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ABSTRACT

Thompson, Michael R. M.S., Purdue University, December 2020. Design of Quasi-
Satellite Science Orbits at Deimos. Major Professor: David A. Spencer.

In order to answer the most pressing scientific questions about the two Martian

moons, Phobos and Deimos, new remote sensing observations are required. The best

way to obtain global high resolution observations of Phobos and Deimos is through

dedicated missions to each body that utilize close-proximity orbits, however much of

the orbital tradespace is too unstable to realistically or safely operate a mission.

This thesis explores the dynamics and stability characteristics of trajectories near

Deimos. The family of distant retrograde orbits that are inclined out of the Deimos

equatorial plane, known as quasi-satellite orbits, are explored extensively. To inform

future mission design and CONOPS, the sensitivities and stability of distant retro-

grade and quasi-satellite orbits are examined in the vicinity of Deimos, and strategies

for transferring between DROs are demonstrated. Finally, a method for designing

quasi-satellite science orbits is demonstrated for a set of notional instruments and

science requirements for a Deimos remote sensing mission.
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1. INTRODUCTION

The exploration of Phobos and Deimos, the two small moons of Mars, is attractive

from both a planetary science and human exploration standpoint. In planetary sci-

ence, the origins of both objects remain a mystery. From the limited data on the

bodies, they both appear to have similar properties as D-type asteroids that are very

common in the outer asteroid belt and in the Jovian system (low density, low albedo,

red spectrum in both the visible and near-infrared wavelengths), but the nearly-

circular stable orbits of Phobos and Deimos generally do not support a hypothesis

involving asteroid capture [1–4].

If asteroid capture is not a viable model, another set of models have hypothesized

Phobos and Deimos forming in the Martian system, either at the same time as Mars,

from debris of a large Martian impact, or in a cyclical breakup and formation over

time [1, 2]. But the limited spectral data that does exist for the two moons does not

resemble known Martian materials [1, 5].

These two major theories for the origins of Phobos and Deimos obviously both

contain unanswered questions that likely cannot be resolved without new, global,

and high resolution observations of each body. Ground-based optical and radar ob-

servations of both moons are possible, but these observations only yield high-level

properties of the moons and do not allow for resolving how the composition and

properties change at different points on the surface [6]. A dedicated mission to one

or both of these moons is the best way to obtain high resolution, global observations

in the near-term.

In addition to these planetary science-focused motivations, there is a second set

of motivations relating to human spaceflight. Both Martian moons have long been

viewed as possible staging points for future human exploration [2, 7]. This staging

could come in the form of in-situ resource utilization (ISRU) through the use of raw
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materials, as a base for control of surface operations, or a final staging point prior to

entry, descent, and landing. However, without additional observations of either body,

the feasibility of ISRU and challenges of operating in the Phobos or Deimos vicinity

are ultimately unknown.

1.1 Previous and Future Missions to Martian Moons

1.1.1 Previous Missions

To date, there have been no fully successful missions dedicated to studying Phobos

or Deimos. The Soviet Union launched Phobos 1 and Phobos 2 in 1988, but both suf-

fered failures, the former within 2 months of launch, and the latter 57 days after Mars

orbit insertion, but prior to the start of the primary science phase of the mission [8].

After Mars orbit insertion, Phobos 2 did successfully maneuver into a relative orbit

with Phobos with a closest approach of 200 km, but suffered an electronics failure

before the more novel phase of the mission, which involved an approach as close as

50 m, the deployment of two small landers, and probing experiments of the Phobos

surface [8]. Phobos 2 provided some scientific data on the moon, including imagery,

spectral, and other remote sensing data, but ultimately fell short of its original sci-

entific goals [9]. The Russian Phobos-Grunt mission was launched in 2011, with the

goal of collecting and returning samples from the Phobos surface, but suffered an

early operations failure in its initial parking orbit and re-entered Earth’s atmosphere

less than two months later [2, 10].

Other non-dedicated previous missions that have provided data on Phobos and

Deimos either during Martian flybys or as part of a more Mars-focused mission in-

clude Mariner 4, 5, 6, 7 and 9, Rosetta, Viking 1 and 2, Mars Global Surveyor,

Mars Pathfinder, and the Mars Exploration Rovers Spirit and Opportunity [11]. For

lander missions, observations of Phobos or Deimos have typically been limited to a

few images from the Martian surface. These non-dedicated missions have provided

valuable data well beyond what is possible with ground-based observations, but the
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data is still insufficient for answering some of the big questions about the origins of

each moon and whether they might provide opportunities for ISRU in the future.

1.1.2 Current Missions

Many of the missions currently operating at Mars can provide occasional observa-

tions of Phobos and Deimos, but again, there are no missions dedicated to the study

of the bodies.

Out of all currently operating Mars orbiters, MAVEN, Mars Express, and Man-

galyaan (Mars Orbiter Mission) occasionally provide close-approaches of Phobos, but

there are none that provide close approaches of Deimos, leaving the amount of data

on the body relatively sparse. The Mars Reconnaissance Orbiter (MRO) provides

no close-approaches of Phobos or Deimos, but its High Resolution Imaging Science

Experiment (HiRISE) and hyper-spectral Compact Reconnaissance Imaging Spec-

trometer for Mars (CRISM) have both provided a number of observations of Phobos

and Deimos, and will continue to do so for the foreseeable future [11].

Figure 1.1. All operational Mars orbiters as of December 2020.
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The Mars Express mission has been particularly useful in obtaining observations

of Phobos due to its eccentric orbit. The mission has provided flybys as close as

77 km from Phobos, which has allowed for updates to the Phobos ephemeris, shape

models, mass properties, composition models, and other properties [12]. However,

the apoapsis of the Mars Express mission is nowhere near the orbital distance of

Deimos, and the closest observations of the smaller Martian moon have been from

around 10,000 km away [12]. This distance is much too great for the high-resolution

observations of Deimos that are desired by those who wish to understand its origins.

1.1.3 Future Missions en Route or in Development

Future Mars missions that utilize an orbiter are likely to provide some amount of

occasional data on Phobos and Deimos in the same way that many current missions

do. The periapsis of the science orbit for the Hope orbiter of the Emirates Mars

Mission is very close to that of Deimos, which could provide an opportunity for close

approaches, but this is not currently planned in the reference mission [13].

The mission under development that has the greatest potential to expand our

understanding of Martian moons is the Japanese Mars Moon Exploration (MMX),

currently set to launch in 2024. This mission will rendezvous with Phobos, collect

up to 10 kg of surface samples, and return to Earth [14]. If successful, the mission

will provide by far the most detailed look at Phobos achieved by any mission. The

mission also has an option to introduce Deimos flybys at minimal fuel cost, and this

is a concept that is being considered as the mission is developed [14].

Sample return provides revolutionary advantages for studying the Martian system

over remote sensing observations [2]. Out of missions currently en route to Mars or

in the late stages of development, MMX provides the best opportunity to expand

our knowledge on the questions of the origins of Martian moons and the potential for

ISRU.
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1.1.4 Future Mission Concept Studies

Chariot is a NASA Small Innovative Missions for Planetary Exploration (SIMPLEx)-

class mission concept to send a small spacecraft to explore Phobos and Deimos. The

mission concept was developed in 2017 under the Planetary Science Deep Space Small-

Sat Studies Program (PSDS3) at Purdue University [1].

This study developed the mission architecture and basic systems engineering for

a CubeSat mission to Phobos and Deimos that would perform visual, near-infrared,

and thermal-infrared observations of each body [1].

The mission would utilize a 12U CubeSat platform which provides some key con-

straints on the mission when compared to a larger Discovery or New Frontiers-class

mission [1]. For example, with this small satellite platform, finding stable science

orbits is critical - frequent stationkeeping maneuvers may be operationally infeasible.

Additionally, to perform high-resolution science observations of each Moon, a small

satellite platform must utilize a close-proximity trajectory. More capable spacecraft

can carry large sensors that can make high-resolution observations from a large stand-

off distance, but this is physically not possible for a small spacecraft.

Another mission in development focused on the Martian moons is the ESA De-

Phine (Deimos and Phobos Interior Explorer) Mission [15]. This is an ESA M-class

mission, which has a cost cap of approximately 500 million Euros, analogous to a

NASA Discovery-class mission.

The DePhine mission baselines a very close relative orbit with Deimos (8 - 12 km

above the surface) and provides CONOPS for flybys as low as 1 - 2 km [15]. After a

10 month Deimos phase is complete, DePhine will transition into a 2:1 resonant orbit

with Phobos and perform flybys at altitudes as low as 50 km [15]. The spacecraft

will be outfitted with a suite of remote sensing instruments, a subsurface radar, and

a gravity science package, which will allow for detailed study of the composition and

interior of each body [15].
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1.2 Thesis Introduction and Organization

The original mission concepts for both Chariot and DePhine studied concepts for

visiting both Phobos and Deimos in one mission [1,15]. As such, studying the orbital

dynamics and mission operations about both bodies is a rich area of potential study

to facilitate future scientific discovery. This thesis will focus on proximity operations

and science orbit design about Deimos.

Mission design and operations at Deimos are emphasized over Phobos for a number

of reasons. Given that multiple missions have attempted to study Phobos, and there

are more currently in development, the dynamic environment about Phobos is well-

studied when compared to that of Deimos [10, 16–18]. The understanding of the

environment about Phobos is only continuing to advance in recent years given the

current progress of the MMX mission design teams [19, 20]. A better understanding

of the dynamic environment about Deimos could facilitate future missions to Deimos

that would not only expand our understanding of the Martian system, but could

complement the Phobos-centric sample return mission being undertaken by MMX.

The dynamic environment at Deimos is challenging from a mission design stand-

point. The body is massive enough that its gravity obviously must be taken into

account, but not so massive that it allows for a large stable gravity well. Large

portions of the orbital tradespace about Deimos are quickly destabilized by the grav-

itational potential of Mars or other perturbations. Mission design at Deimos is very

limited by Martian perturbations alone, and requires a careful selection of a stable

science orbit.

1.2.1 Previous Studies of the Deimos System Dynamics

A number of proposed missions or concept studies have discussed studying Deimos

via an orbiter or flybys, but a large majority have not performed detailed studies of the

dynamics near Deimos. This subsection will summarize the state of the art research

in the dynamics about Deimos specifically.
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In the late 1980s and early 1990s, multiple theses at the Air Force Institute of

Technology (AFIT) focused on finding stable periodic orbits about both Phobos and

Deimos. The first, written by Jansson in 1989, focused on the use of Poincaré surfaces

of section, and computed a family of planar, retrograde orbits about each body [21].

The second thesis, by Luria in 1990, continued the work by Jansson and applied

numerical continuation methods in order to generate and evaluate large numbers

of retrograde orbits in the vicinity of Deimos. The Floquet multipliers were also

computed to study the dynamic stability of these orbits [22].

These two works from AFIT were later summarized by Wiesel and the sensitivities

of the orbits were numerically examined. Wiesel studied the effect of moving from the

circular restricted three-body problem into a model that took into account the non-

zero eccentricity of Deimos about Mars and identified regions of long-term stability

for retrograde orbits at Deimos that are resilient to injection errors [23].

In the late 1990s, Rahe et al. proposed a spacecraft utilizing electric thrust that

would loiter near Phobos and Deimos in an orbit synchronized with the period of

each moon about Mars. The authors found that such orbits could fly at altitudes of

several kilometers over the surface of both moons, but the dynamics of each system

were not explored in detail [24].

