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ABSTRACT 

As an emerging shared mobility option, bike share has the potential to improve transportation 

sustainability. Understanding the mobility patterns, environmental benefits, and impact of system 

changes helps improve bike share systems (BSSs). However, existing literature has the following 

gaps: (1) there is a lack in detailed understanding about bike share’s travel patterns; (2) few studies 

have considered the heterogeneous travel mode choices to quantify BSSs’ environmental impacts; 

(3) the station interactions in the system expansion process are not well studied; and (4) there is a 

critical need for models that can quantify system performances of different types of BSSs from the 

perspectives of both users and operators. 

 

This dissertation aims to address these gaps to provide better understanding of the travel patterns, 

benefits, and impacts of system changes in BSSs to assist the policy making and development of 

BSSs. To achieve this objective, various modeling frameworks and methods were developed. (1) 

The statistical property of bike share trip distance and duration are first analyzed to provide 

fundamental basis for the modelling of BSSs. (2) A Bike Share Emission Reduction Estimation 

Model (BS-EREM) is proposed to quantify the environmental benefits from BSSs. The BS-EREM 

estimates the transportation modes substituted by bike share trips, with the consideration of 

heterogeneous travel mode choices. The GHG emission reductions contributed by BSSs in eight 

case study cities were then evaluated using BS-EREM. (3) For system expansion, the 

competition/complement interactions between stations are revealed using a piecewise regression 

model. The study also shows that incorporating features about such interactions significantly 

improves the demand predictions for system expansion. A Spatial Eccentricity Quantile based 

Ensemble Model (SEQEM) is proposed to identify the spatial range that the station interactions 

take effects. (4) A comprehensive stochastic simulation framework is proposed to compare the 

user experience and system operations using different types of BSSs, which estimates actual 

origins-destinations of travel demands and integrates the user behavior model and the rebalance 

optimization model. The case-study results show that the user rerouting behaviors can indirectly 

affect system performances. Overall, systems with high usage-intensity can benefit from 

transitioning their station-based systems into hybrid systems. 
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In summary, this dissertation provides a holistic understanding of the mobility patterns, 

environmental benefits, and the impacts of system expansion and system types, which assists the 

policy making and the development of BSSs. The proposed models are transferable to different 

cities to support the development of sustainable micro-mobility systems. 
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 INTRODUCTION 

In this chapter, the basic components of bike share systems are first introduced in Section 1.1.1; 

then, Section 1.1.2 outlines the motivations and objectives of this dissertation. An overview of 

related research is provided in Section 1.2. The research gaps in existing studies and the 

corresponding contributions of this dissertation are summarized in Section 1.3. Lastly, Section 1.4 

outlines the research scope and organization of this dissertation. 

1.1 Background 

1.1.1 Bike Share System (BSS) 

Bike share is an emerging transportation mode in many countries, including the United States. 

Figure 1.1 shows that the annual trips taken from the bike share systems (BSSs) in the United 

States kept increasing from 2010 to 2019. Traditionally, the BSSs are station based, requiring the 

users to return the bikes to the docks at bike share stations (Fishman, 2016). As of 2019, 40 million 

trips were taken using station-based BSSs in the United States (NACTO, 2020). In recent years, 

dockless BSSs are enabled by the development of information and communication technologies 

(ICT). Dockless systems do not rely on docking stations and allow the users to park the bikes on 

the sidewalk. Because of this flexibility and the low capital investment required for a city to set up 

the system, the dockless BSSs are growing rapidly (Chen et al., 2020b; Dickey, 2019; Rinde, 2019). 

A third alternative, hybrid systems, have also emerged to integrate dockless and station-based BSS 

features. Hybrid systems allow cities that already have installed bike share stations to keep using 

the existing docking infrastructure but add the flexibility of parking bikes on-street (McMahon, 

2019; Sisson, 2017). Both Chicago (The City of Chicago, 2019) and Philadelphia (City of 

Philadelphia, 2019) have launched pilot dockless bike share programs, temporarily testing the 

dockless operations in a small area, in addition to the current station-based systems. 
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Figure 1.1. The growth of bike share ridership of station-based and dockless BSSs in the United 

States (NACTO, 2020) 

 

A typical BSS consists of two major players (users and system operators) and three types of 

physical elements: bikes, smartphone applications, and docking stations (for station-based/hybrid 

systems). Their roles and relationships are described below: 

 

- Users:  

Users ride the bikes, generate bike share trips and pay for the trips. There are mainly two 

types of users: subscribers and one-time users. Subscribers purchase a plan (e.g., monthly 

and weekly plans) and enjoy free rides if they use the bikes for a shorter time than a 

threshold (e.g., half an hour). Extra charges will be applied if the trip duration is longer 

than the threshold. In contrast, one-time users pay for each trip they make. Users make the 

decisions on whether to make the trip using bike share and thus are the demand sources of 

the system. 

 

- System operators: 

The operators set up the systems and conduct the daily operations for a BSS. Their 

responsibilities include: 

(1) Determining the location and size of docking stations in a station-based/hybrid system 

and controlling the number of bikes in each area. Sometimes the operators are only hired 

to operate the system, while the system design is determined by the city. For example, 
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New York City determines the location and size of the stations. The operator, Motivate, 

only supplies the bikes and operates the system (Institute for Transportation & 

Development Policy, 2018). 

(2) Constituting the pricing scheme. 

(3) Carrying out the maintenance of the systems, e.g., fixing the broken bikes. 

(4) Rebalancing the bike fleets if needed. For instance, in a station-based system, if a station 

is full or empty, the users cannot return or check out a bike, and thus the operators may 

need to move some bikes to or from other stations. Similarly, a dockless BSS may also 

face the issue that some regions have too many bikes, while some other regions encounter 

bike shortages. Most of the operators use vehicles (e.g., trucks) to rebalance the bikes 

(Schuijbroek et al., 2017). Some use electric tricycles (e.g., in Oregon1). Some studies 

also proposed price-incentive methods for bike rebalancing (Fricker & Gast, 2016; Pan et 

al., 2019; Singla et al., 2015), which still requires more real-world practice to test its 

viability.  

 

- Bikes: 

Some of the BSSs integrate Global Positioning System (GPS) devices on the bikes, which 

could track the locations of the bikes. In a station-based system, the users unlock a bike 

through a kiosk at the station. When a bike is returned to a docking station, the information 

for the ending of the trip is also recorded through the kiosk or the devices on bikes. In a 

dockless/hybrid BSS, the GPS devices on the bikes provide the location information, so 

both the users and system operators know where to find the bikes. 

 

- Smartphone applications: 

Smartphone applications (apps) are key elements for a dockless/hybrid BSS. Users can 

view the locations of nearby available bikes on the apps and decide which bike to use. Apps 

are also used to unlock the bikes (e.g., by scanning the QR code on the bike). Although not 

                                                
1 Portland now using pedal-powered trikes to help rebalance bike share stations, 

https://bikeportland.org/2016/09/07/portland-now-using-pedal-powered-trikes-to-help-rebalance-bike-share-stations-

191007, accessed on 2019/01/27. 

https://bikeportland.org/2016/09/07/portland-now-using-pedal-powered-trikes-to-help-rebalance-bike-share-stations-191007
https://bikeportland.org/2016/09/07/portland-now-using-pedal-powered-trikes-to-help-rebalance-bike-share-stations-191007
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necessarily, many station-based BSS operators also develop their apps, through which the 

users can view the status of docking stations (number of available bikes and docks). 

 

- Docking stations: 

Docking stations only exist in station-based/hybrid systems. Such stations consist of a 

kiosk and many docks. The operators need to decide the number of docks in order to save 

the cost of station construction while also fulfilling the demands of users. 

1.1.2 Motivations and objectives 

For a new transportation mode such as bike share, it is fundamental and important to learn about 

its travel patterns, which helps understand the role that BSSs play in an urban transportation system. 

Specifically, the question “for what distance and duration do people consider using bike share?” 

needs to be answered. Such travel patterns affect the relationship between bike share and other 

transportation modes. On the one hand, bike share may compete with other transportation modes 

that have an overlap regarding the covered distance range. On the other hand, if bike share 

improves the transport efficiency within its covered distance range, it can enhance the multimodal 

transport connections for the whole transportation system (Shaheen et al., 2010). 

 

Besides such potential benefits for multimodal transport connections, previous studies also claim 

that bike share can potentially benefit the cities and the society from multiple aspects: reducing 

public transit travel time (Jäppinen et al., 2013), alleviating traffic congestion (Faghih-Imani et al., 

2017; Hamilton & Wichman, 2018), saving travel cost (Buehler & Hamre, 2015), and reducing 

greenhouse gas (GHG) emissions (Drynda, 2014; Shaheen et al., 2010). People may choose bike 

share for the benefits such as time saving and cost saving, while cities consider implementing a 

BSS for its overall benefits to the whole society. One of such overall benefits is the environmental 

benefit. One advantage of bike share is that it does not generate tailpipe emissions like cars and 

buses (Dave, 2010; Fishman et al., 2014). Therefore, bike share has great potential to improve the 

transportation sustainability. In this case, evaluating the environmental benefits can support the 

decision of launching BSSs and supporting the development of BSSs. 
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After launching a BSS in a city, the system operators may also make changes to the system to 

improve it. One of the most important changes is expanding the system. It is rare that a BSS is 

built at its full size when launching the system. Figure 1.2 shows the number of bike share stations 

in Chicago, New York, and Washington DC in different years. The station-based BSSs in the three 

cities were all first launched in year 2013. In the following years, the BSSs kept adding new 

stations to expand the systems. Such system expansions can improve the spatial service coverage 

of the BSSs and potentially increase the ridership (NACTO, 2020) and thus bring more benefits  

to the society. 

 

 

Figure 1.2. Number of stations in each year in Chicago, New York, and Washington DC 

 

Besides system expansion, another important system change is changing the system types. A BSS 

could be implemented through different types: station-based, dockless, and hybrid. Different types 

of BSSs may affect user experience and may face different operational challenges. For the user 

experience, the bike accessibility (how easy it is to find a bike) could be different in different types 

of BSSs, because bikes are all located at the stations in station-based BSSs, while bikes are 

distributed more sparsely in dockless/hybrid BSSs. Also, depending on the different bike spatial 

distributions and bike parking requirements (users have to return bikes to stations in station-based 

BSSs, which is not required in dockless/hybrid BSSs), the users may spend different amounts of 
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excess time to pick up or return bikes in different types of BSSs. The convenience of bike pick-

up/returning is important to users and thus impacts the ridership in the long-term. For operational 

challenges, bike rebalance in station-based BSSs needs to consider the station capacities. 

Therefore, the needs for bikes in some high-demand stations may not be met due to the capacity 

limits, which leads to unserved trips. In contrast, more bikes can be allocated to high-demand areas 

in dockless/hybrid systems. Nevertheless, dockless/hybrid systems face the issues that (1) the 

rebalance vehicles need to travel around to collect scattered bikes, and (2) the bikes parked on the 

sidewalks may clutter the streets. Therefore, comparing the system performances of different types 

of BSSs is critical for selecting the appropriate BSS types when launching a new system or 

improving an existing one. 

 

Overall, motivated by the abovementioned aspects, this dissertation aims to improve understanding 

of travel patterns, environmental benefits, and the impacts of system changes (expanding the 

systems and changing system types) in BSSs to assist the policy making and development of BSSs. 

1.2 Overview of related research 

Previous studies about bike share mainly focus on the analysis of ridership (O’Brien et al., 2014; 

Zhou, 2015), the optimization of bike rebalance (Contardo et al., 2012; Fricker & Gast, 2016; 

García-Palomares et al., 2012), and the short-term demand prediction (Chai et al., 2018; Hulot et 

al., 2018; Jia et al., 2019; Li et al., 2016; Zhou et al., 2019). However, the existing studies about 

BSSs are limited in the understanding of mobility patterns (Section 1.2.1), environmental benefits 

(Section 1.2.2) and the impacts of system expansion (Section 1.2.3) and system type changes 

(Section 1.2.4). This section (Section 1.2) provides an overview of the related research and 

identifies the corresponding research gaps. More detailed literature reviews about different topics 

are provided in Chapters 2 – 5. 

1.2.1 Bike share mobility patterns 

The knowledge of the dynamics and statistical properties of human mobility can be applied to 

many fields, such as traffic forecasting (Jiang et al., 2009; Kitamura et al., 2000), urban planning 

(Horner & O’Kelly, 2001), epidemics (Grenfell et al., 2001; Hufnagel et al., 2004; Keeling et al., 
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2001; Mari et al., 2012), genetics (Nash, 2012), and mobile network designing (Lee et al., 2009). 

For instance, understanding the statistical patterns of human movement can enable better 

simulation and design of the mobile networks of cellphones (Rhee et al., 2011),  because wireless 

devices rely on the location of nearby nodes (e.g., base stations) to connect with the wider 

telephone networks. In recent years, researchers are able to better analyze human mobility patterns 

due to the ubiquitous availability of location tracking technologies such as Global Positioning 

System (GPS) and mobile devices (e.g., smartphones). Such studies have focused on the 

distributions of trip displacement (i.e., how far do people travel in one trip) and trip duration (i.e., 

how long does one trip take). For example, Brockmann et al. (2006) analyzed the circulation of 

bank notes and found that people’s travel displacement follows a power law distribution and 

exhibits Lévy flight (random walk) behaviors.  

 

Previous studies have analyzed the human mobility patterns for various transportation modes, but 

few paid attention to bike share trips. The majority of the previous studies focus on the mobility 

patterns of automobiles such as private cars and taxis (Bazzani et al., 2010; Cai et al., 2016; Liang 

et al., 2012; Veloso & Phithakkitnukoon, 2011). For instance, Jiang et al. (2009) examined the 

trajectories of taxi trips to study the mechanisms governing the Lévy flight behavior of human 

mobility and also compared the fitted results of power law distribution with those of lognormal 

distribution. They concluded that the Lévy flight behavior is driven by the underlying street 

network and the human mobility patterns can be reproduced by simulated random walks. In 

addition, some studies also paid attention to walking ((Koelbl & Helbing, 2003) and flights 

(Brockmann et al., 2006). Many studies focused on the long-distance trips and found that the trip 

displacement follows either power-law (Brockmann et al., 2006; Koelbl & Helbing, 2003; Rhee et 

al., 2011) or exponential (Liang et al., 2012; Yan et al., 2013) distribution. However, when the 

short-distance trips are also considered, some studies identified the best-fit distribution to be 

gamma distribution (Veloso & Phithakkitnukoon, 2011) and lognormal distribution (Jiang et al., 

2009). Although existing studies have done extensive work to analyze human mobility patterns, 

very few researchers have analyzed the travel patterns of bike share trips. One major reason is that 

bike share is a relatively new mobility option and bike share trip data is only available in recent 

years. Analyzing the travel patterns could help the planning of transportation systems (Koelbl & 

Helbing, 2003) and provide critical information for the modeling of BSSs. For example, the 



 

 

22 

distribution of trip distance is important for modeling the bike flows when simulating a BSS (Chen 

et al., 2020b). Therefore, the first research gap is identified as the lack of a comprehensive analysis 

on the travel patterns of bike share trips (Gap 1). 

1.2.2 Environmental Benefits of BSSs 

Among the many potential benefits of BSSs, the environmental benefit is one of the major factors 

that motivate the decision makers to introduce BSSs into the cities. Quantifying the environmental 

benefits of BSSs can help the city decision makers understand the role that a BSS plays in the 

whole urban transportation systems, and thus make the policies and BSS development plans 

accordingly. Understanding the modal shift is important to evaluate the environmental benefits of 

BSS. Whether bike share reduces transportation energy use and emissions depends on the 

transportation mode replaced by the bike share trips. If bike share trips replace personal vehicle or 

taxi trips, the bike share systems will reduce transportation fuel use and emissions. However, if 

the bike share trips replace walking trips, they may actually increase transportation energy use, 

due to the energy consumption required to build the stations, manufacture the bikes, and operate 

the system (e.g., transporting the bikes between stations to rebalance the bike availability). 

Therefore, in order to estimate the environmental benefits of bike share systems, it is critical to 

consider the transportation mode substitution by bike share trips. In existing literatures, there are 

limited studies trying to quantify the environmental benefits of BSSs, in which the mode 

substitution is either based on simplified assumptions (Anderson, 2015; Zhang & Mi, 2018) or 

shifted concepts (e.g., using percentage of users information from bike share user surveys as 

percentage of travelled miles values (Fishman et al., 2014)). The environmental benefits estimated 

using these methods may lead to biased result. Therefore, better methods that consider the 

heterogeneity of bike share trips are needed to better quantify the environmental impacts of BSSs 

(Gap 2).  

1.2.3 BSS expansion 

In the process of BSS expansion, some studies have observed that adding new stations can impact 

the demand of existing stations. Wang and Lindsey (Wang & Lindsey, 2019) applied a difference-

in-difference analysis on the bike share usage of members (long-term users). They found that 
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members were more likely to increase their bike share usage when the distance from their homes 

to the nearest stations were shortened. Zhang et al. (2016) found that adding new stations can 

attract new users and encourage the usage of long-term users, but new stations could also compete 

with old stations. However, they did not point out in what conditions that the stations compete 

with each other. Using mixed-effect regression model, Hyland et al. (2018) revealed that the 

demand of existing stations would decrease when the number of stations within 0.5 miles 

increased, while the demand would increase if the number of stations within 0.5-3.1 miles 

increased. While this study brings insights on station interactions, it also has two limitations: first, 

the distance threshold of 0.5 miles is selected arbitrarily; second, the study fails to answer whether 

the impact is homogeneous for any distance within the range of 0-0.5 miles (or 0.5-3.1 miles). For 

example, a new station that is 1 mile away could impact the demand of an existing station to a 

different extent compared with a new station that is 2 miles away. Therefore, a more detailed 

analysis about such station interactions is needed, which is important for the designing of a 

balanced station network, i.e., a station network that covers sufficient service areas but also avoids 

the competitions between stations that are too close). This corresponds to the third gap: there lacks 

a detailed understanding of the station interactions in the bike share station networks (Gap 3) 

 

Additionally, such station interactions have not yet been considered in the existing demand 

prediction models for BSS expansion. Demand estimation for BSS expansion helps the decision 

makers to evaluate the feasibility of the expansion plan and determine the capacity for the new 

stations. Compared with plenty of literature about the short-term prediction of BSS demand which 

predicts the demand for a certain station based on its historical trips (Chai et al., 2018; Jia et al., 

2019; Lin et al., n.d.; Wang & Kim, 2018), the literature about the demand prediction for BSS 

expansion is very limited. One distinction between the short-term prediction and system expansion 

prediction is that there is no historical trip record of new stations for BSS expansion. Existing 

studies highly rely on external information to make the predictions (Liu et al., 2017; Watson & 

Telenko, 2019), such as data about social-demographic (e.g., population density) and points of 

interest (POI) (e.g., the number of restaurants) around a certain station. It requires time and effort 

to collect such external data; also, different studies used different categories of external data, 

making it hard to generalize the models to other cities. Additionally, these studies have not 

accounted for the station interactions. They only report the prediction performance on new stations, 
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but ignore that the new stations could also impact the demand of existing stations. In the case that 

a new station complements the demands of its nearby existing stations, if the demands of existing 

stations are assumed to remain the same, the total demands of the whole system will be under-

estimated, which may lead to wrong decisions on the expansion plan. In summary, existing studies 

did not consider the station interactions to predict the demands for BSS expansion (Gap 4). 

1.2.4 System types 

As mentioned in Section 1.1.1, BSSs have multiple types: station-based, dockless, and hybrid. So 

far, when evaluating or improving the system performance, the majority of existing studies focuses 

on only one specific type of BSSs, instead of comparing different types of BSSs. Most of such 

studies are about station-based BSSs (Alvarez-Valdes et al., 2016; Brinkmann et al., 2015; Hulot 

et al., 2018; Lin et al., n.d.; Médard de Chardon & Caruso, 2015), because station-based BSSs 

have a longer history and have released more trip data to the public. In recent years, a growing 

body of literature has paid attention to dockless BSSs (Caggiani et al., 2018; Liu et al., 2018; Xu 

et al., 2018a). Due to the fact that cities have considered hybrid operations only since very recently 

(City of Philadelphia, 2019; The City of Chicago, 2019), studies about hybrid BSSs are very 

limited (Albiński et al., 2018). 

 

Comparing the performances of different types of BSSs can assist in selecting the appropriate 

system types to better take advantage of the benefits of BSSs. However, very few studies have 

quantitatively compared the differences from the perspectives of users and system operators. The 

few studies discussing different types of BSSs are mainly in two groups: (1) macro-scope analysis 

comparing the bike share use, policy, and business models across multiple cities (Gu, Kim, & 

Currie, 2019; Hirsch et al., 2019; Susan et al., 2014) and (2) analysis of the different usage patterns 

when both station-based and dockless BSSs are available in the same city (M. Chen, Wang, Sun, 

Waygood, & Yang, 2020; Ji, Ma, He, Jin, & Yuan, 2020; Lazarus, Pourquier, Feng, Hammel, & 

Shaheen, 2020; H. Li, Zhang, Ding, & Ren, 2019). However, the observed differences about 

ridership and the usage patterns from these studies are also the results of many external factors, 

such as population density, pricing schemes, and the assignment of service areas, which are not 

tied to a specific type of BSSs. Therefore, the results from these studies cannot conclude which 

type of BSSs is better for a specific city regarding the user experience and operational challenges. 
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In summary, there is a critical need for models that can quantify system performances of different 

types of BSSs from the perspectives of both users and operators when serving the same demands 

(Gap 5).  

1.3 Research Gaps and Contributions 

This section summarizes the identified research gaps in Section 1.2 and discusses the 

corresponding contributions of this dissertation to address these gaps. 

 

- Gap 1: The lack of comprehensive analysis on the travel patterns of bike share trips. 

 

This dissertation analyzes the statistical property of trip distance and duration for bike share 

trips. To provide a thorough understanding of bike share travel patterns, both short trips 

and long trips, as well as trips with different purposes, are analyzed. Trip data in eight cities 

(Seattle, Los Angeles, Bay Area, Philadelphia, Boston, Washington DC, Chicago, and New 

York) is collected and analyzed to compare the bike share travel patterns in BSSs of 

different system sizes. The insights gained in this study could help the design of bike share 

station networks. 

 

 

- Gap 2: Existing studies evaluating the environmental impacts of BSSs neglects the impacts 

of trip purpose, trip distance, start time, and heterogeneous trip mode substitution. 

 

This dissertation proposes a Bike Share Emission Reduction Estimation Model (BS-EREM) 

to quantify the environmental benefits of BSSs. The BS-EREM model stochastically 

estimates the transportation modes substituted by bike share trips, considering the detailed 

trip information and heterogeneous transportation mode substitution. The model improves 

upon existing literature through the following aspects: (1) the mode substitution estimation 

takes account of trip distance, trip purpose, start time, and the public transit accessibility 

near bike share stations, which provides more accurate estimation of the environmental 

benefits of bike share trips. (2) The BS-EREM relies on National Household Travel Survey 

(NHTS) and bike share trip data to estimate the environmental benefits. Therefore, it can 



 

 

26 

be directly applied to all cities that have such data. In this dissertation, the BS-EREM is 

applied to eight cities in the United States, to learn about the environmental benefits of 

BSSs with varying system sizes. (3) The case study also provides detailed analysis such as 

unit emission reduction per trip and per mile travelled, as well as the spatial distribution of 

the environmental benefits, which could help the station siting and the planning of BSSs.   

 

- Gap 3: There lacks a detailed understanding of station interactions in the bike share station 

networks.  

- Gap 4: Existing studies did not consider the station interactions to predict the demands for 

BSS expansion. 

 

To address these gaps, this dissertation applies a piecewise regression to formulate the 

relationship between the demand changes of existing stations and their distance to the 

nearest new stations, which improves the understanding of the station interactions and 

brings insights on station network designing. This dissertation also proves that the spatial 

station network structures, represented by fine-grained concentric station densities, can 

improve the predictions for BSS expansion. A Spatial Eccentricity Quantile based 

Ensemble Model (SEQEM) is proposed. It requires no external socio-demographic and 

point-of-interest data but outperforms models using the external information. Overall, the 

insights and the models in this dissertation can improve the planning for system expansion. 

 

Gap 5: There is a critical need for models that can quantify system performances of 

different types of BSSs from the perspectives of both users and operators when serving the 

same demands.  

 

This dissertation proposes a stochastic simulation framework to compare how different 

system types may impact user experience and rebalance needs. The proposed framework 

estimates actual origins-destinations of travel demands and integrates a user behavior 

model and a rebalance optimization model. The model is applied to three case study cities 

— Los Angeles, Philadelphia, and Chicago — to demonstrate how the simulation results 
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of different types of BSSs can shed light on BSS improvement and guide potential system 

type changes. 

1.4 Research Scope and Organization of the Dissertation 

The majority of this dissertation (Chapter 2 – 4) focuses on the station-based BSSs. The reasons 

are as follows: 

(1) Station-based BSS is the dominating types of BSSs. In 2019, 80% of the bike share trips 

in the U.S. are generated in station-based systems (NACTO, 2020). 

(2) More trip data are available for station-based bike share systems, which allows better 

understanding and more detailed modeling of station-based BSSs. The trip data of station-

based BSSs collected in this dissertation is from as early as year 2011, while most of 

dockless BSSs are introduced in recent 2-3 years. Besides, most of the dockless BSS 

companies do not release their trip data to the public, which makes it more difficult to study 

dockless BSSs. 

(3) System expansion is a more critical issue for station-based BSS operators, because the 

installation of new stations incurs high initial expense and the service areas are more 

restricted by the station locations.  

 

Chapter 5 compares different types of BSSs. Although the input data is still from station-based 

BSSs, this dissertation proposes a method to redistribute the bike share demands to wider spatial 

areas, which enables the modeling of dockless and hybrid BSSs. 

 

The framework of the dissertation is depicted in Figure 1.3. The dissertation can be divided into 

three parts; and the corresponding research questions are listed below: 
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Figure 1.3 Framework of the dissertation 

 

Part 1: Understanding the travel pattern of bike share trips (Chapter 2) 

- Q1: which statistical model best fits the distributions of the distance and duration of bike 

share trips? 

 

Part 2: Quantifying the envonmental benefits from bike share trips (Chapter 3) 

- Q2: what transportation modes do bike share trips replace? 

- Q3: how much do BSSs contribute to the greenhouse gas emission reductions?  

 

Part 3: Modeling the system changes. This part can be partitioned into two sub-sections: 

(1) Analyzing the station interactions in system expansion and their applications to demand 

prediction (Chapter 4) 

- Q4: how the station interactions change with the distance between new and existing 

stations? 

- Q5: how to use the information of station interactions for BSS expansion demand 

prediction? 

(2) Comparing different types of BSSs (Chapter 5) 

- Q6: which types of BSSs have better performances regarding user experience and system 

operations when serving the same demands? 
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Last, Chapter 6 summarizes the key findings of this dissertation and discusses the directions for 

future research. 
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 UNDERSTANDING THE TRAVEL PATTERN OF BIKE SHARE 

A modified version of this chapter has been published in a journal paper: Kou, Z., & Cai, H. (2019). 

Understanding bike sharing travel patterns: An analysis of trip data from eight cities. Physica A: 

Statistical Mechanics and its Applications, 515, 785-797. 

2.1 Introduction 

The knowledge of statistical properties of human mobility can be applied to many fields, including 

urban planning (Horner & O’Kelly, 2001), epidemics (Grenfell et al., 2001; Hufnagel et al., 2004; 

Keeling et al., 2001; Mari et al., 2012), genetics (Nash, 2012), and traffic forecasting (Jiang et al., 

2009; Kitamura et al., 2000). Researcher have analyzed the distributions of the displacement and 

duration of human travel records using data from various sources. Brockmann et al. (2006) 

analyzed the records of bank notes and revealed that people’s travel displacement follows a power 

law distribution and exhibits Lévy flight (random walk) behaviors. This Lévy flight pattern has 

been previously observed in animal movements (Atkinson et al., 2002; Ramos-Fernández et al., 

2004; Viswanathan et al., 1996) and further been confirmed for human mobility by Rhee et al. 

(2011) using GPS traces of 44 volunteers in different outdoor settings. Based on cell phone traces, 

González et al. (González et al., 2008) found that, although the distribution of displacement for 

human motion follows a truncated  power-law, Lévy flight isn’t sufficient to explain the spatial 

and temporal regularities shown after the correction of the inherent anisotropy of each individual’s 

trajectory and the different scale of travel distance. Using the same data set, Song et al. (Song et 

al., 2010) further proposed a mechanism, a  combination of exploration and preferential return, to  

explain the human mobility scaling properties and regularities. 

 

Researchers reported that trips taken using different transportation modes may have different 

mobility patterns. Yan et al. (Yan et al., 2013) pointed out that the displacements by a single 

transportation mode exhibit an exponential distribution, instead of the power law distribution 

previously reported, due to the influence of the traveling cost. Kolb and Helbing (Koelbl & Helbing, 

2003) showed that the scaling laws in human travel behavior is related to the different energy 

consumption required for physical activities when travelling in different transportation modes 
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(walking, car, bus, and train). Higher energy consumption rate from physical activities will reduce 

the average travel times. Liang et al. (Liang et al., 2012) analyzed the taxi trips in Beijing and 

found that both the  displacement and trip duration of taxi trips can be better fitted by an 

exponential distribution instead of a power-law distribution. However, in the analysis of taxi GPS 

traces in Lisbon, Portugal, Veloso and Phithakkitnukoon (2011) found that trip distance can be 

represented with a gamma distribution. While these studies focus on the mobility of the taxi 

passengers (considering only trips when the taxis are occupied by passengers), Cai et al. (Cai et 

al., 2016) further pointed out that the travel patterns of taxis, including both occupied and 

unoccupied trips (passenger searching or vehicle relocation), can be better fitted by the truncated 

power-law distribution for shorter trips and by the exponential distribution for trips that are longer 

than 30 miles. Bazzani et al. (Bazzani et al., 2010) studied the GPS data of private cars in Florence, 

Italy and found that the single-trip length follows an exponential behavior in short distance scale 

but favors a power law distribution for trips longer than 30 km. Overall, trips made by vehicles 

(taxi or private car) are most frequently analyzed in recent studies. Because the majority of the car 

trips are in long distance, short trips (e.g., less than one mile) are often neglected. When excluding 

the short trips, existing studies show that the trip displacement follows either power-law 

(Brockmann et al., 2006; Koelbl & Helbing, 2003; Rhee et al., 2011) or exponential (Liang et al., 

2012; Yan et al., 2013) distribution. On the other hand, when short trips are included in the analysis, 

gamma distribution (Veloso & Phithakkitnukoon, 2011) and lognormal distribution (Jiang et al., 

2009) may provide better fit. 

 

 Most of the previous studies focus on the travel patterns of trips taken by automobiles (e.g., taxis 

and private cars) because of the data availability of large-scale trip trajectory data recorded by GPS 

devices. Researchers have also analyzed other transportation modes such as walking (Koelbl & 

Helbing, 2003) and flights (Brockmann et al., 2006) with travel survey or bank notes data, which 

has lower data accuracy on the trip information. Few studies paid attention to the mobility patterns 

of trips taken by bikes. Part of this lack of understanding is due to the lack of bike trip data. Kolb 

and Helbing [18] analyzed the relationship between the energy consumption rates (from physical 

activities) and the travel time of different transportation modes (including biking). However, the 

statistical pattern of biking trips was not analyzed in this study. As a critical component of the 

multi-modal transportation systems, bike trips are playing an increasingly important role in urban 
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mobility. As one type of “active travel”, biking not only can contribute to the sustainability of 

urban transportation by reducing traffic congestion and emissions, but also can help improve 

human health (Bullock et al., 2017). With the emerging sharing economy, more and more cities 

are implementing bike share programs, increasing the convenience of traveling by bikes in the city. 

As of January 2017, more than 100 cities in the United States have developed bike-sharing 

programs (Malouff, 2017). Additionally, the trip data from several bike share programs are made 

publically available, providing an unprecedented opportunity to understand the human mobility 

using shared bikes. Such knowledge will provide fundamental basis for researchers to model the 

use of bike share and the associated multi-modal transportation systems, inform bike share system 

design and operation, and guide policy decisions for sustainable transportation development.  

 

Previous studies about bike share mainly focus on the analysis of ridership (Mateo-Babiano et al., 

2016; O’Brien et al., 2014; Ome & Latifa, 2014; Zhou, 2015) and the optimization of system 

operation (Brinkmann et al., 2015; Chemla et al., 2013; Contardo et al., 2012; Fricker & Gast, 

2016; García-Palomares et al., 2012; Li et al., 2015), few studies focus on the statistical patterns 

of bike share trips. Jurdak (Jurdak, 2013) studied the bike share trips in Boston and Washington, 

D.C. in the United States, and concludes that the distribution of trip durations in both cities fit a 

power law distribution for long trips (longer than an hour). However, the distribution of long trips 

do not reflect the travel patterns of bike share trips, because the majority of the bike share trips are 

short (this will be discussed in Section 2.2 of this chapter). Therefore, to fill the gap of 

understanding the travel patterns of bike share trips, this research analyzed the distribution of both 

trip distance and trip duration for bike share trips collected in eight cities in the U.S. The major 

contributions of this study include: 1) the analysis includes both short trips and long trips (generally, 

a threshold is set where the distance/duration reaches the highest probability (density) in the 

probability density plot; then trips with distance/duration that is larger than the threshold will be 

treated as long trips; for example, the threshold for duration varies from 5 to 13 minutes depending 

on the different cities and different trip purposes); 2) this study compares the travel patterns of 

bike share trips with different trip purposes (commuting versus touristic trips); and 3) this study 

compares the travel patterns of bike share in eight cities, which include bike share systems of 

different sizes and operation time.   
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2.2 Data and Methods 

2.2.1 Data 

This study analyzes the bike share trip data from eight programs located in eight different cities in 

the United States: Seattle, Los Angeles, Bay Area, Philadelphia, Boston, Washington D.C., 

Chicago and New York. The bike-sharing programs in these cities are station-based systems, in 

which a bike has to be checked out from and returned to a docking station. For each trip, the time 

and station is recorded when the bike is checked out and returned. The locations of the stations can 

be mapped with the station list, in which the longitude and latitude of each station is provided. 

Table A. 1 in the APPENDIX A shows a sample of the data from Pronto, the bike share program 

in Seattle. Data for other cities contains similar information.  The bike share programs in different 

cities are launched at different time and have different scales (in terms of the number of stations 

and bikes). Table 2.1 shows an overview of the bike share programs in each city. This study 

analyzed all trips taken in 2016 to study the travel patterns of bike share. To indicate the scale of 

spatial coverage of each program, the system diameter for each program is measured, which is 

defined as the longest Euclidian distance between any two stations (the stations list kept changing 

with the system expansion over time and the station list at the end of year 2016 is used in this 

study). Based on the ridership, the total number of stations, and the system diameter, the programs 

can be naturally separated into two groups, smaller systems (those in Seattle, Los Angeles, Bay 

Area, and Philadelphia) and larger systems (those in Boston, Washington DC, Chicago, and New 

York). One thing to note is that Bay Area’s bike share system contains multiple sub-systems in 

several cities, thus  only intra-city trips in San Francisco are included (accounts for 89.7% of the 

trips) in this study to make it comparable to other cities (more information on this is provided in 

Section A.2 of APPENDIX A).  
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Table 2.1. Basic information of the eight bike share programs 

City Seattle  Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington, 

DC 

Chicago New York 

Program 

Name 

Pronto Metro Ford 
Gobike 

Indego Hubway Capital Divvy Citi 

Program 

Launch Date 

Oct., 
2014 

June, 
2016 

Sep., 
2013 

July, 2013 Dec., 
2011 

Jan., 2014 July, 2013 July, 2013 

Total 

Number of 

trips in year 

2016 

102,606 184,345 210,494 499,306 1,236,199 2,562,718 3,595,383 10,262,649 

Number of 

Stations as of 

Dec. 2016 

59 64 74 119 327 407 581 687 

System 

diameter 

(miles) 

4.71 2.85 2.33 5.06 8.57 14.28 23.29 11.17 

Note: the programs are listed in the order of the program size (the number of stations) from the smallest (left) to the largest (right) 

2.2.2 Estimation of trip distance, duration, and purpose 

Because the data only include trip origins (check-out station) and destinations (return station), the 

actual trajectory of each trip is not available. Therefore, the trip distance has to be estimated using 

the locations of the trip start and end stations. Considering the fact that the movement of bikes is 

likely restricted by the street network and not all roads (e.g., highways) can be traveled by bikes, 

to more accurately estimate the trip distance, the Google Maps Distance Matrix API is used to 

calculate the trip distance and duration between two stations, specifying biking as the 

transportation mode. This distance can better reflect the actual bike travel along the pathways 

suitable for biking. This study also tested how trip start time can impact the trip distance and 

duration but did not observe significant differences (Google Maps Distance Matrix API only 

considers the real-time road traffic conditions for driving, not biking). Considering that bike travels 

are less impacted by road conditions (e.g., congestion), which is one of the reasons some people 

prefer biking to driving (Alter, 2008; Lobo, 2013), it is assumed that the travel distance and 

duration between the same pair of stations would stay the same regardless of the travel time. 

Because there is no sufficient information to estimate the actual traveling distance of round trips, 
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for which the bikes were checked out from and returned to the same station, round trips (consisting 

of 2% to 10% of the trips as shown in Table 2.2) are excluded from the analysis. 

 

While many previous studies used trip displacement (e.g., the Great Circle Distance between the 

origin and destination) to measure the human movements (González et al., 2008; Rhee et al., 2011), 

the actual distances traveled within the urban street network can better reflect human mobility 

using bikes. As shown in Figure 2.1, the distance estimated by Google Maps API is on average 

1.5 times of the great circle distance, while the ratio can be as high as 8 times.  

