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ABSTRACT 

Commercial buildings not only have significant impacts on occupants’ well-being, but also 

contribute to more than 19% of the total energy consumption in the United States. Along with 

improvements in building equipment efficiency and utilization of renewable energy, there has been 

significant focus on the development of advanced heating, ventilation, and air conditioning 

(HVAC) system controllers that incorporate predictions (e.g., occupancy patterns, weather 

forecasts) and current state information to execute optimization-based strategies. For example, 

model predictive control (MPC) provides a systematic implementation option using a system 

model and an optimization algorithm to adjust the control setpoints dynamically. This approach 

automatically satisfies component and operation constraints related to building dynamics, HVAC 

equipment, etc. However, the wide adaptation of advanced controls still faces several practical 

challenges: such approaches involve significant engineering effort and require site-specific 

solutions for complex problems that need to consider uncertain weather forecast and engaging the 

building occupants. This thesis explores smart building operation strategies to resolve such issues 

from the following three aspects.  

First, the thesis explores a stochastic model predictive control (SMPC) method for the 

optimal utilization of solar energy in buildings with integrated solar systems. This approach 

considers the uncertainty in solar irradiance forecast over a prediction horizon, using a new 

probabilistic time series autoregressive model, calibrated on the sky-cover forecast from a weather 

service provider. In the optimal control formulation, we model the effect of solar irradiance as 

non-Gaussian stochastic disturbance affecting the cost and constraints, and the nonconvex cost 

function is an expectation over the stochastic process. To solve this optimization problem, we 

introduce a new approximate dynamic programming methodology that represents the optimal cost-

to-go functions using Gaussian process, and achieves good solution quality. We use an emulator 

to evaluate the closed-loop operation of a building-integrated system with a solar-assisted heat 

pump coupled with radiant floor heating. For the system and climate considered, the SMPC saves 

up to 44% of the electricity consumption for heating in a winter month, compared to a well-tuned 

rule-based controller, and it is robust, imposing less uncertainty on thermal comfort violation. 

Second, this thesis explores user-interactive thermal environment control systems that aim 

to increase energy efficiency and occupant satisfaction in office buildings. Towards this goal, we 
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present a new modeling approach of occupant interactions with a temperature control and energy 

use interface based on utility theory that reveals causal effects in the human decision-making 

process. The model is a utility function that quantifies occupants’ preference over temperature 

setpoints incorporating their comfort and energy use considerations. We demonstrate our approach 

by implementing the user-interactive system in actual office spaces with an energy efficient model 

predictive HVAC controller. The results show that with the developed interactive system 

occupants achieved the same level of overall satisfaction with selected setpoints that are closer to 

temperatures determined by the MPC strategy to reduce energy use. Also, occupants often accept 

the default MPC setpoints when a significant improvement in the thermal environment conditions 

is not needed to satisfy their preference. Our results show that the occupants’ overrides can 

contribute up to 55% of the HVAC energy consumption on average with MPC. The prototype 

user-interactive system recovered 36% of this additional energy consumption while achieving the 

same overall occupant satisfaction level. Based on these findings, we propose that the utility model 

can become a generalized approach to evaluate the design of similar user-interactive systems for 

different office layouts and building operation scenarios.  

Finally, this thesis presents an approach based on meta-reinforcement learning (Meta-RL) 

that enables autonomous optimal building controls with minimum engineering effort. In 

reinforcement learning (RL), the controller acts as an agent that executes control actions in 

response to the real-time building system status and exogenous disturbances according to a policy. 

The agent has the ability to update the policy towards improving the energy efficiency and 

occupant satisfaction based on the previously achieved control performance. In order to ensure 

satisfactory performance upon deployment to a target building, the agent is trained using the Meta-

RL algorithm beforehand with a model universe obtained from available building information, 

which is a probability measure over the possible building dynamical models. Starting from what 

is learned in the training process, the agent then fine-tunes the policy to adapt to the target building 

based on-site observations. The control performance and adaptability of the Meta-RL agent is 

evaluated using an emulator of a private office space over 3 summer months. For the system and 

climate under consideration, the Meta-RL agent can successfully maintain the indoor air 

temperature within the first week, and result in only 16% higher energy consumption in the 3rd 

month than MPC, which serves as the theoretical upper performance bound. It also significantly 

outperforms the agents trained with conventional RL approach.  
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 INTRODUCTION 

1.1 Background and motivation 

Commercial buildings have significant impacts on humans and the environment. Not only 

do they affect occupants’ comfort, health, and well-being, but they are also responsible for more 

than 19% of the total energy consumption in the US. Heating, Ventilation, and Air Conditioning 

(HVAC) systems account for 28% of energy consumption and 45% of peak electrical demand in 

commercial buildings and represent a substantial energy use reduction opportunity (EIA, 2019). 

Along with improvements in building equipment efficiency and utilization of renewable energy, 

deployment of sensors, actuators, and controllers, can achieve more than 30% aggregated annual 

energy savings (Fernandez et al., 2017), while 20% of commercial buildings peak load can be 

temporarily managed or curtailed to provide grid services (Kiliccote et al., 2016; Piette et al., 

2007). Due to the promising results, there has been significant focus on the development of 

advanced HVAC controllers that incorporate predictions (e.g., occupancy patterns, weather 

forecasts) and current state information to execute optimization-based strategies. Such control 

methods are capable of planning building system operation over extended periods (e.g., hours and 

days rather than minutes) and multiple spatial scales (e.g., occupant, zone, whole-building, campus) 

(Braun, 1990; Bengea et al., 2012; Ma et al., 2012; Dong and Lam, 2014; Afram and Janabi-Sharifi, 

2014; Tanner and Henze, 2014; Mirakhorli and Dong, 2016; Joe and Karava, 2019; Yang et al., 

2020). Model Predictive Control (MPC) provides a systematic implementation option using a 

system model and an optimization algorithm to adjust the control setpoints dynamically. This 

control approach automatically satisfies component and operation constraints related to building 

dynamics, HVAC equipment, etc. (Garcia et al., 1989; Mayne et al., 2000; Oldewurtel et al., 2012). 

However, the wide adaptation of such control methods still faces several practical challenges. 

The control objectives and constraints of MPC need to be customized for specific sites, 

considering the complex energy conversion schemes of the advanced building systems, which 

often leads to nonconvex optimal control problems that would impose challenges in finding high-

quality control solutions (e.g., Kelman & Borrelli, 2011; Corbin et al., 2013; Candanedo & 

Athienitis, 2011; Li et al., 2015; Quintana & Kummert, 2015). In addition to that, for buildings 

with renewable energy systems whose performance also depend on stochastic environment 
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disturbances such as solar irradiance, the optimal utilization of renewable energy also requires 

control algorithms that make robust decisions under uncertain weather forecast (Petersen & 

Bundgaard, 2014; Garifi et al., 2018). Stochastic model predictive control (SMPC) has shown 

great potentials to address the latter (Oldewurtel et al., 2012; Ma et al., 2014). However, the 

challenge remains to extend the SMPC approach to efficiently solve nonconvex problems in order 

to be generalizable for optimizing the operation of building-integrated solar systems. 

On the other hand, the success of many of these control strategies is heavily dependent on 

how occupants interact with the building (Schweiger et al., 2020). Occupant behaviors in high 

performance buildings may be affected by many factors including occupant comfort (or 

discomfort), social influences, or lack of knowledge surrounding building systems (Day et al., 

2020). In that sense, it is essential to understand and possibly influence the way occupants interact 

with environment control systems when energy-efficient strategies such as MPC are implemented 

If users are neglected from building control systems, then energy use may increase if systems are 

overridden, or occupants may be less satisfied with their environment due to decreased thermal 

comfort. Alternatively, if occupants understand the building and feel that they are involved in 

environment control systems, then they may contribute to lower building energy use and they may 

increase their overall satisfaction with the work environment (Janda, 2011). This two-way 

communication between the occupants and thermal environment control systems can be enabled 

by user-interactive systems that transform building occupants into service users who participate, 

decide, provide, and receive feedback. With such systems in place, occupant satisfaction could be 

improved (Day and Heschong, 2016) and their behavior could be potentially influenced by 

implementing appropriate intervention techniques (Peschiera et al., 2010; Delmas and Kaiser, 

2014; Xu et al., 2017; Li et al., 2019).  

Another issue that prevents MPC from being widely adopted in building industry is the 

extensive engineering time and effort required to develop the control-oriented models that 

represent the building system dynamics (Henze, 2013; Cígler et al., 2013; Killian and Kozek, 

2016; Li and Wen, 2014). For this reason, reinforcement learning (RL) has received attention due 

to its capacity to learn to improve control through interacting with the environment (by letting an 

agent execute control actions and receive feedback in terms of control performance and system 

states) without requiring a model (Vázquez-Canteli and Nagy, 2019; Wang and Hong, 2020). 

However, as conventional RL approach solely relies on learning from on-site data, and does not 
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takes advantage of physical knowledge of the building systems (e.g., construction and equipment 

specifications). As a result, the required time-consuming learning process can make the 

implementation of RL in buildings inefficient or even impractical (Liu and Henze, 2006a, Yang et 

al., 2015; Benedetti et al., 2016). Therefore, data-efficient RL algorithms that allow learning from 

existing building information need to be explored, while the recent theoretical advancements in 

the machine learning field towards this direction has made such options possible. 

1.2 Objectives 

The goal of this thesis is to explore intelligent operation schemes for smart buildings while 

addressing the following real-world adaptation challenges: 1) Uncertain weather forecast; 2) 

Engaging occupants to make informed decisions in their interactions with buildings; and 3) 

Achieving optimal controls without extensive engineering effort and cost. Towards this direction, 

the research is extended to the following specific objectives: 

1. Develop a stochastic model predictive control framework that is robust to forecast 

uncertainty for optimal operation of buildings with integrated solar systems. 

i. Develop a computationally inexpensive solar irradiance forecast model that utilizes 

external weather forecast information and quantifies the prediction uncertainty. 

ii. Deploy the approximate dynamic programming (ADP) algorithm to effectively 

solve the optimal control problem at each prediction horizon, where the nonconvex 

cost function is an expectation over a stochastic process.  

iii. Examine the stochastic model predictive controller’s performance in an emulator 

that represents the actual building-integrated solar system.  

2. Develop a systematic approach to design interfaces of user-interactive systems that aim to 

increase energy efficiency and occupant satisfaction in office buildings. 

i. Understand and model the human decision-making process in their interactions 

with thermal environment control systems when energy efficiency strategies are 

implemented. 

ii. Conduct field experiments with human-subjects to reveal the causal effect of the 

factors (e.g., displayed energy use information, expected comfort level) involved 

in this process. 
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iii. Deploy a prototype user-interactive system with a novel web-interface in a building 

energy management system with a model-predictive controller and demonstrate its 

performance with regards to energy savings and occupant satisfaction.  

3. Develop a meta-reinforcement learning approach to enable automated generation of 

optimal HVAC controls with minimum engineering effort.  

i. Identify a model universe, i.e. a probability measure over the possible building 

dynamical models, based on available building information to train the agent. 

ii. Evaluate the control performance and adaptability of the agent in a test-bed and 

compare the Meta-RL approach with conventional RL and MPC. 

1.3 Document overview 

Chapter 2 presents a state-of-the-art literature review on the building applications of model 

predictive control, reinforcement learning, and user-interactive systems. 

Chapter 3 presents the stochastic model predictive control algorithm for the optimal 

operation of buildings with integrated solar systems under forecast uncertainty. The ADP 

algorithm that is used to solve the nonconvex stochastic optimal control problem, as well as the 

forecast model that quantifies solar irradiance uncertainty are discussed in detail.  

Chapter 4 presents the prototype user-interactive system for private office thermal 

environment control. The field experiment to evaluate the impact of the energy use information on 

the occupants’ thermostat setting behavior and energy saving potential is described. The occupants’ 

decision-making model that reveals causal factors on the setpoint temperature selections 

considering their comfort and energy use is presented.  

Chapter 5 presents the meta-reinforcement learning algorithm that allows the automated 

generation of optimal control policy based on available building information, minimizing the 

engineering effort and cost. The control performance and adaptability of such approach is 

presented and compared with conventional reinforcement learning and model predictive control in 

a test-bed office by emulation. 

Chapter 6 includes potential extensions of this research and ideas for future work. 
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 LITERATURE REVIEW 

2.1 Model predictive control 

Various studies from building research literature suggested that model predictive control 

(MPC) has shown great potential in energy saving and maintaining indoor thermal comfort, 

outperforming conventional control approaches such as rule-based control and night setback for 

building heating ventilation and air-conditioning (HVAC) systems (Oldewurtel et al., 2012; Široký 

et al., 2011; May-Ostendorp et al., 2011; Prívara et al., 2011; Hu and Karava, 2014). In MPC, an 

optimal control problem that minimizes an objective (e.g. energy consumption/cost, temperature 

bounds violation) over a prediction horizon is solved at the beginning of each control horizon given 

a building system dynamical model and updated future disturbance information. This results in a 

trajectory of optimal controls (e.g. heating/cooling rate) and states (e.g. temperatures) into the 

future satisfying the constraints on the equipment capacity, thermal comfort bounds, or any other 

given criteria (Oldewurtel et al., 2012).  

 

 

Figure 2.1. The ‘moving horizon’ approach of model predictive control (Wang, 2009). 

 

The optimal control problems in MPC must include the key features of the building system, 

while being sufficiently simple to be computationally tractable. In some studies, the optimal 

control problems were formulated with linear (Oldewurtel et al., 2012; Zhang et al., 2013; 

Sturzenegger et al., 2014) or quadratic (Prívara et al., 2011, and Široky et al., 2011) cost functions, 

and linear models representing the building dynamics. In these cases, the problems could be solved 
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using linear or quadratic programming with guaranteed convergence to global minima. However, 

such simple problem formulations might not be applicable when the building energy systems 

include complex energy conversion schemes (Li et al. 2015; Kelman and Borrelli, 2011; 

Candanedo et al., 2013), or when other objectives or constraints are expressed by nonconvex 

functions (e.g. peak load, indoor comfort, uncertainty) (Corbin et al., 2013; Ma et al., 2012). For 

example, in the case of heat pumps, the coefficient of performance (COP) and capacity are 

multivariate polynomial functions of the source and load side temperatures (Verhelst et al., 2012; 

Gayeski et al., 2012), which can introduce nonconvexity in the cost and constraint functions.  

Nonlinear programming solvers (Ma et al., 2012) and global search algorithms such as 

particle swarm (Corbin et al., 2013), pattern search (Li et al. 2015) and genetic algorithm (Wang 

and Jin, 2000) have been employed to solve the nonconvex optimal control problems, but only 

local optimality can be guaranteed. It is important that an MPC can provide high quality control 

solutions as it directly impacts energy savings, as well as improvements in thermal comfort. 

Attempts have been made to improve the solution quality of global search algorithms for 

nonconvex problems, such as tuning the hyperparameters by factorial experiment (Jaramillo et al., 

2016), decision space discretization, seeding and taboo list (Corbin et al., 2013). However, these 

processes are time consuming and require system specific expertise that cannot be generalized for 

other applications. 

Typically, the control-oriented models that represent the building system dynamics are 

physics-informed (i.e. grey-box, Braun, 1990; Oldewurtel et al., 2012; Cai, 2015; Cai and Braun, 

2016; Joe and Karava, 2019; Andriamamonjy et al., 2019) or data-driven (i.e. black-box, Ferkl 

and Široký, 2010; Privara et al., 2013) linear models. Such models are developed through system 

identification experiments involving on-site collection of data including system temperatures, heat 

gains, and ambient environment conditions, etc. In recent studies, machine learning (ML)-based 

building modelling techniques are applied in MPC and can achieve adequate level of prediction 

accuracy without requiring domain-specific knowledge. However, a large amount of data from 

target buildings are still needed, and due to the complex model form such as deep neural networks, 

the optimal control problems solved at each prediction horizon are nonconvex, and only local 

optimality can be guaranteed (Ferreira et al., 2012; Aswani et al., 2012; Huang et al., 2014; Jain 

et al., 2017; Afram et al., 2017;  Reynolds et al., 2018; Chen et al., 2018; Smarra et al., 2018; 

Bünning et al., 2020; Yang et al., 2020). ML-based MPC approaches also seek to improve the 
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controller adaptability by allowing continuous updates on the model with newly collected data 

(Yang et al., 2020; Rouchier et al., 2019). However, no study evaluated its adaptability yet. 

Uncertainty can be introduced to MPC applications in buildings in different ways, such as 

uncontrolled disturbances, i.e. forecasted weather and random occupants’ behavior, which can 

affect the cost and/or constraints; future states predicted by control-oriented models that are not 

perfectly accurate; and random sensing errors during real-time implementation. From the previous 

studies, we learnt that weather forecast (Henze et al., 2004) and occupants’ behavior (Ma et al., 

2012; Tanner, 2014; Oldewurtel et al., 2013) have significant impact on MPC performance. 

Therefore, uncertain disturbances forecast imposes challenges on MPC controller in predicting 

uncertain future states and selecting for the current time the optimal controls that minimize the 

cost and satisfy the constraints in the future. 

Stochastic model predictive control (SMPC) allows disturbances in forms of probabilistic 

distribution and predicts the control strategies that minimize the expected cost and satisfy the 

constraints with a predefined probability (i.e. chance constraints, Charnes and Cooper, 1959; 

Oldewurtel et al., 2012; Zhang et al., 2013; Ma et al., 2014; Tanner, 2014). When the uncertain 

disturbances are assumed to follow uniform distribution or Gaussian distribution, chance 

constraints can be transformed to deterministic inequality constraints (Oldewurtel et al., 2012). 

However, in reality the probability distributions of the disturbances are often non-Gaussian. In 

those cases, sample-based approaches are employed to interpret chance constraints as deterministic 

for all the samples taken from the distributions of the disturbances, among which a selected number 

of constraint violations were allowed to happen (Zhang et al., 2013; Tanner and Henze, 2014; Ma 

et al., 2014). 

2.1.1 Approximate dynamic programming 

Optimal control problems at each prediction horizon of MPC can be solved using dynamic 

programming (DP) (Bellman, 1954), which is robust to the presence of non-Gaussian stochastic 

disturbances in the cost and constraints, and achieves good solution quality. DP is implemented in 

a receding horizon fashion and starts by estimating the optimal cost at the final time step and then 

moves backwards using the Jacobi-Bellman operator (Dobbs & Hencey, 2014; Dong & Lam, 2014; 

Lee et al., 2018b; Putta et al., 2015). In practice, DP requires solving recursively a series of 

optimization problems yielding the optimal cost at each time step (e.g., via the value iteration 
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algorithm). Also, instead of finding point estimates for optimal inputs, a major improvement by 

DP is finding the optimal inputs as a sequence of functions of system states (policy functions) over 

a prediction horizon. Dynamic programming can be solved in distributed way, where several 

processors participate simultaneously in the computation while maintaining coordination by 

information exchange via communication links (Bertsekas, 1995; Zhang et al., 2016). This 

approach requires less computation time for solving optimal control problems with high-

dimensional state space, improving the efficiency, flexibility and scalability in the operation of 

large-scaled buildings or building clusters. 

The technical difficulty of implementing DP arises from the need to approximate the optimal 

cost-to-go/policy functions based on a finite number of pairs of states and potentially noisy cost-

to-go/optimal control observations. The optimal cost can be parameterized, e.g., using polynomials 

of a given degree, radial basis functions, neural networks (Bertsekas and Tsitkilis, 1995; Mnih et 

al., 2015). The choice of the approximating family is important as the limited expressivity of 

common function approximations may lead to suboptimal solutions. Previous research (Deisenroth 

et al., 2009; Scheidegger and Bilionis, 2019) employed approximation schemes for the optimal 

cost-to-go/control functions based on Gaussian process regression (GPR) (Rasmussen and 

Williams, 2006). GPR is a powerful Bayesian, non-parametric regression method robust to the 

presence of noise in the cost-to-go observations. In the proposed work, we employ approximate 

dynamic programming (ADP) to solve optimization problems, in which the nonconvex cost and 

constraint functions are subjected to stochastic disturbances, while using GPR to approximate the 

cost-to-go and policy functions. 

2.1.2 Statistical weather forecast for predictive control 

The operations of building energy systems are strongly impacted by the outdoor weather 

conditions. Therefore, especially for the case of predictive controls, a reliable weather forecast is 

essential for maintaining indoor thermal comfort and being energy efficient. Statistical forecast 

models have been widely used in building energy management applications. Typical weather 

forecast models predict the future weather based on simple historical patterns such as using the 

same data as the previous day, typical days of a month, etc. (Henze et al., 2004). However, such 

models do not capture nonlinear patterns such as the effect of cloud cover on solar irradiance 

(Lazos et al., 2014). On the contrary, machine learning models trained with historical weather data, 
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incorporate nonlinear patterns in weather variations and are better suited for predicting future 

weather (Dong and Lam, 2014; Lanza and Cosme, 2001).  

Extracting information from past profiles works well for weather parameters with relatively 

small variation from one hour to the next, such as temperature and relative humidity. However, 

observable past patterns have limited influence on highly stochastic parameters such as solar 

irradiance (Mathiesen and Kleissl, 2011). In these cases, weather forecast services such as those 

from the National Oceanic and Atmospheric Administration (NOAA) that measure various 

meteorological parameters to generate predictions, can serve as baselines for predictive models 

(Pedersen and Petersen, 2017).  

Previous studies developed weather forecast models that quantify the predictive uncertainty 

and take into account external weather forecast information or on-site measurements. Machine 

learning approaches such as Gaussian process regression (Zavala et al., 2009; Bilionis et al., 2014; 

Shann and Seuken, 2014), artificial neural networks (Chen et al., 2011; Yadav and Chandel, 2012) 

and support vector machines (Chakraborty et al., 2016) have shown promising results. However, 

implementation of such information in actual building controllers may require more 

straightforward approaches based on easily measurable and accessible data. Autoregressive 

models (Oldewurtel et al., 2012; Zhang et al., 2013) are computationally efficient and capture the 

physical nature of weather parameters (Lazos et al., 2015). In the proposed work, autoregressive 

process is utilized to model the cloud variability over time while the sky condition of clear, partly-

cloudy, and overcast is classified using a probabilistic model based on the hourly-updated weather 

forecast. 