In support of the Mars-Moon Exploration Reconnaissance and Landed Investiga-

tion (MERLIN) mission proposed to the NASA Discovery Program, Guo studied the

design and coverage of a set of inclined retrograde orbits in the vicinity of Deimos in

2012. These orbits varied between 300 km to 50 km away from Deimos, and a “walk-

in” strategy was developed for transferring from the high-altitude to low-altitude

orbits. Guo called this family of trajectories “G-3D” for “general three-dimensional

orbits” [25].

The Scheeres book Orbital Motion in Strongly Perturbed Environments dedicated

a chapter to studying the dynamics at Deimos as an example of an interesting problem

which has similarities to the more well-studied dynamics at Phobos. This chapter

explored two unstable prograde families about Deimos, and the more stable retrograde
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family. Zero-velocity curves were also calculated about the body, and the motion was

estimated via both the Hill model and the Clohessy-Wiltshire equations of unforced

relative motion [26].

The original PSDS3 report for Chariot utilized a retrograde relative orbit with

Deimos with a semi-major axis of 115 km. Coverage was computed for this orbit over

a 30 day science phase [1].

The DePhine proposal has yielded some of the most important previous work on

stable trajectories in the Deimos vicinity. Spiridonova et al. [27] and Oberst et al. [15]

both describe the utilization of retrograde orbits about Deimos that are inclined out

of the Deimos equatorial plane. The focus of the work is generally on very low altitude

orbits, in the 8 - 12 km range, but Spiridonova et al. does provide some numerical

stability analyses across the larger tradespace of Deimos trajectories [27].

Motivated by the JAXA MMX mission, a number of more analytical analyses

of the long-term stability of trajectories near small bodies in the circular restricted

three-body problem have been performed in recent years. Two of the more notable

examples include Baresi et al. [28] and Nishimura et al. [29]. Both of these works

sought to study the long-term evolution and stability of inclined distant retrograde

orbits via dynamical systems theory, which could be applied to the Mars - Deimos

problem.

Again motivated by the upcoming MMX mission, Ikeda et al. [17] has provided

some of the most notable academic literature on planning operations in a close-

proximity orbit to Phobos or Deimos. The paper in question is focused on Phobos

given the focus of MMX, but many of the concepts discussed can be applied to Deimos

as well. For example, the transfer strategy between distant retrograde orbits that is

developed for Phobos by Ikeda et al. can also be applied to Deimos. The paper also

performs a number of numerical sensitivity studies of retrograde orbits at Phobos,

the methodology of which could be applied to Deimos.
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1.2.2 Improvements Upon the State of the Art

This thesis builds upon the works discussed previously and advances the state of

the art for science orbit design and proximity-operations near Deimos. Specifically,

Deimos surface coverage is studied for the entire orbital tradespace in order to design a

science orbit that maximizes coverage for a given set of science requirements. For any

given mission, a science orbit is designed based on a large number of factors, including

spacecraft technical resource budgets, science requirements, and instrument selection,

but the methodology shown in this work for optimizing a science orbit should apply

to any hypothetical remote sensing mission at Deimos.

Additionally, the coverage analysis is combined with numerical stability analyses

performed again across the entire orbital tradespace. The combination of these two

analyses allows for future mission design at Deimos that can quickly take into account

both the coverage and stability metrics for close-proximity orbits about Deimos.

1.2.3 Thesis Organization

Beyond this introduction, this thesis is organized into four additional chapters.

Chapter 2: Mathematical Frameworks

The circular restricted three-body problem (CRTBP) is introduced, and the equa-

tions of motion are derived. This set of equations of motion will serve as the core

dynamics that govern the Mars - Deimos system in this thesis.

A method of STM-based targeting in the CRTBP is demonstrated that will later

be used to generate families of periodic orbits. An index for quantifying the stability

of periodic orbits in the CRTBP that utilizes the eigenvalues of the STM is defined.

Targeting via the pseudo-inverse of a numerical Jacobian matrix is also demonstrated,

which will allow for more complicated targeting in the ephemeris model.
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Planetary constants and spherical harmonic models associated with the Deimos

system are defined, and the force model for propagations that take place in the

ephemeris model is summarized.

Chapter 3: Periodic and Quasi-Periodic Orbits at Deimos

The dynamics of the Mars - Deimos system are examined in the Circular Restricted

Three-Body Problem. With this set of assumptions, periodic orbits about Deimos

are generated. The linear stability and dynamics of these periodic orbits is explored.

Quasi-satellite orbits are introduced, and visualized in multiple frames. The ben-

efits of quasi-satellite orbits for remote sensing observations are discussed.

Chapter 4: Mission Analysis at Deimos

Theoretical and numerical studies on the stability of quasi-satellite orbits about

Deimos are performed and discussed. Science orbits for a potential mission to Deimos

with a notional set of instruments and science requirements are generated and visu-

alized.

Long-term coverage analyses of some selected science orbits are performed with

more complex solar constraints. Numerical studies on the sensitivities of initial con-

ditions for distant retrograde orbits about Deimos are performed in order to inform

CONOPS and mission operations.

Chapter 5: Conclusions and Future Work

The work is summarized, and recommendations for future work are made.
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2. MATHEMATICAL FRAMEWORKS

2.1 Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CRTBP) is a simplification of the

general three-body problem which has no analytical solution. The general three-body

problem, and more simplified models based upon it, has been studied for centuries

by giants of celestial mechanics such as Euler, Lagrange, Jacobi, Hill, and Poincaré,

as well as a number of more modern researchers [30, 31].

While the general mathematical framework of the three-body problem is derived

from the gravitational laws of Newton, Euler was the first to apply the key “re-

striction” relevant to trajectory design, that the third body could be assumed to

be massless when compared to the other two. He also approached the three-body

problem in a rotating frame, which is the standard method for analyzing the problem

today [30,31]. Hill and Poincaré would go on to study periodic orbits in the restricted

three-body problem, and this work gave rise to the later more extensive numerical

exploration of periodic orbits in the restricted problem by Hénon [31–36].

The three-body problem models the motion of a body (denoted P3) under the

gravitational influence of two other bodies (denoted P1 and P2). The motion of P3

via Newton’s Second Law is given as a function of the masses m1 and m2 and their

relative positions in Equation 2.1.

m3r̈3 = −G m3m1

|(r3 − r1)|3
(r3 − r1)−G

m3m2

|(r3 − r2)|3
(r3 − r2) (2.1)

The problem can be simplified by making a number of assumptions:

1. m3 is much less massive than m1 and m2. As a result, the motion of m1 and

m2 is not affected by m3.
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r2

m3r3

Figure 2.1. The general three-body problem.

2. m1 and m2 is an isolated two-body system.

3. m1 and m2 move on circular orbits about their mutual barycenter.

These assumptions allow us to simplify the problem, and re-write it using a ro-

tating frame in the orbital plane of m1 and m2. This assumption set is commonly

referred to as the Circular Restricted Three-Body problem. This re-drawn setup is

shown in Figure 2.2.

Re-writing Equation 2.1 based on the notation in this rotating frame, the motion

of m3 with respect to the barycenter can be written as:

m3ρ̈ = −Gm3m1

|D|3
D −Gm3m2

|R|3
R (2.2)

Next, the mass, distance, and time parameters are non-dimensionalized. Note

that in the following notation the bold G represents the dimensional Newton’s Gravi-

tational Constant, while the non-bold G represents the non-dimensionalized constant.

l∗ = l1 + l2 (2.3)

m∗ = m1 +m2 (2.4)

t∗ =

√
(l∗)3

Gm∗
(2.5)
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Figure 2.2. The three-body problem redrawn with CRTBP assumptions.

µ =
m2

m∗
(2.6)

G =
G

l3
m∗t∗2 (2.7)

τ =
t

t∗
(2.8)

r =
R

l∗
(2.9)

d =
D

l∗
(2.10)

r = |r| (2.11)

d = |d| (2.12)

Using these non-dimensional quantities, the dimensional expression in Equation

2.2 can be rewritten as:

d2ρ

dτ 2
= −(1− µ)

d

d3
− µ r

r3
(2.13)

Integrating this equation and isolating the x, y, and z components yields:
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ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

d3
− (µ)(x− 1 + µ)

r3
(2.14)

ÿ + 2nẋ− n2y = −(1− µ)(y)

d3
− (µ)(y)

r3
(2.15)

z̈ = −(1− µ)(z)

d3
− (µ)(z)

r3
(2.16)

In the non-dimensional case, the mean motion of the rotating frame, n, simplifies

to equal one. This is demonstrated in Equation 2.17 using the notation of n as the

dimensional mean motion and n as the non-dimensional mean motion.

n = nt∗ =

√
Gm∗

l∗3

√
l∗3

Gm∗
= 1 (2.17)

With the simplification of n = 1, the equations of motion in Equations 2.14 - 2.16

reduce to:

ẍ− 2ẏ − x = −(1− µ)(x+ µ)

d3
− (µ)(x− 1 + µ)

r3
(2.18)

ÿ + 2ẋ− y = −(1− µ)(y)

d3
− (µ)(y)

r3
(2.19)

z̈ = −(1− µ)(z)

d3
− (µ)(z)

r3
(2.20)

This formulation is the classical set of equations of motion for the Circular Re-

stricted Three-body Problem. The equations of motion can also be re-written using

a pseudo-potential U∗. This pseudo-potential based formulation will be utilized in

targeters later.

U∗ =
(1− µ)

d
+
µ

r
+ 0.5(x2 + y2) (2.21)

ẍ− 2ẏ =
∂U∗

∂x
(2.22)

ÿ + 2ẋ =
∂U∗

∂y
(2.23)

z̈ =
∂U∗

∂z
(2.24)
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2.2 Targeting Periodic Orbits via the State Transition Matrix

The State Transition Matrix (STM) describes the partial derivatives of the states

at some arbitrary time t2 with respect to the states at an earlier time t1.

As an example of a state transition matrix, the partial derivatives of a final state

vector for a simple 2D problem in the XY plane, [x, y, ẋ, ẏ] can be described with

respect to the initial state vector [x0, y0, ẋ0, ẏ0] via the STM:

φ =



∂x

∂x0

∂x

∂y0

∂x

∂ẋ0

∂x

∂ẏ0

∂y

∂x0

∂y

∂y0

∂y

∂ẋ0

∂y

∂ẏ0

∂ẋ

∂x0

∂ẋ

∂y0

∂ẋ

∂ẋ0

∂ẋ

∂ẏ0

∂ẏ

∂x0

∂ẏ

∂y0

∂ẏ

∂ẋ0

∂ẏ

∂ẏ0


The process of targeting is adjusting states or parameters at some point in time

in order to achieve a set of desired states or parameters at a later point in time. If

the state transition matrix can be computed, the benefit of this matrix to the process

of targeting is clear: it provides a mapping of states at one point in time to another

point in time.

Using the example of a planar problem in the XY plane again, a change in the

future state x can be written as the sum of partial values multiplied by changes in

the initial state:

δx =
∂x

∂x0
δx0 +

∂x

∂y0
δy0 +

∂x

∂ẋ0
δẋ0 +

∂x

∂ẏ0
δẏ0 (2.25)

For a linear system, this expression is exactly correct. For a nonlinear system,

such as the CRTBP, it provides a linearized approximation which may be close to

correct depending on the dynamics of the system and the time between t0 and t.

