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ABSTRACT

The identification of the vocation of an unknown heavy-duty vehicle is valuable to parts

manufacturers who may not have otherwise access to this information on a consistent basis.

This study proposes a methodology for vocation identification that is based on clustering

techniques. Two clustering algorithms are considered: K-Means and Expectation Maximiza-

tion. These algorithms are used to first construct the operating profile of each vocation

from a set of vehicles with known vocations. The vocation of an unknown vehicle is then

determined using different assignment methods.

These methods fall under two main categories: one-versus-all and one-versus-one. The

one-versus-all approach compares an unknown vehicle to all potential vocations. The one-

versus-one approach compares the unknown vehicle to two vocations at a time in a tourna-

ment fashion. Two types of tournaments are investigated: round-robin and bracket. The

accuracy and efficiency of each of the methods is evaluated using the NREL FleetDNA

dataset.

The study revealed that some of the vocations may have unique operating profiles and are

therefore easily distinguishable from others. Other vocations, however, can have confound-

ing profiles. This indicates that different vocations may benefit from profiles with varying

number of clusters. Determining the optimal number of clusters for each vocation can not

only improve the assignment accuracy, but also enhance the computational efficiency of the

application. The optimal number of clusters for each vocation is determined using both

static and dynamic techniques. Static approaches refer to methods that are completed prior

to training and may require multiple iterations. Dynamic techniques involve clusters being

split or removed during training. The results show that the accuracy of dynamic techniques

is comparable to that of static approaches while benefiting from a reduced computational

time.
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1. INTRODUCTION

The ability to identify the vocation of a heavy-duty vehicle from drive cycle data collected

during the vehicle’s daily operation is valuable to many parts’ manufacturers in order to

track the end-use of the vehicle and subsequently improve parts’ design and configuration.

Electronic components and sensors in vehicles are becoming increasingly pervasive. This

evolution led to the emergence of new sources of data that can help inform improved designs.

In fact, both OEMs and parts’ manufacturers now have access to a large stream of operational

data that can be acquired during maintenance or configuration updates, with the vehicle

owner’s consent. However, as opposed to OEMs, parts’ manufacturers do not typically have

knowledge of the actual use, application or vocation of the vehicle. Moreover, the parts can

be deployed in a large number of varying vocations. Finally, data available to the parts’

manufacturer for each individual vehicle may be limited. Vocation information is needed to

leverage the collected data for vocation-targeted design or configuration enhancements.

The proposed vocation identification methodology follows a two-step approach. First,

the profile of each vocation of interest is established using a set of vehicles with known

vocations. Second, the daily drive cycle measurements collected from the unknown vehicle

are compared to all vocation profiles and the most likely vocation is selected.

In machine learning, this type of application is typically solved by using either classifica-

tion or clustering techniques. The major difference between the two being that classification

aims at assigning a vehicle to a vocation from a pre-defined set of vocations whereas cluster-

ing aims at grouping similar vehicles into one vocation. Because of this underlying difference,

classification techniques rely primarily on supervised learning whereas clustering techniques

use unsupervised learning[1][2]. This thesis investigates the use of clustering techniques for

the vocation identification of heavy-duty vehicles.

Two clustering algorithms are used to demonstrate the proposed vocation identifier: K-

means (KM)[3] and Expectation maximization (EM)[4]. It is possible to use other clustering

algorithms, such as Particle swarm optimization (PSO)[5], Density-based spatial clustering
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(DBSCAN)[6], or Hierarchical DBSCAN (HDBSCAN)[7] in conjunction with the proposed

methodology. KM and EM have been selected because they are widely used in various

applications [8][9].

Most classification algorithms are best at handling two classes[10]: a positive and a

negative class. These binary classifiers have been extended to multi-class models using the

one-versus-all[11] and the one-versus-one methodology[12]. The one-versus-all consists of an

ensemble of classifiers where each classifier is trained to correctly predict one positive class

while considering all the remaining classes as negative. This method has a linear complexity

with respect to the number of vocations. The one-versus-one is also an ensemble of classifiers.

However, in this case a classifier is developed for each pair of classes leading to a quadratic

complexity with respect to the number of vocations.

In this thesis, a clustering approach as opposed to a classification approach is adopted.

The proposed methodology follows a multi-class that was inspired by the one-versus-one

classification approach which is able to accommodate a large number of vocations. The

daily measurements of the unknown vehicle are compared to two vocations at a time in a

tournament bracket. In each round, a vocation is eliminated, making the approach linearly

scalable with respect to the number of vocations. This approach is compared to a one-

versus-all assignment (where the unknown vehicle is compared to all the vocations at the

same time) as well as to the round-robin assignment.

An important hyper-parameter of any of the clustering methodologies mentioned above

is the number of clusters allowed for each vocation. This number can be pre-specified prior

to training. However, selecting the appropriate number of clusters for each vocation requires

prior knowledge of the vocations’ operating profiles in addition to significant fine tuning

(using an iterative procedure). Several methods that can be used to determine the optimal

number of clusters per vocation have been proposed in the literature. These include, for

example, the Elbow [13] and Silhouette [14] methods. Most of these previous approaches

are iterative and require several iterations of development and validation until the optimal

number of clusters for a vocation is established. In this thesis, these previous methods are

evaluated and compared to a newly proposed dynamic approach. This approach attempts

to determine the optimal number of clusters for each vocation during training. After a set
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of training epochs, the clusters established for the vocation are evaluated. This evaluation

determines whether each cluster should be retained as is, removed, or split into two different

clusters. The abovementioned clustering methodologies are demonstrated on 5 vocations

from the NREL Fleet DNA[15][16] dataset.

The remainder of this thesis is organized as follows: Chapter 2 includes a review of pre-

vious work related to clustering and vehicular applications. Chapter 3 investigates method-

ologies for the assignment of records and vehicles to vocations. Chapter 4 describes various

methods that can be used to determine the optimal number of clusters for a vocation. Chap-

ter 5 concludes the thesis with a summary of the main findings and suggested direction for

future work.
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2. RELATED WORK

Vocation identification is a classification problem. The objective is to assign a record collected

from an unknown vehicle to one of the potential vocations. In this study, a clustering

methodology is used to first establish the operating profile of each vocation. The record

collected from the unknown vehicle is then compared to these established profiles. This

chapter introduces a brief review of previous work related to clustering and classification,

and the use of these techniques in support of vehicular applications.

2.1 Classification and Clustering

Since vocations for the training dataset are known a-priori in our study, using a clas-

sifier model with supervised learning would be expected. Some of the widely recognized

classification algorithms include support vector machine (SVM)[11], random forest (RF)[17],

and neural networks. Most of these algorithms are inherently two-class (binary) classifiers.

However, they have been extended to accommodate multi-class applications. For instance,

SVM maps input records to a higher-dimensional input space using kernel transformations

where they can be linearly separated by a hyperplane into a positive and a negative class. It

was extended to multi-classes using one-versus-one and one-versus-all ensemble learners[11].

Similarly, neural networks can use multiple nodes in the output layer where each node corre-

sponds to a class[18]. This architecture is equivalent to using an ensemble of one-versus-all

neural networks. RF can also support multiple classes if multiway trees are used instead of

the traditional binary decision trees[19]. These multi-class RF classifiers would also need a

modified consensus rule when trees in the RF indicate different class predictions.

Compared to a classifier, the purpose of a clustering algorithm is to: (a) identify clusters

with similar records, (b) select a representative member for each cluster and (c) adequately

assign a record to a cluster. These three aspects vary from one clustering algorithm to the

next. As opposed to a classifier, the first step is performed using unsupervised learning. For

example, KM defines the similarity between two records according to a distance measure
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(e.g., Euclidean distance or cosine distance). The smaller the distances the more similar are

the records. Other similarity criteria that are optimized to specific applications are proposed

in [20][21][22].

Once a cluster is identified, a representative member, called the centroid is selected and

refined iteratively as more members are added to or removed from the cluster. Under the

KM and EM algorithms, the centroid is typically calculated by averaging across all the

members of the cluster. A variant of this approach requires that the representative be an

actual member of the cluster and this representative is called the medoid to distinguish

it from the centroid. Other clustering algorithms, such as PSO[5], derive their efficiency

from the selection of appropriate centroids. Centroids are mapped to particles in PSO[23].

Each particle moves in the feature space according to its velocity which is updated based

on the best position that the particle has found so far and the current global best position

across all particles. These positions are referred to as local conscience and global conscience,

respectively. The particles are updated iteratively until the best centroids are found.

