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ABSTRACT

Seberson, Troy PhD, Purdue University, December 2020. Heating and Cooling Mech-
anisms for the Thermal Motion of an Optically Levitated Nanoparticle . Major
Professor: Dr. Francis Robicheaux.

Bridging the gap between the classical and quantum regimes has consequences not

only for fundamental tests of quantum theory, but for the relation between quantum

mechanics and gravity. The field of levito-dynamics provides a promising platform

for testing the hypotheses of the works investigating these ideas. By manipulating

a macroscopic particle’s motion to the scale of its ground state wavefunction, levito-

dynamics offers insight into the macroscopic-quantum regime.

Ardent and promising research has brought the field of levito-dynamics to a state

in which these tests are available. Recent work has brought a mesoscopic particle’s

motion to near the ground state. Several factors of decoherence are limiting efficient

testing of these fundamental theories which implies the need for alternative strategies

for achieving the same goal. This thesis is concerned with investigating alternative

methods that may enable a mesoscopic particle to reach the quantum regime.

In this thesis, three theoretical proposals are studied as a means for a mesoscopic

particle to reach the quantum regime as well as a detailed study into one of the most

important factors of heating and decoherence for optical trapping. The first study

of cooling a particle’s motion highlights that the rotational degrees of freedom of a

levitated symmetric-top particle leads to large harmonic frequencies compared to the

translational motion, offering a more accessible ground state temperature after feed-

back cooling is applied. An analysis of a recent experiment under similar conditions

is compared with the theoretical findings and found to be consistent.

The second method of cooling takes advantage of the decades long knowledge

of atom trapping and cooling. By coupling a spin-polarized, continuously Doppler
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cooled atomic gas to a magnetic nanoparticle through the dipole-dipole interaction,

motional energy is able to be removed from the nanoparticle. Through this method,

the particle is able to reach near its quantum ground state provided the atoms are at a

temperature below the nanoparticle ground state temperature and the atom number

is sufficiently large.

The final investigation presents the dynamics of an optically levitated dielectric

disk in a Gaussian standing wave. Though few studies have been performed on disks

both theoretically and experimentally, our findings show that the stable couplings

between the translational and rotational degrees of freedom offer a possibility for

cooling several degrees of freedom simultaneously by actively cooling a single degree

freedom.
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1. INTRODUCTION

Does quantum mechanics apply on macroscopic scales? As size of the system in-

creases, quantum phenomena seem to disappear. While quantum behavior is routinely

observed for atoms, molecules, and in nanostructures at very low temperatures, ev-

eryday macroscopic objects that surround us are observed to obey classical physics.

Yet there is no fundamental reason that larger objects should not also obey quantum

mechanics. The Schrodinger equation places no bounds on the size of the system

under study. The Heisenberg uncertainty relation is also not implausibly violated.

With little experimental verification of this reality, perhaps there is some scaling limit

beyond which quantum mechanics does not apply.

Answering this question would have several implications in the fields of physics,

such as potentially bridging the gap between general relativity and quantum mechan-

ics [1,2]. What gravitational field is generated by an object in a spatial superposition?

Since everyday objects appear to always be in one state, manipulating larger quan-

tum mechanical objects would help further our understanding of the universe and

how matter and energy interact [3–5]. Do the smallest particles live in a world with

a different set of laws, or can we identify a classical-to-quantum transition in order

to solve ’the measurement problem’?

These ideas are being put to the test at the forefront of the research performed in

the field of levitated optomechanics (more generally, levito-dynamics), where meso-

scopic particles are levitated and their motion manipulated by external forces such

as light. In its simplest form, mesoscopic particles are levitated and harmonically

trapped in all motional degrees of freedom. Energy can subsequently be removed

from the motion in order to bring the oscillator to its motional ground state. Evi-

dence for the generation of a superposition of spatial harmonic oscillator states would
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provide a platform for testing the outstanding questions related to macroscopic quan-

tum mechanics and gravity’s relation to quantum mechanics [6–12].

Other micromechanical systems in optomechanics such as microchip resonators

offer similar applications [13] and have been able to attain low occupation numbers

below n = 1 [14, 15] due to their GHz resonance frequencies and strong coupling

to light. However, these systems require cryogenic cooling or phononic band gaps to

suppress their intrinsic decoherence and improve quality factors since they are directly

coupled to their environment [16]. Optically levitated nanoparticles are isolated from

rigid structures, eliminating this source of decoherence, and can achieve quality factors

Q > 109 [17].

Three dimensional trapping of a 5 µm glass particle in air was first demonstrated

in 1997 using optical tweezers [18]. However, the field of levitated optomechanics

began growing rapidly following 2010 when new research gave insight that trapped

particles follow Brownian motion and the equipartition theorem. In the same year,

nanoparticles were trapped and coupled to Fabry Perot cavities, and their motion was

manipulated for cooling [19–25]. The trapping of particles in optical tweezers, cavities,

and ion traps is now well understood and readily performed experimentally [26].

The next feat is to perfect the cooling mechanism(s) that brings a mesoscopic

particle to its motional quantum ground state. The most widely used and successful

methods thus far are cold damping (force feedback), parametric feedback cooling,

and cooling by coherent scattering. Force and parametric feedback cooling requires

precise measurement of the particle’s motion in order to provide feedback to the

cooling system procedure and is systematically limited by noise [27]. Nonetheless,

force feedback in an electrical-optical hybrid trap has realized a mean occupation

number of n = 4 [28]. While current research aims to reduce the level of noise [29,30],

cooling by coherent scattering has proven to be the most effective method [31–33].

Utilizing an optical tweezer to place a silica nanosphere at the location of maximal

coupling to an optical cavity (λ/8), cooling by coherent scattering has recently been

shown (2020) to bring the particle from room temperature to near its ground state,
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n < 1, in one degree of freedom [34]. Reaching lower temperatures is currently limited

by the scattering of gas molecules in the vacuum chamber, and is expected to be

reduced in order to perform quantum experiments on the macroscopic particle [35–37].

This thesis is concerned with providing alternative cooling schemes for cooling a

levitated nanoparticle’s motion as well as giving more detailed insight into cooling

impediments. Though ground state cooling has been achieved in one dimension, the

same milestone has yet to be reached in two or more degrees of freedom. Alternative

cooling schemes pave the way for potentially lower occupation numbers, cooling in

several degrees of freedom, noise reduction/elimination, easier implementation with

available hardware, among other advantages. A levitated particle also has use as a

force, torque, and charge sensor for various applications such as detection of gravi-

tational waves, measuring fractional charges in bulk matter, the Casimir effect, and

vacuum friction [38–48]. It is conducive for the particle’s motion to be below room

temperature for most, but not all [48], precise sensing applications.

This thesis is organized as follows. In Ch. 2, the fundamentals associated with a

dielectric particle’s interaction with light is presented. The concepts and equations

are some of the building blocks of levitated optomechanics and will be of use in later

chapters.

Chapter 3 provides the basic formulation for a dielectric particle’s translational

dynamics in the Rayleigh regime. The conservative optical gradient force, required for

trapping, and the dissipative scattering force due to radiation pressure are calculated.

The procedure for measuring the particle’s motion in real time is also provided.

Chapter 4 is concerned with the rotational dynamics of a rigid, symmetric-top

Rayleigh particle. Similar to Ch. 3, the process for measuring the rotational degrees

of freedom is also outlined.

Although levitated particles are not in direct physical contact with their environ-

ment, they are not immune to decoherence and heating. The main sources of noise

and heating in a levitated optomechanical setup, gas collisions and laser shot-noise,

are discussed in Ch. 5.
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Four different methods for cooling the motion of a mesoscopic dielectric particle

are described in Ch. 6. Three theoretical proposals for cooling both translational

and rotational dynamics are provided and an analysis of one experiment that cooled

the rotational and translational motion simultaneously. The first theoretical method

involves cooling the rotational degrees of freedom of a symmetric-top particle in the

Rayleigh regime using parametric feedback cooling. The second investigates sympa-

thetic cooling a magnetic nanoparticle via magnetic interaction with a cold, spin-

polarized atomic gas. The third studies the dynamics of disks outside of the Rayleigh

regime and briefly shows that ro-translational couplings offer the possibility of sym-

pathetic cooling several degrees of freedom. The experimental section discusses the

results found in an investigation that cooled three translational and two rotational

degrees of freedom simultaneously using the content found in this thesis.

Lastly, Ch. 7 gives a summary and outlook for the future of levito-dynamics.
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2. LIGHT INTERACTION WITH DIELECTRICS

This chapter is dedicated to outlining the fundamentals and underpinnings associ-

ated with a dielectric interaction with an electromagnetic field. There are different

approaches which one could take to reach the conclusions in this chapter and here a

formal scattering approach will be taken. Since levitated optomechanics is primarily

concerned with single frequency laser beams, in what follows all electric and magnetic

fields are assumed to have a time dependence of the form ~ψ(r, t) = ~ψ(r) exp(−iωt)

where ω = ck, c is the speed of light, and k = 2π/λ is the wavenumber. Throughout

this thesis, ε0 is the permittivity of free space. For this chapter non-magnetic, linear

dielectrics are assumed so that the electric responses will be the main interest. Lastly,

for this chapter matrices and tensors will be represented by bold symbols, A, and

vectors will be represented with top arrows, ~A.

2.1 The Lippmann-Schwinger Equation

Consider an electric field ~Einc(r) traveling in the ~k direction incident upon a di-

electric particle of arbitrary shape located in vacuum or air, ε = 1. The particle is

described by a dielectric tensor ε which in general is dependent on the location inside

the particle ~r′. The solution for the resultant electric field due to scattering from

the particle ~E(~r) = ~Einc(~r) + ~Escatt(~r) is governed by Maxwell’s equations. As the

dielectric is considered to contain no free charges the solution at a point in space

~r = rr̂ is given by the Helmholtz equation

(
∇2 − k2ε

)
~E(~r) = 0. (2.1)
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The incident field is already known to obey Maxwell’s equations both in the particle

and in the background with permittivity ε = 1

(
∇2 − k2

)
~Einc(~r) = 0, (2.2)

and the goal is to find a solution for the scattered wave ~Escatt(~r). Writing Eq. (2.1)

in terms of the susceptibility tensor χ = (ε− 1),

(
∇2 − k2

)
~Escatt(~r) = k2χ ~E(~r). (2.3)

With the aid of the dyadic Greens function for electric dipoles G(~r, ~r′) satisfying

(
∇2 − k2

)
G(~r, ~r′) = 1δ3(~r − ~r′), (2.4)

with δ3(~r − ~r′) the delta function, the scattered field is found to be

~Escatt(~r) = k2

∫
d3r′G(~r, ~r′)χ ~E(~r′), (2.5)

where the integration is taken over the volume of the dielectric. Physically Eq. (2.4)

and its solution describes the radiated field at ~r due to three orthogonal point dipole

sources located at ~r′. Equation (2.5) then describes the scattered field due to the

point dipoles that make up the dielectric. The solution for the outgoing Green’s

function for point dipoles can be shown to be [49,50]

G(~r, ~r′) =

(
1 +

1

k2
∇∇

)
eik|~r−

~r′|

4π|~r − ~r′|
(2.6)

=

{(
3

k2|~R|2
− 3i

2k|~R|
− 1

)
R̂R̂ +

(
1 +

i

k|~R|
− 1

k2|~R|2

)
1

}
eik|

~R|

4π|~R|
, (2.7)

where ∇ is evaluated with respect to r and ~R = ~r− ~r′ = |~R|R̂. The scattered field is

~Escatt(~r) =
k2

4π

(
1 +

1

k2
∇∇

)∫
d3r′

eik|
~R|

|~R|
χ ~E(~r′), (2.8)

giving the total field as

~E(~r) = ~Einc(~r) +
k2

4πε0

(
1 +

1

k2
∇∇

)∫
d3r′

eik|
~R|

|~R|
~P (~r′), (2.9)
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where the polarization vector ~P (~r) = ε0χ ~E(~r) was introduced. The outgoing scat-

tered wave given by Eq. (2.8) completes the exact solution to the scattering problem,

Eq. (2.9), which is a version of the Lippmann-Schwinger equation for classical elec-

trodynamics. The equation is generally quite difficult to solve as it is recursive in

~E(~r′) and involves complicated integrals over the volume of the dielectric. To solve

Eq. (2.8) requires approximations or numerical techniques. In the special case of a

spherical object the fields can be found exactly through an expansion in spherical

waves known as Mie scattering [51, 52]. Fortunately, the majority of particles used

in levitated optomechanics are smaller than the wavelength of light impinging on the

particle allowing the dominant interaction to be described by particles in the Rayleigh

regime. Most, but not all, of the situations that will be encountered in this thesis are

under this assumption and from here we will proceed to find an approximate solution

to Eq. (2.9) that will be relevant to the following chapters. It will be noted when the

Rayleigh limit is no longer satisfied and methods for the solution will be outlined in

the applicable chapter.

2.2 Rayleigh scattering

The simplest and most widely used approximation is the Rayleigh approximation

named after Lord Rayleigh [53]. In this approximation the particle is considered

to be a point dipole which is valid when the particle size is small compared to the

wavelength, a � λ. The spatial variation of the electric field over the particle is

then negligible for any ~Einc(~r) and electrostatics may be used to find ~E(~r′) inside the

particle. With the definitions of the polarization vector ~P (~r) = ε0χ ~Einc(~r), dipole

moment ~p =
∫
~P (~r′)d3r′, and applying |~r − ~r′| = r to Eq. (2.8), the scattered field

for a dipole is

~Escatt(~r) =
k2

4πε0

(
1 +

1

k2
∇∇

)
eikr

r
~p (2.10)

=
eikr

4πε0

{k2

r
[~p− (r̂ · ~p)r̂] + [3r̂(r̂ · ~p)− ~p]

(
1

r3
− ik

r2

)}
. (2.11)
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Equation (2.11) may also be found in Ref. [49]. The first term in Eq. (2.11) is ∝ 1/r

and describes the scattered electric field in the far-field kr � 1 whereas the near-zone

is dominated by the 1/r3 in the second term. The scattering in earth’s atmosphere

is predominantly described by Rayleigh scattering as the Sun’s rays scatter off of air

molecules. In the Rayleigh limit, the scattered field ∝ λ−2 and the intensity ∝ λ−4

showing that higher frequency light scatters significantly more than lower frequency

light. This dependence on the wavelength is responsible for the blue color of earth’s

sky.

From Maxwell’s equations one can also obtain the scattered magnetic field

~Bscatt(~r) =
k2

4πZ0

(r̂ × ~p) e
ikr

r

(
1− 1

ikr

)
, (2.12)

where Z0 =
√
ε0/µ0 is the impedance of free space. In this approximation, besides

the polarization, the form of the incident field did not need to be stated. So long

as a � λ the electric field is effectively a constant across the particle. While this

regime appears limited in its applicability for many applications, fortunately, this

regime is often encountered in levitated optomechanics with typical laser wavelengths

λ = 1550, 1064 nm, particle radii of a ∼ 100 nm or less, and particle indexes of n ∼ 2.

Thus, while there is room for higher order terms their contributions are small and

the physics is dominated by the dipole moment.

This approximation still retains the possibility for anisotropy in the particle’s

induced polarization and therefore information about the particle’s shape is still rel-

evant. Consequently, information about its orientation can also be obtained. Orien-

tational information is located in the susceptibility tensor and therefore the dipole

moment ~p. This is important since particles of various shapes can be trapped such

as rods, ellipsoids, dumbbells, and anisotropic particles [39,54–56] each with different

dynamics.

The dipole moment is often written in terms of the complex polarizibility tensor

α = ε0V χ = α′ + iα′′, where V is the volume of the particle, since it gives a direct

relation to the incident field ~p = α ~Einc. Valid for the Rayleigh approximation, the
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elements of the polarizibility tensor are determined in electrostatics by finding the

electric fields inside of the particle and deducing the dipole moment. This can be

done analytically for a finite number of shapes and in general must be computed

numerically [57]. For time dependent fields the polarizibility is frequency dependent

owing to the frequency dependent relative permittivity ε(ω). Further, in the same

way that a charged particle radiates due to the acceleration caused by scattering, a

process called ’radiation reaction’, a polarized particle also experiences this phenom-

ena [49,58]. For a dipole of arbitrary shape the effect can be included in its complex

polarizibility as [58–60]

αj =
α0
j

1− ik3α0
j/6πε0

, (2.13)

where α0
j is the non-retarded polarizibility along the eigen-directions of the polariz-

ibility tensor, j = (x, y, z). The complex part of the polarizibility, α′′, is associated

with light absorption by the particle. However, from Eq. (2.13) even for perfectly

non-absorbing particles α′′ = 0, the radiative reaction still term produces a non-zero

imaginary term.

The shapes that will be of interest in later chapters are spheres and ellipsoid-like

particles for which analytical expressions are available [53]. Spheres are the most

convenient shape due to their symmetry, giving equal polarizibility in each dimension

α0
j = α. The polarizibility of a sphere of radius a is

α0 = 4πε0a
3 ε− 1

ε+ 2
= 3ε0V

ε− 1

ε+ 2
. (2.14)

For a prolate spheroid with the longest dimension in the z-direction having length a

while the lengths in the x and y directions are b, c (b = c), the polarizibilities are

α0
z = 4πε0abc

ε− 1

3 + 3Lz(ε− 1)
, (2.15)

α0
x,y = 4πε0abc

ε− 1

3 + 3Lx(ε− 1)
, (2.16)
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with

Lz =
1− e2

e2

(
− 1 +

1

2e
ln

1 + e

1− e

)
, e2 = 1− b2

a2
, (2.17)

Lx =
1− Lz

2
. (2.18)

The general form of the Li is in terms of integrals [53] and differ depending on the

particle shape. For a sphere, Lz = Lx = 1/3, reducing Eqs. (2.15) and (2.16) to Eq.

(2.14).

2.3 Rayleigh-Gans Scattering

When the Rayleigh approximation is insufficient, the next approach which is able

to capture higher order effects due to finite-sized particles is Rayleigh-Gans scattering.

Rayleigh-Gans scattering is valid in the regime ka|n − 1| � 1 where n is the index

of refraction and a is the size of the particle [52]. This is a constraint on the overall

change of the fields over the particle in both magnitude and direction. Specifically,

the |n−1| in the restriction requires fairly transparent media. However, it does allow

for the finite extension of the particle to be accounted for whereas Rayleigh scattering

does not. So long as the distance at which the field is evaluated is large compared

with the particles size, we can write |~R| ≈ r − r̂ · ~r′ in the phase of Eq. (2.8) and

|~R| ≈ r in the denominator

~Escatt(~r) =
k2

4π

(
1 +

1

k2
∇∇

)
eikr

r

∫
d3r′e−i

~k·~r′χ ~E(r′). (2.19)

Depending on the situation the 1
k2
∇∇ ≈ −r̂r̂ for r � r′. The remaining integral

in Eq. (2.19) is called the shape function and provides information about how the

finite extent of the particle affects the scattering. It can be computed analytically

for spheres, and for rods and disks when at least one dimension satisfies the Rayleigh

limit ka� 1 [52,61–64].
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2.4 Scattered fields in the far-zone

Although the full form for the scattered field is difficult to solve in general, much

information about the scattering process can be learned by looking at particular

limits in Eq. (2.8). Far away from the scatterer k|~R| � 1, kr � 1 the computational

complexity is far reduced. In this limit Eq. (2.7) can be rewritten as

G(~r, ~r′) ≈ (1− r̂r̂) e
ikr

4πr
e−ik(r̂·

~r′), (2.20)

where the substitution |~R| ≈ r − r̂ · ~r′ was made in the exponential and |~R| ≈ r for

all other |~R|. The scattered electric field in the far-zone is

~Escatt(~r) ≈
eikr

r

k2

4π
(1− r̂r̂)

∫
d3r′e−ik(r̂·

~r′)χ ~E(~r′) (2.21)

=
eikr

r
~F (~k, ~k′), (2.22)

where ~F (~k, ~k′) is the unnormalized vector scattering amplitude

~F (~k, ~k′) =
k2

4π
(1− r̂r̂)

∫
d3r′e−ik(r̂·

~r′)χ ~E(~r′). (2.23)

The scattered field is written in the form of Eq. (2.22) to highlight that the radial de-

pendence gives outgoing spherical waves. Information about the angular dependence

of the fields as well as the properties of the scatterer are contained in the scattering

amplitude.

The far-fields are useful for determining the power radiated by the particle in a

certain direction. Using the time averaged Poynting vector, ~S, the power radiated

into the direction of observation r̂ per area is

dP

dA
= r̂ · ~S

=
1

2
r̂ · Re

(
~E × ~H∗

)
=

1

2Z0

| ~E|2,

(2.24)
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for a TEM wave. From Eq. (2.22) the radial dependence on the power can already

be seen to scale as 1/r2. It is then more valuable to look at the power per solid angle

dP/dΩ

dP

dA
=

1

r2

dP

dΩ
→ dP

dΩ
=
|~F |2

2Z0

. (2.25)

The outgoing scattered light may take two polarization directions ξ̂, each of which

is perpendicular to the direction of propagation in the far field limit. Examining the

power delivered per solid angle for a particular polarization is done through(
dP

dΩ

)
ξ

=
|ξ̂ · ~F (~k, ~k′)|2

2Z0

. (2.26)

An important expression known as the differential scattering cross section, dσ/dΩ,

quantifies the fraction of incident light scattered into the solid angle dΩ. It is defined

as the ratio between the scattered power per solid angle and incident power per area(
dσ

dΩ

)
=

(
dPscatt

dΩ

)
/

(
dPinc

dA

)
(2.27)

=
∑
j

|ξ̂j · f̂(~k, ~k′)|2, (2.28)

where the sum is taken over both outgoing polarization directions and the normalized

scattering amplitude was introduced, ~f(~k, ~k′) = ~F (~k, ~k′)/| ~Einc|. It is a probability

density for scattering in a particular direction. Explicitly, light propagating in the

spherical k̂f = r̂ direction allows ξ̂1 = θ̂ and ξ̂2 = φ̂ as one possible choice of outgoing

polarizations and thus (
dσ

dΩ

)
= |θ̂ · ~f(~k, ~k′)|2 + |φ̂ · ~f(~k, ~k′)|2. (2.29)

The total cross section σ =
∫

(dσ/dΩ)dΩ has the dimensions of area and is the

proportionality constant for the total scattered power by the particle for a given

incident intensity, Pscatt = Iincσ.

Using the scattered far-field expression for isotropic Rayleigh particles in Eq.

(2.11), the differential scattering cross section for Rayleigh particles can be com-
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puted. For incident light traveling in ẑ and polarized in the x̂, ŷ, or unpolarized

directions (
dσ

dΩ

)
x

=

(
k2α

4πε0

)2 [
cos2 θ cos2 φ+ cos2 φ

]
, (2.30)(

dσ

dΩ

)
y

=

(
k2α

4πε0

)2 [
cos2 θ sin2 φ+ sin2 φ

]
, (2.31)(

dσ

dΩ

)
∗

=

(
k2α

4πε0

)2
1

2

[
cos2 θ + 1

]
, (2.32)

(2.33)

respectively. Regardless of the polarization choice,

σ =

(
8π

3

)(
k2α

4πε0

)2

. (2.34)

2.5 Interaction energy and forces

The discussion thus far has been focused on the scattered fields from a particle.

The incident and scattered fields that reside within the particle have energy and are

necessarily coupled to the particle. The light-matter coupling is what gives rise to the

forces that levitated optomechanics is concerned with. The time averaged interaction

energy is [65]

Uint =
1

4

∫
d3r′ ~P (~r′)∗ · ~E(~r′), (2.35)

where the integral is over the volume of the particle and ∗ denotes the complex

conjugate. The force is then found through ~F = −∇Uint. For Rayleigh particles,

the force can be split into two components: a conservative gradient force which is

responsible for trapping

~Fgrad =
α′

4
∇
[
~E∗ · ~E

]
, (2.36)

and a non-conservative scattering force

~Fscatt = ωµ0α
′′~S − iα

′′

4

[
∇×

(
~E × ~E∗

)]
, (2.37)
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where ~S is the time average Poynting vector and the last term in Eq. (2.37) is relevant

for fields with nonzero angular momentum. The net optical force is then

~F = ~Fgrad + ~Fscatt. (2.38)

The equations above will be computed and examined more closely in the following

chapter.

