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ABSTRACT 

High strain dynamic response of materials is of key importance for material development. An 

attempt was made to study the local material behavior of PMMA (polymethyl methacrylate) using 

a flat nail impact. The developed experiment aims to study the local material behavior by 

measuring the local strain and deformation response, and bulk load response. The material 

behavior is studied, and the prediction is made about the local material response with machine 

learning and predictive modeling techniques using training data set from the developed micro-

scale nail impact experiment. PMMA samples were impacted with flat nails at high velocities 

using an in-house built gas gun. Sensors (force sensitivity resistors) are used to measure the 

material load response of examined samples. Digital image correlation (DIC) was used with a 

high-speed camera to record the local surface deformation and strains.  

 

The aim of this work holds to understand the wave propagation in the material and to predict the 

material behavior of the sample under the point of impact using the sensor data. Experiments and 

its data processing here were expensive in terms of time and complexity and hence concurrently, 

a FEM simulation was developed to mimic the experiment. A large amount of FEM data was 

generated to create the dataset for a low-fidelity model. The experiment (and simulation) 

parameters and the sensor data (force profile on the back surface of the sample in case of the 

simulation) are used to build the training data. The model predicts the strain profile (DIC data) of 

the sample at the point just below the impact. Composite neural-net architecture is implemented 

to model to multi-fidelity approach and comparisons were made between high-fidelity and multi-

fidelity prediction. 
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 INTRODUCTION 

Dynamic impact and dynamic properties hold very much importance in understanding the many 

phenomena, material behavior, and developing new materials. Theoretically and experimentally a 

lot of development has taken place, but still, there is a lot to discover and explore. Mechanical 

waves in solids attenuate with the distance which makes it crucial to understand the localized 

behavior, near the place of origin of the wave to predict the possibility of fracture or failure. This 

makes it important to study the localized phenomenon happening in the material.  

 

Dynamics response is characterized and differentiated based on strain rate of impact. We have 

different experimental testing methods for different strain rates as the material response drastically 

changes and require different dynamic considerations. Figure 1 shows the common testing 

methods and dynamic consideration taken based on different strain rates. 

 

 

Figure 1. Testing method classification based on strain rate. (reuse from [1] with permission) 
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This work focuses on the dynamic response (Dynamic high in Figure 1) of materials at a strain 

rate of ~104 s-1. Popular methods at this strain include the Tylor anvil test, Hopkinson bar (SHPB), 

and expanding ring test. The Hopkinson bar experiment was developed by B. Hopkinson in 1914 

[2]. Later in 1949, Kolsky modified the experiment using the Split Hopkinson Pressure Bar 

experiment (SHPB) or Kolsky Bar experiment [3]. Since then a lot of variants of SHPB have been 

developed to study a variety of materials. SHPB today is a well-known and generalized used 

method for the dynamic elastic-plastic response. Figure 2 shows the SHPB setup which consists 

of a striker bar, an incident bar, and a transmission bar, and the specimen is sandwiched between 

the latter two. The strain gauges provide the incident, reflected, and transmission waves which are 

used to calculate strain, stress, and strain rate in the material.  

 

 

Figure 2 Split Hopkinson pressure bar (SHPB) experimental setup 

 

The SHPB method assumes a planar condition of the bar-specimen interface. This is true for hard 

materials but not for soft specimens as the eigen-functions of a finite diameter bar possess high-

frequency modes which are strong functions of the boundary conditions [4]. Also, the material 

property for the specimen is a derived quantity from strain response of incident and transmission 

bars. Hence, we do not measure the properties of the material in situ. The conventional SHPB 

assumes one-dimensional stress wave propagation, stress, and strain homogeneity in the deforming 

specimen. The latter typically does not hold for high strain rate deformation of soft and/or low 

impedance materials.  
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The common testing methods at dynamic-high strain rates, like the Tylor anvil test, Hopkinson bar 

(SHPB), and expanding ring test do not capture the local material information. With the intent to 

study local material deformation and to cater to the gaps discussed about the SHPB method, we 

proposed an experimental approach to predict the material properties in situ using a dynamic 

impact test in half-space. In the experiment, the impact creates local deformation, along with wave 

propagation in the material. The idea was to use the latter to predict the former. This was contrary 

to the most traditional experiments which use uniaxial loading (deformation) to study the material 

response. The work presented in the thesis is limited to the study and measurement of local strain 

and deformation to understand the material response. Constitutive modeling is not dealt with in 

this study.  

 

This thesis is divided into four chapters. Chapter 1 presents an objective and holistic view of the 

work. Chapter 2 provides a comprehensive literature review on the dynamic impact studies done 

on half-space. It discusses the advantages and disadvantages of various developed analytical 

models. Chapter 3 presents the manuscript (under preparation) of the complete work. Chapter 3 is 

divided into 3 main sections. Section 3.2 describes the experimental techniques used in this work. 

The experimental setup and process of sample preparation developed in this work are described in 

detail. The key idea is to impact a flat projectile against the surface (half space) at a high velocity. 

DIC and sensor measurements are examined as well. Section 3.3 is a discussion of the FEM 

simulation developed to model the experiments and its comparison with the same. Section 3.4 is 

about a multi-fidelity machine learning-based approach to make predictions. A toy model of the 

complete approach is presented to demonstrate the working of multi-fidelity models. 1000 

simulations were run to generate the low-fidelity data to predict local material behavior. 
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 LITERATURE REVIEW 

In this chapter, multiple theories have been discussed which provides different perspectives to see 

the problem at hand. The key objective here is to understand the local material response in half-

space. Hence, we are interested to see how the material will deform dynamically under a flat 

impact. One approach to this problem is by understanding that how deformation occurs and how 

does wave propagation takes place during this impact. But also, this problem resembles with the 

famous Boussinesq Problem but in the dynamic domain. The expanding cavity model, though used 

often for quasi-static experiments can provide a certain insight into the material behavior. 