The assignment of a record to a cluster also varies from one clustering algorithm to

the next. For KM, each record is assigned to exactly one cluster based on the distance

between the record and the centroid of the cluster. This assignment is referred to as a

”hard” assignment. EM uses a ”soft” assignment[24]. That is, each record has a probability

of belonging to each cluster.

2.2 Number of Clusters

Other important aspects of clustering algorithms include the relationship among the

clusters and the appropriate number of clusters. Most clustering algorithms assume that all

clusters are at the same level. This type of clustering is referred to as partitioning[6]. This

is also the type of clustering being used in this study. In contrast, hierarchical clustering[7]

allows some clusters to be a subset of others.

Silhouette[14] and Elbow[25] are methods for finding the optimal number of clusters.

Silhouette[14] takes into consideration the tightness of a cluster and its separation from other

clusters. Elbow[25] uses a recursive doubling approach. It starts with two clusters and splits

these clusters until an accuracy threshold is achieved. The Elbow Method uses a measure
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such as inertia or sum square error (SSE) ratio to determine the point where additional

clusters do not improve the accuracy of the clustering model. The elbow point is defined by

a significant decrease in the inertia or SSE ratio, followed by a lack of significant change [13].

The drawback of this approach is the ability to accurately determine the elbow point, which

requires manual evaluation of the inertia graph for clustering models with varying number

of clusters, or an accurate mathematical formulation of what qualifies as an elbow point.

In this thesis, two methods for selecting an adequate number of clusters are investigated.

The first method compares the average of the standard deviations of each feature to a

threshold in order to decide whether the cluster should be split or removed. The second

method is inspired from simulated annealing[26]. Simulated annealing allows some of the

split or removal decisions to be arbitrary in the beginning of the training. However, this

flexibility decreases as the training progresses.

2.3 Vehicular Applications

Clustering has been used in several vehicular applications. For example, in [21] location-

based clustering was shown to enhance routing for vehicle-to-vehicle communication. Clus-

tering was also used in [20] for sharing of traffic congestion information. Each cluster of

vehicles was used to represent a given traffic flow thereby allowing the vehicle at the head of

the flow to inform the vehicle at the tail of the flow of any traffic congestion. In [22], clus-

tering was used to detect anomalous cab trajectories. Five clusters are established, namely,

normal trajectory, global short cut, local short cut, global detour and local detour. Each of

the above applications innovate by proposing a customized similarity measure for the target

application.

The fleet DNA dataset used in this study was introduced and extensively analyzed in

[16]. Indeed, dimension reduction was performed on the dataset using principal component

analysis (PCA) and cross-correlation to identify the eight most expressive features in the

dataset. These were found to be aerodynamic speed, characteristic acceleration, percent of

total cycle distance accumulated at speeds below 55 mph, percent of total cycle time duration

accumulated at vehicle speeds of 0 mph, number of vehicle stops per mile, mean (nonzero)

driving speed, maximum driving speed and standard deviation of (nonzero) driving speed.
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Using these eight features, the study found that the first 6 components of PCA were able

to describe 99% of the variance in the data. K-medoid was also used to cluster all the drive

cycles in the fleet DNA dataset into three clusters. The optimal number of clusters was

established using Silhouette[14].

The above study helped guide the methodology proposed in this thesis. However, this

thesis addresses a different problem and uses different algorithms. The NREL study[16] aims

at identifying a limited number of representative drive cycles across all US commercial fleets.

The aim of this thesis is to identify the specific vocation of an unknown vehicle. The method-

ology is also different since it demonstrates the use of a clustering algorithm for vocation

identification. In fact, while targeting a different application, the methodology proposed in

this thesis shares this aspect with the approach for the detection of anomalous cab trajec-

tories proposed in [22]. The algorithm proposed in this thesis enhances this methodology

by showing that a one-versus-one bracket assignment can be efficiently applied to a large

number of vocations.
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3. VOCATION IDENTIFICATION

This chapter describes the methodology used to develop the proposed vocation identification

model. The profile of the vocation in the model is established using K-means (KM)[3] or

Expectation-maximization (EM)[4]. Two primary methods are then used to assign a vehicle

to a given vocation: one-versus-all assignment and one-versus-one assignment. One-versus-

one assignment methods include the round-robin approach and the tournament bracket ap-

proach. Results are presented for each method.

3.1 Methodology

The proposed methodology is able to create a model that identifies the vocation of an

unknown vehicle. In the next subsections, we describe the dataset, the training phase of the

model which establishes the operating profile of each vocation, and three vocation assignment

algorithms.

Table 3.1. Feature List.

Label Feature Unit
1 Max spd Max Speed mph
2 Total avg spd Total Average Speed mph
3 *Total spd std Total Speed Standard Deviation mph
4 Drive avg spd Driving Average Speed mph
5 Drive spd std Driving Speed Standard Deviation mph
6 Zero seconds Zero Seconds 1000s
7 Distance total Distance Total miles
8 Total stops Total Stops count
9 *Avg kin pwr density demand Average Kinetic Power W/kg

Density Demand
10 *Cuml instant KE density Cumulative Instantaneous MJ/kg

Kinetic Energy Density
11 *Char accel Characteristic Acceleration m/s2

12 *Aero spd Aerodynamic Speed m/s
13 Max accel Max Acceleration ft/s2

14 Avg accel Average Acceleration ft/s2

15 *Max decel Max Deceleration ft/s2
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3.1.1 Dataset

Each vehicle in the Fleet DNA[15] dataset is represented by a set of records where every

record is an aggregation of the drive cycle measurements over a single day. The features of

the records used in this study are shown in Table 3.1. Their definitions are available in [16]

and references therein. For convenience, some of these definitions are reproduced below:

• Max Speed: Maximum speed observed during the trip.

• Total Average Speed: Average speed over the trip (including zero speed points).

• Driving Average Speed: Average speed over the trip not including the zero speeds.

• Zero Seconds: Number of 1000 seconds at zero speed.

• Distance Total: Total distance traveled in miles.

• Total Stops: Number of vehicle stops.

• Average Kinetic Power Density Demand: Mean of the kinetic power density demand

(with respect to mass).

The list of the 15 features shown in Table 3.1 was selected among the 350 available

parameters in the original dataset using dimension reduction. Some of the features in the

original data identify the vehicle, the deployment or the vocation. These were used to label

the data. A large number of parameters were removed because they had a linear or an

inverse relationship with another parameter (e.g., Characteristic Acceleration and Charac-

teristic Deceleration, Average Acceleration and Average Deceleration). Parameters related

to potential energy (e.g., Cumulative Instantaneous Potential Energy Density and Average

Potential Power Density Demand) were also removed because they are more dependent on

the road elevation than on the vocation of the vehicle. Moreover, daily records with Zero

Seconds > 18,000s were removed from all the vehicles because this is an indication that the

vehicle was not in operation for more than 5 hours in the given day.

The original FleetDNA dataset includes eight vocations: Bucket Trucks, Class 8 Tractors,

Delivery Vans, Delivery Trucks, Transit Buses, Refuse Trucks, School Buses, and Service

Vans. The latter three vocations were eliminated because they did not include sufficient data.
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Table 3.2. Number of vehicles used for testing for each vocation.

Vocation Label Total number
of vehicles

Number of
test vehicles

Bucket Truck BT 12 2
Class 8 Tractor CT 43 33
Delivery Truck DT 29 19
Delivery Van DV 26 16
Transit Bus TB 21 11

For the remaining vocations, the vocation identification model followed a training/testing

split at the vehicle level. This prevents information leakage that may result from allowing

records from the same vehicle to participate in both the training and the testing of the

vocation classification. After assigning a vehicle from the original dataset to either training

or testing, 13 records were randomly sampled without replacement from each vehicle. Each

random selection was considered as a separate vehicle in either the training or testing pool of

vehicles. Moreover, to keep the training records balanced across vocations, 10 vehicles were

selected per vocation for training. The remaining vehicles were used for testing. This split

approach led to variations in the number of vehicles available for testing across the vocations

(Table 3.2). In total, 50 vehicles are used for training and 81 vehicles are used for testing

across the 5 vocations.
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Figure 3.1. Probability Density of Total Average Speed for each vocation.
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Figure 3.2. Probability Density of Driving Average Speed for each vocation.

