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ABSTRACT

Veeramachaneni, Harshitha. M.S.E.C.E., Purdue University, December 2020. Design
and Implementation of sensing methods on One-Tenth Scale of an Autonomous Race
Car. Major Professor: Lingxi Li, Associate Professor.

Self-driving, is simply the capacity of a vehicle to drive itself without human inter-

vention. To accomplish this, the vehicle utilizes mechanical and electronic parts, sen-

sors, actuators and an AI computer. The on-board PC runs advanced programming,

which permits the vehicle to see and comprehend its current circumstance dependent

on sensor input, limit itself in that climate and plan the ideal course from point A

to point B. Independent driving is not an easy task, and to create self-sufficient driv-

ing arrangements is an exceptionally significant ability in the present programming

designing field.

ROS is a robust and versatile communication middle ware (framework) tailored

and widely used for robotics applications. This thesis work intends to show how

ROS could be used to create independent driving programming by investigating self-

governing driving issues, looking at existing arrangements and building up a model

vehicle utilizing ROS.

The main focus of this thesis is to develop and implement an one-tenth scale of an

autonomous RACECAR equipped with Jetson Nano board as the on-board computer,

PCA9685 as PWM driver, sensors, and a ROS based software architecture.

Finally, by following the methods presented in this thesis, it is conceivable to build

an autonomous RACECAR that runs on ROS.

By following the means portrayed in this theory, it is conceivable to build up a

self-governing.
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1. INTRODUCTION

Throughout these last few years, the automotive industry has improved enormously

in different areas, with the invention of novel and advanced technologies, regardless

of whether it’s in telematics, CAN communications, battery management systems,

self-driving cars or driving assistance systems [1].

Self-driving cars also called as autonomous cars have been glorified and envisioned

as the upcoming navigation system in urban areas where the travelers will be taken

to their destination, without even applying any force on the accelerator, brake nor

directing a wheel [2].

Now a days, autonomous driving isn’t a dream nor an irrational thought, as large

number of self-driving vehicles have started its operations in urban areas throughout

the globe, with extraordinary achievement. Nevertheless, these frameworks have huge

complications, with a large amount of work still needs to be accomplished and they

need to attain the full attention to different maneuvers that occurs around it. There-

fore, all significant vehicle manufacturers are initiating a step by step reconciliation of

ADAS (Advanced Driver Assistance Systems) tasks that will empower autonomous

driving in a more advanced way.

According to the standards of SAE (Society of Automotive Engineers), there are

six levels of autonomous driving from Level 0 to Level 5. These levels choose how

independent a vehicle is and the necessities and safety measures for a manual driver [1].

Level 0, No automation. This level insists that none of the autonomous features are

available, where driving just depends in human maneuvers in each circumstance and

the framework just gives warnings or passing help [1].

Level 1, Driver assistance. This framework is answerable for helping manual driver

with a particular assignment. Cruise control, Lane Keep Assistance (LKA) are some
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Fig. 1.1. SAE (0 - 5) levels of Driving Automation [3]

of the examples of this level since, the framework is fit for assuming responsibility for

an activity, such as steering or slowing down [1].

Level 2, Partial automation. This framework can achieve at least two programmed

errands, that work close by to help driver, anyway it is not yet viewed as an au-

tonomous vehicle and the driver is needed to keep up the vehicle leveled out and take

the fundamental actions if necessary. The vehicle performs activities, for example,

steering, accelerating and decelerating simultaneously [1].

Level 3, Conditional automation. From this stage of autonomy, vehicle takes

the capability of driving. The framework is answerable for the ordinary activities

in driving and just requires the driver to take necessary measures, if the framework

needs help or an emergency situation shows up. That being stated, in spite of the

fact that the vehicle is generally driven automatically, the driver should at alert mode

during high traffic and be prepared to take control when the framework requests [1].
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Level 4, High automation. From this stage, the car is able monitor the climate

and works in complete autonomous mode for a wide range of driving situations. Ad-

ditionally, on contrary to level3, the framework is capable for protecting its travelers

from accidents, regardless of whether it requires the driver intervention and the driver

doesn’t appropriately intervenes in time. In a situation that the structure finds that,

not all conditions are met, at that point the driver must take control, until the vehicle

rematches the autonomous capability [1].

Level 5, Full automation. In this level, the vehicle is fully autonomous where the

car can drive in any scenario. It is as good as a human driver. All the emergency sit-

uations are handled by itself without any human intervention. The fully autonomous

capabilities in level 5 raises many concerns which are to be considered during the

development of vehicle architecture [1].

Autonomous driving is not one single innovation, yet rather a profoundly un-

predictable framework that comprises of many sub-frameworks. It can be mainly

classified into three parts. First one being algorithm development, which includes

sensing, perception, and decision making. Second, the client systems, which includes

operating system and hardware platform. Final one being the cloud platform, which

includes deep learning model training, HD (high-definition) map, simulation and data

storage [4].

In algorithm development stage the main task is to separate the significant data

from sensor raw information, to comprehend its current circumstance and to settle

on choices about its future activities. The client systems coordinate these algorithms

together to meet ongoing and unwavering quality necessities. For example, let us

consider we are using a camera that runs at 60 FPS, the client system needs to ensure

that the longest phase of the preparing pipeline takes under 16 ms to finish. The cloud

platform gives offline processing, and capacity abilities for self-driving vehicles. With

the cloud stage, we can test new algorithms, update HD maps, and train for faster

recognition, tracking, and decision models [4].
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Fig. 1.2. Autonomous Driving Architecture [4]

1.1 Autonomous Driving Algorithms

The algorithm development stage mainly consists three main parts: Sensing, that

is extracting important data from sensor raw information; perception, which is to

know the its current position, orientation and to know its current environment; and

decision, which is to plan its route and act according to its plan to reach their desti-

nations safe [4].

1.1.1 Sensing

Typically, an autonomous vehicle comprises of many sensors. As each sensor has

its own advantages and disadvantages, in autonomous cars, the information from

different sensors must be consolidated for reliability and security [4].

