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1.9 The main result of an electromagnetic (EM) theory of magnetohydrodynamics
is that the relative sign of the Hall conductivity σxy and the the Hall viscosity
ηH predicts a new quantum phase of matter. When the relative signs are
the same, Hall viscosity repels external magnetic fields and the EM theory is
topologically nontrivial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.1 Our result shows a fundamental right handed triplet formed by momentum,
decay and spin for evanescent waves. Note the locked triplets for waves prop-
agating in two opposite directions. As we can see, the direction of the spin ŝ
flips for the two cases. It is important to note that in general there are four
degenerate solutions but two of these correspond to growing evanescent waves
which are forbidden due to causality. This explains why the left handed triplet
is not allowed and the phenomenon of spin-momentum locking is universal to
evanescent waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Poincaré spheres for propagating waves and evanescent waves. Propagating
waves can have any arbitrary polarization state for a given phase velocity.
However, all fast decaying evanescent waves are circularly polarized and lie
on the south or north pole of the Poincaré sphere (S3 = ±1). Furthermore,
the choice between these two points is locked to the direction of momentum
(±~κ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 Left: CTIR at interface between glass with n1 = 2 and air with n2 = 1 at
the θCTIR condition. For waves travelling in the +x direction, the evanescent
wave in region 2 has right handed spin-momentum locking (inset). Note the
wave in medium 1 has perfect circular polarization characteristics close to the
interface at this angle of incidence. The overlaid false color plot is the spatial
distribution of the normalized Stokes parameter (S3) which characterizes the
handedness of the wave (degree of circular polarization) from −1 to 1 at each
point. Right: CTIR at interface between glass with n1 = 2 and air with
n2 = 1 at the θCTIR condition. For waves travelling in the −x direction, the
evanescent wave in region 2 has left handed spin-momentum locking (inset).
The plot illustrates that the evanescent wave spin has the opposite sign as
compared to the previous case because the momentum and spin are locked. . 65
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2.4 Left: Waveguide mode at interface between glass with n1 = 4 and air with
n2 = 1. The width of the waveguide is 2k0d = 2. For waveguide modes travel-
ling in the +x direction, the evanescent waves in region 2 lock the handedness
(locally) to +ŝ at k0z = 1 and −ŝ at k0z = −1. The false color plot shows
the spatial distribution of the normalized Stokes parameter (S3) from −1 to
1 for the waveguide and illustrates the intrinsic handedness of the evanescent
waves. Furthermore, on comparison with the counter-propagating waveguide
mode, we see that the handedness is reversed. Right: Waveguide mode at
interface between glass with n1 = 4 and air with n2 = 1. The width of the
waveguide is 2k0d = 2. For waveguide modes travelling in the −x direc-
tion, the evanescent waves in region 2 lock the handedness (locally) to −ŝ at
k0z = 1 and +ŝ at k0z = −1. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5 The evolution of the polarization vector as it propagates in an optical fibre
with V = 1.5 and ∆ = 0.1. We display the electric field at a single point at
r = a in the m = +1 HE11 mode to demonstrate the transverse spin near
the core-cladding region. As we can see, the electric field rotates in the z-
plane as well as in the x-y plane, hence there is a spin component directed
around φ̂ (inset). Out of four possible degenerate solutions, only two are
allowed because of the decaying condition on evanescent waves outside the
core. Consequently, the HE11 mode of the optical fiber has spin-momentum
locking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Normalized HE11 polarization intensities (I/IE(0)) for an optical fibre of V =
1.5 and ∆ = 0.1. We see that the majority of field is concentrated in the IAM
angular momentum component but there is a significant component of spin
intensity (IS) in the φ̂ direction near the core-cladding interface at r = a. . . 72

2.7 Chiral emitter placed at ~r0 = ~0 and transverse emitter placed at ~r0 = ax̂ inside
the optical fibre. The intrinsic chirality of the HE11 mode opens possibilities
for spin-controlled quantum photonics. We emphasize that this intrinsic chi-
rality is universal and arises from the evanescent waves outside the core. . . 74

2.8 Left: All electromagnetic surface waves will show spin-momentum locking.
We depict here an SPP excitation between metal with ε1 = −2 and air with
ε2 = 1 propagating in the +x direction. The vector plot overlaid on the spa-
tial distribution of the Stokes parameter (S3) illustrates the inherent handed-
ness of the two evanescent waves and how they couple with counter rotating
spins. Right: SPP dispersion relation that also includes the handedness of
the evanescent spin (in the dielectric region). As the momentum κ increases,
the SPP spin approaches perfect circular polarization (SPP resonance). . . . 76
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3.1 Our work emphasizes the fundamental differences between 2+1D topological
materials for Maxwell-bosons and Dirac-fermions, which are characterized by
their bulk spin quantum numbers. In 2D, the quantization axis is along z
as all rotations occur in the x-y plane. Both (a) photonic and (b) electronic
topologies are connected to Ŝz quantization at certain high-symmetry k points
in the bulk material. The distinction lies in their rotational symmetries (R).
Photons are bosonic particles and respect spin-1 statistics R(2π) = +1, which
possess integer spin projectionsm = ±1, 0. Conversely, electrons are fermionic
particles and respect spin-1⁄2 statistics R(2π) = −1, which possess half-integer
spin projections m = ±1/2. This changes the interpretation of topological
invariants and the observable phenomena of different particles. . . . . . . . . 82

3.2 (a) Only transverse-magnetic (TM) waves propagate as charge is restricted
to the x-y plane (blue and red arrows denote the fields). This limits the
degrees of freedom of both the electromagnetic field and the induced response
of a material. Electromagnetic polarization and magnetization response in a
2D material is shown with the purple and yellow arrows. The electric and
magnetic displacement fields are the linear superposition of Di = Pi +Ei and
Bz = Mz +Hz. Our focus in this paper is gyrotropic media which correspond
to optical (dynamical) Hall conductivity. (b) One-point compactification of
the momentum space R2 ' S2 over which the topological quantum numbers
are defined. When the Hamiltonian is properly regularized, the planar k-
space is topologically equivalent to the bounded Riemann sphere. kp = 0
and kp = ∞ are the rotationally invariant (high-symmetry) points on the
sphere, passing through the z-axis. This procedure is necessary to ensure
Chern quantization in continuum topological field theories and fundamentally
requires nonlocal photonic media. . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Schematic of the exactly solvable topological model. In vacuum, Maxwell’s
equations can be written in the form H0(k) = k · S, which captures both
the spin-1 behavior and linear dispersion of the massless photon. The gy-
rotropic medium perturbs the linear dispersion and induces a bulk bandgap
near zero frequency. In this case, the perturbation is a nonlocal Hall conduc-
tivity σH(k) = σ0 − σ2(ka)2, which behaves identically to the effective mass
of the Dirac equation. If σH(k) = 0 passes through zero at some finite mo-
mentum, the medium is topological. The nontrivial phase C = 2 corresponds
to a gapless unidirectional photon at the boundary, dubbed the quantum gy-
roelectric effect (QGEE). We strongly emphasize that this model is validated
by direct comparison with the supersymmetric Dirac theory for continuum
fermions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
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3.4 (a) Topological phase diagram of the nonlocal Hall model σH(k) = σ0 −
σ2(ka)2. C = sgn[σ0] + sgn[σ2] corresponds to the Chern number of the
positive frequency band ω > 0. The Chern number of the negative frequency
band ω < 0 is exactly opposite −C. When σ0σ2 > 0, the photon is in a
nontrivial bosonic phase C = ±2, while σ0σ2 < 0 is a trivial phase C = 0. In
the continuum theory, trivial and nontrivial phases can only be distinguished
by incorporating nonlocality σ2 6= 0. (b) Continuum band diagram ω(k) of
the even parity C = 2 topological bosonic phase. The negative frequency
branch has a Chern number of −2; necessary for the total summation to
vanish 2 − 2 = 0. As an example, we have let σ0 = σ2a

2 = 1 and ε = 2.
The unidirectional edge state is spin-1 helically quantized and touches the
bulk bands precisely where the nonlocal Hall conductivity passes through
zero σH(k) = 0. At this point ka = (σ0/σ2)1/2, the edge state joins the
continuum of bulk bands. Notice that no edge solution exists for ky → −ky
and the photon is immune to backscattering. . . . . . . . . . . . . . . . . . . 100

3.5 (a) Topological edge state of the even parity C = 2 bosonic phase. The
photon is spin-1 helically quantized k · E = 0 and satisfies open boundary
conditions at the interface f(x = 0+) = 0. This ensures the edge state is
immune to boundary defects and can exist at any interface – even vacuum.
(b) Topological edge state of the C = 1 fermionic phase. Like the photon, the
electron is spin-1⁄2 helically quantized k̂ · ~σψ = ψ and satisfies open boundary
conditions ψ(x = 0+) = 0. (c) Normalized energy density u(x) = f †M̄f
of the unidirectional photon as a function of distance x, at a momentum of
ky = 0.5. As an example we have let σ0 = σ2a

2 = 1 and ε = 2. Notice the
fields are identically zero at x = 0 and the edge state exists at the boundary
of any interface. (d) Probability density ψ†ψ of the electronic edge state,
where we have let Λ0 = Λ2a

2 = 1 and v = 0.5 as an example. The probability
density is evaluated for a momentum of ky = 0.5. . . . . . . . . . . . . . . . 103

3.6 (a) Anomalous displacement current at the edge of the topological photonic
medium. (b) Real current density Jy(x) as a function of distance x, for a
momentum of ky = 0.5. We have let σ0 = σ2a

2 = 1 and ε = 2 as an example.
The displacement current is generated by the nonlocal Hall conductivity and
is highly metallic near the interface Jy(x = 0+) 6= 0. However, the total
current is conserved

´∞
0+ Jy(x)dx = 0 which is clear from the positive (red) and

negative (blue) charge density. Since the net charge is zero, this phenomenon
can be interpreted as a propagating dipole bound to the edge of the material
– with an intrinsic dipole moment px =

´∞
0+ xρ(x)dx. . . . . . . . . . . . . . . 104
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4.1 (a) Linear dispersion (light cone) of the 3D massless photon and electron

ω± = E± = ±k. At the origin of the momentum space ~k = 0 sits a magnetic
monopole with quantized charge. This singularity is often called a Weyl point
and is quantized to the spin of the particle Qs = s. Integer and half-integer
spin quantization is connected to bosonic and fermionic statistics respectively.
(b) Dirac monopoles (Berry curvature) ~Fs = ~∇k × ~As of the massless electron
Q1/2 = 1/2 and photon Q1 = 1 in momentum space. The monopole charge
acts as a source for the magnetic field ~∇k · ~Fs = 4πQsδ

3(~k) and arises due
to the discontinuous behavior in the spin eigenstates. Notice that the flux
through any surface enclosing the monopole is necessarily quantized Qs =
(4π)−1‚ ~Fs · d2~k. This monopole is accompanied by a string of singularities
in the underlying gauge potential ~As. Any closed path around the equator
of the string produces a quantized Berry phase γs =

¸
~As · d~k = 2πQs. The

accumulated phase in ~k-space is fundamentally tied to the spin of the particle
Rs(2π) = exp(iγs) = (−1)2s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Spin expectation value M̂z(k) as a function of k. (a) N = 0 skyrmion with no
band inversion Λ0Λ2 < 0. The spin returns to initial state M̂z(0) = M̂z(∞)
and the total winding is trivial. (b) N = 1 skyrmion with band inversion
Λ0Λ2 > 0. In this case, the spin flips direction M̂z(0) 6= M̂z(∞) and the
total winding is nontrivial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Left: spin texture M̂(k) as a function of k for trivial and nontrivial skyrmions.
(a) N = 0 skyrmion with no band inversion Λ0Λ2 < 0. As an example, we
have let v = 0.5, Λ0 = 4 and Λ2 = −2. Since the spin returns to initial
state within the dispersion M̂z(0) = M̂z(∞), the total winding is trivial. (b)
N = 1 skyrmion with band inversion Λ0Λ2 > 0. To demonstrate, we have let
v = 0.5, Λ0 = 4 and Λ2 = 2. In this case, the spin flips direction within the
dispersion M̂z(0) 6= M̂z(∞) and the total winding is nontrivial. Right: spin
texture M̂ of the skyrmion projected on the unit sphere. As the momentum
varies over all possible values, M̂(k) can perform either a (c) retracted or (d)
full evolution over the unit sphere. This corresponds to a total solid angle of
Ω = 0 or 4π respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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4.4 Dispersion relation of the bulk and gapless edge bands (black lines) of the
topologically massive 2D particles. (a) The conventional fermionic Chern
insulator is characterized by a spin-1⁄2 skyrmion (Dirac equation). (b) The
bosonic Chern insulator is described by a spin-1 skyrmion (Maxwell’s equa-
tions). The bulk Chern number Cs = 2QsN depends on both the magnetic
charge (spin) Qs = s and the skyrmion number N ∈ Z. This corresponds
to integer phases for electrons C1/2 ∈ Z but even integer phases for photons
C1 ∈ 2Z. At low energy, a band gap is formed at E = ω = 0 by a spatially
dispersive effective mass Λ(k) = Λ0 − Λ2k

2. (a) For the 2D electron, this is
simply the Dirac mass. (b) For the 2D photon, this mass is equivalent to a
nonlocal Hall conductivity εΛ(k) = σH(k). In the presence of band inversion
Λ0Λ2 > 0, there is a point where the effective mass changes sign Λ(k) = 0,
precisely at k = (Λ0/Λ2)1/2. The massless helically quantized edge states
touch the bulk bands at this point. This is known as the quantum anomalous
Hall effect (QAHE) for electrons and the quantum gyroelectric effect (QGEE)
for photons. The flat longitudinal band ω0 = 0 is shown for completeness and
represents the electrostatic limit (irrotational fields). However, this band can
be removed from the spectrum by requiring that all static charges vanish. . . 130

5.1 Brillouin zone of each cyclic point group CN . (a), (b), (c), (d), and (e)
correspond to N = 2, 3, 4, 6, and ∞ respectively. Due to rotational symmetry,
the total BZ is equivalent to N copies of the IBZ, which is represented by the
blue quadrant. For continuous symmetry N = ∞, this is simply a line. The
yellow circles label HSPs Rkp = kp where the crystal Hamiltonian is invariant
under a certain rotation R̂. At these specific momenta, a Bloch photonic wave
function Rf̃kp(R−1r) = η(kp)f̃kp(r) is an eigenstate of an N -fold rotation
η(kp) = ηN(kp) = [i2πmN(kp)/N ] such that the photon possesses quantized
integer eigenvalues mN(kp) ∈ ZN . Since mN are discrete quantum numbers,
their values cannot vary continuously if the crystal symmetry is preserved –
they can only be changed at a topological phase transition. . . . . . . . . . . 150

5.2 The collection of spin-1 (bosonic) charges for the C4 point group. (a) Fourfold
rotations (R4)4 = +1; there are four unique eigenvalues η4 = exp [i2πm4/4]
corresponding to the roots of unity (η4)4 = +1. These represent the modulo
4 integers m4 ∈ Z4. Note that m4 = 3 = −1 can also be interpreted as
a left-handed eigenstate. (b) Bosonic inversion (R2)2 = +1; there are two
unique eigenvalues η2 = exp [i2πm2/2] corresponding to the roots of unity
(η2)2 = +1. These represent the modulo 2 integers m2 ∈ Z2. . . . . . . . . . 154
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5.3 The collection of spin-1⁄2 (fermionic) charges for the C4 point group. (a) Four-
fold rotations (R4)4 = −1; there are four unique eigenvalues ζ4 = exp [i2πm4/4]
corresponding to the roots of negative unity (ζ4)4 = −1. These represent the
modulo 4 half-integers m4 ∈ Z4 + 1/2. Note that m4 = 7/2 = −1/2 can be inter-
preted as a spin-down fermion while m4 = 3/2 = 1/2+1 and m4 = 5/2 = −1/2+3
constitute a fermion plus a boson. (b) Fermionic inversion (R2)2 = −1; there
are two unique eigenvalues ζ2 = exp [i2πm2/2] corresponding to the roots
of negative unity (ζ2)2 = −1. These represent the modulo 2 half-integers
m2 ∈ Z2 + 1/2. Note that m2 = 3/2 = −1/2 can also be interpreted as a
spin-down fermion under modulo 2. . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 Examples of SPT bosonic phases in a crystal with C4 symmetry. These phases
are characterized by their SPT invariant ν = m4(Γ)+m4(M)+2m2(Y) mod 4
which determines the electromagnetic Chern number up to a multiple of 4.
Here, m4 ∈ Z4 and m2 ∈ Z2 are modulo integers. (a), (b), (c) and (d)
correspond to SPT bosonic phases of ν = 3, 2, 1 and 0 respectively. For
bosons, we simply add up all the integer charges within the irreducible Bril-
louin zone. For instance, the ν = 2 phase has eigenvalues of m4(Γ) = 1 at
the center and m4(M) = 3 = −1 at the vertices, with inversion eigenvalues of
m2(Y) = m2(X) = 1 at the edge centers: ν = 1 + 3 + 2 × 1 = 2. . . . . . . . 156

5.5 Examples of SPT fermionic phases in a crystal with C4 symmetry. These
phases are characterized by their SPT invariant ν = m4(Γ) + m4(M) +
2m2(Y) + 2 mod 4 which determines the electronic Chern number up to a
multiple of 4. In this case, m4 ∈ Z4 + 1/2 and m2 ∈ Z2 + 1/2 are modulo
half -integers. (a), (b), (c) and (d) correspond to SPT fermionic phases of
ν = 3, 2, 1 and 0 respectively. The problem is more complicated for fermions
because the charges are fractional and we must also account for the antisym-
metric phases of a spinor wave function. As an example, the ν = 2 phase
has eigenvalues of m4(Γ) = m4(M) = 1/2 at the center and vertices, with
inversion eigenvalues of m2(Y) = m2(X) = 3/2 = −1/2 at the edge centers:
ν = 1/2 + 1/2 + 2 × 3/2 + 2 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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6.1 (a), (b) and (c) are schematics of the quantum gyroelectric effect (QGEE),
photonic quantum Hall (PQH) and photonic Jackiw-Rebbi (PJR) edge states
respectively. The characteristic spatial profile of Ex(x) is displayed for each
edge state along with the corresponding boundary conditions. (a) The QGEE
is a topologically-protected unidrectional (chiral) edge state and exists at the
boundary of any medium – even vacuum. The QGEE is fundamentally tied
to nonlocal (spatially dispersive) gyrotropy g(ω, k) and can never be realized
in a purely local model. (b) The PQH edge state is the photonic analogue
of the quantum Hall effect and hosts a high-frequency edge current Iy. The
presence of the edge current Iy 6= 0 creates a discontinuity in the fields across
the boundary, Ex(0−) 6= Ex(0+) and Hz(0−) 6= Hz(0+). (c) The PJR edge
state is the photonic equivalent of the inverted mass problem arising in the
Dirac equation. This state possesses no edge current Iy = 0 and is completely
transverse electro-magnetic (TEM) as the longitudinal field vanishes entirely
Ey(x) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 The interface of two optical isomers with positive +g and negative −g gy-
rotropy. In the Drude model, this corresponds to reversed magnetic biasing
±B0. The interface hosts two edge states that can be decomposed into two
chiral (unidirectional) subsystems with perfect magnetic conductor (PMC)
and perfect electric conductor (PEC) boundary conditions. PMC and PEC
are mirror symmetric (+) and mirror antiysmmetric (−) respectively, des-
ignating photonic quantum Hall (PQH) and photonic Jackiw-Rebbi (PJR)
states. The particular mirror symmetry (±) dictates how the electromagnetic
field transforms into the virtual photon Pxf(−x) = ±f(x). . . . . . . . . . . 181

6.3 Dispersion relation of the local Drude model under an applied magnetic field
with ωc/ωp = 1/2 as an example. Black lines indicate bulk bands while cyan
and magnetic lines represent unidirectional photonic quantum Hall (PQH)
and photonic Jackiw-Rebbi (PJR) edge states respectively. There are a total
of 3 positive energy bulk bands. Two correspond to high and low frequency
TM modes ω = ω± while the third represents pure cyclotron orbits ω = ωc.
The PQH states emerge at a PMC boundary while the PJR states require a
PEC boundary. Unlike conventional SPPs, the PQH and PJR states asymp-
totically approach the bulk bands in the ky → ∞ limit. The upper branch
approaches the free photon dispersion ω↑ → ky while the lower branch ap-
proaches pure cyclotron orbits ω↓ → ωc. The frequency range where no edge
state exists ωc < ω < ω0, corresponds to the plasmonic region ε < 0. . . . . . 185
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7.1 (a) Summary of the four quantum Hall regimes. Hall quantization and
plateauing behavior has been demonstrated in both static and dynamical
regimes. However, topological electromagnetic phases Cem 6= 0 are only real-
ized in the dynamical + viscous (nonlocal) regimes. (b) Overview of viscous
Maxwell-Chern-Simons theory. The bulk topology is governed by a spin-1
photonic skyrmion in momentum space which arises from viscous Hall con-
ductivity σxy(k) = λ(κ−ξk2). The arrows represent the direction of the effec-
tive spin d̂ of the photon. The boundary of the nontrivial phase κξ > 0 hosts
topologically-protected chiral photons which are linearly dispersing (massless). 190

7.2 Bulk and edge dispersion of (a) continuum and (b) lattice models of viscous
Maxwell-Chern-Simons theory. Cyan and magnetic lines are positive and
negative energy topological bands while the black line is the chiral edge state.
(a) Parameters are κ = ξ = 1 in the continuum theory a → 0. (b) Parameters
are κa = ξ/a = 1 in the lattice theory a 6= 0. . . . . . . . . . . . . . . . . . . 199

7.3 Topological phase diagrams for (a) continuum and (b) lattice models of vis-
cous Maxwell-Chern-Simons theory. Cem = ±2, 0 is the photonic Chern num-
ber of the positive energy band ω > 0 for different parameters. κ and ξ are
the Chern-Simons and viscous Chern-Simons coupling respectively. a is the
lattice constant of a square grid. κa2 = 0, 4ξ, 8ξ denote the phase transition
lines in the lattice model. These correspond to points of accidental degener-
acy, where the band gap closes at k = Γ, X/Y,M respectively. Importantly,
conventional MCS theory ξ = 0 always corresponds to a topologically trivial
phase Cem = 0 in the lattice regularization. . . . . . . . . . . . . . . . . . . . 201

7.4 (a) Unit cell of a square lattice with the primitive Wigner-Seitz cell shown in
yellow. (b), (c) and (d) show the Brillouin zone of the three phases Cem =
±2, 0 in the lattice regularized theory. κ > 0 and ξ > 0 are chosen positive
such that (b) and (c) label type I and type II photonic skyrmions respectively.
(d) is the photonic ferromagnet. The eigenvalue at high-symmetry points
denotes the sign of the Maxwell-Chern-Simons mass jm = sgn(Λ) = ±1, which
determines the spin-1 representation – if the field is right (+1) or left (−1)
circularly polarized. The two nontrivial phases possess skyrmion numbers of
N = ±1 corresponding to a spin-1 Chern number of Cem = 2N = ±2. . . . . 202

7.5 The two boundary conditions for the viscous Hall fluid that minimize the
surface variation δSs = 0 at x = 0. (a) Schematic of the truncated atomic
lattice at x = 0. (b) and (c) plot the normalized energy density u = |~F |2 =
|E|2 + |Bz|2 of the chiral photonic edge state. The parameters are κa = 0.1,
ξ/a = 0.2 and kya = 0.1 as a demonstration. (b) The Dirichlet (open)
boundary condition ~F (0) = 0 has zero measure at x = 0. (c) The natural
boundary condition vx ~F (0) = 0 is more localized at the surface and resembles
an evanescent wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
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ABSTRACT

Over the last decade, Dirac matter has become one of the most prominent fields of

research in contemporary material science due to the incredibly rich physics of the Dirac

equation. Notable examples are the Dirac cones in graphene, Weyl points in TaAs, and

gapless edge states in Bi2Te3. These unique phases of matter are intimately related to

the topological structure of Dirac fermions. However, it remains an open question if the

topological structure of Maxwell’s equations predicts yet new phases of matter. This thesis

will conclusively answer this question.

Topological electrodynamics is concerned with the geometry of electromagnetic waves

in condensed matter. At the microscopic level, photons couple to the dipole-carrying exci-

tations of a material, such as plasmons and excitons, which hybridize to form new normal

modes of the system. The interaction between these bosonic oscillators is the origin of tem-

poral and spatial dispersion in optical response functions like the conductivity tensor. Our

main achievement is motivating a global interpretation of these response functions, over all

frequencies and wavevectors. This theory led us to the conclusion that there are topological

invariants associated with the conductivity tensor itself. In this thesis, we show exactly

how to calculate these electromagnetic invariants, in both continuum and lattice theories,

to identify unique Maxwellian phases of matter. Magnetohydrodynamic electron fluids in

strongly-correlated 2D materials like graphene are the first candidates of this new class of

topological phase. The fundamental physical mechanism that gives rise to a topological elec-

tromagnetic classification is Hall viscosity ηH which adds a nonlocal component to the Hall

conductivity. To study the topological electrodynamics, we propose viscous Maxwell-Chern-

Simons theory – a Lagrangian framework that naturally generates the equations of motion,

nonlocal Hall response and the boundary conditions. We demonstrate that nonlocal Hall con-

ductivity is the spin-1 photonic equivalent of dispersive mass and induces precession of bulk

photonic skyrmions. Nontrivial photonic skyrmions are associated with Dirac monopoles in

the bulk momentum space and a singular Berry gauge. A singular gauge occurs when the

photonic mass changes sign. Remarkably, the boundary of this medium supports gapless

chiral edge states that are spin-1 helically-quantized and satisfy open boundary conditions.
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1. INTRODUCTION

Note: For clarity, all 3D vectors will be denoted with a vector arrow ~A = (Ax, Ay, Az),

while we reserve boldface for 2D vectors A = (Ax, Ay).

Topology is, generically, the study of quantities that are conserved under continuous

deformations. What these particular quantities are and what constitutes a continuous defor-

mation depends on the physical system in question but they all have one thing in common:

there is a topological property that is invariant under these deformations and it usually

takes the form of a discrete number. In physics this is known as a topological invariant or

topological quantum number.

A customary application of topology is to consider the donut. If we do not tear the donut

or glue parts of the donut together, the number of holes cannot change. There is only one.

However, we can “continuously deform” the donut by stretching, bending, twisting all we

like until it looks more like a teacup. Topologically, the donut and the teacup are identical

because they possess the same number of holes. The precise mathematical formulation of

this statement is known as the Gauss-Bonnet theorem (GBT) [1 ]. The GBT was one of the

original topological theorems derived in differential geometry and is remarkably elegant,

4π(1 − g) =
ˆ
M

KdA. (1.1)

K is the Gaussian curvature of the surface manifold M and dA is the differential area of

this manifold over which the integral is performed. The genus g is a topological invariant

equal to the number of holes of the object [Fig. 1.1 ]. Calculating the integral produces

Figure 1.1. Genus (number of holes) of various geometric objects.
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g = 1 for both the donut and the teacup. Like many topological theorems, the GBT links

a local quantity K, with a global quantity g, through an integral equation. No matter how

much the curvature is changed at any point on the surface, it must always integrate to the

same quantity. This is a very powerful and somewhat surprising statement. It is even more

surprising that such a quantity can be found in ordinary linear response measurements like

the Hall conductivity.

1.1 Quantum Hall effect

The Hall effect was discovered by Edwin Hall in 1879 [2 ]. Classically, the Hall effect

arises from the Lorentz force acting on an electrical current in the presence of a magnetic

field. The magnetic field generates a force perpendicular to the electron’s motion which

causes the trajectory to bend. Since positive and negative charge carriers bend in opposing

directions, there is a build up of positive and negative charge at opposite walls of the sample.

This generates a potential known as the Hall voltage VH . The proportionality of the Hall

voltage to the transverse current is the Hall resistance. Astonishingly, the Hall resistivity

ρxy = B/n0e, or the Hall conductivity σxy = ρ−1
xy , is independent of material dimensions and

is therefore a very useful means to determine the electron density n0 or the magnetic field

B. The Hall coefficient RH = 1/n0e is an intrinsic material quantity and gives the slope of

the Hall resistivity ρxy vs. magnetic field B.

The classical Hall effect remains valid for relatively weak magnetic fields and was a

standard laboratory tool for decades. However, in 1980, one hundred years later, Klaus

von Klitzing discovered that qualitatively different behavior occurs in strong magnetic fields

and very low temperatures [3 ]. The Hall conductivity plateaus at integer values of the

conductance quantum,

σxy = C
e2

h
, C ∈ Z. (1.2)

h is the Planck constant and C is an integer. The quantization of σxy is incredibly robust

and has been measured to better than one part in a billion even in relatively dirty samples

[Fig. 1.2 ]. This is the quantum Hall effect (QHE) and it has become an electrical resistance

standard due to its precision measurement of the conductance quantum e2/h and the fine
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Figure 1.2. Hall resistivity ρxy as a function of the applied magnetic field
B. In the classical regime B / 1 T, the slope is equal to the Hall coefficient
RH = 1/n0e. In the quantum regime, the Hall resistivity plateaus at discrete
values of the resistance quantum ρxy = h/Ce2, where C ∈ Z is an integer.
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structure constant [4 ]. Although there are a few equivalent explanations of the QHE, such

as gauge invariance [5 ] and Landau quantization [6 ], the one we are most interested in is the

topological interpretation.

1.1.1 Chern number (TKNN invariant)

Thouless, Kohomoto, Nightingale and den Nijs (TKNN) showed that the Hall conduc-

tivity is proportional to a topological invariant [7 ]. Using the Kubo formula and some clever

mathematical manipulations, one can show that C is in fact the Chern number, also known

as the TKNN invariant,

2πC =
∑
α

ˆ
T2
Fαkd

2k, Fαk = −i [〈∂xuαk|∂yuαk〉 − 〈∂yuαk|∂xuαk〉] . (1.3)

|unk〉 = e−ik·r|ψnk〉 are the cell-periodic wave functions and α runs over all the filled bands.

The Fermi energy µ lies in the band gap such that all bands Enk < µ are completely filled.

The derivatives ∂i = ∂/∂ki are with respect to the momentum coordinate. Equation (1.3 )

has an unmistakably similar form as the GBT theorem [Eq. (1.1 )] with a few minor caveats.

In this case, Fn is the Berry curvature of a band n and the integral is performed over the

momentum space manifold k ∈ T2. In two spatial dimensions, the Brillouin zone (BZ) is

equivalent to a torus due to the periodic boundary conditions. It must be noted that F is

not the same as the Gaussian curvature of the manifold – it is slightly more abstract. The

Berry curvature F is associated with the phase (U(1) gauge) of the wave function.

1.1.2 Berry phase

The astute reader may have noticed that the Berry curvature F can be expressed as the

curl of a vector potential A, known as the Berry connection,

Ak = −i〈uk|∂kuk〉, Fk = ∂xAy − ∂yAx. (1.4)

There is a clear analogy with electromagnetism as F takes the same form as the out-of-plane

magnetic field B, but in momentum space. As a consequence of Dirac quantization [8 ], the
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Chern number C therefore counts the number of “magnetic monopoles” in the solid-state

band structure. Although magnetic monopoles have never been found in real space, there is

conclusive evidence that they can exist in momentum space. This monopole argument will

be made more precise in Ch. 4 , as well as the connection to topological electrodynamics,

but it suffices to prove that C must be quantized due to the single-valuedness of the wave

function.

The Berry connection A is not gauge invariant and is therefore not observable because

any arbitrary choice in U(1) gauge takes us to,

|uk〉 → eiφk |uk〉, Ak → Ak + ∂kφk. (1.5)

However, the line integral around any closed path P is gauge invariant and determines the

Berry phase eiγ accumulated from this cyclic evolution [9 ],

γ(P ) =
˛
P

Ak · dk =
ˆ
M

Fkd
2k. (1.6)

The Berry phase is a geometric phase because it only depends on the path traversed in

momentum space, not the rate the path is traversed. Utilizing Stoke’s theorem, the Berry

phase is equivalent to the flux of Berry curvature F through the surface manifold M that is

bounded by P . Now we choose a path P that encloses the entire BZ such that the surface

is the torus M = T2. Due to periodic boundary conditions, the evolution of this path is

equivalent to translating to another BZ |ψk+g〉 = |ψk〉. Hence, the Berry phase around this

path must come in integer multiples of 2π for the wave function to be single-valued,

γ(P ) =
˛
P

Ak · dk =
ˆ
T2
Fkd

2k = 2πC, (1.7)

where C ∈ Z is the Chern number (TKNN invariant). The topological quantization of C

is incredibly robust as it does not depend on any special properties or configurations of

the system. It is fairly straightforward to show that all perturbations to the Hamiltonian

(aka. continuous deformations) leave the Chern number in Eq. (1.7 ) invariant [10 ]. Even in

relativity dirty samples, with moderate disorder, the Hall conductivity remains quantized at
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Figure 1.3. Proof of Chern quantization for a rectangular lattice. The line
integral around the path P encloses the entire Brillouin zone (BZ), which is
equal to the total Berry flux through the torus T2. The Berry phase around
this path must come in 2π multiples of the Chern number γ(P ) = 2πC.

the plateaus. A Landau quantization argument could never explain this behavior because

it assumes there is no atomic potential, such that the energy spectrum is flat and massively

degenerate. This is the power of topology and why it has pervaded every realm of condensed

matter physics.

1.2 Quantum anomalous Hall effect

Historically, the Chern number C was associated with different quantum Hall states in

the presence of an external magnetic field B. Increasing the strength of the magnetic field

takes the electron through successive topological phase transitions which are exemplified in

the integer plateaus of the Hall conductivity [Fig. 1.2 ]. However, not long after the discovery

of the QHE, a few brilliant physicists realized that topology is not predicated on the existence

of a magnetic field. Topology is an intrinsic property of matter itself. Indeed, the definition

of the Chern number [Eq. (1.7 )] makes no mention of a magnetic field and is still a relevant

quantity in its absence B = 0. Haldane would be the first to demonstrate these unique

topological states of matter with nonzero Chern number C 6= 0 [11 ]. Such exotic materials

are aptly named Chern insulators.
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An intriguing repercussion of the Chern insulator is that the Hall conductivity is quan-

tized in units of the conductance quantum σxy = Ce2/h with no external magnetic field.

Charge transport is permitted on the boundary of the material but forbidden in the bulk.

A finite Hall voltage VH and dissipationless edge currents are generated naturally by the

material, usually from a combination of magnetic polarization and spin-orbit coupling [12 ].

This phenomenon is known as the quantum anomalous Hall effect (QAHE) because it was

originally associated with the parity anomaly in condensed matter. We will analyze the

Haldane model extensively in Sec. 1.2.1 to understand the fundamental physics of a Chern

insulator and the origin of nontrivial topology. This procedure will provide us with valuable

insight when we translate these ideas to electromagnetism.

1.2.1 Chern insulator: the Haldane model

The question asked by Haldane in 1988 was: can the Chern number be nonzero C 6= 0

if there is no magnetic field B = 0? The answer is yes – at least no net magnetic field. His

proposal would be the first realization of a new phase of matter, the Chern insulator. That

is, an isolated 2D solid-state system with a nontrivial topological invariant and a quantized

Hall conductivity. Although it would take nearly thirty years to achieve the Haldane model

experimentally [13 ], it revolutionized our understanding of matter. Topological phases cannot

be explained by Landau theory as there is no symmetry breaking at a phase transition. A

topological phase is a type of quantum phase, which are states of matter at absolute zero.

Contrary to classical thermodynamic phase transitions, quantum phase transitions are only

accessible by varying a physical parameter at zero temperature. We will see exactly how this

manifests in the Haldane model.

The idea was fairly simple but ingenious. We start with graphene which is known to host

Dirac fermions [14 ]. Graphene is comprised of a single layer of carbon atoms arranged in a

honeycomb lattice. The honeycomb lattice can be decomposed into a superposition of two

triangular sublattices A and B, which is illustrated in Fig. 1.4 . In the tight-binding model, we

assume the electrons are localized to the carbon atoms but can can hop between neighboring
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Figure 1.4. The Haldane model of graphene. The honeycomb lattice has two
sublattices denoted A and B. EA and EB are the on site energies at A and
B respectively. t1 and t2 are the nearest and next-nearest-neighbor (NNN)
hopping amplitudes. The NNN hopping breaks time-reversal symmetry and
therefore has a sense of chirality. Clockwise and counterclockwise hopping are
not equivalent.
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sites through overlapping pz orbitals. Therefore, we can construct a tight-binding basis in

the 2-atom unit cell,

uk =

uA
uB

 , Hkuk = Ekuk. (1.8)

uA and uB are the amplitudes on sites A and B respectively, and uk satisfies the Bloch

equation. For nearest-neighbor hopping, the Bloch Hamiltonian can be expressed as,

Hk =

 0 h∗
k

hk 0

 , hk = t1
3∑
i=1

eik·ai , (1.9)

where t1 is the hopping amplitude and ai are the vectors connecting nearest-neighbors.

Utilizing a set of Pauli matrices ~σ = (σx, σy, σz), the Hamiltonian can be decomposed as,

Hk = t1
∑
i

(σx cos k · ai + σy sin k · ai) , Ek = ±|hk|. (1.10)

We obtain the famous two-band dispersion of graphene which is plotted in Fig. 1.5 . The

honeycomb lattice possesses three-fold rotational symmetry which has high-symmetry points

(HSPs) at ΓΓΓ = (0, 0) and K± = (2π/a)(1,±1/
√

3)/3. Graphene specifically has so-called

Dirac points where the two bands intersect EK± = 0. Performing a small momentum expan-

sion around these points we obtain 2D massless Dirac fermions (Weyl fermions),

H(K± + q) = ~vF (qxσx ± qyσy). (1.11)

vF = t1a/~ is the Fermi velocity and a = |ai| is the length of the nearest-neighbor vector.

1.2.2 Discrete symmetries

The degeneracy at the Dirac points is protected by the combination of two symmetries:

inversion and time-reversal symmetry. Since the carbon atoms at sites A and B are identical,

an exchange of these two sites is an inversion symmetry,

σxH(−k)σx = H(k). (1.12)
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Figure 1.5. Dispersion Ek of the Haldane model of graphene for various mass
parameters M and t2. (a) Dirac points occur at the HSPs K± in the absence
of mass M = t2 = 0. (b) A gap is opened when inversion symmetry is broken
M 6= 0.
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Time-reversal symmetry is anti-unitary as it involves complex conjugation. It implies the

reverse process is identical,

H∗(−k) = H(k). (1.13)

Graphene also has an approximate sublattice symmetry,

σzH(k)σz = −H(k). (1.14)

To realize topological phases in graphene, we need to break both time-reversal [Eq. (1.13 )]

and sublattice [Eq. (1.14 )] symmetry [15 ]. Technically, inversion symmetry does not need to

be broken but it will be useful in our theoretical exercise.

1.2.3 Breaking symmetries

Topological phases of matter are generally considered insulators and therefore the exis-

tence of a band gap is essential. The easiest way to open a band gap is to break inversion

symmetry which can be done by making A and B lattice sites different atoms. The difference

in the onsite energies defines an effective mass EA −EB = 2M . In the tight-binding picture,

the Hamiltonian becomes,

Hk = t1
∑
i

(σx cos k · ai + σy sin k · ai) +Mσz, Ek = ±
√

|hk|2 +M2. (1.15)

The effective mass M creates a band gap and we assume the Fermi energy µ lies within this

band gap, such that the lowest energy state is completely filled. However, the system is still

topologically trivial because time-reversal symmetry is still present. The Berry curvature

is odd F (−k) = −F (k) which implies the integral vanishes 2πC =
´
F (k)d2k = 0. To

understand why this is the case in the Haldane model, we expand around the HSPs K± once

again,

H(K± + q) = ~vF (qxσx ± qyσy) +Mσz. (1.16)
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The 2D Dirac fermions have gained mass and therefore the spectrum is gapped. However, the

masses at K± are identical due to time-reversal symmetry MK+ = MK− = M . Calculating

the Chern number of the lower energy band, we find that,

C = 1
2 [sgn(MK+) − sgn(MK−)]. (1.17)

Clearly the phase is trivial C = 0 when sgn(MK+) = sgn(MK−). Haldane surmised that if

the signs of the mass are different at the two HSPs, it is possible to achieve nontrivial C 6= 0

topological phases.

The final and most important step was to consider imaginary next-nearest-neighbor

(NNN) hopping, which can be thought of as a staggered magnetic flux arising from some

form of magnetic ordering. This breaks time-reversal symmetry because clockwise and coun-

terclockwise hopping are not equivalent (it2)∗ 6= it2. We obtain the complete Haldane model

of graphene,

Hk = t1
∑
i

(σx cos k · ai + σy sin k · ai) +Mσz + 2t2σz
∑
i

sin k · bi. (1.18)

bi are the NNN vectors. With the time-reversal breaking hopping t2 6= 0, it is now possible

to have different signs of the mass at the two HSPs,

MK± = M ± 3
√

3t2. (1.19)

Indeed, there are regimes where sgn(MK+) 6= sgn(MK−) and the Chern number is nonzero

C 6= 0. These topological regimes are materialized when |M | < 3
√

3|t2|. The truly remark-

able consequence is that the Hall conductivity is quantized σxy = Ce2/h in the absence of

a magnetic field. Although the material is insulating in the bulk, there is a dissipationless

chiral current on the edge. Interestingly, the topological phase transitions occur at points of

accidental degeneracy (Dirac points) where the bands intersect one another. Here, the Berry

curvature is singular and indicates a discontinuous deformation of the wave function. For

the Haldane model, these Dirac points can reappear whenever a mass passes through zero
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Figure 1.6. Topological phase diagram for the Haldane model of graphene
at zero temperature. The plot is of the Chern number C for various mass
parameters M and t2. The magenta and cyan lines denote the phase transition
lines where the Chern number changes discontinuously. These topological
phase transitions at Dirac points (accidental degeneracies) where the band
gap closes.

MK± = 0. The topological phase diagram of the Haldane model Chern insulator is shown in

Fig. 1.6 .

1.3 Topological electrodynamics

Since the dawn of the Chern insulator, a plethora of topological phases in condensed

matter have been proposed [16 ]. Most notably, it spawned the field of topological insulators

[17 ] which are the time-reversal symmetric counterparts to the Chern insulator. Topological

insulators are a fermionic phase and have become one of the most active research areas in

condensed matter physics because they exist in both 2D and 3D. There is expected to be

many naturally occurring topological insulators which has made them incredibly enticing for

device applications. Nevertheless, all known topological phases of matter have focused on

the fermionic states – the topology of the electronic wave function. The main goal of this

thesis is to motivate a topological interpretation of the electromagnetic field and consider

the bosonic states of matter.

41



The principal idea behind topological electrodynamics is to analyze the electromagnetic

fields through the lens of topology, the same way we analyze the electron wave function. We

want to systematically dissect the properties in electromagnetism that are conserved under

continuous deformations. Generally, these constitute the topological quantities of the electric
~E and magnetic ~H fields, but also the polarization ~P and magnetization ~M densities. In

the photonic crystal and metamaterials literature, this area of research is called topological

photonics [18 ] as it mostly concerns free photons. Here, the densities ~P and ~M are strictly

linear functions of the fields ~E and ~H. In condensed matter systems we are also interested

in dipole-carrying excitations like plasmons, excitons, magnons and phonons as they can

couple strongly to the photon to form quasiparticles (polaritons). Here, the densities ~P and
~M are also functions of the temporal and spatial derivatives of ~E and ~H. Polaritons become

the new normal modes of a material and these electromagnetic states can possess nontrivial

topology – this is the main underpinning of topological electromagnetic phases of matter.

For conciseness, topological electrodynamics is the umbrella that refers to all topological

phenomena in electromagnetism, whether it be in photonic crystals or condensed matter. A

comparison is provided in Fig. 1.7 .

By the advent of topological electrodynamics, the condensed matter community had

mapped out all single-particle topological field theories in every dimension and symmetry

class. This is known as the ten-fold way as there are generically ten symmetry classes that

make up all possible Hamiltonians [15 ]. The symmetry classes are related to the species of

particle, fermion or boson, in the presence or absence of some discrete symmetries. Since

electromagnetism is a real-valued vector (bosonic) field theory it technically belongs to sym-

metry class D. As a result, an electromagnetic topological invariant is an integer Z and

only exists in 2D when time-reversal symmetry is broken. A bosonic counterpart to the

topological insulator does not exist. This significantly narrows the number of topological

electromagnetic materials at our disposal but fortunately 2D materials like graphene are of

considerable interest. Note that the electromagnetic invariant is analogous to the Chern

number, but is a measure of the Berry phase of the photon/polariton field, not the electron

wave function.
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1.3.1 Topological photonics

Coincidentally, Haldane also pioneered topological photonics and is attributed with the

first conceptual propositions for both electronic and photonic Chern insulators [19 ], [20 ]. A

photonic Chern insulator possesses a nontrivial photonic Chern number, which is calculated

from the Berry phase of the electric ~E and magnetic ~H fields,

Ak = −i〈 ~Dk|∂k~Ek〉 − i〈 ~Bk|∂k ~Hk〉, Fk = ∂xAy − ∂yAx. (1.20)

Note that Eq. (1.20 ) only holds in a non-interacting free-field theory. The Berry phase

in an interacting theory is significantly more complicated. As we know from the TKNN

invariant [Eq. (1.3 )], a closed momentum manifold M is essential to guarantee Chern number

quantization,

2πC =
ˆ
M

Fkd
2k, C ∈ Z. (1.21)

Raghu and Haldane utilized a gyrotropic photonic crystal to achieve their nontrivial topology

which places photons on the torus M = T2. The proof of Chern quantization in Eq. (1.7 )

applies equally well for photons and is a consequence of the single-valuedness of the electro-

magnetic field.

Photonic crystals are macroscopically engineered lattices that facilitate unique control

over light propagation [21 ]. Dielectric scatterers and resonators are arranged in a periodic

structure to form a lattice where electromagnetic waves can interfere with themselves. Since

the lattice is designed to match the wavelength of a free photon, the normal modes of the

system generate a photonic band structure. This band structure can possess spectral gaps

that forbid photon propagation just like insulators forbid electron propagation. Note though,

the operating regime of a photonic crystal is usually far detuned from any dipolar oscillations

of the constituent materials. Thus, the photon can be treated as a non-interacting free-field

theory [22 ]. This essentially means there is no temporal or spatial dispersion – the materials

respond instantaneously and point-like.

The procedure to create a topological photonic band structure was similar to Haldane’s

original proposal in graphene. His photonic crystal was designed using time-reversal break-
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ing magneto-optic media, also known as Faraday-effect or gyrotropic media, in a hexagon

formation. Breaking time-reversal and inversion symmetry creates a spectral gap at the

Dirac points due to the generation of an effective mass. For certain parameters, the Dirac

Hamiltonian acquires a mass that changes sign at different HSPs and is therefore topolog-

ically nontrivial. Although the photonic Chern number is nonzero, there is no quantized

observable like the Hall conductivity. The primary feature of a topological photonic system

is chiral edge states at the boundary that span the entire photonic band gap.