One of the challenges for utilizing the STM in targeting is calculating the values of

the partial derivatives. In the CRTBP, this is commonly done numerically via finite

differencing, or by integrating the STM in conjunction with the equations of motion.
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Integrating a 6 dimensional state and a 6x6 STM involves integrating 42 nonlinear

equations simultaneously whereas for the finite differencing method, it is only inte-

grating the 6 equations describing the state multiple times for each partial derivative

needed. Either way will work in a numerical targeter, but there may be computational

performance differences depending on how many partial derivatives are necessary for

the targeter in question.

2.2.1 Finite Differencing

For finite differencing, the ultimate goal is to estimate the values of the STM

without integrating the full matrix. This can be done by making a small perturbation

to the initial state in question and observing the effect on the final state in question.

For central differencing, which requires two integrations, the partial derivative

value can be approximated as the following, where δ is some small value, and x is the

variable being changed.

∂f

∂x
=
f(x+ δ)− f(x− δ)

2δ
(2.26)

This process would be repeated for each dimension of f and each dimension of x

for which a partial derivative is required. Again, the benefit of this method is that

the full STM does not need to be integrated. For a very simple targeter (for example,

one that varies one initial variable in order to hit a target value of one final variable),

it is possible to only estimate the partials required instead of the full STM, which

can be more computationally efficient. However, it is very much problem-dependent.

2.2.2 STM Integration

For integrating the STM in order to obtain the full STM at any given point, the

integration takes the form:

φ̇ = Aφ (2.27)
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A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

U∗XX U∗XY U∗XZ 0 2 0

U∗Y X U∗Y Y U∗Y Z −2 0 0

U∗ZX U∗ZY U∗ZZ 0 0 0


(2.28)

Where U∗XX is defined as
∂2U∗

∂x∂x
, and the other partials are defined similarly.

For this formulation, the initial conditions for the STM, φ0 are defined as a 6x6

identity matrix. This comes from the definition of the STM itself: when the final

time t2 is equal to the start time t1, there is exactly a 1:1 ratio between changes in

the initial state and changes in the final state - the state vectors are the exact same.

This formulation allows for the integration of all 36 STM elements in concurrence

with the integration of the states.

2.2.3 STM-Based Targeting for Periodic Orbits

Once the elements of the STM have been computed, they can be utilized to target

periodic orbits in the CRTBP. If a system is linear, the change in a final state as a

function of changes in an initial state can be written via the STM as:

δXf = φ ∗ δX0 (2.29)

If this system is nonlinear, this formulation is not exactly correct, but it is often

close over relatively short propagation times. By taking the inverse of the STM, the

reverse problem can be examined: the predicted change in an initial state required

to yield a desired change in the final state.

δX0 = φ−1 ∗ δXf (2.30)

This formulation is useful for any sort of state-based targeting. Given that the

STM is a linearized approximation of the partial derivatives, this formulation is often
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used in an iterative fashion, making repeated adjustments to the initial state until

eventually the final state has converged to the desired values.

For targeting periodic orbits, a common method is to start with an initial condition

on the X-axis and adjust the initial velocity Ẏ0 such that the next X-axis crossing is

perpendicular.

x

y

Figure 2.3. A method for targeting periodic orbits in the CRTBP.

This method is effective because the dynamics are mirrored about the X-axis. So if

a trajectory leaves and then re-crosses the X-axis both via perpendicular crossings, a

continued propagation will mirror the first propagation across the X-axis and complete

a full periodic trajectory [37,38]. This observation is often referred to as the “mirror

theorem”.

The method of computing periodic orbits by searching for perpendicular X-axis

crossings and adjusting initial conditions via estimated partial derivatives was demon-

strated extensively by Hénon in his numerical explorations of the restricted prob-

lem [34,35].
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2.3 Periodic Orbit Stability Index

There are a number of methods for quantifying the stability of periodic orbits in

the CRTBP. For the analysis in this thesis, the stability characteristics are determined

via the monodromy matrix, or the state transition matrix as defined in Section 2.2

evaluated after one full period of a periodic orbit.

After one full period, the eigenvalues of the monodromy matrix can be computed.

Via Lyapunov’s Theorem, there will be two eigenvalues equal to one, and two addi-

tional reciprocal pairs. For the trajectories analyzed in this thesis, the four non-unity

eigenvalues all exist on the unit circle, and the stability criteria can be determined

via a combination of the reciprocal pairs.

For the analysis in this thesis, there are three indices developed for each orbit based

on the eigenvalues of the monodromy matrix. These three indices jointly determine

the stability of the periodic orbit. The three stability indices are defined as follows:

ν1 = 0.5(λ1 + λ2) (2.31)

ν2 = 0.5(λ3 + λ4) (2.32)

ν3 = 0.5(λ5 + λ6) (2.33)

Where (λ1, λ2), (λ3, λ4), and (λ5, λ6) are the three pairs of reciprocal eigenvalues.

For this convention, an index between -1 and +1 in all three of the indices signifies

stability in the linear sense. If any one of the three indices has a magnitude greater

than one, the periodic orbit is considered unstable. Given that the imaginary com-

ponents cancel when adding the two reciprocal pairs, using this notation there is no

differentiation between asymptotic stability (which occurs with a real eigenvalue with

a magnitude less than 1) and Lyapunov stability (which occurs with an eigenvalue on

the complex unit circle) [29].
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2.4 Numerical Targeting in GMAT

With a simplified dynamics model, targeting via the state transition matrix as de-

scribed in Section 2.2 works quite well. However, moving to the ephemeris model, it

can become computationally difficult to propagate the station transition matrix. The

tool of choice for ephemeris propagation and targeting in this thesis is the General

Mission Analysis Tool (GMAT), a validated toolset developed by the Goddard Space

Flight Center, and used on a number of operational missions [39]. For this analy-

sis in GMAT, targeting for computing periodic orbits, performing maneuvers, and

stationkeeping is performed via a Newton-Raphson differential corrector with partial

derivatives computed via finite differencing. The use of finite differencing instead of

the analytical evaluation of derivatives makes it a quasi-Newton method.

Generally, a Newton-Raphson method is an iterative root-finding method such

that:

xn+1 = xn −
f(xn)

f ′(xn)
(2.34)

In this case, f is a function of variables x, and represents the set of achieved offsets

from a set of desired parameter values. The Newton-Raphson solver seeks to find a

set of variables x such that each offset is zero (meaning that the variables yield the

desired parameter values).

For a multi-dimensional targeter where multiple parameters are varied and tar-

geted simultaneously, a Jacobian matrix is used instead of a scalar function evaluation.

J =


∂f1
∂x1

...
∂f1
∂xk

...
. . .

...
∂fk
∂x1

...
∂fk
∂xk

 (2.35)


x1
...

xk


n+1

=


x1
...

xk


n

− J−1


f1(x1)

...

fk(xk)

 (2.36)
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Note here that if all 6 initial states are varied and all 6 final states are targeted,

the Jacobian matrix here is equivalent to the STM. The update equation formulated

in Equations 2.35 and 2.36 works for targeting where the number of variables and

constraints are equal and the Jacobian matrix can be easily inverted.

When the number of variables and constraints are not equal, the Jacobian is not

invertible, and GMAT calculates a pseudo-inverse of the Jacobian 1 :

If the number of variables is greater than the number of constraints (the problem

is underconstrained):

J−1 ≈ JT (JJT )−1 (2.37)

If the number of variables is less than the number of constraints (the problem is

overconstrained):

J−1 ≈ (JTJ)−1JT (2.38)

This method of using pseudo-inverses in order to invert a non-square Jacobian

allows for targeting of desired parameters when the problem is under or overcon-

strained. This benefit can be very useful when working in an ephemeris model rather

than a simplified dynamics model as the targeting is often more complex than in the

CRTBP.

2.5 Ephemeris Model Dynamics and Planetary Constants

For evaluations in this thesis that involve propagating a spacecraft in the ephemeris

model, the set of constants and force model was standardized across runs to ensure

consistency. The planetary ephemerides and GM values are based on the DE431 [40]

and MAR097 [41] ephemeris files for the solar system and Martian system respectively.

For Deimos specifically, the GM value is based on MAR097, but there is also

a spherical harmonic model developed by Rubincam, Chao, and Thomas [42]. For

1Some of the mathematical references in the GMAT documentation have been a work in progress
for years, and this information is not found in the published documentation. However, the open
source nature of the project allows researchers to examine the C++ source code itself to confirm
the pseudo-inverse implementation.
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this model, it is important to note that the spherical harmonic terms have not been

refined based on radiometric tracking data, but via a Deimos shape model and an

assumption of uniform density. Tracking data that would allow for a Deimos spherical

harmonic model to be refined simply does not exist because there have been no close-

approaches of Deimos by any spacecraft. There are relatively high uncertainties on

both the Deimos GM value and the spherical harmonic values, which is discussed in

Section 3.2.

Ephemeris propagations were performed with the 4x4 spherical harmonic model

developed by Rubincam, Chao, and Thomas [42] and point masses for Mars, Phobos,

and the Sun. The Deimos body frame is modeled via the conventions of the 2017

IAU Working Group [43]. An alternate dynamic setup could have utilized a Martian

spherical harmonic model and a Deimos point mass. This is likely a more appropriate

model for trajectories that are further away from Deimos, while the Deimos spherical

harmonic model and Mars point mass is more appropriate for close-proximity trajec-

tories. The astrodynamics packages used in this research did not support propagation

with multiple spherical harmonic models simultaneously, so one setup needed to be

chosen. A future analysis that takes into account both Mars and Deimos spherical

harmonics could be a useful extension of this work.

A comparison of the acceleration due to the Mars and Deimos GMs and Mars

and Deimos J2 perturbations as a function of the distance from Deimos is shown in

Figure 2.4. It should be noted that the value for the Mars and Deimos J2 acceleration

should be considered to be an upper bound. The actual value for the acceleration in

a spherical harmonic model is a function of the latitude and longitude with respect

to the body-fixed frame of each body. In comparing the spherical harmonic models

for Mars and Deimos, the J2 acceleration for Deimos outweighs that of Mars inside

approximately 25 km, and the J2 for Mars outweighs the J2 of Deimos outside this

distance.

Given the sensitivity of some of these orbits, a basic spherical solar radiation pres-

sure model was added based on notional values for area to mass ratio and coefficient



23

Figure 2.4. Accelerations due to Mars and Deimos as a function of
distance from Deimos.

of reflectivity. These SRP parameters are obviously spacecraft-dependant, but they

do not have a large effect on the trajectories evaluated in this thesis. The notional

values here are realistic for a small to medium-sized interplanetary spacecraft.

All propagations in the ephemeris model are performed with a starting epoch of

Oct 1, 2025, 00:00:00 UTC, which is chosen to correspond with an arbitrary Earth -

Mars transfer window arrival time in the mid-2020s.
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Table 2.1. Spacecraft Force Model and Dynamic Setup

Force / Parameter Details

Spherical Harmonic Deimos 4x4

Point Mass Mars, Phobos, Sun

Solar Radiation Pressure Spherical Model

Area / Mass Ratio 0.0278

Coefficient of Reflectivity 1.8

Epoch Oct 1, 2025, 00:00:00 UTC
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3. PERIODIC AND QUASI-PERIODIC ORBITS AT

DEIMOS

The dynamics of the Deimos system are very challenging when compared to some

larger planetary bodies. The Hill radius of Deimos, or the radius inside which the

gravitational potential of Deimos is dominant, is approximately 25 km [26]. Pre-

vious studies of trajectories near small bodies have shown that trajectories outside

approximately half of the Hill radius tend to escape over time due to outside pertur-

bations [26,44]. The Deimos shape model used in this analysis is the model developed

by P.C. Thomas in 2000, with principal axes measuring 15.9 km x 12.6 km x 11.1

km [45].