GPS/IMU

The GPS/IMU framework enables the autonomous car to limit itself by detailing

both inertial updates and a worldwide position estimates at a higher rates. GPS gives
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us accurate localization values, however its update rate is slow, and subsequently not

suitable for giving constant updates. However, IMU errors aggregate after some time,

resulting the errors in the position estimates. Nevertheless, an IMU has higher update

rates, which fulfills the real time requirements. Therefore, by using both GPS and

IMU, we can give precise and real time updates for an autonomous car localization [4].

LiDAR

LiDAR is the most promising sensor which is used for mapping, localization and

obstacle avoidance. The working principle of LiDAR that it creates Laser beam train,

which beam off the surface and calculates the time it takes to return to its source.

It has a high accuracy, which helps in producing HD maps, to localize a moving car

against HD maps, to detect obstacles in-front of that and so on [4].

Cameras

The most complicated task in the entire concept of autonomous driving is ob-

ject detection and object tracking. Cameras does an excellent job in these tasks.

Lane Detection, Caution Sign detection, pedestrian detection are some of such exam-

ples. To upgrade autonomous vehicle security, existing executions use at least eight

1080p cameras around the vehicle, with the end goal that we can utilize cameras

to distinguish, perceive, and track obstacles before, behind, and on the two sides of

vehicle [4].

Radar and Sonar

The radar and sonar framework is generally utilized for short-range detection of

obstacles. Radar is extremely useful in bad weather conditions. The information

produced by radar and sonar does not need a lot of computational power. These are

used in the applications such as braking, swerving and so on [4].
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Fig. 1.3. Merits and Demerits of Different Sensors

1.1.2 Perception

Perception is using sensed and fused data for meaningful interpretation of the

environment at every moment in time. Localization, object detection, and object

tracking are the three main tasks in perception. It worries in defining an estimate

of its general surroundings with the end goal that choice can be made in regards

to control of the vehicle. This may incorporate what static hazards or obstructions

exist for route of the way ahead. On the off chance that dynamic objects exist and

the estimate of its future position meets the autonomous way. Hence, the perception

provides self and situational awareness of its surroundings [4].

1.1.3 Plan

Commonly in the route plan, the general mission of a autonomous vehicle is to

go from a start position to a destination position. During the route plan objective,

numerous choices are to be made about a short range plan (trajectory) which includes

questions like:
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• When to start a turn?

• How to avoid slow moving traffic?

• What lane to be in?

• What is the best course to avoid and obstacle or an impending collisions with

another moving object?

All of the sensor, perception and situational awareness leads to determination

of the short-range plan (The trajectory). In the short range (time), the path plan

defines the position and velocity that the vehicle should be in at each instant in time

(sample time). The path plan is not static and will be modified at each algorithm

sample time as new information is obtained via the perception algorithms.

1.1.4 Act

Act is the process of execution of the plan. The path plan is executed by the vehicle

control algorithms. The controller uses the vehicle actuators (brakes and accelerators,

steering effects) to meet to path plan trajectory profile. The actual path the vehicle

takes is a function of the vehicle performance (the system) and the controller.

1.2 Autonomous Driving Client System

The client system incorporate the previously mentioned calculations together to

meet real-time and dependability prerequisites. The following are some of the chal-

lenges that occurs during this process: the framework needs to guarantee that the

handling pipeline is sufficiently quick to deal with the large amount of sensor infor-

mation produced; if a part of the framework fails or behaves abnormally, it must be

adequately vigorous to recover from the failure and, moreover, all the computations

needs to be done within the available space and resources [4].
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1.2.1 Robot Operating System (ROS)

ROS is a robust and versatile communication middle ware (framework) tailored

and widely used for robotics applications. It is a powerful operating system for au-

tonomous driving aside from the fact that it experiences a few issues such as reliability,

performance and security. More about ROS is discussed in the future chapters [4].

1.2.2 Hardware Platform

Hardware Platform is one of the most important factor for operating an au-

tonomous car in real time scenarios. To perform these tasks a powerful computing

system is required to interpret a lot of detecting information and to execute com-

plex perception algorithms. The various computing devices available in the market

are personal computers (PC), real-time embedded computer, multicore CPU servers,

Graphics processing units (GPU) and Field-programmable gate arrays (FPGA). We

can choose any one of the mentioned computing systems based on objectives, perfor-

mance, reliability and cost [5].

1.3 Autonomous Driving Cloud Platform

Autonomous vehicles are versatile frameworks, and consequently they need a cloud

based platform to provide support. Distributed computing and distributed storage

are two main aspects of cloud platform. Simulation, HD map production, and deep

learning model training are some of its several applications [4].

Therefore, the above mentioned pipeline for autonomous driving constitutes a level

5 autonomous vehicles. However, the issue is, that driving with level 5 vehicles isn’t

allowed on open streets, the test vehicles are costly and require a great deal of support

and the recording of information takes a very long time. Moreover, as a college

research student it is especially hard to get the time, cash and equipment to test

autonomous driving capabilities in certifiable situations. To bridge such disadvantage,
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considerations were placed into little, minimal effort platforms, that help the usage

of similar methodologies replicated in real size self-driving vehicles.

As a significant objective of enthusiasm for the research network, this quickens the

interest to accomplish more faster and efficient results, with the serious perspective

among research scientists, university students and engineers.

1.4 Context

In the part of automated and mechanical applications for autonomous vehicles,

this work was created and developed at LHP Engineering Solutions.

This platform provides an self-driving car, that permits the development, testing

and approval of various algorithms, from simple distance calculation to a computer

vision techniques, LiDAR scan and so on that implements the of scenarios Advanced

Driver Assistance Systems (ADAS).

1.5 Research Objectives

The significant goal of this work is to construct and build up an automated racecar

to develop various real time scenarios such as collision avoidance, blind spot detection

and lane changing algorithms. The main motive, is to build up a racecar, to develop,

test and approve different tools, with respect to ADAS functionalities and the other

parts such as chassis, servos and so on which are used in autonomous driving.