2.2 User-interactive thermal environment control systems 

In the literature, user-interactive systems refer to computer systems that support the 

interactions between humans and the computer, which occurs via the systems’ user-interfaces 

(Preece et al., 1994). In recent years, such systems have been introduced to enable occupants’ 

participation in building automation. For example, smart thermostats in residential buildings allow 

room setpoint scheduling based on occupancy, users’ habit, or real-time utility rate, providing 

feedback on energy consumption/cost (Rau et al., 2016; Obinna et al., 2017). On the other hand, 

in commercial buildings, most of these systems are focused on receiving input from occupants 

(e.g., Daum et al., 2011; Erickson and Cerpa, 2012; Jazizadeh et al., 2014; Ghahramani et al., 
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2014; West et al., 2014; Brager and Arens, 2016; Lee et al., 2019) rather than providing 

information. An exception is the study by Zeiler et al. (2009) which deployed a prototype user-

interactive system with an indoor environment control interface that shares HVAC energy use 

information with occupants while collecting their feedback on thermal preferences. However, this 

study only focused on the development of hardware and software system architecture. Also, two 

pilot studies by Konstantakopoulos et al. (2015, 2019) implemented user-interactive systems with 

social games, in which occupants could vote for their desired lighting and HVAC setpoints, and 

get rewarded based on how energy efficient their voted strategies were. The real-time energy use 

data were accessible for the occupants from a web portal or mobile app. However, these studies 

focused on game formulation rather than the user-interface and energy feedback design.   

2.2.1 User-interface design  

Providing information (feedback) has long been regarded as a critical mechanism in 

motivating individual end-users to reduce their energy use voluntarily. While the vast majority of 

the studies focus on residential buildings (e.g., Siero et al., 1996; Emeakaroha et al., 2014; Vellei 

et al., 2016; Promann and Brunswicker, 2017), various disciplines, including human-computer 

interactions (HCI), ubiquitous computing (ubicomp), and environmental psychology, have 

contributed in-depth research on how feedback influences occupant interactions with commercial 

buildings regarding energy savings. From an environmental psychology perspective, a wide 

variety of behavioral intervention approaches have been used. These approaches range from 

education about energy use (Murtagh et al., 2013; Yun et al., 2013; Timm and Deal, 2016) to 

financial incentives (Konstantakopoulos et al., 2015), competitions (Ratliff et al., 2014; Gandhi 

and Brager, 2016), serious games (Orland et al., 2014), peer comparison (Peschiera et al., 2006; 

Zhang et al., 2013; Gulbinas et al., 2014; Gulbinas and Taylor, 2014), and engagement using social 

media (Lehrer et al., 2014). These studies primarily concentrated on the intervention's effect (e.g., 

the resulting energy savings) instead of the designed artifact. In contrast, the HCI/ubicomp studies 

focused on the design rather than conducting field studies of occupants’ behavior (Froehlich, 2009; 

Froehlich et al., 2010; Karlin et al., 2017). Initial multidisciplinary work by Sanguinetti et al. 

(2018) proposed a design-behavior framework to guide the feedback design, highlighting the 

information provided to occupants, the timing of when this information is presented, and how the 
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information is displayed to the user, as critical components to consider during the design of 

building interfaces. 

In this direction, drawing on insights from behavioral sciences and human-computer 

interface design, there has been an increasing emphasis on individual-level real-time (Gulbinas et 

al., 2014; Gulbinas and Taylor, 2014) and interactive (Zhuang and Wu, 2018) feedback tailored to 

specific behaviors. It is reported that occupants’ daily interaction with office building thermostats 

is usually habit-driven rather than deliberate (Tetlow et al., 2015). Therefore, thermostat setting 

behavior can potentially be influenced through nudging, which is an intervention approach often 

adopted in the field of HCI (Caraban et al., 2019). Nudging means altering human behavior in a 

predictable way by subtly modifying the context of decision-making without forbidding any option 

or significantly changing their economic incentive (Thaler and Sunstein, 2009; Kasperbauer, 2017; 

Schweiger et al., 2020). One example of nudging is  interactive feedback that provides the 

consequences of behavior (e.g., the potential increase of energy consumption) at the point of 

decision-making, that  has been reported to encourage a more deliberate thermostat setting 

(Zhuang and Wu, 2018).  

In summary, although the existing literature provides useful insights on the potential of 

energy use feedback, a systematic approach is needed to develop user-interactive systems that can 

be successfully deployed in smart building operation. Our goal in this paper is to fill this gap in 

knowledge by addressing the following objectives: i) identify the causal effect of the factors (e.g., 

displayed energy use information, expected comfort level) that describe the decision making 

process of occupant interactions with thermal environment control systems; ii) encode this 

knowledge in a human decision making model that can be used to design user-interactive systems 

that make energy-efficient behavior natural, easy, and intuitively understandable for the end-users 

resulting in HVAC energy savings and overall occupant satisfaction. 

For modeling human decision-making, a classical decision theory that reveals the rationale 

behind human behavior is often adopted (Berger, 2013). This theory assumes that the criteria for 

choices among competing alternatives are based on user’s (i.e., occupant’s) preferences on the 

outcomes. The numerical representations of preferences are enabled by a utility function, which 

maps each choice to a scalar that quantifies the user’s utility on the outcome of the choice, and 

decision-making can be realized as the maximization of the expected utility (Von Neumann and 

Morgenstern, 2007; Fishburn, 1970). Such approaches have been gaining attention in the HCI 
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community for user modeling (Payne and Howes, 2013; Jameson et al., 2014), and can be 

leveraged to design user-interactive systems for smart thermal environment control. For causal 

effects to be encoded in the model, control experiments, with and without implementing a 

treatment (energy use information), are needed (Rubin, 1974; Holland, 1986; Pearl, 2009). 

2.3 Reinforcement learning 

Reinforcement learning (RL) has been gaining attention as a promising approach in various 

applications (Silver et al., 2018; Levine et al., 2018), due to its capacity to learn through interacting 

with the environment without requiring an explicit mathematical model. Typically, in the 

formulation of an RL problem for building control, the building temperatures, energy system status, 

and exogenous variables (outdoor weather conditions, etc.) are treated as the states of the 

environment, and an RL agent learns by interacting with the environment. Such interaction 

includes the agent executing control actions (e.g. changing HVAC system heating/cooling rate or 

setpoint), which causes the transition of environmental states; then rewards are assigned to the 

agent based on the energy efficiency and/or occupants’ satisfaction achieved by the control action. 

Based on the collected information on the past states, actions and rewards, the RL agent learns a 

policy that targets the maximization of the expected discounted sum of all future returns (Wang 

and Hong, 2020; Vázquez-Canteli and Nagy, 2019; Mason and Grijalva, 2019; Han et al., 2019).  

Recent research in RL indicated great potential of applicability in different levels of building 

systems, ranging from advanced energy systems (Yang et al., 2015; Lazic et al., 2018; Vázquez-

Canteli et al., 2019a) or zone-level controls (Wang et al., 2017; Jia et al., 2019; Chen et al., 2019) 

in commercial buildings, to residential heat pumps (Ruelens et al., 2015; Peirelinck et al., 2018), 

holistic building systems control (adjusting HVAC, operable windows, ventilation, etc.) based on 

feedback of multiple indoor environment metrics (Chen et al., 2018; Ding et al., 2019; Park et al., 

2019), and demand response in smart grid (Vázquez-Canteli et al., 2019b). Some important 

features in the mechanism of RL makes this approach appealing for use in building system controls: 

(i) Compared to MPC, it avoids the labor- and expertise-intensive process of developing (and 

customizing for each building) highly accurate control-oriented models, while achieving good 

control performance (Costanzo et al., 2016). (ii) The RL controller’s adaptability to the 

environment could simplify the effort to maintain the controller once it is deployed in the buildings. 

Towards this direction, although more realistic scenarios need to be evaluated, the study by 
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Vázquez-Canteli et al. (2019a) initially demonstrated that RL controller is robust in terms of 

adapting to changes in electricity tariffs and building retrofits.  

However, there are still significant barriers that prevent the wide adoption of RL controllers 

in real buildings. In the early stages of implementation, due to the lack of RL algorithms that can 

efficiently utilize historical data, the agent training process can be time consuming (multiple years), 

making it impractical to implement online (Liu and Henze, 2006a; Liu and Henze, 2006b; 

Dalamagkidis et al., 2007). Although the emergence of deep learning algorithms (Mnih et al., 2015; 

Mnih et al., 2016; Lillicrap et al., 2016; Schulman et al., 2017) helped reduce the required training 

time to multiple months, the stability of the control cannot be guaranteed when the training is still 

premature during these months(Zhang and Lam, 2018). For example, the agent’s exploratory 

control actions might result in unnecessary energy waste or discomfort on occupants. To mitigate 

this issue, Liu and Henze (2006b) suggested to train the agent with an environment simulator 

before deploying it to actual buildings. Such approach has been adopted in majority of RL control 

studies in building applications, and different types of models such as grey-box (Lee et al., 2018a) 

and white-box (Wang et al., 2017; Jia et al., 2019) have been used as environment simulators. 

However, developing an environment simulator that can accurately predict the dynamical 

responses of the actual building would again require engineering effort and sufficient on-site 

measured operation data. On the other hand, although directly utilizing a standardized building 

model (e.g. generic grey-box model or reference buildings from EnergyPlus with empirically 

determined model parameters) for this purpose can eliminate such effort, the impact of the 

environment simulators’ prediction quality on the agent’s control performance in the actual 

building remains unstudied. Therefore, it is still unknown whether the adaptability of the agent can 

overcome the biasness induced by potentially inaccurate environment simulator within a 

reasonable amount of time, without causing occupant discomfort and excessive energy waste. 

2.3.1 Meta-reinforcement learning 

With the recent development of meta-reinforcement learning (Meta-RL, Finn, et al. 2017; 

Duan et al., 2017; Nichol et al., 2018; Sæmundsson et al., 2018; Xu et al., 2018; Rakelly et al., 

2019; Kirsch et al., 2019), an RL agent is able to learn from a set of environments that share some 

common characteristics (sampled from the same prior probability distribution). Intuitively, if the 

agent can generalize well to such set of environments, it can be expected to perform well on another 
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environment that is sampled from the same prior probability distribution (Finn et al., 2017). So 

far, Meta-RL has been successfully demonstrated in the aforementioned studies to accelerate the 

learning and adaptation compared to conventional RL techniques by optimizing the initial 

parameters of the control policy executed by agent in gaming and robotics environments available 

at OpenAI gym (Brockman et al., 2016). In building control applications, although it is impractical 

to develop an environment simulator with high level of prediction quality, it would be feasible to 

identify the prior probability distribution of the environment (i.e., model universe) based on 

existing knowledge of the buildings available on-site (e.g., construction drawings, building 

information model, etc.) or from various public datasets (Deru et al., 2011; EIA, 2016; Miller and 

Meggers, 2017; Balaji et al., 2018; Miller et al., 2020). Therefore, with Meta-RL, learning over 

the model universe that describes similar building spaces can potentially improve the control 

quality, and achieve fast adaptation to a target building without developing an accurate simulator. 

2.4 Research gaps  

Based on the literature review from the previous sections, the following research gaps are 

identified and addressed by the work of this dissertation. First, in order to be generalizable for 

optimizing the building-integrated solar systems’ operation, SMPC needs to (i) adopt ADP 

algorithm to efficiently solve nonconvex optimal control problems introduced by the complex 

energy conversion schemes of energy systems; and (ii) include a computationally inexpensive 

solar irradiance forecast model for predictive controls that quantifies the prediction uncertainty. 

Second, user-interactive systems for commercial buildings need interface design that can (i) 

be intuitive for occupants to achieve energy saving; and (ii) incorporate behavior intervention 

approach that is easy to implement such as nudging. Also, a systematic approach supported by 

utility theory is needed to evaluate the interface design in terms of its predictable effect on occupant 

behavior and energy saving potential. To achieve that, the causal factors that affect occupants’ 

decision-making process using the interface must be understood.  

Third, Meta-RL algorithm needs to be evaluated due to its potential of enabling automated 

generation of optimal building control strategies with minimal engineering effort by learning from 

a model universe. To this end, identifying the model universe based on available building 

information such as building drawings also needs to be explored. 
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 MODEL PREDICTIVE CONTROL UNDER FORECAST 

UNCERTAINTY FOR OPTIMAL OPERATION OF BUILDINGS WITH 

INTEGRATED SOLAR SYSTEMS 

3.1 Overview 

In this Chapter, we present a SMPC algorithm for buildings with solar systems coupled with 

HVAC and thermal energy storage. The algorithm is implemented in an emulator to predict the 

closed-loop response of the integrated system to control inputs, and to demonstrate optimal 

decisions under uncertainty. Our approach is unique in the following aspects (i) It quantifies the 

prediction uncertainty in solar irradiance using a new probabilistic time-series autoregressive 

model that takes sky-cover values from an external weather forecast service provider as input; (ii) 

It extends approximate dynamic programming (ADP) to solve optimization problems, in which 

the nonconvex cost function is an expectation over a stochastic process, and provides good solution 

quality using Gaussian process regression to approximate the cost-to-go functions. 

We introduce the SMPC algorithm in Section 3.2, which includes the SMPC problem 

formulation, the solar irradiance forecast model and the ADP that solves the optimal control 

problem. In Section 3.3, we present the implementation of the SMPC for a building-integrated 

solar energy system. The performance evaluation of the SMPC and the uncertainty analysis are 

presented in Section 3.4. 

3.2 Methodology 

3.2.1 Stochastic model predictive control algorithm 

Model predictive control for building energy systems aims to minimize the total heating or 

cooling energy consumption over a prediction horizon, while satisfying the constraints on 

equipment capacity and room conditions affecting occupant thermal comfort.  

For each prediction horizon, the controller solves the following optimal control problem: 

min
𝛍1,𝛍2,…,𝛍𝑡

𝔼 [∑ 𝐽𝑡(𝐱𝑡,  𝛍𝑡(𝐱𝑡),𝐰𝑡)

𝐾−1

𝑡=0

] , 

(3-1) 
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subject to the dynamics: 

𝐱𝑡+1 = 𝐟𝑡(𝐱𝑡, 𝐮𝑡 , 𝐰𝑡),                                                   (3-2) 

and to the chance constraints: 

𝔼[𝑔𝑖,𝑡(𝐱𝑡, 𝐮𝑡, 𝐰t)] ≥ 0 for 1 ≤ 𝑖 ≤ 𝑛𝑐, 0 ≤ 𝑡 ≤ 𝐾 − 1.                        (3-3) 

The cost (equation (3-1)) is a function of the state variables (𝐱𝑡), which include the system 

temperatures at time 𝑡; the control inputs (given as 𝐮𝑡 = 𝛍𝑡(𝐱𝑡) at time 𝑡) such as heating or 

cooling power; and the stochastic disturbances (uncertain variables, 𝐰𝑡), e.g. random factors that 

affect the solar irradiance that is an important energy source of building-integrated solar systems. 

The optimal input functions are known as policy functions (𝛍𝑡). The building and energy system 

dynamics are also functions of these three types of variables (equation (3-2)). The prediction 

horizon (𝐾) over which optimal inputs are to be found via SMPC is selected based on the system 

properties. 

In the presence of stochastic disturbances, chance constraints are deployed for handling 

constraints violations on the state variables (equation (3-3)) with low probability. In the cases of 

building-integrated solar systems, such as solar-assisted heat pumps, the feasible set of inputs is 

also expressed with chance constraints, as equipment capacities are subjected to stochastic 

disturbances. Therefore, 𝑛𝑐 is the total number of chance constraints on the states or control inputs. 

Note that in equations (3-1) and (3-3), the expectations 𝔼[⋅] are over 𝐰𝑡. In our work, the stochastic 

disturbance, 𝐰𝑡,  to the integrated energy system includes the solar heat gain to the building and a 

2-D Gaussian noise term from a solar irradiance forecast model, which is presented in the 

following section.   

3.2.2 Solar irradiance forecast model 

In this section, we present a model that predicts the global horizontal irradiance (𝐼g,𝑡): 

𝐼𝑔,𝑡 =  𝐼dir,𝑡 + 𝐼dif,𝑡,                                                 (3-4) 

where 𝐼dir,𝑡 and 𝐼dif,𝑡 are direct and diffuse components of the horizontal irradiance, respectively. 

From previous studies (e.g. Bilionis et al., 2014), we know that the global horizontal irradiance is 

negatively correlated with the sky-cover, i.e., the fraction of the sky covered by clouds. Let the 

sky-cover at time 𝑡 be defined as sc𝑡 . Hourly forecasted values of sky-cover are obtained from 

NOAA. Our model predicts the future global horizontal irradiance given a sky-cover forecast. It is 
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stochastic in the sense that it quantifies the predictive uncertainty in solar irradiance. This 

uncertainty may be due to miss-classification of the sky condition (clear, partly-cloudy or overcast) 

given the sky-cover, and due to the variability of the cloud formations.  

We assume that the sky-cover forecast values obtained from NOAA forecast are accurate 

for a 24-hour horizon. We model the cloud variability by a 2-D autoregressive process. Specifically, 

the first dimension of this autoregressive process models the atmospheric factors that block the 

direct part of the horizontal irradiance while the second-dimension models the atmospheric factors 

that block the diffuse part. In the autoregressive process, the future state is expressed as a linear 

function of the current state plus a Gaussian error term. Thus, the error can accumulate as the time 

step increases, and the autoregressive process captures the increase in solar irradiance uncertainty 

within a prediction horizon.  

 

 

Figure 3.1. Solar irradiance forecast model. 

 

The model we propose (Figure 3.1) has the following form: 

𝐼𝑔,𝑡(𝐚𝑡, 𝑐𝑡) = 𝐼clr,dir,𝑡 ⋅ (sigm(𝑎1,𝑡))
1−𝑙1(𝑐𝑡)

1{1,2}(𝑐𝑡) + 𝐼clr,dif,𝑡 ⋅ (sigm(𝑎2,𝑡))
1−𝑙2(𝑐𝑡)

 ,        (3-5) 

where 𝐼clr,dir,𝑡   and 𝐼clr,dif,𝑡  are the clear-sky direct and diffuse horizontal irradiance, which are 

analytically known and depend on the location, time of the day, day of the year, etc. (Bird and 

Hulstrom, 1981); 𝐚t = (𝑎1,𝑡, 𝑎2,𝑡) is a 2-D autoregressive process that modulates the clear-sky 

irradiances through the sigmoid function sigm(⋅); 𝑐𝑡 is a discrete random process corresponding 

to the sky condition (clear (𝑐𝑡 =1), partly-cloudy (𝑐𝑡 =2), or overcast (𝑐𝑡 =3)), 1𝐴(⋅) is the 

characteristic function of a set 𝐴 (1𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 0 otherwise), and the indicator function 
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𝐥(⋅) = (𝑙1(⋅), 𝑙2(⋅)) is defined by 𝐥(1) = (1,1), 𝐥(2) = (0,0), and 𝐥(3) = (1,0). More specifically, 

when the sky condition is clear (𝑐𝑡 = 1), the direct and diffuse horizontal solar irradiances are 

equal to clear-sky direct and diffuse horizontal solar irradiance, respectively. When the sky 

condition is partly-cloudy (𝑐𝑡 = 2), the direct and diffuse horizontal irradiances are only a fraction 

of the clear-sky direct and diffuse horizontal irradiance. When the sky condition is overcast (𝑐𝑡 =

3), the direct horizontal irradiance (𝐼dir,𝑡) is 0. Thus, the global horizontal irradiance is only a 

fraction of the clear-sky diffuse horizontal irradiance. 

For a certain value of the sky-cover sc𝑡 , any of the three conditions, 𝑐𝑡 = 1,2, or 3, are 

possible as the sky-cover value is a spatial average of the fraction of the sky covered by clouds. 

To model this uncertainty, we assume that the probability of the sky condition 𝑐𝑡 depends only on 

the sky-cover sc𝑡 via a logistic regression expression: 

𝑝(𝑐𝑡 = 𝑖|sc𝑡) =
𝑒𝑟𝑖sc𝑡

𝑒𝑟1sc𝑡 + 𝑒𝑟2sc𝑡 + 𝑒𝑟3sc𝑡
 ,     𝑖 = 1, 2, 3. 

(3-6) 

where the parameters 𝑟1, 𝑟2 and 𝑟3 are to be inferred. The latent 2-D autoregressive process (𝐚t) is 

given by 

𝑎1,𝑡+1 = 𝛼1𝑎1,𝑡 + 𝜎1𝑧1,𝑡,                                                   (3-7) 

𝑎2,𝑡+1 = 𝛼2𝑎2,𝑡 + 𝜎2𝑧2,𝑡 ,                                                  (3-8) 

where 𝐳𝑡 = (𝑧1,𝑡, 𝑧2,𝑡) is a 2-D Gaussian noise, and the parameters 𝛼1, 𝛼2, 𝜎1  and  𝜎2  are to be 

inferred. The initial probability distribution of the autoregressive process is:  

𝑝(𝑎0,1) =  𝒩(𝑎0,1|𝜇0, 𝜎0
2),                                                (3-9) 

𝑝(𝑎0,2) =  𝒩(𝑎0,2|𝜇0, 𝜎0
2),                                              (3-10) 

where 𝒩(∙|𝜇, 𝜎2)  is the probability distribution function (PDF) of a univariate Gaussian 

distribution with mean 𝜇  and standard deviation 𝜎 ;  𝜇0  and 𝜎0  are two additional parameters, 

which also need to be inferred from the data.  

To train our model, we use sky-cover (sc𝑡 , input) and global horizontal irradiance (𝐼𝑔,𝑡 , 

output) measurements from the typical meteorological year (TMY3) dataset (Wilcox and Marion, 

2008) at the location of interest (West Lafayette, IN). The unknown parameters to be estimated are 

𝛉 = (𝜇0, 𝜎0, 𝛼1, 𝛼2, 𝜎1, 𝜎2, 𝑟1, 𝑟2, 𝑟3). Our model is a non-linear and non-Gaussian state space model 

(SSM). The hidden state is 𝐬𝑡 = (𝑐𝑡, 𝑎1,𝑡, 𝑎2,𝑡) and the observed state is 𝐼𝑔,𝑡 . One of the key 
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challenges in estimation of parameters of a nonlinear and non-Gaussian SSM is the intractability 

of estimating the system state. Sequential Monte Carlo (SMC) methods (Gordon et al., 1993; 

Kitagawa, 1996), known as particle filters, provide a robust solution to the nonlinear system 

identification problem (Schön et al., 2015). The key challenge that drives the problem of parameter 

estimation is how to deal with the difficulty that the states are unknown (hidden). To handle this 

problem, we make use of the data augmentation strategy, which treats the states as auxiliary 

variables that are estimated together with the parameters. The expectation maximization (EM) 

algorithm solves the maximum likelihood formulation in this way (Dempster et al., 1977). The 

maximum likelihood formulation amounts to finding a point estimate of the unknown parameters 

𝛉, for which the observed data is as likely as possible. This is done by maximizing the data 

likelihood function according to: 

�̂�ML = argmax𝛉 𝜖 𝚯  𝑝 𝜃(𝐼𝑔,1:𝑇).                                          (3-11) 

We wish to find the unknown parameters values �̂�ML based on a batch of 𝑇 measurements. 

For more details on how to use the EM algorithm for parameter estimation in SMC models, we 

refer readers to the paper by Schön et al. (2015). After maximizing the likelihood (Dahlin et al., 

2015), we get point estimates of parameters 𝛉 which best fits the observed data and are given as:  

= (0.2, 0.15, 0.1, 0.1, 0.6, 0.1, -7, 0, 7). 