Alternatively, the incident and scattered fields computed from Eq. (2.8) together

with the Maxwell Stress tensor [49]

Tij = ε0

[
EiEj + c2BiBj −

1

2

(
| ~E|2 + c2| ~B|2

)
δij

]
, (i, j) = (x, y, z), (2.39)

can be used to obtain the net optical forces and torques

~F =

∮
T · n̂ dS, (2.40)

~τ =

∮
M · n̂ dS, (2.41)

where M = −T × ~r and the integral is over a specified closed surface enclosing the

particle.

Lastly, the scattering force can be calculated in another view by considering the

momentum that is transferred from the photons to the particle

~Fscatt = Jp

∫ (
dσ

dΩ

)
∆~pdΩ, (2.42)

where Jp = I0/h̄ω is the photon flux and ∆p = h̄k [(1− cos(θ)) ẑ + sin(θ)ρ̂] is the

momentum transfer function for a photon initially propagating in the ẑ direction.

Each method for computing the forces necessarily gives equivalent results. Nonethe-

less, given a problem at hand, it is useful to look at the scenario from several per-

spectives.
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3. TRANSLATIONAL MOTION

This chapter presents the well known translational dynamics of a dielectric nanosphere

in the focus of a Gaussian beam as well as the common methods of measuring the

motion.

3.1 The Gradient Force

(a) (b)

Figure 3.1. (a) Picture of an actual silica nanosphere trapped in the focus
of a laser beam. Image taken from [44]. (b) Model of the system. A
nanosphere (blue) is trapped and oscillates about the focus of a Gaus-
sian laser beam (red) traveling in the z-direction and polarized in the
x-direction (yellow).

This section will demonstrate how a focused laser beam is able to yield three

dimensional translational trapping of a dielectric nanosphere of radius R � λ, mass
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M , and polarizibility α. The procedure can be generalized for arbitrary particle shape.

In levitated optomechanical experiments the particle is trapped near the focus of a

tightly focused laser beam. The simplest and most common description of the beam

at the focus is the (0,0) mode of a Gaussian beam. Consider a Gaussian laser beam

traveling in the ~k = 2π
λ
ẑ direction and polarized in the Êinc = x̂ direction as in Fig.

3.1(b). The electric field incident on the nanosphere is [66]

~Einc = E0
ω0

ω(z)
e
−ρ2

ω2(z) ei(kz+
kρ2

2R(z)
−ψ(z))x̂. (3.1)

The Gaussian beam is defined with (x, y, z) = (0, 0, 0) to be the center of the focus

and ω0 the beam waist, ω(z) = ω0

√
1 + (z/zR)2 with zR = πω2

0/λ the Rayleigh range,

ρ2 = x2 + y2, k = 2π/λ, R(z) = z[1 + (zR/z)2], and ψ(z) = arctan(z/zR). From Eq.

(2.35), the potential energy of the nanosphere is given by

U = −1

4
~p ∗ · ~Einc

= −1

4
αE2

0

ω2
0

ω2(z)
e
−2ρ2

ω2(z)

(3.2)

where ~p = α~Einc is the electric dipole moment of the nanosphere. The conservative

force due to the field, Eq. (2.36), is

~Fgrad = −αE2
0

[
1

ω2
0 (1 + z2/z2

R)
2

]
x

y

zω2
0

2z2
R

− zρ2

(z2 + z2
R)

 e
−2ρ2

ω2(z) .
(3.3)

It is seen that the forces in the x and y directions are identical and attractive while

the force in z is repulsive only for large transverse motion and weakly focused beams

(ω0/zR = NA, where NA is the numerical aperture of the lens used to focus the beam).

As trapping is desired rather than a repulsive interaction, a strongly focused beam is

used in practice. Considering a highly focused laser, the nanosphere is located near
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the center of the focus and the approximations exp (−2ρ2/ω2(z)) ≈ 1 − 2ρ2/ω2
0 and

(1 + (z/zR)2)−1 ≈ 1− z2/z2
R may be made to give

~Fgrad ≈ −αE2
0


x/ω2

0

y/ω2
0

z/2z2
R

 .
(3.4)

Equation (3.4) reveals that the particle will undergo simple harmonic motion about

the focal point. The frequencies of oscillation are

ω2
x =

αE2
0

M

1

w2
0

, (3.5)

ω2
z =

αE2
0

M

1

2z2
R

. (3.6)

Note that the frequencies do not depend on the radius of the particle, but only on

the density ρ and dielectric constant ε since ω2
i ∝ Fi/M ∝ α/M and α and M are

both proportional to volume.

To give a sense of typical sizes commonly seen in levitated optomechanics, Eqs.

(3.5) and (3.6) will be evaluated here. Using laser parameters P = 200 mW, λ = 1550

nm, and NA = 0.6 together with a silica nanosphere of density ρ = 2000 kg/m3, and

dielectric constant ε = 2.1 (α = 4.94 × 10−33 C2m/N , M = 1.05 × 10−18 kg) gives

ωx,y/2π = 158 kHz and ωz/2π = 67 kHz. In practice, ωx,y/2π are typically in the

50 − 200 kHz range while ωz/2π ∼ 10 − 100 kHz and typical radii of the particles

range from R = 50 nm− 1 µm.

3.2 The Scattering Force

As Ashkin first observed [67], the momentum of light from the laser pushes a

particle away from the focus in the axial direction through radiation pressure. To

determine the approximate size of this translational displacement, consider a laser

with intensity I0, power P0, and wavevector ~k = 2π
λ
ẑ incident on a dumbbell of radius
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R and polarizability α = α′ + iα′′ (see Sec. 2.2). The average scattering force from

Eqs. (2.37) or (2.42) gives

~Fscatt ≈ α′′E2
0k

(
1− 1

zRk

)
ẑ, (3.7)

to first order. The scattering force is proportional to the imaginary part of the polar-

izability, α′′. Recall from Sec. 2.2 that the imaginary component of the polarizibility

is non-zero even for non-absorbing particles. Radiation pressure is dominant in the

axial degree of freedom. The next order terms exist for all degrees of freedom, but are

quadratic in the displacement and therefore negligible for most practical purposes.

The distance by which the particle is displaced from the focus of the beam, zd, can

be estimated by using the equations of motion to first order with the nanoparticle in

its equilibrium position

mz̈ = 0 = −mω2
zzd + Fscatt,z, (3.8)

yielding
zd
zR

= 2
α′′

α′
(kzR − 1) , (3.9)

relative to the Rayleigh range, zR. Using the same values as in Sec. 3.1, zd/zR = 0.1

or about 150 nm for a R = 100 nm sphere.

3.3 Measuring the particle displacement

A fundamental component in levitated optomechanics is the ability to track the

motion of a particle in real time. Because of the small size of the relatively transparent

particle the intensity of scattered light is small and difficult to detect. The technique

often employed to detect the position makes use of the interference between the

laser beam and the scattered light off of the nanoparticle and is called homodyning

[22, 23, 68–71]. Following a condensing and focusing lens, the combined signal is

incident upon a photodector split into four equal segments, known as a quadrant

photodector. To obtain the position x of the particle relative to the center of the
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Figure 3.2. Illustration of the measurement procedure. The scattered
light (yellow) from the nanoparticle (blue) is homodyned with the laser
beam and the resulting signal is incident upon a quadrant photodector.
A measurement of the displacement x0 from the focus is performed by
subtracting the sections (A+B)-(C+D) while for a measurement in the y
direction (A+C)-(B+D).

focal point the signals in the two leftmost quadrants are subtracted from the two

rightmost quadrants. This scheme gives a signal proportional to the displacement x0.

The signal is then Fourier transformed to give a power spectral density which allows

the experimental determination of the translational frequencies, Eqs. (3.5) and (3.6).

The illustration of the setup can be seen in Fig. 3.3.

Consider again the Gaussian beam given by Eq. (3.1) incident upon a nanosphere

located at ~r′ = x0x̂. The incident light polarizes the nanoparticle inducing a dipole

moment ~p = α~Einc(x0, 0, 0) ≈ αE0x̂. The scattered light for a dipole in the far field

is (Sec. 2.2)

~Hp =
ck2

4π
(R̂× ~p)e

ikR

R
, (3.10)

~Ep = Z0
~H × R̂, (3.11)

where ~R = ~r − ~r′ = 〈x − x0, y, z〉, ~r is in the direction of observation, Z0 is the

impedance of free space, and the subscript p stands for the particle. Ignoring the

effects of the lenses for the moment, the signal reaches a photodector located at
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〈0, 0, L � zR〉 with its planar surface parallel to the x − y plane. In terms of the

Poynting vector, the signal is

~S =
1

2
Re

[
~ETotal × ~H ∗Total

]
=

1

2
Re

[(
~Ep × ~H ∗inc

)
+
(
~Einc × ~H ∗p

)
+
(
~Ep × ~H ∗p

)
+
(
~Einc × ~H ∗inc

)]
,

(3.12)

where ~Hinc = 1
µ0c

(
~Einc ·x̂

)
ŷ. The first two terms in Eq. (3.12) are the homodyne terms

while the last two play no role in the measurement since the scattered intensity is very

small compared to the incident light and the outgoing incident power adds an overall

constant independent of the particle position. A photodector reads the intensity of

the incoming beam which are the components parallel to its surface. Thus, the only

component needed from the Poynting vector is ~S · ẑ. Evaluating the homodyne terms

in the Poynting vector and taking the dot product gives

~S · ẑ =
1

2
Re

[
AB

(
1− (x− x0)x

R2

)
+ AB∗

(
y

R

)]
(3.13)

where A =
αE2

0ω0

ω(L)R
ck2

4π
e−ρ

2/ω2(L) and B = eikRe−i(kL+ kρ2

2R(L)
−ψ(L)). Integrating over the

entire detector and subtracting the two leftmost quadrants from the rightmost quad-

rants gives the power

Px =

∫ ∞
0

∫ ∞
−∞

(
~S · ẑ

)
dydx−

∫ 0

−∞

∫ ∞
−∞

(
~S · ẑ

)
dydx. (3.14)

In order to evaluate the integrals some approximations must be made. First, the

length L is at least on the centimeter scale while the dimensions of the photodiode

x, y are ∼ mm and the particle displacement x0 ∼ nm. Expanding the relative

distance vector ~R in B to second order

B = exp
(
i
(
kR− kL− kρ2/2R(L) + ψ(L)

))
≈ exp

(
i
(
− kxx0

L
+ π/2

)) (3.15)

where the approximation ψ(L) = arctan(L/zR) ≈ π/2, known as the Gouy phase

shift [72], was made. The main idea of this measurement can be seen in Eq. (3.15)
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as the interference has brought information about the displacement within the phase.

Further expanding the denominators in A to first order ω(L) ≈ ω0L/zR and R ≈ L

yields

~S · ẑ ≈
(
αE2

0zR
2L2

)(
ck2

4π

)
e−ρ

2/ω2(L)(
kxx0

L
)

[
1−

(
y

L

)]
. (3.16)

Performing the Gaussian integrals in Eq. 3.14 using Eq. 3.16 gives

(a) (b)

Figure 3.3. (a) Time trace of the experimentally measured position observ-
ing the oscillatory behavior. Picture taken from [23]. (b) Power spectral
density of measured x, y, z positions from Ref. [56].

Px ≈
(2αPNA3

π5/2ε0λ4

)
x0, (3.17)

in terms of the experimentally tunable power, numerical aperture, and wavelength of

the beam. This simplified measurement calculation results in a signal that is directly

proportional to the displacement to first order. Figure 3.3(a) shows a plot of the

experimentally measured position of a nanosphere from [23]. This was only possible

through the Gouy phase shift of π/2 seen in Eq. (3.15). A measurement of the

displacement y0 is performed in the same manner by subtracting the upper and lower

most quadrants of the photodetector. The displacement z0 is measured differently

than the transverse motions. One method for measuring z0 is by subtracting the
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signals between two detectors placed a distance z away from one another, but will

not be calculated here [73–75]. Here the effects of the lenses [66] were safely neglected

as they introduce higher order terms that include all three displacements x0, y0, z0

scaled by the various length scales of the system. For larger, non-Rayleigh particles,

the higher order terms may need to be considered.
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4. ROTATIONAL MOTION

Figure 4.1. Scanning electron microscope image of actual silica nan-
odumbbells used in the experiments of Ref. [56]. Photo credit to the
same reference.

This chapter examines the rotational dynamics of a dielectric nanodumbbell in

the focus of a Gaussian beam as well as the methods of measuring the motion. Much

of this work may be found in our paper [76]. The term libration (also known as

torsional motion) will be used in the following sections and stands for harmonic

rotational oscillations in a particular plane.

A sphere is symmetric with respect to rotations which in effect produces no rota-

tional potential energy. Only non-spherical particles experience a torque in a linearly

polarized beam. While the translational motion in Sec. 3.1 is fairly intuitive, ro-
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tational dynamics can become complicated for generally anisotropic particles. The

simplest shape with a nonzero torque is a nanorod with two principal moments of

inertia equal Ix = Iy and the moment of inertia about the symmetry axis negliga-

ble Ix � Iz ≈ 0. The dynamics of a nanorod are relatively simple and amount to

libration about the laser polarization axis [54, 59]. One of the next simplest shapes

that produces a nonzero torque is a symmetric top defined by having two principal

moments of inertia the same Ix = Iy with relation to the third moment Ix 6= Iz 6= 0.

Recently, the torsional motion of a nanodumbbell was measured [56] and cooled [77].

A theoretical analysis of the dynamics for particles of this shape was missing until

our publication. For this reason and for the purpose of what follows in Chap. 6, the

symmetric-top particle of choice for the analysis below will be a nanodumbbell.

4.1 Classical dynamics

Consider a nanodumbbell optically trapped in a laser field. The particle’s center

of mass is fixed at the origin so that only rotations are considered. The nanodumbbell

is composed of two spheres each with mass Ms and radius R. The spheres are aligned

along the z′′′-axis and touching at the origin, where the triple prime indicates the

particle frame coordinate system (see Fig. 4.2). It is a symmetric top with principal

moments of inertia Ix = Iy = 14
5
MsR

2 and Iz = 4
5
MsR

2. The laser beam is linearly

polarized along the lab frame x direction and propagating in the z direction with a

wavelength λ� R. As in Sec. 3.1, the nanodumbbell is treated as a point dipole with

~Einc = E0x̂, the electric field polarizing the dumbbell, having no spatial dependence

due to the small size of the dumbbell.

The rotational dynamics are governed by the classical equations of motion de-

scribed by the Euler angles (α, β, γ) [78, 79] in the z-y′-z′′ convention. To transform

from the lab (x, y, z) frame to the particle (x′′′, y′′′, z′′′) body frame, three rotation

transformations are made. First, a rotation about the lab frame z-axis through an

angle α is performed, (x, y, z) → (x′, y,′ z′ = z). Then, a rotation about the y′-axis
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Figure 4.2. (a) A nanodumbbell with center of mass confined to the
origin is allowed to rotate. The particle has the lowest energy when its
long axis (z′′′-axis) aligns with the laser’s electric field polarized in the
lab frame x-direction. (b) The definition of the Euler angles α, β, γ
shown in the z-y′-z′′ convention. For small angle rotations, the coordinate
α = 0 + ξ describes rotations near the lab frame x-axis in the x-y plane
and β = π/2− η describes rotations near the lab frame x-axis in the x-z
plane. The coordinate γ describes rotations about the z′′ = z′′′ axis with
γ(t) ≈ ω3t. For visual clarity, the x′′, y′′, x′′′, y′′′ axes have been omitted
from the figure.

is made through an angle β, (x′, y′, z′) → (x′′, y′′ = y′, z′′). Finally, a rotation about

the z′′-axis is made through an angle γ, (x′′, y′′, z′′) → (x′′′, y′′′, z′′′ = z′′). In this

configuration, each Euler angle has an intuitive definition for small amplitude oscil-

lations; α defines libration in the x-y plane, β defines libration in the x-z plane, and

γ corresponds to angles of rotation about the z′′′-axis.

The rotation matrix
↔

R in terms of the Euler angles in the z-y′-z′′ convention is

↔

R =
↔

Rz′′
↔

Ry′
↔

Rz, (4.1)
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and

↔

Rz =


cosα sinα 0

− sinα cosα 0

0 0 1

 , (4.2)

↔

Ry′ =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 , (4.3)

↔

Rz′′ =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 . (4.4)

The kinetic and potential energies are

K =
1

2
Ix(ω

2
1 + ω2

2) +
1

2
Izω

2
3, (4.5)

U = −1

4
~p · ~Einc

= −1

4
(αz − αx)E2

0 cos2(α) sin2(β),
(4.6)

where

~p =
↔

R
†↔
α0

↔

R~Einc

= E0


(αz − αx) cos2(α) sin2(β)

(αz − αx) sin2(β) cos(α) sin(α)

(αz − αx) cos(β) sin(β) cos(α)


≡< px, py, pz >,

(4.7)

is the nanodumbbell polarization vector in the lab frame,
↔
α0 is the diagonal polar-

izibility matrix with the αj (j = x, y, z) [53, 59] the polarizibilities for an ellipse in

the particle frame (αx = αy) and are not to be confused with the coordinate α. The

body frame angular velocities are given by

ω1 = β̇ sin(γ)− α̇ sin(β) cos(γ), (4.8)

ω2 = β̇ cos(γ) + α̇ sin(β) sin(γ), (4.9)

ω3 = α̇ cos(β) + γ̇ = const. (4.10)
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It should be noted that as a consequence of the nanodumbbell’s symmetry, the angular

momentum about the nanoparticle’s symmetry axis, Izω3, is a constant of the motion

[Eq. (4.10)]. Constant terms in Eqs. (4.6) and (4.7) have been omitted as they do

not affect the particle’s rotational dynamics. The full equations of motion for the

three angles α, β, γ are found through the Lagrangian giving

α̈ = −2α̇β̇ cot(β) + β̇ csc(β)
Iz
Ix
ω3 −

1

Ix sin2(β)

(∂U
∂α

)
, (4.11)

β̈ = sin(β)

(
α̇2 cos(β)− α̇ Iz

Ix
ω3

)
− 1

Ix

(∂U
∂β

)
, (4.12)

γ̇ = ω3 − α̇ cos(β). (4.13)

The attractive potential, Eq. (4.6), causes the particle to oscillate about the

polarization axis in two joint motions (see Fig. 4.1). The two motions are most

easily seen when the equations are written under a small angle approximation. It is

energetically favorable for the particle’s long axis (z′′′-axis) to align with the electric

field and is therefore localized near the lab frame x-axis. This corresponds to α

nearing towards zero or π, and β near π/2. Allowing the two coordinates to make

small oscillations about the x-axis, α→ 0+ξ β → π
2
−η, with ξ, η small, the equations

of motion to first order become

ξ̈ =
[
− ω2

2
sin(2ξ)− ωcη̇ sec(η) + 2η̇ξ̇ tan(η)

]
≈ −ω2ξ − ωcη̇,

(4.14)

η̈ = cos(η)
[
− ω2 sin(η) cos2(ξ) + ωcξ̇ − ξ̇2 sin(η)

]
≈ −ω2η + ωcξ̇,

(4.15)

where ω2 = 1
2
(αz − αx)E2

0/Ix and ωc = (Iz/Ix)ω3. The first term on the right hand

side of Eqs. (4.14) and (4.15) amounts to harmonic oscillations (libration) about the

polarization axis due to the trapping potential which has been seen before in [80,81].

The second term containing ωc couples the four DOF and is responsible for precession

about the x-axis. The precession is a consequence of the nonzero angular momentum

about the symmetry axis, Izω3. Precession has recently been seen for anisotropic
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particles in an elliptically polarized beam [55], but with α precessing around the lab

frame z-axis with β roughly fixed. As in the case for thin nanorods, the motion

reduces to pure libration in the limit Iz → 0. The equation of motion for γ is not

directly affected by the potential and largely evolves with time as γ(t) ≈ ω3t in the

small angle approximation (see Eq.(4.13)).

The transformation of the z′′′-axis into the lab frame, r̂z′′′ =
↔

R
†
ẑ′′′, determines the

location of the tip in the (x, y, z) coordinate system,

r̂z′′′ =


sin(β) cos(α)

sin(β) sin(α)

cos(β)

 ≈


1

ξ

η

 , (4.16)

where in the last step the small angle approximation was made. It is seen that ξ

and η play the role of the y and z coordinates defining the location of the tip of the

nanodumbbell. By introducing a vector that specifies the projection of the z′′′-axis

on the y-z plane, ~ρz′′′ =< 0, ξ, η >, it is possible to combine Eqs. (4.10), (4.11),

~̈ρz′′′ = −ω2~ρz′′′ − ~̇ρz′′′ × ~ωc, (4.17)

where ~ωc = ωcx̂ = (Iz/Ix)ω3x̂. The last term in Eq. (4.17) has the familiar form

of the force on a charged particle in a magnetic field. The two joint motions now

become clear as a combination of harmonic oscillations in a static pseudo-magnetic

field. Thus, as long as ωc is nonzero, the full dynamics of the nanoparticle must be

described as a combination of libration and precession, as opposed to just libration.

For a nanodumbbell at room temperature, T = 300 K, the average value of ωc/2π ∼
√
kBTIz/ (2πIx) ∼ 10 kHz, where kB is the Boltzmann constant. While ω/2π ∼

100 kHz−1 MHz� ωc/2π, the coupling that results due to the ∼10 kHz frequency is

a resolvable feature in the power spectral density and is a non-negligible effect when

considering parametric feedback cooling, as will be discussed in Chap. 6.

The librational frequency ω scales with the radius as ω2 ∼ 1/R2 suggesting that a

particle of smaller size is beneficial for ground state cooling. However, the polarizibil-

ity and moment of inertia scale as αj ∼ R3, Ij ∼ R5 implying that the particle will
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be less confined and more unstable in the optical trap as the size decreases. In effect,

a smaller radius will be more likely to escape the trap and will produce a broader

power spectral density. Further, ωc ∼ 1/R5/2 showing that as the size of the particle

decreases the precessional phenomenon is more pronounced.

Equations (4.14) and (4.15) admit two normal modes,

ξ(t) = A+ cos(ω+t+ δ+) + A− cos(ω−t+ δ−), (4.18)

η(t) = A+ sin(ω+t+ δ+)− A− sin(ω−t+ δ−), (4.19)

with ω± = 1
2

(Ω± ωc), Ω =
√

4ω2 + ω2
c , and the A±, δ± determined by initial condi-

tions. Each mode circles the polarization axis at a particular frequency with the (+)

mode advancing clockwise and the (−) mode counterclockwise. The superposition of

the two modes results in the libration and precession mentioned above. Thus, as will

be discussed in Chap. 6, the power spectral density of ξ or η should exhibit two peaks

at ω±.

Since the coordinates α and β completely describe the location of the nanodumbbell’s

tip projected on the lab frame axes, it is possible to track the rotational evolution

about the polarization axis while simulating the full equations of motion. Figure

4.1 plots the z′′′-axis projection on the lab frame z-y plane (i.e. Z/2R = cos(β),

Y/2R = sin(β) sin(α) is plotted versus time. Note that in the small angle limit

Z/2R ≈ η, Y/2R ≈ ξ). The particle’s tip undergoes fast oscillations enveloped in a

slower precession motion about the x-axis, qualitatively consistent with the dynamics

seen in the small angle approximation.

In summary, the nanoparticle oscillates about the polarization axis as a superpo-

sition of two precessional modes resulting in a combination of libration and precession

motions. The librational motion is due to the laser field’s potential while precession

arises from the nonzero spin of the nanoparticle about its symmetry axis. The equa-

tions of motion describing the location of the tip of the nanoparticle in the small angle

approximation are seen to have the same form as a charged particle in a harmonic

oscillator potential and a static magnetic field.
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Figure 4.3. Trajectory of the nanoparticle’s z′′′-axis, projected on the lab
frame y-z plane found by simulating the full equations of motion and using
linear polarization. Here, Z/2R = cos(β), Y/2R = sin(β) sin(α) define the
location of the z′′′-axis; in the small angle limit Z/2R ≈ η, Y/2R ≈ ξ. The
particle’s long axis moves in two joint motions, one describing libration
and the other describing precession about the polarization axis.

4.2 Quantum dynamics

The quantum translational dynamics are fairly straightforward as they describe

uncoupled harmonic oscillators in three dimensions. The quantum rotational dynam-

ics of Sec. 4.1 are more interesting due to the combination of precession and libration.