1.6 Thesis Contributions

The primary commitments and contributions of this work are:

• Assembling and modifying the Traxxas remote control car into an autonomous

car

• Analyzing the raw data from different sensors like Camera, LiDAR and Radar
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• Implementing and running of RACECAR, which will permit to test and validate

different sensor technologies

• Implementing and evaluating different use case scenarios like Lane Following,

Obstacle Avoidance, Lane Keep Assist (LKA) and so on

1.7 Thesis Structure

The structure from Chapter 2 is as follows:

• Chapter 2: In this chapter, all the technologies were listed with their necessary

software installations.

• Chapter 3: In this chapter, both hardware and software architecture was de-

scribed.

• Chapter 4: Here, all the algorithms that were implemented on the RACECAR

were listed.

• Chapter 5: Finally, all the results and conclusions were made.

• Chapter 6: This chapter is about the future work and further improvements.
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2. SMALL SCALE AUTONOMOUS VEHICLE

PLATFORMS

These small scale platforms give scientists and university students a bench setup to

mimic and mimic different ways to deal with the aspect of self-driving, by utilizing one-

tenth size of an actual car. Versatile to various instance of research, this RACECAR

gives a reduced work tools, demonstrating the best way to assemble a vehicle, stating

the necessary hardware equipment and the software installations required to setup

the Robot Operative System (ROS) and other required software [1].

By giving a easy and simple test bed, it empowers the user to concentrate on

different methodologies of algorithm development along with examining and verifying.

Utilizing its features, there is a chance to put more efforts on perception and decision

making steps of autonomous driving stack, by utilizing the sensors like ultrasonic,

radars, cameras and LiDAR [1].

Different technologies like V2V and V2X can be explored, examining situations

like moving towards an roundabout or T junction or a four way junction, that have

been intensely explored in the most recent years.

On focusing these thesis objectives, different sensor technologies have been ex-

plored and implemented for different use case scenarios.

2.1 Hardware Assembly of RACE CAR

The hardware assembly of a RACE CAR can broadly be divided into two parts.

The first part is the Chassis Preparation and the second part is Platform Preparation.
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2.1.1 Chassis Preparation

The RACECAR Chassis is based on the TRAXXAS Slash 4 X 4 Platinum truck,

an upgraded version of the normal Slash 4 X 4. The frame is available directly and

it can be used as it is. Basically, remove the pieces that are not required, update

the springs, and include another front guard. Here, we modified the chassis of the

Traxxis to support the extra weight from electronics so that it can be converted into

autonomous mode [6]. Fig.2.1. shows the modified version of TRAXXAS car that

fits the needs of our autonomous RACECAR.

Fig. 2.1. CHASSIS

2.1.2 Platform Preparation

Platform preparation comprises of two sections. The initial segment is the frame, a

one-tenth scale controller vehicle with changes to help the additional load of hardware.

The subsequent part is the electronics. The hardware comprises of the AI computer

and sensors, which empower our car to act autonomously [7].
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Frame

The hardware is attached to platform decks, which on account of RACECAR are

produced using exactness cut 3/16 Delrin sheets [7].

Fig. 2.2. PLATFORM DECK

Jetson NANO

NVIDIA R© Jetson NanoTM Developer Kit is a little, amazing computer that runs a

numerous neural systems in equal for applications like mage classification, object de-

tection, segmentation, and speech processing. All in a simple to-utilize stage that can

run in a very low power as 5 watts [8]. It is the on-board computer on my Race car.

The Jetson NANO is a low cost, Ubuntu 16.04 based electronic control unit(ECU)

with a separate GPU. This ECU is extremely reliable for students and researchers.

A short summary of Jetson NANO Developer Kit Technical Specifications is listed in

the Table. 2.1.
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Fig. 2.3. Jetson NANO [8]

Table 2.1.
Jetson Nano Specifications [8]

Ubuntu 16.04

GPU 128-core Maxwell

CPU Quad-core ARM A57 @ 1.43

GHz

Memory 4 GB 64-bit LPDDR4 25.6

GB/s

Video Encoder 4K @ 30 — 4x 1080p @ 30 —

9x 720p @ 30 (H.264/H.265)

Video Decoder 4K @ 60 — 2x 4K @ 30 — 8x

1080p @ 30 — 18x 720p @

30— (H.264/H.265)

Camera 2x MIPI CSI-2 DPHY lanes

Connectivity Gigabit Ethernet, M.2 Key E

Display HDMI and DP

USB 4x USB 3.0, USB 2.0 Micro-B

Interfaces GPIO, I2C, I2S, SPI, UART



15

Adafruit 16-Channel 12-bit PWM/Servo Driver - I2C interface - PCA9685

An easy and simple method to control Servo Motors on the NVIDIA Jetson Nano

Developer Kit is to associate the Jetson Nano and PWM driver through I2C commu-

nication protocol. We have used Adafruit 16-Channel 12-bit PWM/Servo Driver On

our Race car. The greatest advantage of this micro controller is that, just by utilizing

two pins, we can control 16 free-running PWM outputs. It even allows to fasten up

62 breakouts to control up to 992 PWM outputs. The PCA9685 breakout board is a

decent application to explicit the miniaturized scale regulator for servo control [9].

Fig. 2.4. PCA9685 [9]

Buck Converter

A buck converter is used to convert the voltage from LPIO battery (11.1v) to

Jetson Nano(5v). It is a step-down DC-to-DC power converter which steps down

voltage from its input (supply) to its output (load). SING F LTD Buck Converter

DC to DC 5A 75W Input 4-36V Output 1 25-36V Step Down Regulator Power Module

is the converter that we used on our RACECAR [10].
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Fig. 2.5. Buck Converter [10]

Ultrasonic Sensor: HC-SR04

Ultrasonic distance sensor gives steady and exact distance estimations from 2cm

to 450cm. It has a focal point of under 15 degrees and a precision of about 2mm [11].