 

Equation of Plastic waves for uniaxial stress developed by Von Karman and Duwez [5], and Taylor 

[6] is given by (Von Karman and Duwez used Lagrangian coordinates whereas Taylor used 

Eulerian coordinates but both came up with the same result)- 

 

𝜕𝑢2

𝜕𝑡2
=  

𝑑𝜎 𝑑𝜀⁄

𝜌𝑜
 
𝜕𝑢2

𝜕𝑥2
  

and 𝑉𝑝 = (
𝑑𝜎 𝑑𝜀⁄

𝜌𝑜
 )

1

2
  

 

in which u is the uniaxial plastic deformation, 𝜎 and 𝜀 represent the stress and the strain in the 

material, 𝜌𝑜 is the initial density of the material and Vp is the velocity of the plastic wave. We see 

that the velocity of the wave depends on the slope of the stress, strain curve. As the slope is 

maximum in the elastic region given by the young’s modulus, the elastic wave has a higher velocity 

than plastic waves as shown in Figure 3. When the impact happens both elastic and plastic waves 

are produced. The former travel faster due to high velocity. As time progresses the plastic velocity 

decreases with decreasing work-hardening rate, there is a tendency for the front of the wave to 

spread out, or disperse. The attenuation also takes place as the wave moves due to loss of energy, 

which plays a very important role in the case of half-space is discussed in this study. 
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Figure 3. Elastic v/s plastic waves in uniaxial stress (reuse from [7] with permission) 

 

Boussinesq Problem as shown in Figure 4 deals with the study of the elastic state in a linearly 

elastic isotropic half-space when subject to a concentrated load applied on the boundary surface 

and perpendicular to it [8, 9]. This is one among the most studied problem which led to the 

development of multiple great theories. 

 

Figure 4. Boussinesq Problem 

 

Sneddon provided a solution to the axisymmetric Boussinesq problem using the Hankel transforms 

and the theory of dual integral equations [10]. The boundary conditions used were-  

𝜎𝑟𝑧(𝑟, 0) = 0, 



 

 

16 

𝑢𝑧(𝑟, 0) = 𝐷 − 𝑓 (
𝑟

𝑎
) ,   0 ≤ 𝑟 ≤ 𝑎 

𝜎𝑧𝑧(𝑟, 0) = 0, 𝑟 > 𝑎    

where a is the radius of the circle of contact, function 𝑓 is referred to the tip as origin, the equation 

of the punch. D is the depth to which the tip penetrates in the elastic half-space. 

 

He approximated the deformation in r (polar) and z (depth) directions using the weighted sum of 

an infinite number of Bessel functions of the first kind. The solution is highly simplified for the 

case of a flat-ended cylindrical punch and is presented here. The total load required to produce a 

penetration D was given by- 

𝑃 =  
4𝜇𝑎𝐷

1 − 𝜑
 

in which 𝜑 is the Poisson ratio and 𝜇 is the rigidity modulus of the material of the half-space.  

The pressure distribution under the punch was given by- 

𝜎𝑧𝑧(𝑟, 0) =  − 
2𝜇𝐷

𝜋(1 − 𝜑)
 (𝑎2 − 𝑟2)−

1
2,   0 ≤ 𝑟 < 𝑎 

 

and the shape of the deformed boundary obtained was- 

𝑢𝑧(𝑟, 0) =  
2𝐷

𝜋
𝑠𝑖𝑛−1 (

𝑎

𝑟
) ,   𝑟 > 𝑎  

 

One of the interesting applications of this solution was to determine the viscoelastic properties of 

materials by constructing the indentation load–depth relation for a cylindrical flat punch indenting 

into an elastic or linearly viscoelastic layer bonded to a rigid substrate [11, 12]. Analytical and 

simulation studies have been done to evaluate the dynamic stress in elastic half-space. These 

models extend the solutions to the Boussinesq problem to dynamic loads with a harmonic variation 

in time [13, 14].  

 

Another point of view to understand the local response is given by the expanding cavity model 

(ECM). Expanding cavity models were developed by Marsh [15], Hirst and Howse [16], Johnson 

[17], using Hill’s [18] solution for the quasi-static expansion of an internally pressurized spherical 

shell. These models were developed for elastic–perfectly plastic material. The model of 
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indentation was idealized with a hemispherical (or a semi-cylindrical) core, followed by an elastic-

plastic zone. The basic idea was that the hydrostatic pressure in the core must equal the radial 

component of stress in the external zone at r = a and it was assumed that the volume of the material 

displaced by the indenter is accommodated by the radial expansion of the hemispherical core. 

 

Various studies have been done to implement ECM models for dynamics impacts and projectile 

penetrations [19-21]. These models were developed on Hill’s work [18]. Chadwick gave the quasi-

static expansion model for spherical cavities for elastic-rigid plastic materials [22]. Hopkins [23] 

came up with a method for ductile metal to calculate pressure for the dynamic expansion of a 

cavity. His assumptions included the incompressible elastic response of target materials via 

Hooke’s law and Tresca yield criteria for yielding. His work was built on Bishop’s work [24], in 

which he incorporated both the material strength and the inertial resistance of the target in his 

work. Interestingly Chadwick and Hopkins both produced similar results, with the latter being a 

special case of the former. McDowell [25] and Goodier [26] developed the governing equations 

for dynamic cavity expansion models further developing on Hopkins and Hill’s work.  
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Abstract 

With the advancement in machine learning and predictive modeling techniques, an attempt is made 

to study the localized material response using a high throughput small-scale experimental data. A 

flat nail-impact experiment has been developed to impact flat bars on PMMA samples at high 

velocities. Sensors are used to measure the force at the back surface of examined samples as a 

function of impact velocity, nail and sample dimensions, and position of impact. Digital image 

correlation (DIC) is used with a high-speed camera to record surface deformation and strains. 