We present the evaluation of our model predictions on a validation dataset for three days 

(March 13th -15th, 2015). The dataset is considered representative as it contains a full range of 

values (0-100%) for sky-cover, which is the sole input to our model. Therefore, we can observe 

the predictive distribution of global horizontal irradiances given different sky-cover conditions 

from the validation dataset. As for factors such as seasonal variation, location, etc., we consider 

them to be encoded in the clear sky irradiance model by Bird and Hulstrom (1981). Figure 3.2 (left) 

shows the sky-cover forecast values for the aforementioned days obtained at 6 am of each day, 

respectively; the x-axis index points represent hours with high sky-cover forecast values (i.e., high 

probability of being overcast) on March 13th, moderate sky-cover forecast values (i.e., high 

probability of being partly-cloudy) on March 14th and low sky-cover forecast values (i.e., high 

probability of being clear) on March 15th. Figure 3.2 (right) compares model predictions with 

global solar irradiance values measured on the roof of the Herrick Laboratory building at Purdue 

University campus with a pyranometer (LI-COR LI-200). In this figure, the solid (blue) line 

represents a random solar irradiance time series sample from the predictive distribution of our 
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model. The model quantifies the uncertainty associated with predictions, represented in the graph 

by the shaded (blue) area (5-95th sample percentile from 1000 samples). The uncertainty of our 

model prediction shown in Figure 3.2 (right) is (i) low when the sky-cover forecast indicates clear 

(low sky-cover values, close to 0) or overcast (high sky-cover values, close to 100%) conditions; 

and (ii) high for partly-cloudy conditions (moderate sky-cover values, 30-70% in Figure 3.2, left).  

 

 

Figure 3.2. Sky-cover forecast obtained at 6 am of each day (left) and global horizontal 

irradiance prediction samples (right) (March 13-15th, 2015). 

 

3.2.3 Approximate dynamic programming 

In this section, we present the approximate dynamic programming methodology for the 

solution of the optimal control problem described with equations (3-1) to (3-3).  

Consider a system with state space variables 𝐱 ∈ 𝐗 ⊂ ℝ𝑑𝑥 and dynamics given by equation 

(3-2), to which a set of feasible controls 𝐮 ∈ 𝒰(𝐱) is applied. This set of admissible controls 𝒰(𝐱) 

is described by equation (3-3). Let us define Π as the set of all admissible policies, i.e., 

Π = {𝜋 = (𝛍0, 𝛍1, ⋯ , 𝛍𝐾)| 𝛍t: 𝐗 → ℝ𝑑𝑢  s. t.  𝛍𝑡(𝐱) ∈ 𝒰(𝐱), ∀𝐱 ∈ 𝐗}.            (3-12) 

For a 𝜋 ∈ Π, each element 𝛍𝑡 of 𝜋 defines the control function (or decision function) at time 

𝑡. If the initial state is 𝐱0, then the expected additive cost over the time horizon corresponding to 

a policy 𝜋 ∈ Π is: 
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𝐶𝜋(𝐱0) = 𝔼 [∑ 𝐽𝑡(𝐱𝑡, 𝛍𝑡(𝐱𝑡),𝐰𝑡)

𝐾−1

𝑡=0

], 

(3-13) 

where the expectation is over the disturbance 𝐰𝑡. A typical assumption for this disturbance, is that: 

𝑝𝑡(𝐰𝑡|𝐰0:𝑡−1, 𝐱0:𝑡) = 𝑝𝑡(𝐰𝑡|𝐱𝑡).                                       (3-14) 

This assumption is valid for the solar irradiance model presented in Section 3.2.1. The explicit 

dependence of this probability to time is due to the time-dependent NOAA sky-cover forecast, sc𝑡. 

The 2-D autoregressive process, 𝐚𝑡, can be thought as part of the system state 𝐱𝑡, and the stochastic 

disturbance 𝐰𝑡  includes the solar heat gain to the building, and the independent Gaussian 

disturbances to 𝐚𝑡. 

We wish to minimize equation (3-13) over the policy set Π. The optimal cost function 𝐶∗(⋅) 

is defined by: 

𝐶∗(𝐱0) = min
π∈Π

𝐶π(𝐱0).                                                  (3-15) 

The optimal policy 𝜋∗ may depend on the initial state 𝐱0, but under very general conditions, when 

an optimal policy exists, it is independent of the first state (Bertsekas, 1995). We define the optimal 

cost-to-go function at time 𝑡, 𝐶𝑡
∗(𝐱𝑡), as the cost incurred by the optimal policy from time 𝑡 till the 

end of the prediction horizon, i.e., 

𝐶𝑡
∗(𝐱𝑡) = min

π∈Π
∑𝔼[𝐽𝑠(𝐱𝑠, 𝛍𝑠(𝐱𝑠),𝐰𝑠)]

𝐾−1

𝑠=𝑡

. 

(3-16) 

It can be shown that 𝐶𝑡
∗(𝐱𝑡) must satisfies the Bellman equation: 

𝐶𝑡
∗(𝐱𝑡) = min

𝐮𝑡∈𝒰(𝐱𝑡)
 𝔼[𝐽𝑡(𝐱𝑡, 𝐮𝑡, 𝐰𝑡) + 𝐶𝑡+1

∗ (𝐟𝑡(𝐱𝑡, 𝐮𝑡, 𝐰𝑡))].                     (3-17) 

This recursive relation suggests a powerful numerical scheme for solving dynamic 

programming problems. Specifically, one starts from the final cost-to-go, 𝐶𝐾
∗(⋅) = 0 in our case, 

and follows the recursion defined by equation (3-17) backwards for 𝑡 = 𝐾 − 1, … ,0, each time 

estimating the unknown function 𝐶𝑡
∗(⋅) from the known 𝐶𝑡+1

∗ (⋅). This is known as the value 

iteration algorithm and it can only be implemented in an approximate way. First, we choose the 

function class within which the optimal cost-to-go functions are to be approximated. Second, we 

choose a finite, but well distributed, set of 𝑀 collocation points using Latin hypercube sampling 

(LHS, Iman, 2008) in the state space, 𝐗, on which we evaluate the right-hand side of equation (3-
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17). That is, we solve a separate non-linear constrained stochastic optimization problem on each 

one of these points. The expectation over 𝐰𝑡 is approximated using a sampling average. Third, 

using the collected data, we approximate the next optimal cost-to-go function within the selected 

class and proceed with the recursion. In Algorithm 3.1, we present these three steps while in 

Appendix A, we discuss the mathematical details.  

 

Algorithm 3.1: Value iteration algorithm  

Inputs: Plan horizon (K),  

Number of discrete points in state space (M),  

Number of irradiation samples (N) 

Time series samples of uncertain parameters (𝐖0,𝐖1, ⋯ ,𝐖𝐾−1) 

Outputs: Optimal value/cost-to-go functions (𝐶∗ = (𝐶0, 𝐶1, ⋯ , 𝐶𝐾−1)) 

Optimal policy functions (𝜋∗ = (𝛍0, 𝛍1, ⋯ , 𝛍𝑘−1)) 

Generate 𝑀 discrete points in the state space 𝐗 using LHS (given as 𝐗𝑀). 

           𝑡 = 𝐾 − 1 

while 𝑡 ≥ 0 do: 

        for each 𝐱 in 𝐗𝑀: 

              Solve optimization problem over control variable 𝐮 (Details in Appendix A) 

        end for 

Learn cost-to-go function 𝑪𝑡, and policy function  𝛍𝑡 from the optimized control  variables 

at points in 𝐗𝑀 using Gaussian process regression (Details in Appendix A) 

         𝑡 = 𝑡 − 1 

 

3.3 Application to building-integrated solar system control 

3.3.1 Building-integrated solar energy system 

The building-integrated solar energy system is shown in Figure 3.3. It includes a building-

integrated photovoltaic (BIPV/T) system with a corrugated unglazed transpired solar collector 

(UTC) that enables on-site generation of solar power and heat. The load side of an air-to-water 

heat pump (Swegon Maroon 2 MT29) is connected to a thermal energy storage (TES) tank, 
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providing hot water to a radiant floor heating (RHF) system that is used to condition an open-plan 

office space in Herrick Laboratories building at Purdue campus. The outlet air from the UTC serves 

as the source side for the heat pump. These three components (BIPV/T, TES tank, RFH) are the 

integrated solar system within the context of this paper. The thermal output of the BIPV/T system 

increases the COP of the heat pump and reduces the ventilation energy use. Assuming constant 

ventilation rate and supply air temperature, the benefits from the BIPV/T system are fixed, hence 

only the increase of the heat pump COP is considered in the optional control formulation. A model 

for the integrated energy system is developed in TRNSYS (Klein et al., 2011) and Table B.1 in 

Appendix B provides information for the basic settings and details are presented in Li et al. (2015).  

 

    

Figure 3.3. The building-integrated solar energy system. 

 

The building is modeled with TRNSYS type 56. Settings for the ventilation, shading control, 

air and floor surface temperatures are provided in Table B.1 (Appendix B). The building envelope 

properties are extracted from drawings. The RFH system is modeled using component type 653 

(mode 2) with a water flow rate of 400 kg/hr, coupled with a 10 m3 TES tank (TRNSYS type 60) 

based on the recommendations provided by Li et al. (2015), which examined the interactions 

between design and control parameters. The BIPV/T system covers the top section of the south 

building façade (plenum area) to facilitate potential placement of the ducts, heat pump, and TES 

tank on the roof. The available area for the BIPV/T system is 65 m2. The photovoltaic (PV) panels 

have a nominal power of 0.108 kW/m2 (Day4 Energy Inc., model: DAY418MC). For the UTC 

configuration with PV panels, the PV panel coverage ratio is 90%, based on optimal design 
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recommendations by Li and Karava (2014), which provides 58.5 m2 available PV area with 6.32 

kWp (kilowatt-peak) capacity. The electricity generated by the BIPV/T system is used to cover the 

energy needs of the building or be sold back to the grid. The BIPV/T system is incorporated into 

TRNSYS as a user-defined component, using the energy models presented in Li et al. (2014).  

3.3.2 Optimal control problem formulation 

Based on the system details presented in the previous section, we formulate the system 

specific stochastic model predictive control problem. The control variable (𝑢𝑡) is the total heating 

power provided by the air-to-water heat pump and the backup heater (when needed). The objective 

function is the expected value of the accumulated electric energy consumption over the prediction 

horizon, which is the sum of the electricity consumption from the air-to-water heat pump and the 

backup heater. The backup heater has a maximum capacity (𝑃max) of 5000 watts and efficiency of 

90% (𝜂h). It is installed in the TES tank in case of insufficient heating from the heat pump. Thus, 

the cost at a given time step in equation (3-1) is: 

                                                                 𝐽𝑡(𝐱𝑡,  𝑢𝑡, 𝐼𝑔,𝑡) =

{

HCmax,𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡)

COP𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡)
+
𝑢𝑡−HCmax,𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡)

𝜂h
, if HCmax,𝑡(𝐱𝑡, 𝐯𝑡, 𝐼𝑔,𝑡) < 𝑢𝑡 ≤ 𝑢max,𝑡(𝐱𝑡, 𝐯𝑡 , 𝐼𝑔,𝑡)

𝑢𝑡

COP𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡)
, if 0 ≤ 𝑢𝑡 ≤ HCmax,𝑡(𝐱𝑡, 𝐯𝑡, 𝐼𝑔,𝑡).

        

(3-18) 

The COP and maximum heating capacity (HCmax) of the heat pump are functions of the 

solar irradiance (𝐼𝑔,𝑡) and outdoor dry bulb temperature (through the outlet air temperature of the 

BIPV/T collector, 𝑇bipvt), and the tank temperature (𝑇tank,), which is one of the system states. A 

BIPV/T collector model (Li et al., 2014) incorporated in the controller receives information on the 

predicted solar irradiance from the forecast model (Section 3.2.1), along with the outdoor dry bulb 

temperature forecast, and calculates 𝑇bipvt (𝑇bipvt,𝑡 = 𝑞(𝐯𝑡, 𝐼𝑔,𝑡)) during the prediction horizon. 

Therefore, the COP and HCmax are both functions of the system states, exogenous inputs (𝐯𝑡), and 

disturbances: 

COP𝑡(𝐱𝑡, 𝐯𝑡, 𝐼𝑔,𝑡) = 6.2504 + 0.1338𝑇bipvt,𝑡 − 0.0986𝑇tank,𝑡 + 0.005864𝑇bipvt,𝑡
2  

+0.0004𝑇tank,𝑡
2 − 0.0015𝑇bipvt,t𝑇tank,t, 

                                                                          (3-19)                      
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HCmax,𝑡(𝐱𝑡, 𝐯𝑡 , 𝐼𝑔,𝑡) = 25.3537 + 0.7337𝑇bipvt,𝑡 − 0.0623𝑇tank,𝑡 + 0.0056𝑇bipvt,𝑡
2  

+0.0001𝑇tank,𝑡
2 − 0.0041𝑇bipvt,𝑡𝑇tank,𝑡 , 

                                                                              (3-20)                      

𝑢max,𝑡(𝐱𝑡, 𝐯𝑡, 𝐼𝑔,𝑡) = HCmax,𝑡(𝐱𝑡, 𝐯𝑡 , 𝐼𝑔,𝑡) + 𝑃max.                               (3-21)          

Equations (3-19) and (3-20) show that the efficiency and capacity of the heat pump increase 

as 𝑇bipvt increases. The low-order system model used in the controller is shown in Appendix B 

(Figure B.1) while additional details are provided in Li et al. (2015). The system dynamics is given 

by: 

𝐱𝑡+1 = 𝑓(𝐱𝑡, 𝑢𝑡 , 𝐰𝑡) = 𝑨𝐱𝑡 + 𝑩𝑢𝑢𝑡 + 𝑩𝑣𝐯𝑡 + 𝑩𝑤𝐰𝑡,                          (3-22)  

where 𝐯𝑡 = [

𝑇a,𝑡
𝑇a2
𝑇a3
IG(𝑡)

]. 𝑇a is the outdoor dry bulb temperature from the NOAA weather forecast. We 

do not consider the forecast uncertainty on 𝑇a as it is typically small and would have negligible 

impact on this heavy thermal mass system. IG(𝑡) is the internal heat gain, which is considered 

known based on the building operation schedule (Appendix B, Table B.1). The variables 𝑇a2 and 

𝑇a3 represent the ambient temperature of the TES tank and air temperature of the adjacent zone, 

respectively, and are assumed to be constant. 𝑨 ∈ ℝ6×6, 𝑩𝑢 ∈ ℝ
6×1, 𝑩𝑣 ∈ ℝ

6×4 and 𝑩𝑤 ∈ ℝ
6×4 

are time invariant matrices. The state vector of our system is, 

𝐱𝑡 =

[
 
 
 
 
 
𝑇room,𝑡
𝑇floor,𝑡 
𝑇tank, 𝑡
𝑇enve, 𝑡
𝑎1,𝑡
𝑎2,𝑡 ]

 
 
 
 
 

, 

where 𝐚𝑡 = (𝑎1,𝑡, 𝑎2,𝑡)  is the state of the solar irradiance model (Section 3.2.1), 𝑇enve  is the 

average envelope temperature of the room, 𝑇room is the room air temperature, 𝑇floor is the average 

floor slab temperature, 𝑇tank is the average tank temperature. As discussed in Section 3.2.1, the 

stochastic disturbance 𝐰𝑡 corresponds to the 2-D Gaussian noise, say 𝐳𝑡, perturbing 𝐚𝑡 as well as 

to the random sky condition 𝑐𝑡. Therefore, we have 
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𝐰𝑡 =

[
 
 
 
 ℎ1 (𝐼𝑔,𝑡(𝐚𝑡, 𝑐𝑡))

ℎ2 (𝐼𝑔,𝑡(𝐚𝑡, 𝑐𝑡))

𝑧1,𝑡
𝑧2,𝑡 ]

 
 
 
 

, 

where the function 𝐼𝑔,𝑡(𝐚𝑡, 𝑐t)  is the global horizontal irradiance (see Section 3.2.1), while 

𝐡(𝐼𝑔,𝑡) = [
ℎ1(𝐼𝑔,𝑡)

ℎ2(𝐼𝑔,𝑡)
] = [

𝑞SG1,𝑡
𝑞SG2,𝑡

] gives the solar heat gain on the floor (𝑞SG2,𝑡) as well as other 

building interior surfaces (𝑞SG1,𝑡) (Klein et al., 2011).  

We use seven chance constraints (𝑛𝑐 = 7) on the temperature states and feasible sets of 

control inputs. To determine their proper form, we examine the distributions of these variables 

under 1000 uncertain solar irradiance samples. For the temperature states, even in the most 

uncertain case when sc = 0.5, most of the samples are concentrated around the expected value 

(Figure 3.4). Therefore, the following constraints impose minimum bounds on the expected room, 

floor and tank temperatures, 

𝔼[𝑥𝑖,𝑡+1] − 𝑇min,𝑖,𝑡+1 ≥ 0,                                            (3-23) 

yielding, with the notation of equation (3-3), 

𝑔𝑖,𝑡(𝐱𝑡, 𝑢𝑡 , 𝐰𝑡) = 𝑓𝑖,𝑡(𝐱𝑡, 𝑢𝑡, 𝐰𝑡) − 𝑇min,𝑖,𝑡+1,                             (3-24) 

for 𝑖 = 1,… ,3. Similarly, the constraints below impose maximum bounds on the expected building 

temperatures, 

𝑇max,𝑖,𝑡+1 − 𝔼[𝑥𝑖,𝑡+1] ≥ 0,                                           (3-25) 

yielding 

𝑔4+𝑖,𝑡(𝐱𝑡, 𝑢𝑡 , 𝐰𝑡) = 𝑇max,𝑖,𝑡+1 − 𝑓𝑖,𝑡(𝐱𝑡, 𝑢𝑡, 𝐰𝑡),                            (3-26) 

where 𝑻𝑡, max and 𝑻𝑡, min are known based on the values and schedules given in Appendix B Table 

B.1. Finally, we enforce with high probability the control bounds with the following constraint: 

ℙ [0 ≤ 𝑢𝑡 ≤ 𝑢max,𝑡 (𝐱𝑡, 𝐯𝑡, 𝐼𝑔,𝑡(𝐚𝑡, 𝑐𝑡))] ≥ 1 − 𝛼,                        (3-27) 

where 𝛼 is a small number corresponding to our tolerance for violating this constraint. As an 

expectation, this probability can be expressed by: 

𝔼 [1
[0,𝑢max,𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡(𝒂𝑡,𝑐𝑡))]

(𝑢𝑡)] − 1 + 𝛼 ≥ 0,                           (3-28) 

where 1𝐴(⋅)  is the characteristic function of a set 𝐴 . In the notation of equation (3-3), this 

constraint can be expressed as: 
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𝑔7,𝑡(𝐱𝑡, 𝑢𝑡 , 𝐰𝑡) = 1[0,𝑢max,𝑡(𝐱𝑡,𝐯𝑡,𝐼𝑔,𝑡(𝒂𝑡,𝑐𝑡))]
(𝑢𝑡) − 1 + 𝛼.                    (3-29) 

In the most uncertain scenario when sc = 0.5, the distribution of the heating capacity value 

range is from 26 kW to 31 kW with most of the samples on the two ends (Figure 3.4). Therefore, 

in equation (3-29), a small value of 𝛼=1% is used to ensure that, with 99% of the probability, the 

control input 𝑢𝑡 does not exceed the equipment capacity. 

 

 

Figure 3.4. Histograms of global horizontal irradiance, room temperature, heat pump capacity 

and COP under 1000 irradiance samples (sc = 0.5, 𝑢 = 15 kW, 𝑇a = 15℃, 𝑇room,0=21℃). 

 

Figure 3.5 shows the flow chart of the control algorithm. At the beginning of each simulation 

time step of 1 hour, the algorithm reads the initial temperature states from TRNSYS and it also 

receives weather forecast information (sky-cover, outdoor dry bulb temperature, etc.) for the future 

𝐾 =24 hours of the prediction horizon. Optimal control decisions are made every 1 hour (control 

horizon) between 6:00 a.m. to 20:00 p.m.  
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Figure 3.5. Optimal control algorithm. 

 

3.3.3 Optimal control problem solution 

This section presents the implementation of the value iteration algorithm for solving the 

optimal control problem detailed in the previous section. Each run yields policy functions that 

predict the optimal control for each time step in the prediction horizon.  

Following the procedure outlined in Algorithm 3.1 (Section 3.2.2), the state-space has been 

discretized for computing point estimates of optimal ‘cost-to-go’ and policy functions. The first 

four variables in the state space (tank, room, floor and envelope temperatures) are used for 

calculating the cost at each time step, while the dependence of the cost-to-go functions on other 

variables is negligible, and thereby not considered. 

To obtain the collocation points in 4-dimensional state space, 𝑇room and 𝑇tank are sampled 

using Latin hypercube sampling (LHS) as a two-dimensional vector varying between their 

temperature bounds (Appendix B Table B.1). As shown in Figure 3.6, samples are uniform for 

𝑇room and 𝑇tank. 𝑇floor is generally higher than 𝑇room while 𝑇enve is usually lower. Therefore, the 

state variables representing 𝑇floor  and 𝑇enve  are sampled from exponential distributions with 

location parameters (1 for the floor temperature; -1 for the envelope temperature) and scale 

parameters (1 for both) chosen to keep deviations around 1-3ºC from 𝑇room. A sample size of 500 
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was deemed sufficient to represent the state space for these simulations. 𝑇room and 𝑇tank have the 

most significant impact on the energy consumption, and are thus used for visualizing the value 

iteration algorithm. 

 

 

Figure 3.6. Distribution of 500 collocation points in 4-dimensional temperature space for 

implementation of value iteration algorithm at a time step. 

 

The solar irradiance model presented in Section 3.2.1 generates N =100 irradiation samples 

at each time step of 1 hour for a prediction horizon of 𝐾 = 24 hours. At each time step 𝑡 in a 

prediction horizon, we evaluate the right-hand side of the Bellman equation (3-17) at each 

collocation point using all 𝑁 irradiance samples at the time step (see Appendix A equation (A-3)). 

Each evaluation requires solving a stochastic optimization problem (details in Section 3.3.2) with 

respect to the optimal control at that time step. We parallelize the 𝑀=500 optimization problems 

to solve at time step using MPI4Py (Dalcín et al., 2008); while employ a gradient based ‘pyOpt’ 

solver (Perez et al, 2012) to achieve further efficiency by providing the analytical derivatives of 

objective function and constraints. After evaluating all the points at a time step, we collect those 

collocation points as inputs and the corresponding optimal cost-to-go values and optimal controls 

as outputs to approximate the next optimal cost-to-go and policy functions, respectively. This is 

carried out via GPR in GPy module (Hensman et al., 2012). We use squared exponential 

covariance functions in the GPR and we maximize the marginal likelihood to find the optimal 

hyperparameters following the method described in Chapter 5 of (Rasmussen and Williams, 2006). 