Shortly after the theoretical proposal of a topological photonic crystal, a similar platform

was demonstrated experimentally by Joannopoulos and Soljacic [23 ]. Their microwave crystal

utilized ferrite rods surrounded by air to generate a topologically nontrivial photonic band

structure. The main result was direct observation of unidirectional backscatter-immune

topological electromagnetic states at the boundary of the photonic crystal. Electromagnetic

waves propagate in a singular direction and around sharp defects because no backward

propagating mode exists to scatter into. Since these achievements, there has been a veritable

explosion of research in topological photonics. Most of the intense interest is focused on

utilizing robust photonic pathways for applications and discovering other exotic topological

phenomena [24 ].

Nevertheless, the question posed in this thesis is can topological electromagnetic phases

exist as a state of matter? That is, can real atomic crystals like graphene be intrinsically

topological with respect to the photon, without the need for macroscopic engineering? The

answer is a resounding yes and there are two reasons why this is an important pursuit.

Firstly, from a fundamental science perspective, it means there are new quantum phases of

matter that are intrinsically bosonic and cannot be explained by electronic band theory or

many-body theory. Second, from a technological standpoint, this would miniaturize current

photonics platforms by orders of magnitude since the length scales are comparable to the

atomic lattice constant.

1.3.2 Topological electromagnetic phases of matter

The key idea behind my work is to substitute the photonic crystal with the atomic crystal

[Fig. 1.7 ]. Since real materials are periodic, a photon propagating in the solid-state innately
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Figure 1.7. Comparison of (a) photonic crystals and (b) atomic crystals.
The goal of topological electrodynamics is to bridge the gap between photonic
crystals and condensed matter systems. (a) Topological photonics is usually
explained by a non-interacting free-field theory as there are no dipole-carrying
excitations. Here, topology is generated by wave interference from dielectric
scatterers and resonators. (b) Topological electromagnetic phases is necessarily
an interacting theory as there are many dipole-carrying excitations. In this
case, the material itself is topological and pertains to unique quantum phases
of matter.
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lives within the Brillouin zone (on the torus), at least at the microscopic level. Hence, a

naturally occurring electromagnetic topological invariant (photonic Chern number) exists

but it requires an atomic theory. The photon momentum must be defined to the edges of

the BZ as this is necessary to ensure Chern quantization. The uniquely difficult problem in

the atomic theory is that the crystal is both temporally and spatially dispersive. How this

physically manifests will be discussed below. We also require some form of nonreciprocity

which is usually generated from an external magnetic field B. We leave the rigorous definition

of these electromagnetic topological invariants to the following chapters since they are very

involved. Here, we outline the many hurdles that need to be overcome to achieve nontrivial

topology in condensed matter.

One difficulty that is immediately encountered in nonreciprocal electromagnetism is tem-

poral dispersion – the frequency dependence of optical response. Temporal dispersion is

ultimately connected to some electric or magnetic dipole-carrying excitation and cannot be

avoided as it is impossible to break time-reversal symmetry without dispersion. In photonic

crystals one can get around this problem by detuning far from the resonance, such that the

effect of dispersion is negligible. However, in condensed matter, these excitations are com-

ponents of the natural modes of the material – the polaritons. We call this an interacting

theory because there are extra degrees of freedom in the system that cannot be ignored.

The relevant particles are not simply photons but hybrid quasiparticles such as plasmon-,

exciton- or phonon-polaritons. To understand topological electromagnetic phases of matter,

we need to carefully quantify these complex coupled oscillators.

When dealing with nanophotonic structures we also run into spatial dispersion. Spatial

dispersion, or nonlocality, is associated with the wavevector dependence of optical response

and accounts for the spreading of the interaction over a finite length. These effects are

significant on microscopic length scales and therefore must enter the atomic field theory.

Nonlocality has generally been ignored in photonics because it is rather cumbersome and

the boundary physics is incredibly complicated. The conventional wisdom would suggest

that nonlocality contributes relatively small perturbations to optics and is therefore negli-

gible. However, topological electromagnetic phases of matter require spatial dispersion and

there is qualitatively new phenomena when both nonlocality and nonreciprocity are present.
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Figure 1.8. Topological phases of graphene. (a) The Chern phase C ∈ Z
arises from complex next-nearest-neighbor (NNN) hopping. (b) The quantum
spin Hall phase ν ∈ Z2 is due to spin-orbit coupling (topological insulator).
(c) The optical phase N ∈ Z is a consequence of Hall viscosity ηH . These three
phases can be identified as the Chern insulator, quantum spin Hall insulator
and viscous Hall insulator respectively.

Fundamentally, these effects cannot be regarded as perturbations as they have topological

implications and contribute to the overall Berry phase.

1.3.3 Magnetohydrodynamics and Hall viscosity

Many of the physical systems proposed in this thesis take inspiration from the Hal-

dane model – a change in sign of a mass parameter indicates nontrivial topology. Perhaps

unsurprisingly, this change in sign of a “photonic mass” cannot occur without nonlocal-

ity. Our main theoretical tool to study such problems is magnetohydrodynamics (MHD)

which characterizes viscous electron fluids in the presence of strong magnetic fields. For

time-varying waves, MHD describes the viscous plasma oscillations (plasmons) of the elec-

tron fluid. Plasmons couple to photons to generate the new quasiparticles of the system –

plasmon-polaritons. In specific hydrodynamic regimes, these quasiparticles can be topolog-

ically nontrivial and the fundamental physical mechanism is due to an intriguing nonlocal

effect known as Hall viscosity [see Fig. 1.8 ].

Viscosity inherently entails nonlocality as there is diffusion of the fluid. This emerges from

the stress-strain response of a deformable body – a gradient in the velocity field generates
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a stress. In two dimensions, the stress tensor ςij can be expressed in terms of the rank-four

viscosity tensor ηij,kl and the velocity gradient (strain-rate) tensor (∂ivj + ∂jvi)/2,

ςij = 1
2ηij,kl(∂

kvl + ∂lvk). (1.22)

Repeated spatial indices (i = x, y) implies summation. Viscosity is a measure of a fluid’s

resistance to deformation. In a 2D isotropic fluid, there are three possible contributions to

the viscosity tensor,

ηij,kl = ζδijδkl + η(δikδjl + δilδjk − δijδkl) − ηH(δjkεil − δilεkj). (1.23)

ζ and η are the bulk and shear viscosities respectively, which govern dissipation due to

compression and shearing. From the second law of thermodynamics, ζ ≥ 0 and η ≥ 0 must

always be positive to ensure lossy fluid flow. One additional viscous component is permitted

in parity and time-reversal breaking fluids – the so-called Hall viscosity ηH . Hall viscosity,

also known as odd viscosity in fluid mechanics, can be either positive or negative as it is

dissipationless. The effect of ηH is to generate a diffusive force perpendicular to the fluid’s

motion which may repel or reinforce an external magnetic field B. Hall viscosity has gained

considerable attention recently due to multiple experimental observations of hydrodynamic

electron fluids [25 ]. The hydrodynamic regime occurs in very clean, strongly-correlated

systems, which has only been made possible due to isolation of high-grade materials like

graphene.

The Hall viscosity enters electromagnetism through conventional continuum mechanics.

Since the current density J = −en0v is directly proportional to the velocity field, the di-

vergence of the stress tensor ∇∇∇ · ς imparts a type of Lorentz force on a stream of electrons.

Linearizing the Navier-Stokes (NS) equation around its equilibrium state and assuming a

zero temperature quantum limit ζ = η = 0, we obtain the MHD model of a viscous quantum

Hall fluid,

∂tJ = −v2
s∇∇∇ρ− (ωc + νH∇∇∇2)J × ẑ + e2n0

m
E. (1.24)
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Figure 1.9. The main result of an electromagnetic (EM) theory of magneto-
hydrodynamics is that the relative sign of the Hall conductivity σxy and the
the Hall viscosity ηH predicts a new quantum phase of matter. When the
relative signs are the same, Hall viscosity repels external magnetic fields and
the EM theory is topologically nontrivial.
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Table 1.1. Summary of the 2+1D topological phases in graphene. The charge
C and spin ν phases are defined at zero photon energy and momentum ω =
k = 0. The optical N -phases are defined for dynamical electromagnetic (EM)
fields, ω 6= k 6= 0.

Quanta (a) Charge (b) Spin (c) Polarization
Class A AII D
Invariant C ∈ Z ν ∈ Z2 N ∈ Z
Mechanism NNN hopping Spin-orbit coupling Hall viscosity
Observable σxy = Ce2/h σsxy = νe/2π B-field repulsion
EM field ω = k = 0 ω 6= k 6= 0

Combining Eq. (1.24 ) with the continuity equation ∂tρ + ∇∇∇ · J = 0 completely specifies the

charge and current densities with appropriate boundary conditions. vs is the speed of sound,

ωc = eB/cm is the cyclotron frequency and νH = ηH/mn0 is the kinetic Hall viscosity. m

being the effective mass. This model has been remarkably successful explaining experimental

observations of Hall viscosity in graphene.

The topology can be surmised by considering the combined effect of ωc and νH in the

bulk momentum space. The cyclotron motion ωc creates a spectral gap in the plasmon

dispersion and is formally equivalent to a Dirac mass. Hall viscosity νH makes this Dirac mass

momentum dependent ωc → ωc−νHk2, which means it can change sign within the dispersion.

Clearly a sign change is only possible in the repulsive regime ωcνH > 0 which denotes the

nontrivial phase. The most important outcome of MHD is that the electromagnetic theory

is topological for specific signs of the Hall conductivity and Hall viscosity which is illustrated

in Fig. 1.9 . It should be emphasized that this unique quantum phase of matter is defined

through the topology of electromagnetism. Table 1.1 summarizes the three topological phases

in 2D materials and their relevant quanta.

1.4 Outline of thesis

This thesis follows an article-based format where each chapter is composed of a self-

contained publication. In some cases, the terminology changes between chapters due to

transitioning between photonics and condensed matter communities. For instance, the effect

of Hall viscosity is often referred to as nonlocal gyrotropy or nonlocal Hall conductivity. In
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earlier papers, this type of response was argued purely from a mathematical basis but we

would ultimately link it to an important physical mechanism in strongly-correlated electron

fluids. My work is entirely theoretical and combines topology with the classical electro-

magnetic field theory of condensed matter for the first time. However, the content should

be accessible to readers with a graduate background in electromagnetism. I have tried to

provide a thorough review and detailed derivations of all the results which can be found in

the supplementary information of each article. These have been included in the appendices

for reference. Below we summarize the key contributions of each paper.

Chapter 2 is a rigorous study of evanescent waves in traditional nanophotonic systems,

such as total internal reflection, surface plasmon polaritons and optical fibers. This work

utilizes only classical electromagnetism but forms the necessary stepping stone for the fully

topological field theory developed in later chapters. The main achievement of this paper is the

proof that transverse spin-momentum locking (SML) is an inherent property of evanescent

electromagnetic waves. In these cases, photonic SML is connected to causality requirements

on passive media and does not possess a robust topological interpretation like the QSHE for

electrons. Nevertheless, we show that SML can be utilized for remarkably precise control

of photonic pathways that are polarization dependent. By coupling circular dipoles to the

near-field of optical fibers, we can achieve near 100% transmission in a single direction.

Chapter 3 is our first foray into topological electromagnetism. From first principles, we

derive the effective Hamiltonian governing the dynamics of the polaritons, which generates

the normal modes of the condensed matter system. We then identify the essential topologi-

cal criteria for continuum photonic media and the role of spin-1 quantization in topological

phases. The most significant result is that both temporal and spatial dispersion are neces-

sary to define a topological electromagnetic phase of matter. To conclude the chapter, we

propose the simplest realization of a naturally occurring photonic Chern insulator, which

arises from nonlocal Hall conductivity (Hall viscosity). At the boundary of the material, we

uncover gapless chiral photonic edge states that are immune to back-scattering. This has

been dubbed the quantum gyroelectric effect (QGEE) because the edge state is completely

insensitive to the contacting medium. A major accomplishment of this boundary theory is

proving that the edge state satisfies open boundary conditions which has never been demon-
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strated in any photonics platform. It is important to note that fundamental symmetries of

field theory such as U(1) gauge symmetry and SO(3) spin symmetry are captured by our

theoretical framework. In this regard, the Maxwell Hamiltonian presents an entirely new

approach to classical electromagnetic fields interacting with condensed matter. The topolog-

ical quantization arises due to the spin-1 nature of the theory and is fundamentally different

from the conventional Hamiltonian defined in quantum optics.

Chapter 4 provides a detailed analysis of the photonic Chern insulator proposed in Ch. 3 

by comparing it with its supersymmetric partner – the electronic Chern insulator. At low

frequency, Hall conductivity plays the role of photonic mass as there is a one-to-one corre-

spondence with the Dirac equation. Here, we show that the electromagnetic field possesses

a spin-1 skyrmion in momentum space. The precession of photon spin is a direct result of

Hall viscosity and is ultimately tied to the presence of Dirac monopoles and strings in the

Berry gauge. These photonic Dirac monopoles are integer quantized due to the spin-1 nature

of the photon. Importantly, we show that this phenomenon of gauge discontinuity in the

photonic eigenmodes fundamentally requires nonlocal gyrotropy.

Chapter 5 presents the lattice generalization of the continuum theory in Ch. 3 . Here, we

derive the complete atomic theory of the polaritonic Bloch modes, for all momenta in the

Brillouin zone, and show that an electromagnetic topological invariant is rigorously defined.

We also uncover important properties of the topology that are connected to the underlying

point group symmetries of the lattice. The irreducible representation (irrep) of the photon at

high-symmetry points places restrictions on the photonic Chern number. These restrictions

amount to distinct classes of symmetry-protected topological phases. Crucially, symmetry-

protected phases in electromagnetism are bosonic because the representations must be single-

valued. Fermions on the other hand have double-valued representations and represent an

entirely different class of symmetry-protected phase.

In Chapter 6 we delve deeper into this concept of photonic mass and engineer interfaces

that host robust unidirectional electromagnetic edge states. At fixed frequency, it is revealed

that gyrotopy plays exactly the role of a photonic mass. The interface of two materials with

opposite gyrotopy is therefore the photonic equivalent of Jackiw-Rebbi modes. It is proven

that as long as gyrotropy changes sign across the interface, an edge state must exist and is
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immune to perturbations. Additionally, we study the polarization properties of these edge

modes which reveals longitudinal SML that is helically-quantized. Quantization of these

unidirectional Maxwellian spin waves has a topological origin. This should be contrasted with

transverse SML in traditional surface waves which is not quantized and has no topological

interpretation (see Ch. 2 ).

Chapter 7 completes the discussion on topological electrodynamics. This chapter is a

milestone because we propose the first Lagrangian formulation of a topological electromag-

netic phase. It is now possible to canonically quantize topological photons which has been

inaccessible in electromagnetism until now. Interestingly, the effective field theory we pro-

pose is a combination of Hall viscosity with Maxwell-Chern-Simons (MCS) theory – aptly

named viscous MCS theory. Minimization of the viscous MCS action generates the equations

of motion of the photonic Chern insulator (see Ch. 4 ). It also supplies the topological bound-

ary conditions that minimize the surface variation, guaranteeing that the gapless photonic

edge states cost zero energy.

Lastly, the summary Chapter 8 reviews the material presented in this thesis and provides

some concluding remarks on the future outlook of topological electrodynamics.
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2. UNIVERSAL SPIN-MOMENTUM LOCKING OF

EVANESCENT WAVES

From [T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent

waves,” Optica, vol. 3, no. 2, pp. 118–126, Feb. 2016]. © 2020 Optical Society of

America. [26 ]

We show the existence of an inherent property of evanescent electromagnetic waves: spin-

momentum locking, where the direction of momentum fundamentally locks the polarization

of the wave. We trace the ultimate origin of this phenomenon to complex dispersion and

causality requirements on evanescent waves. We demonstrate that every case of evanescent

waves in total internal reflection, surface states and optical fibers/waveguides possesses this

intrinsic spin-momentum locking. We also introduce a universal right-handed triplet consist-

ing of momentum, decay and spin for evanescent waves. We derive the Stokes parameters

for evanescent waves which reveal an intriguing result – every fast decaying evanescent wave

is inherently circularly polarized with its handedness tied to the direction of propagation.

We also show the existence of a fundamental angle associated with total internal reflection

(TIR) such that propagating waves locally inherit perfect circular polarized characteristics

from the evanescent wave. This circular TIR condition occurs if and only if the ratio of

permittivities of the two dielectric media exceeds the golden ratio. Our work leads to a uni-

fied understanding of this spin-momentum locking in various nanophotonic experiments and

sheds light on the electromagnetic analogy with the quantum spin-Hall state for electrons.

2.1 Introduction

An important signature of the recently discovered quantum spin-Hall (QSH) state of

matter is the existence of electronic surface states which are robust to disorder (non-magnetic

impurities) [27 ], [28 ]. This property arises since the spin of the electron is intrinsically

locked to the direction of propagation (momentum) and the electrons cannot backscatter

unless there is a spin-flip [29 ]. Intriguingly, recent experiments have explored an analogous

phenomenon in photonics showing polarization dependent directional propagation of optical
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modes in spontaneously emitted as well as scattered light [30 ]–[35 ]. For example, experiments

have shown that spontaneous emission from atomic transitions is preferentially uni-directed

along a fiber depending on the magnetic quantum number of the excited state [36 ]. On

the other hand, surface plasmon polaritons excited with circularly polarized light have also

demonstrated unidirectional propagation [37 ], [38 ]. One common thread in these experiments

is the evanescent wave which leads to a clear hint that the effect is tied to fundamental

properties of decaying waves and not the details of the nanophotonic structures. A quantum

field theoretic treatment has also recently shed light on the interesting spin properties of

evanescent waves [39 ], [40 ]. However, there is an urgent need for a unified theory about

the inherent origin of this effect and its underlying connection to experiments. In analogy

with the behavior of electrons in the quantum spin-Hall effect, we call this phenomenon

“spin-momentum locking”.

In this paper, our central contribution is the proof that spin-momentum locking is univer-

sal behavior for electromagnetic waves which stems from the complex dispersion relation of

evanescent waves and fundamental causality requirements. We introduce a universal triplet

consisting of momentum, decay and spin of evanescent waves. We show that the Stokes

parameters for an evanescent wave unambiguously reveals that every fast decaying evanes-

cent wave is inherently circularly polarized irrespective of how it originates. Furthermore,

this inherent handedness (spin) is locked to the direction of propagation (momentum). This

information hidden in the Stokes parameters has been overlooked till date and is in stark con-

trast to the existing knowledge on propagating waves. The universality of this phenomenon

is revealed by analyzing, in detail, the cases corresponding to a) total internal reflection

(TIR) b) waveguides c) optical fibers d) surface electromagnetic waves. We also show the

existence of a unique criterion in TIR (“golden ratio condition”) at which propagating light

is locally circularly polarized on total internal reflection. This effect can be used to verify

our theory in near-field optical experiments. Lastly, we provide detailed insight on how

spontaneous emission from a quantum emitter can couple to spin-momentum locked states

in optical fibers. Our work explains various experimental observations and should open up

future ways of exploiting this universal spin-momentum locking for practical applications.
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2.2 Evanescent waves

2.2.1 Complex dispersion relation

We first construct a general basis vector for evanescent waves independent of origin which

reveals a universal electromagnetic right handed triplet consisting of momentum, decay and

spin. The wavevector of an evanescent plane wave necessarily has to be complex and can be

written in a general form as ~k = ~κ+ i~η. Here, ~η is the imaginary part of ~k and is related to

the decay while ~κ is the real part related to phase propagation (momentum). Starting from

the dispersion relation obtained using Maxwell’s equations in free space, we have,

~k · ~k = k0
2 (2.1)

which implies, since k0 = ω/c is purely real, that the two components of ~k must satisfy,

κ2 − η2 = k0
2 (2.2a)

~κ · ~η = 0. (2.2b)

We note here that for complex wavevector ~k, the absolute value is given by |~k|2 = ~k · ~k∗

which is different from the factor ~k · ~k that enters the dispersion relation of plane waves in

vacuum. These two terms are not equivalent for evanescent waves. From Eq. (2.2b ), we make

an important observation: the complex dispersion relation in free space necessarily requires

that ~κ and ~η be orthogonal. This implies that the phase propagation of an evanescent

wave (momentum) is perpendicular to its direction of decay. Furthermore, these orthogonal

phase propagation and decay vectors always have a phase difference between them (factor

of i =
√

−1) which are imprinted on orthogonal components of the electromagnetic field

vectors through the transversality condition (~k · ~E = 0). We will show now that this is the

intuitive reason for the inherent handedness (spin) of the evanescent wave.

Like propagating plane waves, evanescent waves can have two orthogonal field polar-

izations which we denote by ŝ and p̂ unit vectors. ŝ is defined to have an electric field

perpendicular to the plane formed by the propagation vector (~κ) and decay vector (~η) while
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the electric field vector lies in the plane for p̂. Without any loss of generality, an elegant

choice of basis can be made to represent these unit vectors uniquely in terms of the evanes-

cent wave wavevector. Our choice of basis is the triplet {~κ, ~η, ~κ×~η}. We emphasize that this

choice of basis alone fulfils the transversality condition imposed on electromagnetic waves in

vacuum (~k · ~E = 0) and therefore is coordinate-independent.

By defining ŝ and p̂ as,

ŝ = ~κ× ~η

|~κ× ~η|
= i

~k × ~k∗

|~k × ~k∗|
(2.3a)

p̂ =
~k × ŝ

|~k|
= i

~k × (~k × ~k∗)
|~k||~k × ~k∗|

(2.3b)

~k · ŝ = ~k · p̂ = ŝ · p̂ = 0 (2.3c)

we express the evanescent field polarization entirely in terms of its momentum (~k). This

form is robust enough that it can also be generalized to lossy media when ~κ and ~η are non-

orthogonal. We emphasize that this unique form of evanescent wave basis vectors is universal

and reduces to the case of plane wave basis vectors when η → 0. A proof is given in the

supplementary information.

The above representation reveals important aspects about the intrinsic “spin” of an

evanescent wave. We define this intrinsic “spin” to be the inherent handedness (left/right

circular/elliptical polarization) of the field basis vector. We rigorously justify this in the

next section but make a note that electric fields in any specific scenario can be represented

using these basis vectors. Hence, properties of field basis vectors will always be manifested

in the electric and magnetic fields.

Note first that ŝ is purely real so the orthogonal components comprising the field vector

will be in phase. Thus evanescent waves with electric field vector field perpendicular to the

plane formed by the decay vector and propagation vector will show no interesting polarization

characteristics. However, the p̂ field basis vector is now complex. Using the properties from

Eq. (2.2 ) and a bit of manipulation we obtain,

p̂ = i
[
η

|~k|

(
~κ

κ

)
+ i κ

|~k|

(
~η

η

)]
(2.4)
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Figure 2.1. Our result shows a fundamental right handed triplet formed by
momentum, decay and spin for evanescent waves. Note the locked triplets for
waves propagating in two opposite directions. As we can see, the direction
of the spin ŝ flips for the two cases. It is important to note that in general
there are four degenerate solutions but two of these correspond to growing
evanescent waves which are forbidden due to causality. This explains why
the left handed triplet is not allowed and the phenomenon of spin-momentum
locking is universal to evanescent waves.

where we can clearly see that the p̂-polarization is just a linear combination of ~κ and ~η

unit vectors with an in-built phase difference between the orthogonal components. This

immediately implies that there will be an inherent elliptical polarization imparted to the

field.

2.2.2 Stokes parameters

We now extend the concept of Stokes parameters [41 ] beyond propagating waves to

fully characterize this interesting p̂-polarization state of an evanescent wave. Complex p̂ is

expressed as a linear combination of two basis vectors which motivates us to consider spin-1
2
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operators. The Stokes parameters of an evanescent wave can be written as the expectation

values of the Pauli matrices and carries non-trivial information;

S0 = 〈p̂|1|p̂〉 = 1 (2.5a)

S1 = 〈p̂|σz|p̂〉 = k0
2

|~k|2
(2.5b)

S2 = 〈p̂|σx|p̂〉 = 0 (2.5c)

S3
± = 〈p̂|σy|p̂〉 = ±2 κη

|~k|2
. (2.5d)

S1 and S3 quantify the amount of spin, i.e. the degree of linear and circular polarized

character of an electromagnetic wave. Here, ± denotes the two directions of the phase

propagation possible for the evanescent wave. We see that the polarization state of the field

basis vector p̂ is dependent only on the complex components of the wavevector while the

actual electric and magnetic field elements are irrelevant in this instance. This means that

there will be a certain degree of elliptical polarization intrinsic to the electromagnetic field

which is determined entirely by the real and imaginary components of the momentum (~k).

In this sense, there will be inherent “spin” associated with the evanescent wave since the

unique basis vector p̂ itself imparts handedness to the wave.

Note, the ŝ vector can now be interpreted as the “spin direction” since it signifies the

handedness of the electric field with p̂-polarization. This spin vector (ŝ) is orthogonal to

both ~κ and ~η which constitute the basis of p̂. Furthermore, the transformation ~κ → −~κ,

for fixed decay direction (~η), changes the handedness of p̂ (sign(S3)). This also flips the

direction of ŝ which is consistent with an opposite direction of spin. This shows that the

spin is fundamentally locked to the direction of propagation (momentum). The diagram

in Fig. (2.1 ) shows the construction of a fundamentally locked triplet for evanescent waves

formed by the phase propagation vector (~κ), decay vector (~η) and spin (ŝ).
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Figure 2.2. Poincaré spheres for propagating waves and evanescent waves.
Propagating waves can have any arbitrary polarization state for a given phase
velocity. However, all fast decaying evanescent waves are circularly polarized
and lie on the south or north pole of the Poincaré sphere (S3 = ±1). Fur-
thermore, the choice between these two points is locked to the direction of
momentum (±~κ).
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2.2.3 Inherent polarization

In this section, we prove that every fast decaying evanescent wave is inherently circularly

polarized and its handedness is tied to the direction of phase propagation (momentum). We

consider the case of an evanescent wave with very high momentum such that κ � k0. The

dispersion relation then implies κ ≈ η and the wave decays on a length scale much smaller

than the wavelength. Simplifying the expression for the p̂-polarized basis vector,

p̂ → i√
2

[(
~κ

κ

)
+ i
(
~η

η

)]
(2.6a)

S1 → 0 (2.6b)

S3
± → ±1 (2.6c)

which we can clearly see is a state of circular polarization.

The above result implies that every fast decaying evanescent wave lies on the north or

south pole of the Poincaré sphere while propagating waves can lie anywhere on the Poincaré

sphere. Furthermore, the choice of the south and north pole (S3 = ±1) is dictated by

the direction of the phase velocity (±~κ). Thus spin-momentum locking is a fundamental

property of evanescent waves. To visually illustrate these polarization states, we compare

the Poincaré spheres of propagating and evanescent waves in Fig. (2.2 ).

2.3 Spin-momentum locking from causality

The “spin-locking” characteristic of evanescent waves comes from the fact that ~κ and ~η are

inherently orthogonal as dictated by the complex dispersion (Eq. (2.2 )). Simultaneously, the

unit field vector p̂ which is related to the wavevector possesses a π/2 phase difference between

its orthogonal components. This phase is not an artifact of some particular combination

of polarization vectors but is embedded into the vector field itself to guarantee that the

transverse condition (~k · ~E = 0) is satisfied.

Ultimately, evanescent waves require some sort of boundary condition to exist in a region

of space, which usually involves a symmetry breaking or a change in material parameters.

For an arbitrary plane wave (∝ exp(i~k ·~r) = exp(i~κ ·~r) exp(−~η ·~r)), this boundary condition,
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in general, opens up 2 possible propagation directions ±~κ, and 2 decay/growth directions

±~η which allows up to 4 degenerate solutions. However, we know immediately that only

one of the ~η solutions can exist because the wave must be finite in the region of space that

includes infinity, i.e. it must decay away from the boundary towards infinity. Exponential

growth in a passive medium is non-physical because it would require a non-causal solution

to the boundary condition. For planar interfaces, the branch cut for the complex wavevector

(~k) is chosen based on the direction of the decay of the evanescent wave, which occurs along

the normal to the interface. Note the branch cut corresponding to growing evanescent waves

is discarded for passive media.

This causality requirement leads to the fact that the handedness or “spin” of the evanes-

cent waves is now determined and locked to the propagation direction (the momentum). This

is because while the decay vector (~η) cannot change, the wave is free to propagate in both

directions (±~κ), flipping the handedness of p̂. In other words, the set of allowed evanescent

waves only consists of 2 possibilities due to this condition. One with positive momentum +~κ

and positive spin direction +ŝ and the other with negative momentum −~κ and negative spin

direction −ŝ. Hence, causality and transversality (or complex dispersion) can be considered

to be the fundamental origin of the universal spin-momentum locking of evanescent waves

(see Fig. (2.1 )).

2.4 Universal behavior

In this section, we show that evanescent waves possess this spin-momentum locking in

various scenarios. It becomes imperative to revisit fundamental concepts of total internal

reflection and waveguide modes to prove that evanescent waves indeed possess a property

which has been overlooked. To analyze these textbook phenomena, we introduce the concept

of a local handedness for inhomogeneous fields. We specifically plot the spatial distribution

of the Stokes parameter (S3) which depends on the local electric fields and sheds light on the

local handedness (polarization state) of the fields. We note that our approach is different

but equivalent to the historic concept of the light beam tensor introduced by Fedorov [42 ]

and the recently developed concept of the spin density [40 ], [43 ], [44 ].
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2.4.1 Circular total internal reflection (golden ratio condition)

The simplest case where such a phenomenon can occur is when evanescent waves are

generated at total internal reflection (TIR). We consider a wave p̂-polarized in the x̂-ẑ plane

(TM) travelling from glass with index n1 = √
ε1 into medium 2 with index n2 = √

ε2 where

we require ε1 > ε2 for evanescent waves to be supported. The electric fields generated during

TIR are well known and are depicted by white arrows in Fig. (2.3 ). However, when overlaid

against the local handedness of the field an intriguing phenomenon comes to light – the

direction of propagation of the wave alters the relative handedness of the evanescent field.

The false colors in the same figures depict the spatial distribution of the normalized Stokes

parameter (S3) and quantifies the polarization state of the field at each point. In region 2,

it is evident that the evanescent wave possesses similar handedness at every point (orange

region). Furthermore, comparing the counter-propagating cases between Fig. (2.3 ) we clearly

see that the polarization state of the evanescent wave is reversed and the Stokes parameter

changes sign. The insets of Fig. (2.3 ) elucidate this spin-momentum locking phenomenon for

TIR.

We now show that the propagating waves inherit handedness from the evanescent waves

due to boundary conditions at the interface. The phase between the perpendicular and

parallel components of an arbitrary (p̂-polarized) electric field in region 1, interfaced with

an evanescent wave in region 2 must satisfy

[
E⊥

E‖

]
1

= ±iε2

ε1

[
κ

η

]
2

@interface (2.7)

where the ± indicates oppositely travelling evanescent waves and the subscripts designate

the field components in their respective material regions. It should be stressed that this only

applies locally at the interface. However, this could have interesting consequences for near-

field optics since it implies that there is a preferential handedness depending on the direction

of propagation when we couple to evanescent waves. We make the important observation

that perfect circular polarization is enforced (locally) in region 1 when

ε1

ε2
=
[
κ

η

]
2
. (2.8)
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We can now solve for the momentum and decay of the evanescent wave which achieves

this circular total internal reflection. They are

κ2 = ε1

√
ε2

ε12 − ε22k0 (2.9)

and

η2 = ε2

√
ε2

ε12 − ε22k0. (2.10)

In the case of TIR, this local circular polarization is generated in region 1 because there is a

phase shift imparted to the reflected wave and the interference with the incident wave causes

the combined field to be locally handed. Lastly, we need to determine the angle of incidence

of the propagating wave that is required to accomplish this circular TIR condition. Using

Snell’s law, it can be shown that the CTIR angle of incidence θ1 = θCTIR is,

sin(θCTIR) = 1/
√
ε1/ε2 − ε2/ε1. (2.11)

We note that in this instance, θCTIR must necessarily be real which requires that the denom-

inator be greater than 1. Therefore, there is an interesting limiting condition for local CTIR

to exist which is when θCTIR → π/2 (i.e. when the propagating wave in region 1 is parallel

to the interface). This is equivalent to the limit when

[
ε1

ε2

]
GR

= 1
2(1 +

√
5) ≈ 1.618 (2.12)

which is the minimum allowable ratio of the permittivities for CTIR to occur, and curiously,

it can also be identified as the golden ratio [45 ]. We term this the “golden ratio condition”

for local circularly polarized total internal reflection.

This induced CTIR in region 1 is visible clearly in Fig. (2.3 ). Note our choice of refractive

indices satisfies ε1/ε2 = 4 > [ε1/ε2]GR. The angle given by our analytical expression in

Eq. (2.11 ) is θCTIR = 31.09o and we have plotted the fields for this incident angle. Close

to the interface in region 1, the Stokes parameter takes the maximal values of S3 = ±1

(red and blue regions). Thus the fields are perfectly circular polarized close to the interface
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Figure 2.3. Left: CTIR at interface between glass with n1 = 2 and air with
n2 = 1 at the θCTIR condition. For waves travelling in the +x direction, the
evanescent wave in region 2 has right handed spin-momentum locking (inset).
Note the wave in medium 1 has perfect circular polarization characteristics
close to the interface at this angle of incidence. The overlaid false color plot is
the spatial distribution of the normalized Stokes parameter (S3) which char-
acterizes the handedness of the wave (degree of circular polarization) from −1
to 1 at each point. Right: CTIR at interface between glass with n1 = 2 and
air with n2 = 1 at the θCTIR condition. For waves travelling in the −x direc-
tion, the evanescent wave in region 2 has left handed spin-momentum locking
(inset). The plot illustrates that the evanescent wave spin has the opposite
sign as compared to the previous case because the momentum and spin are
locked.

specifically for this angle of incidence. Although phase propagation normal to the interface

(ẑ) will alter the degree of this polarization, the relative handedness between forward and

backward propagating waves is maintained. This can be seen from the blue and red contours

in region 1, where rotation of the electric field vectors is reversed at every point in space –

which is in agreement of differing signs of S3.

2.4.2 Waveguides

Interesting spin-locking phenomena also occur when we consider confined light in waveg-

uides and optical fibres. The confinement of light necessarily requires evanescent waves to

be present which implies that there will be handedness imparted on the waveguide and fibre
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modes through the boundary conditions. For planar waveguides, there are even and odd

solutions and the p̂-polarized electric field components (TM modes) inside the waveguide are

proportional to

~E ∝
[
kz

{ sin(kzz)

− cos(kzz)

}
x̂+ ikx

{ cos(kzz)

sin(kzz)

}
ẑ

]
eikxx (2.13)

where the array inside the braces indicates the two separate solutions. Note that the electric

field components along the x- and z-axis have a phase difference between them dictated solely

by the boundary conditions that maintain the transversality of the field. If we consider a wave

propagating in the opposite direction, i.e. change kx → −kx the wave changes handedness.

We see that there is spin-momentum locking in waveguides since kx now constitutes the

momentum and also controls the relative phase between the orthogonal field components.

The electric field vector plots in Fig. (2.4 ) are overlaid on the spatial distribution of the

S3 Stokes parameters (false color plot) to illustrate the different spin (handedness) between

two oppositely propagating waveguide modes. We note that a similar explanation can be

extended to the case of metamaterials [33 ]. This is discussed briefly in the supplementary

information and a detailed derivation will be presented elsewhere.

2.4.3 Optical fibres

We now show that spin-momentum locking in optical fibres is the fundamental origin

of recent experimental observations where scattered light and spontaneous emission was

directed preferentially along the fiber [31 ], [36 ]. The HE11 fundamental mode operation is

the most important case so we quantify its degree of polarization. To characterize our fibre

mode we consider weakly guided waves, ∆ = (n1
2 − n2

2)/(2n1
2) ≈ (n1 − n2)/n1 � 1 with

a numerical aperture, NA =
√
n12 − n22 ≈ n1

√
2∆. For single mode HE11 operation, we

require that V = 2π(a/λ0)NA = σ1
√

2∆ < 2.405, where a is the radius of the fibre and

σ1 = k1a = 2n1π(a/λ0) is the scaling parameter inside the core.

The HE11 is doubly degenerate in that we have two counter-rotating angular momentum

modes in the plane perpendicular to the fiber-optic axis. We denote the electric and magnetic

fields as ~Em and ~Hm respectively where the subscripts denote m = +1 or m = −1. In the

circular basis we define unit vectors êm = (r̂ + imφ̂)/
√

2 and clearly ê∗
± = ê∓. With a
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Figure 2.4. Left: Waveguide mode at interface between glass with n1 = 4
and air with n2 = 1. The width of the waveguide is 2k0d = 2. For waveguide
modes travelling in the +x direction, the evanescent waves in region 2 lock the
handedness (locally) to +ŝ at k0z = 1 and −ŝ at k0z = −1. The false color
plot shows the spatial distribution of the normalized Stokes parameter (S3)
from −1 to 1 for the waveguide and illustrates the intrinsic handedness of the
evanescent waves. Furthermore, on comparison with the counter-propagating
waveguide mode, we see that the handedness is reversed. Right: Waveguide
mode at interface between glass with n1 = 4 and air with n2 = 1. The width
of the waveguide is 2k0d = 2. For waveguide modes travelling in the −x
direction, the evanescent waves in region 2 lock the handedness (locally) to −ŝ
at k0z = 1 and +ŝ at k0z = −1.
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propagation factor of exp [i(βz/a − ωt)] omitted, the electric and magnetic fields can then

be written as,
~Em = E0[

√
2βJ0(Xr/a)êm + iXJ1(Xr/a)ẑ]eimφ (2.14a)

~Hm = −imH0[
√

2(σ1)2J0(Xr/a)êm + iβXJ1(Xr/a)ẑ]eimφ (2.14b)

for fields inside the fibre when r < a, where H0 = E0/(ωµ0a) and

~Em = NE0[
√

2βK0(Yr/a)êm + iYK1(Yr/a)ẑ]eimφ (2.15a)

~Hm = −imNH0[
√

2(σ2)2K0(Yr/a)êm + iβYK1(Yr/a)ẑ]eimφ (2.15b)

outside the fibre when r > a and N = (X/Y)J1(X)/K1(Y). Jn and Kn are the Bessel and

Modified Bessel functions of order n respectively. The normalized propagation constants are

defined as, |β| =
√

(σ1)2 − X2 =
√

(σ2)2 + Y2 and V2 = X2 + Y2. The components of the ~Em
and ~Hm fields have identical forms (up to a proportionality constant) so we concentrate on

the electric type.

The above equations are commonplace in textbooks on fiber optics. However, the dif-

ferentiation between the angular momentum and spin components of the HE11 mode has

not been done before. This can be done unambiguously by extending our concept of local

handedness of a wave to three dimensions. We consider the Stokes parameter (S3) which

characterizes circular polarization. However, for the optical fiber, it has to be evaluated for

three dimensional fields by considering pairs of orthogonal directions. This leads to Stokes

parameters Sz3 and Sφ3 which can be interpreted as local circular polarization of the field with

handedness along the ẑ direction or φ̂ direction. We concentrate on the field components

inside the core when r < a, but similar expressions hold for r > a where the Bessel functions

are substituted with the Modified Bessel functions.

For the two m = ±1 angular momentum modes, the Sz3 Stokes parameter evaluated with

electric field components orthogonal to the propagation ẑ direction is

(IAM)m = 2m|E0|2β2J0
2(Xr/a) (2.16)
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which we denote as the angular momentum intensity. The handedness of this angular mo-

mentum is either positive or negative for the m = ±1 modes. This is valid even if we

change the sign of the propagation constant, i.e. if the HE11 mode moves along −ẑ. Thus,

both forward and backward propagating waves can have either positive or negative angular

momentum as is expected.

However, a fundamental and intriguing asymmetry is noticed for the Sφ3 Stokes parameter

evaluated using electric field components orthogonal to φ̂. It is given by the expression

(IS)m = sign(β)2|E0|2|β|XJ0(Xr/a)J1(Xr/a) (2.17)

which we denote as the spin polarization intensity. The direction of this “spin” is in the

unique φ̂ direction and is seen to be independent of the sign of the angular momentum. Fur-

thermore, it is also locked to the momentum β since sign(β) = ±1 leading to fundamentally

different behavior of forward and backward propagating HE11 modes along the fiber. For

forward momentum sign(β) = +1 we have +φ̂ transverse spin and for sign(β) = −1 we have

−φ̂ regardless of which angular momentum mode we are considering. Therefore, instead of

four degenerate solutions, only two are allowed.

We emphasize once again that the spin-momentum locking arises from the fact that

growing solutions for evanescent waves outside the optical fiber are discarded. These growing

solutions have the opposite spin direction for a given propagation direction. (Sec. 2.3 ).

This shows we have spin-momentum locking even in standard optical fibres which is directly

linked to the evanescent fields necessary for confinement. Strictly speaking, we enforced spin-

momentum locking from the outset by only permitting Kn type Modified Bessel functions

and discarding the In type – since they exponentially grow as r increases. This causality

requirement with regards to fiber modes is the precise reason that we have handedness

imparted to the optical fiber.

The total electric field intensity is a sum of linear, angular momentum and spin intensities

which arises from the properties of Stokes parameters (S0
2 = S1

2 +S2
2 +S3

2). We thus have

IE
2 = IAM

2 + IS
2 + IL

2 where IE = |~E|2 = 2|E0|2β2J0
2 + |E0|2X2J1

2 is the total intensity of

the electric field. Here, the linear polarization intensity is defined as IL = |E0|2X2J1
2, arising
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due to the electric field component in the ẑ direction. We can now analyze the fractional field

intensity residing in the angular momentum, spin or linear polarization components. The

normalized polarization intensities for a weakly-guiding optical fibre are shown in the plot

of Fig. (2.6 ). We also include a field vector plot in Fig. (2.5 ) to help visualize the transverse

spin component in the HE11 mode.

2.4.4 Directional quantum emitter coupling

All that being said, this intriguing symmetry breaking could be exploited for applications

in the field of quantum photonics. One recent experiment has utilized cold atoms near optical

fibers to demonstrate directional waveguiding of spin-polarized spontaneous emission [36 ].

We show how this phenomenon is related to spin-momentum locking of the HE11 mode.

Note, our results can be expanded to an isotropic scatterer with circularly polarized incident

light or a chiral scatterer with linearly polarized incident light.

Let us consider a left and right handed circularly polarized source that has both electric

and magnetic moments. Following the semiclassical theory of spontaneous emission [46 ]–[48 ],

we approximate this chiral source to be

 ~JE(~r)
~JH(~r)


±

= −iωδ3(~r − ~r0)

 ~p

~m

 = −iωδ3(~r − ~r0)

 p0

−im0

 ê±e±iφ (2.18)

where the ± indicates left or right handed circular polarization in the cylindrical coordinate

basis of the optical fiber. The coupling strength (energy of interaction) into one of the HE11

modes is then proportional to Am ∝ iω[~p∗ · ~Em(~r0) + ~m∗ · ~Hm(~r0)]. Plugging in for ~r0 = ~0 it

can be shown that the magnitude of the coupling strength (|Am|2) for each m = ±1 mode is

equal to

|Am|2 = C1

∣∣∣∣∣sign(β)|β|ωp0 +m
(σ1)2m0

µ0a

∣∣∣∣∣
2

(2.19)

where C1 is some positive proportionality constant. The angular momentum quantum num-

ber m = ±1 should not be confused with the magnitude of the magnetic dipole |~m| = m0.

Also note, that the time averaged power along the fiber axis for each mode is proportional

to Pm ∝ |Am|2.
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Figure 2.5. The evolution of the polarization vector as it propagates in an
optical fibre with V = 1.5 and ∆ = 0.1. We display the electric field at a
single point at r = a in the m = +1 HE11 mode to demonstrate the transverse
spin near the core-cladding region. As we can see, the electric field rotates
in the z-plane as well as in the x-y plane, hence there is a spin component
directed around φ̂ (inset). Out of four possible degenerate solutions, only two
are allowed because of the decaying condition on evanescent waves outside the
core. Consequently, the HE11 mode of the optical fiber has spin-momentum
locking.
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Figure 2.6. Normalized HE11 polarization intensities (I/IE(0)) for an optical
fibre of V = 1.5 and ∆ = 0.1. We see that the majority of field is concentrated
in the IAM angular momentum component but there is a significant component
of spin intensity (IS) in the φ̂ direction near the core-cladding interface at
r = a.
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We notice the striking fact that this coupling factor of the chiral emitter into the HE11

mode is direction dependent. Hence, we will have asymmetrical power emitted in differing

directions along the fiber. The + polarization chiral emitter couples only into the m = +1

mode and emits most strongly in the forward propagating sign(β) = +1 direction while

being weaker for backward propagation sign(β) = −1. Conversely, the − polarization chiral

emitter couples only into the m = −1 mode and emits more strongly in the sign(β) = −1

direction rather than sign(β) = +1. This means we can control the directional propagation

of waves and the specific angular momentum mode (m = ±1) we couple into by choosing

either left or right handed chiral emitters. This effect is maximal when the electric and

magnetic dipole moments are tuned to have |β|ωp0 = (σ1)2

µ0a
m0. For weakly guided waves,

|β| ≈ σ1, and it can be shown that maximal coupling will occur when m0 ≈ Z1p0 where

Z1 = Z0/n1 =
√
µ0/ε1ε0 is the wave impedance inside the fibre.

We now propose an approach to couple strictly to the transverse spin components of the

electric field with a transversely polarized electric source. This can have the advantage of

not requiring magnetic dipoles or chirality. We achieve this by tuning the phase difference

between two orthogonally oriented point dipole emitters ~p = pxx̂ + ipz ẑ. This emitter is

placed at the location ~r0 = ax̂ where the spin intensity is maximum (see Sec. 2.4.3 ). The

transverse spin is unchanged between angular momentum modes so they will both contribute

to the propagation of the wave. The transverse coupling strength for both m = ±1 is equal

to

|Am|2 = C2ω
2
∣∣∣∣∣sign(β)|β|J0(X)px + XJ1(X)pz

∣∣∣∣∣
2

(2.20)

where C2 is another positive proportionality constant. We see again that there is dominance

of the wave to be in the sign(β) = +1 direction compared to the sign(β) = −1. The

asymmetry in coupling between the two directions is maximal when the dipole strengths are

adjusted to have |β|J0(X)px = XJ1(X)pz. We illustrate these two unique quantum emitter

couplings in Fig. (2.7 ) and their orientation in the optical fiber.
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Figure 2.7. Chiral emitter placed at ~r0 = ~0 and transverse emitter placed at
~r0 = ax̂ inside the optical fibre. The intrinsic chirality of the HE11 mode opens
possibilities for spin-controlled quantum photonics. We emphasize that this
intrinsic chirality is universal and arises from the evanescent waves outside the
core.
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2.4.5 Surface states

The last example is that of surface electromagnetic waves such as Zenneck waves [49 ],

Dyakonov waves [50 ] and surface plasmon-polaritons (SPPs) which exist at the interface of

two materials. The necessarily evanescent nature of the electromagnetic field will introduce

very clear spin-momentum locking in all these waves. We emphasize that such polarization

dependent transport has been observed for the particular case of surface plasmon polaritons

[32 ], [37 ], [38 ], [40 ] but the universality and fundamental origin of the phenomenon has never

been pointed out.