 

 

Figure 2.1. Box plot of the ratio of Google Maps estimated distance to the trip displacement 

measured by the great circle distance (using data from Seattle as an example)  

 

Bike share systems are mainly used for commuting and touristic trips (LDA Consulting, 2016). 

The two types of trips will have very different trip duration patterns: commuters will bike directly 

from the start station to the end station while the tourists tend to stop at different points-of-interest 

locations along the way. As a result, the actual trip duration measured by the difference between 

trip end (bike return) and start (bike check-out) time can well reflect the traveling time for the 

commuting trips but will be much longer than the traveling time for the touristic trips. Because the 

original trip data do not contain trip purpose information, this work compares the actual trip 

duration (the difference between trip start and end) to the expected trip duration (estimated by 

Google Maps API) to estimate the trip purpose. As shown in Figure 2.2 a, the trip duration 
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estimated by Google Maps API is linear to the estimated distance, while the actual trip duration 

could be much longer than the estimated one. The distribution of the actual trip duration has a 

longer tail for long trips (e.g., longer than 15 minutes for Seattle) than that of the estimated duration 

(Figure 2.2 b). This means that many bike share users did not ride from the origin directly to the 

destination through the shortest route. Therefore, this study defines the trips whose duration is 

within 1.3 times of the duration estimated by the Google Maps API as the commuting trips and 

trips taken longer than that as touristic trips. The Google Maps API assumes a baseline speed of 

10 miles/hour for biking (Lobo, 2014). This cutoff line of 1.3 is arbitrarily selected, considering a 

30% buffering for possible delays (e.g., due to bike adjustment, necessary detours, lower biking 

speed) compared to the expected duration estimated by the Google Maps API. A sensitivity 

analysis is conducted to evaluate the impact of this cutoff line and is discussed in Section 2.3.3. 

The commuting trips make up about 59% to 76% of the total trips in the eight cities (Table 2.2) 

and are more concentrated in the shorter range (Figure 2.3).  

 

(a)  (b)  

Figure 2.2. Trip duration in Seattle: (a) Comparison of the relationship between the trip duration 

and the estimated distance for the actual and estimated trip duration and, (b) Trip duration 

density plot (the total trip between each origin-destination pair is used as the weight for the 

weighted average estimated duration calculation) 
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Figure 2.3. Probability density plot of trip duration for commuting trips and touristic trips in 

Seattle 

 

 

Table 2.2. Basic statistics of the trip distance and duration 

City Seattle  Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington, 

DC 

Chicago New York 

Percentage of round trips 8.40% 10.60% 2.60% 8.10% 3.10% 4.60% 4.20% 2.06% 

Percentage of commuting trips 58.43% 63.61% 75.55% 68.59% 68.98% 58.56% 60.78% 62.32% 

Commuting 

trips 

Distance 

(miles) 

Maximum 7.85 3.14 3.37 7.30 8.77 27.21 23.77 13.88 

Median 1.16 0.91 1.23 1.39 1.46 1.43 1.39 1.31 

Average  1.27 1.02 1.24 1.56 1.70 1.72 1.71 1.68 

Standard 

Deviation 

0.74 0.50 0.53 0.79 1.02 1.14 1.14 1.21 

Duration 

(minutes) 

Maximum 58.86 28.00 28.45 57.00 64.07 158.28 148.63 82.68 

Median 7.89 4.00 8.15 10.00 9.28 9.47 9.33 8.80 

Average  8.84 4.57 8.55 11.02 10.79 11.10 10.98 10.85 

Standard 

Deviation 

5.11 4.91 3.65 5.75 6.28 6.94 6.75 7.28 

Touristic 

trips 

Distance 

(miles) 

Maximum 8.65 3.29 3.37 7.20 10.60 25.34 18.28 14.16 

Median 0.95 0.84 0.93 1.22 1.19 1.16 1.26 1.21 

Average  1.15 0.94 1.05 1.37 1.42 1.40 1.55 1.48 

Standard 

Deviation 

0.85 0.50 0.54 0.79 0.92 1.03 1.13 1.01 

Duration 

(minutes) 

Maximum 479.66 719.00 716.70 719.00 719.37 719.72 719.85 719.98 

Median 17.39 14.00 11.45 20.00 16.42 16.40 17.03 15.30 

Average  27.97 23.62 21.20 31.58 22.41 26.01 21.89 20.09 

Standard 

Deviation 

39.33 44.66 43.98 50.49 33.01 37.60 26.78 27.09 
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2.2.3 Methods for fitting the distributions of trip distance and duration 

Short trips that are less than one mile are often neglected in existing studies analyzing travel 

patterns (for example, in  (Cai et al., 2016; Liang et al., 2012)). However, because the majority of 

the bike share trips are relatively short (the median distance for both commuting and touristic trips 

is less than 1.5 miles, as shown in Table 2.2), it is critical that these short-distance trips are included 

in the analysis. Therefore, this work evaluates the travel patterns both for all trips (including the 

short ones) and for long trips only (to allow comparison between this study and those focus on 

longer trips). Based on the shape of the density plot (Figure 2.3), this study first selected three 

common right-skewed distributions, Weibull, gamma, and lognormal as candidate distributions to 

fit the entire data (including both short and long trips). The Lévy flight nature of human travelling 

is also examined by fitting the Power Law and exponential distribution to the right-side tail (long 

trips). This study then fits the trip data to the selected distributions, using the maximum likelihood 

estimation (MLE). To identify the goodness of fit, this study conducts a Kolmogorov-Smirnov (K-

S) test (D’Agostino RB, 1986) and considers a K-S statistics value lower than 0.05 as acceptable 

for a good fit. If the K-S test considers multiple distributions as acceptable, this work further uses 

the Akaike information criterion (AIC) and Bayesian information criterion (BIC) methods 

(Johnson & Omland, 2004) for model selection. The distribution with the lowest AIC and BIC is 

selected as the best fit (Posada & Buckley, 2004). 

 

Table 2.3 Probability density function of the models considered in this study (x > 0) 

Model Equation Parameters 
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2

1 1 (ln )
( ) exp( )

22

x
f x

x



 


     

Mean (log)   and standard deviation 

(log)     

Power Law ( ) kf x ax   Exponent k 
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2.3 Results and Discussions 

2.3.1 The distribution of trip distance and duration for all trips (short and long) 

This study fitted the trip distance and duration for the commuting and touristic trips separately 

with three common right-skewed distributions: lognormal, gamma, and Weibull (see Table 2.3 for 

the equations of these distributions). According to the fitted results (Table 2.4), the eight systems 

do not have a common distribution pattern regarding trip distance for the commuting trips. For 

most of the systems except for Bay Area, both gamma and lognormal distributions provide a good 

fit with K-S statistics below the 5% significance level. Based on the AIC/BIC values, the best fit 

for the large systems (Boston, Washington DC, Chicago, New York) is lognormal distribution, 

while gamma distribution is a better fit for the smaller systems (Seattle, Los Angeles, and 

Philadelphia) except for Bay Area which fits better with the Weibull distribution. The details of 

the goodness of fit statistics for tourist trip distance, commuting trip duration, and tourist trip 

duration are listed in the APPENDIX A, Table A. 3 to A. 5, respectively. 
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Table 2.4. Results of model selection for commuting trip distance 
   

Seattle Los 

Angeles 

Bay 

Area 
Philadelphia Boston Washington, 

DC 
Chicago New York 

Weibull Parameters Shape 1.8512 2.1665 2.5134 2.0996 1.7896 1.6420 1.6144 1.5232 

    Scale 1.4361 1.1499 1.4011 1.7712 1.9261 1.9317 1.9218 1.8760 

  Goodness-of-fit 
statistics/criteria 
  
  

K-S statistic 0.0658 0.0513 0.0497* 0.0555 0.0548 0.0519 0.0547 0.0674 

  AIC 107316.3 137674.1 215312.1 693533.8 2161993.0 3880947.0 5717157.5 17356522.0 

  BIC 107334.1 137693.2 215331.8 693555.1 2162016.3 3880971.3 5717182.6 17356549.0 

Gamma Parameters Shape 3.5464 4.0595 4.9903 4.1294 3.0170 2.7110 2.5535 2.3567 

    Scale 2.7932 3.9995 4.0206 2.6417 1.7713 1.5799 1.4937 1.4054 

  Goodness-of-fit 
statistics/criteria 
  
  

K-S statistic 0.0382* 0.0304* 0.0682 0.0284* 0.0472* 0.0354* 0.0462* 0.0570 

  AIC 101513.2 134402.0 216873.8 671542.5 2113945.2 3771463.5 5585434.3 16907864.0 

  BIC 101531.1 134421.1 216893.5 671563.9 2113968.4 3771487.9 5585459.4 16907892.0 

Lognormal Parameters meanlog 0.0912 -0.1133 0.1126 0.3208 0.3578 0.3444 0.3278 0.2899 

    sdlog 0.5500 0.5264 0.4791 0.5136 0.6046 0.6345 0.6563 0.6783 

  Goodness-of-fit 
statistics/criteria 

  
  

K-S statistic 0.0504 0.0384* 0.0816 0.0205* 0.0237* 0.0152* 0.0176* 0.0131* 

  AIC 100235.9 138111.9 226762.0 673148.5 2104083.5 3722622.1 5514671.9 16539126.0 

  BIC 100253.8 138131.0 226781.7 673169.8 2104106.7 3722646.5 5514697.0 16539154.0 

Best Fit Distribution Gamma Gamma Weibull Gamma Lognormal Lognormal Lognormal Lognormal 

Parameters α = 3.55 
β = 2.79 

α = 4.06 
β = 4.00 

k = 2.51 
λ = 1.40 

α = 4.13 
β = 2.64 

μ = 0.36 
σ = 0.60  

μ = 0.34 
σ = 0.63 

μ = 0.33 
σ = 0.66 

μ = 0.29 
σ = 0.68 

Notes: 1. * Significant at 0.05. 

           2. Model parameters corresponds to the parameters in Table 3. 
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Table 2.5 summarizes the best fit models as well as the parameters for all cities and all cases. In 

general, lognormal distribution provides the best fit for cities with larger bike share system (having 

a diameter larger than or around 10 miles), for both trip distance and distribution. The mean μ of 

lognormal distribution is between 0.29 and 0.36 miles for commuting trips and between 0.12 and 

0.21 miles for touristic trips. Tourists tend to return the bikes in areas near the trip origins, and 

thus have shorter average trip “distance” than commuters (note that the distance here better reflect 

the real distance travelled by commuting trips than touristic trips). Regarding trip duration, on the 

contrary, tourists will travel longer time (mean μ is around 2.75 minutes for lognormal distribution) 

than commuters (mean μ is around 2.2 minutes), as expected. For cities with smaller system (whose 

diameter is less than 8 miles and have less than 100 stations), gamma distribution provides the best 

fit to describe the trip distance in most of the cases with some exceptions (the distance of 

commuting trips in Bay Area fits better with Weibull distribution; the distance of touristic trips in 

Seattle fits better with lognormal distribution). For trip duration, none of the selected distributions 

can fit many of the smaller systems with a significant K-S statistic. However, if the significant 

level of the K-S statistics is extended from 0.05 to 0.1, the lognormal distribution can be viewed 

as providing a good fit for the duration of touristic trips in all cities (Table A. 5 in the APPENDIX 

A). If such significant level extension is also applied to the trip distance analysis, the model 

selection will remain the same except that lognormal will be preferred for commuting trip distance. 



 

 

 

4
2
 

 

 

 

 

Table 2.5. Parameters of the best fit models 
  

Seattle Los 

Angeles 

Bay Area Philadelphia Boston Washington, 

DC 

Chicago New York 

Commuting trip distance Best Fit Distribution Gamma Gamma Weibull Gamma Lognormal Lognormal Lognormal Lognormal 

  Parameters α = 3.55 α = 4.06 k = 2.51 α = 4.13 μ = 0.36 μ = 0.34 μ = 0.33 μ = 0.29 

    β = 2.79 β = 4.00 λ = 1.40 β = 2.64 σ = 0.60  σ = 0.63 σ = 0.66 σ = 0.68 

Touristic trip distance Best Fit Distribution Lognormal Gamma Gamma Gamma Gamma Lognormal Lognormal Lognormal 

  Parameters μ = -0.07 α = 3.33 α = 3.65 α = 3.08 α = 2.62 μ = 0.12 μ = 0.21 μ = 0.16 

    σ = 0.63 β = 3.56 β = 3.46 β = 2.25 β = 1.84 σ = 0.67 σ = 0.70 σ = 0.70 

Commuting trip duration Best Fit Distribution Lognormal None1 Gamma None1 Lognormal Lognormal Lognormal Lognormal 

  Parameters μ = 2.03 - α = 5.15 - μ = 2.21 μ = 2.22 μ = 2.21 μ = 2.18 

    σ = 0.56 - β = 0.60 - σ = 0.59  σ = 0.62 σ = 0.63 σ = 0.65 

Touristic trip duration Best Fit Distribution None1 None1 None1 Lognormal Lognormal Lognormal Lognormal Lognormal 

  Parameters - - - μ = 3.03 μ = 2.75 μ = 2.80 μ = 2.77 μ = 2.69 

    - - - σ = 0.83 σ = 0.79  σ = 0.90 σ = 0.77 σ = 0.75 

System diameter 4.71 2.85 2.33 5.06 8.57 14.28 23.29 11.17 

Notes: 1. “None” means that none of the three distributions have K-S statistic lower than 0.05 

            2. Model parameters corresponds to the parameters in Table 3. 
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This study further evaluated the goodness-of-fit plots to gain more insights of the difference 

between the smaller and larger systems. Figure 2.4 compared the goodness-of-fit from different 

perspectives for one smaller system (Seattle) and one larger system (Chicago). The P-P plots show 

that these models fit well at the distribution center, while the Q-Q plots reveal a lack of fit at the 

distribution tail. Because the bike share users of larger systems (e.g., Chicago) can potentially 

travel longer due to the larger spatial coverage (though only a small percentage of trips are long-

distance), the variation at the distribution tail would be more significant and thus may influence 

the selected distribution models. It can be observed from Figure 2.5 that Chicago has a wider-

spread station network than Seattle and thus allows users to travel for longer distance. The reasons 

why a common distribution model is not found for the small systems would be complex. The 

system size is a major constrain for the users in these small systems. Because such systems have 

limited number of stations and small system diameters, the users’ movement is also largely 

restricted in the area where bike share stations are available. Additionally, factors such as the 

stations’ geographic layout, urban road network, and accessibility of bike paths may also affect 

the bike share users’ behaviors.  

 

(a)   (b)  

Figure 2.4. Weibull, lognormal, and gamma distribution fitted to commuting trip distance: (a) 

Seattle, (b) Chicago (graphs for other cities are presented in Figures A. 2 to A. 5 in APPENDIX 

A) 
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 (a)  (b)  

Figure 2.5. Station network (black dots) and popular origin-destination pairs (based on historical 

trip count): (a) Seattle, (b) Chicago 

2.3.2 The distribution of trip distance and duration for long trips 

As discussed in Section 2.3.1, the major factor that influenced model selection came from the 

goodness-of-fit in the tail part (long distance/duration). Therefore, analyzing the pattern in the 

right side tail part is also meaningful. The K-S statistics (Table 2.6) shows that the power law 

distribution provides a good fit for both the trip distance and duration for the larger systems 

(Boston, Washington DC, Chicago, and New York). The power law cut-off point (where the 

power law fitting starts) is determined by optimizing the goodness of fit. Generally, the power 

law fit for the larger systems starts at longer distance/duration. For those cases that power law 

exhibits a good fit, the exponent k of power law distribution varies from 5.5 to 12.6 for 

commuting trip distance, 3.4 to 12.1 for tourist trip distance, 5.4 to 16.3 for commuting trip 

duration, and 2.4 to 3.4 for tourist trip duration. The exponent k is basically in the same range in 

the case of trip distance, for both commuting and touristic trips. This is because that the data only 

reflects the distance between trip origin and destination. On the contrary, for trip duration, the 

exponent exhibits significant difference between commuting trips and touristic trips. Touristic 

trips have smaller exponent in the power law distribution fitting, showing that the probability 
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that a trip has certain duration drops slower for touristic trips than commuting trips as the trip 

duration increases. In the study from Jiang et al. (Jiang et al., 2009), they fitted the trip distance 

of taxi GPS trajectory data to power law. The exponent is around 2.5 for intra-city trajectories 

and 4-5 for intercity trajectories, respectively, which is similar or smaller than the exponent fitted 

for bike share trips. This is expected since people is more likely to take long trips by taxi than by 

bike. Only several smaller bike share systems fit well with the power law distribution, which is 

due to the restriction from the station network, similar to the analysis in Section 2.3.1. With less 

restrictions from the bike share system, the mobility pattern in larger bike share systems tends to 

exhibit power law decay, which is similar to the observation in the research of Jiang et al. (Jiang 

et al., 2009) . It is also worth noting that the trips in the tail part that are used for the power law 

fitting only make up a very small portion of the total trips (typically, less than 5%). The 

proportion is even smaller in the larger systems, which indicates that the probability of long trips 

is very low. In addition, this study also fitted the right side tail part data to exponential 

distribution. None of the data fits well to the exponential distribution for any of the cities, neither 

commuting trips nor touristic trips. The details of the exponential fitting are included in 

APPENDIX A, Section A.3.   
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Table 2.6. Results of power law fit at the distribution tail 
  

Seattle Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington

, DC 

Chicago New York 

Commuting trip distance 

（mile） 

Right side cut-off1 1.14 0.67 1.26 0.99 1.05 0.86 0.77 0.86 

K-S statistic 0.0518 0.0711 0.1330 0.0243* 0.0347* 0.0287* 0.0176* 0.0347* 

Power law cut-off2 2.15 2.12 2.10 3.35 5.47 4.07 4.49 6.29 

Exponent k 4.28 12.07 11.70 8.27 12.60 5.51 7.25 11.44 

Percentage of trips in power law fit 4.74% 1.94% 5.81% 2.22% 0.24% 2.41% 1.67% 0.39% 

Tourist trip distance 

（mile） 

Right side cut-off 0.81 0.69 0.90 0.69 0.68 0.94 1.04 0.75 

K-S statistic 0.0496* 0.0573 0.1097 0.0271* 0.0407* 0.0234* 0.0213* 0.0230* 

Power law cut-off 1.08 2.09 2.09 3.35 5.37 2.98 9.26 8.10 

Exponent k 3.36 10.63 10.32 8.60 11.18 4.27 8.85 12.09 

Percentage of trips in power law fit 17.77% 0.93% 1.29% 0.72% 0.08% 2.47% 0.03% 0.00% 

Commuting trip duration 

(minute) 

Right side cut-off 7.65 0.24 7.45 8.07 5.83 5.58 5.30 5.29 

K-S statistic 0.0283* 0.1498 0.0299
* 

0.1453 0.0161* 0.0167* 0.0132* 0.0070* 

Power law cut-off 17.16 11.78 19.27 10.00 27.40 23.33 31.47 40.98 

Exponent k 5.36 5.86 16.32 3.74 9.19 6.16 6.94 12.48 

Percentage of trips in power law fit 3.95% 6.42% 0.33% 35.59% 1.17% 3.42% 0.49% 0.16% 

Tourist trip duration 

(minute) 

Right side cut-off 11.36 8.67 9.24 12.82 9.45 5.95 9.98 10.40 

K-S statistic 0.0162* 0.0258* 0.0515 0.0242* 0.0166* 0.0129* 0.0050* 0.0260* 

Power law cut-off 18.32 42.00 10.87 65.00 56.77 119.37 34.48 56.02 

Exponent k 2.46 2.40 2.41 2.55 2.72 3.42 3.07 2.62 

Percentage of trips in power law fit 19.59% 3.28% 12.93% 2.36% 1.37% 1.03% 4.76% 0.97% 

1. Right side cut-off is the distance/duration with the highest probability (density) in the probability density plot. 

2. Power law cut-off is the lower cut-off for the scaling region estimated by a goodness-of-fit based approach. 

3. * Significant at 0.05 level. 

4. Model parameters corresponds to the parameters in Table 3. 
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This study further plotted the Complementary Cumulative Distribution Function (CCDF) graphs 

to compare between the smaller and larger systems. CCDF graphs are used because each bin in 

the logarithmic tail part only contains very few samples, resulting in a messy tail in a histogram or 

probability density function (PDF) plot (Cai et al., 2016; Newman, 2004). Figure 2.6 compares the 

power law fitting of Seattle (smaller system) and Chicago (larger system). In the log-log range, 

the straight line of power law fitting (red line) is steeper for Chicago than for Seattle, which is 

consistent with the result that Chicago has larger exponent k.  

 

(a) (b)  

Figure 2.6. CCDF plots of the power law fit: (a) Seattle, (b) Chicago (graphs of other cities are 

presented in Figures A. 6 to A. 9 in APPENDIX A) 

2.3.3 Sensitivity analysis  

Because this study used a threshold of 1.3 times of the estimated trip duration as a filter to 

distinguish commuting and touristic trips, a sensitivity analysis is also conducted to evaluate how 

this threshold would impact the results. Figure 2.7 provides a comparison between the original 

data and the filtered data (using different thresholds) on their power law fit. The original data 

shows a more evident decay in the tail part than the filtered data. Because the bike share trip data 

does not contain the detailed trace of each trip, the duration brings extra uncertainty to the 

analysis, for instance, it is difficult to know whether there is idle time during a trip. Even the tail 

part only makes up less than 6% of the total trips (Table 2.6), it can still contribute to a 

significant difference when fitting the distribution. It can be observed that the decay and the 

change of the exponent k value of power law are contributed by those “touristic” trips. Table 2.7 
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and Table 2.8 listed the results of model selection for Seattle and Chicago, with different 

thresholds. In general, when the filter is closer to 1, the commuting trips will include higher 

percentage of trips in which the users travel directly from the origin to destination through the 

shortest path. Seattle’s result is more sensitive to this filter than that of Chicago. For Seattle’s 

commuting trip distance, the best model for the whole distance range is gamma distribution 

when the filter is 1.1 and 1.3 times, while it prefers lognormal distribution when the threshold 

increases to 1.5 or when there is no filter. The power law fitting to the longer distance trips has a 

significant K-S statistic only for “no filter” case. Though gamma distribution remains to be a 

good fit no matter what the threshold is. The shape parameter α and scale (rate) parameter β will 

decrease slightly (α: 3.84 – 3.06, β: 2.85 – 2.51) as the threshold increases. Regarding Seattle’s 

commuting trip duration, the best fitted model switches from gamma to lognormal when the 

filter is larger or equal to 1.3. However, none of the right-skewed models have a significant K-S 

statistic for the non-filter case. For power law fitting, it presents a good fit no matter what the 

threshold is, but the exponent of the fitted model varies from 8.2 to 2.6. In contrast to Seattle, the 

threshold did not affect the model selection for Chicago to a very large extent. Lognormal 

remains to be the best model and power law fits well to the tail in all the cases when the 

threshold changes. For commuting trip distance, the lognormal model has the mean (log) μ in the 

range of 0.28 – 0.33 and standard deviation (log) σ in the range of 0.65 – 0.68; while the power 

law exponent k is in the range of 7.6 – 8.4. The power law exponent k for commuting trip 

duration may change a lot between nonfiltered and filtered data, since the nonfiltered data has an 

exponent k of 3.11, while the filtered data has exponent k in range of 6.9 to 8.6. Therefore, when 

selecting a distribution to model the trip duration of the bike share user’s behaviors, those 

smaller systems (e.g., Seattle) should be treated more cautiously. Again, the variations or 

sensitivities of the model selection or model parameters are more likely to come from the bike 

share station networks, which could be the reason why it is difficult to find a common 

distribution model for those smaller systems. 
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(a)  (b)  

Figure 2.7. CCDF plots of the power law fit to commuting trip duration with different thresholds:  

(a) Seattle, (b) Chicago 

 

 

Table 2.7. Results of sensitivity analysis, Seattle 

Filter 1.1 1.3 1.5 No filter 

Commuting 

trip distance 

(mile) 

Weibull Parameters Shape 1.8797 1.8512 1.8233 1.6971 

Scale 1.4489 1.4361 1.4234 1.3756 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0699 0.0658 0.0638 0.0643 

AIC 81034.01 107316.3 124027.2 186907.1 

BIC 81051.28 107334.1 124045.3 186926 

Gamma Parameters Shape 3.6446 3.5464 3.4488 3.0631 

Scale 2.8458 2.7932 2.7399 2.5124 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0420* 0.0382* 0.0365* 0.0377* 

AIC 76656.79 101513.2 117357.5 176672.1 

BIC 76674.07 101531.1 117375.6 176691 

Lognormal Parameters meanlog 0.1040 0.0912 0.0782 0.0262 

sdlog 0.5433 0.5500 0.5573 0.5897 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0585 0.0504 0.0468* 0.0395* 

AIC 75912.96 100235.9 115626.1 172444.9 

BIC 75930.23 100253.8 115644.2 172463.8 

Power Law Right side cut-off point 1.1615 1.1420 1.1442 0.8195 

K-S statistic 0.0657 0.0518 0.0504 0.0425* 

Lower cut-off for the 
scaling region 

2.1468 2.1468 2.1468 1.4428 

Exponent k 4.1651 4.2793 4.2616 4.0146 
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Table 2.7 continued 
  

No. of points in tail part 3205 4454 5165 26861 

Commuting 

trip duration 

(minute) 

Weibull Parameters Shape 1.9528 1.8550 1.7833 0.9983 

Scale 9.4031 10.0013 10.4639 16.7761 

Goodness-of-fit 

statistics/criteria 

K-S statistic 0.0493* 0.0586 0.0622 0.1253 

AIC 234836.5 320810.9 379173.7 718543.6 

BIC 234853.7 320828.8 379191.8 718562.5 

Gamma Parameters Shape 3.7133 3.4615 3.2475 1.2754 

Scale 0.4471 0.3917 0.3508 0.0760 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0214* 0.0296* 0.0348* 0.1312 

AIC 231495.9 315744.1 373111.4 715311.8 

BIC 231513.1 315762 373129.5 715330.7 

Lognormal Parameters meanlog 1.9762 2.0276 2.0635 2.3803 

sdlog 0.5428 0.5589 0.5752 0.8267 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0393* 0.0319* 0.0245* 0.0537 

AIC 231530.2 314757.4 371196 678694.2 

BIC 231547.5 314775.2 371214.1 678713.1 

Power Law Right side cut-off point 7.3525 7.6474 7.2725 6.1040 

K-S statistic 0.0213* 0.0283* 0.0257* 0.0214* 

Lower cut-off for the 
scaling region 

24.2198 17.1621 22.8324 15.4299 

Exponent k 8.1714 5.3556 5.6912 2.5627 

No. of points in tail part 396 3715 1835 27158 

1. Right side cut-off is the distance/duration with the highest probability (density) in the probability density plot. 

2. Power law cut-off is the lower cut-off for the scaling region estimated by a goodness-of-fit based approach. 

3. * Significant at 0.05 level. 

4. Model parameters corresponds to the parameters in Table 3. 

  

  



 

 

51 

Table 2.8. Results of sensitivity analysis, Chicago 

Filter 1.1 1.3 1.5 No filter 

Commuting 

trip 

distance 

(mile) 

Weibull Parameters Shape 1.6093 1.6144 1.6013 1.5664 

Scale 1.9272 1.9218 1.9067 1.8476 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0593 0.0547 0.0528 0.0484* 

AIC 3913715.2 5717157.5 6783809.6 9323442.1 

BIC 3913739.5 5717182.6 6783835.1 9323468.2 

Gamma Parameters Shape 2.5491 2.5535 2.5170 2.4287 

Scale 1.4867 1.4937 1.4828 1.4734 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0497* 0.0462* 0.0447* 0.0395* 

AIC 3820833.9 5585434.3 6628840.4 9108608.9 

BIC 3820858.2 5585459.4 6628865.8 9108635 

Lognormal Parameters meanlog 0.3303 0.3278 0.3175 0.2800 

sdlog 0.6551 0.6563 0.6619 0.6767 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0187* 0.0176* 0.0184* 0.0174* 

AIC 3764514.8 5514671.9 6546544.6 9007262.6 

BIC 3764539.1 5514697 6546570 9007288.7 

Power Law Right side cut-off 

point 

1.0000 0.7733 0.7776 0.7907 

K-S statistic 0.0241* 0.0176* 0.0158* 0.0182* 

Lower cut-off for 
the scaling region 

4.4925 4.4931 4.3962 8.2686 

Exponent k 7.6295 7.2541 6.8692 8.4114 

No. of points in tail 
part 

43120 58166 76369 3625 

Commuting 

trip 

duration 

(minute) 

Weibull Parameters Shape 1.7504 1.7394 1.7063 1.2125 

Scale 11.6227 12.3974 12.8541 16.4961 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0466* 0.0439* 0.0426* 0.0869 

AIC 8862380.8 13275483 16020129 25386248 

BIC 8862405.1 13275508 16020154 25386274 

Gamma Parameters Shape 2.8790 2.8419 2.7623 1.8332 

Scale 0.2798 0.2588 0.2423 0.1198 

Goodness-of-fit 
statistics/criteria 

K-S statistic 0.0339* 0.0328* 0.0329* 0.0458* 

AIC 8785794.8 13166770 15885710 25017980 

BIC 8785819.2 13166795 15885736 25018007 

Lognormal Parameters meanlog 2.1477 2.2101 2.2417 2.4307 

sdlog 0.6207 0.6266 0.6358 0.7407 
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Table 2.8 continued 
  

Goodness-of-fit 

statistics/criteria 

K-S statistic 0.0236* 0.0274* 0.0280* 0.0216* 

AIC 8769914.6 13152296 15863341 24423729 

BIC 8769938.9 13152321 15863366 24423755 

Power Law Right side cut-off 
point 

4.9947 5.2965 5.2826 7.0246 

K-S statistic 0.0105* 0.0132* 0.0126* 0.0047* 

Lower cut-off for 
the scaling region 

32.1333 31.4667 58.0167 38.0667 

Exponent k 7.6032 6.9416 8.5796 3.1133 

No. of points in tail 
part 

5396 17134 1048 139703 

1. Right side cut-off is the distance/duration with the highest probability (density) in the probability density plot. 

2. Power law cut-off is the lower cut-off for the scaling region estimated by a goodness-of-fit based approach. 

3. * Significant at 0.05 level. 

4. Model parameters corresponds to the parameters in Table 3. 

2.4 Conclusion and Future Work 

This study analyzed the mobility patterns of bike share users by identifying the distributions of the 

trip distance and duration. Because the bike share trip data used in the analysis only contain the 

time and location information of the trip origins and destinations, this work estimated the trip 

distance using the Google Maps Distance Matrix API and also separated the data into commuting 

trips and touristic trips. No common distributions are found that can describe the bike share system 

for all cities. For the cities with larger bike share systems (i.e., Boston, Washington DC, Chicago, 

and New York), both the trip distance and the trip duration follow a lognormal distribution. For 

trip distance, the mean (μ) of the lognormal distribution is between 0.29 and 0.36 miles for 

commuting trips and between 0.12 and 0.21 miles for touristic trips. For trip duration, the mean 

(μ) is around 2.2 minutes for commuting trips and 2.8 minutes for touristic trips. For the cities with 

smaller bike share systems, the best-fit model varies among different cities and different cases. 

The systems’ spatial coverage is a major factor that influences the model selection. Small system 

size (diameter and number of stations) can restrict bike share users’ mobility pattern because the 

users are required to return the bike to a station. The major difference between the 

distance/duration distribution of smaller and larger systems lies in the right side tail part. Similar 

to other transportation modes, trips by shared bikes also exhibit power law decay at the long 

distance/duration range, although the part of trips following the power law distribution only makes 
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up a very small portion of the total trips. The exponent k of power law distribution varies from 5.5 

to 12.6 for commuting trip distance, 3.4 to 12.1 for tourist trip distance, 5.4 to 16.3 for tourist trip 

duration, and 2.4 to 3.4 for tourist trip duration. In this study, the trips whose duration is within 

1.3 times of the duration estimated by the Google Maps API are defined as the commuting trips 

and trips taken longer than that as touristic trips. In the sensitivity analysis of this threshold, this 

study finds that the model selection and model parameters are more sensitive to this threshold for 

Seattle (a smaller system) than Chicago (a larger system). The distribution fitting is also more 

sensitive to the threshold for trip duration than for trip distance. 

 

While this study fills the gap of analyzing the travel patterns of bike share trips considering both 

short and long trips, the limitations of this work should be noted for future research. A major 

limitation of this analysis is the limited information contained in the raw data (having only trip 

origin and destination time and location). If the trajectory data of the bike share trips become 

available, the actual trip distance and duration can be more accurately calculated. In addition, more 

detailed analysis about the transportation network, pricing scheme, user preference, and other 

socio-geographic information may also help explain the difference in trip distance and duration 

distributions among different cities. Lastly, this research focuses on the travel patterns of trips 

using station-based bike share programs, which may have different travel behaviors compared to 

the trips using the newly emerged dockless bike share programs (Shaheen et al., 2013a). Future 

research evaluating the difference between the two types of programs can provide a more complete 

understanding of the travel patterns of bike share users. 
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 QUANTIFYING THE ENVIRONMENTAL BENEFITS OF BIKE 

SHARE SYSTEMS 

The main content of this chapter has been published in a journal paper: Kou, Z., Wang, X., Chiu, 

S. F. A., & Cai, H. (2020). Quantifying greenhouse gas emissions reduction from bike share 

systems: a model considering real-world trips and transportation mode choice patterns. Resources, 

Conservation and Recycling, 153, 104534. 

3.1 Introduction 

Evaluating the benefits of bike share systems is important for the cities to make decisions on 

supporting the development of bike share programs. Bike share can potentially bring social and 

environmental benefits such as saving transportation time (faster than walking and even driving in 

highly congested areas) and expenses, alleviating traffic congestion, reducing greenhouse gas 

(GHG) emissions and air pollutants, and improving multimodal transport connections (Drynda, 

2014; Shaheen et al., 2010). Jäppinen et al. (2013) evaluated the spatial impacts of a hypothetical 

BSS on public transit travel time and estimated that bike share can reduce public transit travel time 

by an average of 10% in the Greater Helsinki area in Finland. Faghih-Imani et al. (Faghih-Imani 

et al., 2017) analyzed bike share trips and taxi trips in New York City and found that, for short 

trips (less than 3 km), traveling by bike share is either as fast as or faster than traveling by a taxi. 

Bullock et al. (Bullock et al., 2017) conducted a survey of bike share users in Dublin, Ireland and 

showed that the BSS contributed to the urban economy because the journey time savings and 

improved connectivity from bike share increased the productivity of local economic activities. 

They found that these benefits are more significant than those of modal shifts from cars to bicycles. 

Using causal inference models, Hamilton and Wichman (Hamilton & Wichman, 2018) proved that 

the introduction of a bike share system reduced traffic congestion by about 4% in Washington. DC. 

Fuller et al. (Fuller et al., 2013) analyzed the data from a telephone survey about people’s biking 

behaviors and concluded that there is a higher likelihood of cycling for people who live in areas 

where bike share is available, compared to people who have privately owned bicycles but have no 

access to bike share programs. Buehler and Hamre carried out a survey of bike share users and 

local businesses near the bike share stations in Washington DC, U.S. (Buehler & Hamre, 2015). 
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They found that 73% of the users chose bike share to save travel time, while 25% of the users were 

motivated by cost savings.  

 

Out of these benefits, this chapter focuses on evaluating the environmental benefit of BSSs, which 

is a major benefit of BSSs since bike share trips do not generate tailpipe emissions like car trips. 

The environmental benefit of bike share comes from the fact that bike share may replace another 

transportation mode which has worse environmental impacts, e.g., cars. A few studies have tried 

to use bike share trip data to quantify the benefits of BSSs regarding car travel reduction (Fishman 

et al., 2014) and carbon emission reduction (Zhang & Mi, 2018). However, these studies estimate 

the mode replacement based on arbitrary assumptions (Zhang & Mi, 2018) or the assumption that 

all the bike share trips have the same probability of replacing a certain mode (Fishman et al., 2014) 

(more details are provided in the Literature Review part of this chapter). These studies did not 

consider the variations of user behaviors, i.e., people’s heterogeneous transportation mode choices 

under different conditions. For example, a person may prefer walking for a shopping trip but prefer 

driving for a commuting trip, even though the trip distances are the same. Therefore, detailed trip 

information such as trip distance and trip purpose needs to be considered for more accurate 

modeling.  

 

This study proposed a Bike Share Emission Reduction Estimation Model (BS-EREM), which 

quantifies the greenhouse gas (GHG) emission reductions from BSSs with consideration of the 

detailed bike share trip information, such as trip distance, trip purpose, and time of the day for the 

trips. Mode substitution of bike share trips is simulated based on historical travel patterns learned 

from trip data in National Household Travel Survey (NHTS). The proposed model is then applied 

to compare the GHG emission reductions of eight bike share systems in the United States, 

including New York, Chicago, Boston, Philadelphia, Washington D.C., Los Angeles, San 

Francisco, and Seattle. 

 

The rest of this chapter is structured as follows: Section 3.2 discusses the relevant literature, 

research gaps, and the contributions made by this study; Section 3.3 provides detailed information 

about the input data and methodology of the proposed BS-EREM; In Section 3.4, the overall and 

unit (such as per trip and per bike) GHG emission reduction, as well as the spatial patterns of 
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different bike share stations’ contributions to GHG emission reduction are analyzed by applying 

the proposed model to real-world trip data; a sensitivity analysis is carried out in Section 3.5 to 

discuss the impacts of key parameters and assumptions of the BS-EREM; lastly, Section 3.6 

summarizes the findings, then discusses the limitations of this work and future research directions. 