Force profiles from sensors and experiment parameters are used to develop a correlative machine 

learning approach to predict the local elastic strain response just below the impact. Low-fidelity 

simulation data was added to the high-fidelity experimental data to improve accuracy through the 

approach of multi-fidelity analysis. Composite deep neural network architecture is employed using 

a multi-fidelity model in this work that aims to model the strain profile, using the sensor profile 

from nail-impact experiments as input features. 

 

Keywords: Dynamic Impact, Machine Learning, DIC, Multi-Fidelity  

 

 

 

  

mailto:tomar@purdue.edu


 

 

19 

3.1 Introduction  

The understanding of local material response is of immense importance for the study of ballistic 

impacts and inhomogeneous microstructures. The current study aims to understand the wave 

propagation in half-space and to capture the localized material response, limited to strain and 

deformation history, under a flat nail impact. The objective was to predict the localized material 

response, given we know the force response at the back surface of the material. The development 

in the field of data science and machine learning in the past decade has made it possible to model 

complex relations to make accurate predictions. The analytical study of 1D wave propagation 

(elastic and plastic) is relatively simple. The complexity increases with higher dimensions and 

practical boundary conditions. A possible solution to model these complex relations could be that 

instead of developing empirical formulation from theory and then comparing it with experimental 

results, why not use the experimental directly to formulate the theory. A data-driven approach can 

provide accurate models and has been used for modeling many physical phenomena. This work 

leverages the potential of machine learning to predicts the localized material behavior under the 

impact. The time cost and complexity of the experiments make it difficult to generate a huge 

dataset, on the contrary, most machine learning and neural nets need a good amount of data to 

learn the complex functions. To tackle this problem the multi-fidelity approach was implemented. 

The dataset from simulations was used as low fidelity data to model the multi-fidelity deep neural 

net. 

3.2 Nail Impact Experiment  

3.2.1 Experimental Setup 

An in-house table-top gas gun setup was developed which uses a 100 PSI air compressor to launch 

the flat nails at high velocity. The impact system, as shown in Figure 5, uses a set of telescopic 

tubes (brass) with a decreasing radius performing the functionality of a nozzle and barrel and 

provides high impact velocity. Figure 6 shows the schematic of the complete experimental setup. 

The air compressor was connected to the impact system through a solenoid valve which is 

controlled by a relay switch. 
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Figure 5. Impact System 

 

 

Figure 6. Schematic of the complete experimental setup  

 

LabView was used as a central trigger to perform the experiment. Once the code on LabView is 

run, it triggers the DAQ (NI USB-6001 - National Instruments) which in turn triggers the relay 

and delay generator. The delay generator triggers the camera and the oscilloscope after a certain 
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delay to capture the impact data. The sample was placed on a moving stage with a fixed boundary 

condition on the back surface, providing it two degrees of freedom. The PMMA sample was not 

in direct contact with the stage instead, it was attached to the sensors which are placed on the stage 

using a strong adhesive. The sensors used in this experiment are force-sensitive resistors (FSRs). 

The experimental data includes- 

• Change in strain (deformation) on the surface of the sample with time and distance: This 

was achieved using DIC with speckle coating on the sample. Section 3.2.3 discusses DIC 

calibration, experiment, and results. 

• The velocity of nail impact: This velocity was calibrated based on the pressure value set 

on the compressor. This is because during the impact, the camera was set to capture the 

event at 900K frames per second and at this FPS, the resolution decreases to 128×58 pixels 

with each pixel of size 37.6×37.6 µm2. Such low resolution drastically reduces the accuracy 

of the velocity measurement during the impact of the camera. 

• The average load response (Force) at the back surface of the sample: The sensor shows a 

change in resistance based on the force applied to provide a loading range from 1N to 200N 

with a rise time lower than 3 microseconds. Further details on sensor calibrations are 

discussed in section 3.2.4. 

3.2.2 Sample Preparation 

The primary material of study here was PMMA. PMMA (Poly (methyl methacrylate)) is a 

colorless polymer with a glass transition temperature range of 1000C to 1300C, and a density of 

1.20 g/cm3 at room temperature [27].  PMMA has good optical properties (transparent) and a high 

Young’s Modulus. It is one of the hardest thermoplastics with high scratch resistance. It has wide 

applications that range from optical, pneumatic actuation, sensor, analytical separation and, 

biomedical applications [28-30]. PMMA has been used as one of the standard materials for the 

study of viscoelastic materials. 

  

PMMA sheets of 3 mm thickness were procured from McMaster-Carr. These samples were cut 

and smoothened to a typical dimension of around 8 × 6 mm. Further, PDMS was coated over the 

samples using a spin coater as shown in Figure 7. The samples were masked using tape before 

PDMS coating, all around except the top surface to keep the other surfaces intact. After coating, 
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Copper oxide (CuO) particles (325 mesh) was sprayed using an air spray gun by creating a particle 

cloud in a long vertical closed column. A repeated coating was performed by constantly checking 

the speckle quality under a microscope. The samples were kept at room temperature for 24 hours 

for PDMS to cure. Figure 8 shows the microscope images of the sample surface before PDMS 

coating, after speckle particle deposition, and after curing. 