A technical specification of HC-SR04 is as follows:

Table 2.2.
HC-SR04 Specifications [11]

Effectual Angle less than 15 degrees

Ranging Distance 2cm – 400cm

Measuring Angle 30 degree

Power Supply +5V DC

This sensor utilizes ultrasonic sound to measure the distance similar to bats and

dolphins. Ultrasonic sound has such a high pitch, that people cannot hear it. This

specific sensor conveys an ultrasonic sound that has a recurrence of around 40 kHz.

The sensor has two fundamental parts: a transducer that makes an ultrasonic sound
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and another that tunes in for its reverberation. To utilize this sensor to measure sepa-

ration, the micro controller should calculate the time it takes for the ultrasonic sound

to travel [11]. Sound goes at approximately 340 meters for each second. This compares

to about 29.412µs (microseconds) per centimeter. To measure the distance the sound

has travelled we utilize the formulae: Distance is equal to (Time∗SpeedOfSound)/2.

First the sound travels from the sensor, and afterward it skips off of a surface and

returns back [11].

Fig. 2.6. Ultrasonic Sensors [11]

RPLiDAR A1

RPLIDAR A1 depends on laser triangulation extending standard and uses fast

vision obtaining and handling equipment. The rate at which it measures the distance

range is more than 8000 times per second. It runs clockwise to perform a 360 degree

omni directional laser range scanning of its surrounding environment and then gen-

erate an outline map for the environment. We can adjust the scan rate from 2 - 10

Hz and it is ideal device for robot navigation and localization [12].
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Fig. 2.7. RP LiDAR A1 [12]

Logitech C270 Desktop Webcam - USB Camera

This USB camera works at 30 frames per second with smooth video quality. Even

the images are crisp, bright and contrasted [13].

The technical specifications of Logitech C270 webcam is as follows:

Table 2.3.
Camera Specifications [13]

Resolution 720p/30fps

Video Quality Good

Focus Fixed

Lens Standard

Field of View 60

Microphone Mono
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Fig. 2.8. USB Camera [13]

LiPo Batteries

LiPo battery packs are made out of 3.7-volt cells. The cells are stacked and encased

in an intense, semi-inflexible wrap. Traxxas LiPo batteries are offered in 2 cell (7.4

volts), 3-cell (11.1v), and 4 cell (14.8v) arrangements. LiPo batteries have more

prominent “vitality thickness” than NiMH batteries, which means they have more

voltage and limit than a NiMH battery would of a similar volume. LiPo batteries

additionally support a higher voltage for a more noteworthy term of each run, so your

model will have more punch, speed up, and run longer with a LiPo than it would with

a practically identical NiMH pack [14].

Fig. 2.9. LiPO Batteries [14]
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Perceptin SSR V2.0 Radar

It is an industrial grade Millimeter-Wave Radar [15]. Following points are to be

noted while installing the RADAR:

• Install vertically and make sure the interface is facing down

• Installation height (recommended): 50-100cm

• Pitch angle will lead to the detecting distance reduction

• Frames are returned every 50ms (20Hz)

• Maximum 64 objects are detected per frame

• Maximum Range of detection is 70m

We need an extra hardware equipment such as Kvaser CAN leaf, CAN breakout

box and an extra power source to decode and run the perceptin radar. The technical

specification of perceptin radar is shown in the Table 2.4.

Fig. 2.10. Perceptin SSR V2.0 Radar [15]
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Table 2.4.
PerceptIn Radar Specifications

Specs Unit Range

Azimuth Angle Degree 60 ±1

Elevation Angle Degree ±15

Angle Resolution Degree 1

Maximum Range Meter (m) 70(±0.16)

Installation Height centimeters (cm) 50 to 100

Speed Range m/s -50 ∼ 15

Update Interval ms 20 (20 Hz)

DC Voltage Volts (v) 9 ∼ 36

Size mm3 102.5 x 52 x 28.5

Temperature Celsius 40 ∼ 85

Output Interface - Double CAN with

500 kbps

Connector - Sumitoma 61897608

2.2 Initial Assembly

In the above two sections, chassis and platform decks were built. Finally, both of

them were combined to complete the entire assembly. Here, the hardware is selected

according to the build configuration. We modified this section by choosing the spe-

cific hardware required for our specific applications. For example, in Lane Following

racecar, we mounted camera sensor as shown in the Fig. 2.11. Similarly, for LiDAR

based racecar camera is replaced with LiDAR. Moreover, if we are building a fusion

based racecar, we will use multiple sensors like lidar, camera and radar on the same

build.
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Fig. 2.11. Race Car
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3. TECHNOLOGIES AND SOFTWARE INSTALLATIONS

3.1 Getting Started Jetson Nano

Things required before booting NVIDIA Jetson Nano

• micro-SD card (32 GB)

• 5V 2.5A MicroUSB power supply. I used Adafruit’s 5V 2.5A Switching Power

Supply with 20AWG MicroUSB Cable (GEO151UB-6025) for my NANO.

• Ehernet cable

3.1.1 Downloading and Flashing the .img file in my 32GB micro-SD card

First, I downloaded the Jetson Nano Developer Kit SD Card Image from NVIDIA’S

website [8]. For my windows operating system, I followed all the necessary steps pro-

vided in NVIDIA website [8] that are required for flashing .img file to my 32GB micro

SD card.

3.1.2 Setup and First boot

After downloading and flashing the .img file to my micro-SD card, I inserted the

card into the micro-SD slot on Jetson Nano. Next step is to connect the power supply

and boot our module. Finally, by connecting Jetson Nano to a HDMI, output screen

is displayed as follows.
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Fig. 3.1. Output screen of NANO after the Initial Boot

3.2 Robotic Operating System (ROS)

The Robot Operating System (ROS) structure, kept up by Willow Garage and

Open Source Robotics Foundation (OSRF) since 2007, is an publicly available mid-

dle ware which experienced quick turn of events and has been generally used to plan

mechanical autonomy applications. With its numerous product systems it gives an

assortment of instruments, libraries and shows that it encourages the formation of

mechanical aspects, boosts its code reuse-ability, and critical thinking through the au-

tomated network. In spite of the fact that ROS is certifiably not a constant structure,

it is conceivable to incorporate it with continuous code [16].