This section will investigate the quantum rotational dynamics for linearly polarized

light incident on a nanodumbbell in the z-y′-z′′ convention. First, the wavefunction

will be solved for using the time independent Schrodinger equation. Secondly, the

Hamiltonian is composed of conanical variables which allows one to rewrite it in terms

of the raising and lowering operators a†i ,ai and transform to a Fock basis |ni, nj〉.

The time independent Schrodinger equation is

HΨ (α, β, γ) = EΨ (α, β, γ) (4.20)
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with the Hamiltonian H = KR + UR. The rotational kinetic and potential energy

are given by [82]

KR = − h̄2

2Ix

[
∂2

∂β2
+ cot(β)

∂

∂β
+

(
Ix
Iz

+ cot2(β)

)
∂2

∂γ2

+
1

sin2(β)

∂2

∂α2
− 2 cos(β)

sin2(β)

∂2

∂α∂γ

]
,

(4.21)

UR = −1

4
(αz − αx)E2

0 cos2 α sin2 β

= −U0 cos2 α sin2 β.

(4.22)

To begin, define the dimensionless quantities ε = −2EIx/h̄
2 and W = −2IxUR/h̄

2 =

W0 cos2 α sin2 β. A solution of the form Ψ (α, β, γ) = A(α, β)C(γ)/
√

sin β ≡ AC/
√

sin β

allows removal of the first derivative of β in Eq. (4.21) and the differential equation

becomes[
Aββ
A

+
1

2

(
cot2 β + 1

)
+
Cγγ
C

(
Ix
Iz

+ cot2 β

)
+

Aαα
A sin2 β

− AαCγ
AC

(
2 cos β

sin2 β

)]
+W = ε,

(4.23)

where the notation Aβ will stand for the derivative ∂
∂β
A and Aββ ≡ ∂2

∂β2A. Performing

the operation ∂2

∂α∂γ
to both sides of Eq. (4.23) gives the relation Cγ

C
= const. yielding

C(γ) = C0e
iλγ (4.24)

where λ = 0,±1,±2, ... is an integer constrained by the condition C(γ) = C(γ + 2π)

and C0 is a constant. With the γ dependence accounted for, the differential equation

may be solved for using the small angle approximation used in Sec. 4.1. Allowing

α→ 0 + ξ , β → π
2
− η produces to second order[

Aηη
A

+
Aξξ
A
− 2iλη

Aξ
A
− λ2η2

]
−W0

(
η2 + ξ2

)
= ε−W0 + λ2 Ix

Iz
− 1

2
. (4.25)

Making the gauge transformation Ψ′ (ξ, η, γ) → exp(iλξη/2)Ψ (ξ, η, γ) and inserting

into Eq. (4.25) brings[
∂2

∂η2
+
∂2

∂ξ2

]
+iλ

(
ξ
∂

∂η
− η ∂

∂ξ

)
−
(
W0 +

λ2

4

)(
ξ2 + η2

)
= ε−W0 +λ2 Ix

Iz
− 1

2
, (4.26)
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which we rewrite as(
p̂2
η + p̂2

ξ

2Ix

)
+

(
λh̄

2Ix

)
L̂x + U0

(
ξ2 + η2

)
= (ε0 − εγ) , (4.27)

which has the familiar form of a harmonically trapped charged particle in a static

magnetic field. Comparing Eqs. (4.26) and (4.27), it is visible that p̂η = −ih̄ ∂
∂η

plays

the role of the momentum in η (similarly for ξ), L̂x = −ih̄
(
ξ ∂
∂η
− η ∂

∂ξ

)
is the angular

momentum about the x-axis, U0 = U0 + λ2h̄2/(8Ix) is a shifted harmonic potential

energy, and the constants ε0 = E + U0 and εγ = h̄2

2Ix

(
λ2 Ix

Iz
− 1

2

)
determine the total

energy and energy associated with the spin γ.

To complete the solution to Eq. (4.26) it is easiest to move to polar coordinates

with ξ = ρ cosφ, η = ρ sinφ, ρ2 = η2 + ξ2, φ = arctan(η/ξ), and L̂x = −ih̄ ∂
∂φ

. The

ansatz A(ξ, η)→ A(ρ, φ) = exp(imφ)R(ρ)/
√
ρ reveals m = 0,±1,±2, .. as an integer

and Eq. (4.26) becomes

− h̄2

2Ix

[
Rρρ

R
− 1

ρ2

(
m2 − 1

4

)
− λm

]
+ U0ρ

2 = (ε0 − εγ) . (4.28)

The differential equation is now fully determined by the solution for R(ρ). The

solution is found with R(ρ) = ρ|m|+1/2 exp(−ρ2q/2)L
|m|
j (ρ2q) where q2 = 2U0Ix/h̄

2 and

Lkn(x) is the associated Laguerre polynomial. The complete, normalized wavefunction

and eigenenergies in the small angle approximation are

Ψ′j,m,λ(ρ, φ, γ) ≈

√
q

π

j!

(j + |m|)!
eiλ(γ+ρ2 sin(2φ)/4)eimφ

(
ρ2q
)|m|/2

e−ρ
2q/2L

|m|
j (ρ2q).

(4.29)

E =

(
h̄2

2Ix

)[
λ

(
λ
Ix
Iz

+m

)
− 1

2

]
+ h̄ω (1 + |m|+ 2j)− U0 (4.30)

λ = 0,±1,±2,±3, ... m = 0,±1,±2,±3, ... j = 0, 1, 2, 3, ...
(4.31)

where the frequency ω =

(
2U0

Ix
+
(
λh̄
2Ix

)2
)1/2

. The integers j,m, λ are the quantum

numbers associated with the coordinates ρ, φ, γ, respectively. Noting that Lz = h̄λ
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while ω2 = 2U0/Ix = 1
2
(αz − αx)E2

0/Ix and ωc = Lz/Ix from the previous section we

can reexamine Eq. (4.30) after neglecting the constant factors,

E =
L2
z

2Iz
+ h̄

[
ω (|m|+ 2j) +

mωc
2

]
=
L2
z

2Iz
+ h̄|m|

[(
ω2 +

ω2
c

4

)1/2

± ωc
2

]
+ 2h̄ωj

=
L2
z

2Iz
+ h̄|m|ω± + 2h̄ωj

(4.32)

Equation (4.32) shows the energy of the particle while trapped in the linearly polarized

beam broken into familiar analogues from the previous section where the classical

dynamics were explored. The first term is the kinetic energy due to the spin about

the particle’s symmetry axis. Comparing with the normal mode frequencies found in

Eqs. (4.18) and (4.19) ω± =
√
ω2 + ω2

c/4± ωc/2, the second term shows oscillations

in the φ coordinate which accounts for precession about the laser polarization axis.

The last term shows simple harmonic motion for the two coordinates η, ξ with equal

frequencies of rotation, equivalent to libration.

It is also possible to recast the problem in a Fock basis |ni, nj〉 with the Hamilto-

nian in terms of raising and lowering operators. Introducing the raising and lowering

operators

aj =

(√
Ixω

2h̄
xj +

ipj√
2Ixωh̄

)
, a†j =

(√
Ixω

2h̄
xj −

ipj√
2Ixωh̄

)
, (4.33)

(4.34)

xj =

√
h̄

2ωIx

(
aj + a†j

)
, pj = i

√
Ixωh̄

2

(
a†j − aj

)
(4.35)

where the subscript j = (ξ, η) as well as xj = (ξ, η) and pj = (Ixξ̇, Ixη̇) . Using Eq.

(4.26), the Hamiltonian transforms to

H = h̄ω
[
a†ξaξ + a†ηaη + 1

]
+

(
iλh̄2

4Ix

)[
{aξ, a†η} − {aη, a

†
ξ}
]

(4.36)
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with {A,B} denoting the anti-commutator. Further transforming into the mode basis

|n+, n−〉 through the mode raising and lowering operators

a± =
1√
2

(aξ ± iaη) , a†± =
1√
2

(aξ ∓ iaη) (4.37)

aξ =
1√
2

(a+ + a−) , a†ξ =
1√
2

(
a†+ + a†−

)
(4.38)

aη =
i√
2

(a− − a+) , a†η =
−i√

2

(
a†+ − a

†
−

)
(4.39)

(4.40)

returns the Hamiltonian

H = h̄ω
[
a†+a+ + a†−a− + 1

]
+

(
λh̄2

2Ix

)[
a†−a− − a

†
+a+

]
, (4.41)

with energy eigenvalues

H|n+, n−〉 =

[
h̄ω (n+ + n− + 1) +

(
λh̄2

2Ix

)
(n− − n+)

]
|n+, n−〉

= (ε0 − εγ) |n+, n−〉.
(4.42)

Comparing Eq. (4.42) with Eq. (4.30) shows the relation between the wavefunction in

the position basis and the states in the |n+, n−〉 representation by finding n+ + n− =

|m| + 2j and m = n− − n+. These relations show that the n± modes represent the

precessional modes found in Sec. 4.1. The two modes compete with one another as the

(+) advances clockwise around the polarization axis and the (−) counterclockwise.

If each mode has equal energy, m = 0, resulting in no precession and pure libration.

Alternatively, if one mode has no energy, say n+ = 0, then m = n− and the relation

n+ + n− = |m|+ 2j requires j = 0, resulting in pure precession.

4.3 Measuring the particle orientation

It is possible to determine the orientation of the nanoparticle with respect to α

and β through different types of measurements. A common method of measuring α

libration [54,56,83,84] is to first send the forward scattered light from the nanoparticle
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Figure 4.4. Illustration of the measurement procedure for measuring the
orientation. A Gaussian beam is incident upon a symmetric-top particle
at an angle α with respect to the polarization axis. The scattered light
and outgoing laser light interfere to produce a total electric field Etotal.
The signal then enters a polarized beam splitter where it is split into
two polarizations E+ and E−. The two signals exiting the beam splitter
are incident upon their respective detectors and are subtracted from one
another to obtain a signal proportional to the angle α.

and the laser beam through a 45◦ polarized beamsplitter (PBS). The light exits the

PBS in two different directions with orthogonal polarizations. A measurement is

obtained by reading the signal of each polarization state on a photodetector and

taking the difference between the two signals. The illustration of this procedure is

depicted in Fig. 4.4. This section will demonstrate the validity of this measurement

procedure in its ability to measure an angle of libration as well as calculate a possible

method for measuring the second angle of libration. The method follows similarly to

that of Sec. 3.3. The derivation was first seen in our paper in Ref. [76].

To determine what is measured in the above procedure, consider a Gaussian laser

beam incident on the dumbbell from Eq. (3.1) in Sec. 3.1. The scattered light is
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again determined by the electric and magnetic fields for a dipole in the far field (Sec.

2.2)

~Hp =
ck2

4π
(r̂ × ~p)e

ikr

r
, (4.43)

~Ep = Z0
~H × r̂, (4.44)

where ~r is in the direction of observation and ~p is given by Eq. (4.3). After exiting

a collimating lens [66], the light is split by a 45◦ PBS. The transverse components of

the electric field exiting the PBS are

~E+(x, y) =
1√
2

(
Ex(x, y) + Ey(x, y)

)
ê+, (4.45)

~E−(x, y) =
1√
2

(
Ey(x, y)− Ex(x, y)

)
ê−, (4.46)

where Ex,y are the x and y components of the total electric field following the col-

limating lens and ê± designate the two split polarization states after the PBS. The

magnetic field undergoes a similar transformation. A measurement is performed by

taking the difference between the two signals measured at their respective detectors

P45◦ =

∫ ∞
−∞

∫ ∞
−∞

(
~S+ · ẑ − ~S− · ẑ

)
dydx, (4.47)

where ~S± = 1
2
Re[Ẽ± × H̃∗±] is the Poynting vector. Performing the integration gives

a homodyne term that is proportional to the y-component of the polarizibility from

Eq. (4.3)

P45◦ ∝ py ∝ sin2(β) cos(α) sin(α). (4.48)

Considering that the particle undergoes small oscillations the small angle approxima-

tion may be made, α→ 0 + ξ and β → π
2
− η,

py ∝ cos2(η) cos(ξ) sin(ξ) ≈ ξ, (4.49)

which is the angle describing the extent to which the nanoparticle’s long axis has

deviated from the polarization axis in the x-y plane.

It is also (theoretically) possible to measure the other angle of libration η. A second

transverse laser perpendicular from the first may be used using the same procedure
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above, or, instead, using the split detection measurement (the method used to track

the transverse translational motion in Sec. 3.3). Following the collimating lens, the

split detection measurement is performed and the homodyne term is examined

Px =

∫ ∞
0

∫ ∞
−∞

(
~S · ẑ

)
dydx−

∫ 0

−∞

∫ ∞
−∞

(
~S · ẑ

)
dydx

∝ pz ∝ cos(β) sin(β) cos(α) ≈ η,

(4.50)

which is the angle describing the extent to which the nanoparticle’s long axis has

deviated from the polarization axis in the x-z plane. Thus, both angles can be

detected. Note that it is not possible to measure γ directly using these methods since

it is not contained within the polarization vector in Eq. (4.3).

Figure 4.5. Power spectral density of a nanodumbbell’s measured position
and orientation (labeled Tor, standing for torsional motion, in the figure)
[56].

Interestingly, whereas the detection of translational motion relies on the π/2 Gouy

phase shift from ψ(z) in Eq. (3.1) [75], for a nanoparticle centered at the origin, the

Gouy phase shift hinders detection of rotational motion. The homodyne terms in

the Poynting vector evaluated far from the nanoparticle are left purely imaginary
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and require the imaginary part of the polarizibility for orientational detection. The

imaginary part of the polarizibility is usually smaller than the real part [59, 60] for

the types of particles used in levitated optomechanics and is two orders of magnitude

smaller for a R = 85 nm amorphous silica dumbbell in a λ = 1550 nm laser field.

However, the signal may become real, and therefore larger in magnitude, if the

particle is not centered at the origin, but pushed away from the focus by the laser

beam in the axial direction through radiation pressure. Section 3.2 estimated the

magnitude of this displacement to be approximately zd/zR ∼ 0.1 for a silica sphere.

For a nanodumbbell with the same parameters, zd/zR ∼ 0.14. This ratio becomes

important for measurements as eizd/zR ∼ (1+izd/zR) is a prefactor in the polarizibility

matrix when considering ψ(z) in Eq. (3.1), effectively reducing the measured signal

by this ratio.
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5. DAMPING AND NOISE

The analyses thus far have neglected sources of noise and damping. However, real

experiments encounter unavoidable laser shot noise, gas collisions, measurement un-

certainty, experimental noise, decoherence due to blackbody radiation, among others,

for both translations and rotations. This section describes the effects of two of the

most important environmental considerations for a particle trapped in the focus of a

laser beam: gas collisions and laser shot noise.

5.1 Gas collisions

The gas molecules scattering off of a levitated nanoparticle has been studied ex-

tensively [19, 26, 85, 86]. Collisions of a particle with the surrounding gas can be

described with the Langevin equations [19,87,88]

v̇i(t) ∝ −Γivi(t) + ζi(t), (5.1)

π̇i(t) ∝ −Γiπi(t) + Υi(t), (5.2)

where vi = (ẋ, ẏ, ż), πi = (α̇, β̇, γ̇), Γi is the damping rate, and ζ(t) and Υi(t)

are Wiener processes (stochastic noise). Equations (5.1) and (5.2) describe Brownian

motion with mean reversion around zero. The first term provides frictional damping

and the second gives force fluctuations due to scattering with the surrounding air

molecules. As the gas is composed of free atoms at temperature T , they obey a

Maxwell-Boltzmann distribution. With the scattering assumed uncorrelated, ζ(t) is a

Gaussian random number with a mean of zero and standard deviation
√

2kBTΓ/Mdt,

where dt is a step in time. Υi(t) similarly has a mean of zero and standard deviation√
2kBTΓ/Iidt with Ii the moment of inertia.
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At ambient pressures, the particle dynamics are dominated by these forces. For a

sphere with radius R and density ρ in a rarefied gas is [39,89]

Γ =
6πηR

ρ
(

4
3
πR3

) 0.619

0.619 + Kn
(1 + cK) , (5.3)

where η is the viscosity of air, Kn = s/R is the Knudsen number with s the mean

free path of air, and cK = 0.31Kn/
(
0.785 + 1.152Kn + Kn2

)
. From pressures of

760, 1, and 10−3 Torr the damping is of the order 103, 101, and 100 Hz for a micron

sized sphere [22]. As the pressure in the vacuum chamber decreases <∼ 1 Torr, the

collisions become less frequent and less of an influence on the nanoparticle [23]. At low

pressures where Kn � 1, the damping is proportional to pressure. The surrounding

environment is then described by the free molecular flow regime [5, 56,85,90].

5.2 Translational shot noise

A particle trapped in the focus of a laser experiences continual scattering from the

incident photons which results in radiation pressure as well as motional heating. The

effect of radiation pressure was calculated in previous sections. Motional heating due

to photon scattering is called shot noise heating and affects the translational dynamics

as well as the rotational dynamics for a nonspherical particle. As the field of levitated

optomechanics nears an era where nanoparticles are able to be cooled near their

motional ground state [31,33,34,91], the effects of heating and noise become essential

to understand and quantify. Whereas heating and damping from the surrounding

gas may become a negligible effect for sufficiently low pressures, laser shot noise

is an inescapable factor of consideration for particles with low motional occupation

numbers. This section gives a detailed description of the phenomenon of laser shot

noise heating for various scenarios in levitated optomechanics and can also be found

in our paper [92].
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5.2.1 Semi-classical Rayleigh shot noise

The derivation of the translational shot noise follows from Ref. [93] which was

originally calculated for atoms in a far red-detuned dipole trap. Consider the scatter-

ing of a single photon with wavenumber ~ki = kk̂i off a particle with initial momentum

m~vi. In the regime |~vi| � c, after the scattering event the photon has final momen-

tum h̄~kf ≈ (h̄k) k̂f and the particle has final momentum m~vf . From conservation of

momentum,

~vf = ~vi +
h̄

m

(
~ki − ~kf

)
. (5.4)

The change in energy for the component j = (x, y, z) is

∆Ej =
1

2
m
(
v2
fj − v2

ij

)
= ε

(
k̂2
ij + k̂2

fj − 2k̂ij k̂fj

)
+ h̄k

(
k̂ij − k̂fj

)
vij,

(5.5)

with ε = h̄2k2

2m
. The change in energy of the particle then depends on the initial photon

propagation direction k̂i as well as the scattered direction k̂f . The above equations

are accurate for a free particle, but are also valid for harmonically bound particles if

the scattering takes place on time scales much shorter than the oscillation frequency.

The probability for the photon to scatter into a solid angle dΩ is

P (k̂f )dΩ =
1

σ

(
dσ

dΩ

)
dΩ, (5.6)

where dσ/dΩ is the differential scattering cross section for the particle and
∫
P (k̂f )dΩ =

1. The average change in energy 〈∆Ej〉 of the particle following the scattering event

is found through

〈∆Ej〉 =

∫
Ω

P (k̂f )∆EjdΩ. (5.7)

To evaluate Eq. (5.7), the particle is taken to be a sphere that is oscillating in a

harmonic potential. The incident photon is traveling in the k̂i = ẑ direction and

polarized in the Êinc = x̂ direction. Immediately, the contribution from the last

term in Eq. (5.5) goes to zero, 〈h̄k
(
k̂ij − k̂fj

)
vij〉 = 0, since 〈~v〉 = 0 for harmonic
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oscillation. Looking at the change in energy in each direction explicitly, Eq. (5.7) is

rewritten as

〈∆Ex〉 = ε

∫
Ω

P (k̂f ) (sin θ cosφ)2 dΩ,
(5.8a)

〈∆Ey〉 = ε

∫
Ω

P (k̂f ) (sin θ sinφ)2 dΩ,
(5.8b)

〈∆Ez〉 = ε

∫
Ω

P (k̂f ) (1− cos θ)2 dΩ,
(5.8c)

where spherical coordinates were used to define the outgoing wave, k̂fx = sin θ cosφ,

k̂fy = sin θ sinφ, k̂fz = cos θ. To complete Eq. (5.8) the differential scattering cross

section for the particle must be determined. In the subsections below the energy

delivered to a particle in the Rayleigh and Mie regimes are computed. Note that

from Eq. (5.8) the total energy delivered to a particle

〈∆E〉 =
∑
j

〈∆Ej〉 = 2ε

(
1−

∫
Ω

P (k̂f ) cos θdΩ

)
, (5.9)

is always greater than zero with a maximum of 4ε.

5.2.2 Rayleigh shot noise heating rate

For an incident monochromatic plane wave polarized in the Êinc = x̂ direction,

the differential scattering cross section for a dipole with moment ~p = α~Einc, index of

refraction n, and radius r in the Rayleigh regime kr|n− 1| � 1 is (Sec. 2.4 )(
dσ

dΩ

)
=

(
k2α

4πε0

)2∑
j

|ξ̂j · Êinc|2, (5.10)

yielding

P (k̂f ) =

(
3

8π

)[
cos2 θ cos2 φ+ sin2 φ

]
, (5.11)
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Figure 5.1. Shot noise heating rate for each degree of freedom relative
to the rate in the Rayleigh limit for diamond at laser wavelength (a)
λ = 1550 nm (b) λ = 1064 nm (c) λ = 532 nm and silica at wavelength
(d) λ = 1550 nm (e) λ = 1064 nm (f) λ = 532 nm. For each plot, the
relative heating rate is shown for the x (blue dotted line), y (orange dashed
line), and z (green dot-dashed line) degree of freedom, as well as the total
heating rate (red solid line). Here, the incident plane wave is polarized
in the x and traveling in the z direction. The relative heating rate is
reduced in each degree of freedom for silica. The non-linear behavior of
Mie scattering can be seen near r = 200 nm in diamond with a resonance
occurring at λ = 1064 nm. The index of refraction for silica is ns = 1.45
for λ = 1550 nm and λ = 1064 nm while ns = 1.46 for λ = 532 nm.
The index of refraction for diamond is nd = 2.39 for λ = 1550 nm and
λ = 1064 nm while nd = 2.425 for λ = 532 nm.

where ε0 is the permittivity of free space and ξ̂j(k̂f ) defines the two orthogonal polar-

ization directions of the scattered light perpendicular to k̂f so that
∑

j |ξ̂j(k̂f )·Êinc|2 =

1−|k̂f ·Êinc|2. Note that probability densities of the form Eq. (5.11) have the property

P (k̂f ) = P (−k̂f ).

Inserting Eq. (5.11) into Eq. (5.8) gives the distribution of energy delivered to

the particle (
〈∆Ex〉R, 〈∆Ey〉R, 〈∆Ez〉R

)
= ε

(
1

5
,
2

5
,
7

5

)
, (5.12)
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where the subscriptR refers to Rayleigh scattering. Thus, the scattering of one photon

in the Rayleigh limit increases the particle’s total energy by 〈∆E〉R =
∑

j〈∆Ej〉R =

2ε half the maximum amount possible and in different proportions in each direction.

The particle gains 7/10 of the total energy in the direction of photon propagation, 1/10

of the total energy in the photon polarization direction, and 2/10 in the remaining

direction. For unpolarized light, the total energy increase is the same as for linearly

polarized light 〈∆E〉R = 2ε. However, the energy is distributed as 14/20 of the total

energy in the direction of photon propagation and 3/20 of the total energy in each of

the directions perpendicular to the photon propagation direction.

The previous calculation shows how the energy is distributed to each degree of

freedom. The average rate at which energy is being delivered to these degrees of

freedom ĖT (shot noise heating rate) is the change in energy per scattering event

multiplied by the scattering rate. The scattering rate is the number of incident

photons per unit area per unit time, Jp = I0/h̄ω, times the scattering cross section,

σ,

ĖTR = 〈∆E〉RJpσ. (5.13)

For Rayleigh particles, σR =
(

8π
3

) (
αk2

4πε0

)2

. ĖTR is the total translational energy

gained per second due to shot noise. This is written in many forms in the literature,

but often in terms of the scattered power ĖTR = h̄ω0Pscatt/mc
2 with ω0 = ck the

frequency of the laser.