 

 

Figure 7. Sample preparation method 

 

   

  (a)     (b)     (c) 

Figure 8. Sample surface (a) Clear surface before PDMS coating (b) Surface after particle 

deposition before curing (c) Surface after curing 

 

Various micro-particles were experimented with for speckle patterns before deciding CuO and the 

mesh size. Due to the very high FPS (900K), the resolution of the images was 128×58 pixels with 

each pixel size of 37.6×37.6 µm2. Also, as the impacting nail is small relative to the sample, we 

do not see large deformation. The speckle was selected based on its sensitivity to capture low 

strains. If the particle size selected was smaller than 30 µm, the pixel would average the intensity 

value making it hard to track the particles. Particle size greater than 75 µm did not provide enough 

sensitivity to measure low strains in this experiment. For speckle particles, Iron oxide, Aluminum 
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oxide, and copper oxide were tested. The copper oxide was finally used for its better grayscale 

distribution. 

3.2.3 Digital Image Correlation 

Digital Image Correlation (DIC) is an optical non-contact technique used to measure the 

deformations and strain in material [31]. It has been used for a wide range of measurements ranging 

from failure studies, crack detection, wave propagation studies, and mechanobiology [32-35]. DIC 

is one of the popular imaging techniques for dynamic studies to measure surface deformations and 

strains in 2D and 3D samples. 

 

Here DIC was implemented to measure the local strain response of the material. To capture the 

impact, a Photron FASTCAM SA-Z camera was used at 900K frames per second. The image 

resolution for frames is 128×58 pixels, with a shutter speed of 1/2880000 second. A 150W fiber 

optic lamphouse is used as a light source, which is placed directly across the sample as shown in 

Figure 6. Good speckle quality is of key importance to get good DIC data. Copper oxide particles 

(325 mesh) are used to obtain the speckle pattern. Figure 9 shows the sample surface on-camera 

frame and the corresponding grayscale distribution. 

 

  

(a)         (b) 

Figure 9. (a) Camera view of the sample surface (b) Gray scale distribution 
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Vic-2D software (Correlated Solution Inc.) was used to post-process the images after acquiring 

the images in situ to calculate deformations and strains. The subset size of 90×35 pixels was used 

as AOI for DIC postprocessing. Due to the low number of pixels a subset size of 9 and a step size 

of 1 was used for the analysis. Gaussian weights were used for the subjects with the normalized 

squared difference as correlation criterion with loss pass filter. An optimized 8-tap interpolation 

and linear shape functions were used for the analysis. The strain field was calculated using 

Gaussian filtering with a filter size of 9 data points. No temporal smoothing was used for the 

analysis. 

 

The results discussed here were for the nail impact experiment achieved with an impact velocity 

of 32m/s. The deformation and strain profiles are shown in Figure 10 and Figure 11. The maximum 

deformation observed here was around 30 microns. An expanding wave was observed, and the 

accumulation of strain took place below the nail impact. This can be explained by the fixed 

boundary condition at the back surface of the sample in this experimental setup.  

 

 

Figure 10. Distribution of deformation (uxx) over the entire field of view - DIC 
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Figure 11. Distribution of strain (εxx) over the entire field of view - DIC 

 

The plots for variation of strain with time and position are shown in Figure 12. A localized 

compression was observed at a distance of 0.8mm from the free surface. The maximum strain 

observed at this point in this experiment was −0.0288. Based on the strain v/s time plot, the 

temporal evolution of strain for this point (Figure 13), we see that the maximum strain rate 

observed here was 1.19 × 104 𝑠𝑒𝑐−1 which varies with time. Further these curves are compared 

with FEM simulations in section 3.3. 
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(a) 

 

(b) 

Figure 12. Variation of strain (εxx) with time and position - DIC 

 

Figure 13. Temporal evolution of strain (εxx) at the point of local compression- DIC 
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3.2.4 Sensor Load Profile 

The sensors used in this experiment were force-sensitive resistors (FSR UX 400), obtained from 

Interlink Electronics. The sensor comprises of a conductive layer, spacer, and FSR layer. When 

force is applied, the distance between the conductive layer and the FSR layer decreases 

compressing the spacer which leads to a change in resistance across the sensor. The sensor works 

as a variable resistor whose resistance varies from 1MΩ to ~5000Ω as a function of the force 

applied. To use the sensor, a 10KΩ resistor was placed in parallel, with the sensor behaving as a 

potential divider. The voltage was measured across a 10KΩ resistor using a Tektronix oscilloscope 

with a high impedance buffer amplifier. The sensor was calibrated using a mechanical loading 

stage from Deben UK Ltd. For calibration, the load was applied using a flat punch, varying from 

0-200N as shown in Figure 14.  

 

  

   (a)      (b) 

Figure 14. (a) Sensor calibration setup (b) Voltage v/s Load calibration curve for sensor 

 

The sensor was attached to the sample and the moving stage using a strong adhesive. A typical 

voltage reading observed on the oscilloscope is shown in Figure 15(a). The signal was further 

processed using a signal processing library to cut off the noise of 0.5MHz and above. The filtered 

signal is shown in Figure 15(b). Here we had to obtain the force observed at the back surface of 

the sample from the voltage reading. For this, the calibration curve (Figure 14 (b)) was inverted. 
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For all our experiments, the region of interest was from 0 to 1V. As shown in Figure 16, the relation 

between the voltage and load for our region of interest can be approximated linearly. Hence a 

factor of 16.5 was used to perform the transformation between the two parameters. The response 

is also inverted to show the compressive nature of the force. After transforming the typical curve 

shown in Figure 15(b), the load response obtained is presented in Figure 17. We observe that the 

loading trough lasts for 30 milliseconds.  