3.2 Literature review 

In order to estimate the replaced modes for bike share trips, researchers have tried to collect modal 

shift information through user surveys. Martin and Shaheen (Martin & Shaheen, 2014) collected 

bike share user survey data in Washington, D.C. and Minneapolis. They analyzed the geospatial 

distribution of the modal shift due to bike share and concluded that higher proportion of bike share 

trips replaced public transit in urban periphery than in urban areas with high population density. 

The analysis from Nair et al. (Nair et al., 2013) shows that bike share stations closer to public 

transit facilities often exhibit higher utilization. Shaheen et al. (Shaheen et al., 2013b) analyzed the 

modal shift of bike share by conducting user surveys for BSSs in four cities: Montreal, Toronto, 

Twin Cities, and Washington, D.C. The survey results showed that bike share users shifted from 

all transportation modes and the modal shifts vary in different cities. About 40% to 50% of the 

respondents reported that their use of bike share reduces their bus and rail usage in Montreal, 

Toronto and Washington D.C., while in Twin Cities, 15% of the respondents reported increasing 

rail usage. In all four cities, bike share was found to reduce car and taxi usage. However, such 

survey results only provide qualitative information but not quantitative data for the changes (e.g., 

it shows the trend on whether bike share increases/decreases the use of other modes but does not 

quantify the changes). Similarly, another study also reveals that bike share reduced the usage of 

personal automobiles among about 50% of the bike share users in five cities: Twin Cities, Salt 

Lake City, Montreal, Toronto, and Mexico City (Susan et al., 2014). Two surveys were conducted 

for the BSS in Washington, DC, separately targeting the subscription members (users who 

purchase monthly/annual plans) (LDA Consulting, 2016) or casual users (those who only used the 

service with one-day or five-day plans) (Borecki et al., 2012). The survey results show that 39% 

of the members and 53% of the casual users who responded to the surveys used bike share to 

replace walking trips for their last bike share trips. 
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Few studies quantified the environmental benefits of bike share programs using mode substitution 

information. The research of Fishman et al. (Fishman et al., 2014) was one of the studies that first 

analyzed the bike share benefits with consideration of mode substitution. They used the bike share 

user survey data to estimate the mode substitution. In these user surveys which were carried out 

by the BSS operators, the BSS users were asked about their alternative travel modes, if not using 

bike share, to calculate the aggregated substitution rate (percentage) of different transportation 

modes. For instance, if 40% of the survey participants chose vehicles as their alternative mode, it 

is assumed that 40% of the bike share trips substituted vehicle trips. Based on the substitution rates, 

the authors estimated and compared the car travel distance reduction by BSSs in Melbourne, 

Brisbane, Washington, D.C., Minnesota, and London. The substituted car travel at each BSS is 

calculated as the car substitution rate multiplied by the total annual trip distance, which is estimated 

using the bike share trip duration and an assumed biking speed of 12 km/hour. However, this 

approach assumes that 1) the transportation mode substitution is independent of the trip distance 

and trip purpose, 2) the percentage of trip substitution is equivalent to the percentage of travel 

distance substitution, and 3) the trip distance is linearly correlated to the trip duration. These 

assumptions could lead to biased results in estimating the environmental benefits of bike share 

programs. First, trip distance and purpose do affect people’s transportation mode selection. For 

instance, for long-distance trips, people are more likely to prefer car or public transit to walking. 

Additionally, the transportation mode choice would be different if the trip is for sightseeing instead 

of commuting (USDOT, 2009). The user survey data doesn’t include information for trip distance 

and purpose. Therefore, assuming that all the bike share trips follow the same mode substitution 

rates could lead to inaccurate results. Second, because the travel distance from trip to trip could 

vary significantly, the percentage of trip substitution (information asked in the survey) is not 

equivalent to the percentage of travel distance substitution (information the calculation is based 

on). Third, while the trip distance is linearly related to the trip duration for some trips (e.g., when 

the riders go direct from point A to point B, such as commuting), the distance of trips with detours 

or multiple stops (e.g., leisure trips) cannot be accurately estimated using the trip duration (Kou & 

Cai, 2019). Therefore, to better understand the transportation emission reduction contributed by 

bike share programs, the analysis needs to consider transportation mode substitution integratedly 

with trip distance and trip purpose. In another study which estimated the environmental benefits 

of the BSSs in Shanghai, China, Zhang and Mi (Zhang & Mi, 2018) set a distance threshold of 
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1km to divide the bike share trips into two groups: trips that are shorter than 1 km, which were 

assumed as not replacing car travel and therefore generating zero environmental benefits, and trips 

that are longer than 1 km, which were assumed as replacing car trips and providing environmental 

benefits. The environmental benefits from these trips were calculated by multiplying the total trip 

distance with impact factors (e.g., energy saving per km or emission reduction per km). Although 

this study considered trip distance in the analysis, the 1 km distance threshold is set arbitrarily. 

Trips that are less than 1km could also replace a car trip while trips longer than 1 km could also 

substitute public transit trips or even walking trips. Anderson (Anderson, 2015) assessed a 

proposed bike share program in Portland, Maine in the United States, and concluded that the 

potential bike share program can improve air quality and rates of physical activity for bike share 

users. The analysis is based on several assumed parameters such as annual trips, average trip 

distance, and average minutes of physical activity per trip. The estimated benefits still need to be 

furthered verified with real-world data.  

 

In summary, existing studies quantifying the environmental benefits of BSS have two major 

limitations.  First, the calculation of emission reduction from bike share trips is based on simplified 

assumptions (for example, “all bike share trips longer than 1 km will replace car trips (Zhang & 

Mi, 2018)”). Second, existing studies often replace the concept of “percent of miles” with “percent 

of users”, when mode substitution data from user surveys are used in the calculation. While user 

surveys can provide useful information about mode substitution, existing user surveys only 

reported the share of respondents claiming that they use bike share to replace a certain mode. 

However, not all users take the same number of bike share trips and not all trips have the same 

length. It could lead to biased results if directly applying such “percent of users” information as if 

they were “percent of miles” to quantify the environmental benefits. A user who take more trips 

and longer trips should be given a higher weight. Ideally, the historical bike share trips made by 

each survey participant should be used to link the detailed trip information with mode substitution. 

However, because the trip data and the user survey data are collected separately and anonymously, 

such linked data is not available at a large scale. Additionally, because user surveys are self-

reported data, the accuracy of the data is always a concern (Cohen & Shaheen, 2018). Therefore, 

better modeling approaches are needed to evaluate the environmental benefits of BSSs using real-
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world data and holistically evaluate the transportation mode substitution by bike share trips, 

considering detailed trip information such as trip distance, purpose, and start time.  

 

To address the above discussed gaps, this study proposes a Bike Share Emission Reduction 

Estimation Model (BS-EREM) to quantify the greenhouse gas emission reductions by bike share 

trips through probabilistically simulating bike share trips’ mode substitution based on trip distance, 

trip purpose, time of the day for the trip, and historical travel patterns (mode choice distributions) 

before launching bike share programs. The model is applied to compare the life cycle greenhouse 

gas emission reduction from bike share programs in eight U.S. cities and also evaluated the spatial 

patterns of reduced GHG emissions at the station level in different cities. Compared to the existing 

literature, the unique contributions made by this study are: 1) this study proposed a model to 

estimate the mode substitution of bike share trips, with the consideration of trip distance, trip 

purpose, trip start time, and the public transit accessibility near bike share stations; 2) the mode 

substitution estimation is based on travel survey data and real-world bike share trip data, thus, the 

proposed method can be generally applied to all cities that have such data available; and 3) the 

analysis not only quantifies the overall environmental benefits at the system level, but also 

evaluated the environmental benefits for unit distance travelled and the spatial distribution of the 

environmental benefits at the bike share station level, which provides insights for BSS station 

siting and planning. Results from this study can inform decision makers, city planners, and BSS 

operators to better develop, deploy, and operate BSS programs to improve transportation 

sustainability.  

3.3 Data and Methods 

3.3.1 Input data 

The proposed BS-EREM model integrates data from multiple sources to estimate the 

environmental benefits of BSSs. The input data includes (1) bike share trip data (Section 3.3.1.1), 

(2) National Household Travel Survey (NHTS) data (Section 3.3.1.2), which provides historical 

transportation mode choice information prior to launching BSS programs, (3) public transit 

stations/stops near bike share stations (checking whether it is possible for a bike share trip to 

substitute a public transit trip, Section 3.3.1.3), and (4) GHG emission factors used for the 
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calculation of trip environmental benefits given different mode substitution by BSS trips (Section 

3.3.1.4). This section explains each type of data while the BS-EREM model is presented in Section 

3.3.2. 

3.3.1.1 Bike share trips in eight U.S. cities  

Same as Chapter 2, this study analyzed the bike share trip data from programs located in eight 

cities: Seattle (Pronto Cycle Share), Los Angeles (Metro Bike Share), Bay Area (Ford Gobike), 

Philadelphia (Indego Bike Share), Boston (Hubway, now rebranded as Blue Bikes), Washington 

D.C. (Capital Bike Share), Chicago (Divvy), and New York City (Citi Bike Share). To compare 

all eight BSSs, this study used the trip data in year 2016, because Seattle’s Pronto Cycle Share was 

closed after March, 2017. All eight systems are station-based. These bike share programs have 

made their trip data publically available, which include the timestamps and locations of the origin 

and destination of each trip. Because no trip distance nor detailed bike trajectory data is provided, 

this study estimated the trip distance between each pair of origin and destination stations using 

Google Maps Distance Matrix API, which could more accurately estimate the distance travelled 

by bike on urban street networks. Many of previous studies used trip displacement (e.g., the Great 

Circle Distance) to measure human movements (González et al., 2008; Rhee et al., 2011). However, 

in an urban transportation system, the movement of bikes is restricted by the street networks. The 

distances estimated by the API can better reflect the bike share trip along the pathways suitable for 

biking. Compared with driving, bike travels are less affected by congestion (Alter, 2008; Lobo, 

2013). Therefore, this study assumed that the travel distance and duration between the same pair 

of start and end stations stay constant in spite of the trip start time. Round trips, which have the 

same origin and destination station, are excluded in this analysis due to the difficulty in estimating 

trip distance. Such round trips only make up 2% to 10% of the total trips in the eight systems. For 

the overall emission reduction estimation, this study scaled up the results based on the total count 

of trips, assuming that these round trips share the same pattern as the one-way trips. Because this 

is an arbitrary assumption, this study has also reported the emission reduction values excluding 

the round trips. 

3.3.1.2 National Household Travel Survey (NHTS) 
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The National Household Travel Survey (NHTS) (USDOT, 2009) is a nation-wide survey 

conducted by the U.S. Federal Highway Administration, which records the personal and household 

travel behaviors of local residents in the United States. Although more recent NHTS data has 

become available, this study used the 2009 NHTS data to generate the mode substitution rate 

distributions, because it could better reflect people’s transportation mode choice when bike share 

service was not available (most of the BSSs in the United States were established after the year 

2010). There are near 1.05 million trips recorded in NHTS 2009 data, which contains the detailed 

trip information and the characteristics of the people who are travelling. This study extracted the 

attributes such as transportation modes, trip purpose, travel time, and travelled distance (in miles) 

of those trips taken in urban areas (typically with a population density of more than 1,000 persons 

per square mile (USDOT, 2009)) for each of the eight cities. With such information, the 

distributions of people’s transportation mode choices can be developed for a specific trip distance, 

travel time, and purpose. This study only used NHTS records in the urban area because the bike 

share stations analyzed in this study are all located in urban areas defined in the 2016 Topologically 

Integrated Geographic Encoding and Referencing system (TIGER) data from the U.S. Census 

Bureau (Thompson et al., 2016), which is also the data source that NHTS used to define urban 

areas (USDOT, 2009). In the case that a bike share system/station is located in rural area, the mode 

distribution should be generated using the NHTS trips from rural areas. Figure 3.1 shows the mode 

choice distributions from the NHTS trip data for all time periods of the day with varied trip distance 

for commuting and leisure trips in each city. These distributions show that people are more likely 

to choose walking for short-distance trips (e.g., less than 2 miles) than for long-distance trips (e.g., 

10 miles). For the same distance range, less people will choose public transit for leisure trips than 

for commuting trips. Figure 3.2 depicts the share of different transportation modes in different 

periods of the day in Los Angeles. The 24 hours of a day are separated into six time intervals. This 

study group 21:00 to 5:59 as one period because the number of trips during this period is relatively 

low. For other time of the day, a three-hour interval is used. The mode share varies within a day, 

especially in the morning and evening. For example, during the period between 6 am and 8:59 am, 

higher proportion of trips are taken by walking and public transit than other periods such as from 

9 am to 5:59 pm. These observations demonstrate the need to include trip distance, purpose, and 

time of the day in the analysis of trip mode substitution. Therefore, for each city, a total of 12 

distributions are developed (2 trip purposes × 6 time intervals). 
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3.3.1.3 Public transit accessibility 

Another factor that could affect people’s mode choice is the accessibility of public transit. If there’s 

no public transit facilities (e.g., bus stops, subway stations) near the origin and destination stations 

of a trip, it is less possible that the bike share trip replaced public transit. Using Google Maps 

Places API, this study counts the number of public transit facilities within a 200-meter (0.12 miles, 

about 3 to 4 minutes’ walk) buffer zone around each bike share station in each of the eight cities. 

The impact of choosing 200 meters as the public transit accessible zone is tested in the sensitivity 

analysis (Section 3.5). The details on how the data is used are described in Section 3.3.2. 
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Figure 3.1. Distributions of transportation mode choice regards to different trip distance for 

commuting trips and leisure trips 
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Figure 3.2. Share of transportation mode choice in different time of the day in Los Angeles 

3.3.1.4 GHG emission factors 

This study use life cycle GHG emission factors from Shreya Dave (Dave, 2010) to calculate the 

emission reduction associated with each bike share trip (note that, in the life cycle analysis, 

emissions from the upstream processes besides the trips, such as road constructions, are also 

allocated in the emission factor calculation). The emission factors from this study are adopted 

because this study evaluated the emission factors of different transportation modes based on the 

same analysis scope and assumptions, making the emission factors more comparable to each other 

than factors drawn from different studies which may be generated based on different assumptions. 

Because the emission factors developed in this study include multiple types of public transit (e.g., 

bus and subway) and vehicles (e.g., car, SUV, and pickup), this work takes the weighted average 

of the emission factors in each transportation mode category to simplify the analysis to include 

only four transportation modes: walking, bicycling, vehicle, and public transit (Table 3.1). The 

weighting factors are the corresponding miles travelled using each mode in the NHTS 2017 data 

(here the 2017 data is used because it can better reflect the distance travelled by different modes 

in year 2016; NHTS 2017 and 2009 are the two most recent NHTS survey datasets available). 

Because it is difficult to find more fine-grained emission factor data for all the analyzed cities, this 



 

 

65 

work use the weighted average emission factors described above as the emission factors for the 

analysis of all eight cities. 

 

The difference between the life cycle emission factors of the substituted transportation mode and 

biking is then used to calculate the GHG emission reduction. For example, if a bike share trip 

substituted a vehicle trip, the emission reduction for this trip would be 408 g CO2-eq/mile (biking 

generates 408 g CO2-eq less than vehicles per passenger mile travelled) multiplied by the trip 

distance (in miles). How to determine the substituted transportation mode will be discussed in 

Section 3.3.2. 

 

Table 3.1. Emission Factors used for the GHG emission reduction calculation 

Mode Sub-

category 

Emission factor (g CO2-

eq/passenger mile travelled) 
(Dave, 2010) 

Miles 

travelled 

in 2017 

NHTS 

(U.S.DOT, 

2017) 

Weighted 

average 

of the 

emission 

factor 

Walking Walking 33 
 

33 

Bicycling Bicycling 33 
 

33 

Vehicle Sedan 382 3,843,053 441 

SUV 446 2,278,726 

Pickup 619 1,230,229 

Public transit Bus 

Average 

326 170,342 299 

BART1 136 Average of three light 

rail/subway: 

 

177.7 

39,207 

MUNI1 173 

Green 

Line1 

224 

Note: 1 BART: Bay Area Rapid Transit System; MUNI: San Francisco Municipal Railway; Green 

Line: subway system in Boston; since the emission factors are not available for all the light 

rail/subway systems in the eight cities, this study used the average emission factors of BART, 

MUNI and Green Line to represent the unit emission of light rail/subway. 
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3.3.2 Bike Share Emission Reduction Estimation Model (BS-EREM) 

Using the above mentioned data as inputs, this study proposes a Bike Share Emission Reduction 

Estimation Model (BS-EREM) to estimate the GHG emissions reduction from a bike share trip 

(Figure 3.3). The BS-EREM model includes two major components: bike share trip purpose 

estimation and bike share trip mode substitution simulation.  

 

From the NHTS data, the historical trips are first separated into six time groups as specified in 

Section 3.3.1.2 based on the trip start time. Then for each time group, this work developed the 

historical mode choice distributions for commuting and leisure trips separately. To differentiate 

between commuting and leisure trips, the trip speed is compared with the average speed of all trips 

in this city as a way to infer trip purpose. Trips whose speeds are lower than the average speed are 

considered as leisure trips (e.g., stop at different locations, take detours to visit different places-of-

interest, and not in a hurry to get from the origins to the destinations), while the others are 

considered as commuting trips (e.g., directly going from the origins to the destinations). The 

impact of using the average speed as the threshold for trip purpose estimation is tested in the 

sensitivity analysis (Section 3.5). Given the distance of each bike share trip, the estimated trip 

purpose, time period of the day, and the corresponding historical distribution of mode choice 

regarding the specific trip distance, purpose, and time period, the probability of the bike share trip 

replacing vehicles, walking, or public transit can be obtained to determine the replaced mode in 

the simulation process. Using the mode choice distributions from NHTS data to simulate the 

replaced mode by bike share assumes that an average BSS user is the same as an average person 

in the city. It is possible that BSS users are a self-selected group which has different travel patterns 

(e.g., having lower percentage of vehicle trips than an average person). The influence of this 

assumption is tested in the sensitivity analysis (Section 3.5). If there’s no public transit facility 

available near the location of the bike share trip’s origin or destination, it is unlikely that this bike 

share trip replaces public transit. In this case, the mode share of public transit will be set to zero. 

The pseudo code describing the detailed algorithm to determine the replaced mode in the 

simulation is provided in the APPENDIX B, Section B.1. The GHG emission reduction from the 

trip can be calculated using the emission factors and trip distance. This study used the trips in the 

entire year of 2016 for the simulation and compared the results among different cities. 
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Figure 3.3. Overview of the BS-EREM  

3.3.3 Evaluating the emission reduction from BSSs in the context of the transportation 

sector emissions 

After obtaining the total GHG emission reduction using BS-EREM, the results are compared with 

the total GHG emissions from the transportation sector in these cities. This reflects the BSSs’ 

relative GHG emission reduction contribution to its local transportation systems. The data of GHG 

emission from the transportation sector is collected from the most recent greenhouse gas inventory 

report of these cities. The cities do not release such data every year but the data from adjacent 

years can reflect the general level of transportation sector GHG emissions in these cities (Table 

3.2). The transportation sector’s GHG emissions have been staying relatively stable based on 

historical data (for instance, the transportation sector’s GHG emissions for City of Chicago in the 

year 2005, 2010, 2015 are 8.20, 7.95, and 8.05 million MT, respectively (Report, 2017). The 

changes for 2010 and 2015 compared to 2005 are only -3% and -2%, respectively. 
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Table 3.2. GHG emissions from the transportation sector in the eight evaluated city 

City GHG 

emissions 

from 

transportatio

n sector 

(million MT 

CO2-eq/year) 

Year of 

the data 

Data Source 

Seattle 3.58 2014 2014 Seattle Community Greenhouse Gas Emissions Inventory 

(Kevin, 2014) 

Los Angeles 33.74 2010 2015 Environmental Report Card for Los Angeles (Gold et al., 2015) 

San 

Francisco 

1.98 2016 2016 San Francisco Geographic Greenhouse Gas Emissions Inventory 

at a Glance (Program, 2015) 

Philadelphia 3.96 2012 Philadelphia Citywide Greenhouse Gas Inventory, 2012 (Spring, 2015) 

Boston 1.64 2013 City of Boston Community Greenhouse Gas Inventory 2005-2013 

(Boston, 2014) 

Washington 

DC 

1.74 2013 District of Columbia Greenhouse Gas Inventory Update 2012-2013 

(Department of Energy and Environment, 2012) 

Chicago 8.05 2015 City of Chicago Greenhouse Gas Inventory Report, 2015 (Report, 
2017) 

New York 15.48 2015 Inventory of New York City Greenhouse Gas Emission in 2015 (Pasion 

et al., 2017) 

3.4 Results and Discussions 

To understand the GHG emission reduction contributions of BSSs in different cities, this section 

analyzes the modeling results from two perspectives: the total GHG emission reduction from a 

BSS in each city and the unit emission reduction by trip, dock, bike, and mile travelled (Section 

3.4.1), as well as the spatial distribution of the reduced GHG emissions (Section 3.4.2). 

3.4.1 Overall environmental benefits of the BSSs 

Table 3.3 listed the basic statistics and modeling results of the bike share trips for each city. The 

BSSs in New York, Chicago, Boston, and Washington, DC are the four largest station-based 

systems in the United States (NACTO, 2017). In year 2016, these systems generally have more 

than 150 stations and generated more than one million bike share trips. These larger systems also 

have a greater system diameter (indicating spatial coverage), which is defined as the longest 

Euclidian distance between any two of the bike share stations in a BSS. The total GHG emission 

reduction in 2016 in these four larger systems are much higher than those in the other four smaller 

systems (Figure 3.4(a)). New York has the largest amount of total GHG emission reduction: with 

10,262,649 bike share trips taken in 2016, New York’s BSS contributed to 5,417 tons of GHG 

emission reduction (in CO2-eq). In contrast, Seattle’s BSS only reduced 41 tons of GHG emissions. 
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One thing to note is that, this study estimates the emission reduction of round trips based on the 

assumption that these trips have the same emission reduction per trip. Take New York as an 

instance, without the consideration of those round trips, the total GHG emission reduction is 5,305 

tons CO2-eq. Although the round trips only take up a very small portion (2% in New York), this 

part of estimation could be improved if the detailed trajectory data is available.  

 

The emission reduction per trip ranges from 280 to 590 g CO2-eq (Table 3.3). The total GHG 

emission reduction is found to correlate linearly to the ridership (total count of trips) in each city 

with an R squared of 0.998 (Figure 3.4(b)). The linear regression also shows that the marginal 

emission reduction of one additional trip is 533 g CO2-eq. Similar linear relationship is also found 

between the total GHG emission and the total number of bikes (R squared: 0.970, Figure 3.4c). 

Each bike can contribute to an average of 0.07 to 0.49 tons of GHG emission reduction depending 

on the system (Table 3.3), while the marginal emission reduction of adding one more bike into the 

system is 0.51 tons CO2-eq in a year. In the same way, a linear relationship can be observed 

between the total GHG emission and the total number of docks (R squared: 0.984, Figure 3.4(d)). 

The marginal emission reduction of adding one more dock into the system is 0.28 tons CO2-eq in 

a year. Also note that in the fitted linear models, the marginal emission reduction (gradient) is 

mainly influenced by the four larger systems. For the smaller systems such as Seattle and Los 

Angeles which have less bikes and docks, they also exhibit much lower per-bike (less than 0.1 ton 

CO2-eq per bike) and per-dock (less than 0.1 ton CO2-eq per dock) emission reduction than those 

larger systems (more than 0.2 ton CO2-eq per bike and 0.25 ton CO2-eq per dock). The bikes and 

docks are utilized less efficiently in these smaller systems. Each bike/dock in these smaller systems 

on average served less trips compared with that in larger systems, as shown in Table 3. For example, 

each bike and dock in Seattle on average served 99 trips and 222 trips in 2016, respectively; while 

the trips per bike and trips per dock could be as high as 503 trips and 979 trips, respectively in 

New York. The reasons for this need to be further investigated in future research. Regarding trip 

purpose, commuting trips take up about half of the total trips in the eight cities, ranging from 47% 

to 54% (Table 3.3). However, the GHG emissions reduction from commuting trips takes up a 

higher share (54% to 61%) than that from leisure trips, due to combined reasons of travel distance 

and mode share distribution. Take Los Angeles as an example, the average distance of commuting 

trips is 1.08 miles, while that of leisure trips is only 0.90 miles. On the other hand, higher 
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proportion (64.3%) of commuting bike share trips are car-replacing trips than that of leisure trips 

(60.3% car-replacing trips). 

 

Table 3.3. Basic statistics and analysis results of the bike share systems 

City Seattle Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington 

D.C. 

Chicago New 

York 

Total trips in 2016 102,606 184,345 193,50
6 

499,306 1,236,19
9 

2,562,718 3,595,38
3 

10,262,64
9 

Total stations 59 64 74 119 327 407 581 687 

Total docksa 1,038 1,352 1,357 2,280 5,729 6,720 9,987 20,390 

Docks per stationa 17.59 21.12 18.34 19.16 17.52 16.51 17.19 29.68 

Percentage of stations 

with public transit 

access 

57.63% 67.19% 93.24
% 

100.00% 96.94% 71.01% 98.28% 57.79% 

Percentage of trips 

used for simulation
b
 

91.64% 89.40% 97.58
% 

91.90% 96.87% 95.36% 95.73% 97.94% 

NHTS trips used for 

simulationc 

1,619 49,427 29,284 3,350 3,293 14,199 6,096 40,631 

Total number of 

bikesd 

463 763 421 1,023 1,797 4,305 5,746 10,486 

System diameter 

(miles)e 

4.71 2.85 2.33 5.06 8.57 14.28 23.29 11.17 

Average number of 

trips per station 

1,739 2,880 2,615 4,196 3,780 6,297 6,188 14,938 

Average number of 

trips per dock  

99 136 143 219 216 381 360 503 

Average number of 

trips per bike 

222 242 460 488 688 595 626 979 

Median of trip 

distance (miles) 

1.16 1.2 1.39 1.46 1.43 0.91 1.39 1.31 

Average trip distance 

(miles) 

1.27 1.23 1.56 1.7 1.72 1.02 1.71 1.68 

Average speed of bike 

share trips 

(miles/hour) 

6.87 6.24 7.97 7.28 8.21 7.55 7.71 7.92 

Percentage of 

commuting trips 

51.92% 48.45% 52.30
% 

54.37% 52.57% 52.85% 52.88% 46.95% 

Total GHG emission 

reduction (without 

round trips, ton CO2-

eq) 

37.21 46.56 67.43 234.83 668.11 1,275.88 2,000.89 5,305.13 

Total GHG emission 

reduction (including 

round trips, ton CO2-

eq)f 

40.60 52.08 69.10 255.51 689.66 1,338.00 2,090.05 5,416.68 

Percentage of GHG 

emission reduction 

from commuting trips 

(without round trips) 

57.70% 53.93% 60.89
% 

60.50% 60.14% 61.49% 60.93% 57.16% 

Average emission 

reduction (g CO2-eq) 

per mile travelled 

324.57 286.59 298.75 340.89 345.02 329.69 352.66 329.48 

Average emission 

reduction (g CO2-eq) 

per trip 

395.73 282.50 357.12 511.73 557.89 522.10 581.32 527.81 
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Table 3.3 continued 

Average emission 

reduction (ton CO2-

eq) per station 

0.69 0.81 0.93 2.15 2.11 3.29 3.60 7.88 

Average emission 

reduction (ton CO2-

eq) per dock 

0.04 0.04 0.05 0.11 0.12 0.20 0.21 0.27 

Average GHG 

emission reduction 

(ton CO2-eq) per bike 

0.09 0.07 0.17 0.26 0.35 0.28 0.37 0.49 

Notes: 

a. For Seattle, Bay Area, Boston, and Chicago, the station capacity (number of docks of each station) information is extracted from 

the station information data (year 2016) released by the system operator; while such data is not available for other four cities: for 

Los Angeles, Philadelphia, and New York, the station capacity information is obtained from a station status snapshot (real-time 

station status) in Oct. 15, 2017 from the operators’ website; for Washington, DC, the station capacity information is extracted from 

the bike share station information (Aug. 20, 2018) in Open Data of Washington, DC government
2
. Although the information for 

the latter four cities mentioned is not exact the station information for year 2016, it can reflect the general level of station capacity 

of these systems. 

b. Round trips are excluded in the simulation 

c. Only NHTS survey records in the urban area of the corresponding city were used in the analysis 

d. All bikes that showed up in the trip data in year 2016 

e. The system diameter is the longest Euclidian distance between any two bike share stations of a BSS at the end of year 2016. Data 

is collected from (Kou & Cai, 2019) 

f. Emission reduction for those round trips is calculated by number of trips multiplied by emission reduction per trip of the those 

one-way trips 

 

 

  

                                                
2 Capital Bike Share Locations, Open Data of Washington, DC, http://opendata.dc.gov/datasets/capital-bike-share-

locations 
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(a) (b)  

(c) (d)  

Figure 3.4. Total GHG emission reduction in 2016 of the eight systems (a) and its relationship 

with (b) annual ridership (count of trips), (c) total number of bikes, and (d) total number of docks 

 

In order to understand the relative environmental benefits of BSSs contributed to these cities, this 

study also compared the emission reduction from BSS to the total emission from the transportation 

sector in each city (Figure 3.5(a)). Generally, the emission reduction from BSSs only makes up a 

small part of the total GHG emission from the transportation sector, which ranges from 0.0002 % 

to 0.007 % for the four smaller systems and 0.026 % to 0.077 % for the four larger systems. Among 

these cities, Los Angeles has the lowest ratio because it has a high transportation sector emission 

but a relatively small BSS.  

 

The GHG emission reduction per mile travelled varies among different cities (Figure 3.5(b)): 

Chicago, Boston, and Philadelphia have the best performance, which reduced 352.7 g, 345.0 g and 

340.9 g CO2-eq for each mile of bike share trip travelled, respectively. Figure 3.5(c) shows that, 

in these three cities, higher percentage of bike share trips replaced car trips (74% for Chicago, 75% 

for Boston, and 75% for Philadelphia), which is the main reason that they have better GHG 
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emission reduction per mile travelled. However, the GHG emission reduction per bike share trip 

in Chicago is slightly higher because Chicago’s larger bike share station network allows the users 

to travel longer distance. Generally, the majority of the GHG emission reduction are contributed 

by relatively short trips (less than 5 miles, Figure 3.5(d)). As shown in Table 3.3, the average and 

median of bike share trip distance are both less than 2 miles for all the cities. However, in larger 

systems which have a larger spatial coverage of bike share stations, higher proportion of emission 

reduction was from trips within 2-5 miles instead of 0-2 miles, compared to those smaller systems. 

Therefore, the bike share station network plays an important role in affecting the users’ travel 

pattern and the BSSs’ ability to reduce GHG emissions. 

 

 (a) (b)  

(c)  (d)  

Figure 3.5. GHG emission reduction in the eight cities: (a) Emission reduction from BSSs/Total 

GHG emission from transportation sector (%) (b) emission reduction per mile travelled and per 

trip, (c) percentage of trips replaced by bike share, (d) emission reduction of BSSs in different 

distance range 
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3.4.2 Spatial distributions of GHG emission reduction 

To better understand how locations of the bike share stations affect the GHG emission reductions, 

this study also analyzed the spatial patterns of station level emission reduction (to save the 

computation time, the analysis in this part is based on the trip data in August, 2016 instead of the 

entire year’s data). This information could potentially help the decision making in siting future 

bike share stations. The GHG emission reduction also exhibits geographic variance within a bike 

share system. This study allocates the GHG emission reduction of each trip to its start station (since 

the origin of a trip generally reflects the demand of travel) and plotted the GHG emission reduction 

by station on the map. In the case of Los Angeles and Philadelphia, stations located in the center 

of the city reduced more GHG emissions (Figure 3.6 (a1) and (b1)), because of the larger ridership 

(count of trips) at these stations. The GHG emission reduction per trip exhibits the reverse pattern: 

each trip reduced less GHG emission if they started from the city center (Figure 3.6 (a2) and (b2)). 

This is because trips originated from the city center are mostly short and more likely to replace 

walking, while trips made from areas away from city center are relatively longer. Figure 3.6 (a3) 

and (b3) show that higher proportion of bike share trips replaced vehicle trips in the stations that 

are away from the city center. Generally, all the eight cities show similar spatial patterns regarding 

GHG emission reduction (see Figure B. 1 in the APPENDIX B for the figures of the other cities). 

These results show that, although the city center has more BSS users than areas away from city 

center, a higher proportion of these users adopt bike share as a substitution of walking. In order to 

improve the environmental benefits from the BSSs, BSS operators needs to either attract more 

vehicle users in the city center to switch to bike share, or strategically locate and install more 

stations in the areas that are away from the center of the city. 
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(a1) (b1)  

(a2)  (b2)  

(a3)  (b3)  

Figure 3.6. Geographic distribution of GHG reduction and mode substitution in (a) Los Angeles 

and (b) Philadelphia: 1. Total emission reduction of each station in Aug. 2016, 2. Emission 

reduction per trip, 3. Pie chart of mode substitution of each station 
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3.5 Sensitivity Analysis  

In this model, there are several major factors or assumptions that may impact the results: speed 

threshold to determine the trip purpose, buffer zone radius for the public transit accessibility, 

transportation mode distribution from the NHTS data, and the emission factors used in the analysis. 

Therefore, this study conducted a sensitivity analysis to evaluate how sensitive the results are to 

these factors. For the speed threshold, buffer zone radius, and transportation mode distribution, the 

parameters are varied from 70% to 130% of the values used in the original model, and compared 

the total emission reduction from the BSSs in Bay Area and Philadelphia (Figure 3.7). For the 

emission factors, the lowest and the highest values are used for vehicle and public transit in Table 

3.1 to generate the lower and upper bounds for the emission reduction. Additionally, since the 

emission factor of bicycling in (Dave, 2010) does not consider the emissions generated from bike 

share station (including docks) manufacturing and bike rebalance, this study also add the unit 

emissions from bike share stations and rebalance from the work of Luo et al. (Luo et al., 2019) to 

evaluate the influence from station infrastructure and operation. 

 

(a) (b)  

Figure 3.7. Change of total emission reduction by varying parameters in the model: (a) Bay Area, 

(b) Philadelphia 

 

In the original model, the average trip speed was used as the speed threshold to determine whether 

a trip is for commuting or leisure purposes. So the sensitivity analysis tested the result variations 

using a speed threshold that ranges from 70% to 130% of the average speed in each city (as listed 
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in Table 3.3, the average speed is different in each city). A buffer zone radius of 200 meters was 

originally used to extract the public transit accessibility information. Accordingly, the sensitivity 

analysis tested the result variations using a buffer zone radius ranging from 140 meters to 260 

meters. For the distributions of transportation mode choices, the probability of the car trips is 

modified by -30% to +30% of the original value, and then evenly distributed the changes to 

walking and public transit (for example, if the mode distribution for a trip at given distance is 60% 

by car, 30% by walking, and 10% by public transit, the -30% scenario will decrease the car trip 

probability to 42% and increase the probability of walking and public transit to 39% and 19%, 

respectively). These scenarios will represent cases where the bike share users take less or more 

vehicle trips than an average person. The focus of these different scenarios is on vehicle trips 

because the vehicle trips dominate the potential GHG emission reduction (Figure 3.5(c)). For the 

emission factors, this study used the travelled mileage as the weights to calculate the weighted 

average for vehicle and public transit. In this part, instead of using the weighted average, the lowest 

value (sedan – 382 g CO2-eq/passenger mile travelled (PMT) was used for vehicle, and BART – 

136 g CO2-eq/PMT for public transit) and the highest value (pickup – 619 g CO2-eq/PMT was used 

for vehicle, and Bus average – 326 g CO2-eq/PMT for public transit) to calculate the emission 

reduction in two extreme cases (Table 3.4) In addition, in order to evaluate the influence of the 

emissions from stations and rebalance, this study adds the unit emission of 95 g CO2-eq/PMT (from 

Luo et al. (Luo et al., 2019)) for bike share stations (57 CO2-eq/PMT, including docks) and 

rebalance (38 CO2-eq/PMT ) to the original emission factor of 33 g CO2-eq/PMT (from Dave (Dave, 

2010)) for the emissions from bike, road and human breath, which results in a modified emission 

factor of 128 g CO2-eq/PMT for bicycling using shared bikes from station-based BSSs. It is notable 

that the emission factors from Luo et al. (Luo et al., 2019) reflect the average operational 

conditions of a station-based system in the U.S.. Because the modified bicycling emission factor 

is the sum of emission factors from two studies, which may rely on different data source and 

assumptions, this study only considers emissions from station and rebalance in the sensitivity 

analysis. In the sensitivity analysis, this study uses the same emission factors of walking, public 

transit, and vehicles as stated in Table 3.1.  
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Table 3.4. Change of total emission reduction by varying the emission factors for public transit, 

vehicles and bycycling 

Change (%) of total 

GHG emission 

reduction 

Seattle Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington 

DC 

Chicago New 

York 

Using  lower bound of 

the emission Factors for 

public transit and 

vehicles 

-14.7% -14.7% -15.0% -15.2% -15.7% -15.6% -15.9% -15.7% 

Using upper bound of 

the emission Factors for 

public transit and 

vehicles 

43.2% 43.3% 42.8% 42.5% 41.8% 41.9% 41.4% 41.7% 

Using modified 

emission factor for 

bicycling 

-29.3% -33.1% -31.8% -27.9% -27.5% -28.8% -26.9% -28.8% 

 

 

The sensitivity analysis shows that the total emission reduction is the most sensitive to the emission 

factors and mode choice distribution change, but stays relatively stable when changing the speed 

threshold and buffer zone diameter. Therefore, it is critical to obtain more accurate information 

about BSS users’ transportation choices to refine the estimated environmental benefits of BSSs. It 

is notable that, for longer trips (e.g., over 5 miles), driving is the dominant mode (e.g., with a 

probability of 90%). When evaluating the +30% scenario, the probability of driving would exceed 

100%. In these cases, this study capped the probability of vehicle trips to be 100% and all trips 

would replace vehicle trips). This is why the line for the mode distribution change is not linear in 

Figure 3.7 (the positive side is curved due to the capped 100% probability). When  only considering 

changing the percentage of vehicle trips by -30% to 0% and fit a linear regression, the linear trend 

line has a gradient of 0.6567 in Bay Area (R squared 0.9994) and a gradient of 0.6542 in 

Philadelphia (R squared 0.9996). These results show that, if the bike share users take 10% less 

vehicles trips than an average person (whose travel pattern is captured in the NHTS data), the total 

emission reduction of the system will decrease by 6.6% and 6.5% in Bay Area and Philadelphia, 

respectively.  