If the particle oscillates at frequency ωj in the jth direction, each degree of free-

dom’s occupation number increases at a rate of

Γx =
1

10

ĖTR
h̄ωx

, Γy =
2

10

ĖTR
h̄ωy

, Γz =
7

10

ĖTR
h̄ωz

. (5.14)

Reference [94] experimentally measured the shot noise heating rate in the degree

of freedom perpendicular to both the laser propagation and polarization directions.

The measured value for the degree of freedom was reported to be within error bars

of the expression in Eq. (5.14). (Quick note: their expression for the two directions



45

perpendicular to the laser propagation direction, k̂ = ẑ, are correct, while the total

energy and proportionality constant for the z degree of freedom is not. )

5.2.3 Quantum Rayleigh shot noise heating rate

Although the results are equivalent, it is instructive to calculate the Rayleigh shot

noise quantum mechanically. The model used to calculate the shot noise describes

particle state decoherence due to scattering events with photons [3]. The decoherence

in the system state generates diffusion in momentum space which leads to heating.

The system is the same as that considered above with the incident plane wave

propagating in the ẑ and polarized in the x̂ direction. The particle density matrix

ρ(~r, ~r′) is written in the position basis with ~r = (x, y, z). The state ~r refers to the

system before a scattering event and the primed coordinates refer to the system

following a scattering event. Neglecting the unitary part of the time evolution the

translational master equation reads

∂tρ(~r, ~r′) = −Λ(~r, ~r′)ρ(~r, ~r′), (5.15)

where the decoherence rate Λ(~r, ~r′) to first order and neglecting cross terms which do

not contribute to heating is

Λ(~r, ~r′) = Dx (x− x′)2
+Dy (y − y′)2

+Dz (z − z′)2
, (5.16)

but with separate diffusion constants [95]

Dj = Jp

∫
d3~kµ(~k)

∫
d2k̂|f(~k,~k′)|2k

2

2
|k̂ − k̂′j|2, (5.17)

where |f(~k, ~k′)| is the scattering amplitude and µ(~k) = δ(~k− ~k′) is the distribution of

the laser which may safely be taken to be a δ function. The shot noise heating rate

may be calculated through

ĖT =
d

dt
〈H〉 = Tr(K∂tρ), (5.18)
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with H = K + U the translational Hamiltonian, U the potential energy whose term

vanishes after carrying out the trace, and K = P2/2m is the kinetic energy. Combin-

ing Eqs. (5.15) through (5.17) and inserting into Eq. (5.18)

ĖTx = Jp
h̄2k2

2m

∫
d2k̂|f(~k, ~k′)|2

(
k̂′2x

)
, (5.19a)

ĖTy = Jp
h̄2k2

2m

∫
d2k̂|f(~k, ~k′)|2

(
k̂′2y

)
, (5.19b)

ĖTz = Jp
h̄2k2

2m

∫
d2k̂|f(~k, ~k′)|2

(
k̂2 + k̂′2z − 2k̂k̂′z

)
. (5.19c)

Noting that |f(~k, ~k′)|2 = dσ/dΩ and ε = h̄2k2

2m
, Eqs. (5.19) are equal to Eqs. (5.8)

and (5.13) in Sec. 5.2.1.

5.2.4 Mie scattering

The analytical expressions in the previous subsection are valid for small particles

kr|n−1| � 1. For particles outside the Rayleigh regime kr|n−1| ∼ 1 the differential

scattering cross section in Eq. (5.10) and therefore Eq. (5.11) breaks down and Mie

scattering [51] must be used to calculate the shot noise heating. Figure 5.1 plots

the translational shot noise heating rate ĖT for each degree of freedom for varying

particle radii using analytical Mie formulas. Specifically, ĖTj/Jp = 〈∆Ej〉σ for each

degree of freedom is found by numerically calculating the differential scattering cross

section and numerically integrating Eqs. (5.8). These quantities are then divided by

their respective Rayleigh expression, (ĖTj)R/Jp = 〈∆Ej〉RσR.

For particle sizes r ≤ 50 nm, Fig. 5.1 shows that the total shot noise heating rate

may still be approximated as the Rayleigh expression to better than 10% error for

both silica (ns = 1.45) and diamond (nd = 2.39) at a wavelength of λ = 1064 nm or

λ = 1550 nm. For larger particle sizes, the non-sextic behavior of the differential scat-

tering cross section with respect to the radius becomes more apparent. As expected,

deviations from the Rayleigh approximation become more significant as kr|n− 1| ap-

proaches unity with smaller wavelengths producing the most considerable change for

both materials. For diamond, there is a resonance in the scattering near r ∼ 200 nm



47

Figure 5.2. Comparison of the total shot noise heating rate using Mie and
Rayleigh scattering for a silica nanoparticle (ns = 1.46 for λ = 532 nm)
under plane wave illumination. For radii r < 50 nm the Mie calculation
shares the same r3 dependence as the Rayleigh expression. For larger
radii, the non-linear Mie calculation yields significantly less total heating.

for λ = 1064 nm and a two order of magnitude suppression near r ∼ 250 nm for

λ = 532 nm.

For λ = 1550, 1064, and 532 nm, the shot noise heating rate for silica is decreased

for each degree of freedom relative to the Rayleigh expression. From Fig. 5.1(f), the

heating rate is almost an order of magnitude lower for λ = 532 nm near r = 200 nm.

The reduction in heating as the radius increases and wavelength decreases is due to

the reduction in cross section compared to the Rayleigh expression. Figure 5.2 shows

the explicit dependence of r on the heating rate for silica at λ = 532 nm compared

with the r3 dependent Rayleigh expression. Here one can clearly see the range of

accuracy of the Rayleigh approximation with the Mie calculation strongly deviating

above r ∼ 75 nm. The reduction in heating is also attributed to the differential

scattering cross section giving increasingly more forward scattering, thereby reducing

the recoil impact on the scatterer.

In Ref. [96] the laser shot noise was calculated for a r = 230 nm silica nanoparticle

illuminated with a λ = 532 nm laser. If their shot noise heating rate was calculated
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using the Rayleigh expression, Fig. 5.1(f) shows that that estimate should be reduced

by ∼ 10 times the calculated value, making laser shot noise an even less significant

noise source for their experiment.

5.2.5 Focused Gaussian Beam

Since an optically levitated nanoparticle is often trapped using a focused Gaussian

laser beam it is practical to consider the shot noise heating due to such an incident

wave. The electromagnetic fields of a Gaussian laser beam ((0,0) mode) focused

through a lens with numerical aperture NA = sin θmax can be expressed in cylindrical

coordinates as [66,97]

~E(ρ, φ, z) =
ikf

2
E0e

−ikf


I00 + I02 cos 2φ

I02 sin 2φ

−2iI01 cosφ

 , (5.20a)

~H(ρ, φ, z) =
ikf

2Z0

E0e
−ikf


I02 sin 2φ

I00 − I02 cos 2φ

−2iI01 sinφ

 , (5.20b)

where Z0 is the impedance of free space, f is the focal length of the lens, and the Ii,j

are integrals over the polar angle up to the extent of the lens, θmax. The expressions

for the integrals are

I00 =

∫ θmax

0

fw(θ) (cos θ)1/2 sin θ (1 + cos θ) J0(kρ sin θ)eikz cos θ, (5.21)

I01 =

∫ θmax

0

fw(θ) (cos θ)1/2 sin2 θJ1(kρ sin θ)eikz cos θ, (5.22)

I02 =

∫ θmax

0

fw(θ) (cos θ)1/2 sin θ (1− cos θ) J2(kρ sin θ)eikz cos θ, (5.23)

where Jn(x) is the Bessel function of order n, fw(θ) = exp
(
sin2 θ/f 2

0 sin2 θmax
)

is the

apodization function with the filling factor f0 = w0/Ra is the ratio of the laser beam

waist before the lens and the radius of the aperture. For a detailed discussion of Eqs.

(5.20) see Ref. [66] .
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Since the incident wave is no longer a plane wave, Eqs. (5.8) are not suitable

for describing the energy transfer from the laser to the particle. Following a method

similar to that of Refs. [98] and [99], the shot noise heating rate for a general particle

and incident wave can be written compactly as

ĖTxi = Jpε

∫
d2k̂′

∣∣∣∣∣∂f(xi, ~k, ~k′)

∂xi

∣∣∣∣∣
2

xi=0

, (5.24)

where xi = (x, y, z) and f(xi, ~k, ~k′) is the scattering amplitude. For an incident plane

wave, f(~r,~k, ~k′) = ei
~k·~rf(~k, ~k′)e−i

~k′·~r, yielding Rayleigh shot noise, Eqs. (5.19) in Sec.

5.2.3.

To compute the shot noise heating rate using Eq. (5.24) for a sphere of radius

r with incident waves given by Eqs. (5.20) the scattered fields must be obtained.

One approach is to combine Mie theory with the highly focused fields which has been

undertaken in Ref. [100] to evaluate optical forces. In the present section, the scat-

tered fields are computed numerically by employing the discrete-dipole approximation

method (DDA) [101]. In the DDA, the spherical particle is composed of N discrete

spherical dipoles each with polarizibility α and the internal fields of the dielectric are

solved for self-consistently to retrieve the scattered fields outside the particle. Once

the scattered fields are obtained the scattering amplitude can be determined. In the

implementation of the DDA used for this calculation, each dipole that composed the

spherical particle had a polarizibility α = 4πε0R
3

(
ε− 1

ε+ 2

)
. The shot noise heating

rates relative to the Rayleigh expression for various numerical apertures and particle

radii are shown in Fig. 5.3. The calculations were performed for a spherical particle

composed of silica, n = 1.45, with its center of mass located at the focus, ~r0 = 〈0, 0, 0〉.

The heating rates for each degree of freedom (x, y, z) (first, second, and third column)

were computed for two different laser wavelengths 1550 nm (top row) and 1064 nm

(bottom row). The waist of the Gaussian laser beam just before entering the focusing

lens was chosen to be twice the aperture radius of the lens, corresponding to a filling

factor f0 = 2 for all values in the figure.
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Figure 5.3. Contour surface plots of the shot noise heating rate for
each degree of freedom relative to the rate in the Rayleigh limit for silica
(n = 1.45) at laser wavelengths λ = 1550 nm (top row) and λ = 1064 nm
(bottom row). The heating rates for each degree of freedom (x, y, z) are
shown in the first, second, and third column respectively. The colorbar
on the far right is a scale for the ratio between the numerically calculated
shot noise heating, Eq. (5.24), and the Rayleigh expression for that degree
of freedom. As expected for small NA and radius the shot noise in each
degree of freedom agrees well with the Rayleigh expression.
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As the radius of the particle increases, the shot noise heating decreases relative to

the Rayleigh expression for all NA. As the radius increases, the intensity per volume

decreases. Rayleigh expressions assume uniform incident plane waves while a tweezer

has a Gaussian-like spot size.

When the numerical aperture increases, the ẑ component of the beam is more

prominent, resulting in a polarization mainly in the x− z plane (the y component is

negligible). It is plausible that since shot noise heating is smallest in the degree of

freedom associated with the polarization direction, the shot noise in the axial degree

of freedom decreases while heating increases in the x degree of freedom.

As the beam becomes more focused, the beam diverges more strongly as it exits

the focal region. As opposed to a plane wave, which always propagates in the k̂i = ẑ

direction, the incident wave through the particle due to a focused beam has propa-

gation components in the x̂ and ŷ directions as well, decreasing the shot noise in the

ẑ degree of freedom. This comes from the main factor of discussion in Sec. 5.2.2, the

k̂2
ij term in Eq. (5.5) which gave a change in energy of 1ε in the direction of photon

propagation for Rayleigh scattering in Eq. (5.12). This influence thus decreases for

focused beams. In fact, Ref. [29] introduced a geometric factor A ≤ 1 helping to

explain this effect. The factor allows for an approximate evaluation of the energy

delivered to the particle in the z degree of freedom

〈∆Ez〉R ≈ ε
(
A2 +

2

5

)
. (5.25)

The geometrical factor is a result of a first order expansion of Eqs. (5.20) valid for

particles small compared with the wavelength. The expression for A is a ratio of

integrals [29] and approximates to A ≈ 1 − (kzR)−1 for small NA, where zR is the

Rayleigh range of a paraxial Gaussian beam [76].

Insertion of Eq. (5.25) into Eq. (5.13) for the shot noise in the z degree of freedom

should be accurate for λ� r. Using the data obtained in Fig. 5.3 for particles with

r = 5 nm, the shot noise agrees with the approximate evaluation using Eq. (5.25) to

within 2% for all NA.
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The reduction in shot noise energy delivered to the z degree of freedom does not

result in an increase in energy in the other degrees of freedom while the particle is

situated at the origin. Since the particle is a sphere and the beam is symmetrical

about the origin, the x̂ and ŷ components of the incident wavevectors on the particle

in the −ẑ half space are reflections of the x̂ and ŷ outgoing wavevectors in the +ẑ

halfspace, canceling the influence of the incident propagation direction on the shot

noise in the x and y degrees of freedom.

The overall magnitudes for the shot noise in each degree of freedom in Fig. 5.3 are

within an order of magnitude of the Rayleigh expression up to a radius of r = 250 nm.

Fortunately for experimentalists attempting to reach the motional quantum ground

state, the values decrease as the radius increases for all degrees of freedom. This

allows the Rayleigh expression for the shot noise heating rate to be used as an upper

bound for calculations and a good approximation for all NA.

A natural next question is how the shot noise would be distributed for a particle

in a standing Gaussian wave, the situation of consideration for particles trapped in

a driven cavity. Differing from tweezer traps, cavity traps typically have very large

beam waists ∼ 40µm [31, 71] and therefore the radial geometry of the beam is well

approximated as a symmetric Gaussian. Over the range of a nanoparticle r ∼ 100 nm

the field is essentially uniform and the beam can be approximated as an incident plane

wave. In the axial direction the field dependence is of the form ∼ cos kz. The particle

is placed in two common locations z = 0 for cavity trapping and z = λ/8 for maximal

cavity coupling. The latter situation can be achieved by using a separate tweezing

laser to place the particle at that location [31,33,34]. The following discussion is with

reference to the shot noise from the cavity photons solely. The shot noise heating

rate for a silica Mie particle of varying radius located at z = λ/8 has been calculated

analytically in Ref. [98] and numerically for a cavity with 1064 nm wavelength and

26µm waist. Up to ≈ 250 nm in radius, Fig. 4 in Ref. [98] shows the shot noise

increasing as the particle size increases. Our calculations confirm this result. However,
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it should not follow the traditional Rayleigh r3 dependence exactly. Owing to the

large beam waist, the situation is similar to that in Fig. 5.1(e) in this thesis.

Additionally, at z = 0, the dependence on the initial photon propagation direction

k̂2
ij vanishes giving A = 0 in Eq. (5.25). The amount of shot noise delivered to the

axial degree of freedom, z, is then equal to the amount delivered to the degree of

freedom orthogonal to both the polarization and axial directions, y. However, at

z = λ/8 the k̂2
ij contribution returns, giving Eq. (5.12) for Rayleigh particles.

5.3 Rotational Rayleigh shot noise

This section examines the shot noise heating in the rotational degrees of freedom

for a symmetric-top particle in the Rayleigh regime, such as the nanodumbell in Ch.

4. The rotational heating rate is calculated in a similar fashion to that in Sec. 5.2.3.

Here, the shot noise heating rate due to elliptically polarized light will be presented

which can then be generalized for linear, circular, or unpolarized light by taking the

respective limits.

The particle has moment of inertia Ix perpendicular to the symmetry axis, Iz along

the symmetry axis, and αx, αz are the polarizabilites perpendicular and parallel to the

symmetry axis, respectively.The particle density operator in the orientational basis is

ρ(Ω,Ω′) with Ω = (α, β, γ) the Euler angles in the z-y′-z′′ convention [76]. Let Ω refer

to the system before a scattering event and primed coordinates refer to the system

following a scattering event. The rotational master equation reads

∂

∂t
ρ(Ω,Ω′) = −Λ(Ω,Ω′)ρ(Ω,Ω′), (5.26)

where

Λ =
Jp
2

∫
d3~kµ(~k)

∫
d2k̂′|f(Ω)(~k, ~k′)− f(Ω′)(~k, ~k′)|2, (5.27)
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is the decoherence rate, f(Ω)(~k, ~k′) is the scattering amplitude, and µ(~k) = δ(~k − ~k′)

is the distribution of the laser which will again be taken to be a delta function. The

shot noise heating rate may be calculated through

ĖR =
d

dt
〈HR〉 = tr(KR

∂

∂t
ρ), (5.28)

with HR = KR + UR the rotational Hamiltonian, UR the potential energy which has

zero contribution in the above equation, and KR is the rotational kinetic energy. In

the z-y′-z′′ convention, the rotational kinetic energy is [82]

KR = − h̄2

2Ix

[
∂2

∂β2
+cot(β)

∂

∂β
+

1

sin2(β)

∂2

∂α2
− 2 cos(β)

sin2(β)

∂2

∂α∂γ
+

(
Ix
Iz

+ cot2(β)

)
∂2

∂γ2

]
.

(5.29)

To evaluate Eq. (5.26), begin with the far field scattering amplitude for a point dipole

f(Ω)(~k, ~k′) =

(
k2

4πε0E0

)
ζ̂ · ~p, (5.30)

with ζ̂ the polarization of the scattered light, E0 the magnitude of the incident electric

field, and ~p =
↔

R
†↔
α0

↔

R~Einc the polarization vector. For incident elliptical light defined

by ~Einc = E0 < cosψ, i sinψ, 0 > exp(ikz),

~p =
↔

R
†↔
α0

↔

R~Einc

= E0


cosψ

[
αx +

(
αz − αx

)
sin2 β cos2 α

]
+ i sinψ

[(
αz − αx

)
sin2 β cosα sinα

]
cosψ

[(
αz − αx

)
sin2 β cosα sinα

]
+ i sinψ

[
αx +

(
αz − αx

)
sin2 β sin2 α

]
cosψ

[(
αz − αx

)
sin β cos β cosα

]
+ i sinψ

[(
αz − αx

)
sin β cos β sinα

]


≡
(
αz − αx

)
E0


Ax + iBx

Ay + iBy

Az + iBz

+ αxE0


cosψ

i sinψ

0

 ,

(5.31)

where the Aj = Aj(α, β, γ) (Bj = Bj(α, β, γ)) are the real (imaginary) parts of the

polarization vector component j = (x, y, z).

For scattered light in the r̂ = 〈sin θ cosφ, sin θ sinφ, cos θ〉 direction in spherical co-

ordinates, the outgoing polarization vector ζ̂ can take two directions θ̂ = 〈cos θ cosφ,



55

cos θ sinφ,− cos θ〉 or φ̂ = 〈− sinφ, cosφ, 0〉. As there is no preference for which po-

larization is chosen, the sum of the scattering amplitudes must be used in Eq. (5.28),

|f(Ω)(~k, ~k′)− f(Ω′)(~k, ~k′)|2 →
(

k2

4πε0E0

)2(
|θ̂ · ~p− θ̂ · ~p′|2 + |φ̂ · ~p− φ̂ · ~p′|2

)
. (5.32)

Performing the integrals in Eq. (5.27) gives the decoherence rate as

Λ = Jp

(
4π

3

)(
k2

4πε0

)2

(αz − αx)2
∑
j

[
(Aj − A′j)2 + (Bj −B′j)2

]
, (5.33)

with A′j = Aj(α
′, β′, γ′) and B′j = Bj(α

′, β′, γ′).

To calculate the shot noise using Eq. (5.28), note that the ∂
∂γ

terms from Eq.

(5.29) evaluate to zero as there is no γ dependence in the polarization vector in

Eq. (5.31). From here, the orientation of the nanoparticle relative to the incident

polarization must be considered. For well librationally bound nanoparticles under

weak elliptical polarization, the particle is undergoing oscillations for which the small

angle approximation may be appropriately made, α → 0 + ξ , β → π
2
− η. In this

view, Eq. (5.29) may be rewritten

KR →−
h̄2

2Ix

[
∂2

∂β2
+ cot(β)

∂

∂β
+

1

sin2 β

∂2

∂α2

]
≈ − h̄2

2Ix

[
∂2

∂η2
+

∂2

∂ξ2

]
.

(5.34)

Inserting Eqs. (5.33) and (5.34) into Eq. (5.29) and taking the trace gives the total

rotational shot noise for elliptically polarized light to second order

ĖRe = Jp

(
4π

3

)(
k2

4πε0

)2

(αz − αx)2

(
h̄2

2Ix

)[
4 cos2 ψ + 2 sin2 ψ

]
=
ĖR‖

4

[
4 cos2 ψ + 2 sin2 ψ

]
,

(5.35)

with the energy distributed as

(
Ėα, Ėβ, Ėγ

)
=
ĖR‖

2

(
cos2 ψ + sin2 ψ, cos2 ψ, 0

)
. (5.36)
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For a symmetric-top particle illuminated by a linearly polarized laser with ~Einc =

E0 exp(ikz)x̂, the particle’s symmetry axis will tend to align near the polarization

axis. Using Eq. (5.35) with ψ = 0,

ĖR‖ = Jp

(
16π

3

)(
k2

4πε0

)2

(αz − αx)2

(
h̄2

2Ix

)
. (5.37)

The amount of shot noise delivered to each Euler angle α, β, γ in the z-y′-z′′ convention

[76] is (
Ėα, Ėβ, Ėγ

)
‖

=
ĖR‖

2
(1, 1, 0) . (5.38)

If the particle’s symmetry axis is orthogonal to both the laser polarization and laser

propagation direction ψ = π/2, the energy is distributed as

(
Ėα, Ėβ, Ėγ

)
⊥

=
ĖR‖

2
(1, 0, 0) . (5.39)

For unpolarized light, it is the average of Eqs. (5.38) and (5.39). As the an-

gle α → π/2, the amount of shot noise delivered to the β degree of freedom de-

creases. This can be understood from a decoherence/measurement perspective. As

the nanoparticle’s symmetry axis becomes orthogonal to the laser polarization and

propagation directions, the laser can no longer provide information about the orien-

tation of β; while α = π/2, all angles 0 ≤ β ≤ π look equivalent with respect to

the laser polarization direction. This leaves β to be immeasurable and is therefore

immune to decoherence/heating.
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6. METHODS OF COOLING THE MOTION

As levitated particles follow the equipartition theorem [19,102], removing energy from

the motion can be seen as lowering the particle’s temperature, T = nh̄ω/kB. Reduc-

ing the temperature of a levitated particle is one of the most useful accomplishments

in the field and perfecting a method is one of the most sought after goals. From

generating spatial superpositions for testing wavefunction collapse models to detec-

tion of gravitational waves, cooling the motion has great promise for the future of

fundamental physics and our understanding of the universe [6–12].

Limiting the nanoparticle temperature that can be reached by cooling is inefficient

detection of scattered light, laser shot noise, phase noise, among others. These limita-

tions seen in conventional tweezer traps have sparked theorists and experimentalists

alike to explore new and hybrid levitated systems that may offer alternative routes

to the quantum regime. Passive/sympathetic cooling schemes involving coupling dif-

ferent degrees of freedom or nearby particles has been explored [17, 61, 84, 103–105].

Cavity cooling has had success [32, 33, 71] where strong coupling rates have been

achieved through coherent scattering with the addition of a tweezer trap and allowed

cooling to the lowest reported occupation number of n < 1 [31, 34]. All electrical

or electro-optical hybrid systems utilizing electronic circuitry [106–108] even in its

beginning stages are able to reach mK temperatures [109, 110] with one particular

experiment reaching n = 4 through cold damping [28]. The field has also recently

seen magnetic particles and traps being investigated [111–114], such as studying the

dynamics of a ferromagnetic particle levitated above a superconductor [115–117].

This chapter provides three theoretical works [76,118,119] that offer new possibil-

ities for cooling a levitated nanoparticle and an analysis of an experimental work [77]

that cooled three translational and two rotational degrees of freedom of a levitated

nanodumbbell simultaneously.
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6.1 Parametric feedback cooling the rotational motion of nanodumbbells

Much progress has been made in cooling the translational degrees of freedom

(DOF) [22,23,68–71] with a lowest reported occupation number n < 1 [34]. Preventing

further reduction in the occupation number is the efficiency with which the position

can be detected and collisions with the surrounding gas particles [23, 69]. Shot noise

on the detector from the trapping laser hinders the efficiency of position detection, and

therefore decreases the effectiveness of the feedback cooling mechanism. Increasing

the detection efficiency of the scattered light from the nanoparticle would allow more

accurate position detection and is necessary to reach deeper into the quantum realm

[120–122].