Figure 3.1. The Deimos shape model developed by Thomas (2000)
[45]. Visualized in the Small Body Mapping Tool [46].
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If the Hill radius is assumed to be constant about the body, this leaves less than

7 km above the surface where stable, Keplerian-like orbits may exist. Given these

extreme constraints on orbits about Deimos, the best way to analyze the problem is

within the framework of the Mars - Deimos three-body problem.

3.1 Mars - Deimos Rotating Frame Definition

In the Mars - Deimos three-body problem, propagations are often viewed in a

Mars - Deimos rotating frame. This frame, shown in Figure 3.2, is defined such that

the X-axis is along the Mars - Deimos radial vector, the Z-axis is aligned with the

Deimos angular velocity vector, and the Y-axis completes the right-handed system.

With the CRTBP assumption of a circular orbit of Deimos about Mars, the Y-axis is

also perfectly aligned with the Deimos velocity vector, but when used in an ephemeris

model with the actual orbit of Deimos, this is not the case. Note that in this thesis,

the coordinate frame is centered at the Deimos center of mass whereas in Figure

2.2, the rotating frame was centered at the mutual barycenter of the primary and

secondary bodies. This is done for ease of interpretation when examining trajectories

in the Deimos vicinity.

x

y

z

Figure 3.2. The Deimos-centered Mars - Deimos rotating frame. Not to scale.
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3.2 Lagrange Points at Deimos

A logical first step for trajectory design in the three-body problem is to examine

the Lagrange points in the CRTBP. For Deimos, the L1 and L2 Lagrange points

exist at approximately +/- 21 km along the Mars - Deimos radial vector. This is

approximately 13 km above the surface of Deimos.

Figure 3.3. The Mars - Deimos L1 and L2 Lagrange points with
respect to the shape model in the Mars - Deimos rotating frame.

This distance could theoretically allow for very small halo orbits or other families

at the Mars - Deimos L1 or L2 points. However, these were not considered for a

number of reasons:

First, periodic orbits about Lagrange points are inherently very sensitive. This can

usually be managed with small stationkeeping burns, however, for a body like Deimos

with significant uncertainties on mass properties, the location of the Lagrange points

themselves are uncertain. Estimates of the mass of Deimos are performed based

on ground observations and spacecraft tracking at Mars. However, as previously

discussed, there are no spacecraft that make regular close approaches of Deimos,

making estimation of parameters difficult.
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Modern estimations place uncertainties on the mass of Deimos at anywhere from

7 percent to more than 35 percent [47]. If the upper and lower bounds of Deimos

GM estimations are considered, the Lagrange points may actually exist at anywhere

between 17.8 km and 24 km away from the center of mass.

As the Lagrange points shift, the corresponding initial conditions for periodic

orbits also shift. As such, any mission that baselined halo orbits, or other similar

families of L1 or L2-centric trajectories near Deimos would likely need to perform an

early phase of GM estimation in a stable orbit before the libration point orbit phase

could begin.

In addition to these challenges, there is the more practical consideration that

Deimos is tidally locked, meaning that the observation geometry of the spacecraft

would be “locked” onto one side of the body. It would of course be possible to make

observations of one side before transitioning to the Lagrange point on the other side

of Deimos, but it may be more desirable to find a trajectory that can provide global

observations without any transitions between orbits.

3.3 Prograde Orbits About Deimos

Very close to Deimos, there are a number of prograde periodic orbits that exist

mathematically in the CRTBP. The two families are called the g and g’ families by

Hénon [34]. These two families are planar and exist in the Mars - Deimos orbital

plane.

While these families may exist mathematically about a Deimos point mass, in

reality, many of the members of the g family intersect the Deimos surface. A subset

of the family near Deimos is shown in Figure 3.4.

For the g’ family, which bifurcates from the g family around an X0 value of 10 km,

the geometry is such that many members of the family do not intersect the Deimos

surface. However, all members of the family are extremely unstable and require very

tight controls on the initial conditions in order to avoid impacting or leaving the
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Figure 3.4. The g family of orbits about Deimos in the Mars - Deimos
rotating frame.

body. This inherent instability combined with the uncertainties on the Deimos mass

described in Section 3.2 means that the use of this family for an actual mission would

be extremely challenging.

3.4 Distant Retrograde Orbits

The family of periodic planar retrograde orbits about the secondary body was

originally called the f family by Hénon [36] in the circular Hill problem. In the

circular Hill problem, the mass of the secondary body is assumed to be “vanishingly

small” (to quote Hénon) when compared to that of the primary, i.e. µ = 0. In more

recent nomenclature, the members of this family for values of µ 6= 0 have been referred

to as distant retrograde orbits (DROs). In this thesis, the terms “distant retrograde

orbit” and “f family” will be used interchangeably.
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Figure 3.5. The g’ family of orbits about Deimos in the Mars - Deimos
rotating frame.

These orbits lie in the same orbital plane as the secondary body about the primary,

which for tidally locked bodies such as Deimos means that they also lie in the Deimos

equatorial plane. DROs have long been of interest to mission designers due to their

stability when compared to other periodic orbits in the CRTBP [34,48,49].

Previous studies on mission design at Deimos have found that distant retrograde

orbits (DROs) are the only stable periodic orbits about Deimos [26]. Using the STM-

based targeting method described in Section 2.2, the f family about Deimos can be

generated in the Mars - Deimos rotating frame.

The f family for X0 values of 10 km - 100 km is shown in Figure 3.6. Near Deimos,

the family appears nearly circular, however, as the family grows, the ratio of the Y-

axis amplitude to X-axis amplitude approaches approximately 2:1. The evolution of
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this ratio across this subsection of the family is shown in Figure 3.7. The approach

towards a 2:1 ratio is expected: as the f family grows, the gravitational potential from

Deimos decays, and the relative motion approaches the unforced relative dynamics

of two massless objects in two-body orbits with respect to Mars. This 2:1 ratio

of along-track vs radial oscillation is seen in the relative motion described by the

Clohessy-Wiltshire equations or any number of relative orbital element formulations

that describe unforced relative motion [50,51].

Figure 3.6. The f family of orbits about Deimos in the Mars - Deimos
rotating frame.

Another parallel to unforced relative motion is seen when the period of the f family

about Deimos is compared to the period of Deimos about Mars. For low-altitude

members of the family, where the gravitational force due to Deimos is significant, the

orbital period about Deimos can be as low as five hours, significantly shorter than the

approximately 30 hour period of Deimos about Mars. However, for larger members

of the family, the period of members of the f family asymptotically approaches the

period of Deimos about Mars.
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Figure 3.7. Ratio of the Y amplitude to X amplitude as the f family grows.

Figure 3.8. Period of the f family of orbits about Deimos compared
to the Deimos period about Mars.

Similarly to the 2:1 behavior discussed previously, this occurs as the gravitational

force due to Deimos decays. As the family grows, it transitions from a Deimos-
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dominated trajectory to a Mars-dominated trajectory perturbed by Deimos, and

eventually approaches a behavior where Deimos has little to no effect on the tra-

jectory. For unforced relative motion, which is what the f family approaches as it

grows larger, the period of the relative motion is equal to the period of the “chief”

object (Deimos in this case) about its primary (Mars).

It is important to note here that this is the period with respect to the Mars -

Deimos rotating frame. Given that Deimos is tidally locked, the period is also given

with respect to the Deimos body frame. Instead of the phrase “orbital period”, some

authors in the literature have referred to this apparent motion about the body frame

of the secondary body as an “epicycle period”, and left the terminology “orbital

period” to describe the period about the primary body [16]. For a DRO, the orbital

period of a member of the f family with respect to the primary will be equal to the

orbital period of the secondary body. The period shown in Figure 3.8 is the period

with respect to the Deimos body frame, or the epicycle period in the nomenclature

of other authors.

The initial conditions solved by the targeter are shown in Figure 3.9. There is an

inflection point near an X0 value of 20 km, representing where the family transitions

from inside the L1 and L2 Lagrange points to outside. In generating the f family,

initial guesses for the targeter are calculated based on a continuation method using

a spline fit of the solved members that have been already generated.

Applying the stability index described in Section 2.3, the three resulting indices

are shown in Figure 3.10. This metric shows the mathematical stability of the family

of DROs about Deimos. Similar to the initial condition plot in Figure 3.9, there is an

inflection point for two of the three indices near the transition from inside the Mars

- Deimos L1 and L2 points to outside those points. The third index is constantly

equal to one. All three indices have a magnitude less than or equal to one signifying

Lyapunov stability across all analyzed members of the family.

While distant retrograde orbits appear to be smooth oval-like shapes when viewed

in a rotating frame, in an inertial frame, the motion is more complex. A sample
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Figure 3.9. Initial conditions for the f family of orbits about Deimos.

Figure 3.10. Stability index of the f family of orbits about Deimos.

member of the family with an X0 value of 50 km is shown in a Deimos-centered

inertial frame in Figures 3.11 and 3.12.
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Figure 3.11. Example member of the f family as viewed in the Deimos-
centered inertial frame from above.

In inertial space, each trajectory moves about Deimos very slowly, and there

are portions of each orbit where the relative inertial motion changes direction each

orbit. The motion seen in a rotating or Deimos-fixed frame is primarily driven by the

rotation of Deimos underneath the spacecraft rather than the inertial motion of the

spacecraft about the Deimos center of mass.

In the example DRO shown in Figures 3.11 and 3.12, each “loop” represents half

of a period of the spacecraft about the Deimos body frame (an epicycle using the

nomenclature previously discussed). The closest point to Deimos in each loop occurs

when the spacecraft crosses the Mars - Deimos radial vector.

Figure 3.12 is the same inertial representation, but from a viewpoint where Mars

is visible to demonstrate that the inertial motion lies in the orbital plane of Deimos.
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Figure 3.12. Example member of the f family as viewed in the Deimos-
centered inertial frame. Mars included for spatial awareness.

3.5 Quasi-Satellite Orbits

The stability of planar DROs is a very useful property from a mission design

standpoint as it allows for long-term orbits that can be maintained with little to

no fuel cost and operational complexity. However, for better viewing geometry and

global coverage of a body, it can be more desirable for a target science orbit to be

inclined relative to the equator of the body.

When a distant retrograde orbit is given a non-zero velocity in the out of plane

direction (the Z direction), they are inclined out of the XY plane in the rotating

frame. These orbits are sometimes referred to as quasi-satellite orbits [16,19,27].

The term quasi-satellite orbit is utilized in both astrodynamics and celestial me-

chanics, and refers generally to the motion of a small body (or spacecraft) near a

larger primary, but outside the Hill sphere of that primary [52, 53]. For example, in

the Sun - Earth system, asteroid 2016 HO3 appears to very slowly orbit the Earth

with a period of about one Earth year [54]. The asteroid and the Earth both have

a 1:1 ratio of their periods about the Sun. Given that 2016 HO3 is well outside the
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Earth’s Hill sphere, it is more appropriate to think of it as a Sun-orbiting body that

is perturbed by the Earth rather than an Earth satellite, hence quasi -satellite.