 

When the emission factors are changed in the analysis (Table 3.4), the total emission reduction of 

all the studied cities decreased by 14-16% for the low emission factor case and increased by 41-

43% for the high emission factor case. This provides a lower and upper bound of the total emission 

reduction given the uncertainty of the emission factors in different cities. It is worth mentioning 
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that it is unlikely to expect the high emission factor case to happen, which assumes that all the 

replaced vehicle trips used pickups. When using the modified emission factor for bicycling (adding 

emissions of stations and rebalance from Luo et al. (Luo et al., 2019)), the total emission reductions  

are lowered by around 30% (Table 3.4). Therefore, the emissions from bike share stations and 

rebalance operation also play an important role for the environmental performance of a BSS.  

3.6 Conclusions and Limitations 

This study proposed a Bike Share Emission Reduction Estimation Model (BS-EREM) to evaluate 

the environmental benefits of bike share systems in eight cities in the United States. The BS-EREM 

model considers the trip distance, trip purpose, trip start time, public transit accessibility around 

each bike share station, as well as the historical distributions of transportation mode choices in 

different cities. Although the analysis only focused on the reduction of GHG emissions, the same 

approach can be applied to quantify other environmental impacts (e.g., NOx, PM2.5), using 

appropriate emission factors as inputs.  

 

The total annual GHG emission reduction in the eight systems evaluated in this study shown linear 

relationships with the overall system size and ridership. According to the modeling result, as the 

largest bike share program in the United States, New York’s Citi Bike Share contributed to 5,417 

tons of GHG emission reduction in year 2016. In contrast, Seattle’s BSS only reduced 41 tons of 

GHG emissions in 2016. However, the emission reduction contribution from BSSs currently is 

still relatively limited (less than 0.1%) in the context of the total GHG emissions from the entire 

transportation sector in these cities. Expanding the BSS system size (e.g., building more stations 

and docks, launching more bikes) can help increase the GHG emission reduction by generating 

more bike share trips. Another thing to note is that, for Los Angeles, even though the overall traffic 

volume is at the top level in the U.S. (Gold et al., 2015), the usage intensity (trips per bike, per 

station, and per dock) of its bike share system is relatively low, which means that bike share is not 

as popular there as in New York City. Improving biking infrastructures such as bike lanes can 

potentially help improve the use of bike share (United Nations Environment Programme (UNEP), 

2018). 
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In addition, the environmental benefit is also influenced by the mode substitution, i.e., which 

transportation mode does the bike share trip replace. In the analysis, the bike share is mainly 

replacing trips made by vehicles and walking, while the distribution of replaced modes varies 

among different cities. The percentage of bike share trips replacing car trips is higher in 

Philadelphia and Chicago, compared to other cities, leading to higher GHG emission reduction per 

mile travelled. Such variation is mainly due to the difference of transportation mode choice 

preferences in these cities and the spatial coverage of the BSSs, which impacts trip distances.  

 

Furthermore, the bike share system layout matters. The GHG emission reduction is mainly 

contributed by short bike share trips (less than 5 miles). Bike share stations in the center of a city 

generally have higher total GHG emission reduction but lower unit GHG emission reduction (per 

trip travelled). The replaced transportation modes also exhibit spatial variations: a higher 

proportion of bike share trips replaced car trips in areas further away from city center than in the 

downtown area. Therefore, the unit emission reduction potential (per mile) from BSSs could also 

be influenced by its bike share station network (i.e., how many stations are located in downtown 

versus areas away from city center, in the business centers versus leisure areas etc.). In order to 

improve the unit environmental benefit of bike share (per trip or per mile travelled), the system 

operators need to attract more vehicle users in the city center to switch to bike share, and also 

attract more users in the areas away from the city center. In order to achieve these goals, the cities 

need to improve biking safety (for instance, having more bike lanes) and the convenience of using 

bike share (such as simplifying the process of checking out and returning bikes), which would 

make bike share a more competitive transportation mode. The stations that are further away from 

city center are often distributed less densely than in city center, which can be observed in Figure 

3.6. The difficulty of finding a nearby bike share stations in areas away from city center may 

discourage users to choose bike share. Installing more stations in these regions could help increase 

bike share usages but will increase the emissions from the station manufacturing. Having a 

dockless system in areas with less demand can reduce the need of stations and the associated 

emissions but may increase emissions from rebalancing dispersed bikes. Future study considering 

these factors at the station level is needed to further quantify the tradeoffs and assess the net 

benefits of different approaches.  In addition, as indicated by Luo et al. (Luo et al., 2019) and the 

sensitivity analysis results, improving the rebalance efficiency can further improve the 
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sustainability of a BSS. This can be achieved by optimizing the station location and capacity 

(García-Palomares et al., 2012; Park & Sohn, 2017; Romero et al., 2012), applying more efficient 

rebalance vehicle routing algorithms (Alvarez-Valdes et al., 2016; Chiariotti et al., 2018), and 

using more environmental-friendly vehicles (e.g., electric vehicles) instead of internal combustion 

engine vehicles for bike rebalancing. 

 

In the case of a dockless BSSs or hybrid BSSs (combining dockless and station-based BSSs in the 

same system), the proposed BS-EREM can still be applied.  To reduce the computational intensity 

due to the dispersed bikes, the service area can be partitioned into small grids. Then the center of 

each grid can be modelled as a pseudo station.  All trips starting (ending) within a grid can be 

marked as starting (ending) at the corresponding pseudo station. It can be checked whether there 

are public transit facilities within the grid to determine the public transit accessibility. The grid 

size should be identical to the spatial coverage of an existing bike share station. Such map gridding 

method has also been used in existing studies (such as in (Pan et al., 2019; Zhang & Mi, 2018)) to 

model a dockless system.  

 

Although this study has the merit of proposing a more detailed model to quantify the environmental 

benefits of BSS programs, there are three major limitations that need to be pointed out. First, the 

results are based on the assumption that the BSS users have the same travel pattern as an average 

person in the urban area of each city. The sensitivity analysis has showed that the results are very 

sensitive to the transportation mode distribution. Therefore, future research collecting more 

detailed transportation mode distribution specifically from the BSS users can help improve the 

results accuracy. Additionally, other factors, such as weather and user demographics may also 

impact the mode substitution decisions. For example, this study only evaluated whether public 

transit stations and stops are available near the bike share stations in the model but did not consider 

the actual schedule and routes of the public transit networks. It is possible that the users may have 

to wait for a long time or have to make too many transfers between two bike share stations having 

access to public transit, making the substitution of public transit less feasible. When surveying 

BSS users on mode substitutions by bike share trips, it is important to focus the question on a 

specific trip, so mode substitution can be linked to trip distance, purpose, start time, origin, and 

destination, etc. Such information would also benefit the system operators and city planners to 
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optimize the system and attract more vehicle users to switch to bike share. Second, the emission 

factors used in this study may overestimate the environmental benefits of bike share trips since 

emissions from other system infrastructure and operations such as bike share station and bike 

rebalancing are not included. The sensitivity analysis showed that the emissions from bike share 

stations and rebalance could decrease the overall GHG emission reduction by around 30%. 

Emission factors from a more comprehensive life cycle assessment for different transportation 

modes, including bike share, tailored to each city would help improve the estimation using BS-

EREM. Also, the system operators of BSSs may apply different rebalancing schedules and use 

different vehicles (e.g., trucks, vans, or electric tricycles). Therefore, to obtain more accurate 

estimation, more detailed data on system operations in different cities are required. In addition, 

there could be other factors affecting the emission factors, such as the increased emission from 

extensive usage of air conditioning in vehicles in certain seasons, different driving behaviors, and 

vehicle ages etc., which are not reflected in this study. Furthermore, different BSSs may use bikes 

and stations that are manufactured with different materials or processes and apply different 

maintenance and disposal practices. These factors will also affect the system’s GHG emissions 

and require more detailed data to be further addressed. Third, this study only considers the cases 

that bike share can substitute the entire trip. Because the data only record trip start and end stations, 

there is no information on the actual trip origin and destinations. Bike share could also serve as the 

“last mile” solution and contribute to substituting a one-mode trip (e.g., car trip) with a multi-

modal trip (e.g., bike-train-bike mobility chain as mentioned in (United Nations Environment 

Programme (UNEP), 2018)). Due to the lack of data to support such analysis, the multi-modal trip 

substitution is not considered, which could underestimate the environmental benefits of bike share. 

Data that tracks trips across different transportation modes (e.g., smart cards that can be used for 

both public transit and bike share) and more targeted survey questions could help further analyze 

these trips. 
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 ANALYZING STATION INTERACTIONS AND IMPROVING 

DEMAND PREDICTION FOR BIKE SHARE SYSTEM EXPANSION 

4.1 Introduction 

The analysis in Chapter 3 shows that BSSs can reduce carbon emissions of urban transportation 

systems. To better take advantage of such environmental benefits and other benefits of BSSs, 

system operators are implementing different strategies to improve the BSSs. One of the most 

important strategies is to expand the system. As shown in Figure 1.2, many cities kept adding new 

stations to their station-based systems to expand the overall spatial coverage of the system or 

increase the density of stations at high demand areas. Figure 4.1 shows the locations of the BSS 

stations in Chicago as well as their year of launch (i.e., the year when the stations first appeared in 

the trip records), illustrating the progress of expanding the station network to the outskirt areas and 

also increasing the station density in the central areas.  

 

 

Figure 4.1. Locations of the stations in Chicago and their launch years 
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When planning the expansion of the station network, it is crucial to estimate the demand of the 

newly added stations, which can guide the decision of choosing the station capacity and allocating 

bikes (Zhang et al., 2016a). However, very few studies have modeled the demand prediction for 

BSS expansion. The major challenge for such prediction problems is that there are no historical 

trip records for the new stations, thus lacking information to predict the demand for new stations. 

Therefore, existing studies highly rely on external information such as socio-demographic and 

Point-of-Interest (POI) attributes to make the predictions (Liu et al., 2017; Watson & Telenko, 

2019). Such external data requires time and effort to collect and process; in addition, because 

different models used different data and the data availability may differ across cities, the model 

transferability is often limited when applying the models to different cities. Besides, these studies 

also only focused on those new stations but did not consider that new stations may also influence 

the demands of existing stations (more details about related literature are discussed in Section 4.2).  

 

However, some empirical studies have shown that there exist interactions between the new stations 

and existing stations (Hyland et al., 2018; Zhang et al., 2016c). New stations may compete with 

existing stations regarding the demand when they are very close; while new stations could also 

complement existing stations and increase their demands since the new stations increase the 

choices of locations to pick up or return bikes, thus encouraging more usages at some existing 

stations. Considering such station interactions, the demand prediction for BSS expansion should 

not only focus on the new stations, but also account for the resulted demand change of existing 

stations. Models ignoring the station interactions may lead to incorrect decisions when allocating 

docks and bikes. Therefore, demand prediction models that have low dependence on external data 

and also consider the station interactions in the BSS expansion process are greatly needed. 

 

In addition, although existing studies observed the station interactions in the system expansion 

process, the understanding of the station interactions is limited. For example, Hyland et al. (2018) 

have pointed out that stations compete with each other when their distance is within 0.5 miles, but 

complement each other when the distance is between 0.5 - 3.1 miles. However, the conclusion is 

drawn based on an arbitrarily selected threshold (0.5 miles); the study also did not analyze whether 

different distances within the same range (e.g., 1 mile and 2 miles in the range of 0.5 - 3.1 miles) 

impact the station interactions to different extent (there are more discussions about relevant 
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literature in Section 4.2). Therefore, a more detailed analysis is needed to reveal how the station 

interaction effects change with the distance between stations. Such knowledge not only helps the 

modeling of BSS expansion demand predictions, but also brings insights to the design of station 

networks in BSSs. For instance, the station networks should take advantage of the complement 

effects between stations, and also avoid the competitions between stations that are too close. 

 

This study aims to improve the understanding of interactions between new and existing stations 

and better model the bike share demand in the BSS expansion process. To achieve these objectives, 

a piecewise regression is first conducted to analyze the station interactions, which provided the 

detailed mathematical formulation of how the demands of existing stations change corresponding 

to their distance to the nearest new stations. Then based on the observations from the piecewise 

regression results, features of spatial station density in fine-grained concentric bands are integrated 

into BSS expansion demand prediction models, which improves the prediction by considering the 

stations’ interactions with other stations in different distance ranges. A Spatial Eccentricity 

Quantile based Ensemble Model (SEQEM) is proposed that requires no external data but yields 

better prediction performance than the model using external data. 

 

The rest of this chapter is organized as follows: Section 4.2 summarizes the related literature, 

identifies the research gap, and discusses the contributions of this study. Section 4.3 introduces the 

data and methodology. The results are presented in Section 4.4. Lastly, Section 4.5 concludes the 

findings and discusses the limitations of this study and potential future work. 

4.2 Literature review 

Demand estimation is a crucial component of BSS planning and system operations. For system 

expansion, planners normally estimate the steady-state demands of the stations (e.g., average daily 

demands in a month) (Watson & Telenko, 2019). For example, using the demand levels and 

capacities of existing stations as a reference, the planners can determine the capacities of new 

stations based on the estimated demand level, assuming that the capacities should be proportional 

to the demands (Institute for Transportation & Development Policy, 2018). Regarding operational 

issues such as bike fleet rebalance, more dynamic predictive models are required. In order to 
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prepare for the truck rebalancing scheduling, the operators need to know the demand for a specific 

station/area in a short time interval such as one hour (Caggiani et al., 2018; Chiariotti et al., 2018).  

 

So far, the majority of existing studies focus on the short-term demand prediction. In such studies, 

the historical demand data for each station or area is available to help the models learn the demand 

patterns and predict the upcoming short-term demands (Chen et al., 2016b; Jia et al., 2019; Li et 

al., 2015, 2016; Yang et al., 2016; Zhou et al., 2019). Meteorology and event data is often 

integrated into the models to reflect the impact of extreme weather and special events such as 

concerts (Chen et al., 2016a; Xu et al., 2018a, 2018b). 

 

Compared with the short-term BSS demand prediction models, there are a limited number of 

studies focusing on the demand estimation for system expansion. One key difference between shot-

term prediction and expansion prediction is that there is no trip data for the new stations. Therefore, 

existing studies have to depend on external data such as local socio-demographic and point of 

interest (POI) information around the stations to make the predictions for new stations. Watson 

and Telenko (2019) built a binomial parameter mapping model to predict the demand for station 

expansion by integrating the population size (at the level of 0.25-mile spatial grids) and user 

population product affinity (defined as the ratio of bike share usage to population). Liu el al. (2017) 

first clustered the stations into functional zones by considering the POI characteristics and close 

geographical distances; then estimated the demands at the zonal level using information about trip 

distance preference, zone-to-zone preference, and zone characteristics. Then the zone-level 

demands are distributed to the stations within the zone based on the POI information around the 

stations.  There are two limitations in these studies. First, these studies highly rely on the external 

socio-demographic and POI data. Such external data could be time consuming to collect and 

process; the used data variables also differ across different studies, which makes it difficult to 

generalize the models to other cities. Second, these studies only reported the prediction 

performance on new stations and ignored the station interactions in the BSS expansion process. 

The station interactions (Hyland et al., 2018; Zhang et al., 2016c), i.e., the effects that new stations 

could compete with or complement the existing stations regarding the demand, impact the demand 

of existing stations and thus the demand of the whole system. For instance, Liu et al. (2017) 

separated the BSS service area into different functional zones and assumed that adding new 
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stations has little impact on the zone level demand. However, in the case that the new stations 

complement the demand of existing stations due to improved spatial service coverage, their 

method would underestimate the demand of the whole zone.  

 

Although some studies have pointed out the existence of the abovementioned station interactions 

in their empirical analysis, there still lacks detailed understanding about at which distances the 

stations compete with or complement each other. Wang and Lindsey (2019) analyzed the impact 

of changing station networks on the bike share usage of annual members (registered long-term 

users). They adopted a quasi-experimental, difference-in-difference approach to analyze the 

members’ bike share trip data from 2010 to 2015 in Minneapolis-St. Paul, Minnesota. Their 

analysis revealed that members were more likely to increase their usage of bike share when the 

distances from their homes to a station decrease. Similarly, Zhang et al. (2016) analyzed the 

changes of usages from new users and steady users in the expansion process in the BSS in 

Zhongshan, China. They found that adding new stations in high-demand areas can attract new 

users and encourage the usage of steady users, while new stations could also compete with old 

stations. However, the detailed relationship between the station density and the demand change 

pattern is not analyzed. Hyland et al. (2018) pointed out a distance threshold for the station 

competition and complement relationship. They proposed a cluster stations and regress (CSR) 

approach to model the usage of stations in a BSS, which combined station clustering and multilevel 

mixed-effect regression models. In their regression model, the number of nearby stations within 

0.5 miles (0.8 km) and the number of other stations within 0.5-3.1 miles (0.8-5 km) to a certain 

station are used as the variables to model the station usage. By observing the sign of the coefficients 

of these variables, they found that station usage increases when the number of stations within 0.5-

3.1 miles increases, while the station usage decreases when there are more stations within 0.5 

miles. However, it is unclear by how much the distance will impact the demand for stations in the 

same distance range. For example, adding a new station in 1 mile or 2 miles away from an existing 

station may impact the existing station’s demand by different magnitude, although 1 mile and 2 

miles are both in the range of 0.5-3.1 miles. Also, their choice of the 0.5 miles (0.8 km) distance 

threshold is arbitrary, which may not capture the real threshold where the stations’ relationship 

changes from competing to complementing.  
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In summary, existing studies have not analyzed the detailed relationships on how the station 

interactions change with the distance between the stations. Previous demand prediction models for 

the BSS expansion also did not consider the station interactions’ impact on existing stations. 

Existing BSS expansion demand prediction models also highly rely on the external socio-

demographic and POI data, which requires a significant effort to collect and process. This study 

contributes to the existing literature in the following aspects: (1) the mathematical relationship 

between the demand changes of existing stations and their distance to the nearest new stations is 

revealed using a piecewise regression model, which improves the understanding of the station 

interactions in the expansion process; (2) features of spatial station density in fine-grained 

concentric bands are constructed to represent the other stations in different distance ranges that a 

certain station can interact with, which are then integrated into the expansion demand prediction 

models; the case study on the BSS in Chicago shows that integrating such network spatial structure 

information improves the prediction; (3) A Spatial Eccentricity Quantile based Ensemble Model 

(SEQEM) is proposed, which does not require external socio-demographic and POI data but yields 

better prediction performance than models using the external information. 

4.3 Data and method 

Notation list: 

aiym The number of days that the station i is active in the month m of the year y; 

ciym Total bike withdrawals at station i in the month m of year y; 

diym The distance from station i to the nearest new station in month m of year y; 

EVQ The evaluated model performances corresponding to the specific Q 

Diym The band distance from station i to the nearest new station in month m of year y; The band 

distance (in miles) takes the value of the mid-point of the corresponding band interval, so 

{0.05, 0.15, ...}D ; 

ft, The forecasted value for the tth instance out of all the T instances to be predicted; in the case 

of this study, an instance is the demand of one station (in a certain month and year) to be 

predicted; 

G(D) The aggregated demand growth rate corresponding to the band distance D; 

X

ymMD  The prediction model based on the “X” category of features, trained using data in the month 

m of year y; for instance, GEO

ymMD denotes the model based on the “GEO” features, trained 

using data in the month m of year y; 
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ot The observed value for the tth instance out of all the T instances to be predicted; 

Q Spatial eccentricity quantile threshold; 

QL A list of candidate spatial eccentricity quantile threshold Q; 

iymw  The observed average daily bike withdrawals at station i in the month m of year y. 

4.3.1 Data processing 

This study aims to analyze how the new stations impact the demand of existing stations. Therefore, 

the demand information needs to be first extracted from the bike share trip data. This work selects 

Chicago as the case study city because the station-based BSS in Chicago is a desirable example 

that keeps expanding the system over the years. As shown in Figure 4.1, the BSS in Chicago was 

first launched with 300 stations in 2013, and with new stations added to the system every year 

(except 2014), the BSS had expanded to 610 stations by the end of 2019.  

 

For the planning of BSS expansions, the decision makers care more about the steady-state demand 

level rather than the short-term (e.g., hourly) demand fluctuations (Hyland et al., 2018; Watson & 

Telenko, 2019). This study focuses on the bike withdrawals from the stations, which are consistent 

with most of the previous studies modeling bike share demand (Hyland et al., 2018; Li et al., 2016; 

Lin et al., 2018; Singhvi et al., 2015; Wang & Kim, 2018), but the same models can also be applied 

to the bike returns. The demand variable of interest is the average daily bike withdrawals 
iymw  at 

station i in the month m of year y. The average daily demand is computed instead of the total 

monthly demand to account for the fact that a station may not be available for all the days in a 

certain month. For example, one station was added to the system in September 16, 2016 and was 

only active for 15 days in that month. In this case, when evaluating its demand change between 

2016 and 2017, it is unfair to compare the total bike withdrawals in 30 days in September 2017 

with the total bike withdrawals in 15 days in September 2016. Therefore, the 
iymw  is computed as: 

  
iym

iym

iym

c
w

a
   (4.1) 

where ciym is the total bike withdrawals at station i in the month m of year y, and the aiym is the 

number of days that station i is active in the month m of the year y. The first available date of each 

station is identified as the date that the station first appeared in the trip record. Regarding the 
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demand change of a certain station, this study always compares a station’s demand in the same 

month between two consecutive years. A station is marked as “new” for a specific month if it was 

available in this month but was not active yet in the same month of the previous year. 

 

Besides staying consistent with the previous study (Hyland et al., 2018), this work aggregates the 

data by month instead of year or day also for the following reasons: (1) there are significant 

demand variations between different months in a year, thus comparing the average daily demand 

of the whole year for a certain station could bias the result if a station is not active for the entire 

year. For instance, Figure 4.2 shows the average daily bike withdrawal of each month for one 

station (id 359). The demand was high in the middle of the year (June – September) and was at a 

much lower level in the meteorological winter (December, January, and February). Such demand 

variation pattern is common for the entire system due to the cold winter weather in Chicago (Zhou, 

2015). The station 359 was added to the system in May 2015. When computing the average daily 

bike withdrawals of this station in 2015, it may overestimate the value for 2015 when comparing 

it with other years since the station is not available in the four low-demand months (January – 

April) in 2015. (2) Rather than analyzing the total demand in a specific day, the data is aggregated 

in each month because the demand in a specific day could be impacted by many external factors, 

such as special events or extreme weather. Aggregating the whole month’s data can reduce such 

uncertainty.  

 

Figure 4.2. Average trip count (bike withdrawals) per day in each month for one station (id: 359)   
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4.3.2 Piecewise regression 

In order to analyze the relationship between the demand changes of existing stations and their 

distance to the nearest new station, the next step is to compute the distance. Let diym denote the 

distance from station i to the nearest new station in month m of year y. Note that all distances in 

this study are computed using the great-circle distance to stay consistent with the most relevant 

study from Hyland et al. (2018) which also analyzed the data of Chicago’s BSS, so the results of 

this work can be compared with their study. Then the diym of different stations is separated into a 

series of distance bands at 0.1-mile interval: 0 – 0.1, 0.1 – 0.2, …, which are used to group stations 

that have similar diym values. Depending on which band the diym value lies in, the station i in the 

month m of year y is assigned a band distance Diym. The band distance D takes the value of the 

mid-point of the corresponding band interval, so {0.05, 0.15, ...}D (some examples of 

computing the band distances are illustrated in Figure 4.3). Then the aggregated demand growth 

rate G(D) in each band is computed using Eq. (4.2), which is the total demand of all the stations i 

that have Diym = D, divided by the summation of their corresponding demand in the previous year. 
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Figure 4.3. Spatial distribution of the band distance (in miles) in August 2017 and an example to 

compute the band distance (new stations are colored in red, and benchmark stations, i.e., existing 

stations that are more than 4.5 miles away from the nearest new stations, are colored in blue): 

station 0 is the nearest new station for station 1, 2, and 3, since station 1 lies in the band of 0.2-

0.3 miles, it is assigned a band distance of 0.25 miles (the middle point of 0.2 and 0.3); similarly, 

since station 2 and 3 are both located in the band 0.4-0.5 miles, they are assigned a band distance 

of 0.45 miles.  
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Such aggregation is applied to reduce the impact of demand noises from some stations with low 

demands. For example, station 193 had average daily bike withdrawals of 0.17 and 0.7 in the 

month of January in 2015 and 2016, respectively. If only computing the growth rate for itself, this 

corresponds to a large growth rate of 4.1. However, the absolute demand change was only 0.53 
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bike withdrawals per day, which had very limited contribution to the demand changes of the whole 

system. In the next year, 2017, its demand rate retuned to 0.17 bike withdrawals per day.  Therefore, 

for such low-demand stations, multiple extra trips caused by some special events in a certain month 

can easily lead to a very large demand growth rate, which could bias the analysis results (some 

other examples of such demand noises are exhibited in Section C.1 in the APPENDIX C). In 

contrast, for a high-demand station that has a daily bike withdrawals rate of 100, a demand increase 

of 20 bike withdrawals per day can only lead to a growth rate of 1.2. When aggregating the demand 

of all the stations in the same distance bands, the impact of noises from the low-demand stations 

can be reduced.  

 

In this study, growth rate G(D) is only computed for each band when D is less than 4.5 miles. This 

threshold is selected based on the trip distance of historical trips. In all the trips from 2013 to 2019, 

the travel distances of 99% of the trips are within 4.5 miles. This means that, when the nearest new 

station is more than 4.5 miles away from a certain existing station, the probability that there is a 

trip between the two stations is very low (less than 1%), thus the new station has nearly no impact 

on the existing station. Therefore, the aggregated growth rate for such stations is computed using 

Eq. (4.3) as a “benchmark” growth rate Gbenchmark, which represents a natural growth rate when the 

existing stations are not impacted by new stations. The growth rate G(D) for different band distance 

D will be compared with this Gbenchmark to learn about the impact from the new stations. 
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Next a piecewise regression model is fitted to analyze the relationship between G and D. Piecewise 

regression is also referred to as change-point regression, segmented regression, and broken-line 

regression (Kim et al., 2000; Ratcliffe, 2012). A piecewise regression model identifies the change 

points in multiple linear regression models that have continuous segments, where any of the two 

continuous segments change the directions at the corresponding change point (Hinkley, 1971). 

This study considers piecewise regression because it was applied in another study by Ratcliffe 

(2012) that also focused on the impact of distances, which analyzed the relationship between 
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violent crime densities and the distance from the crime spots to the nearest bars. In addition, in the 

Chicago data, it is observed that the aggregated growth rate G first increases and then decreases 

when the band distance D increases, and the trends of the two segments are near linear (more 

detailed results are in Section 4.4.1), which can be well modeled by piecewise regression (the 

analysis in Section C.2 of the APPENDIX C shows that the piecewise regression model provides 

a better fit to the Chicago data than a simple linear regression model). Since there is only one 

change point in this case, the piecewise regression model has the form of Eq. (4.4):  

 

 
0 1 1 1[ | ] ( )E G D D D          (4.4) 

 

where 1  is the estimated change point; 0 , 1 , and 1  are other parameters to be estimated. The 

superscript plus symbol (+) indicates that 
1 1( ) =( )D D   when 1( ) 0D   , and zero otherwise. 

4.3.3 Demand prediction for system expansion 

Based on the observations from the piecewise regression analysis, the distances between stations 

contain very important information about station interactions. Inspired by this observation, this 

section integrates the distance information into the demand prediction model to improve the 

prediction performances.  Specifically, features of spatial station density in fine-grained concentric 

bands around a station are constructed to represent the number of stations in different distance 

ranges that the station can interact with, which are then used to build demand prediction models. 

4.3.3.1 Model task 

The task of the BSS expansion demand prediction is that, given the dependent variable 

{ | , }iymw y Y m M   – the average daily bike withdrawals for each station i in month(M) of 

year(Y), train a demand prediction model using some independent variables { | , }iymv y Y m M   

associated with the stations. Then the model is applied to predict the average daily bike 

withdrawals { | 1, }iymw y Y m M    based on the independent variables { | 1, }iymv y Y m M    

of all the stations in the same month M in the next year (Y+1). Note that there are newly added 

stations in year Y+1. 



 

 

95 

4.3.3.2 Features 

The features (independent variables) considered in the demand prediction model can be classified 

into the following categories in Table 4.1: 

 

Table 4.1. Categories of features used in this study 

Feature 

category 

(acronym) 

Feature details 

DENS Station density (proposed method). For each station, first construct the concentric 
distance bands around the station at 0.1-mile interval, i.e., 0 – 0.1, 0.1 – 0.2, …, 4.4 – 

4.5 miles, then for each distance band, compute the number of other stations that are 

located in the band. Therefore, 45 variables will be created for each station; each 

variable indicates the density of stations in the corresponding band. 

DENS2 Station density (literature method). Construct concentric distance bands in a similar 

way as “DENS”, but with only two wider distance bands: 0 – 0.5 and 0.5 – 3.1 miles, 

which is the arbitrarily selected bands from a previous study (Hyland et al., 2018). Then 
compute the number of other stations that are located in the two bands. 

GEO Geographic information. It includes the latitude and longitude of the stations. 

EXT External information. It denotes the external information around the locations of the 

stations, which covers the following variables that are found to be important to bike 
share demand in the previous studies (Hyland et al., 2018; Liu et al., 2018, 2017; 

Médard de Chardon et al., 2017) : 

 

Demographic information: collected from American Community Survey (American 
Community Survey, 2017) at the census-tract level, the values of one census tract is 

assigned to a station if the station is located within the census tract. 

- Population density 
- Per capita income 

 

Point of interest: collected using Google Maps Places API. Such variables are the 
counts of points of interest (e.g., bus stations) within a 1,000 feet (305 meters) buffer 

around a station. The 1,000 feet is selected as an appropriate distance that people can 

walk between a bike share station and surrounding points of interest (Croci & Rossi, 

2014; Zhang et al., 2016c). 
- Number of bus stations 

- Number of subway stations 

- Number of restaurants 
- Number of parks 

- Number of parking lots 

- Number of museums 
- Number of schools  

ECC Spatial eccentricity. The spatial eccentricity of a certain station i is defined as the 

average distance from station i to all other stations (Cazabet et al., 2017). Note that the 

spatial eccentricity of a certain station could be different in different months since new 
stations are added in the expansion process.  
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Table 4.1 continued 

ECCQ Spatial eccentricity quantile. For year y and month m, the ECCQ of the station i is the 

quantile value of the ECCiym value of station i corresponding to the ECC distribution of 
all the stations in year y and month m. 

 

 

In this study, prediction models are trained using different categories of features or a combination 

of different categories of features to analyze which features are more predictive for the demand 

prediction. The models that have been analyzed include： 

- “GEO”, “GEO+DENS”, and “EXT” 

“GEO+DENS” model (i.e., the model trained using both “GEO” and “DENS” features) is 

compared with “GEO” model to evaluate whether adding the information of concentric 

station density helps improve the predictions.  

 

Because the “GEO+DENS” model performs better for stations in central areas and the 

“GEO” model performs better in outskirt areas of the city (discussed in Section 4.4.2.1), a 

Spatial-Eccentricity-Quantile-based Ensemble Model (SEQEM) is proposed to ensemble 

the prediction results of the “GEO+DENS” model and “GEO” model in different spatial 

ranges (the ranges are determined by a threshold of “ECCQ”, more details are discussed in 

Section 4.3.3.5). 

 

The SEQEM is then compared with the baseline “EXT” model. The major objective of the 

SEQEM is to predict the demands for BSS expansion only based on the information of 

station locations and the spatial structure of station networks, which avoids using the 

external data as in “EXT”.  

 

- “GEO+DENS+ECC” and “GEO+DENS+ECCQ” 

Instead of using ECCQ as a threshold in the SEQEM, this study also directly adds the ECC 

and ECCQ features into the prediction models to train the“GEO+DENS+ECC” and 

“GEO+DENS+ECCQ” models, respectively. The performances of these two models are 

compared with SEQEM to evaluate the necessity of using the ensemble method of SEQEM. 
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- “DENS” and “DENS2” 

The prediction performances of models using only DENS and only DENS2 as features will 

be compared to evaluate whether the more fine-grained bands improve the predictions 

(Section 4.4.2.3).  

4.3.3.3 Model training and hyper-parameters 

This study applies the XGBoost (Chen & Guestrin, 2016) algorithm to train all the models with 

different features. XGBoost is used in this study because it can handle high-dimension data with 

feature-selection ability (Wang et al., 2019), especially for the “DENS” features that have 45 

variables for all the distance bands. In addition, XGBoost can report the feature importance scores, 

which help identify the important distance bands for the predictions (discussed in Section 4.4.2.3).  

For different models, the hyper-parameters are tuned using grid search (Syarif et al., 2016) with 

10-fold cross validation (more details about hyper-parameter tuning are provided in the Section 

C.3 in APPENDIX C). 

4.3.3.4 Model performance evaluation metrics 

In this study, prediction models are trained using the data in a certain month M in year Y and 

evaluated using the data of month M in year Y+1. Instead of only evaluating the prediction 

performance on new stations (Liu et al., 2017), the predictions on all the stations (including new 

and existing stations) will be evaluated to consider the effects of station interactions. Two metrics 

are adopted to evaluate the performance of predictions. The first is root-mean-square error (RMSE), 

which has the general form of Eq. (4.5): 
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where ft, and ot are the forecasted and observed values for the tth instance out of all the T instances 

to be predicted. In this study, an instance is one iymw  value to be predicted. RMSE quantifies the 

level of absolute errors. In this study, large absolute errors are typically observed in high-demand 
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stations. Another metric is the mean absolute percentage error (MAPE), which has the general 

form of Eq. (4.6): 
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In the case of Chicago bike share data, a large MAPE error often happens at low demand stations 

in the outskirt areas. Therefore, evaluating the model performance using both RMSE and MAPE 

helps identify the poor predictions for both high-demand and low-demand stations. 

 

4.3.3.5 Spatial-Eccentricity-Quantile-based Ensemble Model (SEQEM) 

After observing the predictions of “GEO” and “GEO+DENS” model, it is found that the 

“GEO+DENS” model performs better in the central area of the station network (regarding RMSE), 

while “GEO” performs better at those outskirt low-demand stations (regarding MAPE). Therefore, 

to take advantage of the good performance of both “GEO+DENS” and “GEO” models in different 

areas, the Spatial-Eccentricity-Quantile-based Ensemble Model (SEQEM) is proposed, which 

switches the applied prediction models based on the spatial eccentricity quantile threshold Q. 

Besides potentially improving the overall prediction performance, another objective of the 

SEQEM is to identify a spatial boundary within which the station interactions should be considered. 

The detailed procedure of SEQEM is presented below (Algorithm 4.1): 
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Algorithm 4.1: Spatial-Eccentricity-Quantile-based Ensemble Model (SEQEM) 

Input: { }iymw  the average daily demand for all the station i in different months and years as well as the 

corresponding “GEO”, “DENS”, and “ECCQ” features; 

             QL:  A list of candidate spatial eccentricity quantile threshold Q; in this study, 

{0.02, 0.04, ... ,0.98}QL  ; 

             The model evaluation metric Metric, which in this study is RMSE and MAPE. 

Output: {EVQ}: The evaluated model performances corresponding to the Q values in QL 

Procedure SEQEM({ }iymw ,“GEO”, “DENS” and “ECCQ” features, QL, Metric) 

FOR any month M and year Y except the last year:   // data in the last year is only used for testing 

         Train models GEO

YMMD  and GEO+DENS

YMMD using data { | , }iymw y Y m M  and the 

corresponding “GEO” and “GEO+DENS” features, respectively  

FOR Q in QL: 

FOR any month M and year Y except the first year: // data in the first year is only used for 

training 

FOR all the station i: 

IF ECCQiYM < Q: 

Predict the demand fYMi using GEO+DENS

( 1)Y MMD 
 

ELSE: Predict the demand fYMi using GEO

( -1)Y MMD  

Compute an overall performance EVQ based on all the demand rates {wiym} and predicted 

values {fiym} using Metric  

 

Note that a quantile threshold Q is used as the threshold instead of an absolute value of spatial 

eccentricity, because the spatial eccentricity of each station also changes in different months when 

new stations are added. When the system expands to more outskirt areas, the maximum spatial 

eccentricity in the station network also becomes larger. Considering this, with a quantile threshold, 

the relative locations can always be found (central or outskirt) for each station. Note that a smaller 

spatial eccentricity value means that the station is at a more central location. In this study, SEQEM 

is applied on all the data with a list of {0.02, 0.04, ... ,0.98}Q . The overall RMSE and MAPE 

performances are then recorded for the corresponding Q. By visualizing the RMSE and MAPE 

changes with varying Q, the Q that yields the best overall performance can be identified.  
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4.4 Results and discussions 

4.4.1 Result of piecewise regression 

First, the computed benchmark growth rate Gbenchmark equals 0.97, which is the aggregated growth 

rate for those existing stations that are more than 4.5 miles from their nearest new station. 