ROS working principle is based on a procedure, which communicates through

Nodes that empowers executable to be independently structured at run time. Every

node is capable with a single task and correspondence between the nodes supports a

distribute/supporter model, therefore giving an extremely straightforward and clean

method of associating different software and hardware parts [17].

As explained in [18] ROS has four degrees of ideas, separated as it follows: ROS

File System Level, ROS Computational Level and ROS Community Level.
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The general assets of ROS are covered by File System Level which incorporates

Packages, Services and Messages. For arranging the programming structure, the

principle unit in this framework is Package. It constitutes of ROS run-time forms,

ROS-subordinate library, data sets and so on. Packages are the most nuclear form

thing and delivery system in ROS. Implying that the most coarse thing that can be

manufactured, delivered is package. Messages portrayal has messages utilized in every

package. Service depiction describes solicitation, reaction information for structuring

the ROS services.

Fig. 3.2. Graphical Representation of Publisher and Subscriber [16]

The Computation Graph level is the thing that sets up the correspondence among

ROS forms that prepares information all together. Crucial ideas to be considered are:

• Master [19] - ROS Master gives naming along with enlistment services to all

other nodes in its framework. It hunts down publishers and subscribers of all its

available topics and services. Its main task is to empower each node of ROS in

finding each other. When these nodes have found each other, they speak with

one another distributed.

• Nodes [20] - The main task of Nodes is to do calculations. Robot framework

generally include numerous nodes. Two nodes in a framework can communicate

with each other.
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• Messages [21] - A message is an information structure, containing of composed

fields. Nodes uses messages to pass data among one another.

• Topics [22] - Messages should be moved through a defined course. To do that

Topics are responsible for directing the messages by means of a framework

with the semantics of both publisher and subscriber. Two nodes communicate

with each other via topic. It is used in recognizing the message substance.

A node which depends on particular sort of information has to subscribe to a

related topic. A solitary topic can have a numerous simultaneous publishers and

subscribers, and a specific node may publish as well as subscribe to different

topics. When all the process is said to be done, publishers and subscribers do

not know about every others’ presence. The thought is to decouple the creation

of data from its utilization.

Community level, which is final level in ROS is liable for distributing and giving

assets, information passing, programming with particular networks. It also gives

repositories, forums and also question and answer site which addresses committed

questions of ROS. In my research work, I have used the ROS Melodic distribution.

Remembered for the broad range of applications ROS gives two important appli-

cations in the advancement of automated and robotic field, being ROS visualization,

Rviz and ROS rqt graph.

3.2.1 Rviz

Rviz is a three-dimensional visualizer used to envision robots, the situations they

work in, and sensor information. It is a profoundly configurable application, with a

wide range of sorts of plugins and modules [23].

As to sensor visualization, Rviz permits to show 3D and 2D sensors data from

stereo cameras, lasers, kinetics, webcams, and so on.

Fig. 3.3. depicts the an example of a rivz window, which in turn gives the current

configuration of a virtual bot.
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Fig. 3.3. Rviz Window [23]

3.2.2 rqt Graph

rqt graph gives a GUI module to see the ROS computation graph. Its segments are

made nonexclusive with the goal that different packages where you need to accomplish

graph portrayal can rely on this particular package [24].

3.3 Jetson GPIO Library Package

The development boards from Jetson like Nano, TX1 etc comprises of forty-pin

GPIO header. These GPIOs can be controlled for computerized information and yield

utilizing the Python library mentioned in the Jetson GPIO Library package.

I referred to [25] for package installation into my Jetson Nano board.
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3.4 Adafruit Servokit Library

I referred [26] to clone servokit’s repository. These packages are necessary to

make servo engines working with the NVIDIA Jetson Nano Developer Kit utilizing a

PCA9685 breakout board over I2C communication protocol.

3.5 OpenCV

OpenCV is a library of programming functions, which is created to help applica-

tions that utilizes real time computer vision applications. It gives many capabilities to

record, examine, and control of visual information and can wipe out a portion of the

problem that software engineers face while creating applications that depend on com-

puter vision. OpenCV has been utilized in both useful and innovative applications

including self-directing vehicles and new types of computerized craftsmanship [27].

I referred to [28] for installation of OpenCV package on my Jetson Nano.

3.6 USB Camera Software Installations

I referred [29] to clone the github repository, which contains necessary ros drivers

and packages for using Logitech camera.

3.7 RP LiDAR software Installations

I referred [30] to clone the github repository, which contains necessary ros drivers

and packages for using RP LiDAR A1.

3.8 Perceptin SSR V2.0 Radar Software Installations

I referred [31] to clone the github repository, which contains necessary ros drivers

and packages for using Perceptin Radar.
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4. SYSTEM ARCHITECTURE

This section portrays the system architecture, describing how every tool and compo-

nent are associated with one another, resulting in a final autonomous racecar.

4.1 Hardware Architecture

The race car follows the hardware architecture as shown in the Fig. 4.1. Each and

every part on the race car is associated with the on board system, the Nano, that takes

care of all the required computations. The connection between Camera and Lidar

is established through USB, PWM driver is via I2C communication protocol and

Ultrasonic sensors via GPIO ports. To supply power to the race car, Lipo batteries

were used to power up the servo and for DC motor.

Fig. 4.1. System Hardware Architecture



30

4.2 Software Architecture

The race car follows the software architecture as shown in the Fig. 4.2 As Jetson

Fig. 4.2. System Software Architecture

Nano is our on-board computer, Ubuntu 16.04 is its default operative system. Robot

Operative System (ROS-Melodic) is installed on the Nano. It includes “catkin ws”

workspace to develop and build the framework. ROS gives different packages that

empower a ready to utilize software, generally depending on parameter configuration.

RPLiDAR, USB CAM were the packages that were used in this implementation [1].