More details regarding GPR and the evaluation of right-hand side of the Bellman equation are 

presented in Appendix A. After completing the approximation of cost-to-go and policy functions 

at time 𝑡, we move to time step 𝑡 − 1 and repeat the evaluation and approximation procedures with 

updated disturbances (see Algorithm 3.1). In this way, the ADP algorithm is implemented in 
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receding horizon fashion to obtain sets of policy functions, while the effect of future predictions 

is captured in the approximated value and policy functions. The policy function at the first time 

step of the prediction horizon is used for generating the optimal control for the building system. 

The algorithm deals with non-controllable scenarios via min-max controls, which means if 

no feasible control input can keep the temperature states within constraints for the next time step, 

we apply the minimum (for over-heating) or maximum (for under-heating) feasible input. To 

visualize the cost-to-go functions, we only show results for 𝑇room and 𝑇tank as the function values 

are found to vary primarily in these dimensions.   

Figure 3.7 details the evolution of the cost-to-go functions across the prediction horizon. We 

observe that the use of min-max type control inputs reduces as the simulation moves to lower time 

steps. This elicits the effect of longer time horizon in reducing the energy consumption in the 

system. The cost increases as the number of time step decreases because it includes energy costs 

incurred by the system at future points of time when it receives optimal control inputs. At lower 

time steps, the estimated cost increases as room and tank temperatures decrease.  

 

 

Figure 3.7. Contour plots demonstrating evolution of cost-to-go function at time step 1, 8, 16, 24 

as computed using value iteration algorithm (irradiation samples at 0:00 of 18 January 2017, 

𝑇floor=20℃, 𝑇enve=20℃).  

 

The expensive part of policy function computation at each step is the optimization at each 

collocation point, which requires several evaluations of the right-hand side of Bellman’s function. 

The optimization problems at the 500 collocation points are parallelized to reduce the computation 

time. A single evaluation of the right-hand side of the Bellman equation for one collocation point 

can take about 0.4 minutes with our current Python implementation. After parallelizing the 500 

collocation points to 100 nodes of the Rice supercomputing cluster at Purdue University, the 
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computation time of ‘cost-to-go’ evaluation at a time step takes about 2 to 3 minutes. Therefore, a 

complete ADP solution for a 24-hour prediction horizon takes about 30-40 minutes in average 

considering the system operation schedule from 6 a.m. to 20 p.m. All the processes can be sped up 

by implementing in a lower level language and augmenting the parallelization ability. For this 

control approach to be implementable in real-time building operation, access to cloud computation 

services is required. The source code for the ADP we implemented in this study can be found in 

Paritosh et al. (2017). 

3.4 Performance analysis 

In this section, we present the emulation process that we use to evaluate the SMPC based on 

two aspects: (i) Comparing its performance, in terms of energy savings and comfort maintenance; 

and (ii) Analyzing the uncertainty on the energy consumption and thermal comfort violation 

associated with the stochastic disturbance.  

3.4.1 Emulator 

We deploy the emulation framework shown in Figure 3.8 to evaluate the performance of the 

SMPC for the integrated solar system. Physical models for the building, BIPV/T system, RFH, 

and TES tank are built using TRNSYS. The data-driven heat pump model is developed in 

MATLAB. The predictive controller is developed in Python and it is coupled with TRNSYS Type 

155 using MATLAB as the mid-ware. Real time actual weather data are used as inputs to the 

physical models in TRNSYS. At every control horizon between 6:00 a.m. to 20:00 p.m., the 

controller predicts the optimal heating system operation by running a 24-hour-horizon ADP 

solution and sends the control signal to the heat pump and the backup heater. Every 1-hour 

emulation time-step in TRNSYS, it takes about 31 to 42 minutes to complete. This includes about 

1 to 2 minutes for the communication between MATLAB and Python, and 30 to 40 minutes 

required for an ADP solution. Therefore, considering 1 hour of control horizon, our solution can 

be implemented to an actual controller for the integrated solar system. 
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Figure 3.8. System emulation diagram. 

 

3.4.2 Control performance 

In this section, we present the performance evaluation results. The SMPC uses the solar 

forecast model to quantify the uncertainty in solar irradiance while the physical models in 

TRNSYS receive measured weather data. A benchmark control strategy is the theoretical 

performance bound (PB), in which we assume that the actual weather condition is perfectly known 

in advance. Therefore, both the controller and TRNSYS receive measured weather data. The ADP 

algorithm is implemented to obtain optimal control solutions.  However, PB is a theoretical 

concept rather than an actual controller. A well-tuned rule-based control (RBC) with control 

decisions based on the outdoor dry bulb temperature and sky-cover forecast values is also used as 

baseline. It follows the solar energy availability so that the energy system achieves high efficiency 

(Candanedo, 2011). The details of the RBC are presented in Appendix C. A 24-hour prediction 

horizon is implemented for the SMPC and PB. The same initial temperature states are used for all 

cases. To eliminate the effect of initial states, we use a pre-simulation period of five days. 

The temperature exceedance (in ℃-hr) according to ASHRAE Standard 55 (ASHRAE & 

ANSI, 2017) and electricity consumption (in kWh), are used as performance metrics. In this study, 

both the total temperature exceedance (including occupied and unoccupied hours) and the 

temperature exceedance at occupied hours are considered:  
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∆𝑇op = ∑(|𝑇op
𝑡 − 𝑇set

𝑡 |∆𝑡),                                              (3-30) 

where 𝑇op is the operative temperature in ℃; 𝑇set is the setpoint temperature in ℃; ∆𝑡 is the time 

step in hour. The occupied hours we considered in this study are from 8:00 a.m. to 18:30 p.m. 

We consider a three-day emulation, based on the weather data shown in Figure 3.9. During 

this period (Feb. 1st – Feb. 3rd, 2017), the outdoor dry bulb temperature varies from -10℃ to 4.5℃; 

the first day is relatively warm and partly-cloudy with high uncertainty on the solar irradiance 

predictions (for details see Section 3.2.1) and the following two days are relatively cold and sunny 

(high probability of sky condition being clear).  

 

 

Figure 3.9. Outdoor dry bulb air temperature and incident solar irradiance on the south façade 

during the three-day emulation (Feb. 1st – Feb. 3rd, 2017). 

 

The emulation results for the SMPC (Figure 3.10, top) show that the heat pump operation 

starts at 6 a.m. on Feb. 1st with nearly maximum system capacity due to the anticipated increase in 

the set-point temperature during the occupied hours and, therefore, the tank is charged in advance. 

Along with a slight tank charge in the afternoon, the stored energy is sufficient to maintain the 

temperature for the rest of the day. Another reason for the intense charge at 6 a.m. of Feb. 1st is 

that, the uncertainty on the solar irradiance forecast is high on the upcoming hours based on the 

sky-cover forecast (range from 40% to 80%) received at 6 a.m. In order to meet the lower setpoint 

bound on the temperature states under uncertain disturbances, the SMPC controller follows a more 

conservative operation schedule. In contrast, for PB (Figure 3.10, middle), the heat pump operates 

with less power at 6 a.m. on Feb. 1st. Based on the perfectly accurate weather information, the cost 

is reduced when the heat pump operation is postponed till the afternoon when sufficient energy 

can be stored even for the following day. 
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Due to the different pump operation on the previous day, the starting tank temperature on 

Feb. 2nd at 6 a.m. in SMPC is lower than that in PB. Therefore, for SMPC, the 6 a.m. charge is 

repeated on Feb 2nd with less intensity, and the heat pump is also ON during the sunny hours in 

anticipation of the outdoor temperature decrease in the evening. While in PB, the heat pump 

operation on Feb. 2nd is not required as the TES tank has been charged already during the previous 

day. 

On Feb. 3rd, the starting tank temperatures at 6 a.m. are similar in both SMPC and PB. The 

sky-cover forecast indicates partly-cloudy condition (high uncertainty in irradiance) in the morning 

and high probability of being sunny in the afternoon (low uncertainty in irradiance). Therefore, the 

heat pump operates mostly in the afternoon sunny hours for both cases to store energy at increased 

efficiency for discharge at night. The higher heat pump power in SMPC in the morning can be 

explained by the high solar irradiance uncertainty at the time.  

In RBC (Figure 3.10, bottom), the operations are designed to follow the solar availability to 

take advantage of the increased system COP, while also considering the outdoor dry bulb 

temperature (details in Appendix C). Therefore, the heat pump is continuously ON from 6 a.m. to 

20 p.m. every day at the power rate ranging from 3 to 6 kW. 
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Figure 3.10. Temperatures, heating and electrical power for the three-day emulation of SMPC, 

PB and RBC (Feb. 1st – Feb. 3rd, 2017). 

 

Emulations were also performed for a winter month (Jan. 16th to Feb. 16th, 2017) for the 

three cases discussed above and the results are shown in Table 3.1. During this period, the outdoor 

dry bulb temperature varies from -15℃ to 18℃. Overall, SMPC results in slightly less temperature 

exceedance (3.22℃-hr in occupied hours) but higher electricity consumption (57.28 kWh, 34.7%) 

over a month compared to PB.  
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Table 3.1. Performance metrics comparison for the winter month emulation (Jan. 16th – Feb. 16th, 

2017). 

Metrics SMPC PB RBC 

Temperature 

exceedance (all hours) 

(ºC-hr) 

Lower-setpoint: 

145.13 

Upper-setpoint: 

104.50 

Total: 249.63 

Lower-setpoint: 

154.01 

Upper-setpoint: 

100.73 

Total: 254.74 

Lower-setpoint: 

0.05 

Upper-setpoint: 

727.54 

Total: 727.58 

Temperature 

exceedance (occupied 

hours) (ºC-hr) 

Lower-setpoint: 

77.86 

Upper-setpoint: 

104.50 

Total: 182.36 

Lower-setpoint: 

84.85 

Upper-setpoint: 

100.73 

Total: 185.58 

Lower-setpoint: 0 

Upper-setpoint: 

727.54 

Total: 727.54 

Total heating energy 

(kWh) 
664.80 566.80 1574.00 

Total electricity (kWh) 222.41 165.13 399.50 

  

Compared to RBC, SMPC saves around 44.0% (177.09 kWh) electricity consumption. Also, 

SMPC improves room thermal comfort, reducing the temperature exceedance during occupied 

hours to 25.1% of RBC (primarily improvements occur during the occupied hours). Figure 3.11 

presents the histogram of the operative temperature exceedance during the occupied hours. To 

count for the difference between over-heating and under-heating, at each time step, the exceedance 

metric is calculated as follows: 

Exceedanceocc = (𝑇op
𝑡 − 𝑇set

𝑡 )∆𝑡.                                         (3-31) 

It is seen that SMPC and PB rarely result in temperature exceedance to be greater than 1ºC-

hr or lower than -1ºC-hr; while RBC shows clearly more over-heating compared to the other two 

cases.  

 

 

Figure 3.11. Operative temperatures exceedance histogram for the long-term simulation (Jan. 

16th – Feb. 16th, 2017). 
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3.4.3 Uncertainty analysis on energy efficiency and thermal comfort maintenance 

In SMPC, the ADP algorithm returns a policy function 𝜇𝑡  at each time step, which 

determines the optimal control for the upcoming control horizon based on the current states. At a 

time step, when system disturbances vary, the optimal control that the policy predicts also varies 

(as disturbances affect the states). In this way, the uncertainty in the system disturbances can 

introduce uncertainty on the cost as it is a function of the optimal control. To evaluate the impact 

of the uncertainty, we draw 100 samples of the time-series solar irradiances data (based on the 

solar irradiance model in Section 3.2.1) during a period from January 16th, 2017 to February 5th, 

2017 under the measured sky-cover values. A set of hourly-updated policy functions is obtained 

based on the hourly-updated weather forecast information. To examine the performance, we 

implement this set of policy functions in the controller to predict the optimal controls for the system 

over 100 solar irradiance samples. Each sample is an input to TRNSYS assuming it represents a 

possible scenario of ‘actual’ irradiance. Therefore, 100 emulations are performed with this certain 

set of policy functions to predict 100 sets of optimal controls. In comparison, we also predict a 

series of control inputs with RBC based on the same weather forecast information. This series of 

control inputs are also implemented in 100 emulations under the 100 solar irradiance samples. The 

initial states for both cases are kept the same for fair comparison. 

The operative temperature profiles from SMPC and RBC for the first 10 days (Jan. 16th, 2017 

-Jan. 26th, 2017) are presented in Figure 3.12 and 3.13, respectively. Figure 3.12 shows that the 

policy functions can well control the operative temperature (𝑇op) during the occupied hours over 

different solar irradiance samples. The upper and lower bounds of the operative temperature are 

mostly maintained within the setpoint bounds, with a reasonably small amount of violations. In 

comparison, RBC is less capable of controlling the operative temperature within the setpoint 

bounds (Figure 3.13).  
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Figure 3.12. Operative temperature profile with uncertainty for SMPC (Jan. 16th, 2017 - Jan. 26th, 

2017, 100 solar irradiance samples). 

 

 

Figure 3.13. Operative temperature profile with uncertainty for RBC (Jan. 16th, 2017 - Jan. 26th, 

2017, 100 solar irradiance samples). 

 

The cumulative cost at a time is the total cost from the starting time. For example, the 

cumulative cost at the end of day 3 is the total cost from the starting time to the end of day 3. It 

measures control performance in reducing cost over time. According to Figure 3.14, the mean 

cumulative cost of the 20th day for RBC is 241.44 kWh with an uncertain range of [239.09 kWh, 

244.56 kWh] considering the 0th- 100th sample percentile; while it is 141.48 kWh for SMPC with 

an uncertain range of [114.99 kWh, 179.32 kWh] considering the 0th- 100th sample percentile.  

Although SMPC introduces higher uncertainty on the cost compared to RBC, the optimal 

control at every prediction horizon is robust in terms of cost saving under various solar irradiance 

scenarios, because even the 100th percentile cumulative cost of SMPC is lower than the 0th 

percentile cumulative cost of RBC at the 20th day. The reason behind the higher cost uncertainty 

in SMPC is that, the policy functions predict different optimal controls based on the states under 
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different irradiance samples to satisfy the constraints. Therefore, there are 100 different optimal 

control trajectories from the 100 different irradiance samples; while in RBC, there is only one 

control input trajectory, which is obtained from the hourly weather forecast, for all the samples. 

This reduces the major uncertainty source on the cost in RBC to the variation of system efficiency 

(COP), while the uncertainty sources in SMPC are the different optimal control trajectories as well 

as the variations of COP.  

 

 

Figure 3.14. 0-100th Sample percentile of cumulative cost (Jan. 16th, 2017 - Feb. 5th, 2017). 

 

Similarly, the cumulative temperature exceedance during the occupied hours in both cases 

over the emulation period are presented in Figure 3.15. SMPC clearly outperforms RBC in terms 

of thermal comfort maintenance, and at the same time, it imposes less risk on comfort violation. 

The mean cumulative temperature exceedance of the 20th day for RBC is 136.21 °C-h with an 

uncertain range of [121.85 °C-h, 148.72 °C-h] considering the 0th- 100th sample percentile; while 

it is 56.56 °C-h for SMPC with an uncertain range of [48.42 °C-h, 67.06 °C-h] considering the 0th- 

100th sample percentile. The reason behind the low comfort violation uncertainty in SMPC is that 

the policy function predicts different optimal controls over different irradiance samples aiming at 

maintaining the system states from all the samples within the constraints. Therefore, the 

temperature exceedance in SMPC is significantly lower than that in RBC, in which the only control 

trajectory may fail to maintain thermal comfort under different irradiance scenarios. 
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Figure 3.15. 0-100th sample percentile of cumulative temperature exceedance during the 

occupied hours (Jan. 16th, 2017 -Feb. 5th, 2017). 

 

3.5 Summary 

In this Chapter, we presented a SMPC algorithm augmented with a new probabilistic 

autoregressive model that is used to quantify solar irradiance uncertainty using sky-cover forecasts. 

Based on that, we introduced a new ADP methodology to solve the resulting nonconvex stochastic 

optimization problem. The SMPC controller was implemented in an emulator to demonstrate 

optimal control decisions under uncertainty for a building with integrated solar system.  

The results show that SMPC outperforms RBC in terms of both energy savings and 

temperature control. For the integrated system and climate considered in this work, it reduces the 

electricity consumption by 44% in a winter month and reduces thermal comfort violations by 75%. 

Also, SMPC predicts optimal policies that satisfy the constraints, considering a wide range of 

possible outcomes of the uncertain solar irradiance forecast. More specifically, SMPC: (i) 

Achieves similar performance on comfort control and results in more realistic energy savings 

compared to the PB, which assumes perfect knowledge of the future disturbances; (ii) It is robust 

in comfort maintenance, imposing less uncertainty on comfort violation compared to RBC. Under 

uncertain solar forecast, the highest cumulative cost resulting from SMPC is less than the lowest 

cumulative cost of RBC after 20 days of emulation. Therefore, in summary, the developed SMPC 

approach has shown promising results for the operation of building-integrated solar systems. It 

should be noted that its performance in actual implementation also depends on the accuracy of the 

process model and input data.   
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 A USER-INTERACTIVE SYSTEM FOR SMART THERMAL 

ENVIRONMENT CONTROL IN OFFICE BUILDINGS 

4.1 Overview 

In this Chapter, the objective is to develop a systematic approach to design interfaces of user-

interactive systems that aim to increase energy efficiency and occupant satisfaction in office 

buildings. Towards this end, we present a prototype user-interactive system with a novel web-

interface. Using this interface, occupants can adjust their temperature setpoints while providing 

feedback on their comfort preferences while receiving energy use information that is real-time, 

personalized, and directly related to specific actions. Furthermore, we implement the interface in 

a building management system with a model predictive HVAC controller. Finally, we design a set 

of experiments to reveal the causal factors of occupant’s thermostat adjustment behavior on HVAC 

energy use. Our field study aims to test the hypothesis that user-interactive systems integrated into 

smart building operation make energy-efficient behavior natural, easy, and intuitively 

understandable for the end-users resulting in HVAC energy savings and overall occupant 

satisfaction. Using the data collected, we formulate a human decision-making model based on 

utility theory and infer the model parameters with a Bayesian approach that quantifies the 

uncertainty induced by the limited amount of data that can be observed in realistic settings. We 

argue that the proposed utility model can become a systematic approach to evaluate the design of 

similar user-interactive systems for different office layouts and building operation scenarios. This 

will allow to quantify the increase of smart office buildings' efficiency and flexibility by employing 

occupant-engaged controls. 

  In Section 4.2, we describe the experimental study with human test subjects and the test-

bed building with our user-interactive system. The experiment's key observations are summarized 

in Section 4.3, providing the basis for the decision-making model presented in Section 4.4. 

4.2 Experimental study 

This section presents a prototype user-interactive system that was implemented in an office 

building (Section 4.2.1). The system includes a model predictive HVAC controller (Section 4.2.2) 

to determine the default setpoints that minimize energy consumption and a web-based thermostat 
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interface with personalized and real-time energy use information for the occupants (Section 4.2.3). 

The experimental study was conducted in the summer of 2018 to evaluate the effect of the energy 

use information on occupants’ thermostat adjustment behavior, and HVAC energy use is presented 

in Section 4.2.4. 

4.2.1 Building and HVAC system 

   Three identical south-facing private offices (3.3 × 3.7 × 3.2m high) in a high-performance 

building located in West Lafayette, Indiana, were used as test-beds for this study (Figure 4.1). The 

offices have one exterior curtain wall façade with a 54% window-to-wall ratio. The windows are 

equipped with high-performance glazing units with selective low-emissivity coating (visible 

transmittance: 70%, solar transmittance: 33%). Dark-colored motorized interior roller shades are 

installed in the offices with a total visible transmittance of 2.53% and an openness factor of 2.18%. 

Each office has two electric lighting fixtures with two 32-W T5 fluorescent lamps (total of 128 

W).  

Heating and cooling are delivered to the spaces through a variable air volume (VAV) system 

with a central air handling unit (AHU), which supplies cooled air to the offices at a constant 

temperature of 16°C, but with a variable flow rate (between 140 and 550cfm). Each office has a 

VAV box with a zone damper that can modulate the supply airflow rate in the cooling mode and 

a reheat coil (capacity 762W) to increase the supply air temperature as needed. The cooling and 

heating source (chilled water and steam) in the actual test-bed are provided from the campus plant. 

For this work, we assume that an air-cooled chiller is the cooling source that provides chilled water 

to the cooling coil in the AHU in compliance with typical office building settings. The chiller's 

performance data were adopted from the catalog of an actual product (Trane CGAM20), and the 

nominal capacity and coefficient of performance (COP) are 68.9 kW and 2.67, respectively. In this 

study, the capacity was scaled down to 12% (8.27 kW) based on the cooling load of the offices. 

The energy input ratio (EIR) method was used to determine the real-time efficiency and power 

(DoE, 2010). The hot water in the reheat coils was assumed to come from a gas boiler with 90% 

efficiency. A building management system (BMS) is available through the installed Tridium JACE 

controllers and Niagara/AX software framework.    
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Figure 4.1. The three private offices in West Lafayette, IN. 

 

4.2.2 MPC algorithm for HVAC control 

MPC is based on the premise that data-driven building models can be created using 

monitored data. These models can be used to determine the most energy-efficient or cost-effective 

control strategies. At each control time-step, using weather and internal load measurements and 

predictions, an open-loop optimal control problem is solved over a finite horizon, and the values 

within the control horizon in the optimal input trajectory are implemented to the system. In the 

next control time-step, a new optimal control problem is formulated and solved with updated 

information on weather/internal gains forecast. In this section, we present the MPC controller 

developed for the specific test-bed and HVAC system. The objective function minimizes the total 

HVAC energy consumption over a prediction horizon of 12 hours: 

min
𝐮0,𝐮1,…,𝐮𝐾−1

∑𝐽𝑡(𝐱𝑡, 𝐮𝑡, 𝐰𝑡)

𝐾−1

𝑡=0

.   

(4-1) 

The time step is 0.5 hours, so 𝐾 = 24 in equation (4-1) and the control horizon is also 0.5 hours. 

𝐽𝑡 is the sum of HVAC energy consumption at time step 𝑡. It is a function of 𝐱𝑡, the vector of states; 

𝐮𝑡, the vector of control inputs; and 𝐰𝑡, the vector of disturbances.  
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4.2.2.1 Building model 

 

 

Figure 4.2. The RSS model for the building. 