An alternative path to the ground state and a tool for torque sensing [45, 123] is

accessing control over the rotational DOF [54,56,80,83,84,123,124]. Whereas trans-

lational mode frequencies are typically in the kHz range, librational mode frequencies

can be in the MHz range, possibly offering a more accessible ground state [39]. Cool-

ing the nanoparticle through coupling of the translational and rotational modes has

been explored both theoretically and experimentally [17, 61, 84]. Cooling of the li-

brational modes directly has also been proposed using active feedback schemes [80].

However, these models often assume libration as the sole rotational motion. Describ-

ing the rotational dynamics in terms of libration exclusively is a good approximation

for particle shapes such as nanorods because of the small moment of inertia about its

symmetry axis, however, as was seen in Chap. 4, this approximation will break down

for particles like dumbbells with more nearly equal moments of inertia.

This section investigates the effects of cooling the rotational degrees of freedom

of a classical levitated nanodumbbell trapped in a laser field using a method known

as parametric feedback cooling, which will be described below, using rigid-body dy-

namics. The dynamics without feedback cooling are described in Sec. 4.1.

The system under consideration is the same as that in Sec. 4.1. The particle’s

center of mass is fixed at the origin so that only rotations are considered. The
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Figure 6.1. (a) A nanodumbbell with center of mass confined to the
origin is allowed to rotate. The particle has the lowest energy when its
long axis (z′′′-axis) aligns with the laser’s electric field polarized in the
lab frame x-direction. (b) The definition of the Euler angles α, β, γ
shown in the z-y′-z′′ convention. For small angle rotations, the coordinate
α = 0 + ξ describes rotations near the lab frame x-axis in the x-y plane
and β = π/2− η describes rotations near the lab frame x-axis in the x-z
plane. The coordinate γ describes rotations about the z′′ = z′′′ axis with
γ(t) ≈ ω3t. For visual clarity, the x′′, y′′, x′′′, y′′′ axes have been omitted
from the figure.

nanodumbbell is composed of two spheres each with mass Ms and radius R. The

spheres are aligned along the z′′′-axis and touching at the origin, where the triple

prime indicates the particle frame coordinate system (see Fig. 6.1). It is a symmetric

top with principal moments of inertia Ix = Iy = 14
5
MsR

2 and Iz = 4
5
MsR

2. An

amorphous silica nanodumbbell with mass 2Ms = 1.029 × 10−17 kg, radius R = 85

nm, Ix = 1.041 × 10−31 kg · m2, Iz = 2.974 × 10−32 kg · m2, index of refraction

n = 1.458, and density ρ = 2000 kg/m3 [56] is used for the calculations. The laser

beam is linearly polarized along the lab frame x-direction and propagating in the

z-direction with a wavelength λ = 1550 nm � R, power 500 mW, and is focused by

a NA = 0.45 objective. Because the size of the nanoparticle is much smaller than the
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wavelength of light, the nanodumbbell is treated as a point dipole with ~Einc = E0x̂,

the electric field polarizing the dumbbell, having no spatial dependence.

6.1.1 Linear polarization

Figure 6.2. Trajectory of the nanoparticle’s z′′′-axis, projected on the lab
frame y-z plane found by simulating the full equations of motion and using
linear polarization. Here, Z/2R = cos(β), Y/2R = sin(β) sin(α) define the
location of the z′′′-axis; in the small angle limit Z/2R ≈ η, Y/2R ≈ ξ.
(a) The particle’s long axis moves in two joint motions, one describing
libration and the other describing precession about the polarization axis.
(b) Final trajectory of the long axis after parametric feedback cooling.
The motion has reduced to pure precession.

Parametric feedback cooling utilizes a laser beam to trap a particle and cool its

motion simultaneously through modulation of the laser power at twice the particle’s

oscillation frequency [23]. To obtain a signal at twice the oscillation frequency, the

coordinate to be cooled q is multiplied by its time derivative qq̇, for an arbitrary

coordinate q. The idea is that since the particle undergoes harmonic motion, q ∝

sin(ωt) and q̇ ∝ cos(ωt) giving qq̇ ∝ sin(ωt) cos(ωt) ∝ sin(2ωt) as the source for twice

the harmonic frequency. Modulating the potential at twice the frequency cools the

motion by tightening the potential when the particle reaches the bottom of the well

and loosening it when the particle reaches the classical turning point.



61

The analyses here assume perfect and instantaneous measurements of qq̇, which

cannot be achieved in practice. Shot noise heating due to photon scattering and

the effects of gas collisions are also not included to simplify the analysis. While the

heating mechanisms do determine the lowest energy attainable for a fixed cooling

power, the dynamical effects of gas collisions do not become important for pressures

∼ 10−3 Torr or lower and photon shot noise does not become important until the

heating rate is near the cooling rate. See Sec. 6.1.4 for further discussion of these

effects and the inclusion of noise. The results that follow thus provide a fundamental

limit to cooling, irrespective of the limitations set by quantum mechanics or practical

experimental parameters such as orientation detection efficiency.

It is also worth mentioning that since the equations of motion for γ are unaffected

by the trapping potential, with the dynamics determined largely by the conserved

angular velocity about the particle’s symmetry axis, ω3, parametric feedback cooling

only directly affects the α, α̇ and β, β̇ DOF. For this reason, the focus will be on

the motions associated with α and β (ξ and η), as it is not possible to cool the

nanoparticle’s spin about its symmetry axis using parametric feedback cooling.

The equations of motion for the dumbbell in the small angle approximation from

Sec. 4.1 Eqs. (4.14) (4.15) under feedback cooling become

ξ̈ = −ω2(1 + χR2qq̇)ξ − ωcη̇, (6.1)

η̈ = −ω2(1 + χR2qq̇)η + ωcξ̇, (6.2)

where χ is the cooling strength that sets the amplitude of the power modulation.

Choosing to measure and feedback qq̇ = ξξ̇ into Eqs. (6.1) and (6.2), the average

cooling power is calculated as

< P >ξξ̇ =<
dE

dt
>

=
(Ix

2

)
<

d

dt

[
ξ̇2 + η̇2 + ω2

(
ξ2 + η2

)]
>

= −Ixω2χR2 < ξξ̇
(
ηη̇ + ξξ̇

)
> .

(6.3)

Inserting the normal mode solutions, Eqs. (4.18) and (4.19), into Eq. (6.3) gives the

cooling rate in terms of the normal mode amplitudes A±. Performing the derivatives
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Figure 6.3. (a) Energy of the four quadratic degrees of freedom versus time
under parametric feedback cooling during a single trajectory. The energy
plateaus to a nonzero value as the nanoparticle circles the polarization
axis. (b) Distribution of initial energies used before parametric feedback
cooling. The distribution follows the blue line, a Maxwell-Boltzmann
distribution with four quadratic degrees of freedom at a temperature of 300
K. (c) Distribution of energies following parametric feedback cooling with
linear polarization. The distribution has a mean of 312 K and is similar
to the blue line, a Maxwell-Boltzmann distribution with two quadratic
degrees of freedom at a temperature of 300 K. The final energies are
taken as the last data point in runs similar to that of (a). (d) Final energy
distribution of the nanoparticle following feedback cooling with elliptical
polarization for θ = 4π

32
. Each distribution in this figure is composed of

12,000 runs implemented with a cooling strength χ = 107 s/m2.

in Eq. (6.3) with the A± slow compared to ω± and averaging the sinusoidal factors

over one cycle gives

< P >ξξ̇= −
1

4
Ixω

2χR2Ω2
[
A+(t)A−(t)

]2

, (6.4)

which implies that cooling is effective until one mode is removed from the motion.

As t→∞ the particle will fully precess about the polarization axis with no libration

(see Fig. 6.1.1). The result of a single mode remaining is a plateau in the energy

over time as shown in Fig. 6.3(a). Choosing to measure and feedback the frequency

ηη̇ produces the same result while the addition of the two, qq̇ = ηη̇ + ξξ̇, delivers the

same effect at twice the rate since η and ξ oscillate at the same frequency.

Using the conserved quantity

d

dt

[
ξη̇ − ηξ̇ − ωc

2
(ξ2 + η2)

]
= 0, (6.5)
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together with the normal mode solutions, Eqs. (4.18) and (4.19), gives the exact

expression d
dt

(
A2
−(t)− A2

+(t)
)

= 0. This condition shows that as one mode is cooled

completely, the second mode ceases to be time dependent, facilitating the notion that

there is a limit to how much energy is removed from the motion.

To investigate the extent of possible cooling, a nanodumbbell is initially prepared

with a thermal distribution at T = 300 K and several thousand cooling runs are

simulated using the full equations of motion. The simulations are run using a fourth

order Runge-Kutta adaptive step algorithm [125] with random initial conditions con-

forming to a Boltzmann distribution. The initial frequencies of rotation are found by

ωi =

√
kBT

Ij
dW, (6.6)

with (i, j) = ((1, x), (2, y), (3, z)) and dW a Guassian random number with zero mean

and unit variance. The initial coordinate values α, β are established through rejection

sampling of the potential,

P(α, β) = e−
(
U(α,β)−U(0,π

2
)
)
/kBT , (6.7)

and γ is initialized as a uniformly distributed random number between 0 and 2π.

Figure 6.3(b)(c) shows the energy distributions before and after cooling for a

cooling strength χ = 107 s/m2 and feedback frequency pyṗy (see Eqs. (4.7), (4.48),

and (4.49)). In the figure, D(ε) is the probability energy density with
∫∞

0
D(ε)dε = 1.

As cooling extracts energy from the α, α̇ and β, β̇ DOF exclusively, in Fig. 6.3 the

shifted energy ε = E − 1
2
Izω

2
3 is used where E = K +U(α, β)−U(0, π/2) is the total

energy adjusted so that 0 K is the minimum energy. The blue lines in Fig. 6.3(b)(c)

are plots of the Maxwell-Boltzmann distribution function Aεn exp(−ε/300) for four

(n = 1) and two (n = 0) DOF, respectively. As expected, the initial energies follow a

Maxwell-Boltzmann distribution with an average energy 602 K ∼ 4
2
T corresponding

to four quadratic DOF. In the final energy distribution, it is seen that effectively two

DOF have been removed due to cooling; the final energy distribution has a mean

energy of 312 K ∼ 2
2
T , corresponding to two uncooled quadratic DOF. The two
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DOF remaining is consistent with the nanoparticle’s long axis circulating around

the polarization axis at a fixed non-zero angle, qualitatively seen in both the small

angle approximation and the full simulation. The result that parametric feedback

cooling is unable to cool the nanoparticle’s motion completely even if both coordinate

frequencies are known is one of the important results of this section. It is clear that

cooling into the quantum regime is not possible utilizing a perfectly linearized beam

and standard parametric feedback cooling, even if both angular DOF can be detected.

6.1.2 Elliptical polarization

The issue with the previous section’s strategy for cooling is the coupling between

η and ξ due to the spin about the symmetry axis and their similar frequencies of

rotation about the polarization axis. To cool further requires breaking the symmetry

between the two DOF responsible for the precession motion. In this section this

symmetry is broken by introducing a potential that produces different librational

frequencies for the two coordinates η and ξ. This can be achieved through elliptical

polarization, using two perpendicular laser beams incident on the nanoparticle, or

general asymmetries found in a focused laser beam’s gradient [66]. Here, elliptical

polarization is used with ~Einc = E0 < cos θ, i sin θ, 0 >. The potential energy is given

by

U = −E
2
0

4

[
αx +

(
αz − αx

)
sin2 β

×
(

cos2 θ cos2 α + sin2 θ sin2 α
)]
.

(6.8)

This alters the equations of motion, Eqs. (4.14) (4.15),

ξ̈ = −ω2
ξξ − ωcη̇ (6.9)

η̈ = −ω2
ηη + ωcξ̇ (6.10)

where ω2
ξ = ω2

(
cos2 θ − sin2 θ

)
, ω2

η = ω2 cos2 θ.
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The normal modes of Eqs. (6.9) and (6.10) are

ξ(t) = A+ cos(ω+t+ δ+) + A− cos(ω−t+ δ−), (6.11)

η(t) = A+κ2 sin(ω+t+ δ+)− A−κ1 sin(ω−t+ δ−), (6.12)

with ω± = 1√
2

(
ω2
ξ + ω2

η + ω2
c ± Q

) 1
2
, Q =

√
4ω2

ηω
2
c +

(
ω2
c + ω2

ξ − ω2
η

)2
, κ1 = (2ω+ωc)

/
(
Q+ ω2

c + ω2
ξ − ω2

η

)
, κ2 = (2ω−ωc) /

(
Q− ω2

c − ω2
ξ + ω2

η

)
. The κi (i = 1, 2) have the

following properties κ2
1 ≥ 1 , κ2

2 ≤ 1, κi(θ = 0) = 1. The relations are important when

considering the cooling rate when feeding back twice of both coordinate’s frequencies

shown below.

Feedback cooling using either qq̇ = ξξ̇ or qq̇ = ηη̇ gives the following average

cooling rates

< P >ξξ̇=[
A+(t)

]4

y1 −
[
A−(t)

]4

y2 −
[
A+(t)A−(t)

]2

y3,
(6.13)

< P >ηη̇=

−
[
A+(t)

]4

z1 +
[
A−(t)

]4

z2 −
[
A+(t)A−(t)

]2

z3,
(6.14)

which reduce to Eq. (6.3) for θ = 0 and the yi, zi (i = 1, 2, 3) are positive and constant

for a fixed electric field strength. Equations (6.13) and (6.14) show a combination of

heating and cooling with each choice of feedback frequency having preference of cool-

ing a particular mode. In this arrangement one mode is cooled while the other heats,

ultimately leading to heating. Simulations of energy versus time while feeding back

the frequency ηη̇ or ξξ̇ show the energy increasing indefinitely, sometimes following

an initial period of cooling depending on the initial conditions.
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However, feeding back both coordinate’s frequencies in the form qq̇ = ηη̇+ ξξ̇ will

lead to cooling of both modes. The small angle approximation equations of motion

under cooling become

ξ̈ = −ω2
ξ

(
1 + χR2(ξξ̇ + ηη̇)

)
ξ − ωcη̇, (6.15)

η̈ = −ω2
η

(
1 + χR2(ξξ̇ + ηη̇)

)
η + ωcξ̇. (6.16)

The cooling rate is the addition of Eqs. (6.13) and (6.14),

< P >ξξ̇+ηη̇ =< P >ξξ̇ + < P >ηη̇

= −
[
A+(t)

]4(
z1 − y1

)
−
[
A−(t)

]4(
y2 − z2

)
−
[
A+(t)A−(t)

]2(
y3 + z3

)
,

(6.17)

where (
z1 − y1

)
=

(
Ixω

2
+χR

2

4

)(
κ2

1 − 1
)(
ω2
ηκ

2
1 − ω2

ξ

)
≥ 0, (6.18)(

y2 − z2

)
=

(
Ixω

2
−χR

2

4

)(
1− κ2

2

)(
ω2
ξ − ω2

ηκ
2
2

)
≥ 0, (6.19)(

y3 + z3

)
=

(
Ixω

2
ξχR

2

2

)(
4ω2

ξ + ω2
c

)
> 0, (6.20)

which leads to complete cooling for the conditions described here, ω2
η > ω2

ξ � ω2
c .

Only for very large values of ωc (ωc/ω ∼ 105) is
(
y2 − z2

)
< 0. Figure 6.3(d)

shows the final energy distribution with this choice of feedback for a fixed cooling

strength χ = 107 s/m2 and θ = 4π
32

. The particle’s accessible DOF have been cooled

significantly compared to the case for linear polarization.

Figure 6.3(d) shows the final energies plateauing near 5 K. This is a consequence

of the simulation time used of 80 ms and not a limit to further cooling. The limit

is set only by the accuracy of the simulations. What delays further energy reduction

are the decreasing values of the A±(t) in the cooling rate < P >ξξ̇+ηη̇. To circumvent

this delay one may intermittently increase the cooling strength χ to achieve more

rapid cooling as shown in Fig. 6.4(a). As an example, for the nanoparticle considered

here, an occupation number n = 1 corresponds to a temperature on the order of
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Figure 6.4. Plots showing the dependence of the cooling strength, χ, in
(a) and the frequency separation of ωη and ωξ in (b) on the cooling rate,
< P >ξξ̇+ηη̇. (a) Intermittently increasing the cooling strength χ during a

single cooling process for a fixed electric field strength (θ = 4π
32

). Each dip
corresponds to an abrupt increase in the value of χ. At t = 0, the cooling
process starts with χ = 107 s/m2. Beginning with t = 3 ms, χ is increased
every 1 ms by a factor of ten, ending with 1012 s/m2. (b) Average energy
after feedback cooling versus θ showing the dependence of the frequency
separation between ωη and ωξ on the cooling rate < P >ξξ̇+ηη̇. The points
are averages of 1000 calculated energies following feedback cooling for a
fixed simulation time of 80 ms and cooling strength χ = 107 s/m2.

T = h̄ω/kB = 16.7 µK for ω/2π = 349 kHz. Setting the simulation accuracy to

∼ 10−10 K, the particle is able to reach a temperature of ∼ 10−9 K by employing

the same method as that in Fig. 6.4(a). These classical calculations thus show

that parametric feedback cooling is a suitable method for approaching the quantum

regime. The dynamics and fundamental limits at lower temperatures would require

a full quantum analysis.

Also affecting the cooling rate is the frequency separation between ωξ and ωη. A

slight difference in frequency will allow cooling, but the rate is much larger when

the frequency difference is larger. In Fig. 6.4(b) the final average energy of 1000

randomly initialized cooling runs, < ε >, is plotted versus θ with each run having a

fixed simulation time of 80 ms. For θ ≈ 0 (ωη ≈ ωξ) the average final energy is ∼ 300

K, similar to the final temperature when feedback cooling using linear polarization.

As θ increases (ωη > ωξ), the cooling proceeds more quickly, as evidenced by the
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average final energy decreasing. The rate plateaus near θ = 4π
32

where the competing

heating terms in Eqs. 6.13) and 6.14) become negligible.

6.1.3 Experimental signatures

Figure 6.5. Power spectral densities of a py measurement before and after
feedback cooling for (a) linear polarization and (b) elliptical polarization.
Feedback cooling using linear polarization eliminates one peak, shifting
the remaining peak to a normal mode frequency and reducing the motion
to pure precession. Feedback cooling under elliptical polarization reduces
both peaks in magnitude, and shifts them toward the normal mode fre-
quencies found in the small angle approximation.

What is actually measured in the laboratory is the power spectral density (PSD)

of the signal. Figure 6.5(a)(b) shows the PSD of a py measurement before and after

cooling the particle using linear and elliptical polarization. Before cooling, two peaks

are seen identifying the existence of two rotational motions at different frequencies;

the libration and precession motions discussed in Sec. 4.1. As the particle is cooled

using linear polarization, both peaks converge to a normal mode frequency ω± with

the larger peak reducing to a non-zero value and the smaller peak decreasing to zero.
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Introducing elliptical polarization allows both modes to be cooled fully. In this case,

the two initial peaks each converge to a normal mode frequency with the magnitudes

of both peaks decreasing to zero.

6.1.4 Discussion of heating and noise

The above analysis has shown that it is theoretically possible to cool the librational

motion through parametric feedback cooling within a classical approximation that

does not include sources of noise or heating. However, real experiments will encounter

unavoidable shot noise, gas collisions, measurement uncertainty, and quantum limits.

The effects of a non-zero measurement uncertainty has been addressed in [80]

showing that inefficient feedback sets a lower bound on the occupation number after

cooling for a fixed cooling power. This noise source becomes important for a nanopar-

ticle in a low occupation state n ∼ 50 (T ∼ 1 mK). The spin about the symmetry axis

of a nanodumbbell limits the energy of the particle’s accessible DOF in the 1-100 K

range after parametric feedback cooling with linear polarization (Fig. 6.3(c)), leaving

imperfect feedback to be a negligable effect. For elliptical polarization, librational

cooling is expected to be affected similarly to that found in [80] with a lower bound

on the occupation number.

One may think it possible that gas collisions could induce an asymmetry between

the librational coordinates which would allow further cooling. To test this hypothesis

the effects of shot noise and gas collisions in our simulations were included for linearly

polarized light. Laser shot noise was included using the methods of [80] and Ch. 5.

Gas collisions were considered as the Langevin type, π̇i = −Γiπi + ζ(t), with πi = (α̇,

β̇, γ̇), Γi = τi/IiΩi the damping rate (Γα = Γβ) [56], and ζ(t) stochastic noise.

Simulations were performed for three different pressures P =760, 10−3, and 10−7

Torr.

For P =760 Torr, the nanoparticle is unable to be cooled. The final energies

conform to a Maxwell-Boltzmann distribution as it thermalizes with the surrounding
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gas at 300 K. Here, increasing the cooling strength χ, with hope to overcome energy

exchange with the gas, heats the particle as its motion is more Brownian than periodic.

For P = 10−3, and 10−7 Torr, the main results of Secs. 4.1 and 6.1.1 hold, with

final energy distributions and PSD’s similar to that of Fig. 6.3(c) and Fig. 6.5(a),

respectively. The simulations reveal that gas collisions and photon scattering do not

change the general conclusions of this section in the classical limit. The effects of

laser shot noise and gas collisions while cooling using elliptically polarized light are

expected to limit the lowest occupation number attainable for a fixed cooling rate.

6.1.5 Conclusion

The effect of parametric feedback cooling using a linearly polarized beam is to

remove one of the two modes, resulting in pure precession. In this geometry, it

is not possible to extract energy from more than two degrees of freedom and not

possible to cool to the quantum regime even when information about both librational

modes is available. Evidence of these dynamics may be found in the power spectral

density with two peaks converging toward normal mode frequencies during the cooling

process, with the smaller of the two peaks’ magnitude reducing to zero.

Using a potential energy that sets different frequencies of libration allows cooling

to much lower energies when information about both librational modes are available,

theoretically approaching the quantum regime in this classical analysis. The setup

for cooling may be achieved experimentally by using elliptical polarization or using

two perpendicular laser beams incident on the nanoparticle and feeding back both

coordinate frequencies. If a single librational coordinate frequency is used in the

feedback, the particle will ultimately heat. The rate of cooling is largely determined

by the cooling strength and the separation between the two librational frequencies.

In this case, the power spectral density will show two peaks converging toward the

two normal mode frequencies with both magnitudes decreasing to zero over time.
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6.2 Experimentally cooling the rotational motion of nanodumbbells

Previous experimental studies have reported cooling of the rotational degrees of

freedom of anisotropic particles where the motion is complex and less understood

[55, 84, 126]. Following the publication of the work in the previous section, Ref. [76],

Ref. [77] reported five dimensional cooling of a levitated nanodumbbell. This work

validated the theoretical predictions found in Sec. 4 and much of Sec. 6.1. As noted

in Sec. 6.1.3, Fig. 6.5, two main experimental features of levitating nanodumbbells

are the observation of two peaks in the power spectral density of the librational

coordinates and the frequency difference between them. The two peaks correspond

to the two precessional modes ω±. The frequency separation of the two modes is

dependent on the angular frequency about the particle’s symmetry axis (the spin),

ω3.

In the experiment, each rotational and translational degree of freedom was able to

be observed, and five out of six were able to be controlled and actively cooled. Figure

6.6(a) shows the setup for the experiment and Fig. 6.6(b) shows the PSD’s obtained

from measuring the motion of the x, y, z, α, β degrees of freedom. The translational

DOF are observed to have sharp peaks at their harmonic frequencies as is expected

from Ch. 3. The α, β degrees of freedom show two broad peaks, centered at ω±. Two

peaks are expected to be observed for the rotational DOF, as explained in Ch. 4 and

Sec. 6.1.