Build, Devel and Source are the three directories in catkin workspace. Inter-

nally, the source directory contains message folder, launch folder, and all the designed

python scripts. Message folder is responsible for saving the message types that were

passed through topics. In addition the launch folder permits to invent tailored launch

files that initiates multiple nodes, yaml files, config files at the same time [1].
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Fig. 4.3. Source Directory of Catkin Workspace

4.3 PCA 9685 (PWM Driver) Interface

A straightforward method to control Servo and DC motor on the Jetson Nano

is to associate it by means of I2C communication to a PWM Driver as there is no

direct connection between both of them. So, the PWM Driver, takes the steering

and throttle values as input commands from the Nano and controls the servo and DC

motor of the race car for its steering and throttle respectively [32].

With this driver, an extension can be established between Nano and the electronic

speed regulator. Here, the PCA9685 sends Pulse Width Modulation, digital pulses

to DC motor and servo, contingent upon the data it received from the Nano.

So the data is sent using I2C protocol from Jetson Nano to PCA9685. The

adafruits servokit library has the python commands, where it has the capability

of converting the received messages of throttle and steering, into its corresponding
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PWM signals. The transformation, depends on throttle values ranging from DASH to

DASH, where the 0 represents the stopping value of the car, and the steering values

ranging from 55 degrees to 145 degrees, 55 - 99 degrees is turning left, and 101 – 145

degrees is turning right, and 100 degrees is heading straight.

Fig. 4.4. PCA 9685 connection representation with Jetson NANO,
DC Motor and Servo

4.4 LiDAR Scanning

The 2D scan data from RP LiDAR sends the data to the Jetson Nano, covering

an entire range of 360 degrees of its surroundings. The sample duration of this LiDar

is 0.15ms and it is connected via USB to Jetson NANO.

In Fig. 4.5. depicts that Laser Scan topic emits different data values like anglemin,

anglemax, angleincrement, ranges and so on.

4.5 Camera Interpretation

The images from USB camera are read using the open CV functions. Depending

on the application we play with the pixels and apply lot of image processing techniques

on them.
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Fig. 4.5. /Scan Topic Raw Data

4.6 CAN Decoding From RADAR

The data sent from the radar is in the hexadecimal format and it needs to be

decoded into an id based communication. Fig.4.6 represents the CAN ID and its

corresponding data values and Fig.4.7 shows the converted can data in ROS environ-

ment.
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Fig. 4.6. Data Ranges and their Corresponding CAN ID’s

Fig. 4.7. Decoded CAN Values from Hexadecimal to Decimal
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5. IMPLEMENTATION

5.1 Modeling the RACECAR

An autonomous vehicle need to understand its instantaneous state in order to

make decisions on how to control the vehicle. In any robotic framework, it is always

necessary to describe the evolution of the state of the system over time. The structure

of the model is represented as follows:

ẋ = f(x, u)

Here, x describe the state of the system and u describes control inputs. The

control inputs for the Racecar are steering angle and throttle setpoints, therefore,

uεR2.

5.2 Notations used While Describing the Model

Basic notations utilized in depicting the vehicle dynamics:

• δ: steering angle set-point. Typically, the units are in radians.

• ψ: throttle values. Typically the units are in m/s, explicitly the speed at which

the back tires would be moving comparative with the body frame at the contact

point between the tire and the wheel. From this definition, it is interpreted that

a throttle set-point of 1, then under no slip conditions we can say that the race

car is having a tangential velocity of 1 m/s [33].

Fig. 5.1. shows the ideal race car representation (on the left), and its correspond-

ing bicycle model(on the right). Here, la and lb are the distances from the car center

of mass to the front and back tires, respectively.
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Fig. 5.1. Bicycle Model [33]

5.2.1 Coordinate Frames

World Frame

It is the top level frame in our modeling. Here, this model is considered to be

stationary w.r.t the known system of a map. The subscript ‘w’ is used to represent

the world frame [33].

Body Frame

This is fixed frame w.r.t the race car. The origin of this coordinate frame is either

at the race car’s center of mass or at base link pose which is found straight forwardly

between the back tires. The forward direction of the car is considered as positive x
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axis, and the leftward direction from the car is considered as positive y axis. The

subscript ‘b’ is used to represent the body frame [33].

Wheel Frames

As we considered bicycle model, the frames of front and rare tires are only taken

into consideration. The back tire frame is like the body frame, except for translation.

The front tire’s frame is likewise made an interpretation w.r.t the body frame, however

it is additionally rotated by precisely the steering angle ψ. The subscripts ‘fw’ and

‘rw’ represents the front wheel and back wheel frames respectively [33].

5.3 Control Methods

Different algorithms can be designed to control my race car. The steering stability

on the race car was achieved by using a Proportional Integral, PI, controller.

5.3.1 PI Control

The most often method for controlling a car is the proportional integral, or a PI

controller in which it gives the steering command corresponds to its error term from

the target [34]. The Fig. 5.2. shows the block diagram of a PI controller. The

mathematical representation of the control error is represented as follows:

controloutput(t) = Kp ∗ e(t) +KI ∗
∫
e(t)dt

Here, the output steering angle is the result of P term added to a integral of I term.

The Kp and Ki are experimentally derived constants. Here, Kp is directly multiplied

with the amount of error and its value is usually varied from 0 < Kp < 10. Similarly,

Ki is multiplied to the integral of the error i.e, the sum of all the instantaneous error

values at that point. Even the Ki values are varied from 0 < Ki < 1 [34].

These Kp and Ki values are tuned manually by a trail and error basis with respect

to the driving scenario race car.
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Fig. 5.2. PI Controller [34]

5.4 Obstacle avoiding RACECAR using Jetson Nano

and Ultrasonic sensors

On the RACECAR, we have used three ultrasound distance sensors, HC-SRO4s.

The placement of these sensors are shown in the Fig. 5.3. These are placed in such

a way to attain the best coverage area along the forward direction. It was chosen by

means of experimental strategies that these positions shown in the figure were ideal

for obstacle recognition when three ultrasonic sensors were being used.