 

At every prediction horizon, the evolution of the building temperature states is predicted 

by a reduced-order state space (RSS) model, the graphical representation of which is shown in 

Figure 4.2.The building dynamics are given by the following linear equations, 

𝐱𝑡+1 = 𝐀𝐱𝑡 + 𝐁𝑢𝐮𝑡 + 𝐁𝑤𝐰𝑡,                                             (4-2) 

where 𝐀 ∈ ℝ6×6, 𝐁𝑢 ∈ ℝ
6×3, and 𝐁𝑤 ∈ ℝ

6×8 are time-invariant matrices. Solving equation (4-2) 

recursively over the prediction horizon gives, 

[
 
 
 
 
𝐱1
𝐱2
𝐱3
⋮
𝐱𝐾]
 
 
 
 

⏟
𝐗

=

[
 
 
 
 
𝐁𝑢
𝐀𝐁𝑢
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⋮
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𝐔
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𝐖
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𝐀
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⋮
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⏟
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The state variables 𝐱𝑡 = [
𝐓air,𝑡
𝐓mass,𝑡

]  include the room air temperatures 𝐓air,𝑡  and mass 

temperatures 𝐓mass,𝑡 at time 𝑡,  

𝐓air,𝑡 = [

𝑇air,1,𝑡
𝑇air,2,𝑡
⋮

𝑇air,𝑁,𝑡

] , 𝐓mass,𝑡 = [

𝑇mass,1,𝑡
𝑇mass,2,𝑡

⋮
𝑇mass,𝑁,𝑡

],  

where 𝑖 = 1, 2,⋯𝑁, is the room index, with 𝑁 = 3 for the present study. The control variables 𝐮𝑡 

are the heating/cooling rates to the offices, 

𝐮𝑡 = [

𝑢1,𝑡
𝑢2,𝑡
⋮
𝑢𝑁,𝑡

]. 

The elements in the disturbance vector 𝐰𝑡 are: (i) The solar gain to the offices (𝐪𝑆𝐺); (ii) 

The internal heat gains (𝐈𝐆); (iii) The outdoor air temperature (𝑇out ); and (iv) The corridor 

temperature (𝑇indoor) constantly set to 21°C. 

𝐰𝑡 = [

𝐪𝑆𝐺,𝑡
𝐈𝐆𝑡
𝑇out,𝑡
𝑇indoor

] , 𝐪𝑆𝐺,𝑡 = [

𝑞𝑆𝐺1,𝑡
𝑞𝑆𝐺2,𝑡
⋮

𝑞𝑆𝐺𝑁,𝑡

] , 𝐈𝐆𝑡 =

[
 
 
 
IG1,𝑡
IG2,𝑡
⋮

IG𝑁,𝑡]
 
 
 
. 

The parameters identified in the RSS model are the elements of state matrix 𝐀, input matrix 𝐁𝑢, 

and disturbance matrix 𝐁𝑤. Each element in these matrices has a form of multiplication of the 

thermal capacities (𝐶1:4), resistances (𝑅1:7), as well as the coefficients multiplied to the heat flux 

input for the transmitted solar radiation (𝑚3, 𝑚4) and heating/cooling rate (𝑚1, 𝑚2). To estimate 

those parameters, we collected the room air temperature, heating/cooling rate and disturbance 

measurements from the offices every 5 minutes for 15 days (10 days for training, 5 days for 

validation). To ensure sufficient excitation, the setpoint temperatures were ranging from 19 ℃ to 

27 ℃. Using this dataset, we solved an optimization problem minimizing the mean absolute error 

(MAE) between the air temperature measurements and the air temperatures predicted by Eq. (2) 

for all the rooms. The validation root mean square error (RMSE) for 𝐓air is 0.65°C, while 𝐓mass 

are treated as unobserved states because they are impractical to measure in actual office building 

settings.  
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4.2.2.2 Cost function and constraints 

At each time step, the cost is the sum of the energy consumption from the fan, chiller and 

the boiler that provides hot water for the reheat coil: 

𝐽𝑡(𝐱𝑡, 𝐮𝑡 , 𝐰𝑡) = (𝑃fan,𝑡 + 𝑃chiller,𝑡 + 𝑃reheat,𝑡 )∆𝑡,                                   (4-4) 

where ∆𝑡 is the length of a time step (0.5 hours). The details of the fan, chiller and reheat power 

models are presented in Appendix D.  

Constraints are imposed on the control inputs based on the HVAC heating and cooling 

capacity: 

𝑢𝑖,𝑡,min ≤ 𝑢𝑖,𝑡 ≤ 𝑢𝑖,𝑡,max,                                                           (4-5) 

[
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⏟      
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,                                                 (4-6) 

where 𝑢𝑖,𝑡,max is the upper control bound for office 𝑖 at time 𝑡, when the reheat coil runs at its 

maximum capacity while the damper is at the minimum position. 𝑢𝑖,𝑡,min is the lower control 

bound at time 𝑡 when the damper is at the maximum open position while the reheat coil is off. 

Also, the room air temperatures must be kept within certain bounds to maintain thermal 

comfort: 

𝑇𝑖,𝑡,min ≤ 𝑇air,𝑖,𝑡 ≤ 𝑇𝑖,𝑡,max,                                                         (4-7) 

where 𝑇𝑖,𝑡,max =  25℃ and 𝑇𝑖,𝑡,min =20℃ are upper and lower bounds of the office setpoint 

temperatures, respectively based on ASHRAE Standard 55 (ASHRAE & ANSI, 2017). Given 

equation (4-3) we have: 
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,                                    (4-8) 
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where 𝐓𝑡,min = [

𝑇1,𝑡,min
𝑇2,𝑡,min
⋮

𝑇𝑁,𝑡,min

] ;  𝐓𝑡,max = [

𝑇1,𝑡,max
𝑇2,𝑡,max
⋮

𝑇𝑁,𝑡,max

] ;  𝐌 = [𝐈𝑁  𝟎𝑁,𝑁]1×𝐾 consists of identity matrices 

𝐈𝑁 ∈ ℝ
𝑁×𝑁  with ones on the main diagonal and zeros elsewhere, and zero matrices 𝟎𝑁,𝑁 ∈

ℝ𝑁×𝑁 with all the entries being zeros. 

Therefore, based on equations (4-6) and (4-8), the constraints on the control input and room 

air temperature can be written as: 

[

𝐌𝐆𝑢
−𝐌𝐆𝑢
𝐈𝑁∙𝐾
−𝐈𝑁∙𝐾

]𝐔 ≤ [

𝐓max −𝐌𝐆𝑤𝐖−𝐌𝐇𝐱0
𝐌𝐆𝑤𝐖+𝐌𝐇𝐱0 − 𝐓min

𝐔max
−𝐔min

].                                         (4-9) 

At each prediction horizon, a constrained nonlinear optimization problem described with the cost 

function (4-1) and constraint (4-9) is solved to obtain the sequence of optimal control inputs 𝐔. 

We use the nonlinear programming solver ‘fmincon’ with sequential quadratic programming 

algorithm in MATLAB environment. 

4.2.2.3 MPC implementation 

Figure 4.3 presents the schematics of data communication for the MPC implementation. 

The calculations were performed using a server computer with MATLAB. For the disturbance 

prediction at every prediction horizon, we downloaded the NOAA weather forecast data including 

the outdoor air temperature, sky-cover and relative humidity. The predicted solar gains to the 

offices were calculated using these data based on the model by Seo (2010). The occupancy 

schedule was from 10 a.m. to 5 p.m. The internal heat gain from the occupants, lighting, and 

equipment were set to 75, 128, and 105 W/office, respectively, based on the data from the test-

bed. The outputs from the MPC algorithm are the optimal heating/cooling rates for the offices. 

Subsequently, we compute the setpoint temperatures resulting from the optimal heating/cooling 

rates using equation (4-2), and send these setpoints to BMS through Modbus protocol for 

implementation. After implementing the new setpoints at each control horizon, we send to the 

server computer real-time sensor measurements for the air temperature, supply air temperature and 

flow rate, and exogenous inputs (transmitted solar irradiance and outdoor air temperature) to 

estimate the unobserved initial state (𝐓mass) using Kalman filter (Stengel, 1994).  
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Figure 4.3. Data communication for MPC implementation. 

 

4.2.3 User-interface 

As discussed in the previous section, the setpoint temperatures determined by the MPC 

algorithm were implemented in the building management system. Two user-interfaces were 

developed using Niagara GUI Workbench. The temperature control interface in Setup 1 (Figure 

4.4 (a)) serves as the interface for the control group in the field experiment. The interface for Setup 

2 (Figure 4.4 (b)) displays the energy use information in addition to providing temperature control. 

In both interfaces, occupants could temporarily override the default setpoints with each override 

session lasting for up to 1 hour. In this way, minimal effort was required from the occupants to 

maximize energy savings (by accepting the default setpoint) in Setup 2. After changing the setpoint, 

occupants can follow a link at the bottom of the interfaces to provide feedback regarding their 

thermal preference (prefer cooler, slightly cooler, slightly warmer, warmer, or satisfied with the 

current condition). 
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(a) Temperature control interface (Setup 1) 

 

(b)Temperature control and energy use interface (Setup 2) 

Figure 4.4. Web-interfaces implemented in the field study. 

 

The MPC algorithm calculates the real-time hypothetical, optimal energy use for the 

following hour with equation (4-4) using the current temperatures, environmental disturbances, 

and the optimal controls as inputs. This information is provided to the occupants as a motivational 

‘goal’ (green bar in Figure 4.4), allowing occupants to directly compare with their energy use (dark 

grey bar). The length of the bar visualizes the current accumulative energy usage (up to 10kWh) 

of a day. It is displayed right below the thermostat and updated in real-time so occupants can see 

this information when they wish to adjust the thermostat. Details of the functionality of the energy 

use interface are explained in Figure 4.5, which presents a user-interaction scenario. 
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Figure 4.5. Functionality of the energy use interface. 

 

If an occupant always accepts the default setpoint temperature 𝑇optimal, the length of the 

dark grey bar would remain the same with the green bar. However, when an occupant overrides 

the default 𝑇optimal and tries to select from the potential setpoints on the thermostat (𝑇sp), we 

instantly display to the dark grey bar the expected increase of energy use of the following hour 

(∆𝐸, which varies as 𝑇sp varies) while the occupant moves the indicator on the thermostat slider. 

Through this design, occupants can visualize the energy impact of their temperature selection, and 

consider it along with their thermal preference to select a new setpoint. ∆𝐸 is approximated as 

follows: 
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∆𝐸𝑡 = 𝜉𝑡 ∙ |𝑇sp − 𝑇optimal,𝑡|.                                                  (4-10) 

As the building dynamics are linear, by plugging 𝑇sp and 𝑇optimal to the left-hand side of the linear 

equation (4-2) respectively, subtracting each other, we can establish that the difference between 

HVAC thermal inputs to achieve 𝑇sp and 𝑇optimal,𝑡 is proportional to |𝑇sp − 𝑇optimal,𝑡|. Therefore, 

Δ𝐸, which is approximately the difference between the HVAC thermal inputs divided by the 

overall HVAC system efficiency, is also proportional to |𝑇sp − 𝑇optimal,𝑡|. The coefficient 𝜉𝑡 

depends on the real-time overall energy efficiency of the HVAC system and, ultimately, on the 

weather condition and system operating state. It is the inverse of the product of the HVAC system 

efficiency and the corresponding element of heat transfer coefficient in the input matrix 𝐁𝑢.  

4.2.4 Experimental procedure 

The field experiment was conducted in the summer of 2018 (Jul. 3rd, 2018–Sept. 13th, 2018). 

23 office occupants (12 males and 11 females) were recruited for the study. The participants were 

university students or staff (between 22 and 36 years old) who were not familiar with this research. 

Each private office was occupied by one occupant every day between 10 a.m. to 5 p.m. All 

occupants were asked to perform their usual office work (computer-related work, reading, writing, 

etc.) during the day, and they were free to take short breaks (within 10 minutes) and a lunch break 

for about 1 hour. They were asked to wear the clothes they would normally wear in the office in 

the summer, and not to change the clothes between 10 a.m. to 5 p.m. Details regarding the 

experimental setups were explained to the occupants when they arrived in the morning to help 

them become quickly familiar on their first days of each setup.  

To identify the casual effect of the energy use information, each occupant used the interface 

shown in Figure 4.4 (a)- Setup 1 during the first for two days, and then another two days, the 

interface in Figure 4.4 (b)-Setup 2. In other words, Setup 1 provides the control group data. In each 

office, the web-interface was displayed on a monitor placed on the desks to be easily accessible 

(Figure 4.6). The occupants were given access to remote controls for the roller shades and electric 

lights. They were advised to interact with remote controls and the web-interfaces as they would 

typically do in their offices. The instrumentation was installed so that there was no interference 

with the occupants’ regular position and task, and they were instructed to avoid any direct contact 

with the monitoring instrumentation. The occupants were asked to complete the override surveys 
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whenever they adjusted the thermostat (link available on the web-interface) and an exit survey at 

the end of each test-day to obtain information on their overall thermal satisfaction. The detailed 

questions for the surveys are provided in Appendix E. The study was approved by the Institutional 

Review Board (IRB Protocol #: 1503015873). 

4.2.5 Data acquisition and instrumentation 

The office layout and locations of the sensors are presented in Figure 4.6. All data were measured 

and recorded every minute. The following physical variables were monitored during the 

experiment.  

• Air flow rate, supply air temperature, reheat coil mode, occupancy, thermostat override 

status, setpoint temperature, shading position, and electric light level. The sensors/actuators 

for these variables were connected with the existing BMS using BACnet protocol.  

• Room air temperature (J-type thermocouples, resolution: 0.01 °C, accuracy: 0.4%), 

transmitted solar irradiance (LI-COR 200-SL pyranometer, resolution: 0.1 W/m2, accuracy: 

3%) on the façade. The sensors for these variables were connected with the National 

Instrument wireless data acquisition system, which communicated with the BMS using 

Modbus protocol.  

 

 

Figure 4.6. Sensor locations and office layout. 
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4.3 Experimental results 

This section presents the field experiment results, analyzing the occupants’ thermostat 

adjustment behavior, survey responses for Setup 1 and Setup 2, and the corresponding HVAC 

energy consumption. 

The thermal preference votes for Setup 1 and 2 are presented in Figure 4.7. Overall, the mean 

setpoint temperature determined by MPC was 21.4℃ for Setup 1 and 21.5 for Setup 2; the median 

was 21.4℃, and the standard deviation was 0.8℃ for either setup. Under these conditions, most 

occupants reported preferring slightly warmer or warmer, while less preferred marginally cooler 

in the thermal preference votes. In Setup 1, we observed 108 thermostat adjustments (or overrides), 

and this value was 62 in Setup 2. Noticeably, around 71% less ‘prefer slightly warmer’ votes in 

Setup 2, which means fewer thermostat adjustments from the occupants due to their preference for 

slightly warmer conditions (51 overrides in Setup 1 compared to 15 in Setup 2). Since the 

occupants were exposed to similar thermal conditions in the two setups, they chose not to adjust 

the thermostats when deemed unnecessary considering the energy consumption and potential 

improvement in their comfort. Also, the survey responses in Setup 2 (Question 2 in Table E.1 

Override survey, Appendix E) show that all the occupants considered the energy use information 

in the thermostat adjustments. 

 

 

Figure 4.7. Occupants’ thermal preference votes for Setup 1 and Setup 2 (-2: prefer cooler, -1: 

prefer slightly cooler, 0: satisfied with current condition, 1: prefer slightly warmer, 2: prefer 

warmer). 

 

Figure 4.8 presents the setpoint temperatures selected by the occupants and the setpoint 

temperatures determined by the MPC controller before the thermostat adjustments per thermal 
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preference vote for both setups. In both setups, when the occupants preferred slightly cooler, they 

reduced the setpoint temperatures from 21.9℃ to 20.8℃ on average, and the number of overrides 

was similar (11 overrides in Setup 1 compared to the 10 in Setup 2, see Figure 4.7). The expected 

increase of energy use of such an adjustment was often as low as approximately 0.2 kWh (i.e., 

𝜉𝑡 ≈ 0.2 kWh/℃) due to the relatively higher cooling energy efficiency. Therefore, the difference 

in energy use resulting from thermostat adjustment might be inconspicuous to the occupants, 

which could explain the similar behavior in Setup 1 and Setup 2.  

When the occupants preferred slightly warmer, they increased the setpoint temperatures 

from 21.3℃ to 22.9℃ in Setup 1, and 22.3℃ in Setup 2 on average. Usually, higher setpoint 

temperatures require reheat operations, which would result in higher energy use because of the 

relatively lower efficiency. On average, the energy use would increase 1kWh for 1℃ increment in 

the setpoint (i.e. 𝜉𝑡 ≈ 1  kWh/℃). As this information was presented to the occupants, the 

difference in the setpoint selections and the reduced frequency of overrides (Figure 4.7) in the two 

setups indicates that they attempted to reduce their energy use in Setup 2. It also means that the 

occupants considered both their comfort and energy use in the decision-making.  

Similarly, when the occupants preferred warmer conditions, the occupants increased the 

setpoints from 21.1℃ to 23.6℃ in Setup 1, and 23℃ in Setup 2 on average. However, the number 

of overrides only reduced from the 42 in Setup 1 to the 36 in Setup 2 (Figure 4.7). The reason 

could be that the occupants considered it necessary to increase the setpoint to improve their 

comfort, while attempting to mitigate their energy impact. It also needs to be noted that the 

standard deviation of the occupants’ selected setpoint temperatures decreased from the 1.1℃ in 

Setup 1 to the 0.7℃ in Setup 2. The reason could be that the occupants’ selections were more 

consistent in the deliberate decision-making, rather than randomly setting the thermostats to a 

higher setpoint. The setpoint temperature profiles from some representative occupants are 

presented in Appendix F. 
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Figure 4.8. The default (MPC) and occupants’ selected setpoint temperatures per thermal 

preference vote for Setup 1 and 2. 

 

Figure 4.9 compares the daily HVAC energy use until 5 p.m. for Setup 1 and 2. The mean 

optimal daily HVAC energy consumption for both setups was similar (2.1 kWh for Setup 1 and 

2.2 kWh for Setup 2). Therefore, the differences in the two setups' actual consumption were mainly 
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attributed to the occupant overrides. The mean actual daily HVAC energy consumption per office 

in Setup 1 was 4.9 kWh, while in Setup 2 it was reduced to 3.9 kWh. By comparing the mean 

optimal and actual consumption for Setup 1, it can be seen that the occupants’ overrides resulted 

in significant addition to the energy use of the smart HVAC control (i.e., 55% of the energy use in 

Setup 1). This confirms that occupant interactions with thermostats should be taken into account 

in the realistic energy saving estimations of advanced control strategies, as it significantly affects 

energy use. However, 36% of the additional energy consumption associated with the occupants’ 

overrides can be recovered with the web-interface implemented in Setup 2. The recovered energy 

results from occupants’ acceptance of the default setpoints, as well as the deliberate decision 

making and consideration of energy use when selecting the new setpoints. In addition, the standard 

deviation of the daily actual energy consumption was reduced from the 1.8 kWh in Setup 1 to 0.7 

kWh in Setup 2, suggesting that the energy saving in Setup 2 could be consistent. 

 

 

Figure 4.9. Daily HVAC energy use (until 5 p.m.) comparison in Setup 1 and 2. 

 

Occupants’ survey responses on their overall discomfort experience during a day (see the 

exit survey on Table E.1, Appendix E) are presented in Figure 4.10. It can be seen that there is no 

significant difference between Setup 1 and Setup 2, and in both setups, occupants only ‘rarely’ 

experienced discomfort conditions for more than 30 minutes on average. Therefore, the thermal 

conditions in Setup 2 achieved lower energy consumption with the same level of overall occupant 

satisfaction compared to Setup 1.  
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Figure 4.10. Occupants’ survey responses about overall discomfort (1: never, 2: rarely, 3: a few 

times, 4: most of the time, 5: always). 

 

4.4 Human decision-making model for thermal environment control 

4.4.1 Modeling the decision-making process 

Our experimental data show that occupants select a setpoint temperature by evaluating (i) 

the expected comfort level (in Setup 1 and Setup 2) and (ii) the resulting energy use (in Setup 2 

only). We assume that there are occupant-specific utility functions 𝑈1 and 𝑈2 that quantify the 

subjects’ preference over the potential choices in Setup 1 and 2, respectively. Occupants prefer 

choices with higher utility values. Therefore, the occupants’ decision-making process for setpoint 

selections can be seen as maximizing their utilities. Note that these two utility functions are not 

completely independent. Specifically, 𝑈1  is a special case of 𝑈2  and thus the two share some 

parameters. However, we use two separate functions in order to simplify the mathematical notation.  

4.4.1.1 Decision-making model for Setup 1 

Let us derive a plausible mathematical form for the utility of an occupant under Setup 1. 

In this setup, the occupant can choose the setpoint 𝑇sp  from the set of setpoints 𝒯 =

[18.3℃, 26.7℃] without any consideration of the energy consumption. So, the utility 𝑈1  is a 

function of 𝑇sp, i.e., 𝑈1 = 𝑈1(𝑇sp). Assuming all other ambient conditions are relatively constant, 

e.g., humidity, air velocity, there must exist a setpoint 𝑇sp
∗  which the occupant prefers because it 

delivers the maximum comfort. The simplest mathematical form with this property is: 
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𝑈1(𝑇sp) = 𝑈1(𝑇sp; 𝑎, 𝑇sp
∗  ) = −𝑎(𝑇sp − 𝑇sp

∗ )
2
,                                  (4-11) 

where 𝑎 is a positive parameter that describes how sensitive the occupants’ preference is to the 

square distance between the choice 𝑇sp and the ideal 𝑇sp
∗ . In this way, the utility 𝑈1 exhibits a 

maximum at: 

argmax
𝑇sp

𝑈1(𝑇sp; 𝑎, 𝑇sp
∗ ) = 𝑇sp

∗ .                                                (4-12) 

4.4.1.2 Decision-making model for Setup 2 

We now derive the mathematical form for the utility function in Setup 2. The difference 

between the two setups is that the occupant also receives information from the energy use portal. 

Denote this energy use information by 𝐹  for feedback. We assume that the feedback can be 

summarized by the expected increase of energy use (∆𝐸, see equation (4-10)) and the difference 

between the optimal energy use and the occupant’s energy use before adjusting the thermostat (𝐸).  