Each vocation represents a group of vehicles that perform similar tasks. A detailed

description of each vocation in the fleet DNA is provided in [15]. Figures 3.1 and 3.2, show

the probability density functions under the assumption of uni-modal normal distribution for

two example features from the dataset: Total Average Speed and Driving Average Speed for

all the vocations. These figures illustrate the complexity of vocation identification. Some of

the vocations (e.g., TB) have a distinct operational profile while others have an operational

profile that can be confounded with the remaining vocations. The similarity in operating

profiles between BT and DT is notable in both figures. Delivery Vans (DV) and Delivery

Trucks (DT) are also expected to have a high level of similarity since the main difference

between these two vocations is the vehicle weight, with DT vehicles being typically heavier

than DV vehicles.

Bucket Trucks (BT) perform tasks at the job site and will possibly spend less time

driving from one point to another. Therefore, compared to DT, DV and TB vehicles, their

operational profile will show lower distances traveled and lower average speeds (Figure 3.1).

Class 8 Tractors (CT) are typically used to haul a trailer from a source (e.g., distribution

center) to a destination (e.g., customer site). Therefore, CT vehicles are expected to travel

long distances over highways compared to DT or DV vehicles. However, according to [15],

the CT vocation consists of various types of class 7 and 8 vehicles that can be used for

different tasks ranging from food delivery to long-hauling tasks. This variation in the CT
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profile explains some of the results later discussed in Section 3.2. Lastly, the Transit Bus

(TB) profile exhibits frequent stops with low average speeds since TB vehicles are used for

short-distance public transportation.

3.1.2 Model Development

Each model is developed using either the KM or EM training algorithms. The training

is executed for each vocation independently. It starts by randomly selecting a set of initial

centroids for the target vocation from the available training data. During each training

iteration, records from the training data are compared to each centroid of the vocation. After

processing all records, the centroids are updated and a new training iteration begins. Both

the KM and EM algorithms are well studied in the literature. However, for the purpose

of completeness and in order to support the discussion of the proposed methodology and

results, a summary of the main steps in these algorithms is provided using the following

notation:

• ri = (ri[1], ri[2], ..., ri[n]) represents a record where each element ri[.] of the input vector

ri is the value of one of the input features f and n is the total number of features.

• Cv = {cv1, cv2, ..., cvm} is the set of centroids of vocation v where each centroid

represents a cluster of the vocation v ∈ V = {BT,CT,DV,DT, TB}. In the first

implementation of the vocation identification application, the number of centroids, m,

is fixed for each vocation. Chapter 4 introduces techniques that vary m.

Under the KM algorithm, the conditional probability of a record ri being assigned to

cvj is binary and based on the selected distance measure (e.g., Euclidean or cosine distance)

d(ri, cvj) as defined in (3.1)

PKM(cvj/ri) =


1, if d(ri, cvj) = argmin

1≤k≤m
{d(ri, cvk)}

0, otherwise.
(3.1)
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In the case of EM, the evaluation of this probability is referred to as the Expectation step.

Using Bayes’ rule, with the assumption that each feature has a normal distribution and that

all the features are independent, the conditional probability PEM(cvj/ri) is given by (3.2)

PEM(cvj/ri) = P (cvj)P (ri/cvj)
m∑
k=1

P (cvk)P (ri/cvk)

=
P (cvj)

n∏
f=1

P (ri[f ]/cvj)
m∑
k=1

P (cvk)
n∏
f=1

P (ri[f ]/cvk)

. (3.2)

where each term of the form P (ri[f ]/cvj) is derived from a normal distribution with a

mean µ(cvj[f ]) and a standard deviation σ(cvj[f ]) according to (3.3)

P (ri[f ]/cvj) = N (µ(cvj[f ]), σ(cvj[f ])2)

= 1
σ(cvj[f ])

√
2π
· e−

1
2

(
ri[f ]−µ(cvj[f ])

σ(cvj[f ])

)2 . (3.3)

For illustration purposes, Figures 3.1 and 3.2 show this probability density when all the

data for a given vocation are assigned to one cluster (m = 1) and where f is the Total

Average Speed or the Driving Average Speed, respectively. These figures also depict the

differences in mean (µ) and standard deviation (σ) among the vocations for each respective

feature.

At the end of each iteration of either the KM or EM algorithms, the variables P (cvj),

µ(cvj[f ]), and σ(cvj[f ]) are updated for each feature f and centroid j of vocation v using

(3.4), (3.5) and (3.6), respectively

P (cvj) = 1
N

N∑
i=1

P (cvj/ri) (3.4)

µ(cvj[f ]) = 1
N · P (cvj)

N∑
i=1

P (cvj/ri) · ri[f ] (3.5)

σ(cvj[f ])2 = 1
N · P (cvj)

N∑
i=1

P (cvj/ri) · (ri[f ]− µ(cvj[f ]))2 (3.6)
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where N is the number of records in the training set of vocation v. Equations (3.4) and

(3.5) can be simplified considerably in the case of the KM algorithm. The equations were

kept in this form in order to highlight the alignment in the update procedure between the

two algorithms. This update procedure for EM is referred to as the Maximization step.

Moreover, (3.6) is not needed in the KM algorithm. It is only calculated at the end of the

training or testing phases in order to support feature reduction as discussed next.

3.1.3 Feature Reduction

Even though the starting dataset was manually reduced from 350 parameters to 15 fea-

tures as described in Section 3.1.1, a minimalist model is desirable in order to limit the

deployment cost of the vocation identifier and increase its applicability in production. This

minimalist model should only include the features that are necessary and practical for voca-

tion identification. Feature reduction was performed using the wrapper induction method[27]

which was used to remove any feature that does not contribute to vocation identification.

During each iteration of the feature reduction process, the standard deviation of each feature

is evaluated and the feature is removed if the standard deviation as defined in (3.6) is below

a certain pre-set threshold across all the clusters. One feature was considered per iteration

until none of the features had a standard deviation below this threshold. In addition, fea-

tures that are easier to collect (e.g., vehicle speed) were favored over features that may not

be readily available (e.g., characteristic acceleration, kinetic energy density).

In the remainder of the thesis, the model with the full feature set is labeled FFmodel and

the reduced feature model is labeled RFmodel.

3.1.4 Vocation Assignment

Once the model is trained, it is exposed to a record ri from an unknown vehicle. That

is, for each vocation v and centroid cvj of v, the probability P (cvj/ri) is calculated using

either (3.1) or (3.2) for KM or EM, respectively. The record is then assigned to the vocation

- vT (ri) - with the largest probability according to the following equation:
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vT (ri) = argmax
v∈V

{
argmax

1≤j≤m
{P (cvj/ri)}

}
.. (3.7)

Equation 3.7 is used for a single daily record from an unknown vehicle. When the

unknown vehicle has multiple records, each record can be assigned to a different vocation

and a consensus is needed to select the winning vocation. Let R = {r1, r2, ..., rp} represent

the set of records of the unknown vehicle. The winning vocation of the unknown vehicle is

the vocation that is assigned the highest number of records. This process is defined by the

following equation:

vocT (R) = argmax
v∈V

{ p∑
i=1

vT (ri) = v
}

. (3.8)

Equations 3.7 and 3.8 show the traditional one-versus-all (T ) assignment where all the

vocations compete for the same vehicle at once. While computationally efficient, this assign-

ment has an important limitation since the wrong vocations may weaken the chances of the

correct vocation by acquiring several of the records of the unknown vehicle. This aspect is

particularly important for the current application because the number of vocations can be

large and the number of daily records available for each unknown vehicle is small.

In order to mitigate this potential limitation, the one-versus-one round-robin tournament

(R) assignment was investigated. This assignment consists of multiple rounds where each

vehicle is exposed to every combination of two vocations. The vocation of choice is the one

that is assigned the most records across all of the rounds for a given vehicle as defined in

(3.9) and (3.10)

vR(ri, a,b) = argmax
v∈{a,b}

{
argmax
1≤k≤m

{P (cvk/ri)}
}

(3.9)

vocR(R) = argmax
v∈V

∑
a 6=v

p∑
i=1

vR(ri, a,v) = v

 . (3.10)

Unfortunately, the round-robin assignment has a quadratic time complexity with respect

to the number of vocations. The tournament bracket (B) also follows the one-versus-one

assignment and consists of multiple rounds where the unknown vehicle is only exposed to
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two vocations in each round. However, in the bracket assignment, a vocation is eliminated

in each round. The vocation that is retained is the one that collects the highest number of

records from the unknown vehicle in the round and this vocation proceeds to the next round.

The assignment concludes when only one vocation remains.