Hardware connections were made by connecting the Jetson Nano GPIO pins to

the Trigger, Echo, VCC and GND pins of HC-SRO4s respectively.

It was assumed that all the necessary packages, message types and so on were

already imported into the ROS environment. The algorithm described in Fig. 5.4.

and Fig. 5.5. is a simple method for collision avoidance using these three Ultrasonic

sensors. The python scripts are written ROS publisher and subscriber format. In the

sonar publisher algorithm, we are calculating the distances from center, right and left

sonars and publishing those distance values to the chatter topic.

In the sonar subscriber algorithm, first we subscribe to the chatter topic and get

the calculated distance values from all the three (left, center and right) sensors. In
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Fig. 5.3. Position of Ultrasonic Sensors

Fig. 5.4. Sonar Publisher Algorithm

the next step, we considered a threshold value of 50cm and all the distances are

compared with this value. Finally, the flow of comparing threshold value and taking

the necessary action is explained in the Fig. 5.5.
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Fig. 5.5. Sonar Subscriber Algorithm

5.5 Lane following RACECAR using Jetson Nano and USB Camera

On the RACECAR, we have used Logitech C270 USB camera for lane detection.
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The algorithm for lane detection was completely based on computer vision and

image processing techniques [35]. We used OpenCV library with python interface

on ROS platform for developing this algorithm. It is assumed that all the necessary

packages, messages were imported into the ROS environment.

Fig. 5.6. Lane Detection Block Diagram

5.5.1 Capturing and Decoding the Live Video

Live video is captured using VideoCapture() object in open CV and then it is

decoded into frames.

5.5.2 HSV Conversion of an Image

In this step the captured video frames, which are in BGR color space are converted

into HSV color space. The main reason behind converting into an HSV format is that,

in BGR format various parts of the yellow tape might be illuminated with various

light conditions, resulting them to appear as darker yellow or lighter yellow. However,

in HSV color space, the Hue segment will deliver the entire yellow tape into one color

irrespective of its shading.
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5.5.3 Mask the Image with Yellow Color

Now, from the HSV image, the upper and lower boundary ranges for yellow color

are specified, so that only yellow color is lifted in the image. The output from this

step is a masked black and white image with yellow part lifted as white space.

5.5.4 Detecting Edges of Lane Lines

Canny Edge Detector is used to find the edges in the masked image. It computes

gradient in all directions of the masked image and traces the edges with large change

in the intensity. OpenCV library directly has canny edge detector function that can

be used directly.

5.5.5 Isolate Region of Interest

While detecting lanes, we only concentrate on the screen that is near to our lanes

and rest of the screen can be ignored. So, the top of the screen is cropped out resulting

in the region only with the lane lines.

5.5.6 Detect Line Segments

In this step, line segments are detected from the ROI image. We used ‘Hough

Transform’ function to detect the line segments which is directly available from the

OpenCV library. The output from this step is the end point coordinates (x1, y1)

followed by (x2, y2) of each detected line segment. Here, four line segments are

detected.
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5.5.7 Combining the Detected Four Line Segments

into Two Lane Lines

In this step, we combined all the detected line segments with their end point

coordinates (x1, y1) and (x2, y2) are combined into two lines. First, we classified the

lane segments by their slope values. It was assumed that all the left lane lines should

be upward sloping. Similarly, all the right lane lines should be downward sloping.

Next, from the classified groups of left and right lane segments, average of the slopes

and the intercepts are considered to finally classify them into left and right lanes.

5.5.8 Steering Angle Calculation

From the above step we have coordinates of the detected left and right lanes, so

the next step is to steer the racecar to stay with in the lane lines. By averaging the far

end points of both lines, heading direction and steering angle are calculated. Since,

the USB Camera is installed in the middle of the racecar, which is pointing straight

ahead, the lower end of the heading line is always considered to be on the center of

the bottom of the screen.

5.5.9 Steering PI and Setting the Speed

Steering PI Controller is used to tune the values with respect to the calculated

steering angle (from the above step) and to stabilize the racecar from wobbling. The

speed of the racecar is fixed to 0.5 m/s.

5.6 Track following RACECAR using Jetson Nano and RP LiDAR

The LiDAR has 360 degree scan capability, it scans for the angles from 0 degrees

to 360 degrees in anti-clock wise direction, with 0 degrees being the front of the car,

as shown in the Fig. 5.7.
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Fig. 5.7. RPLiDAR A1 [30]

RACECAR is mounted with RP LiDAR A1 to follow the race track. Before even

developing an algorithm it is important to come up with a deciding window for our

lidar. As shown in the Fig. 5.8. the key parameters to be considered while deciding

the window are as follows:

• The Racecar is 27cm wide so, to be on a safer side the window size is considered

as 40cm.

• The distance between any object and the race car should be at least 50cm.

That is no object should be in this window whose distance is less than 50cm.

Therefore, the blind spot region is considered to be 50cm.

• Using trigonometry θ was found to be 40 degrees.

The RP LiDAR A1 emits the LasarScan topic, which publishes different values

like angle-min, angle-max, angle-increment, ranges and so on as shown in Fig. 5.9 in

its ROS environment. So, by subscribing to this topic, it is possible to determine the

distance at a particular angle.

This algorithm depicts a simple technique for the RACECAR to follow the race

track. The program is written in python with ROS subscriber format. As sensor

msgs has LaserScan topic, there is no need of an publisher program.



45

Fig. 5.8. Deciding Window for LiDAR

Fig. 5.9. /LaserScan Topic

It assumed that the car moves only in the forward direction only. So, in the first

step the scan angles are sliced to the front part only, that is [0 to 90] and [270 to

360] and then they are reversed and merged from [90 to 0] to (360 to 270]. The

second step would be defining a threshold for range values and the maximum gap

value (deciding the window). The values that worked best for me are 0.5 meters for

minimum threshold, and 40 centimeters as the maximum gap value. In the third

step all consecutive range values are appended to a empty array and then sorted them

in the ascending order. From this values the list of largest gap array was taken. For-
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Fig. 5.10. LiDAR Subscriber Algorithm
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tunately, /LaserScan topic from the LiDAR in the ROS gives us the angle increment

value for each sec. Hence, the maximum and the minimum angles are calculated.