QSOs can be generated in many three-body systems, and were first operationally

considered and utilized for the Phobos 1 and Phobos 2 missions [52, 55, 56]. In the

case of the Mars - Deimos system, much of the f family exists outside the Hill sphere

of Deimos. Given this, most of the family could be thought of as Mars-centric objects

that stay in the Deimos vicinity. By the typical definitions of a quasi-satellite orbit,

the members of the family that exist inside the Hill sphere (inside an X0 value of

approximately 25 km), would not apply. However, for this work, all of the analyzed

trajectories will be referred to as quasi-satellite orbits. This is taking a more broad

definition of a quasi-satellite orbit, but the low-altitude members of the family inside

the Deimos Hill sphere are only a small subset of the analyzed trajectories.

When a member of this family is given a non-zero initial velocity in the Z direction,

the motion in the XY plane stays the same, but there are additional oscillations in

the Z direction. An example of this motion is shown in Figure 3.13.

Following the notation of Hénon, one of the early pioneers of this work, there are

two methods for generating QSOs: type Cv with Z0 6= 0, Ż0 = 0, and type Bv with

Z0 = 0, Ż0 6= 0 [57]. Given the periodic or quasi-periodic nature of these orbits, either

method is equally valid for generating QSOs. This thesis will utilize Bv, which starts

the trajectory in the XY plane and applies the out of plane velocity accordingly.

In the CRTBP, it is possible to generate perfectly periodic QSOs. The repetition

period is a function of the ratio of the planar epicycle period to the period about

the primary body (Mars in this case) [58]. Given this, there are set members of the

family that can provide common ratios (1:2, 3:4, 3:5, etc.). These specific periodic

trajectories with common repetitive cycles could be useful for mission operations, but

they are not studied in detail in this thesis. This is primarily because the precise

periodicity can be hard (or expensive in terms of fuel costs) to maintain once they

are evaluated in the ephemeris model. Typically, once the trajectories are moved into

the ephemeris model, they transition into something that is more quasi-periodic. The
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Figure 3.13. Example QSO as viewed in the Mars - Deimos rotating frame.

behavior of QSOs in the inertial frame is similar to that of DROs. A top-down and

side view of this behavior is shown in Figures 3.14 and 3.15.

The motion appears complex in the inertial frame, but maintains the same basic

properties as seen in the inertial motion of DROs. The only difference is the addition

of the out of plane velocity.
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Figure 3.14. QSO as viewed in the Deimos-centered inertial frame from above.
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Figure 3.15. QSO as viewed in the Deimos-centered inertial frame
from the Mars - Deimos orbital plane.
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4. MISSION ANALYSIS AT DEIMOS

4.1 Stability of Quasi-Satellite Orbits at Deimos

While quasi-satellite orbits seem very promising for performing remote sensing

observations at Deimos, the stability of these orbits is still important to consider.

Some analytical and numerical studies of QSO stability at Phobos and Deimos have

been performed by Gil and Schwartz [16], da Silva Pais Cabral [59], Canalias et

al. [19], and Spiridonova et al. [27]. The stability analysis in this thesis is primarily

numerical in nature, but provides a brief theoretical examination for the very low

altitudes where general perturbations theory based on perturbations of Keplerian

elements can be considered to be valid.

One stability metric of interest is the critical inclination, or the stable relative

orbital inclination that is closest to a polar orbit about Deimos. An important caveat

here is that the inclination is defined with respect to the inertial Deimos equatorial

plane, not with respect to the rotating frame in which these QSOs are usually visual-

ized. This definition of inclination is the standard definition for a two-body problem,

but it is important to note given that many of these orbits exist well outside the point

where Keplerian elements are valid.

From a coverage standpoint it is desirable to maximize the inclination with respect

to Deimos in order to provide observations of the polar regions. However, as the

inclination gets closer to polar, perturbations from the Martian gravitational potential

can have a more destabilizing effect on the trajectory, causing the spacecraft to impact

Deimos or leave the Deimos vicinity. Some instability may be tolerable for a mission

that can perform frequent stationkeeping maneuvers, but this is very much mission

and spacecraft-dependent. Given this balance between instability and suitability for
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remote sensing observations, studying the critical inclination across members of the

family provides important insights.

4.1.1 Theoretical Approach

The first approach at finding the critical inclination of QSOs about Deimos was

to use general perturbations theory and averaging assumptions to find the inclination

at which the eccentricity of the orbit about Deimos is unbounded. By isolating only

the first-order secular terms, a set of orbital element derivatives known as the Secular

Lagrange Equations can be derived. This derivation is demonstrated by Scheeres and

other authors [26], and the equations are summarized in Equations 4.1 - 4.5 for the

evolution of a satellite in orbit about a planetary moon.
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In these equations, NS represents the mean motion of the planetary moon about

its planet, and n represents the mean motion of the satellite about the moon.

These equations can be simplified based on the general assumption that the orbit

of the satellite about the moon is near-circular. If the assumption is made that the

eccentricity is close to zero, and any higher order eccentricity terms are approximately

zero, the equations can be re-written as:
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= 0 (4.6)
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dt
= 0 (4.7)
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When this simplification is made, Equations 4.9 and 4.10 become coupled, and

the stability characteristics of e can be observed while treating Ns and n as constants.

For the resulting coupled equations, there is a range of initial inclinations that result

in bounded eccentricities, or stable orbits.

For Deimos, the range of stable retrograde inclinations tends to be from approx-

imately 140 - 180 degrees. However, the basic assumptions that are made in this

approximation are only valid at very low orbital altitudes. When the f family about

Deimos was explored in Section 3.4, it was shown that the family is only near-circular

for very low altitudes and quickly approaches a 2:1 Y amplitude to X amplitude ratio.

The assumptions involved in using general perturbations to estimate the evolution of

the Keplerian elements are quickly violated, and in the numerical approach, it will

be shown that the numerical stability behavior as a function of the inclination is

more complicated than originally predicted via the Secular Lagrange Equations and

near-Keplerian assumptions.

4.1.2 Numerical Approach

Given that the f family of orbits about Deimos (and the QSOs that bifurcate off

of it) generally violate assumptions of Keplerian motion with respect to Deimos, a

numerical approach was utilized in order to study the critical inclination across the f

family.

Each member of the planar f family was propagated with CRTBP dynamics with

a set of out of plane velocities Ż0 6= 0. Each trajectory was propagated for 30 days

to determine which set of initial conditions remained within the Deimos system and

which either impacted Deimos or exited the vicinity into a fully Mars-centric orbit.
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For the trajectories that leave the vicinity of Deimos, the mechanism is typically

that perturbations disrupt the 1:1 period ratio (with Deimos, and with respect to

Mars) discussed in the introduction to QSOs in Section 3.5. Once this resonance is

disrupted, the spacecraft will have a secular drift away from Deimos. The resulting

stability map of initial conditions is shown in Figure 4.1.

Figure 4.1. Stability map of Deimos QSOs based on CRTBP dynam-
ics. Blue: Remains in orbit about Deimos. Red: Impacts or leaves
the vicinity of Deimos.

The stability criteria here shows an interesting, but somewhat expected, trend:

there is an inflection point at around X0 = 20 km which corresponds to the location

of the Mars - Deimos L1 and L2 points. Note the similar inflection point for initial

conditions and stability indices for the planar f family. Once the family is outside of
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this point, the allowable out of plane velocity continues to increase. There is a rather

sharp increase at around 38 km and a small peak around 65 km.

As a whole, no member of the family that was analyzed could remain at Deimos

with an initial out of plane velocity Ż0 > 6.5 m/s. If the allowable out of plane

velocity is taken as a sensitivity metric in and of itself, the most sensitive portion of

the family (to out of plane perturbations) is at X0 = 20 km.

From the stability map shown in Figure 4.1, it is possible to isolate the value of

Ż0 that serves as a transition between the stable and unstable region, and use that

out of plane velocity to solve for the critical inclination of that member of the family.

This critical inclination calculation is shown across the family in Figure 4.2.

Figure 4.2. Critical inclination across the f family.



46

This trend in critical inclination shows the transitional nature of the f family

about Deimos as it moves from a Deimos-dominated trajectory to a Deimos-perturbed

trajectory to something that is hardly affected by Deimos at all.

The critical inclination for the closest members to Deimos is approximately 150

degrees. This is close to the critical inclination as predicted by the Secular Lagrange

Planetary Equations and described in Section 4.1.1, but not exactly, and it very

quickly diverges from this estimate.

Studies of DROs in the Earth-Moon system have shown that as the members of

the family grow larger, the critical inclination tends to approach 180 degrees [60].

This is the behavior that is seen for members with X0 = 10− 20 km. However, many

of these previous studies in the Earth-Moon system did not examine DROs that were

very far outside of the Moon’s Hill sphere. For the f family, most of the family lies

well outside this region.

As the family grows past this region, and the dynamics begin to approximate

unforced relative motion in the vicinity of Deimos, it was expected that the critical

inclination would open back up towards polar. The Clohessy-Wiltshire equations and

other unforced relative motion dynamic models allow for some relative inclination,

so as the dynamics begin to approximate unforced relative motion, this is expected.

This is indeed the behavior observed once the family is completely outside the Hill

sphere. There is a steep drop-off at around 30 km, and the critical inclination for the

family remains between 130 and 150 degrees for the rest of the analyzed members.

In relation to designing science orbits, there are three features of this critical

inclination distribution that are particularly interesting. First, the rapid jump from

more than 165 degrees to around 150 degrees between X0 = 35 - 40 km. There

are critical inclinations closer to polar elsewhere in the family, but this very rapid

change allows for coverage of significantly higher latitudes at Deimos at relatively low

altitudes. The second and third features are the local extrema located at X0 = 64

km and X0 = 85 km respectively. These two points represent the closest stable

inclinations to polar that are possible across the analysed members of the f family,
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and provide the furthest northern and southern Deimos ground tracks of any of the

analyzed trajectories.

4.2 Science Orbit Design

4.2.1 Batch Search

To design a target science orbit for global, high-resolution observations of Deimos,

a tool was developed that computes the coverage and spatial resolution of simulated

measurements for any arbitrarily-shaped body, an ephemeris file of a trajectory about

that body, the sensor parameters, and any desired solar constraints.

The purpose of the tool is to process potential science orbits in bulk to gain

an understanding of the entire orbital tradespace for a given sensor. Typically the

coverage of a body can only be optimized once the science requirements and sensor

parameters are known, but this analysis seeks to find promising science orbits for a

range of potential sensors and resolution requirements. The cases evaluated in this

batch study are shown in Table 4.1.

Table 4.1. Deimos Coverage Cases Evaluated

Measurement Instrument FOV Requirement

Thermal Infrared
FLIR Tau 2, 100mm lens 6.2 x 5.0 deg

30, 10, 5 m/px
FLIR Tau 2, 60mm lens 10.4 x 8.3 deg

Visual

ECAM C30, 30mm lens 12.5 x 9.4 deg

5 m/px
ECAM C50, 12.6mm lens 25.9 x 19.4 deg

ECAM C50, 30mm lens 10.9 x 8.2 deg

ECAM C50, 63mm lens 5.2 x 3.9 deg

The FLIR Tau 2 is a thermal camera suitable for small spacecraft, and would be a

very good candidate for a NASA Small Innovative Missions for Planetary Exploration
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(SIMPLEx)-class mission [1]. The instrument would require an addition of narrow-

band filters in order to utilize it as a multispectral spectrometer, but this is a process

that has been previously demonstrated [1]. Even the most lenient requirement of 30

m/px would provide vast improvements over current models at Deimos and would

provide useful infrared maps of the surface. However, also testing higher resolutions

allows for an understanding of what the highest potential resolution could be for a

near-global map.