𝐹(𝑇sp, 𝐸, 𝑇optimal, 𝜉) = 𝐸 + ∆𝐸 = 𝐸 + 𝜉|𝑇sp − 𝑇optimal|.                        (4-13) 

So, 𝑈2 = 𝑈2(𝑇sp, 𝐹). We expect that for any fixed 𝐹 the occupant would prefer the setpoint that 

makes them most comfortable. That is, the function 𝑈2(𝑇sp, 𝐹) exhibits a maximum at 𝑇sp = 𝑇sp
∗  

when 𝐹 is held constant. Furthermore, we expect that the occupant will always prefer to consume 

less energy for any 𝑇sp. That is, we expect that 𝑈2(𝑇sp, 𝐹) is a decreasing function of 𝐹 when 𝑇sp 

is kept constant. In other words, 𝑈2(𝑇sp, 𝐹) exhibits a maximum at 𝐹 = 0. However, even though 

the occupant would always prefer 𝐹 = 0 and 𝑇sp = 𝑇sp
∗ , this choice is not possible as 𝐹 is also 

affected by 𝐸, 𝑇optimal  and 𝜉 , which are not controlled by the occupant. Instead, during each 

thermostat adjustment, the occupant can only choose a 𝑇sp that is between 𝑇optimal (∆𝐸 = 0 when 

𝑇sp = 𝑇optimal) and 𝑇sp
∗ . Given that 𝐹 is correlated to the distance between 𝑇sp and 𝑇optimal via 

equation (4-13), the simplest mathematical form of 𝑈2 is: 

𝑈2(𝑇sp, 𝐸, 𝑇optimal, 𝜉; 𝑎, 𝑐, 𝑇sp
∗ ) = −𝑎(𝑇sp − 𝑇sp

∗ )
2
− 𝑐𝐹(𝑇sp, 𝐸, 𝑇optimal, 𝜉)

2
        (4-14) 

where 𝑐 is a positive parameter that captures the importance that the occupant attributes to the 

feedback. In this way, the maximum of 𝑈2 at given 𝐸, 𝑇optimal, 𝜉 is exhibited at: 

𝜕𝑈2

𝜕𝑇sp
|
𝑇sp=argmax

𝑇sp
𝑈2

= 0.                                                     (4-15) 



 

 

70 

Writing down the details of the left-hand side of equation (4-15), which is the partial derivative of 

𝑈2 regarding 𝑇sp, we have: 

𝜕𝑈2
𝜕𝑇sp

= −2𝑎𝑇sp + 2𝑎𝑇sp
∗ − 2𝑐𝜉2𝑇sp + 𝑐𝜉

2𝑇optimal − 2𝑐𝐸𝜉 = 0 

(4-16) 

Therefore, given equations (4-16), re-arranging to a function of 𝑇sp , and (4-15), the 

occupants’ setpoint selections in Setup 2 can be predicted by, 

argmax
𝑇sp

𝑈2(𝑇sp, 𝐸, 𝑇optimal, 𝜉; 𝑎, 𝑐, 𝑇sp
∗ ) =

−𝑎𝑇sp
∗ − 𝑐𝜉2𝑇optimal + 𝑐𝐸𝜉

−𝑎 − 𝑐𝜉2
. 

(4-17) 

4.4.2 Calibrating the model using the experimental data 

In the field experiment, we collected datasets 𝓓 = (𝒟1, 𝒟2), in which there are 𝑀 and 𝑁 

observations from Setup 1 and Setup 2, respectively. The observed data are 𝒟1
(𝑖)
= (𝑇sp,obs,1

(𝑖) ), and 

𝒟2
(𝑗)
= (𝑇sp,obs,2

(𝑗)
, 𝐸(𝑗), 𝑇optimal

(𝑗)
, 𝜉(𝑗) ), where 𝑖 = 1,2,⋯𝑀; 𝑗 = 1,2,⋯𝑁 are the data indices for 

the two setups. 𝐓sp,obs = (𝑇sp,obs,1, 𝑇sp,obs,2)  are the observed setpoint selections from the 

occupants in Setup 1 and Setup 2, respectively. The likelihood of observing 𝑇sp,obs,1
(𝑖)

 and 𝑇sp,obs,2
(𝑗)

 

can be expressed as: 

𝑝 (𝑇sp,obs,1
(𝑖)

|𝑎, 𝑇sp
∗ ) = 𝒩 (𝑇sp,obs,1

(𝑖)
|𝜇1
(𝑖)
, 𝜎1
2),                                     (4-18) 

𝑝 (𝑇sp,obs,2
(𝑗)

|𝐸(𝑗), 𝑇optimal
(𝑗)

, 𝜉(𝑗), 𝑎, 𝑐, 𝑇sp
∗ ) = 𝒩 (𝑇sp,obs,2

(𝑗)
| 𝜇2

(𝑗)
, 𝜎2
2),                    (4-19) 

where 𝒩(∙ |𝜇, 𝜎2) is the probability density function (PDF) of a univariate Gaussian distribution 

with mean 𝜇  and standard deviation 𝜎 . Given equations (4-12) and (4-17) that predict the 

occupants’ setpoint selections, the means on the right-hand side of equations (4-18) and (4-19) are: 

𝜇1
(𝑖)
= argmax

𝑇sp

𝑈1(𝑇sp; 𝑎, 𝑇sp
∗ ),                                               (4-20) 

𝜇2
(𝑗)
= argmax

𝑇sp

𝑈2 (𝑇sp, 𝐸
(𝑗), 𝑇optimal

(𝑗)
, 𝜉(𝑗); 𝑎, 𝑐, 𝑇sp

∗ ).                              (4-21) 

In reality, due to the occupants’ limited cognitive capacity (i.e. the occupants do not have 

the exact utility function in their mind but rather some internal criteria for the energy use and 
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comfort consideration), and other constraints (e.g. the limited amount of time that occupants can 

spend on the selection, etc.), the occupants would not accurately evaluate their preferences on the 

setpoints options (Simon, 1990). Therefore, we assume that 𝐓sp,obs are ‘near’ rather than exactly 

equal to the setpoint at the maximum of the utility. The standard deviation 𝛔 = (𝜎1, 𝜎2) on the 

right-hand side of equations (4-18) and (4-19) accounts for such differences, as well as the personal 

differences among a group of occupants. 𝜎1 and 𝜎2 are setup specific, as in Setup 2 this difference 

could be attributed to hidden factors related to the occupants’ understanding of energy use, which 

do not exist in Setup 1. 

Figure 5.11 is the graphical representation of the causal factors affecting the occupants’ 

setpoint selection. The variables in green represent the factors related to energy use consideration. 

In green solid circles is the information from the energy use portal, in which 𝑇optimal and 𝜉 reflect 

the smart HVAC operation based on the building and energy system dynamics, as well as the 

environmental disturbances. The variables in orange circles are the factors related to comfort 

consideration; while the utility function parameters are in dashed circles. Along with 𝛔, all these 

variables together affected the occupants’ setpoint selections. Based on these data 𝓓 collected 

from the experiment (shaded circles), we can infer the unobserved variables 𝛉 = (𝑎, 𝑐, 𝑇sp
∗ , 𝛔) in 

the blank circles. 

 

 

Figure 4.11. Causal factors affecting the occupants’ setpoint selection. 

 

We estimated the unobserved variables using a Bayesian modeling approach. This allows 

the quantification of uncertainty considering the proposed model form and limited amount of 

observed data. According to Bayes rule, we have: 
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𝑝(𝛉|𝓓) ∝ 𝑝(𝓓|𝛉) ∙ 𝑝(𝛉),                                                (4-22) 

where 𝑝(𝛉|𝓓)  is the posterior distribution of the unobserved variables; 𝑝(𝓓|𝛉)  is the data 

likelihood described in equations (4-18) and (4-19); 𝑝(𝛉)  is the prior distribution of the 

unobserved variables, and we assigned the following uninformative priors: 

𝑝(𝜗) = exp(𝜗|0.1),                                                      (4-23) 

𝑝(𝑇sp
∗ ) = 𝒩(𝑇sp

∗ |23, 32),                                                 (4-24) 

where 𝜗 = 𝑎, 𝑐, 𝛔; and exp(∙ |𝜆) is the PDF of an exponential distribution with rate parameter 𝜆. 

Python PyMC 2.3.7 package (Patil et al., 2010) was employed to code the model and to sample 

from the posterior of the unobserved variables with Markov chain Monte Carlo (MCMC) method. 

Adaptive Metropolis-Hastings sampler was used. After analyzing the traces and autocorrelations 

of the chain, we use in total 500000 samples and discarded the first 100000. 2000 samples are 

gathered by keeping one MCMC sample out of every 200. It should be noted that we excluded the 

data from one occupant who is highly likely to belong to a different thermal preference cluster 

(Lee et al., 2017) than others (see Appendix F). However, we believe that the forms of the decision-

making model and utility function considered in this study are still applicable to occupants from 

other clusters as well. 

4.4.3 Modeling results 

 

Table 4.1. Descriptive statistics of the inferred unobserved variables. 

Variable Mean Median Standard deviation 95% credible interval 

𝑇sp
∗  23.095 23.095 0.106 [22.884, 23.297] 

𝑎 0.582 0.511 0.245 [0.162, 0.965] 

𝑐 0.221 0.195 0.122 [0.056, 0.433] 

𝜎1 1.045 1.039 0.082 [0.898, 1.211] 

𝜎2 1.035 1.028 0.079 [0.912, 1.123] 

 

Based on the inferred parameters in Table 4.1, we present the posterior median contour of 

the utility function in Figure 4.12. The utility value becomes higher as the setpoint temperature (x-

axis) approaches around 23.1℃ (equals to the median and mean of inferred 𝑇sp
∗ ), and as the 

difference with the optimal energy use (y-axis) gets close to 0. Also, for any potential setpoint the 
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utility value becomes higher as the additional energy use approaches 0, and for the same amount 

of additional energy use the utility value is higher as the setpoint gets closer to 𝑇sp
∗ . Therefore, it 

represents the fact that, ideally occupants would prefer to select 𝑇sp
∗  with as less additional energy 

use as possible. 

 

 

Figure 4.12. Posterior median contour of the utility with intersection lines representing Setup 1 

(left) and a scenario in Setup 2 (right). 

 

The dash line in Figure 4.12 (left) represents the scenario for Setup 1 in which energy use 

information is not displayed to the occupants (𝐹 = 0 from the utility contour). Figure 4.13 (top 

left) details the utility value for all the potential setpoint temperatures for Setup 1 considering 95% 

credible interval for the utility function parameters. Using the setpoint (median) with the maximum 

utility value for Setup 1 (𝑇sp = 23.1℃) as a reference, we compute the probability of any potential 

setpoint being preferred by the occupants than the reference condition in Setup 1. This result is 

presented in Figure 4.13 (top right) and it shows that, when the occupants do not consider energy 

use, their preference on the setpoints are sensitive to the distance from 𝑇sp
∗ .  

A typical scenario is represented with the dash line from the utility contour in Figure 4.12 

(right). In this scenario the current temperature determined by MPC is 20℃ (𝑇optimal ) and 

occupants want to increase the setpoint using the web-interface in Setup 2. In the meantime, before 

changing the setpoint the occupants observe a visual presentation of the difference with the optimal 

energy use (𝐸) at 2.5kWh, while the expected energy use increases at the rate of 𝜉 = 1 kWh/℃ 
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based on the system and environmental condition. Figure 4.13 (bottom left) details the utility value 

for the potential setpoint temperatures for the scenario considered, taking into account 95% 

credible interval of the utility model parameters. The median of setpoint temperatures with the 

maximum utility value is 22.3℃, which is increased from the default temperature of 20℃, 

resulting in 2.3kWh of additional energy use. Compared to selecting 23.1℃ (𝑇sp
∗ ) with 3.1kWh of 

additional energy use, the occupants are more likely to save 0.8 kWh. 

 

 

Figure 4.13. Occupants’ preference on the setpoint temperatures in Setup 1 (top) and Setup 2 

(bottom).  
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4.4.4 Model validation 

In order to demonstrate that the decision-making model can effectively predict the 

occupants’ setpoint selections given the data we observed in the field experiment, we perform 10-

folds cross validation by splitting the observed data into training set (90% of the data) and 

validation set (10% of the data). Given 𝐸, 𝜉, and 𝑇optimal we predict the probability distribution of 

the setpoints at the maximum of the utility. Then we compare the observed selected setpoints in 

the validation data set with the mean of the predicted setpoints. In Figure 4.14, the x-axis represents 

the prediction error, which is the difference between the observed selected setpoints and the mean 

of the predicted setpoints temperatures. The y-axis is the percentile of the observed setpoints in 

the predicted distributions. As all the points fall around the 45° line, it means that the predictive 

distributions can well capture the observed data points.  

 

 

Figure 4.14. Quantile plot of the prediction error for model validation. 

 

4.5 Summary 

In this Chapter, we introduced a prototype user-interactive system integrated with a model 

predictive HVAC controller. Its novel web-interface enables private office occupants to consider 

real-time and personalized energy use information in their setpoint temperature selections. We 

implemented the system in an actual building and conducted a field experiment with human 

subjects to test our hypothesis that energy use information leads to more energy-efficient 

thermostat adjustment behavior by office building occupants. The experimental results showed 

that for the specific system and climate, occupants’ overrides can contribute up to 55% of the 
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energy consumption on average with the implementation of smart HVAC control based on MPC. 

However, by providing real-time energy use information, 36% of the additional energy 

consumption (on average) can be recovered while achieving the same level of overall occupant 

satisfaction.  

Subsequently, we presented a new modeling approach that reveals the causal effects in 

human decision-making process on occupant interactions with thermal environment control 

systems when energy efficient strategies are implemented. We demonstrated our approach using 

an actual building as test-bed and developed a utility model that quantifies occupants’ preference 

on temperature setpoint incorporating their comfort and energy use considerations. The results 

showed that with the designed interface, the same level of overall occupant satisfaction was 

achieved and occupants (i) selected setpoints that were closer to temperatures determined by MPC 

to reduce energy use and (ii) often accepted the default setpoints when they did not need a 

significant improvement in the thermal environment condition. Based on these findings, we 

propose that the utility model can become a systematic approach to evaluate the design of similar 

user-interactive systems and web interfaces for different office layouts and building operation 

scenarios. 

In order to achieve this, further investigation is needed to overcome the limitations of this 

initial study. More specifically, the energy use information presented to occupants could vary if 

the user-interactive system was implemented in a different building and climate. Since previous 

studies (Wilhite and Ling, 1995; Vellei et al., 2016) suggest that the effect of energy feedback may 

vanish with time, the proposed user-interactive system should be evaluated in a long-term field 

experiment with a large number of participants. Similar field studies are needed in different offices 

types and locations around the world for a larger database and diverse population to infer a more 

generalized utility. The prototype web-interface and human decision-making model presented in 

this paper is a first step towards developing standard user-interactive systems in a consistent and 

reliable way. In addition, other development tools such as Python GUI could be employed to 

provide more options in terms of data visualization and collection. 
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 A META-REINFORCEMENT LEARNING APPROACH FOR 

OPTIMAL HVAC CONTROL 

5.1 Overview 

In this Chapter, we present a new Meta-RL approach to automate the discovery of building 

HVAC control policy. Using a model universe, identified with available building information, the 

agent is trained to learn policy that makes control decisions to improve energy efficiency and 

provide occupant comfort that can quickly adapt to the target building from. The agent is deployed 

to an emulator of a private office space as test-bed to evaluate the control performance and 

adaptability. In order to substantiate the necessity of our approach, we also demonstrate the impact 

of the environment simulators’ prediction quality on the control agent’s performance in the actual 

building with conventional RL approach. 

We introduce the RL and Meta-RL algorithms in Section 5.2. The case study is presented in 

Section 5.3, and the performance evaluation of the proposed Meta-RL is presented in Section 5.4. 

5.2 Methodology 

Reinforcement learning problem for building control can be formulated as a Markov 

decision process (MDP). The states from the state space 𝑠𝑡 ∈ 𝒮 contains variables that describe the 

environment status at time 𝑡 including building system temperatures, and exogenous variables 

such as outdoor weather conditions, etc. The action from the action space 𝑎𝑡 ∈ 𝒜 taken by the 

agent at time 𝑡 is the control variable (e.g. the thermal input from HVAC system). After an action 

taken, the environment transits into a new state following the state transition probability function 

𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡). It can also be written as 𝑝(𝑠′|𝑠, 𝑎). 

Then, the agent receives a reward as feedback from the environment (𝐸) based on the energy 

efficiency and occupants’ comfort achieved by the action. The reward 𝑅(𝑠𝑡, 𝑎𝑡) or 𝑅𝑡 is dependent 

on the current states and actions. The accumulated future rewards (return) is: 

𝐺𝑡 =∑𝛾𝑘𝑅𝑡+𝑘

∞

𝑘=0

, 

(5-1) 
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where the rewards are multiplied to discount factor 𝛾 by how far off in the future they’re obtained. 

As some of the state variables may not be measured in real buildings (e.g. building envelope 

temperatures), we introduce the term 𝑜𝑡 to represent the part of the states that are observable, 𝑜𝑡 ∈

𝒪 which is the observation space. The action of the agent is determined by a policy function 𝜋(𝑜𝑡) 

based on the current observations.  

5.2.1 Reinforcement learning algorithm 

Many approaches in reinforcement learning utilize the action-value function (Q-function) 

to describe the expected return after taking an action 𝑎𝑡 given the current observations 𝑜𝑡, and 

thereafter following policy 𝜋. The learning objective for the agent is to maximize the expected 

future return represented by the optimal Q-function: 

𝑄∗(𝑜𝑡, 𝑎𝑡) = max
𝜋
𝔼𝜋[𝐺𝑡|𝑜𝑡, 𝑎𝑡].                                             (5-2) 

The Q-function is approximated by a deep neural network, and it can be written in a 

recursive form, Bellman equation, which suggests iterative updates based on the latest 

observations, rewards and actions: 

𝑄∗(𝑜𝑡, 𝑎𝑡) = 𝔼[𝑅𝑡 + 𝛾𝑄𝜋
∗ (𝑜𝑡+1, 𝜋(𝑜𝑡+1))].                                     (5-3) 

We employed deep deterministic policy gradient algorithm (DDPG, Lillicrap et al., 2016) 

to train the RL agent to learn by interacting with the environment. DDPG is (i) a model-free 

algorithm so it does not require the state transition function to be known; (ii) suitable for control 

problems where the control variable is continuous; and (iii) an actor-critic algorithm that not only 

learns the policy function (actor) that can be directly implemented as controller, but also learns the 

Q-function (critic) to update the policy in a direction of performance improvement. In this way, 

the algorithm can be substantially more data efficient and stable by take advantage of the past 

experience.  

In DDPG, the actions taken by the agent are chosen based on the policy: 

𝜋𝜃(𝑜𝑡) = clip(𝒩(∙ |𝜇𝜃(𝑜𝑡), 𝜎
2), 𝑎𝑡,min, 𝑎𝑡,max),                                (5-4) 

where 𝒩(∙ |𝜇𝜃(𝑜𝑡), 𝜎
2) is the probability distribution function (PDF) of a univariate Gaussian 

distribution. Its mean function 𝜇𝜃(𝑜𝑡) is represented by a deep neural network, the input of which 

are the observations 𝑜𝑡, and the weights (𝜃) of the deep neural network are updated during the 

learning process. Agent’s explorations are enabled by the standard deviation 𝜎, which is selected 
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according to the scale of the action space. If an action value sampled from the Gaussian distribution 

exceeds the lower limit 𝑎𝑡,min or the higher limit 𝑎𝑡,max, The function clip(∙) overrides the action 

value to 𝑎𝑡,min or 𝑎𝑡,max, respectively.  

All the transitions (𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1) are saved in a replay buffer 𝒟. At every time step, a 

mini-batch of 𝐵 transitions representing the past experience are sampled to perform updates on the 

policy and the Q-function. DDPG approximates the right-hand side of equation (5-3) represented 

with 𝑦 by minimizing the mean-squared Bellman error (MSBE) with gradient descent: 

𝜙𝑡+1 = 𝜙𝑡 − 𝛽1∇𝜙𝑡
1

𝐵
∑ (𝑦𝑖 − 𝑄(𝑜𝑖, 𝑎𝑖|𝜙𝑡))

2

𝑖
, 

(5-5) 

where 𝜙 represents the weighting parameters of Q-function network, 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄
′(𝑜𝑖+1, 𝜋

′(𝑜𝑖+1|𝜃targ,𝑡)|𝜙targ,𝑡).                                    (5-6) 

𝑖 = 1,⋯ , 𝐵 is the index of the sampled transitions from a mini-batch. 𝛽1 is the step size of the 

gradient descent for the Q-function. After the Q-function is updated, the weighting parameters 𝜃 

of the policy are optimized towards achieving the maximum Q-function value by gradient ascent: 

𝜃𝑡+1 = 𝜃𝑡 + 𝛽2∇𝜃𝑡
1

𝐵
∑ 𝑄(𝑜𝑖 , 𝜋(𝑜𝑖|𝜃𝑡)|𝜙𝑡+1)

𝑖
, 

(5-7) 

where 𝛽2 is the step size of the gradient ascent for the policy function. 𝑄′ and 𝜇′ are the target 

networks with weighting parameters 𝜙targ  and 𝜃targ , respectively. They are the temporal 

difference backups of the Q-function and policy function networks to direct the learning towards 

performance improvement. The target networks are updated by Polyak (𝜌) averaging to improve 

the stability of learning. The learning can be repeated on the environment over the entire training 

data (with length 𝑇) for multiple epochs until convergence. The pseudo code of the algorithm is 

described in Algorithm 5.1. 
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Algorithm 5.1: DDPG algorithm 

Inputs:  initial 𝜃, 𝜙 

Outputs: policy function 𝜋𝜃 

Initialize an empty replay buffer 𝒟 

Initialize 𝜃targ = 𝜃, 𝜙targ = 𝜙 

for epoch 𝑗 = 1,⋯ , 𝐽 

    for 𝑡 = 1,⋯ , 𝑇 

        Observe 𝑜𝑡 and select action 𝑎𝑡 using equation (5-4) 

        Execute 𝑎𝑡, get reward 𝑟𝑡 and 𝑜𝑡+1 

        Store (𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1) in 𝒟 

        Sample a random mini-batch of 𝐵 transitions (𝑜𝑖, 𝑎𝑖 , 𝑟𝑖, 𝑜𝑖′) from 𝒟, 𝑖 = 1,⋯ , 𝐵 

        Update the weighting parameters of the Q-function with equation (5-5) 

        Update the weighting parameters of the policy function with equation (5-7) 

        Update the weighting parameters of the target networks: 

𝜃targ,𝑡+1 = 𝜌𝜃targ,𝑡 + (1 − 𝜌)𝜃𝑡+1 

𝜙targ,𝑡+1 = 𝜌𝜙targ,𝑡 + (1 − 𝜌)𝜙𝑡+1 

        𝑡 = 𝑡 + 1 

end for 

    𝑗 = 𝑗 + 1 

end for  

 

5.2.2 Meta-RL algorithm 

We utilized Meta-RL in order to train the agent with the model universe ℰ obtained based 

on existing knowledge of a building space. Our implementation is based on the study by Finn et 

al. (2017). First, a sufficient set of 𝑁  environments that can well represent the possible 

environment models given the knowledge on a building is randomly sampled from ℰ. A Meta-RL 

policy function (𝜋𝜃𝑒) with weighting parameters 𝜃𝑒 is randomly initialized. The Meta-RL policy 

is adopted in each sampled environment initially, but updated with the DDPG algorithm described 

in Section 5.2.1. The policy in a sampled environment 𝐸𝑛  is noted as 𝜋𝜃𝑛  with weighting 

parameters 𝜃𝑛, and 𝑛 = 1,⋯ ,𝑁. To ensure compatibility, the deep neural networks representing 
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𝜋𝜃𝑛  and 𝜋𝜃𝑒  share the same architecture. After updating the policy in each sampled environment, 

a new trajectory of transitions based on the updated policy is collected. With such trajectories from 

all the sampled environments, the Meta-RL policy is updated with gradient ascent maximizing the 

expected accumulated rewards from all sampled environments: 

𝜃𝑒,𝑚+1 = 𝜃𝑒,𝑚 + 𝛽3𝛻𝜃𝑒,𝑚∑ 𝔼[∑𝑟(𝑠𝑛,𝑡, 𝜋(𝑜𝑛,𝑡|𝜃𝑛))

𝑇

𝑡=1

] ,
𝑛

 

(5-8) 

where 𝛽3 is the step size of the gradient ascent. In this study, the implementation of the meta policy 

gradient descent is based on a recently developed proximal policy optimization (PPO) by 

Schulman et al. (2017). The pseudo code for Meta-RL is described in Algorithm 5.2. 