In Secs. 6.1.34.3 it was shown not to be possible to directly observe the DOF

associated with the spin about a nanodumbbell’s symmetry axis, γ, since it is absent

from the dipole moment. However, the normal modes of the librational DOF, ω±, are

dependent on the spin ω3. For linear polarization, the frequency separation between

the peaks in the power spectral density ω+−ω− = ωc = (Iz/Ix)ω3 is directly propor-

tional to the spin about the symmetry axis. Thus, it is possible to indirectly measure

ω3 by observing the frequency difference in the normal modes.
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Figure 6.6. Illustration of the experimental setup in Ref. [77] in (a) and
the power spectral densities obtained for the x, y, z, α, β degrees of free-
dom of a dumbbell with radius 85 nm. In the setup, there are a total of 4
lasers. The power with the greatest intensity, the trapping laser (red), is
focused by a NA=0.85 objective, traveling in the z direction and polarized
in the x direction. The remaining 3 lasers are cooling lasers (green and
orange). The cooling laser traveling in the x and polarized in the y direc-
tion provides force feedback on the translational x degree of freedom. The
cooling lasers traveling in the y and −z directions are meant to cool the y
and z degrees of freedom, respectively. The y and z cooling lasers simulta-
neously cool the β and α degrees of freedom, respectively. This is achieved
by tilting the polarizations of each rotational cooling laser roughly 10 de-
grees with respect to the equilibrium axis of β and α, the x axis. The
y and z cooling lasers power is then modulated at two frequencies, one
translational and one rotational. For the power spectral densities in (b),
the two normal modes of α and β can be seen with wide distributions,
corresponding to continuously fluctuating ω3 due to scattering with the
gas molecules.

For symmetric-top particles, ω3 is unaffected by the rotational potential energy

and is therefore a conserved quantity. However, it is not immune to decoherence from

the surrounding air molecules. The dynamics of the spin of the nanodumbbell are then

described by Langevin-type, Brownian motion due to collisions with gas air molecules,

as described in Sec. 5.1. The fluctuation of ω3 causes the frequency separation

between the two precessional modes of β and α to fluctuate. As ω3 decreases, the two

precessional modes become closer in frequency, whereas when ω3 increases the two

modes separate further. This would appear as an anti-correlation between the two

modes over time. Observation of this effect is seen in Figs. 6.7(a)(b) and 6.8(a)(c).
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Figure 6.7. (a)(b) Experimental power spectral densities of the α and
β degrees of freedom following the cooling procedure for a R = 85 nm
dumbbell. The PSD’s are snapshots at two different times, showing how
the fluctuation of ω3 affects the exact position of the normal modes at
any given time. (c)(d) Simulation PSD’s using the parameters in the
experiment. From (c), the coupling for (a) was found to be ωc/2π = 17
kHz and from (d), the value of ωc/2π is 115 kHz.

Gas collisions also affect the librational degrees of freedom α, β directly. Power

spectral densities taken over time scales longer than the damping rate are able to

sample a wide range of orientational energies in the non-linear potential. This, in

combination with the fluctuating ω3, yield broad peaks for each observable orienta-

tional degree of freedom as seen in Figs. 6.6(b) and 6.9. As the pressure lowers, the

librational coordinates (α, β), as well as ω3, become less influenced by gas collisions.

The reduction causes the two peaks for (α, β) to narrow, limited by the more stable,

but still fluctuating, ω3. This can be seen in Fig. 6.9.
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Figure 6.8. (a) Normalized frequency fluctuations ωy(t)/〈ωy(t)〉,
ω+(t)/〈(ω+(t) + ω−(t))/2〉, ω−(t)/〈(ω+(t) + ω−(t))/2〉 at low pressure
3 × 10−3 Torr showing stable translational motion and large fluctuations
for the rotational coordinates. Note the anti-correlation between the ω±
modes. (b) Normalized frequency fluctuations at high pressure, 5 Torr.
(c) Correlations between the translational, rotranslational, and rotational
DOF. The normal modes of the orientational DOF are anti-correlated due
to the coupling with the spin about the nanodumbbell’s symmetry axis.

The illustration painted above considered a linearly polarized laser incident on

a nanodumbbell. The current experiment utilizes four lasers focused on the nan-

odumbbell, each with different polarizations. As the rotational potential energy de-

pends on the laser polarization direction, the additional polarization directions in-

troduce further complexity to the rotational dynamics. However, since the power of

the three cooling lasers is small relative to the trapping laser, the main features of

the rotational motion for linear polarization are retained. Even so, a subtle feature

introduced by the perturbation of the cooling lasers is also observed. Specifically,

the heights of the two peaks for each librational coordinate are unequal. For a single

laser with linear polarization, the heights of the two peaks would be equal for each

coordinate α, β. Including a second laser polarized in the ẑ direction shifts the height

of the ω+ mode to be higher than the ω− mode for the coordinate α, and vice versa

for β. This feature is indeed observed as seen in Figs. 6.6(b) and 6.7(a)(b). If the

second laser were polarized in the ŷ direction, it would be expected that the height
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of the ω+ mode would be reduced compared to the height of the ω− peak for the

coordinate α, and vice versa for β.

Unlike translational motion frequencies, rotational frequencies are dependent on

the radius of the particle ω± ∼ 1/R. The two particles studied here, R = 60 nm

and R = 85 nm, help show this dependence. From Fig. 6.9 which displays the

PSD’s before and after cooling a R = 60 nm particle, ω±60 ∼ (580, 620), whereas

ω±85 = (340, 400) for a 85 nm particle seen in Figs. 6.6(b) and 6.7 before and after

cooling, respectively.

Figure 6.9. Power spectral densities of the orientational degrees of free-
dom, (a) α and (b) β. The PSD before cooling is in blue, the PSD after
cooling is in red, and the noise floor in green. In (a) the broad peak at
300 K is reduced to the two normal mode peaks with an estimated tem-
perature of 10 K. In (b) the β DOF has been cooled to a point where the
signal is below the noise floor.

The method of rotational cooling performed is based on the idea of force feedback

cooling (cold damping) traditionally performed on the translational DOF. Here, the

two translational cooling lasers traveling in the y and z directions, respectively, are

simultaneously used for rotational cooling. The two lasers have their polarizations

oriented at an angle ∼ 10 deg relative to the trapping laser polarization axis, with one

cooling laser polarization in the x−y plane and the other in the x−z plane, Fig. 6.6(a).
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Through modulation of the laser intensities at the two librational angular velocities, α̇,

β̇, the cooling lasers provide a damping force on the librational coordinates α̈ ∝ −Γαα̇,

β̈ ∝ −Γββ̇. Simulations reveal that this method of cooling has no classical limit of

energy reduction. Experimentally, it is estimated that the total rotational energy

has been reduced to ∼ 10 K, excluding the rotational kinetic energy due to the spin.

Limiting further cooling is the constant shifting of the librational peaks due to the spin

fluctuations. The continuous shifting of the normal mode peaks inhibits performing

an accurate instantaneous time derivative required for the feedback loop.

6.3 Sympathetically cooling a magnetic nanoparticle

Another method of cooling a particle is to cool it sympathetically rather than

directly. This section explores a possible method of cooling the translational motion

of an optically trapped ferromagnetic nanoparticle by coupling to a spin-polarized

cold atomic gas. The coupling arises from the magnetic dipole-dipole interaction and

allows significant energy exchange between the two systems. While the atom cloud

is continuously Doppler cooled, energy is extracted from the nanoparticle through

this energy exchange. The coupling of a nanoparticle to an atom cloud has been

proposed previously with the coupling mediated by scattered light into a cavity [105].

Sympathetic cooling a particular vibrational mode of a membrane was successfully

demonstrated using a similar technique [127–130], but with final temperatures well

above the ground state. The scheme proposed here does not require optical cavities

and has the potential to cool to the quantum regime.

6.3.1 Toy model

This toy model provides an understanding of the coupling mechanism used for the

real proposed system found in Secs. 6.3.2 and 6.3.3. The toy system is comprised of

two particles in one dimension with mass M1 and M2 individually trapped in their

own harmonic traps with frequencies ω1 and ω2. The particles are linearly coupled
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via the potential energy Uint = c
√
M1M2ω1ω2y1y2 with yi the position of particle i

and c determining the interaction strength. The full potential is

U =
1

2
M1ω

2
1y

2
1 +

1

2
M2ω

2
2y

2
2 + c

√
M1M2ω1ω2y1y2. (6.21)

The equations of motion

ÿ1 = −ω2
1y1 − c

√
M2

M1

ω1ω2y2, (6.22)

ÿ2 = −ω2
2y2 − c

√
M1

M2

ω1ω2y1, (6.23)

yield four normal mode eigenfrequencies

ω2
± =

1

2

[(
ω2

1 + ω2
2

)
±
√

(ω2
1 − ω2

2)
2

+ 4ω2
1ω

2
2c

2

]
, (6.24)

which lead to four formal solutions for y1(t) and y2(t). On resonance, ω1 = ω2 = ω,

Eq. (6.24) simplifies to ω± = ±ω
√

1± c ≈ ±ω (1± c/2) in the weak coupling limit

c� 1. To garner an idea of the dynamics, presuppose the initial conditions y1(0) = A,

ẏ1(0) = 0, y2(0) = 0 and ẏ2(0) = 0 while on resonance in the weak coupling limit.

The solutions of Eqs. (6.22) (6.23) can be written as

y1(t) = A cos (ωt) cos

(
ωct

2

)
, (6.25)

y2(t) = −A
√
M1

M2

sin (ωt) sin

(
ωct

2

)
. (6.26)

Equations (6.25) and (6.26) show fast oscillations at frequency ω enveloped in a

slower beat frequency ωc/2. The result describes energy exchange between the two

oscillators at a rate four times that of the beat frequency fexch = ωc
π

(see Fig. 6.10).

If there is not one, but N non-interacting particles in the harmonic potential ω2, each

interacting with particle 1, the eigenfrequencies and therefore the rate of exchange

increases by
√
N so that

fexch =
ωc
√
N

π
. (6.27)

If the particles in trap 2 experience a continual damping force Fi = −αvi (i 6=

1) energy will be removed from particle 1’s motion through the exchange. In the

overdamped regime, α/M2 � ωc, particle 1’s energy decreases according to

E1(t) = E0e
−γt, (6.28)
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Figure 6.10. (a) Energy versus time of particle 1 and 2 while on res-
onance. (b) Energy versus time for 1 particle in trap 1 coupled to 4
non-interacting particles in trap 2. As Eq. (6.27) predicts, the exchange
frequency increases by

√
N = 2 compared to (a).

where the cooling rate

γ ∝ f 2
exch

α/M2

, (6.29)

determines the temperature reached by particle 1 in time t in the absence of heating

and noise.

6.3.2 Model of the system

The proposed physical system includes a ferromagnetic nanosphere of radius R

and mass Mp harmonically trapped in the focus of a laser beam traveling in the

~k = 2π
λ
ẑ direction (see Fig. 6.11). A ferromagnetic sphere with dipole moment ~m

produces a magnetic field [49]

~Bs(r) =
(µ0

4π

)[3 (~m · r̂) r̂
r3

− ~m

r3

]
, (6.30)
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Figure 6.11. Illustration of the proposed model. A ferromagnetic
nanosphere is trapped at the focus of a Gaussian beam. The oscilla-
tion frequency for the nanoparticle in the y direction is ωp. A cloud of N
atoms a distance y0 away are trapped in a separate, far red-detuned dipole
trap oscillating at frequency ωa in the y direction. An external magnetic
field ~Bext orients the magnetic moments of the nanoparticle and atoms.

where ~r is directed outwards from the center of the sphere. The sphere’s moment will

align along the y-axis if a constant, uniform magnetic field ~Bext = B0ŷ is present, and

a field distribution described by Eq. (6.30) will surround the particle.

A distance y0 above the focus of the nanoparticle trap, a cloud of N , non-

interacting, spin-polarized atoms each with dipole moment ~µa = −µaŷ and mass

Ma are trapped in a far red-detuned dipole trap with oscillation frequency ωa. The

total particle-atom cloud potential energy including the repulsive interaction Uint,j =

−~µa,j · ~Bs(rj) for each atom j is

U =
1

2
Mpω

2
pr

2
p +

N∑
j=1

(
1

2
Maω

2
ar

2
a,j + Uint,j

)
, (6.31)
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where ra,j (rp) is the atom (particle) position. If both the atoms and the nanoparticle

undergo small oscillations compared to the distance separating them, y0 � (rp, ra,j),

the interaction Uint,j is quasi-one-dimensional

Uint,j ≈ g/ (ya,j + y0 − yp)3 , (6.32)

where g = 2µa|~m|µ0/4π defines the interaction strength. The N + 1 equations of

motion for the y degrees of freedom are

ÿp = −ω2
pyp −

N∑
j=1

3g/Mp

(ya,j + y0 − yp)4 , (6.33)

ÿa,1 = −ω2
aya,1 +

3g/Ma

(ya,1 + y0 − yp)4 ,

...

ÿa,N = −ω2
aya,N +

3g/Ma

(ya,N + y0 − yp)4 .

(6.34)

The focus from here on will be the dynamics associated with the y degree of freedom.

The equations of motion for the x and z degrees of freedom have minimal coupling

and are therefore largely harmonic oscillators.

In what follows, the aim will be to study the possibility of removing motional

energy from the nanoparticle sympathetically by continuously cooling each atom.

Doppler cooling was the method of choice for cooling the atoms in this section. Under

Doppler cooling each atom experiences a momentum kick h̄k in the k̂ direction if a

photon is absorbed followed by a kick of the same magnitude in a random direction

after spontaneous emission. The probability for absorption in each time interval

dt� 1/ωa is P = Rdt with absorption rate [131]

R =
ΓΩ2/4(

∆ + ~va,j · ~k
)2

+ Ω2/2 + Γ2/4
. (6.35)
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Here, Ω is the Rabi frequency, Γ the decay rate, r = I/Isat the saturation intensity

ratio, and ∆ the laser detuning. The resulting atom velocity after this time interval

can be written as

ẏa,j (t+ dt) = ẏa,j (t) +
h̄k

Ma

sgn(k̂)± 1, absorbed

0, otherwise

. (6.36)

Other factors contributing to the dynamics of the trapped nanoparticle are col-

lisions with the surrounding gas molecules and laser shot noise heating. For the

vacuum chamber pressures used in atom trapping, ∼ 10−8 − 10−9 Torr, the affects

due to laser shot noise dominate that of the surrounding gas. After a time interval

dt the nanoparticle velocity becomes

ẏp(t+ dt) = ẏp(t) +

√
2ĖTdt/MpW(0, 1), (6.37)

where ĖT is the translational shot noise heating rate [92] and W(0, 1) is a random

Gaussian number with zero mean and unit variance.

Section 6.3.3 presents the results of simulating Eqs. (6.33) to (6.37) with Eqs.

(6.35) and (6.36) modeled using a Monte Carlo method. Subsections 6.3.2 and 6.3.2

explore the dynamics of Eqs. (6.33) and (6.34) analytically under a linear coupling

approximation both with and without atom damping.

Dynamics under an approximate linear coupling

In the regime y0 � (yp, ya,j), Eq. (6.32) may be expanded

Uint,j ≈
g

y3
0

[
1 +

3

y0

(yp − ya,j) +
6

y2
0

(yp − ya,j)2 + ...

]
. (6.38)

Keeping only terms to second order in Eq. (6.38) and defining the center of mass of

the atom cloud as Ya ≡ 1
N

∑N
j=1 ya,j, the equations of motion may be written as

ÿp = −Nap −
(
ω2
p +NΩ2

p

)
yp +NΩ2

pYa, (6.39)

Ÿa = aa −
(
ω2
a + Ω2

a

)
Ya + Ω2

ayp, (6.40)
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where ai = (3g/Miy
4
0), i = (p, a), is a constant acceleration that shifts the equilibrium

position of the oscillator and Ω2
i = (12g/Miy

5
0) is a coupling constant as well as a

frequency shift in the harmonic potential.

Provided the condition y0 � (yp, ya) is maintained so that higher order terms in

Eq. (6.38) do not contribute, the nanoparticle will exchange energy with the atom

cloud due to the linear coupling in Eqs. (6.39) and (6.40). Retaining predominantly

the lower order terms is only possible for nanoparticle temperatures much smaller than

room temperature as the atoms’ positions will increase drastically as they exchange

energy with the particle. The condition may also be satisfied if the motion of the

atoms is continuously cooled via a cooling mechanism such as Doppler cooling, which

will be discussed in the next subsection.

Due to the frequency shifts, Ω2
i , the nanoparticle and/or atom cloud trap frequen-

cies need to be tuned to resonance for coherent energy exchange ω2
a+Ω2

a = ω2
p+NΩ2

p =

ω2
0. While on resonance, the rate at which energy is exchanged from the particle to

the atoms is solved for by finding the normal mode frequencies of Eqs. (6.39) and

(6.40) and identifying the beat frequency. This ”exchange frequency” is

fexch =
12g
√
N

πω0y5
0

√
MpMa

=
ΩpΩa

√
N

πω0

.

(6.41)

Note that while the overall force due to the magnetic dipole-dipole interaction was

chosen to be repulsive, the dynamics are similar for an attractive interaction since

the energy exchange effect is independent of the sign of the linear coupling term.

Thus, although the atom cloud may be uniformly spin-polarized through the external

magnetic field and optical pumping [132–134], there is no loss of coupling if atoms

undergo spin flips on time scales greater than the oscillation period.
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Sympathetic cooling with linear coupling

If each atom in the cloud is continuously Doppler cooled, motional energy can be

removed from the nanoparticle. For the calculations in this section, Doppler cooling

is modeled using Langevin dynamics and is valid for the time scales of consideration

here, Γ� ω0.

Doppler cooled atoms experience an effective damping force FD,j = −αẏa,j with

damping rate Γa = α/Ma = h̄k2I/ (I0Ma) when tuned to reach the Doppler temper-

ature Tmin = h̄Γ/2kB [131, 134, 135]. Excluding the constant accelerations in Eqs.

(6.39) and (6.40), the equations of motion with Doppler cooling on the atoms as well

as laser shot noise on the nanoparticle become

ÿp = −ω2
0yp +NΩ2

pYa + ξSN(t), (6.42)

Ÿa = −ω2
0Ya + Ω2

ayp − ΓaẎa + ξDC(t)/
√
N, (6.43)

where ξSN(t) accounts for fluctuations due to laser shot noise and 1
N

∑N
j=1 Fa,j(t)/Ma →

ξDC(t)/
√
N are fluctuations due to spontaneous emission during Doppler cooling.

With the atoms continuously Doppler cooled, the final temperature of the nanopar-

ticle, Tp, under sympathetic cooling can be estimated. One method is through inte-

gration of the power spectral density (PSD) since Tp ∝
∫
Syy(ω)dω = 〈y2

p〉. Fourier

transforming Eqs. (6.42) and (6.43) and solving for the nanoparticle’s displacement

in the frequency domain, ỹp = F{yp}, gives

ỹp =

[√
NΩ2

pξ̃DC(ω)

∆
+ ξ̃SN(ω)

][
1

δ2(ω)−NΩ2
pΩ

2
a/∆

]
, (6.44)

where ∆ = δ2(ω) + iΓaω and δ2(ω) = ω2
0 −ω2. Shot noise adds an overall constant to

the noise floor of the spectrum and near ω ∼ ω0 the affects are negligible, ξ̃SN(ω)�

NΩ2
pξ̃DC(ω)/∆, and may therefore be omitted. Using the single sided noise spectrum

|ξ̃DC(ω)|2 → 4ΓakBTmin/Ma, the PSD of the nanoparticle’s displacement is

Syy(ω) =
NΩ4

p(4ΓakBTmin/Ma)

δ4(ω)
[(
δ2(ω)−NΩ2

pΩ
2
a/δ

2(ω)
)2

+ (Γaω)2
] . (6.45)
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Equation (6.45) is exact in the absence of laser shot noise on the nanoparticle and

has been confirmed through simulation of Eqs. (6.42) and (6.43) with and without

ξSN(t). The PSD is well described by two peaks located at ω2
± = ω2

0±
√
NΩpΩa in the

weak coupling regime ω2
0 >
√
NΩpΩa. In the strong coupling regime, ω2

0 <
√
NΩpΩa,

the ω− mode becomes unstable and the particle heats exponentially. Estimates of the

final temperature of the nanoparticle through numerical integration of Eq. (6.45) are

given in Sec. 6.3.3.

A second measure of the nanoparticle’s approximate final temperature can be

found by comparing the relative heating and cooling rates. In the weak coupling

Γa � ΩpΩa/ω0 and underdamped regimes ω2
0 � Γ2

a, the average cooling power is

〈P 〉 = −NMpΩ
2
p〈Yaẏp〉

≈ NkBTa
(πfexch)2

Γa
,

(6.46)

where Ta = Tmin is the average temperature of an atom. From Eq. (6.46) the cooling

rate is identified as

γcool =
(πfexch)2

Γa

=
144g2N

ω2
0Mpαy10

0

.

(6.47)

Note that the particle cooling rate in Eq. (6.47) depends on the number of atoms N ,

the atom cooling rate α, as well as the magnetic interaction strength g = (2µa|~m|µ0/4π) ∝

Mp. Equation (6.47) shows that slower atom cooling is beneficial for faster cooling

of the nanoparticle. However, it is important that α remain large enough so that

the atoms remain in the regime y0 � ya,j and do not escape the trap as a result of

heating.

Since the final temperature of the nanoparticle will be limited by the atoms’

Doppler Temperature, Tmin, we may infer a rate equation of the form

Ṫp ≈ −γcool (Tp − Tmin) + ṪSN, (6.48)
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Table 6.1.
Relevant properties of the three species of atoms and their Doppler

parameters. From left to right: the atom mass, magnetic moment, decay
rate, Doppler line, and Doppler temperature.

Element Ma (a.u.) µa/µB Γ/2π (MHz) λline (nm) Tmin (µK)

Dy 162.5 10 32.2 421 760

Cr 52 6 5.02 425 124

Rb 86.9 1 6.06 780 146

where ṪSN is the heating rate due to laser shot noise. Equation (6.48) yields an

equilibrium temperature of Tp = Tmin + ṪSN/γcool, numerical values of which are

calculated in Sec. 6.3.3.

6.3.3 Simulations of the full system

System description

To determine the extent to which energy can be extracted from a nanoparticle

through the scheme outlined in the previous section, several thousand simulations

of the N + 1 equations of motion were performed using the full, non-linear, one

dimensional 1/y3 potential in Eq. (6.32) while continuously Doppler cooling each

atom. Equations (6.33) and (6.34) were numerically solved using a fourth order

Runge-Kutta algorithm. Laser shot noise kicks on the particle were implemented

using Eq. (6.37) and Doppler cooling was modeled with a Monte Carlo method using

Eqs. (6.35) and (6.36).

The nanosphere used for the simulations was composed of YIG with a radius

R = 50 nm, density ρ = 5110 kg/m3, index of refraction n = 2.21 [136], and magnetic

dipole moment |~m| = 1
5
NpµB = 4.05 × 10−18 JT−1 where µB is the Bohr magneton

and Np is the number of atoms that make up the entire YIG nanoparticle. This
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expression for the magnetic moment is approximate, but is conservative compared to

what is achievable experimentally [137,138].

The simulated nanoparticle was trapped in a ωp/2π = 100 kHz optical trap at

the focus of a laser beam linearly polarized along the lab frame x-direction and prop-

agating in the z-direction with a wavelength λ = 1550 nm � R, power 150 mW,

and focused by a NA = 0.6 objective. The nanosphere was set with initial positions

and velocities conforming to a Maxwell-Boltzmann distribution at a temperature of

T = 1 K. This temperature can be reached experimentally by first using parametric

feedback cooling or cold damping before implementing sympathetic cooling [22, 23].

The translational shot noise heating rate ṪSN = 2ĖT/kB = 72.4 mK/s was computed

using the Rayleigh expression [92]. Due to the frequency shifts Ω2
i in Eqs. (6.39) and

(6.40), the nanoparticle’s frequency was shifted to match the frequency of the atoms

while at the atom Doppler temperature.

Three species of atoms, dysprosium, chromium, and rubidium, were used for sep-

arate simulations. Relevant properties for these atoms are listed in Table 6.1. The

atom cloud trap center was placed y0 = λ/3 = 516 nm away from the nanoparticle

trap’s center. The atom dipole trap frequency ωa/2π = 100 kHz remained unshifted.

The atoms were initially set with velocities at their Doppler temperature and were

continuously Doppler cooled. Doppler cooling parameters were set such that the

atoms would reach their Doppler temperature Ω = Γ
√
r/2, r = I/Isat = 0.1, and

∆ = −Γ/2 (see Sec. 6.3.2). Interactions between the atoms and atom loss from the

trap were not included in the simulation. For the parameters used in the calculations,

the atoms (Dy, Cr, Rb) and particle are sufficiently in the weak coupling regime (see

Eq. (6.45))
√
NΩpΩa/ω

2
0 = (8.23, 6.07, 1.19)× 10−3 for N = 104, respectively.