Therefore, the overall demand of these benchmark stations actually decreases slightly by 3%. 

 

The fitted piecewise regression model shows a breakpoint (point A) at 0.30 miles (Figure 4.4); and 

the Gbenchmark (blue horizontal line) intersects with the fitted model at 0.11 miles (point B) and 4.37 

miles (point C). The estimated model parameters are shown in Table 4.2.  A demand dilution effect 

can be observed when D is less than 0.11 miles (0.18 km, 581 feet), where the new stations compete 

with the existing stations. This short distance is suitable for walking but it is rare that a bike share 

user rides between two stations that are so close. With an average human walking speed of 3.13 

miles/hour (Levine & Norenzayan, 1999), this distance requires a walking time of 2.1 minutes. 

This distance is much shorter than the average trip distance of 1.26 miles for all the bike share trips 

in 2013-2019 in Chicago. It is likely that some users that previously picked up bikes at the existing 

stations were attracted to the new stations, which caused the demand dilution. In this case, although 

the new stations can provide more choices for users and increase the total station capacity in the 

local region, the system designer need to more carefully evaluate the trade-off between the station 

installation cost and the potential benefits to bike share ridership. 

 

When D is longer than 0.11 miles, it is observed that the new stations actually complement the 

existing stations, leading to a higher growth rate G than the benchmark. The stations located around 

0.3 miles to new stations benefited the most from such complement effects. Such complement 

effects can be understood as: adding new stations increases the spatial coverage of the BSS and 

thus the options for the users to pick up or return bikes, which may encourage more usage from 

existing users and attract more new users. When D is larger than 0.3 miles, such complement 

effects decrease when D increases.  

 

The work of Hyland et al. (2018), which also analyzed the Chicago BSS data, concluded that 

adding more stations within 0.5 miles of an existing station can reduce the demand of the existing 

station, while more stations in the range of 0.5-3.1 miles lead to an increase of demand for existing 
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stations. However, since the 0.5-mile threshold is selected arbitrarily, it could happen that the 

observations within 0.5 miles are the mixed effects of both competition and complement between 

stations, where competition is more prevalent. Compared with their analysis, the piecewise 

regression in this study improved upon their work to provide the detailed trend of demand changes 

and a more fine-grained analysis of the change point. 

 

 

Figure 4.4. The fitted piecewise regression: the horizontal dashed line indicates the benchmark 

growth rate Gbenchmark; point A (0.30, 1.06) is the change point; point B (0.11, 0.97) and C (4.37, 

0.97) are the two intersection points of the fitted piecewise regression model with the benchmark 

line 

 

Table 4.2. Estimated parameters of the piecewise regression 

Parameter Estimation 

0   0.915*** (0.029) 

1   0.495** (0.169) 

1   -0.023*** (0.003) 

1  0.301*** (0.058) 

Model fit statistics  

R2 0.624 
Adjusted R2 0.596 

Note: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001;  

the standard errors are shown in parentheses. 
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4.4.2 Results of demand prediction 

In this section, as outlined in Section 4.3.3.2, the overall performance of “GEO”, “GEO+DENS”, 

and “EXT” models are first compared in Section 4.4.2.1. Specifically, Section 4.4.2.1 compares 

the performances of the “GEO” and “GEO+DENS” models to evaluate whether integrating the 

spatial structure information of station networks in the “GEO+DENS” model can improve the 

predictions upon the “GEO” model. The spatial ranges in which the “GEO” and “GEO+DENS” 

models perform better than each other are also discussed. Then, Section 4.4.2.2 compares the 

performances of the proposed SEQEM with the baseline “EXT” model. Lastly, the performances 

of models using only “DENS” and only “DENS2” as features are compared to explore whether 

the fine-grained distance bands improve the predictions in Section 4.4.2.3. The distance ranges 

that are more important for demand predictions are also examined in Section 4.4.2.3. 

4.4.2.1 Overall performance of “GEO”, “GEO+DENS”, and “EXT” models 

Figure 4.5 presents the overall prediction performances of the “GEO”, “GEO+DENS”, and “EXT” 

models in different years. For all three models, the RMSE in 2015 is much higher than other years. 

This is because the expansion in 2015 was in a much larger scale than other years. For example, 

there were 174 new stations in July 2015, while in July 2014, the system only had 300 stations. In 

contrast, there were 82, 8, 9, and 32 new stations in July of 2016-2019, respectively. According to 

the locations of the new stations in July 2015 in Figure 4.6(a), the system expanded to the outskirt 

areas to a very large extent; in addition, a lot of new stations are also added in the downtown area, 

which significantly increased the station density in the downtown area. When the number of 

stations is quickly increased by 58%, the information learned from the last year is insufficient to 

provide a desirable prediction. Besides, Figure 4.6(b) shows that the stations that have large 

absolute prediction errors from the “GEO-DENS” model are mainly in the downtown area, where 

both the station density and trip demands are the largest in the system. The trained model is based 

on  2014 data where the station density in the downtown area is much sparser. Therefore, the 

“GEO+DENS” model makes predictions based on a spatial station structure that has never been 

observed before. Also, since “GEO+DENS” model has more features than the “GEO” model, it is 

more likely to over-fit to historical observations, which causes a larger error. Not surprisingly, the 
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“EXT” model based on external information performs better when the BSS expands the spatial 

coverage to a very large extent.  

 

In year 2016 – 2019, when the expansion is more gradual, the RMSE is lower and in an identical 

level in different years. In these four years, overall, the “GEO+DENS” outperforms “GEO” 

regarding the RMSE metric (Figure 4.5(a)). However, “GEO+DENS” model has larger overall 

MAPE error than the “GEO” model (Figure 4.5(b)). In Figure 4.6(d), the spatial distribution of the 

absolute percentage errors is plotted, which shows that stations with very large percentage errors 

are located in the Southern outskirt area of the BSS (bottom in the figure). For example, the station 

588 has a very small demand rate of 0.03 trips per day in August 2016 but the “GEO+DENS” 

model predicts it to be 6.55, leading to a huge percentage error for 196. 

 

In the following sections (Section 4.4.2.2 and 4.4.2.3), this study will only compare the prediction 

performances of different models evaluated using 2016-2019 data (i.e., the models are trained 

using 2015-2018 data, respectively). Year 2015 is excluded for model evaluations because the 

system had a very large-scale expansion at the early stage of system development and the model 

performances in 2015 are very different to the following years. 

 



 

 

104 

 

 

 

 

 

 

 

Figure 4.5. Model performance on all stations in different months: (a) RMSE, (b) MAPE 
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Figure 4.6. Spatial visualization of the prediction errors of “GEO-DENS” model in July 2015 

((a) locations of new stations, (b) absolute error) and August 2016 (((c) locations of new stations, 

(d) absolute percentage error) 



 

 

106 

After further exploration, it is found that the “GEO+DENS” model outperforms “GEO” model in 

the central area of the city by considering the changes of station density in the concentric buffers, 

but it tends to overestimate the demands in the outskirt areas, which leads to larger MAPE for 

these low-demand stations. Considering the whole system, the benefits from better predictions in 

the central high-demand areas outweigh the poor predictions in the outskirt low-demand areas. 

Therefore, the “GEO+DENS” model pays more attention to the spatial structures of the stations in 

the central areas, but such knowledge learned from the central areas does not apply to the outskirt 

areas. In contrast, the simpler model, “GEO”, which only considers the latitude and longitude of 

stations, yields better predictions for those low-demand stations. 

 

Figure 4.7 can help understand the difference between the predictions of the “GEO” and 

“GEO+DENS” models. For the high-demand stations in the red ellipse, the predictions from the 

“GEO+DENS” model are closer to the blue “perfect-prediction” line, compared with the 

predictions from the “GEO” model. In contrast, the “GEO” model performs better than the 

“GEO+DENS” model for those low-demand stations in the green ellipse. From the perspective of 

the whole system, by considering the changes of station densities, the reduced absolute errors by 

“GEO+DENS” for those high-demand stations reduced more of the overall absolute errors and 

could benefit more to the whole system. Take station 85 as one example, the “GEO” model predicts 

its average daily withdrawals to be 197 and the “GEO-DENS” model predicts it as 227; while the 

observed value is 287. Although both models under-estimate the demand for this station, the 

prediction from “GEO-DENS” is 30 trips closer to the observed value than the prediction from 

“GEO” model. Compare to the station network in July 2016, there were three new stations within 

4.5 miles to station 85. The three stations were located in the bands of 0.7-0.8, 1.7-1.8, and 1.9-2.0 

miles to station 85, which are in the distance range that stations complement each other. Therefore, 

the concentric station density features help the model understand the changes in the station network 

and improve the prediction performance. From the perspective of system planning and operations, 

reducing the prediction error by considering the network effects are more important for stations 

with high demand, such as station 85 which has more than 200 average bike withdrawals in a day. 

Having a more accurate prediction can help the system operators to better modify the station 

capacity, allocate bikes to stations, and estimate the total demands for a system expansion plan 

(obviously, demand changes at high-demand stations have larger influence to the total demand). 
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Figure 4.7. Target and predicted values for the predictions in July 2017 (the blue diagonal 

indicates perfect prediction): (a) the “GEO” model, (b) the “GEO+DENS” model. 

4.4.2.2 Performance improvement by SEQEM 

Based on the observations from the performances of “GEO” and “GEO+DENS” models, the 

proposed SEQEM is applied to further improve the prediction performances by setting a threshold 

of the spatial eccentricity and applying different models accordingly. Figure 4.8 shows the overall 

performance of SEQEM with different spatial eccentricity quantile threshold (evaluated using all 

the 2016-2019 data). When the spatial eccentricity quantile increases from 0.02, the RMSE 

decreases and reaches the lowest level when the quantile is between 0.7-0.8, where the RMSE is 

even lower than that of the “GEO+DENS” model. Also, the MAPE stays at a level that is close to 

the performance of the “GEO” model when the quantile is small, then reaches the lowest point 

when the quantile is 0.78. Considering both RMSE and MAPE, a quantile of 0.78 is identified as 

a quantile threshold that yields the best overall performance. This threshold can also be viewed as 

the spatial boundary only within which the station interactions should be considered. Figure 4.9 

shows the changes of the spatial boundary corresponding to the 0.78 spatial eccentricity quantile 

threshold in June of 2014-2019. Demand predictions should consider simpler models (e.g., “GEO” 

model) for those outskirt stations identified by this boundary. Using the 0.78 quantile threshold, 

the SEQEM achieves a better performance than the “EXT” model regarding both RMSE and 
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MAPE. This indicates that the spatial structure of the station network contains very important 

information for the small-scale expansion demand prediction. Compared with “EXT” model, the 

SEQEM model has better transferability to be applied to other cities, which does not require 

external data. 

 

 

 

Figure 4.8. Performance of SEQEM by varying the spatial eccentricity quantile (the horizontal 

lines indicate the performance of the corresponding models in the right hand side), (a) RMSE 

and (b) and MAPE. 
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Figure 4.9. Changes of the spatial boundary corresponding to the 0.78 spatial eccentricity 

quantile threshold in June of 2014-2019 

 

The SEQEM uses spatial eccentricity quantile as a threshold to combine the prediction results of 

the “GEO” and “GEO+DENS” models. However, there are other options such as simply adding 

the spatial eccentricity or spatial eccentricity quantile as a feature into the model (i.e., the 

“GEO+DENS+ECC” model and “GEO+DENS+ECCQ” model, respectively). These two models 

are also trained and evaluated. The results show that, for RMSE (Figure 4.10(a)) and MAPE 

(Figure 4.10(b)), both “GEO+DENS+ECC” (RMSE: 10.37, MAPE: 1.52) and 

“GEO+DENS+ECCQ” (RMSE: 9.22, MAPE: 1.54) yield poorer performance than SEQEM 

(RMSE: 9.12, MAPE: 1.42). Therefore, the spatial eccentricity quantile should only serve as a 
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threshold to identify a spatial boundary, but its value does not add more useful information for the 

prediction.  

 

 

Figure 4.10. The performances when adding spatial eccentricity (“ECC”) and spatial eccentricity 

quantile (“ECCQ”) features: (a) RMSE, (b) MAPE (the vertical dashed lines indicate the 

performance of SEQEM) 

4.4.2.3 The impact of concentric band construction 

Besides the proposed more fine-grained “DENS” concentric bands to quantify the station network 

layout, another “DENS2” model is also implemented according to the previous study by Hyland 

et al. (2018), which only considers the number of stations within two distance bands: 0-0.5 miles 

and 0.5-3.1 miles. By comparing the performance of models that only uses “DENS” or “DENS2” 

features (Figure 4.11), it is found that the “DENS” model has a much lower RMSE of 10.31 than 

that of the “DENS2” model (22.97); “DENS” model also has a lower MAPE (2.47) than that of 

“DENS2” (2.99). Overall, the more fine-grained distance bands can better reflect the structure of 

the station network and lead to better prediction performances. 
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Figure 4.11. The performance on all stations using “DENS” and “DENS2” features: (a) RMSE, 

(b) MAPE 

 

Lastly, by examining the feature importance of the “DENS” model, the distance ranges that are 

more important for predicting demand are analyzed. Note that one “DENS” model is trained for 

each month, thus the feature importance scores of different months’ model may vary. Therefore, 

the average importance scores of different distance bands among different months’ “DENS” model 

are computed and presented in Figure 4.12. The band distance that has the highest importance 

score is 0.25 miles (corresponding to 0.2 - 0.3 miles band) and followed by the 0.35 miles 

(corresponding to 0.3 - 0.4 miles band), which is close to the 0.30-mile change point identified by 

the piecewise regression model. Therefore, the feature importance analysis further strengthens the 

conclusions from the piecewise regression.  
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Figure 4.12. Average feature importance for different band distances 

4.5 Conclusions and limitations 

In this chapter, the station interactions in the BSS expansion process is analyzed using a piecewise 

regression model. According to the results of the piecewise regression analysis, the distances 

between stations contain very important information about station interactions and should be 

considered for expansion demand predictions. Then features of spatial station density in fine-

grained concentric bands around a station are constructed to represent the number of stations in 

different distance ranges that the station can interact with. Such features are integrated into the 

demand prediction models to improve the prediction performances. A Spatial Eccentricity 

Quantile based Ensemble Model (SEQEM) is proposed to further improve the prediction 

performances and also identify the spatial range that the station interactions take effects. 

 

The piecewise regression model shows that existing stations receive maximum complement 

benefits when the nearest new station is 0.3 miles away; but when the distance is less than 0.11 

miles, the new station will dilute the demand of existing stations.  This implies that the designers 

of a station-based BSSs should be more cautious of the cost-benefit tradeoff when placing stations 

too close (less than 0.11 miles). Also it would improve the siting of new stations to consider the 
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number of other stations that are around 0.3 miles away, which takes the most advantage of the 

station complement effects. 

 

The results of the demand prediction models indicate that: integrating the station density in 

concentric distance bands improves the prediction performance by considering the spatial structure 

of the station network. “GEO+DENS” model performs well for central areas but has poor 

performance for outskirt low-demand stations. The proposed SEQEM addresses this limitation and 

improves the prediction performance. A 0.78 spatial eccentricity quantile is identified by the 

SEQEM as the threshold that yields the best prediction performance, which also indicates a spatial 

range within which the station interactions should be considered. With the 0.78 spatial eccentricity 

quantile threshold, the SEQEM yields better performance than the “EXT” model regarding both 

RMSE and MAPE. This indicates that the spatial structure of the station network contains very 

important information for the small-scale expansion demand prediction, which can also save the 

effort to collect and process the external data. The fine-grained distance bands also significantly 

improve the prediction performance than only using two bands in the previous study by Hyland et 

al. (2018). The feature importance scores from the trained “DENS” model reveal that the most 

important distance band for the prediction is the band of 0.2-0.3 miles, which is consistent with 

the change point at 0.3 miles identified from the piecewise regression model, which, in another 

aspect, supports the findings from the piecewise regression analysis. 

 

This study provides unique insights for the station interactions in the BSS expansion process and 

practical suggestions to integrate spatial station network information to improve the BSS 

expansion demand prediction. However, there are some limitations that need to be improved in 

future research. First, the piecewise regression model only considers the impact from the nearest 

new stations, which assumes that the nearest new stations have the most impact to existing stations. 

Nevertheless, in the case that multiple new stations are added surrounding one existing station, the 

mixed effects from these new stations still require further investigations. Second, the piecewise 

regression model only analyzed the aggregated patterns of the station interactions. There could be 

other factors that affect the station interactions (e.g., locations of new stations, changes of local 

built environment, price promotions, etc.), which require more analyses in future studies. Third, 

the prediction results indicate that all models have poor performances for the large-scale expansion 
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in 2015, which should be improved in future research. Lastly, this study only focuses on the BSS 

in Chicago. Future studies can apply the piecewise regression model to other BSSs to analyze the 

differences in station interactions across different cities. Also, the SEQEM can be applied to other 

BSSs to evaluate the model transferability in different cities. 
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 COMPARING THE PERFORMANCE OF DIFFERENT TYPES OF 

BIKE SHARE SYSTEMS 

5.1 Introduction 

As discussed in Chapter 1, there are three types of BSSs: station-based, dockless, and hybrid. This 

Chapter aims at comparing the performance of different types of BSSs. To assist the decision 

makings of selecting the system types that yield better user experience, lower operation cost, and 

less carbon emissions, this study proposed a stochastic simulation framework that reflects different 

bike parking requirements, spatial distribution of bikes and bike rebalance restrictions among 

different types of BSSs. The framework uses real-world bike share trip data to evaluate the 

performances of different types of BSSs from the perspectives of both user experience and 

operational challenges. 

 

Different types of BSSs may affect user experience in terms of bike accessibility and the additional 

time required to pick up and return the bikes. Bike accessibility (how easy it is to find a bike) is 

important to users and thus impacts the ridership of the BSSs in the long-term. In station-based 

BSSs, the bikes are all located at the stations and where to find a bike is more predictable to the 

users. In the contrast, bikes are distributed more sparsely in dockless systems, making the locations 

of nearby bikes more uncertain. A hybrid BSS will be between the two, depending on the users’ 

parking behaviors, i.e., whether more users park the bikes back to the stations or on the street. 

Compared to riding a personal bike that the users can directly travel from the trip origin to the 

destination, bike share users need to spend some excess time (Datner et al., 2015)  in walking for 

bike pick-up/returning because the origin/destination of the bike trip (referred to as “biking O-D”) 

may not be identical to the trip’s actual origin/destination (referred to as “actual O-D”). Such 

excess time varies among different types of BSSs due to the different spatial distributions of bikes 

and the different bike parking requirements. In addition to walking to pick up a bike, bike return 

in station-based BSSs also requires extra time walking from the bike parking station to the actual 

destination. Furthermore, if the target parking station was full, the user would have to reroute to 

another station with available docks to return the bike, increasing the walking distance. Such bike 

returning excess time can be avoided in dockless and hybrid systems, since the users can directly 
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park the bikes at the final destinations. Long excess time can reduce user satisfaction of using bike 

share and cause the users to switch to other transportation modes. 

 

Additionally, choosing different types of BSSs may require different bike rebalance and 

management considerations. The demand in a BSS is often imbalanced from both spatial and 

temporal perspectives. The system operators normally deploy vehicles to rebalance the bike fleet 

(Brinkmann et al., 2015; Fishman et al., 2014; Schuijbroek et al., 2017). In station-based systems, 

the number of bikes that can be allocated to a station is restricted by the station capacity (i.e., the 

number of docks). Certain number of docks may need to be left empty for bike return. In the case 

that a station has high bike-checkout needs that exceed the station capacity, some of the trips could 

be unserved unless more frequent rebalance is conducted, which causes higher operational costs. 

In the contrast, as there is no capacity limit in dockless or hybrid systems, more bikes can be 

allocated to high-demand areas. However, two new issues emerge: (1) because bikes are spatially 

more scattered instead of only being located at the stations, the rebalance vehicles need to travel 

around to collect the bikes; and (2) bikes parked on the sidewalks may crowd the street, obstruct 

the pedestrians, and cause safety concerns.  

 

Although selecting the appropriate system type is important for developing new BSSs and 

expanding the existing ones, very few studies have quantitatively compared the above-mentioned 

differences in using different types of BSSs to guide the decision making. Most of the existing 

studies focus on improving the system performance of a specific type of BSS, but rarely consider 

the impact of changing system types (there are more discussions about relevant literature in Section 

5.2). The few studies discussing different types of BSSs are either macro-scope analysis comparing 

the bike share use, policy, and business models across multiple cities through literature and 

government documents review (Gu et al., 2019; Hirsch et al., 2019; Susan et al., 2014) or analysis 

of the different usage patterns when both station-based and dockless BSSs are available in the 

same city (Chen et al., 2020a; Ji et al., 2020; Lazarus et al., 2020; Li et al., 2019). However, the 

differences observed from these studies are insufficient to support the decision making of which 

type of BSS works better to serve the demand in a specific city, because the observed differences 

may be the results of many external factors, such as population density, pricing schemes, service 

area assignment, and the support from local governments, etc. Therefore, to better guide BSS 
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development, there is a critical need for models that can compare different types of BSSs and 

quantify their system performances from the perspectives of both users and operators when serving 

the same demands. 

 

To address this research gap, this study proposed a model that simulates the operation of different 

types of BSSs to serve the same demands and evaluates the system performances including service 

level (percentage of served trips), excess time spent by the users, vehicle-miles-traveled for 

rebalancing, and the number of bikes parked on street. The model uses bike share trip data as input 

to estimate the real-world demands, accounting for the unsatisfied demands that are not captured 

in the trip records. To evaluate how system types impact the spatial distribution of bikes and the 

bike flows, the model includes components to estimate the actual origins and destinations of trips 

and simulate user behaviors of bike pick-up and parking choices. To compare the operational needs 

in different types of BSSs, this study also integrated an optimization model into the simulation 

process for bike rebalance. The model is applied to three case study cities — Los Angeles, 

Philadelphia, and Chicago — to demonstrate how the simulation results of different types of BSSs 

can shed light on BSS improvement and guide potential system type changes. 

 

The rest of this Chapter is organized as follows. Section 5.2 reviews relevant literature and 

highlights the contributions of this study. Section 5.3 presents the details of the proposed model 

and the input data of the case study cities. The results of the case studies are presented in Section 

5.4. Section 5.5 concludes this Chapter and discusses potential future work. 

5.2 Literature review 

Most of the existing bike share literature focuses on station-based systems, because of their longer 

history. More data are also available for station-based systems, because many station-based BSSs 

publicly share their trip data. To guide the BSS operations, researchers have proposed models to 

predict the demands at different bike share stations (Hulot et al., 2018; Lin et al., 2018; Médard de 

Chardon & Caruso, 2015; Yang et al., 2016). Due to the spatiotemporally imbalanced demands, 

bike share operators normally use automobiles (e.g., vans) to move the bikes from the oversupplied 

docking stations to undersupplied ones. Without proper bike rebalance, bike share users may 

encounter empty/full stations, which would cause unsatisfied demand or increase the excess time 
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for the users to return the bikes. Because of the importance of rebalancing in BSS operations, many 

studies have proposed algorithms for optimizing bike rebalance (Alvarez-Valdes et al., 2016; 

Brinkmann et al., 2015; Caggiani & Ottomanelli, 2012; Chemla et al., 2013; Chiariotti et al., 2018; 

Fricker & Gast, 2016; Kloimüllner et al., 2014), aiming to improve the efficiency of the system by 

determining the number of bikes to be moved and the routes of  the rebalancing vehicles. Overall, 

the abovementioned literature provides insights to improve existing station-based BSSs. 

 

In recent years, because dockless BSSs’ increasing popularity, a growing body of literature has 

studied dockless BSSs. Similar to the literature of station-based BSSs, the majority of the dockless 

BSS studies focus on travel pattern analysis (Chen et al., 2020a; Ji et al., 2020), demand prediction 

(Liu et al., 2018; Xu et al., 2018a), and optimization of bike rebalance (Caggiani et al., 2018; Luo 

et al., 2020; Zhang & Mi, 2018). In these studies, the bike share trip demands were aggregated to 

small regions (e.g., grids) to simplify the problem (Liu et al., 2018; Pan et al., 2019). Then the 

problems can be analyzed or solved at the region/grid level using similar methods as for a station-

based system. These studies help improve dockless systems, but do not directly compare dockless 

BSSs to other types of BSSs. 

 

A small number of studies evaluated the differences between station-based and dockless BSSs. 

While different types of BSSs have been launched in different cities, these BSSs often differ from 

each other regarding policies, business models, and pricing schemes. Gu et al. (2019) compared 

the station-based and dockless BSSs in China regarding market scales (e.g., the number of systems 

and bikes), government supervision, user demographic information, and financial sustainability. 

Similarly, Hirsch et al. (2019) summarized the dockless bike share literature and real-world 

practice in North America and pointed out that the business models of dockless BSSs are more 

profit-oriented than that of the existing station-based BSSs. Different from these studies that 

summarize the observations from multiple cities, some researchers analyzed the co-existence of 

station-based and dockless BSSs in the same city, where dockless BSSs are introduced in addition 

to existing station-based BSSs. Such co-existence of station-based and dockless BSSs is different 

from the hybrid BSSs, because the two systems are independently managed by different operators 

and the dockless bikes are not allowed to be parked at the docks of the station-based BSSs. Using 

trip data, researchers compared the ridership, user characteristics, and travel patterns between the 
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two types of BSSs. Li et al. (2019) analyzed the competition between the dockless BSSs and the 

station-based BSS in London and found that the average weekly usage of each station was reduced 

by 5.93% due to the newly added dockless BSSs from multiple companies. Lazarus et al. (2020) 

compared the Ford GoBike and JUMP (dockless e-bike share) in San Francisco. They found that 

dockless e-bike share trips have longer distances and durations than the docked trips. The JUMP 

system also has a higher bike usage intensity (daily trips per bike). Chen et al. (2020) found that 

the station-based BSS and the dockless BSS have similar user characteristics (in terms of gender, 

age, education background, etc.) based on a user-survey conducted in Hangzhou, China. Ji et al. 

(2020) compared the trip distances and durations between a station-based BSS and a dockless BSS 

in Nanjing, China. They concluded that, while the distance and riding time distributions are 

identical between the two systems, significant differences exist regarding the spatiotemporal usage 

patterns. While these studies identify how station-based and dockless BSSs perform differently or 

similarly among multiple cities or within the same city, the differences observed regarding 

ridership and the spatial-temporal usage patterns are also the results of many external factors, such 

as population density, pricing schemes, and the assignment of service areas. Such external factors 

are not tied to a specific type of BSSs (e.g., the same pricing scheme can be applied to both station-

based and dockless BSSs). Therefore, results from the above studies cannot be used to conclude 

which type of BSSs can yield better performance.  

 

Models that can compare the system performances of different types of BSSs to serve the same 

demand in a city are needed to guide BSS development. With the increasing focus of sustainable 

transportation globally, many cities are in the progress of planning their bike share service, while 

some other cities are considering switching their existing station-based BSSs to dockless or hybrid 

ones (Hirsch et al., 2019). Currently, there lack models to quantitatively compare different types 

of BSSs in a city to support such decisions. To address this gap, this study proposed a simulation 

model to evaluate the system performance of using different types of BSSs in the same city from 

the perspectives of both the users and the system operators. 

 

Because different BSS types will result in different bike distributions and trip flows, which will 

impact the system’s service quality (in terms of served trips and users’ excess time, etc.), to enable 

comparison among different types of BSSs, it is critical for the model to (1) consider the true 
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demands of bike share, (2) estimate the trips’ actual O-Ds, (3) consider the user behaviors when 

withdrawing/returning bikes to represent the complex interactions between the users and 

bikes/docks, and (4) have an integrated optimization model to account for rebalance activities.  

 

First, while historical trip data of a BSS provides essential information on the need for bike share, 

it only records satisfied demands, not the true demands. Having a different BSS type may better 

serve the unsatisfied demands in certain regions while underserving the demands in others. 

Therefore, the comparison should be based on estimated true demands instead of observed 

historical demands. Previous studies (Caggiani & Ottomanelli, 2013; O’Mahony & Shmoys, 2015) 

have proposed methods for true demand estimation using historical data.  

 

Second, models that can estimate the trips’ actual O-Ds using the recorded biking O-Ds are needed 

to differentiate the user experience in different types of systems. Bike share trip data only records 

the biking O-Ds, i.e., where the users picked up and returned the bikes. When estimating demands 

for BSSs, existing studies often use the biking O-Ds (in most cases, bike share stations) as if they 

were the actual O-Ds (Alvarez-Valdes et al., 2016; Chen et al., 2018; Chiariotti et al., 2018; Datner 

et al., 2015; Freund et al., 2017; Huang et al., 2018), ignoring the walking stages and the excess 

time that the users had to spend. However, because different types of BSSs will have very different 

bike distributions which will significantly impact the bike pick-up and returning process, it is 

important to account for the walking stages and quantify the users’ excess time in the comparison.  

 

Third, better user behavior models are needed to account for the complex bike pick-up and return 

choices. Previous studies that model station-based BSSs often assume that a user’s starting station 

is the actual origin of the trip and the user would leave the system unserved if the station is empty 

(Alvarez-Valdes et al., 2016; Chen et al., 2018; Freund et al., 2017). However, there may be other 

stations with bikes that are near the user’s actual trip origin and the user may choose to reroute to 

pick up a bike from those stations. Some studies have considered such roaming behaviors between 

stations (Kabra et al., n.d.; Zhang et al., 2016c), but the users’ walking behaviors are arbitrarily 

defined, assuming that the probability of walking to a station decays linearly with increasing 

distance, which may not represents the actual user behaviors in the real world. Similarly, the model 

should also be able to simulate the user behaviors to find a nearby bike in a dockless/hybrid system, 
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where the bikes are more scattered. Modeling the behaviors that users make the decisions on 

whether walking to pick up a bike or leaving the system is crucial for comparing the service levels 

among different system types. In addition, at the end of a trip, the positions that users park the 

bikes are influenced by the parking restrictions of the BSS types and, in the case of station-based 

BSSs, the dock availability. Tracking the bike parking locations is important to analyze the on-

street-parking issues. The parking locations of one trip can also influence the subsequent trips, and 

thus affects the system performance of service level and excess time.  

 

Lastly, although many studies have proposed rebalance methods for BSSs (Alvarez-Valdes et al., 

2016; Brinkmann et al., 2015; Caggiani & Ottomanelli, 2013; O’Mahony & Shmoys, 2015; 

Schuijbroek et al., 2017), very few studies have integrated bike rebalance optimization models in 

simulations to quantitatively compare the rebalance needs among different types of BSSs. 

 

To address the above discussed research gaps, this study proposed an integrated modeling 

framework that simulates the complex dynamics and the interactions among the users, bikes, 

stations, and the rebalance activities in different types of BSSs (station-based, dockless, and hybrid 

systems). The model also makes the following contributions in the context of existing BSS 

modeling literature: (1) this study proposed a method to infer the actual O-Ds of bike share 

demands, which enables better estimation of the excess time in the walking stages at the beginning 

and the end of a trip; (2) this work developed a user behavior model that simulates the walking 

behaviors according to the historical walking distance distribution when people uses walking as a 

transit mode, which better estimates the users’ willingness to walk to access another transport 

mode; and (3) the model integrated a bike rebalance optimization model that accounts for the 

different rebalancing operations (i.e., station capacity restrictions in station-based BSSs and the 

routing to collect scattered bikes in the dockless/hybrid BSSs) in different types of BSSs. 

5.3 Simulation model 

5.3.1 Overview of the modeling framework 

The simulation model mainly includes two steps: (1) demand estimation and (2) system simulation 

(Figure 5.1). The demand estimation step generates bike share demands with estimated actual trip 
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O-Ds. Using the historical bike share trip data from station-based BSSs and station status data 

(Section 5.3.2.1), the model first estimates the true bike withdrawal rates during different time 

periods at each station to address the demand censoring issue (Section 5.3.3.1). The biking trips 

are then stochastically generated based on the true bike withdrawal rates and the biking O-D 

correlations observed from the historical trip data (Section 5.3.3.2). After separating the service 

area into small grids, the model infers the trips’ actual O-Ds based on the walking distance 

distribution from travel survey (Section 5.3.3.3). The generated travel demands (with start time 

and actual O-Ds information) are used as inputs in the system simulation step. The simulation 

model includes a user behavior model to determine how the travel demands are served and a bike 

rebalance model to periodically redistribute the bikes. The user behavior model simulates the user 

behaviors of bike pick-up based on the walking distance distribution and models the bike return in 

accordance with the operation rules of different system types (Section 5.3.4). Bike rebalance 

affects the availability of bikes (and docks in station-based BSSs). This study introduces an integer 

programing optimization model for station-based BSSs and a heuristic method for dockless and 

hybrid systems to redistribute the bikes (Section 5.3.5).  

 

 

Figure 5.1. Overview of the modeling framework 
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Notation list: 

Bk The kth (k = 1,2,3) grid band around the primary grid; the primary grid is represented as k = 

1; 

Ci Capacity (the total number of docks) of station i; 

iC   Working capacity of station i computed based the station’s expected demand; 

Di Auxiliary variables quantifying the expected imbalance of bike inventory at station i; a large 

value indicates that the station is either oversupplied or undersupplied; 

ek Distance from the outer edge of the kth
 band to the center of the primary grid; 

if  
Accumulated net change of the available bikes at station i from the beginning of the 

planning horizon to the end of the th  hour ( {0,1, 2, , }Q  ; a positive value means that 

station i is expected to have more bike returns than bike withdrawals; 

gi The bike allocation weight for station i in a station-based BSS; 

hp Probability that the user is willing to end the trip at the nearest primary grid where docks 

are available instead of parking the bikes on the sidewalk in the actual destination grid (in 

hybrid BSSs); 

Li The target inventory level (the number of bikes) of station i for bike rebalance; 

tM  The correlation matrix of biking O-D (primary-grid) pairs during hour t of the day, 

calculated from historical bike share trip data; 

ij

tm  
The probability that a trip ends in station j given that it starts from station i in hour t of the 

day; 

N The total number of bikes (bike fleet) in the bike share system; 

NBk The number of grids in Bk; 

i

tp  
The percentage of time that station i had available bikes during hour t of the day; 

Q Rebalance interval; the rebalance activity is conducted every Q hours; 

RBk, first/last Total probability of the users walking from all grids in Bk to a primary grid to pick up bikes 

(RBk, first) or returning bikes to a primary grid and then walking to the actual destination in 

Bk (RBk, last); 

RGk, first/last The probability of the users walking from one grid in Bk to a primary grid to pick up bikes 

(RGk, first) or returning bikes to a primary grid and then walking to one actual destination 

grid in Bk (RGk, last); RGk, first/last = RBk, first/last / NBk; 

i

tr  
The average bike withdrawal rate during time interval t at bike share station i; 
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i

tR  
Estimated true average bike withdrawal rate during hour t of the day at bike share station i; 

S The set of stations in the station-based or hybrid BSS, indexed by i or j; 

T The number of days that the data is used for computing the average demand rate for all the 

stations;  

ui Total expected bike checkout at station i during the planning period of bike rebalance; 

vi Total expected bike return at station i during the planning period of bike rebalance; 

i

tzw  
The number of observed bike withdrawals during hour t at station i on the zth day; 

5.3.2 Model Input 

The proposed model takes three inputs: (1) bike share data, (2) walking distance distribution when 

people walk to transit to/from another mode, and (3) the type of system to be modeled. 

5.3.2.1 Bike share data 

The objective of this study is to compare the system performance of different types of BSSs when 

serving the same demands. Therefore, the most fundamental input is the bike share demands, 

which should reflect the temporal variations (e.g., hourly changes) of bike share demand in 

different regions in a BSS. The demands could either be learned from historical data (for cities that 

already have a BSS) or estimated from a demand prediction model (for cities that do not yet have 

a BSS). Obviously, historical data, if available, can provide a clearer picture about the demands 

than the predicted ones. In this study, the demand input is based on historical data from station-

based BSSs because station-based BSSs’ data are generally more available and some cities are 

considering transferring the existing station-based BSSs to dockless or hybrid ones (City of 

Philadelphia, 2019; The City of Chicago, 2019). But data from dockless/hybrid systems can also 

be used as model input (discussed in Section 5.3.3.4).  

 

To estimate the true demands at existing stations (process explained in Section 5.3.3.1), the 

historical trip data is combined with station status data. The trip data contains the timestamp, 

station ID of the biking O-D, as well as the duration of each trip. Because the trip data only records 

historically satisfied trips, it may underestimate the bike withdrawal rate at a station, due to the 

issue of demand censoring (Goh et al., 2019; O’Mahony & Shmoys, 2015). This happens when 
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the station becomes empty or full, which prevents the users from checking out or returning bikes, 

respectively. To identify which stations were impacted by demand censoring during which time 

periods and better estimate the true demands, the station status data was collected at 10-minute 

intervals using the APIs provided on the BSSs’ websites. The station status data contains the 

timestamp of data collection and the number of available bikes and docks at each station at the 

moment. Compared to other studies collecting such station data using 30-minute (Datner et al., 

2015) or 15-minute (Schuijbroek et al., 2017) intervals, 10-minute intervals are chosen to gather 

more fine-grained information about station status.  

 

For case studies, this study collected bike share trip and station data from three station-based 

systems: the Metro Bike Share (Metro Bike Share, 2019) in Los Angeles (including a small number 

of stations in Santa Monica and Long Beach), the Indego Bike Share (Indego Bike Share, 2019) 

in Philadelphia, and the Divvy Bike Share (Divvy Bike Share, 2019) in Chicago. Chicago’s BSS 

is one of the largest BSSs in the United States regarding the daily trips; while the BSSs in Los 

Angeles and Philadelphia have relatively small and medium ridership, respectively (Table 5.1). 