 

  

   (a)       (b) 

Figure 15. (a) Sample reading from sensor (b) with low pass filter of 0.5MHz  

 

 

Figure 16. Linearly approximating the relation between force and voltage 
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Figure 17. Sample load profile obtained using sensor   

 

At high velocities, an interesting phenomenon was observed. As shown in Figure 18, we see two 

peaks in the load profile. A minute trough can also be observed in Figure 17. This is because of 

the elastic-plastic behavior of PMMA around the point of impact.  

 

 

Figure 18. Load response under high-speed impact (Compressive force is considered as positive 

here) 

 

To understand these peaks, we will use the concept of a weak shock wave. Grady [36] showed the 

realistic weak shock wave response looks like Figure 19. Initially, there is a steep rise in pressure 

after the Hugoniot Elastic Limit (HEL) is reached. After which there is a continuous rise in 

pressure which is governed by the constitutive behavior of the material. Following which there a 
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phase transition zone (if applicable) followed by a stable shock wave. The unloading starts 

elastically followed by plastically. The velocity (stress is a quadratic function of velocity but has 

a similar profile) for a weak shock wave is shown in Figure 19 (adapted from Grady [36]). 

 

 

Figure 19. Velocity profile for a weak shock wave 

 

Now in our case, a plastic wave is generated but it decays down very quickly. This can be observed 

on a clear sample after the impact, as the plastic wave changes the density which in turn changes 

the refractive index of PMMA. This property of the material is known as birefringence. 

Birefringence on PMMA has been extensively studied by past researchers but mostly for uniform 

compression case [37-40]. Figure 20 shows the change in the refractive index with plastic strain 

in this experiment. The depth of the plastic wave observed was ~0.1mm 

 

 

Figure 20. Change in the refractive index of PMMA with density 
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The first peak observed in Figure 18 shows the pure elastic wave reaching the sample. On the 

contrary, the second peak denotes a wave that started as a weak shock wave (plastic) but attenuated 

during the propagation in the sample. This also justifies the increased intensity of the second wave 

as compared to another. This difference becomes less at lower velocities where the two get merged 

and we observe a single wave. Further work is required to explore this behavior in detail. Another 

possible explanation that can be given [41] is that during this time, the impact force is mostly 

consumed in accelerating the specimen, rather than deforming it. The total impact force drops due 

to the reversion of the stress wave in the specimen. The impact force reaches a local minimum and 

then continues to build up again upon the second reverberation of the stress wave. This possibility 

was ruled out based on the load response observed on Quartz, where one single peak was observed 

at all velocities. Quarts is a highly brittle material with very high strength. Quarts typically 

fractures before undergoing any plastic deformation and no such failure was observed in the 

experiment.   

3.3 FEM Modeling 

A finite element simulation was carried out to model the impact experiment. This was developed 

in ABAQUS Explicit and calibrated by comparing the experimental values. The sample of 

dimension 8.0 × 6.0 × 3.0 mm with material properties of PMMS and a flat cylindrical nail of 

0.8mm diameter and 2.0 mm length with material properties of brass was used in this simulation, 

which was the same as used in the experiments. The material properties of PMMA and Brass are 

provided in Table 1 and Table 2. The flat nail with a predefined velocity of 32m/s was impacted 

at the center of the sample, with 0.1mm distance from the edge as shown in Figure 21. The back 

surface of the samples was constrained to zero deformation in the x-direction.  

 

Table 1. Material properties of PMMA 

Young’s Modulus 2855 MPa 

Poisson’s Ratio 0.36 

Density 1190.24 kg/m3 

Compressive Yield Strength 102 MPa 
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Table 2. Material properties of Brass 

Young’s Modulus 110.316 GPa 

Poisson’s Ratio 0.318 

Density 8525.41 kg/m3 

 

 

Figure 21. FEM Model of experiment 

 

PMMA samples are modeled using C3D8R elements (8-node linear brick with reduced integration 

and hourglass control). The convergence of the model was checked using the maximum strain 

energy with an increasing number of elements. Figure 22 shows the convergence plot where the 

change in strain energy was not significant above 20 thousand elements. Therefore, around 20 

thousand elements were used for this study. This strain profile was what we will be predicting and 

was the main value of interest for us and hence strain energy was used as the convergence 

parameter. 
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Figure 22. Convergence plot for FEM model (Strain energy (N-m) vs Number of elements) 

3.3.1 Comparing Simulation with DIC Data 

The variation of strain with position along the depth was studied at various timings across the 

simulation. Elements on the surface along the axis of impact were used for this study as shown in 

Figure 23 for studying the surface deformation, similar to the DIC measurements done in section 

3.2.3. Figure 24 shows the strain (εxx) in different positions and at different time steps. We see that 

localized compression took place at a distance of 0.5 mm from the impact plane. A similar 

observation was made in DIC results (refer to Figure 11). These elements (0.5 mm from the impact 

plane along the axis) will be used further to compare with DIC results. The strain (εxx) increases 

at compression point till 6 micro-seconds and after which the material relaxes.  