Note that surface waves are evanescent in both regions (see Fig. (2.8 )) and hence will

have global spin-locking where the handedness of the wave will be invariant in each of the

half-spaces. We explain this by taking the example of surface plasmon polaritons which

exist at the interface of a metal and dielectric. Region 1 (−z) is metallic having a relative

permittivity ε1 < 0 and the dielectric in region 2 (+z) has a relative permittivity ε2 > 1.

This results in the familiar dispersion relation κ = k0

√
ε1ε2/(ε1 + ε2).

We can now fully quantify the evanescent spin in terms of the permittivities. Utilizing

the expression for the circular Stokes parameters (S3) derived in Eq. (2.5 ) this leads to

− (S3)1 = (S3)2 = 2

√
|ε1|ε2

|ε1| + ε2
(2.21)

where (S3)1 and (S3)2 are the p̂-polarization Stokes parameters in region 1 and 2 respec-

tively and we are assuming the permittivities are purely real in this instance. As we can

see, as |ε1| → ε2, the momentum κ → ∞ and the spin approaches perfect circular polar-

ization −(S3)1 = (S3)2 → 1, as expected. Also to reiterate, the spin-momentum locking of

evanescent waves means these spins are flipped when the wave is propagating in the oppo-

site direction. To help visualize these phenomena, the electric field vector plot for an SPP

is displayed in Fig. (2.8 ) along with the “full” SPP dispersion relation that includes the

handedness of the spin (in the dielectric region). Our approach provides an intuitive expla-

nation of this phenomenon observed in recent experiments where chiral emitters or near-field
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Figure 2.8. Left: All electromagnetic surface waves will show spin-
momentum locking. We depict here an SPP excitation between metal with
ε1 = −2 and air with ε2 = 1 propagating in the +x direction. The vector plot
overlaid on the spatial distribution of the Stokes parameter (S3) illustrates the
inherent handedness of the two evanescent waves and how they couple with
counter rotating spins. Right: SPP dispersion relation that also includes the
handedness of the evanescent spin (in the dielectric region). As the momen-
tum κ increases, the SPP spin approaches perfect circular polarization (SPP
resonance).

interference from electric and magnetic dipoles lead to unidirectional SPP propagation [32 ],

[37 ], [38 ], [48 ].

2.5 Conclusion

In conclusion, we have shown that evanescent waves possess inherent local handed-

ness (spin) which is tied to their phase velocity (momentum). We have proven this spin-

momentum locking is universal behavior since it arises due to causality and the complex

dispersion relation of evanescent waves. It is interesting to note that recent work on topo-

logical photonics [18 ], [51 ]–[53 ] has shed light on the existence of surface states immune to

disorder and our work will surely lead to a better understanding of those surface states as

well. The QSH surface state has electrons with spins locked to their direction of propagation

but only occurs on the surface (interface) of materials with spin-orbit coupling (eg: HgTe

quantum wells). The electromagnetic surface state curiously always possesses this prop-
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erty irrespective of the nature of the material. This warrants a deeper investigation and

simultaneously opens up possibilities for practical applications.

Funding information

We acknowledge funding from Helmholtz Alberta Initiative and National Science and

Engineering Research Council of Canada.

Acknowledgments

The authors acknowledge funding from Helmholtz Alberta Initiative and National Sci-

ence and Engineering Council of Canada.

See Supplemental Material for supporting content.

77



3. QUANTUM GYROELECTRIC EFFECT: PHOTON SPIN-1

QUANTIZATION IN CONTINUUM TOPOLOGICAL

BOSONIC PHASES

From [T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quanti-

zation in continuum topological bosonic phases,” Phys. Rev. A, vol. 98, p. 023842, 2 Aug.

2018]. © 2020 American Physical Society. [54 ]

Topological phases of matter arise in distinct fermionic and bosonic flavors. The fun-

damental differences between them are encapsulated in their rotational symmetries – the

spin. Although spin quantization is routinely encountered in fermionic topological edge

states, analogous quantization for bosons has proven elusive. To this end, we develop the

complete electromagnetic continuum theory characterizing 2+1D topological bosons, taking

into account their intrinsic spin and orbital angular momentum degrees of freedom. We

demonstrate that spatiotemporal dispersion (momentum and frequency dependence of lin-

ear response) captures the matter-mediated interactions between bosons and is a necessary

ingredient for topological phases. We prove that the bulk topology of these 2+1D phases

is manifested in transverse spin-1 quantization of the photon. From this insight, we predict

two unique bosonic phases – one with even parity C = ±2 and one with odd C = ±1. To

understand the even parity phase C = ±2, we introduce an exactly solvable model utiliz-

ing nonlocal optical Hall conductivity and reveal a single gapless photon at the edge. This

unidirectional photon is spin-1 helically quantized, immune to backscattering, defects, and

exists at the boundary of the C = ±2 bosonic phase and any interface – even vacuum.

The contrasting phenomena of transverse quantization in the bulk, but longitudinal (helical)

quantization on the edge is addressed as the quantum gyroelectric effect (QGEE). We also

validate our bosonic Maxwell theory by direct comparison with the supersymmetric Dirac

theory of fermions. To accelerate the discovery of such bosonic phases, we suggest two new

probes of topological matter with broken time-reversal symmetry: momentum-resolved elec-

tron energy loss spectroscopy and cold atom near-field measurement of nonlocal optical Hall

conductivity.
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3.1 Introduction

Initial observations of topological phases of matter surfaced with the quantum Hall effect

(QHE), a discovery which revealed that the transverse conductivity σH = ne2/h is naturally

quantized [3 ], [5 ], [7 ]. e is the elementary charge of the electron and h is the Planck constant.

Here, n ∈ Z is the electronic Chern number and represents a global topological invariant.

Being a global property of the bulk electronic band structure, it is insensitive to disorder

within the material. Yet, in terms of the photon with frequency ω and momentum k,

σH(0, 0) = n
e2

h
, (3.1)

only describes the local static response ω = k = 0 and contains no information of the high-

frequency ω > 0, short-wavelength k > 0 behavior of the electromagnetic field. The AC

dynamical equivalent σH(ω, 0) of the conventional DC conductivity σH(0, 0) is known as

the optical Hall conductivity. It is measured using the Faraday rotation angle (gyrotropic

response) and has shown plateau-like behavior up to THz frequencies [55 ]. The purpose of

this paper is to unravel the global topological properties of the photon and the role of spin-1

quantization in the generalized optical Hall conductivity σH(ω, k).

Conventionally, topological materials have focused on fermionic behavior, which display

spin-1⁄2 polarized edge states and integer quantization of the Hall conductivity [27 ], [28 ]. How-

ever, spin-1 bosonic phases with broken time-reversal symmetry (TRS) have recently been

proposed [56 ]–[63 ] and correspond to even integer Hall quantization. Pioneering research

in topological photonics has mimicked the fermionic behavior using carefully structured

pseudo-spin-1⁄2 photonic crystals [64 ]–[67 ]. A few striking examples are gyrotropic photonic

crystals [23 ], [68 ], [69 ], Floquet topological insulators [52 ] and bianisotropic metamaterials

[51 ], [70 ], [71 ] which support chiral photonic edge states. Similar pseudo-spin approaches

utilizing Haldane models on honeycomb lattices have led to Chern insulators [19 ]. These

are quantum Hall phases but with zero field – realized in photonic crystals, circuit QED

[72 ] and cold atom systems [73 ]. Important work has also developed Chern invariants for

continuous photonic media with broken TRS [74 ]–[77 ]. Nevertheless, the discovery of true

spin-1 quantized phases has remained an open problem, as well as the connection between
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bosonic and photonic topologies. We solve both these problems simultaneously which can

open interesting avenues for condensed matter physics and photonics.

The essential difference between fermions and bosons is revealed in their half-integer vs.

integer spins. This difference is directly reflected in single-particle geometric phases [78 ],

[79 ] and arises from their rotational symmetries (R). Under cyclic revolution, a fermion

returns out of phase with itself R(2π) = −1, meaning topological monopoles exhibit half-

integer quantization. Conversely, bosons return in phase under the same rotation R(2π) =

+1, signaling integer monopoles in the band structure. Due to this critical distinction,

fermions and bosons constitute different topological classes which are incommensurable with

one another. Although a host of naturally occurring fermionic phases have been discovered

[80 ], no bosonic equivalent has been found till date. In this paper, we develop the theory of

TRS broken bosonic phases for light to accelerate their discovery.

We put forth the complete microscopic continuum theory describing all 2+1D bosonic

phases of the photon. We account for the inherent spin-1 symmetries of the electromagnetic

field such that the bosonic properties emerge naturally. This marks a distinct departure from

previous attempts at building topological field theories for the photon. We reveal that the

signature of these topological bosonic phases is bulk transverse spin quantization [26 ], [81 ]–

[83 ] – in stark contrast to conventional photonic media where transverse spin is a continuous

classical number. From very general symmetry arguments, we predict two unique photonic

phases, with even C = ±2 or odd C = ±1 parity.

We show the fundamental necessity of spatiotemporal dispersion (momentum and fre-

quency dependence of linear response) to define global topological invariants in continuum

phases of matter. Spatiotemporal dispersion is a natural consequence of matter-mediated

interactions between bosonic fields. We introduce an exactly solvable model, exploiting

nonlocal optical Hall conductivity σH(ω, k), to unravel the topological physics of the even

parity phase C = ±2. This phase has been predicted in interacting bosonic systems and

corresponds to a single gapless photon at the edge. The unidirectional photon exists at the

boundary of the nontrivial gyrotropic medium and arbitrary material interface, unlike any

previously known edge states in electromagnetism. It hosts many intriguing optical proper-

ties, such as spin-1 helical quantization, anomalous displacement currents and robustness to
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disorder. We address the contrasting phenomena of transverse quantization in the bulk and

longitudinal (helical) quantization at the edge as the quantum gyroelectric effect (QGEE).

To rigorously validate our bosonic predictions, we directly compare this model to its su-

persymmetric Dirac theory [84 ]–[86 ], highlighting the striking similarities, but important

differences, between spin-1 and spin-1⁄2 topologies. Finally, we suggest experimental probes

to search for these new bosonic phases of matter.

This article is organized as follows. In Sec. 3.2 we analyze the linear response theory

of 2+1D electromagnetism and derive the regularized continuum Hamiltonian with broken

TRS. In Sec. 3.3 we study the rotational symmetries of this Hamiltonian and discuss the

physical implications of orbital, spin and total angular momentum of the collective light-

matter excitations. The following Sec. 3.4 relates integer spin directly to the Chern number

and all topological bosonic phases of the photon are found. Using an exactly solvable model,

the even parity bosonic phase C = ±2 is examined extensively. Sec. 3.5 validates our

predictions by directly comparing the Maxwell model to its supersymmetric Dirac theory.

This procedure highlights the correspondence between traditional fermionic phases and even

parity bosonic phases, while also elucidating the fundamental role of spin. Sec. 3.6 presents

our conclusions and a discussion of how to search for bosonic phases in gyrotropic plasmas

and quantum wells. We anticipate the development of new experimental tools to probe the

signatures of these spin-1 quantized photonic edge states.

The focus of this paper is TRS broken topological bosonic phases which possess uni-

directional edge states. As mentioned above, this is fundamentally related to optical Hall

conductivity and gyrotropy in matter. However, TRS protected bosonic phases are also

possible and show counter-propagating edge states [63 ]. This arises from antisymmetric

magnetoelectricity as opposed to gyrotropy. The hallmark of both these bosonic phases is

longitudinal spin-1 quantization at the edge. These topologically protected edge states are

emergent massless photons with massive-like photons in the bulk material. The rigorous

validity of these topological bosonic phases follows from supersymmetric Dirac theory and

constitutes a one-to-one mapping to the continuum fermionic phase. This direct analogy be-

tween Dirac-fermions and Maxwell-bosons fundamentally requires spatiotemporal dispersion,

which has not been previously tackled in electromagnetic topological field theories.
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Figure 3.1. Our work emphasizes the fundamental differences between 2+1D
topological materials for Maxwell-bosons and Dirac-fermions, which are char-
acterized by their bulk spin quantum numbers. In 2D, the quantization axis is
along z as all rotations occur in the x-y plane. Both (a) photonic and (b) elec-
tronic topologies are connected to Ŝz quantization at certain high-symmetry k
points in the bulk material. The distinction lies in their rotational symmetries
(R). Photons are bosonic particles and respect spin-1 statistics R(2π) = +1,
which possess integer spin projections m = ±1, 0. Conversely, electrons are
fermionic particles and respect spin-1⁄2 statistics R(2π) = −1, which possess
half-integer spin projections m = ±1/2. This changes the interpretation of
topological invariants and the observable phenomena of different particles.
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3.2 Continuum topological photonics

3.2.1 2+1D electrodynamics

In two spatial dimensions and one temporal dimension, the propagation of charge is

restricted to the x-y plane. This limits the degrees of freedom of both the electromagnetic

field and the induced response of a material [Fig. 3.2a ]. Therefore, we focus on strictly

transverse-magnetic (TM) waves, meaning there are only 3 unique components of the field.

From first principles [App. B.1 ], we derive the corresponding wave equation of the 2D photon

coupled to matter,

H0(k)f = ωM(ω,k)f, f =


Ex

Ey

Hz

 , (3.2)

where f is the TM polarization state (wavefunction) of the electromagnetic field. In the

absence of matter, H0(k) are the vacuum Maxwell equations in momentum space,

H0(k) = kxŜx + kyŜy =


0 0 −ky
0 0 kx

−ky kx 0

 . (3.3)

Notice that H0(k) = k ·S represents optical helicity, i.e. the projection of momentum k onto

the spin S. We identify these spin-1 operators Ŝx and Ŝy that satisfy the angular momentum

algebra [Ŝx, Ŝy] = iŜz,

Ŝx =


0 0 0

0 0 1

0 1 0

 , Ŝy =


0 0 −1

0 0 0

−1 0 0

 , Ŝz =


0 −i 0

i 0 0

0 0 0

 . (3.4)

Here, (Ŝz)ij = −iεijz is the generator of rotations in the x-y plane and is represented by the

antisymmetric matrix. Ŝz will be foundational when discussing spin-1 symmetries in 2D.
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The linear response function of the 2D material M is dependent on continuous variables

ω and k,

M(ω,k) =


εxx εxy χx

ε∗
xy εyy χy

χ∗
x χ∗

y µ

 ,
Di = εijE

j + χiHz,

Bz = χ∗
iE

i + µHz,

(3.5)

which compactly represents the constitutive relations. We include all possible material re-

sponses as a generalization – for instance magnetoelectricity χi and birefringence in εij.

However, based on symmetry constraints, we will show that only certain parameters of M

are important in the topological classification.

3.2.2 Continuum response function

Alas, Eq. (3.2 ) poses a problem; it does not represent a proper first-order in time Hamil-

tonian since the response function M(ω,k) is dependent on its own eigenvalue. Nevertheless,

we can prove that it is derived from a first-order Hamiltonian by exploiting stringent sym-

metry properties. We demand Hermiticity M = M† such that the response is lossless.

We also require positive definiteness M̄ = ∂ω(ωM) > 0 to ensure the energy density is

non-negative and admits proper normalization f †M̄f > 0. The response must be causal

(Kramers-Kronig) and obey the reality condition M(ω,k) = M∗(−ω,−k), guaranteeing

the electromagnetic fields are real-valued [87 ]. Two additional constraints should also be

considered for realistic materials. Stability at static equilibrium M(0,k) = M̄(0,k) > 0,

and the ultraviolet limit limω→∞ M(ω,k) = 13. Here, 13 is the 3 × 3 identity matrix and

the limit implies transparency at high-frequency ω → ∞, as the material cannot respond to

sufficiently fast temporal oscillations.

Combining all the above criteria, we find that the response function can always be de-

composed as a discrete summation of oscillators [19 ], [74 ], [88 ],

M(ω,k) = 13 −
∑
α

C†
αkCαk

ωαk(ω − ωαk) . (3.6)

α labels any arbitrary bosonic excitation in the material, such as an exciton or phonon, which

couples linearly to the electromagnetic fields via the 3 × 3 tensor Cαk. ωαk is the resonant
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energy of the oscillator and corresponds to a first-order pole of the response function. Note

both Cαk and ωαk are in general k dependent. We emphasize that the response function is

consistent with previous work on gyrotropic plasmas [89 ], [90 ]. However, our key advance is

that the tensors Cαk, characterizing the collective light-matter excitations, carry information

of spin and orbital angular momentum.

3.2.3 Continuum Hamiltonian

A detailed derivation of the continuum electromagnetic Hamiltonian H(k) is presented

in App. B.2 . To accomplish this, we expand the response function M(ω,k) in terms of

3-component matter oscillators ψα. These represent internal polarization and magnetization

modes of the material,

ψα = Cαkf

ω − ωαk
, ωψα = ωαkψα + Cαkf. (3.7)

We now define u as the generalized state vector of the electromagnetic problem, accounting

for the photon f and all possible internal excitations ψα,

H(k)u = ωu, u =
[
f ψ1 ψ2 . . .

]ᵀ
, (3.8)

which satisfies a first-order Hamiltonian wave equation. Notice that contraction of u natu-

rally reproduces the energy density upon summation over all degrees of freedom u†u = f †M̄f ,

with M̄ = ∂ω(ωM) > 0 always positive definite. The continuum Hamiltonian H(k) acting

on u is given concisely as,

H(k) =



H0(k) +∑
α ω

−1
αkC†

αkCαk C†
1k C†

2k . . .

C1k ω1k 0 . . .

C2k 0 ω2k . . .
... ... ... . . .


. (3.9)
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This eigenvalue problem generates the complete spectrum of quasiparticle eigenstates,

Hkunk = ωnkunk, (3.10)

and the eigenstates are normalized to the energy density u†
nkunk = f †

nkM̄(ωnk,k)fnk = 1.

Moreover, the eigenenergies ωnk are the n nontrivial roots of the characteristic equation,

det [H0(k) − ωM(ω,k)] = 0, ω = ωn(k), (3.11)

proving that the response function M(ω,k) is derived from a first-order Hamiltonian H(k).

3.2.4 Continuum regularization (one-point compactification)

Our goal is to develop a continuum topological theory that accounts for both spatiotem-

poral dispersion and the inherent bosonic properties of light. Due to the unbounded nature

of the momentum space R2, continuum Chern numbers are usually ill-defined. Nevertheless,

as long as the system is properly regularized, continuum field theories are possible and can be

incredibly powerful tools to study long wavelength topological physics [91 ]–[93 ]. A necessary

condition is one-point compactification of the momentum space [1 ], [15 ], [94 ], which governs

the high-k asymptotic behavior of the Hamiltonian. This requirement is well understood

in condensed matter and demands the Hamiltonian approach a directionally independent

value,

lim
k→∞

H(k) → H(k), (3.12)

where k =
√

k · k is the magnitude of the wavevector. In this way, all limits at infinity are

mapped into the same point and satisfy a “periodic” boundary condition. The momentum

space is closed and topologically equivalent to the Riemann sphere R2 ' S2 [Fig. 3.2b ].

Hence, Chern numbers are quantized. A rigorous proof is presented in App. B.3 .

This constraint has important implications in continuum photonic media. Since Maxwell’s

equations are strictly first-order in spatial derivatives [Eq. (3.3 )], one-point compactification

can only be satisfied by introducing nonlocality [95 ], [96 ]. Nonlocality (or spatial dispersion)

is the momentum dependence of linear response – commonly ignored in photonics problems,
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(a) Transverse-magnetic (TM) wave. (b) Riemann sphere.

Figure 3.2. (a) Only transverse-magnetic (TM) waves propagate as charge is
restricted to the x-y plane (blue and red arrows denote the fields). This limits
the degrees of freedom of both the electromagnetic field and the induced re-
sponse of a material. Electromagnetic polarization and magnetization response
in a 2D material is shown with the purple and yellow arrows. The electric and
magnetic displacement fields are the linear superposition of Di = Pi +Ei and
Bz = Mz+Hz. Our focus in this paper is gyrotropic media which correspond to
optical (dynamical) Hall conductivity. (b) One-point compactification of the
momentum space R2 ' S2 over which the topological quantum numbers are
defined. When the Hamiltonian is properly regularized, the planar k-space is
topologically equivalent to the bounded Riemann sphere. kp = 0 and kp = ∞
are the rotationally invariant (high-symmetry) points on the sphere, passing
through the z-axis. This procedure is necessary to ensure Chern quantization
in continuum topological field theories and fundamentally requires nonlocal
photonic media.

DC transport measurements, as well as Faraday rotation experiments. However, we strongly

emphasize that the high-k behavior cannot be neglected even in the long wavelength con-

tinuum theory. These deep sub-wavelength components encode global information of the

fields and are essential to properly describe the topological physics. By exploiting rotational

symmetry, we will show that the asymptotic behavior of the Hamiltonian H(k) and by ex-

tension, the response function M(ω,k), is naturally regularized and predicts new bosonic

phases of matter.
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3.3 Rotational symmetry

3.3.1 Definition of orbital, spin and total angular momentum

If the two dimensional crystal has a center (at least 3-fold cyclic [97 ], [98 ]), the continuum

Hamiltonian is rotationally symmetric about z,

R−1H(Rk)R = H(k), R(2π) = 13, (3.13)

and the eigenenergies ω = ωn(k) depend only on the magnitude of k. Note that R is diagonal

in u, meaning the photon and each oscillator is rotated individually, f → Rf and ψα → Rψα.

In this case R(θ) is a continuous rotation,

R(θ) = exp [iθŜz] =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (3.14)

and can be expressed as the exponential of the spin-1 generator (Ŝz)ij = −iεijz. This

represents an element of SO(3) in the subspace of R2 [99 ], as all rotations occur in the x-y

plane. We stress that the vector representation is bosonic, meaning the quasiparticles return

in phase under cyclic revolution R(2π) = 13.

Since the Hamiltonian possesses a continuous rotational symmetry, the total angular

momentum (TAM) is conserved,

[Ĵz, H(k)] = 0, Ĵz = L̂z + Ŝz. (3.15)

Eq. (3.13 ) and (3.15 ) are equivalent statements in this context. Here, L̂z is the orbital angular

momentum (OAM) operator in 2D k-space and can be expressed in polar coordinates as,

L̂z = −ikx
∂

∂ky
+ iky

∂

∂kx
= −i∂φ. (3.16)
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Eigenstates of the OAM are well known and represent quantized azimuthal charges,

L̂z|l〉 = l|l〉, |l〉 = exp(ilφ), (3.17)

where l ∈ Z is any integer. Conversely, eigenstates of the spin angular momentum (SAM)

represent states of quantized polarization, transverse to the x-y plane,

Ŝz~e = m~e. (3.18)

The matrix form of Ŝz is given in Eq. (3.4 ). For photons, the spin is an integer m = ±1, 0

and takes one of three discrete values. First, we have the m = ±1 spin states,

~e± = 1√
2


1

±i

0

 , Ŝz~e± = ±~e±. (3.19)

~e± are resonant electric (Hz = 0) counter-rotating states. Secondly, we have the m = 0 spin

state, which is resonant magnetic (Ei = 0) and irrotational,

~e0 =


0

0

1

 , Ŝz~e0 = 0. (3.20)

A visualization of the quantized spin-1 states is displayed in Fig. 3.1 (a) and this is compared

to quantized spin-1⁄2 states in Fig. 3.1 (b). In Sec. 3.4 , we will prove that these spin quantized

eigenstates naturally arise at high-symmetry k points in 2+1D bosonic phases.

3.3.2 High-symmetry points and gauge singularities

At an arbitrary momentum k, the quasiparticles unk are not eigenstates of L̂z or Ŝz.

Instead, they are eigenstates of the total angular momentum Ĵz = L̂z + Ŝz,

Ĵzunk = jnunk, jn ∈ Z, (3.21)
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where jn is an integer for bosons. Since Ĵz is a differential operator, the choice of jn represents

a particular Berry gauge for the eigenstates. This gauge is single-valued for all k with the

possible exception of two points, kp = 0 and kp = ∞. These are called high-symmetry points

(HSPs). At these specific momenta, the Hamiltonian is rotationally invariant [100 ],

R−1H(kp)R = H(kp), [Ŝz, H(kp)] = 0, (3.22)

which follows immediately from Eq. (3.13 ) and (3.15 ). In the continuum theory, kp = 0 is

a HSP because the origin always rotates into itself. Owing to one-point compactification

[Eq. (3.12 )], kp = ∞ is also a HSP. This is clear by direct inspection of the Riemann sphere

in Fig. 3.2b . A rotation in the plane of R2 rotates S2 about its axis, keeping both kp = 0

and kp = ∞ fixed. Invariance at kp = ∞ is therefore imperative to describe continuum

topological theories.

At HSPs the SAM of any eigenstate unk is quantized and this is guaranteed by symmetry

[Eq. (3.22 )]. Still, the Berry gauge may be multi-valued here due to the OAM – known as a

phase singularity [101 ],

lim
k→kp

un(k) → un(kp) exp [iln(kp)φ] , (3.23)

Ŝzun(kp) = mn(kp)un(kp), (3.24)

where jn = ln(kp) + mn(kp) at HSPs. We come to an important revelation from Eq. (3.23 ).

If the spin does not change within the eigenstate dispersion mn(0) = mn(∞), we can remove

the phase singularity at both points simultaneously ln(0) = ln(∞) = 0, such that the Berry

gauge jn = mn(0) = mn(∞) is single-valued for all k.

However, if the spin changes within the dispersion mn(0) 6= mn(∞), this procedure is

impossible. The Berry gauge is always multi-valued because the singularity ln(kp) 6= 0

cannot be resolved at kp = 0 and kp = ∞ simultaneously. This is a nontrivial topology.

The physical interpretation is simple but profound; since the TAM is conserved for each

eigenstate ∆jn = 0, the OAM ∆ln = ln(∞) − ln(0) 6= 0 must change to compensate for the

SAM,

∆ln = −∆mn = mn(0) −mn(∞). (3.25)
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We will now prove that Eq. (3.25 ) fundamentally defines the Chern classification of 2+1D

bosonic phases.

3.4 Continuum topological bosonic phases

3.4.1 Continuum photonic Chern number

Utilizing the eigenstates of the Hamiltonian in Eq. (3.10 ); we obtain the Berry connection

by varying a quasiparticle with respect to the momentum,

An(k) = −iu†
nk∂kunk. (3.26)

Applying the curl produces the gauge invariant Berry curvature Fn(k) = ẑ ·[∂k×An(k)]. The

Chern number Cn is a global topological invariant and is traditionally found by integrating

Fn over the 2D Brillouin zone – i.e. the torus T2 = S1 × S1. For continuum theories, we

integrate over the entire 2D momentum space R2,

Cn = 1
2π

¨
R2
Fn(k) d2k. (3.27)

When properly regularized, the planar manifold is topologically equivalent to the Riemann

sphere R2 ' S2 and the Chern number is quantized [App. B.3 ].

Although photonic Chern numbers have been defined, neither the high-k behavior nor

the inherent bosonic properties have been addressed. With this in mind, we return to the

Berry connection An in polar coordinates ∂k = k̂∂k + φ̂∂φ,

An(k) = k̂Akn(k) + φ̂Aφn(k). (3.28)

Due to rotational symmetry, the polar components of An depend only on k. Furthermore,

we can connect the Berry potential Aφn directly to the OAM,

Aφn(k) = −iu†
nk∂φunk = 〈L̂z〉n. (3.29)
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Here, 〈L̂z〉n is the expectation value of the OAM for the nth eigenstate. This corresponds to

a Berry curvature Fn of,

Fn(k) = ∂k〈L̂z〉n. (3.30)

When integrating over all momenta d2k = dkdφ, we find that the continuum Chern number

Cn is determined solely by the phase singularities at HSPs,

Cn =
ˆ ∞

0
dk ∂k〈L̂z〉n = 〈L̂z〉n|∞0 = ∆ln, (3.31)

precisely the change in OAM. Substituting for ∆ln = −∆mn in Eq. (3.25 ), we attain an

elegant expression for the Chern number,

Cn = ∆ln = mn(0) −mn(∞). (3.32)

Eq. (3.32 ) is one of the central results of this paper and is valid for both fermionic and

bosonic representations. Essential differences between the two are immediately apparent.

For a spin-1⁄2 electron, quanta take one of two half-integer values mn = ±1
2 . Consequently,

we find only one truly distinct fermionic phase,

fermion : Cn = ±1, 0. (3.33)

However, for the spin-1 photon, quanta take three integer values mn = ±1, 0. We discover

two unique bosonic phases,

boson : Cn = ±2,±1, 0. (3.34)

One with even parity Cn = ±2 and one with odd Cn = ±1. Even parity corresponds to a

change from mn(0) = ±1 to mn(∞) = ∓1 at HSPs. This phase is familiar in interacting

bosonic systems and is identified with a single gapless boson at the edge [57 ]–[62 ] – not

two as we might expect from fermionic Chern number arguments. Odd parity bosonic

phases are quite exotic in this regard [102 ], [103 ]. This phase corresponds to a change from

mn(0) = {0,±1} to mn(∞) = {±1, 0} at HSPs.
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3.4.2 Nonlocal regularization of the response function

We now derive the asymptotic behavior of the Hamiltonian H(k) to ensure the continuum

theory is properly regularized at k → ∞. This will help us discover the precise form of the

response function M(ω,k) and the order of nonlocality necessary to describe a topological

field theory. Nonlocality plays two equally important roles in this context – it distinguishes

between trivial and nontrivial phases. If high-k components are ignored, it is impossible to

define either of these phases in the continuum.

From Eq. (3.6 ) and (3.9 ), rotational symmetry implies the coupling tensors obey,

R−1Cα(Rk)R = Cα(k), (3.35)

and the oscillator resonances ωα(k) depend only on k. We find the exact expression of Cα(k),

Cα(k) = cα(k)k ⊗ k + dα(k)k · S + Gα(k), (3.36)

where cα(k) and dα(k) are scalars. It is easy to check that the tensors also commute with

[Ĵz, Cα(k)] = 0, conserving TAM. cα(k) introduces a nonlocal birefringence in εij and dα(k) is

a type of nonlocal magnetoelectricity χi. Both terms are permitted by symmetry but neither

is important, as all contributions besides Gα(k) vanish identically at kp = 0 and kp = ∞.

This is because Gα(k) is the only rotationally invariant component of Cα(k), which defines

the topology,

R−1Gα(k)R = Gα(k), [Ŝz,Gα(k)] = 0. (3.37)

The Hamiltonian in Eq. (3.9 ) takes the following form at HSPs,

H(kp) =



∑
α ω

−1
αkp

G†
αkp

Gαkp G†
1kp

G†
2kp

. . .

G1kp ω1kp 0 . . .

G2kp 0 ω2kp . . .
... ... ... . . .


. (3.38)
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Notice the vacuum Maxwell equations H0(k) play no role in either limit; the Hamiltonian

is governed entirely by the material response at HSPs. Nevertheless, this imposes pivotal

stipulations on the asymptotic behavior. The largest powers in k must arise from Gαk as

these terms dominate at exceedingly large momentum k → ∞. Consequently, Gαk and ωαk

require quadratic nonlocality ∝ k2 at minimum, since the vacuum fields H0(k), which are

linear in k, must be outpaced in the k → ∞ limit.

By extension of Eq. (3.38 ), the response function is regularized and rotationally invariant

at HSPs,

[Ŝz,M(ω, kp)] = 0. (3.39)

Upon summation over all oscillators describing the linear response, M takes a remarkably

simple form,

M(ω, kp) = 13 −
∑
α

G†
αkp

Gαkp

ωαkp

(
ω − ωαkp

) =


ε ig 0

−ig ε 0

0 0 µ

 , (3.40)

where all parameters are evaluated at kp. Here, ε and µ are the conventional scalar permit-

tivity and permeability of a 2D material. g is a generalized gyrotropic coupling which breaks

both parity and time-reversal symmetry.

Although the condition at kp = ∞ is a mathematical requisite, it makes perfect sense

physically when we acknowledge that the continuum theory is simply an approximation of

the underlying crystal lattice. In reality, the momentum can never reach arbitrarily large

values. As the momentum approaches the scale of the lattice constant ka ≈ π, the wave

approaches a Bragg condition. These are HSPs in the reciprocal lattice [97 ]–[100 ] so the

continuum theory must encode this behavior. Accordingly, the k → ∞ limit should be

interpreted as a Bragg resonance.
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3.4.3 Transverse spin quantization of the photon

We go one step further to uncover the precise origin of the spin-1 eigenvalues mn(kp), the

spin states ~e, and their relation to the response function M. At HSPs, the SAM expectation

value is represented as,

〈Ŝz〉n = mn(kp) = u†
n(kp)Ŝzun(kp). (3.41)

Using Eq. (3.7 ) and (3.37 ), this can be simplified to yield,

mn(kp) = f †
n(kp)M̄(ωn(kp), kp)Ŝzfn(kp). (3.42)

We note that precisely at HSPs, the quantum of spin mn(kp) is determined entirely by

the photonic component fn(kp) of the eigenmode un(kp) – but not the coordinates of the

matter oscillations ψα. Utilizing the normalization condition f †
n(kp)M̄(ωn(kp), kp)fn(kp) = 1,

Eq. (3.42 ) leads to,

Ŝzfn(kp) = mn(kp)fn(kp). (3.43)

This indicates that the electromagnetic wavefunction f must be a spin state fn(kp) ∝ ~e at

HSPs [Eq. (3.18 )].

Our problem reduces to finding the eigenstates of the photon at HSPs and directly eval-

uating their spin eigenvalues. We return to the characteristic equation in Eq. (3.11 ), which

defines the photonic wavefunction f . As k → 0, the vacuum equations vanish identically

H0(k) → 0. Moreover, the response function is regularized and includes quadratic nonlo-

cality ∝ k2 at minimum. As k → ∞, the vacuum fields do not contribute H0(k) → 0.

Therefore, a nontrivial solution exists ωn(kp) 6= 0 if and only if it satisfies,

det [M(ωn(kp), kp)] = 0. (3.44)
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Eq. (3.44 ) represents the threshold condition at kp = 0 and the Bragg condition at kp = ∞

for any particular eigenstate n. To allow for nontrivial solutions Mf = 0 in Eq. (3.40 ), one

of three possible conditions must be fulfilled,

g(ωn(kp), kp)
ε(ωn(kp), kp)

= ±1, or µ(ωn(kp), kp) = 0. (3.45)

We see that the photonic wavefunction is clearly a spin-1 eigenstate fn(kp) ∝ ~e at HSPs.

The gyrotropic constraint gives us counter-rotating spin states Ŝz~e± = ±~e± with eigenvalues

mn(kp) = ±1, while the magnetic constraint gives us the irrotational spin state Ŝz~e0 = 0

with eigenvalue mn(kp) = 0. Physically, these conditions at HSPs correspond to gyrotropic

or magnetic plasmon resonances in the bulk 2D material. In a lattice theory, the resonance

at kp = 0 describes the response at the Γ point, while kp = ∞ describes the behavior near

the edges of the Brillouin zone.

The meaning behind each topological bosonic phase is now revealed. In the even parity

phase Cn = ±2, a gyrotropic mode dominates but the handedness of the plasmon changes

at HSPs, g/ε = ±1 → ∓1. If the handedness does not change as k → ∞, the phase is trivial

Cn = 0. The odd parity phase Cn = ±1 is very different however. Instead, the mode changes

from a magnetic plasmon µ = 0 to a gyrotropic plasmon g/ε = ±1 at HSPs. In the following

sections, we restrict our discussion to the even parity phase Cn = ±2. The odd parity phase

Cn = ±1 is significantly more complicated and will be dedicated to a future paper.

3.4.4 Even parity bosonic phase: C = ±2

We adopt an exactly solvable model to unravel the low energy topological physics of

this phase. We let the response function be rotationally invariant [Ŝz,M(ω, k)] = 0 at all

momenta, while also assuming ε = const. > 1 is dielectric and the response is nonmagnetic

µ = 1. In this case, all the physics is captured by the gyrotropic coefficient g, which is the

high-frequency analog of the DC Hall conductivity,

g(ω, k) = σH(k)
ω

, σH(k) = σ0 − σ2(ka)2. (3.46)
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Figure 3.3. Schematic of the exactly solvable topological model. In vacuum,
Maxwell’s equations can be written in the form H0(k) = k · S, which captures
both the spin-1 behavior and linear dispersion of the massless photon. The
gyrotropic medium perturbs the linear dispersion and induces a bulk bandgap
near zero frequency. In this case, the perturbation is a nonlocal Hall conductiv-
ity σH(k) = σ0 −σ2(ka)2, which behaves identically to the effective mass of the
Dirac equation. If σH(k) = 0 passes through zero at some finite momentum,
the medium is topological. The nontrivial phase C = 2 corresponds to a gap-
less unidirectional photon at the boundary, dubbed the quantum gyroelectric
effect (QGEE). We strongly emphasize that this model is validated by direct
comparison with the supersymmetric Dirac theory for continuum fermions.
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σH(k) is a nonlocal Hall conductivity [104 ]. σ0 is the static response and σ2 characterizes

the momentum dependence (scaled to the lattice constant a). At low energy ω → 0, this is

the only admissible form of g 6= 0 [89 ], [90 ]. Due to the reality of the electromagnetic field

M∗(−ω, k) = M(ω, k), gyrotropy must always be odd in frequency g(−ω, k) = −g(ω, k).

This means a first-order pole at ω = 0 is permissible and corresponds to nonzero Hall

conductivity ωg(ω, k) = σH(k) 6= 0. The energy density is positive definite M̄ = ∂ω(ωM) =

diag[ε, ε, 1] > 0 and nonsingular at ω = 0.

We highlight important aspects of our model and the connections to experimentally

measured gyrotropic responses. Firstly, we deal with Hermitian systems so the imaginary

part of the dielectric permittivity is zero Im [ε] = σ/ω = 0. Therefore, no dissipative

currents exist in this system and the gyrotropic coefficient is related only to a dissipationless

Hall current. Experimentally measured variables connecting to the gyrotropic coefficient,

such as Verdet constants, are highly frequency dependent and this is consistent with our

model. Furthermore, the zero frequency behavior of the gyrotropic coefficient g = σH/ω is

in agreement with first-order poles in standard models of conductivity Im [ε] = σ/ω.

Remarkably, the quadratic spatial correction to σH is sufficient to describe a topological

photonic phase and the continuum theory is regularized at k → ∞. The interpretation

is particularly simple in this context. At long wavelengths σH(k → 0) → σ0, the Hall

conductivity induces circulating currents of a specific handedness (clockwise or counter-

clockwise), but at short wavelengths σH(k → ∞) → −σ2(ka)2, the handedness can reverse

directions. We will show that when σH switches sign, the phase is nontrivial.

3.4.5 Bulk (bosonic Chern insulator)

In vacuum, the photon is massless and therefore linearly dispersing ω = k. This is the

photonic (spin-1) equivalent of a Dirac point and arises naturally from Maxwell’s equations

H0(k) = k ·S = kxŜx+kyŜy, as mentioned in Sec. 3.2 . By introducing the Hall conductivity,

the linear dispersion of bulk waves fundamentally changes – a gap is formed at zero frequency

ω = 0,

εω2(k) = k2 + σ2
H(k)
ε

, (3.47)
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where σH acts identically to an effective photon mass [84 ], [85 ]. ε governs the effective speed

of light. A schematic of the vacuum and bulk dispersion is displayed in Fig. 3.3 .

There is only one positive frequency ω > 0 eigenstate associated with this system and is

expressed in polar coordinates as,

fk =


Ex

Ey

Hz

 = 1√
2ε

(
σH
εω
k̂ + iφ̂+ ik

ω
ẑ

)
eiφ. (3.48)

fk is normalized to the energy density 1 = f †
kM̄fk and is written in a fixed Berry gauge

defined by the TAM Ĵzfk = fk. We now show that the photon in this eigenstate exhibits

transverse spin quantization at HSPs, which is independent of the chosen Berry gauge. From

Eq. (3.48 ) above, we have Ŝzf(kp) = m(kp)f(kp) at the plasmon resonances,

m(kp) = g(ω(kp), kp)
ε(ω(kp), kp)

= σH(kp)
εω(kp)

= sgn[σH(kp)]. (3.49)

Since ε is a constant, the eigenvalues are determined solely by the long and short wavelength

behavior of the Hall conductivity, m(0) = sgn[σ0] and m(∞) = −sgn[σ2], giving a Chern

number of,

C = m(0) −m(∞) = sgn[σ0] + sgn[σ2]. (3.50)

A nontrivial phase corresponds to σ0σ2 > 0, which can be C = ±2 depending on the signs

of σ0 and σ2. This is the simplest realization of a bosonic Chern insulator [13 ]. It is equally

important to note that σ0σ2 < 0 corresponds to a trivial phase C = 0. Distinguishing

between trivial C = 0 and nontrivial C = ±2 phases is only possible by incorporating

nonlocality σ2 6= 0. A topological phase diagram of this system is presented in Fig. 3.4a .

In the nontrivial phase, there is a point where the Hall conductivity σH(k) = 0 passes

through zero – precisely at ka =
√
σ0/σ2. The zero must occur for the spin to change

handedness and can only be removed by a topological phase transition. This also puts an

approximate bound on the Hall parameters. As long as
√
σ0/σ2 � π the continuum theory

is valid and the zero occurs within the Brillouin zone. As an aside, we note the negative
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(a) Phase diagram. (b) Band diagram.

Figure 3.4. (a) Topological phase diagram of the nonlocal Hall model
σH(k) = σ0 −σ2(ka)2. C = sgn[σ0]+sgn[σ2] corresponds to the Chern number
of the positive frequency band ω > 0. The Chern number of the negative
frequency band ω < 0 is exactly opposite −C. When σ0σ2 > 0, the photon
is in a nontrivial bosonic phase C = ±2, while σ0σ2 < 0 is a trivial phase
C = 0. In the continuum theory, trivial and nontrivial phases can only be
distinguished by incorporating nonlocality σ2 6= 0. (b) Continuum band dia-
gram ω(k) of the even parity C = 2 topological bosonic phase. The negative
frequency branch has a Chern number of −2; necessary for the total summa-
tion to vanish 2 − 2 = 0. As an example, we have let σ0 = σ2a

2 = 1 and
ε = 2. The unidirectional edge state is spin-1 helically quantized and touches
the bulk bands precisely where the nonlocal Hall conductivity passes through
zero σH(k) = 0. At this point ka = (σ0/σ2)1/2, the edge state joins the con-
tinuum of bulk bands. Notice that no edge solution exists for ky → −ky and
the photon is immune to backscattering.

frequency band ω < 0 has a Chern number of −C which is exactly opposite of the positive

band. This is necessary to ensure the summation over all bands vanishes ∑nCn = 0.

3.4.6 Edge (quantum gyroelectric effect)

Finally, we analyze the unique edge state of this bosonic phase, which has no counter-

part in traditional surface photonics – such as plasmon polaritons, Tamm states, Dyakonov

or Zenneck waves [105 ]. This is because topological boundary conditions are captured by
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nonlocal (spatially and temporally dispersive) optical constants. In conventional problems,

nonlocality introduces additional boundary conditions (ABCs) [95 ], [106 ] which need to be

satisfied to uniquely determine the electromagnetic field. Our newly discovered photonic edge

state is fundamentally different in this context. The behavior of the field outside the medium

x < 0 becomes irrelevant due to topological open boundary conditions f(x = 0+) = 0 [91 ]–

[93 ], [107 ]. Open boundary conditions are commonly encountered in topological electronics

[108 ], [109 ] but is surprising when dealing with photons. To be localized at the edge, all

components of the field must decay into the bulk f(x = ∞) = 0 as x → ∞ and simultane-

ously disappear on the edge. The exact bulk and edge dispersion is plotted in Fig. 3.4b and

a diagram of the topological edge state is displayed in Fig. 3.5 (a). We strongly emphasize

that these special solutions point to the first unified topological theory of Maxwell-bosons

and Dirac-fermions.

The specific phase C = ±2 will determine if the unidirectional photon is forward or

backward propagating; forward for C = 2 and backward for C = −2. We stress again that

for either C = ±2, there is only one bosonic solution at the boundary – not two. In either

case, the solution in the x > 0 half-space has a similar form f±(x, y) = f±(x)eikyy. Inserting

into the wave equation and applying open boundary conditions, the topological edge state

emerges,

ω± = ± ky√
ε
, −

√
σ0

σ2
< kya <

√
σ0

σ2
, (3.51a)

f±(x) =


Ex

Ey

Hz


±

= f0(x̂∓
√
εẑ)

(
e−η1x − e−η2x

)
. (3.51b)

A solution only exists in the nontrivial phase σ0σ2 > 0, confirming our theory. Notice the

group velocity v± = ∂ω±/∂ky = ±1/
√
ε is constant and the edge state can propagate in

opposite directions depending on the phase C = ±2. Moreover, since no solution exists for

ky → −ky, the photon is immune to backscattering. The decay lengths η1 and η2 are found

from the two quadratic roots,

η1,2 = 1
2a2|σ2|

{√
ε±

√
ε+ 4σ2a2[σ2(kya)2 − σ0]

}
, (3.52)
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which determine the degree of confinement at a particular wavevector ky. A plot of the

electromagnetic energy density is presented in Fig. 3.5 (c). Intriguingly, the field is completely

transverse polarized k̂ ·E = Ey = 0 and helically quantized along the direction of momentum

ky,
f †

±Ŝyf±

f †
±M̄f±

= v± = ± 1√
ε
. (3.53)

k̂ ·S = Ŝy is the spin-1 helicity operator and quantization lies in the x-y plane. Consequently,

the C = 2 phase corresponds to a massless (linearly dispersing) “spin-up” photon while the

C = −2 phase is a counter-propagating “spin-down” photon. Note, the edge wave is Ŝy
helically quantized for all momenta and is distinct from transverse Ŝz quantization of the

bulk waves, which only occurs at HSPs.