This study selected these three BSSs with different sizes to study the performance of different 

types of systems under various usage intensities. The locations of the bike share stations in the 

three BSSs are presented in Figure 5.2. The case studies used data from the 20 weekdays in 

September, 2018. Previous studies have shown that bike share usage shows different temporal 

patterns between weekdays and weekends but very similar patterns exist in different weekdays 

(weekends) within a month (McKenzie, 2019; O’Brien et al., 2014; Zhou, 2015). This study 

focused on the weekdays in this analysis because they have more trips than the weekends. The 

method can also be applied to weekend data as well as data in other months and in other cities.  

 

This study also counted the number of available bikes at 12 AM on September 17, 2018 (Monday) 

using the station status data as the input for current bike supplies in the simulation model (Table 

5.1). The impact of different bike fleet sizes in the system is evaluated in the sensitivity analysis 

(Section 5.4.3.2).  The number of docks at each station as well as the station locations are also 

extracted from the station status data. The number of docks will be used as the station capacity to 

model station-based BSSs, while the station locations provide information about the spatial 

distribution of bike share demands. 
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Table 5.1. Basic system size statistics of the analyzed BSSs in September 2018 

City Los Angeles Philadelphia Chicago 

Average trips per day 986 2,387 15,404 

Number of stations 93 131 581 

Number of bikes 964 1,140 3,930 

Number of docks 1,958 2,561 9,904 

 

 

(a)  (b) (c)  

Figure 5.2. Existing bike share stations as of September 2018 in (a) Los Angeles, (b) 

Philadelphia, and (c) Chicago 

5.3.2.2 Walking distance distribution 

The proposed model uses the walking distance distribution from historical data to estimate the 

actual O-Ds (Section 5.3.3.3) and model user behaviors of the walking stage before picking up 

bikes (Section 5.3.4). This study extracted the trip data that involved walking from the 2010-12 

California Household Travel Survey (CHTS) (California Department of Transportation, 2013). In 

the survey, trip information such as the travel distance and transportation mode was collected 

through wearable GPS devices so that the trip distances can be more accurately collected than the 

values reported by the survey takers. In the survey data, when a trip involved multiple travel modes, 

the trip is separated into different stages by mode. This study extracted the trips that had at least 

two stages and used walking as either the first (17,615 trips) or last (38,635 trips) stage’s mode 

(e.g., walked to a bus stop and then took the bus). This data can help us understand how far people 

walked to connect to or from another transportation mode. In the following sections, the walking 
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trips that are in the first and last stages of those multi-stage trips are denoted as WALKfirst and 

WALKlast, respectively. 

5.3.2.3 System type 

For different system types (station-based, dockless, or hybrid), this study applys different bike 

parking requirements (Section 5.3.4) and bike rebalance (Section 5.3.5) in the model. For station-

based BSSs, the bikes must be returned to stations; the bike rebalance is constrained by the station 

capacity and needs to consider leaving docks open for bike returns. In contrast, there are no such 

restrictions in dockless and hybrid systems. 

5.3.3 Demand estimation 

This section explains how the input data is used to estimate true demands and the trips’ actual O-

Ds. 

5.3.3.1 True bike withdrawal rate estimation 

Bike withdrawal from a bike share station is often modelled as a Poisson Process (Alvarez-Valdes 

et al., 2016; Chemla et al., 2013; Schuijbroek et al., 2017; Tao & Pender, 2017). The average 

number of bike withdrawals within a certain time interval (e.g., 1 hour in this case study) can be 

computed using Eq. (5.1).  

 
1

1 T
i i

t tz

z

r w
T 

    (5.1) 

where 
i

tr  is the average hourly bike withdrawal rate during time interval t (e.g., 8:00 am to 8:59 

am) over T days (determined by the estimation period, 20 days in this study) for a bike share station 

i and 
i

tzw  is the number of observed bike check-outs from the station i during time interval t on the 

zth day. Similar to the existing literature  (Lin et al., 2018; Yang et al., 2019, 2016; Zhang et al., 

2016b), the trips are aggregated into hourly bins to capture each station’s hourly demand variations 

in a day, assuming that the demand rate is the same within the hour.  
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To correct for the demand censoring when the stations are empty/full, this study estimates the true 

bike withdrawal rate 
i

tR by adjusting the demand rate 
i

tr with the percentage of time that the 

station has available bikes, adopting the method used by previous studies (Alvarez-Valdes et al., 

2016; Goh et al., 2019; O’Mahony & Shmoys, 2015): 

 

i
i t
t i

t

r
R

p
   (5.2) 

where 
i

tp  is the percentage of time that station i had available bikes during time t over T days. 

Because station status data is collected every 10 minutes in this study, this study computed the 

percentage of 10-minute-intervals that the station i had at least one bike during hour t over T days 

as an approximation of
i

tp . 

5.3.3.2 Generating trips’ biking O-Ds 

Using the estimated true hourly withdrawal rate for each bike share station, the model can 

stochastically generate bike pick-up needs and trip time using the Poisson Process. The expected 

number of bike share trips originated from station i in hour t equals to the estimated true hourly 

bike withdrawal rate 
i

tR , and the inter-trip time between two consecutive bike withdrawals follows 

an exponential distribution with the same rate parameter. Once the starting time and starting station 

of a trip are known, the next step is to assign a destination station for the trip. To do this, this study 

first computed the biking O-D correlation matrix 
tM  for station pairs for each hour t of the day 

using the historical data. In this matrix, the element 
ij

tm   denotes the probability that a trip ends in 

station j given that it starts from station i in hour t of the day, which is computed using the trip data 

in the T days and also corrected based on the bike and dock availability of the corresponding 

stations in the station status data. The details of computing 
ij

tm  are presented in Section D.1 of the 

APPENDIX D. Based on this biking O-D correlation, a trip that starts from station i in hour t may 

end at station j with probability ij

tm and the trip destination can be simulated.  
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5.3.3.3 Actual origin and destination estimation 

So far, trips with trip time and the biking O-Ds have been generated. This section further accounts 

for the walking stages and estimates the trips’ actual O-Ds. To do this, this study first generalized 

the system’s service areas beyond the existing stations by dividing the area into squared grids with 

an equal grid edge size of 400 feet (122 meters). This edge size is selected for two reasons: (1) in 

WALKfirst, 81% of the walking trips are within 400 feet, indicating that users are willing to walk 

within a grid to pick up a bike; and (2) for the three studied cities, the grid is small enough that 

each grid contains at most one existing bike share station, allowing us to model the behaviors that 

users have to switch to a nearby station when the nearest station is empty or full at the grid-level. 

This resolution provides a balance between spatial granularity and computational intensity.   

 

Next, this study estimated the actual O-D for each simulated trip based on the biking O-D and the 

walking distance distribution. The grids that contain existing bike share stations are defined as the 

“primary grids”. Although the biking stage of the trip starts/ends from/at the primary grids, when 

consider the walking stages, the actual trip origin/destination may locate in the grids that surround 

the primary grids. This study assumed that the distance from the actual trip origin (destination) 

grid to the corresponding primary grid follows the same distribution as the walking distances in 

WALKfirst (WALKlast), which reflects how far people walked to connect to (from) another 

transportation mode. This study also assumed that no one is willing to walk more than two grids 

and defined the area within two grids as the “catchment” of the primary grid. Based on each 

surrounding grid’s distance from the center of the primary grid (assuming the station is located at 

the center of the primary grid), the catchment can be separated into three bands (Figure 5.3): B1 

(brown color), B2 (light orange), and B3 (grey). B1 is the primary grid. The distance from the outer 

edge of the catchment to the center of the primary grid is 1,000 feet (0.19 miles). According to the 

walking distance distribution from CHTS survey, 95.6% and 96.0% of the walking trips in 

WALKfirst and WALKlast, respectively, are within 1,000 feet. Therefore, the defined catchment can 

reasonably cover the majority of people’s walking range.  
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Figure 5.3. A primary grid (the center grid) and its catchment. The numbers in each grid shows 

the distance in feet between the outer edges of that band to the center of the primary grid) 

 

Using the Empirical Cumulative Distribution Function (ECDF) of the walking distances from 

WALKfirst, the total probabilities of the users walking from Bk (k = 1, 2, 3) to the center of the 

primary grid to pick up bikes can be calculated using Eq. (5.3).  
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where ek is the distance from the outer edge of Bk to the center of the primary grid. As a 

simplification, this study allocated the small portion of walking trips (4.36%) that are farther than 

1,000 feet from the primary grid to B3, ensuring that the sum of the probability in the catchment 

equals to 1. Assuming that all grids are equal within the band, the probability for each grid, RGk, 

first, can be calculated using Eq. (5.4).  
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where NBk is the number of grids in the kth band (NB1 = 1, NB2 = 8, NB3 = 16). The calculated 

probabilities for each band and grid are listed in Table 5.2. Similarly, the probability of walking 

from the primary grid to each grid after bike return, RGk, last, can be computed for destination 

estimation using the ECDF of the walking distance from WALKlast (Eqs. 5.5-5.6). 
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Based on these calculated probabilities and a trip’s biking O-D, the trip’s actual O-D can be 

stochastically assigned to the grids. Take Chicago as an example, with 581 primary grids (581 

existing stations), a total of 10,350 grids may serve as the actual trip origins or destinations. Figure 

5.4 shows the expected number of trips per hour originating from each grid from 8 to 9 am in the 

downtown area of Chicago, illustrating how the demands have been redistributed to an expanded 

area surrounding the stations.  

 

Table 5.2. Probabilities for assigning the grids in each of the three bands as trips’ actual origins 

and destinations 

Data Band 

Bk 

ek (feet) ECDF(ek) Total 

probabilities 

for the band 

Number of 

grids 

Probability for 

each grid within 

the band 

WALKfirst B1 200 52.12% 52.12% 1 52.12% 

B2 600 89.68% 37.56% 8 4.70% 

B3 1000 100% 10.32% 16 0.64% 

WALKlast B1 200 55.65% 55.65% 1 55.65% 

B2 600 89.69% 34.04% 8 4.26% 

B3 1000 100% 10.31% 16 0.64% 
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Figure 5.4. Distribution of the expected hourly bike withdrawal rate between 8 am and 9 am in 

Chicago downtown area 

5.3.3.4 Demand estimation using dockless/hybrid BSS data 

While this study used historical data from station-based BSSs as inputs, the above mentioned 

methods can also be applied to use data from dockless/hybrid BSSs as inputs with slight 

modifications. Trip data from dockless BSSs normally reports the latitude and longitude of the 

biking O-D of each trip. By aggregating the trips within the same grid, the same demand estimation 

process can be applied with two differences. First, to correct for demand censoring, the status of 

the dockless bikes need to be collected to identify the grids and the time periods that have no 

available bikes. Second, because dockless bikes can be parked very close to the actual destination, 

the biking destination can be considered as the actual trip destination.  

5.3.4 User behavior model 

Given the estimated demands with actual origin and destination grids for each trip, whether and 

how the trip will be served will be affected by the user behaviors, bike availability, and BSS types. 

When the grid of the trip’s actual origin has available bikes, the user will randomly pick up a bike 

within the grid and start the trip. If this grid has no bike, the user will look for nearby bikes and 

make the decision on whether to pick up the nearest bike based on the distance he/she needs to 
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walk. This study assumes that the distance a user is willing to walk to pick up bikes follows the 

same distance distribution in WALKfirst. and is consistent with the revealed walking tolerance from 

the actual trip O-D assignment (more details explained in APPENDIX D, Section D.2).   

 

After defining the above user behaviors in the walking stage of a trip, whether a trip will be served 

or not can be simulated. When a trip is served, the duration of the trip is computed using walking 

and biking distances and the average human walking speed of 276 feet/minute (3.13 miles/hour) 

(Levine & Norenzayan, 1999) and average biking speeds from historical data (6.23, 6.94, and 7.65 

miles/hour in Los Angeles, Philadelphia, and Chicago, respectively). In the case that the bike is 

returned to the same grid (i.e., a round trip), the trip duration is assigned by randomly sampling 

the trip duration distribution from all historical round trips. 

 

Besides the walking distance, another factor that affects how a trip is served is the bike parking 

rules of different types of BSSs. In a station-based system, the users are required to return bikes to 

the stations. So the users will have to look for the nearest primary grid around their final 

destinations, and then return the bikes to a random available dock at the station in the primary grid. 

In the case that there is no available dock at the moment in the primary grid, the users will need to 

reroute to the closest primary grid to the actual destination where docks are available. In a dockless 

BSS, the bike will be directly returned to the destination grid and parked on the sidewalk. In a 

hybrid system, because the users have the options to either park the bikes back to the stations or 

on the sidewalk, the parking behavior is more complex. The system operators may apply price 

incentives (Singla et al., 2015) to encourage users to park the bikes to stations, which would 

mitigate the on-street parking issues and also reduce the workload for bike rebalance when 

collecting bikes (since bikes are less scattered spatially). This study assumes that the users will 

return the bikes to the stations if his/her final destination is in a primary grid and there are available 

docks. Otherwise, with a certain probability hp, the user is willing to end the bike share trip at the 

nearest primary grid where docks are available instead of parking the bikes on the sidewalk in the 

actual destination grid. hp is a parameter that can be changed to represent different scenarios. This 

tests the impact of hp with values of 25%, 50%, and 75%. In reality, the probability hp can be 

affected by price incentives from the BSS, certain service rules, or other factors that could 

encourage the users to park bikes back to the stations. 
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5.3.5 Bike rebalance 

Rebalance is an important part of the BSS operations. In station-based BSSs, rebalance helps avoid 

the situations of bike outage or full-docks, and thus can reduce the unsatisfied demands and 

improve user experience. One of the most important management decisions for bike rebalance is 

to identify the target bike inventory in a region to better serve the future demands. This study 

modified the method proposed by O'Mahony and Shmoys (2015) to allocate the existing bikes to 

different bike share stations. This resource allocation problem is expressed as an integer program 

in Eqs. (8) to (12). In a station-based system, the model allocates the total number of bikes N (the 

available bike supply in Table 5.1) in the system to each station (i.e., the primary grids), while the 

number of allocated bikes (inventory level) of station i is Li and the dock capacity is Ci. Assuming 

that the system is rebalanced every Q hours, the goal is to find the initial inventory level for each 

station that best serve the demands in the planning horizon of the next Q hours. Based on the 

estimated true demand rate for each station, the accumulative net demand flow 
if  is computed, 

which tells us the expected net inventory change at station i from the beginning of the planning 

horizon to the end of the th  hour ( {0,1,2, , }Q  , 
if  > 0 when there are more bike returns than 

bike withdrawals at station i in the first  hours of the planning horizon).  

 

To more effectively allocate the bikes, this study introduced the working capacity iC   for each 

station based on min if


 and max if


(Eq. 5.7), which finds the capacity-in-use for each station 

based on the expected demand. Intuitively, a station i with min 0if


  (having more bike 

withdrawals than returns) needs at least | min |if


 bikes at the beginning of the planning horizon 

to meet the consumption of bikes; while a station with max 0if


 (having more bike returns than 

withdrawals) needs to leave at least | max |if


 docks open to serve the bike returns. Therefore, the 

working capacity iC  is set to be | min | | max |i if f 
 

  for those stations that have min 0if


  and 

max 0if


 to guarantee that the expected bike withdrawals and returns can both be satisfied. On 

the other hand, when both min if


 and max if


 are positive/negative, the working capacity iC  is 
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set to be max(| min |, | max |)i if f 
 

 to meet the maximum inventory change. Note that iC  should 

be round up to the nearest integer and should not exceed the actual capacity Ci. The Ci in the model 

proposed by O'Mahony and Shmoys (2015) is replaced with the working capacity iC   in constraint 

(10) to avoid allocating unnecessarily large number of bikes to stations with large capacity but low 

demand (more details are discussed in the Section D.3 of APPENDIX D). 

 

The min i

iL f


  in constraint (5.10) denotes the expected minimum number of available bikes 

during the planning horizon, and correspondingly, the max i

ii fC L 


   in constrain (5.11) is the 

expected minimum available docks (according to the working capacity). In addition, to prioritize 

bike allocation to stations with high demand, this algorithm also introduces weights ui and vi in the 

constrains (5.10) and (5.11), respectively, where ui is the total expected bike checkouts at grid i 

during the planning period and correspondingly, vi is the total expected bike returns. The auxiliary 

variables Di serve as a penalty for the bike inventory being too large or too small, with the 

consideration of the availability of both bikes and docks and station weights. Lastly, the objective 

function (5.8) aims to minimize the total penalty Di of the entire system. Constraint (5.12) 

guarantees that Li is non-negative and not greater than iC  .  
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D   (5.8) 

 . . i

i

s t L N   (5.9) 

 ( min )i

i i ii D L f u

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 ( max )i
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To provide a fair comparison of different types of BSSs, this study sets different types of BSSs to 

have the same number of bikes, i.e., the current bike supply N. However, since the algorithm allows 

the summation of Li to be less than N in constraint (5.9), it is possible to have unallocated bikes 

after solving the above resource allocation problem. This study does not directly allocate all the 

bikes in constraint (5.9), because the problem formulation may sacrifice bike return needs to 

allocate the additional bikes. Instead, when 
i

i

L N , the following Algorithm 1 is proposed to 

allocate the remaining bikes to stations with extra empty docks and low expected bike return vi. In 

Section D.3 of the APPENDIX D, it is shown that the proposed method significantly improved the 

service level (percentage of unserved trips) compared with the original method by O'Mahony and 

Shmoys (2015), which does not consider the working capacity and the weights ui and vi. 

 

Algorithm 1: Allocating remaining bikes in a station-based BSS 
 

Input: The solved inventory level Li from the integer program; the expected bike return 
iv for each 

station i; Total number of bikes N 
Output: Final target inventory level Li for station i 

Procedure AssignRemainingBikes(
iL , vi, N) 

 WHILE i

i

L N :  

             remain i

i

N N L                                   # The remaining bikes to be distributed 

              ( ) (max )i i i i i
i

g C L v v                       # compute the bike allocation weights gi for station i; 

stations that have more empty docks and smaller 

expected bike return vi  will have a larger gi                                                                      

             min( , )i
i i remain i

i

i

g
L L N C

g
  


           # Li round to integer 

 

The rebalance of station-based system aims to balance bike return and withdrawal needs. Because 

dockless and hybrid BSS are not restricted by the station capacities, the problem formulation 

cannot be directly applied. Additionally, rebalance each grid in dockless and hybrid BSSs may be 

unnecessary when the total number of bikes in nearby grids are at a good level, since the grids in 

the same catchment can complement each other. Therefore, this study proposed a heuristic method 

to allocate bikes in dockless or hybrid systems at the catchment-level (Algorithm 2). Intuitively, 

when there’s no capacity limit, bikes should be first allocated to those catchments with net bike 
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outflows (i.e., min if


 < 0). Algorithm 2 prioritizes the primary grid catchments that have net bike 

outflows and uses ui (total expected bike checkout from station i) as the weighting factor to assign 

the remaining bikes. When moving bikes into a catchment, the rebalanced bikes are only allocated 

to the primary grid instead of to each individual grid, because it is easier for the BSS operators to 

rebalance the bikes to demand hubs than to drop smaller amount of bikes to every grid.  

 

Algorithm 2: Assigning Inventory Level for Primary Grid Catchments in Dockless/Hybrid Systems 
 

Input: min if


and 
iu for each primary grid i; 

            Total number of bikes N 
Output: Target inventory level Li for each primary grid catchment 

Procedure AssignInventoryLevelNoDocks( min if


, , N) 

 IF (min | min 0)i i

i

f f N 
 

   : # sufficient fleet size to place the maximum outflow number of 

bikes in all grids 
             FOR each primary grid i: 

                      IF  min 0if


 :                 # First assign the bikes to grids that have net outflow 

                              min i

iL f


   

                      ELSE Li = 0 

             (min | min 0)i i

remain

i

N N f f 
 

         # The remaining bikes 

             FOR each primary grid i: 

                      i
i i remain

i

i

u
L L N

u
  


      # Allocate the remaining bikes using 

iu as the weight,  

                                                                      Li round to integer 

      ELSE: # the system has insufficient bikes to place the maximum outflow number of bikes in all grids  
              FOR each primary grid i: 

                      IF  min 0if


 :                   # First assign the bikes to grids that have net outflow 

                              
min

min |min 0)

i

i i i

i

f
L N

f f




 
 


 

 （
        # Li round to integer                 

                      ELSE Li = 0 

 

 

After obtaining the list of grids that need rebalance, this study computes the mileage to travel 

through these grids by solving a traveling salesman problem as an estimation of the rebalance work 

load (more details in Section D.4 of the APPENDIX D).  In dockless and hybrid systems, to 

iu
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account for the vehicle travel needs to collect the sparsely parked bikes within a grid, bike locations 

are randomly assigned within the grid and the rebalance vehicle will need to make multiple “stops” 

to collect these bikes in the rebalance routing.  

5.3.6 Model initialization, simulation, and output 

The simulation model is initialized by allocating the bikes to the grids according to the assigned 

inventory level determined by the rebalance algorithms. Then the bike share use is simulated 

throughout the day using the demands generated from the demand estimation model as inputs. In 

the simulation process, the generated demands are loaded at their start time; the users search for 

nearby bikes, ride a bike (or leave the system), and return the bike according to the user behavior 

model. The rebalance activity will take place according to the rebalance interval. Because the 

information of how frequently the existing station-based BSSs perform rebalance is unavailable, 

to better simulate the existing station-based systems, this study evaluates how different rebalancing 

frequencies (e.g., every 2, 4, 8, 12, or 24 hours) impact system service (the number of trips being 

served) and identifies the rebalance frequency that yields the percentage of served trips (out of the 

estimated true demand) that is the closest to the historical data as the rebalance frequency in the 

model. To evaluate the impact of demand and user behavior uncertainties, for each scenario, 10 

rounds of simulations are conducted using 10 sets of trips estimated using the same true demand 

rates but different randomness seeds. To ensure comparability across different BSS types, in each 

round of simulations, the loaded trips are exactly the same for different types of BSSs. 

 

The model outputs provide system performance information from both the users’ and operators’ 

perspectives. For each served trip, the excess time is recorded for different stages: (1) start-walk: 

the excess time spent by users walking from the actual trip origins to the locations of a nearby bike; 

(2) end-walk: the excess time spent by users walking to their final trip destinations after parking 

the bike at a station; and (3) end-bike: the excess time spent by users riding the bike to nearby 

stations when the first-choice stations were full. In a dockless system, only the start-walk stage 

may generate excess time, since the users can always park the bikes directly at the final destinations. 

Besides excess time, the model also tracks the system’s service level (the percentage of trips being 

served out of the total estimated true demands), the total mileage of rebalance vehicles, the 
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percentage of trips that parked bikes on the sidewalk, and the maximum number of bikes parked 

on the sidewalk of each grid (for dockless and hybrid systems) in the simulated day.  

5.4 Results and discussions 

This section first discusses the selection of rebalance intervals in Section 5.4.1 and then compares 

the different types of BSSs from the aspects of service rate, users’ excess time, rebalance vehicle 

mileages, and bikes parked on the sidewalk in Section 5.4.2. In Section 5.4.3, the results of 

sensitivity analysis on adding Geo-fencing zones to dockless BSSs and also the impact of changing 

the bike supplies are discussed. 

5.4.1 The selection of rebalance frequency 

This study uses the service level of historical data as the benchmarks for choosing the rebalance 

frequency. The average service level is calculated as dividing the average number of daily trips in 

the historical data by the average number of simulated true demands per day (average of the 10 

sets of trips). As shown in Figure 5.5 (a), the benchmark service levels in Los Angeles, 

Philadelphia, and Chicago are 98.4%, 93.2% and 87.0%, respectively. A very high service level in 

Los Angeles means that, in most of the time, the stations have available bikes and thus most of the 

trips can be served.  

 

Next the station-based system is simulated over one day using different rebalance frequencies 

(rebalance every 2, 4, 8, 12, 24 hours or having no rebalance) to study the influence of rebalance. 

The results are presented in Figure 5.5 (b). “None” means a scenario that there’s no rebalance, and 

the simulation started with the observed bike distribution from station data at 12 AM of September 

17, 2018. For other rebalance scenarios, the bikes are first rebalanced at the beginning of the day 

based on the rebalance algorithm; and the rebalance is carried out at the specific intervals. As 

expected, the no rebalance scenario yielded more unserved trips than the benchmarks (horizontal 

lines) and more frequent rebalance leads to better performance. Even rebalancing every 24 hours 

yields less unserved trips than the benchmark. Therefore, in the following analysis, this study uses 
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24-hour (i.e., overnight rebalance) as the rebalance interval because it yields the closet 

performance to the historical data. 

 

(a)  (b)  

Figure 5.5. The service level of historical data and simulated station-based systems using 

different rebalance frequencies: (a) Service level of historical data according to the estimated 

true demand (the numbers in the parenthesis indicate “average number of observed daily 

trips/simulated true demands”), (b) Percentage of unserved trips in one day using different 

rebalance intervals (the horizontal lines show the percentages of unserved trips in historical 

data).  

5.4.2 Comparing different BSS types 

This section compares the simulation results of different types of bike share systems from both the 

operators and users perspectives, evaluating the system’s service level, users’ excess time, 

rebalance mileage, and on-street parking issues. For each city, the simulations were carried out 

with the same sets of generated trips, bike supply, and rebalance frequency (every 24-hour). The 

only difference is the system type.  

5.4.2.1 Service level 

Because users may leave the system unserved (e.g., choose another transportation mode or do not 

make the trip) when they cannot find available bikes within the regions that they are willing to 

walk to, having less unserved trips shows better system service. Figure 5.6 shows the percentage 

of unserved trips when using different types of BSSs in the three cities. In Los Angeles, only a 

very small portion (less than 1.5%) of the trips are unserved and the different system types do not 
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have significant impact on the system’s service level. In Philadelphia, the dockless system 

significantly reduced the unserved trips compared to the station-based BSS, while in Chicago, the 

unserved trips in a dockless system are in a similar level as that in a station-based BSS. In both 

Philadelphia and Chicago, the hybrid system performed better than the station-based and dockless 

BSSs. 

 

(a) (b) (c)  

Figure 5.6. Percentage of unserved trips for different system types (for hybrid systems, the 

percentage shown in the parenthesis is the park-to-station probability) 

 

The distinctions of unserved trips between different system types are mainly due to three factors: 

(1) the bike allocations in different types of BSSs, (2) the scattered bike distributions in 

dockless/hybrid BSSs, and (3) the interactions of nearby grids. For bike allocation, changing the 

system type mainly change the maximum number of bikes that can be allocated to a grid. Station-

based BSS, being constrained by the station capacity, has to balance between available bikes and 

available docks. On the other hand, in dockless and hybrid systems, it is possible to stock the grids 

with high bike-withdrawal demands with as many bikes as needed (if the system has sufficient 

bikes). Figure 5.7 (a) shows an example of how bike allocation and the change of inventory levels 

are impacted by the system types in a grid with high morning bike-withdrawal demand (Grid A) 

in Chicago. In the station-based system, although the station in grid A was filled with bikes at near-

capacity level, at around 8:00, the station became empty for a short period and caused 10 unserved 

trips. In contrast, in the dockless BSS, since there is no capacity limit, more bikes can be allocated 

to grid A at the beginning of the day to avoid bike stock-out and better serve the anticipated high 

morning bike-withdrawal demand.  
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However, the flexibility of dockless and hybrid BSSs may cause the bikes to be more distributed 

and cause unserved trips in the primary grids. The Grid B in Figure 5.7(a) shows an example that, 

when having the dockless system, the bike inventory level in this grid is low because five users 

parked the bikes to other grids within the catchment of Grid B, instead of returning the bikes to 

Grid B if it was a station-based system. As a result, when a user in Grid B who later needed a bike 

but found no available bike in the grid, the trip could be unserved if the user is unwilling to walk 

to nearby grids to pick up a bike. In this model, the primary grids (where the stations are located 

in existing station-based BSSs) have higher demands than surrounding non-primary grids, which 

can be viewed as the demand “hotspots”. When siting the bike share stations in a station-based 

BSS, the decision makers tend to place stations near demand hotspots such as commercial areas, 

subway stations, and living zones with high population density (García-Palomares et al., 2012; 

Park & Sohn, 2017). Therefore, dispersing the bikes to other locations could reduce the service in 

these demand hotspots. For hybrid BSSs, because the station structure are kept and some users 

may be incentivized to return bikes to the primary grids near their actual destinations, the bike 

availability at these demand hotspots can be improved, reducing the unserved trips than the 

corresponding dockless BSSs.  

 

Additionally, the rerouting behaviors of users between neighboring grids also affect the bike 

availabilities and thus the service level. Take Grid B in Figure 5.7(a) as an example, it is interesting 

that, during the afternoon rush hour (in the green dashed box in Figure 5.7(a), there is an inventory 

level “jump” in the station-based system, which is not observed in the corresponding dockless BSS. 

The reason is that, during this period in the station-based BSS, some other primary grids (Grids A, 

C, D, E, and F as shown in Figure 5.7(b)) near Grid B are full, which forces the users to return 

bikes to Grids B and G where docks are available. These bikes were later used to serve the 

withdrawal demand in Grid B in the evening. However, since the dockless system has more 

flexible bike return requirements, such rerouting did not happen and the bike inventory remained 

low at Grid B after the afternoon rush hour, which led to more unserved trips in the remaining of 

the day than the station-based system. This example shows that, the forced rerouting due to 

capacity limits in station-based BSSs could indirectly help redistribute the bikes and improve 

service level in certain regions. This result also shows the need for future rebalancing algorithm to 

take into account the interactions of neighboring grids. For instance, Grid B had a min if


of -10 
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in the 24-hour rebalance interval and thus the initial inventory was set to be 10 bikes, which would 

be sufficient to serve Grid B’s demand if there were no interactions between nearby primary grid 

catchments. However, the simulation results showed that 12 bikes were picked up from Grid B to 

serve trips originated from nearby primary grids which encountered bike stock-out, which 

significantly changed Grid B’s bike availability. Simulation-based optimization could potentially 

be used to better rebalance the systems but is beyond the scope of this study.  

 

BSSs that have denser station networks are more likely to have such interactions between 

neighboring grids. This is reflected in the differences between the unserved trips in Philadelphia 

and Chicago. Changing the system type in Philadelphia made a much more significant impact than 

in Chicago because the denser station network in Chicago benefited more from the interactions 

between neighboring stations. In the station-based BSS in Chicago, in 16% of the trips (out of total 

true demands), the users rerouted to another station to pick up bikes, while only 6% of the trips 

rerouted in the station-based BSS in Philadelphia. This is because that in Chicago, more stations 

are closely located to neighboring stations. There are 64 and 174 primary grids located within the 

catchments of other primary grids in Philadelphia, and Chicago, respectively. In the downtown 

areas of the two cities, stations are distributed denser in Chicago than in Philadelphia. If taking the 

average for the first 100 shortest distances between nearest station pairs, the values are 0.22 miles 

in Philadelphia and 0.14 miles in Chicago. The majority of bike share demand is also concentrated 

in Chicago downtown (heat map of daily bike withdrawal rate of the stations is plotted in Figure 

D. 3in the APPENDIX D). In systems with denser station networks like Chicago, the benefit gained 

from removing the station capacity constraint in dockless/hybrid systems could be cancelled by 

losing the self-distribution of bikes through forced rerouting in station-based systems. 
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(a)   

(b)   

Figure 5.7. Example of the dynamic changes of two grids (A and B) in one round of simulation 

in Chicago: (a) temporal change of bike inventory level and the number of accumulated unserved 

trips, (b) relative locations of the two grids and other nearby primary grids 

5.4.2.2 Excess time 

Although forced rerouting helped to redistribute the bikes in a station-based BSS, the cost is users’ 

excess time. As expected, the station-based systems have higher average excess time per served 

trip (Figure 5.8, the detailed results can be found in Table D. 1 in the APPENDIX D). The majority 

of the excess time (57 – 68%) in a station-based system is from the end-walk stage. This is because 

that, on average, the users spent more time walking to the final destination from a nearby dock at 
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the end of a trip than walking to a bike to start the trip. The full-dock issue that forced the users to 

reroute to return bikes (end-bike stage) accounts for 8-18% of the total excess time in the three 

cities. There were 3%, 6%, and 16% of the simulated trips encountered full-dock issues in Los 

Angeles, Philadelphia, and Chicago, respectively. Therefore, although the rerouting behavior at 

the end of trips in station-based BSS may help redistribute the bikes and thus reduce the total 

unserved trips, it actually sacrifices the user experience to a relatively large extent (e.g., 16% of 

the trips were affected in Chicago). Additionally, rerouted trips due to full-dock issues would also 

cause more excess time in the end-walk stage. Out of the total excess time in end-walk stage, 38%, 

30%, and 57% of the excess time were incurred by the full-dock issues in Los Angeles, 

Philadelphia, and Chicago, respectively. In dockless and hybrid systems where the bikes could be 

distributed to a broader area, the average excess time in the start-walk stage is also shorter than 

that in the station-based systems. In the three analyzed cities, the users spent less time accessing 

bikes in dockless BSS than in station-based systems. The average excess time per served trip in 

the start-walk stage is about 10-second shorter in a dockless system (36-37 seconds) than in a 

station-based system (46-47 seconds). Overall, dockless BSSs saved 1.2 – 1.8 minute (Los Angeles: 

1.5, Philadelphia: 1.2, Chicago 1.8) excess time per served trip compared with station-based BSSs. 

The average trip durations in Los Angeles, Philadelphia, and Chicago are 15, 12, and 12 minutes, 

respectively (historical September 2018 bike share trip data), so the saved excess time is about 10-

15% of the actual trip travel time. Considering that bike share trips are relatively short-distance 

trips, such improvement of user experience is significant. To actualize such benefits, the bikes 

should have devices to accurately track their locations, and thus the users can locate the bikes using 

a smartphone application. The total excess time of the hybrid systems is longer than that of the 

dockless system and increases with higher park-to-station probability. However, removing the 

need for the users to reroute to other stations still have significant time-saving benefits. 
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(a) (b) (c)  

Figure 5.8. Average excess time (minute) per served trips 

5.4.2.3 Rebalance mileage 

Although the rebalance vehicles in a dockless/hybrid system will need to make more stops to 

collect scattered bikes, removing the station capacity may help reduce the number of primary grids 

that need to be rebalanced. Therefore, the net impact of system types on rebalance needs should 

also be evaluated (Figure 5.9 (a)). In Los Angeles, the dockless system requires slightly more 

rebalance mileages than the station-based BSS, although the differences across different BSS 

system types are small. In Philadelphia and Chicago, the average daily rebalance mileages in 

dockless systems is 10.5% and 10.8% more than that in the station-based systems, respectively. In 

Philadelphia, the rebalance mileages in the hybrid BSSs are similar to that in the station-based 

BSS; while in Chicago, the total rebalance mileage in hybrid BSSs is reduced by 4.1% to 8.1% 

compared to the station-based BSS. Similar to the unserved trips, the differences of the rebalance 

mileages are also caused by three factors: the different bike allocations, additional mileages 

required to collect scattered bikes in dockless/hybrid BSSs, and the interactions of neighboring 

grids which may affect whether a primary grid catchment requires rebalance. 

 

The rebalance mileage differences between dockless and hybrid BSSs are mainly due to additional 

mileages required to collect scattered bikes. Depending on how scattered the bikes are, dockless 

BSSs require 4%, 16%, and 19% more rebalance mileages than the corresponding hybrid BSSs 

with a 50% park-to-station probability. In hybrid BSSs, when a primary grid has oversupplied 

bikes that need to be removed, the rebalance vehicle often only needs to visit the station to take 

out the planned number of bikes. However, in a dockless systems, the rebalance vehicle will have 

many more stops to collect the scattered bikes. Figure 5.9 (b) and (c) show that, in the hybrid BSSs, 



 

 

147 

a relatively small number of extra stops are required in Los Angeles (13 stops, subtracting Figure 

5.9 (c) values from Figure 5.9 (b) values) and Philadelphia (3-10 stops), and Chicago (76-168 stops) 

to collect scattered bikes. In contrast, the corresponding dockless BSSs require 127, 214, and 995 

extra stops in Los Angeles, Philadelphia, and Chicago. 

 

The initial bike allocations and the interactions of neighboring grids could also affect which 

primary grid catchments need to be rebalanced, resulting different rebalance mileages when these 

catchments cover significantly different areas. In Los Angeles and Philadelphia, the visited 

primary grid catchments cover very similar spatial areas across different types of BSSs (Figure D. 

4 in the APPENDIX D), so the total rebalance mileages in station-based BSSs are similar to that 

in the hybrid BSSs. However, in Chicago, the rebalance of the station-based BSS had to include 

some outskirt grids that are not visited in the corresponding dockless/hybrid BSSs, significantly 

increasing the total rebalance mileages (more discussions in Section D.7 of the APPENDIX D). 

