this goal, the following constraints are imposed: x1 = x2,
y1+y2

2 = 0, and θ1 = θ2 = 0. Let x = [θ1 θ2 h1 h2]
>, where h1 = x1− x2 +α(θ1− θ2)

and h2 = y1 + y2 + β (θ1 + θ2) contain the global information of the horizontal distance

difference between the two robots and the average value of the vertical formation of the

robots, respectively. The parameters α and β represent the level of perturbation in distance

measurements due to the robot orientation [92]. To analyze the robustness of the proposed

distributed UIO-based controller, we add bounded disturbances u12(t) and u22(t) to the

system model. Then, the nonlinear formation model of the two robots with disturbances

has the form:

θ̇1 = ω1

θ̇2 = ω2

ḣ1 = v1cosθ1− v2cosθ2 +α(ω1−ω2)+u12(t)

ḣ2 = v1sinθ1 + v2sinθ2 +β (ω1 +ω2)+u22(t).


(7.4)
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The disturbances to the formation of the robots may have the form of skidding, slipping,

friction force, and drift [93]. The linearized formation trajectory of system (7.4) about

vi = 2 and θi = 0 can now be obtained as

ẋ = Ax+
N

∑
i=1

(Bi1ui1(t)+Bi2ui2(t)), (7.5)

where

A =


0 0 0 0

0 0 0 0

0 0 0 0

2 2 0 0

, B11 =


0 1

0 0

1 α

0 β

, B21 =


0 0

0 1

−1 −α

0 β

, B12 =


0

0

1

0

 , B22 =


0

0

0

1

 .

The control inputs are û11 = [v1− 2 ω1]
> and û21 = [v2− 2 ω2]

>. The distributed infor-

mation is collected using sensors on each robot as follows, yout = [y>out1 y>out2]
>, where

yout1 = [θ1 h1 h2]
> =C1x and yout2 = [θ2 h1 h2]

> =C2x.

The open problem is to design a distributed UIO-based controller for the system consisting

of two cooperating robots in the presence of disturbances. Then, use this design to control

the two robots to achieve a parallel formation with respect to the horizontal axis through a

communication networks modeled as pure time-delays.

7.2.2 A decentralized networked control system

We consider the linear time-invariant large-scale system of N interconnected subsystems

with the i−th subsystem represented by

ẋi(t) = Aixi(t)+Biui(t)+
N

∑
j=1, j 6=i

ei jAi jx j(t) (7.6a)

yi(t) =Cixi(t), i = 1,2, . . . ,N, (7.6b)
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where xi(t)∈Rni , ui(t)∈Rmi , and yi(t)∈Rri are the state, input control, and the measured

output of each local station, respectively, and ei j(t) are uncertain structural elements that

determine the degree of coupling between the two subsystems i and j, such that 0≤ ei j(t)≤

1 [64].

The centralized format of the above model has the form

ẋ(t) = Ax(t)+Bu(t) (7.7a)

y(t) =Cx(t), (7.7b)

where

x(t) = [x1(t)> x2(t)> · · · xN(t)>]>

u(t) = [u1(t)> u2(t)> · · · uN(t)>]>

y(t) = [y1(t)> y2(t)> · · · yN(t)>]>.

The open problem is to design a decentralized unknown input observer-based controller

for a decentralized plant in (7.6). A block diagram of the decentralized networked control

system is shown in Figure 7.2. The communication networks are modeled as pure time-

delays τi, then,

ûi(t) = ui(t− τi)

ŷi(t) = yi(t− τi).

Example 10 We consider an example from the book by Šiljak [64] of two identical pen-

dulums coupled by a spring and subject to two distinct inputs in Figure 7.3. The system
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Fig. 7.2.: Decentralized networked UIO-based controller for an interconnected system.
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Fig. 7.3.: Interconnected pendulums.

equations are,

ml2
θ̈1 =−mglθ1− ka2(θ1−θ2)−u1, y1 = θ1 (7.8)

ml2
θ̈2 =−mglθ2− ka2(θ2−θ1)−u2, y2 = θ2, (7.9)

where the position of the spring a(t) is considered uncertain. It can change along the length

of the pendulum, that is, 0≤ a(t)≤ l.

Let x = [θ1 θ̇1 θ2 θ̇2]
>, then the system model can be represented as

ẋ =


0 1 0 0

−g
l −

ka2

ml2 0 ka2

ml2 0

0 0 0 1
ka2

ml2 0 −g
l −

ka2

ml2 0

x+


0 0

− 1
ml2 0

0 0

0 − 1
ml2

u

y =

1 0 0 0

0 0 1 0

x,
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where u = [u1 u2]
>. Let x1 = [θ1 θ̇1]

> and x2 = [θ2 θ̇2]
>. The above system can be

represented as two interconnected subsystems,

ẋ1 =

 0 1

−α 0

x1 +

 0

−β

u1 + e11

 0 0

−γ 0

x1 + e12

0 0

γ 0

x2

ẋ2 =

 0 1

−α 0

x2 +

 0

−β

u2 + e21

0 0

γ 0

x1 + e22

 0 0

−γ 0

x2

where α = g
l , β = 1

ml2 , γ = k
m , and ei j(t) =

a2(t)
l2 for i, j = 1,2.

The open problem is to design a decentralized UIO-based controller for a networked system

consisting of two pendulums coupled by a spring with uncertain position of the spring. The

effects of the time-delays due to presence of the communication networks and the system

uncertainties on the DNCS performance need to be carefully analyzed.
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