3.4.7 Anomalous displacement currents

We also discover an anomalous edge current [110 ] propagating parallel to the interface,

Jy(x, y) = ∓
√
εf0(η1e−η1x − η2e−η2x)eikyy. (3.54)

The displacement current is induced by the nonlocal Hall conductivity,

Jy = −∂xHz = −
(
σ0 + σ2a

2∇2
)
Ex, (3.55)

and is highly conductive near the interface Jy(x = 0+) 6= 0. However, a compensating

current is generated in the bulk x > 0, such that the total induced charge is identically

zero
´∞

0+ Jy(x)dx = Hz(0+) − Hz(∞) = 0. Notice that charge neutrality is only guaranteed

by the open boundary condition Hz(x = 0+) = 0, providing a profound physical basis for

topological protection. The photonic edge state must exist if the medium is to remain neutral

– there is no other option.
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Figure 3.5. (a) Topological edge state of the even parity C = 2 bosonic phase.
The photon is spin-1 helically quantized k · E = 0 and satisfies open boundary
conditions at the interface f(x = 0+) = 0. This ensures the edge state is
immune to boundary defects and can exist at any interface – even vacuum.
(b) Topological edge state of the C = 1 fermionic phase. Like the photon, the
electron is spin-1⁄2 helically quantized k̂ · ~σψ = ψ and satisfies open boundary
conditions ψ(x = 0+) = 0. (c) Normalized energy density u(x) = f †M̄f of the
unidirectional photon as a function of distance x, at a momentum of ky = 0.5.
As an example we have let σ0 = σ2a

2 = 1 and ε = 2. Notice the fields are
identically zero at x = 0 and the edge state exists at the boundary of any
interface. (d) Probability density ψ†ψ of the electronic edge state, where we
have let Λ0 = Λ2a

2 = 1 and v = 0.5 as an example. The probability density is
evaluated for a momentum of ky = 0.5.
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Figure 3.6. (a) Anomalous displacement current at the edge of the topologi-
cal photonic medium. (b) Real current density Jy(x) as a function of distance
x, for a momentum of ky = 0.5. We have let σ0 = σ2a

2 = 1 and ε = 2 as
an example. The displacement current is generated by the nonlocal Hall con-
ductivity and is highly metallic near the interface Jy(x = 0+) 6= 0. However,
the total current is conserved

´∞
0+ Jy(x)dx = 0 which is clear from the positive

(red) and negative (blue) charge density. Since the net charge is zero, this
phenomenon can be interpreted as a propagating dipole bound to the edge of
the material – with an intrinsic dipole moment px =

´∞
0+ xρ(x)dx.

From the continuity equation ωρ = kyJy, this phenomenon can also be interpreted as a

propagating dipole bound to the edge of the material,

px =
ˆ ∞

0+
xρ(x)dx = −ε

ˆ ∞

0+
Ex(x)dx = εf0(η−1

1 − η−1
2 ), (3.56)

with an intrinsic dipole moment px normal to the interface. The intriguing connection to

the parity anomaly will be discussed in a future paper [11 ], [111 ]. The dipole is continuous

xρ(x) and shields the electromagnetic field between regions of positive and negative charge

density. This unusual effect allows highly confined photons to propagate at the boundary

unimpeded, impervious to defects. A visualization of the anomalous current is displayed in

Fig. 3.6 .
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3.5 Dirac-Maxwell supersymmetry: Direct correspondence between fermionic
and bosonic phases

To validate our predictions of the Maxwell theory, we solve the equivalent continuum

Dirac theory. These results present a unified topological field theory of Maxwell-bosons and

Dirac-fermions. It also highlights the one-to-one correspondence between even parity bosonic

phases C = ±2 and traditional fermionic phases C = ±1. Interestingly, the equivalent 2D

Dirac theory is a supersymmetric partner of the 2D Maxwell theory [84 ]–[86 ]. The continuum

Dirac Hamiltonian is given succinctly as,

H(k) = v(kxσx + kyσy) + Λ(k)σz, (3.57)

where σi are the SU(2) Pauli matrices. The dispersion relation of the positive energy state

E > 0 is found as,

E2(k) = v2k2 + Λ2(k), (3.58)

and Λ(k) = Λ0 − Λ2(ka)2 is a spatially dispersive Dirac mass [91 ]–[93 ]. v being the Fermi

velocity. Again, we include quadratic k dependence for proper regularization at k → ∞.

This direct correspondence makes our earlier claim, the necessity of nonlocality (momentum

dependence), very clear.

The Hamiltonian possesses rotational symmetry, which is generated by the spin-1⁄2 op-

erator Ŝz = 1
2σz. This is evidently a fermionic representation R(2π) = exp [i2πŜz] = −12.

Furthermore, we can prove transverse spin-1⁄2 quantization at HSPs, m(0) = 1
2sgn[Λ0] and

m(∞) = −1
2sgn[Λ2]. This should be contrasted with our results for integer spin quantization

of the 2D bosonic phase in Fig. (3.1 ). We obtain a Chern invariant of,

C = m(0) −m(∞) = 1
2 (sgn[Λ0] + sgn[Λ2]) . (3.59)

The phase is only nontrivial C = ±1 when Λ0Λ2 > 0, necessitating a zero in the effective

mass Λ(k) = 0 – precisely at ka =
√

Λ0/Λ2. This is the simplest realization of a fermionic

Chern insulator [94 ]. Notice that in two dimensions, the Hall conductivity σH for the photon

plays an analogous role as the Dirac mass Λ for the electron.
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The electronic edge state has a similar interpretation as the photon, but for spin-1⁄2 parti-

cles. Imposing open boundary conditions, a unidirectional edge state is revealed ψ±(x, y) =

ψ±(x)eikyy,

ψ±(x) = ψ0

 1

±i

 (e−η1x − e−η2x), (3.60)

corresponding to a C = ±1 phase. The decay lengths have an identical form,

η1,2 = 1
2a2|Λ2|

{
v ±

√
v2 + 4Λ2a2[Λ2(kya)2 − Λ0]

}
, (3.61)

and the edge state is massless E± = ±vky, propagating in opposite directions depending on

the phase. Furthermore, the edge state is spin-1⁄2 helically quantized 1
2 k̂ · ~σψ± = 1

2σyψ± =

±1
2ψ±, equating to a spin-up or spin-down electron for C = 1 or C = −1 respectively. The

striking similarity of Maxwell-bosons and Dirac-fermions is shown in Fig. 3.5 . A diagram of

the electronic topological edge state is displayed in Fig. 3.5 (b) and a plot of the probability

density is given in Fig. 3.5 (d).

3.6 Experimental search and conclusions

The standard approach of characterizing TRS broken fermionic phases is DC transport

measurements (charge and spin Hall conductivity) or Faraday rotation angles at THz frequen-

cies. It should be noted that the former measurement gives information at zero frequency

and zero momentum σH(0, 0) whereas the latter experiment characterizes matter at finite

frequency but close to zero momentum σH(ω, 0). Our predictions of photon spin quantiza-

tion and bosonic phases are fundamentally tied to σH(ω, k). This is a formidable challenge

and therefore, for completeness, we suggest two new experimental approaches.

3.6.1 Momentum-resolved electron energy loss spectroscopy of gyrotropic plas-
mas

The high-frequency ω > 0 and sub-wavelength k > 0 properties of matter can be probed

by momentum-resolved electron energy loss spectroscopy (k-EELS) [112 ]. Here, highly en-

ergetic electrons pass through matter and their energy loss, as well as their momentum loss,
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is measured to understand the bulk light-matter excitations. Fundamentally different from

conventional STEM-EELS [113 ], this approach can also give insight into high momentum

waves through scattering angle measurement of electrons passing through matter. We an-

ticipate nonlocal gyrotropic plasmas to be ideal candidates for topological bosonic phases of

matter and probing with k-EELS.

3.6.2 Cold atom near-field probes of nonlocal optical conductivity

Dynamical (high-frequency) conductivity is regularly studied by conventional tools such

as ellipsometry and Faraday rotation using incident optical beams. However, the momentum

carried by light waves is negligible compared to the Fermi momentum of electrons. Therefore,

the large momentum k > 0 behavior of the conductivity requires fundamentally new probes.

One approach is to use spontaneous emission from cold atoms in the near-field to investigate

deep sub-wavelength response parameters of our predicted bosonic phases of matter. This

is feasible since the GHz splitting in Rydberg atoms [114 ] and low-frequency gyrotropic

response in systems such as quantum wells are comparable [76 ]. Recent work has shown

trapping of cold atoms near photonic nanostructures [115 ] – a promising route for probing

topological properties of matter.

3.6.3 Conclusions

In summary, we have developed the complete continuum field theory describing all 2+1D

topological bosonic phases of the photon; incorporating both temporal and spatial dispersion

as a necessary generalization. The topological phases are intimately connected to photon

spin-1 quantization, with nonlocality being imperative to properly characterize the high-k

global behavior. Two unique bosonic phases are predicted – an even parity phase C = ±2

which is understood in interacting bosonic systems, and an odd parity phase C = ±1 which

has no immediate interpretation but presents possibly unexplored physics. We have studied

the even parity phase C = ±2 utilizing a nonlocal Hall conductivity and reveal a single

topologically protected unidirectional photon at the edge. This photon is helically quantized

(spin-1), immune to backscattering, defects, and exists at the boundary of the C = ±2
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bosonic phase and any interface – even vacuum. To validate our theory, we have compared

all the low energy Maxwell phenomena to its supersymmetric Dirac counterpart, confirming

that even parity bosonic phases C = ±2 are the exact analogue of traditional fermionic

phases C = ±1.
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4. PHOTONIC DIRAC MONOPOLES AND SKYRMIONS:

SPIN-1 QUANTIZATION

From [T. V. Mechelen and Z. Jacob, “Photonic Dirac monopoles and skyrmions: Spin-1

quantization [invited],” Opt. Mater. Express, vol. 9, no. 1, pp. 95–111, Jan. 2019]. © 2020

Optical Society of America. [116 ]

We introduce the concept of a photonic Dirac monopole, appropriate for photonic crys-

tals, metamaterials and 2D materials, by utilizing the Dirac-Maxwell correspondence. We

start by exploring vacuum where the reciprocal momentum space of both Maxwell’s equa-

tions and the massless Dirac equation (Weyl equation) possess a magnetic monopole. The

critical distinction is the nature of magnetic monopole charges, which are integer valued for

photons but half-integer for electrons. This inherent difference is directly tied to the spin

and ultimately connects to the bosonic or fermionic behavior. We also show the presence of

photonic Dirac strings, which are line singularities in the underlying Berry gauge potential.

While the results in vacuum are intuitively expected, our central result is the application of

this topological Dirac-Maxwell correspondence to 2D photonic (bosonic) materials, as op-

posed to conventional electronic (fermionic) materials. Intriguingly, within dispersive matter,

the presence of photonic Dirac monopoles is captured by nonlocal quantum Hall conductiv-

ity – i.e. a spatiotemporally dispersive gyroelectric constant. For both 2D photonic and

electronic media, the nontrivial topological phases emerge in the context of massive parti-

cles with broken time-reversal symmetry. However, the bulk dynamics of these bosonic and

fermionic Chern insulators are characterized by spin-1 and spin-1⁄2 skyrmions in momen-

tum space, which have fundamentally different interpretations. This is exemplified by their

contrasting spin-1 and spin-1⁄2 helically quantized edge states. Our work sheds light on the

recently proposed quantum gyroelectric phase of matter and the essential role of photon spin

quantization in topological bosonic phases.
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4.1 Introduction

Dirac’s pioneering paper [8 ] showed that if magnetic monopoles are found in nature, their

magnetic charges Q would be quantized in units of the elementary charge e of the electron,

2eQ
h

∈ Z. (4.1)

h being the Planck constant. This is the earliest example of topological quantization – fun-

damentally different from second quantization arising in quantum field theories. Although

there exists no experimental proof of magnetic monopoles [117 ] to date, there is ample evi-

dence of quantized topological charges in reciprocal (energy-momentum) space. Specifically,

the appearance of such monopoles in the band structure of solids indicates the presence of

quantized topological invariants, like the Chern number [7 ] and Z2 index [118 ]. Ultimately,

experimental observables such as the quantum Hall conductivity can be traced back to the

existence of this quantized topological charge [5 ], [119 ].

There have been significant efforts to construct synthetic gauge potentials that mimic

these monopole physics in cold atoms [120 ] and spin ice [121 ]. One striking example is the

realization of non-Abelian gauge theories with Yang-Lee monopoles [122 ]. The topological

field theory of light has surfaced in knotted solutions of Maxwell’s equations [79 ], [123 ], as

well as the uncertainty relations for photons [124 ]. Along side this, there have been impor-

tant recent developments to formulate topological properties for photons utilizing photonic

crystals and metamaterials [18 ]–[20 ], [51 ], [52 ], [64 ], [74 ], [125 ]–[130 ]. The pioneering work

in topological photonic crystals has shown the existence of edge states robust to disorder.

In the previously explored scenarios, the photonic crystal unit cell is carefully structured

to obtain an additional degree of freedom (artificial gauge field) – quite often realized on

a graphene-like honeycomb lattice. This approach was first implemented by Haldane for

spinless (scalar) electrons in his seminal paper on the parity anomaly [11 ]. However, it re-

mains an open question whether robust topological photonic edge states can occur in atomic

matter. The role of photon spin and its quantization is yet another unresolved problem since

previous theories have focused exclusively on pseudo-spin-1⁄2 phenomena [131 ]–[134 ].
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Our spin-1 theory [135 ] is fundamentally different in this respect since we do not ignore the

polarization (spin) state of the photon, which cannot be neglected for a real gauge (vector)

field. In our case, the topological theory is manifestly bosonic as it is connected to the winding

of the gauge field itself – not pseudo-spin degrees of freedom. Another fundamental aspect

of our theory is the inclusion of dispersion within matter, i.e. frequency and momentum

dependence of conductivity, such that topological invariants emerge naturally from the global

behavior of optical constants. For example, it has been shown that nonlocal gyrotropic [54 ]

and magnetoelectric [63 ] media will host massless spin-1 quantized edge states with massive-

like photons in the bulk. Thus, it is necessary to understand the concept of bosonic Dirac

monopoles and the influence of integer spin in topological photonic phases of matter.

In this paper, we elucidate the fundamental difference between the magnetic monopoles

appearing in Maxwell’s equations and the Dirac equation. Our work shows that a mag-

netic monopole appears for both photons and massless fermions in the reciprocal energy-

momentum space – even for vacuum. Using a Dirac-Maxwell correspondence, we identify

the bosonic and fermionic nature of magnetic monopole charge, which is inherently present

in the relativistic theories of both particles. While the results in vacuum are expected, we

apply this topological theory to 2D photonic (bosonic) materials, in contrast to conventional

electronic (fermionic) materials. The specific 2D photonic materials considered in this paper

are gyroelectric which possess antisymmetric components of the conductivity tensor. We

exploit the Dirac-Maxwell correspondence to show how dispersive gyroelectric media can

support topologically massive particles, which are interpreted as photonic skyrmions. How-

ever, the differences in spin between bosons and fermions alter the behavior of these bulk

skyrmions as well as their corresponding Chern numbers. We then analyze the unique topo-

logical edge states associated with nontrivial spin-1 and spin-1⁄2 skyrmions, which exhibit

opposing helical quantization. This clearly shows how the integer and half-integer nature of

monopoles is ultimately tied to the differing bosonic and fermionic spin symmetries. Our

work sheds light on the recently proposed quantum gyroelectric phase of matter [54 ] which

supports unidirectional transverse electro-magnetic (TEM) edge states with open boundary

conditions (vanishing fields at the edge) – unlike any known phase of matter till date.
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In the context of geometric phases, the concept of magnetic charges has a rich history

starting from the pioneering works of Pancharatam, Berry, Chiao and Wu [136 ]. Unification

of these geometric phases for bosons and fermions was shown for massive 3D particles using

a relativistic quantum field theory [78 ]. In this paper, our focus is massless 3D particles and

topologically massive 2D particles [137 ]–[139 ], as well as the direct demonstration of gauge

discontinuities in Maxwell’s and Weyl’s equations. Our derivation does not utilize quantum

field theoretic techniques and appeals only to the spin representation of the two particles. We

note that spin quantization is fundamentally different from topological charges encountered

in real space for OAM beams [81 ], [140 ], polarization singularities [141 ] and polarization

vortices [142 ]. This is due to the central concept of gauge discontinuity in magnetic monopole

quantization, which is related to the topological field theory of bosons and fermions. We

function in momentum space of Maxwell’s equations as opposed to real space so our work

is specifically suited to develop topological invariants in the band structure of photonic

crystals and wave dispersion within metamaterials [143 ], [144 ]. One important application

of our current technique is in uncovering unique electromagnetic phases of matter displaying

the quantum gyroelectric effect (QGEE) [54 ]. Our unified perspective also sheds light on

recent developments of quantized bosonic Hall conductivity [58 ]–[60 ], [145 ] and topological

bosonic phases of matter [57 ], [62 ], as opposed to fermionic phases [17 ].

Skyrmions have a storied past in condensed matter – appearing in both real and momen-

tum space of topological systems. In real space, these localized topological defects were first

discovered in chiral magnets and quantum Hall ferromagnets but have also been observed

in Bose-Einstein condensates and superconductors [146 ]. The behavior of these magnetic

skyrmions is intimately tied to the Dzyaloshinskii-Moriya (DM) interaction [147 ] which gen-

erates the nontrivial winding of the spin structure. In momentum space, skyrmions often

characterize the monopoles arising in the band structure of solids and are emergent phenom-

ena in topological insulators and superconductors [94 ]. By contrast, photonic skyrmions are

a very recent field of interest. A classical optical analog of skyrmion-like behavior has been

reported using surface plasmon polaritons [148 ]. This work focuses on photonic skyrmions

in momentum space which ultimately govern the equations of motion of a topological elec-
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tromagnetic field. The physics of these topological fields manifest in nontrivial windings of

a spin-1 vector as opposed to a spin-1⁄2 vector.

Note: The manuscript theme is the Dirac-Maxwell correspondence which directly com-

pares bosonic and fermionic topological field theories. Throughout, the subscript s = 1

stands for spin-1 photons and the subscript s = 1/2 denotes spin-1⁄2 electrons.

4.2 Three dimensions: massless particles

4.2.1 Dirac-Maxwell correspondence

The correspondence between Dirac’s and Maxwell’s equations is best expressed in the

Riemann-Silberstein (R-S) basis [149 ], [150 ], which utilizes a vector wave function for light.

Using this representation, we develop a topological field theory of the vacuum photon. In

the R-S basis, we combine the electric ~E and magnetic ~H fields into a complex superposition,

~Ψ = 1√
2

(~E + i ~H), (4.2)

where i =
√

−1 is the imaginary unit and the electromagnetic fields are associated with

plane waves. We strongly emphasize that relativity requires vectorial representations for

spin-1 bosonic fields and spinor-1⁄2 representations for fermionic fields. Spin-0 particles con-

stitute scalar fields while spin-2 particles, such as gravitons, are described by tensor fields.

Therefore, to unravel the topological bosonic properties of light, we cannot work in a re-

stricted subspace ignoring components of the electromagnetic field. Simultaneously, we do

not describe polarizations separately. In the R-S basis, Maxwell’s equations in vacuum can

be combined into a first-order wave problem as follows,

i~k × ~Ψ = H1~Ψ = ω~Ψ, (4.3)
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which we label as spin s = 1. Here, ω is the frequency of light and we consider dynamical

fields over all frequencies and wave vectors, not simple static fields. We can thus unambigu-

ously identify a Hamiltonian for light,

H1(~k) = ~k · ~S = kxSx + kySy + kzSz. (4.4)

~k = (kx, ky, kz) is the momentum of the plane wave in vacuum and ~S = (Sx, Sy, Sz) are the

set of SO(3) antisymmetric matrices,

Sx =


0 0 0

0 0 −i

0 i 0

 , Sy =


0 0 i

0 0 0

−i 0 0

 , Sz =


0 −i 0

i 0 0

0 0 0

 . (4.5)

These operators obey the familiar Lie algebra [Si, Sj] = iεijkSk which encode information

about integer spin. Notice our photonic Hamiltonian H1 = ~k·~S represents optical helicity, i.e.

the projection of spin ~S along the direction of momentum ~k. This is further clarified on direct

comparison with massless Dirac fermions (Weyl fermions), which are the supersymmetric

partners of the massless photon [151 ]. The Weyl equation is expressed as,

H1/2ψ = Eψ, (4.6)

where the massless Dirac Hamiltonian H1/2, corresponding to spin s = 1/2, is identified with

electronic helicity,

H1/2(~k) = ~k · ~σ = kxσx + kyσy + kzσz. (4.7)

~σ = (σx, σy, σz) are the Pauli matrices of SU(2) and obey the identical Lie algebra [σi, σj] =

2iεijkσk,

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (4.8)

Both particles are massless and satisfy an analogous helicity equation. However, the critical

difference is revealed in the group operations of the particular particle; encapsulated by the
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SO(3) antisymmetric matrices for the spin-1 photon [Eq. (4.5 )] and the SU(2) Pauli matrices

for the spin-1⁄2 Weyl fermion [Eq. (4.8 )].

4.2.2 Helical eigenstates

We now solve for the eigenstates of the above Hamiltonians. As expected, Maxwell and

Weyls’ equations possess two helical degrees of freedom. For the photon [Eq. (4.4 )], these

are conventional right- and left-handed circular polarization,

H1~e± = ±k ~e±, ~e±(~k) = 1√
2

(θ̂ ± iφ̂), (4.9)

where θ and φ are the spherical polar coordinates of ~k and k = |~k| is the magnitude of the

wave vector. The photon is massless and therefore linearly dispersing in vacuum ω± = ±k.

Similarly, the eigenstates of the Weyl equation [Eq. (4.7 )] are comprised of two massless

helical spinors, which are represented as,

H1/2ψ± = ±k ψ±, ψ+(~k) =

 cos(θ/2)

sin(θ/2)eiφ

 , ψ−(~k) =

 sin(θ/2)

− cos(θ/2)eiφ

 . (4.10)

Indeed, these states are also linearly dispersing E± = ±k. An important observation can

be made in ~e± and ψ±. The eigenstates are ill-defined at the origin of the momentum

space ~k = 0, since they are arbitrarily dependent on θ and φ at this point. In fact, by

parameterizing θ as the inclination from kz, the eigenstates are not well-behaved at the

north θ = 0 or south θ = π poles either – they are multivalued at both points. Such

discontinuous behavior is impossible to remove and results from choosing a particular gauge

for the eigenstates. This is the underlying source for Dirac monopoles and strings. The

linear dispersion (light cone) of the massless helical states is displayed in Fig. 4.1 (a).

4.2.3 Spin quantization in photonic Dirac monopoles and strings

In vacuum ~k-space, we discover a magnetic Dirac monopole for both Maxwell’s and Weyl’s

equations but with intrinsic differences. This is demonstrated by first defining the magnetic
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Figure 4.1. (a) Linear dispersion (light cone) of the 3D massless photon and
electron ω± = E± = ±k. At the origin of the momentum space ~k = 0 sits a
magnetic monopole with quantized charge. This singularity is often called a
Weyl point and is quantized to the spin of the particle Qs = s. Integer and
half-integer spin quantization is connected to bosonic and fermionic statistics
respectively. (b) Dirac monopoles (Berry curvature) ~Fs = ~∇k × ~As of the
massless electron Q1/2 = 1/2 and photon Q1 = 1 in momentum space. The
monopole charge acts as a source for the magnetic field ~∇k · ~Fs = 4πQsδ

3(~k) and
arises due to the discontinuous behavior in the spin eigenstates. Notice that the
flux through any surface enclosing the monopole is necessarily quantized Qs =
(4π)−1‚ ~Fs · d2~k. This monopole is accompanied by a string of singularities
in the underlying gauge potential ~As. Any closed path around the equator
of the string produces a quantized Berry phase γs =

¸
~As · d~k = 2πQs. The

accumulated phase in ~k-space is fundamentally tied to the spin of the particle
Rs(2π) = exp(iγs) = (−1)2s.
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flux in momentum space – i.e. the Berry curvature. For the photon, the Berry curvature

of either right- or left-handed helicity can be found from the circular eigenstates derived in

Eq. (4.9 ),
~F±

1 = −i~∇k × [~e∗
± · (~∇k ~e±)]. (4.11)

For the massless electron, the analogous Berry curvature is found by evaluating the spinor

eigenstates in Eq. (4.10 ),
~F±

1/2 = −i~∇k × [ψ†
±~∇k ψ±]. (4.12)

Here, ~∇k = ∑
i î∂ki

is the gradient operator in 3D momentum space. Note that the Berry

curvature is a vector in three dimensions but a scalar in two dimensions. On evaluating

the Berry curvature for both particles with positive and negative helicities (±), we find that
~F±
s = ±~Fs possesses a Dirac monopole,

~Fs = Qs
~F . (4.13)

~F being the magnetic field of a Dirac monopole in ~k-space,

~F (~k) =
~k

k3 . (4.14)

Note that Qs in Eq. (4.13 ) is the topological magnetic charge which generates the magnetic

field. This quantity is fundamentally different for the two particles,

Qs = s. (4.15)

s is precisely the spin of the particle, which takes integer s = 1 or half-integer s = 1/2 values

for bosons or fermions respectively. We emphasize that the magnetic monopole charge is

naturally quantized,

Qs = 1
4π

‹
~Fs · d2~k. (4.16)
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The charge is located at the origin ~k = 0 of the momentum space, exactly where the eigen-

states are ill-defined, and acts as a source for the magnetic field ~∇k · ~Fs = 4πQsδ
3(~k). Notice

that the magnetic monopole charge of the photon,

Q1 = 2Q1/2 = 1, (4.17)

is exactly twice the electron due to integer spin. The monopole charge for each helicity has

opposite signs Q±
s = ±Qs. This ensures the net charge vanishes Q+

s +Q−
s = 0 at the origin

~k = 0; as expected due to time-reversal symmetry in vacuum [152 ]. A visualization of the

magnetic flux is shown in Fig. 4.1 (b).

We note that the photonic Dirac monopole is accompanied by a string of singularities in

the underlying gauge potential. This Dirac string is unobservable as it is a gauge dependent

phenomenon but sheds light on the fundamental differences between electrons and photons.

The Berry gauge potential for the massless photon and electron can be evaluated using the

eigenstates in Eq. (4.9 ) and (4.10 ) respectively,

~A±
1 = −i~e∗

± · (~∇k ~e±), ~A±
1/2 = −iψ†

±~∇k ψ±. (4.18)

Upon solving for ~A±
s = ± ~As, we again find a clear dependence on the magnetic monopole

charge Qs which is different for bosons and fermions,

~As(~k) = Qs
1 − cos θ
k sin θ φ̂, (4.19)

and ~Fs = ~∇k × ~As reproduces the Berry curvature in Eq. (4.13 ). The gauge potential is

singular along the kz-axis, at θ = 0 and π, where the eigenstates are multivalued. This line

singularity that originates at the monopole and extends to infinity is known as a Dirac

string. Fig. 4.1 (b) displays a visualization of the Dirac monopole and strings for both

massless particles. We note that the above equations are traditionally found in the theory of

magnetic charges in real space [117 ] – not momentum space. Following this, quantization of

magnetic charge naturally emerges from the requirement of a single-valued wave function in

the presence of singular (multivalued) gauge potentials. Our rigorous derivation is unique as
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it unifies the momentum space of Maxwell’s equations and the Weyl equation. This makes

it ideally suited for extension to topological theories of band structure in photonic crystals

and wave dispersion in metamaterials.

4.2.4 Berry phase

We now provide a detailed comparison of ~k-space Pancharatnam-Berry phase (hereon

called geometric phase) for photons and electrons [9 ], [153 ], that arises from their correspond-

ing spin properties. The geometric phase calculated for any closed path on the ~k-sphere is

gauge invariant,

γs =
˛

~As · d~k =
¨

~Fs · d2~k. (4.20)

γs is the geometric phase and is equivalent to the flux of Berry curvature ~Fs through a surface

bounded by the path. In this case, we see that
˜

~Fs · d2~k = Qs

˜
dΩ is exactly the solid

angle Ω(C) traced along the ~k-sphere,

γs = QsΩ(C), (4.21)

where C designates the bounded path. We now consider a closed path around a great circle

of the ~k-sphere (eg: the equatorial path kz = 0), which encloses the monopole. For massless

particles, this is equivalent to rotating the fields back into themselves. The accumulated

phase must be quantized,

γs = 2πQs. (4.22)

This is the momentum space manifestation of Dirac’s quantization condition 2Qs ∈ Z which

ensures the massless particles acquire the same phase under a 2π or −2π rotation. We clearly

see that geometric phases in ~k-space are dependent on the spin of the particle,

exp(iγs) = (−1)2Qs . (4.23)

Notice that exp
(
iγ1/2

)
= −1 and exp (iγ1) = +1 are antisymmetric or symmetric under a

±2π rotation depending on the spin Qs = s. Ultimately, the geometric phase of γ1/2 = π
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or γ1 = 2π is tied to the fermionic or bosonic statistics of the particle. We note that this

geometric phase γ1/2 = π is routinely encountered for massless Dirac fermions in graphene

[154 ], [155 ]. However, the direct correspondence with spin-1 massless photons γ1 = 2π

has not been pointed out to date. Our results suggest that a thin wire supporting Dirac

fermions would yield Chiao-Tomita phases [156 ] exactly half the value of photons. We also

note that spin-momentum locking is a universal property in photonics [26 ], [83 ], [157 ] which

arises entirely from the transversality ~k · ~Ψ = 0 of electromagnetic waves in vacuum. This

phenomenon can be explained with causal boundary conditions on evanescent fields and does

not necessarily require topological considerations [158 ]. For example, conventional surface

plasmon polaritons (SPPs) and waveguide modes show spin-momentum locking but these

are not related to any topologically protected edge states or nontrivial phases.

4.2.5 Rotational symmetries

The nuance behind integer and half-integer geometric phases [Eq. (4.22 )] is explained

more rigorously by considering the operations of the rotational (spin) groups. Maxwell’s

equations [Eq. (4.3 )] transform under the SO(3) group R1(α) = exp
(
iαn̂ · ~S

)
, where α

is the angle subtended about an axis n̂. This is true for all vector fields. Conversely,

the Weyl equation [Eq. (4.6 )] transforms under the SU(2) group R1/2(α) = exp (iαn̂ · ~σ/2),

characteristic of spinors. Although SO(3) and SU(2) obey the same Lie algebra, the group

representations are inequivalent. The distinction is evident under a cyclic rotation,

Rs(2π) = (−1)2s. (4.24)

Notice that the accumulated phase is different depending on the particle species. This is due

to the fact that fermions are antisymmetric R1/2(2π) = −1 under rotations, while bosons are

symmetric R1(2π) = +1 and this behavior is guaranteed by the spin-statistics theorem [159 ].

The difference fundamentally changes the interpretation of fermionic and bosonic topologies

[160 ].
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4.3 Two dimensions: topologically massive particles

4.3.1 Dirac-Maxwell correspondence

Up to this point, we have only considered the 3D dynamics of the vacuum photon and

its analogies with the Weyl fermion. Now we shift to the 2D domain to harness these

topological properties and elucidate the fundamental role of spin in nontrivial phases of

matter. Nontrivial 2D materials are characterized by an integer topological invariant – the

Chern number C ∈ Z. In electronics, these materials are often called Chern insulators [13 ]

because they are insulating in the bulk but host metallic one-way edge states that are robust

to disorder. In the long wavelength limit k ≈ 0, the simplest fermionic Chern insulator is

described by the 2D Dirac equation [94 ],

H1/2ψ = Eψ, H1/2(k) = v(kxσx + kyσy) + Λ(k)σz. (4.25)

Equation (4.25 ) is essentially identical to the Weyl equation [Eq. (4.7 )] except we have

replaced the z-component of the momentum with a Dirac mass kz → Λ(k). We have also

introduced the Fermi velocity v to characterize the effective speed of electrons within the

material. It is easy to check that Λ(k) breaks time-reversal symmetry but preserves rotational

symmetry about the z-axis, R1/2(α) = exp (iασz/2). The meat of the topological physics lies

in this spatially dispersive Dirac mass [93 ],

Λ(k) = Λ0 − Λ2k
2. (4.26)

Λ0 = Λ(0) opens a band gap and Λ2 accounts for the curvature of the energy bands. Impor-

tantly, when Λ0Λ2 > 0 there is so-called band inversion [161 ] and the effective mass changes

sign within the dispersion Λ(k) = 0, precisely at k =
√

Λ0/Λ2. The quadratic momentum

dependence k2 = k · k is also crucial to regularize the long wavelength theory [15 ], [54 ]. This

means we can project the planar momentum space onto the surface of the Riemann sphere

R2 ' S2, a necessary constraint for continuum topological field theories.
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We now study the equivalent 2D dynamics of the photon – the bosonic Chern insulator.

As anticipated, the 2D Maxwell theory is the supersymmetric partner of the 2D Dirac theory

[54 ], [84 ] and takes an analogous form,

H1~Ψ = ω~Ψ, H1(k) = v(kxSx + kySy) + Λ(k)Sz. (4.27)

Equation (4.27 ) is formally equivalent to the 3D Maxwell equation [Eq. (4.4 )] with the

substitution of a mass term kz → Λ(k). Here, v = 1/
√
ε is the effective speed of light

which is governed by the dielectric permittivity ε > 1. Like the Dirac equation [Eq. (4.25 )],

time-reversal symmetry is broken but rotational symmetry is preserved about the z-axis,

R1(α) = exp (iαSz). There is one caveat however; the photonic wave function ~Ψ is slightly

altered since we only retain transverse-magnetic (TM) waves in two dimensions,

~Ψ = 1√
2
(√

εEx,
√
εEy, iHz

)
= 1√

2
(√

εE, iHz

)
. (4.28)

The transverse-electric (TE) component cannot couple to a 2D material as all electrical

currents lie in the x-y plane. Nevertheless, the underlying topological physics remain un-

changed.

4.3.2 Dispersive transverse conductivity

Our central result is that the above mentioned Maxwell Hamiltonian can possess a mass

term arising from dispersion of optical constants. Still, one might question the seemingly

ad hoc insertion of a photonic mass Λ(k) for two reasons: 1. Are Maxwell’s equations still

gauge invariant? 2. Does this mass have any physical origin? The answer is yes to both

[84 ], [85 ]. In fact, it is nothing but the Hall conductivity [2 ],

εΛ(k) = σH(k) = σ0 − σ2k
2. (4.29)

Remarkably, our result shows that the Hall conductivity for 2D photons plays the exact same

role as the Dirac mass for 2D electrons. We note that the Hall conductivity is related to

the anti-symmetric components of the conductivity tensor. σ0 = σH(0) is the conventional
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Figure 4.2. Spin expectation value M̂z(k) as a function of k. (a) N = 0
skyrmion with no band inversion Λ0Λ2 < 0. The spin returns to initial state
M̂z(0) = M̂z(∞) and the total winding is trivial. (b) N = 1 skyrmion with
band inversion Λ0Λ2 > 0. In this case, the spin flips direction M̂z(0) 6=
M̂z(∞) and the total winding is nontrivial.

static (DC) component which opens a band gap in the vacuum dispersion. This property

of low energy bandgap is fundamentally similar to the role of the Dirac mass for fermions.

σ2 is the nonlocal (momentum dependent) correction to σH which dictates the curvature of

the photonic bands. Until very recently, the momentum dependence of σH had never been

considered for topological purposes [54 ]. This type of behavior can also be generalized to its

high-frequency (AC) equivalent in the context of nonlocal gyrotropy, but we restrict ourselves

to the low-energy limit ω ≈ 0 for simplicity. In this limit, nonlocal Hall conductivity defines

the quantum gyroelectric phase of matter.
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4.3.3 Spin-1 photonic skyrmions

The electronic [Eq. (4.25 )] and photonic [Eq. (4.27 )] Hamiltonians can be written in a

more suggestive form by introducing the skyrmion spin vector ~M = (Mx,My,Mz),

H1 = ~M · ~S, H1/2 = ~M · ~σ. (4.30)

As we can see, this new vector ~M has replaced the original 3D wave vector ~k in the massless

equations and closely resembles the Zeeman interaction [146 ]. Indeed, the spin precesses

about an axis formed by ~M,

~̇S = −i[~S,H1] = g1 ~M × ~S. (4.31)

It is important to reiterate that ~S represents spin-1 operators while ~σ is spin-1⁄2. This is

exemplified by the fact that bosonic (vector) particles possess gyromagnetic g-factors of

g1 = (Q1)−1 = 1, while fermionic (spinor) particles have g-factors of g1/2 = (Q1/2)−1 = 2,

~̇σ = −i[~σ,H1/2] = g1/2
~M × ~σ. (4.32)

The Larmor frequency Ωs is fundamentally different between the two. The skyrmions precess

at different rates depending on the spin representation,

Ωs = gsM, gs = (Qs)−1, (4.33)

where M = | ~M| is the magnitude of the skyrmion vector.

Note though, the skyrmion vector ~M(k) is a function of a 2D momentum k and actu-

ally describes a parametric surface ~M(k) = (vkx, vky,Λ(k)) = (vk,Λ(k)). The eigenstates

assume an identical form with the substitution of ~k → ~M,

H1~e± = ±M ~e±, H1/2ψ± = ±M ψ±. (4.34)
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~e± are the right- and left-handed helical eigenstates derived in Eq. (4.9 ) and ψ± are the

equivalent spinors in Eq. (4.10 ). The dispersion relation for each of the eigenstates reads,

ω±(k) = E±(k) = ±M(k) = ±
√
v2k2 + Λ2(k), (4.35)

which are clearly gapped since M(0) = |Λ0|. These states have acquired mass in 2D.

The critical difference of these new eigenstates is that the polar coordinate θ no longer

parametrizes the inclination from kz. Instead, it is governed by the spatially dispersive mass

tan θ(k) = vk/Λ(k), which is a function of the in-plane momentum k. We can understand

this phenomenon more clearly by evaluating the spin expectation value along the ẑ direction,

〈Sz〉± = ~e∗
± · Sz~e± = ±Q1M̂z, (4.36)

where M̂z(k) = Λ(k)/M(k) = cos θ(k) is a normalized vector. Notice the spin comes in units

of bosonic charge Q1 = 1, as we would expect for an integer particle s = 1. Analogously, the

half-integer skyrmion s = 1/2 arises in units of fermionic charge Q1/2 = 1/2,

〈σz/2〉± = ψ†
±(σz/2)ψ± = ±Q1/2M̂z. (4.37)

At k = 0, the spin points directly along M̂z(0) = sgn[Λ0]. However, as the momen-

tum increases, ~M tilts away from the z-axis and in some cases can flip directions entirely

M̂z(∞) = −sgn[Λ2]. This is a nontrivial topology. A depiction of trivial and nontrivial

M̂z(k) as a function of k is presented in Fig. 4.2 .

An aside: the zero helicity (longitudinal) state

For completeness, there is technically one additional eigenstate associated with the pho-

tonic Hamiltonian [Eq. (4.27 )] – the zero helicity (longitudinal) state,

H1~e0 = 0, ~e0 = M̂ = ~M/M. (4.38)
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Figure 4.3. Left: spin texture M̂(k) as a function of k for trivial and non-
trivial skyrmions. (a) N = 0 skyrmion with no band inversion Λ0Λ2 < 0. As
an example, we have let v = 0.5, Λ0 = 4 and Λ2 = −2. Since the spin returns
to initial state within the dispersion M̂z(0) = M̂z(∞), the total winding is
trivial. (b) N = 1 skyrmion with band inversion Λ0Λ2 > 0. To demonstrate,
we have let v = 0.5, Λ0 = 4 and Λ2 = 2. In this case, the spin flips direction
within the dispersion M̂z(0) 6= M̂z(∞) and the total winding is nontrivial.
Right: spin texture M̂ of the skyrmion projected on the unit sphere. As the
momentum varies over all possible values, M̂(k) can perform either a (c) re-
tracted or (d) full evolution over the unit sphere. This corresponds to a total
solid angle of Ω = 0 or 4π respectively.
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~e0 is a completely flat band ω0 = 0 and represents the electrostatic limit (irrotational fields).

This band belongs to the Hilbert space but can be removed from the spectrum by enforcing

k · D = 0 at zero frequency, which implies there is no static charge present. Moreover,

since ~e0 = ~e∗
0 can always be chosen real, the Chern number of this band necessarily vanishes

C0 = 0.

4.3.4 Skyrmion magnetic field

We are now ready to assess the Berry curvature. In two dimensions, the Berry curvature

is a scalar and characterizes the “magnetic” flux through the planar momentum space R2.

Since our long wavelength theory is regularized, this is equivalent to the flux through the

Riemann sphere S2. For the 2D photon, the Berry curvature F±
1 is found by varying the

in-plane momentum k of the right- and left-handed eigenstates ~e±,

F±
1 = −i(∂kx~e

∗
± · ∂ky~e± − ∂ky~e

∗
± · ∂kx~e±). (4.39)

The Berry curvature F±
1/2 of the 2D electron ψ± is derived in a similar fashion,

F±
1/2 = −i(∂kxψ

†
±∂kyψ± − ∂kyψ

†
±∂kxψ±). (4.40)

Just like the 3D massless particles [Eq. (4.13 )], the Berry curvature F±
s = ±Fs comes in

units of quantized magnetic charge Qs = s,

Fs = QsF . (4.41)

This emergent magnetic field F is generated by the momentum dependent variations in the

spin texture M̂ = ~M/M,

F = M̂ · (∂kxM̂ × ∂kyM̂) = ~F · d2 ~M. (4.42)

F is precisely the magnetic field of a skyrmion [147 ] and has several profound interpretations.

Mathematically, its the Jacobian and dictates the degree of continuous mapping from the
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momentum space (the Riemann sphere) onto the unit sphere M̂, i.e. S2 → S2. In another

context, it tells us the differential flux of the Dirac monopole ~F onto the parametric surface
~M(k),

~F =
~M

M3 , d2 ~M = ∂kx
~M × ∂ky

~M, (4.43)

where d2 ~M is the surface normal. As the momentum varies over all possible values, the spin

vector ~M(k) can enclose the monopole any number of times. Hence, the total magnetic flux

counts the number of Qs monopoles enclosed by the skyrmion spin vector ~M,

N = 1
4π

¨
R2

Fdkxdky = 1
4π

¨
R2

M̂ · (∂kxM̂ × ∂kyM̂)dkxdky, N ∈ Z. (4.44)

This is known as the skyrmion (or winding) number. Since the momentum space is bounded

on the Riemann sphere R2 ' S2, the skyrmion number N is guaranteed to be an integer.

A visualization of the M̂ unit sphere for trivial and nontrivial skyrmions is displayed in

Fig. 4.3 .

4.3.5 Chern insulators

The Chern number Cs is directly proportional to the skyrmion number N but has a

very different meaning depending on the particle species. It counts twice the total magnetic

charge of the skyrmion,

Cs = 1
2π

¨
R2

Fsdkxdky = Qs

2π

¨
R2

Fdkxdky = 2QsN. (4.45)

For spin-1⁄2 skyrmions, the Chern number is an integer C1/2 = N ∈ Z and is indistinguishable

from the skyrmion number itself. Spin-1 skyrmions are quite different by comparison; the

Chern number is an even integer C1 = 2N ∈ 2Z. From fermionic Chern arguments, one would

expect to always find an even number of photonic edge states – but this is not the case [58 ]–

[60 ], [145 ]. Although a widely held belief, the conventional bulk-boundary correspondence

fails for spin-1 bosons [162 ]. We will demonstrate this fact explicitly.
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Utilizing our spin vector ~M defined in Eq. (4.30 ), the skyrmion magnetic field F in

circular polar coordinates k = k(cosφ, sinφ) reads,

F(k) = vk[Λ(k) − vkΛ(k)]
[v2k2 + Λ2(k)]3/2 = sin θ(k)∂kθ(k) = −∂kM̂z(k). (4.46)

Due to rotational symmetry, F(k) depends only on the magnitude of k. The geometric

interpretation is clear – it describes variations in the solid angle F(k)dkdφ = dΩ(k) traced

by M̂(k). Integrating the magnetic flux over all momenta, we acquire the skyrmion number,

N = 1
2 [ cos θ(0) − cos θ(∞)] = 1

2 [M̂z(0) − M̂z(∞)] = 1
2 (sgn[Λ0] + sgn[Λ2]) . (4.47)

When band inversion is present Λ0Λ2 > 0, the z-component of the spin vector M̂z(0) 6=

M̂z(∞) flips directions within the dispersion. This represents north θ = 0 and south θ = π

poles on the unit sphere, which means M̂(k) traces out a full solid angle, regardless of the

relative magnitudes of Λ0 and Λ2. This is equivalent to saying the parametric surface ~M(k)

always encloses a monopole N = ±1. In the trivial regime Λ0Λ2 < 0, the z-component

M̂z(0) = M̂z(∞) returns to its initial state at either the north or south poles and ~M(k)

never encloses a monopole N = 0. Consequently, the Chern number in the nontrivial phase

equates to Cs = ±2Qs, which is an integer for the electron C1/2 = ±1, but an even integer for

the photon C1 = ±2. In conventional spin-1⁄2 and pseudo-spin-1⁄2 problems, a large Chern

number |C1/2| > 1 corresponds to multiple gapless edge states within the bulk topological

band gap. This is not true for spin-1 bosonic particles. For |C1| = 2 there is a single spin-1

quantized edge state within the topological band gap which is illustrated in Fig. (4.4 ).

4.3.6 Topological edge states

We now solve for the topology protected edge states of both particles. We stress that

for both spin-1 and spin-1⁄2 phases, there is exactly one unidirectional solution at the edge.

This makes intuitive sense because a single monopole N = ±1 exists in the band structure.

A nontrivial skyrmion N = ±1 corresponds to either a forward or backward propagating

edge state – forward for N = +1 and backward for N = −1. We take the boundary in the
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Figure 4.4. Dispersion relation of the bulk and gapless edge bands (black
lines) of the topologically massive 2D particles. (a) The conventional fermionic
Chern insulator is characterized by a spin-1⁄2 skyrmion (Dirac equation). (b)
The bosonic Chern insulator is described by a spin-1 skyrmion (Maxwell’s
equations). The bulk Chern number Cs = 2QsN depends on both the magnetic
charge (spin) Qs = s and the skyrmion number N ∈ Z. This corresponds
to integer phases for electrons C1/2 ∈ Z but even integer phases for photons
C1 ∈ 2Z. At low energy, a band gap is formed at E = ω = 0 by a spatially
dispersive effective mass Λ(k) = Λ0 − Λ2k

2. (a) For the 2D electron, this is
simply the Dirac mass. (b) For the 2D photon, this mass is equivalent to a
nonlocal Hall conductivity εΛ(k) = σH(k). In the presence of band inversion
Λ0Λ2 > 0, there is a point where the effective mass changes sign Λ(k) = 0,
precisely at k = (Λ0/Λ2)1/2. The massless helically quantized edge states touch
the bulk bands at this point. This is known as the quantum anomalous Hall
effect (QAHE) for electrons and the quantum gyroelectric effect (QGEE) for
photons. The flat longitudinal band ω0 = 0 is shown for completeness and
represents the electrostatic limit (irrotational fields). However, this band can
be removed from the spectrum by requiring that all static charges vanish.
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x dimension such that ky is still a good quantum number. We then look for solutions of the

form ~Ψe
±(x, y) = ~Ψe

±(x)eikyy and ψe
±(x, y) = ψe

±(x)eikyy that satisfy the boundary condition

at infinity ~Ψe
±(x = +∞) = ψe

±(x = +∞) = 0. We also impose topological open boundary

conditions [108 ], [109 ] at the interface,

~Ψe
±(x = 0+) = ψe

±(x = 0+) = 0. (4.48)

If this constraint is satisfied simultaneously, a solution will exist at any interface (even

vacuum) because the edge state is insensitive to fields in the x < 0 region.