From the parameters above, the beam waist of the particle trap is ∼ 800 nm while

the atom-particle separation distance is set at 516 nm. While this distance is flexible,

we envision the atom trap to be more tightly focused with a wavelength smaller

than that of the nanoparticle’s. Further, the particle oscillation amplitude is ∼ 10

nm at T = 1 K, an order of magnitude smaller than the separation distance. The
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separation distance is foreseen to be the main experimental challenge as an increase

in the separation by a factor of two decreases the nanoparticle damping rate by a

factor of 210 = 1024. One could imagine a thin dielectric barrier placed between the

particle and atoms if atom collisions with the nanoparticle would be of concern.

Simulation Results

Figure 6.12. (a) Nanoparticle cooling rate versus the number of atoms in
the atom cloud. The rate is linearly proportional to the number of atoms
and increases for species with larger magnetic moment µa as predicted by
Eq. (3.11). Only atom numbers that produced a statistically significant
cooling rate were plotted. (b) Kinetic energy of the nanoparticle versus
time for N = 104 dysprosium atoms and fit to a decaying exponential.
From the fit, γ was extracted and used to plot (a).

For each atom species, the energy removal rate of the nanoparticle, γ, was ex-

tracted for varying numbers of atoms in the trap, N , as seen in Fig. 6.12. From

several thousand averages, γ was obtained by fitting energy versus time plots to a

decaying exponential, E(t) = A exp(−γt) + C, for a given N (see Fig. 6.12(b)). It

is to be noted that due to the long simulation times, most energy versus time plots

did not allow for observation of the equilibrium temperature of the nanoparticle and
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were solely used for extracting γ. The final temperature of the nanoparticle can be

greater than the atom Doppler Temperature as is the case in Fig. 6.12(b) where

the final average temperature is 794 µK. This is attributed to shot noise heating as

well as non-linear effects that contribute slight frequency mismatching between each

atom and the nanoparticle. While the particle is resonant on the average, Ωa,j for

each atom j depends on each atom’s displacement amplitude and therefore changes

slightly with time. The fact that the majority of atoms are out of phase with each

other and the nanoparticle does not affect the results.

From Fig. 6.12(a), the cooling rate depends linearly on the number of atoms in

the trap as Eq. (3.11) predicts. As the particle exchanges energy with the atoms,

each atom acquires a portion of the nanoparticle’s energy. When n more atoms are

added to the trap, there are n more chances for removing that energy through Doppler

cooling. As Fig. 6.12(a) shows no deviation from a linear dependence for larger N ,

the cooling rate may be extrapolated for larger N values so long as ω2
0 >
√
NΩpΩa. As

the calculations were performed using the full N + 1 equations of motion, simulation

time was the only constraint from observing the effects for larger atom numbers,

N > 104.

The average final temperatures reached for each atom species (Dy,Cr,Rb) was

794 µK, 406 µK, and 158 mK, respectively, for a simulation time of t = 100 ms at

N = 104. Numerical integration of Eq. (6.45) for the three atom species (Dy, Cr, Rb)

at N = 104 gives an approximated equilibrium temperature of Tp ≈ Mpω
2
0〈y2

p〉/kB =

(2.002, 0.584, 0.572) mK, respectively. Since the particle is not a simple harmonic

oscillator the values are approximate, but may serve as an upper bound for the

particle temperature in experiments. The final temperature may additionally be

estimated using the rate equation Eq. (6.48), Tp = (784, 256, 756) µK at N = 104

for (Dy, Cr, Rb), respectively, which shows better agreement with the simulation

results for Dy and Cr. A simulation time of 100 ms was not long enough to observe

the equilibrium temperature of the particle using Rb atoms. The expressions used
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to estimate the final temperature assume equilibrium has been reached, hence the

discrepancy between the simulation temperature and the estimates.

Besides the number of atoms in the trap, Eq. (6.47) predicts that the cooling rate

γcool ∝ g2 depends on the square of the magnetic coupling strength g = 2µa|~m|µ0/4π.

Using the data in Fig. 6.12(a) and the values for µa in Table 6.1, γ ∝ µ2
a is confirmed

with a coefficient of determination r2 = 0.997. Together with the linear dependence of

γ on N , this confirms the ability to describe this non-linear system in an approximated

linear coupling regime as was done in Sec. 6.3.2.

Note that γ in Fig. 6.12 includes the cooling rate γcool as well as the competing

shot noise heating rate ĖT . The two parameters that these two quantities share are

the density, which is predominantly fixed, and the size (radius R) of the nanoparticle.

Approximating |~m| ∝ R3 we find γcool ∝ R3 while ĖT ∝ R3 shares the same R

dependence [92]. However, shot noise heating is linear in time while the cooling is

exponential, indicating that larger particles may provide faster cooling, but will not

influence the final temperature of the nanoparticle. The influence of shot noise heating

may be further reduced by cooling the degree of freedom in the laser polarization

direction, x̂, since the least amount of shot noise is delivered to that degree of freedom

for a particle in the Rayleigh limit [92]. The major source of heating in conventional

levitated systems are collisions with the surrounding gas for pressures above 10−6 Torr

with Γgas/2π ∼ 10 kHz. Cold atom experiments typically operate with 10−8 − 10−9

Torr chamber pressures, making laser shot noise ĖT/h̄ω0 = 7.5 kHz the dominant

source of heating for the YIG particle in this proposal.

Discussion

To date, cold damping and cavity cooling by coherent scattering have proven

to be the most effective methods of cooling a levitated nanoparticle with reported

occupation numbers of n = 4 and n < 1, respectively [28, 34]. Similar to parametric

feedback cooling, cold damping provides damping rates in the ∼ 1 kHz range while
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coherent scattering has yielded rates in the 10 kHz range [27, 28, 31, 34]. The results

above indicate that atom numbers of the order N ∼ 106, which corresponds to γ > 1

kHz, would be sufficient for the nanoparticle to reach the atom’s Doppler temperature

even for atom species with unit magnetic moment µa/µB = 1. The number of atoms

that have been trapped experimentally is in the range ∼ 106 − 108 for chromium,

rubidium, and others [105, 134, 139]. The ground state energy of the nanoparticle is

T = h̄ω0/kB = 5 µK. Many of the commonly trapped atom species have unit magnetic

moment, large N , and are able to reach the ∼ 1−10 µK regime [140,141]. Comparing

with the energy removal rate found for Rb in Fig. 6.12(a), these parameters are

sufficient for motional ground state cooling of the nanoparticle.

The general idea of the proposed scheme is to sympathetically cool a nanoparticle

utilizing the linear coupling found in the dipole-dipole interaction, but is not limited to

the methods chosen here and allows for adaptability. For example, Doppler cooling

as the atom cooling method was chosen for simulation simplicity while retaining

physicality. Other atom cooling methods offer lower temperatures such as sideband

cooling, Sisyphus cooling, or using a spin-polarized Bose-Einstein condensate, which

are able to reach nK temperatures [142]. A charged YIG particle could also be trapped

in an ion trap instead of an optical trap.

6.3.4 Conclusion

A theoretical proposal to sympathetically cool a levitated ferromagnetic nanopar-

ticle via coupling to a spin-polarized atomic gas was studied. While oscillating in

their respective traps, the particle and atom cloud systems would be coupled through

the non-linear magnetic dipole-dipole interaction. For sufficiently large separation

between the particle and the atom cloud relative to their displacements, the nanopar-

ticle and atom cloud would exchange energy with one another via the linear coupling

term that is dominant in the magnetic force expansion. If the atoms are continuously

Doppler cooled, energy would be able to be removed from the particle’s motion.



91

Simulations of the particle-atom cloud system were performed using the full, non-

linear, magnetic dipole-dipole interaction for three species of atoms and varying num-

bers of atoms in the trap. The nanoparticle cooling rate was shown to be proportional

to the number of atoms in the trap as well as the square of the magnetic moment

of the atom, validating that it is possible to describe the dynamics using a linear

approximation to the magnetic force. The rate at which energy is removed from the

particle motion is significant for 104 atoms in the trap when the atoms are continu-

ously Doppler cooled. It is expected that the particle would reach the atom Doppler

temperature as the number of atoms increases. This method of sympathetic cooling

has potential to cool the nanoparticle to its motional ground state for atom species

with lower Doppler temperatures. However, any atom cooling strategy that offers

low enough temperatures should allow for motional ground state cooling if there are

a sufficient number of atoms.

6.4 Dynamics and cooling of levitated disks

While not strictly a section dedicated to cooling, this section applies nearly all

of the ideas and tools covered thus far in this thesis. From large, non-spherical

particle scattering and force calculations to ro-translational dynamics and cooling.

This section largely follows our publication, Ref. [118].

The choice of particle used in levitated optomechanics is an important factor that

depends on the goal of application. The most widely used particle in the field is a

silica sphere with radius small compared to the wavelength. The dynamics of spheres

trapped in cavities and focused laser beams are well understood and used for cooling

to the motional ground state as well as force sensing [26, 34, 38, 143]. This is owing

to the simple harmonic translational and free rotational dynamics making it an ideal

system to handle for both experimentalists and theorists. As seen in Ch. 4, particles

with decreased particle symmetry allow rotational degrees of freedom to enter into

the potential energy. A nanorod has large differences in moments of inertia and
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polarizability which allows rotations to be described as decoupled librations about

the laser polarization axis. The motion of nanodumbells or generally anisotropic

materials requires rigid-body dynamics since these particles have moments of inertia

of similar magnitude [55, 76]. As was described in Sec. 2.1, increasing the size of

the particle relative to the wavelength of the laser further complicates the motion for

any particle shape [100]. Still, from Ch. 4, terms necessary to describe nanorods and

nanodumbbells are well understood [54,77,81,123].

Dielectric disks also have a relatively simple shape, but have not seen as much

attention as other particle geometries in the literature to date. Several studies point

to thin nanodisk scattering being more realistically described in a Rayleigh-Gans

rather than a Rayleigh approximation for index of refraction n ∼ 1 [62–64]. This

generally leads to an orientational dependent shape function in the form of a Bessel

function. From studies investigating the applications of disks for various purposes, it

is unclear whether there is consensus on the necessity of including the shape function

or other non-harmonic terms in the dynamics [46,61,144]. There are few experimental

studies involving disks, however two such studies suggest terms of higher order may

be necessary for describing the motion [145,146].

In this section it is shown that higher order terms of at least third order in the po-

tential energy are necessary for describing the dynamics of disks outside the Rayleigh

regime in a Gaussian standing wave. While a focused Gaussian traveling wave is the

most common trap, the large radiation pressure exerted on disks raises the concern

for instability. In a Gaussian standing wave (e.g. driven cavity) axial confinement is

much stronger and the axial radiation pressure is absent. A disk experiences restor-

ing forces in all three translational degrees of freedom and torques in two rotational

degrees of freedom. Similar to rods and nanodumbells, the rotation about the disk’s

symmetry axis is unaffected by light coupling and is a constant of the motion. Focus is

given to the effects due to the third order terms which provide unique ro-translational

couplings that have not yet been discussed in levitated optomechanics. The coupling

terms are a result of the finite extension of the disk coupling to both the Gaussian
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and standing wave geometry of the beam. Inclusion of the coupling terms results in

dynamics with several different modes of oscillation for each degree of freedom which

are evident in the power spectral density. Simulations show no evidence of instability.

An analytical as well as numerical approach using a discrete-dipole approximation

method is used to identify the forces and torques on disks of radius 2 µm with index of

refraction n = 1.45 and n = 2.0 as well as disks of radius 200 nm with n = 1.45. The

Gaussian standing wave is constructed with a wavelength λ = 850 nm and various

waists w0 = 2, 2.5, 3, 4 µm.

The coupling terms may hinder or benefit applications for levitated disks. Disks

have been proposed as potential accelerometers for gravitational wave detection [46].

The third order coupling terms may complicate determining which degree of freedom

experienced a force or torque. On the other hand, it may be used as a means for

indirectly detecting the motion of several degrees of freedom with a single detection

scheme and therefore an efficient force and/or torque detector. Another common

application is cooling the motion of the disk in attempt to study macroscopic quantum

mechanics [6, 7, 12]. As energy from one degree of freedom can be transferred to

another through the couplings, it may have potential for sympathetically cooling

several degrees of freedom by performing a cooling method on only one of the degrees

of freedom. Preliminary results show that this is indeed possible for both radii studied

using parametric feedback cooling or cold damping. Provided near ground state

cooling can be achieved, the multi-mode resonator can further be used to explore

entanglement or quantum state transfer [147,148].

6.4.1 Approximate Analytical Potential Energy

This subsection outlines the analytical calculation of the potential energy of a

thin dielectric disk in a Gaussian standing wave in the Rayleigh-Gans approximation.

In this approach the disk thickness is taken to be very thin so that the Rayleigh

approximation holds along that direction [61, 63]. The approximated results verify
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Figure 6.13. Coordinate system in the lab frame (x, y, z) and the particle
frame (x′′′, y′′′, z′′′). The disk’s symmetry axis is aligned with the particle
frame z′′′ axis. The disk’s center of mass as measured from the lab frame
~r0 is shown in red. The location to a point on the thin disk is given by the
polar coordinates (ρ′, φ′) in the particle frame which are shown in purple.

the existence and helps elucidate the origin of the terms responsible for the dynamics

seen in the following sections.

The disk is described with radius a, thickness T � λ, index of refraction n,

and susceptibilities χ‖ = n2 − 1 and χ⊥ = χ‖/n
2 corresponding to the susceptibility

parallel and perpendicular to the disk symmetry axis (z′′′ axis), respectively [61].

The principal moments of inertia are Iz = ma2/2 and Ix = Iy = m(3a2 + T 2)/12.

The disk’s center of mass is located at ~r0 = 〈x0, y0, z0〉 and, as before, rotations are

described in terms of the Euler angles (α, β, γ) in the z− y′− z′′ convention (Ch. 4).
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The Gaussian standing wave is formed by two counter-propagating Gaussian waves

with non-zero longitudinal components so that they satisfy Maxwell’s equations [66].

Each traveling wave has the symmetric waist w0, wavenumber ~k = (±x̂)2π/λ, and is

polarized in the ẑ direction. Around the focus, x = 0, each wave takes the form

~E±(x, y, z) = E0e
−(y2+z2)/w2

0

[
ẑ ∓ iz

xR
x̂

]
e±ikx, (6.49)

where xR = kw2
0/2 is the Rayleigh range and + (−) stands for the the right (left)

traveling wave. The incident fields used for the numerical calculations in Secs. 6.4.2

and 6.4.3 are found by propagating Eq. (6.49) throughout all space using the angular

spectrum representation [66]. For the analytical calculations performed in this section

the approximated Gaussian standing wave

~Einc(x, y, z) ≈ E0e
−(y2+z2)/w2

0

[
cos kxẑ + sin kx

z

xR
x̂

]
, (6.50)

is used, which is valid in the space |x| � xR.

The mechanical potential energy associated with the interaction between the light

and the dielectric is

U = −1

4

∫
~P (r′) · ~E(r′)d3r′, (6.51)

where the integral is over the volume of the disk, ~P (r′) = ε0
↔

R
†↔
χ0

↔

R~E(r′) is the polar-

ization vector,
↔
χ0 is the diagonal susceptibility matrix in the nanoparticle frame, and

↔

R is the rotation matrix

↔

R =


cβcαcγ − sαsγ cβsαcγ + cαsγ −sβcγ

−cβcαsγ − sαcγ −cβsαsγ + cαcγ sβsγ

sβcα sβsα cβ

 (6.52)

=


R11 R12 R13

R21 R22 R23

R31 R32 R33

 , (6.53)

where the notation c = cos, s = sin was used.
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The potential energy in the Rayleigh-Gans approximation with the incident field,

Eq. (6.50), becomes

U ≈ −E
2
0

4

∫
e−2[y2(r′)+z2(r′)]/w2

0

×
[
cos2 kx(r′)χ1 + sin 2kx(r′)

z(r′)

xR
χ2 + χ12

k2z2(r′)

x2
R

sin2 kx(r′)

]
d3r′,

(6.54)

where χ1 = ∆χ cos2 β + χ⊥, χ2 = ∆χ sin β cos β sinα, χ12 = ∆χ sin2 β sin2 α + χ⊥,

and ∆χ = χ‖ − χ⊥. To evaluate Eq. (6.54) the coordinates of the disk must be

projected onto each lab frame coordinate (x, y, z) and it is favorable to move to polar

coordinates. First, in the limit T � λ the functions in Eq. (6.54) are independent of

the thickness leaving the functions in the integral dependent only on the disk’s radial

and angular coordinates (r′) = (ρ′, φ′) (see Fig. 6.13). In terms of the center of mass

and disk coordinates, x(r′), y(r′), and z(r′) in Eq. (6.54) are

xi(r
′) = x0,i + ~ρ ′ · x̂i, xi = (x, y, z), (6.55)

with

~ρ ′ =
↔

R
†
~ρ

= ρ′

cosφ′


R11

R12

R13

+ sinφ′


R21

R22

R23


 , (6.56)

and the Rij are matrix components in the rotation matrix
↔

R above. For a disk with

negligible thickness, a point on the disk is located at ~ρ = ρ (cosφx̂+ sinφŷ) in the

body frame. In the lab frame, the point is located at ~ρ ′ =
↔

R
†
~ρ ≡ 〈ρ′x, ρ′y, ρ′z〉 yielding

Eq. (6.56).

Insertion of Eqs. (6.55) and (6.56) into Eq. (6.54) leads to analytic solutions in

terms of Bessel functions. In the limit of small radius w0 � a, r0a � w2
0 where the

zeroth order approximation to the exponentials (∼ 1) can be used, a Bessel function

of the first kind is obtained as was found in Ref. [61]. However, this approximation
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misses the coupling of the disk to the Gaussian standing wave and a fourth order

expansion in the coordinates is required to resolve it.

Practical parameters in levitated optomechanics are in the range (λ,w0) ∼ 1 µm

and (r0, a) ∼ 1 − 0.1 µm. To complete the derivation, the limits a2 � w2
0, r2

0 � w2
0

are used to expand each function in Eq. (6.54) to fourth order in the coordinates and

terms O(a6/w6
0) as well as O(xn0,iπ

m
j ), where n + m ≥ 4, πj = (α, β), are dropped

which retains terms up to third order in the coordinates. Due to the symmetry of the

disk, the potential energy is independent of the angle γ. Further, the disk’s symmetry

axis is primarily aligned along the lab frame x̂ direction and, as will be justified in the

next section, rotates at angles that justify the small angle approximation α→ 0 + θz,

β → π/2 + θy with θz, θy, small. Here θz represents small angle rotations about the

lab frame z axis while θy is a small rotation about the lab frame y axis.

Expanding each function in Eq. (6.54) to first order gives

U = −TE
2
0

4

[
1− 2ρ2

0

w2
0

] ∫ a

0

ρ′dρ′
∫ 2π

0

dφ′

×
[
1− 2

w2
0

(
ρ2′
y + ρ2′

z

)]
×
[
1− 4

w2
0

(
y0ρ
′
y + z0ρ

′
z

)]
×

[
χ1

(
1− k2

2
(x0 + ρ′x)

2

)2

+ χ2
2k

xR
(z0 + ρ′z) (x0 + ρ′x)

+ χ12
k2

x2
R

(z0 + ρ′z)
2

(x0 + ρ′x)
2

]
,

(6.57)

where the integral over the thickness was performed. Odd powers of ρ′iρ
′
j integrate to

zero from the φ′ dependence. The resulting potential energy is of the form

U ≈ m

2

(
ω2
xx

2
0 + ω2

yy
2
0 + ω2

zz
2
0

)
+
Ix
2

(
ω2
θyθ

2
y + ω2

θzθ
2
z

)
+mx0

(
ω2

1y0θz − ω2
2z0θy

)
,

(6.58)
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and the analytical frequencies are

ω2
x = ηk2χ⊥ [1− A] , (6.59)

ω2
y = ω2

z =
2ηχ⊥
w2

0

[1− A] , (6.60)

ω2
θy =

4η

a2

[
∆χ (1− 2A)− k2a2χ⊥

8

]
, (6.61)

ω2
θz =

ηk2χ⊥
2

, (6.62)

ω2
1 = η

[
2k2Aχ⊥ −

∆χ⊥
w2

0

]
, (6.63)

ω2
2 = 2ηk2Aχ⊥, (6.64)

where the common factor η =
2ε0E2

0

ρ
with ρ the mass density, the moment of inertia

for negligible thickness Iy = Ix = ma2/4 was used, and A = a2/4w2
0 is one quarter

the square ratio of the radius to the waist.

The terms in the first row in Eq. (6.58) describe simple harmonic motion for the

three translational and two rotational degrees of freedom. The last term is a coupling

between the translational and rotational degrees of freedom that is of third order in

the coordinates. The coupling terms arise due to the finite radius of the disk and

the Gaussian and standing wave geometry of the beam. An asymmetric electric field

gradient across the disk produces a stronger force on the section of the disk with

greater laser intensity. That section of the disk is pulled into the region of the trap

with greater laser intensity more strongly than the section of the disk with less field

intensity. As the radius increases and the trap becomes more confining, the greater

the electric field gradient across the disk and the more influential the coupling terms

are. With reference to Eq. (6.54), it is a result of the ro-translational coupling in

the Gaussian together with the x0 dependence in cos2 kx(r′) describing the standing

wave. From rows 3 and 4 in Eq. (6.57),(
y0ρ
′
y + z0ρ

′
z

)
(x0 + ρ′x)

2
(6.65)

∝
(
y0ρ
′
y + z0ρ

′
z

)
(x0ρ

′
x) (6.66)

∝ −x0 (y0θz − z0θy) . (6.67)
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The asymmetry in the (ω1, ω2) coefficients is due to the x̂ component of the incident

electric field proportional to z0/xR. If this term is negligible, xR � z0, the coefficients

are equivalent, ω1 = ω2.

To garner an idea of the dynamics that arise due to the coupling, consider the

x0y0θz term in Eq. (6.58). A disk displaced by ~r0 = 〈x0, y0, 0〉 in Fig. 6.13 experiences

a torque about the −z axis due to a greater electric field intensity on the side of

the disk nearest the focus. These terms are therefore a gradient force/torque as a

consequence of the electric field gradient along the finite extension of the disk.

In experiments the beam waists in the z and y directions are often not symmetric.

The asymmetric Gaussian leads the frequencies above to be altered slightly and can

be accounted for by using different beam waists in Eq. (6.57).

One noteworthy feature in Eq. (6.62) is that the ωθz rotational frequency depends

on χ⊥ rather than ∆χ. Rotational frequencies in the Rayleigh approximation depend

on ∆χ solely as was seen in Ch. 4 as the particle’s long axis tries to align with the

electric field. In the Rayleigh approximation ωθz = 0 and is only non-zero here due

to the electric field gradient across the finite extension of the disk.

6.4.2 Numerical Evaluation of the Forces and Torques

System and Procedure

The optical scattering problem for finite sized dielectric objects is generally dif-

ficult to solve analytically. As was done in the previous section, approximations

are often required to glean insight into the dynamics. Another rigorous approach

is to numerically solve for the scattered electromagnetic waves and use the resulting

Maxwell stress tensor to obtain the forces and torques. This section details the results

from performing the latter method by numerically implementing the discrete-dipole

approximation (DDA) to calculate the scattered fields of the disk [58,101].

In the DDA, the disk is composed of N discrete spherical dipoles each with polar-

izibility α and the internal fields of the dielectric are solved for self-consistently to re-
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trieve the scattered fields outside the particle. In the implementation of the DDA, each

dipole that composed the spherical dipole had a polarizibility α = 4πε0R
3

(
n2 − 1

n2 + 2

)
.

This is the same approach that was used to calculate the shot noise heating rate in

a focused Gaussian beam in Sec. 5.2.5. The scattered fields that are generated from

the DDA are then added to the incident field and inserted into the Maxwell stress

tensor [49]

Tij = ε0

[
EiEj + c2BiBj −

1

2

(
| ~E|2 + c2| ~B|2

)
δij

]
, (6.68)

in order to obtain the forces and torques

~F =

∮
↔

T · n̂ dS, (6.69)

~τ =

∮
↔

M · n̂ dS, (6.70)

where
↔

M = −
↔

T × ~r. The surface over which the integration is performed was taken

to be a sphere centered at the disk center with radius 1.5× that of the disk. The

surface integration was performed using Gaussian quadrature with increasing number

of points until convergence was demonstrated.