In the fourth step, average gap angle and the turn angle are calculated. In the final

step the conditions to move the RACE CAR are given, i.e, if average gap is less than

maximum angle then STOP the car. Else the steering is tuned according to the ‘turn

angle’ by integrating proportional integral logic (i.e steering PI control) with it. The

formulas used in this algorithm are:

minimum angle = largest gap[0] * angle increment

maximum angle = largest gap[-1] * angle increment

avg gap angle = (maximum angle - minimum angle)/2

turn angle = minimum angle/2 + maximum angle/2
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6. RESULTS

This section shows the outcomes accomplished all through the development of the

RACECAR using different sensors.

First of all the racecar is successfully equipped with Ultrasonic sensors, LiDAR

and Camera and an on-board computer. All the above mentioned sensors along

with motor and servo control are successfully interfaced with ROS (Robot Operating

System).

6.1 Obstacle avoiding RACECAR using Jetson Nano

and Ultrasonic sensors

Racecar was able to avoid the obstacles and travels with a speed of 0.5m/s. It

does the actions according to the defined algorithm.

The following exhibit the outcomes acquired using the algorithm developed for

Ultrasonic sensor.

• RACECAR is turning Left if the distances from the middle and right sensors

are less than 100cm but the distance from the left sensor is greater than 100cm.

• RACECAR is turning Right if the distances from the middle and left sensors

are less than 100cm but the distance from the right sonar is greater than 100cm.

• RACECAR is turning Right if the distances from the middle less than 100cm

but the distance from the left and right sonars is greater than 100cm. Priority

is given to choose right.

• RACECAR is going Straight if the distances from middle and right sonars are

less than 100cm but the distance from the middle sensor is greater than 100cm.
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• RACECAR is going Straight if the distances from all the three sensors are

greater than 100cm.

• RACECAR Stops if the distances from all the three sensors is than 100cm.

Fig. 6.1. Snippet 1 of Result Window using Ultrasonic Sensors

Fig. 6.2. Snippet 2 of Result Window Using Ultrasonic Sensors
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6.2 Lane Following RACECAR using Jetson Nano and USB Camera

Racecar was able to detect and follow the lane and travels with a speed of 0.5m/s.

This algorithm uses a robust technique, to control the race car’s steering, by utilizing

a PI controller. Constantly checking with trial and error approach, the consistent

estimations of the PI values are:

• Ki : 0.1

• Kp : 1

The following exhibit the outcomes acquired from the algorithm developed for using

USB Camera.

6.2.1 Capturing and Decoding the Live Video

We have created a yellow track at my work place for running the RACECAR

uisng the lane following algorithm. Fig. 6.3 shows a decoded RGB frame from the

live video.

Fig. 6.3. RGB Yellow Lane Image
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6.2.2 HSV Conversion of an Image

Fig. 6.3 shows the HSV converted image.

Fig. 6.4. HSV Image

6.2.3 Mask the Image with Yellow Color

Fig. 6.4 shows the masked image with yellow color.

Fig. 6.5. Masked Image with Yellow Color
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6.2.4 Detecting Edges of Lane Lines

Fig. 6.5 shows the detected edges from a Canny Edge Detector.

Fig. 6.6. Edge Detected Image

6.2.5 Isolate Region of Interest (ROI)

Fig. 6.6 shows isolated image just with the lanes on the bottom half of the screen

and neglecting the rest.

Fig. 6.7. ROI Image
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6.2.6 Detect Line Segments

Fig. 6.7 shows the detected line segment using Hough Transform method.

Fig. 6.8. Detected Line Segments Image

6.2.7 Combining the Detected Four Line Segments into

Two Lane Lines

Fig. 6.8 shows the image just with the two lanes.

6.2.8 RACECAR Heading Direction

Fig. 6.8 shows the image just with the two lanes.

6.3 Track Following RACECAR using Jetson Nano and RP LiDAR A1

Racecar was able to follow the track and travels with a speed of 0.5m/s. This

algorithm uses a robust technique, to control steering of the racecar using a PI con-

troller. By continuous trial and error, the best consistent estimations of the PI values

were:
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Fig. 6.9. Lane Lines Image

Fig. 6.10. Image with Heading Direction

• Kp : 1

• Ki : 0.1
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7. FUTURE WORK

7.1 Speed PI controller

Right now, we are running the RACE CAR at a constant speed of 0.5 m/s. In

future, we should definitely increase the speed of the RACE CAR. We need to develop

a speed PI controller in order to effectively control the speed at different distances.

7.2 RADAR

RADAR (Radio Detection And Ranging) is a very important sensor in autonomous

technology which works exceptionally in bad weather conditions. We can use RADAR

in lot of applications like distance and velocity measurement of the front vehicle, ob-

stacle avoidance, adaptive cruise control, blind spot detection, rear cross traffic alert,

car door opening warning and so on. In the previous chapters, we basically decoded

and analyzed the CAN data from the sensor. The next step would be to implement

it on the RACECAR for any of the mentioned applications.

7.3 Sensor Fusion

Multiple sensors may be combined or “Fused” to supply an improved signal from

the first single sources. The development can mean better accuracy, availability and

the usability of sensed date. Sensor fusion plays and important role within the au-

tonomous system capability and performance.

Sensor fusion uses the sensor information and combines the data streams to the

Perception layer. It provides the perception layer with data that can be simpler to

formulate the situational awareness algorithms. By using multiple sensors of the same

type signal accuracy and data quality can be improved.
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Fig. 7.1. Sensor Fusion

Therefore, the next implementation is to develop a RACECAR which uses the

sensor fusion technology. For example, ‘Lane Change Assist’ system using camera

and lidar.
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