Equation (3.11) shows the selection between two vocations a and b for one round of the

bracket assignment. This equation is applied recursively in order to determine the winning

vocation as shown in (3.12)

wB(R, a,b) = argmax
v∈{a,b}

{ p∑
i=1

vR(ri, a,b) = v
}

(3.11)

vocB(R) = wB
(
R,vc, wB(R,vc−1,vc−2)

)
(3.12)

where c is the number of vocations in V. As opposed to the round-robin assignment, Equation

(3.12) is only executed c − 1 times allowing the bracket assignment to have a linear time

complexity with respect to the number of vocations.

3.2 Results and Discussion

The traditional one-versus-all, round-robin and bracket assignments are applied to the

dataset described in Table 3.2. During training, the centroids of each vocation are determined

using 130 daily records from each vocation. The model is then exposed to the testing vehicles.

As indicated earlier, the training and testing vehicles are distinct and the number of testing

vehicles varies per vocation as available in the dataset. However, the number of records for

each test vehicle is fixed to 13. The next subsections compare the KM and EM algorithms

with and without feature reduction using the three assignment methods.
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Table 3.3. Vocation assignment of the test vehicles using the traditional
one-versus-all KM and EM FFmodels.

Vocation BT CT DT DV TB
BT 1 0 1 0 0
CT 2(1) 20 2(2) 4(1) 2(2)

KM DT 0 0 8 4 7
DV 4 1 4 6 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 4(1) 19(1) 5(1) 0 3(1)

EM DT 1(1) 0 15 0(1) 2
DV 3 0(1) 3(1) 8 1
TB 0 0 0 0 11

3.2.1 One-Versus-All Assignment

Table 3.3 shows the confusion matrix of the one-versus-all multi-class vocation identifi-

cation FFmodel with KM and EM clustering. The results are presented in this manner in

order to facilitate the analysis of confounding vocations and the identification of vocations

with unique profiles.

The assignment of a vehicle to a vocation follows (3.8). Each row in the table represents

the test vehicles of a vocation. The entries represent the number of vehicles of the target

vocation (row) that are assigned to a given vocation (column). The numbers in between

parenthesis represent the number of ties for each vocation. For example, the CT vocation

has a total of 33 test vehicles (Table 3.2). Using the KM algorithm, 20 of these vehicles

were correctly assigned to the CT vocation, 2 vehicles were assigned to the DT vocation,

and all vocations except CT included at least one tie. The number of test vehicles that are

correctly assigned (i.e., true positives) for each vocation is shown across the diagonal of the

table. The KM FFmodel was able to correctly classify 46 out of the 81 test vehicles whereas

the EM FF model shows 55 true positives.

Only one of the BT test vehicles was assigned to a different vocation under the two

FFmodels. Despite the low number of test vehicles in this vocation (Table 3.2), this is still

an indication of the unique profile of the vocation. TB is another vocation with a distinct
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operational profile with no vehicles incorrectly classified under both FFmodels. The large

number of DT vehicles that are assigned to the DV vocation indicates that the two vocations

may be similar.

Feature reduction using the approach described in Section 3.1.3 was performed on the

models. The features that were eliminated include: Total Speed Standard Deviation, Av-

erage Kinetic Power Density Demand, Cumulative Instantaneous Kinetic Energy Density,

Characteristic Acceleration, Aerodynamic Speed, and Max Deceleration. These are indi-

cated by a ’∗’ in Table 3.1. The full feature model (FFmodel) includes 15 features whereas

the reduced feature model (RFmodel) includes only 9 features which can all be derived from

two parameters: speed and distance traveled. These parameters are readily available for all

vehicles without the need for additional instrumentation.

Table 3.4. Vocation assignment of the test vehicles using the traditional
one-versus-all KM and EM RFmodels.

Vocation BT CT DT DV TB
BT 1 0 0 1 0
CT 2(2) 19(2) 2(2) 4(1) 2(2)

KM DT 0 0 11 3 5
DV 4(1) 1 3(1) 7 0
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 2(1) 19 7(1) 0 4

EM DT 0 0 15(1) 0 3(1)
DV 5(1) 0 1(1) 9(1) 0
TB 0 0 0 0 11

Table 3.4 shows the confusion matrix of the RFmodel under KM and EM. The model

generated 49 and 56 true positives with KM and EM, respectively. The number of true

positives for the reduced and full feature models are similar. One limitation of traditional

clustering assignment is the number of tie assignments that result. The following one-versus-

one assignment techniques are introduced in order to improve the number of true positives

and reduce the number of ties.
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3.2.2 Round-Robin Assignment

Table 3.5 shows the confusion matrix of the FFmodel with the round-robin assignment.

The KM and EM models correctly classified 44 and 54 test vehicles, respectively. The

number of true positives is comparable to that of the corresponding traditional one-versus-

all model. However, the round-robin assignment does not suffer from ties. The numbers of

true positives for the KM and EM RFmodels with round-robin assignment are 51 and 57,

respectively (Table 3.6).

Table 3.5. Vocation assignment of the test vehicles using the round-robin
one-vs-one KM and EM FFmodels.

Vocation BT CT DT DV TB
BT 1 0 1 0 0
CT 6 18 3 4 2

KM DT 2 0 8 4 5
DV 5 1 3 6 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 4 18 5 0 6

EM DT 2 0 15 0 2
DV 2 0 5 8 1
TB 0 0 0 0 11

Table 3.6. Vocation assignment of the test vehicles using the round-robin
one-vs-one KM and EM RFmodels.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 5 18 3 5 2

KM DT 0 0 11 3 5
DV 3 1 3 9 0
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 1 18 9 0 5

EM DT 0 0 16 0 3
DV 5 0 1 10 0
TB 0 0 0 0 11
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As in the case of the one-versus-all assignment, EM performs better than KM for the

round-robin models. The results for the round-robin approach are comparable to the tradi-

tional approach, but vocations (such as CT) consistently have less true positives when the

round-robin approach is used. We speculate that this is the case because the CT vocation,

as discussed in Section 3.1.1, is actually a combination of two or more vocations. When

pairwise comparisons are performed during each round of the round-robin, one of the wrong

vocations can eliminate the CT vocation depending on whether the test vehicle belongs to

one of the sub-vocations or the other.

3.2.3 Bracket Assignment

Tables 3.7 and 3.8 include the result of the bracket assignment for the FFmodel and

RFmodel, respectively. As in the case of the round-robin assignment, the bracket assignment

does not suffer from ties and the number of true positives generated by the respective models

is nearly the same. In fact, the model with the highest number of true positives is the bracket

RFmodel. While the difference in performance may be marginal, the bracket RF model offers

several practical advantages: It scales linearly with respect to the number of vocations; it is

less susceptible to an increasing number of vocations since only two vocations are compared

at a time; and it uses a reduced feature set that is readily available.

Table 3.7. Vocation assignment of the test vehicles using the bracket one-vs-
one KM and EM FFmodels.

Vocation BT CT DT DV TB
BT 1 0 1 0 0
CT 4 18 4 5 2

KM DT 2 0 8 3 6
DV 6 1 3 5 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 5 19 4 0 5

EM DT 1 0 15 1 2
DV 3 0 4 8 1
TB 0 0 0 0 11
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Table 3.8. Vocation assignment of the test vehicles using the bracket one-vs-
one KM and EM RFmodels.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 4 18 3 6 2

KM DT 0 0 11 3 5
DV 4 1 4 7 0
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 1 19 7 0 6

EM DT 0 0 16 0 3
DV 5 0 1 10 0
TB 0 0 0 0 11

The above results focus on the true positive assignments generated by each model. They

show that the bracket model delivers the same or higher number of correct assignments

compared to the other models while being computationally more efficient than the round-

robin model and more scalable than the one-versus-all model.

3.2.4 Centroids

The results improved when the RFmodel was used instead of the FFmodel, which indicates

that certain features have a different level of importance to some vocations. By removing 6 of

the features, some vocations (such as BT) were able to achieve more true positives, suggesting

that those removed features were unimportant or even confounding to the identification of

the correct vocation. The development of centroids is also affected by the removal of features.

Analysis of the centroids developed using the FFmodel and RFmodel will illustrate how the

removed features affect the vocational profile of each vocation. Centroid analysis is completed

for the BT and CT vocations. BT is selected because of the increase in performance from

the KM FFmodel to the KM RFmodel, and CT is selected because it is the vocation with

the highest number of test vehicles.