The above procedure was performed for dielectric disks located near the intensity

maximum of a Gaussian standing wave. To construct the standing wave, a right-

traveling wave, ~ER(x, y, z) is found by propagating Eq. (6.49) throughout all space

using the angular spectrum representation with no paraxial approximation. A left-

traveling wave, ~EL(x, y, z) = ~ER(−x,−y, z), is added to the right-traveling wave to

form the standing wave. The wavelength of each wave is λ = 850 nm and is fixed

throughout this section. While the detailed coefficients of the forces and torques

change with wavelength the major results of this section do not, and 850 nm is an

efficient emission wavelength for GaAs quantum well gain media used in semiconduc-

tor lasers [149]. A range of Gaussian beam waists were explored w0 = 2, 2.5, 3, 4µm

to define the optical trap.

Most of the calculations performed were for disks of radius a = 2 µm, thickness

T = λ/4n to achieve maximum light coupling, and index of refraction n = 1.45 or

n = 2.0. The indices of refraction correspond to materials composed of silica and
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silicon nitride, respectively. Unless otherwise stated, the data and discussions that

follow will refer to this set of parameters.

The following example outlines the steps for how a calculation is performed: the

disk’s symmetry axis is aligned with the axial direction (x axis), the disk is displaced

a distance y0 from the focus of the standing wave, the scattered waves are calculated

using the DDA, the forces and torques are computed using Eqs. (6.69) and (6.70).

The process is identical for rotations: the disk is initially situated at ~r0 = 〈0, 0, 0〉

and (α = 0, β = π/2), a rotation is made α = 0 + θz, the scattered waves are

calculated using the DDA, the forces and torques are calculated. The baseline for

the calculations is when the disk is placed symmetrically at the focus of the standing

wave, ~r0 = 〈0, 0, 0〉 , (α = 0, β = π/2) which should be a potential minimum. Indeed,

a force or torque due to a displacement generally gives a value at least ten orders of

magnitude greater than the baseline.

Forces and Torques

As is expected in levitated optomechanics, small displacements in one direction

reveals a spring force in that same direction Fi = −kixi,0 and torque τi = −κiπi,

πi = (α, β). The spring constants for each degree of freedom, (ki, κi), are determined

by direct division, ki = −Fi/xi,0. At the harmonic level, no coupling of the different

degrees of freedom through the potential energy were found.

Being that there are 6 degrees of freedom (including γ), there are 15 different

second order couplings possible in the forces and torques. Of these possibilities, only

terms similar to that in Eq. (6.58) were found to be above the baseline. These terms

were found to be significant for disks of large and small radii. For example, a dis-

placement of the center of mass by ~r0 = 〈x0, 0, z0〉 produces a torque about the y

axis, suggesting a term in the potential energy U ∝ D1y0z0θy, with D1 a proportion-

ality constant. A similar coupling of the same order was found U ∝ D2x0y0θz, with

D2 6= D1 necessarily. The coefficients D1 and D2 are also determined by division, i.e.
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Table 6.2.
Frequencies for a silica disks of radius a = 200 nm and thickness T =
λ/(40n) for two beam waists w0 = 2, 3 µm. The disk has dimensions that
are reduced by a factor of ten from the a = 2 µm, T = λ/(4n) disks. A
fixed total power of 100 mW is used for the calculations. The number of
points used to compose the disk was N = 37488 and the thickness of the
disk was 4 points.

w0 (µm) ωx (kHz) ωy (kHz) ωz (kHz) ωθy (kHz) ωθz (kHz) ω1 (kHz) ω2 (kHz)

2 394 38 38 537 390 46 39

3 264 17 17 361 263 21 17

D1 = Fz/(y0θx). Interestingly, the coefficients computed in this way generally gives

different values for the force in the ŷ and ẑ directions

Fy ∝ −Ax0θz, (6.71)

Fx ∝ −C1y0θz, (6.72)

τz ∝ −C1x0y0, (6.73)

for the first coupling term, and

Fz ∝ Bx0θy, (6.74)

Fx ∝ C2z0θy, (6.75)

τy ∝ C2x0z0, (6.76)

for the second coupling term, with A ≈ C1 and B ≈ C2. The coefficients A and

B can differ from C1 and C2 by 2% using a waist of w0 = 2 µm and 20% using

a waist of w0 = 4µm. Although the discrepancy is suspected to be due to higher

order terms, we are only interested in the dynamics due to this term and the average

values D1 = (A + 2C1)/3 and D2 = (B + 2C2)/3 will be used from here on so that

potential energy can be written in the form of Eq. (6.58). The consequences of using

the average values is insignificant and will be discussed in Sec. 6.4.3.
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Figure 6.14. Frequencies obtained using the DDA for silica disks (n=1.45)
of radius a = 2 µm and thickness T = λ/(4n) for varying beam waist.
Frequencies are shown for the (a) x, (b) y and z, (c) θy and θz degrees of
freedom and the coupling constants in (d). A fixed total power of 100 mW
is used for the calculations. For each calculation the disk was composed
of N = 299744 points with a thickness of 8 points.

The spring and coupling constants (ki, κi, Di) have the same units and are most

useful when written in terms of frequencies

ωi =
√
ki/m, i = (x, y, z), (6.77)

for translational harmonic motion,

ωi =
√
κi/Ix, i = (θy, θz), (6.78)

for rotational harmonic motion, and

ωi =
√
Di/m, i = (1, 2), (6.79)

for the coupling terms.

Values for the frequencies as a function of beam waist are shown in Fig. 6.14

for silica and Fig. 6.15 for silicon nitride using a fixed total laser power of 100 mW.
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Figure 6.15. Frequencies obtained using the DDA for silicon nitride disks
(n=2.0) of radius a = 2 µm and thickness T = λ/(4n) for varying beam
waist. Frequencies are shown for the (a) x, (b) y and z, (c) θy and θz
degrees of freedom and the coupling constants in (d). A fixed total power
of 100 mW is used for the calculations. For each calculation the disk was
composed of N = 569984 points with a thickness of 8 points.

The general trend identified from the figures is that each frequency decreases as the

waist increases. This feature is not unexpected, however, for particles in the Rayleigh

regime λ� a, ωi ∝ 1/w2
0 while for a = 2 µm disks the dependence is nearly linear.

For both materials, the frequency in the axial direction is in the 150 − 200 kHz

range while the radial degrees of freedom oscillate in the 1− 10 kHz range. The axial

frequency is most strongly affected by the standing wave which is independent of the

waist. However, the radial frequencies are dominantly due to the Gaussian geometry.

To leading order (see Sec. 6.4.1), for fixed power the axial frequencies depend inversely

on the wavelength and waist ωx ∝ 1/λw0 while the radial frequencies depend on the

waist as ωy,z ∝ 1/w2
0, hence the disparity between the axial and radial frequencies.

Note that part of the waist dependence on each frequency is due to the dependence of

the laser intensity on the waist. Each frequency therefore shares a 1/w0 dependence

from the power.
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For a 2 µm radius disk at T = 300 K, these frequencies correspond to transla-

tional oscillation amplitudes of x0 ∼ 1 nm and (0, y0, z0) ∼ 20 nm. The rotational

frequencies are closer to the axial frequency and in the range 190 − 125 kHz. The

rotational frequencies differ by 20% between the two materials at the same waist.

Using the average frequency, this corresponds to angular displacements of ∼ 1 mrad.

Displacements of this size justify some of the approximations made in Sec. 6.4.1 since

r0 � w0 and sinα ≈ θz.

Also shown in Figs. 6.14 and 6.15 are the coupling coefficients (ω1, ω2). The coeffi-

cients being in the 50−200 kHz range are comparable to both the rotational and axial

frequencies. Due to the large coupling frequencies combined with the relatively large

oscillation amplitude in the radial degrees of freedom, the resulting forces/torques

due to the coupling terms have an impact on the dynamics as shown in Sec. 6.4.3.

Force and torque calculations were also performed for silica disks of radius a = 200

nm and thickness T = λ/(40n) for the two beam waists w0 = 2, 3 µm. The dimensions

are 10× smaller than the a = 2 µm, T = λ/(4n) disk. The resulting frequencies are

shown in Table 6.2. From the table, each frequency scales as ωi ∼ 1/w0 except for the

radial frequencies (ωy, ωz) ∼ 1/w2
0. This dependence on the waist is consistent with

the analytical frequencies given in Sec. 6.4.1. Also from the table, each harmonic

frequency is larger, and the coupling frequencies reduced, compared to its a = 2 µm

and T = λ/(4n) counterpart in Fig. 6.14. The dependence of each frequency on the

radius is also consistent with that found analytically in Sec. 6.4.1. The harmonic

frequencies increase as the radius decreases since the disk has greater field intensity

per volume. The coupling frequencies scale as ∼ a/w2
0 due to the electric field gradient

across the disk. This dependence provides a factor of ten between the a = 200 nm

and a = 2 µm coupling frequencies.
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Figure 6.16. Frequencies obtained for a a = 2 µm silica disk using DDA
for varying number of points that the disk was composed of relative to
the frequency obtained using 299744 points, ωi,0. The legend describes
the various frequencies for the x, y, z, θy, θz degrees of freedom as well as
the ω1, ω2 coupling frequencies. The data points along the x-axis are 4680,
15804, 37488, and 299744 points. Comparing the left and rightmost data
points in the figure shows that using 64 times more points changes the
frequencies by less than 2%.

Accuracy of the DDA

The frequencies shown in Sec. 6.4.2 were obtained through several numerical

operations such as integrations and the implementation of the DDA. One of the major

questions regarding convergence of these values is how many points (i.e. number of

discrete dipoles), N , should be used to discretize the disk. Figure 6.16 shows the

relative change of the various frequencies discussed in the previous subsections as a

function of the number of points used to compose the disk. Here, ωi,0 is the frequency

calculated using the largest number of points shown in the plot, N = 299744. The

frequency calculated using N points is ωi. The change in the frequency ωi compared

to ωi,0 points is then ∆ωi = ωi − ωi,0. The plot is shown for all of the various

frequencies discussed above using a a = 2 µm silica disk with a w0 = 2 µm waist.

Increasing the number of points by a factor of 64 from N = 4680 to N = 299744
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changes the frequency by less than 2%. On the other hand, the time complexity of

the DDA method used to calculate the scattered light from the disk scales as N lnN .

6.4.3 Dynamics

The previous two sections have illustrated that disks levitated in Gaussian stand-

ing waves experience simple harmonic motion as well as non-harmonic forces and

torques involving second order couplings. This section discusses the resulting dynam-

ics due to these forces and torques as well as the natural torques that arise in rigid

body dynamics.

Thus far the focus has been on identifying terms in the potential energy. For

translational motion the kinetic energy is trivial and leads to the equations of motion

ẍ = −ω2
xx−

(
ω2

1yθz − ω2
2zθy

)
, (6.80)

ÿ = −ω2
yy − ω2

1xθz, (6.81)

z̈ = −ω2
zz + ω2

2xθy, (6.82)

for small angle oscillations.

As was shown in Ch. 4, for a symmetric-top rigid body the rotational kinetic

energy naturally involves coupling between the α, α̇, β, and β̇ degrees of freedom.

Whether these terms are significant or not depends on the geometry. For a = 200

nm disks each non-linear coupling term is significant and must be considered. For

a = 2 µm disks, the term responsible for precession about the x axis is the largest,

but is still 10−4 times smaller than the harmonic term and is therefore negligible. The

equations of motion for a = 2 µm disks are then written as

θ̈y = −ω2
θyθy +

m

Ix
ω2

2xz, (6.83)

θ̈z = −ω2
θzθz −

m

Ix
ω2

1xy, (6.84)

γ̇ = ω3 = const, (6.85)

for small angle oscillations.
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Figure 6.17. Example trajectories of the (a) θy, (b) θz, and (c) x degrees
of freedom as well as (d) the power spectral density of the axial motion
(x) for a a = 2 µm silica disk in a w0 = 3 µm waist trap. The influence of
the second order coupling term produces several amplitude modulations
at different frequencies, but the disk remains stable. The frequencies of
modulation in the x degree of freedom can be seen in the power spectral
density. Note that the rotational amplitudes remain in the ∼ mrad range,
justifying the small angle approximation.

Figure 6.17 shows sample trajectories of the θy, θz, and x motions of a a = 2 µm

silica disk in a w0 = 3 µm waist Gaussian standing wave by simulating Eqs. (6.80)

to (6.84) at T = 300 K. The influence of the second order coupling terms are seen

to be significant for the three degrees of freedom with each trajectory containing

modulations at various frequencies. Without the couplings the oscillations would be

at the same amplitude for all times. In a gaseous environment these modulations

might be mistaken for noise in an experiment.

The bottom-rightmost plot in Fig. 6.17 shows the power spectral density (PSD) of

the x motion. The harmonic frequency ωx/2π = 163 kHz is the largest and rightmost

peak in the PSD. The other frequencies in the figure are the harmonic frequency plus

the sums and differences of the various y, z, θy, and θz frequencies. Whereas sidebands
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due to coupling typically appear symmetrically on each side of the harmonic frequency,

the frequency structure seen in Fig. 6.17 is such that all significant modes have smaller

frequency than the harmonic frequency. This is not a general feature of the coupling

term and depends on the degree of freedom that is being observed and the various

levels of degeneracy.

In their analysis of disks as gravitational wave detectors, Ref. [46] considered plane

waves to form the standing wave in which case the couplings would be absent (see

Sec. 6.4.1). A single peak in the PSD can then be used to describe a translational

degree of freedom. However, a Gaussian standing wave is needed to trap the non-

axial degrees of freedom and therefore should be considered. A concern then for the

disks ability to be a detector is the extra ’noise’ the degree of freedom being observed

for detection of the wave will have. If there is a disturbance in one of the degrees

of freedom, the degree of freedom being observed for gravitational waves will also be

disturbed to some degree that depends on the coupling.

The influence of the coupling term on each degree of freedom has two factors: the

size of the coefficients ω1 and ω2, and the level of degeneracy of the coupled degrees

of freedom. First, the ω1 and ω2 coupling coefficients are relatively large ∼ 100 kHz.

Second, strong coupling is achieved when the frequencies are nearly degenerate. Be-

cause ωx, ωθy , and ωθz are close in frequency the coupling term produces a larger

effect on these degrees of freedom. Since the radial degrees of freedom oscillate 10×

slower, the influence of the coupling term is significantly reduced, but not absent.

The question of stability is one of the most important for applications using levi-

tated nanodisks. Despite the seemingly complicated motion, simulations have shown

no evidence that this motion is unstable. The disk remains stable in the trap after

several thousand oscillations for all of the beam waists explored w0 = 2, 2.5, 3, 4 µm.

The a = 200 nm disk was found to be stable at all frequencies, even with inclusion of

the non-linear coupling terms in the rotational kinetic energy [76]. Recall from Sec.

6.4.2 the differing coefficients in Eqs. (6.71) to (6.76) as produced from the DDA
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calculations. Simulating the equations of motion with different coefficients attached

to each degree of freedom’s coupling term causes no issue for stability.

A common application in levitated optomechanics is cooling the motion of the

levitated particle in attempt to reach the ground state, or to reach lower pressures

[143]. The couplings found for the disk offer a possibility of cooling one or more

degrees of freedom sympathetically by actively cooling only one degree of freedom.

The full dynamics of cooling using the couplings is to be explored in a future work, but

we note some preliminary findings. Through simulations of the equations of motion

Eqs. (6.80) to (6.84), results show that sympathetic cooling is indeed possible. For

both radii, parametric feedback or cold damping [22, 23] is an effective method for

cooling multiple degrees of freedom. By inserting artificial numbers for the frequencies

in the simulation, two relations were found for optimal cooling. Frequencies tailored

within a few kHz of the relations ωx = ωθy ± ωz and/or ωx = ωθz ± ωy, can achieve

significant sympathetic cooling to at least the mK regime. From Fig. 6.14, a = 2 µm

silica disks are naturally in this regime. From Sec. 6.4.1, each frequency depends

on several parameters and has the possibility to be tuned to achieve optimal cooling

experimentally.

6.4.4 Conclusion

The forces and torques exerted on dielectric disks trapped in a Gaussian standing

wave were analyzed for disks of radius 2 µm with index of refraction n = 1.45 and

n = 2.0 as well as disks of radius 200 nm with n = 1.45. Calculations of the forces

and torques were conducted both analytically and under numerical simulation using

a discrete-dipole approximation method.

Similar to nanodumbbells, a nanodisk experiences restoring forces in all three

translational degrees of freedom, restoring torques in two rotational degrees of free-

dom, and has constant spin about the symmetry axis. Due to the finite geometry

of the disk, third order, ro-translational coupling terms in the potential energy are
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found to be a necessary consideration when describing the dynamics of disks. The

coupling terms are the result of an electric field gradient across the disk and depend

on the ratio of the radius to the beam waist and on the temperature.

The ro-translational coupling produces several modes of oscillation in the coupled

degrees of freedom which are evident in the power spectral density. While the restoring

forces are dominant, the coupling terms can become sizable through strong coupling,

which manifests when the coupled degrees of freedom are nearly degenerate. Despite

the couplings, simulations show no evidence that the motion is unstable, which is

of utmost importance for applications such as gravitational wave detection, force

sensing, and ground state cooling.
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7. SUMMARY AND OUTLOOK

This thesis covered a small portion of the rapidly growing field of levitated optome-

chanics and highlighted some of my published work in the field [76, 77, 92, 118, 119].

Chapter 3 discussed the well-known translational dynamics of a spherical particle

trapped in the focus of an optical tweezer. It was shown that the conservative optical

gradient force, which yields three dimensional harmonic trapping, and the dissipative

scattering force due to radiation pressure dominate the dynamics for the majority of

particles in levitated optomechanics. The modern method by which experimentalists

measure the particle motion in real-time was calculated analytically in Sec. 3.3.

In Chap. 4, the classical and quantum dynamics of a symmetric-top particle (e.g.

a nanodumbbell) in a linearly polarized laser beam were shown to describe harmonic

oscillations as well as precession about the laser polarization axis. The precession

motion is a consequence of the non-zero angular momentum about the particle’s

symmetry axis which is a conserved quantity. Necessary for feedback cooling, a

common method for measuring the orientation of the particle was also calculated in

Sec. 4.3.

Chapter 5 discussed the common sources of decoherence and noise present in an

optically levitated system with a focus on the damping and noise due to gas collisions

as well as laser shot noise. Incorporation of the effects into the particle motion can

be achieved using Langevin dynamics. Beginning from conservation of energy and

momentum, the energy delivered to a particle from laser shot-noise was found to

depend on the scattered radiation pattern as well as the incident wave’s propagation

direction. The energy in each degree of freedom increases per scattering event, but

with different proportionality constants. These proportionality constants carry over to

the average heating rate for each degree of freedom. Analytical expressions for the shot

noise heating rate were provided in the Rayleigh limit as well as numerical calculations
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for particles in the Mie regime for silica and diamond. The shot noise heating in

each degree of freedom was also computed for silica Mie particles at the focus of

strong and weakly focused Gaussian beams. For finite sized silica nanospheres, the

values of the shot noise obtained for an incident focused Gaussian beam are within

an order of magnitude of the Rayleigh expression for each degree of freedom. The

discrepancy increases as the radius of the particle and/or the numerical aperture

of the lens increases. The Rayleigh expression may serve as a good approximation

and upper bound as it is typically larger than the rates found for particles with

finite radius. The rotational shot noise due to linear, elliptical, and unpolarized light

was calculated for symmetric-top particles in the Rayleigh regime using quantum

decoherence theory. The results show the amount of heating in each degree of freedom

is different depending on the degree of ellipticity. As it is not contained within the

polarization vector, no energy is transferred to the degree of freedom associated with

motion about the particle’s symmetry axis. These results are crucial for experimental

tests of heating and noise due to fundamental noise sources such as that expected by

the continuous spontaneous localization model.

In Chap. 6 three new possible methods of cooling a particle’s motion were pre-

sented together with an analysis of an experiment that performed ro-translational

cooling on a levitated nanodumbbell. From Sec. 6.1, cooling a nanodumbbell’s libra-

tional modes completely using parametric feedback cooling is only possible if the two

librational frequencies are different with a larger separation giving a larger cooling

rate. This can be achieved by using elliptically polarized light. Cooling with lin-

ear polarization allows cooling of one precessional mode while the remaining mode

describes pure precession about the laser polarization axis.

Section 6.2 examined the experimental findings of cooling a levitated nanodumbbell’s

three translational and two rotational degrees of freedom using force feedback (cold

damping). The dynamics of the dumbbell were found to be consistent with the theo-

retical analysis found in Secs. 4.1 and 6.1. Two peaks were found in the power spectral

density while measuring each librational coordinate. As the spin about the symmetry
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axis is uncoupled to the laser, its motion is entirely Brownian due to collisions with

the surrounding gas. As the two librational coordinates are coupled through the spin

about the symmetry axis, the two peaks were observed to shift in time in accordance

with the Brownian motion of the spin.

The second theoretical cooling scheme in Sec. 6.3 explored the validity of cooling

the translational motion of a magnetic nanosphere coupled to a Doppler cooled, spin-

polarized atomic gas via the magnetic dipole-dipole interaction. The nanosphere may

experience significant cooling for > 104 atoms. The method has potential to exceed

the cooling rates of modern cooling methods yielding cooling rates ∼ 10 kHz for a

sufficient number of atoms ∼ 106. As the particle will thermalize with the atom cloud,

reaching the particle ground state is possible if an atom cooling strategy is able to

reach temperatures below the particle ground state temperature.

Lastly, in Sec. 6.4 the dynamics of dielectric disks trapped in a Gaussian standing

wave outside of the Rayleigh regime were computed. Terms in the potential energy

up to third order in the coordinates were computed both analytically and numer-

ically using a discrete dipole approximation method. While the translational and

rotational dynamics of disks are dominated by harmonic terms similar to those of a

symmetric-top particle in the Rayleigh regime, the third order terms are significant

for coupling degrees of freedom with similar harmonic frequencies, a common occur-

rence in levitated optomechanics. The third order ro-translational coupling terms

show no evidence of instability and produce multiple modes evidenced through the

power spectral density. The coupling terms offer multi-modal cooling by actively

cooling one degree of freedom and provide a platform for entanglement or quantum

state transfer.

The future outlook of the field of levito-dynamics is bright considering the swift

advancements in understanding since its fervent exploration since the year 2010. The

investigations described above are ideas that may, with careful undertaking, allow

a levitated nanoparticle to breach unknowns in physics and human understanding.

The rapid understanding of the means by which to trap and manipulate particles
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in various trap designs have advanced the field to discern effective cooling mecha-

nisms that bring a levitated particle to the quantum regime. Due to this, levitated

optomechanics is now but one branch of the broader field of of levito-dynamics af-

ter the common methods of trapping has grown from single beam tweezer traps to

ion traps, optical cavities, levitation above superconductors, or some combination of

them all. The type of particle that has dominated the literature is a silica sphere,

however birefringent vaterite spheres, non-spherical particles such as nanodumbbells,

rods, and disks, and magnetic particles have also been explored. With the diversity

of traps and types of particles available the applications and proposals are ampli-

fying each year. Some of the current avenues of research involve creating schemes

for verifying macroscopic quantum mechanics [35, 150–152], providing platforms for

ultrasensitive detection [48, 153], inventing new blueprints for cooling a particle’s

motion [109, 119, 126], or discovering exotic motions and hidden symmetries in the

dynamics governing the particle motion [154,155]. The methods by which researchers

are uncovering these possibilities is vast, but a few can be highlighted such as forcing

higher order couplings of the particle to the apparatus to be significant or finding new

couplings such as interactions with SQUIDs or atoms [36,151,152,156], creating new

potential maps through incident broadband light or metamaterials [157], making use

of unexplored regions of common potentials such as utilizing orbital angular momen-

tum [158], and looking at unique entanglements such as with other particles [35,159]

which could bridge the field with quantum information. The recent advancement of

one dimensional translational ground state cooling by coherent scattering is only the

advent for tests of fundamental physics. The research which follows will build upon

our knowledge and will underpin our understanding of that which surrounds us.
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