Substituting into the Hamiltonians [Eq. (4.25 ) and (4.27 )] and applying boundary con-

ditions, the topological edge states emerge. For photonic spin-1 states we have,

~Ψe
±(x) =


√
εEx

√
εEy

iHz


e

±

= Ψ0


1

0

∓i


(
e−η1x − e−η2x

)
. (4.49)

Carrying out the same procedure, the electronic spin-1⁄2 states are expressed as,

ψe
±(x) = ψ0

 1

±i

 (e−η1x − e−η2x
)
. (4.50)

The wave functions of the spin-1 and spin-1⁄2 particles appear quite similar. The fundamental

difference lies in the fact that ~Ψ is a vector (bosonic) field and its polarization state is defined

in real space. ψ is a spinor (fermionic) field – its polarization state is more abstract as it

lives in a complex space. Notice there are two characteristic decay scales for the edge states

η1,2, like a damped harmonic oscillator, but in spatial frequency. These are the quadratic

roots of the secular equation,

Λ0 + Λ2(η2 − k2
y) ∓ vη = 0. (4.51)

If sgn[Λ0] = sgn[Λ2] = +1 the skyrmion number is N = +1 and only a forward propagating

solution (+) exists. On the other hand, if sgn[Λ0] = sgn[Λ2] = −1 the skyrmion is N = −1

131



and only the backward propagating solution (−) is permitted. η1,2 characterize the degree

of confinement at a particular momentum ky and are solved straightforwardly,

η1,2(ky) = 1
2|Λ2|

[
v ±

√
v2 + 4Λ2(Λ2k2

y − Λ0)
]
. (4.52)

The spatial width of the wave packet depends on the size of the band gap formed by Λ0 and

Λ2. However, regardless of their relative magnitudes, as long as Λ0Λ2 > 0 a solution always

exists within the band gap – they are topologically protected.

Intriguingly, the edge waves are also helically quantized along the direction of propagation

k̂ = ŷ,

Sy~Ψe
± = ±Q1~Ψe

±. (4.53)

Note that k̂ · ~S = Sy is the spin-1 helicity operator and the edge photon carries a discrete

unit of bosonic charge Q1 = 1. Likewise, the electronic edge wave carries a discrete unit of

fermionic charge Q1/2 = 1/2,

(σy/2)ψe
± = ±Q1/2ψ

e
±, (4.54)

where k̂ · ~σ/2 = σy/2 is the spin-1⁄2 helicity operator. For spin-1, helical quantization means

the field is completely transverse to the momentum k̂ · ~Ψe
± = 0 and the edge state behaves

identically to a massless photon. This is known as the quantum gyroelectric effect (QGEE)

[54 ]. Similarly, the edge electron behaves just like a helical Weyl fermion. Their dispersion

relations read,

ω±(ky) = E±(ky) = ±vky, −
√

Λ0

Λ2
< ky <

√
Λ0

Λ2
. (4.55)

No solution exists for ky → −ky and the edge states are back-scatter immune. Notice they are

linearly dispersing (massless) such that the group velocity is constant ∂kyω± = ∂kyE± = ±v.

Moreover, the edge states are gapless and touch the bulk bands precisely at the band inversion

point ky =
√

Λ0/Λ2, where Λ(ky) = 0. At this particular momentum, one of the decay

lengths becomes infinite 1/η(ky) → ∞ and the edge states join the continuum of bulk bands.

A diagram of the bulk and edge dispersion is shown in Fig. 4.4 .

Note: It should be pointed out that the photonic edge states ~Ψe
± are ill-defined in the

zero energy limit ω = ky = 0, which is characteristic of all transverse waves. This is where
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the edge dispersion intersects the longitudinal band ω0 = 0. Since this state is removed from

the spectrum (no static charges present), the electromagnetic field vanishes at this point.

No zero modes exist for the photon. On the other hand, the electronic edge states ψe
± have

a smooth limit at E = ky = 0 and zero modes are permitted. This is yet another significant

difference between bosons and fermions which is related to the fact that the Dirac equation

can host Majorana bound modes [163 ]. Since photons are their own antiparticles, no such

Majorana states are possible.

4.4 Conclusion

In conclusion, we have introduced the concept of a photonic Dirac monopole appropriate

for the field of spin photonics, topological photonic crystals and metamaterials. It shows

magnetic monopole charge quantization in momentum space arising solely from spin-1 prop-

erties of the photon. We elucidated this phenomenon using a Dirac-Maxwell correspondence

in the Riemann-Silberstein basis and applied this topological theory to 2D photonic materi-

als. These topologically massive photons are interpreted as spin-1 skyrmions and arise from

nonlocal Hall conductivity. Our work illuminates the role of photon spin in the recently

proposed quantum gyroelectric phase of matter and topological bosonic phases [54 ], [63 ].

The edge states of such a topological phase exhibit spin-1 quantization as opposed to spin-1⁄2

quantization in fermionic phases of matter. This is ultimately connected to the presence of

quantized monopole charges (bosonic- or fermionic-like [58 ], [59 ]) in the dispersion of bulk

matter. Experimentally probing monopole charge in momentum space can shed light on

fundamental symmetries in topological electrodynamics of photons and electrons.
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5. NONLOCAL TOPOLOGICAL ELECTROMAGNETIC

PHASES OF MATTER

From [T. Van Mechelen and Z. Jacob, “Nonlocal topological electromagnetic phases of mat-

ter,” Phys. Rev. B, vol. 99, p. 205146, 20 May 2019]. © 2020 American Physical Society.

[164 ]

In 2+1D, nonlocal topological electromagnetic phases are defined as atomic-scale media

which host photonic monopoles in the bulk band structure and respect bosonic symmetries

(e.g. time-reversal T 2 = +1). Additionally, they support topologically protected spin-1

edge states, which are fundamentally different than spin-1⁄2 and pseudo-spin-1⁄2 edge states

arising in fermionic and pseudo-fermionic systems. The striking feature of the edge state is

that all electric and magnetic field components vanish at the boundary – in stark contrast

to analogs of Jackiw-Rebbi domain wall states. This surprising open boundary solution of

Maxwell’s equations, dubbed the quantum gyroelectric effect [Phys. Rev. A 98, 023842

(2018)], is the supersymmetric partner of the topological Dirac edge state where the spinor

wave function completely vanishes at the boundary. The defining feature of such phases is

the presence of temporal and spatial dispersion in conductivity (the linear response function).

In this paper, we generalize these topological electromagnetic phases beyond the continuum

approximation to the exact lattice field theory of a periodic atomic crystal. To accomplish

this, we put forth the concept of microscopic photonic band structure of solids – analogous to

the traditional theory of electronic band structure. Our definition of topological invariants

utilizes optical Bloch modes and can be applied to naturally occurring crystalline materials.

For the photon propagating within a periodic atomic crystal, our theory shows that besides

the Chern invariant C ∈ Z, there are also symmetry-protected topological (SPT) invariants

ν ∈ ZN which are related to the cyclic point group CN of the crystal ν = C mod N . Due

to the rotational symmetries of light R(2π) = +1, these SPT phases are manifestly bosonic

and behave very differently from their fermionic counterparts R(2π) = −1 encountered in

conventional condensed matter systems. Remarkably, the nontrivial bosonic phases ν 6= 0

are determined entirely from rotational (spin-1) eigenvalues of the photon at high-symmetry
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points in the Brillouin zone. Our work accelerates progress towards the discovery of bosonic

phases of matter where the electromagnetic field within an atomic crystal exhibits topological

properties.

5.1 Introduction

From a material science standpoint, all known topological phases of matter to date have

been characterized by electronic phenomena [15 ], [17 ]. This is true for both time-reversal

broken phases – often called Chern insulators [11 ], [13 ], [72 ], [73 ], [94 ] and time-reversal

unbroken phases – known as topological insulators [27 ]–[29 ]. The signature of time-reversal

broken phases is the quantum Hall conductivity σxy = ne2/h, which is quantized in terms

of the electronic Chern invariant n ∈ Z [3 ], [5 ], [7 ]. e being the elementary charge of the

electron and h the Planck constant. Only recently has the idea of bosonic Hall conductivity

and topological bosonic phases been put forth [56 ]–[62 ], [165 ], [166 ].

However, it should be emphasized that the traditional Hall conductivity [55 ], [104 ] only

has topological significance, with respect to the electron, in the static ω = 0 and long

wavelength k = 0 limits of the electromagnetic field σxy(0, 0) = ne2/h. At high frequency

ω 6= 0 and short wavelength k 6= 0, the Hall conductivity σxy(ω,k) acquires new physical

meaning. We have shown that the electromagnetic field itself becomes topological [54 ], [116 ],

[167 ]. These topological electromagnetic phases of matter depend on the global behavior of

σxy(ω,k), over all frequencies and wave vectors.

Like electrons, the signature of electromagnetic Chern phases C 6= 0 is topologically-

protected unidirectional (chiral) edge states. Unlike electrons however, no physical observ-

able (response/correlation function) is topologically quantized as their is no known equiv-

alent for photons. Nevertheless, the origin of topological quantization C ∈ Z is always a

discontinuity in the underlying Berry connection (gauge field [117 ]) of the eigenmodes. This

phenomenon of gauge discontinuity in the photonic eigenmodes fundamentally requires non-

local gyrotropy (Hall conductivity). Nonlocality, or spatial dispersion, is the momentum

dependence of optical parameters. If the Hall conductivity changes sign with momentum

σxy(ω,kcrit) = 0, ie. the handedness changes, the electromagnetic field is topologically non-

trivial C 6= 0. In two dimensions, σxy behaves as an effective mass [84 ], [85 ], [139 ] and this
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change in sign is the photonic counterpart of the Chern insulator [11 ], [13 ], [72 ], [73 ], [94 ],

where the exact same situation occurs. This intriguing nonlocal behavior leads to a new

topological bosonic phase of matter – a quantum gyroelectric phase [54 ], [116 ], [167 ] – which

is unlike any known fermionic phase as it is intrinsically tied to the electromagnetic field.

As of yet, only the continuum topological theory of the aforementioned quantum gyro-

electric effect (QGEE) has been solved [54 ], [116 ], [167 ]. Our goal is to extend this con-

cept beyond the long wavelength approximation to the exact lattice field theory of opti-

cal Bloch waves. In this regime, we must consider not only the first spatial component

σxy(ω,k) = σxy(ω,k,0) but all spatial harmonics of the crystal g 6= 0, to infinite order,

JHall
x (ω,k) =

∑
g
σxy(ω,k,g)Ey(ω,k + g). (5.1)

g · R ∈ 2πZ are the reciprocal lattice vectors and R is the primitive vector of the crystal. In

this case, Ei is the microscopic electric field. The electromagnetic field must be described to

the same scale as the electronic wave functions, i.e. for photon momenta on the order of the

lattice constant ka = π. Since topological invariants are fundamentally global properties,

these astronomically deep subwavelength fields actually play a role in the topological physics.

The idea of lattice topologies in electromagnetism was first proposed by Haldane [19 ],

[20 ] in the context of photonic crystals [23 ], [64 ]–[69 ]. These are artificial materials composed

of two or more different constituents which form a macroscopic crystalline structure. A few

important examples are gyrotropic photonic crystals [23 ], [68 ], [69 ], Floquet topological insu-

lators [52 ], [168 ], [169 ] and bianisotropic metamaterials [53 ], [70 ], [71 ], [74 ], [76 ], [77 ], [125 ],

[127 ], [129 ], [130 ], [143 ], [144 ], [170 ]–[172 ]. Instead, we focus on the microscopic domain

and utilize the periodicity of the atomic lattice itself. Thus, the topological invariants in

our theory are connected to the microscopic atomic lattice and not artificially engineered

macroscopic structures. We stress that in the microscopic case, the electromagnetic theory is

manifestly bosonic [78 ], [79 ], [140 ], [173 ] (e.g. time-reversal T 2 = +1) and characterizes topo-

logical phases of matter fundamentally distinct from known fermionic and pseudo-fermionic

phases.
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With that in mind, this paper is dedicated to solving two longstanding problems, which

is of interest to both photonics and condensed matter physics. The first, is developing

the rigorous theory of optical Bloch modes in natural crystal solids. This problem gained

significant interest in the 60’s and 70’s in the context of spatial dispersion (nonlocality) as

it lead to qualitatively new phenomena – such as natural optical activity (gyrotropy) [87 ],

[174 ]–[176 ]. The current paper builds on our recent discovery of the quantum gyroelectric

effect [54 ], [116 ], [167 ] where we have shown that nonlocality is also essential for topological

phenomena and is a necessary ingredient in any long wavelength theory. However, since

topological field theories are global constructs, a complete picture can only be achieved in

the microscopic domain of Bloch waves. Most of the foundations have been summarized by

Agronovich and Ginzburg in their seminal monograph on crystal optics [95 ]. Nevertheless,

topological properties have never been tackled to date and a few fundamental quantities,

such as the Bloch energy density, have not been defined.

This leads to the second problem – deriving the electromagnetic topological invariants

of these systems given only the atomic lattice. We solve this problem and also provide

a systematic bosonic classification of all 2+1D topological photonic matter. Utilizing the

optical Bloch modes, we show that a Chern invariant C ∈ Z can be found for any two-

dimensional crystal and characterizes distinct topological phases. We then go one step further

and classify these topological phases with respect to the symmetry group of the crystal – the

cyclic point groups CN . These are known as symmetry-protected topological (SPT) phases

[16 ], [100 ], [177 ]–[186 ] and the spin of the photon is critical to their definition. The rotational

symmetries of light R(2π) = +1 impart an intrinsically bosonic nature to these phases, which

are fundamentally different than their fermionic counterparts R(2π) = −1 encountered in

conventional condensed matter systems. We illustrate this fact by directly comparing SPT

bosonic and fermionic phases side-by-side. Our rigorous formalism of microscopic photonic

band structure provides an immediate parallel with the traditional theory of electronic band

structure in crystal solids.

This article is organized as follows. In Sec. 5.2 we develop the general formalism of

2+1D lattice electromagnetism. First we derive the generalized linear response function –

accounting for spatiotemporal dispersion to infinite order in the crystal’s spatial harmonics g.
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Thereafter, we find the equivalent Hamiltonian that governs all light-matter Bloch excitations

of the material. In Sec. 5.3 we study the discrete rotational symmetries (point groups) of

the crystal and the implications on spin-1 quantization [135 ], [187 ]–[191 ] of the photon.

The following Sec. 5.4 discusses the electromagnetic Chern number and its relationship to

symmetry-protected topological (SPT) bosonic phases. The bosonic classification of each

phase is related directly to integer quantization of the photon [Tab. 5.1 ] and this is compared

alongside their fermionic counterparts [Tab. 5.2 ]. Sec. 5.5 presents our conclusions.

The focus of this paper is 2+1D topological electromagnetic (bosonic) phases of mat-

ter C 6= 0 which requires breaking time-reversal symmetry. These bosonic Chern insulators

are ultimately related to nonlocal gyrotropic response (Hall conductivity) and show unidirec-

tional, completely transverse electro-magnetic (TEM) edge states [54 ], [116 ], [167 ]. However,

time-reversal symmetric topological phenomena can arise in higher dimensional systems in

the context of nonlocal magnetoelectricity [63 ]. These time-reversal symmetric phases pos-

sess counter-propagating TEM edge states and are interpreted as two copies of a bosonic

Chern insulator. Features of topological phenomena, such as spin-momentum locking [26 ],

[83 ], [157 ], [158 ], [192 ], have also been reported in conventional surface state problems –

surface plasmon-polaritons (SPPs), Dyakonov waves, etc. However, these traditional surface

properties are not connected to any topologically protected edge states or nontrivial phases.

5.2 Lattice electromagnetism

5.2.1 2+1D electrodynamics

In this paper we focus on two-dimensional materials and the topological electromagnetic

phases associated with them. The preliminaries for 2+1D electromagnetism can be found

in App. A of Ref. [54 ]. Conveniently, the restriction to 2D limits the degrees of freedom of

both the electromagnetic field and the induced response of the material, such that strictly

transverse-magnetic (TM) waves propagate. The corresponding wave equation reads,

H0f = i∂tg, f =


Ex

Ey

Hz

 , g =


Dx

Dy

Bz

 . (5.2)
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Table 5.1. Summary of 2+1D topological electromagnetic (bosonic) phases.
Symmetry-protected topological (SPT) bosonic phases exist in all cyclic point
groups CN . The continuous group C∞ describes the long wavelength theory
k ≈ 0. The topological phases are characterized by their Chern invariant
C ∈ Z and SPT invariant ν ∈ ZN . These numbers are not independent –
but intimately related by the symmetries of the crystal: ν = C mod N . ν is
protected by N -fold rotational symmetry and determines the Chern number up
to a factor of N . The bosonic classification of ν represents the direct product
of rotational eigenvalues (ηN)N = +1 (roots of unity) of the electromagnetic
field at high-symmetry points (HSPs) in the Brillouin zone.
Point group, CN Symmetry, ZN Bosonic classification, (ηN)N = +1
C1 - -
C2 Z2 exp (i2πC/2) = η2(Γ)η2(X)η2(Y)η2(M)
C3 Z3 exp (i2πC/3) = η3(Γ)η3(K)η3(K)
C4 Z4 exp (i2πC/4) = η4(Γ)η4(M)η2(Y)
C6 Z6 exp (i2πC/6) = η6(Γ)η3(K)η2(M)
C∞ Z exp (iθC) = ηθ(0)η∗

θ(∞), ηθ = exp(iθm)

Table 5.2. Summary of 2+1D SPT fermionic phases for comparison. The
fermionic classification of ν represents the direct product of rotational eigen-
values (ζN)N = −1 (roots of negative unity) of the spinor field at HSPs in the
Brillouin zone.
Point group, CN Symmetry, ZN Fermionic classification, (ζN)N = −1
C1 - -
C2 Z2 exp (i2πC/2) = ζ2(Γ)ζ2(X)ζ2(Y)ζ2(M)
C3 Z3 exp (i2πC/3) = −ζ3(Γ)ζ3(K)ζ3(K)
C4 Z4 exp (i2πC/4) = −ζ4(Γ)ζ4(M)ζ2(Y)
C6 Z6 exp (i2πC/6) = −ζ6(Γ)ζ3(K)ζ2(M)
C∞ Z exp (iθC) = ζθ(0)ζ∗

θ (∞), ζθ = exp(iθm)
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f is the TM polarization state of the electromagnetic field and the material response is

captured by the displacement field g. H0(p) = p · S are the vacuum Maxwell equations in

real space and describe the dynamics of the free photon,

H0(p) = pxŜx + pyŜy =


0 0 −py
0 0 px

−py px 0

 . (5.3)

p = −i∇∇∇ is the two-dimensional momentum operator. Ŝx and Ŝy are spin-1 operators that

satisfy the angular momentum algebra [Ŝi, Ŝj] = iεijkŜk,

Ŝz =


0 −i 0

i 0 0

0 0 0

 . (5.4)

Here, (Ŝz)ij = −iεijz is the generator of rotations in the x-y plane and is represented by

the antisymmetric matrix. In two dimensions, Ŝz governs all rotational symmetries of the

electromagnetic field.

5.2.2 2+1D linear response theory

The effective electromagnetic properties of a material are very accurately described by

a linear response theory – assuming nonlinear interactions are negligible. This is true for

low intensity light |f | / 108 V/m that is sufficiently weak compared to the atomic fields

governing the binding of the crystal itself. Our goal is to characterize the topological field

theory in this regime. With this in mind, the most general linear response of a 2D material

is nonlocal in both space and time coordinates,

g(t, r) =
ˆ
d2r′
ˆ t

−∞
dt′M(t, t′, r, r′)f(t′, r′). (5.5)
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M is the response function and compactly represents the constitutive relations in space-time,

M(t, t′, r, r′) =


εxx εxy χx

εyx εyy χy

ζx ζy µ

 . (5.6)

Note that M is a 3 × 3 dimensional matrix and we include all possible material responses

as a generalization, for instance magnetism µ and magnetoelectricity χi, ζi.

If the properties of the crystal are not changing temporally (no external modulation),

the response function is translationally invariant in time,

M(t, t′, r, r′) = M(t− t′, r, r′) =
ˆ
dωM(ω, r, r′)e−iω(t−t′). (5.7)

Equation (5.7 ) implies energy conservation in Hermitian systems ω = ω. However, a crystal

is not translationally invariant in space – momentum is not conserved k′ 6= k. Instead, the

crystal is periodic and possesses discrete translational symmetry [95 ], [193 ],

M(ω, r, r′) = M(ω, r + R, r′ + R), (5.8)

where R is the primitive lattice vector of the crystal. Due to nonlocality, it is necessary to

convert to the reciprocal space,

M(ω,k,k′) = 1
(2π)2

¨
d2rd2r′M(ω, r, r′)e−ik·reik′·r′

. (5.9)

M(ω,k,k′) determines the linear transformation properties of an input wave with momen-

tum k′ to an output wave with momentum k. In a periodic crystal, the momentum is

conserved up to a reciprocal vector k′ = k + g and represents a discrete spectrum,

M(ω,k,k′) =
∑

g
Mg(ω,k)δ2(k + g − k′), (5.10)
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where Mg(ω,k) is the Fourier transformed function with respect to r̄ = r − r′,

Mg(ω,k) =
ˆ
d2r̄ Mg(ω, r̄)e−ik·r̄. (5.11)

δ2(k + g − k′) is the momentum conserving delta function. Each Fourier element of the re-

sponse function Mg(ω,k) determines the polarization dependent scattering amplitude from

k + g → k. These are essentially the photonic structure factors of the two-dimensional

crystal.

In this case, k is the crystal momentum and is only uniquely defined within the first

Brillouin zone (BZ). Hence, the electromagnetic eigenstates of the medium are Bloch waves,

H0(k)fk = ω

ˆ
d2k′M(ω,k,k′)fk′ = ω

∑
g

Mg(ω,k)fk+g. (5.12)

H0(k) = k · S are the vacuum Maxwell equations in momentum space. The Bloch photonic

wave function f̃k(r) corresponds to the net propagation of all k + g scattered waves in the

medium,

f̃k(r) = 1√
V

∑
g
fk+geig·r, (5.13)

where f̃k(r + R) = f̃k(r) is periodic in the atomic crystal lattice and we have normalized

by the unit cell area V . For clarity, we use tildes to identify cell-periodic Bloch functions.

fk+g are the collection of Fourier coefficients associated with each Bloch wave. Note that

Eq. (5.12 ) and (5.13 ) reduce to the continuum theory [54 ], [116 ], [167 ] when considering only

the 0th order harmonic g = 0.

5.2.3 Generalized response function

Nevertheless, Eq. (5.12 ) poses a few serious problems; it does not represent a proper first-

order in time Hamiltonian since all harmonics of the response function Mg(ω,k) depend

on the eigenvalue ω. Moreover, it is not evident that the Bloch waves in Eq. (5.13 ) are

normalizable, as the system contains complex spatial and temporal dispersion. Due to these

issues, it is advantageous to return to the more general form of M(ω,k,k′) without assuming
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discrete translational symmetry. This will allow us to derive very robust properties of the

response function that can also be applied to amorphous materials or quasicrystals.

First, we demand Hermiticity,

M(ω,k,k′) = M†(ω,k′,k), (5.14)

such that the response is lossless. To account for normalizable electromagnetic waves, the

energy density must be positive definite for all ω,

U(ω) =
¨

d2kd2k′f †
kM̄(ω,k,k′)fk′ > 0, (5.15)

where M̄ describes the inner product space in a dispersive medium,

M̄(ω,k,k′) = ∂

∂ω
[ωM(ω,k,k′)] . (5.16)

Notice that U(ω) = U∗(ω) is only real-valued when M is Hermitian. For realistic materials,

the energy density is also stable at static equilibrium ω = 0,

U(0) =
¨

d2kd2k′f †
kM(0,k,k′)fk′ > 0, (5.17)

with M(0,k,k′) = M̄(0,k,k′) at zero frequency. Stability implies the response function

is nonsingular at ω = 0, such that there is a smooth transition to the electrostatic limit

limω→0 ωM(ω,k,k′) → 0. All dielectric (insulating) materials satisfy this constraint since

the induced current arises strictly from time-varying polarizations Ji = Ṗi + εij∂
jMz. By

relaxing the stability condition [Eq. (5.17 )], metallic (plasmonic) models can be easily in-

cluded with slight modifications to M. Metallic materials are singular (unstable) at ω = 0

as they possess dc (static) currents. However, the main focus of this paper is the ground

state of dielectric (insulating) materials so we assume the response function is well-behaved

around ω = 0.
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To ensure the electromagnetic field is real-valued, i.e. represents a neutral particle, we

always require the reality condition,

M(ω,k,k′) = M∗(−ω,−k,−k′). (5.18)

Furthermore, the response is transparent at high frequency ω → ∞, as the material cannot

respond to sufficiently fast temporal oscillations,

lim
ω→∞

M(ω,k,k′) = 13δ
2
k−k′ . (5.19)

13 is the 3 × 3 identity matrix and δ2
k−k′ = δ2(k − k′) is the momentum conserving delta

function. Lastly, the response must be causal and satisfy the Kramers-Kronig relations,

˛
Im [ω′]≥0

M(ω′,k,k′) − 13δ
2
k−k′

ω′ − ω
dω′ = 0. (5.20)

This ensures the response function is analytic in the upper complex plane and decays at least

as fast as |ω|−1.

Combining all the above criteria, we find that M can always be expanded via a partial

fraction decomposition,

M(ω,k,k′) = 13δ
2
k−k′ −

∑
α

ˆ
d2k′ C†

αk′kCαk′k′

ωαk′(ω − ωαk′) . (5.21)

Any Hermitian (lossless) response function can be expressed in this form. Equation (5.21 )

is easily extended to 3D materials but our focus is 2D topological field theories. ωαk is the

resonant energy of the oscillator and corresponds to a first-order (real-valued) pole of the

response function. Note, to satisfy the reality condition [Eq. (5.18 )], each oscillator ωαk must

always come in pairs with a negative energy resonance −ωα−k, which we assume is captured

by the summation over α.
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In this case, α labels an arbitrary bosonic excitation in the material, such as an exciton

or phonon, which couples linearly to the electromagnetic fields via the tensor,

Cα(k,k′) = 1
(2π)2

¨
d2rd2r′Cα(r, r′)e−ik·reik′·r′

. (5.22)

In the general case, rank[Cα] = 3 couples to both the electric Ei and magnetic field Hz.

Pure electric excitations only contribute to the permittivity tensor rank[Cα] = 2 and couple

strictly to the electric field Ei. Likewise, pure magnetic excitations only contribute to the

scalar permeability rank[Cα] = 1 and couple strictly to the magnetic field Hz. All such

excitations are accounted for simply by specifying the rank of Cα. The rank of Cα also

determines the number of additional eigenmodes arising from each oscillator α. The total

number of modes is therefore N = 3 +∑
α rank[Cα], where 3 arise from Maxwell’s equations

rank[H0] = 3.

Substituting Eq. (5.21 ) into Eq. (5.15 ), we can exchange the order of integration U(ω) =´
d2kU(ω,k) and define,

U(ω,k) = |fk|2 +
∑
α

∣∣∣∣∣
ˆ
d2k′ Cαkk′fk′

(ω − ωαk)

∣∣∣∣∣
2

> 0, (5.23)

which is positive definite for all ω and k. Equation (5.23 ) is the generalized inner product

for the electromagnetic field and represents the energy density at an arbitrary frequency

and wave vector. We will now show that Eq. (5.21 ) is derived from a first-order in time

Hamiltonian.

5.2.4 Generalized Hamiltonian

To find the corresponding Hamiltonian, we expand the response function M in terms of

three-component matter oscillators ψα. Similar to a Lorentz oscillator [194 ], these describe

the internal polarization and magnetization modes of the material,

ωψαk = ωαkψαk +
ˆ
d2k′Cαkk′fk′ . (5.24)
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Substituting Eq. (5.24 ) and (5.21 ) into Eq. (5.12 ) we obtain,

ωfk = H0(k)fk +
∑
α

¨
d2k′d2k′

ωαk′
C†
αk′kCαk′k′fk′ +

∑
α

ˆ
d2k′C†

αk′kψαk′ . (5.25)

The first two terms on the right hand side of Eq. (5.25 ) represent the vacuum equations

and self-energy of the electromagnetic field. The third term is the linear coupling to the

oscillators. Combining Eq. (5.24 ) and (5.25 ) into a single algebraic matrix, we write the

generalized Hamiltonian H(k,k′) as,

H(k,k′) =



H0(k)δ2
k−k′ +∑

α

´
d2k′

ωαk′
C†
αk′kCαk′k′ C†

1k′k C†
2k′k . . .

C1kk′ ω1kδ
2
k−k′ 0 . . .

C2kk′ 0 ω2kδ
2
k−k′ . . .

... ... ... . . .


, (5.26)

which is manifestly Hermitian H(k,k′) = H†(k′,k). The dimension of the Hamiltonian is

determined by the rank of all the coupling matrices rank[H] = N = 3 +∑
α rank[Cα].

We now define uk as the generalized state vector of the electromagnetic problem; ac-

counting for the photon fk and all possible internal excitations ψαk,

ˆ
d2k′Hkk′uk′ = ωuk, uk =



fk

ψ1k

ψ2k
...


, (5.27)

which is a first-order wave equation. Notice that contraction of uk naturally reproduces the

energy density [Eq. (5.23 )] upon summation over all degrees of freedom,

u†
kuk = |fk|2 +

∑
α

|ψαk|2 = |fk|2 +
∑
α

∣∣∣∣∣
ˆ
d2k′ Cαkk′fk′

(ω − ωαk)

∣∣∣∣∣
2

= U(ω,k). (5.28)

The complete set of eigenvectors and eigenvalues is represented by uk. We must define all

relevant electromagnetic quantities in terms of this generalized state vector.
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5.2.5 Crystal Hamiltonian

We are now ready to enforce crystal periodicity. Instead of expanding M directly, we

utilize the periodicity of the coupling tensors Cα(r, r′) = Cα(r+R, r′ +R), which is a discrete

spectrum in g,

Cα(r, r′) =
∑

g
Cαg(r − r′)e−ir′·g. (5.29)

After Fourier transforming, we obtain the components in the momentum space,

Cα(k,k′) =
∑

g
Cαg(k)δ2(k + g − k′), (5.30)

with respect to r̄ = r − r′,

Cαg(k) =
ˆ
d2r̄ Cαg(r̄)e−ik·r̄. (5.31)

Cαg(k) tells us the scattering amplitude of a photon fk+g with momentum k + g into an

internal mode of the material ψαk at momentum k, and vice versa. The crystal Hamiltonian

accounts for all such scattering events,

H(k,k′) =
∑

g
Hg(k)δ2(k + g − k′), (5.32)

with Hermiticity Hg(k) = H†
−g(k + g) satisfied by definition.

The quasiparticle eigenstates of the Hamiltonian describe the complete spectrum of Bloch

waves, ∑
g
Hg(k)unk+g = ωnkunk, (5.33)

and the eigenenergies ωnk+g = ωnk are periodic Bloch bands. Note, it is important not to

confuse the polaritonic eigenenergies ωnk with the oscillator energies ωαk. The eigenenergies

ωnk constitute modes of the coupled light-matter system while ωαk describe the natural mat-

ter oscillations in the absence of the electromagnetic field. n labels a particular polaritonic

energy band of the material with its associated Bloch eigenstate ũnk(r). The total wave
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function ũnk(r) contains the photon f̃nk(r) and all internal degrees of freedom describing the

linear response ψ̃nαk(r). This is expressed compactly in the Fourier basis,

ũnk(r) = 1√
V

∑
g
unk+geig·r, unk+g =



fnk+g

ψn1k+g

ψn2k+g
...


, (5.34)

where ũnk(r + R) = ũnk(r) is periodic in the atomic crystal lattice and we have normalized

by the unit cell area V . In this basis, ũnk(r) is normalized to unit energy as,

1 =
ˆ

cell
d2r ũ†

nk(r)ũnk(r) =
∑

g
u†
nk+gunk+g

=
∑

g

(
f †
nk+gfnk+g +

∑
α

ψ†
nαk+gψnαk+g

)

=
∑
gg′

f †
nk+gM̄g′−g(ωnk,k + g)fnk+g′ .

(5.35)

The integration is taken over the 2D unit cell. To simplify Eq. (5.35 ), we have utilized the

linear response theory to express ψα in terms of the driving field f ,

ψnαk+g =
∑

g′ Cαg′(k + g)fnk+g′+g

ωnk − ωαk+g
. (5.36)

M̄g(ω,k) = ∂ω [ωMg(ω,k)] is the contribution to the energy density arising from each

spatial harmonic of the crystal.

Finally, the eigenenergies ωnk are the n nontrivial roots of the characteristic wave equa-

tion,

H0(k)fnk = ωnk
∑

g
Mg(ωnk,k)fnk+g, (5.37)

148



which generates all possible photonic bands of the crystal. Note, the response function

Mg(ω,k) is now expressed in terms of Cαg(k) and describes the net summation of all scat-

tering and back-scattering events in the material,

Mg(ω,k) = 13δg −
∑
αg′

C†
α−g′(k + g′)Cαg−g′(k + g′)
ωαk+g′(ω − ωαk+g′) . (5.38)

This proves that the wave equation is derived from a first-order Hamiltonian, has real eigen-

values ω = ωnk for all momenta, and is normalizable with respect to the total state vector

ũnk(r).

5.3 Discrete rotational symmetry

5.3.1 Point groups in 2D

Point groups are the discrete analogs of continuous rotations and reflections. They rep-

resent the number of ways the atomic lattice can be transformed into itself [97 ], [98 ]. Due to

the crystallographic restriction theorem (CRT), there are ten such point groups in 2D. The

first five are the cyclic groups CN ,

C1, C2, C3, C4, C6. (5.39)

For instance, C3 implies threefold cyclic symmetry while C1 is no symmetry. The last five

are the dihedral groups DN ,

D1, D2, D3, D4, D6. (5.40)

The dihedral group DN contains CN plus reflections. However, it can be proven that the

Chern number for all DN point groups vanish [100 ]. In fact, any space group containing

mirror symmetry has a vanishing Chern number [16 ]. Therefore, we concern ourselves with

only the (abelian) cyclic groups CN . The Brillouin zone of each point group is displayed in

Fig. 5.1 .
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Figure 5.1. Brillouin zone of each cyclic point group CN . (a), (b), (c), (d),
and (e) correspond to N = 2, 3, 4, 6, and ∞ respectively. Due to rotational
symmetry, the total BZ is equivalent to N copies of the IBZ, which is repre-
sented by the blue quadrant. For continuous symmetry N = ∞, this is simply
a line. The yellow circles label HSPs Rkp = kp where the crystal Hamiltonian
is invariant under a certain rotation R̂. At these specific momenta, a Bloch
photonic wave function Rf̃kp(R−1r) = η(kp)f̃kp(r) is an eigenstate of an N -
fold rotation η(kp) = ηN(kp) = [i2πmN(kp)/N ] such that the photon possesses
quantized integer eigenvalues mN(kp) ∈ ZN . Since mN are discrete quan-
tum numbers, their values cannot vary continuously if the crystal symmetry
is preserved – they can only be changed at a topological phase transition.

The defining characteristic of each cyclic group is the fermionic or bosonic representation.

When we rotate the fields by 2π, we take the particle into itself and acquire a phase,

R(2π) = (−1)F . (5.41)

F is twice the total spin of particle, or equivalently, the fermion number. Fermions with

half-integer spin are antisymmetric under rotations R(2π) = −1, while bosons with integer

spin are symmetric R(2π) = +1. Depending on the symmetries of the lattice, the topology

fundamentally changes for fermions and bosons. We will understand the implications this

has for spin-1 photons.

5.3.2 Spin-1 discrete symmetries

If the two-dimensional crystal belongs to a cyclic point group CN , the Hamiltonian pos-

sesses discrete rotational symmetry about the z-axis,

R−1HRg(Rk)R = Hg(k), ωnRk = ωnk, (5.42)
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where R is any rotation in CN . The eigenenergies ωnk respect the symmetry of the crystal

– the energy at Rk and k are identical. It is important to note that R is diagonal in u,

meaning the photon and each oscillator is rotated individually, f → Rf and ψα → Rψα.

This implies there is no mixing of fields. The symmetries of the Hamiltonian are endowed

by the coupling tensors, which dictates the degrees of freedom of the material response,

R−1CαRg(Rk)R = Cαg(k), ωαRk = ωαk. (5.43)

After summation over all Cαg(k), we can prove that the response function transforms iden-

tically under such a rotation,

R−1MRg(ω,Rk)R = Mg(ω,k). (5.44)

Therefore, the photon inherits all symmetries of the crystal.

In this case, the R matrix represents a discrete rotation and can be expressed as the

exponential of the spin-1 generator (Ŝz)ij = −iεijz,

RN = exp
(

−i2π

N
Ŝz

)
=

RN 0

0 1

 , (5.45)

where 2π

N
is an N -fold rotation,

RN =

cos(2π

N
) − sin(2π

N
)

sin(2π

N
) cos(2π

N
)

 . (5.46)

Electric components transform as 2D vectors and rotate into one another under R. Magnetic

components transform as scalars and are left invariant under R. We stress that every cyclic

group for the photon is a vector representation, which is bosonic,

(RN)N = R(2π) = +13. (5.47)

The electromagnetic field returns in phase under cyclic revolution.
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5.3.3 High-symmetry points

The Bloch eigenstates ũnk(r) are essentially a collection of periodic vector fields. To rotate

the fields, we must perform an operation on both the coordinates r and the polarization states

f and ψα. In real space, the operation of a rotation R̂ is preformed as,

Rũnk(R−1r) = ηn(k)ũnRk(r), (5.48)

where R is a discrete rotation defined in Eq. (5.45 ). This implies the Fourier coefficients

obey,

Runk+R−1g = ηn(k)unRk+g. (5.49)

It follows from symmetry that the operation of R̂ takes a wave function at k to Rk with

the same energy ωnk = ωnRk – but with a possibly different phase |ηn(k)|2 = 1. Utilizing

the linear response theory, we notice that the phase factor ηn(k) is governed entirely by the

photon,

Rψnαk+R−1g =
∑

g′ RCαg′(k +R−1g)fnk+g′+R−1g

ωnk − ωαk+R−1g

=
∑

g′ CαRg′(Rk + g)Rfnk+g′+R−1g

ωnk − ωαk+R−1g

=
∑

g′ Cαg′(Rk + g)ηn(k)fnRk+g′+g

ωnk − ωαRk+g

= ηn(k)ψnαRk+g.

(5.50)

This is an incredibly convenient simplification and implies the precise coordinates of the

matter oscillations ψα are superfluous when discussing symmetries. The electromagnetic

field f tells us everything.

Importantly, there are specific points in the Brillouin zone where k is invariant under a

discrete rotation,

Rkp = kp. (5.51)
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This is because the crystal momentum only differs by a lattice translation at these points

Rkp = kp + g, which leaves a Bloch wave function unchanged,

eiRkp·rũnRkp(r) = ei(kp+g)·rũnkp+g(r) = eikp·rũnkp(r). (5.52)

These are called high-symmetry points (HSPs); they occur at the center and certain vertices

of the Brillouin zone. The crystal Hamiltonian is rotationally invariant at these momenta –

i.e. it commutes with R̂. Therefore, the wave functions are simultaneous eigenstates of R̂

at HSPs,

Rũnkp(R−1r) = ηn(kp)ũnkp(r), (5.53)

which immediately implies,

Rf̃nkp(R−1r) = ηn(kp)f̃nkp(r). (5.54)

Here, ηn(kp) is the eigenvalue of R̂ at kp for the nth band.

5.3.4 Spin-1 eigenvalues

Depending on the point group and the precise HSP, ηn(kp) = ηN,n(kp) can represent any

Nth root of unity corresponding to the N -fold rotation operator R̂N ,

ηN,n(kp) = exp
[
i2π

N
mN,n(kp)

]
, (ηN,n)N = +1. (5.55)

mN,n(kp) ∈ ZN is a modulo integer – it labels the N possible spin-1 eigenvalues at kp. In

C4 for example, the Γ and M points are invariant under R̂4 rotations, while the X and Y

points are invariant under R̂2 rotations (inversion). This means there are 4 possible spin-1

charges located at m4,n(Γ) & m4,n(M) ∈ Z4 respectively and 2 possible charges located at

m2,n(X) = m2,n(Y) ∈ Z2. A visualization of these topological charges is presented in Fig. 5.2 

and this is contrasted with their fermionic counterparts in Fig. 5.3 . In Sec. 5.4 we will

connect these rotational eigenvalues directly to the topological invariants.
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Figure 5.2. The collection of spin-1 (bosonic) charges for the C4 point group.
(a) Fourfold rotations (R4)4 = +1; there are four unique eigenvalues η4 =
exp [i2πm4/4] corresponding to the roots of unity (η4)4 = +1. These represent
the modulo 4 integers m4 ∈ Z4. Note that m4 = 3 = −1 can also be interpreted
as a left-handed eigenstate. (b) Bosonic inversion (R2)2 = +1; there are two
unique eigenvalues η2 = exp [i2πm2/2] corresponding to the roots of unity
(η2)2 = +1. These represent the modulo 2 integers m2 ∈ Z2.

Figure 5.3. The collection of spin-1⁄2 (fermionic) charges for the C4 point
group. (a) Fourfold rotations (R4)4 = −1; there are four unique eigenvalues
ζ4 = exp [i2πm4/4] corresponding to the roots of negative unity (ζ4)4 = −1.
These represent the modulo 4 half-integers m4 ∈ Z4 + 1/2. Note that m4 =
7/2 = −1/2 can be interpreted as a spin-down fermion while m4 = 3/2 = 1/2 + 1
and m4 = 5/2 = −1/2 + 3 constitute a fermion plus a boson. (b) Fermionic
inversion (R2)2 = −1; there are two unique eigenvalues ζ2 = exp [i2πm2/2]
corresponding to the roots of negative unity (ζ2)2 = −1. These represent the
modulo 2 half-integers m2 ∈ Z2 + 1/2. Note that m2 = 3/2 = −1/2 can also be
interpreted as a spin-down fermion under modulo 2.
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5.4 Topological electromagnetic (bosonic) phases of matter

5.4.1 Electromagnetic Chern number

The Berry connection for a band n is found by varying the total Bloch wave function

ũnk(r) with respect to the momentum,

An(k) = −i
ˆ

cell
d2r ũ†

nk(r)∂kũnk(r) = −i
∑

g
u†
nk+g∂kunk+g. (5.56)

This can be simplified slightly to obtain,

An(k) = −i
∑
gg′

f †
nk+gM̄g′−g(ωnk,k + g)∂kfnk+g′ +

∑
gg′

f †
nk+gAAAg′−g(ωnk,k + g)fnk+g′ . (5.57)

The first term gives the Berry connection of the photon, while the second term AAAg(ω,k)

arises solely from the matter oscillations,

AAAg(ω,k) = −i
∑
αg′

C†
α−g′(k + g′)∂kCαg−g′(k + g′)

(ω − ωαk+g′)2 . (5.58)

Due to nonlocality, Eq. (5.58 ) does not generally vanish. This additional contribution to

the Berry phase corresponds to vortices in the response function itself – independent of the

Berry gauge of the photon. This means the Chern number can be nonzero Cn 6= 0 even if the

winding of electromagnetic field is trivial. However, we will show in the proceeding sections

that all symmetry constraints on the Chern number can be established entirely in terms of

the photon.

As can be seen from Eq. (5.57 ), the Berry connection is only defined within the Brillouin

zone Ank+g = Ank + ∂kχnk, up to a possible U(1) gauge. Hence, the gauge invariant Berry

curvature is periodic Fnk+g = Fnk,

Fn(k) = ẑ · [∂k × An(k)]. (5.59)
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Figure 5.4. Examples of SPT bosonic phases in a crystal with C4 symmetry.
These phases are characterized by their SPT invariant ν = m4(Γ) +m4(M) +
2m2(Y) mod 4 which determines the electromagnetic Chern number up to a
multiple of 4. Here, m4 ∈ Z4 and m2 ∈ Z2 are modulo integers. (a), (b), (c)
and (d) correspond to SPT bosonic phases of ν = 3, 2, 1 and 0 respectively.
For bosons, we simply add up all the integer charges within the irreducible
Brillouin zone. For instance, the ν = 2 phase has eigenvalues of m4(Γ) = 1 at
the center and m4(M) = 3 = −1 at the vertices, with inversion eigenvalues of
m2(Y) = m2(X) = 1 at the edge centers: ν = 1 + 3 + 2 × 1 = 2.

Figure 5.5. Examples of SPT fermionic phases in a crystal with C4 symmetry.
These phases are characterized by their SPT invariant ν = m4(Γ) +m4(M) +
2m2(Y) + 2 mod 4 which determines the electronic Chern number up to a
multiple of 4. In this case, m4 ∈ Z4 + 1/2 and m2 ∈ Z2 + 1/2 are modulo half -
integers. (a), (b), (c) and (d) correspond to SPT fermionic phases of ν = 3, 2, 1
and 0 respectively. The problem is more complicated for fermions because the
charges are fractional and we must also account for the antisymmetric phases
of a spinor wave function. As an example, the ν = 2 phase has eigenvalues of
m4(Γ) = m4(M) = 1/2 at the center and vertices, with inversion eigenvalues of
m2(Y) = m2(X) = 3/2 = −1/2 at the edge centers: ν = 1/2+1/2+2×3/2+2 = 2.

The Chern number is found by integrating the Berry curvature over the two-dimensional

Brillouin zone,

Cn = 1
2π

ˆ
BZ
Fn(k)d2k, Cn ∈ Z, (5.60)

which determines the winding number of the collective light-matter excitations over the torus

T2 = S1 ×S1. Equation (5.60 ) is one of the central results of this paper. An electromagnetic

Chern invariant can be found for any 2D crystal and characterizes distinct topological phases

of matter Cn 6= 0.
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5.4.2 Symmetry-protected topological bosonic phases

Evaluating the Chern number by brute force requires knowledge of the wave function

at every point in the Brillouin zone. However, by invoking symmetry constraints of the

cyclic groups, we can determine important properties of the topological phase from only a

few isolated points in the Brillouin zone. This constitutes a type of symmetry-protected

topological (SPT) phase [16 ], [100 ], [177 ]–[186 ] and is intimately tied to the spin-1 nature

of electromagnetic field. SPT phases are protected by the N -fold rotational symmetry of

CN and this gives rise to an additional topological invariant νn ∈ ZN . Remarkably, νn is

classified entirely from ηn(kp) eigenvalues at HSPs and requires no complicated integration

to compute. This invariant is related to the Chern number up to a multiple of N ,

νn = Cn mod N, Cn ∈ NZ + νn. (5.61)

The interpretation of νn is quite simple – it tells us the geometric phase around the irreducible

Brillouin zone (IBZ) of the crystal,

exp
(

i2π

N
Cn

)
= exp

(
i
ˆ

IBZ
Fn(k)d2k

)
= exp

(
i
˛
∂IBZ

An(k) · dk
)
, (5.62)

where ∂IBZ is the path around IBZ. This follows from rotational symmetry of the Berry

curvature Fn(k) = Fn(Rk). For instance, the path in C4 is ∂(IBZ)4 = ΓXMYΓ. Applying

the logarithm, νn is equivalent to,

νn = N

2π

˛
∂IBZ

An(k) · dk mod N. (5.63)

As we will see more explicitly, νn is tied entirely to ηn. The reason is subtle – any vortex

within the interior of the IBZ contributes a Berry phase of 2π, and by symmetry, there are

N such vortices within the total Brillouin zone Cn → Cn +N . However, this has no effect on

νn → νn. Only the vortices lying at HSPs contribute to νn because these come in fractions

of 2π.
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In the following sections we will discuss the bosonic classification of νn for each cyclic

point group and the SPT phases associated with them. We do not present the full derivations

here since the rigorous proofs have been carried out by others (see Ref. [100 ]) – we simply

state the salient results. For completeness, in App. C.1 we also discuss the SPT fermionic

phases associated with each point group. We do this to emphasize that fermionic and

bosonic systems represent distinct topological field theories, with fundamentally different

interpretations. These differences are highlighted with a few examples [Fig. 5.4 and 5.5 ].