 

   

   (a)     (b) 

Figure 23. Elements considered to the study the variation of strain with position and time (a) 

Isometric view (b) Side view 
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(a) 

 

(b) 

Figure 24. Variation of strain (εxx) with position and time 

 

The DIC data and the simulation results are compared in Figure 25. For this comparison in 

simulation, the average strain of 6 elements was taken as shown in Figure 26. The simulation and 

DIC results match well. We see that the simulation underpredicts the maximum compressive strain, 

but the difference is reasonable because of model simplification.  
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Figure 25. Comparing simulation and DIC results 

 

 

Figure 26. Elements considered for comparing results with DIC 

3.3.2 Comparing Simulation with Sensor Data 

For comparing the load profile measured by the sensor, the average force on the elements was at 

the back surface of the sample was calculated. Figure 27 shows the elements considered and for 

the comparison and the combined stress profile of all the elements. Figure 28 shows the average 

load response for the sample. Force profiles of elements considered vary a lot, and the uniform 

average was expected to just provide an approximate profile.  
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  (a)       (b) 

Figure 27. (a) Elements considered to measure load response (b) Combined load profile  

 

 

Figure 28. Average load profile at the back surface of the sample from simulations 

 

The sensor reading and simulation data are compared in Figure 29. Note that the axes of the two 

plots are on a different scale. We observe the following- 

• The duration of the load profile for simulation is 10 micro-seconds as compared to the 

sensor profile which is 30 microseconds. The rising time of the sensor presented in the 

datasheet is less than 3 micro-seconds. The time-sensitivity of the sensor lead to a lag in 

load measurement and most likely it relaxed the stress wave.  

• The simulation highly underpredicts the force value (-0.76 N as compared to -4.2 N). One 

of the possible reasons is because of the force created by the air pressure at the back of 

the impacted nail in the experiment. To maximize the impact strength and to ensure a flat 
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impact of the nail, the sample is placed close enough to the impact system, so that nail 

does not do the free projectile motion. Hence it is not just the velocity but also the air 

pressure which creates this impact. Modeling the airflow is complex and is considered for 

future work. 

 

  

   (a)       (b) 

Figure 29. Comparison of load response from (a) simulations with (b) sensor data (Note that the 

axes of the two plots are on a different scale) 

 

These discrepancies in the data were expected as our simulation models the sample material 

response and not of sample-sensor pair. As discussed in section 3.2.4, the compression of the 

spacer creates a change in resistance in the sensor corresponding to the force applied. Hence, the 

boundary condition of the sample was not completely rigid. On the contrary, the simulation 

assumes a perfectly rigid boundary. Despite this, these simulations give a good correlation between 

the load profile at the back of the sample and local strain response below the nail impact, which 

was used to create a low fidelity model of the experiment. Modeling sensor into the simulation 

will increase the accuracy of the simulated data and was considered as future work.  

3.4 Multi-Fidelity ML model 

A data-driven approach was used here to model the impact experiment. Given the sensor data, the 

prediction was made on the material response under the nail impact. The material response 

included how local stress and strain change with time during the impact, and not its material 
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properties. The work tried to study the decay in stress wave as a function of length and dimensions 

of the sample, nail velocity, and point of impact. 

 

Fidelity refers to the reliability of the data. It is the degree to which a model or simulation 

reproduces real-world behavior. High-fidelity models are the behavior of the system with a high 

level of accuracy (concerning the application intended). These models are usually expensive in 

terms of cost, time, and complexity. Low-fidelity models on the contrary are an approximation to 

real-world relation or function. These models cheaper and less accurate hence can be generated in 

abundance. In this work, the experiments are the high-fidelity models (HFMs) and are assumed to 

show the true material response. The FEM simulations performed are a simplified approximation 

of the experiments providing the low-fidelity relation. (Figure 30) 

 

   

   (a)      (b) 

Figure 30. (a) Experimental v/s (b) Simulation model 

 

Multi-fidelity modeling provides efficient and effective use of low fidelity data by leveraging the 

relationship between the low- and high-fidelity data. We exploit the relationships between different 

fidelities to combinedly estimate the objective function of the true relation to improving the 

performance. The high-fidelity data are the few experimental measurements, which are hard to 

obtain. These are combined with synthetic data obtained from the computational model. These 

computation models are called surrogate models (SM). Multi-fidelity modeling can also be done 

without surrogate modeling by using an adaptive sampling approach [42]. The hypothesis here is 

that the low-fidelity data supplies high approximation trends for high-fidelity data. Various models 

have developed in the literature to explore the concept of multi-fidelity modeling. A few such 

implementations include-  
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• Response surface models [43, 44] 

• Polynomial chaos expansion [45, 46] 

• Gaussian process regression (GPR) [47-50] 

• Artificial neural networks [51]  

• Moving least squares 

 

Here the multi-fidelity approach was applied using artificial neural networks. The neural networks 

were stacked one after another with each NN models corresponding to one fidelity. Now each 

fidelity was fed with both the original input and output from the previous fidelity. Each NN was 

trained with its fidelity data and output results of previous NNs.  

3.4.1 Toy Model 

To understand the working of the multi-fidelity model, a toy model is demonstrated here. We wish 

to model the one dimensional, sin(x) function using the approach of multi-fidelity models. First, 

we directly try to model the function (HFM). For this, we generated 20 random values of x ϵ [0,6], 

which are the inputs to our HFM. The function we want to predict here is sin(x). A NN was 

developed using 3 hidden layers each with 10 neurons each. Mean square error was taken as loss 

criteria with no other regularization term. All the specifications used for training the NN are 

provided in Table 3.   

 

  Table 3. Specification of HFM (Toy Model) 

#Input (Features) 1 (x) 

#Output (Target) 1 (sin(x)) 

Number of Samples 20 

Hidden Layers [10, 10, 10] 

Learning Rate 0.001 

Optimizer Adam 

Error Loss MSE (Mean square error) 

Epochs run 100 
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Figure 31(a) shows the training loss curve of the learned NN. The MSE decreases with epochs, 

stabilizing at around 65 iterations. Figure 31(b) shows the prediction made by the neural network 

with high fidelity data. The NN was able to understand a very generic trend but providing very 

poor performance. 