The values for the BT and CT centroids for the FFmodel are shown in Tables 3.9 and

3.10, respectively. The values for the BT and CT centroids for the RFmodel are shown

in Tables 3.11 and 3.12. These tables show the mean and the standard deviation for each
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feature and cluster of the target vocation after training is completed. The mean represents

the centroid of the cluster. The standard deviation is an indication of the tightness of the

cluster. The units of the features are included in Table 3.1. During training, the initial

centroids (for the FFmodel or RFmodel) are set to specific training records. This means that

the developed centroids for the different models could provide some insight regarding the

operation modes of the respective vocations. For example, for both models, the CT centroids

have a higher mean value for max speed and total average speed. This is expected because

of the long distance deliveries that CT vehicles must complete.

In general, the FF and RF models generate similar centroids. This is anticipated since

the two models use the same training data. However, some differences occur. For example,

the CT centroids generated using EM clustering and the FFmodel have a range of mean total

stops of 24.52 to 39.34. On the other hand, the CT centroids generated using EM clustering

and the RFmodel have a range of mean total stops of 20.1 to 51.24. This range can be

attributed to some clusters having more of the vehicles than others. With fewer features,

each feature in the RFmodel has more bearing on the final classification. Therefore, features

(like total stops) must accurately cover a wider range of values than for the FFmodel.
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Table 3.9. BT Centroids generated with the EM Clustering FFmodel.

Features Metric BT0 BT1 BT2 BT3 BT4
max spd Mean 64.99 48.92 60.69 66.14 45.97

STD 4.26 6.99 4.83 4.14 2.96
total avg spd Mean 10.67 6.04 20.55 14.4 13.6

STD 4.27 2.64 8.83 0.49 3.01
total spd std Mean 18.27 11.03 19.58 18.11 14.99

STD 2.95 2.11 2.52 1.27 1.14
drive avg spd Mean 34.8 19.41 33.16 26.99 24.18

STD 4.47 2.52 4.75 1.6 2.34
drive spd std Mean 17.92 12.95 17.28 16.63 12.52

STD 1.49 1.93 1.77 1.87 0.94
zero seconds Mean 10.13 6.91 2.29 6.19 2.02

STD 4.09 3.93 2.02 1.23 1.45
distance total Mean 39.56 14.82 23.72 51.36 15.01

STD 14.51 8.14 12.68 11.54 7.29
total stops Mean 22.98 29.97 11.73 65.7 29.36

STD 7.97 22.69 6.58 27.77 14.16
avg kin pwr Mean 3.16 2.3 2.6 3.31 4.26
density demand STD 0.5 0.5 0.57 0.48 0.41
cuml instant Mean 0.63 0.15 0.37 0.72 0.16
KE density STD 0.25 0.11 0.21 0.15 0.11
char accel Mean 0.17 0.18 0.15 0.18 0.22

STD 0.02 0.03 0.02 0.02 0.02
aero spd Mean 17.95 11.83 17.23 15.71 12.49

STD 1.35 1.54 1.42 1.45 0.92
max accel Mean 5.28 5.62 4.23 11.43 8.85

STD 0.61 2.43 0.87 7.4 2.69
avg accel Mean 0.92 1.02 0.76 1.24 1.65

STD 0.16 0.24 0.15 0.22 0.12
max decel Mean -7.23 -7.54 -6.16 -11.84 -8.51

STD 0.96 2.99 1.19 4.81 1.7
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Table 3.10. CT Centroids generated with the EM Clustering FFmodel.

Features Metric CT0 CT1 CT2 CT3 CT4
max spd Mean 65.23 66.32 70.22 72.11 70.33

STD 5.89 4.63 1.17 1.11 1.05
total avg spd Mean 33.49 28.9 40.55 42.55 37.4

STD 2.72 4.89 3.55 2.62 1.28
total spd std Mean 23.54 24.2 22.86 24.64 21.15

STD 1.7 2.09 1.18 0.94 0.6
drive avg spd Mean 41.44 36.9 45.88 48.07 42.01

STD 2.4 4.35 3.6 2.06 1
drive spd std Mean 19.06 21.5 18.63 20.59 17.6

STD 1.34 1.76 1.47 0.87 0.4
zero seconds Mean 3.16 2.1 1.76 1.68 2.05

STD 1.18 1.07 6.39 5.34 4.33
distance total Mean 155.59 73.01 170.23 169.04 192.57

STD 38.96 22.13 40.73 10.71 5.63
total stops Mean 39.34 34.54 24.52 25.12 35.21

STD 11.14 16.84 8.09 6.58 6.58
avg kin pwr Mean 2.25 2.11 2.12 2.21 2.53
density demand STD 0.69 0.36 0.28 0.09 0.18
cuml instant Mean 2.82 1.31 3.28 3.46 3.42
KE density STD 0.75 0.39 0.81 0.16 0.11
char accel Mean 0.12 0.12 0.14 0.13 0.15

STD 0.04 0.02 0.01 0 0
aero spd Mean 20.1 20.06 21.35 22.72 19.75

STD 1.06 1.53 0.87 0.43 0.3
max accel Mean 4.65 4.11 3.83 3.83 4.06

STD 0.83 0.61 0.26 0.38 0.53
avg accel Mean 0.58 0.65 0.48 0.5 0.57

STD 0.11 0.11 0.07 0.03 0.03
max decel Mean -6.73 -6.13 -6.24 -6.77 -6.39

STD 0.99 1.06 1.08 1.02 0.95
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Table 3.11. BT Centroids generated with the EM Clustering RFmodel.

Features Metric BT0 BT1 BT2 BT3 BT4
max spd Mean 47.9 64.11 55.66 43.19 55.76

STD 4.03 4.03 2.12 3.1 10.83
total avg spd Mean 4.71 16.28 8.99 10.66 11.41

STD 2.31 8.81 3.19 4.01 3.44
drive avg spd Mean 19.26 34.96 24.46 20.37 23.09

STD 2.95 4 2.59 3.53 3.83
drive spd std Mean 12.93 17.78 16.24 11.31 13.73

STD 1.21 1.6 1.03 1.12 2.25
zero seconds Mean 7.66 6.6 4.32 3.5 6.36

STD 4.77 5.23 2.08 2.56 2.63
distance total Mean 10.04 33.9 15.45 15.33 36.13

STD 5.63 15.44 6.42 6.24 13.85
total stops Mean 17.51 18.18 16.43 35.51 66.32

STD 8.52 9.59 6.58 17.27 23.75
max accel Mean 4.25 4.91 4.11 7.67 11.36

STD 0.94 0.87 0.68 1.22 4.78
avg accel Mean 0.9 0.86 0.87 1.44 1.36

STD 0.17 0.18 0.26 0.29 0.18

Table 3.12. CT Centroids generated with the EM Clustering RFmodel.

Features Metric CT0 CT1 CT2 CT3 CT4
max spd Mean 70.27 66.97 68.39 71.23 56.14

STD 1.52 3.6 0.59 1.35 0.8
total avg spd Mean 37.5 27.87 30.71 44.06 27.73

STD 2.53 7.59 2.82 2.34 4.85
drive avg spd Mean 43.09 36.63 38.5 49.28 36.72

STD 2.41 7.7 2.79 2.18 4.32
drive spd std Mean 19.07 19.88 22.05 19.01 18.78

STD 1.37 2.67 1.18 1.89 0.75
zero seconds Mean 2.19 3.31 1.78 1.39 3.43

STD 0.71 1.79 0.59 0.35 1.12
distance total Mean 176.96 112.24 73.34 164.41 110.26

STD 30.48 74.98 15.72 31.96 34.66
total stops Mean 32.13 43.27 28.74 20.1 51.24

STD 6.58 24.23 8.08 6.58 14.82
max accel Mean 4.04 4.26 3.99 3.78 5.02

STD 0.53 0.29 0.55 0.27 0.88
avg accel Mean 0.55 0.71 0.62 0.45 0.6

STD 0.06 0.2 0.06 0.06 0.15
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4. CLUSTERS PER VOCATION

The number of clusters needed for each vocation may be different depending on the operating

profile of the vehicles. In the previous chapter, all vocation identification models used a fixed

number of clusters across all vocations. This number was established manually and was set

to 5. This chapter investigates the use of three algorithms that can establish the optimal

number of clusters for each vocation. These algorithms are:

• Elbow method, which was previously introduced in [13] and described in Section 2.2,

• Dynamic clustering, which decides on the split or removal of a cluster during training

using a fixed threshold, and

• Dynamic clustering with simulated annealing, which splits and removes clusters based

on a variable threshold during training.