 

Algorithm 5.2: Meta-RL  

Input: 𝐸1, 𝐸𝑛⋯ ,𝐸𝑁 ∈ ℰ 

randomly initialized 𝜃𝑒 and 𝜙1:𝑁 

Outputs: Meta-RL policy function 𝜋𝜃𝑒  

for episode 𝑚 = 1,⋯ ,𝑀 

for 𝑛 = 1,⋯ , 𝑁 

    Initialize the weighting parameters of 𝜋𝜃𝑛: 𝜃𝑛 = 𝜃𝑒,𝑚 

    Update 𝜃𝑛 and 𝜙𝑛 with DDPG (Algorithm 5.1) for 𝑡 = 1,⋯ , 𝑇 

    Sample a trajectory of transitions 𝒪𝑛 = {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)} for 𝑡 = 1,⋯ , 𝑇 using 𝜋𝜃𝑛  

         𝑛 = 𝑛 + 1 

end for 

Update 𝜃𝑒 with equation (5-8) using all trajectories 𝒪1:𝑁 

     𝑚 = 𝑚 + 1 

end for 

 

5.3 Case study 

One of the south-facing private offices in a high-performance building located in West 

Lafayette, Indiana was used as test-beds for this study (see Figure 4.1 in Chapter 4). The detailed 

descriptions of the test-bed and its HVAC system can be found in Section 4.2.1. The only 
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difference is that the capacity of the assumed chiller was scaled down to 3% (2.07 kW) based on 

the cooling load of one private office. 

5.3.1 Environment and agent 

For RL agent training, we use the dynamical model that predicts building thermal response 

to describe part of the state transition function that simulates the behavior of the environment. 

Please note that this model is unknown to the agent. We adopted a generic second-order thermal 

network model structure (3R2C) as it is recognized as a simple yet accurate representation of a 

building zone similar to our test-bed. A graphical representation of the thermal network is shown 

in Figure 5.1. 

 

 

Figure 5.1. The thermal network for the 3R2C model. 

 

The model universe specific to the test-bed can be described with uncertain parameters of 

the model 𝜉 = (𝐶env, 𝐶air, 𝑅oe, 𝑅er, 𝑅rc, 𝛼sol.env) , as based on the typically available building 

information such as construction drawings, the values of the parameters cannot be accurately 

determined without the process of system identification. In this study, we obtain the probability 

distributions of these parameters presented in Figure 5.2 using the process described in Appendix 

G. The parameter 𝛼sol.env has the value between 0 and 1, and thereby a non-informative prior of 

uniform distribution 𝒰(0,1) is assumed. 
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Figure 5.2. Probability distribution of the uncertain parameters in the subset of model universe. 

 

The states of the environment include the envelop temperature 𝑇env,𝑡 , indoor air 

temperature 𝑇air, the corridor temperature 𝑇cor, the outdoor air temperature 𝑇out, solar heat gain 

𝑄SG, and internal heat gain 𝑄int: 

𝑠𝑡 = [𝑇env,𝑡, 𝑇air,𝑡, 𝑇out,𝑡, 𝑇cor,𝑡, 𝑄SG,𝑡, 𝑄int,𝑡].                                 (5-9) 

The time step is 30-minutes, and the control horizon is 1 time step for the system considered. 

During the training, 𝑇out and the global horizontal solar irradiance are represented by historical 

data that are available at the national solar radiation data base (Sengupta et al., 2018), while the 

solar heat gain 𝑄SG  can be calculated based on the global horizontal irradiance, window and 

shading properties, time of the year and building orientation using the model by Klein et al. (2011). 

For implementation in the target building space, 𝑇out and global horizontal irradiance can be either 

measured at a local weather station, or accessed from the real-time weather information at the 

National Oceanic and Atmospheric Administration (NOAA). 𝑄int is known based on the existing 

equipment and building operation schedule described in Section 4.2.1. 𝑇air and 𝑇cor are typically 

measured from the thermostats placed in the office space and adjacent zone. As 𝑇env is not a 

typically available measurement, it is not considered as an observable state by the RL agent in this 

study. Therefore,  

𝑜𝑡 = [𝑇air,𝑡, 𝑇out,𝑡, 𝑇cor,𝑡, 𝑄SG,𝑡, 𝑄int,𝑡].                                         (5-10) 

The action taken by the agent 𝑎𝑡 ∈ [0,1] determines the thermal input to the office space 

from the HVAC system (𝑄HVAC in Figure 5.1). When 𝑎𝑡 > 0.5, the HVAC system operates on 

reheat mode, otherwise the cooling mode is on. The rewards are assigned based on the HVAC 

electricity consumption and occupants’ comfort: 
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𝑟𝑡 = −(
𝑃cool,𝑡

COP(𝑇out,𝑡)
+
𝑃heat,𝑡
𝜂

+ penalty𝑡), 

(5-11) 

where, 

𝑃cool,𝑡 = {
− [�̇�min +

0.5 − 𝑎𝑡
0.5

(�̇�max − �̇�min)] ∙ 𝑐𝑝(𝑇sup − 𝑇air,𝑡), if 𝑎𝑡 ≤ 0.5

−�̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑡), otherwise.
 

(5-12) 

𝑃heat,𝑡 = {
𝑎𝑡 − 0.5

0.5
∙ Capheat, if 𝑎𝑡 > 0.5

0, otherwise.
 

(5-13) 

COP(𝑇out,𝑡) = 𝑐0 + 𝑐1𝑇out,𝑡 + 𝑐2𝑇lv + 𝑐3𝑇out,𝑡
2 + 𝑐4𝑇lv

2 + 𝑐5. 𝑇lv𝑇out,𝑡,                (5-14) 

�̇�min is the supply air flow rate at the minimum damper position (0.081 kg/s, equivalent to 140 

cfm), while �̇�max  is the supply air flow rate at the maximum damper position (0.318  kg/s , 

equivalent to 550 cfm). 𝑇sup = 16℃ is the supply air temperature from the AHU. 𝑐𝑝 is the specific 

heat of air at 1004 J/kg ∙ K. Capheat  is the maximum reheat coil capacity at 1462W. 𝜂  is the 

efficiency of the boiler at 90%. The coefficients 𝑐0:5 in equation (5-14) are obtained based on the 

data available in the chiller manufacturer’s catalog (DoE, 2010). 𝑇lv = 7℃ is the leaving water 

temperature from the chiller. The value of the penalty is selected to be on the same scale as the 

other component in the reward, but also large enough for the agent to treat it as a perceivable loss 

in the learning process: 

penalty𝑡 = {
5,  if 𝑇air,𝑡+1 ≤ 22℃  or  𝑇air,𝑡+1 ≥ 24℃ at occupied hours,

0,  otherwise.
 

(5-15) 

5.3.2 RL agent training 

The RL agent is trained with environments simulated with the aforementioned models and 

historical weather data from June 1st –August 31st in the year of 2015-2017 for West Lafayette, IN. 

The simulated environments are made compatible with OpenAI gym (Brockman et al., 2016) 

format, so that they are standardized for algorithm implementation. The DDPG and Meta-RL 

algorithm is coded in Python based on Tensorflow v1.0 (Abadi et al., 2016), with which the key 
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variables, functions such as the deep neural networks, and the computational procedure from the 

algorithm are defined. The hyperparameters in the algorithms are fine-tuned to find the appropriate 

settings for the specific application. The key settings applied in the algorithms for agent training 

are presented in Table 5.1 for DDPG and Table 5.2 for Meta-RL. 

 

Table 5.1. Agent training settings for DDPG. 

Neural network structure 

(for both Q-function 

network and policy 

function network) 

# of hidden layers 4 

# of hidden nodes in each 

layer 
64 

Activation function Rectified linear unit (ReLU) 

Number of training epochs 𝐽 10 

Number of time steps in an epoch 𝑇 13248 time steps (9 months) 

Mini-batch size 𝐼 200 

Discount factor 𝛾 0.99 

Standard deviation 𝜎 of the noise term in action selection 0.05 

Step sizes 𝛽1:2 0.001 

Polyak 𝜌 0.95 

 

Table 5.2. Agent training settings for Meta-RL. 

Neural network structure 

for and policy function 

network 

# of hidden layers 4 

# of hidden nodes in each 

layer 
64 

Activation function Rectified linear unit (ReLU) 

Number of training episodes 𝐾 5 

Number of epochs in DDPG 1 

Other settings in DDPG See Table 5.1 

Number of time steps in an epoch 𝑇 13248 time steps (9 months) 

Number of sampled environments 𝑁 100 

Step size 𝛽3 0.001 

 

5.4 Performance analysis 

In order to evaluate the control performance of the trained agent, we deploy it to the test-bed 

office represented by an 3R2C model, the parameters of which are estimated based on sufficient 

on-site measurements (see Section 4.2.2.1). Therefore, the model is assumed to accurately 

represent the dynamical thermal response of the test-bed. During the testing deployment, the 
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weather data from June 1st-August 31st 2018 at West Lafayette, IN are used, and we allow the 

policy to be updated online with DDPG algorithm (settings complied with Table 5.1) as the testing 

progresses, so that the agent can adapt to the test-bed environment. Three scenarios are compared:  

(i) Agent learned from the environment represented by the model with parameters obtained 

from system identification experiment. The model can predict the responses of the test-bed 

with high level of accuracy;  

(ii) Agent learned from the environment represented by the models with parameters that are 

empirically selected without calibration based on on-site measurements. The models do 

not guarantee the prediction accuracy on the responses of the test-bed;  

(iii) Agent learned from the subset of model universe identified with existing knowledge of the 

test-bed. Samples of models that represent the environments were drawn from the 

probability distribution described in Figure 5.2.  

 

 

Figure 5.3. Inaccurate models’ prediction RMSE for indoor air temperature. 

 

In Scenario (i) and (ii) the agent was trained with DDPG algorithm using the settings 

presented in Table 5.1, while in Scenario (iii) the algorithm was Meta-RL with the settings 

presented in Table 5.2. For Scenario (ii), we tested on 100 models with different levels of accuracy, 

and their prediction root mean square errors (RMSE) on the air temperature (𝑇air) are shown in the 

Figure 5.3. The performance metrics considered are the energy consumption from the HVAC 

system (in kWh), and the temperature exceedance in °C-hr according to ASHRAE Standard 55 

(ASHRAE & ANSI, 2017) during the occupied hours. We also compared the control performance 

with MPC with equivalent control objective and constraints, serving as the theoretical performance 

bound (see Appendix G).  
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Figure 5.4 details the control performances in two days with typical summer weather at 

West Lafayette, IN (July 16th, 2018-July 17th, 2018). The yellow dashed lines, red solid lines, and 

green dash-dotted lines represent the performance of the agents (controllers) in Scenario (i), (iii), 

and MPC, respectively. The shaded blue area shows the performance of the agents in Scenario (ii) 

considering the 0-100th percentile of the samples. The outdoor air temperature varies from 17℃ to 

31℃ with sunny sky conditions (see Figure 5.5).  

 

 

Figure 5.4. Indoor air temperatures, HVAC thermal input for Scenario (i-iii) and MPC (July 16th 

–July 17th, 2018). 

 

Overall, in Scenario (i), (iii) and MPC, the HVAC thermal input determined by the 

controllers share similar trends (Figure 5.4 bottom). In the morning, the HVAC system operates at 

reheat mode in order to maintain the indoor air temperature within the setpoint bounds, due to the 

relatively lower outdoor air temperature and solar heat gain. The heating rates are higher at the 

beginning of the reheat operation to quickly increase the indoor air temperature to meet the lower 

setpoint bound. Then less heating power are applied gradually as the outdoor air temperature and 

solar heat gain increase. In MPC, the reheat starts at 6 a.m. and ends at 9 a.m., while the indoor air 

temperatures (Figure 5.4, top) are kept close to the lower setpoint bounds. This is because the MPC 
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controller is able to plan for the operation based on the dynamical model, achieving the minimum 

energy consumption required to maintains the indoor air temperatures. In comparison, the agents 

in Scenario (i) and (iii) do not know the model, the reheat is scheduled more conservatively (from 

around 5:30 a.m. to 10:30 a.m.). The resulting indoor air temperatures are around 23℃ (in the 

middle of the setpoint bounds). For the same reason, MPC controller proactively switched to reheat 

at 18:00 p.m. on July 17th to avoid violations on the lower setpoint bound, while the agents in 

Scenario (i) and (iii) started to reheat at around 20:00 p.m. when the outdoor air temperature 

declined. The agents in Scenario (ii) also learn to use reheat to maintain the indoor air temperature 

in the morning, although the control policies trained from un-calibrated environment models 

cannot guarantee the optimal starting/ending time and heating rate for energy saving.  

 

 

Figure 5.5. Outdoor air temperature and solar heat gain (July 16th –July 17th, 2018). 

 

After the reheat operations in the morning, when the outdoor air temperatures and solar 

heat gain reach the high levels of a day, the MPC controllers typically keeps the zone damper at 

the minimum position (i.e. minimum cooling rate, usually around -500W to -400W given the AHU 

supply air temperature and flow rate) until the end of occupation time. Similar strategy is followed 
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by the agents in Scenario (i), (ii) and (iii) with only slight fluctuations due to the agents’ 

exploratory actions and changes in the observed environment states. From 19:30 p.m. (the 

beginning of the unoccupied hour) until the following morning, the controllers in Scenario (i), (iii) 

and MPC still keep the minimum cooling rate in order to minimize the energy consumption (as the 

setpoint temperature bounds are relaxed during these hours). However, the policies learned from 

un-calibrated environment models are likely to misguide the agents in Scenario (ii) to 

unnecessarily preheat or precool the office space during this time. 

 

Table 5.3. Performance metrics comparison for all scenarios and MPC (June 1st –August 31st, 

2018). 

 Scenario (i) Scenario (ii) average Scenario (iii) MPC 

Total energy 

consumption (kWh) 
436.92 664.68 489.03 404.30 

Total temperature 

exceedance (℃-hr) 
0.1 21.44 4.81 13.96 

 

The comparison on the performance metrics for all scenarios and MPC are shown in Table 

5.3. Overall, despite slightly better performance in terms of maintaining the indoor air temperature 

with negligibly higher electricity consumption, the agent learned from the environment 

represented by the model with accurate parameters is able to achieve similar performance 

compared to MPC. The agent learned from the subset of model universe can also successfully 

maintain the indoor air temperature, with 14% higher energy consumption than Scenario (i), and 

21% higher energy consumption than MPC. While in average, over the 3 months of adaptation to 

the test-bed, the agent in Scenario (ii) can result in 52% higher energy consumption than Scenario 

(i), and 64% higher energy consumption than MPC. The average total temperature exceedance is 

also significantly higher in Scenario (ii).  

Figure 5.6 presents the performance of the agent in Scenario (ii) (see the blue dots) with 

different levels of model prediction RMSE. The x-axis is the total energy consumption, and the y-

axis shows the temperature exceedance. With RMSE < 0.5℃, the agent in Scenario (ii) can achieve 

the performance that is closer to the agent learned from the subset of model universe. However, 

without spending the time and engineering effort to calibrate with on-site measurements, it is 

hardly likely to obtain models with low prediction RMSE. On the other hand, it is highly possible 

to result in models with high prediction RMSE by selecting the parameters empirically, but the 
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agent trained from such model can less likely maintain the indoor air temperature and reduce the 

energy consumption. 

 

 

Figure 5.6. Performance metrics comparison for different levels of model RMSE in Scenario (ii) 

(June 1st –August 31st, 2018). 

 

Figure 5.7 shows the performance comparisons for the 1st week (June 1st-7th, 2018), the 1st 

month (June 1st-30th, 2018), the 2nd month (July 1st-31st, 2018), and the 3rd month (August 1st -31st, 

2018) during the testing deployment. As time passes, the agent in all scenarios showed adaptation 

to the test-bed, reducing the energy consumption and temperature exceedance in the direction of 

approaching the results from MPC. However, it takes 3 months for the agent in Scenario (ii) to be 

able to manage the indoor temperature within the bounds, while more time will be needed to learn 

to minimize the energy consumption. The agent learned from the subset of model universe in 

Scenario (iii) is able to consistently maintain the indoor temperature even in the first week of 

deployment, and thereby eliminate the potential occupant discomfort. In the 3rd month, the agent 

in Scenario (iii) can achieve the energy consumption only 16% higher than MPC, reducing 

significantly the potential energy waste that could result in Scenario (ii). 

 

 

Figure 5.7. Performance metrics comparison for June 1st-7th, June 1st-30th, July 1st-31st, 

August 1st -31st, 2018. 
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5.5 Summary 

In this study, we developed an autonomous HVAC control approach based on Meta-RL. The 

Meta-RL agent was trained with a model universe represented by uncertain parameters obtained 

from available information of the target building to facilitate the agent’s adaptation. The control 

performance of the agent was evaluated by deploying the agent to an emulator represented by a 

low-order model of the test-bed office space.  

For the test-bed considered, the results show that using the Meta-RL approach the control 

agent  successfully maintains the indoor air temperature within the first week of deployment while 

consumes only 16% higher  energy consumption compared to MPC by  the 3rd month without 

requiring extensive engineering effort for model tuning. In contrast, with conventional RL 

approach, the agents learned from environments represented by the models with empirically 

determined parameters without on-site calibration can result on average in 61% higher HVAC 

energy consumption compared to MPC in the 3rd month of deployment, while imposing 

considerable risk in the temperature maintenance in the first 2 months. Also, the agent’s control 

performance in terms of both indoor air temperature maintenance and energy consumption 

deteriorated as the prediction accuracy of the models decrease. In the near future, the developed 

Meta-RL algorithm will be deployed in the actual test-offices at Herrick building. 

  



 

 

92 

 FUTURE WORK 

The studies presented in this thesis explore intelligent building operation strategies that are 

tested with specific building systems. However, the components of the developed methodology 

are generalizable: the uncertain solar irradiance forecast model can be used for predictive control 

of solar energy systems; the SMPC algorithm with ADP can be applicable for operating other 

energy systems with stochastic environmental disturbances and complex energy conversion 

schemes; the user-interactive system design approach is transferrable to other private offices with 

integrated smart controls; the Meta-RL control approach can be generalized for other types of 

building zones. Nevertheless, future research can be extended into the following directions towards 

the realization of smart and user-interactive building system operations that can be widely adopted 

in building industry. 

The model universe can be extended to include comprehensive options of building zone 

types. To this end, assisted by open-source datasets (Deru et al., 2011; EIA, 2016; Miller and 

Meggers, 2017; Balaji et al., 2018; Miller et al., 2020), a platform needs to be established that 

contains building metadata with standardized format including construction and energy system 

specifications as well as time-series building operation data. Based on these, a statistically-

informed taxonomy of building system dynamical models can be created to facilitate the automated 

generation of Meta-RL agents or MPC controllers for any type of building zones, under different 

scenarios of information availability.  

In order to expand the applicability to occupant-centric buildings and renewable energy 

systems, occupants’ preference and uncertain weather forecast need to be considered in the optimal 

control decision making with RL approach. Occupants’ preference on the indoor environment 

conditions and associated impact on energy use can be inferred from their feedback, as well as 

their interactions with building systems. Such preferences can be encoded as rewards to the RL 

agent, while the uncertain weather forecast could be treated as parts of environment states. 

Recently, new RL algorithms that allow agents to learn from environments described by stochastic 

states and rewards are being developed in the machine learning research community (Christiano 

et al., 2017; Ibarz et al., 2018; Wang et al., 2020). The potential applications of these methods 

need to be investigated for smart building controls.  
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Although further research is still required, the easiness to learn from human feedback has 

been regarded as one of the most desirable characteristics of RL algorithms. RL agent can receive 

human feedback from user-interactive systems. In order to establish efficient communication 

between occupants and the agent, the effect of other forms of energy feedback (e.g., monetary 

incentive, peer comparison and instructive feedback) presented in the user-interface need to be 

systematically evaluated under different building operation scenarios, such as demand response 

and social game implementation. Although occupants’ preference on comfort and energy use in 

such context can be quantified with similar methods with  those presented in Chapter 4, their 

preference needs to be translated into the rewards to the RL agent in a way that facilitates the 

learning. 
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APPENDIX A. FUNCTION APPROXIMATION IN DYNAMIC 

PROGRAMMING 

A.1 SPECIFYING THE APPROXIMATING FUNCTION CLASS FOR OPTIMAL COST-

TO-GO FUNCTIONS 

 

In this work, we use Gaussian process regression (GPR) to approximate the optimal cost-to-

go and policy functions (Rasmussen and Williams, 2006). GPR offers various benefits: (i) It can 

quantify the approximation error (Bayesian epistemic uncertainty); (ii) It can deal with noisy 

observations (robustness to averaging errors when approximating the expectation on the right-hand 

side of Bellman equation); and (iii) It is nonparametric and, thus, it does not impose a restrictive 

functional form to the optimal cost-to-go function.  

GPR assigns a Gaussian process probability measure on the space of optimal cost-to-go 

functions and then it conditions this probability measure on pairs of input-output observations. 

This probability measure corresponds to our prior beliefs about the regularity, length scale, and, in 

general, the variability of each 𝐶𝑡
∗, before seeing any actual function evaluations. Without loss of 

generality, we may select this probability measure to have a zero mean. Mathematically, we write: 

𝐶𝑡
∗ ∼ GP(0, 𝑘𝑡),                                                         (A-1) 

where 𝑘𝑡: 𝐗 × 𝐗 → ℝ+  is a covariance function encoding our prior beliefs, see Chapter 4 of 

Rasmussen and Williams (2006). In this work, we use the squared exponential (SE) covariance 

function: 

𝑘𝑡(𝐱, 𝐱
′) = 𝑠𝑡

2 exp {−
1

2
∑

(𝑥𝑖−𝑥𝑖
′)
2

ℓ𝑡,𝑖
2

𝑑𝑥
𝑖=1 } ,                            (A-2) 

where 𝑠𝑡
2  and ℓ𝑡,𝑖  correspond to the variance and to the length scale of the 𝑖 -th input of 𝐶𝑡

∗ , 

respectively. These parameters are not predetermined. They are estimated as part of the regression 

process. Note that the SE covariance corresponds to the belief that 𝐶𝑡
∗ is infinitely differentiable. 