Besides bike allocation, it is also observed that the interactions of neighboring grids may also affect 

whether a grid needs to be rebalanced. For example, due to receiving the bikes rerouted from 

nearby grids, Grid B in the station-based BSS in Figure 5.7 (a) had almost the same inventory at 

the end of the day (9 bikes) with the initial inventory (10 bikes), and did not require a rebalance 

visit. In contrast, the end-of-day inventory at Grid B in the dockless BSS is much further from the 

initial inventory, and thus needed to be rebalanced. 
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Figure 5.9. Rebalance workload in different types of systems: (a) estimated total rebalance 

mileages per day, (b) average number of stops the rebalancing vehicle has to make, and (c) the 

number of visited primary grid catchments 

5.4.2.4 Bikes parked on the sidewalk 

Clogging the sidewalks is a major concern for dockless bikes. In the simulations of the hybrid 

BSSs, this study assumes that the users are willing to return the bikes to the stations if their actual 

destination grids have stations; and when the actual destination grids do not have stations but the 

nearest station has available docks, with a certain park-to-station probability, the users are willing 

to reroute to the nearest station to return bikes. Figure 5.10 shows that, in hybrid systems, bikes 

are parked to stations in more than half of the trips. With 25% park-to-station probability, in 42%, 

39%, and 38% of the served trips, bikes are parked on the sidewalks in Los Angeles, Philadelphia, 

and Chicago, respectively. The percentage of on-street parking trips decreases near linearly with a 
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higher park-to-station probability. It is notable that, in a hybrid system, a user only considers taking 

the extra effort to return the bike to the nearest station when there are available docks. To evaluate 

how full stations impact bike parking behaviors, this study simulates the scenarios with a park-to-

station probability of 100% and finds the percentage of on-street parking trips are 22.3%, 15.9%, 

and 18.0% in Los Angeles, Philadelphia, and Chicago, respectively. These results show that, even 

when all users are willing to park the bikes to the nearest stations, the on-street-parking issues will 

still exist in the hybrid systems due to docks being full.  

 

Figure 5.10. Percentage of served trips that bikes are parked on the street 

 

For each simulated day, the maximum number of bikes that were parked on the sidewalk is also 

recorded for the dockless systems to evaluate the worst-case scenario that one grid may encounter. 

On average, the worst-case grid could have 64, 59, and 195 on-street bikes in Los Angeles, 

Philadelphia, and Chicago, respectively. In order to better understand how these bikes may crowd 

the grid, the grid with 195 bikes is plotted in Chicago (Figure 5.11). Each bike is randomly located 

within the grid, which covers an area of about one street block. The bikes are densely located and 

the average distance between any two nearest bikes is about 14.5 feet (4.4 meters). Given that 

bikes cannot be parked in buildings, the spatial distribution of these bikes would be even denser if 

all bikes are on the sidewalk. To better regulate dockless bike parking, some cities are 

implementing geo-fencing technologies to require users to park their bikes to designated parking 

areas on the sidewalk (Cheng et al., 2019; Zhang et al., 2019), which helps reduce the turmoil from 

undesired bike parking behaviors. However, this would add additional cost by adding radio 

frequency identification technology (RFID) devices to the bikes. In this example, if all of the 195 
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bikes were parked in a row at a geo-fenced area, this would require an area with a length of 244 

feet (74 meters), assuming the average width that a bike takes is 15 inches (38 cm). This is feasible 

considering that the edge length of a grid is 400 feet and the geo-fenced zones can be located in 

both sides of the streets. The impact of adding geo-fenced zones with limited capacity in a dockless 

BSS will be discussed in Section 5.4.3.1. 

 

 

Figure 5.11. Distributing 195 bikes randomly in one grid in Chicago 

5.4.2.5 Overall performance of the different system types 

Overall, if ranking the three types of BSS according to the four metrics analyzed above and use 

the rank as a score (the best = 3, middle = 2, and the worst = 1), the hybrid system has the best 

overall performance when equal weights are assigned to the four metrics (Table 5.3). In Los 

Angeles where the bike share usage intensity is low, the hybrid system has almost identical overall 

performance with the station-based system. There are no significant improvements of service level 

and rebalance workload when switching from the station-based BSS to a hybrid BSS, while the 

on-street parking issues may offset the benefits of excess time for such transitions. Therefore, it  

may not worth to change the current station-based system in Los Angeles. The difference is more 

significant in Philadelphia and Chicago, where the BSS has much higher usage intensity. In these 

two cities, only if on-street parking outweighs the other aspects, the station-based systems would 

be the better choice. The benefit of hybrid systems regarding service level is more significant in 

Philadelphia than Chicago. As discussed in Section 5.4.2.1, a station-based BSS benefits the most 
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regarding service level from switching to a hybrid system when the demand is high but the existing 

stations are sparse. 

 

Table 5.3. Performance summary of the three types of systems in Los Angeles 

City System 

Type 

Service 

level 

Excess 

time 

Rebalance 

workload 

Parking on the 

street 

Overall 

score 

Los Angeles Station-

based 

Best (3) Worst (1) Best (3) Best (3) 10 

Hybrid Best (3) Middle (2) Best (3) Middle (2) 10 

Dockless Best (3) Best (3) Middle (2) Worst (1) 9 

Philadelphia Station-

based 

Worst (1) Worst (1) Best (3) Best (3) 8 

Hybrid Best (3) Middle (2) Best (3) Middle (2) 10 

Dockless Middle (2) Best (3) Worst (2) Worst (1) 8 

Chicago Station-

based 

Middle (2) Worst (1) Middle (2) Best (3) 8 

Hybrid Best (3) Middle (2) Best (3) Middle (2) 10 

Dockless Middle (2) Best (3) Worst (1) Worst (1) 7 

5.4.3 Sensitivity Analysis 

In Section 5.4.2.4, this study discusses the potential of remitting the on-street-parking issues in 

dockless BSSs through adding Geo-fencing zones. Therefore, Section 5.4.3.1 analyzed how Geo-

fencing zones with different zone capacities may impact the results. In addition, the above 

simulation results are based on the current bike supply identified in historical data. Because the 

bike supply may also affect the performance of the BSSs, Section 5.4.3.2 discusses the impacts 

from having different number of bikes in the systems. 

5.4.3.1 The impact of Geo-fencing zones 

When implementing geo-fencing zones, the zone capacity mainly serves as a limit when allocating 

bikes for rebalance. That is to say, the number of bikes allocated to a grid cannot exceed the 

designed zone capacity. For example, if the rebalance algorithm sets the target inventory level of 

a primary grid catchment to be 100 bikes while the zone capacity is only 40, instead of allocating 
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all 100 bikes to the primary grid, only 40 bikes would be allocated to the primary grid while the 

remaining bikes would be randomly redistributed to nearby grids without exceeding the zone 

capacity of those grids (first consider grids that are one-grid away, and then two-grid away). 

However, the zone capacity may be relaxed for bike return and allow the users to park bikes at a 

grid even if its inventory level exceeds the zone capacity, because the geo-fencing zones are more 

flexible than the docks in a station-based BSS and the users may squeeze in more bikes than the 

designed capacity. The number of grids exceeding its capacity during any periods in the day are 

also tracked. For bike rebalance, the rebalance vehicle only needs to stop once at the geo-fencing 

zone when visiting a grid, instead of stopping multiple times to collect scattered bikes. 

 

Figure 5.12 shows the simulation results when altering the parking zone capacity. The unserved 

trips do not change with the zone capacity in Los Angeles and Philadelphia (Figure 5.12 (a)). For 

Chicago, smaller parking zone capacity helps reduce unserved trips in Chicago, although the 

absolute change is small (10.9% to 10.6%) when switching from purely dockless to dockless with 

a 30-bike zone capacity. For the three factors that affect the service level, adding the Geo-fencing 

zones does not change the bike allocations at primary grid catchment level. Only a small number 

of grids that need a large number of bikes and thus need to be adjusted according to the zone 

capacity. In the scenario of having a zone capacity of 30 bikes in the dockless BSSs, only six, two, 

and 13 primary grids have an initial inventory level that exceeds the capacity in Los Angeles, 

Philadelphia, and Chicago, respectively. Therefore, adding the zones only makes the bikes more 

broadly distributed in these small number of grids at the beginning of the simulation, which has 

very limited impact on the interactions of nearby grids and the service level. Adding the parking 

zones also have no significant changes regarding the excess time. The major benefit of the parking 

zones is the reduction of rebalance mileages since the bikes are clustered to the zones and the 

vehicle only need to stop at the parking zones. Compared to the purely dockless systems, adding 

the zones can save rebalance mileage by 4%, 10%, and 11% in Los Angeles, Philadelphia, and 

Chicago, respectively (Figure 5.12 (c)). The change of zone capacity does not impact the rebalance 

mileages, since the grids that require rebalance stay nearly the same.  However, with smaller zone 

capacity, there could be more grids exceeding the capacity during the day (Figure 5.12 (d)). For 

example, about 57 grids exceeded the 30-bike parking capacity in Chicago. The number of grids 

exceeding the capacity quickly drops when the zone capacity changes from 30 to 60, and becomes 
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near zero when the capacity is larger than 60. Therefore, a parking zone capacity around 60 works 

for most of the grids in all three cities, and Chicago can consider setting a larger capacity (e.g., 

100) for the eight grids with very high parking needs. Overall, Chicago benefits the most from 

adding geo-fencing zones in a dockless BSS. 

 

 

Figure 5.12. System performance when setting different capacity of the geo-fenced parking 

zones in a dockless system (“None” means there are no geo-fenced zones and the bikes are 

scattered) 

5.4.3.2 The impact of bike supplies 

This study alters the total number of bikes in the system by multiplying a ratio to the current bike 

supply and summarizes the change of the key metrics in Figure 5.13. In general, the conclusions 

regarding the performance of hybrid and dockless BSS stay consistent for all four metrics 
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(unserved trips, excess time, rebalance mileages, and bikes parked on the street). However, the 

performance of station-based BSSs is more sensitive to the bike supply, especially the percentage 

of unserved trips and the rebalance mileages. In Los Angeles and Chicago, when the bike supply 

ratio is smaller or equal to 0.8, the percentage of unserved trips in station-based BSSs becomes 

less than other types of BSSs (Figure 5.13 (a)), which indicates that station-based systems can 

serve more trips when the bike supply is insufficient. Nevertheless, reducing the bike supply also 

renders more trips becoming unserved, which is undesired. Adding more bikes can reduce the 

unserved trips but will come at the cost of increased excess time for station-based systems ((Figure 

5.13 (b), worsened bike return issues) or increased on-street parking for dockless and hybrid 

systems ((Figure 5.13 (d)). Changing the bike supply also affects the rebalance (Figure 5.13 (c)). 

When the bike supply ratio is larger than 1.3 in Los Angeles and 1.5 in Philadelphia, a sudden drop 

of rebalance mileage can be observed. At these ratios, the bikes take up 64% and 67% of the total 

docking space, which limits the possible inventory variations of many stations, thus requiring less 

rebalance. But in Chicago, a bike supply ratio of 1.7 is needed for the bikes to take up 67% of the 

total docking space. That’s why the reduced rebalance miles is not observed in Chicago.  
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Figure 5.13. Results of sensitivity analysis of different bike supply (by multiplying the bike 

supply ratio to the current bike supply, which is shown by the vertical lines) 

5.5  Conclusions and future work 

In this study, a simulation modeling framework is proposed to evaluate different types of bike 

share systems from the aspects of service level, excess time, rebalance mileages, and on-street 

parking, which quantifies the user experience and the operational challenges in different types of 

BSSs. It is difficult to analyze the above aspects solely using bike share trip data. The user 

behaviors of accessing bikes may differ between users and will affect the interactions of 

neighboring grids. Therefore, system simulations are used to model such complexity. The 

proposed model first simulates the actual origins and destinations of bike share trips based on trip 

data from existing station-based systems. This study also proposes a user behavior model that 
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integrates historical travel survey data to model the walking behaviors of bike share users. In the 

case study, the model is applied to compare the above mentioned key metrics in station-based, 

dockless, and hybrid BSSs when serving the same demands. The BSSs in Los Angeles, 

Philadelphia, and Chicago are selected to evaluate the impact of system types to BSSs with 

different system sizes and usage intensities. 

 

The simulation results show that, with the existing bike supply in the three analyzed cities, the 

hybrid BSS yields the best overall performance, because it reduces the unserved trips and rebalance 

mileages, and also has intermediate performance regarding the excess time and on-street parking 

bikes. One common trend observed from all three analyzed cities is that, dockless BSSs have the 

best user experience regarding excess time while station-based BSSs have the worst. The saving 

of time in a dockless BSS is because that users on average spend less time walking to a nearby 

bike when the bikes are scattered and also can directly park the bikes at the actual destinations. 

Hybrid systems have intermediate average excess time, which is closer to that of dockless BSSs. 

Overall, dockless BSSs could save 1.2 to 1.8 minutes excess time per served trip compared to the 

station-based BSSs, which corresponds to 10% to 15% of the median trip time in the three cities. 

The results of unserved trips are affected by the system’s usage intensity and the spatial density of 

stations. In Los Angeles, where the usage intensity is low, the difference of unserved trips is not 

significant among different types of BSSs. However, in Philadelphia, both dockless and hybrid 

systems have less unserved trips than station-based BSSs. Compared to dockless BSS, the service 

level is further improved in hybrid systems in both Philadelphia and Chicago, due to having some 

users park the bikes to stations, where the demand is higher than surrounding grids. Different from 

Philadelphia, Chicago has similar unserved trips in the station-based and dockless BSSs. This is 

because the station-based BSS in Chicago has a denser station networks in high demand areas than 

Philadelphia, and the stations can better complement neighboring stations in the case of empty or 

full stations and redistribute bikes through forced rerouting (at the cost of user excess time).  Due 

to the extra mileages needed to collect the scattered bikes, dockless BSSs require 4%, 16%, and 

19% more rebalance mileages than the corresponding hybrid BSSs with a 50% park-to-station 

probability. The hybrid BSSs have similar rebalance mileages to station-based BSSs in both Los 

Angeles and Philadelphia, because the areas visited by the rebalance vehicles have similar spatial 

coverage. The rebalance vehicle traveled more mileages in the station-based BSS than in the hybrid 
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BSS in Chicago, due to the need to rebalance more outskirt grids. On-street parking could cause 

turmoil and safety issues if all bikes are randomly parked on the sidewalk. For the worst cases, one 

grid could have 64, 59, and 195 on-street bikes in Los Angeles, Philadelphia, and Chicago, 

respectively. The results show that, for the worst case with 195 dockless bikes in one grid, there 

are sufficient space to add geo-fencing zones to contain these bikes. 

 

A sensitivity analysis on the geo-fencing zone capacity reveals that, the dockless BSSs benefited 

the most from adding geo-fencing zones in Chicago than in the other two cities. Besides addressing 

on-street parking issues, the geo-fencing zones also help reduce the rebalance workload, with a 

reduction of rebalance mileage up to 11% compared with the fully dockless BSSs. A parking zone 

capacity around 60 bikes is appropriate for most of the grids in the three cities. The sensitivity 

analysis of having different bike fleets shows that the conclusions regarding the performance of 

hybrid and dockless BSS stay consistent with different bike supplies. But the performance of 

station-based BSSs are more sensitive to the bike supply, especially for the percentage of unserved 

trips and the rebalance mileages. 

 

Putting everything together, cities with relatively large station-based BSSs such as Philadelphia 

and Chicago may consider operating the BSS in a hybrid way and add geo-fencing zones in each 

grid to regulate parking behaviors. Philadelphia would benefit more from such transition regarding 

the service level since it has a relatively high demand and sparse station networks. For cities 

already have a station-based system but with a low usage intensity (e.g., Los Angeles), the benefit 

of transferring the existing station-based BSS to a dockless or hybrid system is limited. 

 

While this study provides unique insights in comparing different types of BSSs, future research 

may improve the model from the following three aspects. First, the actual O-D estimation and user 

behavior model rely on the walking trip data from historical travel surveys, which assumes that 

bike share users’ behaviors of walking to find a bike follow the same pattern as people walking to 

switch to another transportation mode in previous travel surveys. Obtaining such distance 

distribution from bike share users can help better model the user behaviors. Second, this study 

compared the system performance of different types of BSSs when serving the same demands. It 

is possible for the demand to change when the BSS type changes. Real-world data from before and 
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after system type transitions would be very precious to study such demand change. Third, taking 

into account the complex interactions of neighboring grids can improve the rebalance algorithms. 
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 CONCLUSIONS 

This dissertation develops various modeling frameworks and methods to improve the 

understanding of BSSs from the aspects of travel patterns, environmental benefits, system 

expansion, and the impacts of system types. The key findings and insights gained from the 

modeling results can improve policy making and BSS planning and operation.  

 

The key contributions of the proposed models are summarized in Figure 6.1. This dissertation first 

analyzes the statistical property of the distance and duration of bike share trips (Chapter 2), which 

provides a fundamental basis for modeling BSSs use. In Chapter 3, a Bike Share Emission 

Reduction Estimation Model (BS-EREM) is proposed to quantify the environmental benefits of 

BSSs. The BS-EREM estimates bike share trips’ transportation mode replacement with the 

consideration of heterogeneous travel mode choices. Trip distance, trip purpose, trip start time, 

and public transit accessibility are taken into account in the model. The BS-EREM can be applied 

to different cities to evaluate the environmental benefits of their BSSs, and thus support the cities’ 

decisions for BSS development. In order to better take advantage of the benefits of the BSSs, this 

dissertation analyzes two potential ways to improve the BSSs: expanding the BSSs and changing 

the system types. For BSS expansion (Chapter 4), the piecewise regression model analyzes the 

station interactions in the BSS expansion process, which provides insights for the design of bike 

share station networks. In addition, a Spatial Eccentricity Quantile based Ensemble Model 

(SEQEM) is proposed, which improves the prediction performance of BSS expansion demand 

estimation by considering the spatial station network structure. The SEQEM also has the benefit 

of not depending on external socio-demographic and point-of-interest data. Therefore, the SEQEM 

can be easily applied to other cities only using historical bike share trip data and station location 

information. The improved prediction performance by SEQEM can help inform station sizing and 

bike allocation in the BSSs. To study the impact of changing system types (Chapter 5), a 

comprehensive stochastic simulation framework is proposed to evaluate the user experience and 

system operations in different types of BSSs. The simulation framework integrates a method to 

estimate the actual origins and destinations of bike share travel demands, a user behavior model, 

and a rebalance optimization model.  
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Figure 6.1. Key contributions of the dissertation and potential extended applications of the 

models 

 

The models developed in this dissertation can be further integrated and extended in future research 

to better guide the development of BSSs (Figure 6.1). The SEQEM and the BSS simulation 

framework can be integrated to optimize new station siting for BSS expansion. Given a set of 

station location candidates, the bike share demands of a certain expansion plan can be estimated 

using the SEQEM. Then the estimated demand can be inputted into the BSS simulation framework 

to evaluate the system performances after the expansion. Finally, system designers can use the 

integrated model to identify the expansion plan that yields the best performances. Additionally, 

the BSS simulation framework can be modified into a simulation-based bike rebalance 

optimization model. In Section 5.4.2.1, the simulation results show that the rerouting behaviors of 

users can change the bike distributions and, thus, the fulfillment of demands.  The bike allocation 

optimization model based on the expected demands did not consider such behaviors. In contrast, 

a simulation-based optimization model can capture such details and potentially improve the 

rebalance performance. Furthermore, for the optimized BSS expansion plan or the optimized bike 

rebalance from the abovementioned integrated models, the simulated trips can be inputted into the 

BS-EREM model to quantify the environmental benefits resulted from such optimized system 

changes. Overall, although the models and methods are developed specifically for bike share 
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systems, they are also transferable to other shared micro-mobility systems such as e-scooter share 

systems. 

 

In the following sections of this chapter, the key findings and insights for BSS development are 

summarized in Section 6.1; then, the limitations and potential future research are discussed in 

Section 6.2. 

6.1 Key findings and insights 

The case studies using the proposed models in this dissertation generate the following key findings 

and insights: 

 

(1) Smaller BSSs may expand the overall spatial coverage of the systems to better take advantage 

of BSSs’ benefits. The spatial service coverage not only impacts the travel patterns, but also 

influences the environmental benefits of BSSs. 

 

The travel pattern analysis in Chapter 2 reveals that, in larger systems (i.e., the BSSs in Washington 

DC, Chicago, and New York), both the trip distance and the trip duration follow a lognormal 

distribution. However, no common distributions have been found that can best describe the travel 

patterns of those smaller (regarding diameter and the number of stations) BSSs. The insufficient 

spatial coverage of the station network can restrict bike share users’ movements to make long trips 

and, thus, affect the observed travel patterns. As a reference, the diameters (the longest distance 

between any two stations) of the BSSs in Washington DC, Chicago, and New York were 14.3, 

23.3, and 11.2 miles, respectively, while the smaller system in Bay Area only had a diameter of 

2.3 miles in 2016. 

 

The overall spatial coverage of the stations also influences the per-trip environmental contributions 

of bike share trips. The larger systems have higher per trip emission reductions since the larger 

spatial coverage of the station networks allow users to make more long-distance trips, which are 

more likely to replace car trips. For example, the emission reduction per trip is 581 g CO2-eq in 

Chicago but only 283 g CO2-eq in the smaller BSS in Los Angeles. Such variations of unit 

emission reductions across different cities also indicate that it is risky to apply the per-trip emission 
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reduction learned in one city to another city for the environmental benefit estimation. The proposed 

BS-EREM model can account for such differences across different cities to more accurately 

estimate the environmental benefits of BSSs. 

 

Therefore, the smaller BSSs should consider expanding the overall spatial coverage of service to 

enable more long trips. For example, in Chicago which had the largest system diameter in 2016 

among the eight studied cities, the 95% percentile of trip distances is 3.2 miles. This can be used 

as a reference for expanding the smaller systems. One potential strategy is to set the distance from 

the high-demand areas (e.g., the downtown areas) to the system outer boundary greater than a 

distance threshold (e.g., 3.2 miles), so more users can travel between the high-demand areas and 

the outskirt areas. 

 

(2) In station-based BSSs, the station density is an important factor that influences the ridership. 

The designing of station density should consider users’ walking behaviors and station interactions. 

 

The result of piecewise regression analysis on Chicago data in Chapter 4 indicates that existing 

stations receive maximum complement benefits when the nearest new stations are 0.3 miles away. 

In this case, local residents and visitors find that there are more options on where to pick up and 

return bikes, which can potentially attract more new users and encourage the usage of existing 

users. When the new station is less than 0.11 miles away from an existing station, the competition 

between them is more prevalent. The 0.11 miles correspond to the 89% percentile of the walking 

distances in the CHTS survey when people use walking to transit to other modes (Section 5.3.2.2). 

Therefore, the new stations dilute the demands of existing stations because the users find that there 

are more options within the walkable distance range. In such situations, adding the new stations 

may not lead to significant increases of demands. The system designers need to more carefully 

evaluate the trade-off between the station installation cost and the potential benefits to the ridership 

of whole BSSs. 

 

It is possible that the above discussed distance thresholds (0.3 miles and 0.11 miles) could vary 

across different cities. The piecewise regression model can be applied to other cities to identify the 

city-specific patterns of station interactions in different cities. The proposed SEQEM model can 
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also improve the demand estimation for BSS expansion planning by considering the spatial 

structure of station networks.  Both the piecewise regression model and SEQEM only require bike 

share trip count data and station location information (latitude and longitude), which can be easily 

transferred to other cities.  

 

(3) Although dockless and hybrid BSSs have emerged in many cities in recent years, they may not 

yield the best performances for all the cities. The important factors impacting system performances 

include demand intensity, station density (for station-based and hybrid BSSs), and user behaviors. 

 

In Philadelphia and Chicago, where the overall demand is higher than Los Angeles, the hybrid 

system has the best overall performance because it has the lowest unserved trips and rebalance 

mileage and has the intermediate performance in terms of excess time and on-street-parking issues. 

In contrast, the difference in overall performances among different system types is less significant 

in cities with low usage intensity such as Los Angeles. 

 

The station density also affects the differences of service levels between a station-based BSS and 

the corresponding hybrid BSS. In Section 5.4.2.1, the analysis shows that, compared with Chicago, 

Philadelphia can benefit more regarding the service level from transitioning the BSS type from 

station-based into hybrid. This is because Chicago has a relatively denser existing station network 

in the high-demand areas, which allows the users to more easily reroute to nearby stations when 

the first-choice stations are empty or full.  

 

In addition, the user rerouting behaviors can indirectly affect system performances. Although 

station capacities restrict bike allocations in station-based BSSs, forced rerouting trips (returning 

bikes to neighboring stations when target stations are full) indirectly rebalance systems. This 

benefit is lost in dockless systems, partially canceling the benefit of bike allocation flexibility 

(Section 5.4.2.3). 

 

Overall, the selection of BSS types should take into account many complex factors such as demand 

intensity, station density (for station-based and hybrid BSSs), and the user behaviors. The proposed 

BSS simulation framework in Chapter 5 is capable to better support the decisions by considering 
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these factors. Similar to the three case-study cities in Chapter 5, other cities that already have a 

station-based BSS can just follow the same procedures outlined in Section 5.3 to apply the 

simulation model. In Section 5.3.3.4, this dissertation has discussed how to modify the demand 

estimation process in order to run the model using dockless or hybrid system data as the input. 

6.2 Limitations and Future Research Directions 

The limitations of this dissertation and potential future research directions are outlined below: 

 

First, more data about the travel behaviors of bike share users is needed to improve the modeling 

of BSSs. For the environmental benefit estimation, the case study results are based on the 

assumption that the BSS users have the same travel pattern as an average person in the urban area 

of each city. Similarly, the user behavior model in the BSS simulation framework also assumes 

that the walking distance preference of BSS users follow the same distribution in historical travel 

surveys. To address such issues, more data should be collected specifically from BSS users. For 

example, to improve the BS-EREM, mode substitution information for a specific bike share trip 

should be collected using user surveys, while more detailed trip information such as trip distance, 

purpose and start time should also be recorded. Researchers may also hire volunteers from BSS 

users and use wearable GPS devices to track their walking behaviors when accessing a bike. Such 

information will significantly improve the user behavior model. 

 

Second, the differences in ridership, environmental benefits, and system performances among the 

BSSs in different cities are also affected by some external factors, which require more analysis in 

future research. Such factors include travel cost, weather, terrain, safety, and so on.  

- Travel cost is one of the important factors that influence people’s transportation mode 

choices (Buehler & Hamre, 2015). Different pricing schemes in different BSSs could 

impact the popularity of bike share, which will then influence the system performance and 

the selection of best-performance system types. Analyzing the travel cost of bike share 

should also consider whether bike share has competitive travel cost in the context of all 

transportation modes. Taking into account the heterogeneous travel cost preference of bike 

share users will improve the modeling of mode substitution in the BS-EREM. However, 

this would require the collection of detailed travel cost information in future travel surveys. 
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In addition, when studying the demand changes in the expansion process, future studies 

should also consider the changes of pricing schemes, which can potentially lead to irregular 

demand change patterns.  

- Both the weather and terrain in different cities can impact the overall bike share ridership 

and the user behaviors. The cold winter weather or hot summer weather in certain cities 

could significantly reduce the usage of bike share. In some cities with undulating terrains, 

it would be more difficult to ride a bike to go up a steep street. In this case, the e-bikes 

could be a more popular option. In addition, both the weather and terrain conditions can 

also affect the users’ walking preference when picking up a bike. Intuitively, users’ 

acceptable walking distance will be reduced in the case of extreme weather and steep streets. 

Therefore, future studies should also consider the weather and terrain conditions when 

collecting user travel behavior data and modeling walking behaviors. Moreover, the 

designers of station-based BSSs may adjust the station density according to the terrains and 

the common weather conditions in different cities to ensure the stations are within a 

walkable distance for bike pick-up.  

- Safety is another concern when riding a bike. The availability of bike lanes and other 

biking-friendly infrastructures can influence the usage of bike share (Buck & Buehler, 

2012). In addition, a higher crime rate in certain areas is often related to lower mode shares 

of walking and biking (Joh et al., 2012), which should also be considered to improve the 

user behavior modeling.  

 

Third, the demand prediction models for large-scale expansion need to be improved. The 

prediction results for BSS expansion show that the models perform poorly for the large-scale 

expansion in 2015 in Chicago. With a 58% increase of the number of stations, the patterns learned 

from historical data are insufficient to make desirable predictions. One potential method to 

improve this is to learn the experience from the BSSs in other cities that had large-scale expansion. 

So far, the prediction models that transfer the knowledge learned from one city to another city are 

very limited (Liu et al., 2018) and should receive more attention in future research.  

 

Fourth, different BSS types’ impact on the bike share demands should be further studied. Chapter 

5 applies the proposed simulation framework to compare different types of BSSs when serving the 
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same demands; however, the system types could also impact the demands. One option to improve 

this is to assume different scenarios of demand changes, and apply the proposed simulation model 

with various demand scenarios to learn about the differences of system performances. Another 

alternative is to conduct surveys, asking people whether they will increase and decrease the usage 

of bike share and by how much if the system changes to a certain type. It is also important to 

collect before-and-after data from cities that changed the BSS types. So far, such cases are still 

very rare.  

 

Lastly, as pointed out in Figure 6.1, the proposed models in this dissertation can be extended and 

integrated to further address additional problems for BSS development. For instance, the SEQEM 

can be combined with the BSS simulation framework to evaluate the potential system 

performances for different BSS expansion plans; the BSS simulation framework can be extended 

to be a simulation-based bike rebalance optimization model; the simulated trips from these 

extended models can then be inputted into the BS-EREM model to study the potential 

environmental benefits from such optimized system changes. 

 

In summary, BSSs have great potential to reduce carbon emissions and can be further improved to 

play a more important role in sustainable transportation systems. The spatial service coverage of 

BSSs is very important for taking advantage of the benefits of BSSs. For designing the station 

networks of station-based BSSs, the planners should at least guarantee that the overall coverage of 

the station networks does not restrict the users’ travel using bike share. This allows users to make 

more long-distance trips, which will replace more car trips and, thus, lead to more GHG emission 

reductions. The improved spatial service coverage also would complement the demands of existing 

stations. The proposed SEQEM and BSS simulation framework are very useful tools to assist the 

BSS expansion planning, while the BS-EREM helps estimate the environmental benefits of BSSs. 

The BSS simulation framework can provide customized suggestions for the system type selection 

for a city.  The simulation results also exhibit the complex interactions between the users, stations 

and bikes, which indicate the necessity to apply simulation-based models for BSS modeling. 

Studying the user behaviors is very important for both long-term planning and short-term 

operations in BSSs. Future studies should collect more data, specifically from bike share users, 

and develop more realistic user behavior models to guide the development and operations of BSSs. 



 

 

167 

The shared micro-mobility options such as bike share and e-scooter share are very promising 

transportation modes and can contribute more to the sustainability of urban transportation systems. 

Although the total ridership of bike share in the United States has kept increasing from 2010 to 

2019, bike share is also facing competition from e-scooter share. E-scooter share has only gained 

popularity in the past two years. However, the ridership of e-scooter share had increased 

dramatically from 2018 to 2019, and has just exceeded the ridership of bike share in 2019 (NACTO, 

2020). Therefore, future studies should also pay more attention to e-scooter share. The models 

proposed in this dissertation can also be modified to model e-scooter systems. 
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR CHAPTER 2   

A.1 Trip data 

 

Table A. 1.  A sample of the trip data from Seattle’s Pronto Bike Share program 

Trip id Start time Stop time Bike id Trip duration 

(seconds) 

Start station name End station name Start 

station 

id 

End 

station 

id 

431 10/13/2014 

10:31 

10/13/2014 

10:48 

SEA00298 985.935 2nd Ave & Spring 

St 

Occidental Park / Occidental Ave S 

& S Washington St 

CBD-

06 

PS-04 

432 10/13/2014 

10:32 

10/13/2014 

10:48 

SEA00195 926.375 2nd Ave & Spring 

St 

Occidental Park / Occidental Ave S 

& S Washington St 

CBD-

06 

PS-04 

518 10/13/2014 

12:20 

10/13/2014 

12:31 

SEA00321 690.793 City Hall / 4th Ave 

& James St 

2nd Ave & Blanchard St CBD-

07 

BT-05 

519 10/13/2014 

12:20 

10/13/2014 

12:26 

SEA00089 351.563 1st Ave & Marion 

St 

2nd Ave & Spring St CBD-

05 

CBD-

06 

520 10/13/2014 

12:21 

10/13/2014 

12:32 

SEA00028 653.071 Burke Museum / E 

Stevens Way NE & 

Memorial Way NE 

UW Intramural Activities Building UW-02 UW-07 

528 10/13/2014 

12:39 

10/13/2014 

12:45 

SEA00415 357.776 6th Ave S & S King 

St 

Occidental Park / Occidental Ave S 

& S Washington St 

ID-04 PS-04 

530 10/13/2014 

12:43 

10/13/2014 

12:48 

SEA00311 278.849 King Street Station 

Plaza / 2nd Ave 

Extension S & S 

Jackson St 

King Street Station Plaza / 2nd Ave 

Extension S & S Jackson St 

PS-05 PS-05 

 

 

A.2 Data Processing for Bay Area’s Ford Gobike program 

Bay Area bike share system (Figure A. 1) includes multiple sub-systems: San Francisco, San Jose 

and several other cities or towns. In this case, only the intra-city trips in San Francisco, which 

makes up 89.7% of the total trips in Bay Area, are analyzed. There exists only four inter-city trips 

in Bay Area in 2016. 

 

Table A.2 shows the 4 inter-city trips in Bay Area bike share system. Three of the four trips have 

trip duration that is only 1/3 of the duration estimated by Google Maps API. These trips are much 

shorter in time than normal bike trips. It is highly likely that the bike was carried by a vehicle for 

most part of the trips. In addition, such trips are relatively trivial compared to the total trips 

(983,648 trips) in Bay Area. Therefore, these trips are treated as outlier and removed for the 

analysis.  
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Figure A. 1. Bike share stations in Bay Area 
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Table A.2. Inter-city trip record of Bay Area bike share system in 2016 

duration 

(min) 

start_time end_time start_station_id start_station_lat start_station_lon end_station_id end_station_lat end_station_lon bikeid usertype estimated distance 

(mile)1 

estimated duration 

(min)2 

94 6/23/2016 

18:46 

6/23/2016 

20:20 

65 37.77106 -122.403 2 37.32973 -121.902 43 Subscriber 55.43266 292.0333 

488.05 7/25/2016 8:41 7/25/2016 

16:49 

56 37.79225 -122.397 3 37.3307 -121.889 295 Subscriber 57.5329 305.3167 

88.78333 3/8/2016 21:38 3/8/2016 23:06 27 37.38922 -122.082 57 37.78175 -122.405 132 Subscriber 39.41927 210.0833 

94.7 2/4/2016 18:12 2/4/2016 19:47 11 37.33589 -121.886 70 37.77662 -122.395 696 Subscriber 55.6054 290.2333 

Notes: 

1. Trip distance estimated by Google Maps API 

2. Trip duration estimated by Google Maps API 
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A.3 Model Selection (all trips)   

Seattle                                                   Los Angeles                                                Bay Area                                                 Philadelphia 

 

Boston                                                Washington, DC                                              Chicago                                                  New York 

 

Figure A. 2. Goodness of fit plots for the 8 cities (commuting trip distance) 
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Seattle                                                   Los Angeles                                                Bay Area                                                 Philadelphia 

 

Boston                                                Washington, DC                                              Chicago                                                  New York 

 

Figure A. 3 . Goodness of fit plots for the 8 cities (tourist trip distance) 



 

 

 

1
7
3
 

Seattle                                                   Los Angeles                                                Bay Area                                                 Philadelphia 

 

Boston                                                Washington, DC                                              Chicago                                                  New York 

 

Figure A. 4. Goodness of fit plots for the 8 cities (commuting trip duration) 
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     Seattle                                                Los Angeles                                                Bay Area                                          Philadelphia 

 

    Boston                                              Washington, DC                                           Chicago                                           New York 

 

Figure A. 5. Goodness of fit plots for the 8 cities (tourist trip duration) 
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Table A. 3. Results of model selection for touristic trip distance 
   

Seattle  Los Angeles Bay Area Philadelphia Boston Washington, DC Chicago New York 

Weibull Parameters Shape 1.5341 1.9885 2.0785 1.8425 1.6653 1.5253 1.5056 1.5661 

Scale 1.2874 1.0580 1.1936 1.5458 1.6037 1.5650 1.7359 1.6558 

Goodness-of-fit statistics/criteria K-S statistic 0.0816 0.0349* 0.0555 0.0356* 0.0465* 0.0507 0.0443* 0.0436* 

AIC 77748.5 78612.7 67970.5 311526.0 873503.2 2447251.5 3585888.8 9457730.1 

BIC 77765.7 78630.7 67988.0 311545.8 873524.9 2447275.2 3585913.1 9457756.4 

Gamma Parameters Shape 2.6119 3.3305 3.6507 3.0787 2.6219 2.4627 2.2857 2.3599 

Scale 2.2745 3.5600 3.4622 2.2516 1.8400 1.7599 1.4700 1.5961 

Goodness-of-fit statistics/criteria K-S statistic 0.0621 0.0186* 0.0350* 0.0190* 0.0312* 0.0304* 0.0365* 0.0297* 

AIC 73259.6 78176.4 67349.9 305807.4 855427.0 2358109.0 3499519.1 9274230.0 

BIC 73276.7 78194.4 67367.4 305827.2 855448.7 2358132.7 3499543.3 9274256.2 

Lognormal Parameters meanlog -0.0651 -0.2242 -0.0901 0.1418 0.1515 0.1194 0.2070 0.1645 

sdlog 0.6301 0.5991 0.5670 0.6099 0.6605 0.6686 0.7005 0.6978 

Goodness-of-fit statistics/criteria K-S statistic 0.0335* 0.0505 0.0695 0.0364 0.0312 0.0291* 0.0257* 0.0205* 

AIC 69738.9 82975.4 70573.5 309903.3 858637.9 2319503.7 3459210.7 9271269.9 

BIC 69756.1 82993.5 70591.0 309923.1 858659.5 2319527.3 3459235.0 9271296.2 

Best Fit Distribution Lognormal Gamma Gamma Gamma Gamma Lognormal Lognormal Lognormal 

Parameters μ = -0.07 α = 3.33 α = 3.65 α = 3.08 α = 2.62 μ = 0.12 μ = 0.21 μ = 0.16 

σ = 0.63 β = 3.56 β = 3.46 β = 2.25 β = 1.84 σ = 0.67 σ = 0.70 σ = 0.70 

1. * Significant at 0.05. 