4.1 Elbow Method

Finding the optimal number of clusters can be completed entirely prior to training, with

an approach such as the Elbow method. The Elbow method involves some measure of cluster

compactness, in this case the inertia, which is given by:

Inertia =
N∑
i=1

d(ri, cvj) (4.1)

where N is the number of records in the cluster and d is the Euclidean distance. The

Elbow method is executed multiple times, increasing the number of clusters in each vocation

by one after each training. Following each training, the average inertia value for each vocation

is recorded and plotted on a graph, as shown in Figures 4.1 and 4.2. The elbow point is

defined by the change from exponential to linear decrease in inertia. This represents the

point where adding clusters no longer significantly impacts the inertia of the vocation. This

definition introduces one of the limitations of the approach. The definition of ”significantly”

can be subjective and identifying it automatically can be difficult.
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Another issue with the Elbow approach is the selection of centroids. Since the number

of centroids increases, at least one new centroid must be randomly introduced after each

iteration. This can lead to an increase or decrease in inertia, which could make identifying

the elbow point more difficult. This behavior is shown in Figures 4.1 and 4.2 where the

inertia may increase for a given vocation with a higher number of clusters. For example, the

inertia for the DT vocation in Figure 4.1 increases when the number of clusters increases

from 3 to 4.

Figure 4.1. KM Elbow Method.

Figure 4.2. EM Elbow Method.
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In this study, the elbow point was selected as the last local maxima for the slope of the

elbow graph. This was used to avoid undershooting on the number of clusters needed for a

vocation. The last local maximum system was also used for the automatic selection of the

elbow point. In other words, a threshold was set to determine whether a local minimum or

maximum was significant enough to be considered as a candidate for being an elbow point.

The final significant maximum point for the derivative of the inertia graph (representing a

large decrease in inertia) was selected as the last elbow point. This allowed the automatic

elbow point selection to choose a higher number of clusters, which would (in theory) lead to

more true positive results.

4.2 Dynamic Clustering

The number of clusters can also be adjusted dynamically during training. Two dynamic

methods are considered. One of these methods splits and removes clusters based on the

cluster’s average standard deviation, in comparison to the standard deviation of all of the

clusters of that vocation. Two pre-defined constants Rem and Spl specify how much lower

or higher the cluster’s standard deviation must be to merit removal or splitting. The ranges

for these constants are 0 < Rem < 1 and 1 < Spl < 2. The values for Rem and Spl are used

as a multiplier to determine the threshold for removal or splitting as shown below

ThreshRem = Rem ∗ µσ (4.2)

ThreshSpl = Spl ∗ µσ (4.3)

where µσ is the average standard deviation of all of the clusters. This average is calculated

using the following equations:

µσ(c) =
∑n
i=1 σi
n

(4.4)

where n is the number of features. In 4.4, σi represents the standard deviation of feature

i.
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µσ =
∑m

j=1 µσ(j)
m

(4.5)

where m is the number of clusters. In 4.5, µσ(j) is the value for each cluster, which is

calculated with Equation 4.4. The ranges for Rem and Spl are set based on decreasing or

increasing the standard deviation threshold value, respectively.

A very small standard deviation corresponds to a small cluster that does not include

many records, whereas a very large standard deviation would indicate the cluster contains a

wide range of records. As a result, Rem must be less than 1 to make the removal threshold

(ThreshRem) lower than the average of the cluster standard deviations (µσ from 4.5). Ad-

ditionally, Spl must be between 1 and 2 to ensure the split threshold (ThreshSpl) will be

higher than µσ.

This approach keeps the criteria for splitting and removal constant, meaning that the

algorithm is not allowed to make ”mistakes”. Therefore, the algorithm may be unable to

seek a globally optimal solution.

Simulated Annealing[26] presents a solution to this issue, allowing the clusters to be split

and removed as above, but also allowing mistakes with a probability that gets smaller as

the training process continues. The simulated annealing method introduces some additional

parameters defined as follows:

T emp = e−k∗Iter (4.6)

Pr = e
−|µσ(c)−µσ |

Temp (4.7)

where k is a constant that determines how quickly the probability (Pr) of a split or removal

is reduced for every training iteration, T emp represents the temperature value, and Iter

corresponds to the current training iteration number.

For all of the following tests, the initial centroids, which would usually be selected ran-

domly, are set so that each run of the clustering program will start with the same initial

centroids. Other parameters that stay constant are the number of iterations (1000 itera-

tions), the feature set (all of the features in the Fleet DNA RFmodel), and the number of

initial centroids (5 per vocation). The period of evaluations is set at 100 iterations, meaning

that every 100 training iterations the algorithm uses the Dynamic Method or Simulated
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Annealing to check for cluster splits or removals. However, following the final iteration there

is no evaluation, as introducing new clusters or removing established ones immediately be-

fore testing would make results worse. Therefore, with a period of 100 iterations, there are

1000/100 - 1 = 9 evaluations. The process is shown in Algorithm 1.

Algorithm 1: Dynamic cluster split and removal algorithm.

if (Iter+1) % Period == 0 and (Iter+1) != NumIterations then
. Equation 4.6

T emp = exp(−k ∗ Iter)

for v in V ocations do

for c in v do

if µσ(c) < Rem ∗ µσ then
delete(c)

else if µσ(c) > Spl ∗ µσ then
split(c)

else
Pr = exp(−abs(std(c)− µσ)/T emp)

if random() < Pr then

if random() < 0.5 or m < 2 then
split(c)

else
delete(c)

end

end

end

end

end

end
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4.3 Results and Discussion

In order to compare the performance of the Elbow and the Dynamic algorithms, a baseline

must be established. The results of the baseline are identical to those in Table 3.4 and are

repeated in Table 4.1 for convenience.

Table 4.1. Vocation assignment of the test vehicles using the traditional
one-versus-all KM and EM RFmodels with a fixed number of clusters (5).

Clustering Vocation BT CT DT DV TB
BT 1 0 0 1 0
CT 2(2) 19(2) 2(2) 4(1) 2(2)

KM DT 0 0 11 3 5
DV 4(1) 1 3(1) 7 0
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 2(1) 19 7(1) 0 4

EM DT 0 0 15(1) 0 3(1)
DV 5(1) 0 1(1) 9(1) 0
TB 0 0 0 0 11

Using the Elbow method resulted in a number of clusters shown in Table 4.2. The table

includes both the automatically set number of clusters and the cluster number manually

selected. The number of true positives for each vocation is shown in Table 4.3.

Table 4.2. Number of Clusters derived using the Elbow Method with tradi-
tional KM and EM clustering.

Clustering Method BT CT DT DV TB
KM Auto 10 2 7 6 2
KM Manual 7 3 8 7 4
EM Auto 13 11 3 12 11
EM Manual 12 4 6 4 4

As shown in 4.3, the best results with the Elbow method occurred when EM clustering

was used and the elbow points were selected manually. For that test, the results showed an

improvement over both classical KM and EM. The other methods all had results worse than

those of the corresponding classical methods. The most notable improvement was achieved
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Table 4.3. Vocation assignment of the test vehicles using the one-versus-all
RFmodel with the number of clusters generated by the Elbow method.

Clustering Method BT CT DT DV TB Total
KM Auto 2 20 10 10 10 52
KM Manual 1(1) 18(3) 9(1) 10 11 49(5)
EM Auto 2 17(1) 11 8(1) 11 49(2)
EM Manual 2 28 6 10(1) 11 57(1)

for the classification of the CT vehicle. The EM manual elbow selection method correctly

identified the vocation of 28 vehicles, a significant improvement over the 19 correct (with

2 tie-correct) identification generated by the classical KM and the 19 correct generated by

the classical EM. Notably, the EM manual elbow method only required 4 clusters for CT

and performed better than the EM automatic elbow method, which had 11 clusters for CT.

While this may appear to confirm that less clusters is better for CT, it is important to note

that some of the increase in accuracy could be due to the decrease in number of clusters

for other vocations (such as DV and TB). The only vocation that had a decrease in true

positives from classical EM to EM with the manual elbow cluster selection method was DT.

This vocation also had one more cluster under the EM manual elbow method. Clearly, the

most accurate conclusion is that the selection of the elbow point (whether automatic or

manual) and the initial selection of those centroids greatly affects the final accuracy, making

this method difficult to apply in practice without significant calibration.