The ECAM line of visual cameras from Malin Space Science Systems has flown

on multiple missions, including OSIRIS-ReX [1]. For visual observations, the only

resolution requirement analyzed is 5 m/px.

The goals of the large batch analysis are to find a potential science orbit that:

1. Maximizes the percent coverage of the Deimos surface subject to basic sensor-

driven constraints

2. Minimizes the spatial resolution of the measurements

These two goals are often in conflict. For example, a distant orbit will likely meet

the percent coverage criteria very easily, but will only provide low-resolution mea-

surements. Conversely, a very close orbit will provide high-resolution measurements,

but may never see the entire body.

For the batch search, the output evaluated for each setup is the percent coverage

of Deimos for a set of quasi-satellite orbits. In order to be counted as a “successful”

observation, it must be within the field of view of the sensor, must meet the resolution

requirement, and must meet additional solar constraints.

The batch search is performed via the following procedures:

• The set of initial conditions for the evaluated QSOs span X0 = 10 − 100 km,

and Ż0 = 0− 10 m/s.

• All initial conditions are propagated for 14 days in the ephemeris model using

the force model described in Section 2.5.
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• Measurements made in the visual band are constrained to be only on sunlit

geometry.

The evaluated duration of 14 days represents the time period between ground-

commanded maneuvers that can be used to maintain the desired orbit. As seen in

Section 4.1, some of the evaluated orbits are unstable and will escape the Deimos

vicinity. However, they are still included in this analysis in order to gain a full view

of the orbital tradespace.

Another important note is that 14 days is significantly shorter than a typical

science phase of a mission, but this batch search is not meant to be a fully mature

coverage analysis, it is meant to narrow the orbital tradespace in order to perform

a higher fidelity study with mission-specific constraints. The observation geometry

repeats over time, so by cutting off this analysis at 14 days, there is no coverage

information that is lost for basic coverage alone. For more complex solar constraints

that have long-period trends, there is information lost, but these constraints will be

evaluated with a higher fidelity long-term coverage analysis in Section 4.2.2.

The output from this batch search is a “map” of the percent coverage of the Deimos

surface that meets the specified spatial resolution requirements (and any additional

constraints) for the full set of initial conditions evaluated.

The set of initial conditions are propagated without any regard to the stability

behavior examined in Section 4.1.2. What this means is that some of the trajectories

evaluated do leave the vicinity of Deimos. These are primarily the initial conditions

with very high values of Ż0, but to assist in interpreting the coverage maps, the

stability boundary determined in Section 4.1.2 is overlaid on top of the maps.
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Thermal Infrared Measurements: 5 m/px requirement

The coverage maps of thermal infrared measurements at 5 m/px are shown in

Figures 4.3 and 4.4.

Figure 4.3. Percent coverage for thermal infrared measurements at 5
m/px using the FLIR Tau 2 60mm lens.

These coverage maps show that for this particular combination of evaluated sen-

sors and resolution requirements, there are no QSOs in the evaluated set that come

close to providing global coverage at Deimos.

Keep in mind however that these science requirements and sensors are notional in

nature. For applying this batch method to a mission in development, this realization

would most likely warrant the analysis of a new, more capable sensor if the science

team wanted to support measurements at 5 m/px.
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Figure 4.4. Percent coverage for thermal infrared measurements at 5
m/px using the FLIR Tau 2 100mm lens.
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Thermal Infrared Measurements: 10 m/px requirement

The coverage maps of thermal infrared measurements at 10 m/px are shown in

Figures 4.5 and 4.6.

Figure 4.5. Percent coverage for thermal infrared measurements at 10
m/px using the FLIR Tau 2 60mm lens.

These coverage maps are much more interesting than the 5 m/px case because

they demonstrate the trade-offs between coverage, altitude, and out of plane motion.

For both the 60mm and 100mm lenses, the percent coverage of Deimos at 10

m/px is maximized at an intermediate range - far enough away to provide near-global

visibility of the body, but not so far that spatial resolution of the measurements is

degraded below the requirement.

For this notional set of science requirements and evaluated sensors, the 60mm

lens can provide greater than 90% coverage in one small portion of the tradespace,
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Figure 4.6. Percent coverage for thermal infrared measurements at 10
m/px using the FLIR Tau 2 100mm lens.
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while the 100mm lens and its more narrow field of view can provide greater than 95%

coverage in a portion that exists further away from Deimos.

An interesting observation for these two maps is that the region that maximizes

the coverage with both lenses lies slightly outside the stable region. This is somewhat

to be expected given that the unstable regions are the regions where the out of plane

motion is greater, allowing for better observations of the Deimos polar regions.

It is also important to remember that the boundary between unstable and stable

is not necessarily a hard boundary where operations cannot exist. The analysis that

originally generated the stability boundary used a 30 day propagation period, meaning

that at some point within that 30 days, the trajectories in the unstable region of the

tradespace impacted Deimos or escaped the Deimos vicinity. For trajectories that are

very close to the boundary, it is very likely that these orbits could be maintained with

a minimal stationkeeping cadence on the order of one burn per week (or less) without

leaving the Deimos vicinity. Spacecraft have operated at the Sun - Earth L1 and L2

points for decades, and all of these orbits are mathematically unstable. Whether a

spacecraft can maintain orbits slightly into the unstable regime as determined by the

previous numerical study is a question of how far into the unstable region they are,

the spacecraft fuel capacity, and the mission navigation capability.



55

Thermal Infrared Measurements: 30 m/px requirement

The coverage maps of thermal infrared measurements at 30 m/px are shown in

Figures 4.7 and 4.8.

Figure 4.7. Percent coverage for thermal infrared measurements at 30
m/px using the FLIR Tau 2 60mm lens.

These two coverage maps show that with both lenses, 30 m/px is a very achievable

science requirement at a wide range of trajectories. In fact, truly global coverage is

obtainable with equatorial orbits assuming that the altitude is high enough.

If the science requirement for thermal infrared observations was set at 30 m/px,

placing a spacecraft into a equatorial, planar DRO could be a very promising approach

for a low-cost mission. Equatorial DROs are extremely stable and could reduce the

onboard fuel requirements and operational complexity of a mission.
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Figure 4.8. Percent coverage for thermal infrared measurements at 30
m/px using the FLIR Tau 2 100mm lens.
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Visual Measurements: 5 m/px requirement

Next, we can evaluate all four sensor/lens combinations for the visual measure-

ments. The coverage maps of visual measurements at 5 m/px are shown in Figures

4.9, 4.10, 4.11, and 4.12.

Figure 4.9. Percent coverage for visual measurements at 5 m/px using
the ECAM C30 30mm lens.

This analysis shows that a global mapping of Deimos via visual observations can

be performed at 5 m/px or less with any of the four sensor/lens combinations.

Additionally, for the ECAM C50 with both a 12.6mm and 30 mm lens, it is

possible to generate a near-global map with observations from an equatorial orbit

alone. As discussed previously, this could be very useful, particularly for a small

satellite mission to Deimos.



58

Figure 4.10. Percent coverage for visual measurements at 5 m/px
using the ECAM C50 12.6mm lens.
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Figure 4.11. Percent coverage for visual measurements at 5 m/px
using the ECAM C50 30mm lens.
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Figure 4.12. Percent coverage for visual measurements at 5 m/px
using the ECAM C50 63mm lens.
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4.2.2 Long-Term Coverage Analysis of Selected QSOs

To perform long-term coverage analyses that take into account more complex

solar constraints that may have long-term periodic trends, a subset of the previously

analyzed QSOs are generated over 6 months, starting on October 1, 2025. For this

analysis, the number of analyzed sensors and resolution requirements was decreased

to just one sensor and one resolution requirement for both the thermal infrared and

visual band analysis.

For the long-term analysis, the two selected sensors and requirements were the

FLIR Tau 2 with a 100mm lens to take thermal infrared measurements at 10 m/px,

and the ECAM C50 with a 30mm lens in order to take visual measurements at 5

m/px. These two instruments are summarized in Table 4.2.

Table 4.2. Deimos Long-Term Coverage Cases Evaluated

Measurement Instrument FOV Requirement

Thermal Infrared FLIR Tau 2, 100mm lens 6.2 x 5.0 deg 10 m/px

Visual ECAM C50, 30mm lens 10.9 x 8.2 deg 5 m/px

The reason that these two sensors/resolutions are chosen for further analysis is

because they are both capable of global or near-global coverage with the more simple

short-term coverage analysis performed earlier, and, more importantly, the region of

the orbital tradespace that provides the maximized coverage is similar for both the

thermal infrared and visual sensors.

The selected FLIR Tau 2 at 10 m/px could achieve near global coverage in a rela-

tively narrow region of the tradespace from X0 = 40−50 km and Ż0 = 1.5−2.5 m/s.

The ECAM C50 with the selected lens can meet the coverage requirements across a

wide range of the orbital tradespace from X0 = 40− 65 km. By selecting two sensors

with overlapping optimal regions, it allows for the design and study of a trajectory

that meets the science requirements for multiple instruments simultaneously.
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The four more complex coverage cases analyzed are the following:

• VHI: Visual, High Incidence: Visual measurements at 5 m/px at a high

incidence angle. Measurements are constrained to be on sunlit geometry at a

solar elevation angle of less than 45 degrees.

• VLI: Visual, Low Incidence: Visual measurements at 5 m/px at a low

incidence angle. Measurements are constrained to be on sunlit geometry at a

solar elevation angle of greater than 45 degrees.

• TIRL: Thermal Infrared, Lit: Thermal infrared measurements at 10 m/px

on sunlit geometry.

• TIRS: Thermal Infrared, Shadow: Thermal infrared measurements at 10

m/px on shadowed geometry.

For these cases, incidence angle utilizes the convention where it is defined with

respect to the local normal. Using this convention, the solar incidence and solar

elevation angles always sum to 90 degrees.

Local Horizon

Local Normal To Sun

Solar Elevation Angle

Solar Incidence Angle

Figure 4.13. Solar incidence and elevation angle conventions.

These four cases are based on the science requirements developed for the Chariot

PSDS3 report in 2018 [1]. For visual measurements, performing observations at a

high incidence angle ensures that there are shadows on the surface and assists in

the identification of topology and surface morphology. The addition of low incidence

angle visual measurements are useful in correlating visual imagery with measurements
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in other bands. Gathering thermal infrared properties on both sunlit and shadowed

geometry assists in ascertaining thermal properties of the surface.

In order to search for potentially optimal science orbits for all desired measure-

ments, a selection of previously-analyzed initial conditions between X0 = 40− 50 km

and Ż0 = 1 − 2.6 m/s was selected for a longer-term analysis. This is the general

region of the tradespace that provided global or near-global coverage for both types

of desired measurements with the selected sensors.

The translation between the initial out of plane velocity Ż0 and an inclination

with respect to Deimos is not immediately obvious and varies across the f family,

so a mapping between the QSO initial conditions and the resulting inclinations with

respect to Deimos is included in Figure 4.14. The region of the tradespace selected

for further analysis corresponds to an inclination range of approximately 145 - 160

degrees.