5.4.3 Twofold (inversion) symmetry: C2

For the C2 point group, or simply inversion symmetry, the SPT phase is related to the

Chern number by νn = Cn mod 2 which is a Z2 invariant. There is only one nontrivial SPT

phase and it can be found modulo 2 from,

exp
(

i2π

2 Cn

)
= η2,n(Γ)η2,n(X)η2,n(Y)η2,n(M). (5.64)

Applying the logarithm, this classification can be expressed equivalently in terms ofm2,n ∈ Z2

inversion eigenvalues,

νn = m2,n(Γ) +m2,n(X) +m2,n(Y) +m2,n(M) mod 2. (5.65)

If the summation of m2,n eigenvalues is odd, the SPT phase is nontrivial νn = 1 and corre-

sponds to an odd-valued Chern number. Likewise, νn = 0 is an even-valued Chern number.

5.4.4 Threefold symmetry: C3

C3 is unique because it is the only point group with an odd rotational symmetry – i.e.

it lacks inversion symmetry. This means the parity of Chern number (odd or even) is not

restricted by the symmetries of the crystal. For C3, the SPT phase is νn = Cn mod 3 which

is a Z3 invariant. There are two nontrivial SPT phases and they can be found modulo 3

from,

exp
(

i2π

3 Cn

)
= η3,n (Γ) η3,n (K) η3,n (K) . (5.66)
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This classification is expressed equivalently in terms of quantized modulo 3 integersm3,n ∈ Z3

at HSPs,

νn = m3,n(Γ) +m3,n(K) +m3,n(K) mod 3. (5.67)

Note though, odd and even phases are not distinct ν = −2 = 1 = 4 under modulo 3.

5.4.5 Fourfold symmetry: C4

For the C4 point group, the SPT phase is related to the Chern number by νn = Cn

mod 4 which is a Z4 invariant. There are three nontrivial SPT phases and they can be found

modulo 4 from,

exp
(

i2π

4 Cn

)
= η4,n (Γ) η4,n (M) η2,n (Y) . (5.68)

The classification is expressed equivalently in terms of spin-1 eigenvalues,

νn = m4,n(Γ) +m4,n(M) + 2m2,n(Y) mod 4, (5.69)

where m4,n(Γ) & m4,n(M) ∈ Z4 are modulo 4 integers and m2,n(Y) ∈ Z2 is a modulo 2

integer. Examples of all SPT phases of the C4 point group are displayed in Fig. 5.4 and

these are compared with their fermionic counterparts in Fig. 5.5 .

5.4.6 Sixfold symmetry: C6

For the C6 point group, the SPT phase is νn = Cn mod 6 which is a Z6 invariant. There

are five nontrivial SPT phases and they can be found modulo 6 from,

exp
(

i2π

6 Cn

)
= η6,n (Γ) η3,n (K) η2,n (M) . (5.70)

This is equivalent to the summation of spin-1 eigenvalues at the HSPs,

νn = m6,n(Γ) + 2m3,n(K) + 3m2,n(M) mod 6, (5.71)
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where m6,n(Γ) ∈ Z6 is a modulo 4 integer, m6,n(K) ∈ Z3 is a modulo 3 integer and

m2,n(M) ∈ Z2 is a modulo 2 integer. This completes the classification of all 2+1D topo-

logical electromagnetic (bosonic) phases of matter which is summarized in Tbl. 5.1 . These

are compared alongside their fermionic counterparts in Tbl. 5.2 .

5.4.7 Continuous symmetry: C∞

To finish, we briefly discuss the continuum limit g = 0 and the topological phases that

can be described by a long wavelength theory k ≈ 0. The physics is significantly more

tractable here and exactly solvable models are possible [54 ], [116 ], [167 ]. In this limit, the

rotational symmetry of the crystal is approximately continuous C∞. The SPT invariant νn
and Chern number Cn are thus equivalent,

νn = Cn = mn(0) −mn(∞). (5.72)

Note that νn ∈ Z and mn ∈ Z are not modulo integers in this limit and do not have the same

interpretation as the lattice theory. This is because we have gained the full rotational sym-

metry in the continuum approximation. Clearly though, the spin eigenvalues must change

at HSPs mn(0) 6= mn(∞) for a nontrivial phase to exist Cn 6= 0. In the continuum regular-

ization, kp = 0 represents the Γ point and kp = ∞ is interpreted as mapping the vertices

of the Brillouin zone into one another. We have provided a simple example of a continuum

topological electromagnetic phase in App. C.2 .

5.5 Conclusions

In summary, we have developed the complete 2+1D lattice field theory describing symmetry-

protected topological bosonic phases of the photon. To accomplish this, we analyzed the elec-

tromagnetic Bloch waves in microscopic crystals and derived the Chern invariant of these

light-matter excitations. Thereafter, the rotational symmetries of the crystal were examined

extensively and the implications these have on photonic spin. We have studied all two dimen-

sional point groups CN with nonvanishing Chern number C 6= 0 and linked the topological
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invariants directly to spin-1 quantized eigenvalues of the electromagnetic field – establishing

the bosonic classification for each topological phase.
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6. UNIDIRECTIONAL MAXWELLIAN SPIN WAVES

From [T. V. Mechelen and Z. Jacob, “Unidirectional maxwellian spin waves,” Nanophoton-

ics, vol. 8, no. 8, pp. 1399–1416, Aug. 2019]. © 2020 De Gruyter. [167 ]

We develop a unified perspective of unidirectional topological edge waves in non-reciprocal

media. We focus on the inherent role of photonic spin in non-reciprocal gyroelectric media,

ie. magnetized metals or magnetized insulators. Due to the large body of contradicting

literature, we point out at the outset that these Maxwellian spin waves are fundamentally

different from well-known topologically trivial surface plasmon polaritons (SPPs). We first

review the concept of a Maxwell Hamiltonian in non-reciprocal media, which immediately

reveals that the gyrotropic coefficient behaves as a photon mass in two dimensions. Similar

to the Dirac mass, this photonic mass opens bandgaps in the energy dispersion of bulk prop-

agating waves. Within these bulk photonic bandgaps, three distinct classes of Maxwellian

edge waves exist – each arising from subtle differences in boundary conditions. On one

hand, the edge wave solutions are rigorous photonic analogs of Jackiw-Rebbi electronic edge

states. On the other hand, for the exact same system, they can be high frequency photonic

counterparts of the integer quantum Hall effect, familiar at zero frequency. Our Hamilto-

nian approach also predicts the existence of a third distinct class of Maxwellian edge wave

exhibiting topological protection. This occurs in an intriguing topological bosonic phase

of matter, fundamentally different from any known electronic or photonic medium. The

Maxwellian edge state in this unique quantum gyroelectric phase of matter necessarily re-

quires a sign change in gyrotropy arising from non-locality (spatial dispersion). In a Drude

system, this behavior emerges from a spatially dispersive cyclotron frequency that switches

sign with momentum. A signature property of these topological electromagnetic edge states

is that they are oblivious to the contacting medium, ie. they occur at the interface of the

quantum gyroelectric phase and any medium (even vacuum). This is because the edge state

satisfies open boundary conditions – all components of the electromagnetic field vanish at

the interface. Furthermore, the Maxwellian spin waves exhibit photonic spin-1 quantization

in exact analogy with their supersymmetric spin-1⁄2 counterparts. The goal of this paper is to
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discuss these three foundational classes of edge waves in a unified perspective while providing

in-depth derivations, taking into account non-locality and various boundary conditions. Our

work sheds light on the important role of photonic spin in condensed matter systems, where

this definition of spin is also translatable to topological photonic crystals and metamaterials.

6.1 Introduction

Gyroelectric media, or magnetized plasmas, form the canonical system to study non-

reciprocity [195 ]–[200 ]. There has been recent interest in such media for their potential to

break the time-bandwidth limit inside cavities [201 ], [202 ], sub-diffraction imaging [203 ],

unique absorption [204 ] and thermal properties [205 ], and for one-way topological transi-

tions [206 ]. It should be emphasized that the gyroelectric coefficient (g), which embod-

ies antisymmetric components of the permittivity tensor (εij), is intimately related to its

low frequency counterpart in condensed matter physics – the transverse Hall conductivity

(σH = σxy = −iωg) [207 ], [208 ]. The goal of this paper is to bridge the gap between modern

concepts in nanophotonics, magnetized plasma physics, and condensed matter physics.

Historically, gyroelectric media was popularized in plasma physics [87 ], [209 ] where the

“gyration vector” or “rotation axis” sets a preferred handedness to the medium. This causes

non-reciprocal (direction dependent) wave propagation along the axis of the medium. The

non-reciprocal properties are now well understood but only recently has the connection with

the Dirac equation been revealed [54 ], [63 ], [116 ], [139 ], [149 ], [150 ]. This immediately leads

to multiple new insights related to energy density, photon spin and photon mass for wave

propagation within two-dimensional gyrotropic media [54 ], [84 ], [116 ], [139 ]. In particular, a

unique phenomenon related to gyrotropic media is the presence of unidirectional edge waves,

fundamentally different from surface plasmon polaritons (SPPs) or Dyakonov waves [210 ]–

[212 ]. We note that photonic crystals [213 ]–[215 ] or metamaterials [170 ], [216 ], [217 ] are not

necessary for this phenomenon and even a continuous medium (eg: magnetized plasma or

doped semiconductor) can host unidirectional edge waves.

The role of spin has not been revealed till date but chiral (unidirectional) photonic

waves in gyrotropic media have a rich history. Early work introduced the concept of optical

isomers [218 ] which is the interface of two gyrotropic media with opposite signs of non-
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reciprocal coefficients (half-space of g > 0 interfaced with another half-space of g < 0).

It was shown that unique chiral edge states emerge, addressed as the “quantum Cotton-

Mouton effect”, which are similar in nature to the electronic quantum Hall effect. These

chiral edge states were also predicted on the interface of Weyl semimetals [219 ]. Raghu and

Haldane’s original model to realize a one-way waveguide dealt with the gyroelectric photonic

crystals [19 ], [20 ]. More recently, gyroelectric magneto-plasmons have been demonstrated

in quantum well structures under biasing magnetic fields [76 ], [220 ]. Another important

example of unidirectional edge waves occurs when a gyrotropic medium is terminated with a

perfect electric conductor (PEC), as shown by Silveirinha [74 ], [221 ]. Horsley [139 ] recently

proved that this PEC boundary is equivalent to antisymmetric solutions of optical isomers

(two gyrotropic media with opposite signs ±g) and leads to unidirectional Jackiw-Rebbi type

photonic waves [222 ].

However, in all the above examples, the electromagnetic boundary conditions are dras-

tically different from the open boundary conditions utilized for topologically-protected solu-

tions of the Dirac equation [92 ]–[94 ], [223 ]–[225 ]. This challenge was recently overcome when

a Dirac-Maxwell correspondence was applied to gyrotropic media [54 ], [116 ], which derived

the supersymmetric (spin-1) partner of the topological Dirac equation. This framework gave

rise to a new unidirectional edge wave with open boundary conditions, such that the elec-

tromagnetic field completely vanishes at the material interface [54 ], [116 ]. The necessary

conditions for the existence of such a wave is non-reciprocity g, temporal dispersion g(ω),

and spatial dispersion g(ω, k). A momentum dependent sign change in the gyrotropic coef-

ficient g(ω, kcrit) = 0 leads to a topologically nontrivial electromagnetic field – a quantum

gyroelectric phase of matter. In Drude systems, this corresponds to a momentum depen-

dent sign change of the cyclotron frequency. It should be emphasized that this topological

phase of matter is Maxwellian (spin-1 bosonic) and is unlike any known spin-1⁄2 fermionic

phases of matter (eg: graphene, Chern insulator, etc.). The unidirectional photonic edge

wave is a fundamental mode of this nonlocal, non-reciprocal medium and cannot be sepa-

rated from the bulk. The contacting medium has no influence on the edge wave, unlike the

previously mentioned examples which are sensitive to boundary conditions. We address this
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phenomenon as the quantum gyroelectric effect (QGEE) and it remains an open question

whether such a Maxwellian phase of matter can be found in nature [164 ].

The purpose of this paper is to present the first unified view of all the aforementioned

unidirectional edge waves in non-reciprocal media. The essence of our results is captured in

Fig. 6.1 and Tab. 6.1 which contrasts unidirectional edge waves of the quantum gyroelectric

effect (QGEE), photonic quantum Hall (PQH) states and photonic Jackiw-Rebbi (PJR)

states. All such waves appear in gyroelectric media but boast surprisingly different behavior.

The QGEE displays bulk-boundary correspondence [224 ] since it is defined independent of

the contacting medium [Sec. 6.4 ]. The PQH states host a high frequency quantum Hall edge

current which arises from a discontinuity in the electromagnetic field [Sec. 6.6 ]. Lastly, the

PJR edge waves are domain wall states [Sec. 6.7 ]. Another important result of our paper is

illustrated in Fig. 6.2 which shows that the two classes of unidirectional waves, PQH and

PJR, can be realized at perfect magnetic conductor (PMC) and perfect electric conductor

(PEC) boundary conditions respectively.

This article is organized as follows. Sec. 6.2 presents an overview of spin waves. In Sec. 6.3 

and 6.4 we show that a nonlocal, non-reciprocal medium is foundational to the concept of

2+1D topological phases of matter. We review the concept of Dirac-Maxwell correspondence

which can be exploited to introduce a Hamiltonian for light within complex photonic me-

dia. This framework allows us to rigorously define helicity and spin while also identifying a

photonic mass, which is directly proportional to the gyrotropic coefficient. We then discuss

the necessity of temporally and spatially dispersive optical response parameters to define

electromagnetic topological invariants for bulk continuous media. Although commonly ig-

nored, nonlocality is absolutely essential for the electromagnetic theory to be consistent with

the tenfold way [15 ], which describes all possible continuum topological phases, in every di-

mension. In the topologically nontrivial regime C 6= 0, the unidirectional Maxwellian spin

wave is derived and satisfies open boundary conditions – this is the QGEE. Following these

results, we analyze the interface of optical isomers [Sec. 6.5 ], deriving the photonic quantum

Hall [Sec. 6.6 ] and photonic Jackiw-Rebbi edge states [Sec. 6.7 ]. The final Sec. 6.8 presents

our conclusions. As a resource, we have also provided a general review of topological phases

in continuum photonic media which can be found in the Appendix.
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6.2 Overview of spin waves

We outline the key properties of chiral Maxwellian spin waves which, surprisingly, emerge

in two distinct physical systems. First, it is identified in the low momentum dispersion k ≈ 0

of the QGEE. Second, it also represents the photonic counterpart of the Jackiw-Rebbi domain

wall state known in the continuum Dirac equation [93 ], [225 ]–[227 ]. The Dirac Jackiw-Rebbi

wave exists at the interface of inverted masses, Λ > 0 and Λ < 0, and is an eigenstate of the

spin-1⁄2 helicity (Pauli) operator. The exact parallel in photonics can now be established as it

has been proven that gyrotropy plays the role of photonic mass. Thus, a unique Maxwellian

spin wave exists at the interface of optical isomers, g > 0 and g < 0. Furthermore, this

electromagnetic wave is an eigenstate of the SO(3) operator (spin-1 helicity operator) and

exhibits helical quantization. This is intuitively clear since the edge wave is purely transverse

electro-magnetic (TEM); the polarization is orthogonal to the momentum k̂ · E = 0.

To avoid confusion, we contrast between conventional surface plasmon polaritons (SPPs)

and Maxwellian spin waves which both display spin-momentum locking phenomena but in

fundamentally different forms. Even SPPs on magnetized plasmas do not show the same

characteristics as chiral Maxwellian spin waves as they are not eigenstates of the SO(3) vec-

tor operators. We strongly emphasize that SPPs on conventional (electric) metals, magnetic

metals, as well as negative index media [228 ] do not possess any topological characteris-

tics. There exists no bulk-boundary correspondence as the bulk media are trivial. Spin-

momentum locking in these surface waves is transverse and not quantized [26 ], [36 ], [83 ],

[157 ], [158 ], [229 ]–[232 ]. This means the spin is perpendicular to the momentum and is a con-

tinuous (classical) number. On the contrary, spin-momentum locking arising in Maxwellian

spin waves is longitudinal and quantized. This means the spin is parallel to the momentum

and is a discrete (quantum) number, assuming values of ±1 only. Despite recent observations

of spin-momentum locking phenomena in waveguides [33 ], [233 ], resonators [234 ], [235 ] and

surface plasmon polaritons [38 ], no wave has been discovered to be a pure spin state with

quantized eigenvalues of the helicity operator. Our work is an answer to this endeavor.

As an aside, we must also point out that orbital angular momentum (OAM) quantiza-

tion for photons is unrelated to topological quantization, such as Chern number quantization.
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OAM quantization is routinely encountered for classical optical waves in free-space beams

[140 ], microdisk resonators, optical fibers, whispering gallery mode resonators [236 ], etc.

The origin of topological quantization is always a singularity/discontinuity in the underlying

gauge potential [237 ]–[239 ]. This phenomenon of gauge singularity/discontinuity has been

proven to occur in the Berry connection of the quantum gyroelectric phase [54 ], [116 ]. Nev-

ertheless, it remains an open question whether such topological quantization is connected

to physical observables (response/correlation functions) of the photon, like they are for the

electron. For example, quantization of the Hall conductivity σH was the first striking exper-

imental observable connected to topology [108 ], [240 ]. No photonic equivalent is known to

date.

6.3 Maxwell Hamiltonian

6.3.1 Vacuum

Before defining Maxwellian spin waves [Fig. 6.1 ], that emerge at the boundaries of mat-

ter, we illustrate the direct correspondence of spin operators arising in Maxwell’s equations

and the massless Dirac equation in 2+1D. We will then show that this correspondence ex-

tends to massive particles in Sec. 6.3.3 . In two spatial dimensions we can focus strictly on

transverse-magnetic (TM) waves, where the magnetic field Hz is perpendicular to the plane

of propagation k = kxx̂+kyŷ. Maxwell’s equations in the reciprocal momentum space H0(k)

are expressed compactly as [54 ], [116 ], [139 ],

H0(k)f = ωf, f =


Ex

Ey

Hz

 . (6.1)
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Figure 6.1. (a), (b) and (c) are schematics of the quantum gyroelectric effect
(QGEE), photonic quantum Hall (PQH) and photonic Jackiw-Rebbi (PJR)
edge states respectively. The characteristic spatial profile of Ex(x) is displayed
for each edge state along with the corresponding boundary conditions. (a) The
QGEE is a topologically-protected unidrectional (chiral) edge state and exists
at the boundary of any medium – even vacuum. The QGEE is fundamentally
tied to nonlocal (spatially dispersive) gyrotropy g(ω, k) and can never be real-
ized in a purely local model. (b) The PQH edge state is the photonic analogue
of the quantum Hall effect and hosts a high-frequency edge current Iy. The
presence of the edge current Iy 6= 0 creates a discontinuity in the fields across
the boundary, Ex(0−) 6= Ex(0+) and Hz(0−) 6= Hz(0+). (c) The PJR edge
state is the photonic equivalent of the inverted mass problem arising in the
Dirac equation. This state possesses no edge current Iy = 0 and is completely
transverse electro-magnetic (TEM) as the longitudinal field vanishes entirely
Ey(x) = 0.
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f is the TM polarization of the electromagnetic field and is operated on by the free-space

“Maxwell Hamiltonian”,

H0(k) =


0 0 −ky
0 0 kx

−ky kx 0

 = kxŜx + kyŜy. (6.2)

Maxwell’s equations describe optical helicity, ie. the projection of the momentum k onto

the spin ~S. In this case, Ŝx and Ŝy are spin-1 operators that satisfy the angular momentum

algebra [Ŝi, Ŝj] = iεijkŜk. These operators are expressed in matrix form as,

Ŝx =


0 0 0

0 0 1

0 1 0

 , Ŝy =


0 0 −1

0 0 0

−1 0 0

 , Ŝz =


0 −i 0

i 0 0

0 0 0

 . (6.3)

Ŝz is the spin-1 operator along ẑ and generates rotations in the x-y plane. As we will see, Ŝz
is fundamentally tied to photonic mass in two dimensions. To prove this, we will first review

the definition of mass for two-dimensional Dirac particles and show there is a one-to-one

correspondence with photons.

6.3.2 Dirac equation

For comparison, consider the two-dimensional massless Dirac equation, which often de-

scribes the quasiparticle dynamics of graphene [241 ], [242 ]. This is also known as the Weyl

equation,

H0(k)Ψ = EΨ. (6.4)

Ψ is a two-component spinor function and is acted on by the massless Dirac Hamiltonian,

H0(k) = kxσx + kyσy. (6.5)

169



Like Maxwell’s equations, the Weyl equation represents electronic helicity – the projection

of momentum k onto the spin ~σ. In this case, [σi, σj] = 2iεijkσk are the Pauli matrices and

describe the dynamics of a spin-1⁄2 or pseudospin-1⁄2 particle,

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (6.6)

As we can see, the σz Pauli matrix is clearly missing from the Weyl equation [Eq. (6.5 )]. We

cannot add a term proportional to σz due to time-reversal symmetry,

T −1H0(−k)T = H0(k), T = iσyK. (6.7)

K represents the complex conjugation operator in this context and T 2 = −12 is a fermionic

operator.

However, if we break time-reversal symmetry T −1H(−k)T 6= H(k) then σz is permitted.

This transforms the massless Weyl equation to the massive Dirac equation H0(k) → H(k),

H(k) = v(kxσx + kyσy) + Λσz. (6.8)

We have also introduced the Fermi velocity v which describes the effective electron speed.

Equation (6.8 ) models a multitude of problems in condensed matter physics, such as Dirac

particles and the p-wave superconductor [243 ]. The Dirac mass Λ has many important

properties. It respects rotational symmetry in the x-y plane and opens a band gap at E = 0,

E2 − Λ2 = v2k2, (6.9)

with k2 = k2
x+k2

y. It is clear that when E2 < Λ2, waves decay exponentially into the medium.

The rest energy E2 = Λ2 defines the stationary point k = 0. Furthermore, the Dirac mass

also breaks parity (mirror) symmetry in both x and y dimensions. For Dirac particles, the

mirror operators are simply,

Px = σy, Py = σx. (6.10)
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One can easily check that P−1
x H(−kx)Px 6= H(kx) and P−1

y H(−ky)Py 6= H(ky) do not

commute when Λ 6= 0. A review of Jackiw-Rebbi Dirac states arising at the interface of

inverted masses ±Λ is presented in App. D.1 .

6.3.3 Definition of photon mass in gyrotropic media

The question now: what is the equivalent of mass for the photon? In analogy with the

Dirac equation, the photon mass must respect rotational symmetry but break parity and

time-reversal. The answer is a bit subtle. There are two components of the permittivity

tensor εij that are permitted by rotational symmetry in the plane,

εij = εδij + igεij. (6.11)

ε is the diagonal part (scalar permittivity) and g is the off-diagonal part (gyrotropy). εij =

−εji is the 2D antisymmetric tensor and should not be confused with the permittivity tensor

εij itself. To put Maxwell’s equations into a more enlightening form, we normalize f by,

f → F =


√
εEx

√
εEy

Hz

 . (6.12)

Inserting the permittivity tensor, the vacuum wave equation [Eq. (6.1 )] is transformed to

H0(k) → H(k),

H(k)F = ωF, (6.13)

where the effective Maxwell Hamiltonian is expressed as,

H(k) = vp(kxŜx + kyŜy) + ΛpŜz. (6.14)
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By direct comparison with the massive Dirac equation [Eq. (6.8 )], we see that vp is the

effective speed of light and Λp is the effective photon mass,

vp = 1√
ε
, Λp = ω

g

ε
. (6.15)

The one significant difference between the two equations is that ~S are spin-1 operators while

~σ are spin-1⁄2 operators. This is intuitive because the photon is a bosonic particle. In fact,

massive Dirac particles [Eq. (6.8 )] and massive photons [Eq. (6.14 )] are supersymmetric

partners in two dimensions [151 ]. It should be emphasized however, that ε and g are always

dispersive which means the effective speed vp = vp(ω) and effective mass Λp = Λp(ω) depend

on the energy ω.

Like the Dirac equation, the photon mass Λp 6= 0 is proportional to the Ŝz operator and

breaks time-reversal symmetry,

T −1H(−k)T 6= H(k), T =


1 0 0

0 1 0

0 0 −1

K, (6.16)

where T 2 = +13 is a bosonic operator. For photons, the mirror operators in the x and y

dimensions are defined as,

Px =


−1 0 0

0 1 0

0 0 −1

 , Py =


1 0 0

0 −1 0

0 0 −1

 . (6.17)

Note, Hz → −Hz is odd under mirror symmetry since it transforms as a pseudoscalar. One

can easily check that parity (mirror) symmetry is broken in both dimensions, P−1
x H(−kx)Px 6=

H(kx) and P−1
y H(−ky)Py 6= H(ky), when Λp 6= 0. Hence, Λp transforms exactly as a mass

but for spin-1 particles.
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Utilizing Maxwell’s equations [Eq. (6.14 )], it is straightforward to derive the dispersion

relation of the bulk TM waves,

ω2 − Λ2
p = v2

pk
2, (6.18)

which is identical to the massive Dirac dispersion [Eq. (6.9 )]. Rearranging, we obtain the

dispersion relation in terms of ε and g explicitly,

ω2
(
ε2 − g2

ε

)
= ω2εeff = k2. (6.19)

εeff is the effective permittivity seen by the electromagnetic field,

εeff = ε2 − g2

ε
. (6.20)

It is clear that whenever εeff < 0, electromagnetic waves decay exponentially into the medium.

The “rest energies” are the frequencies at which εeff = 0 and define the stationary points

k = 0. This occurs precisely when ε2 = g2, or equivalently ω2 = Λ2
p.

6.3.4 Drude model under an applied magnetic field

The conventional Drude model, under a biasing magnetic field B0, treats the electron

density as an incompressible gas. The Drude model is characterized by two parameters:

the plasma frequency ωp and the cyclotron frequency ωc = eB0/M
∗, where e is elementary

charge and M∗ is the effective mass of the electron. Assuming an applied field in the −ẑ

direction, the scalar permittivity ε and gyrotropic coefficient g are expressed as,

ε = 1 +
ω2
p

ω2
c − ω2 , g =

ωcω
2
p

ω(ω2
c − ω2) . (6.21)

The effective photonic mass Λp is therefore,

Λp = ω
g

ε
=

ωcω
2
p

ω2
p + ω2

c − ω2 . (6.22)
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Due to dispersion, the photon sees a different mass at varying frequencies ω and vanishes at

sufficiently high energy limω→∞ Λp → 0. However, the mass is infinite limω→ω0 Λp → ∞ when

the frequency is on resonance ω0 =
√
ω2
p + ω2

c , which corresponds to the epsilon-near-zero

(ENZ) [244 ] condition ε(ω0) = 0.

The natural eigenmodes of the system ω = ω(k), ie. the bulk propagating modes, rep-

resent self-consistent solutions to the wave equation, when k and ω are both real-valued.

Plugging our Drude parameters into Eq. (6.19 ), we uncover two bulk eigenmode branches

ω = ω±,

ω2
± = 1

2
[
2ω2

p + ω2
c + k2 ±

√
4ω2

pω
2
c + (ω2

c − k2)2
]
. (6.23)

ω+ and ω− are the high and low energy eigenmodes respectively. Besides breaking parity and

time-reversal, gyrotropy also hybridizes transverse and longitudinal waves. When ωc = 0,

the high frequency mode reduces to the transverse (k · E = 0) bulk plasmon ω+ =
√
ω2
p + k2

while the low frequency mode ω− = ωp reduces to the longitudinal (k · E 6= 0) plasmon.

These modes are degenerate at the stationary point k = 0. However, when ωc 6= 0, the ω±

bands are fully gapped and the degeneracy at k = 0 is removed,

ω±(0) = 1
2
∣∣∣√4ω2

p + ω2
c ± ωc

∣∣∣ . (6.24)

These represent the rest energies ε2 = g2 (or ω2 = Λ2
p). Likewise, the asymptotic dependence

in the local Drude model is,

lim
k→∞

ω+ → k, lim
k→∞

ω− → ω0 =
√
ω2
p + ω2

c . (6.25)

The high energy branch ω+ approaches the free-photon dispersion where the effective photon

mass Λp → 0 vanishes. The low energy branch ω− approaches a completely flat dispersion

due to an infinite effective mass Λp → ∞.
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Table 6.1. Summary of the three unidirectional (chiral) photonic edge states
arising in two-dimensional gyroelectric media, with their important properties
listed. The quantum gyroelectric effect (QGEE) is a topologically-protected
edge state and exists at any boundary – even vacuum. The photonic quan-
tum Hall (PQH) edge state emerges at a perfect magnetic conductor (PMC)
boundary condition. These edge states are unique because they carry a high
frequency quantum Hall edge current Iy. The photonic Jackiw-Rebbi (PJR)
edge states are the electromagnetic analogue of the inverted Dirac mass prob-
lem and arise at a perfect electric conductor (PEC) boundary condition.

Edge state QGEE PQH PJR
Boun. cond. Open: f(0) = 0 PMC: Pxf(−x) = +f(x) PEC: Pxf(−x) = −f(x)
Nonlocality? yes no no
Chiral? yes yes yes
T broken? yes yes yes
Px broken? yes no no
Py broken? yes yes yes
TEM wave? yes (k ≈ 0) no yes
Top.-protected? yes no no
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6.4 Quantum gyroelectric effect (QGEE)

6.4.1 Topological Drude model

To make the Drude model topological and uncover topologically-protected edge states,

we need to incorporate spatial dispersion (nonlocality). This purely nonlocal phenomenon

has been dubbed the quantum gyroelectric effect (QGEE) and has only been proposed very

recently [54 ], [116 ]. A more thorough discussion of temporal and spatial dispersion is provided

in App. D.3 and D.4 . In the hydrodynamic Drude model, nonlocality emerges when we treat

the electron density as a compressible gas. The electron pressure behaves like a restoring

force and introduces a first order momentum correction to the longitudinal plasma frequency,

(ω2
p)L → ω2

p + β2k2 = (ωp + βk)2 − 2ωpβk. (6.26)

However, topological phases require second order momentum corrections at minimum – we

must go beyond the hydrodynamic Drude model. Both the plasma frequency,

ωp → Ωp = ωp + βpk
2, (6.27)

and the cyclotron frequency,

ωc → Ωc = ωc + βck
2, (6.28)

must be expanded to second order in k. This will alter the behavior of deep subwavelength

fields k → ∞ [Eq. (6.25 )] which has very important topological implications. We stress this

point as it is imperative to all topological field theories. Spatial dispersion is fundamentally

necessary if the electromagnetic theory is to be consistent with the tenfold way [15 ], which

describes all possible continuum topological phases. A rigorous proof is provided in App. D.5 .

Physically, this nonlocal behaviour arises from high momentum corrections to the effective

electron mass M∗, since the electronic bands are not perfectly parabolic,

1
M∗ = 1

~2
∂2E

∂k2 = 1
M0

+ 1
M2

(ka)2 + . . . (6.29)
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a is the lattice constant in this case. The cyclotron frequency corrected to second order

Ωc = ωc + βck
2 is thus,

ωc = eB0

M0
, βc = eB0a

2

M2
. (6.30)

In App. D.6 , we show that the electromagnetic Chern number C± for each band ω = ω±, is

determined by the relative sign of the cyclotron parameters,

C± = ∓ [sgn(ωc) − sgn(βc)] . (6.31)

Alternately, Eq. (6.31 ) is expressed in terms of the relative signs of the effective electron

masses, M0 and M2, and the applied magnetic field B0,

C± = ∓[sgn(M0) − sgn(M2)]sgn(B0). (6.32)

If M0M2 < 0, the electromagnetic phase is topologically nontrivial |C±| = 2 which requires

a change in sign of 1/M∗ with momentum k. In other words, the cyclotron frequency must

change sign ωcβc < 0. This implies the electronic band has an inflection point at some

finite momentum 1/M∗ = ∂2E/∂k2 = 0 such that the curvature of the band changes. More

precisely, if there are an odd number of inflection points, 1/M∗ changes sign an odd number

of times, which always produces |C±| = 2. It is important to note; in the continuum theory,

a Chern number of |C| = 1 is only possible when magnetism (µ) is present. All gyrotropic

phases possess Chern numbers of |C| = 2 which is guaranteed by continuous SO(2) rotational

symmetry [54 ]. A proof is provided in App. D.6 . However, in a lattice theory [100 ], [164 ],

the restrictions on C are relaxed because we only have discrete rotational symmetries – any

Chern number is generally permitted C ∈ Z.

6.4.2 Weak magnetic field approximation

A complete analysis of the topological Drude model warrants its own dedicated paper.

Here, we examine only the topological edge states arising in a weak magnetic field Ωc ≈ 0

approximation, at energies far above the cyclotron frequency ω � ωc. We also ignore any

hydrodynamic corrections since they do not affect the topology of the electromagnetic field.
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The main goal of this section is to demonstrate how nonlocal gyrotropy g(ω, k) leads to

topological phenomena [54 ], [116 ] that can never be realized in a purely local theory.

Assuming Ωc ≈ 0 is sufficiently small and ω � ωc, we obtain at first approximation

(k ≈ 0),

ε(ω) ≈ 1 −
ω2
p

ω2 , g(ω, k) ≈ −
ω2
p

ω3 (ωc + βck
2). (6.33)

Only the gyrotropic coefficient g adds nonlocal corrections since it is linearly proportional

in Ωc, but is considerably weak. Nevertheless, a unidirectional edge state always exists if

ωcβc < 0, which corresponds to the topologically nontrivial regime [Eq. (6.31 )]. We now

define,

g(ω, k) = g0(ω) − g2(ω)k2, (6.34)

with,

g0 = −
ωcω

2
p

ω3 , g2 =
βcω

2
p

ω3 . (6.35)

Due to nonlocality in g, there are now two characteristic wavelengths k2
1,2, which implies

two decay channels are active η1,2 =
√
k2
y − k2

1,2. The edge state dispersion ω = ω(ky) is

determined by the boundary condition which must be insensitive to perturbations at x = 0.

Therefore, we must search for open boundary solutions, such that every component of the

electromagnetic field vanishes at x = 0,

f(0) = 0. (6.36)

The open boundary condition [92 ]–[94 ], [223 ]–[225 ] is fundamental to topologically-protected

edge states. No conventional surface wave, such as SPPs, Dyakonov, Tamm waves, etc.

[245 ] satisfies this constraint since their very existence hinges on the boundary condition.

For instance, SPPs intrinsically require a metal-dielectric boundary condition. Conversely,

topologically-protected edge states of the QGEE exist at any boundary, since they are defined

independent of the contacting medium. This is a statement of bulk-boundary correspondence

[224 ].
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6.4.3 Topologically-protected chiral edge states

We now impose open boundary conditions on the electromagnetic f(0) = 0 and look for

nontrivial solutions f(x > 0) 6= 0 that simultaneously decay into the bulk f(x → ∞) → 0.

Since f contains three components, Ex, Ey and Hz, the system of equations is overdetermined

unless one of the equations can be made linearly dependent on the other two. Based on

insight derived from the Dirac equation, we find that the only nontrivial solution requires

Ey(x) = 0. This represents a completely transverse electro-magnetic (TEM) wave as there

is no component of the field parallel to the momentum ky. The two decay lengths η1,2 are

roots of the secular equation,

ky
ε

(
g0 − g2k

2
y + g2η

2
)

= η, k2
y = ω2ε, (6.37)

which produces,

η1,2 = 1
2g2

 ε
ky

±

√√√√( ε

ky

)2

+ 4g2(g2k2
y − g0)

 . (6.38)

Notice that an edge state only exists when ε > 0 is positive. This is very different from SPPs

which require a negative permittivity. For our weak field approximation, the edge dispersion

is simply,

ω2 = ω2
p + k2

y. (6.39)

A solution always exists whenever k2
y < g0g1 > 0 such that both Re [η1,2] > 0 are decay-

ing modes. This criterion is only satisfied in the topologically nontrivial regime ωcβc < 0,

confirming our theory. sgn(ωc) = sgn(−βc) = +1 is a backward propagating wave while

sgn(ωc) = sgn(−βc) = −1 is forward propagating. The edge state is completely unidi-

rectional (chiral) since ky → −ky cannot be a simultaneous solution. Back-scattering is

forbidden.
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After a bit of work, we obtain the final expression for the (low momentum) topologically-

protected edge state,

f(x ≥ 0) =


Ex

Ey

Hz

 = f0

(
x̂− sky

√
εẑ
) (

e−η1x − e−η2x
)
. (6.40)

sky = sgn(ky) is the sign of the momentum which dictates the direction of propagation. f0

is a proportionality constant. Remarkably, the edge wave behaves identically to a vacuum

photon (completely transverse polarized) but with a modified dispersion. Indeed, they are

helically quantized along the direction of propagation k̂ = ŷ. This is the definition of

longitudinal spin-momentum locking as f is an eigenstate of Ŝy,

ŜyF = skyF, F =


√
εEx

√
εEy

Hz

 . (6.41)

k̂ · ~S = Ŝy is the helicity operator along ŷ, which was defined in Eq. (6.3 ). Notice that

the spin is quantized sky = sgn(ky) = ±1 and completely locked to the momentum as

it depends on the direction of propagation. A summary of the QGEE and its intriguing

properties is listed in Tab. 6.1 . Its important to note; from the conventional bulk-boundary

correspondence (BBC), a Chern number of |C| = 2 usually suggests two unidirectional edge

states. However, spin-1 bosons (like the photon) have shown single edge states [56 ], [58 ]–[61 ]

even though the Chern number is |C| > 1. A rigorous proof of BBC for gauge theories is still

an open problem. Nevertheless, that does not leave out the possibility of another edge state,

at perhaps higher momentum, as we only solved the long wavelength limit k ≈ 0. This will

be considered in a future paper that analyzes the topological Drude model more thoroughly.

6.5 Interface of optical isomers

In Sec. 6.4 , we showed that nonlocal gyrotropy g(ω, k) can lead to topologically-protected

chiral edge states that satisfy open boundary conditions. In the Drude model, this arises
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Figure 6.2. The interface of two optical isomers with positive +g and negative
−g gyrotropy. In the Drude model, this corresponds to reversed magnetic
biasing ±B0. The interface hosts two edge states that can be decomposed
into two chiral (unidirectional) subsystems with perfect magnetic conductor
(PMC) and perfect electric conductor (PEC) boundary conditions. PMC and
PEC are mirror symmetric (+) and mirror antiysmmetric (−) respectively,
designating photonic quantum Hall (PQH) and photonic Jackiw-Rebbi (PJR)
states. The particular mirror symmetry (±) dictates how the electromagnetic
field transforms into the virtual photon Pxf(−x) = ±f(x).
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from a momentum dependent cyclotron frequency Ωc(k) = ωc+βck2 that changes sign within

the dispersion ωcβc < 0. Discovering such a material and observing these topological edge

waves remains an open problem and could be a considerable challenge. Here, we consider a

more practical scenario that does not involve nonlocality βc = 0, but hosts intriguing physics

nonetheless.

Instead of having g change sign with momentum, we let g vary with position g →

g(x) such that it defines the boundary between two distinct materials. The simplest case

represents the boundary of two “optical isomers” [218 ], [219 ], with g in the x > 0 space and

−g in the x < 0 space but ε identical in both media. The permittivity tensors are therefore

complex conjugates of one another εij(x) = ε∗
ij(−x) and there is perfect mirror symmetry

about x = 0. In the Drude model, this represents the interface between two biased plasmas,

but with reversed applied fields ±B0. The cyclotron frequencies in each half-space are exactly

opposite ±ωc = ±eB0/M0. Note though, this implies the biasing field is discontinuous across

the boundary B0(0+) 6= B0(0−) which is an idealization. In reality, there must be a field

gradient B0 → B0(x) that interpolates between the two regions. However, we get this desired

behavior for free if we assume a perfect mirror in the x < 0 half-space, such that the virtual

photon is the exact mirror image [139 ]. This is because the permittivity is even under mirror

symmetry ε → ε while gyrotropy is odd g → −g.

There are two types of mirrors we can introduce: a perfect magnetic conductor (PMC)

or a perfect electric conductor (PEC). The difference between the two lies in the type of

symmetry of the boundary condition. PMC represents symmetric (+) boundary conditions

and PEC is antisymmetric (−). Under each symmetry (±) the electromagnetic field f must

transform into its mirror image as Pxf(−x) = ±f(x). As we will see, each mirror has a

chiral (unidirectional) edge state associated with it, but with very different properties. A

visualization of the two mirror boundary conditions is displayed in Fig. 6.2 . It must be

stressed that a real interface of optical isomers hosts both edge states. A symmetric (PMC)

state propagates in one direction while the antisymmetric (PEC) state propagates in the

opposite direction. Only when we enforce a specific boundary condition can we isolate for

either edge state.
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6.6 Photonic quantum Hall (PQH) edge states

The photonic quantum Hall (PQH) edge states are symmetric (PMC) solutions of the

optical isomer problem. These states are unique in that they support a high frequency

quantum Hall edge current at the interface. The first step is to derive the δ-potential

characterizing the potential energy at the discontinuity x = 0. This arises from a sudden

change in the gyrotropic coefficient g → g sgn(x). Assuming the longitudinal field is nonzero

Ey 6= 0, it can be shown that Ey satisfies a Schrödinger-like wave equation,

− ∂2
xEy + V (x)Ey = EEy. (6.42)

V (x) is the “potential energy” and after differentiating reduces to a δ-function,

V (x) = ky
g

ε
∂xsgn(x) = 2ky

g

ε
δ(x). (6.43)

E is the corresponding “energy eigenvalue”,

E = ω2
(
ε− g2

ε

)
− k2

y. (6.44)

It is well known that δ-potentials always possess a bound state when the potential energy is

attractive V (x) < 0. Therefore, kyg/ε < 0 must always be satisfied for any given frequency

and wave vector. The chirality of the bound state is immediately apparent. If a solution

exists for a particular ky, then ky → −ky is never a simultaneous solution. Back-scattering

is forbidden.

To solve Eq. (6.42 ), we integrate both sides of the equation from
´ 0+

0− dx while assuming

Ey(x) = Ey(0) exp(−η|x|). In this case, the longitudinal electric field is continuous across

the domain wall Ey(0+) = Ey(0−). We obtain a surprisingly simple characteristic equation,

η = −ky
g

ε
, k2

y = ω2ε. (6.45)
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Notice that an edge state only exists when ε > 0 is positive. This is very different from

SPPs which require a negative permittivity. After some algebra, the Ex and Hz fields can

be expressed as,

Ex(x) = −isx
ε2 + g2

2εg Ey(0)e−η|x|, (6.46a)

Hz(x) = isxsky

ε2 − g2

2
√
εg

Ey(0)e−η|x|, (6.46b)

where sx = sgn(x) and sky = sgn(ky) denotes the sign of x and ky respectively. It is easy to

check that the PQH state is mirror symmetric Pxf(−x) = +f(x) about x = 0.

However, one might expect the normal electric field Ex and tangential magnetic field Hz

to vanish at x = 0 due to PMC boundary conditions. This is not the case. A free edge

current is running parallel to the interface, such that the fields are discontinuous,

Iy = 1
2
[
Hz(0−) −Hz(0+)

]
= −isky

ε2 − g2

2
√
εg

Ey(0). (6.47)

Note, we divide by a factor of 2 to remove the contribution from the virtual photon. Iy is

the high frequency analogue of the quantum Hall edge current. Interestingly, these photonic

edge waves can be excited by passing a time-varying current along the boundary – similar to

a transmission line. However, current can only flow in one direction and the system behaves

like a simultaneous photonic and electronic diode.

Now we look for self-consistent solutions to the dispersion relation [Eq. (6.45 )] which

correspond to propagating edge modes, with both ky and ω real-valued. There are in fact

two edge bands which span the gaps between the bulk bands,

ω2
↑↓ = 1

2
[
ω2
p + ω2

c + k2
y ±

√
(ω2

p + ω2
c + k2

y)2 − 4k2
yω

2
c

]
. (6.48)

ω↑ spans the region between the upper ω+ and lower ω− bulk TM bands while ω↓ spans

between ωc and 0. Now we need to check when η > 0 represents a decaying wave for the two

edge modes,

η↑↓ = −ky
g(ω↑↓)
ε(ω↑↓)

=
kyωcω

2
p

ω↑↓(ω2
↑↓ − ω2

p − ω2
c )
. (6.49)
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Figure 6.3. Dispersion relation of the local Drude model under an applied
magnetic field with ωc/ωp = 1/2 as an example. Black lines indicate bulk bands
while cyan and magnetic lines represent unidirectional photonic quantum Hall
(PQH) and photonic Jackiw-Rebbi (PJR) edge states respectively. There are
a total of 3 positive energy bulk bands. Two correspond to high and low
frequency TM modes ω = ω± while the third represents pure cyclotron orbits
ω = ωc. The PQH states emerge at a PMC boundary while the PJR states
require a PEC boundary. Unlike conventional SPPs, the PQH and PJR states
asymptotically approach the bulk bands in the ky → ∞ limit. The upper
branch approaches the free photon dispersion ω↑ → ky while the lower branch
approaches pure cyclotron orbits ω↓ → ωc. The frequency range where no edge
state exists ωc < ω < ω0, corresponds to the plasmonic region ε < 0.

Since ω2
↑ ≥ ω2

p + ω2
c for all ky, then ωcky > 0 must always be satisfied in the ω↑ frequency

region. Choosing ωc > 0, the upper edge branch propagates strictly in the ky > 0 direction.

Similarly, since ω2
↓ < ω2

p + ω2
c for all ky, then ωcky < 0 must always be satisfied in the ω↓

frequency region. The lower edge branch propagates strictly in the ky < 0 direction. The

dispersion relation of the PQH edge states are displayed in Fig. 6.3 .
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6.7 Photonic Jackiw-Rebbi (PJR) edge states

The photonic Jackiw-Rebbi (PJR) edge states are antisymmetric (PEC) solutions of

the optical isomer problem. Like the QGEE, these edge states are completely transverse

electro-magnetic (TEM) waves. PJR states share many important properties with the QGEE

[Sec. 6.4 ] even though they arise by a very different means. The only significant difference is

that they do not satisfy open boundary conditions and necessarily require a PEC boundary.

This means they are not topologically-protected as they are sensitive to boundary conditions.

However, this particular system is the most practical experimentally.