4.3.1 Dynamic Method

For the Dynamic Method, the parameters are set to Rem = 0.3 and Spl = 1.7 for every

test. These values were selected following iterative testing to determine how much removal

and splitting of clusters should be permitted. Too strict a threshold would prevent enough

change to increase the number of true positives, while too loose a threshold would actually

decrease the accuracy because clusters would not have time to develop due to early removal

or splitting. Tables 4.5 and 4.6 show the confusion matrices of the results when Dynamic

Clustering is used with KM or EM clustering algorithms. Table 4.5 shows that using the
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Dynamic Method with KM Clustering resulted in a slightly higher number of true positives.

The small increase can be attributed to the fact that some of the newly created clusters do

not have a sufficient chance to develop before they are removed.

Table 4.6 shows that EM clustering also improves slightly when the Dynamic Method is

used. Moreover, EM generally performs better than KM, and this is reflected again when

the Dynamic Method is used. However, improvement of the Dynamic Method compared to

the fixed number of clusters is only applicable for some of the vocations. This suggests that

certain methods may perform better for certain vocations.

Table 4.4. Number of Clusters generated by the use of Dynamic Methods.

Clustering Number of Clusters BT CT DT DV TB
Selection Method

KM Dynamic Clustering 7 5 5 8 5
KM Simulated Annealing 2 3 6 4 4
EM Dynamic Clustering 5 3 5 5 2
EM Simulated Annealing 4 3 4 2 4

Table 4.5. Results for Dynamic KM Training with Classical KM Testing.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 3(1) 19(2) 3(2) 3(1) 2(1)
DT 1 0(1) 10(2) 4 2(1)
DV 4 1 2 9 0
TB 0 0 0(1) 0 10(1)

Table 4.6. Results for Dynamic EM Training with Classical EM Testing.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 1 19(1) 6(1) 1 5
DT 1 0 16 1 1
DV 5 0 2 9 0
TB 0 0 0 0 11
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4.3.2 Simulated Annealing

When using Simulated Annealing, the parameters were set as Rem = 0.2, Spl = 1.8, and

k = 0.025 for all tests. The selection of these parameters also required some iterative tuning,

As previously mentioned, Simulated Annealing allows splitting and removal by chance,

with the probability of these changes getting smaller based on the number of training itera-

tions that have been completed.

When using Simulated Annealing with KM clustering, the results had the same number

of true positives as classical KM, as shown in Table 4.7. However, the individual numbers

of true positives for each vocation is not the same. For example, when Simulated Annealing

was used with KM, only 1 DV vehicle was correctly clustered. The Simulated Annealing

KM made up for this decrease through an increase in true positives for the BT and DT

vocations. This indicates that Simulated Annealing was not able to find the appropriate

number of clusters for the DV vocation.

Table 4.9 compares Dynamic and Simulated Annealing for KM and EM clustering.

For EM, both Dynamic and Simulated Annealing show an improvement over the Classi-

cal method which suggests that the use of a varying number of clusters has higher impact on

EM than KM. The primary contributor to the improvement for EM was the DT vocation.

However, for KM the DV vocation reported far fewer true positives than for the classical

approach.

Table 4.7. Results for Simulated Annealing KM Training with Classical KM Testing.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 1(1) 19(1) 10(2) 1 0
DT 2 0 17 0 0
DV 5 2 8 1 0
TB 0 0 0(1) 0 10(1)
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Table 4.8. Results for Simulated Annealing EM Training with Classical EM Testing.

Vocation BT CT DT DV TB
BT 2 0 0 0 0
CT 2 18(1) 7(1) 0(1) 4(1)
DT 2 0 17 0 0
DV 3 1 2 10 0
TB 0 0 0 0 11

Table 4.9. Combined Results from Chapter 4.

Clustering Number of Clusters BT CT DT DV TB Total
Selection Method

Classical Approach 1 19(2) 11 7 11 49(2)
KM Dynamic Clustering 2 19(2) 10(2) 9 10(1) 50(5)

Simulated Annealing 2 19(1) 17 1 10(1) 49(2)
Classical Approach 2 19 15(1) 9(1) 11 56(2)

EM Dynamic Clustering 2 19(1) 16 9 11 57(1)
Simulated Annealing 2 18(1) 17 10 11 58(1)

4.3.3 Centroids

While the centroids of a given vocation have similarities across the methods, there are still

noticeable differences. Moreover, increasing the number of clusters does not always increase

the number of true positives and may not lead to a reduction in the standard deviations of

individual features for each cluster either.

As previously described, additional clusters can confound other vocations and lead to

a lower number of true positives. For example, Table 4.9 shows that the test with the

highest number of true positives was based on EM clustering and Simulated Annealing.

This clustering only needed 17 clusters for all vocations, whereas KM clustering with the

Dynamic Method required 30 clusters and resulted in a lower number of true positives.

As mentioned above, increasing the number of clusters does not guarantee a reduced

range in the feature value. Table 4.10 shows that, even with 7 clusters, BT6 has a max

speed standard deviation of 105.99, which is very high. In contrast, Table 4.12 shows (for

a test using Simulated Annealing rather than Dynamic Method) that with 3 clusters, the
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highest standard deviation for the max speed feature was 82.48. This can be due to the

presence of outlier vehicles. Ideally, the splitting and removal of clusters should result in a

more even distribution of the vehicles across the clusters.

Centroid differences likely account for the small increases and decreases in number of true

positives. However, there are still many vehicles that are not clustered correctly in any of

the experiments. While this chapter has proven that the number of clusters has a significant

impact on the number of true positives, the method for establishing the appropriate number

of clusters for each vocation requires additional improvement.

Table 4.10. BT centroids generated with KM clustering using the Dynamic Method.

Features Metric BT0 BT1 BT2 BT3 BT4 BT5 BT6
max spd Mean 62.71 20.15 50.29 47.92 63.9 46.82 60.3

STD 21.27 0 58.28 62.5 56.85 94.36 105.99
total avg spd Mean 26.89 1.75 6.37 13.45 13.31 7.94 6.18

STD 37.15 0 28.66 22.75 44.86 25.42 39.37
drive avg spd Mean 35.03 8.45 20.94 23.58 33.86 18.65 29.35

STD 21.66 0 40.36 23.02 65.87 22.73 104.12
drive spd std Mean 17.34 4.56 14.21 12.61 18.09 11.32 16.1

STD 9.91 0 20.04 7.92 19.55 15.37 34.84
zero seconds Mean 0.93 0.01 4.9 2.22 6.2 6.53 13.92

STD 5.34 0 28.21 13.06 29.33 14.01 27.78
distance total Mean 23.37 5.13 10.65 17.42 37.81 26.03 30.8

STD 69.06 0 48.11 87.74 207.55 129.78 224.6
total stops Mean 10.95 2 14.97 33 22.43 62.07 24.52

STD 38.23 0 63.91 151 173.54 255.87 114.32
max accel Mean 4.6 2.79 4.02 8.7 4.91 9.77 5.36

STD 6.27 0 8.14 20.5 17.32 48.48 11.41
avg accel Mean 0.82 0.26 0.85 1.56 0.84 1.29 0.99

STD 0.92 0 1.99 1.88 2.29 1.61 2.62
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Table 4.11. CT centroids generated with KM clustering using the Dynamic Method.

Features Metric CT0 CT1 CT2 CT3 CT4
max spd Mean 68.86 70.1 68.3 56.26 71.11

STD 7.33 15.97 5.5 7.44 20.43
total avg spd Mean 33.9 36.97 28.52 26.53 43.04

STD 13.13 21.31 23.59 53.01 36.48
drive avg spd Mean 41.02 42.61 36.66 35.48 48.42

STD 12.65 17.91 22.84 51.11 34.89
drive spd std Mean 20.66 18.61 22.51 18.6 19.31

STD 9.77 13.91 7.07 8.09 25.47
zero seconds Mean 1.65 2.46 2.17 3.28 1.57

STD 5.02 10.81 7.55 10.15 7.79
distance total Mean 87.37 189.65 75.92 103.03 168.75

STD 207.2 203.18 156.25 353.94 437.08
total stops Mean 24.71 34.41 36.33 49.07 22.56

STD 60.37 78.36 133.2 136.11 94.44
max accel Mean 3.91 4.07 4.07 4.95 3.89

STD 2.78 5.34 5.73 7.41 6.06
avg accel Mean 0.59 0.56 0.64 0.64 0.48

STD 0.37 0.81 0.7 1.68 1

Table 4.12. BT centroids generated with KM clustering using Simulated Annealing.