 

 

   (a)       (b) 

Figure 31. Toy model using only high-fidelity data (a) Loss curve (b) Prediction made 

 

Now using the same high-fidelity data, we tried to improve the accuracy of the prediction by using 

the low-fidelity model. We know that the Tylor series expansion of sin(x) is given as- 

sin(𝑥)        =  ∑(−1)(𝑛−1)  
𝑥2𝑛−1

(2𝑛 − 1)!

∞

𝑛=1

 

= 𝑥 −  
𝑥3

3!
+  

𝑥5

5!
−  

𝑥7

7!
+

𝑥9

9!
− ⋯ 

 

To generate low-fidelity data we try to approximate sin(x) using the first 4 terms of its Tylor 

expansion- 

𝐹(𝑥) = 𝑥 −  
𝑥3

3!
+  

𝑥5

5!
−  

𝑥7

7!
 

We generated 100 random values of x ϵ [0,6], and calculated 100 corresponding target values using 

F(x). Low fidelity data is cheap and hence usually present in abundance. A NN was developed 

using the specifications mentioned in Table 4. Figure 32 shows the prediction made by low fidelity 

data. The prediction is not compared with sin(x) as the values way off and much beyond -1. F(x) 
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over here just works as an intermediatory approximation and its original value is not of much 

importance to us. 

 

Table 4. Specifications of LFM (Toy Model) 

Input (Features) 1 (x) 

Output (Target) 1 (F(x)) 

Number of Samples 100 

Hidden Layers [10, 10, 10] 

Learning Rate 0.001 

Optimizer Adam 

Error Loss MSE (Mean square error) 

Epochs run 100 

 

  

      (a)       (b) 

Figure 32. (a) Loss curve for LFM (b) Prediction made using low-fidelity data (Toy model) 

 

The multi-fidelity model takes leverage of the low-fidelity data by trying to co-relate the high and 

low-fidelity models. The multi-fidelity model was implemented using the NN architecture 

presented in Figure 33. The NN1 represents the low-fidelity NN (already trained using the low-

fidelity data) with specifications mentioned in Table 4. The NN2 takes two inputs, one as original 

input from-high fidelity data and the other as the output of NN1. The specification of NN2 is 

presented in Table 5. Note that here we are using high-fidelity data. The NN2 architecture is further 

simplified to 2 hidden layers with 10 neurons each. 
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Figure 33. Neural network architecture for the multi-fidelity model (Toy Model) 

 

Table 5. Specification of NN2 in the multi-fidelity model (Toy model) 

#Input (Features) 2 ([ �̂�(𝑥) , 𝑥 ]) 

#Output (Target) 1 (sin(x)) 

Number of Samples 20 

Hidden Layers [10, 10] 

Learning Rate 0.001 

Optimizer Adam 

Error Loss MSE (Mean square error) 

Epochs run 50 

 

The resulting prediction of the multi-fidelity model is shown in Figure 34. We observe drastic 

improvements in the accuracy of the prediction made. The prediction based on high-fidelity data 

alone only provides a generic, highly simplified trend of the actual function. On the contrary, the 

multi-fidelity model was able to reasonably approximate a highly non-linear function with as low 

as 20 points. Note that number of hidden layers, and the number of neurons used for each layer 

has a strong effect on the performance of the neural networks [52, 53]. In this toy model, the 

neurons in hidden layers are kept constants for a proper comparison and understanding. The toy 

model shows the potential of a multi-fidelity model to predict complex function using few high-

fidelity data. 
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          (a)       (b) 

Figure 34. (a) Prediction made using high-fidelity alone (b) Prediction made using multi-fidelity 

model 

3.4.2 Generating Dataset 

For experimental data, 30 experiments were performed with different samples, different nails, and 

nail velocity from 20-45 m/s. The position of impact was also varied to obtain versatile data. The 

data was processed similarly as explained in session 3.2.3 and 3.2.4. The sensor data was uniformly 

sampled to 201 points, and the DIC data was taken directly for 21 timesteps during the impact. As 

each experiment requires its processing and because of the uncertainty of the time of impact with 

respect to the time the solenoid was triggered, the data is expensive in terms of time and 

complexity. 

 

Table 6. Input variable to generate the low-fidelity dataset 

Input Parameters Range 

Depth of Sample 6 – 10 mm 

Length of Sample 3 – 7 mm 

Length of Nail 1 – 2 mm (4.1 – 8.2 µg) 

Velocity of Nail 20 – 60 m/s 

Point of Impact Between the center and the bottom edge 

 

The low-fidelity data was acquired by performing FEM simulations. The same boundary 

conditions were used for these models as discussed in section 3.3. To create the dataset, 5 
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parameters were changed at random which include the length of the sample, depth of the sample, 

length of the nail, velocity of the nail, and point of impact. The range used for these variables is 

provided in Table 6. Figure 35 shows a few models developed at random. 

 

 

Figure 35. Different simulations generated 

 

The data set was generated using Abaqus scripting. Scripting is a powerful tool provide by Abaqus 

to generate the input files and to run the simulations [ABAQUS 6.14 Scripting user’s guide]. A 

python script was generated with all the variable parameters mentioned above to produce 1000 

input files. The input files were run on the cluster and two other scripts were used to post-process 

the output odb files and to generate the features and target values for the ML model respectively. 

The complete flowchart of the data generation is presented in Figure 36. 