In order to generate these long-term trajectories, adding in a very notional ma-

neuver strategy is required. This strategy is not necessarily meant to mimic how the

spacecraft would actually operate, it is meant to maintain the trajectory over long

periods of time. Stationkeeping strategies for operations in QSOs is an ongoing area

of study for researchers [19].

The maneuver strategy for maintaining these orbits takes its origins from the basic

dynamics of periodic orbits in the CRTBP. In this system, the dynamics are mirrored

across the X-axis, so often times targeters for periodic orbits will be programmed to

target a perpendicular X-axis crossing. The strategy for this targeter is similar. For

each orbit about Deimos, there is a maneuver placed at the positive X-axis crossing.

This maneuver targets the state at the next positive X-axis crossing. For the values

of the state at the next positive X-axis crossing, the targeter designs a maneuver that

will yield:

1. A value X equal to the original X0 for the QSO.

2. A perpendicular X-axis crossing such that Ẋ0 = 0.
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Figure 4.14. Mapping between QSO initial conditions and inclination
with respect to Deimos.

A visual representation of this targeter is shown in Figure 4.15.

This targeting strategy is useful for generating long-term reference trajectories,

but is not necessarily meant to perfectly mimic a stationkeeping strategy. A maneuver

every orbit about Deimos would mean a maneuver nearly every day, and for some

members of the family, a maneuver multiple times per day. This is likely operationally

infeasible, but it yields a long-term trajectory that would be very similar to one

achieved with an operational stationkeeping strategy.

A note on this strategy is that the out of plane motion is not taken into account.

The targeter designs maneuvers that yield Ẋ = 0 at the next X-axis crossing without

regard to the values of Z or Ż at that point. This is generally valid as the XY planar

projection of a QSO in the CRTBP is still a periodic DRO. However, an operational
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Figure 4.15. Maneuver strategy for maintaining long-term QSOs.

stationkeeping strategy might attempt to maintain the same original amplitude in

the Z-axis if it drifted over time.

The percent coverage for each analyzed QSO and each analyzed measurement and

constraint set is given in Table 4.3. For the two thermal infrared measurement cases,

the QSO that provides the best coverage is listed in bold. This is not done for the

visual measurements because the coverage is generally similar across the analyzed

QSOs.

Table 4.3.: Long-Term Coverage Analysis

QSO Percent Coverage

X0 (km) Ż0 (m/s) VHI VLI TIRL TIRS

40 1.0 99.98 90.86 78.59 79.58

40 1.2 100 90.87 82.35 83.24
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Table 4.3 Continued

QSO Percent Coverage

X0 (km) Ż0 (m/s) VHI VLI TIRL TIRS

40 1.4 100 90.96 83.82 85.56

40 1.6 100 90.00 96.39 96.05

40 1.8 100 90.97 96.62 96.35

41 1.0 100 90.96 79.07 80.12

41 1.2 100 91.08 82.53 83.89

41 1.4 100 91.08 83.26 86.04

41 1.6 100 91.09 86.01 89.20

41 1.8 100 91.10 88.22 92.20

42 1.0 100 91.02 79.10 80.51

42 1.2 100 91.06 82.08 83.91

42 1.4 100 91.05 84.64 87.22

42 1.6 100 91.07 87.07 89.93

43 1.0 100 91.02 79.81 81.01

43 1.2 100 91.05 83.28 84.82

43 1.4 100 91.04 85.31 88.12

43 1.6 100 91.03 88.55 91.07

43 1.8 100 91.06 87.88 90.37

43 2.0 100 90.99 94.84 95.26

44 1.0 100 91.00 79.82 81.02

44 1.2 100 90.99 83.50 85.32

44 1.4 100 91.04 86.16 88.01

44 1.6 100 91.03 86.85 89.50

44 1.8 100 91.01 88.15 90.73

44 2.0 100 91.02 94.31 94.22
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Table 4.3 Continued

QSO Percent Coverage

X0 (km) Ż0 (m/s) VHI VLI TIRL TIRS

45 1.0 100 90.96 80.69 81.48

45 1.2 100 91.03 83.66 85.05

45 1.4 100 91.02 85.33 87.79

45 1.6 100 90.99 86.89 89.44

45 1.8 100 91.04 87.65 89.96

45 2.0 100 91.01 87.83 90.77

45 2.2 100 91.05 91.07 93.42

45 2.4 100 91.02 93.73 95.23

45 2.6 100 91.00 92.99 94.79

46 1.0 100 91.01 80.32 81.24

46 1.2 100 91.06 82.92 84.52

46 1.4 100 91.02 85.02 87.09

46 1.6 100 90.96 86.88 89.06

46 1.8 100 90.98 89.81 91.44

46 2.0 100 91.03 87.98 90.91

46 2.2 100 91.02 90.43 92.78

46 2.4 100 91.03 90.91 93.64

46 2.6 100 90.98 92.58 94.92

47 1.0 100 91.03 79.98 80.87

47 1.2 100 90.98 82.26 83.72

47 1.4 100 91.01 83.96 86.40

47 1.6 100 91.05 85.46 87.88

47 1.8 100 91.02 85.28 88.74

47 2.0 100 91.05 87.21 89.51
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Table 4.3 Continued

QSO Percent Coverage

X0 (km) Ż0 (m/s) VHI VLI TIRL TIRS

47 2.2 100 91.03 87.61 90.41

47 2.4 100 90.98 90.62 93.30

47 2.6 100 91.03 88.48 90.61

48 1.0 100 91.03 78.86 79.60

48 1.2 100 91.03 81.03 82.86

48 1.4 100 91.04 83.42 85.62

48 1.6 100 90.99 84.14 86.53

48 1.8 100 90.97 85.40 87.83

48 2.0 100 91.01 85.78 88.68

48 2.2 100 91.01 87.18 89.54

48 2.4 100 91.02 86.80 89.62

48 2.6 100 90.97 87.28 89.66

49 1.0 100 91.04 78.00 79.38

49 1.2 100 91.03 79.76 81.99

49 1.4 100 91.02 80.84 84.00

49 1.6 100 91.00 83.05 85.56

49 1.8 100 90.99 83.99 86.81

49 2.0 100 90.99 84.35 87.13

49 2.2 100 91.02 85.28 88.53

49 2.4 100 91.01 85.40 88.84

49 2.6 100 90.94 85.99 89.09

50 1.0 100 91.05 75.35 77.79

50 1.2 100 91.03 78.09 80.57

50 1.4 100 91.00 79.87 82.67
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Table 4.3 Continued

QSO Percent Coverage

X0 (km) Ż0 (m/s) VHI VLI TIRL TIRS

50 1.6 100 91.01 81.48 84.17

50 1.8 100 90.97 82.65 85.12

50 2.0 100 90.99 83.55 86.37

50 2.2 100 90.97 83.37 86.88

50 2.4 100 90.95 82.95 87.32

50 2.6 100 90.90 83.94 87.30

Based on these long-term coverage analyses, any of the analyzed QSOs can eas-

ily provide near-global coverage with the two visual measurement cases. At a high

incidence angle, truly global coverage is achievable. At a low incidence angle, cover-

age of over 90 percent is possible, and the remaining ten percent is due to the solar

geometry, not necessarily a poor orbit design. There are some portions of Deimos

near the poles where the solar elevation angle simply never reaches above 45 degrees

during this analysis period, meaning that a low incidence angle measurement on that

geometry is never possible.

For the thermal infrared measurements, there is more of a difference between the

analyzed QSOs because 10 m/px is a more stressing requirement. The analyzed case

that had the highest percent coverage is shown in Figure 4.16. This QSO can be

described by the parameters X0 = 40 km, Ż0 = 1.8 m/s.

For all four measurement cases, this trajectory can provide greater than 90 per-

cent coverage of the Deimos surface at the necessary coverage requirements. For the

equatorial regions, particularly the regions that protrude along the Mars - Deimos

radial vector, the achieved resolution can be significantly higher (higher resolution

meaning lower value of m/px) than the requirement.
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Figure 4.16. Selected QSO that maximizes coverage for analyzed cases.

The polar regions, and specifically the northern polar regions are the most stressing

geometry on Deimos for observation. In fact, if the observed geometry for the thermal

infrared sunlit case is examined, a small region near the northern pole is the only

region that does not meet the requirements, making up the missing 3 percent of the

surface that is not covered.

For the DePhine mission, the current mission design baseline involves leaving

the standard QSO about Deimos to perform very close flybys over the poles via an

unstable trajectory and then returning to the QSO [15]. These polar flybys allow for

measurements of both the north and south poles of Deimos at very high resolutions.

This is a very interesting mitigation for the polar coverage challenges of the more

stable QSOs. They are not examined in this analysis, but could certainly be further
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Figure 4.17. Surface coverage of Deimos for the Thermal Infrared Sunlit case.

examined in the future. If utilized, the ideal QSO for nominal operations at Deimos

could likely be closer to an equatorial retrograde orbit, leaving polar observations for

the flyby maneuvers described here.

4.3 Deimos Lighting Conditions

Given that all four of the higher fidelity coverage analyses incorporated solar

constraints of some sort, it is important to understand the lighting environment at

Deimos, specifically during the 6 month analysis period of October 2025 - March

2026.

The solar geometry at Deimos is periodic with both short-term and long-term

frequencies. The short period trends are driven by the rotation of Deimos, or the
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Deimos day. The longer period trends are driven by the inclination of Mars about

the Sun, or Martian seasons. During different portions of the Martian orbit, the

resulting solar geometry at Deimos changes.

Figure 4.18. Solar latitude at Deimos over a period of 5 years.

The solar latitude at Deimos over a period of 5 years, starting at October 1, 2025,

is shown in Figure 4.18. The 6 month analysis period is highlighted. This shows an

approximately two year periodic trend in the latitude of the Sun as seen from Deimos.

This coincides with the 687 day orbit of Mars about the Sun.

The highlighted analysis period shows that for much of the time that coverage was

computed at Deimos, the Sun was above the Deimos southern hemisphere. This shows

that sunlit-constrained observations of the southern polar regions were generally more

obtainable than those at the northern polar regions.
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If the analysis period was shifted to a range of times where the solar latitude was

solely at a far northern or far southern point, it is possible that sunlit observations

at the opposite pole would not be achievable.

4.4 Deimos DRO Sensitivity

The stability of QSOs, and specifically the critical inclination was previously stud-

ied in Section 4.1. To facilitate operations in Mars - Deimos DROs, an understanding

of the dynamical sensitivity of these DROs is also required.

While it is very likely that an actual science orbit about Deimos would utilize a

QSO rather than a DRO, the stability properties of DROs are favorable for a “walk-

in” strategy or as a stable hold point for operations.

Given this, a similar study to the study performed in Section 4.1 was performed

to test out the resilience of DROs at Deimos to velocity errors.

The first test case applied velocity errors in the Y direction Ẏ0 ranging from -50

to 50 cm/s. For all cases, this perturbation was applied at the X-axis crossing and

the spacecraft was propagated for 14 days in the ephemeris force model. Separating

out which orbits remained at Deimos with no additional maneuvers and which ones

either impacted or left the vicinity of the body, a sensitivity map is shown in Figure

4.19.