Features Metric BT0 BT1 BT2
max spd Mean 49.19 63.37 70.58

STD 82.48 63.26 18.71
total avg spd Mean 7.77 15.84 39.75

STD 46.13 118.63 46.07
drive avg spd Mean 20.72 34.09 45.31

STD 38.13 63.4 42.91
drive spd std Mean 13.04 17.71 19

STD 21.21 22.05 19.42
zero seconds Mean 5.84 6.36 2.03

STD 45.03 70.67 11.42
distance total Mean 15.97 33.22 177.05

STD 118.66 221.91 363.19
total stops Mean 30.87 18.92 28.65

STD 268.48 161.95 110.32
max accel Mean 6.47 4.89 3.99

STD 41.1 15.83 5.94
avg accel Mean 1.13 0.85 0.52

STD 3.79 2.53 1.01
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Table 4.13. CT centroids generated with KM clustering using Simulated Annealing.

Features Metric CT0 CT1
max spd Mean 56.26 70.58

STD 5.76 26.46
total avg spd Mean 26.53 39.75

STD 41.06 65.15
drive avg spd Mean 35.48 45.31

STD 39.59 60.68
drive spd std Mean 18.6 19

STD 6.27 27.47
zero seconds Mean 3.28 2.03

STD 7.86 16.16
distance total Mean 103.03 177.05

STD 274.16 513.63
total stops Mean 49.07 28.65

STD 105.43 156.01
max accel Mean 4.95 3.99

STD 5.74 8.4
avg accel Mean 0.64 0.52

STD 1.3 1.43

Table 4.14. BT centroids generated with EM clustering using the Dynamic Method.

Features Metric BT0 BT1 BT2 BT3 BT4
max spd Mean 54.13 48.88 47.38 62.12 66.53

STD 4.47 9.84 4.39 4.03 2.5
total avg spd Mean 8.6 11.33 3.97 20.85 10.49

STD 2.95 3.5 1.59 8.58 4.07
drive avg spd Mean 23.96 21.84 18.21 35.39 34.31

STD 2.91 3.7 1.84 3.23 4.67
drive spd std Mean 15.84 12.34 12.5 17.35 18.25

STD 1.59 1.86 1.33 1.75 1.1
zero seconds Mean 4.05 4.58 8.56 3.76 10.33

STD 2.09 3.04 4.43 4.02 4.11
distance total Mean 13.54 24.07 10.4 30.49 40.29

STD 5.63 12.83 5.63 15.35 14.16
total stops Mean 14.85 50.12 19.95 13.01 27.24

STD 6.58 25.83 8.22 6.58 12.44
max accel Mean 4 9.67 4.63 4.44 5.55

STD 0.72 3.84 1.1 0.85 0.35
avg accel Mean 0.84 1.43 0.97 0.77 0.98

STD 0.23 0.23 0.21 0.15 0.12
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Table 4.15. CT centroids generated with EM clustering using the Dynamic Method.

Features Metric CT0 CT1 CT2
max spd Mean 63.32 70.79 68.39

STD 6.36 1.41 0.59
total avg spd Mean 30.32 40.27 30.68

STD 6.35 3.66 2.79
drive avg spd Mean 38.5 45.53 38.48

STD 5.63 3.69 2.77
drive spd std Mean 19.28 18.99 22.06

STD 1.69 1.59 1.17
zero seconds Mean 3.16 1.8 1.79

STD 1.32 0.58 0.59
distance total Mean 130.32 173.35 73.42

STD 55.24 31.77 15.97
total stops Mean 44.12 27.01 28.81

STD 17.22 7.95 8.06
max accel Mean 4.72 3.84 3.98

STD 0.75 0.32 0.54
avg accel Mean 0.63 0.51 0.62

STD 0.15 0.06 0.06

Table 4.16. BT centroids generated with EM clustering using Simulated Annealing.

Features Metric BT0 BT1 BT2 BT3
max spd Mean 50.05 49.03 61.87 64.44

STD 5.24 9.75 4.26 4.45
total avg spd Mean 5.31 11.15 22.8 11.13

STD 2.23 3.64 8.17 4.37
drive avg spd Mean 20.39 21.84 33.8 34.44

STD 3.39 3.88 4.4 4.72
drive spd std Mean 13.7 12.5 17.65 17.77

STD 1.77 2.12 1.51 1.57
zero seconds Mean 6.88 4.68 1.66 9.6

STD 4.27 2.93 1.46 4.14
distance total Mean 10.86 24.69 22.75 39.85

STD 5.63 14.61 10.15 14.46
total stops Mean 17.15 49.2 11.42 23

STD 7.8 25.81 6.58 8.48
max accel Mean 4.27 9.32 4.35 5.15

STD 0.89 3.81 0.93 0.74
avg accel Mean 0.91 1.4 0.79 0.9

STD 0.22 0.25 0.13 0.19
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Table 4.17. CT centroids generated with EM clustering using Simulated Annealing.

Features Metric CT0 CT1 CT2
max spd Mean 70.79 66.05 68.76

STD 1.4 5.16 0.59
total avg spd Mean 40.55 30.65 29.59

STD 3.45 4.88 0.49
drive avg spd Mean 45.76 38.5 42.46

STD 3.54 4.38 0.46
drive spd std Mean 18.96 20.61 23.05

STD 1.58 2 0.21
zero seconds Mean 1.78 2.45 2.95

STD 0.57 1.22 0.18
distance total Mean 174.33 103.76 79.98

STD 30.99 50.31 5.63
total stops Mean 26.58 36.53 24

STD 7.73 15.19 6.58
max accel Mean 3.85 4.31 4.55

STD 0.31 0.75 0.23
avg accel Mean 0.51 0.62 0.67

STD 0.06 0.12 0.02
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5. CONCLUSION

This thesis introduces a methodology for vocation identification of heavy duty vehicles when

the number of vocations is expected to be large and the number of records available for each

unknown vehicle is small. The methodology consists of two phases. In the first phase, the

profile of the vocation is developed using a set of training vehicles. This profile consists of a

set of centroids that represent the operating modes of the vocation and are developed using

a clustering technique such as K-Means (KM) or Expectation Maximization (EM). In the

second phase, the unknown vehicle is assigned to a vocation using a tournament bracket. In

each round, two vocations are compared to the unknown vehicle and the unlikely vocation

is eliminated. This assignment was compared to both the one-versus-all assignment and the

round-robin assignment. Moreover, two models were considered. The first model was based

on 15 features. Some of these features included complex variables such as Average Kinetic

Power Density Demand and Cumulative Instantaneous Kinetic Energy Density which may

not be accessible to the parts’ manufacturer for all the vehicles. The second model is more

practical and was limited to 9 features that can be derived solely from speed and distance

traveled. Compared to the full feature model, the results show that the reduced feature

model had the same or higher number of true positives.

With the exception of the CT vocation, the number of true positives for each vocation

using the bracket assignment is also either the same or higher than the corresponding number

for the one-versus-all and round-robin assignments. The bracket assignment was introduced

in order to avoid some of the drawbacks of the one-versus-all assignment for this application.

Indeed, the one-versus-all assignment inherently implies the availability of a large number

of records for the unknown vehicles as these records are exposed to all the clusters of all

the vocations at once. The bracket assignment overcomes this limitation by comparing two

vocations at a time and was shown in this study to have a comparable performance to that of

the one-versus-all assignment. The bracket assignment was also compared to a round-robin

assignment which can also scale with an increasing number of vocations. The results show

that the bracket assignment has a higher number of true positives, but more importantly

has lower time complexity than the round-robin assignment.
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Several methods for establishing the adequate number of clusters for each vocation were

investigated. These methods were compared in conjunction with the classical one-versus-

all assignment method. The results show that the Dynamic (set-threshold) method and

the Simulated Annealing (variable-threshold) method resulted in an increased number of

true positives compared to the baseline assignment with a fixed number of clusters per

vocation. The number of clusters in these dynamic methods stayed relatively close to 5,

but even these small changes led to an increase in true positives for some of the vocations.

The Dynamic Method generally resulted in more clusters for each vocation, compared to

Simulated Annealing. The removal of one cluster may not seem important, but to the

remaining vocations that removal can reduce confounding with other vocations. A varying

number of clusters per vocation has more impact on EM compared to KM for all vocations.

There are several directions that are being considered for future work including exploring

the possibility of reducing vocation confounding by applying weights to specific features. In

addition, the proposed vocation identification algorithm relies on features aggregated daily

from the duty cycle of the vehicle over a period of 13 days. Using data points collected over

shorter sample periods (e.g., every 20 miles) will enhance the applicability of the algorithm to

a wide range of vehicles. Another direction for future work is to use the bracket assignment

method with the dynamic selection of the number of clusters.
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