To solve, we first assume the magnetic field is continuous across the domain wallHz(0+) =

Hz(0−) such that zero edge current Iy = 0 is excited. We obtain an identical dispersion

relation as the PQH states [Eq. (6.45 )], except the wave propagates in the reverse direction,

η = ky
g

ε
, k2

y = ω2ε. (6.50)

There is an immediate connection with the Dirac Jackiw-Rebbi dispersion with respect to

the effective speed of light vp and effective photon mass Λp,

η = ωg√
ε

= |Λp|
vp

, ω2 =
k2
y

ε
= v2

pk
2
y. (6.51)

Surprisingly, the electromagnetic field profile of the PJR state is drastically different than the

PQH state. The longitudinal field vanishes Ey(x) = 0 entirely because Ey(0+) = Ey(0−) = 0

is required by symmetry. Hence, the PEC states correspond to completely transverse electro-

magnetic (TEM) edge waves,

f(x) = Ex(0)
(
x̂− sky

√
εẑ
)

e−η|x|. (6.52)

It is easy to check that the PJR state is mirror antisymmetric Pxf(−x) = −f(x) about x = 0.

The edge wave behaves identically to a vacuum photon (transverse polarized) but with a

modified dispersion. Indeed, they are elically quantized along the direction of propagation
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k̂ · E = ŷ · E = Ey = 0. This is the definition of longitudinal spin-momentum locking as f is

an eigenstate of Ŝy,

ŜyF = skyF, F =


√
εEx

√
εEy

Hz

 . (6.53)

k̂ · ~S = Ŝy is the helicity operator along ŷ, which was defined in Eq. (6.3 ). Notice that the

spin is quantized sky = sgn(ky) = ±1 and completely locked to the momentum as it depends

on the direction of propagation. This should be contrasted with their electron (spin-1⁄2)

equivalent. The dispersion relation of the PJR edge states are displayed in Fig. 6.3 . A short

discussion on the robustness of PQH and PJR states is presented in App. D.2 .

6.8 Conclusion

In summary, we have identified the three fundamental classes of unidirectional photonic

edge waves arising in gyroelectric media. The quantum gyroelectric effect (QGEE) is a

topologically-protected edge state that requires nonlocal gyrotropy. This wave satisfies open

boundary conditions and displays bulk-boundary correspondence as it is defined independent

of the contacting medium. The photonic quantum Hall (PQH) and photonic Jackiw-Rebbi

(PJR) states are local phenomena and emerge at the interface of optical isomers – two media

with inverted gyrotropy.
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7. VISCOUS MAXWELL-CHERN-SIMONS THEORY FOR

TOPOLOGICAL ELECTROMAGNETIC PHASES OF MATTER

From [T. Van Mechelen and Z. Jacob, “Viscous Maxwell-Chern-Simons theory for topolog-

ical electromagnetic phases of matter,” Phys. Rev. B, vol. 102, p. 155425, 15 Oct. 2020].

© 2020 American Physical Society. [246 ]

Chern-Simons theories have been very successful in explaining integer and fractional

quantum Hall phases of matter, topological insulators and Weyl semi-metals. However, it

remains an open question whether Chern-Simons theories can be adapted to topological

photonics. We develop viscous Maxwell-Chern-Simons theory to capture the fundamental

physics of a topological electromagnetic phase of matter. We show the existence of a unique

spin-1 skyrmion in the viscous Hall fluid arising from a photonic Zeeman interaction in

momentum space. Our work bridges the gap between electromagnetic and condensed matter

topological physics while also demonstrating the central role of photon spin-1 quantization

in identifying new phases of matter.

7.1 Introduction

Chern-Simons theory has been studied in condensed matter and high-energy physics for

over three decades [84 ], [247 ]. In a two-dimensional (2D) quantum Hall fluid, it describes

the transverse current generated by an applied electric field, which manifests in the Hall

conductivity σxy. Interestingly, 2D Chern-Simons theory also provides an elegant explanation

of Hall quantization as well as the chiral edge currents, with no need to invoke electronic

band structure. In addition, it has successfully described the fractional quantum Hall effect

in many-body systems and even captures the physics of anyons [248 ]. On the other hand,

three-dimensional (3D) Chern-Simons theory, also known as axion electrodynamics, emerges

as a residual magnetoelectric response in topological insulators [249 ]. Lattice gauge theories

are also of significant interest in quantum simulation [250 ].

However, in both 2D and 3D, Chern-Simons theory only elucidates the topological prop-

erties of the electron. The topology of the electromagnetic field in these quantum materials
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has remained largely unexplored. Here, we mean quantities such as the photonic Chern

number and the topological invariants associated with the electromagnetic field coupled to

condensed matter. To characterize these topological properties, it is fundamentally necessary

to define the photon wavefunction and understand the dynamical ω 6= 0 and subwavelength

k 6= 0 behavior of the material response [54 ], [116 ]. In solids, the topology of the pho-

ton wavefunction is encapsulated in the spatiotemporal dispersion of optical coefficients like

the conductivity tensor σij(ω,k). This unique insight has led to a new electromagnetic

classification of topological matter [164 ] and intriguing phenomena such as unidirectional

electromagnetic spin waves [167 ] that are fundamentally different than magneto-plasmons.

These so-called topological electromagnetic phases of matter are intrinsically bosonic (spin-

1) and are fundamentally different from fermionic (spin-1⁄2) phases as they obey differing

symmetries. E.g. time-reversal: T 2 = +1 for bosons vs. T 2 = −1 for fermions. The

prototypical model of a gapped topological electromagnetic phase, with nontrivial photonic

Chern number Cem 6= 0, was first connected to nonlocality (momentum dependence) of the

Hall conductivity σxy(k) = λ(κ − ξk2) [54 ], [116 ]. These observations necessarily require a

formalism beyond conventional Chern-Simons theory.

In this paper, we lay the foundations for a field theory approach to topological photonic

phases. The specific class of systems we focus on are quantum fluids with Hall viscosity.

Hall viscosity ηH [251 ], [252 ], also known as odd viscosity [253 ] in fluid dynamics, is a funda-

mental property of quantum Hall fluids and can exhibit topological quantization analogous

to the Hall conductivity [254 ]–[256 ]. Like conventional viscosity, it is related to the stress

response of the system under deformations and governs the diffusive flow of the electron

fluid. However, Hall viscosity is unique because it is dissipationless, inducing diffusive flow

in a direction perpendicular to a pressure (force) gradient and therefore does no work. We

show that Hall viscosity, intriguingly, defines a topological electromagnetic phase of matter

with spin-1 photonic skyrmions. We further describe the central idea of a viscous photon

mass arising in viscous Chern-Simons theories – fundamentally different from the Proca mass

which breaks gauge invariance [257 ]. Our viscous Maxwell-Chern-Simons Lagrangian also

reveals topologically-protected chiral (unidirectional) edge states that minimize the surface

variation and correspond to massless excitations costing an infinitesimal amount of energy.
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Figure 7.1. (a) Summary of the four quantum Hall regimes. Hall quan-
tization and plateauing behavior has been demonstrated in both static and
dynamical regimes. However, topological electromagnetic phases Cem 6= 0 are
only realized in the dynamical + viscous (nonlocal) regimes. (b) Overview of
viscous Maxwell-Chern-Simons theory. The bulk topology is governed by a
spin-1 photonic skyrmion in momentum space which arises from viscous Hall
conductivity σxy(k) = λ(κ−ξk2). The arrows represent the direction of the ef-
fective spin d̂ of the photon. The boundary of the nontrivial phase κξ > 0 hosts
topologically-protected chiral photons which are linearly dispersing (massless).
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An overview of the problem is depicted in Fig. 7.1 . The low energy ω ≈ 0 and long

wavelength k ≈ 0 quantized Hall conductivity is well understood as a topological phase of

electrons. At THz frequencies ω 6= 0 but low momentum k ≈ 0, plateaus and quantized

Faraday rotation have been observed in the integer quantum Hall regime [258 ]. However, at

finite ω 6= 0 and k 6= 0, the Hall conductivity becomes dynamical and viscous, paving the

route for the first known topological phase for photons in condensed matter. We argue that

our low energy theory applies to graphene’s electron fluid [259 ] where appreciable Hall vis-

cosity [25 ] was experimentally demonstrated, even under weak magnetic fields. The viscous

MCS theory possesses a few limitations as it neglects Coulomb interactions and the high

frequency screening of the magnetic field, which require more sophisticated hydrodynamic

models [260 ]. The main goal here is to formulate a field-theoretic approach to topological

photonic phases, make the connection with Chern-Simons theories, and illustrate the impor-

tance of Hall viscosity in realizing nontrivial phases. To guide experimentalists in the search

for such new topological electromagnetic phases of matter, we have included a summary of

a few physical systems exhibiting Hall viscosity along with their characteristic parameters

in Tbl. 7.1 .

We note that our work is closely related to ideas in topological photonics but the physi-

cal platforms are fundamentally different. We are concerned with condensed matter systems

such as viscous Hall fluids. Topological wave phenomena [18 ], [139 ], [173 ] have transcended

all of photonics: from plasmonics [137 ], [261 ], metamaterials [217 ], [262 ], [263 ] and photonic

crystals [215 ], [264 ]. Nevertheless, it remains an open question whether topological photonic

phases can be expressed in terms of an effective gauge theory – i.e. a field-theoretic approach.

The advantage of our viscous MCS theory is the proof that the topological edge wave min-

imizes the action on the boundary. Furthermore, the boundary conditions we derive are

fundamentally different from those used for conventional nanoscale systems such as photonic

crystals and plasmonics. This difference arises from the presence of Hall viscosity which is a

necessary physical property for defining topological electromagnetic phases of matter.
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7.2 Lagrangian formulation for topological electromagnetic phases

7.2.1 Maxwell-Chern-Simons theory

In 2+1 dimensions, the MCS Lagrangian is defined as,

LA = −1
4F

µνFµν − κ

4 ε
µνρAµFνρ. (7.1)

Aµ = (φ,Ax, Ay) are the two-dimensional (2D) gauge fields and Fµν = ∂µAν − ∂νAµ is the

field strength tensor [84 ], [247 ]. We have set the dielectric constant to unity ε = 1 but the

case with ε > 1 is easily handled and does not alter the topological physics – it simply

scales the electric field and the effective speed of light. The first term in LA is the familiar

Maxwell Lagrangian. The second term is the Chern-Simons Lagrangian and κ is the coupling

constant. Alternately, the MCS theory can be formulated in the more aesthetically pleasing

“self-dual” picture [265 ],

LF = κ

2 F̃
µF̃µ + 1

2ε
µνρF̃µ∂νF̃ρ, (7.2)

which is equivalent to Eq. (7.1 ) up to a Legendre transformation [266 ]. In this case, the field

theory is described in terms of the electromagnetic dual F̃ µ = 1
2ε
µνρFνρ, which satisfies the

Bianchi identity (Faraday equation) ∂µF̃ µ = 0 upon variation of the action. In 2D, the dual

field F̃µ is a covariant vector

F̃µ = (Bz, Ey,−Ex), (7.3)

with the same number of components as the gauge fields Aµ = (φ,Ax, Ay) and therefore is

an equally valid description of the field theory.

7.2.2 Viscous Maxwell-Chern-Simons theory

Although traditional MCS theory has been studied extensively, we analyze the role of

viscosity (non-dissipative nonlocality) [267 ] that leads to topological implications on the

electromagnetic field [54 ], [116 ], [164 ], [167 ]. Originally, Hall viscosity was conceived from a

geometric perspective, associated with deformations of the underlying metric of the quantum

fluid [254 ]. An equivalent but alternative point of view is to include nonlocal terms that
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Table 7.1. Summary of two physical systems exhibiting significant Hall vis-
cosity and topologically nontrivial electromagnetic phases Cem 6= 0. In gen-
eral, Hall viscosity is always present if the system breaks both parity and
time-reversal symmetry. When viscosity repels the magnetic field C2 > 0, the
electromagnetic phase is nontrivial [Eq. (7.9 )], which occurs in both quan-
tum Hall ν ∈ Z [255 ] and graphene Hall fluids [259 ]. Hall viscosity is also
appreciable in the semiclassical graphene fluid [25 ] around room temperature
100 − 300 K and for weak magnetic fields B ≈ 10 mT.

Hall fluid Graphene fluid
Biasing magnetic field, B Quantizing 10 T
D.C. Hall conductivity, σxy(0) νe2/(2π~) 6.97 × 105 m/s
MCS mass, κ/2π σxy(0)/(2πλ) 4.43 THz
Magnetic length, l

√
~c/(eB) 81 A

Cyclotron frequency, ωc/2π eB/(2πcm) 22.6 THz
Hall viscosity, ηH/(~n) ν/4 ν/4 = 1/4
Energy density, ε(B) ν2~ωc/(4πl2) 403 µJ/m2

Topological phase? C2 = ξ/(κl2) yes: C2 = 3ν/4 > 0 yes: C2 ≈ 1/2 > 0
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account for the stress-strain response of the quantum Hall fluid. To this end, we introduce

the viscous MCS Lagrangian,

LA = −1
4F

µνFµν − κ

4 ε
µνρAµFνρ − ξ

4ε
µνρAµ∇2Fνρ, (7.4)

which will elucidate these topological electromagnetic phases of matter. An effective action

to describe a medium with Hall viscosity was first proposed by Hoyos and Son [255 ] which

was motivated by Galilean invariance, as opposed to relativistic invariance. Similarly, our

viscous Lagrangian Eq. (7.4 ) is Galilean invariant. The one significant difference is that the

Hoysos and Son Lagrangian was limited to longitudinal fields E = −∇∇∇φ. Our theory is

a slight generalization in flat space time that includes the response of the transverse field

∇∇∇ × E 6= 0. A proof is provided in the supplementary information. ξ is the nonlocal

Chern-Simons coupling and accounts for viscosity in the MCS Lagrangian.

As before, we can transform to the self-dual picture to obtain an intuitive interpretation,

LF = κ

2 F̃
µF̃µ − ξ

2∇F̃ µ · ∇F̃µ + 1
2ε

µνρF̃µ∂νF̃ρ. (7.5)

We note there is a striking one-to-one correspondence between Eq. (7.5 ) which we derived

and the minimal topological Dirac model [93 ],

Lψ = mψ̄ψ − b∇ψ̄ · ∇ψ − iψ̄γµ∂µψ, (7.6)

where γµ are the 2+1D gamma matrices and ψ is a two-component spinor. Equations (7.5 )

and (7.6 ) are in fact supersymmetric partners [247 ], describing spin-1 bosons and spin-1⁄2

fermions respectively. By direct comparison, we see that κ plays the role of photonic mass,

in the same way as m for the electron. Likewise, ξ and b dictate the kinetic (viscous) terms,

which are essential to realize nontrivial phases. In the long wavelength (continuum) limit

k ≈ 0, the viscous term regularizes the field at k → ∞, such that the momentum space is

effectively a sphere R2 ' S2. This means topological invariants of the electromagnetic field,

like the Chern number Cem, can be defined [15 ]. We also show in the lattice regularized
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theory [Sec. 7.4 ], that nontrivial photonic phases Cem 6= 0 are only possible when viscosity

is non-zero ξ 6= 0.

7.2.3 Viscous Hall conductivity

Physically, the Chern-Simons coupling is interpreted as a dissipationless Hall conductiv-

ity, as the induced current density is,

Jµind = −λ∂LA

∂Aµ
= λ(κ+ ξ∇2)F̃ µ. (7.7)

Since the induced current Jµind is proportional to the dual field F̃ µ, the nonlocal conductivity

tensor σij(k) is purely antisymmetric,

σxy(k) = −σyx(k) = λ(κ− ξk2), (7.8)

with vanishing symmetric components σxx = σyy = 0. The prefactor λ is a characteristic

length scale of the problem and ensures correct units of the conductivity. For simplicity,

we assume λ is the Thomas-Fermi screening length which is approximately λ ≈ 25 nm

in graphene [14 ]. The viscous Chern-Simons coupling ξ therefore describes the quadratic

correction to the Hall response [255 ],

σxy(k)
σxy(0) = 1 − ξ

κ
k2 = 1 − C2(kl)2, (7.9)

σxy(0) = λκ = νe2/(2π~) is the intrinsic D.C. Hall response, ν is the filling factor and

l =
√
~c/(eB) is the magnetic length. ~ is the reduced Planck constant, c is the speed

of light, e is the elementary charge and B is the biasing magnetic field. The coefficient

C2 = ξ/(κl2) depends on the Hall viscosity ηH and the energy density ε(B) of the Hall fluid,

C2 = 2π

ν

l2

~ωc
B2

0ε(B) − ηH
~n
, (7.10)

where ωc = eB/(cm) is the cyclotron frequency and n is the density of electrons. The first

term involving B2
0ε(B) is a thermodynamic property related to the internal compressibility
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[268 ], while the second term involving ηH is universal. Depending on the material platform,

C2 can be either positive C2 > 0 or negative C2 < 0, which either inhibits or enhances the total

Hall response. We argue that the inhibiting regime C2 > 0, i.e. when κξ > 0, corresponds to

a topologically nontrivial electromagnetic phase [54 ], [116 ], [164 ], [167 ].

7.2.4 Equations of motion

LA and LF generate the same equations of motion when one varies the action with respect

to the gauge fields (Aµ) or the dual fields (F̃µ). However, to ensure the action does not break

gauge invariance on a boundary, it is more convenient to work with the self-dual theory

LF . Varying the dual field F̃µ → F̃µ + δF̃µ, we naturally obtain a bulk and surface term

δS = δSb + δSs,

δSb =
ˆ
dV

[
∂µF

µν +
(
κ+ ξ∇2

)
F̃ ν
]
δF̃ν , (7.11)

and,

δSs =
ˆ
∂V

dtdy
[(1

2F
xµ − ξ∂xF̃

µ
)
δF̃µ

]
x=0

. (7.12)

dV = dtdxdy is the differential space-time volume and we have taken the boundary at x = 0.

The minimization principle states that a physical system tends to its lowest energy state,

which requires that the fields satisfy the equations of motion within V and the boundary

conditions on ∂V . Here we consider an isolated system with no external fields or sources.

By requiring a vanishing bulk term δSb = 0, we arrive at the viscous wave equation in the

quantum fluid,

∂µF
µν +

(
κ+ ξ∇2

)
F̃ ν = 0, (7.13)

where F µν = εµνρF̃ρ is the field strength. Equation (7.13 ) represents the equations of motion

of the viscous MCS theory. On the other hand, the surface term δSs = 0 vanishes for two

distinct boundary conditions. The first is a Dirichlet condition,

δF̃ µ|x=0 = 0, (7.14)
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where the value of the field is fixed on x = 0, usually to zero F̃ µ|x=0 = 0, corresponding

to an open boundary. The second possibility is slightly more interesting and represents the

natural (mixed) boundary condition,

jµs = δSs
δF̃µ|x=0

=
[
F xµ − 2ξ∂xF̃ µ

]
x=0

= 0. (7.15)

Equation (7.15 ) has a particularly nice explanation – it implies the induced surface current jµs
vanishes on the boundary. We emphasize that this boundary condition is formally identical

to its fermionic counterpart derived from the Dirac equation [Eq. (7.6 )]. Together, the above

equations define the bulk and edge physics of photons propagating in the viscous Hall fluid.

7.3 Viscous photon mass

7.3.1 Photonic Zeeman interaction

Our first goal is to study the bulk photonic physics of the viscous Hall fluid by exploiting

the equations of motions derived above [Eq. (7.13 )]. For that, we introduce a Hamiltonian

formalism of the electromagnetic field coupled to a medium described by its macroscopic

response (complete conductivity tensor). To construct the electromagnetic “Dirac equation”

it is convenient to utilize the Riemann-Silberstein (RS) vector ~F [149 ], which is often called

the photon wavefunction. In 2+1D, the RS vector is defined as,

~F =
[
Ex Ey iBz

]
. (7.16)

In this Maxwell Hamiltonian picture, ~F is a 3D vector propagating in the 2D plane, while

the dual field (F̃ µ) is a covariant vector, but the two are equivalent up to a unitary transfor-

mation. We now combine Eq. (7.13 ) with the Bianchi identity (Faraday equation) to obtain

a first-order (in time) wave equation,

i∂t ~F = i~d× ~F = H ~F. (7.17)
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We call ~d the effective magnetic field of the photon which is a 3D vector operator,

~d =
[
px py κ− ξp2

]
, (7.18)

and pj = −i∇j are the corresponding momentum operators. H is the “Maxwell Hamiltonian”

and is the projection of the effective magnetic field ~d onto the vector spin operators ~S =[
Sx Sy Sz

]
,

H = ~d · ~S = pxSx + pySy + (κ− ξp2)Sz. (7.19)

The Maxwell Hamiltonian H = ~d · ~S resembles the Zeeman interaction but for photons

[146 ]. The essential difference is that ~S are spin-1 operators for the photon, as opposed

to the Pauli matrices ~σ which are spin-1⁄2 operators for the electron. In the RS basis,

[Sj, Sk] = iεjklSl are antisymmetric SO(3) matrices that generate the spin-1 algebra [188 ],

[190 ]. Note that the photon propagating within the viscous Hall fluid experiences a net

magnetic field that depends on its momentum, Hall conductivity, as well as the Hall viscosity.

The dielectric constant ε simply scales the momentum operators and does not effect the

behavior of the net magnetic field ~d. This “photonic Zeeman interaction” in a viscous

quantum Hall fluid leads to a remarkable spin-1 skyrmion in momentum space [Sec. 7.4 ].

7.3.2 Difference from Proca mass

The topological physics of the electron is tied to the quantization of Hall conductivity.

Our intriguing result is that topological properties for the photon arise from the viscous na-

ture of the Hall conductivity. The Chern-Simons coupling (Hall conductivity) κ 6= 0 behaves

as a gauge invariant photonic mass Λ that opens a low energy band gap for electromagnetic

waves at ω = 0 in the quantum fluid. We note that the MCS mass is fundamentally different

from the Proca mass that is often encountered in superconductivity [257 ]. By choosing a

Lorenz gauge ∂µAµ = 0, the London penetration depth λL of a superconductor is identified

with the Proca mass λ−1
L = m. Conversely, the MCS mass does not require the specification

of a gauge. The Stueckelberg [269 ] mechanism is an alternative way of generating mass for

the photon but in the quantum Hall effect, parity and time-reversal symmetry breaking is
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Figure 7.2. Bulk and edge dispersion of (a) continuum and (b) lattice models
of viscous Maxwell-Chern-Simons theory. Cyan and magnetic lines are positive
and negative energy topological bands while the black line is the chiral edge
state. (a) Parameters are κ = ξ = 1 in the continuum theory a → 0. (b)
Parameters are κa = ξ/a = 1 in the lattice theory a 6= 0.
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captured specifically by the Chern-Simons coupling term. Since the MCS mass does not pre-

serve parity or time-reversal symmetry, it admits the possibility of nontrivial Chern phases

Cem 6= 0. The Hall viscosity is crucial to realize these nontrivial topological electromagnetic

phase ξ 6= 0 and makes this photonic mass spatially dispersive,

Λ(p) = λ−1σxy(p) = κ− ξp2. (7.20)

To appreciate its significance, we translate the system to the energy-momentum space

and place the MCS theory on a square lattice x = nxa and y = nya. Here, nx,y ∈ Z is

an integer and a is the lattice constant. The lattice regularizes the field theory at high-k

and ensures quantization of topological invariants like the photonic Chern number. Due to

discretization of space [270 ], the momentum is only unique up to |kx,y| ≤ π/a, which defines

a torus T2 in two dimensions. That is, k is defined within the first Brillouin zone (BZ). The

dispersion relation of the dynamical ω 6= 0 modes is found straightforwardly,

ω2(k) = ~d2(k). (7.21)

where ~d(k+g) = ~d(k) is periodic in the reciprocal lattice and gx,y = Nx,y2π/a is an arbitrary

reciprocal vector Nx,y ∈ Z,

~d(k) =
[
a−1 sin(kxa) a−1 sin(kya) Λ(k)

]
. (7.22)

Λ(k) is the viscous photon mass in the lattice theory and is quadratic in the momentum,

Λ(k) = κ− ξ
(2
a

)2 [
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
. (7.23)

It is easy to check that the continuum limit is recovered when a → 0. The dispersion relation

is depicted in Fig. 7.2 which shows the bulk bands and the gapless edge states within the

band gap. The positive energy ω = d > 0 bulk eigenstate is then derived as,

~Fk = 1√
2

 ~d× ẑ

|~d× ẑ|
+ i

~d× (~d× ẑ)
d|~d× ẑ|

 , (7.24)
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Figure 7.3. Topological phase diagrams for (a) continuum and (b) lattice
models of viscous Maxwell-Chern-Simons theory. Cem = ±2, 0 is the photonic
Chern number of the positive energy band ω > 0 for different parameters. κ
and ξ are the Chern-Simons and viscous Chern-Simons coupling respectively.
a is the lattice constant of a square grid. κa2 = 0, 4ξ, 8ξ denote the phase
transition lines in the lattice model. These correspond to points of accidental
degeneracy, where the band gap closes at k = Γ, X/Y,M respectively. Impor-
tantly, conventional MCS theory ξ = 0 always corresponds to a topologically
trivial phase Cem = 0 in the lattice regularization.

which has been normalized to unit energy |~Fk|2 = |E|2 + |Bz|2 = 1.

7.4 Spin-1 photonic skyrmions

We now show that a spin-1 photonic skyrmion emerges within the viscous Hall fluid.

Our momentum space skyrmion is analogous to those predicted in p-wave superconductors

[94 ]. The reason the skyrmion is spin-1 is because the MCS mass Λ(k) also defines the

representation theory of the 2+1D Poincaré algebra [84 ],

jm = Λ(k)
|Λ(k)| = sgn[Λ(k)], (7.25)

which is a massive spin-1 excitation jm = ±1. The representation jm indicates whether

the wave is right (+1) or left (−1) circularly polarized in the x-y plane. The topology is
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Figure 7.4. (a) Unit cell of a square lattice with the primitive Wigner-Seitz
cell shown in yellow. (b), (c) and (d) show the Brillouin zone of the three
phases Cem = ±2, 0 in the lattice regularized theory. κ > 0 and ξ > 0
are chosen positive such that (b) and (c) label type I and type II photonic
skyrmions respectively. (d) is the photonic ferromagnet. The eigenvalue at
high-symmetry points denotes the sign of the Maxwell-Chern-Simons mass
jm = sgn(Λ) = ±1, which determines the spin-1 representation – if the field is
right (+1) or left (−1) circularly polarized. The two nontrivial phases possess
skyrmion numbers of N = ±1 corresponding to a spin-1 Chern number of
Cem = 2N = ±2.
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intimately tied to the spin-1 representation of the electromagnetic field. The Berry curvature

Ω is precisely [116 ],

Ω = −i
(
∂x ~F

∗
k · ∂y ~Fk − ∂y ~F

∗
k · ∂x ~Fk

)
= d̂ · (∂xd̂× ∂yd̂), (7.26)

where d̂ = ~d/d is a unit vector. Note, the photonic Chern number for the viscous Hall fluid

is always an even integer Cem ∈ 2Z,

Cem = 1
2π

ˆ
BZ
dk d̂ · (∂xd̂× ∂yd̂) = 2N. (7.27)

N ∈ Z is the skyrmion winding number [147 ], [148 ] that counts the number of times d̂(k)

wraps around the unit sphere T2 → S2. We define the skyrmion number N and Chern

number Cem through the photon wavefunction ~F . The topological invariant is a property of

the U(1) gauge field coupled to the viscous quantum Hall fluid. This is in stark contrast to

electronic topological materials where the electron wavefunction ψ plays the central role.

Importantly, at high-symmetry points k = Γ, X/Y,M , the spin-1 representation [16 ],

[183 ] can only change if κξ > 0 which requires the Hall coefficient C2 > 0. After a bit of

work, it can be shown that the Chern number is [271 ],

Cem = sgn[Λ(Γ)] + sgn[Λ(M)] − 2sgn[Λ(X)]

= sgn(κ) + sgn
(
κ− 8ξ

a2

)
− 2sgn

(
κ− 4ξ

a2

)
.

(7.28)

The eigenvalues at Λ(X) = Λ(Y ) are identical and thus appears twice in Eq. (7.28 ). The

topological phase diagram is shown in Fig. 7.3 . For standard MCS theory, the Hall viscosity

is zero ξ = 0 and the photonic Chern number is identically zero Cem = 0 in the lattice

regularization. This is due to the inherent field doubling that occurs in a periodic system [272 ]

which cancels any parity anomalies that may arise in the continuum limit. Hence, the Hall

conductivity κ alone cannot describe a photonic skyrmion or a topological electromagnetic

phase. A nontrivial phase with spin-1 photonic skyrmions |Cem| = 2 is only possible when

Hall viscosity is non-zero ξ 6= 0. Note that the continuum limit is recovered when the Hall

viscosity is sufficiently large
√
ξ/κ � a, such that the Chern number reduces to Cem =
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Figure 7.5. The two boundary conditions for the viscous Hall fluid that
minimize the surface variation δSs = 0 at x = 0. (a) Schematic of the trun-
cated atomic lattice at x = 0. (b) and (c) plot the normalized energy density
u = |~F |2 = |E|2 + |Bz|2 of the chiral photonic edge state. The parameters
are κa = 0.1, ξ/a = 0.2 and kya = 0.1 as a demonstration. (b) The Dirichlet
(open) boundary condition ~F (0) = 0 has zero measure at x = 0. (c) The
natural boundary condition vx ~F (0) = 0 is more localized at the surface and
resembles an evanescent wave.

sgn(κ)+sgn(ξ). The continuum theory predicts the existence of a spin-1 photonic skyrmion.

Our work builds on the continuum theory to include lattice symmetries which delineates

these skyrmions into type I and type II. As a visualization, examples of type I and type II

photonic skyrmions are displayed in Fig. 7.4 .

7.5 Topological boundary conditions

We now analyze the edge physics for the viscous Hall fluid using the MCS theory. We

emphasize that the topological boundary conditions are derived through a minimization

principle [Eq. (7.12 )]. This is in stark contrast to the conventional approach to solving

for topological photonic waves. Thus, the edge wave solutions of the viscous Hall fluid

satisfy fundamentally different boundary conditions than photonic crystal edge waves or

edge magneto-plasmons [261 ]. These Maxwellian waves are not only unidirectional but are

also eigenstates of the photon spin operator [167 ]. The most striking property is that the

contacting medium has no influence and cannot introduce a gap in the edge wave dispersion

– the edge wave always exists. This is also a fundamentally unique property of the viscous
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Hall fluid as conventional edge magneto-plasmons simply disappear if the contacting medium

is a metal (eg: gold-InSb interface).

The topological boundary conditions have an intuitive interpretation in the RS basis.

The open (Dirichlet) boundary condition [Eq. (7.14 )] implies all components of the field

vanish at the boundary ~F |x=0 = 0. This is similar to the no-slip boundary condition in

fluid mechanics. On the other hand, the natural boundary condition [Eq. (7.15 )] guarantees

that the induced surface current vanishes vx ~F |x=0 = 0. Fig. 7.5 shows the truncated lattice

corresponding to a viscous Hall fluid and the unidirectional Maxwellian spin waves for two

different boundary conditions. The detailed derivation of the bulk-boundary correspondence

is appended to the supplementary information.

7.6 Conclusions

We have presented viscous Maxwell-Chern-Simons theory – the fundamental (exactly

solvable) model of a topological electromagnetic phase. The topological physics of which is

ultimately governed by viscous (nonlocal) Hall conductivity. To rigorously analyze the prob-

lem, we introduced the viscous Maxwell-Chern-Simons Lagrangian and derived the equations

of motion, as well as the boundary conditions, from the principle of least action. Our work

puts forth a fundamentally new field theoretic approach to merge the fields of topological

photonics and quantum Hall fluids.
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8. SUMMARY

At the outset of this thesis, the study of topological electromagnetism was solely the realm of

photonic crystals and metamaterials. The main achievement of this work is translating these

profound ideas in topological photonics to condensed matter physics. Due to a massive effort

realizing strongly-correlated electron fluids, we now have convincing evidence that topological

electromagnetic states can exist as distinct phases of matter. Magnetohydrodynamics is the

first platform to study topological electrodynamics in the solid-state and there are potentially

many more nontrivial electromagnetic materials waiting to be discovered. The theoretical

framework developed in this thesis will help predict and characterize this fundamentally

Maxwellian class of matter.

Advanced experimental techniques will need to be devised to probe the topological sig-

natures of these exotic materials. In this thesis, we have proposed a few approaches such

as momentum-resolved electron energy loss spectroscopy (k-EELS) and cold atom near-field

probes to access the large momentum behavior of gyrotropic plasmas. We also expect evanes-

cent magneto-optic-Kerr-effect (e-MOKE) spectroscopy to provide useful insight into the

unusual polarization effects of nontrivial gyrotropic media at optical frequencies and large

momentum. We are confident our work will create considerable impact in the condensed

matter community and stimulate growth in this area of topological electromagnetic phases

of matter. The unique topological photonic phenomena in these materials could revolution-

ize nanophotonic devices and provide robust electromagnetic pathways that are currently

unreachable.

In summary, we have derived both the lattice and continuum topological electromag-

netic field theories in condensed matter. Interactions between photons and dipole-carrying

excitations, like plasmons and excitons, is the fundamental origin of temporal and spatial

dispersion in the optical response. We have shown that spatiotemporal dispersion and non-

reciprocity is a requirement for nontrivial topology in the solid-state. Specifically, nonlocal

Hall conductivity is identified as the dispersive effective mass of the spin-1 photon which orig-

inates from Hall viscosity in strongly-correlated materials. A viscous Maxwell-Chern-Simons

theory was proposed to study the electrodynamics of these highly nontrivial systems. We
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have shown that Hall viscosity leads to many intriguing bulk effects in electromagnetism such

as photonic skyrmions, Dirac monopoles and strings, singular Berry gauges and magnetic

field repulsion. We also rigorously analyzed the boundary physics which revealed gapless

chiral edge states that are immune to perturbations. Our work promises a new generation

of effects at the interface of topological photonics and condensed matter physics.
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A. UNIVERSAL SPIN-MOMENTUM LOCKING OF

EVANESCENT WAVES [SUPPLEMENTAL MATERIAL]

From [T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent

waves,” Optica, vol. 3, no. 2, pp. 118–126, Feb. 2016]. © 2020 Optical Society of

America. [26 ]

This document provides supplementary information to: “Universal spin-momentum lock-

ing of evanescent waves”. This includes the full derivations of the complex dispersion relation

and polarization basis, Stokes parameters in terms of complex angles, and boundary condi-

tions at the interface of an evanescent wave. We also show the derivation of the directionally

dependent emission of a chiral quantum emitter placed inside a single mode optical fiber.

A.0.1 Complex dispersion relation

When we express the wavenumber in the most general complex form as ~k = ~κ + i~η, the

dispersion relation in free space, ~k2 = ~k · ~k = k0
2 implies that,

κ2 − η2 = k0
2 (A.1a)

~κ · ~η = 0 (A.1b)

since k0 = ω/c is purely real. In this discussion we only consider waves in free space but

what follows can be easily generalized to any homogeneous material, lossless or lossy. The

only significant difference is that a lossy material will have an imaginary component in the

dispersion relation in Eq. (A.1b ) that requires ~κ · ~η 6= 0.

In the absence of sources, Maxwell’s equations require that the electric and magnetic

fields obey the transverse and curl conditions as,

~k · ~E = 0 (A.2a)

~k × ~k × ~E = −k0
2~E (A.2b)
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where ~E is the electric field in the complex representation. Note that Eq. (A.2a ) and (A.2b )

applies equally to the magnetic field. These two conditions admit two degrees of freedom

for the field polarization state that can be satisfied by appealing to the familiar ŝ and p̂ unit

vectors.

When considering complex wavevectors, we do not need to introduce any extraneous

vectors to define our basis set. To construct ŝ and ensure it is orthogonal to ~k, we utilize

both ~κ and ~η independently as,

ŝ = ~κ× ~η

|~κ× ~η|
= i

~k × ~k∗

|~k × ~k∗|
(A.3)

and since ~κ, ~η and ~κ × ~η are all mutually orthogonal, these three vectors actually form a

new electromagnetic triplet set. Next we will show that the p̂ polarization is simply a linear

combination of ~κ and ~η unit vectors. We construct p̂ by choosing the only vector orthogonal

to both ŝ and ~k which is simply,

p̂ =
~k × ŝ

|~k|
= i

~k × (~k × ~k∗)
|~k||~k × ~k∗|

. (A.4)

where |~k|2 = ~k∗ · ~k is the L2 norm and should not be confused with the dispersion relation,
~k · ~k. These two quantities are not equivalent for complex wavevectors.

Up until this point, the definitions for ŝ and p̂ have actually been entirely consistent

for situations when ~κ · ~η 6= 0 which is why their form is intuitive. Another convenience

of this basis representation is that all the complex components are encapsulated in the p̂

polarization which we will see constitutes the spin of an evanescent wave. In this case, the

ŝ vector can be thought of as the “spin direction” because it points out of the plane.

If we restrict ourselves to orthogonal ~κ and ~η which would be the case for free space or

a lossless medium, we can expand out the term in Eq. (A.4 ) as,

p̂ = i
[
η

|~k|

(
~κ

κ

)
+ i κ

|~k|

(
~η

η

)]
(A.5)

and as expected, the p̂ polarization state is simply a specific linear combination of ~κ and

~η unit vectors which means we have fully described any evanescent wave in terms of our
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electromagnetic triplet set. For waves in free space, the following identities can also be

proven,
~k × p̂ = −k0

2

|~k|
ŝ (A.6a)

~k∗ × p̂ = ~k × p̂∗ = −|~k|ŝ (A.6b)

which confirm that the conditions in Eq. (A.2a ) and (A.2b ) are satisfied.

A.0.2 Propagating waves in the η → 0 limit

Here we show that the evanescent basis defined in Eq. (A.3 ) and (A.4 ) for ŝ and p̂ reduces

to the well known plane wave vector basis for propagating waves near an interface. Before

we outline the steps, we must clarify an important distinction. We first make note that

evanescent waves and free propagating waves are fundamentally different. The existence of

decay (~η) for evanescent waves breaks up the symmetry of the problem and allows us to

represent ŝ and p̂ in a coordinate independent form using the wavevectors exclusively. This

is why our basis is universal because it can represent any evanescent wave in a homogeneous

medium. Conversely, for free propagating waves there is no preferred basis and any set that

satisfies ~k · ~E = 0 is equally valid. For a propagating wave, it is the existence of an interface

which leads to the definition of ŝ and p̂.

The reasoning for how the basis sets are related is subtle because it would seem at first

glance that as η → 0, the polarization vectors would be undefined. However, taking the

unique limit and retaining the interface in the problem shows that this is not the case.

When we introduce an interface to the problem, we can define the decay as ~η = ηm̂, with m̂

being the unit vector normal to the interface. Substituting this in,

ŝ = ~κ× m̂

|~κ× m̂|
(A.7a)

p̂ = ~κ+ i~η
|~κ+ i~η|

× ~κ× m̂

|~κ× m̂|
(A.7b)

and we see that nearly all the difficulties with taking the limit have been removed.
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We consider the limiting case as an evanescent wave is transformed to a propagating

wave near an interface. Doing this, we take η → 0 so there is no decay (propagating wave),

but the interface is fixed which means m̂ is still defined as the unit vector normal to this

interface. This implies ~κ → ~k and |~k| → k0 where ~k is now a purely real momentum vector

and we arrive at,

ŝ =
~k × m̂

|~k × m̂|
(A.8a)

p̂ =
~k

k0
×

~k × m̂

|~k × m̂|
(A.8b)

which satisfies ~k · ŝ = ~k · p̂ = 0 and is indeed the standard basis set for a propagating wave

interacting with an interface.

A.0.3 Complex n and ENZ

For completeness, we also include the polarization vectors for a general complex refractive

index n = |n| exp(iφn) and show that everything is consistent by letting ~k → n~k. Where
~k is the complex wavevector inside the media and ~k is the wavevector in the free-space

representation. Simply plugging this into Eq. (A.3 ) and (A.4 ) our basis vectors transform

as,

ŝ → ŝ (A.9a)

p̂ → i exp(iφn)
[
η

|~k|

(
~κ

κ

)
+ i κ

|~k|

(
~η

η

)]
(A.9b)

and we see that our original orthogonal basis is actually preserved except for a phase factor,

φn that rotates the p̂ polarization in the plane of propagation. Note however, that the actual

components of ~k inside the media are given as Re~k = |n|[ cosφn~κ − sinφn~η] and Im~k =

|n|[ cosφn~η+sinφn~κ] so the branch cut is not particularly well-defined in this representation.

In a practical problem where we have to consider phase-matching constraints at an interface,

it would almost always be simpler to cast everything in terms of ~k from the outset.

We comment briefly how such circular polarization effects and unidirectional propagation

can manifest itself in epsilon-near-zero (ENZ) and hyperbolic metamaterials. A detailed

analysis follows from the equations of the main paper and will be presented elsewhere. It
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has been demonstrated that waves can tunnel through narrow channels of ENZ media and

lead to multiple interesting effects. We note here another intriguing aspect for a low loss

ENZ material with ε ≈ 0. This condition immediately implies from the dispersion relation

(~k ·~k = ε(ω/c)2) that all waves will be necessarily evanescent in such media since propagating

solutions do not exist. Furthermore, these evanescent waves will have κ = η (decay connected

to phase) leading to a fundamental circular nature to the p̂-polarization component of the

evanescent wave. These are modes with an electric field vector perpendicular to the interface

of a thin film. Such effects can be experimentally verified close to the plasma frequency in a

plasmonic metal.

Formally, this can be inferred once again from the properties of our polarization basis.

The ŝ and p̂ unit vectors for an ENZ medium can be expressed quite simply as,

ŝ = iê× ê∗ (A.10a)

p̂ = iê (A.10b)

and we come to an interesting result. Here ê = ê+ = ê∗
− is shorthand for the two ±

independent circularly polarized solutions (i.e. opposite handedness) and the orthogonal

components of ê are governed by the direction of the momentum and decay. One can easily

derive Eq. (A.10a ) and (A.10b ) by plugging in η = κ and |~k| =
√
κ2 + η2 =

√
2κ into the

polarization equations defined previously in Eq. (A.3 ) and (A.4 ). One sees immediately that

p̂ · p̂ = 0 which is the definition of a circular polarized state.

What this tells us is that all waves in ENZ materials (which are necessarily evanescent)

are perfectly circularly polarized through p̂, regardless of their corresponding phase velocity.

Again, we emphasize that the handedness is flipped ê → ê∗ when the wave propagates in the

opposite direction. This phenomenon is quite interesting when we consider analogies with

the quantum spin-Hall effect (QSHE) in electronics. In essence, these ENZ evanescent waves

have directional dependent quantized transverse spin, which is a defining characteristic of the

QSHE. Experimental realization of a quantized surface state would surely have important

implications in the quantum optics and photonics field.
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A.0.4 Inherent polarization

We now derive the Stokes parameters of a general planar evanescent wave using the

familiar complex angle representation. This corresponds to a particular branch cut in the
~k-complex plane and arises because of the symmetry breaking in the problem under consid-

eration. Our complex wave vector ~k = ~κ+ i~η can be expressed in terms of trigonometric and

hyperbolic functions as,

~k = k0[(cosφx̂+ sinφŷ) sin θ + cos θẑ] (A.11a)

~κ = k0[(cosφx̂+ sinφŷ) sinα + cosαẑ] cosh β (A.11b)

~η = k0[(cosφx̂+ sinφŷ) cosα− sinαẑ] sinh β (A.11c)

where we have allowed the complex rotation to be in the θ = α + iβ plane. One can also

check that all of the properties in Eq. (A.1a ) and (A.1b ) are satisfied for any (real) value

of α or β. We let α = π/2, which in practice would correspond to an interface that breaks

symmetry in the ẑ direction. This is the conventional planar evanescent wave that has been

reduced from the more general coordinate-independent representation.

Next we construct our ŝ and p̂ polarization vectors as prescribed in equations Eq. (A.3 )

and (A.4 ) which results in,

ŝ =


− sinφ

cosφ

0

 (A.12a)

p̂ = i




cosφ

sinφ

0


sinh β√

cosh2 β + sinh2 β
+ i


0

0

−1


cosh β√

cosh2 β + sinh2 β

 (A.12b)
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The Stokes parameters that characterize the complex p̂ state can be written strictly in terms

of β. The Stokes parameters corresponding to the fraction of linear (S1) and circular (S3)

polarization can be expressed as,

S1 = 1
cosh2 β + sinh2 β

= sech(2β) (A.13a)

S3
± = ±2 cosh β sinh β

cosh2 β + sinh2 β
= ± tanh(2β) (A.13b)

where one can see that the p̂-polarization state is variable with respect to β.

A.1 Universal behavior

A.1.1 Circular total internal reflection (golden ratio condition)

In general, the electric field at the boundary between two media must satisfy Maxwell’s

sourceless boundary conditions as,

n̂‖ · ( ~E1 − ~E2) = 0 (A.14a)

n̂⊥ · (ε1 ~E1 − ε2 ~E2) = 0 (A.14b)

where n̂‖ and n̂⊥ are the unit vectors parallel and normal to the boundary respectively. As

always, ε is the relative permittivity in the respective medium. If we restrict our attention

to only p̂-polarized evanescent fields, it is straightforward to show that the handedness of

the evanescent field, which we take to be in region 2, will be imparted to the propagating

wave, which we take to be in region 1.

Firstly, ~η must be in the same direction as n̂⊥ since from our causality requirement the

wave must decay away from the boundary. This is equivalent to stating

(
~η

η

)
= n̂⊥. (A.15)
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Also, since we are only considering p̂-polarized fields we know that the direction of ~κ has to

be in the plane of the electric field vector therefore,

(
~κ

κ

)
= n̂‖ (A.16)

which is the direction parallel to the interface. Strictly speaking, ~κ can actually be parallel

or anti-parallel to n̂‖ depending on the propagation direction because we have 2 possible so-

lutions. This is implied when we discuss counter-propagating waves. Putting it all together,

the field of an evanescent wave at the interface between two mediums must be proportional

to,
~E2 ∝ (η2n̂‖ + iκ2n̂⊥) exp(i~κ2 · ~r) exp(−~η2 · ~r). (A.17)

When we equate boundary conditions in Eq. (A.14a ) and (A.14b ) for ~E1 = (E‖)1n̂‖ +

(E⊥)1n̂⊥ at the interface of the two mediums, this requires the phase between the two electric

field components be related by,

[
E⊥

E‖

]
1

= ±iε2

ε1

[
κ

η

]
2

@interface (A.18)

where the ± indicates oppositely travelling evanescent waves. Again, the spin-momentum

locking of the evanescent wave requires a change in handedness when the momentum direc-

tion changes, and we see that this handedness is also imparted to any wave coupled to the

evanescent field.