This sensitivity map immediately shows the amount of Ẏ0 error that is tolerable

across members of the f family. This information could drive requirements for actual

mission operations such as navigation requirements and maneuver execution error

requirements. The requirements themselves would likely be more strict than the

values seen here in order to add margin, but these values could be considered the

worst-case navigation performance that could still be tolerated without experiencing

a potentially mission-ending event.
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Figure 4.19. Ẏ0 sensitivities. Blue: Remains in orbit about Deimos.
Red: Impacts or leaves the vicinity of Deimos.

For the Ẏ0 sensitivity, there are two regions of the orbital tradespace where a very

tight tolerance is required: around X0 = 20 km and X0 = 35 km. Past an X0 value

of 40 km, the sensitivity decreases, eventually allowing Ẏ0 errors of up to 30 cm/s.

For designing a mission to Deimos, this information could be used not only to

set mission requirements, but also to design CONOPS for transitioning into the final

science orbit. For example, if the desired science orbit was at an X0 value of ap-

proximately 35 km, this falls into an extremely sensitive part of the tradespace where

any small errors in the injection burn could put the spacecraft on a collision course

with Deimos. In order to mitigate risk, it could be a more safe option to inject into

a higher altitude DRO where errors in the injection velocity are more tolerable, and
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then slowly decrease that altitude using small burns that are unlikely to cause high

enough errors to place the spacecraft onto a dangerous trajectory.

A similar study was performed to examine the effect of errors in the X velocity

Ẋ0. Remember that in the CRTBP, the velocity Ẋ0 should be equal to zero in order

to ensure a perpendicular axis crossing. In the ephemeris model, this is not always

exactly true, but it should be very close to zero.

Figure 4.20. Ẋ0 sensitivities. Blue: Remains in orbit about Deimos.
Red: Impacts or leaves the vicinity of Deimos.

Figure 4.20 shows the results for the sensitivities in Ẋ0. There are some similarities

with the Ẏ0 sensitivities, but also some key differences. The most sensitive region is

still around X0 = 20 km, but once the f family grows past X0 = 40 the allowable

error in Ẋ0 drastically increases. An extended version of this figure is shown in Figure

4.21 that examines Ẋ0 errors of up to 5 m/s.
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Figure 4.21. Ẋ0 sensitivities. Blue: Remains in orbit about Deimos.
Red: Impacts or leaves the vicinity of Deimos.

This analysis shows that for members of the family outside X0 = 50 km, velocity

errors in Ẋ0 of over 1 m/s can be tolerated without leaving Deimos or impacting the

body. This tolerable error is much larger than the error that can be tolerated in Ẏ0

for the same members of the family.

An example of an operational benefit from this information could be deciding

where in the Deimos orbit about Mars to perform a maneuver or an initial injection

into the DRO about Deimos. For ground-based navigation, both range and range-

rate measurements only provide information along the Earth - spacecraft line of sight

vector. This means that the instantaneous covariance in the direction of this vector

is usually much smaller than the covariance perpendicular to the vector.
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Given that there is one direction where the navigational knowledge is much bet-

ter than every other direction, it would make sense to align this direction with the

direction that is most sensitive to navigation or other errors if the mission has the

flexibility to do so.

4.5 Transfers Between Orbits

How to perform transfers between QSOs is still an ongoing subject of research in

the literature particularly driven by the MMX mission [17]. For this thesis, a prelim-

inary study on the fuel requirements for transfers between planar DROs (members of

the f family) at Deimos was performed.

4.5.1 Along-Track Three-Burn Strategy

The first strategy examined was a three burn strategy in the Deimos along-track

direction. These are three burns performed at X-axis crossings that only change the

velocity in the Y direction Ẏ . This strategy is valid for both increasing and decreasing

orbital altitude.

For testing these transfers in the ephemeris model, a grid of transfers was designed

between a set of DROs parameterized by their X0 values. This shows the fuel cost in

terms of delta-v for a transfer between any two members of the Deimos f family with

values of X0 between 10 and 100 km. The results are shown in Figure 4.23, and show

that it is possible to transverse between any two members of the analyzed portion of

the family via this method for transfers on the order of 0-3 m/s.

4.5.2 Radial Three-Burn Strategy

One potential downside to the first analyzed transfer method is its lack of resilience

to missed-thrust events. As shown in Section 4.4, errors in Ẏ applied at X-axis

crossings can put a spacecraft onto a trajectory that will impact Deimos or escape
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Figure 4.22. Three-burn along-track strategy for transfers at Deimos.

the Deimos vicinity if no additional corrections are performed. The first burn in

the previous three-burn strategy will often place the spacecraft onto a potentially

dangerous trajectory if the second or third burn is missed.

To attempt to mitigate these potentially dangerous transfers, an alternative strat-

egy is proposed that performs three burns in the radial direction with respect to Mars.

That radial direction is aligned with the X-axis in the coordinate frame that we have

utilized. This strategy is shown in Figure 4.24.

Much like the previous strategy, this strategy works for increasing or decreasing

altitude with respect to Deimos. However, it comes with an increased delta-v cost

when compared to the previous method. The corresponding delta-v grid for this

method of transfers among the f family is shown in Figure 4.25.
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Figure 4.23. A map of transfers between members of the f family via
the Along-Track Three-Burn Strategy in m/s.
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Figure 4.24. Three-burn radial strategy for transfers at Deimos.
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Figure 4.25. A map of transfers between members of the f family via
the Radial Three-Burn Strategy in m/s.
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5. CONCLUSIONS AND FUTURE WORK

This thesis has examined the dynamical environment of trajectories in the Mars -

Deimos system and provided a science orbit design using a set of notional instruments

for a remote sensing mission to the moon. In addition to this, sensitivity analyses were

performed to inform future navigation requirements at the body. Finally, strategies

for performing transfers between planar DROs at Deimos were studied and simulated.

The goal of this work was ultimately to inform current and future mission concepts

to the Deimos system.

Close-proximity trajectories to Deimos are best studied in the context of the Mars

- Deimos three-body problem. In this dynamical model, there mathematically exists a

small set of prograde orbits about Deimos, but many of these trajectories intersect the

Deimos surface or are too unstable to be utilized in an operational setting. Distant

retrograde orbits about Deimos provide very promising stability characteristics for

a mission dedicated to the body. Quasi-satellite orbits can be generated by adding

out of plane velocities to distant retrograde orbits. These trajectories maintain some

of the stability properties of DROs, but have more favorable viewing geometry for

performing remote sensing observations, particularly of polar regions.

The stability properties of these QSOs were examined to determine how much

out of plane motion was possible before the trajectories were destabilized by Martian

perturbations. Additional sensitivity analyses were performed in order to study the

effect of velocity errors in Deimos DROs, which will inform navigation requirements

and future CONOPS for the timing of maneuvers during a “walk-in” strategy.

Modeling a notional suite of remote sensing instruments and a realistic set of

science requirements, a batch search method was performed in order to find potential

science orbits that maximize the surface coverage of Deimos at the desired spatial

resolutions. With the analyzed set of requirements and instruments, a number of
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QSOs with a closest approach to Deimos of 40-50 km and a relative inclination of

around 140 degrees maximize global coverage of the body. For observations in the

visual band, a near-global map with multiple solar geometries at 5 m/px is possible,

and a similar map is possible in the thermal infrared band at 10 m/px.

The exact performance values that are possible are, of course, a function of the

actual instruments used on a spacecraft, the CONOPS for gathering the data, and

a large number of other mission-specific factors. However, this analysis has shown

that with a set of ambitious remote sensing science requirements and a set of realistic

instruments, obtaining near-global coverage is possible using QSOs about Deimos.

These trajectories provide a very promising opportunity for the scientific exploration

of Deimos and could pave the way towards answering questions about the origins of

both Martian moons and pathfinding for future human exploration of Mars.

5.1 Recommendations for Future Work

This future work section will focus on some of the key mission design and navi-

gation steps that would be required in order to develop a mature mission concept to

Deimos utilizing QSOs.

Dynamical Model Uncertainties

In Section 3.2, the current uncertainties on the Deimos GM value were discussed.

The impact of these uncertainties on the location of Lagrange points was demon-

strated, but the resulting impact on initial conditions for DROs and QSOs was not

examined. An understanding of the possible range of initial conditions for these orbits

based on uncertainties in the Deimos GM value will be required for any mission that

eventually does want to utilize a close-proximity orbit to Deimos.

Additionally, as discussed in Section 2.5, the ephemeris propagations in this anal-

ysis are performed with a Deimos spherical harmonic model, but only a point mass

model for Mars. Inside approximately 25 km, the spherical harmonic model for
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Deimos is likely more significant than that of Mars, but performing the stability

analyses shown in this thesis using spherical harmonic models for both bodies could

possibly provide additional insights into operations at Deimos.

Navigation Studies

It was previously speculated that a period of co-estimation of the Deimos GM value

during navigation would likely be required before any close-proximity trajectories

would be possible. Further work simulating how far the covariance on this parameter

can be decreased and the period of time required to do so would be immensely useful.

For the MMX mission, refining the Phobos gravity model from a higher orbit is a

part of the operational workflow, so in the coming years, there will likely be published

literature on this topic for Phobos. These studies will hopefully be of use towards

performing a similar strategy at Deimos.

In conjunction with these navigation studies, it could be interesting to experiment

with methods of onboard optical navigation in the vicinity of Deimos. Optical naviga-

tion has the potential to ease the burden on a consistently over-subscribed Deep Space

Network and assist in providing some level of spacecraft autonomy during operations.

Operational Stationkeeping Strategies

In order to generate QSOs for use in the long-term coverage analyses in Section

4.2.2, the addition of stationkeeping maneuvers was required. The method for de-

signing these maneuvers was described in this thesis, but to summarize, it targeted

maneuvers during every relative orbit about Deimos. While effective in maintaining

long-term QSOs for use in analysis, this stationkeeping strategy is likely operationally

unfeasible. The total delta-v required is small, but a cadence of one or more maneu-

vers per day would be extremely challenging from an operations perspective. Future

work should be dedicated towards designing stationkeeping strategies such that ma-
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neuvers are required at no more than once every few days. This is a maneuver cadence

that is more realistic for a future mission.

Eclipsing Conditions

Given that spacecraft in DROs are in a constant plane with respect to their

primary body (Mars in this case), they are particularly susceptible to seasonal eclipses

when that plane aligns with the Sun - Mars vector. QSOs are similarly susceptible.

For the ideal science orbit shown in Figure 4.16 propagated out over an entire Martian

year, there are two sets of three-month periods out of each Martian year where Mars

eclipses occur with each orbit of Deimos about Mars. These Mars eclipses last up to

1.5 hours each. Dynamically, there is very little that can be done about these eclipses,

as the entire vicinity around Deimos is eclipsed.

There are also Deimos eclipses that occur around the same time in the Martian

year, but can be significantly longer. Most are on the order of 1-2 hours, but for

the trajectory shown in Figure 4.16 propagated for an entire Martian year, there are

Deimos eclipses of up to 9 hours long. The survivability of these long eclipses could

be much more challenging for a spacecraft than the shorter Mars eclipses, but could

also be avoided via an orbital maneuver or precise phasing in a QSO.

Canalias et al. have studied strategies for minimizing the length of Phobos eclipses

in QSOs by utilizing synodic resonance in support of the MMX mission design [19].

A similar approach could be taken for trajectories about Deimos in order to design

Deimos QSOs that could be used operationally.
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Périodiques; Non-Existence des Intégrales Uniformes. Solutions Asymptotiques.
Paris, 1892.
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