 

Getting the local strain values from the simulation was a little challenging as the complete models 

get generated at random. For this, all the FEM model was implemented with constant mesh size in 

such a way, that the nail center always lies in front of the middle of the sample element. The 

meshing order was calculated using the sample dimensions and point of impact information was 

used to obtain the exact elements which need to be considered to calculate the local strain response. 

An example of the process is shown in Figure 37. The same method was used to obtain the average 
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local strain and load response as described in section 3.3. Both the response profiles were 

uniformly sampled to get a vector of dimension [201] each. 

 

 

Figure 36. Flowchart for generating the low-fidelity dataset 

 

 

Figure 37. Elements considered for local response measurement while generating data 

3.4.3 Low-Fidelity Model  

LFM was implemented using the simulation dataset. The dataset had 1000 samples, out of which 

800 were used for training the model and 200 for validation. The features and targets have a 

dimension of [1,201] each, corresponding to the uniform sampling done on load and strain profile 

throughout 20 micro-seconds. A fully connected NN was developed with 3 hidden layers of 400, 
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300, and 300 neurons, respectively. All the specifications of the NN are mention in Table 7. The 

activation function used here is leaky ReLU. Figure 38 shows the difference between ReLU and 

leaky ReLU activations. The choice was based on the type of output data which comprises both 

negative and positive values and is of much less magnitude than 1.  

 

Table 7. Specifications of LFM 

#Input dim. (Features) 201 

#Output dim. (Target) 201 

Training Samples 800 

Validation Samples 200 

Hidden Layers [400, 300, 300] 

Learning Rate 0.0015 

Optimizer Adam 

Error Loss MSE (Mean square error) 

Epochs run 150 

 

 

Figure 38. Activation function: ReLU v/s Leaky ReLU 

 

The learning of the neural network can be observed in Figure 39. The loss function decreases with 

the number of epochs. We see that the validation loss also consistently decreases showing no 

overfitting. Figure 40 shows a few output samples and predicted values. The prediction gives very 

good results for our application. 
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Figure 39. Loss curve for the low-fidelity model 

 

 

Figure 40. Sample predictions by the low-fidelity model  

3.4.4 Multi-Fidelity Model 

The NN architecture implemented for multi-fidelity modeling was the same as that of the toy 

model discussed above. The original input and output of the low-fidelity model (pre-trained with 
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low-fidelity data) were used as input features for the second neural network (NN2). This made the 

input dimension double as that of HFM. The specifications of NN2 for this model are present in  

 

Table 8. A total of 30 samples were obtained from experiments, out of which 20 were used for 

training and 10 for validation. Figure 41 shows the training and validation curves of the multi-

fidelity model and the high-fidelity model without any low-fidelity data. 

 

Table 8. Specification for NN2 of MFM 

#Input dim. (Features) 402 

#Output dim. (Target) 21 

Training Samples 20 

Validation Samples 10 

Hidden Layers [500, 500, 150] 

Learning Rate 0.0011 

Optimizer Adam 

Error Loss MSE (Mean square error) 

Epochs run 50 

 

 

       (a)       (b) 

Figure 41. Loss curves for (a) High-fidelity model (b) Multi-fidelity model 

 

The multi-fidelity model much performs better than the high-fidelity model. The difference in the 

MSE loss between the two models is 0.0004, giving an average of 57.14% improvement in the 
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accuracy over the high-fidelity model. Figure 42 shows the comparison of predicted and actual 

strain for a few experiments. The prediction gives very good performance for lower strains and 

deviates a little from the original response at higher strains. A few deviations in the results were 

expected because of the sensitivity of the DIC and experimental error. Uncertainty quantification 

on the experiment could be done and those can be accounted for in the modeling via Gaussian 

process regression which was considered for future work in this study.  

 

 

Figure 42. Measured v/s predict strain by MFM 

 

3.5 Conclusion 

During a flat nail impact on PMMA, localized compression was observed. This work aimed to 

predict the local response of a material using the load response observed at the back of the sample. 

The local response of the material was measured using DIC (Direct image correlation) to capture 

the deformation and strain spatially and temporally. The load response of the system was obtained 

using an FSR. The load response at low velocity followed the intuitive trend, but at higher 
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velocities, two peaks were observed. This behavior was attributed to the elastic-plastic response 

of the material under the impact point. The results from both the systems (DIC and sensors) were 

analyzed and compared with the simulation results. As the experiments are expensive and do not 

provide enough datasets for data-driven modeling, simulations were used to generate low-fidelity 

data. Multi-fidelity models leverage the existence of low-fidelity data in abundance and exploit 

the relationship between the low-fidelity and high-fidelity models. This relation was assumed to 

be much simpler than the original objective function that we want to find. MFM approach was 

implemented through neural networks to make the prediction. The MFM performed very well 

giving an average of 57.14% increase in performance over the high-fidelity model. 
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 FUTURE WORK 

The present approach provides a way to study the material response with a non-uniaxial 

experimental method and using data-driven modeling. As discussed in the introduction, the final 

aim is to use a half-space problem to predict the elastic-plastic properties of the material. The 

future work includes the following- 

• To include sensor modeling and air pressure behind the nail in the simulations. As 

discussed in section 3.3.2, there was a significant difference observed in the load response 

between the sensor data and the simulation. This affects the quality of the low-fidelity data 

which affects the performance of the prediction. Modeling sensors and taking account of 

the air pressure can improve the prediction made by the multi-fidelity model with the same 

experimental data. 

• To understand experimentally the dynamic elastic-plastic model for PMMA and weak 

shock wave propagation in half-space using the birefringence property of PMMA. This 

will also provide us with the mechanical properties of the material. 

• To implement multi-fidelity modeling using the Gaussian process regression to consider 

and account for the uncertainty in the measurement of the experimental data.  
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