A.1.2 Directional quantum emitter coupling

Here we show the derivation for the chiral emitter placed inside a single mode optical

fiber. Any arbitrary field within an optical fiber can be expressed as,

~E =
∑
λ

Aλ~Eλ + ~Erad (A.19a)

~H =
∑
λ

Aλ ~Hλ + ~Hrad (A.19b)
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where ~Eλ/ ~Hλ are the guided modes of the fiber with Aλ being the expansion coefficients

(coupling strength) of each mode. The explicit expressions for the guided modes can be

found in the main manuscript. ~Erad/ ~Hrad are the continuous collection of radiative modes

that are not guided by the fiber so we will mostly ignore them. We use,

ˆ
∇ · (~E × ~H∗

λ + ~E∗
λ × ~H)dV = −

ˆ
~J∗

E · ~EλdV −
ˆ

~J∗
H · ~HλdV (A.20a)

ˆ
(~E × ~H∗

λ + ~E∗
λ × ~H) · d~a = iω[~p∗ · ~Eλ(0) + ~m∗ · ~Hλ(0)] (A.20b)

and we only have to integrate the area element normal to the fiber axis d~a = daẑ. The

modes are orthogonal so we can solve for Aλ. We have four degenerate modes for an HE11

fiber. Two propagating in the forward direction for z > 0 and two in the backward direction

when z < 0. We label these Aλ → Amβ where the m = ±1 indicates the two left and right

orbital angular momentum modes propagating in the direction given by sign(β). Here, β

is the propagation constant with the same magnitude for the four degenerate modes, and

sign(β) = ±1 depending on the direction of propagation. Inserting our dipoles for the chiral

source and using unit magnitude field normalizations (E0 = 1) for the waveguide modes we

have,

Amβ

ˆ
(~Emβ × ~Hm∗

β + ~Em∗
β × ~Hm

β ) · d~a = i
√

2
[
sign(β)|β|ωp0 +m

(σ1)2m0

µ0a

]
. (A.21)

The surface integrals are all the same and we do not care about overall phase factors or

constants so we absorb it into the magnitudes |Amβ |2 as,

|Amβ |2 = C

∣∣∣∣∣sign(β)|β|ωp0 +m
(σ1)2m0

µ0a

∣∣∣∣∣
2

(A.22)

where C is some positive proportionality constant. Do not confuse the angular momentum

quantum number m = ±1, with the magnitude of the magnetic dipole |~m| = m0. These are

two very different but important quantities. Notice that we have differing coupling depending

on both propagation direction and the circular polarization of the chiral source. For instance,

the + circular polarization source couples only into the m = +1 angular momentum modes
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and will emit preferentially in the sign(β) = +1 propagation direction. Conversely, the −

circular polarization source couples only into the m = −1 angular momentum modes and

will emit preferentially in the sign(β) = −1 propagation direction. Most importantly, note

that the power along the fiber axis for a given mode is P ∝ |Amβ |2. This will lead to differing

power being emitted in different directions along the fiber.
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B. QUANTUM GYROELECTRIC EFFECT: PHOTON SPIN-1

QUANTIZATION IN CONTINUUM TOPOLOGICAL

BOSONIC PHASES [SUPPLEMENTAL MATERIAL]

From [T. Van Mechelen and Z. Jacob, “Quantum gyroelectric effect: Photon spin-1 quanti-

zation in continuum topological bosonic phases,” Phys. Rev. A, vol. 98, p. 023842, 2 Aug.

2018]. © 2020 American Physical Society. [54 ]

B.1 2+1D electromagnetic Lagrangian

To understand the two dimensional behavior of photons [84 ], we start with the electro-

magnetic Lagrangian coupled to a conserved current ∂µJµ = 0,

L = −1
4F

µνFµν − AµJ
µ, F µν = ∂µAν − ∂νAµ, (B.1)

which is exact in any space-time dimension. The conservation of charge ensures the action

S =
´
ddxdtL is gauge invariant, where d is the spatial dimension. For d = 2, the motion of

charge is restricted to the x-y plane,

Jµ = (ρ, Jx, Jy), ρ̇+ ∂iJ
i = 0. (B.2)

Similarly, planar currents restrict the spatial degrees of freedom of the gauge potential Aµ,

Aµ = (φ,Ax, Ay). (B.3)

This implies there are only 2 components of the electric field and 1 for the magnetic field,

Ei = −∂iφ− Ȧi, Bz = εij∂iAj = ∂xAy − ∂yAx, (B.4)

such that exclusively transverse-magnetic (TM) waves propagate within a 2D material. This

makes physical sense since the circulation of currents can only generate magnetic fields in a
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single ẑ direction. Note that εij = −εji is the 2D antisymmetric matrix and should not be

confused with the permittivity.

Varying the action with respect to Aµ, we arrive at the familiar equations of motion,

∂µF
µν = Jν , F̃ µ = 1

2ε
µνρFνρ, ∂µF̃

µ = 0. (B.5)

Notice the dual equation F̃µ is slightly different in 2D, which arises from the fact there are

only 3 unique components of the electromagnetic field. We can express the equations of

motion directly in terms of Ei and Bz,

∂iE
i = ρ, εij∂

jBz − Ėi = Ji, Ḃz + εij∂iEj = 0. (B.6)

These are precisely Maxwell’s equations in 2D. We are most interested with the response

of a bulk 2D material so it is convenient to represent the induced charges in terms of the

polarization Pi and magnetization Mz densities,

ρ = −∂iP i, Ji = Ṗi + εij∂
jMz. (B.7)

Substituting into the equations of motion, we define the electric Di and magnetic Bz dis-

placement fields as,

Ḋi − εij∂
jHz = 0, Ḃz + εij∂iEj = 0, (B.8)

which is simply the linear superposition of,

Di = Ei + Pi, Bz = Hz +Mz. (B.9)

The wave equation in Eq. (3.2 ) follows immediately after substituting for the linear response

function M and defining the column vector f =
[
Ex Ey Hz

]ᵀ
for the TM state.
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B.2 Electromagnetic Hamiltonian and polariton eigenstates

Here, we show that the response function M is derived form a first-order in time Hamilto-

nian. Utilizing the decomposition in Eq. (3.6 ), we expand in terms of 3-component oscillator

variables ψα by defining,

ψα = Cαkf

ω − ωαk
, ωψα = ωαkψα + Cαkf, (B.10)

which is first-order in time. Similarly, we back-substitute Eq. (3.6 ) into Eq. (3.2 ) to obtain,

ωf =
[
H0(k) +

∑
α

ω−1
αkC†

αkCαk

]
f +

∑
α

C†
αkψα. (B.11)

The first term represents the vacuum equations and self-energy of the electromagnetic field,

while the second is the linear coupling to the oscillators. By combining Eq. (B.10 ) and (B.11 )

into a single algebraic matrix, the complete electromagnetic Hamiltonian emerges,

H(k) =



H0(k) +∑
α ω

−1
αkC†

αkCαk C†
1k C†

2k . . .

C1k ω1k 0 . . .

C2k 0 ω2k . . .
... ... ... . . .


. (B.12)

The Hermitian equation Hu = ωu characterizes the dynamics of the entire electromagnetic

problem in a 2D material. u constitutes the cumulative state vector of the photon + all

oscillator degrees of freedom,

u =
[
f ψ1 ψ2 . . .

]ᵀ
. (B.13)

Notice that contraction of u naturally reproduces the energy density upon summation over

all degrees of freedom,

u†u = f †f + f †∑
α

C†
αkCαk

(ω − ωαk)2f = f †M̄f, (B.14)
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with M̄ = ∂ω(ωM) > 0 always positive definite. Eigenstates of the Hamiltonian are collec-

tive excitations of oscillators coupled to the electromagnetic field,

Hkunk = ωnkunk, (B.15)

and are manifestly bosonic quasiparticles. These are the n non-trivial roots of the charac-

teristic equation,

det [H0(k) − ωM(ω,k)] = 0, ω = ωn(k), (B.16)

which generates the eigenenergies at any particular momenta. Normalization of each mode

is given concisely as 1 = f †
nkM̄(ωnk,k)fnk.

B.3 Continuum regularization

To adequately describe a continuum topological field theory, the Hamiltonian must ap-

proach a directionally independent value in the asymptotic limit limk→∞ H(k) → H(k), such

that the system is connected at infinity [15 ]. This is the continuum equivalent of a periodic

boundary condition since all limits at k → ∞ are mapped into a single point (i.e. one-point

compactification). We can prove the Chern number is quantized by analyzing the Berry

phase over all momentum. Continuum regularization necessitates the following condition,

˛
k=∞

An · dk = −2π
∑
i

pi +
¨

R2
Fnd

2k = 2πp, (B.17)

with p and pi ∈ Z an integer. Here, An(k) = −iu†
nk∂kunk is the Berry connection of any

particular eigenstate and Fn(k) = ẑ · [∂k × An(k)] is the Berry curvature. The path integral

is performed over a closed loop at infinity k = ∞, which is equivalent to the Berry flux

over all momentum space R2 minus any singular points in the connection. pi label these

singular points of the Berry connection An(ki) which contribute an integer unit of Berry

flux at a particular momentum ki. The Chern number Cn ∈ Z is the summation over all

such singularities,

Cn = p+
∑
i

pi = 1
2π

¨
R2
Fnd

2k. (B.18)
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For Eq. (B.18 ) to hold, we see that the eigenstates must approach a directionally independent

value in the asymptotic limit, up to a possible U(1) gauge,

lim
k→∞

un(k) → un(k) exp [iχn(k)]. (B.19)

When this is the case, the closed loop at infinity k = ∞ is determined purely by the gauge,

˛
k=∞

An · dk =
˛
k=∞

∂kχn · dk = χn|2π

0 = 2πp, (B.20)

which is guaranteed to be an integer multiple of 2π. Hence, Chern numbers are quantized.

For completeness, we note that the Berry connection can be simplified slightly to,

An(k) = −if †
nkM̄(ωnk,k)∂kfnk + f †

nkAAA(ωnk,k)fnk, (B.21)

where AAA is the Berry connection arising from the oscillators,

AAA(ω,k) = −i
∑
α

C†
αk∂kCαk

(ω − ωαk)2 . (B.22)

247



C. NONLOCAL TOPOLOGICAL ELECTROMAGNETIC

PHASES OF MATTER [SUPPLEMENTAL MATERIAL]

From [T. Van Mechelen and Z. Jacob, “Nonlocal topological electromagnetic phases of mat-

ter,” Phys. Rev. B, vol. 99, p. 205146, 20 May 2019]. © 2020 American Physical Society.

[164 ]

C.1 Symmetry-protected topological fermionic phases

For completeness, we examine the SPT fermionic phases associated with each point group

CN and highlight their essential differences from bosons. The most important distinction is

how they transform under rotations; half-integer particles are antisymmetric R(2π) = −1.

In terms of discrete rotations R̂N about the z-axis, the eigenstates of a Bloch spinor particle

satisfy,

R̂N |Ψkp〉 = ζN(kp)|Ψkp〉, (C.1)

where the eigenvalues at HSPs are related by,

ζN(kp) = exp
[
i2π

N
mN(ki)

]
, (ζN)N = −1. (C.2)

mN(ki) ∈ ZN + 1/2 is a modulo half-integer and labels the N possible spin-1⁄2 eigenvalues.

Notice that ζN represents theNth roots of negative unity which is characteristic of a fermionic

field. The single-particle fermionic classification for C2, C3, C4 and C6 respectively is [100 ],

[185 ],

exp
(

i2π

2 C
)

= ζ2(Γ)ζ2(X)ζ2(Y)ζ2(M), (C.3a)

exp
(

i2π

3 C
)

= −ζ3 (Γ) ζ3 (K) ζ3 (K) , (C.3b)

exp
(

i2π

4 C
)

= −ζ4 (Γ) ζ4 (M) ζ2 (Y) , (C.3c)

exp
(

i2π

6 C
)

= −ζ6 (Γ) ζ3 (K) ζ2 (M) . (C.3d)
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Although the classification appears similar, the SPT fermionic phases constitute very differ-

ent physics than their bosonic counterparts, which is alluded to by the antisymmetric phase

factors R(2π) = −1. We illustrate this with an example in C4. Applying the logarithm - the

classification for the SPT fermionic phase ν = C mod 4 can be expressed as,

ν = m4(Γ) +m4(M) + 2m2(Y) + 2 mod 4, (C.4)

where m4(Γ) & m4(M) ∈ Z4 + 1/2 are modulo 4 half-integers and m2(Y) ∈ Z2 + 1/2 is a

modulo 2 half-integer.

C.2 Example of a continuum topological electromagnetic phase

We consider the long wavelength (continuum) limit k ≈ 0 and ignore all higher order g 6=

0 spatial harmonics [54 ], [116 ], [167 ]. The simplest response function showing a topologically

nontrivial electromagnetic phase is described by the permittivity tensor εij,

εij(ω, k) = ε(ω, k)δij + ig(ω, k)εij. (C.5)

εij = −εji is the antisymmetric tensor and should not be confused with the permittivity

εij. This is simply the Drude model biased under an applied magnetic field. ε is the scalar

permittivity (diagonal part),

ε(ω, k) = 1 +
ω2
p(k)

ω2
c (k) − ω2 , (C.6)

while g is the gyrotropic coefficient (off-diagonal part) which breaks both parity and time-

reversal symmetry,

g(ω, k) =
ωc(k)ω2

p(k)
ω(ω2

c (k) − ω2) . (C.7)

Notice we have added nonlocal (momentum-dependent) corrections to both the plasma ωp
and cyclotron ωc frequencies. As we will see, nonlocality is imperative to describe a topo-
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logically nontrivial phase. In terms of coupling matrices C, the permittivity tensor can be

expressed as,

εij = δij −
[C+]il[C+]lj
ω(ω − ωc)

−
[C−]il[C−]lj
ω(ω + ωc)

, (C.8)

where repeated indices imply summation and,

[C±]ij = ωp
2 (δij ± iεij). (C.9)

The corresponding Hamiltonian ωu = Hu governing the total light-matter interaction is

therefore,

H =


H0 C+ C−

C+ ωc 0

C− 0 −ωc

 , u =


f

ψ+

ψ−

 , (C.10)

where ψ± are the positive and negative energy matter oscillations. To be properly regularized,

the nonlocaity (spatial dispersion) must be at least quadratic in k,

ωp(k) = ωp0 + ωp2k
2, ωc(k) = ωc0 + ωc2k

2. (C.11)

Physicallty, the quadratic nonlocality arises from high-momentum corrections to the effective

mass, since the electronic bands are not perfectly parabolic,

1
M∗ = 1

~2
∂2E

∂k2 = 1
M0

+ 1
M2

(ka)2 + . . . (C.12)

which gives,

ωc0 = eB0

M0
, ωc2 = eB0

M2
a2. (C.13)

a is the lattice constant in this case. Inserting into the wave equation, we obtain the disper-

sion relation,

ω2
(
ε− g2

ε

)
= k2, (C.14)

which has two (positive energy) eigenmode branches,

ω2
± = 1

2
[
2ω2

p + ω2
c + k2 ±

√
4ω2

pω
2
c + (ω2

c − k2)2
]
. (C.15)
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After a bit of work, it can be shown that the Chern number for each band is determined by

the spin eigenvalues at ki = 0 and ki = ∞,

C± = m±(0) −m±(∞) = ∓[sgn(ωc0) − sgn(ωc2)]. (C.16)

Alternatively, the Chern number can be expressed in terms of the relative sign of the effective

masses, M0 and M2, and the applied magnetic field B0,

C± = ∓[sgn(M0) − sgn(M2)]sgn(B0). (C.17)

If the cyclotron frequency switches sign with momentum ωc0ωc2 < 0, the topological phase

is nontrivial |C±| = 2. This implies there is an inflection point in the electronic band,

1/M∗ = ∂2E/∂k2 = 0 such that the curvature changes. More precisely, if there are an odd

number of inflection points, the curvature changes an odd number of times, which always

produces a nontrivial phase |C±| = 2.
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D. UNIDIRECTIONAL MAXWELLIAN SPIN WAVES

[SUPPLEMENTAL MATERIAL]

From [T. V. Mechelen and Z. Jacob, “Unidirectional maxwellian spin waves,” Nanophoton-

ics, vol. 8, no. 8, pp. 1399–1416, Aug. 2019]. © 2020 De Gruyter. [167 ]

D.1 Dirac Jackiw-Rebbi edge states

For completeness, we provide a brief review of Jackiw-Rebbi states that arise in two-

dimensional condensed matter systems. The simplest realization is described by the 2D

Dirac equation HΨ = EΨ,

H = v(kxσx + kyσy) + Λσz, (D.1)

where [σi, σj] = 2iεijkσk are the Pauli matrices. v is the Fermi velocity and Λ is a two-

dimensional Dirac mass.

We consider an interface of two Dirac particles with opposite masses Λ → Λsgn(x).

Similar to the photonic problem [Sec. 6.5 ], there is now mirror symmetry about x = 0. The

unidirectional (chiral) edge solution is well known [93 ] and assumes a surprisingly simple

form,

Ψ(x) = Ψ0

 1

i sky

 e−η|x|, (D.2)

where sky = sgn(ky) = ±1 is the sign of the momentum and Ψ0 is a normalization constant.

This follows from the characteristic equation,

η = |Λ|
v
, E2 = v2k2

y. (D.3)

If Λ > 0, the Dirac edge wave propagates strictly in the ky > 0 direction and vice verse for

Λ < 0. It is clear that Ψ is an eigenstate of both the helicity operator k̂ · ~S = σy/2 and the

mirror operator Px = σy which are identical in this case,

σyΨ(−x) = σyΨ(x) = skyΨ(x). (D.4)
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Indeed, the Dirac Jackiw-Rebbi edge states are helically quantized and behave identically to

a massless (Weyl) fermion. This should be contrasted with their photonic (spin-1) equivalent

in Eq. (6.53 ).

D.2 Robustness of PQH and PJR edge states

Although the PQH and PJR states are not topologically-protected, they can still exhibit

robust transport – ie. immunity to small perturbations in the gyrotropic coefficient g. Let us

assume g → g(x) is a function of x but take ε as a constant in space. In reality, this is only

approximately true since g and ε cannot be completely independent functions. In the Drude

model for instance, a field gradient B0 → B0(x) creates a spatially dependent cyclotron

frequency ωc → ωc(x) which alters both the resonance frequency and the relative magnitude

of the gyrotropy. Hence, both g and ε will generally vary with x. However, this simplifying

assumption illustrates the point very well and holds for relatively small perturbations in the

gyrotropy.

When only g(x) varies with x, the Schrödinger-like wave equation [Eq. (6.42 )] for the

PQH state becomes,

− ∂2
xEy +

[
ky
ε
∂xg(x) + ω2 g

2(x)
ε

]
Ey = (ω2ε− k2

y)Ey. (D.5)

Due to the mirror boundary condition, g(−x) = −g(x) is an odd function of x. However,

we can still allow a jump discontinuity at x = 0, such that g(0−) = −g(0+). Far from the

boundary |x| → ∞, the gyrotropy approaches the uniform bulk g(x → ±∞) = ±g0. A

unidirectional edge state always exists and is immune to perturbations in g. To prove this,

we choose an integrating factor of the form,

Ey(x) = Ey(0) exp
[
ky
ε

ˆ x

−∞
g(x)dx

]
, (D.6)

which satisfies,

∂xEy(x) = ky
ε
g(x)Ey(x), (D.7)
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and,

∂2
xEy(x) =

[
ky
ε
∂xg(x) +

k2
y

ε2 g
2(x)

]
Ey(x). (D.8)

Clearly, if the edge dispersion is fulfilled k2
y = ω2ε, Eq. (D.5 ) is satisfied regardless of the

particular form of g(x). The exact same integrating solution exists for the PJR states, with

Ey(x) = 0, except the momentum is reversed ky → −ky. As an example, let g(x) =

g0 tanh(x/a), where a is some characteristic transition length that interpolates between

g(0) = 0 and g(x → ±∞) = ±g0. The integral of which is
´
g(x)dx = ag0 log [ cosh(x/a)].

The spatial profile then becomes,

Ey(x) = Ey(0)[ cosh(x/a)](kyag0/ε). (D.9)

In the limit of an infinitesimally narrow transition width a → 0, the solution reduces to the

idealized case [ cosh(x/a)](kyag0/ε) → exp(−η|x|) with η = −kyg0/ε.

D.3 Temporal dispersion

Temporal dispersion, or the frequency dependence of linear response, arises whenever

light couples to matter,

M(ω) =


εxx εxy χx

ε∗
xy εyy χy

χ∗
x χ∗

y µ

 ,
Di = εijE

j + χiHz,

Bz = χ∗
iE

i + µHz.

(D.10)

Temporal dispersion is always present because it characterizes the relative coupling at a

particular energy to the material degrees of freedom – the electronic modes. These are the

physical objects that generate the linear response theory to begin with. Moreover, due to

the reality condition of the electromagnetic field (particle-antiparticle symmetry), the real

and imaginary components of M cannot be arbitrary functions of ω,

M∗(−ω) = M(ω). (D.11)
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This implies Re [M(−ω)] = Re [M(ω)] must be even in ω while Im [M(−ω)] = − Im [M(ω)]

is odd. Hence, it is physically impossible to break time-reversal (T ) symmetry without

dispersion. In this case, we imply breaking T symmetry nontrivially (Hermitian response).

In the rare circumstance of strong magnetoelectricity χi 6= 0, it is conceptually possible to

break time-reversal without dispersion but these generally vanish due to rotational symmetry.

Adding loss (antiHermitian response) breaks T symmetry in a trivial way because it does

not alter the dynamics of the field – it simply adds a finite lifetime.

Besides the reality condition, M must satisfy three additional physical constraints. The

first being transparency at high frequency,

lim
ω→∞

M(ω) → 13, (D.12)

where 13 is the 3 × 3 identity. The second being Kramers-Kronig (causality),

˛
Im [ω]≥0

M(ω) − 13

ω − ω
dω = 0. (D.13)

This ensures the response function is analytic in the upper complex plane and decays at least

as fast as |ω|−1. The last condition requires a positive definite energy density,

M̄(ω) = ∂ω[ωM(ω)] > 0. (D.14)

By combining all the aforementioned constraints and assuming Hermitian (lossless) systems

M† = M, we can always expand M via a partial fraction decomposition [74 ],

M(ω) = 13 −
∑
α

C†
αCα

ωα(ω − ωα) . (D.15)

The poles of the response function ω = ωα represent resonances of the material degrees of

freedom. From an electronic band structure point of view, ωα = (Eα −E0)/~ represents the

energy difference between the ground state and an excited state. Cα is the coupling strength

(matrix element) of the excitation.
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D.4 Spatial dispersion (nonlocality)

Spatial dispersion, or the momentum dependence of linear response, dictates how the

light-matter interaction changes with wavelength (scale). Nonlocality becomes relevant at

the nanoscale and governs the deep subwavelength physics. Perhaps more importantly,

nonlocality is fundamentally necessary to describe topological phenomena. As has been

proven in Ref. [54 ], [116 ], Chern numbers are only quantized when M is regularized which

inherently requires spatial dispersion. This is the only way for the electromagnetic theory to

be consistent with the tenfold way [15 ], which describes all possible continuum topological

theories. Technically, the photon belongs to Class D, the same universality class as the

p-wave topological superconductor [243 ]. Class D possesses an integer topological invariant

(Chern number) in two dimensions.

Spatial dispersion is easily introduced by letting ωα → ωαk and Cα → Cαk be functions

of k,

M(ω,k) = 13 −
∑
α

C†
αkCαk

ωαk(ω − ωαk) . (D.16)

The k dependence cannot be completely arbitrary because the response function must satisfy

the generalized reality condition,

M∗(−ω,−k) = M(ω,k). (D.17)

The reality condition (particle-antiparticle symmetry) implies there is a negative energy

resonance −ωα−k associated with each positive energy ωαk. The wave equation of the 2D

photon coupled to matter is thus,

H0(k)f = ωM(ω,k)f. (D.18)

However, this is still not a first-order eigenvalue problem since M depends on the eigenvalue

ω itself. Moreover, the electromagnetic field f is not the complete eigenvector of this system.

A simple reason is because the number of eigenmodes n should match the dimensionality of

the eigenvector dim [u] = n. This clearly does not hold dim [f ] = 3 when temporal dispersion

is present since there can be many modes that satisfy the wave equation [Eq. (D.18 )].
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D.4.1 Electromagnetic Hamiltonian

To convert Eq. (D.18 ) into a first-order Hamiltonian, we define the auxiliary variables

ψα that describe the internal polarization and magnetization modes of the medium,

ψα = Cαkf

ω − ωαk
, ωψα = ωαkψα + Cαkf. (D.19)

Back-substituting into Eq. (D.18 ) and using the partial fraction expansion,

ω

ωα(ω − ωα) = 1
ωα

+ 1
ω − ωα

, (D.20)

we obtain the first-order wave equation,

H(k)u = ωu, u =
[
f ψ1 ψ2 . . .

]ᵀ
. (D.21)

u accounts for the electromagnetic field f and all internal polarization modes ψα describing

the linear response. H(k) is the Hamiltonian matrix that acts on this generalized state

vector u,

H(k) =



H0(k) +∑
α ω

−1
αkC†

αkCαk C†
1k C†

2k . . .

C1k ω1k 0 . . .

C2k 0 ω2k . . .
... ... ... . . .


. (D.22)

This decomposition makes intuitive sense. The dimensionality of the Hamiltonian matches

the number of distinct eigenmodes and eigenenergies of the problem. The complete set of

eigenvectors is thus,

H(k)unk = ωnkunk. (D.23)

Constructing the total Hamiltonian H(k) is a very important procedure when nonlocality is

present. This is because we have to start imposing boundary conditions on the oscillators

ψα themselves when we consider interface effects.
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Utilizing the linear response theory, the electromagnetic eigenstates of the medium fnk

are solutions of the self-consistent wave equation,

det [ωM(ω,k) − H0(k)] = 0, ω = ωnk, (D.24)

which determines all possible polaritonic bands. These bands are normalized to the energy

density as,

u†
nkunk = f †

nkM̄(ωnk,k)fnk = 1, (D.25)

where,

M̄(ω,k) = ∂ω[ωM(ω,k)] = 13 +
∑
α

C†
αkCαk

(ω − ωαk)2 . (D.26)

Due to the constraints on M, these bands are continuous and real-valued for all k.

D.4.2 Nonlocal regularization

A well known requirement of any continuum topological theory, is that the Hamiltonian

must approach a directionally independent value in the asymptotic limit [15 ],

lim
k→∞

H(k) = H(k). (D.27)

This ensures the Hamiltonian is connected at infinity and is the continuum equivalent of

a periodic boundary condition. Mathematically, this means the momentum space manifold

is compact and can be projected onto the Riemann sphere R2 → S2. Alternatively, if the

response function is regularized, the wave equation approaches a directionally independent

value in the asymptotic limit,

lim
k→∞

[ωM(ω,k) − H0(k)] → ωM(ω, k). (D.28)

This places constraints on the asymptotic behavior of the response parameters,

lim
k→∞

Cαk → Cαqkq, lim
k→∞

ωαk → ωαqk
q, (D.29)

258



where Cαq and ωαq are constants of the qth order k expansion. Consequently, Cαk and ωαk

require quadratic order nonlocality at minimum q ≥ 2 to be properly regularized. We will

show that this is a necessary and sufficient condition for Chern number quantization.

It is important to remember that continuum models are long wavelength theories k ≈ 0

and are only valid approximations within a small range of k. The asymptotic behavior k → ∞

is defined to ensure the Taylor expansion is well-behaved at the order of the approximation

O(kq). In reality, the wave always approaches a Bragg condition ka = π, at a very large but

finite momentum k 6= ∞, which maps the k-space into itself. This designates a torus T2 =

S1 ×S1 in two dimensions – a compact manifold. Waves constrained to a compact manifold

is the fundamental origin of Chern number quantization and topological phenomena. When

the k ≈ 0 expansion is well-behaved, the torus is topologically equivalent to the plane

T2 ' S2 ' R2, such that the k-space remains compact. The limit at k → ∞ guarantees this

and means topological physics descends to the long wavelength theory.

D.5 Continuum electromagnetic Chern number

The Berry connection is found by varying the complete eigenvectors unk with respect to

the momentum An(k) = −iu†
nk∂kunk. This can be simplified to,

An(k) = −if †
nkM̄(ωnk,k)∂kfnk + f †

nkAAA(ωnk,k)fnk, (D.30)

where AAA is the Berry connection arising from the material degrees of freedom,

AAA(ω,k) = −i
∑
α

C†
αk∂kCαk

(ω − ωαk)2 . (D.31)

It is straightforward to prove that nonlocal regularization guarantees Chern number quan-

tization. In the asymptotic limit, the electromagnetic modes approach a directionally inde-

pendent value, up to a possible U(1) gauge,

lim
k→∞

fn(k) → fn(k) exp [iχn(k)] . (D.32)
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The closed loop at k = ∞ is therefore a pure gauge, which is necessarily a unit Berry phase

γn = 1,

exp
[
i
˛
k=∞

An(k) · dk
]

= exp
[
i
ˆ
R2
Fn(k)d2k

]
= exp

[
iχn|2π

0

]
= 1. (D.33)

Fn(k) = ẑ · [∂k × An(k)] is the Berry curvature and we have utilized Stokes’ theorem to

convert the line integral to a surface integral over the entire planar momentum space R2.

Since the total Berry flux must come in multiples of 2π, the Chern number Cn is guaranteed

to be an integer,

Cn = 1
2π

ˆ
R2
Fn(k)d2k ∈ Z. (D.34)

Cn counts the number of singularities in the gauge potential An(k) as it evolves over the

momentum space. We will now discuss the role of symmetries on the electromagnetic Chern

number – specifically rotational symmetry.

D.6 Rotational symmetry and spin

If the unit cell of the atomic crystal possesses a center (at least threefold cyclic) the

response function is rotationally symmetric about z,

R−1M(ω,Rk)R = M(ω,k). (D.35)

R is the SO(2) matrix acting on the coordinates k. R is the action of SO(2) acting on the

fields f , which induces rotations in the x-y plane,

R =

 cos θ sin θ

− sin θ cos θ

 , R = exp(iθŜz) =

R 0

0 1

 . (D.36)

R is simply the SO(3) matrix along ẑ which rotates the polarization state of the electro-

magnetic field. Ei transforms as vector in 2D while Hz transforms as scalar. Clearly the

representation is single-valued (bosonic) and describes a spin-1 particle,

R(2π) = 13. (D.37)
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Infinitesimal rotations on the coordinates k gives rise to the orbital angular momentum

(OAM) L̂z = −i∂φ while infinitesimal rotations on the polarization state gives rise to the

spin angular momentum (SAM) Ŝz = −iεijz. Consequently, the total angular momentum

(TAM) Ĵz is conserved, at all frequencies and wave vectors,

[Ĵz,M(ω,k)] = 0, Ĵz = L̂z + Ŝz. (D.38)

Equation (D.35 ) and (D.38 ) are equivalent statements in this context. Moreover, this implies

the electromagnetic field is a simultaneous eigenstate of Ĵz,

Ĵzfnk = jnfnk, jn ∈ Z. (D.39)

jn is necessarily an integer for photons. Note though, jn is only uniquely defined up to a

gauge since we can always add an arbitrary OAM to the state fnk → fnk exp(ilnφ) such that

jn → jn + ln.

D.6.1 Stationary (high-symmetry) points

At an arbitrary momentum k, the SAM and OAM are not good quantum numbers – only

the TAM is well defined (up to a gauge). However, at stationary points k = kp, also known

as high-symmetry points (HSPs), the electromagnetic field is a simultaneous eigenstate of

Ŝz and L̂z. In the continuum limit there are two such HSPs, kp = 0 and kp = ∞. At these

specific momenta, the response function is rotationally invariant – it commutes with R,

[R,M(ω, kp)] = [Ŝz,M(ω, kp)] = [L̂z,M(ω, kp)] = 0. (D.40)

Since M is a continuous function of k, it cannot depend on the azimuthal coordinate φ at

HSPs, otherwise M would be multivalued. Hence, the electromagnetic field is an eigenstate

of both Ŝz and L̂z at kp,

Ŝzfnkp = mn(kp)fnkp , L̂zfnkp = ln(kp)fnkp . (D.41)
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mn(kp) = ±1, 0 is the SAM eigenvalue at kp of the nth band and ln(kp) ∈ Z is the OAM

eigenvalue. Importantly, only the SAM is gauge invariant because it represents the eigenvalue

of a matrix – ie. it only depends on the polarization state. This immediately implies the

eigenmode can be factored into a spin and orbital part at HSPs,

fnkp ∝ [~em(kp)]n exp [iln(kp)φ]. (D.42)

[~em(kp)]n is the particular spin eigenstate at kp for the nth band. There are three possible

eigenstates ~em corresponding to three quantized spin-1 vectors,

R~em = ~eimθ~em, Ŝz~em = m~em, (D.43)

where m = ±1, 0 labels the quantum of spin for each state,

~e± = 1√
2


1

±i

0

 , ~e0 =


0

0

1

 . (D.44)

~e± are right and left-handed states respectively and represent electric resonances Ey = ±iEx
with Hz = 0. The spin-0 state ~e0 is a magnetic resonance Ex = Ey = 0 with Hz 6= 0.

D.6.2 Spin spectrum

To determine the spin state of a particular band n, we need to solve the wave equation

at HSPs. At these points, only three parameters are permitted by symmetry,

M(ω, kp) =


ε ig 0

−ig ε 0

0 0 µ

 . (D.45)

ε and µ are the scalar permittivity and permeability respectively. g is the gyrotropic coeffi-

cient which breaks both time-reversal (T ) and parity (P) symmetry but preserves rotational
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(R) symmetry. Assuming a regularized response function, nontrivial solutions of the wave

equation simultaneously satisfy,

det [M(ω, kp)] = 0, ω = ωn(kp) 6= 0. (D.46)

There are three possible conditions that satisfy Eq. (D.46 ). The first two generate right or

left-handed states ~e±,

mn(kp) = g(ωn(kp), kp)
ε(ωn(kp), kp)

= ±1. (D.47)

The last generates the the spin-0 state ~e0,

mn(kp) = µ(ωn(kp), kp) = 0. (D.48)

Note, since mn is a discrete quantum number, it cannot vary continuously if rotational

symmetry is preserved. It can only be changed at a topological phase transition which

requires an accidental degeneracy at a HSP.

D.6.3 Symmetry-protected topological (SPT) phases

Remarkably, the electromagnetic Chern number is determined entirely from the spin

eigenvalues at the HSPs kp. The proof is surprisingly simple. Due to rotational symmetry,

the Berry curvature Fn(k) = ∂kA
φ
n(k) depends only on the magnitude of k since Fn is a

scalar. Integrating the Berry curvature over all space R2, we arrive at,

Cn = Aφn(∞) − Aφn(0) = ln(∞) − ln(0). (D.49)

This follows because fnkp is an eigenstate of the OAM at HSPs kp = 0 and kp = ∞. The

OAM at kp is not gauge invariant, however the difference at the two stationary points is gauge

invariant because the TAM is conserved jn = mn(0) + ln(0) = mn(∞) + ln(∞). Substituting

for mn we obtain,

Cn = mn(0) −mn(∞). (D.50)
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Hence, the spin eigenstate must change at HSPs mn(0) 6= mn(∞) to acquire a nontrivial

phase Cn 6= 0. It is also clear that a purely gyrotropic medium µ = 1 always has Chern

numbers of |Cn| = 2 since mn(kp) = ±1 only assumes two values. |Cn| = 1 is much more

exotic as it requires both gyrotropy and magnetism.
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E. VISCOUS MAXWELL-CHERN-SIMONS THEORY FOR

TOPOLOGICAL ELECTROMAGNETIC PHASES OF

MATTER [SUPPLEMENTARY MATERIAL]

From [T. Van Mechelen and Z. Jacob, “Viscous Maxwell-Chern-Simons theory for topolog-

ical electromagnetic phases of matter,” Phys. Rev. B, vol. 102, p. 155425, 15 Oct. 2020].

© 2020 American Physical Society. [246 ]

Supplementary information for “Viscous Maxwell-Chern-Simons theory for topological

electromagnetic phases of matter”. Here, we derive a general bulk-boundary correspondence

for the viscous MCS theory. We follow a very similar procedure as Mong [Phys. Rev. B 83,

125109 (2011)] which analyzed the Dirac equivalent.

E.1 Gauge theory and dual fields

We emphasize that the topological field theory for electromagnetic fields can be con-

structed equivalently in terms of a gauge theory Aµ or the dual fields F̃µ. Indeed, Lagrangians

LA and LF produce the exact same equations of motion when one varies the action with

respect to Aµ or F̃µ. The subtle difference is that LF is manifestly gauge invariant, while LA

is only gauge invariant up to a total divergence. The total divergence has no effect in the

bulk but will generate gauge-breaking boundary terms that need to be carefully accounted

for [273 ]. To avoid this complication, we prefer to work with the dual fields F̃µ since the

boundary theory is automatically gauge invariant.

E.2 Equivalence with Hoyos and Son action

In flat space time, the Hoyos and Son action [255 ] that describes the viscous component

of the Hall response is,

S =
ˆ
dV L, L = ξEi∂iB, (E.1)

where ξ is the effective Hall visosity. The Hoyos and Son action assumes that E = −∇∇∇φ is

longitudinal and therefore neglects the transverse component of the response. It is straight-
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forward to show that our action reduces to the Hoyos and Son action under the substitution

E = −∇∇∇φ and two integration by parts,

L = −ξ

4ε
µνρAµ∇2Fνρ = ξ

2(φ∇2B + εijA
i∇2∂jφ) = ξ

2 [φ∇2B − εijA
i∂j(∇∇∇ · E)]

→ ξ

2(−∂iφ∂iB −B∇∇∇ · E) → ξ

2(−∂iφ∂iB + ∂iBEi) = ξEi∂iB.

(E.2)

Hence, our formulation is a generalization of the Hoyos and Son action to include transverse

fields in flat space time.

E.3 Gauss’s law and electrostatics

For time-dependent fields ω 6= 0, the Maxwell Hamiltonian automatically enforces Gauss’s

law from the definition of the cross product,

~d · ~F = ∂iE
i − (κ+ ξ∇2)Bz = 0. (E.3)

As we can see, the MCS mass (Hall conductivity) ties electric charge to the magnetic

field Bz. However, an important difference between the Maxwell Hamiltonian (H) and

Schrödinger/Dirac Hamiltonians is that det [H] = 0 is manifestly singular (noninvertible).

This is because the equations of motion for gauge theories are inherently redundant. Electro-

static ω = 0 (time-independent) potentials always exist ~F0 = ~dφ which are trivial solutions of

H ~F0 = 0. Elimination of these “zero modes” requires Gauss’s law as an additional constraint

at zero frequency,
~d · ~F0 = ~d · ~dφ = [∇2 − (κ+ ξ∇2)2]φ = 0. (E.4)

These scalar potentials φ do not enter the free field theory since they do not possess a plane

wave representation.
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E.4 Topologically-protected spin-1 edge states

E.4.1 Natural boundary condition

To see that the normal Poynting vector vanishes as implied by the boundary term of the

MCS Lagrangian, it is useful to first derive the velocity operator vi,

vi = ∂H

∂pi
= Si − 2ξpiSz, (E.5)

which has an additional kinetic term when ξ 6= 0. The Poynting vector is simply the

expectation value of Pi = ~F ∗ · vi ~F . Clearly, if ~F is a null state of vx at x = 0,

vx ~F |x=0 = 0, (E.6)

then the normal component Px|x=0 = 0 vanishes identically. Equation (E.6 ) is equivalent to

the Lagrangian variation of the main text, just expressed in a more enlightening form.

E.4.2 Bulk-boundary correspondence for spin-1 Maxwell Hamiltonian

Now we show that the boundary of the nontrivial phase |Cem| = 2 hosts chiral photons

that minimize the surface action δSs = 0. This is the bulk-boundary correspondence (BBC)

of the viscous MCS theory which applies to spin-1 systems. We follow a very similar proof as

Mong (Ref. [224 ]) that exhaustively analyzed the spin-1⁄2 Dirac counterpart. Here we present

the proof for the continuum model since it is particularly intuitive. The proof and results

for the lattice theory are essentially identical.

We consider a half-space truncated at x = 0 with the topological medium in the x > 0

space. Due to quadratic nonlocality in the photonic mass Λ(k) = κ−ξk2, there are generally

two characteristic wavelengths for a given momentum ky,

~F (x) = c1 ~f1eiζ1x + c2 ~f2eiζ2x, (E.7)

where ~f1 and ~f2 are polarization states to be determined. The constraint that Im(ζ1,2) > 0

lie in the upper complex plane ensures ~F (x → ∞) → 0 are decaying waves. To fulfill
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Dirichlet ~F (0) = 0 or Neumann ∂x ~F (0) = 0 type boundary conditions at x = 0 (or any

linear combination), the polarization states ~f1 ∝ ~f2 must share an eigenvector. Assuming

dynamical fields ω 6= 0, this implies the wave equation is satisfied for arbitrary choices of c1

and c2,

det
[
(c1 + c2)ω − c1~d(ζ1) · ~S − c2~d(ζ2) · ~S

]
= 0, (E.8)

which produces a system of equations,

ω2 = ~d(ζ1) · ~d(ζ1) = ~d(ζ2) · ~d(ζ2) = ~d(ζ1) · ~d(ζ2). (E.9)

By direct inspection, the system of equations [Eq. (E.9 )] is only fulfilled if,

ω2 = k2
y, ζ1 − iΛ1 = ζ2 − iΛ2 = 0, (E.10)

or,

ω2 = k2
y, ζ1 + iΛ1 = ζ2 + iΛ2 = 0, (E.11)

where Λ1,2 = κ − ξ(k2
y + ζ2

1,2). Imposing the constraint Im(ζ1,2) > 0, only one of these

conditions can be true for a given ky. The other corresponds to an exponentially growing

wave. Plugging the two ζ roots back into the wave equation, the solution with a degenerate

eigenvector requires Ey(x) = 0,

~f1 ∝ ~f2 ∝


1

0

∓i

 , (E.12)

which are eigenvectors of Sy ~f1,2 = ±~f1,2.
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E.4.3 Massless chiral edge states

Curiously, we find a single chiral edge state in the nontrivial regime κξ > 0, even though

the Chern number is |Cem| = 2, which usually suggests two edge states from conventional

wisdom. In any case, the general solution is a linearly dispersing (massless) photon,

~F (x) =


1

0

−isκ


(
c1e−η1x + c2e−η2x

)
, ω = sκky, (E.13)

where we have redefined ζ = iη to emphasize that the edge state decays at x → ∞. The

direction of propagation sκ = sgn(κ) is dictated by the relative sign of sgn(κ) = sgn(ξ) = ±1,

giving Cem = ±2. The edge state is completely unidirectional (chiral) as ky → −ky is never a

simultaneous solution. Interestingly, the edge state is also an eigenstate of the spin-1 helicity

operator Sy ~F = sκ ~F , which represents a completely transverse electromagnetic (TEM) wave

Ey(x) = 0. The decay constants η1,2 are the two roots of the secular equation,

sκη = Λ(η) = κ− ξk2
y + ξη2, (E.14)

which gives,

η1,2 = 1
2|ξ|

[
1 ±

√
1 + 4ξ(ξk2

y − κ)
]
. (E.15)

It is also clear that the edge state is gapless, as the momentum ky intersects the bulk (massive)

spectrum at ky = kc =
√
κ/ξ, precisely where the MCS mass passes through zero Λ(kc) = 0.

At this point, one of the decay constants vanishes η(kc) = 0 and the edge wave joins the

bulk continuum.

Depending on the choice of c1,2, the edge state can satisfy either of the two boundary

conditions that minimize the action δSs = 0. For Dirichlet we have an antisymmetric

combination,
~F (0) = 0, c1 = −c2, (E.16)
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while the natural boundary condition is a symmetric combination,

vx ~F (0) = 0, c1 = c2. (E.17)

It is important to emphasize that both boundary conditions are satisfied irrespective of the

contacting medium in the x < 0 half-space. The photonic edge states will exist at the

boundary of vacuum.

E.5 Lattice theory

In the lattice theory, we do not assume that space is continuous but instead discretized

into a square lattice ; a is the lattice spacing. In this case, the space coordinates can be

expressed as x = nxa and y = nya, with nx,y ∈ Z. However, time remains continuous.

First-order derivatives are converted to,

∂x ~F →
~F (x+ a) − ~F (x− a)

2a , (E.18)

while second-order derivatives are,

∂2
x
~F →

~F (x+ a) − 2~F (x) + ~F (x− a)
a2 , (E.19)

with similar expressions for y. The continuum limit a → 0 is obtained from standard calculus

assuming the fields are at least twice differentiable. Transferring to the momentum space
~F = eik·r ~Fk; linear terms in the Hamiltonian are replaced with,

px ~F → 1
a

sin(kxa)~Fk, (E.20)

and similarly for quadratic terms arising from the Hall viscosity ξ 6= 0,

p2
x
~F → 4

a2 sin2
(
kxa

2

)
~Fk. (E.21)

The quadratic terms are essential to realize nontrivial topology [271 ].
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E.5.1 Lattice edge states

Topologically-protected edge states in the lattice theory assume a nearly identical form as

the continuum limit [54 ], [116 ], with only slight modifications to the dispersion. To uncover

the edge states, we terminate the lattice at x = 0 and introduce a half-space in the x > 0

domain. In this case, |ky| ≤ π/a is still a good quantum number, which we Fourier transform

over, but the lattice has now been truncated at x = nxa = 0. Hence, we solve for the field at

every discrete lattice point nx ≥ 0 which is labelled by ~F (nxa) and the stipulation that the

field is decaying ~F (nxa) → 0 as nx → ∞. To satisfy an open ~F (0) = 0 or mixed vx ~F (0) = 0

boundary condition, the edge state must possess a degenerate eigenvector for two decay

constants η1,2. After a bit of work, the edge state can be expressed as,

~F (nxa) =


1

0

−sC i

 [c1 expnx(−η1a) + c2 expnx(−η2a)] , (E.22)

where sC = sgn(Cem) is the sign of the Chern number and c1,2 are proportionality constants

that are set by the boundary condition. The dispersion relation reads,

ωa = sC sin(kya). (E.23)

For small kya ≈ 0 the dispersion is linear ω ≈ sCky and the edge state propagates near the

effective speed of light in the material |∂ω/∂ky| = 1. Interestingly, Sy ~Fnx = sC ~Fnx is also an

eigenstate of the spin-1 helicity operator (SO(3)) with quantized spin along ŷ.

The proportionality constants c1,2 can be chosen to satisfy Dirichlet (open) ~F (0) = 0 or

mixed (natural) boundary conditions vx ~F (0) = 0 at x = nxa = 0. The Dirichlet condition

represents an antisymmetric combination c1 = −c2 while the natural condition is a symmetric

combination c1 = c2. The decay constants η1,2 are found from the characteristic equation,

with kx = iη,
sC
a

sinh(ηa) = Λ(η), (E.24)
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which has two decaying roots Re(η1,2) > 0 strictly in the nontrivial regime |Cem| = 2. Solving

the secular equation we obtain,

exp(−η1,2a) = 1
2q+

(
−p±

√
w2 − 4q+q−

)
(E.25)

where,

p = κ−
(2
a

)2
ξ

[
sin2

(
kya

2

)
+ 1

2

]
, q± = sC

2a ± ξ

a2 . (E.26)

The regimes where Re(η) > 0 define the allowed parallel ky vectors of the edge state. When

one of η = 0, the edge state is no longer confined and joins the continuum of bulk states.

This occurs precisely when ky intersects the bulk bands; i.e. the edge state is gapless.
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