For problems with kinks or discontinuities in the optimal cost-to-go function, it is preferable to use 

a Matérn or an exponential covariance function. 
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A.2 SELECTING THE NUMBER AND CHOICE OF THE COLLOCATION POINTS 

 

Let 𝐱𝑡,1:𝑀 = (𝐱𝑡,1, … , 𝐱𝑡,𝑀) be a set of 𝑀 collocation points in the state space 𝐗. It is vitally 

important that the collocation points 𝐱𝑡,1:𝑀 cover the state space 𝐗 as well as possible. We ensure 

this by using Latin hypercube sampling (LHS), which has exhibited better properties than fixed or 

random sampling strategies (Iman, 2008). The number of collocation points, 𝑀, does not have to 

be predetermined. One can add points sequentially, train the model, estimate the residual epistemic 

uncertainty, and add more collocation points if required. That latter can be done, for example, by 

selecting the points about which one is maximally uncertain (MacKay, 1992). To keep the 

implementation of our scheme simple, in our application we select an adequately large and fixed 

𝑀, see Section 3.3.3. 

 

A.3 EVALUATING THE RIGHT-HAND SIDE OF THE BELLMAN EQUATION AT AN 

ARBITRARY POINT 

 

Assume that we have already an estimate of the (𝑡 + 1)-th optimal cost-to-go function, say 

�̂�𝑡+1
∗ . We show how the right-hand side of equation (3-17) can be evaluated at an arbitrary point 

𝐱𝑡 . This evaluation requires solving a nonconvex and nonlinear constrained stochastic 

optimization problem with respect to the optimal control 𝐮𝑡. To remove the stochasticity of the 

problem, we estimate all expectations with sampling averages. To this end, let 𝐰𝑡,1:𝑁 =

(𝐰𝑡,1, … ,𝐰𝑡,𝑁) be 𝑁  samples from 𝑝(𝐰𝑡|𝐱𝑡). We replace the stochastic optimization problem 

with the following deterministic one (modified right-hand side of equation (3-17)): 

min
𝐮𝑡

1

𝑁
∑ [𝐽𝑡(𝐱𝑡, 𝐮𝑡, 𝐰𝑡,𝑛) + �̂�𝑡+1

∗ (𝐟𝑡(𝐱𝑡, 𝐮𝑡 , 𝐰𝑡,𝑛))]

𝑁

𝑛=1

  

(A-3) 

subject to the constraints (modified equation (3-3)): 

1

𝑁
∑𝑔𝑖,𝑡(𝐱𝑡, 𝐮𝑡, 𝐰𝑡,𝑛)

𝑁

𝑛=1

≥ 0 for 1 ≤ 𝑖 ≤ 𝑛𝑐. 

(A-4) 
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In our application, we solve this problem with the ‘pyOpt’ solver (Perez et al., 2012) that 

wraps around Python’s SciPy optimize (Jones et al., 2001) which utilizes the subroutine sequential 

least square programming (SLSQP) originally developed by (Kraft, 1988). The optimization over 

𝐮 is solved with ‘pyOpt’ solver allows easier integration with MPI (Dongarra, 1994) for parallel 

execution over points in state space. 

 

A.4 ITERATING BACKWARDS USING GAUSSIAN PROCESS REGRESSION 

 

The collocation points 𝐱𝑡,1:𝑀 are the observed function inputs. For each 𝐱𝑡,𝑗, 𝑗 = 1, … ,𝑀, we 

follow the methodology of the previous section to compute an approximation 𝑦𝑡,𝑗 of the optimal 

cost-to-go function at 𝐱𝑡,𝑗 , i.e., of 𝐶𝑡(𝐱𝑡,𝑗). Collectively, we write 𝐲𝑡,1:𝑀 = (𝑦𝑡,1, … , 𝑦𝑡,𝑀). We 

refer to 𝐲𝑡,1:𝑀 as the function outputs. Gaussian process regression, Chapter 2 of Rasmussen and 

Williams, (2006), learns an approximation �̂�𝑡
∗ from the observed inputs and outputs (𝐱𝑡,1:𝑀, 𝐲𝑡,1:𝑀). 

This approximation corresponds to the posterior mean of the Gaussian process obtained after 

conditioning our prior beliefs to the observed data (𝐱𝑡,1:𝑀, 𝐲𝑡,1:𝑀).  

The mathematical form of the approximation is: 

�̂�𝑡
∗(𝐱𝑡) = 𝐤𝑡(𝐱𝑡, 𝐱𝑡,1:𝑀)(𝐊𝑡 + 𝜎𝑡

2𝐈)−1𝐲𝑡,1:𝑀,                                (A-5) 

where 𝐊𝑡 = (𝑘𝑡(𝐱𝑡,𝑖, 𝐱𝑡,𝑗))
𝑖,𝑗=1

𝑀

 is the covariance matrix of the observed inputs, 𝐤𝑡(𝐱𝑡, 𝐱𝑡,1:𝑀) =

(𝑘𝑡(𝐱𝑡, 𝐱𝑡,1), … , 𝑘𝑡(𝐱𝑡, 𝐱𝑡,𝑀)) is the cross-covariance vector between a test input and the observed 

ones, and 𝜎𝑡
2 is variance modeling the uncertainty introduced by sampling average of equation (A-

3). The parameters of this approximation are 𝛟 = (𝑠𝑡
2, ℓ1,𝑡, … , ℓ𝑑𝑥,𝑡, 𝜎𝑡

2) and their optimal values 

are identified by maximizing the data likelihood, Chapter 5 of Rasmussen and Williams, (2006). 

Our implementation is based on the Python module GPy (Hensman et al., 2012). The same 

approach can be used for learning approximate policy functions.  
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APPENDIX B. BUILDING AND SYSTEM SPECIFICATIONS 

  

Figure B.1. The thermal network for the state-space model (Li et al., 2015). 

 

Table B.1. Building properties and operation settings. 

ROOM TEMP. 
• 17 – 25 °C, 8:00 a.m. – 10:30 a.m. 

• 21 – 25 °C, 10:30 a.m. – 18:30 p.m. 

• >15 °C, 18:30 p.m. – 8:00 a.m. 

FLOOR TEMP. • 19 – 29 °C based on ASHRAE Standard 55 (ASHRAE & ANSI, 2017) 

TANK TEMP. • 20 – 55 °C 

BIPV/T DESIGN 
• Total area: 65 m2 

• PV area: 58.5 m2, 6.32 kWp capacity 

• Air flow rate: 3500 m3/h corresponding suction velocity: 0.015 m/s 

SHADING 

CONTROL 
• ON, when the incident solar radiation on the window exceeds 180 W/m2 

• OFF, when the incident solar radiation on the window below 160 W/m2 

ENVELOPE 

PROPERTIES 

• Exterior wall: U = 0.122 W/m2·K, Gypsum board 0.016 m 

• Interior wall: U = 0.207 W/m2·K, Gypsum board 0.032 m 

• Window: U = 0.63 W/m·K, solar transmittance = 0.228, absorbance =  
0.487, SHGC = 0.327 

• Roof: U = 0.368 W/m2·K 

• Floor: U = 0.689 W/m2·K, Concrete 0.165 m 

INTERNAL 

HEAT GAIN 

• Lighting: 10.76 W/m2, for 8:00 a.m. – 18:00 p.m.; 0 otherwise 

• Equipment: 21.52 W/m2, for 8:00 a.m. – 18:00 p.m.; 0 otherwise 

• Occupants: 75 W/person, for 8:00 a.m. – 18:00 p.m.; 0 otherwise 

INFILTRATION • Air change rate = 0.737/hr 

VENTILATION 
• 0.06 cfm/ft2 or 5 cfm/person, whichever is greater, supply air 

temperature: 22 °C according to ASHRAE Standard 62.1 (ASHRAE 
& ANSI, 2013) 
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APPENDIX C. RULE-BASED CONTROL 

The rule-based control strategy considers weather forecast information including outdoor dry 

bulb air temperature (𝑇𝑎) and sky-cover (sc). It predicts heat pump power (𝑄hp) aiming at utilizing 

solar energy to improve the system efficiency. Therefore, the schedule strictly follows solar 

availability considering some thresholds of outdoor dry bulb temperature. 

 

Table C.1. Rule-based control schedule. 

Time of the day Heat pump operations 

0-6 a.m. • 𝑄hp= 0 kW. 

6-8 a.m. 

• 𝑄hp= 5 kW, if 𝑇𝑎 ≤ 8°C for the following period (8-10 

a.m.) in average.  

• 𝑄hp= 0 kW, otherwise. 

8-10 a.m. 

• Find 𝑄hp values from Table C.2, if 𝑇𝑎 ≤ -8°C for the 

following period (10 a.m.-12 p.m.) in average. 

• Find 𝑄hp values from Table C.3, if -8°C < 𝑇𝑎 ≤ 0°C for 

the following period (10 a.m.-12 p.m.) in average. 

• Find 𝑄hp values from Table C.4, if 0°C < 𝑇𝑎 ≤ 8°°C for 

the following period (10 a.m.-12 p.m.) in average. 

• 𝑄hp= 0 kW, otherwise. 

10 a.m. -12 p.m. 

• Find 𝑄hp values from Table C.2, if 𝑇𝑎 ≤ -8°C for the 

following period (12-14 p.m.) in average. 

• Find 𝑄hp values from Table C.3, if -8°C < 𝑇𝑎 ≤ 0°C for 

the following period (12-14 p.m.) in average. 

• Find 𝑄hp values from Table C.4, if 0°C < 𝑇𝑎 ≤ 8°C for 

the following period (12-14 p.m.) in average. 

• 𝑄hp= 0 kW, otherwise. 

12-14 p.m. 

• Find 𝑄hp values from Table C.2, if 𝑇𝑎 ≤ -8°C for the 

following period (14-16 p.m.) in average. 

• Find 𝑄hp values from Table C.3, if -8°C < 𝑇𝑎 ≤ 0°C for 

the following period (14-16 p.m.) in average. 

• Find 𝑄hp values from Table C.4, if 0°C < 𝑇𝑎 ≤ 8°C for 

the following period (14-16 p.m.) in average. 

• 𝑄hp= 0 kW, otherwise. 

14-16 p.m. and 16-20 p.m. • Find 𝑄hp values from Table C.5. 

20 p.m. -12 a.m. • 𝑄hp= 0 kW. 
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Table C.2. Heat pump power input look-up table (8 a.m., 10 a.m. and 12 p.m., 𝑇𝑎 ≤-8°C). 

𝑄hp in kW 

 
Average sc at the following period 

>0.8 0.5-0.8 0.2-0.5 <0.2 

Average 

sc at the 

current 

period 

>0.8 10 10 12 15 

0.5-0.8 8 8 10 12 

0.2-0.5 6 8 10 12 

<0.2 6 6 8 10 

 

Table C.3. Heat pump power input look-up table (8 a.m., 10 a.m. and 12 p.m., -8°C < 𝑇𝑎 ≤ 

0°C). 

𝑄hp in kW 

 
Average sc at the following period 

>0.8 0.5-0.8 0.2-0.5 <0.2 

Average 

sc at the 

current 

period 

>0.8 5 6 8 10 

0.5-0.8 5 5 6 8 

0.2-0.5 4 4 5 6 

<0.2 4 4 4 5 

 

Table C.4. Heat pump power input look-up table (8 a.m., 10 a.m. and 12 p.m., 0°C < 𝑇𝑎 ≤ 8°C). 

𝑄hp in kW 

 
Average sc at the following period 

>0.8 0.5-0.8 0.2-0.5 <0.2 

Average 

sc at the 

current 

period 

>0.8 2 3 3 5 

0.5-0.8 2 2 3 3 

0.2-0.5 2 2 2 3 

<0.2 2 2 2 2 

 

Table C.5. Heat pump power input look-up table for 14-16 p.m. and 16-20 p.m. 

𝑄hp in kW 

 14-16 p.m. 16-20 p.m. 

Average 

𝑇𝑎 for the 

next 28 

hours 

𝑻𝒂> 8°C 0 0 

0°C < 𝑻𝒂 ≤ 8°C 4 2 

-8°C < 𝑻𝒂 ≤ 0°C 6 4 

𝑻𝒂 ≤-8°C 8 6 
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APPENDIX D. ENERGY CONSUMPTION AND EFFICIENCY MODELS 

FOR HVAC SYSTEM COMPONENTS 

This appendix describes how the efficiency and power of the fan, chiller and reheat are 

determined in the cost function equation (4-4) in Section 4.2.2. 

At time 𝑡, the fan power is computed by the following equation: 

𝑃fan,𝑡 = 𝑓fan (∑�̇�𝑖,𝑡

𝑁

𝑖=1

), 

(D-1) 

where, 

𝑓fan(�̇�) =
�̇�design∙∆𝑃

𝜂fan𝜌air
Curvecub (

�̇�

�̇�design
).                                      (D-2) 

�̇�design is the design flow rate of the fan (3000 m3/h); ∆𝑃 is the design pressure difference between 

the inlet and outlet of the fan (500Pa) ; 𝜂fan is the nominal fan efficiency (0.61), and 𝜌air is the air 

density (1.225 kg/m3). 𝑖 = 1,2,3 is the room index. 

The average air mass flow rate (in kg/s) for each office at a time step 𝑡 is, 

�̇�𝑖,𝑡 = {
if 𝑢𝑖,𝑡 > �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡), �̇�min,

if 𝑢𝑖,𝑡 ≤ �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡),
𝑢𝑖,𝑡

𝑐𝑝(𝑇sup−𝑇air,𝑖,𝑡)
.  

                      (D-3) 

�̇�min is the minimum air flow rate of 0.081 kg/s when the room damper is at the minimum open 

position, assuming the density of the air is 1.225 kg/m3; 𝑐𝑝 is the specific heat of air, which is 

1.004 kJ/kg ∙ K; 𝑇sup is the AHU supply air temperature of 16°C. 

The chiller power at time 𝑡 is computed with chiller electric input ratio model (DoE, 2010): 

𝑃chiller,𝑡 = 𝑓PLR [
−𝑃coil,𝑡

𝑓CAP(𝑇out,𝑡)
] ∙ 𝑓CAP(𝑇out,𝑡) ∙ 𝑓COP(𝑇out,𝑡),                       (D-4) 

where, 

{
 
 

 
 
𝑓CAP = 𝑄ref,Cap ∙ Curvebiquad,1(𝑇leaving, 𝑇out)

𝑓COP =
1

𝐶ref,COP
∙ Curvebiquad,2(𝑇leaving, 𝑇out)

𝑓PLR = Curvequad (
−𝑃cool
𝑓CAP

) = Curvequad(PLR)

 

                    (D-5) 
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𝑄ref,Cap  is the reference capacity (68.9kW) of the chiller downscaled to 12%; 𝐶ref,COP  is the 

reference chiller COP of 2.67; 𝑇leaving is the leaving water temperature of the chiller, which is 7℃. 

The cooling rate at the cooling coil at time 𝑡 is the sum of the cooling rate at each office divided 

by a constant 𝛾 = 0.8, assuming a fixed outdoor air ratio of 10% according ASHRAE Standard 

62.1 (ASHRAE & ANSI, 2013) and sensible load ration of 85% based on the climate condition in 

West Lafayette, IN. 

𝑃coil,𝑡 =
1

𝛾
∑𝑃cool,𝑖,𝑡

𝑁

𝑖=1

, 

(D-6) 

The cooling rate at each office at time 𝑡 is calculated by: 

𝑃cool,𝑖,𝑡 = {
if 𝑢𝑖,𝑡 > �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡), �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡),

if 𝑢𝑖,𝑡 ≤ �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡), 𝑢𝑖,𝑡.  
              (D-7) 

The reheat power at time 𝑡 is the sum of heating rate at each office divided by the boiler 

efficiency 𝜂, which is assumed to be 0.9 in this study: 

𝑃reheat,𝑡 =∑
𝑃heat,𝑖,𝑡
𝜂

,

𝑁

𝑖=1

 

(D-8) 

where, 

𝑃heat,𝑖,𝑡 = {
if 𝑢𝑖,𝑡 > �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡), 𝑢𝑖,𝑡 − �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡),

if 𝑢𝑖,𝑡 ≤ �̇�min𝑐𝑝(𝑇sup − 𝑇air,𝑖,𝑡), 0.  
         (D-9) 
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APPENDIX E. SURVEY QUESTIONS 

Table E.1. Survey questions. 

OVERRIDE SURVEY 

Questions Options 

1. Please enter your subject number  

2. Please select the answer that best describes 

the energy performance information and its 

impact on your latest thermostat adjustment 

(displayed in Setup 2 only). 

• I considered the energy performance 

information  

• I did not consider the energy 

performance information 

3. How satisfied are you with current thermal 

conditions? 

• I prefer warmer 

• I prefer slightly warmer 

• I’m satisfied with current condition 

• I prefer slightly cooler 

• I prefer cooler 

EXIT SURVEY 

Questions Options 

1. Please enter your subject number  

2. During your stay in the office today, were 

there any occasions where the thermal 

condition was continuously unpleasant and/or 

interfering with your ability to focus on your 

work for more than 30 minutes? 

• Never 

• Rarely 

• A few times 

• Most of the time 

• Always 
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APPENDIX F. SETPOINT TEMPERATURE PROFILES FROM 4 

OCCUPANTS 

Figure F.1 shows 4 examples of the setpoint temperature profiles from the occupants. The 

orange dash lines represent the MPC setpoints, which varied during a day based on the outdoor air 

temperature and solar irradiance forecast. The MPC setpoints were usually low in the morning 

(around 20 to 21℃), and increased in the afternoon. The blue line represents the actual setpoint 

temperatures in the offices between 10 a.m. to 5 p.m. When the actual setpoints and MPC setpoints 

are not equal, it means that the occupants made thermostat adjustments. Occupants 9, 20 and 11 

reported to prefer slightly warmer or warmer conditions in the thermal preference votes. Most of 

the other occupants shared similar patterns in thermostat interaction with Occupant 9 and 20, 

although the choice of setpoint temperatures varied. Both of them adjusted the thermostats less 

frequently in Setup 2 compared to Setup 1. Also, the setpoints selected by Occupant 9 were often 

over 24℃ and reached 25.5℃ in Setup 1, while in Setup 2 the setpoint temperatures were less than 

23℃. Occupant 20 selected setpoint temperatures around 24℃ most of the time both in Setup 1 

and 2. Occupant 11 were mostly satisfied with the setpoint temperatures determined by MPC and 

rarely adjusted the thermostat in both setups, which is similar to the behavior of 5 other occupants 

participated in the experiment. However, Occupant 3 demonstrated different behavior, which is 

consistently reducing the setpoint to 20℃ in every thermostat adjustment, while all others mostly 

increased the setpoints. Therefore, it is highly likely that Occupant 3’s thermal preference is 

distinctively different from others and belongs to a different preference cluster. 
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Figure F.1. Setpoint temperature profiles from 4 typical occupants. 
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APPENDIX G. DETERMINE THE UNCERTAIN PARAMETERS IN THE 

MODEL UNIVERSE 

We assume that the thermal capacitances and resistances follow truncated Gaussian 

distributions 𝒩(∙ |𝜇C, 𝜎𝑐
2, 0,∞)  and 𝒩(∙ |𝜇R, 𝜎𝑅

2, 0, ∞) , respectively. The mean values for the 

parameters are determined by: 

𝜇C = 𝐴(∑𝑥𝑖𝜌𝑖cp𝑖

𝐿

𝑖=1

), 

(G-1) 

𝜇R =
(𝑟si + 𝑟so + ∑

𝑥𝑖
𝑘𝑖

𝐿
𝑖=1 )

𝐴
. 

(G-2) 

𝑥𝑖 and 𝑘𝑖 are the thickness and the thermal conductivity of wall layers respectively. 𝐴 is the overall 

area of the construction element. 𝑟si  and 𝑟so  are the inside and outside surface convection 

resistance. 𝜌𝑖 and cp𝑖 designate the density and the specific heat capacity of the layer. 𝐿 is the total 

number of the construction layers. The construction elements considered for each capacitor and 

resistor are listed in Table G.1. The material, area and thickness of construction elements are 

available from the construction drawing of the test-bed building, while the thermal properties of 

the materials are available at ASHRAE Handbook (ASHRAE, 2017). As we assume uninformative 

priors, the standard deviation considered is 0.5 multiplied by the mean values (𝜎𝐶 = 0.5𝜇𝐶, 𝜎𝑅 =

0.5𝜇𝑅), and the all the parameters have lower bound of 0. 

 

Table G.1. Construction elements considered for each resistance and capacitance parameter. 

𝑅oe • Exterior wall (aluminum board, concrete) 

𝑅er 
• Air (room volume) 

• Gypsum board surface 

𝑅rc 
• Interior partition (gypsum board, air gap) 

• Ceiling (ceiling board, air gap) 

𝐶env 
• Exterior wall 

• Floor (concrete) 

𝐶air 
• Air (room volume) 

• Interior partition (gypsum board, air gap) 

• Ceiling (ceiling board, air gap) 
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APPENDIX H. EQUIVALENT MPC PROBLEM FOR REINFORCEMENT 

LEARNING CONTROL CASE STUDY 

In the equivalent MPC problem, the control variable is still the action 𝑎𝑡, and the objective 

is to minimize the negative of the reward over a prediction horizon of 24 time-steps (12 hours). 

The control horizon remains 1 time-step, and the building dynamics follow equation (H-3), which 

is equivalent to what Figure 5.1 described.  

min
𝑎0,𝑎1,⋯,𝑎23

∑−𝑟𝑡

24

𝑡=0

, 

(H-1) 

𝑠. 𝑡. 

0 ≤ 𝑎𝑡 ≤ 1,                                                           (H-2) 

𝐱𝑡+1 = 𝐀𝐱𝑡 + 𝐁𝑎𝑎𝑡 + 𝐁𝑤𝐰𝑡,                                              (H-3) 

Where 𝐱𝑡 = [
𝑇env,𝑡
𝑇air,𝑡

], 𝐰𝑡 =

[
 
 
 
𝑇out,𝑡
𝑇cor,𝑡
𝑄SG,𝑡
𝑄int,𝑡]

 
 
 

, and 𝐬𝑡 = [
𝐱𝑡
𝐰𝑡
]. 𝐀 ∈ ℝ2×2, 𝐁𝑎 ∈ ℝ

2×1,  𝐁𝑤 ∈ ℝ
2×4are time 

invariant matrices. The parameters of the dynamical model (i.e. elements in matrices 𝐀, 𝐁𝑎, and 

𝐁𝑤) are obtained from a system identification experiment described in Section 4.2.2.1. 
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