2. Lowest AIC and BIC scores are bolded when the K-S statistics are significant at 0.05. 

3. Model parameters corresponds to the parameters in Table 3. 
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Table A. 4. Results of model selection for commuting trip duration 
   

Seattle  Los Angeles Bay Area Philadelphia Boston Washington, DC Chicago New York 

Weibull Parameters Shape 1.8550 0.6329 2.5156 2.0402 1.8383 1.7164 1.7394 1.6145 

Scale 10.0013 3.4294 9.6507 12.4873 12.2131 12.5208 12.3974 12.2049 

Goodness-of-fit statistics/criteria K-S statistic 0.0586 0.1792 0.0227* 0.0812 0.0471* 0.0402 0.0439* 0.0582 

AIC 320810.9 486983.9 763833.0 1931294.6 5184440.4 9124747.4 13275482.9 40357869.5 

BIC 320828.8 487003.0 763852.7 1931315.9 5184463.6 9124771.7 13275508.0 40357896.8 

Gamma Parameters Shape 3.4615 0.5112 5.1468 3.9289 3.1412 2.8342 2.8419 2.5688 

Scale 0.3917 0.1118 0.6021 0.3565 0.2911 0.2554 0.2588 0.2366 

Goodness-of-fit statistics/criteria K-S statistic 0.0296* 0.1770 0.0200* 0.0606 0.0355* 0.0279* 0.0328* 0.0449 

AIC 315744.1 482619.4 763044.5 1909056.8 5139295.2 9038005.0 13166770.2 39941250.2 

BIC 315762.0 482638.5 763064.2 1909078.1 5139318.4 9038029.4 13166795.3 39941277.5 

Lognormal Parameters meanlog 2.0276 0.2821 2.0455 2.2671 2.2113 2.2202 2.2101 2.1776 

sdlog 0.5589 1.9774 0.4683 0.5274 0.5928 0.6267 0.6266 0.6530 

Goodness-of-fit statistics/criteria K-S statistic 0.0319* 0.2191 0.0451* 0.0558 0.0259* 0.0249* 0.0274* 0.0133* 

AIC 314757.4 495707.0 771098.6 1910426.3 5133890.4 9024751.9 13152295.7 39708472.4 

BIC 314775.2 495726.1 771118.3 1910447.6 5133913.6 9024776.3 13152320.7 39708499.7 

Best Fit Distribution Lognormal None Gamma None Lognormal Lognormal Lognormal Lognormal 

Parameters μ = 2.03 - α = 5.15 - μ = 2.21 μ = 2.22 μ = 2.21 μ = 2.18 

σ = 0.56 - β = 0.60 - σ = 0.59  σ = 0.62 σ = 0.63 σ = 0.65 

1. * Significant at 0.05. 

2. Lowest AIC and BIC scores are bolded when the K-S statistics are significant at 0.05. 

3. Model parameters corresponds to the parameters in Table 3. 
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Table A. 5. Results of model selection for touristic trip duration 
   

Seattle  Los Angeles Bay Area Philadelphia Boston Washington, DC Chicago New York 

Weibull Parameters Shape 1.0101 0.9630 0.9058 1.0148 1.0964 1.0127 1.1820 1.1689 

Scale 28.1208 23.0748 19.7892 31.8312 23.4076 26.1706 23.4318 21.4678 

Goodness-of-fit statistics/criteria K-S statistic 0.1198 0.1560 0.1642 0.1241 0.1035 0.1051 0.0937 0.0922 

AIC 338614.0 503179.6 373796.1 1288168.9 3030850.9 8679039.4 11038732.2 30052685.3 

BIC 338631.2 503197.6 373813.6 1288188.6 3030872.6 8679063.0 11038756.5 30052711.6 

Gamma Parameters Shape 1.2389 1.2175 1.0775 1.3135 1.5416 1.2372 1.7200 1.7735 

Scale 0.0443 0.0516 0.0508 0.0416* 0.0688 0.0476* 0.0786 0.0883 

Goodness-of-fit statistics/criteria K-S statistic 0.1292 0.1593 0.1812 0.1302 0.0939 0.1108 0.0781 0.0585 

AIC 337571.5 502018.5 374872.7 1282093.2 3000916.1 8652275.5 10912615.5 29628874.6 

BIC 337588.7 502036.6 374890.2 1282112.9 3000937.7 8652299.2 10912639.8 29628900.8 

Lognormal Parameters meanlog 2.8760 2.6980 2.5228 3.0258 2.7512 2.8026 2.7680 2.6927 

sdlog 0.8857 0.8246 0.8455 0.8310 0.7904 0.8988 0.7740 0.7458 

Goodness-of-fit statistics/criteria K-S statistic 0.0527 0.0671 0.0736 0.0496* 0.0410* 0.0406* 0.0400* 0.0291* 

AIC 326305.5 474645.8 349130.3 1232427.7 2909092.5 8387075.5 10694832.5 28879473.4 

BIC 326322.6 474663.8 349147.8 1232447.5 2909114.1 8387099.2 10694856.8 28879499.7 

Best Fit Distribution None None None Lognormal Lognormal Lognormal Lognormal Lognormal 

Parameters - - - μ = 3.03 μ = 2.75 μ = 2.80 μ = 2.77 μ = 2.69 

- - - σ = 0.83 σ = 0.79  σ = 0.90 σ = 0.77 σ = 0.75 

1. * Significant at 0.05. 

2. Lowest AIC and BIC scores are bolded when the K-S statistics are significant at 0.05. 

3. Model parameters corresponds to the parameters in Table 3. 
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A.4 Power law and Exponential fitting for long trips 

 

Figure A. 6. Power Law fit to the commuting trip distance 
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Figure A. 7. Power Law fit to the touristic trip distance 

 

  



 

 

 

1
8
0
 

 

 

Figure A. 8. Power Law fit to the commuting trip duration 
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Figure A. 9. Power Law fit to the commuting trip duration 
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Table A. 6. Results of exponential distribution fitting 
  

Seattle  Los 

Angeles 

Bay 

Area 

Philadelphia Boston Washington, 

DC 

Chicago New 

York 

Commuting trip distance (mile) Rate parameter λ 0.3621 0.6764 0.4392 0.5386 0.3389 0.4657 0.4569 0.4551 

K-S statistic 0.5158 0.4920 0.5848 0.4166 0.4923 0.3724 0.3669 0.3657 

Tourist trip distance(mile) Rate parameter λ 0.5809 0.6884 0.6544 0.5545 0.5169 0.5234 0.3273 0.4935 

K-S statistic 0.4411 0.4978 0.4806 0.4258 0.4038 0.4076 0.4804 0.3897 

Commuting trip duration (minute) Rate parameter λ 0.0795 0.1254 0.0878 0.0663 0.0772 0.0745 0.0747 0.0741 

K-S statistic 0.4707 0.2965 0.5052 0.4846 0.3714 0.3611 0.3620 0.3598 

Tourist trip duration (minute) Rate parameter λ 0.0265 0.0328 0.0314 0.0243 0.0352 0.0342 0.0366 0.0374 

K-S statistic 0.2728 0.2795 0.2702 0.2883 0.2968 0.1862 0.3069 0.3380 
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Figure A. 10. Exponential fit to the commuting trip distance 
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Figure A. 11. Exponential fit to the touristic trip distance 
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Figure A. 12. Exponential fit to the commuting trip duration 
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Figure A. 13. Exponential fit to the touristic trip duration 
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APPENDIX B. SUPPLEMENTAL INFORMATION FOR CHAPTER 3 

B.1 Detailed procedures of BS-EREM 

The BS-EREM involves the following variables: 

T: Bike share trip data in a city C in the study period (with n trips in total); 

Ti (STi, Disti, Duri, Pi, transitOi, transitDi): Trip information of the ith trip in T, i= 1, 2, … , n; 

N (STN, DistN, PN, ModeN): a set of NHTS trips in the same city C; 

 

where 

ST: trip start time interval, indicates the time slots (out of the 6 time intervals) that the trip start time 

lies in; 

Dur: duration; 

Dist: distance;  

TransitO: public transit accessibility around bike share trip origin (True/False); 

TransitD: public transit accessibility around bike share trip destination (True/False); 

P: trip purpose (Commuting/Leisure); 

Mode: transportation mode of the NHTS trip (Walking/Vehicle); 

Speedi: The speed of the ith bike share trip; 

SpeedThreshold: The speed threshold to determine the trip purpose (commuting/leisure) of a bike share trip 

(in this study, the speed threshold is the average speed of all bike share trips T); 

Nsubset: A subset of the NHTS trips that meets a certain condition; 

Nsubset, Mode = M: NHTS trips in Nsubset with ModeN =M; 

EM: Emission factor for transportation mode M, where M ∈ {Biking, PublicTransit, Walking, Vehicle}; 

SM: Mode share of transportation mode M in Nsubset, where M ∈{PublicTransit, Walking, Vehicle}; 

ReplacedModei: Replaced mode of the ith bike share trip in the simulation; 

R: A random number generated in the simulation process (0 ≤ R ≤1); 

ERi: Emission reduction of the ith bike share trip in the simulation; 

ERTotal: Emission reduction of all bike share trip T; 

 

The algorithm below describes the details of BS-EREM in one round of simulation: 
____________________________________________________________________________________________ 

Algorithm for bike share trip mode substitution simulation_______________________ 

/* First read in the data and parameters. */ 
READ NHTS trips N 

READ bike share trips T 

READ SpeedThreshold 

READ emission factors EBiking, EPublicTransit, EWalking, EVehicle 
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/* Simulate the mode replacement for each trip and determine the emission reduction. */ 

FOR each trip Ti (i= 1, 2, … , n) 

COMPUTE Speedi = Disti/Duri 

IF Speedi ≥ SpeedThreshold THEN 

 Pi = Commuting 

ELSE 

 Pi = Leisure 

END 

 

SUBSET NHTS trip data N that trips in Nsubset have STN = STi , int(DistN ) = int(Disti), and PN  = Pi  

/* The NHTS trip subset Nsubset have identical trip information (time interval, distance, and purpose with bike 

share trip Ti; this study uses a 1-mile distance interval to subset NHTS trips. */ 

 

SUBSET Nsubset, Mode = M from Nsubset where all trips in Nsubset, Mode = M have ModeN =M|, for M in {PublicTransit, 

Walking, Vehicle} 

COMPUTE the transportation mode share: SM = |Nsubset, Mode = M|/ |Nsubset|, for M in {PublicTransit, Walking, 

Vehicle} 

/* |Nsubset, Mode = M| and |Nsubset| are the number of the trips in dataset Nsubset, Mode = M and Nsubset, respectively.*/ 

IF transitOi= False OR transitDi = False THEN 

 SPublicTransit = 0 

 SM = |Nsubset, Mode = M|/ (|Nsubset|-|Nsubset, Mode = PublicTransit|/), for M in {Walking, Vehicle} 

/* When there is no public transit facilities around trip origin or destination, adjust the mode share of public 

transit to be zero so the bike share trip cannot replace a public transit trip.*/ 

END 

 

GENERATE a random number R (0 ≤ R ≤1) 

IF R ≤ SPublicTransit THEN 

 ReplacedModei = PublicTransit 

ELSE IF SPublicTransit ≤ R ≤ SPublicTransit + Swalking THEN 

 ReplacedModei = Walking 

ELSE 

 ReplacedModei = Vehicle 

END 

 

COMPUTE ERi = (EReplacedModei - EBiking)× Disti  /* Calculate emission reduction of trip Ti */ 

END 
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COMPUTE 
1

n

total i

i

ER ER


 , i= 1, 2, … , n  /* Calculate the total emission reduction of all trips T. */                                                       

______________________________________________________________________________________ 

B.2 Spatial distribution of the GHG emission reduction for all the eight cities 
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Figure B. 1. Spatial distribution of the emission reduction in different cities (100 stations are 

randomly selected and visualized in the four larger systems to avoid overlap in visualization 
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APPENDIX C. SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

C.1 Examples of noises in the demand time series 

This section shows two examples of the noises in the demand time series, which may lead to 

very large growth rate. In Figure C. 1, the daily average bike withdrawals at station 16 stayed at 

a relatively stable level in the high-demand months (May – September) from 2014 to 2019. 

However, in some low-demand months such as January and February, there was an irregular 

peak in year 2017, which obviously differs from the demand change pattern in other months. The 

February demand growth rate from 2016 to 2017 is 2.1, which will bias the results if only 

analyzing the demand changes for station 16. Similarly, the station 99 in Figure C. 2 exhibited a 

slight demand decline in most of the months except January and February. The noises in January 

and February could also influence the analysis of demand change patterns. There are many 

external factors that could lead to such noises, such as special events and price promotions (e.g., 

free rides). In this study, the demand of stations are aggregated by the band distance, which can 

reduce the impact of such noises. Because most of the noises occur when the demand of a station 

is low, such low demand noises only impact the aggregated demand to a small extent.   
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Figure C. 1. Time series of the demands at station 16 

 

 

 

Figure C. 2. Time series of the demands at station 99 
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C.2 Comparing the results of the piecewise regression model and the linear regression model 

This section compares the fitted results of the piecewise regression model and a simple linear 

regression model. The simple linear regression model has the form in Eq. (C1) 

 

0 1[ | ]E G D D                                                          (C1) 

where 0   and 1   are other parameters to be estimated.  

 

Figure C. 1 shows the fitted results of the simple linear regression model. Compared with the fitted 

piecewise regression in Figure 4.4, the simple linear regression model fails to capture the trend 

that the growth rate G first increases as the band distance D increases when D is smaller than the 

change point of 0.3 miles. The fitted parameters and model fit statistics of the simple linear 

regression are shown in Table C. 1. The R2 (0.317) and adjusted R2 (0.301) of the simple linear 

regression model are both smaller than the R2 (0.624) and adjusted R2 (0.596) of the piecewise 

regression model, which indicates that the piecewise regression model fits better to the data than 

the simple linear regression model. 

 

 

Figure C. 3. Fitted simple linear regression model 
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Table C. 1. Fitted parameters and the model fit statistics of the simple linear regression model 

Parameter Estimation 

0    1.051*** (0.009) 

1    -0.016*** (0.004) 

Model fit statistics of simple linear regression 
R2 0.317 
Adjusted R2 0.301 
Model fit statistics of piecewise regression 
R2 0.624 
Adjusted R2 0.596 

Note: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001;  

the standard errors are shown in parentheses. 

 

C.3 Hyper-parameter tuning for the demand prediction models 

For each trained XGBoost model, the hyper-parameters are tuned using grid search (Syarif et al., 

2016) with 10-fold cross validation. Different combinations of the hyper-parameters in Table C. 2 

are iterated, and the set of hyper-parameters that yields the best cross validation performance will 

be used for model training. Some examples of the selected hyper-parameters are shown in Table 

C. 3 to C. 5. 

 

Table C. 2. Tuned hyper-parameters and the corresponding candidate values 

Tuned hyper-parameter Candidate values 

Number of boosting rounds (Boosting rounds) 500, 800 

Maximum tree depth (Max depth) 6, 8 

Boosting learning rate (Learning rate) 0.05, 0.01 

Minimum loss reduction required to make a 

further split on a leaf node (Min loss reduction) 

0.2, 0.4 

Subsample ratio of the training data records 

(Data subsample ratio) 

0.7, 0.8, 0.9 

Subsample ratio of columns for any level 

(Column subsample ratio) 

0.7, 0.8, 0.9 
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Table C. 3. Selected hyper-parameters for “GEO” model 

Year Month Column 

subsample 

ratio 

Min loss 

reduction 

Learning 

rate 

Max 

depth 

Boosting 

rounds 

Data 

subsample 

ratio 

2014 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.2 0.01 6 500 0.7 

3 0.7 0.2 0.01 6 500 0.7 

4 0.7 0.4 0.01 6 500 0.7 

5 0.7 0.4 0.01 6 500 0.7 

6 0.7 0.2 0.01 6 500 0.7 

7 0.7 0.2 0.01 8 500 0.7 

8 0.7 0.4 0.01 8 500 0.7 

9 0.7 0.2 0.01 6 500 0.7 

10 0.7 0.4 0.01 6 500 0.7 

11 0.7 0.4 0.01 6 500 0.7 

12 0.7 0.2 0.01 6 500 0.7 

2015 1 0.7 0.4 0.01 6 500 0.7 

2 0.7 0.4 0.01 6 500 0.7 

3 0.7 0.2 0.01 6 500 0.7 

4 0.7 0.4 0.01 8 500 0.7 

5 0.7 0.2 0.01 6 500 0.7 

6 0.7 0.2 0.01 6 500 0.7 

7 0.7 0.4 0.01 6 500 0.7 

8 0.7 0.4 0.01 6 500 0.7 

9 0.7 0.4 0.01 6 500 0.7 

10 0.7 0.2 0.01 6 500 0.7 

11 0.7 0.2 0.01 6 500 0.7 

12 0.7 0.2 0.01 6 500 0.7 

2016 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.4 0.01 6 500 0.7 

3 0.7 0.4 0.01 6 500 0.7 

4 0.7 0.4 0.01 6 500 0.7 

5 0.7 0.2 0.01 6 500 0.7 

6 0.7 0.4 0.01 6 500 0.7 

7 0.7 0.4 0.01 8 500 0.7 

8 0.7 0.2 0.01 8 500 0.7 

9 0.7 0.2 0.01 8 500 0.7 

10 0.7 0.4 0.01 8 500 0.7 

11 0.7 0.4 0.01 8 500 0.7 

12 0.7 0.2 0.01 6 500 0.8 

2017 1 0.7 0.4 0.01 6 500 0.7 
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2 0.7 0.4 0.01 6 500 0.7 

3 0.7 0.4 0.01 6 500 0.7 

4 0.7 0.2 0.01 8 500 0.7 

5 0.7 0.2 0.01 8 500 0.7 

6 0.7 0.4 0.01 8 500 0.7 

7 0.7 0.2 0.01 8 500 0.7 

8 0.7 0.2 0.01 8 500 0.7 

9 0.7 0.4 0.01 8 500 0.7 

10 0.7 0.4 0.01 8 500 0.7 

11 0.7 0.2 0.01 8 500 0.7 

12 0.7 0.2 0.01 6 500 0.7 

2018 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.4 0.01 6 500 0.7 

3 0.7 0.2 0.01 6 500 0.8 

4 0.7 0.4 0.01 8 500 0.7 

5 0.7 0.2 0.01 8 500 0.7 

6 0.7 0.4 0.01 8 500 0.7 

7 0.7 0.4 0.01 8 500 0.7 

8 0.7 0.4 0.01 8 500 0.7 

9 0.7 0.4 0.01 8 500 0.7 

10 0.7 0.4 0.01 8 500 0.7 

11 0.7 0.2 0.01 8 500 0.7 

12 0.7 0.4 0.01 8 500 0.7 
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Table C. 4. Selected hyper-parameters for “GEO+DENS” model 

Year Month Column 

subsample 

ratio 

Min loss 

reduction 

Learning 

rate 

Max 

depth 

Boosting 

rounds 

Data 

subsample 

ratio 

2014 1 0.7 0.4 0.01 6 500 0.7 

2 0.7 0.2 0.05 8 500 0.8 

3 0.7 0.2 0.01 8 500 0.7 

4 0.9 0.2 0.01 8 500 0.9 

5 0.9 0.2 0.05 8 500 0.9 

6 0.7 0.4 0.05 6 500 0.8 

7 0.8 0.4 0.05 6 500 0.8 

8 0.8 0.2 0.05 6 500 0.8 

9 0.9 0.4 0.01 8 500 0.9 

10 0.7 0.2 0.05 6 500 0.9 

11 0.7 0.4 0.05 6 500 0.7 

12 0.7 0.4 0.05 8 500 0.8 

2015 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.4 0.01 8 500 0.7 

3 0.7 0.2 0.05 8 500 0.7 

4 0.9 0.2 0.01 8 500 0.7 

5 0.8 0.2 0.01 8 500 0.7 

6 0.9 0.2 0.01 8 500 0.8 

7 0.8 0.4 0.01 8 500 0.7 

8 0.8 0.4 0.01 8 500 0.7 

9 0.7 0.2 0.01 6 500 0.7 

10 0.9 0.4 0.01 6 500 0.7 

11 0.9 0.2 0.01 6 500 0.7 

12 0.7 0.4 0.01 6 500 0.8 

2016 1 0.8 0.4 0.01 6 500 0.7 

2 0.9 0.2 0.01 6 500 0.7 

3 0.7 0.4 0.05 8 500 0.8 

4 0.9 0.4 0.01 6 500 0.7 

5 0.9 0.4 0.05 6 500 0.7 

6 0.9 0.4 0.01 6 500 0.8 

7 0.9 0.4 0.01 8 500 0.7 

8 0.8 0.2 0.01 6 500 0.7 

9 0.9 0.4 0.05 8 500 0.8 

10 0.8 0.2 0.05 8 500 0.7 

11 0.9 0.4 0.05 8 500 0.7 

12 0.8 0.2 0.01 8 500 0.7 

2017 1 0.7 0.4 0.05 6 500 0.8 



 

 

199 

2 0.9 0.2 0.01 6 500 0.8 

3 0.9 0.2 0.01 8 500 0.8 

4 0.7 0.4 0.05 8 500 0.7 

5 0.9 0.4 0.01 8 500 0.7 

6 0.9 0.4 0.01 8 500 0.7 

7 0.9 0.4 0.01 8 500 0.7 

8 0.9 0.4 0.01 8 500 0.7 

9 0.7 0.4 0.01 6 500 0.7 

10 0.9 0.2 0.01 6 500 0.9 

11 0.7 0.2 0.05 8 500 0.7 

12 0.7 0.2 0.01 6 500 0.7 

2018 1 0.7 0.4 0.05 8 500 0.8 

2 0.9 0.2 0.01 6 500 0.9 

3 0.7 0.2 0.01 6 500 0.7 

4 0.7 0.2 0.01 6 500 0.7 

5 0.7 0.4 0.01 8 500 0.7 

6 0.8 0.2 0.01 8 500 0.7 

7 0.7 0.4 0.01 6 500 0.7 

8 0.9 0.4 0.01 6 500 0.7 

9 0.7 0.2 0.01 6 500 0.7 

10 0.9 0.2 0.05 6 500 0.7 

11 0.7 0.2 0.01 8 500 0.7 

12 0.7 0.4 0.05 8 500 0.7 
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Table C. 5. Selected hyper-parameters for “EXT” model 

Year Month Column 

subsample 

ratio 

Min loss 

reduction 

Learning 

rate 

Max 

depth 

Boosting 

rounds 

Data 

subsample 

ratio 

2014 1 0.7 0.2 0.01 6 500 0.8 

2 0.7 0.4 0.01 6 500 0.7 

3 0.7 0.4 0.01 6 500 0.7 

4 0.7 0.2 0.01 6 500 0.7 

5 0.7 0.2 0.01 8 500 0.7 

6 0.7 0.2 0.01 8 500 0.7 

7 0.7 0.4 0.01 8 500 0.7 

8 0.7 0.4 0.01 6 500 0.7 

9 0.8 0.2 0.01 8 500 0.7 

10 0.7 0.4 0.01 6 500 0.7 

11 0.8 0.4 0.01 6 500 0.7 

12 0.8 0.2 0.01 6 500 0.7 

2015 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.2 0.05 8 500 0.8 

3 0.8 0.2 0.01 6 500 0.7 

4 0.7 0.2 0.01 6 500 0.7 

5 0.7 0.4 0.01 8 500 0.7 

6 0.7 0.2 0.01 8 500 0.7 

7 0.8 0.4 0.01 8 500 0.8 

8 0.7 0.4 0.01 6 500 0.7 

9 0.7 0.4 0.01 6 500 0.9 

10 0.7 0.2 0.01 6 500 0.7 

11 0.8 0.4 0.01 6 500 0.7 

12 0.7 0.4 0.01 8 500 0.7 

2016 1 0.7 0.2 0.01 6 500 0.7 

2 0.7 0.2 0.01 6 500 0.7 

3 0.9 0.2 0.01 6 500 0.7 

4 0.7 0.4 0.01 8 500 0.7 

5 0.7 0.4 0.01 6 500 0.8 

6 0.8 0.4 0.01 8 500 0.7 

7 0.7 0.2 0.01 6 500 0.7 

8 0.7 0.4 0.01 8 500 0.7 

9 0.8 0.4 0.01 8 500 0.7 

10 0.7 0.2 0.01 6 500 0.7 

11 0.7 0.4 0.01 6 500 0.7 

12 0.8 0.2 0.01 6 500 0.7 

2017 1 0.9 0.4 0.01 6 500 0.7 
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2 0.7 0.4 0.01 6 500 0.7 

3 0.9 0.2 0.01 6 500 0.7 

4 0.7 0.4 0.01 6 500 0.7 

5 0.7 0.2 0.01 6 500 0.7 

6 0.7 0.4 0.01 6 500 0.9 

7 0.8 0.2 0.01 6 500 0.7 

8 0.7 0.2 0.01 8 500 0.8 

9 0.7 0.2 0.01 6 500 0.7 

10 0.8 0.2 0.01 6 500 0.7 

11 0.8 0.4 0.01 6 500 0.7 

12 0.7 0.4 0.01 6 500 0.7 

2018 1 0.7 0.4 0.01 6 500 0.7 

2 0.7 0.2 0.05 8 800 0.7 

3 0.8 0.2 0.01 8 500 0.7 

4 0.7 0.2 0.01 6 500 0.7 

5 0.7 0.4 0.01 6 500 0.7 

6 0.7 0.4 0.01 6 500 0.8 

7 0.7 0.2 0.01 8 500 0.7 

8 0.8 0.4 0.01 8 500 0.7 

9 0.7 0.4 0.01 6 500 0.7 

10 0.7 0.4 0.01 8 500 0.7 

11 0.8 0.2 0.01 8 500 0.7 

12 0.7 0.4 0.01 6 500 0.8 
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APPENDIX D. SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

D.1 Computing the biking O-D correlation matrix 

As stated in Section 5.3.3.2, in the biking O-D correlation matrix 
tM , the element 

ij

tm   is the 

percentage of trips that end in station j given that they start from station i in hour t of the T days. 

Similar to the estimation of true bike withdrawal rate, the model also needs to consider the impact 

of the empty/full stations. Therefore, this study first computes the average hourly O-D trip rate ˆ ij

tR

(Eq. D1) for trips that start from station i and end at station j during time interval t over T days, 

where ˆ ij

tzw  is the number of observed bike share trips that start from station i and end at station j 

during time interval t on the zth day, and ˆ ij

tp  is the percentage of time that station i has available 

bikes and station j has available docks at the same time during time t over T days. Then 
ij

tm  can be 

computed using Eq. D2.  

 

1

1ˆ ˆ
ˆ

T
ij ij

t tzij
zt

R w
T p 




                                                        (D1) 
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t

j

R
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R



                                                                  (D2) 

  

This study first simulates the biking origin of a trip and then assigns a destination based on the 

correlation matrix 
tM . However, since the average hourly O-D trip rate ˆ ij

tR  is already estimated 

in (Eq. D1), another option of generating trips is to directly simulate the trips based on ˆ ij

tR for O-

D pairs, such as the “Filtered Sample Average” method in the study of (Goh et al., 2019). However, 

the true demand estimation based on the station status may over-estimate the demand. For instance, 

it could happen that there is indeed no bike withdrawal demand at an empty station for a certain 

period, in which case the estimated demand rate is larger than the actual demand. If the station 

status at both the origins and destinations are considered, it may further over-estimate the true 

demand. As a compromise, this study only considers the origin station statues to estimate the true 
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demand to reduce the over-estimation. But the impact of using ˆ ij

tR  to directly generate the trips.is 

also evaluated The total estimated true demand (trips) per day considering both O-D station status 

is 0.3%, 3.1%, and 5.6% more than the true demand estimated based on only the origin station 

status in Los Angeles, Philadelphia, and Chicago, respectively.  

  

D.2 Bike pick-up in the user behavior model 

In this study, a trip’s actual origin is estimated based on the biking origin (primary grid) according 

to the distance distribution in WALKfirst, to be consistent with the historical data, a trip whose 

actual origin is one grid away from the primary grid inherently indicates that the user of the trip is 

at least willing to walk one grid to pick up bikes. For example, for a trip served by a station-based 

BSS, if the trip’s actual origin is estimated to be one grid away from the primary grid, it is known 

that at least the user is willing to walk to the primary grid to use the system. Therefore, this user 

should also be willing to walk to other grids that are one-grid away to pick up bikes when the bike 

availability is not constrained by the stations in the dockless and hybrid systems. This revealed 

walking tolerance is defined as dtor, which is the distance between the actual origin grid and the 

corresponding primary grid. If the distance between the actual origin and the nearest bike, dbike, is 

less than or equal to dtor, the user will pick up the nearest bike and the trip will always be served. 

However, someone who is at least willing to walk one grid to use the BSS may also be willing to 

walk two grids. In the case that dbike > dtor, the probability of picking up the bike is the conditional 

probability described in Eq. D3. 

 P the user will walk  the user is at least willing to |

CCDF( )
=

CCDF(

w

)

alk bike tor

bike

tor

d d

d

d

                 (D3) 

where CCDF is the Complementary Cumulative Distribution Function of the walking distance 

distribution in WALKfirst. Figure D. 1 shows one example of such bike pick-up process.  
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Figure D. 1. One example of the bike pick-up process: the user of this trip has dtor = one-grid 

because the starting location is one grid away from the primary grid (the grid with a “P” sign). 

The nearest available bike is two grids away from the user, i.e., dbike = two-grids. In this case, the 

probability that the user will walk to pick up this bike equals to CCDF(dbike )/CCDF(dtor) 

D.3 Comparing rebalance methods 

This section compares the performance of rebalance method proposed by O'Mahony and Shmoys (2015) 

(referred as “literature method” in the following part) with the proposed method. The literature method is 

formulated as below in Eq. D4 to D9 to allocate the N bikes to all the stations. The notations have the 

same meanings as those in the main text. When the system has sufficient bikes, the literature method 

tends to allocate the bike inventory level Li at 
min max

2

i i

iC f f 
 

 
 for station i. In this case, the 

capacity Ci not only plays a role as a limit, but also affects the assigned level Li. However, some stations 

may have larger capacity than its actual demands. Assigning more bikes to these large-capacity but low-

usage stations will reduce the bikes allocated to stations with smaller capacity but high usage, causing 

more unserved trips. Therefore, in this study, the working capacity iC  is introduced.  

 min i

i

D                                                                     (D4) 

 . . i

i

s t L N                                                               (D5) 

 min i

i ii D L f


                                                            (D6) 

 max i

i i ii D C L f


                                                        (D7) 
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 {0,  1,..., }
i ii L C                                                          (D8) 

 0ii D                                                                    (D9) 

 

As shown in Figure D. 2, the proposed method has significantly reduced the percentage of 

unserved trips in the station-based BSSs in all three cities compared with the literature method. 

Although this method increased full-dock trips, the total percentage of affected trips is still lower 

than the literature method. It is notable that a lower percentage of unserved trips also means that 

more trips were started, which may indirectly increase the probability to encounter full-dock issues. 

 

 

Figure D. 2. Percentage of affected trips from simulations using the literature rebalance method 

(O’Mahony & Shmoys, 2015) and the proposed rebalance method. 

 

D.4 Estimation of the rebalance mileage 

In this study, the rebalance workload is estimated by computing the mileage to travel through the 

grids that require rebalance. A traveling salesman problem (TSP) is solved to traverse all 

rebalancing stations using the method arbitrary insertion (Rosenkrantz et al., 2009), which yields 

the near-optimal shortest tour length (Hahsler & Hornik, 2007). A two-edge exchange 

improvement procedure (Hahsler & Hornik, 2007) was also applied to further improve the route if 

possible. It is assumed that there is only one rebalance vehicle. Similar to the study by Goh et al. 
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(Goh et al., 2019), the model focuses on estimating the rebalance needs in the BSS and ignores the 

routing time and time to load and unload bikes. Additionally, based on the communication with 

BSS operators, a station will not be rebalanced if only one or two bikes need to be added/removed. 

Therefore, in the simulation, if the rebalance need at a station or a primary grid catchment is too 

small (e.g., the absolute difference between the current inventory level and the solved target level 

is less than or equal to 2 bikes), the rebalance will be delayed to later when the current inventory 

level further deviate from the target level. Because of having this flexibility, sometimes the number 

of move-out bikes does not equal to the move-in bikes across the entire system. Therefore, the 

depot is used to provide a buffer capacity, supplying or storing a small amount of bikes to adjust 

for the differences. 
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D.5 Spatial distribution of the bike withdrawal demand in Philadelphia and Chicago 

(a) (b) 

  

Figure D. 3. Heat map of the bike withdrawal rate per day for the stations in (a) Philadelphia, and 

(b) Chicago 

D.6 Detailed results of access time 

Table D. 1. Average excess time (seconds) in different stages per served trips 

City System type Start-

walk 

End-

walk 

End-

bike 

Total 

Los Angeles Dockless 36.8 0.0 0.0 36.8 

Hybrid(25%) 38.6 8.1 0.0 46.7 

Hybrid(50%) 39.8 14.9 0.0 54.7 

Hybrid(75%) 41.5 22.3 0.0 63.8 

Station 45.6 62.6 16.1 124.3 

Philadelphia Dockless 36.4 0.0 0.0 36.4 

Hybrid(25%) 38.4 8.9 0.0 47.3 

Hybrid(50%) 40.0 17.4 0.0 57.4 

Hybrid(75%) 42.3 25.3 0.0 67.6 

Station 47.1 53.3 9.2 109.6 

Chicago Dockless 36.3 0.0 0.0 36.3 

Hybrid(25%) 38.0 7.8 0.0 45.9 

Hybrid(50%) 39.9 15.2 0.0 55.1 

Hybrid(75%) 41.7 22.5 0.0 64.2 

Station 46.4 71.2 25.5 143.1 
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D.7 Detailed analysis of bike rebalance 

This section provides more detailed analysis on the bike rebalance in Chicago. In the main 

manuscript, it is shown that the station-based BSS in Chicago requires more rebalance mileages 

than the corresponding hybrid BSS. The examples of rebalance routes in Figure D. 4 show that 

there are some outskirt grids in Chicago that are visited by the rebalance vehicle in the station-

based BSSs but not visited in the corresponding dockless/hybrid BSSs. Visiting these outskirt grids 

requires more mileage than only circling around in the downtown area, which makes the total 

rebalance mileage of station-based BSS higher than the corresponding hybrid BSS in Chicago. 

Figure D. 5 shows the inventory changes of two such grids. In both grids, the assigned initial 

inventory level in the station-based BSS is higher than the dockless BSS. Grid A has an initial 

inventory of three bikes in the station-based BSS, which became empty at the end of the day and 

thus required rebalance. However, grid A was only assigned one bike in the dockless BSS and also 

became empty at the end of the day (with three unserved trips). Because the difference between 

the end-of-day inventory and the rebalance target level is only one bike, less than the 2-bike 

threshold to trigger a rebalance request, rebalance is not conducted at Grid A in the dockless BSS. 

Grid B in the station-based BSS had an initial inventory of two bikes at the beginning of the day 

and the inventory changed to nine at the end of the day, which required rebalance. However, in the 

corresponding dockless BSS, the initial and end-of-day bike inventory are 0 and 1, respectively, 

and thus Grid B does not need a rebalance. It is also notable that Grid B received less returned 

bikes in the dockless BSS than in the station-based BSS throughout the day. This is because that 

the dockless/hybrid BSSs can allocate more bikes to the grids with high bike withdrawal demands, 

while the station-based BSSs have to consider the capacity limits and the trade-off between the 

availability of both bikes and docks. As a result, in dockless/hybrid BSS, more bikes are located 

at the high demand downtown area, while outskirts grids are assigned a very small number of bikes 

(Figure D. 6). In contrast, station-based BSSs allocated more bikes to the outskirt areas than the 

dockless/hybrid BSSs, which increased the served trips in these areas. Because bike share trips are 

mostly in short distance (median distance is around 1.5 miles (Kou & Cai, 2019)), when the local 

bike availability around Grid B is low in a dockless BSS, the number of bikes returned to Grid B 

would also be reduced due to unserved trips (e.g., the unserved trips in grid A).  
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The reason that such situations are only observed in Chicago but not in other two cities is that: in 

Chicago (min | min 0)i i

i

f f 
 

  = 4,030 while the total bike supply N = 3,930, so in the 

dockless/hybrid BSSs, the rebalance algorithm can only allocate bikes to grids with min 0if


 , 

and leave other grids empty. While in Los Angeles and Philadelphia, the values of 

(min | min 0)i i

i

f f 
 

  and N are 201 and 986, and 560 and 1,140, respectively. Therefore, in 

these two cities, there are still many bikes left after allocating the needed bikes to those grids with 

min 0if


 . So more bikes can be allocated to other grids, including those outskirt grids. 
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Figure D. 4. Examples of rebalance routes in one round of simulations (blue lines are the routes 

and each red dot represents one stop that the vehicle stops to collect or drop off bikes so there 

could be multiple stops in one grid in dockless/hybrid BSSs; the background map covers the 

whole service areas of the systems but grids not on the rebalance route are not plotted) 
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Figure D. 5. The inventory and the accumulated unserved trips dynamic changes of two grids in 

Chicago (the locations of the two grids are shown in the example rebalance routing in the station-

based system in Chicago in Figure D. 4) 

 

 

(a)  (b)  

Figure D. 6. Distribution of the assigned initial inventory in Chicago: (a) station-based system, 

(b) dockless system
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